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Abstract
Approximate Bayesian Inference for Robust Speech Processing

Ciira wa Maina

Advisor: John MacLaren Walsh, Ph.D.

Speech processing applications such as speech enhancement and speaker identifi-

cation rely on the estimation of relevant parameters from the speech signal. These

parameters must often be estimated from noisy observations since speech signals are

rarely obtained in ‘clean’ acoustic environments in the real world. As a result, the

parameter estimation algorithms we employ must be robust to environmental factors

such as additive noise and reverberation. In this work we derive and evaluate ap-

proximate Bayesian algorithms for the following speech processing tasks: 1) speech

enhancement 2) speaker identification 3) speaker verification and 4) voice activity

detection.

Building on previous work in the field of statistical model based speech enhance-

ment, we derive speech enhancement algorithms that rely on speaker dependent priors

over linear prediction parameters. These speaker dependent priors allow us to handle

speech enhancement and speaker identification in a joint framework. Furthermore,

we show how these priors allow voice activity detection to be performed in a robust

manner.

We also develop algorithms in the log spectral domain with applications in robust

speaker verification. The use of speaker dependent priors in the log spectral domain

is shown to improve equal error rates in noisy environments and to compensate for

mismatch between training and testing conditions.
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1

1. Introduction

One of the features that distinguishes human beings from other species is the

ability to communicate using speech. Speech is arguably the most important means

of human communication. With it we are able to convey information and a wide range

of emotions. Coupled with the human ability to speak is the ability to understand

what is said in a wide range of acoustic environments. We have evolved the ability

to understand speech in noisy environments such as train stations and in crowded

locations with several competing speakers.

The ability of humans to understand speech in noisy scenarios has motivated

researchers for decades to replicate this human performance using computers. The

motivation for this lies in the wealth of information we can extract from the speech

signal. From it we can determine both what was said and who said it leading to

applications in speech recognition and speaker identification respectively. However

for these applications to be reliable, we must be able to deal with noisy conditions

likely to be encountered in operation.

In this thesis, we explore the use of approximate Bayesian inference in order to

improve the performance of speaker recognition systems in noise. These systems rely

on the robust estimation of features from the speech signal. The Bayesian approaches

we develop are shown to improve the reliability of the estimates leading to better

recognition performance.

The work in this thesis emerged from the recognition that the performance of

speech enhancement and speaker recognition systems can be improved if they are

viewed as closely related systems. Intuitively, if we can enhance noisy speech or

relevant features obtained from noisy speech, then any speaker recognition system

making use of the enhanced speech would exhibit performance gains. Furthermore, if
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we can construct rich models with speaker dependence, then the relationship between

speech enhancement and speaker recognition can be captured elegantly in a Bayesian

inference algorithm which treats the exchange of information between the two systems

as message passing between nodes in a graphical model (see figure 1.1).

Figure 1.1: The exchange of information between the speech enhancement and speaker
recognition systems viewed as message passing.

When considering speech enhancement and speaker recognition, we must decide on

the domain in which to model the speech. For robust enhancement, a natural choice

would be a model in the acoustic domain as ‘close’ as possible to the speech samples.

For example one may consider autoregressive models. However, speaker models in

several speaker recognition systems are in the spectral domain which captures speaker

dependent variation in a robust manner. There is therefore a tradeoff between the

system performance and the model domain in which we chose to work (see figure 1.2).

This is borne out by the results presented in chapters 4 and 5.
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Figure 1.2: The influence of model domain on performance and relevant chapters in
the thesis in which this relationship is discussed.

1.1 Thesis Contributions

This thesis makes contributions to a number of areas in speech processing. These

include

1. We derive a joint speech enhancement and speaker identification algorithm that

takes advantage of the fact that speech enhancement and speaker identification

are inextricably linked. With enhanced speech, speaker identification decisions

are more accurate and conversely with accurate speaker identification we can

use speaker dependent priors over the speech parameters to improve speech

enhancement. This relationship is captured in the variational Bayesian (VB)

algorithm derived in chapter 4. The experimental results presented in this chap-

ter show that significant SNR improvement is obtained by the VB algorithm

with a maximum SNR improvement of approximately 10dB. Also, we achieve

SNR improvements within 1 dB of the performance obtained by the theoretical

upper limit. Furthermore, the VB algorithm outperforms the Ephraim-Malah

algorithm which is a standard baseline in both SNR improvement and percep-

tual quality as measured using the PESQ score.

2. In addition to performing joint speech enhancement and speaker identification,
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the algorithm presented in chapter 4 is capable of performing robust voice ac-

tivity detection (VAD). VAD is an important speech processing application and

the algorithm presented makes use of priors over linear prediction coefficients in

silence dominated regions to accurately classify speech segments as either speech

or non-speech. The experimental results show that the VB algorithm outper-

forms the ITU-G.729 algorithm which is the international telecommunications

union standard.

3. In chapter 5 we present a VB algorithm for the enhancement of log spectral

features and show how this algorithm can be applied to speaker verification

to improve equal error rate performance. Once again we make use of speaker

dependent priors over the speech features which in this case are log spectral

features. Here the VB algorithm is able to significantly improve the equal error

rate (EER) performance. In both additive Gaussian white noise and realistic

noise such as factory noise, we are able to reduce the EER by up to 50% when

we compare our system to a standard baseline.

1.2 Thesis Overview

This thesis is organized as follows. Chapter 2 presents the background neces-

sary for the main areas of the thesis. This includes material on speech enhancement,

speaker recognition and Bayesian inference. In chapter 3 we present preliminary work

on variational Bayesian inference for speech enhancement. This work is aimed at il-

lustrating the modelling steps necessary to make VB inference possible. We employ

a generalized autoregressive model for speech and attempt to mitigate convolutive

distortion by incorporating a channel model. However, due to the nature of the ap-

proximate posterior over the clean speech, we are forced to make further approxima-

tions to allow for inference. This complications arise due to the nature of the speech
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model and the attempt to mitigate both additive and convolutive distortion. With

this in mind, we extend this VB work in chapter 4 where we concentrate on additive

distortion and enrich our speech prior by making it speaker dependent. This allows

us to develop a joint speech enhancement and speaker identification algorithm that

uses speaker dependent priors over the linear prediction coefficients. This algorithm

is also capable of performing voice activity detection.

Encouraged by the success of speaker dependent modelling in the acoustic domain,

we present a VB algorithm for the enhancement of log spectral features with the

aim of improving speaker verification performance in chapter 5. Working in the

log spectral domain offers an advantage over the acoustic domain in the speaker

verification setting because we can easily derive Mel frequency cepstral coefficients

(MFCCs) from the enhanced log spectra. MFCCs, which are discussed further in

the background chapter, are features which have been successfully used in speaker

recognition. Chapter 6 presents a summary of the thesis.
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2. Background

In this chapter we intend to provide the background necessary for the algorithms

developed in the thesis. As stated in chapter 1, we seek to develop approximate

Bayesian algorithms for robust speech processing and to demonstrate the application

of these algorithms. In this chapter we first discuss parameter inference and in par-

ticular we contrast maximum likelihood inference and Bayesian inference. We also

discuss the following speech processing applications.

• Speech Enhancement

• Speaker Recognition

• Voice activity detection

2.1 Parameter Inference

Parameter inference is a central problem in signal processing applications. In sev-

eral situations the observed data X = {x1, . . . ,xN} are characterized by a generative

probabilistic model p(X; θ) where θ denotes the parameters of the probabilistic model.

Given X, we aim to estimate θ.

If θ is assumed to be an unknown constant then we can obtain the maximum

likelihood (ML) estimate of θ as follows:

θML = arg max
θ
p(X; θ)

or equivalently

θML = arg max
θ

log p(X; θ)
︸ ︷︷ ︸

`(θ)

. (2.1)
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ML estimation has been successfully used in several signal processing applications.

However, it has a number of drawbacks which stem from the fact that ML estima-

tion does not adequately take into account parameter and model uncertainty. ML

estimates are subject to overfitting problems and if the wrong models are assumed

parameter estimates will be erroneous.

The Bayesian framework allows us to handle both parameter and model uncer-

tainty. In the Bayesian framework, the parameters of our probabilistic model are

treated as random variables governed by a prior p(θ). We can write the joint distribu-

tion p(X, θ) as a product of the likelihood and the prior, that is p(X, θ) = p(X|θ)p(θ).

The posterior p(θ|X), which is a central quantity in Bayesian inference, is given by

[4]

p(θ|X) =
p(X|θ)p(θ)

∫
p(X|θ)p(θ)dθ

Using this posterior, estimates of θ are obtained that minimize approriate cost

functions. For example the minimum mean square errror estimate is obtained as

follows [5]

θ̂MMSE = arg min
θ̂

∫

‖θ − θ̂‖2p(θ|X)dθ,

= E{θ|X}.

The main drawback in the application of Bayesian methods is computational com-

plexity. For example the computation of the evidence p(X) =
∫
p(X|θ)p(θ)dθ is often

intractable.

There are a number of ways to deal with the intractability of computations arising

in Bayesian inference. In this work we consider two main approaches. The first in-

volves replacing the intractable posterior with a tractable approximation. Variational

Bayesian inference and expectation propagation (EP) fall in this category. The sec-
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ond approach involves sampling from the intractable posterior and using the samples

obtained for inference.

2.1.1 Maximum Likelihood Inference and the EM Algorithm

Consider a sequence of N i.i.d observations X = [x0, . . . , xN−1]
T with likelihood

given by p(X; θ) =
∏N−1

n=0 p(xn; θ) where the parameter(s) θ are unknown. The maxi-

mum likelihood estimate of θ is given by (2.1).

Consider a probabilistic model that includes hidden variables in addition to ob-

served data. In such cases, the ‘complete’ likelihood is p(X,S; θ) where X are the

observations and S are the hidden variables. The data likelihood is given by

p(X; θ) =

∫

p(X,S; θ)dS

=

∫

p(X|S; θ)p(S; θ)dS.

In order to obtain the ML parameter estimate we must maximize log
∫
p(X|S; θ)p(S; θ)dS

which may involve intractable integrals therefore rendering ML estimation via (2.1)

intractable. Expectation maximization provides an alternative framework for com-

puting ML estimates in models with hidden variables [6]. The key idea is to introduce

a surrogate quantity that can be maximized in place of the true log-likelihood.

Consider the quantity

Q(θ, θ′) =

∫

log{p(X,S; θ)}p(S|X; θ′)dS

=

∫

log{p(S|X; θ)p(X; θ)}p(S|X; θ′)dS

=

∫

log{p(S|X; θ)}p(S|X; θ′)dS + log p(X; θ)
︸ ︷︷ ︸

`(θ)

.

Q(θ, θ′) is the surrogate quantity of EM and it can be shown that if we can find a
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value θ of the parameters such that Q(θ, θ′) ≥ Q(θ′, θ′) where θ′ is some initial value

then [7]

`(θ) − `(θ′) ≥ Q(θ, θ′) −Q(θ′, θ′). (2.2)

The EM algorithm consisits of two steps

1. The E step: Given θi compute Q(θ, θi) which is the expectation of log{p(X,S; θ)}

under p(S|X; θi).

2. The M step: Maximize Q(θ, θi) as a function of θ to obtain θi+1. That is

θi+1 = arg max
θ

Q(θ, θi).

2.1.2 Variational Bayesian Inference

In variational Bayesian inference, we seek an approximation q(Θ) to the intractable

posterior p(Θ|X) which minimizes the Kullback-Leibler (KL) divergence between q(Θ)

and p(Θ|X) with q(Θ) constrained to lie within a tractable approximating family. The

KL divergence D(q||p) is a measure of the distance between two distributions and is

defined by [8]

D(q||p) =

∫

q(Θ) log
q(Θ)

p(Θ|X)
dΘ.

To ensure tractability we assume that the posterior can be written as a product

of factors depending on disjoint subsets of Θ = {θ1, . . . , θM} [9; 10]. Assuming that

each factor depends on a single element of Θ then

q(Θ) =

M∏

i=1

qi(θi). (2.3)

It can be shown that the optimal form of qj(θj) denoted by q∗j (θj) that minimizes
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D(q||p) is given by [10]

log q∗j (θj) = E{log p(X,Θ)}q(Θ\j) + const. (2.4)

We use the notation q(Θ\j) to denote the approximate posterior of all the elements

of Θ except θj . We obtain a set of coupled equations relating the optimal form of a

given factor to the other factors. To solve these equations, we initialize all the factors

and iteratively refine them one at a time using (2.4).

The use of graphical models allows a powerful interpretation of variational tech-

niques as message passing algorithms [11]. That is, the inference step consists of

messages being passed between nodes in the graph with each node performing local

computations. This allows the global inference problem to be decomposed into local

computations [12].

Graphical Models

The use of probability theory to handle uncertainty lies at the heart of statistical

signal processing. The probabilistic formulation of a problem is represented by the

joint distribution of the parameters of the model and the observations and based on

this distribution inference is performed. Graphical models allow us to capture the

relationship between the random variables in our problem. That is, the graph asso-

ciated with a given joint distribution describes how the joint distribution factorizes

[10]. This is illustrated in figure 2.1.

A graph G = (V,E) consists of a set of vertices (nodes) V and a set of edges (links)

between pairs of vertices. In directed graphs, the edges have an associated direction

from the ‘parent’ node to the ‘child’ node. Consider a probability distribution p(x)

x = {x1, . . . , xN} whose factorization is captured by a directed graph. Each node is
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x1

x3

x2

(a) Source Model

x1

x3

x2

(b) Observation
Model

Figure 2.1: Directed probabilistic graphs illustrating the factorization of p(x1, x2, x3)
as (a) p(x3|x1, x2)p(x2|x1)p(x1) and (b) p(x3|x1, x2)p(x1)p(x2).

associated with a random variable and we can write [10; 13]

p(x) =

N∏

i=1

p(xi|pai)

where pai is the set of random variables associated with the parent nodes of xi.

Hierarchical models play a central role in Bayesian inference and they can be

represented by directed graphical models [14]. These models allow complicated dis-

tributions to be built up from simpler components.

For undirected graphical models the factorization of the joint distribution is given

in terms of maximal cliques of the graph [10; 12]. With each maximal clique is

associated a potential function ψC(xC) where xC are the random variables associated

with nodes in the clique. We have

p(x) ∝
∏

C

ψC(xC).

Given the joint distribution relating the random variables in a particular model

our aim is to perform inference. For example in a signal denoising application we

aim to recover the unobserved clean signal using the noisy observations. Inference in
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graphical models has been applied to various applications such as speech recognition

using hidden markov models [15].

The complexity of the inference step is related to the nature of the graphical

model and the probability distributions associated with the random variables. If the

underlying graph is a tree and the nodes are associated with discrete or Gaussian

random variables then belief propagation (BP) computes exact marginals [10; 16].

The junction tree algorithm [12] provides a framework for exact inference in arbitrary

graphical models. However, in most practical models the computational complexity

of this algorithm makes it impractical. In these situations approximate inference

techniques must be used.

Loopy belief propagation applies BP to graphs with loops. Even though there is

no guarantee of convergence useful results have been obtained in important cases [17].

The convergence of this algorithm has been investigated by a number of authors (for

example see [18; 19]). Other approximate inference techniques that can be applied to

intractable graphical models include Markov chain Monte Carlo (MCMC) methods

[20]. However these methods are computationaly intensive and may be too slow for

most practical applications.

2.1.3 Markov Chain Monte Carlo Methods

As described in the introduction, the posterior p(θ|X) (where θ represents the

parameters and X denotes the observed data) is a central quantity in Bayesian in-

ference. If p(θ|X) is known we can obtain parameter estimates such as the MMSE

estimate given by

θ̂MMSE = E{θ|X}. (2.5)

Markov chain Monte Carlo methods are useful in evaluating expectations such as

(2.5) [20; 14].
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If we can draw independent samples from p(θ|X) then

E{f(θ)|X} =

∫

f(θ)p(θ|X)dθ

'
1

N

N∑

n=1

f(θn)

where θn ∼ p(θ|X). However it may not be possible to draw independent sam-

ples from p(θ|X). In this case we may be able to draw a sequence of samples

θ0, θ1, θ2, . . . such that the sequence forms a Markov chain. That is for any n ≥ 0

p(θn+1|θn, . . . , θ0,X) = p(θn+1|θn,X). Subject to certain regularity conditions to be

discussed later in this section the distribution p(θn|θ0,X) converges to a unique sta-

tionary distribution π(θ|X). If this stationary distribution is equal to p(θ|X) then we

can estimate E{f(θ)|X} as

E{f(θ)|X} '
1

N −Nburnin

N∑

n=Nburnin+1

f(θn)

where Nburnin is the number of samples that must be drawn before the distribution

converges to the stationary distribution.

There are a number of techniques to draw samples from a Markov chain whose

stationary distribution is the target distribution p(θ|X). Here we will present the

Gibbs sampler.

The Gibbs Sampler

If θ = {θ1, . . . , θm} we can draw samples from p(θ|X) by drawing samples from

the full conditional distributions of the individual elements of θ. The Gibbs sampler

draws samples from p(θ|X) as follows
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Initialize θ0 = {θ0
1, . . . , θ

0
m};

for n = 1 to N do
θn
1 ∼ p(θ1|θ

n−1
2 , . . . , θn−1

m ,X);
θn
2 ∼ p(θ2|θn

1 , θ
n−1
3 , . . . , θn−1

m ,X);
θn
3 ∼ p(θ3|θn

1 , θ
n
2 , θ

n−1
4 , . . . , θn−1

m ,X);
...
θn

m ∼ p(θm|θn
1 , . . . , θ

n
m−1,X);

end

Algorithm 1: The Gibbs Sampler

Convergence Issues

The distribution p(θn|θ0,X) converges to a stationary distribution π(θ|X) if

1. The Markov chain is irreducible, that is one can reach any state with positive

probability from any other state.

2. The Markov chain is aperiodic. This prevents the chain from being trapped in

cycles.

3. The Markov chain is positive recurrent. That is if the initial sample is drawn

from the stationary distribution then all other samples are drawn from the

stationary distribution as well.

If the above conditions are satisfied then for a given target distribution p(θ|X) we

must show that π(θ|X) = p(θ|X).

