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Abstract

Cosmic Voids and Void Properties
Danny C. Pan

Dr. Michael S. Vogeley

The cosmic energy budget of the standard model of cosmology (ΛCDM) dictates that 72% of the

Universe is Dark Energy (undetected, unknown), 23% Dark Matter (undetected, some candidates,

largely unknown), and 4% baryons. Everything we have seen and detected including galaxies,

stars, white dwarves, supernovae, and black holes make up just 4% of the known Universe. The

predictions of ΛCDM has held up surprisingly well to various studies of the observable Universe,

including Hubble Space Telescope observations of supernovae, Sloan Digital Sky Survey observations

of the baryon acoustic oscillations, and Wilkinson Micro Anisotropy Probe studies of the cosmic

microwave background. In my thesis, I test the predictions of ΛCDM on the large scale structure of

the Universe, specifically voids. Using a void catalog generated from the Sloan Digital Sky Survey, I

study the sizes and shapes of voids, the small scale distribution of void galaxies, and the distribution

of Lyα (neutral hydrogen) clouds. I find that voids in the Universe have characteristic sizes and

shapes based on cosmology, voids can be modeled as mini-universes where void galaxies are much

less clustered than their wall counterparts, and the surprising result that Lyα clouds do not trace

the large scale distribution of baryons or dark matter in the Universe.
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Chapter 1

Introduction

1.1 Standard Model of Cosmology

The standard model of cosmology is the ΛCDM model. Combining data from baryon acoustic

oscillations from the Sloan Digital Sky Survey [Percival et al., 2010] and priors on H0 from Hubble

Space Telescope observations, six fundamental standard model parameters were measured in the

seven year Wilkinson Microwave Anisotropy Probe (WMAP) observations [Jarosik et al., 2011].

The parameters found are listed in Table 1.1.

Figure 1.1 and 1.2 from Percival et al. [2010] plots the error ellipses of a 2 parameter fit to data

from WMAP, SN, and BAO. The best estimates for the parameters are Ωm = 0.286 ± 0.018, and

H0 = 68.2 ± 2.2 km s−1 Mpc−1. Their results indicates w ≈ -1, showing a constant dark energy

equation of state, and rules out curvature of space, Ωk ≈ 0.

Table 1.1: Results from WMAP seven year cosmological parameter summary [Jarosik et al.,
2011].

Description Symbol Result

Age of Universe t0 13.75 ± 0.13 Gyr
Hubble Constant H0 71.0 ± 2.5 km s−1 Mpc−1

Baryon Density Ωb 0.0449 ± 0.0028
Dark Matter Density Ωc 0.222 ± 0.026

Fluctuation Amplitude at 8h−1 Mpc σ8 0.801 ± 0.030
Scalar Spectral Index ns 0.963 ± 0.014

Reionization Optical Depth τ 0.088 ± 0.015
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These parameters determine our best guess for the evolution of the Universe within which we

reside. It dictates everything we know in the Universe stemming from the largest of scales, the

general thermal isotropy of the cosmic microwave background, to medium scales, the distribution of

galaxies and large scale structure in the Universe, to small scales, the abundance of radiation, matter,

and baryons in the Universe. At each of these scales, astronomers seek to assess the predictions of

the standard model of cosmology. We must understand how observations made fit into the grand

predictions of the powerful model. We seek to test the ability of the model to properly predict the

large scale structure in the Universe using optical observations of the galaxies.

1.2 Large Scale Structure

Redshift surveys of galaxies reveal a rich variety of large-scale structures in the Universe: clusters that

span a few megaparsecs in radius, connected by filaments stretching up to many tens of megaparsecs,

which in turn envelop vast underdense voids with radii of tens of megaparsecs. These large scale

structures are described by Bond et al. [1996] as a Cosmic Web of material that reflects the initial

density fluctuations of the early Universe. While historically most attention has been paid by

astronomers to the dense clusters and filaments, it is the voids that fill most of the volume in the

Universe. These underdense regions strongly influence the growth of large scale structure. The

statistics and dynamics of cosmic voids and the properties of the few objects found within them

provide critical tests of models of structure formation.

Observations of voids in the galaxy distribution have progressed as the depth, areal coverage,

and sampling density of galaxy redshift surveys have improved. Rood [1988] reviews the paradigm

shift that occured beginning in the mid-1970s as the focus shifted from the study of galaxy surface

distributions to three-dimensional spatial distributions provided by redshift surveys, and the impact

of this revolution on studies of voids. Joeveer et al. [1978] identified superclusters and voids in the

distribution of galaxies and Abell clusters. Pencil beam surveys of the Coma/Abell 1367 supercluster

[Gregory and Thompson, 1978] indicated large voids. Kirshner et al. [1981] discovered a void in the

Bootes region of the sky that is 50 h−1 Mpc in diameter, several times larger than any previously

observed. The Center for Astrophysics Redshift Survey [Huchra et al., 1983] and in particular its

Chapter 1: Introduction 1.2 Large Scale Structure



3

extension to mB = 15.5 [de Lapparent et al., 1986, Geller and Huchra, 1989] revealed that the

large-scale structure of galaxies is dominated by large voids and the sharp filaments and walls that

surround them. The Southern Sky Redshift Survey [da Costa et al., 1988, Maurogordato et al.,

1992] found similar results. The Giovanelli and Haynes [1985] survey detailed the supercluster and

void structure of the Perseus-Pisces region. The deeper Las Campanas Redshift Survey [Kirshner

et al., 1991, Shectman et al., 1996] confirmed the ubiquity of voids in the large-scale distribution of

galaxies. Comparison of optically-selected galaxy surveys with redshift surveys of infrared selected

galaxies [Strauss et al., 1992, Fisher et al., 1995, Saunders et al., 2000, Jones et al., 2004] indicated

that the same voids are found regardless of galaxy selection. The completed Two Degree Field

Galaxy Redshift Survey (2dFGRS; Colless et al. [2001]) and Sloan Digital Sky Survey (SDSS; York

et al. [2000], Abazajian et al. [2009]) now allow the most complete view to date of the detailed

structure of voids.

A variety of methods have been used to compile catalogs of voids in both observations of galaxies

or clusters and in simulations (using dark matter particles or mock galaxy catalogs). Detailed

discussion of many of these methods is given by Colberg et al. [2008], who compare void finding

techniques. For the purpose of finding voids in redshift survey observations, methods that are

applicable to the distribution of galaxies include Kauffmann and Fairall [1991], El-Ad and Piran

[1997], Aikio and Maehoenen [1998], Hoyle and Vogeley [2002], Neyrinck [2008], Aragon-Calvo et al.

[2010]. Examples of applications of such methods to galaxy redshift surveys include analyses of the

Southern Sky Redshift Survey [Pellegrini et al., 1989], the first slice of the Center for Astrophysics

Redshift Survey [Slezak et al., 1993], as well as the full extension of the CfA Redshift Survey [Hoyle

and Vogeley, 2002], the IRAS 1.2Jy and Optical Redshift Surveys [El-Ad et al., 1997, El-Ad and

Piran, 1997, 2000], the Las Campanas Redshift Survey [Müller et al., 2000], the IRAS PSCz Survey

[Hoyle and Vogeley, 2002, Plionis and Basilakos, 2002], the 2dFGRS [Hoyle and Vogeley, 2004,

Ceccarelli et al., 2006, Tikhonov, 2006], and preliminary data from the SDSS [Tikhonov, 2007,

Foster and Nelson, 2009].

The importance of cosmic voids as dynamically-distinct elements of large-scale structure is clearly
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established by theory [Hoffman and Shaham, 1982, Hausman et al., 1983, Fillmore and Goldreich,

1984, Icke, 1984, Bertschinger, 1985, Blumenthal et al., 1992, Sheth and van de Weygaert, 2004,

Patiri et al., 2006a, Furlanetto and Piran, 2006]. Linear theory predicts that the interior of the

voids should reach a flat plateau and the boundaries of the voids should be quite sharp. Simulations

of structure formation (e.g., Regos and Geller [1991], Dubinski et al. [1993], van de Weygaert and

van Kampen [1993], Colberg et al. [2005]) demonstrate that large voids are caused by super-Hubble

outflows that are nearly spherically symmetric out to near the edges of the voids. Tidal effects of

clusters only become important for objects near the walls around voids. Simulations of the Cold

Dark Matter model for structure formation indicate that the interiors of voids should include dark

matter filaments and many low mass halos [Mathis and White, 2002, Benson et al., 2003, Gottlöber

et al., 2003]. Identifying these structures is an important test of this model.

The properties of large voids in the distribution of galaxies may provide strong tests of cosmol-

ogy. Ryden [1995], Ryden and Melott [1996] discuss the use of void shapes in redshift space as a

cosmological test. More recent work examines voids as a probe of dark energy [Park and Lee, 2007,

Lee and Park, 2009, Biswas et al., 2010, Lavaux and Wandelt, 2010] Comparison of voids at low and

high redshift may provide a strong test of the ΛCDM model [Viel et al., 2008]. The abundance of

cosmic voids is a critical probe for non-gaussianity in the initial conditions for structure formation

[Kamionkowski et al., 2009, Chongchitnan and Silk, 2010, D’Amico et al., 1]. Beyond tests of the

ΛCDM model, the properties of voids galaxies may even constrain alternative theories of gravity

[Hui et al., 2009].

Mapping the voids is important both for studying large-scale cosmic structure and because they

are a unique astrophysical laboratory for studying galaxy formation. Gravitational clustering within

a void proceeds as if in a very low density universe, in which structure formation occurs early and

there is little interaction between galaxies, both because of the lower density and the faster local

Hubble expansion. Goldberg & Vogeley (2004) show that the interior of a spherical void with 10% of

the mean density in a flat Ωmatter = 0.3 h = 0.7 universe evolves dynamically like an Ωmatter = 0.02,

ΩΛ = 0.48, h = 0.84 universe.
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Peebles [2001] describes the “void phenomenon”: galaxies of all types appear to respect the same

voids, in contrast to the prediction of CDM that low density regions should contain many low mass

objects. Tikhonov and Klypin [2009] find, using comparison of voids and void galaxies in the local

volume with high-resolution simulations, that the emptiness of voids is a problem for ΛCDM.

Voids are expected to harbor many low mass halos that are the ideal breeding grounds for faint

galaxies; if the low mass halos predicted by CDM harbor luminous galaxies, then they should be

optically visible. Optical observations have not revealed a large population of fainter galaxies in

voids [Thuan et al., 1987, Lindner et al., 1996, Kuhn et al., 1997, Popescu et al., 1997], although

the luminosity function in voids is shifted by about one full magnitude [Hoyle et al., 2005]. Tinker

and Conroy [2009] contends the ΛCDM void phenomenon is due to a lack of understanding of

assembly bias as galaxies form [Gao and White, 2007], but their model predicts a 5-magnitude shift

in maximum galaxy luminosity. If void halos contain gas, but too few stars to be visible, then then

their gas might be detected. To date, blind HI surveys have not detected such a population of HI

rich but optically dark galaxies [Haynes, 2008]. Nearby Lyman-α clouds detected along lines of sight

toward bright quasars show a strong preference for inhabiting the voids, but most of these clouds

seem to be associated with galaxy structures (Pan et al., in preparation, chapter 6 below).

In contrast to a picture in which star formation in void halos is suppressed, our analyses of void

galaxies in the SDSS DR2 and DR4 samples indicate that void galaxies are bluer and have higher

specific star formation rates than galaxies in denser environments [Rojas et al., 2004, 2005, Park

et al., 2007]. For the small number of dwarf galaxies in the earlier samples, we note even stronger

trends with environment; at fixed morphology and luminosity, the faintest void galaxies are bluer

and have higher star formation rates. Focusing on the blue population in voids, we find in these

preliminary SDSS analyses, and von Benda-Beckmann and Müller [2008] find in 2dFGRS, that this

blue population is not only more numerous, but also bluer and with higher star formation than in

denser regions.

