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Abstract
Quantum and affine Schubert calculus and Macdonald polynomials

Avinash J. Dalal
Advisor: Jennifer L. Morse, Ph.D.

This thesis is on the theory of symmetric functions and quantum and affine Schubert calculus.

Namely, it establishes that the theory of symmetric Macdonald polynomials aligns with quantum

and affine Schubert calculus using a discovery that distinguished weak chains can be identified by

chains in the strong (Bruhat) order poset on the type-A affine Weyl group. Through this discovery,

there is a construction of two one-parameter families of functions that respectively transition pos-

itively with Hall-Littlewood polynomials and Macdonald’s P-functions. Furthermore, these func-

tions specialize to the representatives for Schubert classes of homology and cohomology of the

affine Grassmannian. This shows that the theory of symmetric Macdonald polynomials connects

with affine Schubert calculus.

There is a generalization of the discovery of the strong order chains. This generalization con-

nects the theory of Macdonald polynomials to quantum Schubert calculus. In particular, the ap-

proach leads to conjecture that all elements in a defining set of 3-point genus 0 Gromov-Witten

invariants for flag manifolds can be formulated as strong covers.
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Chapter 1

Introduction

The Macdonald polynomial basis for the ring Λ of symmetric functions is found at the root of

many exciting projects spanning topics such as double affine Hecke algebras, quantum relativistic

systems, diagonal harmonics, and Hilbert schemes on points in the plane. The transition matrix

between Macdonald and Schur functions has been intensely studied from a combinatorial, rep-

resentation theoretic, and algebraic geometric perspective since the time Macdonald conjectured

[Mac88] that the coefficients in the expansion

Hµ(x; q, t) =
∑
λ

Kλµ(q, t) sλ (1.1)

are positive sums of monomials in q and t – that is, Kλµ(q, t) ∈ N[q, t].

The Kostka-Foulkes polynomials are the special case Kλµ(0, t). These appear in contexts such

as Hall-Littlewood polynomials [Gre55], affine Kazhdan-Lusztig theory [Lus81], and affine ten-

sor product multiplicities [NY97]. Kostka-Foulkes polynomials also encode the dimensions of bi-

graded S n-modules [GP92]. They were combinatorially characterized by Lascoux and Schützenberger

[LS78] who associated a non-negative integer statistic called cocharge to each semi-standard Young

tableau and proved that

Kλµ(0, t) =
∑

T∈S S YT (λ,µ)

tcocharge(T ) , (1.2)

summing over tableaux of shape λ and weight µ. Despite the prevelance of concrete results for the

Kλµ(0, t), it was a big effort even to establish polynomiality for general Kλµ(q, t) and the geometry

of Hilbert schemes was ultimately needed to prove positivity [Hai01]. A formula in the spirit of

(1.2) still remains a complete mystery.

One study of Macdonald polynomials [LLM03] uncovered a manifestly t-Schur positive con-
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struction for polynomials A(k)
µ (x; t), conjectured to be a basis for the subspace Λt

(k) in a filtration

Λt
(1) ⊂ Λt

(2) ⊂ · · · ⊂ Λt
(∞) of Λ with the compelling feature that for every partition µ where µ1 ≤ k,

Hµ(x; q, t) =
∑
λ:λ1≤k

Kk
λµ(q, t) A(k)

λ (x; t) for some Kk
λµ(q, t) ∈ N[q, t] .

Assuming this conjecture, since A(k)
λ (x; t) is a t-positive sum of Schur functions, the Macdon-

ald/Schur transition matrices factor over N[q, t]. The construction of A(k)
µ (x; t) is extremely intricate

and the conjectures remain unproven as a consequence. Nevertheless, their study inspired discover-

ies in representation theory [Hai08] and suggested a connection between the theory of Macdonald

polynomials and quantum and affine Schubert calculus.

The affine Grassmannian of G = S L(n,C) is given by Gr = G(C((t)))/G(C[[t]]), where C[[t]] is

the ring of formal power series and C((t)) = C[[t]][t−1] is the ring of formal Laurent series. Quillen

(unpublished) and Garland and Raghunathan [GR75] showed that Gr is homotopy-equivalent to

the group Ω SU(n,C) of based loops into SU(n,C). The homology H∗(Gr) and cohomology H∗(Gr)

thus have dual Hopf algebra structures which, using results of [Bot58], can be explicitly identified

by a subring Λ(n) and a quotient Λ(n) of Λ.

