

SemiAutomatic Conceptual Data Modeling Using Entity and

Relationship Instance Repositories

A Thesis

Submitted to the Faculty

of

Drexel University

by

Ornsiri Thonggoom

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

May 2011

© Copyright 2011
Ornsiri Thonggoom. All Rights Reserved

i

ACKNOWLEDGEMENT

I am indebted to my supervising professor, Dr. Il-Yeol Song, for his guidance

throughout the research program, without which this dissertation would never have been

completed. His insightful advice and comments have significantly improved this work. I

am very grateful for his unwavering help and support for all these years. And I

wholeheartedly thank him for never giving up on me.

I would like to thank the Committee Members, Dr. Don Goelman, Dr. Yuan An,

Dr. Harry Jiannan Wang, and Dr. Xiaohua Tony Hu, for their valuable advice and

helpful comments that contributed to the success of this dissertation. In particular, I

would like to thank Dr.Yuan An for his commenting and reviewing my papers. I would

also like to thank Dr. Jiexun Jason Li, who participated in my candidacy exam and

offered valuable suggestions.

My success in this program is due largely to the help, friendship and

encouragement of many people throughout my graduate career. In particular, Kesarin

Phanarangsan has always provided unceasing help and support. Many thanks go to Aunty

Ormsin and Uncle Harry Gardiner, Thippaya Chintakovid, and Palakorn Achananuparp

for being so generously helpful. My deep appreciation is also extended to Caimei Lu, Ki

Jung Li, Namyoun Choi, and all my friends who have made my life here more enjoyable.

Financial support from the Royal Thai Government throughout my study is

gratefully acknowledged.

Most importantly, I would like to thank my family for their unconditional love

and support. They have confidence in me more than myself. My mother (Manee

ii

Thonggoom) always loves and supports me in everything. My three sisters (Rattapawn,

Puttima, and Piyanuch) unfailingly provide cheering-up every time we talk and help me

take care of our mother. Without them, I would never have graduated.

iii

Table of Contents

LIST OF TABLES .. v

LIST of FIGURES .. vi

ABSTRACT .. vii

1. INTRODUCTION... 1

1.1 Motivations and Problem Statement .. 1

1.2 Research Questions and Objectives .. 8

1.3 Contributions .. 13

1.4 Dissertation Organization .. 14

2. LITERATURE REVIEW ... 16

2.1 Conceptual Data Models .. 16

2.2 The difficulties in creating conceptual data models 19

2.3 Techniques used for automating conceptual modeling 22
2.3.1 Linguistic-based .. 23

2.3.1.1 Tools, systems, and related work .. 26
2.3.1.2 Strengths and drawbacks ... 29

2.3.2 Pattern-based ... 29
2.3.2.1 Tools, systems, and related work .. 32
2.3.2.2 Strengths and drawbacks ... 34

2.3.3 Case-based .. 35
2.3.3.1 Tools, systems, and related work .. 35
2.3.3.2 Strengths and drawbacks ... 36

2.3.4 Ontology-based ... 37
2.3.4.1 Tools, systems, and related work .. 39
2.3.4.2 Strengths and drawbacks ... 40

2.3.5 Muti-Techniques-Based .. 41

2.4 Evaluation Method ... 42

2.5 Database Reverse Engineering (DBRE) ... 44

2.6 WordNet .. 46

3. RESEARCH METHODOLOGY .. 50

3.1 Developing EIR and RIR ... 50

3.2 The Six Domain Independent Modeling Rules .. 58

iv

3.3 Developing EIPW (Entity Instance Pattern WordNet) 59
3.3.1 Overview of EIPW Architecture .. 60
3.3.2 The EIPW Workflow .. 62

3.4 Developing HBT (Heuristic-based Technique) .. 74
3.4.1 Overview of HBT Architecture .. 74
3.4.2 The HBT Workflow .. 77

4. EMPIRICAL EVALUATION .. 83

4.1 Experiment Design ... 83

4.2 Subjects and Tasks ... 84

4.3 Evaluation Metrics ... 85

4.4 Empirical Results ... 86

4.5 Precision & Recall .. 90

4.6 Limitations of the Research ... 92

5. CONCLUSION AND FUTURE WORK .. 94

REFERENCES .. 97

Appendix A: The user interfaces of EIPW ... 108

Appendix B: The user interfaces of HBT ... 118

Appendix C: Experimental Problem Statements .. 130

Appendix D: Pre-Experiment Questionnaires .. 134

Appendix E: Pre-Experiment Questionnaires .. 137

Curriculum Vitae ... 139

v

LIST OF TABLES

Table 2.1 Comparing the properties of patterns adapted from (T. Han, 2002) 31

Table 2.2 A summary of conceptual modeling tools or systems ... 43

Table 4.1 The Experiment Design ... 85

Table 4.2 An ANOVA analysis of modeling quality ... 86

Table 4.3 An ANOVA analysis of modeling quality ... 88

Table 4.4 Tests of between-subjects effects with dependent variable QUALITY SCORE 89

Table 4.5 Results of the performance of our KBSs ... 92

vi

LIST of FIGURES

Figure 1.1 The database reverse engineering concept .. 10

Figure 2.1 The numbers of possible occuring relationships .. 20

Figure 2.2 Database Reverse Engineering Process (H. Chiang, 1993) .. 45

Figure 2.3 An example of WordNet hypernym chains .. 48

Figure 3.1 An example of an EIP and RIP, respectively ... 51

Figure 3.2 The executable DDL schemas .. 52

Figure 3.3 The metadata model of an EIP and an RIP ... 53

Figure 3.4 The EIPW architecture ... 62

Figure 3.5 The EIPW’s user interface of Step 1 .. 65

Figure 3.6 Entity Identification Process in EIPW .. 70

Figure 3.7 Relationship Identification Process in EIPW ... 73

Figure 3.8 The output of EIPW .. 74

Figure 3.9 The HBT Architecture .. 76

Figure 3.10 An example of user interface in HBT ... 77

Figure 3.11 Entity Identification Process in HBT .. 79

Figure 3.12 The output of HBT ... 82

Figure 4.1 The framework of empirical experiments .. 84

Figure 4.2 The plot of the mean quality scores (%) .. 87

Figure 4.3 The plot of the mean quality scores (%) .. 88

Figure 4.4 The plot of the mean quality scores (%) .. 90

vii

ABSTRACT
Semi-Automatic Conceptual Data Modeling Using Entity and Relationship Instance

Repositories
Ornsiri Thonggoom

Advisor: Il-Yeol Song, Ph.D

Conceptual modeling is the foundation of analysis and design methodologies for the

development of information systems. It is challenging because it requires a clear

understanding of an application domain and an ability to translate the requirement

specifications into a data model. However, novice designers frequently lack experience

and have incomplete knowledge about the application being designed. We propose new

types of reusable artifacts called Entity Instance Repository (EIR) and Relationship

Instance Repository (RIR), which contain ER (Entity-Relationship) modeling patterns

from prior designs and serve as knowledge-based repositories for conceptual modeling.

We also select six data modeling rules to check whether they are comprehensive enough

in creating quality conceptual models. This research aims to develop effective

knowledge-based systems (KBSs) with EIR and RIR. Our proposed artifacts are likely to

be useful for conceptual designs in the following aspects: (1) they contain knowledge

about a domain; (2) automatic generation of EIR and RIR overcomes a major problem of

inefficient manual approaches that depend on experienced modeling designers and

domain experts; and (3) they are domain-specific and therefore easier to understand and

reuse. Two KBSs were developed in this study: Heuristic-Based Technique (HBT) and

Entity Instance Pattern WordNet (EIPW). The goals of this study are (1) to find effective

viii

approaches that can improve the novice designers’ performance in developing conceptual

models by integrating pattern-based technique and various modeling techniques, (2) to

evaluate whether those selected six modeling rules are effective in HBT, and (3) to

validate whether the proposed KBSs are effective in creating quality conceptual models.

To assess the potential of the KBSs to benefit practice, empirical testing was conducted

on tasks of different sizes. The empirical results indicate that novice designers’ overall

performance increased by 30.9~46.0 % when using EIPW, and increased by 33.5~34.9%

when using HBT, compared with the cases of no tools.

1

1. INTRODUCTION

1.1 Motivations and Problem Statement

Conceptual data modeling is the foundation of analysis and design methodologies for

the development of information systems. From academic literature, conceptual design is

probably the most critical and important process of developing a quality database

application because it not only provides a blueprint for the entire system but also

determines most of the system functions and structures (Thalheim, 2000). However, it is

difficult because it requires a clear understanding of an application domain and an ability

to translate requirement specifications into a data model.

The quality of a conceptual model is measured by the level of accuracy with which it

can reflect the real world environment (Dullea, 2003). A good conceptual model has to

narrow the gap between real-world concepts and the ability to represent them in a

conceptual model. Any errors incurred at this stage could become very costly later after a

system has already been implemented. Boehm (Boehm, 1981) reports that the cost

difference to correct an error in the early phases of software development as opposed to

post-implementation phase is on the order of 1:100. Early in the development of database

designs, two qualities, which are performance and storage, have to be measured because

of their significant impact on the cost over the life cycle of the database. New hardware

technologies have shown that these measurements become less important since their

associated costs drop dramatically. However, the database design is the pivotal artifact of

2

the information system. Due to the complexity and size of these systems, the conceptual

design phase of the database has still remained extremely important. It is necessary to

make it correct, as a poorly designed conceptual data model can lead to a poor database;

hence, high costs and poor performance for decades to come.

Natural language (NL) is the common tool for people to describe and communicate

their understanding of the world. It has shown that nearly 90% of all the initial

requirement specifications in industrial practice are written in NL (L. Mich, Franch, M.,

Inverardi, P., 2004; Neill, 2003). On the structured representation side, there are many

different target formalisms for conceptual data models in different domains. For example,

Entity-Relationship diagram (ERD) is often used for database design, while UML class

diagram is often used for object-oriented (OO) software design. However, approaches

(Batini, 1984; J. Choobineh, Mannino, M., Nunamaker, J., 1988) which skip the NL

phase by requiring information analysts to write the requirements directly into formal

representations involve much more human effort in the process and cause communication

difficulty with the end users. NL was and will remain the main form of requirements

documentation (Cheng, 2007).Consequently, in our research, conceptual data modeling is

a translating process from NL representations to some kinds of formal representations.

The difficulties in developing the conceptual data models have been stated in many

past research studies (Antony, 2002; D. Batra, 2007; D. Batra, Antony, S. , 1994; D.

Moody, 2005). These studies show that conceptual designs especially developed by

3

novice designers, lead to unsatisfactory and inaccurate outcomes. Our survey shows that

the difficulties in creating conceptual models are:

1. Ambiguity in a Requirement Specification

Most of the inputs in this process are given in NLs which are inherently

ambiguous.

2. Combinatorial Complexity

In conceptual modeling, a linear increase in the number of entities can result in a

combinatorial increase in the number of possible relationships (D. Batra, 2007).

With merely 5 entities, the numbers of possible relationships are 20 if cardinality

is not considered or could be 80 if cardinality is considered.

3. Semantic Mismatch

It represents the inability of novice designers for translating the requirements

literally into conceptual modeling structures (D. Batra, 2007). It is also known

that not all real-world relationships match to conceptual modeling relationships;

some real-world relationships are derivable at the implementation level. In

addition, some real-world relationships become indirect, resulting in ambiguous

semantics. Indirect relationships without direct relationships cause semantic

ambiguities.

4. Inexperience and Incomplete Knowledge of Novice Designers

 Novice designers frequently lack experience and have incomplete knowledge

about the application being designed. Even expert designers could fail to obtain a

4

quality conceptual model due to their lack of domain knowledge, unless they

have a clear perception of a requirement specification (N. Kim, Lee, S., Moon, S.

, 2008). Concepts that are not explicitly expressed in a requirement are often very

difficult to model. Expertise in domain knowledge to identify the hidden entities

and relationships is therefore needed (I.-Y. Song, Yano. K., Trujillo, J., Lujan-

Mora, S. , 2004).

5. Scattered Modeling Rules

There is no complete set of rules/heuristics that help developing conceptual data

models. Also, there is always trade off in design so that not all rules/heuristics can

work together because some rules/heuristics are conflicting. These conflicting

rules may provide wrong advice.

Currently, there are several commercial graphical CASE tools for automatically

converting a conceptual data model into a logical model and into a physical

implementation. Most of them offer forward engineering processes, and some of them

also reverse engineering processes as well. However, there is still no commercial tool

available for translating NL requirement specifications into conceptual data models. At

present, a fully automated conceptual modeling approach seems impossible due to the

inherent ambiguities in NL, context-dependent nature of modeling, and incompleteness of

domain knowledge. It is desirable to develop a semi-automatic process which would be

much more economical than an entirely manual modeling process. Therefore, many

researchers have proposed knowledge-based systems (KBSs) and tools to support the

5

designers in developing conceptual models (Antony, 2002; J. Choobineh, Lo, A. , 2004;

Du, 2008; Harmain, 2003; N. Omar, 2004; Ovemyer, 2001; S. Purao, 1998; S. Purao,

Storey, V., Han, T. , 2003). One of the limitations of the proposed tools is that such tools

do not solve the problems that novice designers are inexperienced and have incomplete

knowledge. In addition, they do not address the semantic mismatch issue.

An ontology can be a source of domain knowledge and designers can use the

ontology to get initial domain knowledge. However, developing an extensive and usable

domain ontology is labor-intensive and time-consuming (Sugumaran, 2006). Currently,

several research projects are considering emerging approaches that try to reuse as much

knowledge included in existing large scale ontologies as possible. However, they are

general knowledge resources and are not created only specific for conceptual modeling

applications. So far there are no good user interfaces or effective APIs to make the

process effective and usable (Conesa, 2010). Obviously, domain ontologies are more

usable than large scale ontologies.

Most conceptual designs are usually created from scratch, although a similar design

might have previously been created. And in many organizations there are a large number

of database designs that have been already developed over many years. Reuse of already

existing resources and solutions has become a strategy for cost reduction and efficient

improvement in the information system development process. Currently, building a

library of reusable artifacts involves explication of human developer’s knowledge, which

is major obstacle in facilitating reuse of knowledge (Ba, 2001; T. Han, Purao, S., Storey,

6

V. , 2008; Kankanhalli, 2005; Markus, 2001; Orlikowski, 1993). It requires effort from

experts to identify elements with potential reuse, and then convert these into reuse

elements. One solution to reduce efforts and time of human experts comes from

extracting artifacts from prior designs. If this could be conducted for various application

domains, then it would assist in creating the practically reusable libraries.

In this research, we explore knowledge-based and pattern-based approaches that help

novice designers develop quality conceptual data models. Our methodology also includes

database reverse engineering concepts. We propose new types of reusable artifacts that

contain knowledge about an application domain, called the entity instance repository

(EIR) and the relationship instance repository (RIR), which are repositories of entity

instance patterns (EIPs) and relationship instance patterns (RIPs), respectively. An EIP is

a pattern of a single entity and its properties. An RIP is a binary relationship with

cardinality constraints between two entities. The EIP and RIP can be automatically

extracted from prior relational database schemas. Our proposed artifacts are useful for

conceptual designs in the following aspects: (1) they contain knowledge about a domain;

(2) automatic generation of EIR and RIR overcomes a major problem of inefficient

manual approaches; and (3) they are domain-specific and therefore easier to understand

and reuse.

Typically, a rule-based approach (P. Chen, 1983; Harmain, 2003; Hartmann,

2007; N. Omar, Hanna, P., Mc Kevitt, P. , 2004) is a popular technique for conceptual

modeling because it could lead designers with known heuristics. However, this approach

7

does not provide an optimal solution to many sophisticate requirements because most of

the proposed rules/heuristics were built based on syntax of some specific NLs. These

rules cannot overcome the inherent ambiguities of NLs. For instance, entities can be

extracted from nouns in English sentences to produce a list of entities. However, the

correspondences between entities are not completely perfect since nouns are also used to

refer to many concepts that are not usually represented as entities in conceptual models.

In general, rules/heuristics are often useful, but sometimes they may lead to cognitive

error called bias (D. Batra, 2007; D. Batra, Antony, S. , 1994; Parson, 2004). To

overcome these errors, we should have a small but sufficient set of rules to create quality

conceptual models and make them easy to understand. In this research, we select six data

modeling rules termed as the six domain independent modeling rules that are considered

a minimum set of rules to teach novice designers in creating quality conceptual models.

We evaluate the usefulness of this set of rules by developing a KBS named heuristic-

based technique (HBT) that applies these rules to the creation of conceptual data models.

Two knowledge-based systems were developed in this study: HBT and EIPW

(Entity Instance Pattern WordNet). The tasks of our KBSs are divided into two subtasks:

entity identification and relationship identification. The entity identification processes of

our KBSs are different, but the relationship identification process in them is the same.

