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ABSTRACT 
Semi-Automatic Conceptual Data Modeling Using Entity and Relationship Instance 

Repositories 
Ornsiri Thonggoom 

Advisor: Il-Yeol Song, Ph.D 
 

 

 

Conceptual modeling is the foundation of analysis and design methodologies for the 

development of information systems. It is challenging because it requires a clear 

understanding of an application domain and an ability to translate the requirement 

specifications into a data model. However, novice designers frequently lack experience 

and have incomplete knowledge about the application being designed. We propose new 

types of reusable artifacts called Entity Instance Repository (EIR) and Relationship 

Instance Repository (RIR), which contain ER (Entity-Relationship) modeling patterns 

from prior designs and serve as knowledge-based repositories for conceptual modeling. 

We also select six data modeling rules to check whether they are comprehensive enough 

in creating quality conceptual models. This research aims to develop effective 

knowledge-based systems (KBSs) with EIR and RIR. Our proposed artifacts are likely to 

be useful for conceptual designs in the following aspects: (1) they contain knowledge 

about a domain; (2) automatic generation of EIR and RIR overcomes a major problem of 

inefficient manual approaches that depend on experienced modeling designers and 

domain experts; and (3) they are domain-specific and therefore easier to understand and 

reuse. Two KBSs were developed in this study: Heuristic-Based Technique (HBT) and 

Entity Instance Pattern WordNet (EIPW). The goals of this study are (1) to find effective 
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approaches that can improve the novice designers’ performance in developing conceptual 

models by integrating pattern-based technique and various modeling techniques, (2) to 

evaluate whether those selected six modeling rules are effective in HBT, and (3) to 

validate whether the proposed KBSs are effective in creating quality conceptual models. 

To assess the potential of the KBSs to benefit practice, empirical testing was conducted 

on tasks of different sizes. The empirical results indicate that novice designers’ overall 

performance increased by 30.9~46.0 % when using EIPW, and increased by 33.5~34.9% 

when using HBT, compared with the cases of no tools. 
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1. INTRODUCTION 

1.1   Motivations and Problem Statement 

Conceptual data modeling is the foundation of analysis and design methodologies for 

the development of information systems. From academic literature, conceptual design is 

probably the most critical and important process of developing a quality database 

application because it not only provides a blueprint for the entire system but also 

determines most of the system functions and structures (Thalheim, 2000). However, it is 

difficult because it requires a clear understanding of an application domain and an ability 

to translate requirement specifications into a data model.  

The quality of a conceptual model is measured by the level of accuracy with which it 

can reflect the real world environment (Dullea, 2003).  A good conceptual model has to 

narrow the gap between real-world concepts and the ability to represent them in a 

conceptual model. Any errors incurred at this stage could become very costly later after a 

system has already been implemented. Boehm (Boehm, 1981)  reports that the cost 

difference to correct an error in the early phases of software development as opposed to 

post-implementation phase is on the order of 1:100. Early in the development of database 

designs, two qualities, which are performance and storage, have to be measured because 

of their significant impact on the cost over the life cycle of the database. New hardware 

technologies have shown that these measurements become less important since their 

associated costs drop dramatically. However, the database design is the pivotal artifact of 
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the information system. Due to the complexity and size of these systems, the conceptual 

design phase of the database has still remained extremely important. It is necessary to 

make it correct, as a poorly designed conceptual data model can lead to a poor database; 

hence, high costs and poor performance for decades to come. 

Natural language (NL) is the common tool for people to describe and communicate 

their understanding of the world. It has shown that nearly 90% of all the initial 

requirement specifications in industrial practice are written in NL (L. Mich, Franch, M., 

Inverardi, P., 2004; Neill, 2003). On the structured representation side, there are many 

different target formalisms for conceptual data models in different domains. For example, 

Entity-Relationship diagram (ERD) is often used for database design, while UML class 

diagram is often used for object-oriented (OO) software design. However, approaches 

(Batini, 1984; J. Choobineh, Mannino, M., Nunamaker, J., 1988)  which skip the NL 

phase by requiring information analysts to write the requirements directly into formal 

representations involve much more human effort in the process and cause communication 

difficulty with the end users. NL was and will remain the main form of requirements 

documentation (Cheng, 2007).Consequently, in our research, conceptual data modeling is 

a translating process from NL representations to some kinds of formal representations.   

The difficulties in developing the conceptual data models have been stated in many 

past research studies (Antony, 2002; D.  Batra, 2007; D. Batra, Antony, S. , 1994; D. 

Moody, 2005). These studies show that conceptual designs especially developed by 
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novice designers, lead to unsatisfactory and inaccurate outcomes. Our survey shows that 

the difficulties in creating conceptual models are: 

1. Ambiguity in a Requirement Specification 

Most of the inputs in this process are given in NLs which are inherently 

ambiguous. 

2. Combinatorial Complexity 

In conceptual modeling, a linear increase in the number of entities can result in a 

combinatorial increase in the number of possible relationships (D.  Batra, 2007). 

With merely 5 entities, the numbers of possible relationships are 20 if cardinality 

is not considered or could be 80 if cardinality is considered. 

3. Semantic Mismatch 

It represents the inability of novice designers for translating the requirements 

literally into conceptual modeling structures (D.  Batra, 2007). It is also known 

that not all real-world relationships match to conceptual modeling relationships; 

some real-world relationships are derivable at the implementation level. In 

addition, some real-world relationships become indirect, resulting in ambiguous 

semantics. Indirect relationships without direct relationships cause semantic 

ambiguities. 

4. Inexperience and Incomplete Knowledge of Novice Designers 

 Novice designers frequently lack experience and have incomplete knowledge 

about the application being designed. Even expert designers could fail to obtain a 
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quality conceptual model due to their lack of domain knowledge,  unless they 

have a clear perception of a requirement specification (N. Kim, Lee, S., Moon, S. 

, 2008). Concepts that are not explicitly expressed in a requirement are often very 

difficult to model. Expertise in domain knowledge to identify the hidden entities 

and relationships is therefore needed (I.-Y. Song, Yano. K., Trujillo, J., Lujan-

Mora, S. , 2004).  

5. Scattered Modeling Rules 

There is no complete set of rules/heuristics that help developing conceptual data 

models. Also, there is always trade off in design so that not all rules/heuristics can 

work together because some rules/heuristics are conflicting. These conflicting 

rules may provide wrong advice.  

Currently, there are several commercial graphical CASE tools for automatically 

converting a conceptual data model into a logical model and into a physical 

implementation. Most of them offer forward engineering processes, and some of them 

also reverse engineering processes as well. However, there is still no commercial tool 

available for translating NL requirement specifications into conceptual data models. At 

present, a fully automated conceptual modeling approach seems impossible due to the 

inherent ambiguities in NL, context-dependent nature of modeling, and incompleteness of 

domain knowledge. It is desirable to develop a semi-automatic process which would be 

much more economical than an entirely manual modeling process. Therefore, many 

researchers have proposed knowledge-based systems (KBSs) and tools to support the 
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designers in developing conceptual models  (Antony, 2002; J. Choobineh, Lo, A. , 2004; 

Du, 2008; Harmain, 2003; N. Omar, 2004; Ovemyer, 2001; S. Purao, 1998; S. Purao, 

Storey, V., Han, T. , 2003). One of the limitations of the proposed tools is that such tools 

do not solve the problems that novice designers are inexperienced and have incomplete 

knowledge. In addition, they do not address the semantic mismatch issue. 

An ontology can be a source of domain knowledge and designers can use the 

ontology to get initial domain knowledge. However, developing an extensive and usable 

domain ontology is labor-intensive and time-consuming (Sugumaran, 2006). Currently, 

several research projects are considering emerging approaches that try to reuse as much 

knowledge included in existing large scale ontologies as possible. However, they are 

general knowledge resources and are not created only specific for conceptual modeling 

applications. So far there are no good user interfaces or effective APIs to make the 

process effective and usable (Conesa, 2010). Obviously, domain ontologies are more 

usable than large scale ontologies.  

Most conceptual designs are usually created from scratch, although a similar design 

might have previously been created. And in many organizations there are a large number 

of database designs that have been already developed over many years. Reuse of already 

existing resources and solutions has become a strategy for cost reduction and efficient 

improvement in the information system development process. Currently, building a 

library of reusable artifacts involves explication of human developer’s knowledge, which 

is major obstacle in facilitating reuse of knowledge (Ba, 2001; T. Han, Purao, S., Storey, 
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V. , 2008; Kankanhalli, 2005; Markus, 2001; Orlikowski, 1993). It requires effort from 

experts to identify elements with potential reuse, and then convert these into reuse 

elements. One solution to reduce efforts and time of human experts comes from 

extracting artifacts from prior designs. If this could be conducted for various application 

domains, then it would assist in creating the practically reusable libraries. 

In this research, we explore knowledge-based and pattern-based approaches that help 

novice designers develop quality conceptual data models. Our methodology also includes 

database reverse engineering concepts. We propose new types of reusable artifacts that 

contain knowledge about an application domain, called the entity instance repository 

(EIR) and the relationship instance repository (RIR), which are repositories of entity 

instance patterns (EIPs) and relationship instance patterns (RIPs), respectively. An EIP is 

a pattern of a single entity and its properties. An RIP is a binary relationship with 

cardinality constraints between two entities. The EIP and RIP can be automatically 

extracted from prior relational database schemas. Our proposed artifacts are useful for 

conceptual designs in the following aspects: (1) they contain knowledge about a domain; 

(2) automatic generation of EIR and RIR overcomes a major problem of inefficient 

manual approaches; and (3) they are domain-specific and therefore easier to understand 

and reuse. 

Typically, a rule-based approach (P.  Chen, 1983; Harmain, 2003; Hartmann, 

2007; N. Omar, Hanna, P., Mc Kevitt, P. , 2004) is a popular technique for conceptual 

modeling because it could lead designers with known heuristics. However, this approach 
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does not provide an optimal solution to many sophisticate requirements because most of 

the proposed rules/heuristics were built based on syntax of some specific NLs. These 

rules cannot overcome the inherent ambiguities of NLs. For instance, entities can be 

extracted from nouns in English sentences to produce a list of entities. However, the 

correspondences between entities are not completely perfect since nouns are also used to 

refer to many concepts that are not usually represented as entities in conceptual models. 

In general, rules/heuristics are often useful, but sometimes they may lead to cognitive 

error called bias (D.  Batra, 2007; D. Batra, Antony, S. , 1994; Parson, 2004). To 

overcome these errors, we should have a small but sufficient set of rules to create quality 

conceptual models and make them easy to understand.  In this research, we select six data 

modeling rules termed as the six domain independent modeling rules that are considered 

a minimum set of rules to teach novice designers in creating quality conceptual models. 

We evaluate the usefulness of this set of rules by developing a KBS named heuristic-

based technique (HBT) that applies these rules to the creation of conceptual data models.  

Two knowledge-based systems were developed in this study: HBT and EIPW 

(Entity Instance Pattern WordNet). The tasks of our KBSs are divided into two subtasks: 

entity identification and relationship identification. The entity identification processes of 

our KBSs are different, but the relationship identification process in them is the same. 

The architectures of each KBS will be presented in later sections.The goals of this study 

are as follows: (1) to find effective approaches that can improve the novice designers’ 

performance in developing conceptual models by integrating pattern-based technique and 
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various modeling techniques, (2) to evaluate whether those selected six modeling rules 

are effective, and (3) to validate whether the proposed KBSs are effective in creating 

quality data models.  

1.2 Research Questions and Objectives  

This research seeks to address the following questions. 

Question 1: Can we automatically create EIR and RIR from the prior relational 

database schemas? 

Most of the proposed reusable artifacts used for conceptual data models are 

developed based on a manual approach that is time-consuming and skill-intensive for 

expert designers. Reusable artifacts for conceptual data models are typically represented 

in the form of patterns that can be instantiated and combined in different ways to produce 

concrete design (Blaha, 2010; Castano, 1998; Coad, 1995; Fowler, 1997; T. Han, Purao, 

S., Storey, V. , 2008).  The widely used approach to build such patterns is called domain 

engineering. A purpose of domain engineering is to create patterns that embody a generic 

solution to common problems within a specific domain by following a series of 

predefined steps such as domain analysis, domain design, and domain implementation 

(Sherif, 2002).  With this approach, designers must have very clear knowledge about the 

specific domain and must identify the boundaries of what objects to be included and what 

degree they should be abstracted. Therefore, this approach does not seem to be a 

practically efficient approach because it takes time and effort to develop reusable 
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artifacts. That is a significant drawback of the existing approach that we attempt to 

address in this research.  

In this research, we propose an automatic methodology for creating EIR and RIR, 

which are the repositories of EIPs and RIPs, respectively. Our methodology includes 

database reverse engineering concepts. The database reverse engineering approach can 

provide a solution to the problem as stated previously. It is defined as shown in Figure 

1.1, in this research, as the process of examining existing database design schemas to: 

(1) Identify database’s elements (e.g. entities, attributes, etc.) and their 

interrelationships. 

(2)  Determine domain semantics which are not explicitly represented in an 

application system. Domain semantics are information about the application 

domain, which should be captured during the requirements specification phase of 

database design. 
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Figure 1.1 The database reverse engineering concept (R. Chiang, Barron, T., Storey, V. , 1994) 

 

The outputs of this database reverse engineering process are transformed into the 

instance patterns, which are EIPs and RIPs, and can be reused as a source of architecture 

components for developing conceptual models.  

The first objective to address the question above is: 

Objective 1: Developing an automated methodology based on database reverse 

engineering concept to create the EIR and RIR as new types of reusable artifacts for 

conceptual model designs.  

The next step of the study is to investigate how EIR and RIR can assist or improve 

conceptual data modeling. Thus, the next question is: 
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Question 2: Can we use EIR and RIR for semi/automatically developing conceptual 

data models? 

Available commercial graphical CASE tools can help in documenting and 

analyzing the output of analysis and design. However, they do not provide any support in 

conceptual data modeling- especially during a stage of identifying the entities, attributes, 

and relationships, which represent the problem domain. Therefore, many researchers 

have proposed knowledge-based systems (KBSs) or tools to support the designers in 

modeling conceptual models. One of the limitations of proposed tools or KBS is that such 

tools have no domain knowledge or semantic analysis capacity incorporated into them. 