On one hand, the algebraic nil-Hecke ring construction of Kostant and Kumar [KK86] and the

work of Peterson [Pet97] developed the study of Schubert bases associated to Schubert cells of Gr

in the Bruhat decomposition of G(C((t))),

{ξw ∈ H∗(Gr,Z) | w ∈ S̃ 0
n} and {ξw ∈ H∗(Gr,Z) | w ∈ S̃ 0

n} ,

indexed by Grassmannian elements of the affine Weyl group Ãn−1. On the other, inspired by an

empirical study of the polynomials A(k)
λ (x; t) when t = 1, distinguished bases for Λ(n) and Λ(n)

that refine the Schur basis for Λ were introduced and connected to the quantum cohomology of

Grassmannians in [LM08, LM07]. The two approaches merged when Lam proved in [Lam08]
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that these k-Schur bases are sets of representatives for the Schubert classes of H∗(Gr) and H∗(Gr)

(where k = n − 1). Moreover, the k-Schur functions for Λ(k) = Λt=1
(k) were conjectured [LM05] to

be the parameterless {A(k)
λ (x; 1)}, suggesting a link from the theory of Macdonald polynomials to

quantum and affine Schubert calculus.

Here, we circumvent the problem that the characterization for A(k)
µ (x; t) lacks in mechanism for

proof and definitively establish this link. Our work relies on a remarkable connection between

chains in the strong and the weak order poset on the type-A affine Weyl group. From this con-

nection, we are able to construct one parameter families of symmetric functions that transition

positively with Hµ(x; 0, t) and Macdonald’s P-functions and that specialize to the Schubert repre-

sentatives for H∗(Gr) and H∗(Gr) when t = 1. The same approach leads also to a strong-cover

formulation for all elements in a defining set of Gromov-Witten invariants for flag manifolds.

Our presentation begins with a fresh look at the product structure of the rings H∗(Gr) and

H∗(Gr). Specifically, each ring is determined by multiplication of an arbitrary class with a simple

class. Explicit Pieri rules for these products were given in [LM07, LLMS10]; the homology rule

is framed using saturated chains in the weak order on elements in Ãn−1 and the cohomology rule

is in terms of strong order saturated chains. We distinguish a subset of these strong chains by

imposing a translation and a horizontality condition on Ferrers shapes. We prove that this subset

newly characterizes the homology rule, providing a cohesive framework for the structure of H∗(Gr)

and H∗(Gr). For w ∈ S̃ 0
n and c0,m = sm−1 · · · s1s0,

ξc0,m ξw =
∑
u∈S̃ 0

n

ξu,

where (a(w), a(u)) is a horizontal strong (n − 1 − m)-strip. In essence, a horizontal strong strip is a

saturated chain in the Bruhat order from u to the translation of w by sx−1 · · · sx+1 (see Definition 120).

From the horizontal strong strips, we derive a new combinatorial tool called affine Bruhat coun-

tertableaux (or ABC’s). We prove that their generating functions are representatives for the Schu-
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bert basis of H∗(Gr) and by associating a non-negative integer statistic called n-cocharge to each

ABC, we refine the Kostka-Foulkes polynomials. The family of weak Kostka-Foulkes polynomials

are defined, for partitions µ and λ with parts smaller than n, by

Kn
λµ(t) =

∑
A∈ABC(λ,µ)

tn-cocharge(A) , (1.3)

summing over all ABC’s of shape λ and weight µ. A new family of symmetric functions over Q(t)

that reduces to Schubert representatives for the cohomology of Gr when t = 1 can then be drawn

by

S
(n)
λ (x; t) =

∑
µ

Kn
λµ(t) P̃µ(x; t) , (1.4)

where {P̃µ(x; t)} are a deformation of Macdonald’s P-functions. A basis that reduces to the Schubert

representatives for H∗(Gr) when t = 1 and whose transition matrix with Macdonald polynomials

Hµ(x; 0, t) has entries in N[t] is then given by the dual basis

{
s(n)
λ (x; t)

}
,

with respect to the Hall-inner product on Λ. These are conjecturally the A(n−1)
λ (x; t).