The architectures of each KBS will be presented in later sections.The goals of this study

are as follows: (1) to find effective approaches that can improve the novice designers’

performance in developing conceptual models by integrating pattern-based technique and

8

various modeling techniques, (2) to evaluate whether those selected six modeling rules

are effective, and (3) to validate whether the proposed KBSs are effective in creating

quality data models.

1.2 Research Questions and Objectives

This research seeks to address the following questions.

Question 1: Can we automatically create EIR and RIR from the prior relational

database schemas?

Most of the proposed reusable artifacts used for conceptual data models are

developed based on a manual approach that is time-consuming and skill-intensive for

expert designers. Reusable artifacts for conceptual data models are typically represented

in the form of patterns that can be instantiated and combined in different ways to produce

concrete design (Blaha, 2010; Castano, 1998; Coad, 1995; Fowler, 1997; T. Han, Purao,

S., Storey, V. , 2008). The widely used approach to build such patterns is called domain

engineering. A purpose of domain engineering is to create patterns that embody a generic

solution to common problems within a specific domain by following a series of

predefined steps such as domain analysis, domain design, and domain implementation

(Sherif, 2002). With this approach, designers must have very clear knowledge about the

specific domain and must identify the boundaries of what objects to be included and what

degree they should be abstracted. Therefore, this approach does not seem to be a

practically efficient approach because it takes time and effort to develop reusable

9

artifacts. That is a significant drawback of the existing approach that we attempt to

address in this research.

In this research, we propose an automatic methodology for creating EIR and RIR,

which are the repositories of EIPs and RIPs, respectively. Our methodology includes

database reverse engineering concepts. The database reverse engineering approach can

provide a solution to the problem as stated previously. It is defined as shown in Figure

1.1, in this research, as the process of examining existing database design schemas to:

(1) Identify database’s elements (e.g. entities, attributes, etc.) and their

interrelationships.

(2) Determine domain semantics which are not explicitly represented in an

application system. Domain semantics are information about the application

domain, which should be captured during the requirements specification phase of

database design.

10

Figure 1.1 The database reverse engineering concept (R. Chiang, Barron, T., Storey, V. , 1994)

The outputs of this database reverse engineering process are transformed into the

instance patterns, which are EIPs and RIPs, and can be reused as a source of architecture

components for developing conceptual models.

The first objective to address the question above is:

Objective 1: Developing an automated methodology based on database reverse

engineering concept to create the EIR and RIR as new types of reusable artifacts for

conceptual model designs.

The next step of the study is to investigate how EIR and RIR can assist or improve

conceptual data modeling. Thus, the next question is:

11

Question 2: Can we use EIR and RIR for semi/automatically developing conceptual

data models?

Available commercial graphical CASE tools can help in documenting and

analyzing the output of analysis and design. However, they do not provide any support in

conceptual data modeling- especially during a stage of identifying the entities, attributes,

and relationships, which represent the problem domain. Therefore, many researchers

have proposed knowledge-based systems (KBSs) or tools to support the designers in

modeling conceptual models. One of the limitations of proposed tools or KBS is that such

tools have no domain knowledge or semantic analysis capacity incorporated into them.

Therefore, these tools cannot solve the incomplete knowledge of designers and the

semantic mismatch issue.

In this research, we explore knowledge-based and pattern-based approaches that

help designers develop quality conceptual data models. One of our goals in this study is

to provide designers with instance patterns that contain knowledge about an application

domain in which the designers are interested. The KBS with EIR and RIR called EIPW

(Entity Instance Pattern WordNet) will be developed. The second objective to address

this question above is:

Objective2: Developing a KBS called EIPW with EIR and RIR that contain

domain semantics regarding an application domain.

12

The following step of this study is to examine whether our proposed EIPW will provide

quality conceptual data models and will thus be attractive to the designers. The research

question is:

Question 3: Can the EIPW with EIR and RIR create quality conceptual data models?

Since our proposed EIR and RIR are automatically extracted from existing

relational database schemas, the quality of the KBS with EIR and RIR depends on the

scope and correctness of the existing designs. Our research starts creating EIR and RIR

based on the library of DDL (Data Definition Language) schemas created by (Silverston,

2001). Later, the instance patterns in EIR and RIR are also extended with case studies. In

order to make EIPW more efficient, it is also integrated with other modeling techniques.

Although there are several KBSs or tools proposed to assist the designers during

conceptual data modeling phase, the efficiency of these systems has not been tested

empirically which is a drawback of current research (D. Moody, 2005; Simsion, 2007).

Objective 3: Evaluating the usefulness of the EIPW by a human subject

experiment.

Question 4: Are six domain independent modeling rules sufficient to develop quality

conceptual model?

Our survey shows that one of the difficulties in creating conceptual models is the

scattered modeling rules. There is no complete set of rules that helps in developing

conceptual models. In addition, there are trade- offs in design so that not all rules can

work together because some rules are conflicting. We have selected the six domain

13

independent modeling rules based on teaching experiences of over 20 years by one of the

committees of this study. These six rules are considered a minimal set of rules to teach

novice designers in creating quality conceptual models. These rules are not based on the

syntax of any NLs and thus are domain independent. This means that these rules can be

applied to a wide range of applications and domains. In this research, we would like to

discover if the six rules are indeed useful. We evaluate the usefulness of these rules by

developing a KBS named heuristic-based technique (HBT) that employs these six rules

for creating conceptual data models.

Objective4: Developing the knowledge-based system (KBS) named HBT and

evaluating the usefulness with human subjects.

1.3 Contributions

In summary, the contributions of this research are:

1. Proposed an automated methodology for creating EIR and RIR as new types of

reusable repositories that contain knowledge about an application domain. The

EIR and RIR leverage knowledge from existing designs and serve as knowledge-

based repositories for conceptual data modeling by reducing the amount of work

on the part of experts.

2. Demonstrated that EIR and RIR are useful for conceptual designs in the following

aspects:

1) They contain knowledge about a domain;

14

2) Automatic generation of EIR and RIR overcomes inefficient manual

approaches that depend on experienced modeling designers and domain

experts;

3) They are domain-specific and therefore easier to understand and reuse.

3. Evaluated the six domain independent modeling rules as a set of rules that are

comprehensive enough to create quality conceptual models.

4. Designed and developed two knowledge-based data modeling tools called HBT

and EIPW. HBT incorporates the six domain independent modeling rules, entity

categories, and relationship instance repository. EIPW incorporates entity instance

repository, entity categories, relationship instance repository, and WordNet. They

minimize the cognitive load on designers and ensure that the conceptual models

are correct. HBT can serve as a learning tool as well as provide a smooth head-

start for novices.

5. Evaluated and demonstrated the utility of the KBSs by human subject experiment.

1.4 Dissertation Organization

This dissertation proposal is organized into five chapters. This chapter is an

introductory chapter. It lays out research problems expected to be addressed by the

proposed research, and gives an overview of our research questions, as well as

contributions of the work. Chapter 2 provides a literature review, comprising four major

areas. The first area is conceptual data model and discussion of current problems in the

15

field. The second area is techniques of automating conceptual modeling. The tools,

systems, frameworks and related work on each technique are surveyed. The third area is

database reverse engineering concepts. The fourth area is WordNet as a knowledge-based

system for supporting our research methodologies. Chapter 3 describes the research

methodologies and research procedures in detail. Chapter 4 presents statistical analysis

and empirical results. Chapter 5 summarizes the finding of the study and suggests future

work.

16

2. LITERATURE REVIEW

Following the research goals outlined in Chapter 1, this chapter provides a

literature review, comprising four major areas. The first area discusses the conceptual

data model and current problems in the field. The second area focuses on techniques of

automating conceptual modeling. The tools, systems, frameworks and related work on

each technique are surveyed. The third area looks at database reverse engineering

concepts. The fourth area presents WordNet as a reference system for supporting our

research methodologies.

2.1 Conceptual Data Models

Conceptual data modeling is the foundation of analysis and design methodologies

for the development of information systems. For many years, some researchers have

proposed varied conceptual modeling formalisms such as Entity-Relationship (ER)

modeling (P. Chen, 1976), derivatives of ER model such as IDEF1X, Oracle CASE

notation, and IE, Natural/Nijssen Language Information Analysis Method (NIAM), the

Extended Entity Relationship (EER) model, Object Role Modeling (ORM), Object-

Oriented (OO) modeling, Unified Modeling Language (UML), EXPRESS, RM-ODP,

and others. Thalheim (Thalheim, 2000) estimates that the total numbers of proposed

derivatives of ER model are 80. Comparisons of these data modeling formalisms in terms

of quality of data models, quality of design time preference, time task performance, and

so forth are shown in studies by Kim and March (Y. Kim, March, S. , 1995) and Neill

17

(Neill, 2003). Of the aforementioned modeling formalisms, EXPRESS, RM-OMP, and

UML have been formally designated as standards.

Among the different conceptual modeling formalisms, ER models and UML

models are the most widely used in practice (L. Mich, Franch, M., Inverardi, P., 2004).

The ER model original proposed Chen (P. Chen, 1976) has been widely used in

structured analysis and conceptual modeling. The ER approach is easy to understand,

powerful enough to model real-world problems and readily translated into a database

schema (Elmasri, 2004). The ER model consists of a collection of entities, relationships

between entities and attributes describing entities and relationships. Many extensions or

revisions of ER model have been proposed and utilized in different applications (Gogolla,

1991; Teorey, 1986) such as EER (Extended ER model or Enhanced ER model). The

UML is another important conceptual data modeling approach, especially in software

engineering. The UML is the standard modeling language for the analysis and design of

software. Unlike the ER modeling approach that provides only one type of diagram

(ERD), UML 2.2 provides 14 types of diagrams. It is difficult to translate NL

requirement specifications to all 14 UML diagrams. Mostly the correspondence between

natural language (NL) components and class diagram has been examined in previous

research.

A major innovated conceptual modeling formalism is the use of established

ontologies as theoretical bases for developing, comparing, and improving data models

(Simsion, 2007). Bunge’s ontology (Bunge, 1979) has been the most widely used for

18

analyzing conceptual data models (Bodart, 2001; Y. Wand, Storey, V.C., Weber, R.,

1999; Y. Wand, Weber, R., 1993, 1995). This ontology has also been adapted by Weber

and Wand called Bunge-Wand-Weber (BWW) (Y. Wand, Weber, R., 1988) into a theory

of representation that is closer to terminology of the Information Systems community.

Some researchers (Milton, 2004) employ Chisholm’s ontology (Chisholm, 1996). Both

Bunge and Chisholm postulate an objective reality independent of human perceptions.

OntoClean (Guarino, 2004) is developed based on philosophical notions for evaluating

taxonomical structures. Integration between different ontologies has also been used by

different researchers but for different purposes.

Natural language (NL) is the common tool for people to describe things and

communicate. Reports (L. Mich, Franch, M., Inverardi, P., 2004; Neill, 2003) show that

nearly 90 % of all the requirements in industrial practice are written in NL. Methods that

skip the NL understanding phase and that require human analyst to write the

requirements directly into formal representations. However, there are at least three

limitations for this translation (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004):

1) NL is ambiguous. An effective and accurate analysis is difficult. Therefore, techniques

and rules for modeling are required; 2) The same semantic can be represented in different

ways. Therefore, ways of handling these style variations are necessary; and 3) Concepts

that are not explicitly expressed in a requirement specification are often difficult to

model. Expertise in domain knowledge to discover the hidden entities is therefore

needed.

19

2.2 The difficulties in creating conceptual data models

The difficulties in creating conceptual data models have been documented in past

research studies (Antony, 2002; D. Batra, 2007; Currim, 2008; Dey, 1999; Liao, 2000;

D. Moody, 2004; Shoval, 1997). In spite of its importance, research evidences show that

conceptual data modeling is not done well, and it should be improved in both training and

education (Simsion, 2007). Researchers (D. Batra, Antony, S. , 1994; Currim, 2008;

Simsion, 2007) have studied the conceptual data modeling design process employed by

novice designers to gain an understanding of errors causing factors. These factors are

important in building tools and techniques that can prevent the errors and enhance the

quality of information systems. The factors are:

1. Combinatorial Complexity

Previous research from a complete survey (Topi, 2002) shows that novice

designers have more difficulty in modeling relationships than entities. Batra and Anthony

(D. Batra, 2007; D. Batra, Antony, S. , 1994) examine designer performance in modeling

open-ended exercises and find that the novice designers not only have difficulty in

modeling relationships such as unary and ternary, but also have the difficulty in modeling

all kinds of relationships including binary relationships. One of the reasons comes from

the fact that given a set of entities, there are potentially a very large number of possible

relationships. As the number of entities increases, the number of possible relationships

increases at a combinatorial rate as shown in Figure 2.1. What are the rules that allow a

designer to choose the right set of relationships in the ER model? And how does the

20

designer know whether all the correct relationships between the entities are identified and

which relationships are incorrect? Most relationships can be derived from others, so the

problem in modeling relationships is selecting a minimum set that captures the semantics

effectively and can be used to derive the others. For the right identification of relationship

constructs, the following criteria should at least be met: (1) all semantics in the

application should not be lost, (2) all relationship constructs should not be redundant

relationships, (3) and the degree of relationship should be minimal.

Figure 2.1 The numbers of possible occuring relationships

2. Scattered Modeling Rules

There is no complete set of heuristics/rules that help in developing quality data

models. In general, heuristics/rules are often useful, but sometimes they may lead to

cognitive errors called biases (D. Batra, Antony, S. , 1994; Parson, 2004). Furthermore,

21

there is always trade off in design so that not all the rules can work together because

some rules are conflicting. These conflicting rules may provide inaccurate advice.

3. Semantic Mismatch

Translating the requirement specification literally into database structures causes

literal translation errors (D. Batra, 2007). For instance, a sentence stating that “an order

records a sale of products to customers” may include an erroneous relationship between

customer and product. It shows that not all real-world relationships map to database

relationships; some real-world relationships are derivable at the database level. In

addition, some real-world relationships become indirect, resulting in ambiguous

semantics. Indirect relationships without direct relationships are wrong.

4. Inexperience of novice designers and incomplete knowledge of designers

Novice designers have limited knowledge and skills, while expert designers often

draw from their past experiences. Even an expert designer might fail to create a quality

conceptual model due to their lack of domain knowledge, unless he or she has a clear

perception of requirement specifications (N. Kim, Lee, S., Moon, S. , 2008). Expertise in

domain knowledge to identify the hidden entities is therefore needed. The important

issues are how the novice designers can be trained efficiently and how domain

knowledge can be transferred to the designers.

5. Multiple solutions

In conceptual design, there is neither a single answer nor an algorithm for creating

the best answer. Moody and Shanks (D. Moody, Shanks, G. , 1994) also state that one of

22

the common problem encountered in design is the large number of alternative designs

that can be created for a particular problem. Therefore, they propose a six-element

framework to evaluate the quality of conceptual data models (D. L. Moody, 1998). Their

frameworks are composed of completeness, simplicity, flexibility, understandability,

integration, and implement ability. Later this framework is refined, and empirically

tested in (D. L. Moody, Shanks, G.G., 2003).

2.3 Techniques used for automating conceptual modeling

In the past few years, the field of conceptual data models has spawned numerous

techniques for the identification of entities, attributes and their relationships. However,

these techniques rely heavily on manual processes and experiences of designers.

Currently, there are several commercial graphical CASE tools for automatically

converting a conceptual data model into a logical model and into physical

implementations such as ERWin, Rational Rose, Visio, Oracle Designer, Dia, etc. Most

of them offer forward engineering processes, and some of them reverse engineering

processes as well. However, there is still no commercial tool available for translating NL

requirement specifications into conceptual data models. At present, a fully automated

conceptual modeling approach seems impossible due to the inherent ambiguities in NL,

context-dependent nature of modeling, and incompleteness of domain knowledge. It is

desirable to develop a semi-automatic process which would be much more economical

than an entirely manual modeling process.

23

This section presents the board scope of techniques used for automatically developing

conceptual models. There are at least five categories of techniques used for automatically

generating conceptual models design from NL requirement specifications. They are

linguistic-based, pattern-based, case-based, ontology-based, and multi-techniques-based.

2.3.1 Linguisticbased

Natural language processing (NLP) and linguistic theories are used as a means for

designing more user-oriented information and communication systems because NL is a

common tool for people to describe and communicate their understanding of the world

(Castro, 2009; Métais, 2002). Chen (P. Chen, 1983) proposes eleven rules for translating

English sentence structures into ER diagram’s structure. Since Chen’s initial proposal,

many studies (Hartmann, 2007; P. Johannesson, Kalman, K. , 1989; N. Omar, Hanna, P.,

Mc Kevitt, P. , 2004; Ovemyer, 2001) have tried to refine and extend on this approach.