Therefore, these tools cannot solve the incomplete knowledge of designers and the 

semantic mismatch issue.  

In this research, we explore knowledge-based and pattern-based approaches that 

help designers develop quality conceptual data models. One of our goals in this study is 

to provide designers with instance patterns that contain knowledge about an application 

domain in which the designers are interested. The KBS with EIR and RIR called EIPW 

(Entity Instance Pattern WordNet) will be developed. The second objective to address 

this question above is: 

Objective2: Developing a KBS called EIPW with EIR and RIR that contain 

domain semantics regarding an application domain.  



12 

 

The following step of this study is to examine whether our proposed EIPW will provide 

quality conceptual data models and will thus be attractive to the designers. The research 

question is: 

Question 3: Can the EIPW with EIR and RIR create quality conceptual data models? 

Since our proposed EIR and RIR are automatically extracted from existing 

relational database schemas, the quality of the KBS with EIR and RIR depends on the 

scope and correctness of the existing designs. Our research starts creating EIR and RIR 

based on the library of DDL (Data Definition Language) schemas created by (Silverston, 

2001). Later, the instance patterns in EIR and RIR are also extended with case studies. In 

order to make EIPW more efficient, it is also integrated with other modeling techniques. 

Although there are several KBSs or tools proposed to assist the designers during 

conceptual data modeling phase, the efficiency of these systems has not been tested 

empirically which is a drawback of current research (D. Moody, 2005; Simsion, 2007).   

Objective 3: Evaluating the usefulness of the EIPW by a human subject 

experiment. 

Question 4: Are six domain independent modeling rules sufficient to develop quality 

conceptual model?  

Our survey shows that one of the difficulties in creating conceptual models is the 

scattered modeling rules. There is no complete set of rules that helps in developing 

conceptual models. In addition, there are trade- offs in design so that not all rules can 

work together because some rules are conflicting. We have selected the six domain 
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independent modeling rules based on teaching experiences of over 20 years by one of the 

committees of this study. These six rules are considered a minimal set of rules to teach 

novice designers in creating quality conceptual models. These rules are not based on the 

syntax of any NLs and thus are domain independent. This means that these rules can be 

applied to a wide range of applications and domains. In this research, we would like to 

discover if the six rules are indeed useful.  We evaluate the usefulness of these rules by 

developing a KBS named heuristic-based technique (HBT) that employs these six rules 

for creating conceptual data models.  

Objective4: Developing the knowledge-based system (KBS) named HBT and 

evaluating the usefulness with human subjects.  

1.3 Contributions 

In summary, the contributions of this research are:  

1. Proposed an automated methodology for creating EIR and RIR as new types of 

reusable repositories that contain knowledge about an application domain. The 

EIR and RIR leverage knowledge from existing designs and serve as knowledge-

based repositories for conceptual data modeling by reducing the amount of work 

on the part of experts. 

2. Demonstrated that EIR and RIR are useful for conceptual designs in the following 

aspects: 

1) They contain knowledge about a domain; 
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2) Automatic generation of EIR and RIR overcomes inefficient manual 

approaches that depend on experienced modeling designers and domain 

experts; 

3) They are domain-specific and therefore easier to understand and reuse. 

3. Evaluated the six domain independent modeling rules as a set of rules that are 

comprehensive enough to create quality conceptual models. 

4. Designed and developed two knowledge-based data modeling tools called HBT 

and EIPW. HBT incorporates the six domain independent modeling rules, entity 

categories, and relationship instance repository. EIPW incorporates entity instance 

repository, entity categories, relationship instance repository, and WordNet. They 

minimize the cognitive load on designers and ensure that the conceptual models 

are correct. HBT can serve as a learning tool as well as provide a smooth head-

start for novices. 

5.  Evaluated and demonstrated the utility of the KBSs by human subject experiment.  

1.4 Dissertation Organization 

This dissertation proposal is organized into five chapters. This chapter is an 

introductory chapter. It lays out research problems expected to be addressed by the 

proposed research, and gives an overview of our research questions, as well as   

contributions of the work. Chapter 2 provides a literature review, comprising four major 

areas. The first area is conceptual data model and discussion of current problems in the 
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field. The second area is techniques of automating conceptual modeling. The tools, 

systems, frameworks and related work on each technique are surveyed. The third area is 

database reverse engineering concepts. The fourth area is WordNet as a knowledge-based 

system for supporting our research methodologies. Chapter 3 describes the research 

methodologies and research procedures in detail. Chapter 4 presents statistical analysis 

and empirical results. Chapter 5 summarizes the finding of the study and suggests future 

work.  
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2. LITERATURE REVIEW 

Following the research goals outlined in Chapter 1, this chapter provides a 

literature review, comprising four major areas. The first area discusses the conceptual 

data model and current problems in the field. The second area focuses on techniques of 

automating conceptual modeling. The tools, systems, frameworks and related work on 

each technique are surveyed. The third area looks at database reverse engineering 

concepts. The fourth area presents WordNet as a reference system for supporting our 

research methodologies. 

2.1   Conceptual Data Models 

Conceptual data modeling is the foundation of analysis and design methodologies 

for the development of information systems. For many years, some researchers have 

proposed varied conceptual modeling formalisms such as Entity-Relationship (ER) 

modeling (P. Chen, 1976), derivatives of ER model such as IDEF1X, Oracle CASE 

notation, and IE, Natural/Nijssen Language Information Analysis Method (NIAM), the 

Extended Entity Relationship (EER) model, Object Role Modeling (ORM), Object-

Oriented (OO) modeling, Unified Modeling Language (UML), EXPRESS, RM-ODP, 

and others. Thalheim (Thalheim, 2000) estimates that the total numbers of proposed 

derivatives of ER model are 80. Comparisons of these data modeling formalisms in terms 

of quality of data models, quality of design time preference, time task performance, and 

so forth are shown in studies by Kim and March (Y. Kim, March, S. , 1995) and Neill 
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(Neill, 2003). Of the aforementioned modeling formalisms, EXPRESS, RM-OMP, and 

UML have been formally designated as standards. 

Among the different conceptual modeling formalisms, ER models and UML 

models are the most widely used in practice (L. Mich, Franch, M., Inverardi, P., 2004). 

The ER model original proposed Chen (P. Chen, 1976)  has been widely used in 

structured analysis and conceptual modeling. The ER approach is easy to understand, 

powerful enough to model real-world problems and readily translated into a database 

schema (Elmasri, 2004). The ER model consists of a collection of entities, relationships 

between entities and attributes describing entities and relationships. Many extensions or 

revisions of ER model have been proposed and utilized in different applications (Gogolla, 

1991; Teorey, 1986) such as EER (Extended ER model or Enhanced ER model). The 

UML is another important conceptual data modeling approach, especially in software 

engineering. The UML is the standard modeling language for the analysis and design of 

software. Unlike the ER modeling approach that provides only one type of diagram 

(ERD), UML 2.2 provides 14 types of diagrams. It is difficult to translate NL 

requirement specifications to all 14 UML diagrams. Mostly the correspondence between 

natural language (NL) components and class diagram has been examined in previous 

research.  

A major innovated conceptual modeling formalism is the use of established 

ontologies as theoretical bases for developing, comparing, and improving data models 

(Simsion, 2007). Bunge’s ontology (Bunge, 1979) has been the most widely used for 
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analyzing conceptual data models (Bodart, 2001; Y. Wand, Storey, V.C., Weber, R., 

1999; Y. Wand, Weber, R., 1993, 1995). This ontology has also been adapted by Weber 

and Wand called Bunge-Wand-Weber (BWW) (Y. Wand, Weber, R., 1988)  into a theory 

of representation that is closer to terminology of the Information Systems community. 

Some researchers (Milton, 2004) employ Chisholm’s ontology (Chisholm, 1996). Both 

Bunge and Chisholm postulate an objective reality independent of human perceptions. 

OntoClean (Guarino, 2004) is developed based on philosophical notions for evaluating 

taxonomical structures. Integration between different ontologies has also been used by 

different researchers but for different purposes. 

Natural language (NL) is the common tool for people to describe things and 

communicate. Reports (L. Mich, Franch, M., Inverardi, P., 2004; Neill, 2003) show that 

nearly 90 % of all the requirements in industrial practice are written in NL. Methods that 

skip the NL understanding phase and that require human analyst to write the 

requirements directly into formal representations. However, there are at least three 

limitations for this translation (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004): 

1) NL is ambiguous. An effective and accurate analysis is difficult. Therefore, techniques 

and rules for modeling are required; 2) The same semantic can be represented in different 

ways. Therefore, ways of handling these style variations are necessary; and 3) Concepts 

that are not explicitly expressed in a requirement specification are often difficult to 

model. Expertise in domain knowledge to discover the hidden entities is therefore 

needed. 
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2.2   The difficulties in creating conceptual data models 

The difficulties in creating conceptual data models have been documented in past 

research studies (Antony, 2002; D.  Batra, 2007; Currim, 2008; Dey, 1999; Liao, 2000; 

D. Moody, 2004; Shoval, 1997). In spite of its importance, research evidences show that 

conceptual data modeling is not done well, and it should be improved in both training and 

education (Simsion, 2007). Researchers (D. Batra, Antony, S. , 1994; Currim, 2008; 

Simsion, 2007)  have studied the conceptual data modeling design process employed by 

novice designers to gain an understanding of errors causing factors. These factors are 

important in building tools and techniques that can prevent the errors and enhance the 

quality of information systems. The factors are: 

1. Combinatorial Complexity 

Previous research from a complete survey (Topi, 2002) shows that novice 

designers have more difficulty in modeling relationships than entities. Batra and Anthony 

(D.  Batra, 2007; D. Batra, Antony, S. , 1994) examine designer performance in modeling 

open-ended exercises and find that the novice designers not only have difficulty in 

modeling relationships such as unary and ternary, but also have the difficulty in modeling 

all kinds of relationships including binary relationships.  One of the reasons comes from 

the fact that given a set of entities, there are potentially a very large number of possible 

relationships. As the number of entities increases, the number of possible relationships 

increases at a combinatorial rate as shown in Figure 2.1. What are the rules that allow a 

designer to choose the right set of relationships in the ER model? And how does the 
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designer know whether all the correct relationships between the entities are identified and 

which relationships are incorrect? Most relationships can be derived from others, so the 

problem in modeling relationships is selecting a minimum set that captures the semantics 

effectively and can be used to derive the others. For the right identification of relationship 

constructs, the following criteria should at least be met: (1) all semantics in the 

application should not be lost, (2) all relationship constructs should not be redundant 

relationships, (3) and the degree of relationship should be minimal.  

 

 

Figure 2.1 The numbers of possible occuring relationships 

 

2. Scattered Modeling Rules 

There is no complete set of heuristics/rules that help in developing quality data 

models. In general, heuristics/rules are often useful, but sometimes they may lead to 

cognitive errors called biases (D. Batra, Antony, S. , 1994; Parson, 2004). Furthermore, 
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there is always trade off in design so that not all the rules can work together because 

some rules are conflicting. These conflicting rules may provide inaccurate advice. 

3. Semantic Mismatch 

Translating the requirement specification literally into database structures causes 

literal translation errors (D.  Batra, 2007). For instance, a sentence stating that “an order 

records a sale of products to customers” may include an erroneous relationship between 

customer and product.  It shows that not all real-world relationships map to database 

relationships; some real-world relationships are derivable at the database level. In 

addition, some real-world relationships become indirect, resulting in ambiguous 

semantics. Indirect relationships without direct relationships are wrong. 

4. Inexperience of novice designers and incomplete knowledge of designers 

Novice designers have limited knowledge and skills, while expert designers often 

draw from their past experiences. Even an expert designer might fail to create a quality 

conceptual model due to their lack of domain knowledge, unless he or she has a clear 

perception of requirement specifications (N. Kim, Lee, S., Moon, S. , 2008). Expertise in 

domain knowledge to identify the hidden entities is therefore needed. The important 

issues are how the novice designers can be trained efficiently and how domain 

knowledge can be transferred to the designers.  

5. Multiple solutions 

In conceptual design, there is neither a single answer nor an algorithm for creating 

the best answer. Moody and Shanks (D. Moody, Shanks, G. , 1994) also state that one of 



22 

 

the common problem encountered in design is the large number of alternative designs 

that can be created for a particular problem. Therefore, they propose a six-element 

framework to evaluate the quality of conceptual data models (D. L. Moody, 1998). Their 

frameworks are composed of completeness, simplicity, flexibility, understandability, 

integration, and implement ability.  Later this framework is refined, and empirically 

tested in (D. L. Moody, Shanks, G.G., 2003). 

2.3   Techniques used for automating conceptual modeling  

In the past few years, the field of conceptual data models has spawned numerous 

techniques for the identification of entities, attributes and their relationships. However, 

these techniques rely heavily on manual processes and experiences of designers.  

Currently, there are several commercial graphical CASE tools for automatically 

converting a conceptual data model into a logical model and into physical 

implementations such as ERWin, Rational Rose, Visio, Oracle Designer, Dia, etc. Most 

of them offer forward engineering processes, and some of them reverse engineering 

processes as well. However, there is still no commercial tool available for translating NL 

requirement specifications into conceptual data models. At present, a fully automated 

conceptual modeling approach seems impossible due to the inherent ambiguities in NL, 

context-dependent nature of modeling, and incompleteness of domain knowledge. It is 

desirable to develop a semi-automatic process which would be much more economical 

than an entirely manual modeling process. 
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This section presents the board scope of techniques used for automatically developing 

conceptual models. There are at least five categories of techniques used for automatically 

generating conceptual models design from NL requirement specifications. They are 

linguistic-based, pattern-based, case-based, ontology-based, and multi-techniques-based.  

2.3.1  Linguisticbased 

Natural language processing (NLP) and linguistic theories are used as a means for 

designing more user-oriented information and communication systems because NL is a 

common tool for people to describe and communicate their understanding of the world 

(Castro, 2009; Métais, 2002). Chen (P.  Chen, 1983)  proposes eleven rules for translating 

English sentence structures into ER diagram’s structure. Since Chen’s initial proposal, 

many studies (Hartmann, 2007; P. Johannesson, Kalman, K. , 1989; N. Omar, Hanna, P., 

Mc Kevitt, P. , 2004; Ovemyer, 2001) have tried to refine and extend on this approach. 