Another advantage of the strongly formulated homology rule is that it allies with the combina-

torial backdrop of quantum Schubert calculus. The quantum cohomology ring of the complete flag

manifold FLn (chains of vector spaces in Cn) decomposes into Schubert cells indexed by permuta-

tions w ∈ S n. As a linear space, the quantum cohomology is QH∗(FLn) = H∗(FLn)⊗Z[q1, . . . , qn−1]

for parameters q1, . . . , qn−1, and the appeal lies in its rich multiplicative structure. The quantum

product

σu ∗ σv =
∑

w

∑
d

qd1
1 . . . qdn−1

n−1 〈u, v,w〉d σw0w (1.5)

is defined by 3-point Gromov-Witten invariants of genus 0 which count equivalence classes of
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certain rational curves in FLn. The study of Gromov-Witten invariants is ongoing. Many attempts

to gain direct combinatorial access to the structure constants have been made, but formulas are

still being pursued even in the simplest case when q1 = · · · = qn−1 = 0. In this case, if u and v are

permutations with one descent, the invariants reduce to the well-understood Littlewood-Richardson

coefficients [LR34, MPS77]. For generic u and v in S n, the invariants are the structure constants of

Schubert polynomials [LS82], mysterious even when u has only one descent.

Although the construction is not manifestly positive, all the Gromov-Witten invariants of (1.5)

can be calculated from the subset

{〈sr, v,w〉d : 1 ≤ r < n and v,w ∈ S n} . (1.6)

Fomin, Gelfand, and Postnikov [FGP97] use quantum Schubert polynomials to characterize this

set as a generalization of Monk’s formula. Here, we approach the study by way of the affine

Grassmannian. Peterson asserted that QH∗(G/P) of a flag variety is a quotient of the homology

H∗(GrG) up to localization (detailed and proven in [LS12]). As a by-product, the three-point genus

zero Gromov-Witten invariants (1.5) are structure constants of the Schubert basis for H∗(Gr). A

precise identification of 〈u, v,w〉d with coefficients cνµ,λ in

ξµ ξλ =
∑
ν

cνµ,λ ξν (1.7)

is made in [LM] (where µ, ν, λ are certain Ferres shapes associated to elements of S̃ 0
n) and the

defining set (1.6) of Gromov-Witten invariants is determined to be a subset of

{cνR′r ,λ : 1 ≤ r < n and λ, ν ∈ Cn} ,

where R′r is the rectangular Ferrers shape (rn−r) with its unique corner removed.

In this context, the set can conjecturally be characterized simply as strong covers under a rect-



6

angular translation; that is,

ξR′r ξλ =
∑

νlBR(r,λ)

ξν ,

where νi < R(r, λ)i for some i such that (λ∪Rr)i = r and the q-parameters are readily extracted from

the shape ν. We extend the definition of horizontal strong strips to a larger distinguished subset of

strong order chains characterized by a condition involving ribbon shapes (see Definition 135). The

ribbon strong strips are inspired by the expansion of ξµξλ, where µ is (rn−r−1, r−a) for 1 ≤ a < r < n.

Another motivation for this approach is in its application to an open problem in the study of

H∗(Gr). The problem of expanding a Schubert homology class in the affine Grassmannian of

G = S Ln−1 into Schubert homology classes in Gr was settled in [LLMS12], but the cohomological

picture requires a deeper understanding of the intricacies of strong strips. The ribbon strong strips

point the study towards converting between weak and strong chains so that the existing work on the

homology problem can be applied to the cohomology problem (see [LLMS12] for details).
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Chapter 2

Related work

The parameterless k-Schur function structure constants contain all the Schubert structure con-

stants in the quantum cohomology of flag varieties [LS12, LM]. The search for formulas for these

constants is tied to many exciting projects.

The quantum comology of the Grassmannian can be accessed [BKT03] from the ordinary co-

homology of two-step flags, in which case the Schubert structure constants can be computed by

an iterative algorithm of Coskun [Cos09] or by Knutson-Tao puzzles [KT03] (proved in forth-

coming work [BKPT, Buc]). The constants also match the structure constants of the Verlinde fu-

sion alegbra for WZW models [Ver88, TUY89], efficiently computed by the Kac-Walton formula

[Kac90, Wal90] and combinatorially attempted by [Tud00, KS10, MS12] among others.

Formulas in the quantum cohomology of flag varieties have been derived only in special cases

such as the quantum Monk formula [FGP97] and quantum Pieri formula [Pos99]. These special

constants were connected in [LM] to the k-Schur expansion of s(k)
µ s(k)

λ , where µ is a rectangle mi-

nus part of a row. The k-Pieri rule was given in [LM07] and a more general result appears in

[BBPZ12, BSSb, BSSa]. The problem currently excites many perspectives including the Fomin-

Kirillov algebra [MPP], the affine nil-Coxeter algebra [BBTZ12], Fomin-Greene monoids [BB96],

residue tables [FK13], and crystal bases [MS].