In Hoyle et al. [2005] we find a much fainter exponential cutoff in the luminosity function in voids

(∆M∗
r = 1.1 mag) but no evidence for a change in the faint end slope between voids and “walls.”
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However, the uncertainties at faint magnitudes are quite large. We could not find a sub-population

of “wall” galaxies selected by color, surface brightness profile, or Hα equivalent width that matched

both the faint end slope α and characteristic magnititude M∗
r of void galaxies. In Park et al. [2007]

we again find that M∗ monotonically shifts fainter at lower density. and that the faint end (measured

only down to Mr = −18.5) slope varies significantly with density. These results are consistent with

earlier analyses Grogin and Geller [1999, 2000]. These trends also persist into the “wall” regions

closest to large voids [Ceccarelli et al., 2008]. When we estimate the mass function of void galaxies

in SDSS and compare to the luminosity function [Goldberg et al., 2005] we find a good match with

the predictions of the Press-Schechter model, thus the void galaxies appear to be nearly unbiased

with respect to the mass.

While we see some clear trends, controversy persists in the literature as to whether or not galaxies

in voids differ in their internal properties from similar objects in denser regions. For example, Rojas

et al. [2004, 2005], Blanton et al. [2005], Patiri et al. [2006b], and von Benda-Beckmann and Müller

[2008] reach varying conclusions that clearly depend on how environment is defined and which

observed properties are compared. There is a marked difference between properties of the least

dense 30% of galaxies (in regions with density contrast δ < −0.5) and objects in deep voids which

form the lowest density 10% of galaxies (in regions of density contrast δ < −0.8, which is the

theoretical prediction for the interiors of voids that are now going non-linear). All of these results,

and the possible controversy among them, highlight the importance of building the largest possible,

publicly released catalog of voids and void galaxies.

Lastly, for the purpose of examining the influence of environment on galaxy formation and

evolution, it is important to make a distinction between void galaxies and isolated galaxies. Void

galaxies are galaxies that reside within large scale void structures in the Universe. While this has

an overall effect on the local environments of these void galaxies, it does not preclude galaxies

from residing within small scale dense environments, or cloud-in-void as described in Sheth and

van de Weygaert [2004]. Isolated galaxies are generally found by nearest neighbor distance measures

typically on the scale of small (Mpc) nearby environments [Karachentsev et al., 2010, Karachentseva,
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1973]; they do not necessarily reside in large scale voids.

1.3 Chapter Breakdown

This thesis has 7 main chapters. Chapter 1 introduces the state of cosmology and void research.

Chapter 2 discusses the formation of the void catalog that is the basis of research on void properties

and void content. Chapter 3 compares the void finding algorithm used in this thesis to other void

finding algorithms, and it also discusses results of void finding from various cosmological models

and simulations. Chapter 4 discusses the shapes of voids in the Universe and the implications of

void ellipticity to the standard model of cosmology. Chapter 5 talks about the distribution of void

galaxies, primarily the two point correlation function. Chapter 6 explores the distribution of baryons

within voids, using Lyα clouds as a tracer for the intergalactic medium. Finally, chapter 7 concludes

the thesis and discusses its major contributions as well as future work that can expand from results

of the work in this thesis.
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Figure 1.1: Top: Constraints comparing Ωm and ΩΛ from Percival et al. [2010] using error
ellipses from WMAP, SN, and BAO assuming w = -1. Bottom: Error ellipses for Ωm versus w.
The plots indicate that w ≈ -1, and independently, all 3 measurements agree on similar values
for cosmological parameters.
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Figure 1.2: Top: Percival et al. [2010] find very good constraints on w ≈ -1 and Ωk ≈ 0.
Bottom: SDSS BAO measurements lie exactly between the error ellipses of SN and WMAP
measurements, allowing them to constrain Ωm and H0 to very precise values.
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Chapter 2

Void Catalog

A void catalog must be generated for the purpose of allowing precision cosmological tests with

voids and more accurate tests of galaxy formation theories. We utilize a galaxy based void finding

algorithm, “VoidFinder” [Hoyle and Vogeley, 2002], to identify voids in the final galaxy catalog from

SDSS (DR7). This void finding technique is shown to accurately identify large-scale cosmic voids

with properties similar to those predicted by gravitational instability theory. Section 2.1 describes

the VoidFinder algorithm. Section 2.2 describes the SDSS data used for this research. Section 2.3

presents results on the various properties of the voids found. Sections 2.4 and 2.5 describe several

methods used to test the robustness of the method.

2.1 VoidFinder

VoidFinder is a galaxy-based void finding algorithm that uses redshift data to find statistically

significant cosmic voids. VoidFinder is based on the original VoidFinder method devised by El-

Ad and Piran [1997] and implemented by Hoyle and Vogeley [2002], and uses a nearest neighbor

algorithm on a volume limited galaxy catalog. This approach is highly effective in identifying large

voids of density contrast δ ≤ −0.9 and radius R > 10h−1Mpc. The method is robust when applied

to different surveys that cover the same volume of space (we have applied VoidFinder to IRAS PSCz,

CfA2+SSRS2, 2dF, SDSS, 6dF and compared overlaps; see Hoyle and Vogeley [2002, 2004]). Our
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tests on cosmological simulations demonstrated that this method works in identifying voids in the

distributions of both simulated galaxies and dark matter [Benson et al., 2003].

VoidFinder is applied to volume limited galaxy samples. The galaxies are initially classified as

wall or field galaxies. A field galaxy is a galaxy that may live in a void region whereas wall galaxies lie

in the cosmic filaments and clusters. The distance parameter d for determining whether a galaxy is

a wall or field galaxy is based on the third nearest neighbor distance (d3) and the standard deviation

of the distance (σd3):

d = d3 + 1.5σd3

In our galaxy sample, this selection parameter is d > 6.3h−1 Mpc for field galaxies. With this

value of d and choice of Mlim = −20.09 (SDSS r-band Petrosian magnitude), all field galaxies reside

in underdense regions with density contrast δρ/ρ < −0.47. Voids are expected to be significantly

underdense, containing approximately 10% of the cosmic mean density. Near the edges of the voids,

the density is expected to rise very sharply, drastically going from 20% of the mean density to 100%.

Using this criterion for the edges of voids, it is expected that the distance criterion for void galaxies

will depend on the density at the edge of the void and the spatial correlation of galaxies in voids

and the fact that we are sitting on a galaxy. If we assume that the density at the edge of a void is

20% of the mean, then the expected density ρ around a galaxy near the void edge can be calculated

as

ρ(r)/ρ̄ = (0.2)(ξ(r) + 1) (2.1)

where ξ(r) is the two point autocorrelation function of the galaxy sample. The average density in a

sphere of radius R around a galaxy near the void edge is therefore

ρ(R)/ρ̄ = (0.2)( ¯ξ(r) + 1) (2.2)

where ξ̄(R) is the average value in a sphere of radius R. Over the scales of interest here, the redshift-

Chapter 2: Void Catalog 2.1 VoidFinder
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space correlation function for galaxies in our volume-limited sample can be approximated by a power

law,

ξ = (s/s0)−γ (2.3)

with s0 = 7.62 ± 0.67 and γ = 1.69 ± 0.1. Using these values, we can determine the values of R20,

the radial distance from a void galaxy where we would expect to encounter 20% of the mean density,

and δd=6.3, the expected underdensity of a void if its third nearest neighbor is found at a distance

of 6.3 h−1 Mpc away. We find

R20 = 4.8+0.62
−0.74h

−1Mpc (2.4)

δd=6.3 = −0.88 (2.5)

We expect that at the edges of the voids δ = −0.8, and in the centers of the voids δ = −0.9. Thus,

our choice for the value of d allows us to pick out void galaxies conservatively, selecting mostly

galaxies that only live near the centers of the voids and not allowing void regions to grow into the

nonlinear regime. All galaxies with third nearest neighbor distance d3 > 6.3h−1 Mpc are considered

to be potential void galaxies and are removed from the galaxy sample, leaving us a list of wall

galaxies.

We map out the void structure by finding empty spheres in the wall galaxy sample that remains.

Wall galaxies are gridded up in cells of size 5 h−1 Mpc, which allows us to find all voids larger

than 8.5 h−1 Mpc in radius. All empty cells are considered to be the centers of potential voids. A

maximal sphere is grown from each empty cell, but the center of the maximal sphere is not confined

to the initial cell. Eventually the sphere will be bound by 4 wall galaxies. There is redundancy in

the finding of maximal spheres, but this is useful to define non-spherical voids.

The sample of empty spheres now represents our potential void regions. We sort the empty

spheres by size starting with the largest. The largest empty sphere is the basis of the first void

region. If there is an overlap of > 10% between an empty sphere and an already defined void then

Chapter 2: Void Catalog 2.1 VoidFinder
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the empty sphere is considered to be a subregion of the void, otherwise the sphere becomes the

basis of a new void. There is a cutoff of 10 h−1 Mpc for the minimum radius of a void region as we

seek to find large scale structure voids that are dynamically distinct and not small pockets of empty

space created by a sparse sample of galaxies. Any field galaxies that lie within a void region are now

considered void galaxies. For further details of this implementation VoidFinder algorithm see Hoyle

and Vogeley [2002, 2004].

2.2 Data: SDSS DR7

We use the SDSS Data Release 7 (DR7) [Abazajian et al., 2009] sample of galaxies. The SDSS

is a photometric and spectroscopic survey that covers 8,032 square degrees of the northern sky.

Observations were carried out using the 2.5m telescope at Apache Point Observatory in New Mexico

in five photometric bands: u, g, r, i, and z [Fukugita et al., 1996, Gunn et al., 1998]. Follow up

spectroscopy was carried out for galaxies with Petrosian r band magnitude r < 17.77 after each

photometric image was reduced, calibrated and classified [Lupton et al., 2001, 1999, Strauss et al.,

2002].

Spectra were taken using circular fiber plugs with an angular size of approximately 55 arc seconds.

If two galaxies were closer than this, we could only obtain the spectra of one; the other object is

omitted unless there is plate overlap. Blanton et al. [2003] addresses the issue of fiber collisions by

assessing the relation between physical location of the galaxy and photometric and spectroscopic

properties and assigns a redshift to the object missed by SDSS.

We use the Korea Institute for Advanced Study Value-Added Galaxy Catalog (KIAS-VAGC)

[Choi et al., 2010]. Its main source is the New York University Value-Added Galaxy Catalog (NYU-

VAGC) Large Scale Structure Sample (brvoid0) [Blanton et al., 2005] which includes 583,946 galaxies

with 10 < r ≤ 17.6. After removing 929 objects that were errors, mostly deblended outlying parts

of large galaxies, including 10,497 galaxies excluded by SDSS but that were part of UZC, PSCz,

RC3, or 2dF, and also including 114,303 galaxies with 17.6 < mr < 17.77 from NYU-VAGC (full0),

there is a total of 707,817 galaxies. This catalog offers an extended magnitude range with high

completeness from 10 < r < 17.6. There are 120,606 galaxies with z < 0.107 and Mr < −20.09 in

Chapter 2: Void Catalog 2.2 Data: SDSS DR7
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the volume limited sample used for void finding.