However, these rules are still not complete and fully accurate. Although entities can be 

identified by nouns in a requirements specification, the correspondence between entities 

and nouns does not completely match because nouns not only refer to entities but also to  

attributes and other concepts. Entities can also be identified from verb phrases and hidden 

requirements (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). Most recently, 

Hartmann and Link (Hartmann, 2007) modify Chen’s eleven rules for the translation 

from English sentence structures and EER elements in which they re-organize and extend 

those rules in twelve heuristics. However, even these heuristics are not complete. 
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Therefore, this technique can only serve as a basis for a manual or semi-automatic 

process of transforming an English specification into ER model. Furthermore, most of the 

proposed rules are built based on syntax of some specific NLs. These rules cannot 

overcome the inherent ambiguities of NLs. In addition, most of the languages in this 

world are very different and, therefore, these kinds of rules can not apply worldwide.  

In order to solve the inherent problems of NL and to succeed the machine translation, 

some studies put constraints on the input by restricting either the vocabulary or the 

sentence structures (Ambriola & Gervasi, 2006; Osborne & MacNish, 1996; Tjoa, 1993) . 

With these restrictions, simple linguistic processing such as tagging and chunking can 

achieve reasonably good results. These also improve the tractability of many difficult 

problems in NLP such as ambiguity and unknown words.  However, the use of controlled 

languages has some limitations. It can not apply to existing requirement documents. 

Furthermore, they are not natural and place burdens on the requirements writers. Several 

formal specification languages such as Z, Object-Z, VDM, B, and OCL have been also 

proposed for formal model-based specification. They are very expressive but require 

knowledge to write a correct formalization. However, they lack completely supporting 

tools and the use of these tools needs deep knowledge of them in order to write them 

efficiently. Moreover, these languages have been designed for some specific applications, 

and their use for different purposes may become awkward and difficult. Other researchers 

propose dialogue tools that help elicit the NL requirement specification (Buchholz, 1995; 

N. Kim, Lee, S., Moon, S. , 2008). The main disadvantages of these tools are that they 



25 

 

require more interventions by users and it is difficult to use them for large scale batch 

processing.   

Theory of classification and categories has been applied to conceptual data modeling 

(Larman, 2004; I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). Categories are 

characterized by the properties shared by their members whereas entities could be 

classified unambiguously according to their common attributes. It is a widely-used 

technique in identifying entities and classes. In addition, class categories can be used to 

spot the missing entities or classes. Also, there are some hidden entities or classes that are 

not explicitly stated in the requirement documents but can be discovered by applying 

class categories to domain knowledge (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 

2004). 

The trend in this technique orients towards the collaboration with huge linguistic 

dictionaries (Fellbaum, 1998; Miyoshi, 1996)  and common sense ontologies (Lenat, 

1995) . Sometime computers are not skillful because they lack basic knowledge that is 

obvious for humans. Researchers have long sought to grab this basic knowledge for 

years.  Linguistic dictionaries not only provide semantic links between concepts such as 

synonym, antonym, hypernym/hypernym (is-a), and meronym/holonym (part-of) but also 

syntactical and morphological information. A detailed discussion of relationship types is 

stated in (V.C. Storey, 1993b). WordNet is the best known linguistic dictionary used for 

conceptual modeling because it is available and it extends to other languages such as 

European languages, Spanish, Chinese, and so forth. However, the main drawback of 



26 

 

WordNet is that it does not contain many other important semantic relationships (i.e., no 

relationship between dish and spoon).  Therefore, WordNet++, the extension of 

WordNet, containing special types of relationships that are not available in WordNet,  is 

proposed in (Dehne, 2001). 

2.3.1.1  Tools, systems, and related work  

Most of the tools or systems proposed for developing conceptual models follow 

this technique. They apply NLP to extract the model’s constructs from requirements 

specifications or dialogue sessions with a designer for creating conceptual data models 

(Buchholz, 1995; Burg, 1998; Du, 2008; Eick & Lockemann, 1985; Harmain, 2003; 

Meziane & Vadera, 2004; L. Mich & Garigliano, 1999; N. Omar, Hanna, P., Mc Kevitt, 

P. , 2004; V.C. Storey, 1993a; Tjoa, 1993; F. S. C. Tseng, Chen, A.L.P., Yang, W., 

1992).  Most of these are involved in extending Chen’s original approach. A review of 

some  proposed tools or systems can be found in (Du, 2008). Our paper will present only 

the recent ones. 

LIDA (Ovemyer, 2001) is a semi-automatic text analyzing tool that allows 

designers to produce class diagrams.  It tags parts-of-speech and follows Chen’s eleven 

rules where there is an association of nouns with classes, relationships with verbs and 

attributes with adjectives and prepositional phrases. However, in requirement 

specifications, class can also be identified from verbs and hidden requirements (I.-Y. 

Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004).    
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CIRCLE (Ambriola & Gervasi, 2006) is a web-based comprehensive environment 

for aiding in NL requirements gathering, elicitation, selection, and validation. A human 

generated glossary and minimal domain descriptions are added to the original 

requirements. The actual recognition is performed by a number of MAS (Model, Action, 

and Substitution) rules. A detailed case study of a fictitious missile control system is 

provided and various stages of requirements analysis are covered. 

COLOR-X (Burg, 1998) is based on WordNet. Its main goal is to facilitate the 

process of generating conceptual modeling.  COLOR-X uses linguistic concepts that are 

similar to Chen’s rules for creating system models that reflect both static and dynamic 

aspects of the referred system. For example, it relates concepts (constructs) stated in 

WordNet to OO constructs in which object must be identified from nouns and 

relationship must be identified from verbs. Later (Dehne, 2001), they revise the method 

by using WordNet++ instead. 

CM-Builder (Harmain, 2003) is a NL-based CASE tool aimed to supporting the 

conceptual analysis stage of software development in an OO framework. This tool use 

NLP to analyze the requirement specifications and develop initial UML class diagrams. 

CM-Builder can work either automatically or interactively with the user. This tool 

converts all nouns into candidate classes and verbs into relationships. For every candidate 

class, the frequency in a requirement specification is counted before items are selected. 

The most frequent candidates are the most likely classes. Attributes are identified from 

heuristics such as possessive relationships and the use of verb phrase like “to have”.  
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However, this tool has some limitations in its linguistic analysis because NL is 

ambiguous, fuzzy, and redundant.  

ER-Converter (N. Omar, 2004) is a rule-based system. The rules are associated 

with weights according to the confidence level at which the event is true. The weights 

assigned to each rule are based on intuition. For example, “If a noun occurs before the 

verb ‘has/have’, it may indicate an entity type.” With a weight of 0.7, which means that 

70% of the time this rule will create the correct result (because not all nouns before the 

verb ‘has/have’ are entity types). User interventions are required when the calculated 

weights are low in the processing. 

ACDM (Du, 2008) is an automated multi-component system. The system is a 

fully integrated composite of existing, publicly available components including a parser 

(Link Parser), a lexical filter (WordNet) and a semantic filter (Google web corpus search 

facilities). After parsing, it uses extended Chen’s rules to identify ERD’s elements. The 

main limitation of this system is that the input has to be controlled language requirement 

specification. 

Tseng and Chen (F. Tseng, Chen, C., 2008) propose a translation scheme for 

transforming NL queries into relational algebra through the class diagram notations. 

Based on a logical form developed by extending the UML class diagram notations, a 

transformation model is presented to support the automatic transformation of natural 

language queries into relational algebra by employing appropriate NLP techniques and 

OO analysis methods. The proposed logical form has the advantage that it can be mapped 



29 

 

from NL constructs by referring to the conceptual schema modeled by class diagrams, 

and can be efficiently transformed into relational algebra for query execution. 

2.3.1.2  Strengths and drawbacks 

The domain independence is the strength of this approach. However, the strength 

of this technique is also its weakness because tools or systems proposed have no domain 

knowledge incorporated in them. This technique does not provide an optimal solution to 

many sophisticate requirement specifications because of the nature problems of NL. 

2.3.2  Patternbased 

The important role of patterns in design is recognized in Alexander’s book 

(Alexander, 1979)  on architecture and urban planning.  It suggests that designers should 

produce and use patterns rather than solving problems from the first principle. Now 

patterns have been well established as a technique for reusing solutions of recurrent 

problems in the software development process. Pattern reuse provides many benefits such 

as higher productivity, software quality improvement, and reduction of time and cost for 

software development. Design patterns have been proven very useful in speeding up the 

design process through reuse, and in improving the overall quality of systems. Integrating 

patterns into conceptual design is challenging. Thalheim (Thalheim, 2000)  also supports 

pattern-based modeling in his extensions to the ER model. The recognition of patterns in 

the context of conceptual data modeling is based on works by Coad et al. (Coad, 1995), 

Hay (Hay, 1996), and Fowler (Fowler, 1997).  Like architects, they create a library of 
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proven structure components, and provide some examples of adapting generic models to 

suit particular requirements. Empirical research shows that experts reuse patterns while 

novices do not (Chaiyasut, 1994). The process in pattern reuse can be divided into three 

tasks: retrieval, adaptation, and integration (Anthony, 2009). Retrieval involves choosing 

patterns that may be relevant to a particular problem. After a pattern is chosen, it must be 

adapted or instantiated to fit the specific problem. Finally, it needs to be integrated with 

other patterns to form a complete model in the form of a conceptual data model. Several 

authors have proposed various kinds of patterns (Coad, 1995; Fayad, 1997; Fowler, 1997; 

Gamma, 1995; Hay, 1996; P. Johannesson & Wohed, 1999; Johnson, 1988; Pree, 1994; 

Silverston, 2001; Szyperski, 1998). For the latest one, Blaha (Blaha, 2010) proposes 

several types of data modeling patterns: Universal antipatterns are the patterns that we 

should avoid for all applications; Archetypes are the common modeling patterns 

occurring across different applications; Canonical patterns are corresponding to meta 

models of modeling formalisms. However, their utility to conceptual modeling varies 

greatly. Finally, he presents methods for mapping his patterns to relational schema for 

database design.  Three criteria (T. Han, Purao, S., Storey, V. , 2008) can be used to 

examine these patterns. First, usability specifies the ease where an artifact can support 

retrieval (search and adaptation of the artifact for the current design) and assembly 

(integration of reusable artifact with other parts of design). Second, reusefulness is 

measured by the artifact’s granularity and abstractness (domain independence). Third, 
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efficiency is measured by the effort necessary to create the artifacts. Table 2.1 

summarizes the quality of each pattern based on the aforesaid criteria. 

Table 2.1 Comparing the properties of patterns adapted from (T. Han, 2002) 

 
Patterns 

Usability Reusefulness Efficiency 
Ease of 

retrieval 
Ease of 

assembly 
granularity abstractness Creation 

effort 
Reuse 
effort 

Domain Models 
(Prieto-Diaz, 
1987) 

high N.A. coarse medium high high 

Analysis Patterns 
(Coad, 1995) 

medium medium small high high high 

Analysis Patterns 
(Hay, 1996) 

medium medium medium medium high high 

Analysis Patterns 
(Fowler, 1997) 

medium medium medium medium high high 

Analysis Patterns 
(D. Batra, 2005) 

medium medium medium high high high 

Data Modeling 
Patterns 
(Blaha, 2010) 

medium medium small high high high 

Framework 
(Fayad, 1997) 

medium medium coarse high high high 

Semantic analysis 
Patterns 
(Fernandez, 
2000) 

high medium coarse high high high 

Components 
(Szyperski, 1998) 

low medium fine low high high 

Domain 
Fragment (T. 
Han, Purao, S., 
Storey, V. , 2008) 

high medium coarse low medium medium 

 

From the comparison table, the design and construction of prior reusable artifacts 

are labor-intensive and require a lot of time and effort from expert designers. It is shown 

that the third criterion, efficiency, is the most daunting obstacle to successful reuse.  



32 

 

Recently, there are packaged data models (or model components) available, which 

can be purchased and after suitable customization, assembled into full-scale data models. 

These generic data models are designed to be used by organizations within specific 

industries.  Well-known examples of packaged data models are provided by (Silverston, 

2001) and (Kimball, 2002). In summary, the use of packaged data models yield two 

major advantages to an organization (Hoffer, 2004): 

1) Reducing the implementation times and cost. 

The time required to design and implement a large data model can be reduced by 

weeks or months by using this approach. 

2) Providing quality models. 

Packaged data models are created and tested by knowledgeable developers based 

on their experience with many industries and organizations. They tend to 

represent best practice data modeling technique. 

However, packaged data models cannot replace sound database analysis and 

design. Skilled analysts and designers are still needed to determine database requirements 

and to select, modify, and integrate any packaged systems that are used. 

2.3.2.1   Tools, systems, and related work  

  The traditional way of using patterns is to leave the decision of how to adapt or 

instantiate a pattern entirely up to the person designing the schema. Recently, analysis 

pattern repositories have been the most popular and employed in conceptual modeling 
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tools or systems. Analysis pattern repository is a group of generic objects with 

stereotypical properties and relations in a domain neutral manner (D. Batra, 2005). To 

make use of patterns from a repository, the designer must be able to match a task 

description with a candidate pattern. According to Structure-Mapping theory (Gentner, 

1998), there are three ways comparisons can be made. They are (a) Literal comparison, 

(b) Abstraction, and (c) Analogy. To reuse analysis patterns, Fernandez and Yuan 

(Fernandez, 2000) propose an approach that involves looking for semantic analysis 

patterns that match requirements exactly while trying to specialize analogous or abstract 

patterns that may apply. However, there are not many proposed conceptual modeling 

tools or systems using this technique. 