The inclusion of a generic t-parameter has so far been met with limited success. Most notably,

Lapointe and Pinto [PL] introduced a statistic on weak tableaux and proved that it matches the

weight on the poset in [LLMS12] that describes the expansion of a Schubert homology class in Gr

into Schubert homology classes in the affine Grassmannian of G = S L(n + 1,C). In [DM12], we

prove that these match the statistic on ABC’s. Closely related is work expressing k-Schur functions

in terms of Kirillov-Reshetikhin crystals for type An [MS].
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Jing [Jin91] introduced vertex operators Br with the property that

BrHµ(x; 0, t) = Hr,µ(x; 0, t) .

These play a central role [HMZ12] in the developing theory of diagonal harmonics [GH96a].

Zabrocki [Zab98b] determined the action of Br on a Schur function, giving a new proof of the

cocharge formulation for Kostka-Foulkes polynomials. In fact, our approach to the homology Pieri

rule using the strong instead of the weak order came out of a study of his work and the action of Br

on a k-atom A(k)
λ (x; t). A deeper understanding of the operators will shed light on open problems in

diagonal harmonics and their connection to affine Schubert calculus.



9

Chapter 3

Preliminaries

In this chapter we lay down the preliminaries and definitions required for this thesis. We begin

with a section on partitions.

3.1 Partitions

Definition 1. We say that a finite sequence of positive integers λ = (λ1, λ2, . . . , λ`) is a partition of

n ∈ N, denoted λ ` n, if n = λ1 + λ2 + . . . + λ` and λ1 ≥ λ2 ≥ . . . ≥ λ` > 0. We set |λ| =
∑̀
i=1
λi and

the length of λ as `(λ) = `, the number of parts of λ.

When λ is a sequence of positive integers which is not necessarily decreasing, then λ is called

a composition. When λ is a partition, it corresponds uniquely to a diagram.

Definition 2. Suppose λ = (λ1, λ2, . . . , λ`) ` n. The Ferrers diagram of λ is an array of n squares

having ` left justified rows with row i containing λi boxes for 1 ≤ i ≤ `. A cell (i, j) of the partition

λ is a square in row i from the bottom and column j from the left of the Ferrers shape of λ.

Example 3. If λ = (3, 3, 2, 1), then the corresponding Ferrers diagram is

Note the cell (3, 2) of λ, indicated by the thick frame in the Ferrers shape.

For partitions λ and µ, where `(µ) ≤ `(λ), we say µ ⊂ λ when µi ≤ λi for all 1 ≤ i ≤ `(µ). There

is also a partial ordering on the set of all partitions which plays an important role in the theory of
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symmetric functions.

Definition 4. We define the dominance order on the set of partitions as

λ� µ⇐⇒ λ1 + . . . + λ j ≥ µ1 + . . . + µ j for all j and all partitions µ, λ.

Intuitively, λ � µ if the Ferrers diagram of λ is wider than the one for µ. Dominance order is

a partial order on the set of partitions. If we consider the partitions λ = (3, 3) and µ = (4, 1, 1),

then we see that these two partitions are not comparable under the dominance order. Sometimes

we need a total order on partitions, and that’s where the lexicographic or dictionary order becomes

useful.

Definition 5. We define the lexicographic order or dictionary order over the set of partitions as

µ < λ⇐⇒ for some i, µ j = λ j for all j < i, and µi < λi .

Example 6. The lexicographic order on the partitions of 4 is

(1, 1, 1, 1) < (2, 1, 1) < (2, 2) < (3, 1) < (4) .

To see the dominance order on the partitions of 4, we can put these partitions into a structure called

a Hasse diagram. This is a graph with partitions as vertices and we draw an arrow from µ to λ if

µ� λ.
(4)

(2, 2) (3, 1)

(2, 1, 1)

(1, 1, 1, 1)
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Definition 7. Given any partition λ, we define its conjugate λ′ as the partition that corresponds to

the Ferrers diagram of λ flipped along the diagonal y = x.

Example 8. If λ = (3, 3, 2, 1), then from the previous Ferrers diagram we see that λ′ = (4, 3, 2).

Definition 9. If µ ⊆ λ, then the skew shape are the cells

λ/µ = {c : c ∈ λ and c < µ}.

Example 10. If λ = (3, 3, 2, 1) and µ = (2, 1, 1), then the skew shape

λ/µ =

Definition 11. A skew shape λ/µ with m cells is a horizontal m-strip if there is at most one cell in

any column.

Example 12. The skew shape

(7, 5, 2)/(6, 2) =

of 6 cells is a horizontal 6-strip. The skew shape λ/µ of 5 cells of Example 10 is not a horizontal

5-strip.