In practice convergence of the Markov chain is determined by the visual inspection

of plots and by using convergence diagnostics [20, chapter 8]. This is the approach

employed in [21].
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2.2 Speech Enhancement

In real world acoustic environments, speech quality and intelligibility are affected

by noise which may come from various sources depending on the environment. Speech

enhancement algorithms are aimed at improving the perceptual quality of speech for

human listeners or improving the performance of speech based applications such as

speaker recognition. Given input speech which is corrupted by noise, the speech en-

hancement algorithm exploits the characteristics of both the speech and noise in order

to mitigate the effects of noise. The output of the algorithm is ‘cleaner’ speech with

improved perceptual quality. It is also important that the algorithm does not intro-

duce any distortions which may in some cases be more annoying to human listeners

than the original noise itself.

2.2.1 Types of Noise

A number of speech enhancement algorithms including the ones discussed in this

thesis exploit the statistical properties of noise. Broadly speaking noise can be clas-

sified as white or non-white (colored). White noise is spectrally flat while non-white

noise is not. Furthermore noise can either be stationary or non-stationary. In envi-

ronments such as an office, the noise sources such as computer fans result in noise that

is largely stationary. In a restaurant on the other hand, the noise is non-stationary.

The nature of noise influences the difficulty of speech enhancement, in general it is

easier to enhance speech in stationary noise as compared to non-stationary environ-

ments. However the most robust algorithms should be able to adjust to varying noise

conditions.

To further illustrate the nature of noise types encountered in typical speech en-

hancement applications, we present time waveforms and spectrograms of factory and

speech babble noise. This noise is obtained from the NOISEX 92 data set [22]. Figure
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2.2 shows a time waveform of factory noise with corresponding spectra estimated from

two distinct frames shown in figures 2.3(a) and 2.3(b). These spectra are estimated

using the magnitude of the short time Fourier transform (STFT) computed using a

32ms window. From these spectra the non-stationarity of the noise is clear. Similarly,

figure 2.4 shows a time waveform of speech babble noise with corresponding spectra

estimated from two distinct frames shown in figures 2.5(a) and 2.5(b). The speech

babble corresponds to overlapped speech from several speakers and is a good model

for noise encountered in a restaurant for example.

0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 2.2: Time waveform of factory noise.

2.2.2 Effects of Noise

Human speakers are affected by noise in a number of ways. When talking in

crowded restaurants for example, it may be difficult to understand the people one

is talking to. Also, it may be difficult to recognize peoples voices when talking over

a noisy telephone connection. These difficulties encountered by human beings are

also encountered by computers. Applications such as speaker recognition and speech
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Figure 2.3: Approximate spectra of factory noise at two different times.
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Figure 2.4: Time waveform of speech babble.

recognition are adversely affected by noise. To illustrate this, figure 2.6 shows the

recognition rate of a simple speaker identification system in the presence of additive

white Gaussian noise as a function of signal to noise ratio (SNR). Here, identification

experiments were performed using a 4 speaker library drawn from the TIMIT data

set. The test utterances were corrupted using additive white Gaussian noise before

identification was done. It can be seen that the performance is worst at high noise

levels.
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Figure 2.5: Approximate spectra of speech babble noise at two different times.

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Id
en

tif
ic

at
io

n 
R

at
e 

(%
)

SNR (dB)

Figure 2.6: Speaker identification performance as a function of SNR.

2.2.3 Speech Enhancement Algorithms

Speech enhancement remains an active area of research (see [23] for a recent re-

view). Speech enhancement algorithms can be broadly classified as spectral-subtractive,

subspace or statistical-model based [23]. The algorithms developed in this thesis fall

in the statistical-model based category. Spectral-subtractive algorithms are possibly

the simplest. They rely on the assumption that the noise is additive. An estimate
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of the noise spectrum is subtracted from the observed speech spectrum to obtain

an estimate of the clean speech spectrum [24; 25]. Spectral subtractive algorithms

are plagued by a number of drawbacks the most severe of which is the introduction

of “musical” noise [23, chapter 5]. In some cases, the magnitude of the estimated

noise spectrum may exceed the value of the observed speech spectrum resulting in a

negative estimate of the clean speech spectrum. This negative values are processed

non-linearly by setting them to zero. This leads to peaks in the clean speech spec-

trum at random frequencies which appear as tones at random frequencies in the time

domain [23, chapter 5].

Subspace algorithms rely on the decomposition of the noisy signal vector space

into a speech signal subspace and a noise subspace and enhancing the observed signal

by projecting it onto the speech signal subspace [26]. Similar ideas are present in the

speaker recognition literature and will be discussed further in section 2.3.5.

Statistical Speech Enhancement Algorithms

Statistical-model based algorithms employ probabilistic models for both the speech

and noise. The Ephraim-Malah enhancement algorithm [27] and its extensions [28; 29]

provide excellent examples of statistical-model based algorithms. Here, the DFT co-

effcients of the clean speech and noise are assumed to be Gaussian distributed and

a MMSE estimator for the spectral amplitude is derived. A major advantage of the

Ephraim-Malah enhancement algorithm is that it does not suffer from the “musical

noise” artifact [30].

In [31] the author derives a MMSE estimator for the spectral amplitude using

the assumption that the spectral coefficients have super-Gaussian priors. In [32] the

author proposes alternatives to the squared error distortion to derive perceptually mo-

tivated Bayesian estimators for the spectral amplitude starting with the assumption
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that the spectral coefficients of the clean speech are Gaussian distributed.

2.3 Speaker Recognition

In addition to conveying information regarding what a speaker is saying, the

speech signal also contains information that can be used to determine who is speak-

ing. This is because the spectrum of the speech signal is influenced by the vocal tract

during speech production [33]. The aim of speaker recognition algorithms is to be

able to identify speakers from their speech signals using computers. To this end, in-

formation relevant to speaker classification must be extracted from the speech signal.

Pattern recognition techniques can then be applied to identify the speaker [34].

Speaker recognition can be classified as either speaker identification or speaker

verification [35; 1]. In speaker identification, the speech signal is assigned to one of

the speakers in a library of known speakers. In speaker verification the input to the

system is a speech utterance and a claimed identity, the aim to determine whether

the given speech signal was produced by the person claiming to have produced the

utterance. Before discussing speaker recognition in greater detail, we will discuss fea-

ture extraction and speaker modeling which are key steps in any speaker recognition

system.

2.3.1 Feature Extraction

It has been mentioned that the speech signal contains information we can use to

identify speakers. However, an important question is how do we obtain this infor-

mation? What signal processing algorithms will we apply to obtain useful features

for speaker recognition? A good starting point in our search for features for speaker

identification is the speech spectrum. Speech is highly non-stationary, however, over

intervals of 10-30ms we can approximate speech as being stationary. Given a short
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speech segment we can then use the speech spectrum as a feature for speaker identi-

fication. The speech spectrum can be estimated by taking the magnitude of the FFT

of the speech segment.

If we use the magnitude of the FFT as a feature for speaker recognition we can

easily run into problems due to the dimension of the feature. For example if our

speech signal is sampled at 16kHz and we divide the utterance into 20ms frames, the

size of the FFT is 512. This results in features of dimension 257. Learning accurate

models of this size is not easy and storing these models is also problematic. We are

forced to consider features which compress the relevant information in each speech

frame into a feature of reasonable dimension.

Linear Prediction Coefficients

Linear prediction (LP) coefficients provide a good and analytically tractable model

for speech [15]. The idea behind LP coefficients is that a given speech sample can be

accurately approximated using a linear combination of P previous samples. That is

sn ≈ a1sn−1 + . . .+ aP sn−P (2.6)

The coefficients a1, . . . , aP are constant for a given speech frame. The speech model

is given by

sn =
P∑

p=1

apsn−p + εn εn ∼ N (εn; 0, σ2)

Where we have turned equation (2.6) into an equality by adding the excitation

term. In the z-transform domain we have

S(z) =
E(z)

1 −
∑P

p=1 apz−p
= E(z)A(z).
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where

A(z) =
1

1 −
∑P

p=1 apz−p
.

Figure 2.7(b) shows a system diagram representing the LP speech model. In

this model the excitation is spectrally shaped by a filter A(z) to produce the speech

output. The LP coefficients represent the spectral shaping of the vocal tract and

can therefore be used as speaker identification features. Also since the value of P is

typically between 8 and 12, this feature is of sufficiently low dimension. Figure 2.8

shows a typical linear prediction spectrum of a speech frame and compares it to a

periodogram.
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Figure 2.7: A speech frame (left) and a system diagram representing the LP speech
model (right).

Mel Frequency Cepstral Coefficients (MFCCs)

The estimation of LP coefficients is sensitive to noise and these features do not

take into account the non-linear processing of sound in the ear. Therefore, other spec-

tral representations of speech are widely used in speech processing. One of the most
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Figure 2.8: Typical Linear Prediction Spectrum

popular spectral parameterizations are Mel Frequency cepstral coefficients (MFCCs)

which attempt to capture perceptually relevant features present in the speech signal

in a manner similar to the human ear. Figure 2.9 shows how MFCCs are computed

from the speech samples. After preemphasis, which amplifies the low frequency com-

ponents, and windowing, the FFT of the speech frame is computed. Cepstral coeffi-

cients are then computed by multiplying the magnitude of the FFT by the triangular

filters shown in figure 2.10. The human ear resolves frequencies non-linearly with a

finer resolution in the low frequencies. The filters in the lower frequencies have lower

bandwidths and are closer together to mimic the way the human ear resolves lower

frequencies. The output of the filterbank is decorrelated using the discrete cosine

transform to obtain the MFCCs.

Figure 2.9: System diagram showing how MFCCs are computed from the speech
samples (after [1]).
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Figure 2.10: The triangular filters in the Mel filter bank (after [36]).

2.3.2 Speaker Modeling

Statistical speaker recognition relies on generative probabilistic models for the fea-

tures derived from utterances. Gaussian mixture models (GMMs) have proved to be

reliable models for speaker recognition and are widely used [35; 37]. GMMs are mul-

tivariate generative models that can reliably approximate complicated distributions.

Analytically a GMM is given by

p(x) =
M∑

m=1

πmN (x;µm,Σm).

Where the mixture coefficients πm satisfy the conditions

M∑

m=1

πm = 1, πm ≥ 0.

An attractive feature of GMMs is that an efficient algorithm for estimation of the

parameters of the distribution given training data exists. Given a training sample of

N features {x1, . . . ,xN} we can estimate the parameters {πm,µm,Σm} of the distri-
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bution using the expectation maximization algorithm discussed in section 2.1.1 [10,

chapter 9]. Figure 2.11 shows the use of GMMs to model the real part of the DFT
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Figure 2.11: Gaussian mixture model for DFT coefficients.

coefficients derived from a speech utterance. Also shown on the figure is the Gaussian

distribution with the same mean and variance as the GMM. We see that the GMM

captures the peaked nature of the distribution better. In this case a GMM with two

mixture coefficients was used.

As already mentioned, to obtain accurate GMMs we must have access to enough

training data. In speaker recognition applications, we must have models for all speak-

ers and this means having training data for each speaker. In some cases, the data

are inadequate to learn GMMs with an adequate number of mixture coefficients. In

this case we can used adapted GMMs [37]. A universal background model (UBM)

is trained using data from several speakers and it is then fine tuned using individual

data to produce individual speaker models.

Starting with a UBM whose parameters are {πU
m,µ

U
m,Σ

U
m} and training data for

a given speaker {x1, . . . ,xN} we adapt the means of the UBM by first computing
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the alignment of the training data with the UBM distribution. For each mixture

component we compute

p(m|xn) =
πmpm(xn)

∑M
m=1 πmpm(xn)

where

pm(xn) = N (xn;µm,Σm).

We then compute the following statistics

Nm =

N∑

n=1

p(m|xn)

Em(x) =
1

Nm

N∑

n=1

p(m|xn)xn.

The adapted means are given by

µs
m = αmEm(x) + (1 − αm)µU

m

where

αm =
Nm

Nm + r
.

r is a relevance factor chosen empirically. The individual speaker model is then given

by {πU
m,µ

s
m,Σ

U
m} where the mixture coefficients and covariances are the same as the

UBM.

2.3.3 Speaker Identification

In speaker identification, the task is to determine the speaker responsible for

generating a given utterance. Let us denote the library of known speakers by L. Given

a test utterance, we determine which of the |L| speakers generated the utterance. This

is accomplished by deriving features from the utterance and using statistical models
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of the speakers to decide on who is speaking. In most systems the features used are

MFCCs and the statistical models are GMMs.

The most common decision criterion is the ML criterion. That is once we obtain

relevant features from the utterance X = {x1, . . . ,xN}. The likelihood for each

speaker ` ∈ L is computed using

N∏

n=1

p`(xn) =
N∏

n=1

M∑

m=1

π`
mN (xn;µ

`
m,Σ

`
m)

And the estimated speaker ˆ̀ is given by

ˆ̀= arg max
`

N∏

n=1

p`(xn)

Figure 2.12 shows the main components of the speaker identification system.

Input
Speech

Feature
Extraction

Speaker
Models Decision

Figure 2.12: Speaker identification system diagram

2.3.4 Speaker Verification

In speaker verification the basic task is to determine whether a given target speaker

is speaking in a particular speech segment. Thus given a speech segment X we test

the following hypotheses

• H0: X is from speaker S

• H1: X is not from speaker S
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Here the target speakers are modelled using speaker specific GMMs and a universal

background model (UBM) is used to test the alternate hypothesis H1. The likelihood

ratio is compared to a threshold in order to determine which hypothesis is correct.

For each trial we compute the score

Score = log p(X|TargetModel) − log p(X|UBM). (2.7)

where X are the features computed from the test utterance. Figure 2.13 shows the

main components of the speaker verification system.

Figure 2.13: Speaker verification system diagram (after [1]).

2.3.5 Robust Speaker Recognition

Current speaker recognition systems are adversely affected by environmental noise

and mismatch between training and operation conditions. As a result a significant

amount of research continues to focus on improving the performance of speaker identi-

fication and verification systems in real world environments where noise and mismatch

are unavoidable (for example see [3]).

There are two main approaches to noise robust speaker recognition namely the
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model-domain approach and the feature-domain approach [38]. In the model-domain

approach, speaker models are adapted to account for the various acoustic environ-

ments in which the system will be used [39]. Another model-domain approach involves

training different models for different acoustic conditions. In [3] the authors present a

system based on multicondition training where the speaker models are derived from

speech distorted by different types of noise at various signal-to-noise ratios (SNRs).

In the feature domain approach, the speech or features derived from the speech

such as log spectral parameters are enhanced to mitigate the effects of noise on the

features. As we have already discussed in section 2.2, speech enhancement is an

important area of research and there are a number of techniques such as spectral

subtraction and statistical model based speech enhancement algorithms [23]. Cepstral

mean subtraction (CMS) and RASTA processing are frequently used to mitigate

channel effects in the log spectral domain [40]. However, these techniques fail to

exploit any prior information about the features. Recently, methods that rely on

prior speech and interference models have been proposed [41; 42]. Using these priors,

the clean speech features are estimated using Bayesian techniques. The Algonquin

speech enhancement algorithm [43; 44] and some extensions [45; 46; 47; 38] apply a

variational inference technique to enhance noisy reverberant speech using a speaker

independent mixture of Gaussians speech prior in the log spectral domain.

Another feature domain approach that has recently received significant attention

is nuissance attribute projection (NAP) which was originally developed for use in

support vector machines[48; 49]. Recent work has extended NAP for use in feature

compensation [50]. Here, the space in which the features live is assumed to contain

a smaller subspace of nuissance attributes due to noise and channel distortion. A

projection matrix applied to the observations can zero components in the direction

of the nuissance space. This is similar to the approach introduced by Kenny et
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al. [51; 52] which is a model-domain technique. Here the means of a background

Gaussian mixture model are adapted at enrollment time to determine the speaker

dependent means. The technique is similar to the classical maximum a posteriori

(MAP) adaptation technique used in state of the art speaker verification systems and

is known as eigenvoice MAP. In eigenvoice MAP, the background model means are

modified using a linear combination of the eigenvoice vectors which span the speaker

space.

Cepstral mean subtraction

The idea behind cepstral mean subtraction is that convolution distortion in the

time domain becomes additive in the log spectral domain. Thus if we assume that

the channel is unchanged during an utterance, the mean of the spectral features will

capture the spectra of the channel. Subtracting this mean from all the features corre-

sponding to the utterance compensates for the distortion introduced by the channel.

Compensation of Nuisance Factors

In this section we briefly describe the feature domain intersession compensation

(FDIC) technique presented in [50] to compensate for nuisance factors in speaker

verification. Speaker models adapted from universal background models are widely

used in speaker verification systems [37]. In most cases only the mean vectors of

the UBM are adapted leaving the mixture coefficients and variances the same for all

models. Therefore each speaker model can be represented by a supervector formed

by concatenating all the means. If there are M mixture coefficients and the feature

vectors are d dimensional, then the supervector is M × d elements long. In [50; 53]

adaptation of the speaker means is performed in a smaller subspace that captures

most of the interspeaker variation and compensates for nuisance variations resulting
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from mismatch. We have

µs = Ux + µw (2.8)

where µw is the supervector of the UBM model resulting from concatenation of the

UBM means, µs is the supervector of the speaker model, U is a (M × d) by K

low rank projection matrix and x is a vector of channel factors within the smaller

subspace. Equation (2.8) describes how to obtain speaker models that are adapted

from the UBM to compensate for mismatch in the model domain. x is obtained from

the observation vectors {o1, . . . , oT} as follows [50; 53]

x = A−1b (2.9)

where the elements of A are given by

ak,j =
M∑

m=1

( T∑

t=1

γm(ot)
)

uT
k,mΣ−1

m uj,m

where γm(ot) is the posterior probability of the mth Gaussian component at the tth

observation, Σm is the covariance matrix of the mth Gaussian component, and uk,m is

the subvector of the kth column of the matrix U corresponding to the mth Gaussian

coefficient.

The elements of b are given by

bk =
M∑

m=1

T∑

t=1

γm(ot)u
T
k,mΣ−1

m (ot − µm)

where µm is the mean of the mth Gaussian component.

As decribed so far (equation (2.8)), the technique compensates for mismatch in

the model domain. To perform feature domain compensation, the observed features

are projected to the session independent subspace. Given a set of feature vectors
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{o1, . . . , oT} corresponding to an utterance we have

ôt = ot −
M∑

m=1

γm(ot)Umx (2.10)

where Um is the submatrix of U obtained by extracting the rows corresponding to

the mth mixture component.