2.3 Measurement of Void Properties

We identify 1,054 voids in SDSS DR7 with minimum radius r = 10 h−1 Mpc. The largest voids are

30 h−1 Mpc in effective radius, where the volume of the void region is equal to the volume of the

sphere with radius reff , and the median effective void radius is 17 h−1 Mpc. The voids cover 62% of

the volume in the sample, and contain 7% of the volume limited galaxies. These results are similar

to previous findings by El-Ad and Piran [1997] using a much smaller observation volume. We also

identify 79,947 void galaxies with SDSS spectra that lie within the voids in the r < 17.6 magnitude

limited catalog, which corresponds to 11.3% of the magnitude limited galaxies.
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Figure 2.1: 10 h−1 Mpc thick slab through the middle of the largest void at RA = 226.52960,
DEC = 60.41244. Locations of galaxies (Mr < −20.09) are shown with *, and the locations
of void galaxies are shown with +. The circles show the intersection of the maximal sphere of
each void with the midplane of the slab.
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2.3.1 Void Sizes

Figure 2.1 shows a redshift slab of 10 h−1 Mpc in thickness going through the center of the largest

maximal sphere detected by VoidFinder. The intersections of the plane with all maximal spheres of

void regions are shown. It can be seen that even with just the maximal spheres, a large volume of

space is underdense and galaxies cluster strongly in large filament-like structures. Figure 2.2 (top)

shows the radius histogram based on the largest maximal sphere that defines the void region. It can

be seen that the majority of the voids are small in size with a few very large void regions. Figure 2.2

(bottom) shows the effective radius of the individual void regions. It is important to remember that

the maximal spheres are limited to r > 10h−1 Mpc and thus only spherical void regions are found

around 10 h−1 Mpc in effective radius. Most voids are not spherical and the skew in the effective

radius histogram reflects the ellipticity of the voids.

In figure 2.3 we see that the majority of volume occupied by voids are occupied by moderately

sized voids with 15 ¡ reff ¡ 25 h−1 Mpc. Figure 2.4 shows the cumulative volume enclosed by voids

as a function of the void radii. Even though a large number of voids are smaller in size, the actual

volume distribution indicates that there is a preferred size for large scale structure in the Universe.

This is consistent with observations starting with the early redshift surveys to SDSS today. As

indicated in Shandarin et al. [2006], void sizes are largely determined by the cosmology.

2.3.2 Radial Density Profiles

The radial density profiles of the cosmic voids show that voids are significantly underdense, having

less than 10% of the average density all the way out to the very edge of the voids. The comparison

of density is typically done by calculating the δ parameter. δ is defined as follows.

δ = (ρ− ρ̄)/ρ̄ (2.6)

δ = -1 would mean that the region is completely empty, and δ = 0 implies that we are at the

average density of the Universe. Figure 2.5 (top) shows the stacked radial density profile of voids.
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Figure 2.2: Distribution of void sizes as measured by the radius of the maximal enclosed
sphere (top panel) and by effective radius (bottom panel). There is a cutoff of 10 h−1 Mpc for
the holes that make up the voids and voids with rmax near this cutoff make up the majority of
the void sample by number. The shift in the void distribution from the top to bottom panels
indicates that the the void volumes are not well described by their maximal spheres; most voids
are elliptical. Thus, the lack of small voids in the bottom panel is attributed to their ellipticity.

The density is calculated from the volume enclosed to the given effective radius of the void. Figure

2.5 (bottom) shows a similar stacked radial density profile of the voids. However, the density is now
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Figure 2.3: Distribution of void sizes as a percentage of the volume occupied by the voids.
As in Figure 2, the top panel sorts voids by their maximal sphere radii, on the bottom by their
effective radii. Large voids occupy most of the volume with 50% of the volume occupied by
voids with maximal sphere r > 13.8h−1 Mpc, and void size effective r > 17.8h−1 Mpc. Note
the peak of the radius histogram distribution around 22h−1 Mpc, the typical size of voids in
the Universe.

calculated for spherical annuli. It can be seen that the walls of the voids are quite sharp, quickly

growing from 10% of the average density to 100%, and the voids are very well defined in terms of
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Figure 2.4: Cumulative volume enclosed by voids with reff . Small voids make up a very small
fraction of the overall volume filled by voids in the Universe. Most of the volume is determined
by middle to large sized voids as seen in Figure 3.

their density contrast with the outside Universe. It is clear then that these voids are distinct features

of the Universe. A comparison with linear gravitation theory (Figure 2.7, reproduced from Sheth

and van de Weygaert [2004]) shows the same “bucket shaped” radial density profile (see also Figure

4 of Fillmore and Goldreich [1984]).
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Figure 2.5: The average radial density profile of all 1,054 voids in the void catalog after scaling
the profiles by Rvoid and stacking. The figure on the top is the profile of the enclosed volume,
and the figure on the bottom is the profile in spherical shells. In both figures, there is a very
sharp spike near the edges of the voids. The steep rise in the density contrast is because walls
of voids are well defined. The peak at the edge of the void in the spherical shelss may be a
feature of the density of the sample.
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Figure 2.6: The average radial density profile of all 1,054 voids in the void catalog as a function
of the effective radius. The slope of the radial densities measured near the edges of voids is
smoother because we are probing regions possibly contaminated with wall galaxies if the voids
are elliptical.

Figure 2.7: Radial density profile (spherical annulus) as predicted by linear gravitation theory
[Sheth and van de Weygaert, 2004]. The different curves correspond to different epochs of
evolution, with the tallest peak representing z = 0.
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2.3.3 Void Galaxies

In our SDSS DR7 galaxy catalog, there are 708,788 galaxies. In our M < −20.09 volume limited

galaxy catalog, there are 120,606 galaxies, with 8,046 of them falling inside voids, approximately 7%.

There are 79,947 (11%) void galaxies that lie in void regions from the magnitude limited catalog

with z < 0.107. Properties of these void galaxies will be discussed in a later paper.

2.4 Tests: Volume Limited Cuts

In this section, we study the effect of changing the absolute magnitude cut on the voids found by

VoidFinder. For absolute magnitudes brighter than Mr = −20.09, we use the same redshift cut

while eliminating galaxies that fall under the absolute magnitude cut of −20.2,−20.3...− 20.6. For

absolute magnitudes dimmer than Mr = −20, we use a redshift cut of z = 0.087, which corresponds

to a limiting absolute magnitude of −19.5, and apply VoidFinder to samples with magnitude limits

of −19.5,−19.6...− 20.1. It can be seen that as we slightly shift the absolute magnitude limits the

void distribution remains similar, although there are trends that voids generally grow in size with

brighter absolute magnitude cuts and voids get smaller in size with dimmer absolute magnitude

cuts, as expected for changes in the sampling density of galaxies. We find qualitatively different

behavior as we examine extremely different samples (L*±0.5 magnitude), where we start to observe

the effects of merging and splitting of voids.

Figure 2.8 shows that the void regions found by VoidFinder are consistent for almost all large

voids. The only significant discrepancy arises from smaller voids that are introduced in sparser

samples of the data. Figure 2.9 shows that the radial density profiles still show the ”bucket shaped”

feature.

Thus, the voids we find are not very sensitive to the absolute magnitude cut nor to the volume

of our sample. SDSS DR7 provides a sufficiently contiguous three dimensional volume for void

finding purposes. These voids found by VoidFinder should be considered significant large scale

underdensities.

Chapter 2: Void Catalog 2.4 Tests: Volume Limited Cuts
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Figure 2.8: Overlap fraction for galaxy samples with redshift cut z = 0.107 (top), and z =
0.087 (bottom) with magnitude given in the figure compared to the void catalog sample (Mlim =
−20.09). The y-axis shows the fraction of the void volume that is also considered void in the
main sample as a function of the void volume. It can be seen that the large significant voids
are consistently identified regardless of the volume limited cut.
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Figure 2.9: Radial density profile (enclosed volume) for galaxy samples with −20.6 < Mr <
−20.1 (top), and −20.1 < Mr < −19.6 (bottom). The only difference between the profiles is
the height of the peak at the edge of the voids. This is due to the different number density of
galaxies in the sample used to determine voids. The bucket shaped behavior at the walls of the
voids is consistent with Sheth and van de Weygaert [2004] in Figure 2.7.

2.5 Tests: Mock Data

We test the void finding algorithm on a set of mock galaxy catalogs to analyze the effects of the

boundary conditions as imposed by SDSS, the effectiveness of studying large scale 3D structure in

the finite volume of SDSS, as well as to test Λ-CDM predictions of the properties of voids. The mock

catalog used is a dark matter only model [Skibba and Sheth, 2009] enclosed in a cube with sides

480 h−1 Mpc. The luminosity function and luminosity weighted correlation functions of the mock

catalogue are fit to SDSS as described by Skibba et al. [2006], using halo occupation constraints

from Zheng and Weinberg [2007]. The simulation parameters, in particular ΩM and σ8 are given in

Yoshida et al. [2001].

We test VoidFinder on the mock sample using two different methods. First, the SDSS mask

Chapter 2: Void Catalog 2.5 Tests: Mock Data
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is applied to the mock sample so that the geometries of the samples are the same; the results of

this should mimic that of SDSS DR7. The SDSS geometry mock catalog contains 98,186 galaxies

covering a volume of 2.2 × 107 Mpc3 in the volume limited sample. Second, a cube is selected

with volume similar but greater than the SDSS geometry sample. The cube geometry mock catalog

contains 119,076 galaxies covering a volume of 2.7× 107Mpc3.

2.5.1 Mock Results

There are 1,006 voids and 6,228 void galaxies in the SDSS geometry mock catalog. There are 1,246

voids and 7,881 void galaxies in the cube geometry mock catalog. The void volume fraction in the

SDSS volume cut is 66.5%, and 69.3% in the cube volume cut. We observe that the geometry of SDSS

plays a role in determining the overall void volume fraction, and if a SDSS geometry is considered

in a mock sample, the volume fraction (66.5%) is approximately the same as the observed SDSS

void volume fraction (62%). The effective radius histogram of voids found in the mock samples in

Figure 2.11 shows no significant changes in the sizes of voids found in the mock samples. The radial

density profile in Figure 2.10 shows that the interiors of the voids are similarly empty as well. The

void size and density profile results of the mock samples agree with observational data. However,

there does seem to be a difference in the number of void galaxies found by VoidFinder which will be

discussed in a separate paper.

SDSS SDSS mock mock cube

# voids 1,054 1,006 1,246

voids/volume 0.000048 0.000046 0.000046

# void gals 8,046 6,228 7,881

# void gals/volume 0.00037 0.00028 0.00029

2.6 Void catalog release

We have made this void catalog publicly available for future studies of voids. Included in the catalog

are three separate interpretations of void regions. The first catalog consists of the maximal spheres

of each unique void region. This is the largest hole in each void region in the shape of a sphere.

Chapter 2: Void Catalog 2.6 Void catalog release
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Figure 2.10: Comparison of radial density profiles of voids in SDSS DR7 and simulations
(top panel shows enclosed density, bottom panel shows density in spherical shells). The density
profiles within the voids are nearly identical in all cases. The simulations show a slight tendency
toward larger density just outside the void boundary.
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Figure 2.11: Distribution of void filling factor as a function of effective radius for voids found
in SDSS DR7 and simulations. The distribution of void sizes found in the mock catalogs are
nearly identical to those found in SDSS. The same size voids fill most of the volume.

Chapter 2: Void Catalog 2.6 Void catalog release



25

This catalog is particularly useful for studying vast spherical underdense regions of the Universe.