APSARA (S. Purao, 1998) is a KBS (knowledge-based system), which automated 

analysis patterns to create OO conceptual design. It firstly uses NLP to parse the 

requirement specifications into significant keywords, and eventually objects. Based on 

the objects identified, analysis patterns are retrieved from the pattern repository, then 

instantiated and synthesized into a conceptual model. In its pattern repository, thirty 

analysis patterns by Coad (Coad, 1995). Later, this KBS is  improved  by incorporating 

learning mechanisms, which provide the designer with additional support by suggesting 

specific patterns that might apply (S. Purao, Storey, V., Han, T. , 2003). The limitation of 

this approach is that analysis patterns are so abstract that mismatches to patterns are fairly 

common. Novice designers seem to have inability to reason with analogy (Anthony, 

2009). 
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Modeling Wizard Tool (Wohed, 2000) is a dialogue tool for selecting the appropriate 

patterns. Various versions of patterns are stored.  The appropriate one is selected step by 

step according to the answers given to the questions such as “Does the booking consist of 

one object or may it consist of several objects?”  This tool requires much more on user 

intervention, and it is hard to use it for large scale batch processing.   

2.3.2.2   Strengths and drawbacks 

Patterns have proven very useful in speeding up the design process through reuse, 

and in improving the overall quality of systems by promoting the use of designs that have 

been proven superior in many applications. The advantage of reusable patterns aims not 

only to reuse schema compounds but also to reuse relationships between objects. 

However, building a repository of patterns involves explication of human developers’ 

knowledge, which is a major obstacle in facilitating reuse of knowledge. To develop 

pattern repository, designer must have very clear knowledge about the specific domain 

and must identify the boundaries of what objects to include and what degree they should 

be abstracted. It takes a lot of time and effort to create pattern repository. Currently, most 

of the proposed reusable pattern repositories used for conceptual data models is 

developed based on a manual approach that is time-consuming and skill-intensive for 

expert designers. Furthermore, most of the proposed tools in this technique use analysis 

patterns which require manual matching. 
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One solution to reduce the effort and time of human experts comes from 

extracting the pattern artifacts from existing designs (T. Han, Purao, S., Storey, V. , 

2008). If this could be done for various application domains, then it would assist in 

creating the practically reusable pattern artifacts.  These patterns are also easier to 

understand and reuse because they are domain-specific. 

2.3.3  Casebased 

Case-based reasoning is a technology used to develop a KBS known as the case-

based system. The basic idea is, given the description of a new problem, retrieving from a 

case base a similar problem and adapting the retrieval to get the solution.  Retrieval 

mechanisms for reusable artifacts intensively require NLP techniques. And indexing 

techniques could speed up the retrieval of artifacts. Ambrosio et al. (Ambrosio, Métais, & 

Meunier, 1995) provide a mechanism for flexible queries.  Flexible querying is obtained 

by the automatic modification of the query statements through the relaxation of query 

conditions in order to recover concepts within a certain semantic distance according to 

the semantic relations, i.e. synonyms, hypernym, meronym, and similarity.  

2.3.3.1   Tools, systems, and related work  

Very few have used case-based reasoning where cases of conceptual models are 

stored, indexed, and used for future design.   We can find only three KBSs that use this 

technique, which are CSBR (V. C. Storey, Chiang, R., Goldstein, R., Dey, D., 
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Sundaresan, S., 1997), DES-DS (Paek, 1996), and CABSYDD (J. Choobineh, Lo, A. , 

2004). A comparison between these KBSs can be found in  (J. Choobineh, Lo, A. , 2004).  

CABSYDD [64] is a case base reasoning system for database schema design. It 

comprises of two components: a CBR system and a module that will derive conceptual 

design from first principles. The case indexing used is similar to that used by (Paek, 

1996) in which each schema design is hierarchically organized by business area. The 

hierarchy is organized by categorizing cases using a four tiered structure (sector, 

subsector, industry group, and department) based on the North American Industry 

Classification System (NAICS). Case representation included schemas expressed by EER 

models, textual identifiers for the business area classification, and a textual case 

description. Matching is performed by calculating the case with the highest matching 

index score. If no matching cases exist, the system invokes the module to create a new 

schema design from first principles 

2.3.3.2   Strengths and drawbacks 

This technique involves storing conceptual models of a large number of 

applications and providing a key word mechanism that enable users to search for a 

conceptual model that is a candidate  solution for a problem statement. It takes advantage 

of reusing the previous design. The limitations in this technique are that if any adjustment 

is required in the conceptual model, it has to resort to the generic data modeling 

approach. Moreover, adjustments are always required in order to be appropriate for the 
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particular requirement specification. The major disadvantage of this technique is that 

developing the conceptual model libraries and indexing mechanism are very expensive. 

2.3.4  Ontologybased 

Ontologies have been proposed as an important way to represent real world 

knowledge and, at some level, to support interoperability (Soares & Fonseca, 2007).  

Research on creating and using ontologies has been motivated by the Semantic Web and 

knowledge reuse. Ontology can range in expressivity from a taxonomy (a parent-child 

structure), to a thesaurus, to a domain model, to a logical theory (very general, consistent 

and meaningful knowledge), etc. Some papers point out some similarities and differences 

between ontologies and conceptual data models (El-Ghalayini, 2006; Fonseca, 2007).  

According to Fonseca (Fonseca, 2007), two criteria that differentiate ontologies from 

conceptual data models are (1) the objective of modeling and (2) objects to model. 

Embley (Embley, 2004) suggests that ontology is the key for solving the semantic 

problems of information systems.  

In the conceptual modeling field, many researchers employ ontology for 

evaluating, improving or developing the conceptual modeling formalisms. Storey (V. C.  

STOREY, 2005) proposes an ontology to classify the verb phrases of relationships based 

on research in linguistics and semantic data models.  Wand et al. (Y. Wand, Storey, V.C., 

Weber, R., 1999) propose rules as a theory of constructing the relationships in conceptual 

modeling practice.  Evermann and Wand (Evermann, 2001) examine the mapping 
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between ontological elements and UML elements and propose guidelines on how to use 

UML elements to model real-world systems in particular. Purao and Storey (S. Purao, 

Storey, V. C. , 2005) propose a multilayered ontology for classifying relationships by 

using data abstractions and by separating domain-dependent and domain-independent 

aspects of the relationship constructs.   

However, the major advantage of using ontology for conceptual modeling is the 

reusability of knowledge repository. This can be developed into two levels: domain 

ontology and large scale or upper level ontology. Domain ontology (Conesa, 2010) 

represents concepts, relationships between concepts, and inference rules for a particular 

domain. The most well-known domain ontologies are the DAML ontologies 

(www.daml.org), which are created particularly for Semantic Web and contained a 

repository of more than 200 ontologies. Several tools for creating and querying domain 

ontologies are available such as Protégé, OWL, SPARQL, etc.  Detail comparison of 

each tool is shown in (Corcho, 2003). Instead of developing individual ontologies, there 

has been interest in creating upper level or large scale ontology. Upper level ontology 

(Conesa, 2010) represents general concepts that are the same across all domains and 

always consist of a hierarchy of entities and rules that describe those general entities 

which do not belong to a specific problem domain.  Examples of upper level ontologies 

are Cyc, ResearchCyc, BFO (Basic Formal Ontology), DOLCE, SUMO, geneontology, 

etc. For review  and comparison of upper level ontologies see (Mascardi, 2007). The 

potential usefulness of upper level ontologies lies in the fact that they are domain 
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independent. However, it is difficult to integrate them and make them truly useful. A 

major problem with existing upper level ontologies is the lack of good user interface and 

a good API. For example, Cyc is not an ontology of word sense like WordNet. As a 

result, there is no comprehensive mapping of Cyc concepts into words of NL (Conesa, 

2007). Without adequate tool support, it is difficult to work with them. Obviously, 

domain ontologies are more usable than large scale ontolgies (Conesa, 2010). 

2.3.4.1   Tools, systems, and related work  

Ontologies have been considered as important components in many applications. 

Some generic ontologies such as WordNet and Cyc are available, but most applications 

require a specific domain ontology to describe concepts and relations in the domain. This 

approach holds the potential of promoting information reused. Currrently, several 

projects are considering the emerging approaches that attempt to reuse as much as 

possible of the knowledge included in existing ontologies.   

NL-OOPS (L. Mich, Garigliano, R., 2002 ) is an NL-based system. It is based on 

LOLITA (Large scale Object-based Language Interactor, Translator and Analyser) NLP 

system, which includes all the functions for analysis of NL: morphology, parsing (1500-

rules grammar), semantic and pragmatic analysis, inference, and generation. The 

knowledge base of the system consists of SemNet, which is a large graph that holds 

knowledge that can be accessed and expanded using NL input and has been merged with 

WordNet. Thus LOLITA is among the largest implemented NLP systems. Documents in 
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English are analyzed by LOLITA and their content is stored in its knowledge base, 

adding new nodes to its semantic network. NL-OOPS prototype implements an algorithm 

for the extraction of classes and associations from the semantic network of LOLITA. NL-

OOPS’s interface consists of three frames. The first one contains the text being analyzed 

and the second frame gives a partial representation of the SemNet structures used by 

LOLITA for the analysis of the document. After running the modeling module, the third 

frame gives a class model.  

OMDDE (Sugumaran, 2006) uses a domain ontology to represent the domain 

knowledge in order to assist database designer. OMDDE is a prototype that demonstrates 

the possibility of using an ontology as the domain knowledge. The prototype can assist 

Database designers to design a conceptual model from scratch and also evaluate the 

existing conceptual database model. The prototype uses an auction domain ontology as 

the knowledge domain to identify the entities and relationships for the conceptual model. 

The prototype also suggests terms and highlight missing constructs. Furthermore, it 

expands the relationship element to include four types of domain relationships: 

prerequisite, mutually inclusive, mutually exclusive, and temporal. 

2.3.4.2   Strengths and drawbacks 

Ontology can be the source of domain knowledge and designers can use ontology 

to get initial domain knowledge. Corcho and his colleagues (Corcho, 2003) suggest that a  

strategy for developing ontologies would be to reuse large scale or  upper level ontologies 
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to create domain ontologies or knowledge bases. The same upper level ontology can be 

used for developing many knowledge bases or ontologies, which share the same skeleton. 

Extensions of the skeleton should make at the low level by adding domain-specific 

subconcepts. 

However, ontology development is fundamentally difficult. For example, Cyc 

takes more than 20 years and 900 people to develop a large scale common sense 

knowledge base. Even for a specific domain, developing intensive domain ontology 

requires labor intensive and time-consuming. Automatic ontology development is 

difficult work because of the lack of structured knowledge base or domain thesaurus. 

While many ontology tools such as OntoEdit, Ontolingua, and Protégé are available to 

aid the development of ontologies, ontology constructions still need human effort. Most 

studies of ontology development and application assume manual process. 

2.3.5  MutiTechniquesBased 

From our survey, most tools or systems for conceptual design require users’ 

involvement during the process. And no single technique works best all the time because 

each technique has some limitations. Ideally, various techniques should be integrated 

together for a design process. For example, Song et al. (I.-Y. Song, Yano. K., Trujillo, J., 

Lujan-Mora, S. , 2004) have proposed a TCM (Taxonomic Class Modeling) methodology 

used for object-oriented analysis in business applications. This method integrates several 

class modeling techniques under one framework. Their framework integrates the noun 
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analysis method, class categories, English structures, check lists, and modeling rules. 

Thonggoom and colleagues (Thonggoom, 2011) propose EIPW (Entity Instance Pattern 

WordNet), which is a knowledge-based database modeling tool. It integrates pattern-

based technique and various modeling techniques. This tool shows how domain 

knowledge stored in the instance patterns can be used together with other modeling 

techniques. 

2.4   Evaluation Method 

Evaluation acts as a significant after-stage in all surveyed techniques. Although 

there are several systems or tools proposed to assist the designers during conceptual 

modeling phase as shown in Table 2.2, the efficiency of these systems has not been tested 

empirically which is a drawback of current research (D. Moody, 2005; Simsion, 2007). 

Also, in this field, there are no universal standard guidelines for measuring the 

performance of the proposed tools or systems. Some researchers use individual grading 

frameworks for the evaluation, while some use recall and precision as the measurements 

for evaluation. Even though they use the same method for the measurement, the 

conditions of measurements are very different. Since there is no standard evaluation of 

NL-based tools available, it is difficult to compare the performances between and among 

the tools. 
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Table 2.2 A summary of conceptual modeling tools or systems 
 Input Output Techniques 

used 
User 
Intervention 

Lexical 
Knowledge 

Domain 
Knowledge 

ACDM 
(2008) 

Controlled 
NL text 

ER model Linguistic Rules, 
Lexical Filter 

Can be 
automatic or 
semi-
automatic 

Yes No 

APSARA 
(2003) 

NL text ER model Analysis 
Patterns, 
Learning 
Concepts 

Yes No No 

CABSYDD 
(2004) 

NL text EER model Case-based 
Reasoning 

Yes No Yes 

CIRCLE 
(2006) 

NL text View model, 
Validated 
requirement 

Linguistic Rules, 
Requirement 
Validation 

Yes No Yes 

CM-Builder 
(2003) 

NL text Class diagram Linguistic Rules, 
Frequency 
Analysis 

Can be 
automatic or 
semi-
automatic 

Yes No 

Color-X 
(1998) 

NL text OO 
constructs 

Linguistic Rules, 
Paraphrase 
Dialog 

Yes Yes No 

EIPW  
(2011) 

NL text EER model Instance 
Patterns, Entity 
Categories, 
Modeling Rules 

Yes Yes Yes 

ER-
Converter 
(N. Omar, 
2004) 

NL text ER model Linguistic 
rules 

Can be 
automatic or 
semi-
automatic 

No No 

LIDA 
(Ovemyer, 
2001)  

NL text Class 
diagram 

Linguistic 
rules 

Yes No No 

Modeling 
Wizard Tool 
(2000) 

NL text EER model Analysis 
Patterns, 
Dialog Sessions 

Yes No Yes 

NL-OOPS 
(2002) 

NL text Object model, 
Revised 
requirement 

Linguistic Rules Yes Yes Yes 

OMDDE 
(2008) 

NL text ER model Domain 
Ontology 

Yes No Yes 

TCM (2004) NL text Class diagram Noun Analysis, 
Class Categories, 
Modeling Rules 

Yes No Yes 
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2.5   Database Reverse Engineering (DBRE) 

DBRE is another relevant area of our research. Typically, the database design 

process can be defined as a sequence of schema transformations that convert the user 

requirements into an executable schema expressed by the DDL (data definition language) 

of the target DBMS (H. Chiang, 1993). The entire process can be written as a function: 

DDL schema = Database Design  

On the other hand, database reverse engineering (DBRE) is the reverse of the task of 

database design. According to Chiang et al. (R. Chiang, Barron, T., Storey, V. , 1994), 

DBRE is the process of recovering such a conceptual data model by examining an 

existing database system to identify the database’s elements and their interrelationships. 