In order to obtain the projection matrix U, we require training speech from several

speakers recorded under various conditions. For each speaker, we obtain speaker

models corresponding to different acoustic conditions via MAP adaptation. For each

speaker we then compute the difference between the supervectors from the different

conditions. Using these difference supervectors as training data, a K dimensional

subspace is learned using probabilistic principal component analysis (PCA) [10].

2.4 Voice Activity Detection

Normal conversational speech contains silent regions and voice activity detection

refers to the process of determining the regions of the speech signal that correspond

to speech and those that correspond to silent periods. These silent regions are domi-

nated by environmental noise. VAD is important in several speech processing appli-

cations such speech recognition, speech enhancement and the transmission of voice

over communication channels. In speech recognition, VAD prevents insertion errors

which would result if we attempt to recognize words in speech frames dominated by

noise. In speech enhancement, several algorithms such as spectral subtraction and

the Ephraim-Malah algorithm require an accurate estimate of the noise spectrum.

Using the output of the VAD, the noise spectrum is estimated in the noise dominated

silence regions [54; 55].

VAD is also very important in the transmission of speech over communication
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networks [56]. Communication resources come at a premium and must be conserved.

Since the most useful information in a conversation is obtained during the speech

dominated regions, during silence, we can transmit information at a lower rate over

the network leading to the conservation of vital network capacity.

2.4.1 VAD Algorithms

VAD is a binary classification problem. Given a particular speech frame, the

output is a decision classifying the frame as either speech or silence. Thus most

algorithms operate on a similar principle: given a speech frame, compute a given

parameter and compare this parameter with a threshold. If the parameter corre-

sponding to a given frame is greater than the threshold, classify the frame as speech.

Otherwise classify the frame as silence.

Energy Detection

In high SNR conditions, energy thresholding provides a good and simple algorithm

for voice activity detection. For the input speech signal frame energy is computed by

summing the squares of the sample values. Frames with an energy value x dB lower

than the maximum frame energy of the utterance are then classified as silence. The

value of x is set empirically. Figure 2.14 shows the VAD result for an utterance drawn

from the TIMIT data set in clean conditions and when the utterance is corrupted by

additive white Gaussian noise at 0dB. From visual inspection of the results we see that

the algorithm works well in clean conditions. However, in noisy conditions, several

classification errors occur.
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Figure 2.14: Voice activity detection results in clean conditions (top) and at 0dB
(bottom) using energy thresholding.

The ITU G.729 Algorithm

Given the important role VAD plays in communication, the International Telecom-

munications Union (ITU) has adopted a robust VAD algorithm for use in conjunction

with voice coding algorithms. We have seen that simple energy thresholding does not

work well in noisy conditions which are likely to be encountered in communication

scenarios. To improve performance, the ITU G.729 algorithm uses a set of features

to classify speech frames. These features are

• The linear prediction spectrum

• Full-band energy

• Low-band (0 to 1KHz) energy

• The zero-crossing rate

The details of the algorithm are presented in [56].
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2.5 Data Sets

The experiments reported in this thesis make use of a number of data sets. In

this section we briefly describe each of them.

2.5.1 TIMIT

The TIMIT data set consists of broadband recordings of 630 speakers from 8

dialect regions of the United States [57]. Each speaker records 10 phonetically rich

sentences. The sampling rate is 16kHz and the resolution is 16 bits per sample. This

dataset has been widely used in both speaker and speech recognition experiments.

The utterances are of short duration, generally between 3 and 6 seconds each.

2.5.2 MIT Mobile Device Speaker Verification Corpus (MDSVC)

In the MDSVC data set [58], each speaker records 54 utterances in two sessions,

one for training and the other for testing. The 54 utterances are recorded in three

conditions: in an office, a hallway and a noisy street intersection. 18 utterances are

recorded in each environment. Each utterance is approximately two seconds long.

Since the data set is designed for speaker verification, the data set includes both

target and impostor speakers. There are 48 target speakers with 22 female speakers

and 26 male speakers. There are 40 impostors with 23 male and 17 female.

2.5.3 GRID

The GRID corpus [59]: This database was used in the 2006 Interspeech speech

separation challenge and it consists of single channel mixtures of simultaneous speech

of two speakers at different SNRs with reference to a target speaker. This data set is

ideal for simple speech and speaker recognition experiments.
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2.5.4 Speaker Recognition Evaluations Data (SRE)

The training speech segments in this data set are continuous conversational ex-

cerpts of telephone speech with no silence removal. All the training data is telephone

speech with test data from a limited number of speakers being microphone data.

Different training and test conditions differ in the duration of segments (10 sec,

30 sec, 1 side, 3 sides, 8 sides, 16 sides) and whether or not the segment consists of

summed channels. Each conversation ‘side’ is approximately five minutes in length

yielding approximately 2.5 minutes of speech from the target speaker. The core

condition uses 1 side for both training and testing. [60]

2.5.5 NOIZEUS data set

This data set contains 30 IEEE sentences corrupted by real world noises at various

SNRs [23]. The data set includes the clean recordings and the corrupted sentences at

0, 5, 10 and 15dB. The noise types available include train noise, car noise and airport

noise.

2.5.6 NOISEX 92

This is a data set of realistic noise sources [22]. The data set includes recordings

of speech babble, factory noise and car noise. The sampling rate is 19.98 KHz and

the samples are encoded using 16 bit resolution.

2.6 SRE systems and Baseline

In this section we describe the baseline system used in our SRE-2004 evaluation

system. We also briefly describe other systems developed by different authors. The

basic task is to determine whether a given speaker is speaking in a particular speech

segment. The purpose of the NIST SREs is to determine how speaker verification
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performance varies as we vary the duration of training and test speech segments.

Here, experimental results are reported using data from the 2004 core condition which

uses one conversation side for both training and testing. Each conversation side is

approximately 5 minutes long [60].

2.6.1 SRE Systems

MIT System

This system consists of seven core systems making use of short term acoustic

information, pitch duration, prosodic behaviour , phoneme and word usage. Modeling

uses GMMs, SVMs and N-gram language models. The development data consists

of Switchboard II phase 1-5 with data from Switchboard II phase 1, 4 and OGI

National Cellular Database being used to train UBMs. The baseline system consists

of a GMM/UBM system using 19 dimensional MFCCs derived every 10ms using a

20ms window with the frequency band of interest 300-3138Hz. RASTA processing is

performed and delta features are computed at +/- two frames. Low energy features

are discarded and feature mapping and normalization are performed.

Target speaker models are derived via Bayesian adaptation with only the means

being adapted (a relevance factor of 16 is used).

For the 1 side core condition, an EER of 10% is achieved with no gain observed

from fusing higher level information to the baseline GMM/UBM system. [61]

SRI System

This system was aimed at incorporating long range stylistic features to improve

recognition performance. The development data sets used to train UBMs are Switch-

board and Fisher. A GMM/UBM system is used as a baseline with 13 dimensional

MFCCs augmented with delta and delta-delta features. For the 1-side training 1-side
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testing condition, the baseline achieves an EER of 11.61%. When fused with word

N-gram language modeling the EER is 11.44%. Duration features reduce the EER to

8.27%. [62]

LIA System

This system was developed using the ALIZE toolkit. The system uses 16 dimen-

sional Linear Frequency Cepstral Coefficients (LFCCs) derived every 10ms using a

20ms window. The bandwidth is 300-3400Hz. Low energy frames are discarded. Pa-

rameters are normalized to zero mean and unit variance. The baseline system uses

data from the 2001 and 2002 SREs to train the UBMs. With 128 mixture coeffi-

cients, an EER of 11.2% is achieved, this reduces to approximately 10% when 2048

coefficients are used [63; 64]. When the 2004 SRE data are used, the performance

degrades slightly and the EER is approximately 13% [63, figure 7].

The TNO system

This system uses perceptual linear prediction coefficients (PLPs) as features. A

GMM/UBM system with 512 mixture coefficients achieves an EER of 14.8% on the

1side-1side condition using SRE 2004 data [65].

SRE Baseline System

In our system, the speaker models are GMMs with 512 mixtures and the features

are 18 dimensional MFCCs with delta features. We also make use of gender dependent

UBMs. Figure 2.15 shows the speaker verification performance for SRE data when

the feature domain intersession compensation (FDIC) technique introduced in section

2.3.5 is applied in the feature domain. The intersession subspace has a dimension of

10.
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Figure 2.15: Speaker verification system performance for SRE 2004 data

Table 2.1 shows the EER performance of the FDIC system as a function of inter-

session subspace dimension. The EER of the Baseline GMM/UBM system is 13.89%

which compares favorably with the performance of the TNO system which is 14.8%

and the LIA system which is approximately 13%.

Table 2.1: Speaker verification EER (%) for the SRE data set

System Dimension EER
MFCCs (Baseline) - 13.89

FDIC 10 12.04
FDIC 20 12.81

2.6.2 UBM Training

When training universal background models in speaker recognition applications it

is important to use an appropriate amount of data and select an appropriate model

size. Questions about how many mixture coefficients to use, how many speakers
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should provide the training data and how much data to use need to be answered

in order to train up effective models. The experiments reported here aim to answer

these questions.

The UBMs are gaussian mixture models trained using the EM algorithm. In

the experiments, the effectiveness of the UBMs is measured by computing the log

likelihood of test data under the trained model. We also measure the log likelihood

of the training data at the final and intermediate iterations. The difference between

the final log likelihood of the training data and the log likelihood of test data is an

important metric which serves as an indicator for overfitting.

In our initial experiment, training data drawn from 40-200 speakers was used

to train UBMs of varying size using varying amounts of data. This allows us to

determine the optimum number of speakers to draw a certain amount of data for

model training. The log likelihood of training and test data was computed every 5

iterations and the EM algorithm was run for 20 iterations. Figure 2.16(a) shows the

log likelihood of the training data at the final EM iteration as a function of number

of mixture coefficients and amount of training data with the data drawn from 200

speakers. Figure 2.16(b) shows the log likelihood of the test data with the two plots

superimposed for comparison in figure 2.16(c). Figure 2.16(d) shows a plot of the

histogram of frame scores at the final EM iteration for the training data when the

number of mixture coefficients is 512. A gaussian with the same mean and variance

is shown for comparison.

Similarity of UBMs

We would like to determine the similarity of the UBMs trained using varying

amounts of data and of different size. Figure 2.17 shows a plot of the test loglikelihood

for UBMs with 1024 mixture coefficients as a function of amount of training data
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Figure 2.16

drawn from 200 speakers. From the plot we can see that the UBMs obtained using

1.5 - 3.0 hours of data give similar values for the loglikelihood. We would like to

know if this means that the UBMs have ‘similar’ parameters. As an initial metric,

we could examine the squared error between the sequence of UBM means. Here, one

of the UBMs is taken as the reference and its mixture coefficients ordered from the

largest to the smallest. The hypothesis is that mixture components corresponding

to the largest mixture coefficients are the best trained and therefore more likely to

exhibit consistency between models. Once this ordering is achieved we can determine

the minimum squared error between a paricular component mean from the reference
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model and the means from the other UBM. Figure 2.18 shows a plot of the minimum

squared error as a function of mixture index between the UBM means of models

obtained using 2.5 and 3.0 hours of data. As expected the general trend in the plot

shows that the mixture components means corresponding to large mixture coefficients

are closer in terms of squared distance.

A more reliable metric to measure the similarity of UBMs is the Kullback-Leibler

(KL) divergence between the two models. The KL divergence between two distribu-

tion p1(x) and p2(x) (D(p1||p2) is a measure of the distance between two distributions

and is defined by [8]

D(p1||p2) =

∫

p1(x) log
p1(x)

p2(x)
dx.

Unfortunately when the two distributions concerned are GMMs, no closed form

expression exists for the K-L divergence. However as an initial approximation we

can measure the K-L divergence between the individual Gaussian components of the

GMMs and determine the minimum divergence between a paricular component mean

from the reference model and the means from the other UBM. If

pi(x) =
1

2πN/2

1

|Σi|1/2
exp{−

1

2
(x − µi)

TΣ−1
i (x − µi)},

then

D(p1||p2) =
1

2

{
log

|Σ2|

|Σ1|
+ Tr(Σ−1

2 Σ1) −N + (µ1 − µ2)
TΣ−1

2 (µ1 − µ2)
}
.

Figure 2.19 shows a plot of the minimum K-L divergence as a function of mixture

index between the UBM means of models obtained using 2.5 and 3.0 hours of data.

As expected the general trend in the plot shows that the mixture components means

corresponding to large mixture coefficients are closer in terms of K-L divergence.

However both figure 2.18 and 2.19 would lead us to the conclusion that there still
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exist significant difference between the two UBMs despite the fact that they give

similar values for the loglikelihood (figure 2.17).

Based on the loglikelihood of the test data alone we can conclude that the model

obtained using 3 hours of speech drawn from 200 speakers produces the best model.

Using techniques developed in [66] to approximate the K-L divergence between GMMs,

we can approximate the K-L divergence between the model obtained using 3 hours of

speech and models obtained using 0.2-2.5 hours of speech. We can then explore how

the K-L divergence relates to speaker verification performance.

In [66] a variational approximation of the K-L divergence between two GMMs is

presented. It is based on maximizing a tractable lower bound on the K-L divergence.

Based on this aproach, a closed form expression for the approximate K-L divegence

is derived. If

pa(x) =
Ma∑

i=1

πa
i N (x;µa

i ,Σ
a
i ), pb(x) =

Mb∑

i=1

πb
iN (x;µb

i ,Σ
b
i)

then

Dvariational(pa||pb) =

Ma∑

i=1

πa
i log

∑Ma

j=1 π
a
j exp(−D(pa,i||pa,j))

∑Mb

k=1 π
b
k exp(−D(pa,i||pb,k))

.

where

pa,i = N (x;µa
i ,Σ

a
i ).

Figure 2.20 shows the K-L divergence between the model obtained using 3 hours

of speech and models obtained using 0.2-2.5 hours of speech drawn from 200 speakers

with 1024 mixture coefficients. Based on this plot we expect the speaker verification

perfomance difference to be greatest between the model obtained using 3 hours and

the model obtained using 0.2 hours. To test this we performed speaker verification

experiments using NIST 2004 speaker recognition evaluation (SRE) data.The SRE

data consists of conversational telephone speech.
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Speaker models were obtained using MAP adaptation of the UBM models with

only the means of the UBM being adapted. We use 13 dimensional MFCCs extracted

using a 20ms window with 50% overlap. RASTA processing and CMS is performed.

Also, an energy detector is used to discard low energy features. We report results on

the core test of the 2004 evaluation where one conversation side is used for both train-

ing and testing (1side-1side). For each verification trial, we compute the loglikelihood

ratio

Score = log p(X|TargetModel) − log p(X|UBM).

where X are the features. Depending on the score, and the value of a threshold, we

will either accept or reject the hypothesis that the test speech was produced by the

target speech. As a performance measure we report the Equal error rates obtained

by the systems derived from UBMs trained using various amounts of training data.

Table 2.2 shows the EER as a function of amount of training data obtained from 200

speakers with 1024 mixture coefficients. As expected the model trained using the

most data performs best. However the link between the K-L divergence between the

models and the difference in performance of those models in speaker verification is

interesting to observe.

Table 2.2: Speaker verification EER (%) for different amounts of training data

Duration (hrs) 0.2 0.6 1.0 2.0 2.5 3.0
EER (%) 27.78 20.68 16.98 16.51 16.05 14.97
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Figure 2.17: Test loglikelihood for UBMs with 1024 mixture coefficients as a function
of amount of training data drawn from 200 speakers.
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Figure 2.18: The minimum squared error as a function of mixture index between the
UBM means of models obtained using 2.5 and 3.0 hours of data. There are 1024
coefficients and the data is drawn from 200 speakers
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Figure 2.19: The minimum K-L divergence as a function of mixture index between
the UBM means of models obtained using 2.5 and 3.0 hours of data. There are 1024
coefficients and the data is drawn from 200 speakers
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Figure 2.20: K-L divergence between the model obtained using 3 hours of speech and
models obtained using 0.2-2.5 hours of speech drawn from 200 speakers with 1024
mixture coefficients.
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3. Preliminary Work: A Variational Bayesian Approach to Speech

Enhancement

In this chapter we describe our initial attempt at applying variational Bayesian

inference to the problem of speech enhancement. This chapter is aimed at illustrating

the modelling steps necessary to make VB inference possible. We employ a general-

ized autoregressive model for speech and attempt to mitigate convolutive distortion

by incorporating a channel model. However, due to the nature of the approximate

posterior over the clean speech, we are forced to make further approximations to

allow for inference. This complications arise due to the nature of the speech model

and the attempt to mitigate both additive and convolutive distortion. This moti-

vates the work in chapter 4 where we concentrate on additive distortion and enrich

our speech prior by making it speaker dependent. This allows us to develop a joint

speech enhancement and speaker identification algorithm that uses speaker dependent

priors over the linear prediction coefficients. This algorithm has the added benefit of

performing voice activity detection.

3.1 Problem Formulation

Consider a single speech source {sn} observed at a microphone located in a room

subject to reverberation as illustrated in figure 3.1. The signal observed at the mi-

crophone {xn} is given by

xn =

Lh−1∑

k=0

hksn−k + ηn (3.1)

where h = [h0, . . . , hLh−1]
T is the impulse response of the room and ηn ∼ N (ηn; 0, τ

−1
η )

is additive white Gaussian noise with precision (inverse variance) τη . We can write

(3.1) compactly as xn = hT sn + ηn where sn = [sn, sn−1, . . . , sn−Lh+1]
T .
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Figure 3.1: Speaker in a reverberent room

3.2 Speech Model

Speech exhibits both temporal correlation and nongaussianity. We attempt to

capture these properties by modeling speech as a generalized autoregressive process

(GAR) [67; 68]. We have

sn =

P∑

p=1

apsn−p + εn = aT s∗n−1 + εn (3.2)

where a = [a1, . . . , aP ]T , s∗n−1 = [sn−1, . . . , sn−P ]T and the innovations process is

modeled as a mixture of Gaussians

εn ∼
M∑

m=1

πmN (εn; 0, τ−1
m ). (3.3)

Let π = [π1, . . . , πM ]T and τ = [τ1, . . . , τM ]T then using (3.2) and (3.3) we can write

p(sn|s
∗
n−1, a,π, τ ) =

M∑

m=1

πmN (sn; a
T s∗n−1, τ

−1
m ). (3.4)

Following [10, p. 430] we introduce a latent variable zn = [zn1, . . . , znM ]T which

is an M × 1 vector given by the mth column of the identity matrix with probability

πm. That is Pr{znm = 1} = πm. Also p(εn|znm = 1) = N (εn; 0, τ−1
m ). We can write
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p(sn, zn|s∗n−1, a,π, τ ) = p(sn|zn, s
∗
n−1, a, τ )p(zn|π) with

p(sn|zn, s
∗
n−1, a, τ ) =

M∏

m=1

N (sn; a
T s∗n−1, τ

−1
m )znm (3.5)

and

p(zn|π) =

M∏

m=1

πznm

m .