These spheres often depict the most underdense regions and galaxies near the centers of these voids

are living in the most underdense large scale environments. The second catalog consists of all the

possibly overlapping holes identified by VoidFinder. The merging of the holes forms each unique

void region. This catalog is useful for identifying the entire void distribution of the Universe. All

of the volume enclosed by these holes lies in void regions and all galaxies contained are considered

void galaxies. The third catalog consists of the location and effective size of each unique void region.

This catalog is useful for identifying overall void statistics in the Universe. Study of large scale

structure as well as void volume distributions can be calculated from this catalog. Along with the

three catalogs is the catalog of void galaxies. We have identified all galaxies with spectra that lie

within the void regions identified by VoidFinder. These catalogs can be downloaded for use1.

We have now identified the largest and most comprehensive void catalog from the largest spec-

troscopic data set available. Previous studies of voids from earlier data releases of SDSS, and other

surveys including 2dF Galaxy Redshift Survey all lack the combination of completeness, depth, and

contiguous sky provided in SDSS DR7. There is no longer an issue with survey boundaries restricting

the volume of study for finding large voids. As there are currently no plans for a large spectroscopic

survey of L* galaxies, this will be the most comprehensive data set for years to come.

2.7 Summary

We studied the distribution of cosmic voids and void galaxies using Sloan Digital Sky Survey data

release 7 using an absolute magnitude cut of Mr < −20.09. Using the VoidFinder algorithm as

described by Hoyle and Vogeley [2002], we identify 1054 statistically significant voids in the northern

galactic hemisphere greater than 10 h−1 Mpc in radius, covering 62% of the volume. There are 8,046

galaxies brighter than Mr = −20.09 that lie within the voids, accounting for approximately 6% of

the galaxies, and 79,947 void galaxies (11.3%) with mr < 17.6. The largest void is just over 30 h−1

Mpc in effective radius. The median effective radius is 17 h−1 Mpc. Voids of size reff ∼ 20h−1

Mpc dominate the void volume. The voids are found to be significantly underdense, with δ < −0.85

1www.physics.drexel.edu/∼pan/
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near the edges of the voids. We tested the sensitivity of the void finding algorithm to changes in

the absolute magnitude cut within the range −19.6 > Mr > −20.6. The resulting void regions are

largely similar with slight differences only near the edges of the void regions. The radial density

profiles of the voids are found to be similar to predictions of dynamically distinct underdensities

in gravitational theory. We compared the results of VoidFinder on SDSS DR7 to mock catalogs

generated from a SPH halo model simulation as well as other Λ-CDM simulations and found similar

results, ruling out inconsistencies resulting from selection bias and survey geometry.

Chapter 2: Void Catalog 2.7 Summary
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Chapter 3

Alternate Void Finders and Void

Catalogs

3.1 Comparison to Watershed Void Finder

The void finding method used in the previous chapter is a purely galaxy based void finding algorithm.

Colberg et al. [2008] discusses the many different void finders available, one in particular is the

Watershed Void Finding method [Platen et al., 2008]. The Watershed Void Finder (WVF) uses

Delaunay Tessellation Field Estimator [Schaap and van de Weygaert, 2000] to estimate a density

field based on a magnitude limited sample of galaxies. WVF utilizes a sample of galaxies as tracers

for dark matter haloes. By assuming that each galaxy lives in the center of a particular halo, one

can construct a cosmic web of dark matter. Using the same data set, we can compare the results of

the different void finders.

Figure 3.1 shows a redshift slice of the Universe that includes both the Watershed Void Finder

and VoidFinder results. The figure was constructed to point at the nearby Bootes “supervoid”,

which can be seen on the left edge of the figure. As can be seen in both the DTFE smoothed

field as well as VoidFinder, the Bootes “supervoid” is actually a concentration of a group of voids.

They may some day merge, but currently there are still well defined galaxy filaments that separate

individual smaller voids. The underlying density field is well traced by the VoidFinder galaxies and
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the characteristic size of voids found with the Watershed Void Finder is similar.

3.1.1 Void Matching

Figure 3.2 shows the matching distance between voids found using the Watershed Void Finding

method and VoidFinder. The majority of voids are found to match within the radii of each other,

while a couple of voids are found to have matching distances right near one void radius. In the event

that one void finding algorithm identifies two separate voids while the other combines the two into

a single void, we expect an overmatching to occur right at the distance of one void radius and that

is what we are seeing here. Figure 3.3 shows the matching fraction of voids as a function of the

distance from the center of the VoidFinder void the corresponding match was found. The overall

volume of voids is well matched compared to the WVF method (∼ 85%).

Figure 3.1: A 10 h−1 Mpc thick slice of the Universe that includes the center of the Bootes
‘super’void. The void can be seen on the left edge of the figure as a group of smaller voids
with thin filaments separating them. Both WVF and VoidFinder have identified this region is
a group of smaller voids. VoidFinder does a good job of tracing out similar underdense regions
as the Delaunay Tessellation Field Estimator.
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Figure 3.2: The distribution of void matches of large voids (radius > 20 h−1 Mpc) between
the two algorithms, one found by VoidFinder, and the other identified by the density field show
that a large fraction of voids are well matched in both algorithms. The x-axis is the distance r
= rmatch/rvoid where rvoid is the radius of the void as found by VoidFinder
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Figure 3.3: The overlap fraction of large voids (radius > 20 h−1 Mpc) identified using the two
different algorithms. The overlap fraction is defined by Voverlap/VV F where VV F is the volume
of the void in VoidFinder

Chapter 3: Alternate Void Finders and Void Catalogs3.1 Comparison to Watershed Void Finder



30

3.2 Other Void Catalogs

While the Sloan Digital Sky Survey focused its observations on the northern galactic hemisphere, a

similar, but shallower, redshift survey was carried out in the southern galactic hemisphere. The 6dF

redshift survey [] covers approximately 25,000 square degrees of the southern sky, obtaining spectra

for 117,191 galaxies. A volume limited sample of galaxies was chosen with limiting z < 0.05 and a

similar absolute magnitude limit of M < -20.1. This resulted in a volume limited sample of 21,641

galaxies. Figure 3.4 shows the sky coverage of 6dF. It covers much more of the sky than the SDSS,

however, it suffers from a large swath of ‘problem’ areas with bad spectroscopy and lack of survey

depth, making it a less ideal redshift survey for three dimensional void finding than the SDSS. In

6dF, we find 219 voids with r > 10 h−1 Mpc, average reff = 17.86 h−1 Mpc, and 1,296 volume

limited void galaxies.
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Figure 3.4: Southern sky coverage for 6dF. It covers almost the entirety of the southern sky,
including some overlap area with the SDSS coverage of the northern galactic hemisphere.

3.2.1 Radial Density Profiles

Comparing the radial density profiles of voids from 6dF to those found in the SDSS (Figures 3.5

and 3.6), we see that the results are very similar. We do not expect there to be a difference in the

density profiles of voids from the northern galactic hemisphere compared to the southern galactic
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Figure 3.5: A comparison of the radial density profile as a function of effective radius. The
cumulative density is calculated and compared, the two curves are nearly identical, showing
that voids in the northern hemisphere are similar to their southern hemisphere counterparts.
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Figure 3.6: A comparison of the radial density profile as a function of the maximal void sphere
radius. The density is calculated in a spherical annulus, and the major features (bucket shape)
are once again very similar.
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3.3 Alternate Cosmological Models

Void finding is also done to test the capabilities of other models of cosmology. It is important

to consider other possible explanations to the modern day problem of cosmology and not become

too focused on just one possible solution. While the standard model of cosmology (ΛCDM) is

particularly attractive in matching all the statistics of the angular power spectrum of the Universe,

supernovae, gravitational lensing, cosmic microwave background, and the velocity dispersions of the

arms of spiral galaxies, it is not the only possible solution. There are a number of simulations done

with variations on the supposed cosmological model. Some of these include non-linear models of

gravity as well as non-Newtonian models of gravity. The preservation of large scale structure must

remain when considering the results of these simulations. We have run VoidFinder on a number of

these simulations and tested their ability to predict large scale structure in the Universe.

3.3.1 Non linear gravity models

There have been several groups that have investigated the effects on large scale structure of non-

linear coupling of modes at large scales. Takahashi et al. [2008] use the cosmological simulation code

GADGET-2 [Springel, 2005] to simulate the Universe in a volume with L = 500 h−1 Mpc and 2563

particles. The initial conditions are calculated using results from the cosmic microwave background

(WMAP). The initial conditions are assumed to be a Gaussian random field. For small scales, linear

perturbation theory predicts structure fairly accurately. However, at large scales the second order

perturbation predictions begin to deviate from the first order perturbation terms. Using results from

WMAP and SDSS BAO, Takahashi et al. [2008] generated simulations to test the growth of large

scale density fluctuations, and I have applied VoidFinder to these results. Figure 3.7 show the radius

histograms of observed SDSS results compared to two different simulations. Figure 3.8 show the

radial density profiles of observed SDSS results to the same two simulations. For both models, the

size distribution of voids are similar to observed SDSS results, and the radial density profile shows

the same bucket shaped result as well.

Chapter 3: Alternate Void Finders and Void Catalogs3.3 Alternate Cosmological Models
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Figure 3.7: The radius histogram of voids found in a non linear model, standard model, and
SDSS shows no major discrepancy in the typical sizes of large scale voids. While there may be
differences in individual columns of the histogram, the overall shape of the distribution of void
sizes is preserved.
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Figure 3.8: The average radial density profile of voids after scaling the profiles by Rvoid
and stacking. The radial density profiles of voids found using nonlinear models and using
the standard model of cosmology closely matches with the radial density profile of observed
voids. Both types of simulations appear to accurately simulate the extreme underdensities in
the centers of large scale voids, and a sharp overdense structure at the edges of voids.
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Chapter 4

Void Shapes

Observed voids are expected to be spherical. Icke [1984] explains why voids should be spherical by

comparing it to numerical simulations of pregalactic clouds. Numerical simulations done by Dekel

[1983], Hoffman et al. [1983] show that gravitational collapse of matter tends to form filamentary

structure. Density inhomogeneities collapse such that any asphericity is enhanced as the structure

grows. Considering voids as massively underdense regions, it is possible to simply consider the local

density inhomogeneity as having a negative density gradient compared to the overdense regions.

The net effect is simply the inverse of a dense gravitational collapse, any asphericity will be pushed

towards becoming more spherical, and the voids would grow in size. The size of the void is sensitive

to cosmological parameters, particularly the amount of dark energy present in the Universe and the

value of σ8 the average density of matter in a randomly placed sphere of 8 h−1 Mpc. Shandarin

[1994] looks at the size of large scale structure in the Universe under the conditions of nonlinear

dynamics. He finds that large scale structure tends to specific sizes given what Ω0 is assumed to be.

In the dark energy dominated era, local void sizes are most sensitive to the amount of dark energy,

ΩΛ. Later on, Shandarin et al. [2006] find underdense regions in a series of cosmological simulations.

They compare various values of σ8 to the volume filling factor of voids and tests the robustness of

void finding in the simulations. They find that even in simulations, voids can appear aspherical and

are slightly sensitive to varying values of σ8. It is important to gain a better understanding of what
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the sizes and shapes of voids are to better understand how large scale structure is distributed in our

observed Universe in order to compare to cosmological models.

4.1 Void Regions: Spherical?

In the work described in chapter 2, a void catalog was created that described void regions with both

a maximal sphere and an effective radius. The maximal sphere described the largest empty sphere

that filled the void region, whereas the effective radius describes the overall volume of the void.

While void regions are expected to be generally spherical in nature, there are many things that can

cause void regions to remain aspherical. Effects such as redshift space distortions, dark energy, and

Universe inhomogeneity can all play a role in defining the overall shapes of large scale structure.