It aims at extracting a conceptual data model from a relational database schema.  The 

entire process can be written as a function: 

Conceptual schema = DBRE (DDL schema, data instances) 

Methods of DBRE have been proposed since 1980s. Dumpala and Arora 

(Dumpala, 1981) were the first to focus on DBRE field. Fahrner and Vossen (Fahrner, 

1995)  provide a survey of various methods to reverse schema transformations from the 

relational schema into the ER model according to five characteristics. These 

characteristics are: (1) the various extensions of the ER model, (2) transformation 

prerequisites, (3) the principle transformation method, (4) properties of transformation 

methods, and (5) user interaction requirements. Most of the DBRE methods we have 

reviewed are informal. In particular, they depend on various rules/heuristics to generate 
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elements in a conceptual model from available sources and do not formally specify the 

quality of the results. DBRE is also difficult to automate and requires human 

intervention. Since the sources do not contain sufficient semantic information, the 

conceptual models created by DBRE methods are often closely tied to the existing 

database schemas and so may become just the graphical representations of the actual 

logical and physical implementations of the databases. The methodology proposed by 

Chiang (H. Chiang, 1993) divides the reverse engineering process into six phases: (1) 

Initialization, (2) Decomposition, (3) Classification, (4) Generalization, (5) Identification, 

and (6) Refinement & Enhancement. Figure 2.2 shows all these phases and the functions 

of each phase. 

 

Figure 2.2 Database Reverse Engineering Process (H. Chiang, 1993) 
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In our research, we employ the DBRE methodology proposed by Chiang (H. 

Chiang, 1993) for automatically developing the proposed reusable pattern repositories. 

2.6   WordNet 

WordNet (Fellbaum, 1998) is an online lexical reference system. It was created 

and improved at Princeton University since1985.  It groups words into a set of synonyms 

called synset, and maintains the various semantic relationships between these synonym 

sets. The latest version of WordNet is 3.0, which contains about 155, 000 words 

organized in over 117, 000. The semantic relationships between synsets are IS-A 

(hypernym/hyponym), Part-of (meronym/holonym), synonym, and antonym. The IS-A 

relationship is the most fundamental by producing a taxonomic hierarchy of synsets.  

WordNet has analyzed large corpora and gathered statistics on the senses in which 

words are used. For example, the synonym sets for each sense are ranked by frequency. 

WordNet aims to build a combination of a dictionary and a thesaurus, and to support 

automatic text analysis and artificial intelligence applications. Due to ambiguities in NL, 

words may have several meanings (homonyms) and many concepts can be represented by 

two or more words (synonyms). WordNet has been used as a reference tool to 

disambiguate nouns in automated conceptual data modeling (Du, 2008). Although entities 

can been identified by nouns in a problem statement, the correspondence between entities 

and nouns is not completely matching because nouns do not only refer to entities but also 

to attributes and other concepts.  In fact, it is difficult to automatically identify which 
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nouns should be entities and which should not. Such distinctions depend heavily on 

context and human ability to apply their own knowledge. 

In the conceptual data modeling field, WordNet can be used as a source of 

reusable knowledge to ensure that the designing models are correct. Métais (Métais, 

2002) investigates the use of NLP techniques in the design phase of information systems. 

In summary, the possible usages of WordNet applying in automated conceptual modeling 

process are: 

 To differentiate between entities and non-entities. The top noun categories and the 

hypernym chains in WordNet can be used as a general standard to distinguish 

attributes from entities (Du, 2008). Three top level category groups are defined as 

follows:  

1) strong-entity: “group”, “physical object”, “physical entity”, “thing” 

2) mid-entity: “substance”, “event”, “communication”, “physical process” 

3) weak-entity: “cognition”, “attribute”, “measure”,  “constituent”, “language 

unit” 

If the hypernym chain of a noun phrase reaches to one of the categories in the 

strong-entity group, it means that this noun has a high potential to be a candidate 

entity. On the other hand, if the hypernym chain of the term reaches to one of the 

categories in the weak-entity group, it means that this noun has a low potential to be a 

candidate entity.  
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 For example, the WordNet hypernym chains of the word “customer” as shown in 

Figure 2.3 are consumer => user => person => organism => living thing => 

object, while specific nouns that more usually indicative of entity will link to 

synsets such as “object and physical entity. 

 

Figure 2.3 An example of WordNet hypernym chains  

 

 To disambiguate the meaning of noun or verb by examining synonyms. For 

instance, E-R generator (Gomez, 1999) employs WordNet for word sense 
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disambiguation in their conceptual data modeling system. An interface is used to 

access WordNet and displays the ontological categories for a given word. When 

word ambiguity happens, the system asks the user to choose the proper category 

in the current context. 

 To discover some hidden relationships through WordNet. The hypernym chains in 

WordNet can be used to identify the inheritance and aggregation relationships. 

 To identify hidden attributes. In CM-Builder (Harmain, 2003), it uses WordNet to 

assist users in determining the meaning and the context of words, and to identify 

hidden attributes that may get from adjectives.  
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3. RESEARCH METHODOLOGY 

This Chapter presents four methodologies to answer the research questions stated 

in Chapter 1 during the course of our work: 

3.1 Developing EIR and RIR as new types of reusable pattern artifacts for conceptual 

model designs.  

3.2 Proposing six domain independent modeling rules. 

3.3 Developing EIPW with EIR and RIR that contain domain semantics regarding an 

application domain.  

3.4 Developing HBT with six domain independent modeling rules and RIR. 

In our research, we use the ER model originally developed by Chen (P. Chen, 1976) 

as our representation because it has been widely used in conceptual modeling field -- 

powerful to real-world problems and readily translated into a database schema (Teorey, 

1986). 

3.1   Developing EIR and RIR 

This section presents our automatic methodology for creating Entity Instance 

Repository (EIR) and (RIR), which are the repositories of Entity Instance Patterns (EIPs) 

and Relationship Instance Patterns (RIPs), respectively. EIR and RIR contain ER 

modeling patterns from prior designs and serve as knowledge-based repositories for 

conceptual modeling. An EIP is a pattern of a single entity and its properties. An RIP is a 

binary relationship with cardinality constraints between two entities. Examples of these 
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are shown in Figure 3.1. We propose a method based on database reverse engineering 

concepts (R. Chiang, Barron, T., Storey, V. , 1994) to automatically extract EIPs and 

RIPs from relational schemas. This methodology employs three assumptions about the 

characteristics of the input schemas for database reverse engineering processes: 

(1) Relational schemas: An input is a DDL (Data Definition Language) schema that 

contains data instances of an application domain.  

(2) 3NF relations: There are no non-3NF relations in the input relational schemas. It 

would simplify the extraction process by dealing with the relations, each of which 

primarily corresponds to one entity type or one relationship type, rather than 

corresponding to more than one entity type or a mixture of entity and relationship types. 

(3) Proper primary keys (PK) and foreign keys (FK): Proper PKs and FKs are 

specified in input DDL schemas.  

 

Figure 3.1 An example of an EIP and RIP, respectively 
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The method for creating EIR and RIR consists of the following three main steps: 

INPUT: DDL schemas 

OUTPUT: EIR and RIR 

1)  Obtaining information about the executable schemas (DDL schemas) 

In order to reverse engineer existing database schemas, the information about the 

executable schemas must be available. These existing schemas (DDL schemas) have to 

provide at least relation names, attribute names, and PKs as seen in Figure 3.2.  

 

Figure 3.2 The executable DDL schemas 

 

In our research, we use a library of logical data models (executable schemas or DDL 

schemas) created by Silverston (Silverston, 2001) originally containing 464 relations and 

1859 attributes as our first input. Later, the lists of EIR and RIR are extended by case 

studies.   
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(2) Extracting EIP’s elements  

       We extract the EIP’s elements from input DDL schemas by storing a relation 

name as an entity_name and an attribute as an attribute_name in EIR. The metadata 

model of EIP and RIP is shown in Figure 3.3. 

 

Figure 3.3 The metadata model of an EIP and an RIP 

 

(3) Extracting RIP’s elements  

      We extract the RIR’s elements by identifying relationships between extracted 

entities obtained from Step (2) above.  Most of the ER (Entity-Relationship) methods 

used in textbooks or CASE tools can be classified as either binary models or n-ary 

models (I.-Y. Song, Evans, M., Park, E. , 1995). There is an argument about the inclusion 

of binary or n-ary relationships in conceptual models (Hitchman, 2003). A central 

argument comes from the ability of n-ary modeling to reflect the true semantics of any 

given situation, whereas a binary model provides the simplest structures for a 

requirement specification’s logical design. In database design, the binary relationship 
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model is equivalently represented in a relational database management system. Many 

researchers suggest that all of the relationship representations in the conceptual model 

should be binary. For example, Rambaugh et al. (Rumbaugh, 1991) suggest that higher 

order relationships are more complicated to draw, implement, and understand than binary 

relationships, thus should be avoided if possible. In most cases, binary relationships are 

sufficient enough to represent the problem domain. Comprehensive analysis of binary 

relationships and ternary relationship is shown in (I.-Y. Song, Jones, T. , 1993).  

Therefore, in this research, we only specify the maximum cardinality constraints for 

binary models. Because of the limited semantic expressiveness of DDL schemas, the 

minimum cardinality cannot be automatically identified. Using a fully automated process, 

we can identify five relationship types: 

3.1 1: N for relationships identified by FK 

3.2 1: N for relationships identified by partial keys 

3.3  N: M for relationships identified by relationship relations 

3.4  Is-a relationships 

3.5 Recursive relationships 

Subsequently, these binary relationships are stored in RIR. The reverse 

engineering rules used in this step are created by inverting the schema transformation 

rules based on the EER (Extended Entity-Relationship) (Elmasri, 2004). These 

transformation rules are described as following:  
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3.1 1: N for relationships identified by FK 

IF: the PK of a relation T1 is shown as a FK of another relation T2,  

THEN: there is a 1: N relationship between T1 and T2. 

Consider these two relations: 

T1 (K1, a11, a12, a13, …, a1i) 

T2 (K2, a21, a22, a23, …, a2i, K1
*) 

where Ti represents a relation, aij represents an attribute in a relation, PK  is underlined, 

and FK is followed by a star symbol. If T2.K1
* is a FK that comes from T1, then there is a 

1: N relationship between T1 and T2. 

Ex.   Consider these entities, EMPLOYEE and DEPARTMENT.  

DEPARTMENT (DNAME, DNUMBER, MGRSSN*, MGRSTARTDATE) 

EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SEX, SALARY, SUPERSSN, DNO*) 

The PK, DNUMBER, of an entity DNUMBER, appears as a FK of entity 

EMPLOYEE. Then there is a 1:N binary relationship between entity DEPARTMENT 

and entity EMPLOYEE. 

3.2 1: N for relationships identified by partial keys 

IF: the PK of a relation T1appears as a composite PK of another relation T2 and the PK 

of relation T1 is the FK of table T2 as well,  

THEN: T1 is a strong entity. 

  T2 is a weak entity. 

   And there is a 1: N relationship between T1 and T2. 
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Consider these two relations: 

T1 (K1, a11, a12, a13, …, a1i) 

T2 (K1
* K2,, a21, a22, a23, …, a2i) 

T2 has a composite PK of (K1, K2) and only K1 is a FK of table T2, and K1 is a PK of 

T1.So, T1 is a strong entity, T2 is a weak entity, and there is a 1: N relationship between T1 

and T2. 

Ex.  Consider these entities, EMPLOYEE and DEPENDENT.  

EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SEX, SALARY, SUPERSSN, DNO*) 

DEPENDENT (ESSN*, DEPENDENT_NAME, SEX, BDATE, RELATIONSHIP) 

In this case, entity relations DEPENDENT has a composite PK of (ESSN, 

DEPENDENT_NAME), and only ESSN is a FK. Therefore, there is a 1: N relationship 

between entity EMPLOYEE and entity DEPENDENT. 

3.3 N: M for relationships identified by relationship relations 

Consider these two relations: 

T1 (K1, a11, a12, a13, …, a1i) 

T2 (K2, a21, a22, a23, …, a2i) 

T3 (K2
*

, K1
*, ak) 

IF: T3 has a composite primary key of (K2, K1), when consisting of FKs from the   other 

two different tables T1, and T2,  

THEN: there is a M : N relationship between T1 and T2.  

Ex.  EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SALARY, SUPERSSN,  DNO*) 
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 WORKS_ON (SSN*, PNO*, HOURS) 

PROJECT (PNAME, PNO, PLOCATION, DNUM*) 

Entity WORK_ON has a composite primary key of (ESSN, PNO), when consists 

of FKs from the entity EMPLOYEE and entity DEPARTMENT. So, there is an M: N 

relationship between entity EMPLOYEE and entity PROJECT. 

3.4 Is-a Relationship 

IF: two strong entities, T1 and T2, have the same PK and T2 has a key being both PK and 

FK,    

THEN: T2 has “Is-a” relationship with T1 (T2 Is-a T1).  

Consider these two relations: 

T1 (K1, a11, a12, a13, …, a1i) 

T2 (K1
*, a21, a22, a23, …, a2i) 

Ex.  EMPLOYEE(FNAME, LNAME, SSN, ADDRESS, SALARY, SUPERSSN,  DNO*) 

MANAGER (SSN*, RANK, PROMOTION_DATE, DEPTNO) 

In this case, the relations, EMPLOYEE and MANAGER, have the same PK (SSN), 

and MANAGER has SSN as being both PK and FK. This suggests that there is an “Is-a” 

relationship exists from relation MANAGER and relation EMPLOYEE. 

3.5 Recursive Relationship  

IF: T1 has a FK that references the PK of its own table (T1),  

THEN: T1 has recursive relationship.  