If we consider a frame of N source samples S = [s0, . . . , sN−1]
T and the corresponding

latent variables Z = [z0, . . . , zN−1]
T then

p(S|Z, a, τ ) =

N−1∏

n=0

p(sn|zn, s
∗
n−1, a, τ ). (3.6)

Also

p(Z|π) =

N−1∏

n=0

M∏

m=1

πznm

m .

3.3 Observation Model

From (3.1) we can write p(xn|sn,h, τη) = N (xn;hT sn, τ
−1
η ). Let X = [x0, . . . , xN−1]

T

be the observations corresponding to the source samples S = [s0, . . . , sN−1]
T . The ob-

servation probability model is given by

p(X|S,h, τη) =
N−1∏

n=0

p(xn|sn,h, τη). (3.7)

3.4 Channel Model

The channel model aims to capture prior knowledge about the room impulse

response (RIR). There are a number of techniques used to model room acoustics. In
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[2] the authors propose a three parameter model that takes into account the direct

path delay ∆, direct path attenuation α and exponential decay time constant τ of

the acoustic setting. The coefficients of the RIR are modeled as a Gaussian random

vector with zero mean and covariance matrix

Σh = αdiag
(

ε, . . . , ε
︸ ︷︷ ︸

∆ terms

, 1, e−
2
τ , . . . , e−

2(Lh−∆−1)

τ

)

where ε is an appropriate small number.

In this work we find it convenient to work with the precision matrix Λh =

diag(λ) = Σ−1
h

and we write

p(h|λ) =
(
∏Lh−1

i=0 λi)
1
2

(2π)
Lh
2

exp
[

−
1

2

Lh−1∑

i=0

λih
2
i

]

. (3.8)

Figure 3.2 shows a simulated RIR with ∆ = 50, α = 1, τ = 100, and ε = 10−6. The

sampling frequency is 16kHz.
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Figure 3.2: Simulated RIR using the three parameter model of [2] with ∆ = 50, α =
1, τ = 100, and ε = 10−6.
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3.5 Prior Distributions

We now introduce the prior distributions over the parameters a,π, τ , τη, and λ.

Where possible we make use of conjugate priors. We define a symmetric Dirichlet

prior over π that is

p(π) = Dir(π|α0) =
Γ(Mα0)

Γ(α0)M

M∏

m=1

πα0−1
m

where Γ(.) is the Gamma function and α0 is a hyperparameter.

The prior of each precision in τ is a Gamma distribution with hyperparameters

a0 and b0. That is

p(τm) = Gam(τm|a0, b0) =
1

Γ(a0)
ba0
0 τ

a0−1
m e−b0τm .

Following [68] we define the prior over a to be a zero mean Gaussian with precision

matrix given by diag([β, . . . , β]). That is

p(a|β) = (
β

2π
)

P
2 exp

[

−
β

2
aTa

]

with β governed by a Gamma prior Gam(β|aβ, bβ). Finally we choose Gamma priors

over τη and each of the entries in λ (where we assume p(h|λ) is given by (3.8)) with

hyperparameters aη, bη and aλ, bλ respectively.

3.6 VB for Speech Enhancement

In our Bayesian framework the parameters are viewed as realizations of random

variables governed by prior distributions. The joint distribution of all random vari-
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ables in our model is

p(X,S,Z,h, a,π, τ , τη,λ, β)

= p(X|S,h, τη)p(S|Z, a, τ )p(Z|π)p(h|λ)p(a|β)p(π)p(τ )p(τη)p(λ)p(β). (3.9)

For compactness we represent all the parameters and latent variables as

Θ
def
= {S,Z,h, a,π, τ , τη,λ, β}.

Figure 3.3 shows directed acyclic graphs illustrating the source and observation mod-

els decribed by equation (3.9).

sn

s∗
n−1

π

τ a

β

zn

N

(a) Source Model

sn

xn

h

λ

τη

N

(b) Observation Model

Figure 3.3: Directed acyclic graphs illustrating the source and observation probabilis-
tic models discussed in section 3.2 and 3.3 respectively.

Our goal is to compute the posterior p(Θ|X) and in particular p(S|X) but due to

the intractability of this posterior we are forced to consider an approximate Bayesian
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technique. Here we consider the application of VB to this problem.

3.6.1 Approximate Posterior

We assume an approximate posterior q(Θ) that factorizes completely over the

parameters and latent variables. That is

q(Θ) = q(S)q(Z)q(h)q(a)q(π)q(τ )q(τη)q(λ)q(β).

The dependence of the posterior on the observations X is implicit. Using (2.4) we

obtain expressions for the optimal form of the factors.

We have (see appendix A for details.)

1. q∗(τη) = Gam(τη|a
∗
η, b

∗
η).

2. q∗(β) = Gam(β|a∗β, b
∗
β).

3. q∗(τ ) =
∏M

m=1 Gam(τm|a∗m, b
∗
m).

4. q∗(λ) =
∏Lh−1

i=0 Gam(λi|a∗λi, b
∗
λi).

5. q∗(π) = Dir(π|α∗).

6. q∗(a) = N (a;µ∗
a
,Σ∗

a
).

7. q∗(h) = N (h;µ∗
h
,Σ∗

h
).

8. q∗(Z) =
∏N−1

n=0

∏M
m=1 γ

znm
nm .
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We can show that

log q∗(S) = −
1

2
Eh,τη

{ N−1∑

n=0

τη(xn − hT sn)2
}

−
1

2

N−1∑

n=0

( M∑

m=1

EZ{znm}Eτ{τm}
)

︸ ︷︷ ︸

ζ∗n

× Ea{(sn − aT s∗n−1)
2} + const. (3.10)

If we assume that the posterior distributions q∗(h) and q∗(a) are well approximated

by point masses δ(h−µ∗
h
) and δ(a−µ∗

a
) respectively then we can compute estimates

of the sources using a Kalman filter and Rauch-Tung-Striebel (RTS) smoother [7]

applied to the observations generated by the following Gaussian linear state space

model (GLSSM):

sn = Asn−1 + e1εn εn ∼ N (εn; 0, ζ∗−1
n ), (3.11)

xn = Hsn + ηn ηn ∼ N (ηn; 0,Eτη
{τη}

−1). (3.12)

Where A is the Lh × Lh state transition matrix, H is the Lh × 1 observation matrix

and e1 is the first column of the Lh × Lh identity matrix. We assume that Lh ≥ P

which is a reasonable assumption in acoustic applications. A is given by

A =



















µ∗
a1 µ∗

a2 . . . µ∗
aP 0 . . . 0

1 0 . . . 0 0 . . . 0

0 1 . . . . . . 0

...
. . .

...

0 . . . 1 0



















(3.13)
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and H = [µ∗
h0, µ

∗
h2, . . . , µ

∗
h(Lh−1)].

3.6.2 Computation of required expectations

Now that we have determined the form of each of the factors in q(Θ) we can com-

pute the expectations necessary in order to completely characterize the parameters

of these factors. We need to compute:

1.

Ea{a
Ta} = Tr(Σ∗

a
) + µ∗T

a
µ∗

a
.

Tr(.) refers to the trace of the matrix argument. This follows from the expec-

tation of a quadratic form of a Gaussian random vector.

2. EZ{znm} = γnm where γnm is given by (A.10). This follows from the properties

of the multinomial distribution [10, Appendix B].

3.

Eτ{τm} =
a∗m
b∗m
.

Eτ{log τm} = ψ(a∗m) − log b∗m

Eτη
{τη} =

a∗η

b∗η

Eβ{β} =
a∗β

b∗β

Eλ{Λ} = diag
(a∗λ0

b∗λ0

, . . . ,
a∗λ(Lh−1)

b∗λ(Lh−1)

)

where ψ(.) is the digamma function. These follow from the properties of the

Gamma distribution [10, Appendix B].

4.

Eπ{log πm} = ψ(a∗0) − ψ(Ma∗0)
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where ψ(.) is the digamma function. This follows from the properties of the

Dirichlet distribution [10, Appendix B].

5.

Eh{h
2
i } = [Σ∗

h
]ii + [µ∗

h
]2i

6. We also require

ES,h{(xn − hT sn)2} = x2
n − 2xnµ

∗
h
ES{sn}

+ µ∗T
h

ES{sns
T
n}µ

∗T
h

+ Tr(ES{sns
T
n}Σ

∗
h
)

and

ES,a{(sn − aT s∗n−1)
2} = ES{s

2
n} − 2µ∗

a
ES{sns

∗
n−1}

+ µ∗T
a

ES{s
∗
n−1s

∗T
n−1}µ

∗
a

+ Tr(ES{s
∗
n−1s

∗T
n−1}Σ

∗
a
)

If we assume d = Lh = P then s∗n−1 = sn−1. The first and second order moments

of sn for n = 0, 1, . . . , N − 1 can be determined using a Kalman filter using the

GLSSM formulation decribed earlier in this section. The Kalman filtering algorithm

is presented in algorithm 2 for reference [7, p. 142].

3.7 Experimental Results

In order to test the performance of our algorithm on real speech we use the data set

provided for the interspeech 2006 speech separation challenge [59]. In the simulation

the clean speech corresponds to the utterance “bin green at a six now”. We divide

the speech into 20ms frames and assume an AR order of eight and that the number

of mixture coefficients is two. The observations were generated by convolving the

source with a channel of length 16 and adding white Gaussian noise so that the
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for n = 0, 1, . . . , N − 1 do
if n = 0 then

Initialization;
ŝ0|−1 = 0d×1;
P0|−1 = 0d×d;

else
Prediction;
ŝn|n−1 = Aŝn−1;
Pn|n−1 = APn−1A

T + e1τ
−1
ε,neT

1 ;

end
en = xn − hT ŝn|n−1 Innovation;
Γn = hT Pn|n−1h + τ−1

η,n Innovation covariance ;

Kn = Pn|n−1hΓ−1
n Kalman gain;

ŝn = ŝn|n−1 + Knen State mean estimate;
Pn = (I −Knh

T )Pn|n−1 State covariance estimate;

end
with A, h, τη,n, and τε,n as given in section 3.6.1;

Algorithm 2: Kalman Filtering

input SNR was −2dB. We use uninformative priors for the Gamma distributions by

setting a = b = 10−3. We set α0 = 10. We initialize the posterior mean of the AR

coefficients to the zero vector and the covariance matrix to the identity matrix. In

our initial experiments we assume that the channel is known. Figure 3.4 shows the

clean speech segment corresponding to the word “bin” (top), the observed segment

(middle) and the enhanced segment (bottom). The SNR of the enhanced signal was

4dB after 20 iterations of our algorithm while the SNR was 2.4dB after the first

iteration. If we use an RTS smoother to enhance the signal assuming the source is

i.i.d according to a Gaussian distribution the SNR of the enhanced signal is 2.7dB. We

see that significant SNR improvement is obtained using our algorithm and that the

AR coefficient estimates are useful. Also the harmonic structure of the clean speech

is clearly visible in the enhanced signal. However, the algorithm fails to recover the

utterance at the end of the segment (see figure 3.4).
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Figure 3.4: The clean speech segment (top), the observed segment (middle) and the
enhanced segment (bottom).

This can be explained by observing that the end of the segment corresponds to a

silent region of the utterance. We can detect this region by computing the prediction

error ên using our AR coefficient estimate â. We have

ên = ŝn − âT ŝn−1

where ŝ is the enhanced signal obtained from the RTS smoother. We can use the

following quantity (which we call the normalized mean square error (NMSE)) as a

metric to determine silent regions.

NMSE =
1
N

∑N−1
n=0 ê

2
n

Var(X)
.

where Var(X) is the variance of the noisy observations. Figure 3.5 shows the blockwise

variation of the NMSE for the speech segment corresponding to the word ‘bin’. We

can see that the NMSE peaks in the silent regions at the begining and end of the

utterance.

Figure 3.5 suggests a method to enhance the perceptual quality of the enhanced
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Figure 3.5: The Blockwise NMSE (top), clean speech segment (middle) and the
enhanced segment (bottom).

signal. If the NMSE is above a given threshold, we can detect these silent regions

and drive the output to zero in these regions. We set the threshold γth such that the

probability that the NMSE is less than or equal to γth is a given value δ. To determine

δ we experimented with sentences from two speakers in the interspeech data set.

Listening experiments were performed on the test sentences for δ = 0.6, 0.7, and 0.8.

It was observed that with δ = 0.7 and 0.8 the perceptual quality of the enhanced

signal was improved. However with δ = 0.6 performance degradation occurred.

3.8 Conclusions

We presented a variational Bayesian algorithm for speech enhancement where we

model the speech as a GAR process. Our experimental results verify the appro-

priateness of our modeling assumptions and we are able to obtain significant SNR

improvement when we apply our algorithm to noisy speech. However the algorithm

does not enhance the signal in noise dominated silent regions. This problem is ad-

dressed by using the estimated AR coefficients and enhanced signal to determine the

blockwise prediction error. This quantity is high in the noise dominated silent regions.
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Driving the output to zero in these sections results in improved perceptual quality.
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4. Joint Speech Enhancement and Speaker Identification Using

Variational Bayesian Inference

In the previous chapter, we presented an initial attempt at applying variational

Bayesian (VB) inference to the problem of speech enhancement. However, due to the

nature of the speech model, which was a generalized autoregressive model, we were

forced to make further approximations to the approximate posterior over the clean

speech.

In this chapter we extend the work of chapter 3 by using a speaker dependent prior

over the linear prediction coefficients which allows us to derive an algorithm for joint

speech enhancement and speaker identification. In this case, the computations in the

VB algorithm are exact and no futher approximations to the already approximate

posterior are necessary.

Our work is built on the intuition that speaker dependent priors would work better

than priors that attempt to capture global speech properties. We derive an iterative

variational Bayesian algorithm that exchanges information between the speech en-

hancement and speaker identification tasks. With cleaner speech we are able to make

better identification decisions and with the speaker dependent priors we are able to

improve speech enhancement performance. We present experimental results using the

TIMIT data set which confirm the speech enhancement performance of the algorithm

by measuring signal-to-noise (SNR) ratio improvement and perceptual quality im-

provement via the PESQ score. We also demonstrate the ability of the algorithm to

perform voice activity detection (VAD). The experimental results also demonstrate

that speaker identification accuracy is improved.



62

4.1 Problem Formulation

In this work we use a source prior that takes into account the temporal correlation

and nongaussianity of speech. Using single channel observations of the noisy speech,

the aim is to perform speech enhancement and speaker identification jointly.

We model speech as a time varying autoregressive (AR) process of order P . For

a given block k of speech samples sk = [sk
1, . . . , s

k
N ]T we have (the speech signal is

divided into K segments)

sk
n =

P∑

p=1

ak
ps

k
n−p + εkn = (ak)T sk

n−1 + εkn (4.1)

where sk
n = [sk

n, . . . , s
k
n−P+1]

T , ak = [ak
1, . . . , a

k
P ]T and εkn ∼ N (εkn; 0, (τk

ε )−1). The

signal observed at the microphone is given by

rk
n = sk

n + ηk
n (4.2)

where ηk
n ∼ N (ηk

n; 0, (τk
η )−1) is additive white Gaussian noise with precision (inverse

variance) τk
η .

From (4.1) we have

p(sk|ak, τk
ε ) =

N∏

n=1

p(sk
n|s

k
n−1, a

k, τk
ε )

=
N∏

n=1

N (sk
n; (a

k)T sk
n−1, (τ

k
ε )−1). (4.3)

From (4.2) we can write p(rk
n|s

k
n, τ

k
η ) = N (rk

n; s
k
n, τ

k
η ). If rk = [rk

1 , . . . , r
k
N ]T is the block

of noisy observations corresponding to the source samples sk the data likelihood is

p(rk|sk, τk
η ) =

N∏

n=1

p(rk
n|s

k
n, τ

k
η ) =

N∏

n=1

N (rk
n; sk

n, τ
k
η ). (4.4)
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To complete the probabilistic formulation we require priors over ak, τk
ε , and τk

η .

The speaker dependence is introduced by the prior over ak. We model the prior over

ak for speaker ` as a Gaussian mixture model (GMM)

p(ak|`) =
Ma∑

m=1

πa
`mN (ak;µa

`m,Σ
a
`m) (4.5)

where ` ∈ L = {1, 2, . . . , |L|} with L being the library of known speakers. The

parameters {µa
`m,Σ

a
`m, π

a
`m} for the distribution p(ak|`) are obtained in advance from

a corpus of clean speech.

We find it analytically convenient to introduce an indicator variable zk
a that is a

Ma|L| × 1 random binary vector that captures both the identity of the speaker and

the mixture coefficient ‘active’ over a given frame. We have

p(ak|zk
a) =

Ma|L|∏

i=1

[

N (ak;µa
i ,Σ

a
i )

]zk
a,i

. (4.6)

The precisions τk
ε and τk

η are assumed to have Gamma priors, that is

p(τk
ε ) = Gam(τk

ε ; aε, bε),

p(τk
η ) = Gam(τk

η ; aη, bη).