4.2 Redshift Space Distortions

Observational cosmology is based on determining the distance of objects based on its redshift. The

distance to an observed object is defined by an expected shift of observational lines in the spectrum

of an object due primarily to the expansion of space as the light from the object traveled to the

observer. If we consider observing absorption lines in the spectrum from a galaxy, we know the

approximate shape of the spectrum at various wavelengths given the luminosity of the galaxy, and

we expect that at specific wavelengths there could be absorption due to gas in the galaxy. These

absorptions occur at these specific wavelengths in the rest frame of the galaxy. However, due to the

expansion of space, as light from the galaxy travels to the observer, the light becomes redshifted.

Alternatively, if space were shrinking, we would expect the light to become blueshifted. The effect

on the observed lines can be seen in Figure 4.1.

Complicating the matter of determining distance using redshift, however, is the degeneracy in

observation of objects that are physically moving either towards or away from the observer. The

result of this effect is known as redshift space distortion. Observers see the Universe in redshift

space, and not real space. Since galaxies can have peculiar motions, measuring the redshift to a

galaxy does not give us the distance to the galaxy, the redshift observed is a combination of the

distance to the galaxy and its local peculiar motion in space. Distortion effects such as the finger

Chapter 4: Void Shapes 4.1 Void Regions: Spherical?



37

Figure 4.1: Unshifted, redshifted, and blueshifted spectral absorption lines are shown. A
galaxy that is moving away from us due to the expansion of space will have its lines redshifted.
A blueshift occurs if a galaxy was found to be moving towards us.

of god effect and systematic infall can cause observational errors when determining the distance to

galaxies.

4.2.1 Finger of God effect

The finger of god effect occurs when a distribution of galaxies is collapsing into its center. A group

of galaxies that may have a spherical spatial distribution is seen in redshift space having redshifts

that are caused both by the real distance to the galaxy and their local velocity. A large cluster of

galaxies can lead to large peculiar velocities that can cause a large error in measuring the distance

to the galaxy. The resulting distribution is a oblong ellipsoid stretched out along the line of sight to

the galaxy cluster. This is known as the finger of god effect and it can be seen clearly in the famous

CFA stickman figure from de Lapparent et al. [1986], seen below in Figure 4.3.

4.2.2 Systematic Infall effect

Systematic infall occurs when galaxies in the linear regime (large scale voids) are drawn to gravita-

tional sources (large scale filaments). The overall effect of systematic infall can be seen in the top

row of Figure 4.2. As galaxies are ejected by the voids (gravitationally attracted to the filamentary

walls of the voids), we can observe the voids to take a shape that is “squashed” in redshift space.

Chapter 4: Void Shapes 4.2 Redshift Space Distortions
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Figure 4.2: The results of different types of galaxy distributions can be seen in this figure in
both real and redshift space. The top row shows that a linearly expanding spherical distribution
of galaxies will be seen as a squashed distribution in redshift space. The bottom row shows that
a collapsing spherical galaxy distribution can lead to the finger of god effect.

Chapter 4: Void Shapes 4.2 Redshift Space Distortions
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Figure 4.3: Slice of an early redshift survey [de Lapparent et al., 1986] that clearly shows the
finger of god effect. A local nearby cluster of galaxies can be seen stretched into a long cylindrical
shape, and the large distribution of galaxies in the center of the slice has been stretched as well.

4.2.3 Redshift Distortion Effects on Void Properties

The two competing effects of redshift space distortions act opposite to one another in the observation

of the shape of voids. Fingers of god will cause a void to become more elliptical with the major axis

pointing along the line of sight, and systematic infall will cause a void to become more elliptical with

the major axis anti-aligned to the line of sight. Ryden and Melott [1996] found that the mean void

size and maximum void size both increase going from real space to redshift space. The principal

axes of the largest voids increased in size in redshift space, and tended to increase the size of the

void along the line of sight, meaning finger of god effects dominated.

4.3 Mock Data

To determine the effects of redshift space distortions, it is important to be able to differentiate

between results that may be seen in real space versus that of redshift space. Since it is impossible

for observations of real space to be made, we have to rely on cosmological simulations to provide

Chapter 4: Void Shapes 4.3 Mock Data
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us with insight into the behavior of galaxies as observed in redshift space. The mock catalog used

is a dark matter only model [Skibba and Sheth, 2009] enclosed in a cube with sides 480 h−1 Mpc.

The luminosity function and luminosity weighted correlation functions of the mock catalogue are

fit to SDSS as described by Skibba et al. [2006], using halo occupation constraints from Zheng

and Weinberg [2007]. The simulation parameters, in particular ΩM and σ8 are given in Yoshida

et al. [2001]. The mock catalog used contains both real space coordinates as well as redshift space

coordinates given with a modified z-axis. The observer is assumed to be at a location distant along

the z-axis, allowing the axis to be used as a line of sight. In the simulation, the three dimensional

velocities of the individual galaxies are known, and redshift space distortions can be included.

4.4 Fitting Ellipses

The first order correction to the shapes of voids is to consider regions to be triaxial ellipsoids. We

fit best fit ellipsoids to void regions found in the previous chapter using the method described by

Jang-Condell and Hernquist [2001], Shandarin et al. [2006], Foster and Nelson [2009]. We assume

that void regions are empty and are described as a single large underdense object. This means that

each section of volume in the entire void region is similar and is not given extra weight based on its

local density. From the center of each void region, we define the shape tensor as follows.

Sij = −
∑

(xi ∗ xj) (4.1)

Sii =
∑

(x2
j + x2

k) (4.2)

The eigenvalues of the shape tensor then describe the three axes of the best fit ellipsoid as follows.

ai = 5/(2N)[ej + ek − ei] (4.3)

aj = 5/(2N)[ei + ek − ej ] (4.4)

ak = 5/(2N)[ei + ej − ek] (4.5)

Chapter 4: Void Shapes 4.4 Fitting Ellipses
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The eigenvectors of the shape tensor describe the spatial direction of the axes of the best fit

ellipsoid.

4.5 Results on Void Shapes

Figure 4.4 shows a slice of SDSS with the comparison of a best fit ellipsoid plotted against the

maximal sphere of the void region. The best fit ellipsoid appears to fill in the void volume much

better than the maximal sphere, it also preserves the volume of the void region. The results of void

ellipticity in the void catalog can be seen in Figure 4.5. The three axes of the ellipsoid, a ≥ b ≥ c, can

be described by the two ratios b/a and c/b. We can see that there appears to be a slight preference

for the ellipsoidal void regions to have a prolate shape as opposed to an oblate shape. Prolateness

can be seen in the figure as an excess of points with smaller b/a compared to c/b, an example of an

object that is prolate is an American football, or a rugby ball. Oblateness is seen as an excess of

points with smaller c/b compared to b/a, and example of an object that is oblate is a pancake, or

a disk. A similar result can be seen (Figure 4.6) when looking at voids in real versus redshift space

using the mock simulations described in a previous section. This means that the excess prolateness

is not caused by redshift space distortions. It is likely due to a preference for voids to merge in

pairs for the resulting observed void to be a prolate ellipsoid. More analysis into the substructure

of voids needs to be done to confirm this assessment. As a whole, voids are generally spherical in

shape, with no major deviation for being highly elliptical. This is expected as we expect large scale

voids to become more spherical over time. Similar results can be seen in void shape analysis done

by Foster and Nelson [2009] on a subsample of voids from SDSS DR5.

To determine the cause of asphericity in voids, we calculate void shapes on a set of mock simula-

tions. These mock simulations exist for both redshift and real space, allowing us to see the difference

in shape finding on redshift space distortion effects. By measuring the alignment along the line of

sight of the principal axis of the void region (Figure 4.8 and 4.9), we see that there appears to be no

preference for redshift space distortions in determining the shape of the voids. This means that the

finger of god effect and systematic infall are not playing a large role in defining the actual shapes

of the voids. However, looking at the radius histogram of void sizes, redshift space distortions will

Chapter 4: Void Shapes 4.5 Results on Void Shapes
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Figure 4.4: Example of a best fit ellipsoid fit compared to the maximal sphere of the void
region. The best fit ellipsoid does a much better job of describing the void region and filling in
the void volume than the maximal sphere.
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Figure 4.5: A comparison of the axes of the best fit ellipsoid. Most of the voids are spherical
in shape, however, there is a slight preference for voids to be prolate rather than oblate if it is
aspherical.

effectively enlarge individual void regions for large voids as seen in Figure 4.7, but the effect is less

pronounced for smaller voids.
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Figure 4.6: Comparison of axes of the best fit ellipsoid for simulated mock samples in real(left)
and redshift(right) space. The distribution of ellipticity appears nearly identical, the preference
for prolateness is still apparent.
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Figure 4.7: Radius histogram for voids found in real space and redshift space using a mock
simulation. Void sizes are largely similar for both samples except for larger voids. There is a
tendency for large voids to appear much larger due to redshift space distortions.
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Figure 4.8: The line of sight alignment histogram shows minor variations from bin to bin,
there does not appear to be any preferred direction for the major axis of the best fit ellipsoid
to the line of sight.

Chapter 4: Void Shapes 4.5 Results on Void Shapes



45

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

n
v
o
id

s

cos(theta)

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

n
v
o
id

s

cos(theta)

Figure 4.9: A comparison of the line of sight alignment histogram in real(left) and red-
shift(right) space. Once again, there does not appear to be any preferred direction for the
major axis of the best fit ellipsoid to the line of sight in either sample.
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Chapter 5

Void Galaxy Distribution

The distribution of galaxies in the Universe can provide us with an understanding of the underlying

cosmology that placed those galaxies in their locations today. As discussed in chapter 1, independent

measurements of supernovae, BAOs, and CMB places constraints on the fundamental cosmological

parameters that determine the standard model of cosmology, ΛCDM. The best estimates for cos-

mological parameters from SDSS BAO measurements by Percival et al. [2010] are Ωm = 0.286 ±

0.018, and H0 = 68.2 ± 2.2 km s−1 Mpc−1. Their results indicates w ≈ -1, showing a constant dark

energy equation of state, and rules out curvature of space, Ωk ≈ 0. These results match WMAP

CMB measurements listed in 1.1.

These fundamental cosmological parameters determine the distribution of galaxies in the Universe

and are the input parameters to cosmological simulations. The standard model of cosmology predicts

precise distributions for the galaxies in the Universe. These predictions must match our observations,

so we compare the small scale structure predictions of simulations to our observed Universe.

5.1 Two point correlation function

The two point correlation function of galaxies describes the clustering hierarchy of galaxies. If

galaxies were spatially uncorrelated, the correlation function would be flat. However, a simple look

at galaxy maps of the Universe tells us that galaxies are not uncorrelated, and at the very least
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gravity plays a large role in the distribution of galaxies in the Universe. It is only recently that

there have been sufficiently deep redshift surveys that probe the three dimensional structure of the

Universe. The SDSS DR7 sample is the largest survey to date and provides an excellent three

dimensional data set for calculating the clustering hierarchy of galaxies.

5.2 Method

To calculate the two point correlation function, we start with the probability that a galaxy is found

centered on a randomly placed volume element dV .

dP = ndV (5.1)

The joint probability that we find two galaxies centered inside two volume elements dV1 and dV2

with separation s is then proportional to the sizes of the volume elements.

dP = n2[1 + ξ(s/s0)]dV1dV2 (5.2)

ξ(s/s0) then represents the reduced two point correlation function for the distribution. This

function has been fit as a power law with the form

ξ = (s/s0)−γ (5.3)

where s0 = 7.62 ± 0.67 h−1 Mpc and γ = 1.69 ± 0.1 [Constantin and Vogeley, 2006].