However, these rules are still not complete and fully accurate. Although entities can be

identified by nouns in a requirements specification, the correspondence between entities

and nouns does not completely match because nouns not only refer to entities but also to

attributes and other concepts. Entities can also be identified from verb phrases and hidden

requirements (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). Most recently,

Hartmann and Link (Hartmann, 2007) modify Chen’s eleven rules for the translation

from English sentence structures and EER elements in which they re-organize and extend

those rules in twelve heuristics. However, even these heuristics are not complete.

24

Therefore, this technique can only serve as a basis for a manual or semi-automatic

process of transforming an English specification into ER model. Furthermore, most of the

proposed rules are built based on syntax of some specific NLs. These rules cannot

overcome the inherent ambiguities of NLs. In addition, most of the languages in this

world are very different and, therefore, these kinds of rules can not apply worldwide.

In order to solve the inherent problems of NL and to succeed the machine translation,

some studies put constraints on the input by restricting either the vocabulary or the

sentence structures (Ambriola & Gervasi, 2006; Osborne & MacNish, 1996; Tjoa, 1993) .

With these restrictions, simple linguistic processing such as tagging and chunking can

achieve reasonably good results. These also improve the tractability of many difficult

problems in NLP such as ambiguity and unknown words. However, the use of controlled

languages has some limitations. It can not apply to existing requirement documents.

Furthermore, they are not natural and place burdens on the requirements writers. Several

formal specification languages such as Z, Object-Z, VDM, B, and OCL have been also

proposed for formal model-based specification. They are very expressive but require

knowledge to write a correct formalization. However, they lack completely supporting

tools and the use of these tools needs deep knowledge of them in order to write them

efficiently. Moreover, these languages have been designed for some specific applications,

and their use for different purposes may become awkward and difficult. Other researchers

propose dialogue tools that help elicit the NL requirement specification (Buchholz, 1995;

N. Kim, Lee, S., Moon, S. , 2008). The main disadvantages of these tools are that they

25

require more interventions by users and it is difficult to use them for large scale batch

processing.

Theory of classification and categories has been applied to conceptual data modeling

(Larman, 2004; I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). Categories are

characterized by the properties shared by their members whereas entities could be

classified unambiguously according to their common attributes. It is a widely-used

technique in identifying entities and classes. In addition, class categories can be used to

spot the missing entities or classes. Also, there are some hidden entities or classes that are

not explicitly stated in the requirement documents but can be discovered by applying

class categories to domain knowledge (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. ,

2004).

The trend in this technique orients towards the collaboration with huge linguistic

dictionaries (Fellbaum, 1998; Miyoshi, 1996) and common sense ontologies (Lenat,

1995) . Sometime computers are not skillful because they lack basic knowledge that is

obvious for humans. Researchers have long sought to grab this basic knowledge for

years. Linguistic dictionaries not only provide semantic links between concepts such as

synonym, antonym, hypernym/hypernym (is-a), and meronym/holonym (part-of) but also

syntactical and morphological information. A detailed discussion of relationship types is

stated in (V.C. Storey, 1993b). WordNet is the best known linguistic dictionary used for

conceptual modeling because it is available and it extends to other languages such as

European languages, Spanish, Chinese, and so forth. However, the main drawback of

26

WordNet is that it does not contain many other important semantic relationships (i.e., no

relationship between dish and spoon). Therefore, WordNet++, the extension of

WordNet, containing special types of relationships that are not available in WordNet, is

proposed in (Dehne, 2001).

2.3.1.1 Tools, systems, and related work

Most of the tools or systems proposed for developing conceptual models follow

this technique. They apply NLP to extract the model’s constructs from requirements

specifications or dialogue sessions with a designer for creating conceptual data models

(Buchholz, 1995; Burg, 1998; Du, 2008; Eick & Lockemann, 1985; Harmain, 2003;

Meziane & Vadera, 2004; L. Mich & Garigliano, 1999; N. Omar, Hanna, P., Mc Kevitt,

P. , 2004; V.C. Storey, 1993a; Tjoa, 1993; F. S. C. Tseng, Chen, A.L.P., Yang, W.,

1992). Most of these are involved in extending Chen’s original approach. A review of

some proposed tools or systems can be found in (Du, 2008). Our paper will present only

the recent ones.

LIDA (Ovemyer, 2001) is a semi-automatic text analyzing tool that allows

designers to produce class diagrams. It tags parts-of-speech and follows Chen’s eleven

rules where there is an association of nouns with classes, relationships with verbs and

attributes with adjectives and prepositional phrases. However, in requirement

specifications, class can also be identified from verbs and hidden requirements (I.-Y.

Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004).

27

CIRCLE (Ambriola & Gervasi, 2006) is a web-based comprehensive environment

for aiding in NL requirements gathering, elicitation, selection, and validation. A human

generated glossary and minimal domain descriptions are added to the original

requirements. The actual recognition is performed by a number of MAS (Model, Action,

and Substitution) rules. A detailed case study of a fictitious missile control system is

provided and various stages of requirements analysis are covered.

COLOR-X (Burg, 1998) is based on WordNet. Its main goal is to facilitate the

process of generating conceptual modeling. COLOR-X uses linguistic concepts that are

similar to Chen’s rules for creating system models that reflect both static and dynamic

aspects of the referred system. For example, it relates concepts (constructs) stated in

WordNet to OO constructs in which object must be identified from nouns and

relationship must be identified from verbs. Later (Dehne, 2001), they revise the method

by using WordNet++ instead.

CM-Builder (Harmain, 2003) is a NL-based CASE tool aimed to supporting the

conceptual analysis stage of software development in an OO framework. This tool use

NLP to analyze the requirement specifications and develop initial UML class diagrams.

CM-Builder can work either automatically or interactively with the user. This tool

converts all nouns into candidate classes and verbs into relationships. For every candidate

class, the frequency in a requirement specification is counted before items are selected.

The most frequent candidates are the most likely classes. Attributes are identified from

heuristics such as possessive relationships and the use of verb phrase like “to have”.

28

However, this tool has some limitations in its linguistic analysis because NL is

ambiguous, fuzzy, and redundant.

ER-Converter (N. Omar, 2004) is a rule-based system. The rules are associated

with weights according to the confidence level at which the event is true. The weights

assigned to each rule are based on intuition. For example, “If a noun occurs before the

verb ‘has/have’, it may indicate an entity type.” With a weight of 0.7, which means that

70% of the time this rule will create the correct result (because not all nouns before the

verb ‘has/have’ are entity types). User interventions are required when the calculated

weights are low in the processing.

ACDM (Du, 2008) is an automated multi-component system. The system is a

fully integrated composite of existing, publicly available components including a parser

(Link Parser), a lexical filter (WordNet) and a semantic filter (Google web corpus search

facilities). After parsing, it uses extended Chen’s rules to identify ERD’s elements. The

main limitation of this system is that the input has to be controlled language requirement

specification.

Tseng and Chen (F. Tseng, Chen, C., 2008) propose a translation scheme for

transforming NL queries into relational algebra through the class diagram notations.

Based on a logical form developed by extending the UML class diagram notations, a

transformation model is presented to support the automatic transformation of natural

language queries into relational algebra by employing appropriate NLP techniques and

OO analysis methods. The proposed logical form has the advantage that it can be mapped

29

from NL constructs by referring to the conceptual schema modeled by class diagrams,

and can be efficiently transformed into relational algebra for query execution.

2.3.1.2 Strengths and drawbacks

The domain independence is the strength of this approach. However, the strength

of this technique is also its weakness because tools or systems proposed have no domain

knowledge incorporated in them. This technique does not provide an optimal solution to

many sophisticate requirement specifications because of the nature problems of NL.

2.3.2 Patternbased

The important role of patterns in design is recognized in Alexander’s book

(Alexander, 1979) on architecture and urban planning. It suggests that designers should

produce and use patterns rather than solving problems from the first principle. Now

patterns have been well established as a technique for reusing solutions of recurrent

problems in the software development process. Pattern reuse provides many benefits such

as higher productivity, software quality improvement, and reduction of time and cost for

software development. Design patterns have been proven very useful in speeding up the

design process through reuse, and in improving the overall quality of systems. Integrating

patterns into conceptual design is challenging. Thalheim (Thalheim, 2000) also supports

pattern-based modeling in his extensions to the ER model. The recognition of patterns in

the context of conceptual data modeling is based on works by Coad et al. (Coad, 1995),

Hay (Hay, 1996), and Fowler (Fowler, 1997). Like architects, they create a library of

30

proven structure components, and provide some examples of adapting generic models to

suit particular requirements. Empirical research shows that experts reuse patterns while

novices do not (Chaiyasut, 1994). The process in pattern reuse can be divided into three

tasks: retrieval, adaptation, and integration (Anthony, 2009). Retrieval involves choosing

patterns that may be relevant to a particular problem. After a pattern is chosen, it must be

adapted or instantiated to fit the specific problem. Finally, it needs to be integrated with

other patterns to form a complete model in the form of a conceptual data model. Several

authors have proposed various kinds of patterns (Coad, 1995; Fayad, 1997; Fowler, 1997;

Gamma, 1995; Hay, 1996; P. Johannesson & Wohed, 1999; Johnson, 1988; Pree, 1994;

Silverston, 2001; Szyperski, 1998). For the latest one, Blaha (Blaha, 2010) proposes

several types of data modeling patterns: Universal antipatterns are the patterns that we

should avoid for all applications; Archetypes are the common modeling patterns

occurring across different applications; Canonical patterns are corresponding to meta

models of modeling formalisms. However, their utility to conceptual modeling varies

greatly. Finally, he presents methods for mapping his patterns to relational schema for

database design. Three criteria (T. Han, Purao, S., Storey, V. , 2008) can be used to

examine these patterns. First, usability specifies the ease where an artifact can support

retrieval (search and adaptation of the artifact for the current design) and assembly

(integration of reusable artifact with other parts of design). Second, reusefulness is

measured by the artifact’s granularity and abstractness (domain independence). Third,

31

efficiency is measured by the effort necessary to create the artifacts. Table 2.1

summarizes the quality of each pattern based on the aforesaid criteria.

Table 2.1 Comparing the properties of patterns adapted from (T. Han, 2002)

Patterns

Usability Reusefulness Efficiency
Ease of

retrieval
Ease of

assembly
granularity abstractness Creation

effort
Reuse
effort

Domain Models
(Prieto-Diaz,
1987)

high N.A. coarse medium high high

Analysis Patterns
(Coad, 1995)

medium medium small high high high

Analysis Patterns
(Hay, 1996)

medium medium medium medium high high

Analysis Patterns
(Fowler, 1997)

medium medium medium medium high high

Analysis Patterns
(D. Batra, 2005)

medium medium medium high high high

Data Modeling
Patterns
(Blaha, 2010)

medium medium small high high high

Framework
(Fayad, 1997)

medium medium coarse high high high

Semantic analysis
Patterns
(Fernandez,
2000)

high medium coarse high high high

Components
(Szyperski, 1998)

low medium fine low high high

Domain
Fragment (T.
Han, Purao, S.,
Storey, V. , 2008)

high medium coarse low medium medium

From the comparison table, the design and construction of prior reusable artifacts

are labor-intensive and require a lot of time and effort from expert designers. It is shown

that the third criterion, efficiency, is the most daunting obstacle to successful reuse.

32

Recently, there are packaged data models (or model components) available, which

can be purchased and after suitable customization, assembled into full-scale data models.

These generic data models are designed to be used by organizations within specific

industries. Well-known examples of packaged data models are provided by (Silverston,

2001) and (Kimball, 2002). In summary, the use of packaged data models yield two

major advantages to an organization (Hoffer, 2004):

1) Reducing the implementation times and cost.

The time required to design and implement a large data model can be reduced by

weeks or months by using this approach.

2) Providing quality models.

Packaged data models are created and tested by knowledgeable developers based

on their experience with many industries and organizations. They tend to

represent best practice data modeling technique.

However, packaged data models cannot replace sound database analysis and

design. Skilled analysts and designers are still needed to determine database requirements

and to select, modify, and integrate any packaged systems that are used.

2.3.2.1 Tools, systems, and related work

 The traditional way of using patterns is to leave the decision of how to adapt or

instantiate a pattern entirely up to the person designing the schema. Recently, analysis

pattern repositories have been the most popular and employed in conceptual modeling

33

tools or systems. Analysis pattern repository is a group of generic objects with

stereotypical properties and relations in a domain neutral manner (D. Batra, 2005). To

make use of patterns from a repository, the designer must be able to match a task

description with a candidate pattern. According to Structure-Mapping theory (Gentner,

1998), there are three ways comparisons can be made. They are (a) Literal comparison,

(b) Abstraction, and (c) Analogy. To reuse analysis patterns, Fernandez and Yuan

(Fernandez, 2000) propose an approach that involves looking for semantic analysis

patterns that match requirements exactly while trying to specialize analogous or abstract

patterns that may apply. However, there are not many proposed conceptual modeling

tools or systems using this technique.

APSARA (S. Purao, 1998) is a KBS (knowledge-based system), which automated

analysis patterns to create OO conceptual design. It firstly uses NLP to parse the

requirement specifications into significant keywords, and eventually objects. Based on

the objects identified, analysis patterns are retrieved from the pattern repository, then

instantiated and synthesized into a conceptual model. In its pattern repository, thirty

analysis patterns by Coad (Coad, 1995). Later, this KBS is improved by incorporating

learning mechanisms, which provide the designer with additional support by suggesting

specific patterns that might apply (S. Purao, Storey, V., Han, T. , 2003). The limitation of

this approach is that analysis patterns are so abstract that mismatches to patterns are fairly

common. Novice designers seem to have inability to reason with analogy (Anthony,

2009).

34

Modeling Wizard Tool (Wohed, 2000) is a dialogue tool for selecting the appropriate

patterns. Various versions of patterns are stored. The appropriate one is selected step by

step according to the answers given to the questions such as “Does the booking consist of

one object or may it consist of several objects?” This tool requires much more on user

intervention, and it is hard to use it for large scale batch processing.

2.3.2.2 Strengths and drawbacks

Patterns have proven very useful in speeding up the design process through reuse,

and in improving the overall quality of systems by promoting the use of designs that have

been proven superior in many applications. The advantage of reusable patterns aims not

only to reuse schema compounds but also to reuse relationships between objects.

However, building a repository of patterns involves explication of human developers’

knowledge, which is a major obstacle in facilitating reuse of knowledge. To develop

pattern repository, designer must have very clear knowledge about the specific domain

and must identify the boundaries of what objects to include and what degree they should

be abstracted. It takes a lot of time and effort to create pattern repository. Currently, most

of the proposed reusable pattern repositories used for conceptual data models is

developed based on a manual approach that is time-consuming and skill-intensive for

expert designers. Furthermore, most of the proposed tools in this technique use analysis

patterns which require manual matching.

35

One solution to reduce the effort and time of human experts comes from

extracting the pattern artifacts from existing designs (T. Han, Purao, S., Storey, V. ,

2008). If this could be done for various application domains, then it would assist in

creating the practically reusable pattern artifacts. These patterns are also easier to

understand and reuse because they are domain-specific.

2.3.3 Casebased

Case-based reasoning is a technology used to develop a KBS known as the case-

based system. The basic idea is, given the description of a new problem, retrieving from a

case base a similar problem and adapting the retrieval to get the solution. Retrieval

mechanisms for reusable artifacts intensively require NLP techniques. And indexing

techniques could speed up the retrieval of artifacts. Ambrosio et al. (Ambrosio, Métais, &

Meunier, 1995) provide a mechanism for flexible queries. Flexible querying is obtained

by the automatic modification of the query statements through the relaxation of query

conditions in order to recover concepts within a certain semantic distance according to

the semantic relations, i.e. synonyms, hypernym, meronym, and similarity.

2.3.3.1 Tools, systems, and related work

Very few have used case-based reasoning where cases of conceptual models are

stored, indexed, and used for future design. We can find only three KBSs that use this

technique, which are CSBR (V. C. Storey, Chiang, R., Goldstein, R., Dey, D.,

36

Sundaresan, S., 1997), DES-DS (Paek, 1996), and CABSYDD (J. Choobineh, Lo, A. ,

2004). A comparison between these KBSs can be found in (J. Choobineh, Lo, A. , 2004).

CABSYDD [64] is a case base reasoning system for database schema design. It

comprises of two components: a CBR system and a module that will derive conceptual

design from first principles. The case indexing used is similar to that used by (Paek,

1996) in which each schema design is hierarchically organized by business area. The

hierarchy is organized by categorizing cases using a four tiered structure (sector,

subsector, industry group, and department) based on the North American Industry

Classification System (NAICS). Case representation included schemas expressed by EER

models, textual identifiers for the business area classification, and a textual case

description. Matching is performed by calculating the case with the highest matching

index score. If no matching cases exist, the system invokes the module to create a new

schema design from first principles

2.3.3.2 Strengths and drawbacks

This technique involves storing conceptual models of a large number of

applications and providing a key word mechanism that enable users to search for a

conceptual model that is a candidate solution for a problem statement. It takes advantage

of reusing the previous design. The limitations in this technique are that if any adjustment

is required in the conceptual model, it has to resort to the generic data modeling

approach. Moreover, adjustments are always required in order to be appropriate for the

37

particular requirement specification. The major disadvantage of this technique is that

developing the conceptual model libraries and indexing mechanism are very expensive.