While most of the cells of a skew shape are not relevant, there are few cells of it which will be

useful.

Definition 13. The cell of a horizontal 1-strip λ/µ is called a removable corner of λ and an

addable corner of µ. A cell (i, j) of a partition λ with (i + 1, j + 1) < λ is called an extremal cell.
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Example 14. For the partition

(2, 2, 1) =

The cells (3, 1), (2, 2) are removable cells of (2, 2, 1), and the cells (4, 1), (3, 2), (1, 3) are addable

cells of (2, 2, 1), and the cell (2, 1) along with the removable cells of (2, 2, 1) form the extremal cells

of (2, 2, 1).

There are two simple functions on partitions which are quite useful.

Definition 15. For a given partition λ, set

n(λ) =

`(λ)∑
i=1

(i − 1)λi & zλ =

`(λ)∏
i=1

ini (ni!) ,

where ni is the number of parts of λ equal to i.

Example 16. For λ = (2, 2, 1),

n(λ) = (1)(2) + (3)(1) = 5 & zλ = (11(1!))(22(2!))(30(0!)) = 16 .

3.2 The tableau

Using partitions and their corresponding Ferrers shapes, we are now ready to define a central

object in the area of algebraic combinatorics called the semi-standard tableau.

Definition 17. A semi-standard tableau, or semi-standard Young tableau, of composition weight

µ = (µ1, . . . , µr) is a nested sequence of partitions

∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) (3.1)

such that λ(i)/λ(i−1) is a horizontal µi-strip. It is generally represented with a filling of shape λ(r)
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by placing i in the cells of the skew λ(i)/λ(i−1). When the weight of a tableau is (1, 1, . . . , 1) it is

called a standard tableau. S S YT (λ, µ) denotes the set of semi-standard tableaux of shape λ and

composition weight µ and the union over all weights is S S YT (λ). Similarly, S YT (λ) denotes the

set of standard tableaux of shape λ. For any T ∈ S S YT (λ), we denote wt(T ) as the weight of T .

A more conventional way to think of semi-standard tableau of shape λ is a filling of the Ferrers

shape of λ with positive integers, where the rows are weakly increasing and the columns are strictly

increasing. For the purposes of this thesis, we will work with Definition 17. Let’s consider three

examples of semi-standard tableaux.

Example 18. The nested sequence of shapes

∅ ⊂ ⊂ ⊂ ⊂

is the semi-standard tableau

T =
2 3 4
1 1 2 3

of weight wt(T ) = (2, 2, 2, 1).

Example 19. For the partition λ = (3, 2), all of the standard tableaux of weight (1, 1, 1) = (13) are

3
1 2 &

2
1 3 .

Example 20. The semi-standard tableau

T =
3 4
1 2 2 3

has wt(T ) = (1, 2, 2, 1).

Definition 21. For any semi-standard tableau T , the reading word of T , denoted read(T ), is
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obtained by reading the entries of T from left to right in the top row of T , then continuing left to

right in the second row from the top of T , etc.

Example 22. For the semi-standard tableau

T =
3 4
1 2 2 3

,

read(T ) = [3, 4, 1, 2, 2, 3].

Observe that if T is a standard tableau, then the reading word of T is a permutation of S n, where

n is the largest number in T .

3.3 Permutations

In this section we recall some of the basic definitions and properties of the symmetric group

and the affine symmetric group.

3.3.1 Symmetric group

Definition 23. For a positive integer n, the symmetric group, S n, is the set of all bijections

from {1, 2, . . . , n} to itself where composition is multiplication. The generators of this group are

{s1, . . . , sn−1}, where si is the map fixing all the entries except i and i + 1 which are interchanged.

Furthermore, these generators satisfy the relations

s2
i = 1,

sisi+1si = si+1sisi+1,

sis j = s jsi for i − j . 1, n − 1 (mod n)

with all indices related mod n.
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For the permuation σ ∈ S n, we will use the one line notation σ1σ2 · · ·σn or [σ1, σ2, . . . , σn],

where i is sent to σi. More generally, a word (or multiset permutation) σ1σ2 · · ·σn is a linear list of

the elements of some multiset of non-negative integers. We now define some combinatorial rules

on the elements of S n.

Definition 24. For any σ ∈ S n, a descent of σ is an integer i, for which σi > σi+1, for 1 ≤ i ≤ n−1.