This analysis is done using two different types of two point correlation functions, the Davis-

Peebles estimator [Davis and Peebles, 1983], and the Landy-Szalay estimator [Landy and Szalay,

1993].

Chapter 5: Void Galaxy Distribution 5.2 Method
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5.3 David-Peebles Estimator

The Davis-Peebles Estimator is defined as follows,

ξ(s) = (NR/NG) ∗ (DD/DR)− 1 (5.4)

where NR is the number of random galaxies generated to fit the sample volume, NG is the

number of galaxies in the sample, DD is the number of data-data pairs at a distance s, and DR is

the number of data-random pairs at the same distance. An advantage of using this estimator is that

the selection function of the sky distribution of the sample of galaxies does not need to be known.

A disadvantage of this estimator is that it has large variance and is inaccurate at large scales (s ¿

100 h−1 Mpc).

5.4 Landy-Szalay Estimator

The Landy-Szalay Estimator requires knowledge of the sampling geometry, but it is supposed to

provide a better result for the variance than the Davis-Peebles Estimator. It is defined as follows,

ξ(s) = (DD − 2DR+RR)/RR. (5.5)

The disadvantage of using the Landy-Szalay Estimator is that because random-random pairs

have to be calculated, the computation time for calculating the two point correlation increases

dramatically over typical estimators that might rely only on data-random pairs. To gain the full

advantage of the LS estimator, it is necessary to have approximately ten times more random points

than data points.

Chapter 5: Void Galaxy Distribution 5.3 David-Peebles Estimator
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5.5 Results of two point correlation function

We find that the results of the two different types of estimators used in the analysis are identical.

This is due to the fact that the number of galaxy pairs exceeds the threshold under which the Landy-

Szalay estimator would prove advantageous. We find that the void galaxies are less clustered than

their wall counterparts, with s0 = 7.8 and γ = 1.2. This is similar in comparison to work done by

Abbas and Sheth [2006] which compared galaxies living in low density regions (< 33% mean density)

versus their wall counterparts. It can be seen comparing Figure 5.1 and 5.2 that void galaxies are

found to be less clustered than wall galaxies.
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Figure 5.1: 2 point correlation function for void galaxies in SDSS. Values found using the
Davis-Peebles estimator are identical to those found with Landy-Szalay. Compared to Figure
5.2 by Abbas and Sheth [2006], we also find that void galaxies are less clustered than its wall
counterparts. Void galaxies are consistently less clustered than wall galaxies, and show a slightly
steeper slope in the 2 point correlation function.

Chapter 5: Void Galaxy Distribution5.5 Results of two point correlation function



50

Figure 5.2: Plot from Abbas and Sheth [2006] that shows the 2 point correlation function for
galaxies in SDSS and in mock SDSS samples. The curves are from the mock samples and the
individual points are calculated from SDSS. The lower curve is found using galaxies that reside
in low density regions using 8 h−1 Mpc spheres as the basis for determining the local density.
The feature around 8 h−1 Mpc is probably due to the selection function for low density galaxies
in the sample. The upper curve shows the 2 point correlation function for typical wall galaxies.
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Chapter 6

Lyα Absorbers

Previous chapters have primarily focused on the distribution of voids and void properties, including

the small scale structure of galaxies in voids. Now that we have a catalog of the locations of voids

in the Universe, we can begin to look at the correlation of objects in the Universe to voids. The

easiest things to look at are objects that are directly observable by telescopes. Baryons are the most

easily detected objects in the Universe. In this chapter, we look at the distribution of baryons within

voids, primarily looking at the local Lyα clouds.

6.1 Where are the Baryons?

Spergel et al. [2007] found that the cosmological density of baryons should be Ωbh
2
70 = 0.0455 ±

0.0015. At high redshifts (z > 3), most of the baryons in the Universe are accounted for [Cen and

Ostriker, 1999, Madau et al., 1998, Rauch et al., 1999, Weinberg et al., 1997]. However, at low

redshifts, the distribution of baryons is largely unknown [Fukugita et al., 1996]; after including all

observable forms of baryons, we are well short of the expected number observed at high z. This was

described by Persic and Salucci [1992], Bristow and Phillipps [1994], Fukugita et al. [1998], Fukugita

and Peebles [2004] as the ”Missing Baryons Problem”. Through numerical simulations [Cen and

Ostriker, 2006, Davé et al., 2001, Smith et al., 2010], 40-50% of the baryons in the recent epoch

should be found in the warm-hot intergalactic medium (WHIM). This gas is usually seen in the
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UV traced by OVI [Danforth and Shull, 2008] and resides primarily in the intergalactic medium

(IGM). After accounting for stellar mass in large local redshift surveys, the IGM must then contain

approximately half of the baryons. Lyα absorbers are used for the identification of local IGM.

6.2 What are Lyα Absorbers

Lyα absorption is the absorption of photons by neutral hydrogen along the line of sight. This

is typically observed by taking spectra of distant quasars [Hu et al., 1995, Lu et al., 1996, Kim

et al., 1997, Burles and Tytler, 1997, McLin et al., 2002, Danforth and Shull, 2008]. As light travels

from the distant quasar to us, neutral hydrogen along the way will absorb the light at the rest frame

wavelength, thus, hydrogen clouds at different distances will absorb at a slightly different wavelength

due to the expansion of the Universe.

Figure 6.1 shows spectra for both a nearby quasar and a distant quasar. The features of ab-

sorption by neutral hydrogen clouds can be seen as the Lyα forest [Lynds, 1971]. The more distant

quasar (top) shows a much denser forest than the nearby quasar (bottom) because there are far more

absorption clouds along the line of sight. The stronger the absorption feature, the larger the neutral

hydrogen cloud that is doing the absorbing. Using absorption features to determine the locations

of neutral hydrogen is incredibly powerful because it relies only on the strength of the background

quasar and the column density of gas in the absorber. Detection of hydrogen clouds that emit very

dimly in the optical is possible because all clouds with similar column densities along the line of

sight can be equally detected. There is no bias towards more nearby hydrogen clouds because they

may appear brighter due to proximity.

6.3 Previous Studies of Absorber Properties

Previous studies by Penton et al. 2004, Penton et al. 2002, Penton et al. 2000a/b have shown that

the local Lyα absorbers are associated with the large scale structure of galaxies. In three separate

papers, Danforth and Shull [2005], Danforth et al. [2006], Danforth and Shull [2008] studied the low-z

IGM and determined the properties of Lyα absorbers and their metallicity contents with regards to

their local environment. Furthermore, simulations by Cen and Ostriker [1999], Davé et al. [2001],

Chapter 6: Lyα Absorbers 6.2 What are Lyα Absorbers
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Figure 6.1: Quasar spectrum for 3C 273 (top, nearby) and Q1422+2309 (bottom, distant)
show Lyα absorption. The distant quasar shows a much more prominent Lyα forest because
there are far more neutral hydrogen clouds along the line of sight, primarily due to the distance
between the quasar and the observer.

Smith et al. [2010] all assert that Lyα absorber observations are from partially photoionized clouds

with shock-heated gas, showing features of sharp Lyα lines and OVI tracers of WHIM. It is generally

assumed, then, that the Lyα absorbers are all found in the filamentary large scale structure of the

Universe.

6.4 Where are the Absorbers?

McLin et al. 2002 and Penton et al. 2002 conducted a study on Lyα absorbers in galaxy voids that

found a significant portion (∼ 30%) of absorbers reside at least 2 h−1 Mpc from the nearest Mb ≤

-17.5 galaxy. Using HST observations of Lyα absorbers and deep pointed observations along the

line of sight using HYDRA on WIYN, they predict that the total baryonic density in these ‘voids’

is 4.5% ± 1.5% of the mean baryon density assuming photoionization models for the clouds. Grogin

and Geller 1998 found that Lyα absorbers appear more frequently in underdense regions than dense

regions when compared to the number of galaxies in the regions. Using a sample of 18 local Lyα

Chapter 6: Lyα Absorbers 6.4 Where are the Absorbers?
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Table 6.1: Names and Locations of QSO absorbers

QSO name ra dec z

pg0953 149.22 41.26 0.23
ton28 151.01 28.93 0.3297
3c249 165.52 -1.27 1.554

pg1116 169.79 21.32 0.1765
pg1211 183.57 14.05 0.089
pg1216 184.84 6.64 0.3313
3c273 187.28 2.05 0.158339

pg1259 195.30 59.04 0.4778
ngc5548 214.50 25.14 0.017175
mrk1383 217.28 1.29 0.08647
pg1444 221.69 40.59 0.2673

absorbers from seven systems with cz < 10,500 km s−1 and matching with the CfA2 Redshift Survey

(Geller & Huchra 1989) they found that nearby, low column density (log NHI . 14) absorbers are

spatially distributed at random, and not correlated with the large scale structure.

In this study, we use a much larger sample of Lyα absorbers (119) to examine the relationship

of neutral HI gas with the large scale void structure of the local Universe to determine the spatial

distribution of Lyα absorbers. Our goal is to determine the distribution of observed Lyα absorbers

within the large scale structure, specifically its abundance in voids compared to filaments. We

compare our results with predictions from simulations that these absorbers live in the dense cosmic

filaments that contain most of the galaxies in the Universe.

6.5 Data

We use a collection of 30 QSO absorption line systems from STIS/G140M and the main galaxy

sample of SDSS DR7. Within the sky coverage of SDSS DR7, we find 11 QSO absorption line

systems (seen in table 6.1) which correspond to 119 absorbers with z < 0.107.

6.5.1 STIS

The Space Telescope Imaging Spectrograph is a ultraviolet spectrograph on the Hubble Space Tele-

scope. It has a high-resolution spectrograph with capabilities down to 1150Å. This is especially

useful for capturing the Lyα line at rest frame 1216Å. We use the 30 absorption line systems de-

scribed in Danforth and Shull [2008].

Chapter 6: Lyα Absorbers 6.5 Data
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6.5.2 SDSS

We use the SDSS Data Release 7 (DR7) [Abazajian et al., 2009] sample of galaxies. The SDSS

is a photometric and spectroscopic survey that covers 8,032 square degrees of the northern sky.

Observations were carried out using the 2.5m telescope at Apache Point Observatory in New Mexico

in five photometric bands: u, g, r, i, and z [Fukugita et al., 1996, Gunn et al., 1998]. Follow up

spectroscopy was carried out for galaxies with Petrosian r band magnitude r < 17.77 after each

photometric image was reduced, calibrated and classified [Lupton et al., 2001, 1999, Strauss et al.,

2002].

Spectra were taken using circular fiber plugs with an angular size of approximately 55 arc seconds.

If two galaxies were closer than this, we could only obtain the spectra of one; the other object is

omitted unless there is plate overlap. Blanton et al. [2003] addresses the issue of fiber collisions by

assessing the relation between physical location of the galaxy and photometric and spectroscopic

properties and assigns a redshift to the object missed by SDSS.

We use the Korea Institute for Advanced Study Value-Added Galaxy Catalog (KIAS-VAGC)

[Choi et al., 2010]. Its main source is the New York University Value-Added Galaxy Catalog (NYU-

VAGC) Large Scale Structure Sample (brvoid0) [Blanton et al., 2005] which includes 583,946 galaxies

with 10 < r ≤ 17.6. After removing 929 objects that were errors, mostly deblended outlying parts

of large galaxies, including 10,497 galaxies excluded by SDSS but that were part of UZC, PSCz,

RC3, or 2dF, and also including 114,303 galaxies with 17.6 < mr < 17.77 from NYU-VAGC (full0),

there is a total of 707,817 galaxies. This catalog offers an extended magnitude range with high

completeness from 10 < r < 17.6. Additionally, we use the large scale structure void catalog from

Pan et al. [2011]. This catalog contains 1054 statistically significant voids with r > 10 h−1 Mpc,

and 79,947 void galaxies with SDSS spectroscopy in the northern galactic hemisphere.