2.3.4 Ontologybased

Ontologies have been proposed as an important way to represent real world

knowledge and, at some level, to support interoperability (Soares & Fonseca, 2007).

Research on creating and using ontologies has been motivated by the Semantic Web and

knowledge reuse. Ontology can range in expressivity from a taxonomy (a parent-child

structure), to a thesaurus, to a domain model, to a logical theory (very general, consistent

and meaningful knowledge), etc. Some papers point out some similarities and differences

between ontologies and conceptual data models (El-Ghalayini, 2006; Fonseca, 2007).

According to Fonseca (Fonseca, 2007), two criteria that differentiate ontologies from

conceptual data models are (1) the objective of modeling and (2) objects to model.

Embley (Embley, 2004) suggests that ontology is the key for solving the semantic

problems of information systems.

In the conceptual modeling field, many researchers employ ontology for

evaluating, improving or developing the conceptual modeling formalisms. Storey (V. C.

STOREY, 2005) proposes an ontology to classify the verb phrases of relationships based

on research in linguistics and semantic data models. Wand et al. (Y. Wand, Storey, V.C.,

Weber, R., 1999) propose rules as a theory of constructing the relationships in conceptual

modeling practice. Evermann and Wand (Evermann, 2001) examine the mapping

38

between ontological elements and UML elements and propose guidelines on how to use

UML elements to model real-world systems in particular. Purao and Storey (S. Purao,

Storey, V. C. , 2005) propose a multilayered ontology for classifying relationships by

using data abstractions and by separating domain-dependent and domain-independent

aspects of the relationship constructs.

However, the major advantage of using ontology for conceptual modeling is the

reusability of knowledge repository. This can be developed into two levels: domain

ontology and large scale or upper level ontology. Domain ontology (Conesa, 2010)

represents concepts, relationships between concepts, and inference rules for a particular

domain. The most well-known domain ontologies are the DAML ontologies

(www.daml.org), which are created particularly for Semantic Web and contained a

repository of more than 200 ontologies. Several tools for creating and querying domain

ontologies are available such as Protégé, OWL, SPARQL, etc. Detail comparison of

each tool is shown in (Corcho, 2003). Instead of developing individual ontologies, there

has been interest in creating upper level or large scale ontology. Upper level ontology

(Conesa, 2010) represents general concepts that are the same across all domains and

always consist of a hierarchy of entities and rules that describe those general entities

which do not belong to a specific problem domain. Examples of upper level ontologies

are Cyc, ResearchCyc, BFO (Basic Formal Ontology), DOLCE, SUMO, geneontology,

etc. For review and comparison of upper level ontologies see (Mascardi, 2007). The

potential usefulness of upper level ontologies lies in the fact that they are domain

39

independent. However, it is difficult to integrate them and make them truly useful. A

major problem with existing upper level ontologies is the lack of good user interface and

a good API. For example, Cyc is not an ontology of word sense like WordNet. As a

result, there is no comprehensive mapping of Cyc concepts into words of NL (Conesa,

2007). Without adequate tool support, it is difficult to work with them. Obviously,

domain ontologies are more usable than large scale ontolgies (Conesa, 2010).

2.3.4.1 Tools, systems, and related work

Ontologies have been considered as important components in many applications.

Some generic ontologies such as WordNet and Cyc are available, but most applications

require a specific domain ontology to describe concepts and relations in the domain. This

approach holds the potential of promoting information reused. Currrently, several

projects are considering the emerging approaches that attempt to reuse as much as

possible of the knowledge included in existing ontologies.

NL-OOPS (L. Mich, Garigliano, R., 2002) is an NL-based system. It is based on

LOLITA (Large scale Object-based Language Interactor, Translator and Analyser) NLP

system, which includes all the functions for analysis of NL: morphology, parsing (1500-

rules grammar), semantic and pragmatic analysis, inference, and generation. The

knowledge base of the system consists of SemNet, which is a large graph that holds

knowledge that can be accessed and expanded using NL input and has been merged with

WordNet. Thus LOLITA is among the largest implemented NLP systems. Documents in

40

English are analyzed by LOLITA and their content is stored in its knowledge base,

adding new nodes to its semantic network. NL-OOPS prototype implements an algorithm

for the extraction of classes and associations from the semantic network of LOLITA. NL-

OOPS’s interface consists of three frames. The first one contains the text being analyzed

and the second frame gives a partial representation of the SemNet structures used by

LOLITA for the analysis of the document. After running the modeling module, the third

frame gives a class model.

OMDDE (Sugumaran, 2006) uses a domain ontology to represent the domain

knowledge in order to assist database designer. OMDDE is a prototype that demonstrates

the possibility of using an ontology as the domain knowledge. The prototype can assist

Database designers to design a conceptual model from scratch and also evaluate the

existing conceptual database model. The prototype uses an auction domain ontology as

the knowledge domain to identify the entities and relationships for the conceptual model.

The prototype also suggests terms and highlight missing constructs. Furthermore, it

expands the relationship element to include four types of domain relationships:

prerequisite, mutually inclusive, mutually exclusive, and temporal.

2.3.4.2 Strengths and drawbacks

Ontology can be the source of domain knowledge and designers can use ontology

to get initial domain knowledge. Corcho and his colleagues (Corcho, 2003) suggest that a

strategy for developing ontologies would be to reuse large scale or upper level ontologies

41

to create domain ontologies or knowledge bases. The same upper level ontology can be

used for developing many knowledge bases or ontologies, which share the same skeleton.

Extensions of the skeleton should make at the low level by adding domain-specific

subconcepts.

However, ontology development is fundamentally difficult. For example, Cyc

takes more than 20 years and 900 people to develop a large scale common sense

knowledge base. Even for a specific domain, developing intensive domain ontology

requires labor intensive and time-consuming. Automatic ontology development is

difficult work because of the lack of structured knowledge base or domain thesaurus.

While many ontology tools such as OntoEdit, Ontolingua, and Protégé are available to

aid the development of ontologies, ontology constructions still need human effort. Most

studies of ontology development and application assume manual process.

2.3.5 MutiTechniquesBased

From our survey, most tools or systems for conceptual design require users’

involvement during the process. And no single technique works best all the time because

each technique has some limitations. Ideally, various techniques should be integrated

together for a design process. For example, Song et al. (I.-Y. Song, Yano. K., Trujillo, J.,

Lujan-Mora, S. , 2004) have proposed a TCM (Taxonomic Class Modeling) methodology

used for object-oriented analysis in business applications. This method integrates several

class modeling techniques under one framework. Their framework integrates the noun

42

analysis method, class categories, English structures, check lists, and modeling rules.

Thonggoom and colleagues (Thonggoom, 2011) propose EIPW (Entity Instance Pattern

WordNet), which is a knowledge-based database modeling tool. It integrates pattern-

based technique and various modeling techniques. This tool shows how domain

knowledge stored in the instance patterns can be used together with other modeling

techniques.

2.4 Evaluation Method

Evaluation acts as a significant after-stage in all surveyed techniques. Although

there are several systems or tools proposed to assist the designers during conceptual

modeling phase as shown in Table 2.2, the efficiency of these systems has not been tested

empirically which is a drawback of current research (D. Moody, 2005; Simsion, 2007).

Also, in this field, there are no universal standard guidelines for measuring the

performance of the proposed tools or systems. Some researchers use individual grading

frameworks for the evaluation, while some use recall and precision as the measurements

for evaluation. Even though they use the same method for the measurement, the

conditions of measurements are very different. Since there is no standard evaluation of

NL-based tools available, it is difficult to compare the performances between and among

the tools.

43

Table 2.2 A summary of conceptual modeling tools or systems
 Input Output Techniques

used
User
Intervention

Lexical
Knowledge

Domain
Knowledge

ACDM
(2008)

Controlled
NL text

ER model Linguistic Rules,
Lexical Filter

Can be
automatic or
semi-
automatic

Yes No

APSARA
(2003)

NL text ER model Analysis
Patterns,
Learning
Concepts

Yes No No

CABSYDD
(2004)

NL text EER model Case-based
Reasoning

Yes No Yes

CIRCLE
(2006)

NL text View model,
Validated
requirement

Linguistic Rules,
Requirement
Validation

Yes No Yes

CM-Builder
(2003)

NL text Class diagram Linguistic Rules,
Frequency
Analysis

Can be
automatic or
semi-
automatic

Yes No

Color-X
(1998)

NL text OO
constructs

Linguistic Rules,
Paraphrase
Dialog

Yes Yes No

EIPW
(2011)

NL text EER model Instance
Patterns, Entity
Categories,
Modeling Rules

Yes Yes Yes

ER-
Converter
(N. Omar,
2004)

NL text ER model Linguistic
rules

Can be
automatic or
semi-
automatic

No No

LIDA
(Ovemyer,
2001)

NL text Class
diagram

Linguistic
rules

Yes No No

Modeling
Wizard Tool
(2000)

NL text EER model Analysis
Patterns,
Dialog Sessions

Yes No Yes

NL-OOPS
(2002)

NL text Object model,
Revised
requirement

Linguistic Rules Yes Yes Yes

OMDDE
(2008)

NL text ER model Domain
Ontology

Yes No Yes

TCM (2004) NL text Class diagram Noun Analysis,
Class Categories,
Modeling Rules

Yes No Yes

44

2.5 Database Reverse Engineering (DBRE)

DBRE is another relevant area of our research. Typically, the database design

process can be defined as a sequence of schema transformations that convert the user

requirements into an executable schema expressed by the DDL (data definition language)

of the target DBMS (H. Chiang, 1993). The entire process can be written as a function:

DDL schema = Database Design

On the other hand, database reverse engineering (DBRE) is the reverse of the task of

database design. According to Chiang et al. (R. Chiang, Barron, T., Storey, V. , 1994),

DBRE is the process of recovering such a conceptual data model by examining an

existing database system to identify the database’s elements and their interrelationships.

It aims at extracting a conceptual data model from a relational database schema. The

entire process can be written as a function:

Conceptual schema = DBRE (DDL schema, data instances)

Methods of DBRE have been proposed since 1980s. Dumpala and Arora

(Dumpala, 1981) were the first to focus on DBRE field. Fahrner and Vossen (Fahrner,

1995) provide a survey of various methods to reverse schema transformations from the

relational schema into the ER model according to five characteristics. These

characteristics are: (1) the various extensions of the ER model, (2) transformation

prerequisites, (3) the principle transformation method, (4) properties of transformation

methods, and (5) user interaction requirements. Most of the DBRE methods we have

reviewed are informal. In particular, they depend on various rules/heuristics to generate

45

elements in a conceptual model from available sources and do not formally specify the

quality of the results. DBRE is also difficult to automate and requires human

intervention. Since the sources do not contain sufficient semantic information, the

conceptual models created by DBRE methods are often closely tied to the existing

database schemas and so may become just the graphical representations of the actual

logical and physical implementations of the databases. The methodology proposed by

Chiang (H. Chiang, 1993) divides the reverse engineering process into six phases: (1)

Initialization, (2) Decomposition, (3) Classification, (4) Generalization, (5) Identification,

and (6) Refinement & Enhancement. Figure 2.2 shows all these phases and the functions

of each phase.

Figure 2.2 Database Reverse Engineering Process (H. Chiang, 1993)

46

In our research, we employ the DBRE methodology proposed by Chiang (H.

Chiang, 1993) for automatically developing the proposed reusable pattern repositories.

2.6 WordNet

WordNet (Fellbaum, 1998) is an online lexical reference system. It was created

and improved at Princeton University since1985. It groups words into a set of synonyms

called synset, and maintains the various semantic relationships between these synonym

sets. The latest version of WordNet is 3.0, which contains about 155, 000 words

organized in over 117, 000. The semantic relationships between synsets are IS-A

(hypernym/hyponym), Part-of (meronym/holonym), synonym, and antonym. The IS-A

relationship is the most fundamental by producing a taxonomic hierarchy of synsets.

WordNet has analyzed large corpora and gathered statistics on the senses in which

words are used. For example, the synonym sets for each sense are ranked by frequency.

WordNet aims to build a combination of a dictionary and a thesaurus, and to support

automatic text analysis and artificial intelligence applications. Due to ambiguities in NL,

words may have several meanings (homonyms) and many concepts can be represented by

two or more words (synonyms). WordNet has been used as a reference tool to

disambiguate nouns in automated conceptual data modeling (Du, 2008). Although entities

can been identified by nouns in a problem statement, the correspondence between entities

and nouns is not completely matching because nouns do not only refer to entities but also

to attributes and other concepts. In fact, it is difficult to automatically identify which

47

nouns should be entities and which should not. Such distinctions depend heavily on

context and human ability to apply their own knowledge.

In the conceptual data modeling field, WordNet can be used as a source of

reusable knowledge to ensure that the designing models are correct. Métais (Métais,

2002) investigates the use of NLP techniques in the design phase of information systems.

In summary, the possible usages of WordNet applying in automated conceptual modeling

process are:

 To differentiate between entities and non-entities. The top noun categories and the

hypernym chains in WordNet can be used as a general standard to distinguish

attributes from entities (Du, 2008). Three top level category groups are defined as

follows:

1) strong-entity: “group”, “physical object”, “physical entity”, “thing”

2) mid-entity: “substance”, “event”, “communication”, “physical process”

3) weak-entity: “cognition”, “attribute”, “measure”, “constituent”, “language

unit”

If the hypernym chain of a noun phrase reaches to one of the categories in the

strong-entity group, it means that this noun has a high potential to be a candidate

entity. On the other hand, if the hypernym chain of the term reaches to one of the

categories in the weak-entity group, it means that this noun has a low potential to be a

candidate entity.

48

 For example, the WordNet hypernym chains of the word “customer” as shown in

Figure 2.3 are consumer => user => person => organism => living thing =>

object, while specific nouns that more usually indicative of entity will link to

synsets such as “object and physical entity.

Figure 2.3 An example of WordNet hypernym chains

 To disambiguate the meaning of noun or verb by examining synonyms. For

instance, E-R generator (Gomez, 1999) employs WordNet for word sense

49

disambiguation in their conceptual data modeling system. An interface is used to

access WordNet and displays the ontological categories for a given word. When

word ambiguity happens, the system asks the user to choose the proper category

in the current context.

 To discover some hidden relationships through WordNet. The hypernym chains in

WordNet can be used to identify the inheritance and aggregation relationships.

 To identify hidden attributes. In CM-Builder (Harmain, 2003), it uses WordNet to

assist users in determining the meaning and the context of words, and to identify

hidden attributes that may get from adjectives.

50

3. RESEARCH METHODOLOGY

This Chapter presents four methodologies to answer the research questions stated

in Chapter 1 during the course of our work:

3.1 Developing EIR and RIR as new types of reusable pattern artifacts for conceptual

model designs.

3.2 Proposing six domain independent modeling rules.

3.3 Developing EIPW with EIR and RIR that contain domain semantics regarding an

application domain.

3.4 Developing HBT with six domain independent modeling rules and RIR.

In our research, we use the ER model originally developed by Chen (P. Chen, 1976)

as our representation because it has been widely used in conceptual modeling field --

powerful to real-world problems and readily translated into a database schema (Teorey,

1986).

3.1 Developing EIR and RIR

This section presents our automatic methodology for creating Entity Instance

Repository (EIR) and (RIR), which are the repositories of Entity Instance Patterns (EIPs)

and Relationship Instance Patterns (RIPs), respectively. EIR and RIR contain ER

modeling patterns from prior designs and serve as knowledge-based repositories for

conceptual modeling. An EIP is a pattern of a single entity and its properties. An RIP is a

binary relationship with cardinality constraints between two entities. Examples of these

51

are shown in Figure 3.1. We propose a method based on database reverse engineering

concepts (R. Chiang, Barron, T., Storey, V. , 1994) to automatically extract EIPs and

RIPs from relational schemas. This methodology employs three assumptions about the

characteristics of the input schemas for database reverse engineering processes:

(1) Relational schemas: An input is a DDL (Data Definition Language) schema that

contains data instances of an application domain.

(2) 3NF relations: There are no non-3NF relations in the input relational schemas. It

would simplify the extraction process by dealing with the relations, each of which

primarily corresponds to one entity type or one relationship type, rather than

corresponding to more than one entity type or a mixture of entity and relationship types.

(3) Proper primary keys (PK) and foreign keys (FK): Proper PKs and FKs are

specified in input DDL schemas.

Figure 3.1 An example of an EIP and RIP, respectively

52

The method for creating EIR and RIR consists of the following three main steps:

INPUT: DDL schemas

OUTPUT: EIR and RIR

1) Obtaining information about the executable schemas (DDL schemas)

In order to reverse engineer existing database schemas, the information about the

executable schemas must be available. These existing schemas (DDL schemas) have to

provide at least relation names, attribute names, and PKs as seen in Figure 3.2.