Now that we have the priors for all the random variables in our model we can

write the joint distribution of the observations and parameters. We assume the joint

distribution factors as shown in (4.7). We use the notation x1:K to denote the set

{x1, . . . ,xK}.

p(r1:K , s1:K , a1:K , z1:K
a , τ 1:K

ε , τ 1:K
η ) =

∏

k

{

p(rk|sk, τk
η )

×p(sk|ak, τk
ε )p(ak|zk

a)p(τ
k
ε )p(τk

η )
}

p(z1:K
a ). (4.7)
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The prior p(z1:K
a ) is assumed to factor as follows

p(z1:K
a ) = p(z1

a)

K∏

k=2

p(zk
a|z

k−1
a ). (4.8)

This allows us to take into account the fact that adjacent speech blocks are likely

to originate from the same speaker. In order to completely characterize (4.8) we

need to know the speaker transition matrix A = [aij ] with aij = p(`k = i|`k−1 = j)

where `k is the speaker responsible for the kth block and the mixture coefficients

πa
` = [π`,1, . . . , π`,Ma

]T for all the speakers in the library. The distribution p(zk
a|z

k−1
a )

is then characterized by the Ma|L| ×Ma|L| matrix given by

T =









a1 ⊗ (πa
`1

T )

...

a|L| ⊗ (πa
|L|1

T )









(4.9)

where a` is the `th row of A, 1 is a Ma × 1 vector of all ones, and ⊗ represents the

Kronecker product. We can now write

p(zk
a|z

k−1
a ) =

Ma|L|∏

i=1

Ma|L|∏

j=1

t
zk
a,iz

k−1
a,j

ij (4.10)

where T = [tij ]. For compactness we represent all the parameters and latent variables

as

Θ
def
= {s1:K , a1:K , z1:K

a , τ 1:K
ε , τ 1:K

η }.

Figure 4.1 shows a Bayesian network that captures the conditional dependencies be-

tween the random variables in our model.

Given the noisy observations, we would like to compute the posterior p(z1:K
a |r1:K)

in order to determine the identity of the speaker responsible for generating the ob-



65

served speech and the posterior p(s1:K |r1:K) in order to estimate the clean speech.

However due to the intractability of these posteriors we employ approximate Bayesian

inference techniques to compute them. The intractability results from the fact that

we cannot compute expectations with respect to these posteriors.

zk
a

akτk
ετk

η

sk
n

rk
n

K

N

Figure 4.1: Bayesian network showing the conditional dependencies between the ran-
dom variables in our model.

4.2 Approximate Posterior

Returning to the context of our joint speech enhancement and speaker ID model,

we assume an approximate posterior q(Θ) that factorizes as follows

q(Θ) =
∏

k

q(sk)q(ak)q(zk
a)q(τ

k
ε )q(τk

η )
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The dependence of the posterior on the observations r1:K is implicit. Using (2.4) we

obtain expressions for the optimal form of the factors. We obtain (see appendix B

and B.1 for details)

1.

q∗(τk
η ) = Gam(τk

η |a
∗
η, b

∗
η) (4.11)

with

a∗η = aη +
N

2
,

b∗η = bη +
1

2
Esk

{ N∑

n=1

(rk
n − sk

n)2
}

.

2.

q∗(τk
ε ) = Gam(τk

ε |a
∗
ε , b

∗
ε ) (4.12)

with

a∗ε = aε +
N

2
,

b∗ε = bε +
1

2

N∑

n=1

{

E{(sk
n)2} − 2µ∗T

a
E{sk

ns
k
n−1}

+ µ∗T
a

E{sk
n−1s

kT
n−1}µ

∗
a

+ Tr(E{sk
n−1s

kT
n−1}Σ

∗
a
)
}

.

Tr(.) is the trace of the matrix argument.

3.

q∗(zk
a) =

Ma|L|∏

i=1

(γk
i )zk

a,i (4.13)

where

γk
i =

ρk
i

∑Ma|L|
i=1 ρk

i
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and

log ρk
i = −

1

2
log |Σa

i | −
1

2
(µ∗

a
− µa

i )
TΣa−1

i (µ∗
a
− µa

i )

−
1

2
Tr(Σa−1

i Σ∗
a
) +

Ma|L|∑

j=1

γk−1
j log tij

+

Ma|L|∑

n=1

γk+1
n log tni.

Recall that tij are the elements of the matrix T introduced in section 4.1.

4.

q∗(ak) = N (ak;µ∗
a
,Σ∗

a
) (4.14)

with

Σ∗
a

=
[ N∑

n=1

a∗ε
b∗ε

Esk{sk
n−1s

kT
n−1} +

Ma|L|∑

m=1

γk
i Σ

a−1
i

]−1

µ∗
a

= Σ∗
a

[ N∑

n=1

a∗ε
b∗ε

Esk{sk
ns

k
n−1} +

Ma|L|∑

m=1

γk
i Σ

a−1
i µa

i

]

5. Turning to q(sk) we have

log q∗(sk) = −
1

2

N∑

n=1

a∗η

b∗η
(rk

n − sk
n)2

−
1

2

N∑

n=1

a∗ε
b∗ε

(

(sk
n)2 − 2µ∗T

a
sk

ns
k
n−1

+ skT
n−1µ

∗
a
µ∗T

a
sk
n−1 + skT

n−1Σ
∗
a
sk
n−1

)

+ const. (4.15)

As discussed in appendix B, E{sk
n}, E{sk

ns
kT
n } and E{sk

ns
kT
n−1} can be computed

using a Kalman smoother [7].
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The forms of the expressions (4.11)-(4.14) are typical in Bayesian computations.

They include a contribution from the prior and one from the data. The nature of

the prior determines the relative contribution of the data component to the posterior.

When the prior is uninformative, the posterior largely depends on the data.

4.3 The VB Algorithm

Armed with closed form expressions for the approximate forms of the posteriors

for the parameters ak, zk
a, τ

k
ε , and τk

η and a means to compute the source statistics, we

can now present the VB algorithm. The VB algorithm is similar to the expectation

maximization (EM) algorithm. It consists of a step similar to the E-step where the

current source estimates are determined using a Kalman smoother using the current

estimates of the posterior parameters. In the VB-M step, the current source statistic

estimates are used to update the parameters of the posterior distributions.

To run the algorithm, the noisy utterance is divided into K segments of N samples

each. The posterior parameters for each block are initialized and updated at each

iteration. See algorithm 3.

Initialize the posterior distribution parameters {a∗η, b
∗
η, a

∗
ε , b

∗
ε ,µ

∗
a
,Σ∗

a
, γk

i } for all
blocks;
for n = 1 to Number of Iterations do

for k = 1, . . . , K do
VB E-step: Run the Kalman smoother to estimate the source statistics
for block k;
VB M-Step: Update the posterior parameters for block k using
(4.11)-(4.14);

end

end

Algorithm 3: VB algorithm
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4.4 Experimental Results

In this section we present experimental results that verify the performance of the

algorithm. For the simulations we use the TIMIT database which contains record-

ings of 630 speakers drawn from 8 dialect regions across the USA with each speaker

recording 10 sentences [57]. The sampling frequency of the utterances is 16kHz with

16 bit resolution. For our initial experiment a randomly generated library of four

speakers was used. In order to train the speaker models we used 8 sentences and used

the other 2 for testing. We assume an AR order of 8 with 10 mixture coefficients. To

obtain training data for the AR models we divide the speech into 32ms frames and

compute the AR coefficients corresponding to these frames using the Levinson-Durbin

algorithm. We then use the EM algorithm to determine the GMM parameters. The

EM algorithm is run until the relative change in model likelihood is less than 10−4.

100 EM iterations are found to be sufficient. We also train speaker models using Mel

Frequency Cepstral Coefficients (MFCCs) to allow us to compare the performance

of our algorithm with that obtained using MFCCs. Here we use 13 coefficients ob-

tained from 32ms frames with 50% overlap. Speaker GMMs are trained using the EM

algorithm with the number of mixtures set at 32.

We found it necessary to augment the speaker library with a silence model to

avoid erroneous classification of silent speech blocks. In our formulation, we treat

‘silence’ as an additional speaker therefore increasing the library size by one. The

silence model consists of a single Gaussian with zero mean and small covariance.

An added benefit of this is that we can now use the algorithm to perform voice

activity detection (VAD)[54; 55]. We present experimental results comparing the VB

algorithm’s performance to that obtained using the ITU-G.729 standard [56]. We also

need to define the speaker transition matrix A. We assume A is defined so that the

speaker states have a large self transition probability. Also we assume that speaker
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changes can occur only after a silent state. That is (silence is considered the fifth

speaker)

A =















p 0 0 0 1−q
|L|

0 p 0 0 1−q
|L|

0 0 p 0 1−q
|L|

0 0 0 p 1−q
|L|

1 − p 1 − p 1 − p 1 − p q















. (4.16)

The experiments were performed using additive white Gaussian noise as the source

of contamination. To run the algorithm, the noisy utterance was divided into 32ms

segments (N = 512). The hyperparameters of the gamma distributions were a =

b = 10−6. Thus the prior over the noise variance is uninformative and the noise

variance for a particular segment is inferred from the observation. This makes the

algorithm robust to changes in noise level from segment to segment. As with any

iterative algorithm, initialization is very important and it affects the quality of the

final solution. In our experiments, the following initialization scheme was found

to work well: We initialize the posterior mean of the AR coefficients to the AR

coefficients obtained from the noisy speech blocks. The posterior covariance of the

AR coeficients was initialized as the identity matrix. a∗η and b∗η are initialized to one

for all blocks. b∗ε is initialized to the variance of the AR predection error determined

using the noisy speech block and a∗ε is initialized at one. Finally we initialize the

parameters of q(zk
a
) as γk

i = 1
Ma|L|

. The parameters of the transition matrix were

set to p = q = 0.8. These values were determined by computing the transition

probabilities between silence and speech states for several files from the TIMIT data

set. The silence and speech states were determined using an energy detector.

Since we update the posterior parameters one at a time, we need to specify a

parameter update schedule. The parameter update schedule is as follows:
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1. Update the parameters of q∗(ak).

2. Update the parameters of q∗(τk
η ).

3. Update the parameters of q∗(τk
ε ).

4. Update the parameters of q∗(zk
a).

This schedule was observed in simulation to be numerically stable.

To quantify the algorithm’s enhancement performance we measure the input and

output SNR. If s, r and ŝ denote the clean, noisy and enhanced signals respectively,

then the input and output SNRs are defined as

SNRin = 20 log
‖s‖

‖s− r‖
,

SNRout = 20 log
‖s‖

‖s− ŝ‖
.

In order to determine the appropriate number of iterations, we compute the average

SNR improvement (SNRout − SNRin) after the final iteration of the algorithm for all

the test utterances in the library for various values of number of iterations. Figure 4.2

shows a plot of SNR improvement versus number of iterations for two values of input

SNR: 5 and 10dB. We see that there is minimal SNR improvement after 10 iterations.

However, we set the number of iterations at 30 since this is observed to improve

speaker identification performance. Figure 4.3 shows the spectrograms and speech

waveforms corresponding to the utterance “The shot reverberated in diminishing

whiplashes of sound” when corrupted by additive white Gaussian noise at 10dB and

enhanced using the algorithm. Using a C implementation of the algorithm we can

process a 3 second utterance in approximately 10 seconds when the algorithm is run

for 10 iterations. A C implementation of the Ephraim-Malah enhancement algorithm

processes the same utterance in less than one second.



72

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

10

Number of Iterations

S
N

R
 Im

pr
ov

em
en

t (
dB

)
 

 
5dB
10dB

Figure 4.2: SNR improvement (SNRout − SNRin) after the final iteration of the algo-
rithm versus number of iterations.

To measure the identification performance of the algorithm the posterior speaker

probabilities are computed from the approximate posterior q(zk
a
). The posterior prob-

ability that a given block was generated by a given speaker is

q(`k = i) =

iMa∑

j=(i−1)Ma+1

γk
j

for i ∈ L. For each block, the most likely speaker is determined via the maximum a

posteriori (MAP) criterion using the posterior distribution q(`k). That is

ˆ̀k = arg max
i∈L

q(`k = i).

In order to assign a speaker to the entire utterance we compute

q(` = i) ∝ exp
( K∑

k=1

log q(`k = i)
)

.

Figure 4.4(a) shows a segment of the enhanced signal and the blockwise speaker as-

signment of the sentence “The shot reverberated in diminishing whiplashes of sound”
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(a) (b)

(c)

Figure 4.3: Spectrograms and speech waveforms corresponding to the utterance “The
shot reverberated in diminishing whiplashes of sound”. (a) clean (b) noisy at 10dB
(c) enhanced to 14.3dB.

spoken by the first speaker in the library. As before the input SNR is 15dB and the

algorithm is ran for 30 iterations. We see that a significant number of blocks are

correctly assigned to speaker 1. Also, the initial silence is correctly identified. Figure

4.4(b) shows a plot of the blockwise probabilities q(`k = i) for the segment. This

plot allows us to observe the level of certainty of the speaker assignments. Figure 4.5

shows a plot of the speaker posterior for the entire utterance. It is seen that a MAP

estimate of the speaker would be correct.

We now present enhancement and recognition results for all the test utterances in
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Figure 4.5: Speaker posterior probability.

a library averaged over 100 random libraries of four speakers drawn from the TIMIT

database. We performed experiments to investigate the average SNR improvement

and speaker recognition rates as a function of input SNR. The algorithm was run
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for 30 iterations. Figure 4.6(a) shows a plot of the SNR improvement versus input

SNR while figure 4.6(b) shows the recognition rates averaged over 100 random sets of

four speakers each. We compare the SNR improvement of the algorithm to the SNR

improvement obtained using the Ephraim-Malah enhancement algorithm [27] and

using a Kalman smoother when the true AR coefficients are assumed known. That

is, we obtain the AR coefficients from the clean speech and use these ARs to enhance

the noisy speech using a Kalman smoother. The latter provides an upper bound to

the performance of the algorithm since we employ a Kalman smoother in the VB

E-step to enhance the noisy speech using the current estimate of the AR coefficients.

Since we are working with an estimate of the AR coefficients obtained from noisy

observations, we can not outperform the SNR improvement obtained by a Kalman

smoother using the true AR coefficients. We also compare the recognition rates of the

algorithm to those obtained when 1) AR coeffcients are obtained directly from the

noisy signals 2) MFCCs are obtained from the noisy signal 3) MFCCs are obtained

from the VB enhanced signal and 4) MFCCs are obtained from the Ephraim-Malah

enhanced signal.
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Figure 4.6: SNR improvement versus input SNR (a) and recognition performance (b)
for 4 speaker library.
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From these results we see that significant SNR improvement is obtained by the

algorithm with a maximum SNR improvement of approximately 10dB obtained when

the input SNR is -5dB. The VB algorithm outperforms Ephraim-Malah when the

input SNR is between -5 and 7.5 dB. When the input SNR is between -5dB and 5dB,

the SNR impovement obtained by the VB algorithm is within 1 dB of the perfor-

mance obtained when the true AR coefficients are known (the upper bound since

we have to estimate the AR coefficients and can not outperform a method in which

these coefficients are known). Turning to speaker identification results, we see that

the VB algorithm which relies on AR coefficients achieves performance comparable to

MFCCs obtained directly from the noisy speech. We see that the best identification

rates are obtained when MFCCs obtained using the enhanced speech are used. The

MFCCs obtained from speech enhanced using the VB algorithm outperform MFCCs

from speech enhanced using the Ephraim-Malah algorithm by up to approximately

5%. This shows that the improved performance of the VB algorithm in speech en-

hancement allows for improved speaker identification.

We are also interested in the perceptual quality of the speech enhanced using

our algorithm. To this end we evaluate the Perceptual Evaluation of Speech Quality

(PESQ) score of the enhanced utterances. The PESQ score is highly correlated to the

mean opinion score (MOS) which is a subjective measure of speech quality [69]. To

evaluate the MOS, listeners are asked to rate speech quality on a scale ranging from 1

to 5 with 1 being the worst and 5 the best [23]. In our experiments 80 files corrupted

at input SNRs ranging from 0-10 dB were enhanced using both our algorithm and

Ephraim-Malah. For each file we compute both the input and output PESQ score.

Figure 4.7 shows the PESQ scores for both the VB algorithm and Ephraim-Malah

and the best-fit lines. We see that the VB algorithm outperforms the Ephraim-Malah

algorithm in terms of perceptual quality.
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Figure 4.7: Comparison of perceptual quality performance between the VB algorithm
and Ephraim-Malah

In order to evaluate the performance of the VB algorithm in more realistic noisy

conditions, experiments were performed using the NOIZEUS data set [23]. This data

set contains 30 IEEE sentences corrupted by real world noises at varios SNRs. The

SNR improvement obtained by the VB algorithm is compared to that obtained using

the Ephraim-Malah algorithm. Table 4.1 presents the average SNR improvement for

all 30 sentences in the data set at input SNRs ranging from 0dB to 15dB. From the

experimental results we see that the VB algorithm outperforms the Ephraim-Malah

algorithm in the input SNR range 5dB to 15dB. However at 15dB, both algorithms

introduce distortion leading to degradation of the signal.

We now present experimental results that demonstrate the algorithm’s perfor-

mance in voice activity detection (VAD). All blocks assigned to the ‘silence’ speaker

are classified as silence while blocks assigned to other speakers in the library are col-

lectively classified as ‘speech’. Figures 4.8-4.9 show the VAD decisions obtained by

the VB algorithm and the ITU-G.729 algorithm [56] when the speech is corrupted by

additive white Gaussian noise at 10dB and -5dB. We compare the VAD decisions to

the ground truth. To obtain the ground truth we perform energy thresholding on the
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Table 4.1: SNR improvement for the NOIZEUS data set

Input SNR (dB)
Noise Type Algorithm 0 5 10 15

Train VB 2.41 2.64 1.86 -0.48
Ephraim-Malah 3.07 1.00 -1.99 -5.98

Airport VB 1.10 1.50 1.09 -0.74
Ephraim-Malah 1.94 0.17 -2.49 -6.11

Car VB 1.82 2.18 1.64 -0.57
Ephraim-Malah 5.14 2.07 -1.45 -5.72

clean speech. Any blocks with energy 20dB lower than the maximum energy are clas-

sified as silence. To quantify VAD performance, we compare the percentage of speech

samples correctly identified as either silence or speech by the VB algorithm and the

ITU-G.729 algorithm. Table 4.2 presents the experimental results when 80 speech

files were processed at SNRs ranging from -5dB to 10dB by the two algorithms. We

see that the VB algorithm outperforms the ITU-G.729 algorithm at all input SNRs

considered.