Chapter 6: Lyα Absorbers 6.5 Data
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6.6 Method

6.6.1 Location of Absorbers

For each absorber we determine whether or not it lives in a void using the void sample from Pan

et al. [2011]. We find that 87 of the 119 absorbers that lie within the SDSS main sample volume

reside in voids. This implies that there is a preference for Lyα absorbers to live in voids because over

70% of the absorbers live in voids where there are only 10% of the galaxies. Looking at the specific

location of the absorbers within the voids as seen in figure 6.3, we see that absorbers actually prefer

to reside towards the centers of the voids. The large scale structure distribution results were seen

in Grogin and Geller [1998], but the void distribution was not measured.

6.6.2 Matching Galaxies

For each Lyα absorber we calculate the projected sky distance to the nearest neighbor SDSS galaxy.

We also impose a maximum redshift difference of ∆z < 0.001, this corresponds to a radial velocity

dispersion of approximately 300 km/s. We find 53 Lyα absorbers match to a SDSS galaxy with

projected sky distance < 1 h−1 Mpc. They are pockets of neutral HI gas in the dark matter halo of

its host galaxy. We find that 31 of the 53 Lyα absorber matched galaxies (58%) are void galaxies.

Figure 6.2 shows a slice of SDSS with the line of sight to a single quasar. The locations of Lyα

absorbers are marked on the plot, we can see absorbers distributed throughout the entire line of

sight.

6.6.3 Column Density

Figure 6.4 shows the distribution of column densities for absorbers. The distribution for both the wall

absorbers as well as the void absorbers can be seen. There is no significant difference in the column

densities of void absorbers. In Figure 6.5 we plot the distribution of absorbers versus distance from

the nearest galaxy, and in Figure 6.6 we plot the distribution of column densities for absorbers versus

the projected distance to the nearest galaxy. There is no difference in the distribution of column

densities versus the projected distance to the nearest galaxy, nor is there a significant difference in

the distribution of absorbers versus the projected distance to the nearest galaxy.

Chapter 6: Lyα Absorbers 6.6 Method
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Figure 6.2: The location of Lyα absorbers are plotted along with the line of sight to the quasar
that contains the absorption line in the spectrum. Absorbers are distributed along the line of
sight, and there appears to be no direct correlation between the clumping of galaxies along the
line of sight with the locations of the absorbers.

6.7 Results

We find the surprising result that while the Lyα absorbers detected in both large scale voids and

walls seem similar in both distance from nearest galaxy as well as column density, there is a distinct

preference for absorbers to be detected inside the voids, especially towards the centers of voids.

Modern simulations such as those seen in Davé et al. [2001], Smith et al. [2010] are typically done

on boxes 50 h−1 Mpc on a side, which is too small for large scale structure. We also find that the

Lyα absorbers should not be considered to be tracers of the filamentary structure as proposed in

Cen and Ostriker [1999]. Grogin and Geller [1998] found that Lyα absorbers are not tracing the

nearby large scale structure marked by typical luminous galaxies. We find that the absorbers are

not randomly distributed in the nearby Universe as they found, but rather they have a preference

to reside towards the centers of the most underdense structures in the Universe. This agrees with

predictions from Carswell and Rees [1987] that voids can not be deficient in Lyα clouds unless they

Chapter 6: Lyα Absorbers 6.7 Results
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Figure 6.3: A histogram of the number of Lyα absorbers as a function of the ratio of the
distance from the center of the void it is located in versus the radius of the void. Overplotted
is the line of a random distribution of absorbers inside the voids with N(r) ∝ r2. We see that
there is a clear preference for the absorbers to reside closer to the center of the voids in an
environment of extremely low density (δ < -0.9).

occupied < 5% of the cosmic volume.
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Figure 6.4: A histogram of the column densities of the Lyα absorbers. We see that the
distribution for both the wall and void absorbers are similar and the absorbers span the entire
range of the sample obtained from HST STIS.
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Figure 6.5: A histogram of the number of Lyα absorbers as a function of its projected distance
from the nearest galaxy. We see that many absorbers have a galaxy matched closer than 1 h−1

Mpc in projected distance. Beyond 1 h−1 Mpc, the distribution of “match” galaxy projected
distance is flat.
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Figure 6.6: This plot shows the distribution of column densities versus the projected distance
from the nearest galaxy. We see that the distribution for wall and void absorbers are similar.
There is no preference for void absorbers to have higher column densities at larger radii from
the host galaxy.
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Chapter 7

Conclusion/Future Work

7.1 Results from Void Catalog

In chapter 2, we studied the distribution of cosmic voids and void galaxies using Sloan Digital Sky

Survey data release 7 using an absolute magnitude cut of Mr < −20.09. Using the VoidFinder

algorithm as described by Hoyle and Vogeley [2002], we identify 1054 statistically significant voids

in the northern galactic hemisphere greater than 10 h−1 Mpc in radius, covering 62% of the volume.

There are 8,046 galaxies brighter than Mr = −20.09 that lie within the voids, accounting for

approximately 6% of the galaxies, and 79,947 void galaxies (11.3%) with mr < 17.6. The largest

void is just over 30 h−1 Mpc in effective radius. The median effective radius is 17 h−1 Mpc. Voids

of size reff ∼ 20h−1 Mpc dominate the void volume. The voids are found to be significantly

underdense, with δ < −0.85 near the edges of the voids. We tested the sensitivity of the void finding

algorithm to changes in the absolute magnitude cut within the range −19.6 > Mr > −20.6. The

resulting void regions are largely similar with slight differences only near the edges of the void regions.

The radial density profiles of the voids are found to be similar to predictions of dynamically distinct

underdensities in gravitational theory. We compared the results of VoidFinder on SDSS DR7 to mock

catalogs generated from a SPH halo model simulation as well as other Λ-CDM simulations and found

similar results, ruling out inconsistencies resulting from selection bias and survey geometry.

Expanding on this result, we tested the void finding algorithm on alternative surveys and cosmo-
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logical simulations in chapter 3, and compared it to another void finding algorithm that recreates the

density field [Platen et al., 2008]. We find that VoidFinder is robust enough to work with different

sets of data and different cosmological simulations. Using 21,641 volume limited catalog galaxies

over 25,000 square degrees of the souther sky, VoidFinder finds 219 voids with r > 10 h−1 Mpc,

average reff = 17.86 h−1 Mpc, and 1,296 volume limited void galaxies in 6dF. VoidFinder voids

agree with void findings results from the Watershed Void Finder and the Böotes “supervoid” was

identified in both void finders as a collection of smaller voids. Various cosmological simulations are

able to reproduce the large scale structure void properties observed with SDSS.

7.1.1 Future Work

Throughout the literature search on voids and void galaxies there is usually one thing in common.

The astronomical community does not yet have a full definition for what constitutes a void or

what constitutes a void galaxy. There is an entire separate branch of galaxy study that focuses on

“isolated” galaxies, these are galaxies that have no local environment neighbors, yet in the literature,

these galaxies are often referred to as void galaxies as well. Colberg et al. [2008] attempted to address

the issue of unifying void finding algorithms after a series of international collaboration meetings

in Aspen and Amsterdam brought together the leading researchers in large scale void structures.

The meeting was successful in that like minds came together to explore and discuss the implications

of void studies and the field as a whole gained a better understanding of the amount of ongoing

observational and theoretical work. However, there continues to be individual void definitions that

are best fitting to individual studies. Each individual void definition may be the most fitting for

that particular study, but there needs to be a well defined set of nomenclature rules for void catalogs

that are released to the public. The void catalog released in the work of this thesis is a galaxy based

cosmic void catalog.

There is a lot of work that can still be done to expand void catalogs. Already there are new

Sloan data releases and with upcoming surveys such as LSST and SKA, there is plenty of data to

be mined. While the specific void finding algorithm may not be optimal for use on these new data

releases, similar algorithms can be modified to work. Void finding has been and will be a useful tool
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for assessing the cosmology and physics of the Universe.

7.2 Results from Void Shapes

In chapter 4, we determined that voids are generally spherical in shape, with no major deviation

for being highly elliptical. This is expected as we expect large scale voids to become more spherical

over time. Similar results can be seen in void shape analysis done by Foster and Nelson [2009] on a

subsample of voids from SDSS DR5. Figure 4.4 shows a slice of SDSS with the comparison of a best

fit ellipsoid plotted against the maximal sphere of the void region. The best fit ellipsoid appears to

fill in the void volume much better than the maximal sphere, it also preserves the volume of the

void region. The results of void ellipticity in the void catalog can be seen in Figure 4.5. The three

axes of the ellipsoid, a ≥ b ≥ c, can be described by the two ratios b/a and c/b. We can see that

there appears to be a slight preference for the ellipsoidal void regions to have a prolate shape as

opposed to an oblate shape. Prolateness can be seen in the figure as an excess of points with smaller

b/a compared to c/b. Oblateness is seen as an excess of points with smaller c/b compared to b/a

A similar result can be seen (Figure 4.6) when looking at voids in real versus redshift space using

the mock simulations described in a previous section. This means that the excess prolateness is not

caused by redshift space distortions. It is likely due to a preference for voids to merge in pairs for

the resulting observed void to be a prolate ellipsoid.

7.2.1 Future Work

More analysis into the substructure of voids needs to be done to determine the causes of the void

ellipticity measured in SDSS voids. Ryden and Melott [1996] measured appreciable increases in

both the size and shape of voids by measuring the void probability function (VPF) and underdense

probability function (UPF) of voids in simulated real and redshift space. They also measured a

preference for alignment along the line of sight, results that are not measured in larger simulations

since then, and in the observed SDSS Universe. There have been numerous studies into the shapes

and structure in the interior of voids [Sahni et al., 1998, Gottlöber et al., 2003], as well as the

filamentary structure of the Universe [Aragon-Calvo et al., 2010, Noh and Cohn, 2011]. More
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comprehensive study of the interior distribution of galaxies within voids will help us understand the

effects of redshift space distortions as well as the effects of cosmology on large scale structure.

7.3 Void Galaxy Distribution

In chapter 5, we sought to understand the distribution of galaxies in the observed Universe. By

measuring the small scale structure of cosmic voids, we can better understand cosmology within

voids. We consider voids to be mini-universes with differing cosmological parameters, primarily Ωm,

ΩΛ, and σ8 [Goldberg et al., 2005].

We found void galaxies are less clustered than their wall counterparts, with s0 = 7.8 and γ =

1.2 assuming the correlation equation has the form ξ = (s/s0)−γ . This is similar in comparison to

work done by Abbas and Sheth [2006] which compared galaxies living in low density regions (< 33%

mean density) versus their wall counterparts.

7.3.1 Future Work

There is still a lot to be gained from studying the small scale structure of voids. The void environment

gives us a testbed for determining the accuracy of predictions from models of cosmology. The

standard model of cosmology, ΛCDM, predicts specific properties to the distribution of matter

within voids. We can use studies of galaxies in voids in 2 separate ways using a suite of cosmological

simulations, such as the Cosmic Calibration suite of simulations [Heitmann et al., 2006, Habib et al.,

2007].

First, we can study the accuracy of cosmological simulations in determining the small scale

structure of voids. This is done by allowing the cosmological parameters to vary in full cosmological

simulations and then looking at the void galaxy distribution results in comparison to the SDSS

observational results found in this thesis.