Consider this relation: 
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T1(K1, a11, a12*, a13*, …, a1i) 

Ex. EMPLOYEE (FNAME, LNAME, SSN, ADDRESS, SEX, SALARY, SUPERSSN*, DNO*) 

In this case, each Employee occurrence contains two social security numbers 

(SSN), one identify the employee, the other being the SSN of the employee’s supervisor.  

3.2 The Six Domain Independent Modeling Rules 

This section presents our selected six modeling rules termed as the six domain 

independent modeling rules. Our survey shows that one of the difficulties in creating 

conceptual models is the scattered modeling rules. There is no complete set of rules that 

help developing conceptual models.  In general, rules/heuristics are useful but sometimes 

they may lead to cognitive errors called bias (D.  Batra, 2007; Parson, 2004). There is 

always trade off in design so that not all rules can work together because some rules are 

conflicting.  We have selected the six domain independent modeling rules based on 

teaching experiences of over 20 years by one of the committee members of this 

dissertation. These six rules are considered as a minimal set of rules to teach novice 

designers in creating quality conceptual models. These six rules are not based on the 

syntax of any NLs and thus are domain independent. This means that these rules can be 

applied to a wide range of applications and domains. In this research, we would like to 

experiment whether the six rules are indeed useful. The six domain independent 

modeling rules are: 

R1: The ID (Identifier) Rule 



59 

 

IF a concept (noun or verb) needs to have a unique identifier, THEN it can be an entity. 

R2: The MA (Multiple Attribute) Rule 

IF a concept has multiple attributes, THEN it can be an entity. 

R3: The MVA (Multi-Valued Attribute) Rule 

IF a concept has multi-values, THEN it can be an entity. 

R4: The TDA (Time-dependent attributes) Rule 

IF a concept has time-dependent attributes or needs to keep track of history of values, 

THEN it can be an entity. 

R5: The SC (Single Concept) Rule 

A good entity should represent one and only one concept. 

R6: The DI (Domain Importance) Rule  

IF a concept is important in its own right within the problem domain whether it has one 

or multiple attributes, THEN it can be an entity. 

3.3  Developing EIPW (Entity Instance Pattern WordNet) 

In this research, we explore knowledge-based and pattern-based approaches that 

help database designers develop quality conceptual data models. We propose new types 

of reusable pattern artifacts, called the entity instance repository (EIR) and the 

relationship instance repository (RIR), which are repositories of entity instance patterns 

(EIPs) and relationship instance patterns (RIPs), respectively.  In the previous section, 

EIR and RIR have been created as the reusable pattern repositories containing knowledge 
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about an application domain. This section discusses how these patterns are implemented 

in KBS called EIPW (Entity Instance Pattern WordNet).  

3.3.1 Overview of EIPW Architecture 

The architecture of EIPW is shown in Figure 3.4. A prototype of EIPW has been 

developed by using JAVA Applet. Firstly, the system passes a NL requirement 

specification as an input to do the part of speech tagging (POS) in order to list all of the 

possible candidate entities. We use a well-known open source called LingPipe 

(http://alias-i.com/lingpipe) to perform POS. In EIPW, the entity list can be identified 

based on noun phrases and hidden requirements. During the post-parsing analysis, a noun 

phrase belonging to any of a discard noun set will be excluded as a candidate entity. The 

discard noun set are created based on the history of words discarded by designers and the 

class elimination rules (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). The 

discard noun set is domain independent.  

In the entity identification module, there are three activities performed: 

1. The first activity is to identify the entity list based on EIR. WordNet is also used to 

ensure that the synonyms of EIR’s entities are not missed out while preparing the lists of 

entities. 

2. The second activity is to identify the entities that are not detected by EIR by 

applying the top noun categories and hypernym chains in WordNet (Du, 2008). 
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3. The third activity is to identify the hidden entities by applying entity categories. Our 

entity categories are adopted from the class categories defined by Song et al. (I.-Y. Song, 

Yano. K., Trujillo, J., Lujan-Mora, S. , 2004).  

Relationships between entity lists are generated by considering the application 

domain semantics inherent in the RIR. The modeling rules are used to ensure that all of 

the relationships are identified. The lists of EIR and RIR are extended by case studies. 

WordNet is also used to ensure that the synonyms of EIR’s entities and RIR’s entities are 

missed out while preparing the list of candidate entities and preparing the list of 

relationships, respectively. 
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Figure 3.4 The EIPW architecture 

 

3.3.2  The EIPW Workflow 

This section shows the detailed workflow of EIPW and its use for generating ER 

models. EIPW can be mainly divided into two subtasks: entity identification and 

relationship identification. 
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(1) Entity Identification 

The actual step-by-step activities of our methodology outlined in Figure 3.6 are 

the form of an activity diagram in the UML. In Figure 3.6, the three swimlanes perform 

the following activities:   

 The middle swimlane: The aim of these swimlane activities is to identify entities 

based on EIR. 

 The rightmost swimlane: The aim of these swimlane activities is to identify 

entities that are not detected by EIR by applying the top noun categories and 

hypernym chains in WordNet. 

 The leftmost swimlane: The aim of these swimlane activities is to identify hidden 

entities that are not explicitly stated in the requirements but are necessary for the 

conceptual modeling by applying entity categories. Entities categories are used as 

a tip for identifying entities. 

The details of the activities in Figure 3.6 are presented below. 

Activities of Middle Swimlane of Figure 3.6 

 Begin with a requirement and remove the partial explanation statements 

This process starts by reading a text file containing a requirements specification of 

an application written in English. Explanation statements in a requirements 

specification aim to help human readers to understand the requirements better but 

they are harmful for automated requirement analysis (Du, 2008). For example, in 

“A new video store intends to offer rentals (and sales) of entertainment material to 
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the wider public.” the explanation part inside the parenthesis is redundant and not 

necessary to transform it into ERD representation. Heuristic rules based on 

parenthesis and some words (e.g. such as) will be used to remove the explanation 

statement. 

 Step 1: Get noun phrases 

Part of speech tagging (POS) is used to assign each word in an input sentence its 

proper part of speech such as noun phrases and verb phrases in order to reflect the 

word’s syntactic categories. The POS tags provide a useful abstraction of words 

whereby candidate entities can be identified from either noun phrases (P.  Chen, 

1983) or verb phrases (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). 

In this research, we use an open source call LingPipe for POS tagging to get the 

entire noun phrases appearing in the requirement specification. Figure 3.5 shows 

the user interface of Step 1 that lists all the noun phrases appearing in the 

requirement specification. 



65 

 

 

Figure 3.5 The EIPW’s user interface of Step 1 

 

 Step 2: Test discard noun set 

To facilitate the post-parsing analysis, a noun phrase belonging to any of the 

discard noun set will be excluded as a candidate entity. The discard noun set is 

created based on the history of words discarded by designers and the class 

elimination (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004) to provide 

intelligent suggestion for better parsing the requirement. The discard noun set is 

domain independent. Some examples of discard noun set are number, ID, 

information, database, track, record, system, etc. 

 Step 3: Identify entities based on EIR 
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After the initial set of possible candidate entities is identified from Step 2, each 

term is compared to the entity names in the EIR. If a noun phrase matches an 

entity name in EIR, then it becomes a candidate entity (E1).  

 Step 4: Apply WordNet Synonym 

Out of these entity names, identify synonyms of a noun phrase from WordNet. If 

the synonyms of a noun phrase match the entity name in EIR, then the noun 

phrase also becomes a candidate entity (E1). 

Activities of RightMost Swimlane of Figure 3.6 

 Step 1: Apply top noun categories and hypernym chains in WordNet 

The top noun categories and hypernym chains in WordNet are used to perform 

entity categorizations.  The entity categories can help us identify entities from 

non-identifiable noun phrases from the MiddleMost Swimlane. These entity 

categories can be divided into two groups and defined as follows:  

 Potential-Entity Group: group, physical object, physical entity, thing, 

transaction. 

 Non-Entity Group: cognition, attribute, value, measure, constituent, 

language_unit, feeling. 

If the hypernym chain of a noun phrase reaches to one of the categories in 

the “Potential-Entity” group, the system will label this term as a candidate entity 

(E2) and insert it to the EIR to expand the list of EIP. On the other hand, if the 
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hypernym chain of a term reaches to one of the categories in the “Non-Entity” 

group, the system will delete this noun phrase.  

If the hypernym chain of a term does not belong to either group, the system 

will ask the user to make judgments regarding this term. If the user labels it as a 

candidate entity (E2), then insert it to the EIR, else delete this noun phrase. 

Activities of LeftMost Swimlane of Figure 3.6 

In this swinlane, the system asks the user to identify the hidden entities by applying 

domain knowledge to entity categories. Our entity categories in business applications 

adopt the class categories defined by Song et al. (I.-Y. Song, Yano. K., Trujillo, J., Lujan-

Mora, S. , 2004). They are as follows: 

1. Roles of People 

They represent role of humans who perform some important function. 

Ex. Student, Employee, Customer. 

2. Places 

They represent locations where important business activities are occurred. 

Ex. Warehouse, Brach, Store. 

3. Physical Things 

They represent tangible objects that are import in business activities. 

Ex. Product, Machine, Device, Book 

4. Organization 

They represent important business units. 

Ex. Department, Team 

5. Events (Transactions) 
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They represent important activities that need to record some data with the time the 

event occurred. 

Ex. Order, Promotion, Payment 

6. Transaction Line Items 

They represent an element of a transaction. 

Ex. Order-Line-Item, Purchase-Line-Item, Rental-Line-Item 

7. Concepts with properties 

They represent intangible ideas used to keep track of business activities. 

Ex.  Project, Account, Complaint 

8.  Specification 

They represent a description of other items that need to be distinguished from one 

another. 

Ex. Video-Title, Flight-Plan. For example, each video tape has a different 

barcode. 

9. Interaction 

They represent an association between two entities, where the association has 

meaningful attributes. An example of this entity is Reservation between Passenger 

and Flight entities.  

10. Rules/Policies/Reference/Look up 

They represent important business rules. 

Ex. Rental-Policy, Shipping Method 

11. Containers of other things 

They represent entities that will contain other entities. 

Ex. Shelf, Catalog, Pick List, Bin 

12. Things in a container 

They represent entities that will be contained in another entity. 

Ex. Order-Line-Item, Passenger, Video-Title in a catalog. 
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 Step 1: Apply domain knowledge to entity categories (user intervention) 

For each entity category, check whether all the entities representing the entity 

category are already captured. Otherwise create a new candidate entity (E3) based 

on the entity categories. 

A set of entities identified from our methodology is a union of the entities identified from 

the three swimlanes. That is: {Entities} = {E1}  {E2}  {E3} 
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Figure 3.6 Entity Identification Process in EIPW 

 

(2) Relationship Identification 

After the entity list has been identified in the entity identification process, 

Relationships between entities are generated by considering the application domain 
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semantics inherent in the RIR. This repository is used to identify occurring relationships 

within an application domain and to generate the relationships between entities. The 

flowcharts for the relationship identification process are shown in Figure 3.7. The 

processing task requires several activities in order to determine the relationships between 

the entities. In figure 3.7, there are two swimlanes performing the following activities.   

●     The left swimlane: The goal of these swimlane activities is to identify 

relationships (r) between candidate entities based on RIR. 

●     The right swimlane: The goal of these swimlane activities is to ask the users to 

identify the relationships, which are not detected by the RIR, by applying Need-to-

Remember Rule (I.-Y. Song, Yano. K., Trujillo, J., Lujan-Mora, S. , 2004). 

The details of the activities in Figure 3.6 are discussed below. 

Activities of left swimlane of Figure 3.7 

 Begin with the candidate entity list obtained from entity identification process. 

 Step 1: Delete duplicate entities.  

This Step is conducted through WordNet synonyms.   

 Step 2: Assign all possible relationships (rij) between the candidate entities. 

 Step 3: Match the possible relationships (rij) with RIR. 

If rij match the relationships in RIR, add rij into Relationship set (R). 

 Step 4: Apply WordNet Synonym 

Out of the matching, identify synonyms of entity names from WordNet. If the 

synonyms of rij match the relationship in RIR, add rij in R.  
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Activities of right swimlane of Figure 3.7 

 Begin with the possible relationships that are not detected by RIR from left 

swimlane. 

 Step 5: Apply Need-to-Know rule  (user intervention) 

If a relationship represents an association that does not have to be remembered 

between two entities, then delete this relationship. 

 Step 6: Assign the multiplicity (user intervention) 

Assign the multiplicity to each relationship obtained from Step 5. 

The ER model is created by combining a set of relationships (R) identified from the two 

swimlanes. Figure 3.8 shows the output of EIPW. 
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Figure 3.7 Relationship Identification Process in EIPW 
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Figure 3.8 The output of EIPW 

 

3.4   Developing HBT (Heuristicbased Technique) 

In this research, we select six domain independent modeling rules that are 

comprehensive enough in creating conceptual models. We evaluate the usefulness of 

these rules by developing HBT that applies these rules to the creation of conceptual data 

models. The knowledge implemented in the system is based on the six domain 

independent modeling rule. The six domain rules are used to ensure whether the initial 

candidate entity lists should be included or excluded in the data model.  

3.4.1 Overview of HBT Architecture 

The system modules are shown in Figure 3.9. A prototype of HBT was developed by 

JAVA applet.  First, the system takes a NL requirement specification as an input to a 
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preprocessing module. The main functionality of the preprocessing module is to do the 

POS in order to list all of the possible candidate entities. In HBT, the entity list can be 

identified based on noun phrases, verb phrases, and hidden requirements. During the 

post-parsing analysis, a noun phrase and a verb phrase belonging to any of a discard noun 

set and a discard verb set, respectively, will be excluded as a candidate entity. The 

discard noun set and the discard verb set are created based on the history of words 

discarded by designers and the class elimination rules (I.-Y. Song, Yano. K., Trujillo, J., 

Lujan-Mora, S. , 2004). The discard noun set and the discard verb set are domain 

independent. Most of the other modules’ functions in HBT are very similar to those in 

EIPW. Also, the user interfaces of HBT are also similar to those in the HBT as shown in 

Figure 3.10. The only difference is in the entity identification module. In this module, 

there are three activities performed:  

1. The first activity is to identify the entity list based on noun phrases by 

using the six domain independent modeling rules, which are the ID, MA, MVA, 

TDA, SC, and DI rules. 