Figure 3.2 The executable DDL schemas

In our research, we use a library of logical data models (executable schemas or DDL

schemas) created by Silverston (Silverston, 2001) originally containing 464 relations and

1859 attributes as our first input. Later, the lists of EIR and RIR are extended by case

studies.

53

(2) Extracting EIP’s elements

 We extract the EIP’s elements from input DDL schemas by storing a relation

name as an entity_name and an attribute as an attribute_name in EIR. The metadata

model of EIP and RIP is shown in Figure 3.3.

Figure 3.3 The metadata model of an EIP and an RIP

(3) Extracting RIP’s elements

 We extract the RIR’s elements by identifying relationships between extracted

entities obtained from Step (2) above. Most of the ER (Entity-Relationship) methods

used in textbooks or CASE tools can be classified as either binary models or n-ary

models (I.-Y. Song, Evans, M., Park, E. , 1995). There is an argument about the inclusion

of binary or n-ary relationships in conceptual models (Hitchman, 2003). A central

argument comes from the ability of n-ary modeling to reflect the true semantics of any

given situation, whereas a binary model provides the simplest structures for a

requirement specification’s logical design. In database design, the binary relationship

54

model is equivalently represented in a relational database management system. Many

researchers suggest that all of the relationship representations in the conceptual model

should be binary. For example, Rambaugh et al. (Rumbaugh, 1991) suggest that higher

order relationships are more complicated to draw, implement, and understand than binary

relationships, thus should be avoided if possible. In most cases, binary relationships are

sufficient enough to represent the problem domain. Comprehensive analysis of binary

relationships and ternary relationship is shown in (I.-Y. Song, Jones, T. , 1993).

Therefore, in this research, we only specify the maximum cardinality constraints for

binary models. Because of the limited semantic expressiveness of DDL schemas, the

minimum cardinality cannot be automatically identified. Using a fully automated process,

we can identify five relationship types:

3.1 1: N for relationships identified by FK

3.2 1: N for relationships identified by partial keys

3.3 N: M for relationships identified by relationship relations

3.4 Is-a relationships

3.5 Recursive relationships

Subsequently, these binary relationships are stored in RIR. The reverse

engineering rules used in this step are created by inverting the schema transformation

rules based on the EER (Extended Entity-Relationship) (Elmasri, 2004). These

transformation rules are described as following:

55

3.1 1: N for relationships identified by FK

IF: the PK of a relation T1 is shown as a FK of another relation T2,

THEN: there is a 1: N relationship between T1 and T2.

Consider these two relations:

T1 (K1, a11, a12, a13, …, a1i)

T2 (K2, a21, a22, a23, …, a2i, K1
*)

where Ti represents a relation, aij represents an attribute in a relation, PK is underlined,

and FK is followed by a star symbol. If T2.K1
* is a FK that comes from T1, then there is a

1: N relationship between T1 and T2.

Ex. Consider these entities, EMPLOYEE and DEPARTMENT.

DEPARTMENT (DNAME, DNUMBER, MGRSSN*, MGRSTARTDATE)

EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SEX, SALARY, SUPERSSN, DNO*)

The PK, DNUMBER, of an entity DNUMBER, appears as a FK of entity

EMPLOYEE. Then there is a 1:N binary relationship between entity DEPARTMENT

and entity EMPLOYEE.

3.2 1: N for relationships identified by partial keys

IF: the PK of a relation T1appears as a composite PK of another relation T2 and the PK

of relation T1 is the FK of table T2 as well,

THEN: T1 is a strong entity.

 T2 is a weak entity.

 And there is a 1: N relationship between T1 and T2.

56

Consider these two relations:

T1 (K1, a11, a12, a13, …, a1i)

T2 (K1
* K2,, a21, a22, a23, …, a2i)

T2 has a composite PK of (K1, K2) and only K1 is a FK of table T2, and K1 is a PK of

T1.So, T1 is a strong entity, T2 is a weak entity, and there is a 1: N relationship between T1

and T2.

Ex. Consider these entities, EMPLOYEE and DEPENDENT.

EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SEX, SALARY, SUPERSSN, DNO*)

DEPENDENT (ESSN*, DEPENDENT_NAME, SEX, BDATE, RELATIONSHIP)

In this case, entity relations DEPENDENT has a composite PK of (ESSN,

DEPENDENT_NAME), and only ESSN is a FK. Therefore, there is a 1: N relationship

between entity EMPLOYEE and entity DEPENDENT.

3.3 N: M for relationships identified by relationship relations

Consider these two relations:

T1 (K1, a11, a12, a13, …, a1i)

T2 (K2, a21, a22, a23, …, a2i)

T3 (K2
*

, K1
*, ak)

IF: T3 has a composite primary key of (K2, K1), when consisting of FKs from the other

two different tables T1, and T2,

THEN: there is a M : N relationship between T1 and T2.

Ex. EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SALARY, SUPERSSN, DNO*)

57

 WORKS_ON (SSN*, PNO*, HOURS)

PROJECT (PNAME, PNO, PLOCATION, DNUM*)

Entity WORK_ON has a composite primary key of (ESSN, PNO), when consists

of FKs from the entity EMPLOYEE and entity DEPARTMENT. So, there is an M: N

relationship between entity EMPLOYEE and entity PROJECT.

3.4 Is-a Relationship

IF: two strong entities, T1 and T2, have the same PK and T2 has a key being both PK and

FK,

THEN: T2 has “Is-a” relationship with T1 (T2 Is-a T1).

Consider these two relations:

T1 (K1, a11, a12, a13, …, a1i)

T2 (K1
*, a21, a22, a23, …, a2i)

Ex. EMPLOYEE(FNAME, LNAME, SSN, ADDRESS, SALARY, SUPERSSN, DNO*)

MANAGER (SSN*, RANK, PROMOTION_DATE, DEPTNO)

In this case, the relations, EMPLOYEE and MANAGER, have the same PK (SSN),

and MANAGER has SSN as being both PK and FK. This suggests that there is an “Is-a”

relationship exists from relation MANAGER and relation EMPLOYEE.

3.5 Recursive Relationship

IF: T1 has a FK that references the PK of its own table (T1),

THEN: T1 has recursive relationship.

Consider this relation:

58

T1(K1, a11, a12*, a13*, …, a1i)

Ex. EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SEX, SALARY, SUPERSSN*, DNO*)

In this case, each Employee occurrence contains two social security numbers

(SSN), one identify the employee, the other being the SSN of the employee’s supervisor.

3.2 The Six Domain Independent Modeling Rules

This section presents our selected six modeling rules termed as the six domain

independent modeling rules. Our survey shows that one of the difficulties in creating

conceptual models is the scattered modeling rules. There is no complete set of rules that

help developing conceptual models. In general, rules/heuristics are useful but sometimes

they may lead to cognitive errors called bias (D. Batra, 2007; Parson, 2004). There is

always trade off in design so that not all rules can work together because some rules are

conflicting. We have selected the six domain independent modeling rules based on

teaching experiences of over 20 years by one of the committee members of this

dissertation. These six rules are considered as a minimal set of rules to teach novice

designers in creating quality conceptual models. These six rules are not based on the

syntax of any NLs and thus are domain independent. This means that these rules can be

applied to a wide range of applications and domains. In this research, we would like to

experiment whether the six rules are indeed useful. The six domain independent

modeling rules are:

R1: The ID (Identifier) Rule

59

IF a concept (noun or verb) needs to have a unique identifier, THEN it can be an entity.

R2: The MA (Multiple Attribute) Rule

IF a concept has multiple attributes, THEN it can be an entity.

R3: The MVA (Multi-Valued Attribute) Rule

IF a concept has multi-values, THEN it can be an entity.

R4: The TDA (Time-dependent attributes) Rule

IF a concept has time-dependent attributes or needs to keep track of history of values,

THEN it can be an entity.

R5: The SC (Single Concept) Rule

A good entity should represent one and only one concept.

R6: The DI (Domain Importance) Rule

IF a concept is important in its own right within the problem domain whether it has one

or multiple attributes, THEN it can be an entity.

3.3 Developing EIPW (Entity Instance Pattern WordNet)

In this research, we explore knowledge-based and pattern-based approaches that

help database designers develop quality conceptual data models. We propose new types

of reusable pattern artifacts, called the entity instance repository (EIR) and the

relationship instance repository (RIR), which are repositories of entity instance patterns

(EIPs) and relationship instance patterns (RIPs), respectively. In the previous section,

EIR and RIR have been created as the reusable pattern repositories containing knowledge

60

about an application domain. This section discusses how these patterns are implemented

in KBS called EIPW (Entity Instance Pattern WordNet).

3.3.1 Overview of EIPW Architecture

The architecture of EIPW is shown in Figure 3.4. A prototype of EIPW has been

developed by using JAVA Applet. Firstly, the system passes a NL requirement

specification as an input to do the part of speech tagging (POS) in order to list all of the

possible candidate entities. We use a well-known open source called LingPipe

(http://alias-i.com/lingpipe) to perform POS. In EIPW, the entity list can be identified

based on noun phrases and hidden requirements. During the post-parsing analysis, a noun

phrase belonging to any of a discard noun set will be excluded as a candidate entity. The

discard noun set are created based on the history of words discarded by designers and the

class elimination rules (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). The

discard noun set is domain independent.

In the entity identification module, there are three activities performed:

1. The first activity is to identify the entity list based on EIR. WordNet is also used to

ensure that the synonyms of EIR’s entities are not missed out while preparing the lists of

entities.

2. The second activity is to identify the entities that are not detected by EIR by

applying the top noun categories and hypernym chains in WordNet (Du, 2008).

61

3. The third activity is to identify the hidden entities by applying entity categories. Our

entity categories are adopted from the class categories defined by Song et al. (I.-Y. Song,

Yano. K., Trujillo, J., Lujan-Mora, S. , 2004).

Relationships between entity lists are generated by considering the application

domain semantics inherent in the RIR. The modeling rules are used to ensure that all of

the relationships are identified. The lists of EIR and RIR are extended by case studies.

WordNet is also used to ensure that the synonyms of EIR’s entities and RIR’s entities are

missed out while preparing the list of candidate entities and preparing the list of

relationships, respectively.

62

Figure 3.4 The EIPW architecture

3.3.2 The EIPW Workflow

This section shows the detailed workflow of EIPW and its use for generating ER

models. EIPW can be mainly divided into two subtasks: entity identification and

relationship identification.

63

(1) Entity Identification

The actual step-by-step activities of our methodology outlined in Figure 3.6 are

the form of an activity diagram in the UML. In Figure 3.6, the three swimlanes perform

the following activities:

 The middle swimlane: The aim of these swimlane activities is to identify entities

based on EIR.

 The rightmost swimlane: The aim of these swimlane activities is to identify

entities that are not detected by EIR by applying the top noun categories and

hypernym chains in WordNet.

 The leftmost swimlane: The aim of these swimlane activities is to identify hidden

entities that are not explicitly stated in the requirements but are necessary for the

conceptual modeling by applying entity categories. Entities categories are used as

a tip for identifying entities.

The details of the activities in Figure 3.6 are presented below.

Activities of Middle Swimlane of Figure 3.6

 Begin with a requirement and remove the partial explanation statements

This process starts by reading a text file containing a requirements specification of

an application written in English. Explanation statements in a requirements

specification aim to help human readers to understand the requirements better but

they are harmful for automated requirement analysis (Du, 2008). For example, in

“A new video store intends to offer rentals (and sales) of entertainment material to

64

the wider public.” the explanation part inside the parenthesis is redundant and not

necessary to transform it into ERD representation. Heuristic rules based on

parenthesis and some words (e.g. such as) will be used to remove the explanation

statement.

 Step 1: Get noun phrases

Part of speech tagging (POS) is used to assign each word in an input sentence its

proper part of speech such as noun phrases and verb phrases in order to reflect the

word’s syntactic categories. The POS tags provide a useful abstraction of words

whereby candidate entities can be identified from either noun phrases (P. Chen,

1983) or verb phrases (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004).

In this research, we use an open source call LingPipe for POS tagging to get the

entire noun phrases appearing in the requirement specification. Figure 3.5 shows

the user interface of Step 1 that lists all the noun phrases appearing in the

requirement specification.

65

Figure 3.5 The EIPW’s user interface of Step 1

 Step 2: Test discard noun set

To facilitate the post-parsing analysis, a noun phrase belonging to any of the

discard noun set will be excluded as a candidate entity. The discard noun set is

created based on the history of words discarded by designers and the class

elimination (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004) to provide

intelligent suggestion for better parsing the requirement. The discard noun set is

domain independent. Some examples of discard noun set are number, ID,

information, database, track, record, system, etc.

 Step 3: Identify entities based on EIR

66

After the initial set of possible candidate entities is identified from Step 2, each

term is compared to the entity names in the EIR. If a noun phrase matches an

entity name in EIR, then it becomes a candidate entity (E1).

 Step 4: Apply WordNet Synonym

Out of these entity names, identify synonyms of a noun phrase from WordNet. If

the synonyms of a noun phrase match the entity name in EIR, then the noun

phrase also becomes a candidate entity (E1).

Activities of RightMost Swimlane of Figure 3.6

 Step 1: Apply top noun categories and hypernym chains in WordNet

The top noun categories and hypernym chains in WordNet are used to perform

entity categorizations. The entity categories can help us identify entities from

non-identifiable noun phrases from the MiddleMost Swimlane. These entity

categories can be divided into two groups and defined as follows:

 Potential-Entity Group: group, physical object, physical entity, thing,

transaction.

 Non-Entity Group: cognition, attribute, value, measure, constituent,

language_unit, feeling.

If the hypernym chain of a noun phrase reaches to one of the categories in

the “Potential-Entity” group, the system will label this term as a candidate entity

(E2) and insert it to the EIR to expand the list of EIP. On the other hand, if the

67

hypernym chain of a term reaches to one of the categories in the “Non-Entity”

group, the system will delete this noun phrase.

If the hypernym chain of a term does not belong to either group, the system

will ask the user to make judgments regarding this term. If the user labels it as a

candidate entity (E2), then insert it to the EIR, else delete this noun phrase.

Activities of LeftMost Swimlane of Figure 3.6

In this swinlane, the system asks the user to identify the hidden entities by applying

domain knowledge to entity categories. Our entity categories in business applications

adopt the class categories defined by Song et al. (I.-Y. Song, Yano. K., Trujillo, J., Lujan-

Mora, S. , 2004). They are as follows:

1. Roles of People

They represent role of humans who perform some important function.

Ex. Student, Employee, Customer.

2. Places

They represent locations where important business activities are occurred.

Ex. Warehouse, Brach, Store.

3. Physical Things

They represent tangible objects that are import in business activities.

Ex. Product, Machine, Device, Book

4. Organization

They represent important business units.

Ex. Department, Team

5. Events (Transactions)

68

They represent important activities that need to record some data with the time the

event occurred.

Ex. Order, Promotion, Payment

6. Transaction Line Items

They represent an element of a transaction.

Ex. Order-Line-Item, Purchase-Line-Item, Rental-Line-Item

7. Concepts with properties

They represent intangible ideas used to keep track of business activities.

Ex. Project, Account, Complaint

8. Specification

They represent a description of other items that need to be distinguished from one

another.

Ex. Video-Title, Flight-Plan. For example, each video tape has a different

barcode.

9. Interaction

They represent an association between two entities, where the association has

meaningful attributes. An example of this entity is Reservation between Passenger

and Flight entities.

10. Rules/Policies/Reference/Look up

They represent important business rules.

Ex. Rental-Policy, Shipping Method

11. Containers of other things

They represent entities that will contain other entities.

Ex. Shelf, Catalog, Pick List, Bin

12. Things in a container

They represent entities that will be contained in another entity.

Ex. Order-Line-Item, Passenger, Video-Title in a catalog.

69

 Step 1: Apply domain knowledge to entity categories (user intervention)

For each entity category, check whether all the entities representing the entity

category are already captured. Otherwise create a new candidate entity (E3) based

on the entity categories.

A set of entities identified from our methodology is a union of the entities identified from

the three swimlanes. That is: {Entities} = {E1} {E2} {E3}

70

Figure 3.6 Entity Identification Process in EIPW

(2) Relationship Identification

After the entity list has been identified in the entity identification process,

Relationships between entities are generated by considering the application domain

71

semantics inherent in the RIR. This repository is used to identify occurring relationships

within an application domain and to generate the relationships between entities. The

flowcharts for the relationship identification process are shown in Figure 3.7. The

processing task requires several activities in order to determine the relationships between

the entities. In figure 3.7, there are two swimlanes performing the following activities.

● The left swimlane: The goal of these swimlane activities is to identify

relationships (r) between candidate entities based on RIR.

● The right swimlane: The goal of these swimlane activities is to ask the users to

identify the relationships, which are not detected by the RIR, by applying Need-to-

Remember Rule (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004).