Second, we can test cosmological theories that predict the small scale void environments. By

treating voids as underdense Universes, we allow cosmological parameters to vary in simulations

targeted specifically at reproducing the galaxy distribution within voids. The simulation with galaxy

distributions that best match the void galaxies from SDSS tells us what the cosmology is within
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voids.

7.4 Results from Lyα Absorbers in Voids

In chapter 6, we find that while the Lyα absorbers detected in both large scale voids and walls

seem similar in both distance from nearest galaxy as well as column density, there is a distinct

preference for absorbers to be detected inside the voids, especially towards the centers of voids.

This is a surprising results becasue modern simulations such as those seen in Davé et al. [2001],

Smith et al. [2010] are typically done on boxes 50 h−1 Mpc on a side, which is too small for large

scale structure. We also find that the Lyα absorbers should not be considered to be tracers of the

filamentary structure as proposed in Cen and Ostriker [1999]. Grogin and Geller [1998] found that

Lyα absorbers are not tracing the nearby large scale structure marked by typical luminous galaxies.

We find that the absorbers are not randomly distributed in the nearby Universe as they found, but

rather they have a preference to reside towards the centers of the most underdense structures in the

Universe. This agrees with predictions from Carswell and Rees [1987] that voids can not be deficient

in Lyα clouds unless they occupied < 5% of the cosmic volume.

7.4.1 Future Work

With the results found in this thesis, the push is on theorists to run numerical simulations on

volumes that contain large underdense void regions to determine the spatial distribution of Lyα

clouds. The next step for observational results is to compare HST FUSE results to HST Cosmic

Origins Spectrograph (COS) results. Most of COS data has been taken at the time of writing of

this thesis, it will expand the number of absorbers to compare from 11 to approximately 50. If

additional void catalogs are considered, all COS QAL systems can be considered, giving us a data

sample of almost 1,000 absorption lines. With the increased number of absorbers and increased

volume coverage, it will be possible to conduct cross correlations of Lyα absorbers with large scale

structure, pinning down the spatial distribution of these absorbers. It will also be possible to

cross correlate Lyα absorbers with galaxy types. We can use the locations of neutral HI clouds to

determine the properties of galaxy and filament gas environments.
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Using Lyα absorbers associated with void galaxies, HST spectra also contains information for

metal lines, primarily OVI lines as done in Stocke et al. [2007] for isolated galaxies. The metal

properties of void galaxies is of particular interest because there is not expected to be many heavier

metals in voids due to the lower mass densities in voids and the lack of interactions and mergers

that produce metals.

7.5 Final Discussion

Research in cosmic voids is an active and growing field. As we continue to learn more about the

Universe, the focus on large scale structure has grown. We are entering an era now where large

telescopic surveys can finally allow us to prod and observe the three dimensional structure of the

Universe. Studying large scale structure can provide us with insight into various aspects of astronomy

and physics. On large scales, the distribution of voids and filaments describe the cosmology of the

Universe. On a smaller scale, the contents and environments of void galaxies describe the evolution

of galaxies, with underdense void regions providing a pristine test environment for growth. Study

of large scale voids will play an important part in enhancing our understanding of cosmology and

help assess the plausibility of cosmological models, including accepting or rejecting ΛCDM.
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ton, G Pauls, R Simcoe, R Hirsch, D Sanford, S Wang, D York, F Harris, J Annis, L Bartozek,
W Boroski, J Bakken, M Haldeman, S Kent, S Holm, D Holmgren, D Petravick, A Prosapio,
R Rechenmacher, M Doi, M Fukugita, K Shimasaku, N Okada, C Hull, W Siegmund, E Mannery,
M Blouke, D Heidtman, D Schneider, R Lucinio, and J Brinkman. The sloan digital sky survey
photometric camera. The Astronomical Journal, 116:3040, Dec 1998. doi: 10.1086/300645.

Salman Habib, Katrin Heitmann, David Higdon, Charles Nakhleh, and Brian Williams. Cosmic
calibration: Constraints from the matter power spectrum and the cosmic microwave background.
Physical Review D, 76:83503, Oct 2007. doi: 10.1103/PhysRevD.76.083503.

M. A Hausman, D. W Olson, and B. D Roth. The evolution of voids in the expanding universe.
Astrophysical Journal, 270:351, Jul 1983. doi: 10.1086/161128.

M. P Haynes. H i cosmology in the local universe with alfalfa. Frontiers of Astrophysics: A
Celebration of NRAO’s 50th Anniversary ASP Conference Series, 395:125, Aug 2008.

Katrin Heitmann, David Higdon, Charles Nakhleh, and Salman Habib. Cosmic calibration. The
Astrophysical Journal, 646:L1, Jul 2006. doi: 10.1086/506448.

Chapter 7: Conclusion/Future Work 7.5 Final Discussion



71

G. L Hoffman, E. E Salpeter, and I Wasserman. Spherical simulations of holes and honeycombs in
friedmann universes. Astrophysical Journal, 268:527, May 1983. doi: 10.1086/160976.

Y Hoffman and J Shaham. On the origin of the voids in the galaxy distribution. Astrophysical
Journal, 262:L23, Nov 1982. doi: 10.1086/183904. A&AA ID. AAA032.160.054.

Fiona Hoyle and Michael S Vogeley. Voids in the point source catalogue survey and the updated
zwicky catalog. The Astrophysical Journal, 566:641, Feb 2002. doi: 10.1086/338340.

Fiona Hoyle and Michael S Vogeley. Voids in the two-degree field galaxy redshift survey. The Astro-
physical Journal, 607:751, Jun 2004. doi: 10.1086/386279. (c) 2004: The American Astronomical
Society.

Fiona Hoyle, Randall R Rojas, Michael S Vogeley, and Jon Brinkmann. The luminosity function of
void galaxies in the sloan digital sky survey. The Astrophysical Journal, 620:618, Feb 2005. doi:
10.1086/427176. (c) 2005: The American Astronomical Society.

Esther M Hu, Tae-Sun Kim, Lennox L Cowie, Antoinette Songaila, and Michael Rauch. The distri-
bution of column densities and b values in the lyman-alpha forest. Astronomical Journal v.110,
110:1526, Oct 1995. doi: 10.1086/117625.

J Huchra, M Davis, D Latham, and J Tonry. A survey of galaxy redshifts. iv - the data. Astrophysical
Journal Supplement Series (ISSN 0067-0049), 52:89, Jun 1983. doi: 10.1086/190860.

Lam Hui, Alberto Nicolis, and Christopher W Stubbs. Equivalence principle implications of modified
gravity models. Physical Review D, 80:104002, Nov 2009. doi: 10.1103/PhysRevD.80.104002.

V Icke. Voids and filaments. Royal Astronomical Society, 206:1P, Jan 1984.

Hannah Jang-Condell and Lars Hernquist. First structure formation: A simulation of small-scale
structure at high redshift. The Astrophysical Journal, 548:68, Feb 2001. doi: 10.1086/318674.

N Jarosik, C. L Bennett, J Dunkley, B Gold, M. R Greason, M Halpern, R. S Hill, G Hinshaw,
A Kogut, E Komatsu, D Larson, M Limon, S. S Meyer, M. R Nolta, N Odegard, L Page, K. M
Smith, D. N Spergel, G. S Tucker, J. L Weiland, E Wollack, and E. L Wright. Seven-year wilkinson
microwave anisotropy probe (wmap) observations: Sky maps, systematic errors, and basic results.
The Astrophysical Journal Supplement, 192:14, Feb 2011. doi: 10.1088/0067-0049/192/2/14.

Milikel Joeveer, Joan Einasto, and Erik Tago. Spatial distribution of galaxies and of clusters of
galaxies in the southern galactic hemisphere. Monthly Notices of the Royal Astronomical Society,
185:357, Nov 1978. A&AA ID. AAA022.158.091.

D. Heath Jones, Will Saunders, Matthew Colless, Mike A Read, Quentin A Parker, Fred G Watson,
Lachlan A Campbell, Daniel Burkey, Thomas Mauch, Lesa Moore, Malcolm Hartley, Paul Cass,
Dionne James, Ken Russell, Kristin Fiegert, John Dawe, John Huchra, Tom Jarrett, Ofer Lahav,
John Lucey, Gary A Mamon, Dominique Proust, Elaine M Sadler, and Ken ichi Wakamatsu. The
6df galaxy survey: samples, observational techniques and the first data release. Monthly Notices
of the Royal Astronomical Society, 355:747, Dec 2004. doi: 10.1111/j.1365-2966.2004.08353.x.

Marc Kamionkowski, Licia Verde, and Raul Jimenez. The void abundance with non-gaussian pri-
mordial perturbations. Journal of Cosmology and Astroparticle Physics, 01:010, Jan 2009. doi:
10.1088/1475-7516/2009/01/010.

I. D. Karachentsev, D. I. Makarov, and V. E. Karachentseva. Properties of 513 Isolated Galaxies in
the Local Supercluster. In L. Verdes-Montenegro, A. Del Olmo, & J. Sulentic, editor, Astronom-
ical Society of the Pacific Conference Series, volume 421 of Astronomical Society of the Pacific
Conference Series, pages 69–+, October 2010.

V. E Karachentseva. Catalogue of isolated galaxies. Soobshch. Spets. Astrofiz. Obs., 8:3, Jan 1973.
A&AA ID. AAA010.158.043.

Chapter 7: Conclusion/Future Work 7.5 Final Discussion



72

G Kauffmann and A. P Fairall. Voids in the distribution of galaxies - an assessment of their
significance and derivation of a void spectrum. Royal Astronomical Society, 248:313, Jan 1991.

Tae-Sun Kim, Esther M Hu, Lennox L Cowie, and Antoinette Songaila. The redshift evolution of
the ly alpha forest. Astronomical Journal v.114, 114:1, Jul 1997. doi: 10.1086/118446.

R. P Kirshner, A Oemler, P. L Schechter, and S. A Shectman. A million cubic megaparsec
void in bootes. Astrophysical Journal, 248:L57, Sep 1981. doi: 10.1086/183623. A&AA ID.
AAA030.158.052.

R. P Kirshner, A Oemler, P. L Schechter, S. A Shectman, and D. L Tucker. The las campanas
deep redshift survey. 2. Rencontre de Blois: 25. anniversary of the cosmic background radiation
discovery - physical cosmology, page 595, Jan 1991.

B Kuhn, U Hopp, and H Elsaesser. Results of a search for faint galaxies in voids. Astronomy and
Astrophysics, 318:405, Feb 1997.

Stephen D Landy and Alexander S Szalay. Bias and variance of angular correlation functions.
Astrophysical Journal, 412:64, Jul 1993. doi: 10.1086/172900.

Guilhem Lavaux and Benjamin D Wandelt. Precision cosmology with voids: definition, methods,
dynamics. Monthly Notices of the Royal Astronomical Society, 403:1392, Apr 2010. doi: 10.1111/
j.1365-2966.2010.16197.x.

Jounghun Lee and Daeseong Park. Constraining the dark energy equation of state with cosmic voids.
The Astrophysical Journal Letters, 696:L10, May 2009. doi: 10.1088/0004-637X/696/1/L10.

U Lindner, M Einasto, J Einasto, W Freudling, K Fricke, V Lipovetsky, S Pustilnik, Y Izotov, and
G Richter. The distribution of galaxies in voids. Astronomy and Astrophysics, 314:1, Oct 1996.

Limin Lu, Wallace L. W Sargent, Donna S Womble, and Masahide Takada-Hidai. The lyman-alpha
forest at z approximately 4: Keck hires observations of q0000-26. Astrophysical Journal v.472,
472:509, Dec 1996. doi: 10.1086/178084.
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