2.  The second activity is to identify the entity list based on verb phrases by 

using two rules out of six domain independent modeling rules, which are the ID 

and MA rules. 
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3. The third activity is to identify hidden entities that are not explicitly stated 

in the requirements but are necessary for the conceptual modeling by applying 

entity categories.  

 

Figure 3.9 The HBT Architecture 
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Figure 3.10 An example of user interface in HBT 

 

3.4.2  The HBT Workflow 

This section presents the detailed workflow of HBT. HBT incorporates the six 

domain independent modeling rules, entity categories, and relationship instance 

repository. HBT’s process can be divided into two subtasks: entity identification and 

relationship identification. In entity identification process, the six domain independent 

modeling rules are used to ensure whether the initial candidate entity lists should be 

included or excluded in the data model. The relationship identification process of HBT is 

the same as that used in EIPW. 
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1) Entity Identification 

The step-by-step activities of our methodology outlined in Figure 3.11 are in the 

form of an activity diagram in the UML. The processing task requires several steps to be 

carried out in order to achieve the candidate entities from the NL input. In Figure 3.11, 

there are three swimlanes to perform the following activities: 

 The middle swimlane: The aim of these swimlane activities is to identify entities 

based from the concepts that are explicitly stated as noun phrases in the 

requirements. 

 The rightmost swimlane: The aim of these swimlane activities is to identify 

entities based from the concepts that are explicitly stated as verb phrases in the 

requirements. 

 The leftmost swimlane: The aim of these swimlane activities is to identify hidden 

entities that are not explicitly stated in the requirements but are necessary for the 

conceptual modeling. We identify those hidden entities by applying domain 

knowledge to entity categories. 
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Figure 3.11 Entity Identification Process in HBT 
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Activities of Middle Swimlane of Figure 3.11 

 Begin with a requirements specification and remove the partial explanation 

statement. 

 Step 1: Get noun phrases 

Get the entire noun phrases from a requirement specification by using POS 

technique.   

 Step 2: Test discard noun set 

To facilitate the post-parsing analysis, noun phrases belong to any of the discard 

noun set will be deleted. 

 Step 3:  Apply the ID (Identifier) Rule 

If a noun phrase needs to have a unique identifier, then it is a candidate entity 

(E1). 

 Step 4: Apply the MA (Multiple Attributes) Rule 

If a noun phrase has multiple attributes, then it is a candidate entity (E1). 

 Step 5: Apply the MVA (Multi-Value Attribute) Rule 

If a noun phrase has multi-values, then it is a candidate entity (E1).   

 Step 6: Apply the TDA (Time-dependent attributes) Rule 

If a noun phrase has time-dependent attributes or needs to keep track of history of 

values, then it is a candidate entity (E1). 

 Step 7: Apply the SC (Single Concept) Rule 

A good entity should represent one and only one concept (E1). 
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 Step 8: Apply the DI (Domain Importance) Rule 

If a noun phrase is important in its own right within the problem domain whether 

it has one or multiple attributes, then it is a candidate entity (E1). 

Activities of Rightmost Swimlane of Figure 3.11 

 Step 1: Get verb phrases 

We use POS technique to get all the verb phrases from the requirement 

specification. 

 Step 2: Test the discard verb set 

To facilitate the post-parsing analysis, verb phrases belong to any of the discard 

verb set will be deleted. The examples of verb phrases in discard verb set are:  

automate, become, concern, etc.  

 Step 3: Apply ID (Identifier) Rule 

If the concept represented by a verb phrase needs to have a unique identifier, then 

it is a candidate entity (E2). Song et al. (I.-Y. Song, Yano. K., Trujillo, J., Lujan-

Mora, S. , 2004) term this candidate entity a Transformed Entity. 

 Step 4: Apply MA (Multiple Attribute) Rule 

If the concept represented by a verb phrase has multiple attributes, then it is a 

candidate entity (E2). 
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Activities of Left Swimlane of Figure 3.11 

 In this swimlane, the system asks the user to identify the hidden entities by 

applying domain knowledge to entity categories. These entity categories are the same as 

that used in the EIPW.  

 Step 1: Apply domain knowledge to entity categories 

For each entity category, check whether all the entities representing the entity 

category are already captured. Otherwise create a new entity based on the entity 

category. 

A set of entities (E) identified from our methodology is a union of the entities 

gotten from the three swimlanes. The relationship identification process of HBT is the 

same as that used in EIPW. The output of HBT is shown in Figure 3.12. 

 

Figure 3.12 The output of HBT 
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4.  EMPIRICAL EVALUATION 

In this research, we have proposed methods for improving the process of 

conceptual modeling design. We have implemented two knowledge-based data modeling 

tools: EIPW and HBT.  EIPW incorporates entity instance repository, entity categories, 

relationship instance repository, and WordNet. HBT incorporates the six domain 

independent rules, entity categories, and relationship instance repository.  

In this Chapter, we evaluated the quality of outputs generated by EIPW and HBT by 

using ANOVA technique. Because the quality of the ER models is of interest, the 

following hypotheses are tested: 

H1: Novice designers using EIPW will create conceptual models with better quality 

compared to the models generated without using any tools. 

H2: Novice designers using HBT will create conceptual models with higher scores 

compared to the models generated without using any tools.  

H3: There is no significant difference between the two KBSs regarding the quality of the 

conceptual models. 

4.1   Experiment Design 

The experimental framework is shown in Figure 4.1. The two independent 

variables are the systems and the task sizes. In conceptual modeling, a linear increase in 

the number of entities can result in a combinatorial increase in the number of possible 

relationships (D.  Batra, 2007). As the task size increases, so do the numbers of decisions 
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required in the modeling process. Therefore, our experiment design incorporates two 

levels of the task size to provide some sensitivity for this factor. The medium task size 

has 9 entities and 9 relationships, while the moderate task size has 14 entities and 14 

relationships. The dependent variable is the quality scores of the ER models.   

 

Figure 4.1 The framework of empirical experiments 

4.2   Subjects and Tasks 

There were 41 subjects. All of the subjects were students in the iSchool at Drexel 

University and did not work in conceptual modeling field before. Therefore, we 

concluded that all of our subjects were novice designers. Twenty-one were 

undergraduates and twenty were graduate students. Forty-one subjects were divided into 

four groups as shown in Table 4.1.  Each subject worked on four problem statements: one 

medium size and one moderate size problem statements with the aid of our KBS, and one 
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medium size and one moderate size problem statements with no tool. The problem 

statements are in the e-commerce domain. The subjects could take time as long as they 

wanted to create conceptual models based on the given problem statements. 

Table 4.1 The Experiment Design 

Group Num of subject Problem1 Problem2 Problem3 Problem4 

1 11 No tool No tool Using EIPW Using EIPW 

2 10 Using EIPW Using EIPW No tool No tool 

3 10 No tool No tool Using HBT Using HBT 

4 10 Using HBT Using HBT No tool No tool 

4.3   Evaluation Metrics 

1. Evaluating experimental data 

The quality of the conceptual data models created by the novice designers is 

judged by a third party.  

2. Grading criteria 

The quality of an ER model is evaluated by a scoring schema that specifies how 

to grade the ER model on each facet (entities and relationships). In this research 

we adopt the scoring scheme proposed by Du (Du, 2008). It focuses on the correct 

identification of appropriate entities and relationships based on the given problem 

statements. 

Entity  

- Add 2 points for each correct entity stated in the problem statement. 

- No penalty for very likely entity but not stated in the problem statement. 

- Deduct 1 point for each wrong entity. 

- Deduct 1 point for each missing entity. 
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Relationship  

- Add 2 points for each relationship that is correctly attached to the 

corresponding entities. 

- Deduct 1 point for each missing relationship. 

- Deduct 1 point for each a redundant relationship or a derivable relationship. 

- Deduct 1 point for each wrong relationship. 

o Shown as an indirect relationship without a direct relationship.  

- Deduct 1 point for each incorrect degree of relationship. 

- Deduct 0.5 point for each an incorrect cardinality. 

 

4.4   Empirical Results 

Test of Hypothesis 1: EIPW 

A 2x2 within-subjects analysis of variance was performed on quality scores as a function 

of EIPW (with, no tool) and task size (medium, moderate) as shown in Table 4.2.  

Table 4.2 An ANOVA analysis of modeling quality 

 QUALITY SCORE 

System (EIPW, no tool) F(1,20) = 97.512, p < 0.000 

Task Size (medium, moderate) F(1,20) = 2.776, p < 0.111 

System x Task Size F(1,20) = 1.085, p < 0.310 

Note: Significant Level < 0.05 
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Figure 4.2  The plot of the mean quality scores (%) 
 

From the calculated means shown in Figure 8, the conceptual models created by EIPW 

are better than those created by no tool cases for both task sizes.  In Table 4.2, the results 

show that the main effect of system (with EIPW, no tool) is significant (p < 0.00). 

Therefore, this result supports our hypothesis (H1) that the EIPW helps novice designers 

create better conceptual models than they do without it. There is no significant main 

effect for task size (p < 0.111). It shows that the effect of System x Task Size is not 

significant (p < 0.310), which means there is no interaction between the system and the 

task size. We conclude that EIPW improves the novices’ performance by 30.9% for the 

medium task size and 46.0% for the moderate task size.  
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Test of Hypothesis 2: HBT 

A 2x2 within-subjects analysis of variance was performed on quality scores as a function 

of HBT (with, no tool) and task size (medium, moderate) as shown in Table 4.3. 

Table 4.3 An ANOVA analysis of modeling quality 

 QUALITY SCORE 

System (HBT, no tool) F(1,19) = 25.69, p < 0.000 

Task Size (medium, moderate) F(1,19) = 6.925, p < 0.016 

System x Task Size F(1,19) = 0.132, p < 0.720 

Note: Significant Level < 0.05 

 

Figure 4.3  The plot of the mean quality scores (%) 
 

From the calculated means shown in Figure 4.3, the conceptual models created by the 

HBT are better than those created by no tool cases for both task sizes.  In Table 4.3, the 
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results show that the main effect of system (with HBT, no tool) is significant (p < 0.00). 

Therefore, this results support our hypothesis (H2) that the HBT helps novice designers 

create better conceptual models than they do without it. There is significant main effect 

for task size (p < 0.016). However, it shows that the effect of System x Task Size is not 

significant (p < 0.720), which means there is no interaction between the system and the 

task size. We conclude that HBT improves the novices’ performance by 34.9% for the 

medium task size and 33.5% for the moderate task size.  

Test of Hypothesis 3: EIPW & HBT 

A 2x2 mixed model design with system as between-subject and task size as within-subject 

factors was used. The two independent variables are system (with EIPW, with HBT) and 

the task size (medium, moderate). The dependent variable is the quality score.  Since the 

aspects of within-subject factor are not used for analyzing this hypothesis, only the test of 

between-subject analysis is shown in Table 4.4. 

Table 4.4  Tests of between-subjects effects with dependent variable QUALITY SCORE 

 QUALITY SCORE 

System (EIPW, HBT) F(1,39) = 0.004, p < 0.948 

             Note: Significant Level < 0.05 
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Figure 4.4  The plot of the mean quality scores (%) 
 

    In Table 4.4, the main effect of system is not significant (p < 0.948). So, this result 

supports our hypothesis (H3) that there is no significant difference between the two KBSs 

regarding the quality of the conceptual models. However, the mean scores of EIPW and 

HBT suggest that EIPW is better than HBT when the task size is moderate. On the other 

hand, HBT is slightly better than EIPW when the task size is smaller. This results show 

that the six domain independent modeling rules are effective in the small to medium task 

sizes. 

4.5 Precision & Recall 

Even though recall and precision (van Rijsbergen, 1979) are always used for 

evaluating information retrieval systems and also widely used in evaluating information 

extraction systems, Harmain and Gaizaukas (Harmain, 2003) first introduced precision 
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and recall for evaluating conceptual data modeling systems. In any systems, both 

precision and recall should be close to 100% as possible. However, generally increasing 

in precision tends to decrease recall and vice versa.   In this research, the definition of 

recall and precision are adopted as used by Harmain and Gaizaukas (2003).  

Recall measures the completeness of the results developed by the system. The 

relevant information developed by the systems is compared with that developed by 

human analysts or answer key. The formula for calculating recall is: 

 

Where Ncorrect  is the number of correct responses made by the system, and  Nkey  is the 

number of information elements in the answer key. 

 Precision measures the accuracy of the system (i.e. how much of the information 

produced by the system is correct). The formula for calculating precision is: 

    [Harmain & Gaizauskas, 2003] 

Where Ncorrect  is as above, and  Nincorrect  is the incorrect responses made by the system.  

The results of Recall and Precision of the performance of our proposed KBSs are 

shown in Table 4.5.  
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Table 4.5 Results of the performance of our KBSs 

Tools or Systems Recall Precision F-measure 
No tool 
 

56% 74% 64% 

EIPW 79% 93% 85% 

HBT 84% 94% 89% 

F-measure is the weighted average of the precision and recall. 
 

It is questionable and inconsistent to use precision and recall to evaluate the 

performance of conceptual modeling tools or systems because there is no universal 

standard evaluation requirement corpus available. However, Table 4.5 provides the 

overall performance of our tools.  

Since there is no standard evaluation of NL-based tools available, we cannot 

compare our tools with the previous tools or systems. However, Harmain & Gaizauskas 

(Harmain, 2003) claimed that other language processing technologies such as information 

retrieval systems, information extraction systems, and machine translation systems have 

found commercial applications with % precision and % recall well below this level (73% 

recall and 66%  precision).  

4.6   Limitations of the Research 

The overall system performance has been evaluated in the previous chapter. In this 

section, the limitations of some of the system components are discussed. 
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1. This study has, so far, been carried out on one domain only, but it provides a 

theoretical background for research on other domains as well.  

2. One characteristic of our KBSs is to integrate multiple modules and resources for 

the purpose of automating the process of conceptual data modeling. Some of the 

modules are designed for these KBSs while other are adopted from open source 

third party packages. Each component has some limitations.  