The details of the activities in Figure 3.6 are discussed below.

Activities of left swimlane of Figure 3.7

 Begin with the candidate entity list obtained from entity identification process.

 Step 1: Delete duplicate entities.

This Step is conducted through WordNet synonyms.

 Step 2: Assign all possible relationships (rij) between the candidate entities.

 Step 3: Match the possible relationships (rij) with RIR.

If rij match the relationships in RIR, add rij into Relationship set (R).

 Step 4: Apply WordNet Synonym

Out of the matching, identify synonyms of entity names from WordNet. If the

synonyms of rij match the relationship in RIR, add rij in R.

72

Activities of right swimlane of Figure 3.7

 Begin with the possible relationships that are not detected by RIR from left

swimlane.

 Step 5: Apply Need-to-Know rule (user intervention)

If a relationship represents an association that does not have to be remembered

between two entities, then delete this relationship.

 Step 6: Assign the multiplicity (user intervention)

Assign the multiplicity to each relationship obtained from Step 5.

The ER model is created by combining a set of relationships (R) identified from the two

swimlanes. Figure 3.8 shows the output of EIPW.

73

Figure 3.7 Relationship Identification Process in EIPW

74

Figure 3.8 The output of EIPW

3.4 Developing HBT (Heuristicbased Technique)

In this research, we select six domain independent modeling rules that are

comprehensive enough in creating conceptual models. We evaluate the usefulness of

these rules by developing HBT that applies these rules to the creation of conceptual data

models. The knowledge implemented in the system is based on the six domain

independent modeling rule. The six domain rules are used to ensure whether the initial

candidate entity lists should be included or excluded in the data model.

3.4.1 Overview of HBT Architecture

The system modules are shown in Figure 3.9. A prototype of HBT was developed by

JAVA applet. First, the system takes a NL requirement specification as an input to a

75

preprocessing module. The main functionality of the preprocessing module is to do the

POS in order to list all of the possible candidate entities. In HBT, the entity list can be

identified based on noun phrases, verb phrases, and hidden requirements. During the

post-parsing analysis, a noun phrase and a verb phrase belonging to any of a discard noun

set and a discard verb set, respectively, will be excluded as a candidate entity. The

discard noun set and the discard verb set are created based on the history of words

discarded by designers and the class elimination rules (I.-Y. Song, Yano. K., Trujillo, J.,

Lujan-Mora, S. , 2004). The discard noun set and the discard verb set are domain

independent. Most of the other modules’ functions in HBT are very similar to those in

EIPW. Also, the user interfaces of HBT are also similar to those in the HBT as shown in

Figure 3.10. The only difference is in the entity identification module. In this module,

there are three activities performed:

1. The first activity is to identify the entity list based on noun phrases by

using the six domain independent modeling rules, which are the ID, MA, MVA,

TDA, SC, and DI rules.

2. The second activity is to identify the entity list based on verb phrases by

using two rules out of six domain independent modeling rules, which are the ID

and MA rules.

76

3. The third activity is to identify hidden entities that are not explicitly stated

in the requirements but are necessary for the conceptual modeling by applying

entity categories.

Figure 3.9 The HBT Architecture

77

Figure 3.10 An example of user interface in HBT

3.4.2 The HBT Workflow

This section presents the detailed workflow of HBT. HBT incorporates the six

domain independent modeling rules, entity categories, and relationship instance

repository. HBT’s process can be divided into two subtasks: entity identification and

relationship identification. In entity identification process, the six domain independent

modeling rules are used to ensure whether the initial candidate entity lists should be

included or excluded in the data model. The relationship identification process of HBT is

the same as that used in EIPW.

78

1) Entity Identification

The step-by-step activities of our methodology outlined in Figure 3.11 are in the

form of an activity diagram in the UML. The processing task requires several steps to be

carried out in order to achieve the candidate entities from the NL input. In Figure 3.11,

there are three swimlanes to perform the following activities:

 The middle swimlane: The aim of these swimlane activities is to identify entities

based from the concepts that are explicitly stated as noun phrases in the

requirements.

 The rightmost swimlane: The aim of these swimlane activities is to identify

entities based from the concepts that are explicitly stated as verb phrases in the

requirements.

 The leftmost swimlane: The aim of these swimlane activities is to identify hidden

entities that are not explicitly stated in the requirements but are necessary for the

conceptual modeling. We identify those hidden entities by applying domain

knowledge to entity categories.

79

Figure 3.11 Entity Identification Process in HBT

80

Activities of Middle Swimlane of Figure 3.11

 Begin with a requirements specification and remove the partial explanation

statement.

 Step 1: Get noun phrases

Get the entire noun phrases from a requirement specification by using POS

technique.

 Step 2: Test discard noun set

To facilitate the post-parsing analysis, noun phrases belong to any of the discard

noun set will be deleted.

 Step 3: Apply the ID (Identifier) Rule

If a noun phrase needs to have a unique identifier, then it is a candidate entity

(E1).

 Step 4: Apply the MA (Multiple Attributes) Rule

If a noun phrase has multiple attributes, then it is a candidate entity (E1).

 Step 5: Apply the MVA (Multi-Value Attribute) Rule

If a noun phrase has multi-values, then it is a candidate entity (E1).

 Step 6: Apply the TDA (Time-dependent attributes) Rule

If a noun phrase has time-dependent attributes or needs to keep track of history of

values, then it is a candidate entity (E1).

 Step 7: Apply the SC (Single Concept) Rule

A good entity should represent one and only one concept (E1).

81

 Step 8: Apply the DI (Domain Importance) Rule

If a noun phrase is important in its own right within the problem domain whether

it has one or multiple attributes, then it is a candidate entity (E1).

Activities of Rightmost Swimlane of Figure 3.11

 Step 1: Get verb phrases

We use POS technique to get all the verb phrases from the requirement

specification.

 Step 2: Test the discard verb set

To facilitate the post-parsing analysis, verb phrases belong to any of the discard

verb set will be deleted. The examples of verb phrases in discard verb set are:

automate, become, concern, etc.

 Step 3: Apply ID (Identifier) Rule

If the concept represented by a verb phrase needs to have a unique identifier, then

it is a candidate entity (E2). Song et al. (I.-Y. Song, Yano. K., Trujillo, J., Lujan-

Mora, S. , 2004) term this candidate entity a Transformed Entity.

 Step 4: Apply MA (Multiple Attribute) Rule

If the concept represented by a verb phrase has multiple attributes, then it is a

candidate entity (E2).

82

Activities of Left Swimlane of Figure 3.11

 In this swimlane, the system asks the user to identify the hidden entities by

applying domain knowledge to entity categories. These entity categories are the same as

that used in the EIPW.

 Step 1: Apply domain knowledge to entity categories

For each entity category, check whether all the entities representing the entity

category are already captured. Otherwise create a new entity based on the entity

category.

A set of entities (E) identified from our methodology is a union of the entities

gotten from the three swimlanes. The relationship identification process of HBT is the

same as that used in EIPW. The output of HBT is shown in Figure 3.12.

Figure 3.12 The output of HBT

83

4. EMPIRICAL EVALUATION

In this research, we have proposed methods for improving the process of

conceptual modeling design. We have implemented two knowledge-based data modeling

tools: EIPW and HBT. EIPW incorporates entity instance repository, entity categories,

relationship instance repository, and WordNet. HBT incorporates the six domain

independent rules, entity categories, and relationship instance repository.

In this Chapter, we evaluated the quality of outputs generated by EIPW and HBT by

using ANOVA technique. Because the quality of the ER models is of interest, the

following hypotheses are tested:

H1: Novice designers using EIPW will create conceptual models with better quality

compared to the models generated without using any tools.

H2: Novice designers using HBT will create conceptual models with higher scores

compared to the models generated without using any tools.

H3: There is no significant difference between the two KBSs regarding the quality of the

conceptual models.

4.1 Experiment Design

The experimental framework is shown in Figure 4.1. The two independent

variables are the systems and the task sizes. In conceptual modeling, a linear increase in

the number of entities can result in a combinatorial increase in the number of possible

relationships (D. Batra, 2007). As the task size increases, so do the numbers of decisions

84

required in the modeling process. Therefore, our experiment design incorporates two

levels of the task size to provide some sensitivity for this factor. The medium task size

has 9 entities and 9 relationships, while the moderate task size has 14 entities and 14

relationships. The dependent variable is the quality scores of the ER models.

Figure 4.1 The framework of empirical experiments

4.2 Subjects and Tasks

There were 41 subjects. All of the subjects were students in the iSchool at Drexel

University and did not work in conceptual modeling field before. Therefore, we

concluded that all of our subjects were novice designers. Twenty-one were

undergraduates and twenty were graduate students. Forty-one subjects were divided into

four groups as shown in Table 4.1. Each subject worked on four problem statements: one

medium size and one moderate size problem statements with the aid of our KBS, and one

85

medium size and one moderate size problem statements with no tool. The problem

statements are in the e-commerce domain. The subjects could take time as long as they

wanted to create conceptual models based on the given problem statements.

Table 4.1 The Experiment Design

Group Num of subject Problem1 Problem2 Problem3 Problem4

1 11 No tool No tool Using EIPW Using EIPW

2 10 Using EIPW Using EIPW No tool No tool

3 10 No tool No tool Using HBT Using HBT

4 10 Using HBT Using HBT No tool No tool

4.3 Evaluation Metrics

1. Evaluating experimental data

The quality of the conceptual data models created by the novice designers is

judged by a third party.

2. Grading criteria

The quality of an ER model is evaluated by a scoring schema that specifies how

to grade the ER model on each facet (entities and relationships). In this research

we adopt the scoring scheme proposed by Du (Du, 2008). It focuses on the correct

identification of appropriate entities and relationships based on the given problem

statements.

Entity

- Add 2 points for each correct entity stated in the problem statement.

- No penalty for very likely entity but not stated in the problem statement.

- Deduct 1 point for each wrong entity.

- Deduct 1 point for each missing entity.

86

Relationship

- Add 2 points for each relationship that is correctly attached to the

corresponding entities.

- Deduct 1 point for each missing relationship.

- Deduct 1 point for each a redundant relationship or a derivable relationship.

- Deduct 1 point for each wrong relationship.

o Shown as an indirect relationship without a direct relationship.

- Deduct 1 point for each incorrect degree of relationship.

- Deduct 0.5 point for each an incorrect cardinality.

4.4 Empirical Results

Test of Hypothesis 1: EIPW

A 2x2 within-subjects analysis of variance was performed on quality scores as a function

of EIPW (with, no tool) and task size (medium, moderate) as shown in Table 4.2.

Table 4.2 An ANOVA analysis of modeling quality

 QUALITY SCORE

System (EIPW, no tool) F(1,20) = 97.512, p < 0.000

Task Size (medium, moderate) F(1,20) = 2.776, p < 0.111

System x Task Size F(1,20) = 1.085, p < 0.310

Note: Significant Level < 0.05

87

Figure 4.2 The plot of the mean quality scores (%)

From the calculated means shown in Figure 8, the conceptual models created by EIPW

are better than those created by no tool cases for both task sizes. In Table 4.2, the results

show that the main effect of system (with EIPW, no tool) is significant (p < 0.00).

Therefore, this result supports our hypothesis (H1) that the EIPW helps novice designers

create better conceptual models than they do without it. There is no significant main

effect for task size (p < 0.111). It shows that the effect of System x Task Size is not

significant (p < 0.310), which means there is no interaction between the system and the

task size. We conclude that EIPW improves the novices’ performance by 30.9% for the

medium task size and 46.0% for the moderate task size.

88

Test of Hypothesis 2: HBT

A 2x2 within-subjects analysis of variance was performed on quality scores as a function

of HBT (with, no tool) and task size (medium, moderate) as shown in Table 4.3.

Table 4.3 An ANOVA analysis of modeling quality

 QUALITY SCORE

System (HBT, no tool) F(1,19) = 25.69, p < 0.000

Task Size (medium, moderate) F(1,19) = 6.925, p < 0.016

System x Task Size F(1,19) = 0.132, p < 0.720

Note: Significant Level < 0.05

Figure 4.3 The plot of the mean quality scores (%)

From the calculated means shown in Figure 4.3, the conceptual models created by the

HBT are better than those created by no tool cases for both task sizes. In Table 4.3, the

89

results show that the main effect of system (with HBT, no tool) is significant (p < 0.00).

Therefore, this results support our hypothesis (H2) that the HBT helps novice designers

create better conceptual models than they do without it. There is significant main effect

for task size (p < 0.016). However, it shows that the effect of System x Task Size is not

significant (p < 0.720), which means there is no interaction between the system and the

task size. We conclude that HBT improves the novices’ performance by 34.9% for the

medium task size and 33.5% for the moderate task size.

Test of Hypothesis 3: EIPW & HBT

A 2x2 mixed model design with system as between-subject and task size as within-subject

factors was used. The two independent variables are system (with EIPW, with HBT) and

the task size (medium, moderate). The dependent variable is the quality score. Since the

aspects of within-subject factor are not used for analyzing this hypothesis, only the test of

between-subject analysis is shown in Table 4.4.

Table 4.4 Tests of between-subjects effects with dependent variable QUALITY SCORE

 QUALITY SCORE

System (EIPW, HBT) F(1,39) = 0.004, p < 0.948

 Note: Significant Level < 0.05

90

Figure 4.4 The plot of the mean quality scores (%)

 In Table 4.4, the main effect of system is not significant (p < 0.948). So, this result

supports our hypothesis (H3) that there is no significant difference between the two KBSs

regarding the quality of the conceptual models. However, the mean scores of EIPW and

HBT suggest that EIPW is better than HBT when the task size is moderate. On the other

hand, HBT is slightly better than EIPW when the task size is smaller. This results show

that the six domain independent modeling rules are effective in the small to medium task

sizes.

4.5 Precision & Recall

Even though recall and precision (van Rijsbergen, 1979) are always used for

evaluating information retrieval systems and also widely used in evaluating information

extraction systems, Harmain and Gaizaukas (Harmain, 2003) first introduced precision

91

and recall for evaluating conceptual data modeling systems. In any systems, both

precision and recall should be close to 100% as possible. However, generally increasing

in precision tends to decrease recall and vice versa. In this research, the definition of

recall and precision are adopted as used by Harmain and Gaizaukas (2003).

Recall measures the completeness of the results developed by the system. The

relevant information developed by the systems is compared with that developed by

human analysts or answer key. The formula for calculating recall is:

Where Ncorrect is the number of correct responses made by the system, and Nkey is the

number of information elements in the answer key.

 Precision measures the accuracy of the system (i.e. how much of the information

produced by the system is correct). The formula for calculating precision is:

 [Harmain & Gaizauskas, 2003]

Where Ncorrect is as above, and Nincorrect is the incorrect responses made by the system.

The results of Recall and Precision of the performance of our proposed KBSs are

shown in Table 4.5.

92

Table 4.5 Results of the performance of our KBSs

Tools or Systems Recall Precision F-measure
No tool

56% 74% 64%

EIPW 79% 93% 85%

HBT 84% 94% 89%

F-measure is the weighted average of the precision and recall.

It is questionable and inconsistent to use precision and recall to evaluate the

performance of conceptual modeling tools or systems because there is no universal

standard evaluation requirement corpus available. However, Table 4.5 provides the

overall performance of our tools.

Since there is no standard evaluation of NL-based tools available, we cannot

compare our tools with the previous tools or systems. However, Harmain & Gaizauskas

(Harmain, 2003) claimed that other language processing technologies such as information

retrieval systems, information extraction systems, and machine translation systems have

found commercial applications with % precision and % recall well below this level (73%

recall and 66% precision).

4.6 Limitations of the Research

The overall system performance has been evaluated in the previous chapter. In this

section, the limitations of some of the system components are discussed.

93

1. This study has, so far, been carried out on one domain only, but it provides a

theoretical background for research on other domains as well.

2. One characteristic of our KBSs is to integrate multiple modules and resources for

the purpose of automating the process of conceptual data modeling. Some of the

modules are designed for these KBSs while other are adopted from open source

third party packages. Each component has some limitations.

- The natural language processing (NLP) technique such as part of speech

tagging (POS) technique cannot completely identify all of the information in

the requirement specification. For example, the compound noun with hyphen

cannot be identified as the whole one noun. However, the overall performance

of the POS is quite effective and the % accuracy is 96.4.

- The use of a general lexical knowledge resource, top noun categories and

hypernym chains in WordNet, for automated entity identification process is

novel and quite attractive. However, the top noun categories and hypernym

chains in WordNet cannot perform entity categories completely because

WordNet is a general knowledge resource and is not developed specifically

for conceptual data modeling applications.

3. Outputs from the KBSs are individual relationships, not a combined ER diagram.

4. The evaluation of the completeness of the KBSs should be performed in many

different categories. For example, empirical work either by using the systems in a

number of real cases or by letting number of experts use and evaluate the tools.