The set of such i is called the descent set of σ, and it is denoted Des(σ). An inversion of σ is a pair

(i, j), 1 ≤ i < j ≤ n such that σi > σ j. The inversion statistic, inv(σ), is the number of inversions

of σ. The major index statistic, ma j(σ), is the sum of the descents of σ. Namely,

inv(σ) =
∑
i< j
σi>σ j

1 , ma j(σ) =
∑

i
σi>σi+1

i .

Example 25. For the permutation σ = [3, 2, 4, 1, 5] ∈ S 5, the Des(σ) = {1, 3} and the set of

inversions of σ are {(1, 2), (1, 4), (2, 4), (3, 4)}. Thus we have,

inv(σ) = 4 and ma j(σ) = 1 + 3 = 4.

For more on the major index, inversion and descent statistics, please see [Hag05].

3.3.2 Affine symmetric group

Definition 26. The type-A affine Weyl group is realized as the affine symmetric group S̃ n given by

generators {s0, s1, . . . , sn−1} satisfying the relations

s2
i = 1,

sisi+1si = si+1sisi+1,

sis j = s jsi for i − j . 1, n − 1 (mod n)



16

with all indices related mod n.

If w = si1 · · · si` ∈ S̃ n and ` is minimal among all such expressions for w, then si1 · · · si` is called

a reduced word for w and the length of w is defined by `(w) = `. The weak order on S̃ n is defined

by the covering relation

w l z ⇐⇒ z = siw and `(z) = `(w) + 1 .

Alternatively, S̃ n is the group of permutations of Z with the property that w ∈ S̃ n acts by

w(i + rn) = w(i) + rn, for all r ∈ Z and
∑n

i=1 w(i) =
(

n+1
2

)
. For 0 ≤ i < n, the elements si ∈ S̃ n act on

Z by si(i + rn) = i + 1 + rn, si(i + 1 + rn) = i + rn, and si( j) = j for j . i, i + 1 (mod n).

Although the simple reflections si generate the group, there is also the notion of a transposition

τi, j defined by its action τi, j(i + rn) = j + rn and τi, j(x) = x for x . i, j (mod n). Take integers i < j

with i . j (mod n) and v = b( j − i)/nc, then τi,i+1 = si and for j − i > 1, and

τi, j = sisi+1si+2 · · · s j−v−2s j−v−1s j−v−2s j−v−3 · · · si+1si

where the indices of the simple reflections are taken mod n. For j > i, we set τi, j = τ j,i.

Definition 27. The strong (Bruhat) order is defined by the covering relation

w lB u when u = τi, jw and `(u) = `(w) + 1 . (3.2)

The symmetric group S n can be viewed as the parabolic subgroup of S̃ n generated by

{s1, s2, . . . , sn−1}. The left cosets of S̃ n/S n are called affine Grassmannian elements and they are

identified by the set S̃ 0
n ⊂ S̃ n of minimal length coset representatives. One characterization of S̃ 0

n is

the set of all reduced words of S̃ n beginning in so. We will see that through this characterization,

elements of S̃ 0
n can be conveniently represented by a subset of the set of partitions.
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It is the subset of shapes Cn, called n-cores, that are in bijection with affine Grassmannian

permutations. To understand Cn, we need the hook-length of cells in a Ferrers shape.

Definition 28. Given a partition λ, the hook-length of any cell c of λ is the number of cells directly

north of c plus the number of cells directly east of c plus one.

Definition 29. An n-core is a partition that has no cell whose hook-length is n. Furthermore, the

content of any cell (i, j) is j − i and its n-residue is j − i (mod n).

Example 30. The partition λ = (4, 2, 1) has Ferrers shape

c

and the cell c in this Ferrers shape has hook-length 4. Observe that none of the cells of λ have

hook-length 5, and that’s because this is a 5-core. The 5-residue of the cell c is 1 ≡ (2− 1) mod 5.

There is a left action of the generator si ∈ S̃ n on an n-core λ with at least one addable corner of

residue i; it is defined by letting siλ be the shape where all corners of residue i have been added to

λ. This extends to a bijection [Las99, LM05]

a : S̃ 0
n −→ C

n ,

where λ = a(w) = si1 · · · si`∅ for any reduced word i1 · · · i` of w. We use wλ to denote the preimage

of λ under a.

Definition 31. The degree of an n-core λ, deg(λ), is ` = `(wλ).

An n-core λ has an addable corner of residue i if and only if

`(wsiλ) = `(wλ) + 1 . (3.3)
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Property 32. [LM05] For an n-core λ with extremal cells c and c′ of the same n-residue, given that

c is weakly north-west of c′, if c is at the end of its row, then so is c′. If c has a cell above it, then so

does c′.