- The natural language processing (NLP) technique such as part of speech 

tagging (POS) technique cannot completely identify all of the information in 

the requirement specification. For example, the compound noun with hyphen 

cannot be identified as the whole one noun. However, the overall performance 

of the POS is quite effective and the % accuracy is 96.4. 

- The use of a general lexical knowledge resource, top noun categories and 

hypernym chains in WordNet, for automated entity identification process is 

novel and quite attractive. However, the top noun categories and hypernym 

chains in WordNet cannot perform entity categories completely because 

WordNet is a general knowledge resource and is not developed specifically 

for conceptual data modeling applications.  

3. Outputs from the KBSs are individual relationships, not a combined ER diagram.  

4. The evaluation of the completeness of the KBSs should be performed in many 

different categories. For example, empirical work either by using the systems in a 

number of real cases or by letting number of experts use and evaluate the tools. 
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5.  CONCLUSION AND FUTURE WORK 

Typically, conceptual data modeling has been considered as a creative activity, 

where human designers are indispensible. In this research, we have proposed methods 

that can improve the novice designers’ performance and reduce the dependence on 

domain experts during the conceptual design process. Much research has been conducted 

in developing methodologies and guidelines to help the designers in conceptual database 

design. However, it would be useful if a designer has knowledge about an application 

domain in the form of repository of application-specific knowledge. Currently, building a 

repository of reusable artifacts involves explication of human developers’ knowledge, 

which is a major obstacle in facilitating reuse of knowledge. To solve this problem, we 

proposed new types of reusable artifacts, called entity instance repository (EIR) and 

Relationship Instance Repository (RIR), which are repositories of Entity Instance 

Patterns (EIPs) and Relationship Instance Patterns (RIPs), respectively.  These patterns 

can suggest what terms should appear in an application domain and how they are related 

to each terms.  Our proposed artifacts are likely to be useful for conceptual designs in the 

following aspects: (1) they contain knowledge about a domain; (2) automatic generation 

of EIR and RIR overcomes a major problem of inefficient manual approaches that 

depend on experienced modeling designers and domain experts; and (3) they are domain-

specific and therefore easier to understand and reuse. In this study, we provided a 
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definition of the artifacts, and proposed the methodology for automatically generating 

repositories of domain artifacts.    

We have implemented two knowledge-based data modeling tools: HBT and 

EIPW. HBT incorporates the six domain independent modeling rules, entity categories, 

and relationship instance repository. EIPW incorporates entity instance repository, entity 

categories, relationship instance repository, and WordNet. This step is an initial step to 

show how domain knowledge stored in the instance patterns can be used together with 

other modeling techniques. 

The empirical results indicate that novice designers’ performance increased by 

30.9~46% when using EIPW, while the performance increased by 33.5~34.9 when using 

HBT, compared with the cases of no tools. The EIPW with EIR and RIR clearly helps the 

novice designers in creating better quality conceptual models. These results also imply 

that the use of EIR and RIR in EIPW is effective by providing us with a library of 

reusable patterns and by automating the process of finding the most appropriate one for 

certain situation. In addition, the results of HBT experiments show that the six domain 

independent modeling rules in HBT are effective in developing the quality conceptual 

models. They minimize the cognitive load on novices and ensure that the conceptual 

models are correct. This study shows that the six domain independent rules can be taught 

in a beginning database modeling class, and HBT can serve as a learning tool. It provides 

a smooth head-start to novices. In addition, RIR used in relationship identification 

process in both KBSs can ease the identification of relationships and solve the errors in 
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conceptual models caused by the semantic mismatch in which not all real-world 

relationships can match the conceptual relationships. 

The study has, so far, been carried out with one domain only, but it provides a 

theoretical background for research on other domains as well. However, it is necessary 

for the future research to advance the KBSs for supporting not only one but several 

different domains. Future work is to include more modeling rules required for automatic 

detection of modeling errors such as fan trap and chasm trap occurring in the conceptual 

data modeling process. We want to test the usability of the KBSs for different domains 

and subjects. The evaluation of the completeness of the KBSs have to be done by 

empirical work either by using the KBSs in a number of real cases or by letting a number 

of experts use and evaluate the KBS. We also plan to make both KBSs’ interface modules 

to import the output schema into an ER diagram or a class diagram in graphical CASE 

tools. In addition, future research will consider the cognitive processes involved and 

mental representations in conceptual modeling design process. Cognitive science is a 

very useful reference discipline for gaining a deep understanding why people do things in 

a particular way (Siau, 1999).  
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Appendix A: The user interfaces of EIPW 
Initial Step: Begin with copy and paste a requirement specification in the text box. 

 

Figure A.1  A Screenshot of Initial Step in EIPW 
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Step 1:  Get all the noun phrases from the requirement specification by applying POS. 

 

Figure A.2  A Screenshot of Step 1 in EIPW 
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Step2: Test the discard noun set for facilitating the post-parsing analysis. 

 

Figure A.3  A Screenshot of Step 2 in EIPW 
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Step 3: Identify entities based on EIR (Entity Instance Repository). And out of the entity names in EIR, identify 
synonyms from WordNet. 

 

Figure A.4  A Screenshot of Step 3 in EIPW 
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Step 4: Identify entities based on top noun categories and hypernym chains in WordNet. 

 

Figure A.5  Screenshot of Step 4 in EIPW 
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 Step 5: Identify entities based on top noun categories and hypernym chains in WordNet. 

 

Figure A.6  A Screenshot of Step 4 in EIPW 
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Step 6: identify relationships based on RIR (Relationship Instance Repository). 

 

Figure A.7  A Screenshot of Step 6 in EIPW 
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Step 7: Identify relationships, which are not detected by RIR, by applying a modeling rule. 

 

Figure A.8  A Screenshot of Step 7 in EIPW 
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Step 8: Assign the multiplicity to each relationship obtained from previous Step.   

 

Figure A.9  A Screenshot of Step 8 in EIPW 
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Step 9: Show an output of EIPW.  

 

Figure A.10 An output of EIPW 
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Appendix B: The user interfaces of HBT 
Initial Step: Begin with copy and paste a requirement specification in the text box. 

 

Figure B.1  A Screenshot of Initial Step in HBT 
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Step 1: Get all the noun phrases from the requirement specification by applying POS. 

 

Figure B.2  A Screenshot of Step 1 in HBT 
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Step2: Test the discard noun set for facilitating the post-parsing analysis. 

 

Figure B.3 A Screenshot of Step 2 in HBT 
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Step 3: Identify the entities from noun phrases based on six domain independent modeling rules. 

 

Figure B.4  A Screenshot of Step 3 in HBT 
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Step 4: Get all the verb phrases from the requirement specification by applying POS. 

 

Figure B.5  A Screenshot of Step 4 in HBT 

 

 



123 

 

Step 5: Test the discard verb set for facilitating the post-parsing analysis. 

 

Figure B.6  A Screenshot of Step 5 in HBT 
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Step 6: Identify the entities from verb phrases based on modeling rules. 

 

Figure B.7  A Screenshot of Step 6 in HBT 
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Step 7: Identify the entities based on entity categories. 

 

Figure B.8  A Screenshot of Step 7 in HBT 
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Step 8: identify relationships based on RIR (Relationship Instance Repository). 

 

Figure B.9  A Screenshot of Step 8 in HBT 
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Step 9: Identify relationships, which are not detected by RIR, by applying a modeling rule. 

 

Figure B. 10  A Screenshot of Step 9 in HBT 
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Step 10: Assign the multiplicity to each relationship obtained from preveios Step. 

 

Figure B.11  A Screenshot of Step 10 in HBT 
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Step 11: Show an output of HBT  

 

Figure B.12  An output of HB
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Appendix C: Experimental Problem Statements 

Problem 1 (Moderate Task Size) 

Assume a simplified mail order system for a company in an e-commerce environment of 

selling various products for children. The web site requires a customer to have a login 

account in order to gain access. The company also wants to record the login history in 

order to track the time and IP address given to access the web site. Each customer may 

place one or more order. The following information about each order needs to be 

recorded are order date, credit authorization status. For each order item, we keep track of 

order date, unit price, quantity, and the total order price including the shipping charge. 

Customers may return order items that they are not satisfied. For each return item, we 

keep track of return date, and total return price. Each order give rise to one invoice and 

the customer can make a payment by using credit card (CC), where we keep track of 

credit card types (Visa, MasterCard, AMEX), CC number, name on the CC, and 

expiration date. The company also wants to record the price history of each product. 

There are several shipment methods (such as one-day express, two-day priority, or 

regular surface mail) and each customer can choose one shipment and numbers of 

delivery dates. Assume the shipping charge is a straightforward percentage of the total 

order price plus extra charge depending on the shipping method. Shipping address is the 

same as the customer address.  
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Problem 2 (Medium Task Size) 

The company wants to create a database to keep track of all employees and projects 

assigned. Projects are distinguished by project numbers, the customers to which the 

project belongs, a project start date, a project end date, and estimated. In the project plan, 

the manager of the project must determine the tasks that will be performed to take the 

project from beginning to the end. Each task has a task ID, a task description, the task’s 

starting and ending dates, and the number of employees required completing the task. 

Employees are assigned to specific tasks scheduled by the manager. The hour’s 

employees working are kept in a work log entry containing a record of the actual hours 

worked by an employee on a given assignment. The work log is a weekly form that the 

employee fills out at the end of each month. The work log also contains the date (the last 

workday of the month), assignment ID, the total hours worked up to the end of that 

month, and the number of the bill to which the work-log entry is charged. Obviously, 

each work log entry can be related to only one bill. The company has pooled all of its 

employees by region, and from this pool, employees are assigned to a specific task. 

Problem 3 (Moderate Task Size) 

Temporary Employment Corporation (TEC) places the temporary workers in 

companies.TEC has a file of candidates who are willing to work. If the candidate has 

worked before, that candidate has a specific job history (Naturally, no job history exists if 

the candidate has never worked). Each time the candidate works, one additional job 

history record is created. Each candidate has earned several qualifications. TEC offers 
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courses to help candidates improve their qualifications. Every course develops one 

specific qualification. Some qualifications have multiple courses that develop that 

qualification. Some courses require specific qualifications as prerequisites. A course can 

have several prerequisites. Courses are taught during the training sessions with specialists 

in the field.  A training session is the presentation of a single course and is scheduled in a 

particular room at a specific time slot. Candidates can register and pay a fee to attend a 

training session.  TEC also has a list of companies that request temporaries. Each time a 

company requests a temporary employee, TEC makes an entry in the Open Position 

folder. That folder contains an opening number, a company name, required qualifications, 

a starting date, an anticipated ending date, and hourly pay. Each opening position requires 

only one specific or main qualification. When a candidate matches the qualification, the 

placement is assigned, and an entry is made in the Placement Record folder. That folder 

contains a placement date, a placement number, the total hours worked, etc.  In addition, 

an entry is made in the job history for the candidate. A placement can be filled by many 

candidates, and a candidate can fill many placements. 

Problem 4 (Medium Task Size) 

A company wishes to create a database to control its inventory, which consists of many 

products divided into a number of product categories (i.e. clothing, shoes, bags, and 

accessories). The purchase department makes a purchase order when a product has to be 

reordered from the suppliers. The name of the employee who processes the purchase 

order is record. Each purchase line item records the purchase ID, product received, cost, 
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and any wastage. The reorder guideline provides information on how to best reorder 

products. The same products are stored in the same warehouse, where the company have 

several different warehouses located in different cities. The different tax rates are used in 

different states. The sales tax is not applied to every purchase order, but only occurs in 

those states in which the merchant is required by the state to collect taxes on products 

sold in the state. Normally, the sales tax determination could be based on the location of 

the supplier. 
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Appendix D: PreExperiment Questionnaires 

This questionnaire is part of an analysis of a research work in the area of conceptual 

modeling. Your answers will be kept confidential. Thank you for your cooperation. 

1. Gender (circle your selection):  Male  /   Female 

2. Age:  <20 20-29  30-39  40-49  50-59 

3. Year or Degree Completed:  Fresh.     Soph.     Jun.     Sen.     Grad.   

4. In order to participate in this study, you must have some experiences with Entity-

Relationship (ER) models for database design. Please indicate the type of 

experience you have with the ER modeling. 

 Developing ER models for database design classes some years ago. 

 Developing small ER models for class assignments or class project 

recently. 

 Extensive using ER models for database design. 

 Expert knowledge of using ER models for database design. 

5. Level of difficulty in database topic: 

Very Difficult                         Very Easy 

Entity-Relationship Modeling        

Normalization          

The Relational Model         
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SQL            

6. Do you understand the concepts about entity, relationship, and attribute in ER 

model? 

Very clear    very unclear 

Entity         

Relationship        

Attribute        

7. How do you determine entities and relationships in ER modeling? 

 Scanning the sentences in problem statement for nouns and verbs. 

 Visualizing the scenario 

 Guessing 

 Others  Please specify:  __________________________                                     

8. Have you created the ER model based on a given problem statement? 

Every time     Never 

       

9. Have you used any diagramming tools to help you in creating an ER model? 

 Yes  If yes, please name: _________________________________ 

 No 
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10. Do the diagramming tools help in improving your skills in the ER modeling? 

 Yes 

 No 
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Appendix E: PreExperiment Questionnaires 

Please answer the questions about the experiment you just finished. Your answers will be 

kept confidential. 

11. How difficult is the problem statements? 

Please rate in the scale below 

Very difficult     very easy 

Problem 1          

Problem 2          

Problem 3          

Problem 4          

12. How confident do you feel about modeling the ERD (Entity-Relationship 

Diagram) to the problem statements? 

 Extremely confident 

 Somewhat confident 

 Neither confident or distrustful 

 Somewhat not confident 

 Not confident 
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13. In your opinion, rate the overall helpfulness of our modeling tool for developing 

ER models. 

 Very helpful 

 Somewhat helpful 

 A little helpful 

 Not at all helpful 

14. In your opinion, rate the impact of our tool on how easy to use and user-friendly. 

 Not at all 

 Not very easy to use 

 Somewhat easy to use and user friendly 

 Very easy to use and user friendly 

15. What are the main advantages of using our tool? 

 

 

 

 

 

16. Identify areas where you believe that the conceptual data modeling tools could be 

improved. Please explain your improvement. 
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