Table 4.2: % of speech samples correctly identified as either speech or silence

Input SNR (dB)
Algorithm -5 0 5 10

VB 59.9 66.7 75.4 83.0
ITU-G.729 51.1 60.4 71.7 79.4

4.5 Conclusions

Experimental results reported in the previous section verify that the proposed VB

algorithm does indeed perform joint speech enhancement and speaker identification.
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Figure 4.8: Voice activity detection results at 10 dB. Ground truth (top), VB decision
with 93% of samples correctly identified (middle) and ITU-G.729 algorithm decision
with 70.5% of samples correctly identified (bottom).
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Figure 4.9: Voice activity detection results at -5 dB. Ground truth (top), VB decision
with 77% of samples correctly identified (middle) and ITU-G.729 algorithm decision
with 42% of samples correctly identified (bottom).

The significant SNR improvement of up to 10dB obtained by the VB algorithm over a

wide range of input SNRs shows that speech enhancement is achieved. Furthermore,

when the input SNR is between -5dB and 5dB, the SNR impovement obtained by

the VB algorithm is within 1 dB of the upper bound obtained when the true AR

coefficients are known. The enhancement performance is also confirmed by observing
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the time domain speech plots and spectrograms in figure 4.3 and by informal listening

tests. Also, the VB algorithm outperforms the Ephraim-Malah algorithm, a standard

baseline which has been found to outperform several speech enhancement algorithms

in the literature [23, chapter 11], in terms of SNR improvement and perceptual quality

as measured using the PESQ score. This result suggests that the full Bayesian treat-

ment employed in the VB algorithm improves speech enhancement performance when

compared to an algorithm in which some parameters are assumed known as is the case

with the Ephraim-Malah algorithm. In the identification experiments, MFCCs from

speech enhanced using the VB algorithm outperform MFCCs from speech enhanced

using the Ephraim-Malah algorithm in the input SNR range of -5dB to 10dB. As an

added benefit, the VB algorithm allows us to perform VAD. From the experimental

results, we see that the VB algorithm outperforms the ITU-G.729 algorithm [56].

In this chapter we have presented a variational Bayesian algorithm that performs

speech enhacement and speaker identification jointly. We demonstrate the power of

approximate Bayesian methods when applied to complex inference problems. The im-

portance of considering speech enhancement and speaker identification jointly within

a Bayesian framework is that we can use rich speaker dependent speech priors to

mitigate the effects of noise and therefore improve speaker identification in noisy

environments. The experimental results provided verify the performance of the algo-

rithm.
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5. Log Spectra Enhancement using Speaker Dependent Priors for

Speaker Verification

The experimental results presented in the previous chapter showed the perfor-

mance gains we can obtain in speech enhancement and speaker identification systems

by making use of speaker dependent priors over the speech parameters. The speaker

dependent priors over the linear prediction coefficients lead to significant performance

improvement in speech enhancement but only moderate improvement in speaker iden-

tification. The main cause for this is that the enhancement is not in the ideal domain

for speaker recognition. To improve speaker recognition, we should enhance features

which capture the spectral properties of the speech signal in a robust manner since

this spectrum is speaker dependent. This motivates the work in this chapter where

we derive a variational Bayesian algorithm that enhances the log spectra of noisy

speech using speaker dependent priors. This algorithm extends prior work by Frey et

al. where the Algonquin algorithm was introduced to enhance speech log spectra in

order to improve speech recognition in noisy environments. Our work is built on the

intuition that speaker dependent priors would provide better enhancement and sub-

sequent speaker verification performance than priors that attempt to capture global

speech properties.

Working in the log spectral domain offers an advantage over the acoustic domain

in the speaker verification setting because we can easily derive Mel frequency cepstral

coefficients (MFCCs) from the enhanced log spectra. MFCCs, which were discussed

in chapter 2, are features which have been successfully used in speaker recognition.

Experimental results using the TIMIT data set and the MIT Mobile Device Speaker

Verification Corpus (MDSVC) are presented that demonstrate the algorithm’s per-

formance to mitigate both additive noise and mismatch between training and testing
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conditions. In both additive Gaussian white noise and realistic noise such as factory

noise, we are able to reduce the equal error rate by up to 50% when we compare our

system to a standard baseline.

5.1 Problem Formulation

We consider the enhancement of log-spectra of observed speech in order to improve

the performance of speaker verification systems by using speaker specific speech priors

in the log spectrum domain. In [70] an approximate relationship between the log

spectra of observed speech and clean speech is derived. We assume that the clean

speech is corrupted by a channel and additive noise. We have

y[t] = h[t] ∗ s[t] + n[t], (5.1)

where y[t] is the observed speech, h[t] is the impulse response of the channel, s[t] is

the clean speech n[t] is the additive noise and ∗ denotes convolution.

Taking the DFT and assuming that the frame size is of sufficient length compared

to the length of the channel impulse response we get

Y [k] = H [k]S[k] +N [k],

where k is the frequency bin index. Taking the logarithm of the power spectrum

y = log |Y [:]|2 it can be shown that [70]

y ≈ s + h + log(1 + exp(n− h− s)) (5.2)

where s = log |S[:]|2, h = log |H [:]|2 and n = log |N [:]|2. The approximate observation
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likelihood is given by

p(y|s,h,n) = N (y|s + h + log(1 + exp(n− h − s)),ψ) (5.3)

where ψ is the covariance matrix of the modelling errors which are assumed to be

Gaussian with zero mean.

In this work we assume that we can mitigate channel effects using methods such

as mean subtraction and concentrate on mitigating the effects of additive distortion.

In this case the observation likelihood becomes

p(y|s,n) = N (y|s + log(1 + exp(n − s)),ψ).

To complete the probabilistic formulation we introduce priors over s and n. In the

speaker verification context, we assume two ‘speakers’: The target speaker and the

‘universal’ speaker represented by the universal background model. Thus the prior

over s is given by

p(s|`) =
Ms∑

m=1

πs
`mN (s;µs

`m,Σ
s
`m) (5.4)

where ` ∈ L = {TargetSpeaker,UBM}

In chapter 4 where we dealt with speaker identification, L was a library of known

speakers. In speaker verification, all speakers are not known before hand and only

target speakers are known. Thus we have a library which varies with every test

utterance depending on who the target speaker is.

We find it analytically convenient to introduce an indicator variable zs that is

a Ms|L| × 1 random binary vector which indicates whether the speech is produced

by the target or ‘universal’ speaker and the mixture coefficient ‘active’ over a given

frame. Thus zs takes values from the columns of the Ms|L|-by-Ms|L| identity matrix.
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We have

p(s|zs) =

Ms|L|∏

i=1

[

N (s;µs
i ,Σ

s
i )

]zs,i

, (5.5)

and

p(zs) =

Ms|L|∏

i=1

(πs
i )

zs,i . (5.6)

The values of πs = [πs
1, . . . , π

s
Ms|L|

]T are computed from the mixture coefficients

of the prior speech models as follows

πs =






pπTar

(1 − p)πUBM




 .

where πTar and πUBM are the mixture coefficients of the target and UBM GMMs

respectively and p is the prior probability that an utterance is from the target speaker.

We select p as an uninformative prior for the experiments by setting p = 0.5.

We assume that the noise is well modelled by a single Gaussian. That is

p(n) = N (n;µn,Σn). (5.7)

This simplifies the derivation of the posterior and is sufficient for the noise types

considered here. Extension to the Gaussian mixture model case is straightforward.

We can now write the joint distribution of this model as

p(y, s, zs,n) = p(y|s,n)p(s|zs)p(zs)p(n). (5.8)

Inference in this model is complicated due to the nonlinear likelihood term. To allow

us to derive a tractable variational inference algorithm we linearize the likelihood as

in [43; 44].

Let g([s,n]) = log(1 + exp(n − s)). We linearize g(.) using a first order Taylor
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series expansion about the point [s0,n0]. We have

g([s,n]) ≈ g([s0,n0]) + ∇g([s0,n0])([s,n] − [s0,n0]) (5.9)

And the linearized likelihood is

p̂(y|s,n) = N (y|s + g([s0,n0]) + G([s,n] − [s0,n0]),ψ) (5.10)

Where G = [Gs,Gn]
def
= ∇g([s0,n0]) with

Gs = diag
[ − exp(n1

0 − s1
0)

1 + exp(n1
0 − s1

0)
, . . . ,

− exp(nN
0 − sN

0 )

1 + exp(nN
0 − sN

0 )

]

Gn = diag
[ exp(n1

0 − s1
0)

1 + exp(n1
0 − s1

0)
, . . . ,

exp(nN
0 − sN

0 )

1 + exp(nN
0 − sN

0 )

]

where N is the dimension of the log spectrum feature vector.

We can now derive a variational Bayesian inference algorithm to enhance the

observed log spectrum.

5.2 Approximate Posterior

Returning to the context of our model, we assume an approximate posterior q(Θ)

that factorizes as follows

q(Θ) = q(s)q(zs)q(n). (5.11)

The factorization used in this work differs from that in Frey et al. [43] by enforcing

independence between the mixture coefficient indicator variable and the clean log

spectra. Thus instead of a mixture of Gaussians posterior over the clean log spectra we

have a single Gaussian. Additionally, the algorithm has been designed to jointly verify

the speaker and enhance the speech using this information. In [43] the factorization
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is

q(Θ) = q(n)

M∑

m=1

ρmq(s|m) (5.12)

where ρm is the posterior probability of the mth mixture component. The optimal

forms of the approximate posterior when the factorization (5.12) from [43] is assumed

are as follows

q(Θ) = N (n;µ∗
n
,Σ∗

n
)

M∑

m=1

ρmN (s;µm,∗
s
,Σm,∗

s
).

The update equations resulting from this factorization are presented in [44].

Using (2.4) we obtain expressions for the optimal form of the factors for the

factorization used in this work given by (5.11). We obtain

1.

q∗(s) = N (s;µ∗
s
,Σ∗

s
) (5.13)

with

Σ∗
s

=
[

ψ−1 + GT
sψ

−1Gs +ψ−1Gs

+ Gsψ
−1 +

Ms|L|∑

i=1

γiΣ
s−1
i

]−1

µ∗
s

= Σ∗
s

[

(I + GT
s )ψ−1(y − g([s0,n0])

− Gnµ
∗
n

+ Gss0 + Gnn0)

+

Ms|L|∑

i=1

γiΣ
s−1
i µs

i

]

2.

q∗(n) = N (n;µ∗
n
,Σ∗

n
) (5.14)
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with

Σ∗
n

=
[

GT
nψ

−1Gn + Σ−1
n

]−1

µ∗
n

= Σ∗
n

[

GT
nψ

−1(y − µ∗
s
− g([s0,n0]) −Gsµ

∗
s

+ Gss0 + Gnn0) + Σ−1
n µn

]

3.

q∗(zs) =

Ms|L|∏

i=1

(γi)
zs,i (5.15)

where

γi =
ρi

∑Ms|L|
i=1 ρi

and

log ρi = −
1

2
(µ∗

s
− µs

i )
TΣs−1

i (µ∗
s
− µs

i )

−
1

2
log |Σs

i | −
1

2
Tr(Σs−1

i Σ∗
s
) + log πs

i .

5.3 The VB Algorithm

To run the algorithm, the observed utterance is divided into K frames and each

frame is enhanced. The linearization point is critical to the performance of the algo-

rithm. As in [43; 44] we linearize the likelihood at the current estimate of the posterior

mean [µ∗
s
,µ∗

n
]. The overall algorithm is summarized in algorithm 4. The posterior

mean of the speech log spectrum at the final iteration is used as the enhanced log

spectrum of that frame. We then derive MFCCs from the enhanced log spectra and

use these to compute scores for each verification trial.
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for k = 1, . . . , K do
Initialize the posterior distribution parameters {µ∗

s
,Σ∗

s
,µ∗

n
,Σ∗

n
, γi};

for n = 1 to Number of Iterations do
Set [s0,n0] = [µ∗

s
,µ∗

n
];

Compute G = [Gs,Gn] and g([s0,n0]);
Update {µ∗

s
,Σ∗

s
,µ∗

n
,Σ∗

n
} using (5.13)-(5.14);

Update γi using (5.15);
end

end

Algorithm 4: VB algorithm

5.4 Computational Complexity

The computational complexity of the algorithm is dominated by the cost to update

the posterior distribution of the clean speech log spectra. From equation (3.10) we

see that the computation of µ∗
s

is dominated by the term
∑Ms|L|

i=1 γiΣ
s−1
i µs

i . Since the

model covariance matrices are diagonal, evaluation of each term has a computational

complexity of O(N) where N is the dimension of the log spectral features. Thus

each update of the mean parameters has a computational cost of O(Ms|L|N) which

is linear in the number of mixture coefficients.

5.5 Experimental Results

In this section we present experimental results that verify the performance of the

algorithm presented in section 5.3. For the simulations we use the TIMIT database

and the MIT Mobile Device Speaker Verification Corpus (MDSVC)[58]. The exper-

iments investigate the equal error rate (EER) and detection error tradeoff (DET)

curve improvement obtained when the VB log spectral enhancement algorithm is

used in speaker verification systems in noisy environments. To obtain noisy speech

from TIMIT data, we add additive white Gaussian noise and realistic noise from the

NOISEX 92 data set.
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The TIMIT data set contains recordings of 630 speakers drawn from 8 dialect

regions across the USA with each speaker recording 10 sentences [57]. The sampling

frequency of the utterances is 16kHz with 16 bit resolution. In order to train the

speaker models we used 8 sentences and used the other 2 for testing. The MIT Mobile

Device Speaker Verification Corpus is a data set that is designed to test speaker

verification systems with limited enrollment data in noisy acoustic conditions. The

speech data consists of recordings of speakers saying ice cream flavor phrases and

names. The recordings are done in an office, hallway and street intersection in order

to provide realistic noisy speech.

5.5.1 System Descriptions

In this section we present the various verification systems whose performance we

measured.

Baseline System

In speaker verification the basic task is to determine whether a given target speaker

is speaking in a particular speech segment. Thus given a speech segment X we test

the following hypotheses

• H0: X is from speaker S

• H1: X is not from speaker S

Here the target speakers are modelled using speaker specific GMMs and a universal

background model (UBM) is used to test the alternate hypothesis H1. The likelihood

ratio is compared to a threshold in order to determine which hypothesis is correct.

For each trial we compute the score

Score = log p(X|TargetModel) − log p(X|UBM). (5.16)
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where X are the features computed from the test utterance. For the baseline system

we use 13 dimensional MFCCs generated every 10ms using a 25ms window as features.

Using the feature vectors extracted from training speech, we train speaker GMMs with

32 mixture coefficients.

Log Spectrum System

This system uses the log spectrum of the speech frames as features. Log spectra

are generated every 10ms using a 25ms window which corresponds to 400 samples

at 16kHz. The FFT length is 512 resulting in a feature vector of length 257. Using

the feature vectors extracted from training speech, we train speaker GMMs with 8

mixture coefficients.

Variational Bayesian System

For this system, we form a library consisting of the target speaker and the UBM

and run algorithm 4 to enhance the noisy log spectra. As with any iterative algorithm,

initialization is very important and it affects the quality of the final solution. In our

experiments, the following initialization scheme was found to work well: We initialize

the posterior mean of the speech log spectrum, µ∗
s
, to the log spectrum of the noisy

speech frame. The posterior covariance of the speech log spectrum, Σ∗
s
, was initialized

as the identity matrix. We initialize the posterior mean of the noise log spectrum,

µ∗
n
, to the all zero vector. The posterior covariance of the noise log spectrum, Σ∗

s
,

was initialized as the identity matrix. Finally we initialize the parameters of q(zs) as

γi = 1
Ms|L|

.

Since we update the posterior parameters one at a time, we need to specify a

parameter update schedule. The parameter update schedule is as follows:

1. Update the parameters of q∗(n).
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2. Update the parameters of q∗(s).

3. Update the parameters of q∗(zs).

This schedule was observed in simulation to be numerically stable.

For our experiments, the algorithm was run for 5 iterations and the posterior

mean of the speech log spectrum at the final iteration was used as the enhanced log

spectrum of that frame. Using the enhanced log spectra for a given utterance, scores

for each verification trial are computed using (5.16).

We also derive MFCCs from the enhanced log spectra and use these to compute

scores for each verification trial. Thus for the VB system we have two results: one

using the enhanced log spectra and the other using the MFCCs derived from these

log spectra.

Feature Domain Intersession Compesation (FDIC) System

This system is implemented as described in section 2.3. In order to train the

intersession subspace for the TIMIT data experiments, training utterances from the

target speakers were corrupted at various SNRs using additive white noise. These

training utterances were then used to obtain speaker models via MAP adaptation of

a UBM model with 32 mixture coefficients. Using the projection matrix obtained,

feature compensation was performed during training and testing. For the MDSVC

data set, speaker models from the three recording conditions: an office, hallway and

street intersection were used to obtain the projection matrix.

5.5.2 TIMIT Speaker Verification Results

We now turn to experiments aimed at determining the speaker verification perfor-

mance of the systems in noisy conditions. We assume that the TIMIT data is clean

and the SNR only accounts for the additive distortion we introduce. In this work the
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input SNR is defined as

SNRin = 10 log

∑

t s
2[t]

∑

t(s[t] − y[t])2
.

where s[t] is the clean speech and y[t] is the observed speech.

The UBMs were trained using the training data for a random 300 speaker subset

of the 630 speaker TIMIT data set. The MFCC UBMs and speaker models had 32

mixtures while the log spectra UBMs and speaker models had 8 mixtures.

The verification experiments were performed with the test utterances corrupted

by additive white Gaussian noise at various input SNRs. For each of the 630 speakers

we have two test utterances yielding 1260 true trials. To generate impostor trials, a

random set of ten speakers was selected from the remaining speakers and the corre-

sponding test utterances used to generate 20 impostor trials per speaker. Thus there

are a total of 12600 impostor trials.

For the FDIC experiments, the projection matrix was trained using speaker models

derived from the UBM with the training speech degraded by additive white Gaussian

noise at SNRs ranging from 0dB to 30dB. For each speaker, 14 models were trained

using data degraded at 0, 5, 10 ,20, 21, . . . , 30dB. The pairwise differences between

the 14 models for all the speakers were used to determine the projection matrix. In

order to determine an appropriate subspace dimension, verification experiments were

performed using speech corrupted by additive white Gaussian noise at 10dB, 20dB

and 22dB and the subspace dimension varied from 2 to 10. Table 5.1 shows the EERs

obtained. From these results a 2 dimensional subspace was used for the experiments.

Table 5.2 shows the equal error rates (EER) obtained in our verification experi-

ments at various input SNRs. Figures 5.1-5.3 show the corresponding DET curves.