94

5. CONCLUSION AND FUTURE WORK

Typically, conceptual data modeling has been considered as a creative activity,

where human designers are indispensible. In this research, we have proposed methods

that can improve the novice designers’ performance and reduce the dependence on

domain experts during the conceptual design process. Much research has been conducted

in developing methodologies and guidelines to help the designers in conceptual database

design. However, it would be useful if a designer has knowledge about an application

domain in the form of repository of application-specific knowledge. Currently, building a

repository of reusable artifacts involves explication of human developers’ knowledge,

which is a major obstacle in facilitating reuse of knowledge. To solve this problem, we

proposed new types of reusable artifacts, called entity instance repository (EIR) and

Relationship Instance Repository (RIR), which are repositories of Entity Instance

Patterns (EIPs) and Relationship Instance Patterns (RIPs), respectively. These patterns

can suggest what terms should appear in an application domain and how they are related

to each terms. Our proposed artifacts are likely to be useful for conceptual designs in the

following aspects: (1) they contain knowledge about a domain; (2) automatic generation

of EIR and RIR overcomes a major problem of inefficient manual approaches that

depend on experienced modeling designers and domain experts; and (3) they are domain-

specific and therefore easier to understand and reuse. In this study, we provided a

95

definition of the artifacts, and proposed the methodology for automatically generating

repositories of domain artifacts.

We have implemented two knowledge-based data modeling tools: HBT and

EIPW. HBT incorporates the six domain independent modeling rules, entity categories,

and relationship instance repository. EIPW incorporates entity instance repository, entity

categories, relationship instance repository, and WordNet. This step is an initial step to

show how domain knowledge stored in the instance patterns can be used together with

other modeling techniques.

The empirical results indicate that novice designers’ performance increased by

30.9~46% when using EIPW, while the performance increased by 33.5~34.9 when using

HBT, compared with the cases of no tools. The EIPW with EIR and RIR clearly helps the

novice designers in creating better quality conceptual models. These results also imply

that the use of EIR and RIR in EIPW is effective by providing us with a library of

reusable patterns and by automating the process of finding the most appropriate one for

certain situation. In addition, the results of HBT experiments show that the six domain

independent modeling rules in HBT are effective in developing the quality conceptual

models. They minimize the cognitive load on novices and ensure that the conceptual

models are correct. This study shows that the six domain independent rules can be taught

in a beginning database modeling class, and HBT can serve as a learning tool. It provides

a smooth head-start to novices. In addition, RIR used in relationship identification

process in both KBSs can ease the identification of relationships and solve the errors in

96

conceptual models caused by the semantic mismatch in which not all real-world

relationships can match the conceptual relationships.

The study has, so far, been carried out with one domain only, but it provides a

theoretical background for research on other domains as well. However, it is necessary

for the future research to advance the KBSs for supporting not only one but several

different domains. Future work is to include more modeling rules required for automatic

detection of modeling errors such as fan trap and chasm trap occurring in the conceptual

data modeling process. We want to test the usability of the KBSs for different domains

and subjects. The evaluation of the completeness of the KBSs have to be done by

empirical work either by using the KBSs in a number of real cases or by letting a number

of experts use and evaluate the KBS. We also plan to make both KBSs’ interface modules

to import the output schema into an ER diagram or a class diagram in graphical CASE

tools. In addition, future research will consider the cognitive processes involved and

mental representations in conceptual modeling design process. Cognitive science is a

very useful reference discipline for gaining a deep understanding why people do things in

a particular way (Siau, 1999).

97

REFERENCES
Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University
Press.

Ambriola, V., Gervasi, V. (2006). On the systematic analysis of natural language
requirements with circe. Automated Software Engineering, 13, 107-167.

Ambrosio, A. P., Métais, E., Meunier, J. N. (1995). The linguistic level of the KHEOPS
CASE tool. Paper presented at the Proceedings of the 1st International Workshop on
Applications of Natural Language to Data Bases (NLDB'95).

Anthony, S., Mellarkod, V. (2009). Data Modeling Patterns: A Method and Evaluation.
Paper presented at the Proceedings of the Fifteenth Americas Conference on Information
Systems, San Francisco, California.

Antony, S., Batra, D. (2002). CODASYS: a consulting tool for novice database
designers. Paper presented at the SIGMIS Database.

Ba, S., Stallaert, J., Whinston, A.B. (2001). Research commentary: introducing a third
dimension in information systems design -- the case for incentive alignment. Information
Systems Research, 12(3), 337-355.

Batini, B., Demo, B., Leva, A. (1984). A methodology for conceptual schema design of
office databases. Information System, 9, 251-263.

Batra, D. (2005). Conceptual Data Modeling Patterns: Representation and Validation. J.
Database Manag., 16(2), 84-106.

Batra, D. (2007). Cognitive complexity in data modeling: causes and recommendations.
Requir. Eng., 12(4), 231-244.

Batra, D., Antony, S. (1994). Novice errors in Conceptual database design. European
Journal of Information Systems, 3(1), 57-69.

Blaha, M. (2010). Patterns of Data Modeling: CRC Press.

Bodart, F., Patel, A., Sim, M., Weber, R. (2001). Should Optional Properties Be Used in
Conceptual Modeling? A Theory and Three Empirical Tests. Information Systems
Research, 12(4), 384-405.

98

Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, NJ, USA:
Prentice-Hall.

Buchholz, E., Cyriaks, H., Dsterhft, A., Mehlan, H., Thalheim, B. (1995). Applying a
natural language dialogue tool for designing databases. Paper presented at the
Proceedings of the first International Workshop on Applications of Natural Language to
Databases (NLDB’95).

Burg, J., Van de Riet, P. (1998). Using Knowledge from WordNet for Conceptual
Modeling. In Fellbaum, C. (ed.) WordNet: An Electromic Lexical Database. Cambridge,
MA: MIT Press.

Castano, S., De Antonellis, V., Fugini, M., Pernici, B. (1998). Conceptual schema
analysis: techniques and applications. ACM Transactions on Database Systems, 23(3),
286-333.

Castro, L., Baiao, F., Guizzardi, G. (2009). A Survey on Conceptual Modeling from a
Linguistic Point of View: Technical Report, RelaTe-DIA

Chaiyasut, P., Shanks, G. (1994). Conceptual data modeling process: A study of novice
and expert data modelers. Paper presented at the 1th International Conference on Object-
Role Modeling, Australia, University of Queensland.

Chen, P. (1976). The Entity-Relationship Model: Toward A Unified View of Data. ACM
Transactions on Database Systems, 1(1), 9-36.

Chen, P. (1983). English Sentence Structure and Entity-Relationship Diagram.
Information Sciences, 1(1), 127-149.

Cheng, B. H. C., Atlee, J.M. (2007). Research directions in requirements engineering.
Paper presented at the Proc. Future of Software Engineering FOSE 2007.

Chiang, H. (1993). Reverse engineering of relational databases: extraction of domain
semantics. Ph.D Dissertation, University of Rochester, New York, USA.

Chiang, R., Barron, T., Storey, V. (1994). Reverse engineering of relational databases:
Extraction of an EER model from a relational database. Data & Knowledge Engineering
12, 107-142.

99

Chisholm, R. (1996). A Realistic Theory of Categories - An Essay on Ontology:
Cambridge University Press.

Choobineh, J., Lo, A. (2004). CABSYDD: Case-Based System for Database Design.
Journal of Management Information Systems, 21(3), 242-253.

Choobineh, J., Mannino, M., Nunamaker, J. (1988). An expert database design system
based on analysis of forms. IEEE Transaction on Software Engineering, 14, 242-253.

Coad, P., North, D., Mayfield, M. (1995). Object Models – Strategies, Pattern, &
Applications.: Englewood Cliffs: Yourdon Press.

Conesa, J., Storey, V., Sugumaran, V . (2007). Experiences Using the ResearchCyc
Upper level Ontology. In Z. K. e. a. (Eds.) (Ed.), NLDB 2007, LNCS 4592 (pp. 143-
155): Springer-Verlag.

Conesa, J., Storey, V., Sugumaran, V. . (2010). Usability of Upper level ontologies: The
case of ResearchSyc. Data & Knowledge Engineering, 69(4).

Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A. . (2003). Methodologies, Tools and
Languages for Building Ontologies: Where is their meeting point? Data & Knowledge
Engineering, 46, 41–64.

Currim, S. (2008). Towards Improving Conceptual Modeling: an examination of
common errors and their underlying reasons. Ph.D Dissertation, University of Arrizona.

Dehne, F., Steuten, A., R.P. van de Riet. (2001). WordNet++: “A lexicon for the Color-
X method. Data and Knowledge Engineering, 38(1), 3-29.

Dey, D., Storey, V., Barron, T. (1999). Improving database design through the analysis of
relationships. ACM Transactions on database systems, 24(4), 453-486.

Du, S. (2008). On the Use of Natural Language Processing for Automated Conceptual
Data Modeling. Ph.D Dissertation, University of Pittsburgh.

Dullea, J., Song, I., Lamprou, I. (2003). An Analysis of Structural Validity in ER
Modeling. Data and Knowledge Engineering, 47(2), 167-205.

100

Dumpala, S. R., Arora, S.K. (1981). Schema Translation Using the Entity Relationship
Approac. In P. P. E. Chen (Ed.), Entity-Relationship Approach to Information Modeling
and Analysis, ER Institute (pp. 339-360).

Eick, C. F., & Lockemann, P. C. (1985). Acquisition of Terminology Knowledge Using
Database Design Techniques. Paper presented at the Proceedings ACM SIGMOD
conference, Austin, USA.

El-Ghalayini, H., Odeh, M., McClatchey, R. (2006). Engineering Conceptual Data
Models from Domain Ontologies: A Critical Evaluation. International Journal of
Information Technology and Web Engineering, 2(1), 57-70.

Elmasri, R., Nevathe, S. (2004). Fundamentals of Database Systems (3rd ed). Redwood
City, CA: The Benjamin/Cummings Publishing Co., Inc.

Embley, D. (2004). Toward Semantic Understanding an Approach Based on Information
On Information Extraction Ontologies. Paper presented at the Proceedings of the
Fourteenth Australian Database Conference, Denedin, New Zealand.

Evermann, J., Wand, Y. (2001). Towards Ontologically-Based Semantics for UML
Constructs. In H. S. Kunii, Jajodia, S., Solvberg, A., (eds) (Ed.), Conceptual Modeling-
ER 2001, Lecture Notes in Computer Science (pp. 341-354): Springer.

Fahrner, C., Vossen, G. (1995). A survey of database design transformations based on the
Entity- Relationship model. Data Knowledge Eng., 15(3), 213-250.

Fayad, M., Schmidt, D., Johnson, R. (1997). Object-oriented Application Frameworks:
Problem and Perspectives. NY: Willy.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Fellbaum, C. (Ed.).
Cambridge, MA: MIT Press.

Fernandez, E. B., Yuan, X. (2000). Semantic Analysis Patterns. Paper presented at the
Procs. of the 19th Int. Conf. on Conceptual Modeling (ER2000).

Fonseca, F., Martin, J. (2007). Learning the Differences Between Ontologies and
Conceptual Schemas Through Ontology-Driven Information Systems. JAIS - Journal of
the Association for Information Systems - Special Issue on Ontologies in the Context of
IS 8(2), 129–142.

101

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Menlo Park, CA, USA:
Addison Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns:Elements of
Reusable Object-Oriented Software: Addison Wesley.

Gentner, D., Medina, J. (1998). Similarity and the development of rules. Cognition, 65,
263—297.

Gogolla, M., Hohenstein, U. (1991). Towards a semantic view of an extended entity-
relationship model. ACM Transactions on Database Systems, 16(3), 369-416.

Gomez, F., Segami, C., Delaune, C. (1999). A System for the Semi-Automatic
Generation of E-R Models from Natural Language Specifications. Knowledge and Data
Engineering, 29, 57-81.

Guarino, N., Welty, C. (2004). An overview of OntoClean. In S. Staab, Studer, R. (eds.)
(Ed.), Handbook on Ontologies (pp. 151-159): Springer Verlag.

Han, T. (2002). Automating Reuse for Systems Design. Ph.D Dissertation., Georgia State
University.

Han, T., Purao, S., Storey, V. (2008). Generating large-scale repositories of reusable
artifacts for conceptual design of information systems. Decision Support Systems, 45,
665-680.

Harmain, M., Gaizauskas, R. (2003). CM-Builder: A Natural Language-Based CASE
Tool for Object-Oriented Anaysis. Automated Software Engineering, 10(2), 157-181.

Hartmann, S., Link, S. (2007). English Sentence Structures and EER modeling. Paper
presented at the 4th Asia-Pacific Conference on Conceptual Modeling.

Hay, D. C. (1996). Data model patterns: Conventions of Thought. New York: Dorset
House Publishing.

Hitchman, S. (2003). An Interpretive Study of How Practitioners Use Entity-Relationship
Modelling in a Ternary Relationship Situation. Communications of the Association for
Information Systems, 11(26).

102

Hoffer, J., Prescott, M., Mcfadden, F. (2004). Modern database management (7 ed.).
Upper Saddle River, New Jersey: Pearson Prentice Hall.

Johannesson, P., Kalman, K. (1989). A method for translating relational schemas into
conceptual schemas. Paper presented at the Proc. Eighth Int. Conf. on Entity-Relationship
Approach.

Johannesson, P., & Wohed, P. (1999). The deontic patterns-a framework for domain
analysis in information systems design. Data & Knowledge Engineering, 31.

Johnson, R., Foote, B. (1988). Designing reusable classes. Journal of Object-Oriented
Programming, 1(2), 22-35.

Kankanhalli, A., Tan, B., Wei, K. (2005). Contributing knowledge to electronic
knowledge repositories: an emprical investigation. MIS Quarterly, 29, 113-143.

Kim, N., Lee, S., Moon, S. (2008). Formalized Entity Extraction Methodology for
Changeable Business Requirements. Journal of Information Science and Engineering, 24,
649-671.

Kim, Y., March, S. (1995). Comparing data modeling formalisms. Communications of
the ACM, 38(6), 103-115.

Kimball, R., Ross, M. (2002). The Data Warehouse Toolkit: The Complete Guide to
Dimensional Data Modeling (2nd ed.). New York: John Wiley & Sons, Inc.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process (3rd ed.): Prentice Hall, Englewood Cliffs,
New Jersey.

Lenat, D. B. (1995). CYC: a large-scale investment in knowledge infrastructure. . Paper
presented at the Communication ACM

Liao, C., Palvia, P. (2000). The impact of data models and task complexity on end-user
performance: an experimental investigation. Journal of Human-Computer Studies, 41(4),
212-218.

Markus, M. L. (2001). Towards a theory of knowledge reuse: types of knowledge reuse
situations and factors in reuse success. Journal of Management Information Systems,
18(1), 57–94.

103

Mascardi, V., Cordì, V., Rosso, P. (2007). A Comparison of Upper Ontologies Technical
Report DISI-TR-06-2.

Métais, E. (2002). Enhancing information systems management with natural language
processing techniques. Data Knowl. Eng, 41(2), 247-272.

Meziane, F., & Vadera, S. (2004). Obtaining E-R Diagrams Semi-Automatically From
Natural Lnaguage Specifications. Paper presented at the Proceedings of the 6th
International Conference of Enterprise Information Systems, ICEIS 2004, Portugal.

Mich, L., Franch, M., Inverardi, P. (2004). Market research for requirements analysis
using linguistic tools. Requirements Eng., 40-56.

Mich, L., & Garigliano, R. (1999). The NL-OOPS project: object oriented modeling
using the natural language processing system LOLITA. Paper presented at the
Proceedings of the 4th International Conference on the Applications of Natural Language
to Information Systems (NLDB'99).

Mich, L., Garigliano, R. (2002). NL-OOPS: A Requirements Analysis tool based on
Natural Language Processing. Paper presented at the Proc. 3rd Int. Conf. On Data Mining
2002, Bologna.

Milton, S., Kazmierczak, E. (2004). An Ontology for Data Modeling Languages: A Study
Using a Common-Sense Realistic Ontology. Journal of Database Management, 15(2).

Miyoshi, H., Sugiyama, K., Kobayashi, M., Ogino, T. (1996). An Overview of the EDR
Electronic Dictionary and the Current Status of Its Utilization. Paper presented at the
Proceedings of the 16th International Conference on Computational Linguistics.

Moody, D. (2004). Cognitive Load Effects on End User Understanding of Conceptual
Models: An Experimental Analysis. ADBIS 2004, 129-143.

Moody, D. (2005). Theoretical and Practical Issues in evaluating the quality of
conceptual models: Current State and Future Directions. Data & Knowledge Engineering,
55, 243-276.

Moody, D., Shanks, G. (1994). What makes a good data model? Evaluating the quality of
entity-relationship models. Paper presented at the 13th International Conference on the
Entity-Relationship Approach, Manchester.