The strong order on the subset S̃ 0
n is characterized on elements of Cn by the containment of

diagrams and its covering relation is

µ lB λ⇐⇒ µ ⊂ λ and deg(λ) = deg(µ) + 1 .

Given a pair µ lB λ, the shape λ/µ can be described by ribbons.

Definition 33. For r ≥ 0, an r-ribbon R is a skew diagram λ/µ consisting of r rookwise connected

cells such that there is no 2 × 2 shape contained in R. In a ribbon, the southeasternmost cell is

called its head and the northwesternmost cell is its tail. The height of a ribbon is the number of

rows it occupies.

Example 34. The skew shape

(7, 4, 4, 3)/(3, 3, 2) =

t

h

is a 10-ribbon of height 4. The tail is labeled t and the head is labeled h of the 10-ribbon.

Lemma 35. [LLMS10] If w lB τr,sw in S̃ 0
n, then the skew a(τr,sw)/a(w) is made up of copies of one

fixed ribbon such that the head of each copy has residue s − 1 and the tail has residue r.

Lemma 36. Given w lB τr,sw in S̃ 0
n,

a(τr,sw) = a(w) + all addable ribbons with a head of residue r − 1 and tail of residue s .
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Proof. Since τr,s = sr sr+1 · · · ss−1 · · · sr, any addable ribbon of a(w) with a head of residue s − 1

and a tail of residue r is added to a(w) under multiplication by τr,s. The result then follows from

Lemma 35. �
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Chapter 4

Ring of symmetric functions

Let R to be a commutative ring with x1, . . . , xn a set of n indeterminants. The set of all vectors

α = (α1, . . . , αn) of non-negative integers form a monoid under addition. Furthermore, this monoid

is isomorphic to the monoid of all monomials xα under multiplicaiton:

xαxβ = xα+β where xα = xα1
1 · · · x

αn
n .

We call the corresponding algebra the ring of polynomials, denoted R[x1, . . . , xn], which consists

of all polynomials in n variables with coefficients in R.

We set deg(xα) = |α| = α1 + · · · + αn. An element

f (x1, . . . , xn) =
∑
α
|α|=d

cαxα.

of R[x1, . . . , xn] is called a homogenous polynomial of degree d. If R[x1, . . . , xn]d is the set of all

polynomials of degree d, then we have a grading of the ring of polynomials

R[x1, . . . , xn] =
⊕
0≤d

R[x1, . . . , xn]d.

There is a natural S n action on polynomials which is degree-preserving, where elements of the

symmetric group S n act by permuting the variables. Namely, for σ ∈ S n and P(x) ∈ R[x1, . . . ,Rn],

σP(x1, . . . , xn) = P(xσ(1), . . . , xσ(n)).
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Example 37. If σ = [3, 2, 1] is the permutation of S 3 in one-line notation, then

σ(x2
1 + x3

2 + x1x3) = x2
3 + x3

1 + x3x2.

Definition 38. A polynomial P(x) ∈ R[x1, . . . , xn] is said to be a symmetric polynomial if σP(x) =

P(x) for all σ ∈ S n. The set of symmetric polynomials of degree d in n-variables is denoted Λd
n and

Λn =
⊕

d

Λd
n

is the ring of symmetric polynomials.

4.1 Monomial symmetric functions

We now consider a particular set of symmetric polynomials constructed by symmetrizing the

monomial term xλ, for a partition λ.

Definition 39. The monomial symmetric function indexed by a partition λ is

mλ =
∑
β
β∗=λ

xβ,

over all distinct β where β∗ is the partition rearrangements of β.

Example 40. Suppose we consider the ring of symmetric polynomials in n = 4 variables. If λ =

(2, 2, 1), then all the rearrangements of λ are (2, 2, 1, 0), (2, 2, 0, 1), (2, 0, 2, 1), (2, 0, 1, 2), (1, 2, 2, 0),

(1, 2, 0, 2), (1, 0, 2, 2), (2, 1, 2, 0), (2, 1, 0, 2), (0, 2, 2, 1), (0, 2, 1, 2)(0, 1, 2, 2). This tells us that

m(2,2,1) = x2
1x2

2x3 + x2
1x2

2x4 + x2
1x2

3x4 + x2
1x3x2

4 + x1x2
2x2

3+

+ x1x2
2x2

4 + x1x2
3x2

4 + x2
1x2x2

3 + x2
1x2x2

4 + x2
2x2

3x4 + x2
2x3x2

4 + x2x2
3x2

4. (4.1)
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It is clear that the mλ’s are independent, thus the set {mλ | |λ| = d} spans Λd
n. Note that if λ has

more than n parts, then we don’t have enough variables. To avoid this issue, we work in the vector

space spanned by all the mλ.