We see that the VB algorithm improves the performance of both the MFCC and

log spectral systems. We see that in the range 20-30dB the VB algorithm reduces
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Table 5.1: Speaker verification EER (%) as a function of subspace dimension for the
TIMIT data set

SNR (dB)
System Dimension 10 20 22

MFCCs (Baseline) - 43.49 23.25 18.97
FDIC 2 33.17 20.08 17.94
FDIC 5 35.40 25.40 25.32
FDIC 10 36.51 28.81 27.38

the EER by approximately 50% in all cases. For example at 30dB the the MFCC

EER is reduced from 6.83% to 3.65%. Also the VB algorithm outperforms the FDIC

algorithm.

Table 5.2: Speaker verification EER (%) for the entire TIMIT data set

SNR (dB)
System 10 20 22 24 26 28 30

MFCCs (Baseline) 43.49 23.25 18.97 15.24 11.98 9.21 6.83
VB (MFCC) 26.51 11.83 9.44 7.46 6.27 4.84 3.65

FDIC 33.25 20.56 17.94 15.63 14.84 12.62 10.56
Log Spectra 49.68 45.16 43.89 43.17 42.06 40.79 40.48

VB (Log Spectra) 44.68 43.57 42.78 42.22 41.51 40.40 40.71

TIMIT Speaker Verification Results in Realistic Noise

We now turn to experiments aimed at demonstrating the performance of the

algorithm in realisitic noisy conditions. To this end we add noise from the NOISEX

92 data set [22] to the clean TIMIT data at various SNRs. This data set consists of

recordings of various types of noise including factory noise and speech babble. The

recordings are sampled at 19.98kHz and it is necessary to resample the recordings
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Figure 5.1: Speaker verification performance for the entire TIMIT data set at 10dB.
We see that MFCCs obtained from enhanced log spectra yield the best performance.

since TIMIT recordings are sampled at 16kHz.

The experiments using the entire TIMIT data set were repeated using factory

noise and speech babble. Table 5.3 shows the equal error rates (EER) obtained in

our verification experiments at various input SNRs using factory noise. Table 5.4

shows the equal error rates (EER) obtained in our verification experiments at various

input SNRs using speech babble. As in the white noise case, the MFCCs obtained

from enhanced log spectra give the best performance. However these results are better

than those obtained using white noise. For example in factory noise at 20dB the EER

is reduced from 7.54% to 3.17% using the VB algorithm. Similarly in speech babble,

the EER is reduced from 9.52% to 4.84% at 10dB.
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Figure 5.2: Speaker verification performance for the entire TIMIT data set at 20dB.
The VB algorithm outperforms the FDIC algorithm.

5.5.3 MDSVC Speaker Verification Results

In the MDSVC data set, each speaker records 54 utterances in two sessions, one for

training and the other for testing. The 54 utterances are recorded in three conditions:

in an office, a hallway and a noisy street intersection. 18 utterances are recorded in

each environment. The speaker models are trained using the 18 utterances recorded

in an office since these are the closest to clean. Each utterance is approximately two

seconds long. There are 48 target speakers in the data set with 22 female speakers

and 26 male speakers. There are 40 impostors with 23 male and 17 female. In our

experiments, all trials are same sex trials and all 18 utterances recorded in a given

environment are used. This yields a total of 864 true trials and 17496 impostor trials.

For the FDIC system, the projection matrix is trained using models derived from

the three recording environments and experiments were performed to determine the
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Figure 5.3: Speaker verification performance for the entire TIMIT data set at 30dB.
Here the FDIC algorithm degrades the system performance.

appropriate subspace dimension. A subspace dimension of 2 was found to work well.

In our initial experiment we examine the performance of a baseline GMM-UBM

speaker verification system. We investigate the EER performance of the system when

the test utterances are recorded in the three different environments. Table 5.5 shows

the EERs for the test data from different locations. Figure 5.4 shows the correspond-

ing DET curves. We see that mismatch between training and testing data leads

to performance degradation. The EER increases from 14.24% to 28.82% when the

training data is recorded in an office but the test data is obtained in a noisy street

intersection. These EERs are comparable to those obtained in [3, Fig. 7].

In order to investigate the performance of the VB log spectral algorithm on this

data set, experiments were performed to determine the EER improvement obtained

when the test speech was recorded in various locations with both the MFCC and

log spectral models trained using office speech. Table 5.6 shows the EERs obtained



97

Table 5.3: Speaker verification EER (%) for the entire TIMIT data set in factory
noise

SNR (dB)
System 0 5 10 15 20 25 30

MFCCs (Baseline) 46.79 39.13 27.78 15.95 7.54 2.94 1.67
VB (MFCC) 35.48 23.49 11.90 6.11 3.17 2.06 1.51
Log Spectra 47.22 46.35 44.05 40.85 37.54 35.40 34.84

VB (Log Spectra) 44.84 42.06 39.92 37.78 35.87 35.08 35.48

Table 5.4: Speaker verification EER (%) for the entire TIMIT data set in speech
babble

SNR (dB)
System 0 5 10 20 30
MFCCs 33.25 20.69 9.52 2.22 1.27

VB (MFCC) 22.62 11.11 4.84 2.14 1.27
Log Spectra 45.40 42.78 39.68 35.87 35.71

VB (Log Spectra) 41.98 38.89 36.98 34.84 35.56

by the systems described in section 5.5.1. Figure 5.5 shows the corresponding DET

curves when the test data is recorded at a noisy street intersection. We see that the

VB algorithm significantly improves the EER from 28.82% to 24.54%. Also, the VB

algorithm outperfoms the FDIC technique which improves the EER to 27.89%.

5.5.4 SRE Speaker Verification Results

For the SRE data, we report results on the core test of the 2004 evaluation where

one conversation side is used for both training and testing (1side-1side). The speaker

models are GMMs with 512 mixtures and the features are 18 dimensional MFCCs

with delta features. We also make use of gender dependent UBMs. The VB algorithm

is run in the same manner as for the TIMIT data. However since all SRE data

is corrupted by additive noise and the telephone channel, the speaker models we
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Table 5.5: Speaker verification results for MDSVC test data in the three different
environments

Location EER (%)
Office 14.24

Hallway 22.92
Intersection 28.82
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Figure 5.4: Baseline GMM-UBM speaker verification system performance for test
data drawn from different environments when training data was recorded in an office.
These EERs are comparable to the baseline performance obtained in [3, Fig. 7].

obtain are not as good as those obtained with TIMIT data. Also, we estimate the

noise distribution by computing the mean and variance of the frames discarded by

the energy detector. To determine the improvement in performance in trials with

telephone type mismatch between training data and testing data, the trials were

divided into two sets: those in which training and testing data were obtained from

the same telephone type (matched) and those where they differ (mismatched). Figure
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Table 5.6: Speaker verification EER (%) for the MDSVC data set

System Intersection EER
MFCCs (Baseline) 28.82

VB (MFCC) 24.54
FDIC 27.89

Log Spectra 42.71
VB (Log Spectra) 40.63
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Figure 5.5: Speaker verification system performance for test data drawn from a noisy
street intersection for the VB log spectral enhancement algorithm.

5.6 shows the DET curves corresponding to the 1side-1side trials. Overall we see

that a slight improvement is obtained in EER with our baseline system yielding an

EER of 13.89% and the VB system yielding an EER of 13.43%.This performance is

comparable to that obtained by other authors on SRE 2004 data [65]. Furthermore a

greater relative improvement of 5% is obtained when mismatched trials are considered

separately with the EER reducing from 16.53% to 15.70% as compared to matched
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trials where the relative improvement is 3% with the EER reducing from 11.58% to

11.23%.
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Figure 5.6: Speaker verification performance on SRE 2004 data for the 1side-1side
condition.

5.6 Conclusions

The experimental results reported in the previous section verify that the proposed

log spectrum enhancement algorithm does indeed improve speaker verification in noisy

environments and compensates for mismatch between training and testing conditions.

For the TIMIT data set, significant improvements in EER performance are obtained

in both white noise and realistic noisy conditions. In white noise, the EER is reduced

from 6.83% to 3.65 at 30dB, in factory noise at 20dB the EER is reduced from 7.54%

to 3.17% using the VB algorithm. Similarly in speech babble, the EER is reduced
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from 9.52% to 4.84% at 10dB. In each of these cases, the algorithm presented in this

paper has reduced the verification system EER by approximately 50%. Also, we see

that the VB algorithm outperforms FDIC which is a state of the art feature domain

technique. At 20 dB, the VB algorithm reduces the EER from 23.25% to 11.83%

while FDIC reduces the EER to 20.56%.

The experimental results using the MIT Mobile Device Speaker Verification Cor-

pus demonstrate the compensation of mismatch in realistic environments. Using the

VB algorithm, we are able to improve the EER from 28.82% to 24.54% when training

data is recorded in an office and test data is recorded at a noisy street intersection.

Once again the VB algorithm outperforms FDIC which reduces the EER to 27.89%.

The improvement in performance on SRE data is less than that obtained on

TIMIT data. This could be due to the lack of clean training data in this data set.

Thus the extension of the model to handle channel and handset mismatch and a means

to train clean speaker models could yield improvement in SRE performance similar

to that currently obtained on TIMIT. The fact that greater relative improvement

in performance is obtained when mismatched trials are considered shows that this

algorithm does indeed compensate mismatch between training and testing conditions

in speaker verification systems even on the SRE dataset where no clean speech is

available to train models.

In summary this chapter has demonstrated the performance of a log spectra en-

hancement algorithm to improve speaker verification performance in noisy acoustic

environments. The encouraging experimental results indicate the potential of using

speaker dependent priors in the log spectrum domain to improve the performance of

speaker verification systems in noisy environments.
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6. Conclusions

The work presented in this thesis is aimed at improving the performance of speech

processing systems in noisy acoustic environments. In particular, we present algo-

rithms that perform speech enhancement, voice activity detection and speaker recog-

nition. The algorithms developed in this thesis are all Bayesian algorithms which offer

a means of robust estimation of speech parameters from speech signals corrupted by

noise. Due to the computational complexity of Bayesian inference, our algorithms

employ approximations to make inference possible. In this thesis we develop varia-

tional Bayesian algorithms to improve the performance of several speech processing

problems.

In chapter 4 we derive a joint speech enhancement and speaker identification

algorithm that takes advantage of the fact that speech enhancement and speaker

identification are inextricably linked. With enhanced speech, speaker identification

decisions are more accurate and on the other hand with accurate speaker identifi-

cation we can use speaker dependent priors over the speech parameters to improve

speech enhancement. This relationship is captured in an iterative VB algorithm that

exchanges information between the speech enhancement and speaker identification

tasks. The experimental results presented in this chapter show that significant SNR

improvement is obtained by the VB algorithm with a maximum SNR improvement

of approximately 10dB. Also, we achieve SNR improvements within 1 dB of the per-

formance obtained by the theoretical upper limit. Furthermore, the VB algorithm

outperforms the Ephraim-Malah algorithm which is a standard baseline in both SNR

improvement and perceptual quality as measured using the PESQ score.

In addition to performing joint speech enhancement and speaker identification,

the algorithm presented in chapter 4 is capable of performing robust voice activity
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detection (VAD). The algorithm makes use of priors over linear prediction coefficients

in silence dominated regions to accurately classify speech segments as either speech or

non-speech. The experimental results show that the VB algorithm outperforms the

ITU-G.729 algorithm which is the international telecommunications union standard.

In chapter 5 we present a VB algorithm for the enhancement of log spectral

features and show how this algorithm can be applied to speaker verification to im-

prove equal error rate performance. Working in the log spectral domain offers an

advantage over the acoustic domain in the speaker verification setting because we

can easily derive Mel frequency cepstral coefficients (MFCCs) from the enhanced log

spectra. We make use of speaker dependent priors over the log spectral features and

we demonstrate improved system performance in various noise conditions such as ad-

ditive Gaussian noise, factory noise and speech babble. We are able to reduce the

EER by up to 50% when we compare our system to a standard baseline.
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Appendix A. Approximate Posterior Derivations for Chapter 3

We now present the details for each of the factors starting with q(τη). We have

log q∗(τη) = EΘ\τη
{log p(X,Θ)} + const.

= ES,h{log p(X|S,h, τη)} + log p(τη) + const.

= ES,h

{ N−1∑

n=0

logN (xn;hT sn, τ
−1
η )

}

+ log p(τη) + const.

=
1

2
ES,h

{ N−1∑

n=0

log(τη) − τη(xn − hT sn)2
}

+ (aη − 1) log(τη) − bητη + const.

= (aη +
N

2
− 1) log(τη) − τη

[

bη +
1

2
ES,h

{ N−1∑

n=0

(xn − hT sn)2
}]

+ const.(A.1)

From (A.1) we can write

q∗(τη) = Gam(τη|a
∗
η, b

∗
η)

with

a∗η = aη +
N

2
, (A.2)

b∗η = bη +
1

2
ES,h

{ N−1∑

n=0

(xn − hT sn)2
}

. (A.3)

Similarly

log q∗(β) = EΘ\β{log p(X,Θ)} + const.

= Ea{log p(a|β)} + log p(β) + const.

= Ea

{P

2
log(β) −

β

2
aT a

}

+ (aβ − 1) log(β) − bββ + const.

= (aβ +
P

2
− 1) log(β) − β

[

bβ +
1

2
Ea{a

T a}
]

(A.4)
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From (A.4) we can write q∗(β) = Gam(β|a∗β, b
∗
β) with

a∗β = aβ +
P

2
, (A.5)

b∗β = bβ +
1

2
Ea{a

Ta}. (A.6)

The optimal factor q∗(π) is now derived. We have

log q∗(π) = EΘ\π{log p(X,Θ)} + const.

= EZ{log p(Z|π)} + log p(π) + const.

= EZ

{ N−1∑

n=0

M∑

m=1

znm log(πm)
}

+ (α0 − 1)
M∑

m=1

log(πm) + const.

=

M∑

m=1

{

α0 +

N−1∑

n=0

EZ{znm} − 1
}

log(πm) + const. (A.7)

Thus q∗(π) = Dir(π|α∗
0) with

α∗
0 = α0 +

N−1∑

n=0

EZ{znm}. (A.8)
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Turning to q(Z) and following [10, p. 476] we have

log q∗(Z) = EΘ\Z{log p(X,Θ)} + const.

= ES,a,τ{log p(S|Z, a, τ )} + Eπ{log p(Z|π)} + const.

= ES,a,τ

{ N−1∑

n=0

M∑

m=1

znm logN (sn; a
T s∗n−1, τ

−1
m )

}

+ Eπ

{ N−1∑

n=0

M∑

m=1

znm log(πm)
}

+ const.

= ES,a,τ

{ N−1∑

n=0

M∑

m=1

znm[
1

2
log(τm) −

τm

2
(sn − aT s∗n−1)

2]
}

+ Eπ

{ N−1∑

n=0

M∑

m=1

znm log(πm)
}

+ const.

=

N−1∑

n=0

M∑

m=1

znm

[1

2
Eτ{log(τm)} −

Eτ{τm}

2
ES,a{(sn − aT s∗n−1)

2} + Eπ{log(πm)}
]

︸ ︷︷ ︸

log(ρnm)

+ const. (A.9)

From (A.9) we see that

q∗(Z) ∝
N−1∏

n=0

M∏

m=1

ρznm

nm .

If

γnm =
ρnm

∑M
m=1 ρnm

(A.10)

then

q∗(Z) =

N−1∏

n=0

∏

m=1

γznm

nm . (A.11)
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Considering q∗(τ ) we have

log q∗(τ ) = EΘ\τ{log p(X,Θ)} + const.

= ES,Z,a{log p(S|Z, a, τ )} + log p(τ ) + const.

= ES,Z,a

{ N−1∑

n=0

M∑

m=1

znm logN (sn; a
T s∗n−1, τ

−1
m )

}

+

M∑

m=1

{

(a0 − 1) log(τm) − b0τm

}

+ const.

= ES,Z,a

{ N−1∑

n=0

M∑

m=1

znm[
1

2
log(τm) −

τm

2
(sn − aT s∗n−1)

2]
}

+

M∑

m=1

{

(a0 − 1) log(τm) − b0τm

}

+ const.

=
M∑

m=1

{1

2

( N−1∑

n=0

EZ{znm}
)

+ a0 − 1
}

log(τm)

−
M∑

m=1

τm

[

b0 +
1

2

N−1∑

n=0

(

EZ{znm}ES,a{(sn − aT s∗n−1)
2}

)]

+ const.(A.12)

Which implies that

q∗(τ ) =

M∏

m=1

Gam(τm|a
∗
m, b

∗
m)

with

a∗m = a0 +
1

2

( N−1∑

n=0

EZ{znm}
)

, (A.13)

b∗m = b0 +
1

2

N−1∑

n=0

(

EZ{znm}ES,a{(sn − aT s∗n−1)
2}

)

. (A.14)
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Similarly

log q∗(λ) = EΘ\λ{log p(X,Θ)} + const.

= Eh{log p(h|λ)} + log p(λ) + const.

= Eh

[1

2

Lh−1∑

i=0

log λi −
1

2
λih

2
i

]

+

Lh−1∑

i=0

{(aλ − 1) log λi − bλλi} + const.

=

Lh−1∑

i=0

(aλ +
1

2
− 1) log λi −

Lh−1∑

i=0

λi(bλ +
1

2
Eh{h

2
i }) + const. (A.15)

Which implies that

q∗(λ) =

Lh−1∏

i=0

Gam(λi|a
∗
λi, b

∗
λi)

with

a∗λi = aλ +
1

2
, (A.16)

b∗λi = bλ +
1

2
Eh{h

2
i }. (A.17)

Turning to the AR coefficients we have

log q∗(a) = EΘ\a{log p(X,Θ)} + const.

= ES,Z,τ{log p(S|Z, a, τ )} + Eβ{log p(a|β)} + const.