104

Moody, D. L. (1998). Metrics for Evaluating the Quality of Entity Relationship Models.
ER 1998, 211-225.

Moody, D. L., Shanks, G.G. (2003). Improving the quality of data models: empirical
validation of a quality management framework. Inf. Syst, 28(6), 619-650.

Neill, C., Laplante, P. (2003). Requirement engineering: the state of the practice. IEEE
Software, 20(6), 40-45.

Omar, N. (2004). Heuristics-based Entity-Relationship Modeling through Natural
Language Processing. Ph.D Dissertation, University of Ulster.

Omar, N., Hanna, P., Mc Kevitt, P. (2004). Heuristics-Based Entity-Relationship
Modeling through Natural Language Processing. Paper presented at the Proc. Of the
fifteen Irish Conference on Artificial Intelligence and Cognitive Science (AICS-04).

Orlikowski, W. J. (1993). Learning from notes: organizational issues in groupware
implementation. Information Society, 9(3), 237–251.

Osborne, M., MacNish, C. K. (1996). Processing natural language software requirement
specifications. Paper presented at the Second International Conference on Requirements
Engineering (ICRE’96).

Overmyer, S., Lavoie, B., Rambow, O. (2001). Conceptual Modeling through Linguistic
Analysis Using LIDA. ICSE 2001, 401-410.

Paek, Y.-K., Seo, J., Kim, G.-C. (1996). An expert system with case-based reasoning for
database schema design. Decision Support Systems, 18(1), 83-95.

Parson, J., Saunders, C. (2004). Cognitive heuristics in software engineering: applying
and extending anchoring and adjustment to artifact reuse. IEEE Trans. Software
Engineering, 30(12), 873-888.

Pree, W. (1994). Design Patterns for Object-Oriented Software Development: Addison-
Wesley.

Prieto-Diaz, R. (1987). Domain Analysis for reusability. Paper presented at the
COMPSAC’87, Tokyo, Japan.

105

Purao, S. (1998). APSARA: A tool to automate system design via intelligent pattern
retrieval and synthesis. Database Advance Information Systems, 29(4), 45-57.

Purao, S., Storey, V. C. (2005). A multi-layered ontology for comparing relationship
semantics in conceptual models of databases. J. Applied Ontology, 1(1), 117–139.

Purao, S., Storey, V., Han, T. (2003). Improving Analysis Pattern Reuse in Conceptual
Design: Augmenting Automated Processes with Supervised Learning. Information
Systems Research, 14(3), 269-290.

Rumbaugh, J., Blaha, M., Premerlani, W. (1991). Object-Oriented Modeling and Design:
Prentice-Hall.

Sherif, K. (2002). Domain engineering for developing software repositories: a case study.
Decision Support Systems, 33(1), 55-69.

Shoval, P., Shiran, S. (1997). Entity-Relationship and Object-Oriented Data Modeling—
An experimental comparison of design quality. Data & Knowledge Engineering, 21(3),
297-315.

Siau, K. (1999). Information Modeling and Method Engineering: A Psychological
Perspective. J. Database Manag., 10(4), 44-50.

Silverston, L. (2001). The Data Model Resource Book Revised Edition Volume 2: John
Willey & Sons Inc.

Simsion, G. (2007). Data Modeling Theory and Practice: Technique Publications, LLC.

Soares, A., Fonseca, F. (2007). Ontology-Driven Information Systems: At Develop time.
International Journal of Computers, Systems and Signals, 8(2).

Song, I.-Y., Evans, M., Park, E. (1995). A Comparative Analysis of Entity-Relationship
Diagrams. Journal of Computer and Software Engineering, 3(4), 427-459.

Song, I.-Y., Jones, T . (1993). Analysis of binary relationships within ternary
relationships in ER modeling. Paper presented at the Proc. Of the 12th International
Conference on Entity-Relationship Approach, Dallas, TX.

Song, I.-Y., Yano. K., Trujillo, J., Lujan-Mora, S. . (2004). A Taxonomic Class Modeling
Methodology for Object-Oriented Analysis. In Information Modeling Methods and

106

Methodologies. In T. H. J Krostige, K. Siau (Ed.), Advanced Topics in Databases Series,
Ed. (pp. 216-240): Idea Group Publishing.

Storey, V. C. (1993a). A Selective Survey of the use of Artificial Intelligence for
Database Design Systems. Data & Knowledge Engineering, 11, 61-102.

Storey, V. C. (1993b). Understanding semantic relationships. VLDB Journal 2, 455-488.

STOREY, V. C. (2005). Classifying and comparing relationships in conceptual modeling.
IEEE Trans. Knowl. Data Engin., 17(11), 1-13.

Storey, V. C., Chiang, R., Goldstein, R., Dey, D., Sundaresan, S. (1997). Database design
with common sense business reasoning and learning. ACM Transactions on Database
Systems, 22(4), 471-512.

Sugumaran, V., Storey, V. (2006). The role of domain ontologies in database design: An
ontology management and conceptual modeling environment. ACM Trans. Database
System, 31(3), 1064-1094.

Szyperski, C. (1998). Component Software: Beyond Object-Oriented Programming:
Addison-Wesley.

Teorey, T., Yang, D., Fry, J. (1986). A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Surveys, 18,
197-222.

Thalheim, B. (2000). Entity-Relationship Modeling: Foundations of Database
Technology. Berlin Heidelberg: Springer Verlag.

Thonggoom, O., Song, I.-Y., An, Y. (2011). EIPW: A Knowledge-based Database
Modeling Tool. Paper presented at the CAiSE Workshops, London, England.

Tjoa, A., Berger, L. (1993). Transformations of requirements specifications expressed in
natural language into an EER model. Paper presented at the Proceedings of the 12th
International Conference on the Entity-Relationship Approach: Entity-Relationship
Approach.

Topi, H., Ramesh, V. (2002). Human factors research on data modeling: a review of prior
research, an extended framework and future research directions. J Database Management,
13, 3-15.

107

Tseng, F., Chen, C. (2008). Enriching the class diagram concepts to capture natural
language semantics for database access. Data & Knowledge Engineering, 67(1), 1-29.

Tseng, F. S. C., Chen, A.L.P., Yang, W. (1992). On Mapping Natural Language
Constructs into Relational Algebra Through E-R Representation. Data & Knowledge
Engineering (9), 97-118.

van Rijsbergen, C. J. (1979). Information Retrieval (2 ed.). London.

Wand, Y., Storey, V.C., Weber, R. (1999). An ontological analysis of the relationship
construct in conceptual modeling. ACM Transactions on Database Systems, 24(4), 494-
528.

Wand, Y., Weber, R. (1988). An Ontological Analysis of Some Fundamental Information
Systems Concepts. Paper presented at the 9th International Conference on Information
Systems, Minneapolis, Minnesota.

Wand, Y., Weber, R. (1993). On the ontological expressiveness of information systems
analysis and design grammars. . Journal of Information Systems, 3(4).

Wand, Y., Weber, R. (1995). Theoretical foundations for conceptual modeling in
information systems development. Decision Support Systems, 15(4), 285-305.

Wohed, P. (2000). Conceptual patterns for reuse in information systems analysis. Paper
presented at the Proc. 12th Internat. Conf. Adv. Inform. Systems.

108

Appendix A: The user interfaces of EIPW
Initial Step: Begin with copy and paste a requirement specification in the text box.

Figure A.1 A Screenshot of Initial Step in EIPW

109

Step 1: Get all the noun phrases from the requirement specification by applying POS.

Figure A.2 A Screenshot of Step 1 in EIPW

110

Step2: Test the discard noun set for facilitating the post-parsing analysis.

Figure A.3 A Screenshot of Step 2 in EIPW

111

Step 3: Identify entities based on EIR (Entity Instance Repository). And out of the entity names in EIR, identify
synonyms from WordNet.

Figure A.4 A Screenshot of Step 3 in EIPW

112

Step 4: Identify entities based on top noun categories and hypernym chains in WordNet.

Figure A.5 Screenshot of Step 4 in EIPW

113

 Step 5: Identify entities based on top noun categories and hypernym chains in WordNet.

Figure A.6 A Screenshot of Step 4 in EIPW

114

Step 6: identify relationships based on RIR (Relationship Instance Repository).

Figure A.7 A Screenshot of Step 6 in EIPW

115

Step 7: Identify relationships, which are not detected by RIR, by applying a modeling rule.

Figure A.8 A Screenshot of Step 7 in EIPW

116

Step 8: Assign the multiplicity to each relationship obtained from previous Step.

Figure A.9 A Screenshot of Step 8 in EIPW

117

Step 9: Show an output of EIPW.

Figure A.10 An output of EIPW

118

Appendix B: The user interfaces of HBT
Initial Step: Begin with copy and paste a requirement specification in the text box.

Figure B.1 A Screenshot of Initial Step in HBT

119

Step 1: Get all the noun phrases from the requirement specification by applying POS.

Figure B.2 A Screenshot of Step 1 in HBT

120

Step2: Test the discard noun set for facilitating the post-parsing analysis.

Figure B.3 A Screenshot of Step 2 in HBT

121

Step 3: Identify the entities from noun phrases based on six domain independent modeling rules.

Figure B.4 A Screenshot of Step 3 in HBT

122

Step 4: Get all the verb phrases from the requirement specification by applying POS.

Figure B.5 A Screenshot of Step 4 in HBT

123

Step 5: Test the discard verb set for facilitating the post-parsing analysis.

Figure B.6 A Screenshot of Step 5 in HBT

124

Step 6: Identify the entities from verb phrases based on modeling rules.

Figure B.7 A Screenshot of Step 6 in HBT

125

Step 7: Identify the entities based on entity categories.

Figure B.8 A Screenshot of Step 7 in HBT

126

Step 8: identify relationships based on RIR (Relationship Instance Repository).

Figure B.9 A Screenshot of Step 8 in HBT

127

Step 9: Identify relationships, which are not detected by RIR, by applying a modeling rule.

Figure B. 10 A Screenshot of Step 9 in HBT

128

Step 10: Assign the multiplicity to each relationship obtained from preveios Step.

Figure B.11 A Screenshot of Step 10 in HBT

129

Step 11: Show an output of HBT

Figure B.12 An output of HB

130

Appendix C: Experimental Problem Statements

Problem 1 (Moderate Task Size)

Assume a simplified mail order system for a company in an e-commerce environment of

selling various products for children. The web site requires a customer to have a login

account in order to gain access. The company also wants to record the login history in

order to track the time and IP address given to access the web site. Each customer may

place one or more order. The following information about each order needs to be

recorded are order date, credit authorization status. For each order item, we keep track of

order date, unit price, quantity, and the total order price including the shipping charge.

Customers may return order items that they are not satisfied. For each return item, we

keep track of return date, and total return price. Each order give rise to one invoice and

the customer can make a payment by using credit card (CC), where we keep track of

credit card types (Visa, MasterCard, AMEX), CC number, name on the CC, and

expiration date. The company also wants to record the price history of each product.

There are several shipment methods (such as one-day express, two-day priority, or

regular surface mail) and each customer can choose one shipment and numbers of

delivery dates. Assume the shipping charge is a straightforward percentage of the total

order price plus extra charge depending on the shipping method. Shipping address is the

same as the customer address.

131

Problem 2 (Medium Task Size)

The company wants to create a database to keep track of all employees and projects

assigned. Projects are distinguished by project numbers, the customers to which the

project belongs, a project start date, a project end date, and estimated. In the project plan,

the manager of the project must determine the tasks that will be performed to take the

project from beginning to the end. Each task has a task ID, a task description, the task’s

starting and ending dates, and the number of employees required completing the task.

Employees are assigned to specific tasks scheduled by the manager. The hour’s

employees working are kept in a work log entry containing a record of the actual hours

worked by an employee on a given assignment. The work log is a weekly form that the

employee fills out at the end of each month. The work log also contains the date (the last

workday of the month), assignment ID, the total hours worked up to the end of that

month, and the number of the bill to which the work-log entry is charged. Obviously,

each work log entry can be related to only one bill. The company has pooled all of its

employees by region, and from this pool, employees are assigned to a specific task.

Problem 3 (Moderate Task Size)

Temporary Employment Corporation (TEC) places the temporary workers in

companies.TEC has a file of candidates who are willing to work. If the candidate has

worked before, that candidate has a specific job history (Naturally, no job history exists if

the candidate has never worked). Each time the candidate works, one additional job

history record is created. Each candidate has earned several qualifications. TEC offers

132

courses to help candidates improve their qualifications. Every course develops one

specific qualification. Some qualifications have multiple courses that develop that

qualification. Some courses require specific qualifications as prerequisites. A course can

have several prerequisites. Courses are taught during the training sessions with specialists

in the field. A training session is the presentation of a single course and is scheduled in a

particular room at a specific time slot. Candidates can register and pay a fee to attend a

training session. TEC also has a list of companies that request temporaries. Each time a

company requests a temporary employee, TEC makes an entry in the Open Position

folder. That folder contains an opening number, a company name, required qualifications,

a starting date, an anticipated ending date, and hourly pay. Each opening position requires

only one specific or main qualification. When a candidate matches the qualification, the

placement is assigned, and an entry is made in the Placement Record folder. That folder

contains a placement date, a placement number, the total hours worked, etc. In addition,

an entry is made in the job history for the candidate. A placement can be filled by many

candidates, and a candidate can fill many placements.

Problem 4 (Medium Task Size)

A company wishes to create a database to control its inventory, which consists of many

products divided into a number of product categories (i.e. clothing, shoes, bags, and

accessories). The purchase department makes a purchase order when a product has to be

reordered from the suppliers. The name of the employee who processes the purchase

order is record. Each purchase line item records the purchase ID, product received, cost,

133

and any wastage. The reorder guideline provides information on how to best reorder

products. The same products are stored in the same warehouse, where the company have

several different warehouses located in different cities. The different tax rates are used in

different states. The sales tax is not applied to every purchase order, but only occurs in

those states in which the merchant is required by the state to collect taxes on products

sold in the state. Normally, the sales tax determination could be based on the location of

the supplier.

134

Appendix D: PreExperiment Questionnaires

This questionnaire is part of an analysis of a research work in the area of conceptual

modeling. Your answers will be kept confidential. Thank you for your cooperation.

1. Gender (circle your selection): Male / Female

2. Age: <20 20-29 30-39 40-49 50-59

3. Year or Degree Completed: Fresh. Soph. Jun. Sen. Grad.

4. In order to participate in this study, you must have some experiences with Entity-

Relationship (ER) models for database design. Please indicate the type of

experience you have with the ER modeling.

 Developing ER models for database design classes some years ago.

 Developing small ER models for class assignments or class project

recently.

 Extensive using ER models for database design.

 Expert knowledge of using ER models for database design.

5. Level of difficulty in database topic:

Very Difficult Very Easy

Entity-Relationship Modeling

Normalization

The Relational Model

135

SQL

6. Do you understand the concepts about entity, relationship, and attribute in ER

model?

Very clear very unclear

Entity

Relationship

Attribute

7. How do you determine entities and relationships in ER modeling?

 Scanning the sentences in problem statement for nouns and verbs.

 Visualizing the scenario

 Guessing

 Others Please specify: __________________________

8. Have you created the ER model based on a given problem statement?

Every time Never

9. Have you used any diagramming tools to help you in creating an ER model?

 Yes If yes, please name: _________________________________

 No

136

10. Do the diagramming tools help in improving your skills in the ER modeling?

 Yes

 No

137

Appendix E: PreExperiment Questionnaires

Please answer the questions about the experiment you just finished. Your answers will be

kept confidential.

11. How difficult is the problem statements?

Please rate in the scale below

Very difficult very easy

Problem 1

Problem 2

Problem 3

Problem 4

12. How confident do you feel about modeling the ERD (Entity-Relationship

Diagram) to the problem statements?

 Extremely confident

 Somewhat confident

 Neither confident or distrustful

 Somewhat not confident

 Not confident

138

13. In your opinion, rate the overall helpfulness of our modeling tool for developing

ER models.

 Very helpful

 Somewhat helpful

 A little helpful

 Not at all helpful

14. In your opinion, rate the impact of our tool on how easy to use and user-friendly.

 Not at all

 Not very easy to use

 Somewhat easy to use and user friendly

 Very easy to use and user friendly

15. What are the main advantages of using our tool?

16. Identify areas where you believe that the conceptual data modeling tools could be

improved. Please explain your improvement.

139

Curriculum Vitae

The author was born in Bangkok, Thailand on September 7, 1974. She attended

Chulalongkorn University from 1991 to 1995, and graduated with a Bachelor of Science.

Later, she attended Rochester Institute of Technology from 1997 to 1999, and graduated

with a Master of Science.

She came to Drexel University in the Fall of 2005 and began her Ph.D program in

the College of Information Science and Technology, with a scholarship from the Royal

Thai government. She pursued her research in automated conceptual data modeling under

the supervision of Professor Il-Yeol Song.