= ES,Z,τ

{ N−1∑

n=0

M∑

m=1

znm[
1

2
log τm −

τm

2
(sn − aT s∗n−1)

2]
}

+ Eβ

{P

2
log β −

β

2
aTa

}

+ const. (A.18)
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(A.18) is quadratic in a and we can write

log q∗(a) = −
1

2
aT

[ M∑

m=1

Eτ{τm}
( N−1∑

n=0

EZ{znm}ES{s
∗
n−1s

∗T
n−1}

)

+ Eβ{β}I
]

a

+ aT
[ M∑

m=1

Eτ{τm}
(

EZ{znm}ES{sns
∗
n−1}

)]

+ const. (A.19)

From (A.19) we see that q∗(a) = N (a;µ∗
a
,Σ∗

a
) with

Σ∗
a

=
[ M∑

m=1

Eτ{τm}
( N−1∑

n=0

EZ{znm}ES{s
∗
n−1s

∗T
n−1}

)

+ Eβ{β}I
]−1

, (A.20)

µ∗
a

= Σ∗
a

[ M∑

m=1

Eτ{τm}
( N−1∑

n=0

EZ{znm}ES{sns
∗
n−1}

)]

. (A.21)

Considering q∗(h) we have

log q∗(h) = EΘ\h{log p(X,Θ)} + const.

= ES,τη
{log p(X|S,h, τη)} + Eλ{log p(h|λ)} + const.

= ES,τη

{ N−1∑

n=0

(1

2
log τη −

τη

2
(xn − hT sn)2

)}

−
1

2
hT

Eλ{Λ}h + const.(A.22)

where Λ = diag(λ). (A.22) is quadratic in h and we can write

log q∗(h) = −
1

2
hT

[

Eτη
{τη}

( N−1∑

n=0

ES{sns
T
n}

)

+ Eλ{Λ}
]

h

+ hT
(

Eτη
{τη}

N−1∑

n=0

ES{xnsn}
)

+ const. (A.23)
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From (A.23) we see that q∗(h) = N (h;µ∗
h
,Σ∗

h
) with

Σ∗
h

=
[

Eτη
{τη}

( N−1∑

n=0

ES{sns
T
n}

)

+ Eλ{Λ}
]−1

, (A.24)

µ∗
h

= Σ∗
h

(

Eτη
{τη}

N−1∑

n=0

ES{xnsn}
)

. (A.25)

Finally we derive q∗(S). We have

log q∗(S) = EΘ\S{log p(X,Θ)} + const.

= Eh,τη
{log p(X|S,h, τη)} + EZ,a,τ{log p(S|Z, a, τ )} + const.

= Eh,τη

N−1∑

n=0

{1

2
log τη −

τη

2
(xn − hT sn)2

}

+ EZ,a,τ

N−1∑

n=0

M∑

m=1

{

znm[
1

2
log τm −

τm

2
(sn − aT s∗n−1)

2]
}

+ const.

= −
1

2
Eh,τη

{ N−1∑

n=0

τη(xn − hT sn)2
}

−
1

2

N−1∑

n=0

( M∑

m=1

EZ{znm}Eτ{τm}
)

︸ ︷︷ ︸

ζ∗n

Ea{(sn − aT s∗n−1)
2} + const.(A.26)

= −
1

2
Eh,τη

{ N−1∑

n=0

τη(xn − h0sn − h̃T s̃n)2
}

−
1

2

N−1∑

n=0

ζ∗nEa{(sn − aT s∗n−1)
2} + const.

= −
1

2
Eh,τη

{ N−1∑

n=0

τηh
2
0

(

sn −
1

h0
(xn − h̃T s̃n)

)2}

−
1

2

N−1∑

n=0

ζ∗nEa{(sn − aT s∗n−1)
2} + const. (A.27)

where h̃ = [h1, . . . , hLh−1]
T and s̃n = [sn−1, . . . , sn−Lh+1]

T .
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Recognizing that q∗(S) =
∏N−1

n=0 q(sn|sn−1, . . . , s0) and

log q∗(S) =

N−1∑

n=0

log q(sn|sn−1, . . . , s0).

From (A.26) we have

log q∗(S) = −
1

2

N−1∑

n=0

(ζ∗n + Eh,τη
{τηh

2
0})s

2
n

+

N−1∑

n=0

sn

(

Eh,τη
{τηho(xn − h̃T s̃n)} + ζ∗nEa{a

T s∗n−1}
)

+ const.(A.28)

We see that (A.28) is the sum of terms that are quadratic in sn and we conclude that

q∗(S) =
N−1∏

n=0

N (sn;µ
∗
n|n−d:n−1, τ

∗−1
n|n−d:n−1) (A.29)

with

τ ∗n|n−d:n−1 = ζ∗n + Eh,τη
{τηh

2
0}, (A.30)

µ∗
n|n−d:n−1 = τ ∗−1

n

(

Eh,τη
{τηho(xn − h̃T s̃n)} + ζ∗nEa{a

T s∗n}
)

. (A.31)

where d = max{Lh, P}.

From the form of the posterior, we observe that it can be derived from a Gaussian

linear state space model (GLSSM) [7]. To see this consider a GLSSM described by

sn = Asn−1 + e1εn εn ∼ N (εn; 0, τ
−1
ε,n ) (A.32)

xn = hT sn + ηn ηn ∼ N (ηn; 0, τ−1
η,n). (A.33)

Where A is the d × d state transition matrix, h is the d × 1 observation vector and
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e1 is the first column of the d× d identity matrix. From (A.32) and (A.33) we have

p(sn|sn−1) = N (sn; a
T sn−1, τ

−1
ε,n ), (A.34)

p(xn|sn) = N (xn;hT sn, τ
−1
η,n). (A.35)

where a is the first row of A.

We now consider the posterior q(sn|sn−1, x0:n) where x0:n = {x0, . . . , xn}. We have

q(sn|sn−1, x0:n) =
p(sn, sn−1, x0:n)

p(sn−1, x0:n)

∝ p(x0:n|sn, sn−1)p(sn|sn−1)

= p(sn|sn−1)

n∏

i=0

p(xi|si, si−1)

∝ p(sn|sn−1)p(xn|sn, sn−1)

= p(sn|sn−1)p(xn|sn)

where all terms independent of sn have been lumped into a constant. Using (A.34)

and (A.35) we have

q(sn|sn−1, x0:n) ∝ N (sn; a
T sn−1, τ

−1
ε,n ) ×N (xn;h

T sn, τ
−1
η,n)

∝ exp
[

−
τε,n

2
(sn − aT sn−1)

2 −
τη,n

2
(xn − hT sn)2

]

(A.36)

Comparing (A.26) and (A.36) we see that we can determine moments with respect

to q∗(S) using a Kalman filter applied to the GLSSM characterized by (A.32) and
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(A.33) with

A =



















µ∗
a1 µ∗

a2 . . . µ∗
aP 0 . . . 0

1 0 . . . 0 0 . . . 0

0 1 . . . . . . 0

...
. . .

...

0 . . . 1 0



















(A.37)

where µ∗
a

= [µ∗
a1, µ

∗
a2, . . . , µ

∗
aP ]T .

h = [µ∗
h0, µ

∗
h2, . . . , µ

∗
h(Lh−1), 0, . . . , 0

︸ ︷︷ ︸

d terms

]T ,

τε,n = ζ∗n,

τη,n = Eτη
{τη} = τ ∗η ,

and d = max{Lh, P}.
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Appendix B. Approximate Posterior Derivations for Chapter 4

In this appendix we derive the optimal factors of the approximate posterior pre-

sented in section 5.2. Starting with the optimal form of q(τk
η ) we have

log q∗(τk
η ) = EΘ\τk

η
{log p(r1:K ,Θ)} + const.

= Esk{log p(rk|sk, τk
η )} + log p(τk

η ) + const.

= Esk{
N∑

n=1

logN (rk
n; s

k
n, τ

k
η )} + log p(τk

η ) + const.

= Esk{
N∑

n=1

1

2
log τk

η −
τk
η

2
(rk

n − sk
n)2}

+ (aη − 1) log τk
η − bητ

k
η + const.

= (aη +
N

2
− 1) log τk

η

− τk
η [bη +

1

2
Esk{

N∑

n=1

(rk
n − sk

n)2}] + const. (B.1)

From (B.1) we obtain (4.11)

q∗(τk
η ) = Gam(τk

η |a
∗
η, b

∗
η)

with

a∗η = aη +
N

2
,

b∗η = bη +
1

2
Esk

{ N∑

n=1

(rk
n − sk

n)2
}

.

For q(τk
ε ) we have
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log q∗(τk
ε ) = EΘ\τk

ε
{log p(r1:K,Θ)} + const.

= Esk ,ak{log p(sk|ak, τk
ε )} + log p(τk

ε ) + const.

= Esk ,ak{
N∑

n=1

logN (sk
n; akTsk

n−1, (τ
k
ε )−1)}

+ log p(τk
ε ) + const.

= Esk ,ak

{ N∑

n=1

(1

2
log τk

ε −
τk
ε

2
(sk

n − akT sk
n−1)

2
)}

+ (aε − 1) log τk
ε − bετ

k
ε + const. (B.2)

From (B.2) we obtain (4.12)

q∗(τk
ε ) = Gam(τk

ε |a
∗
ε , b

∗
ε )

with

a∗ε = aε +
N

2
,

b∗ε = bε +
1

2
Esk,ak

{ N∑

n=1

(sk
n − akT sk

n−1)
2
}

.

Turning to q(zk
a) we have
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log q∗(zk
a) = EΘ\zk

a
{log p(r1:K ,Θ)} + const.

= Eak{log p(ak|zk
a)} + E

z
k−1
a

{log p(zk
a|z

k−1
a )}

+ E
z

k+1
a

{log p(zk+1
a |zk

a)} + const.

= Eak

{ Ma|L|∑

i=1

zk
a,i logN (ak;µa

i ,Σ
a
i )

}

+

Ma|L|∑

i=1

zk
a,i

{

E
z

k−1
a

( Ma|L|∑

j=1

zk−1
a,j log tij

)

+ E
z

k+1
a

( Ma|L|∑

n=1

zk+1
a,n log tni

)}

+ const.

=

Ma|L|∑

i=1

zk
a,i

{

−
1

2
log |Σa

i |

−
1

2
Eak{(ak − µa

i )
TΣa−1

i (ak − µa
i )}

+

Ma|L|∑

j=1

E
z

k−1
a

{zk−1
a,j } log tij

+

Ma|L|∑

n=1

E
z

k+1
a

{zk+1
a,n } log tni

}

+ const. (B.3)

From (B.3) we obtain (4.13)

q∗(zk
a) =

Ma|L|∏

i=1

(γk
i )zk

a,i

where

γk
i =

ρk
i

∑Ma|L|
i=1 ρk

i
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and

log ρk
i = −

1

2
log |Σa

i |

−
1

2
Eak{(ak − µa

i )
TΣa−1

i (ak − µa
i )}

+

Ma|L|∑

j=1

E
z

k−1
a

{zk−1
a,j } log tij

+

Ma|L|∑

n=1

E
z

k+1
a

{zk+1
a,n } log tni

Considering q(ak) we have

log q∗(ak) = EΘ\ak{log p(r1:K ,Θ)} + const.

= Esk ,τk
ε
{log p(sk|ak, τk

ε )}

+ Ezk
a
{log p(ak|zk

a)} + const.

= Esk ,τk
ε

{ N∑

n=1

logN (sk
n; a

kT sk
n−1, (τ

k
ε )−1)

}

+ Ezk
a

{ Ma|L|∑

i=1

zk
a,i logN (ak;µa

i ,Σ
a
i )

}

+ const.

= −
Eτk

ε
{τk

ε }

2
Esk

{ N∑

n=1

(sk
n − akT sk

n−1)
2
}

−
1

2

Ma|L|∑

i=1

Ezk
a
{zk

a,i}
{

(ak − µa
i )

TΣa−1
i (ak − µa

i )
}

+ const. (B.4)
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(B.4) is quadratic in ak and we can write

log q∗(ak) = −
1

2
akT

[ N∑

n=1

Eτk
ε
{τk

ε }Esk{sk
n−1s

kT
n−1}

+

Ma|L|∑

i=1

Ezk
a
{zk

a,i}Σ
a−1
i

]

ak

+ akT
[ N∑

n=1

Eτk
ε
{τk

ε }Esk{sk
ns

k
n−1}

+

Ma|L|∑

i=1

Ezk
a
{zk

a,i}Σ
a−1
i µa

i

]

+ const. (B.5)

From (B.5) we obtain (4.14)

q∗(ak) = N (ak;µ∗
a
,Σ∗

a
)

with

Σ∗
a

=
[ N∑

n=1

Eτk
ε
{τk

ε }Esk{sk
n−1s

kT
n−1}

+

Ma|L|∑

i=1

Ezk
a
{zk

a,i}Σ
a−1
i

]−1

µ∗
a

= Σ∗
a

[ N∑

n=1

Eτk
ε
{τk

ε }Esk{sk
ns

k
n−1}

+

Ma|L|∑

i=1

Ezk
a
{zk

a,i}Σ
a−1
i µa

i

]
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Turning to q∗(sk) we have

log q∗(sk) = EΘ\sk{log p(r1:K ,Θ)} + const.

= Eτk
η
{log p(rk|sk, τk

η )}

+ Eak,τk
ε
{log p(sk|ak, τk

ε )} + const.

= Eτk
η

{ N∑

n=1

logN (rk
n; s

k
n, τ

k
η )

}

+ Eak,τk
ε

{ N∑

n=1

logN (sk
n; a

kT sk
n−1, (τ

k
ε )−1)

}

+ const.

= Eτk
η
{

N∑

n=1

−
τk
η

2
(rk

n − sk
n)2}

+ Eak,τk
ε

{

−
τk
ε

2

N∑

n=1

(sk
n − akT sk

n−1)
2
}

+ const. (B.6)

Expanding the terms in (B.6) and evaluating the expectations yields (4.15).

log q∗(sk) = −
1

2

N∑

n=1

a∗η

b∗η
(rk

n − sk
n)2

−
1

2

N∑

n=1

a∗ε
b∗ε

(

(sk
n)2 − 2µ∗T

a
sk

ns
k
n−1

+ skT
n−1µ

∗
a
µ∗T

a
sk
n−1 + skT

n−1Σ
∗
a
sk
n−1

)

+ const.

To arrive at the conclusion that E{sk
n}, E{sk

ns
kT
n } and E{sk

ns
kT
n−1} can be com-

puted using a Kalman smoother consider the following state space model where
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yk
n = [rk

n, 0, . . . , 0]T

sk
n = Ask

n−1 + Guk
n (B.7)

yk
n = Hsk

n + vk
n (B.8)

with

uk ∼ N (uk; 0, (τ̄k
ε )−1) (B.9)

vk ∼ N (vk; 0,Σk
v) (B.10)

where

A =



















µ∗
1,a µ∗

2,a . . . . . . µ∗
P,a

1 0 . . . . . . 0

0 1 . . . . . . 0

...
. . .

...

0 . . . 1 0



















, (B.11)

G =

[

1 0 . . . 0

]T

(B.12)

and

H =






1, 0, . . . , 0

IP×P




 (B.13)

Also

Σk
v =






(τ̄k
η )−1

(τ̄k
ε )−1Σ∗−1

a




 (B.14)

Consider the sequence of observations {yk
1 , . . . ,y

k
N} and the corresponding states
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{sk
1, . . . , s

k
N}. The joint distribution for the state space model is

p(yk
1 , . . . ,y

k
N , s

k
1, . . . , s

k
N) =

N∏

n=1

p(yk
n|s

k
n)p(sk

n|s
k
n−1)

=

N∏

n=1

p(yk
n|s

k
n)p(sk

n|s
k
n−1).

The posterior

p(sk
1, . . . , s

k
N |y

k
1 , . . . ,y

k
N) ∝ p(yk

1 , . . . ,y
k
N , s

k
1, . . . , s

k
N)

and

log p(sk
1, . . . , s

k
N |y

k
1 , . . . ,y

k
N) =

N∑

n=1

log p(yk
n|s

k
n)

+

N∑

n=1

log p(sk
n|s

k
n−1) + const. (B.15)

From (B.7) to (B.10) we can write

p(yk
n|s

k
n) = N (yk

n;Hsk
n,Σ

k
v)

p(sk
n|s

k
n−1) = N (sk

n;µ
∗T
a

sk
n−1, (τ̄

k
ε )−1)
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And evaluating (B.15) we obtain

log p(sk
1, . . . , s

k
N |y

k
1 , . . . ,y

k
N) = −

τ̄k
ε

2

N∑

n=1

(sk
n − µ∗T

a
sk
n−1)

2

−
1

2

N∑

n=1

(yk
n −Hsk

n)TΣk−1
v (yk

n − Hsk
n) + const.

= −
1

2

N∑

n=1

{

τ̄k
η (rk

n − sk
n)2 + τ̄k

ε skT
n Σ∗

a
skT
n

}

−
τ̄k
ε

2

N∑

n=1

(sk
n − µ∗T

a
sk
n−1)

2 + const. (B.16)

Comparing (4.15) and (B.16) we see that the two expressions are equivalent and

we conclude that we can compute E{sk
n}, E{sk

ns
kT
n } and E{sk

ns
kT
n−1} using a Kalman

smoother if we assume that the observations are generated by the state space model

described by (B.7) to (B.10). We have E{sk
n} = E{[sk

n, . . . , s
k
n−P+1]

T} and the quantity

E{sk
n} is obtained from the posterior means computed by the Kalman smoother. Also

E{sk
ns

kT
n } = Cov{sk

n}+E{sk
n}E{sk

n}
T . Cov{sk

n} is obtained from the Kalman smoother

and the second order moments E{(sk
n)2} are obtained as follows

E{(sk
n)2} = [E{sk

ns
kT
n }]1,1.

Similarly E{sk
ns

kT
n−1} = Cov{sk

n, s
kT
n−1} + E{sk

n}E{sk
n−1}

T . Cov{sk
n, s

kT
n−1} is obtained

from the Kalman smoother and E{sk
ns

k
n−1} is obtained from the first row of E{sk

ns
kT
n−1}.

B.1 Required Expectations

To characterize the parameters of the posterior distributions derived in appendix

B we need to compute the following expectations:
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1.

Esk

{ N∑

n=1

(rk
n − sk

n)
2
}

= Esk

{ N∑

n=1

(rk
n)2 − 2rk

ns
k
n + (sk

n)2
}

The first and second order moments E{sk
n}, and E{(sk

n)2} are computed using

a Kalman smoother as discussed in appendix B.

2.
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4.

τ̄k
η

def
= Eτk

η
{τk

η } =
a∗η

b∗η

τ̄k
ε

def
= Eτk

ε
{τk

ε } =
a∗ε
b∗ε

5.
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a
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