Definition 41. The ring of symmetric functions is the vector space over the commutative ring R

spanned by all mλ:

Λ = R[mλ].

If Λd is the space spanned by all mλ of degree d, then Λ forms the graded ring

Λ =
⊕
0≤d

Λd.

Theorem 42. [Sag00] {mλ | |λ| = d} forms a basis for Λd.

4.2 Elementary symmetric functions

In this section we begin by defining another set of symmetric functions.

Definition 43. For each partition λ = (λ1, . . . , λ`), the elementary symmetric function is the

function eλ = eλ1eλ2 · · · eλ` , where

er(x1, . . . , xn) =
∑

1≤i1<i2<···<ir≤n

xi1 xi2 · · · xir , and e0 = 1, er = 0 ∀r > n.

Example 44. If λ = (2, 1), then since e1 = x1 + x2 + · · · , and e2 = x1x2 + x1x3 + · · · , we get

e(2,1) = (x1 + x2 + · · · )(x1x2 + x1x3 + · · · ). Note also that if we have the partition (1r) = (1, . . . , 1),

where there are r ones, then m(1r) = er. Since deg(er) = r, then deg(eλ) = |λ|.

Expanding the elementary symmetric functions in terms of the monomial symmetric functions

shows us that the elementary symmetric functions are indeed symmetric and that they form a basis

for Λ.



23

Theorem 45. [Sag00] {eλ | |λ| = d} forms a basis for Λd.

4.3 Homogeneous symmetric functions

In this section we begin by defining the homogeneous symmetric functions.

Definition 46. For each partition λ = (λ1, . . . , λ`), the homogeneous symmetric function is the

function hλ = hλ1hλ2 · · · hλ` , where

hr(x1, . . . , xn) =
∑

1≤i1≤i2≤···≤ir≤n

xi1 xi2 · · · xir , and h0 = 1, er = 0 ∀r > n.

Sometimes, hλ is referred to as the complete symmetric function.

Example 47. If λ = (2, 1), then since h1 = x1 + x2 + · · · , and h2 = x2
1 + x2

2 + · · ·+ x1x2 + x1x3 + · · · ,

we get h(2,1) = (x1 + x2 + · · · )(x2
1 + x2

2 + · · · + x1x2 + x1x3 + · · · ).

Theorem 48. [Sag00] For any partition λ, the function hλ is a symmetric function, and the set

{hλ | |λ| = d} forms a basis for Λd.

Using the definition of the homogeneous and monomial symmetric functions, we can define an

inner product on the space Λ.

Definition 49. The Hall-inner product on the space Λ is defined by setting

〈hλ,mµ〉 = δλµ

where δλµ = 0 when λ , µ and is 1 otherwise.

4.4 Power symmetric functions

In this section we begin by defining the power symmetric functions.
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Definition 50. For each partition λ = (λ1, . . . , λ`), the power symmetric function is the function

pλ = pλ1 · · · pλ` , where

pr =
∑

i

xr
i and p0 = 1, pr = 0 ∀r > n.

Example 51. For the partition (1), p(1) = x1+x2+· · · = e1 = h1. In general, p(r) = xr
1+xr

2+· · · = m(r).

Theorem 52. [Sag00] For any partition λ, the function pλ is a symmetric function, and the set

{pλ | |λ| = d} forms a basis for Λd.

4.5 Schur functions

We next study an important set of symmetric functions called the Schur functions.

Definition 53. Given a partition λ, we define the corresponding Schur function, sλ, as

sλ(x) =
∑

T∈S S YT (λ)

xwt(T ) .

The Schur functions have been tied to irreducible representations of the symmetric group S n,

and play an important role as Schubert classes of the Grassmannian variety. Let’s consider some

examples of Schur functions.

Example 54. For the partition λ = (2, 1), we have the set of

S S YT (λ) =

{
2
1 1

,
2
1 2

,
3
1 1

,
3
1 3

, . . . ,
3
1 2

,
2
1 3

,
4
1 2

,
2
1 4

, . . .

}
.

This gives us the Schur function

s(2,1)(x) = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + · · · + 2x1x2x3 + 2x1x2x4 + · · ·

= m(2,1) + 2m(1,1,1).
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Observe that in this Example we do not restrict the number of variables.

Example 55. Suppose λ = (1k), the partition whose parts are all ones and of length k. For this

special case, the Schur function is

s(1k)(x) =
∑

T∈S S YT ((1k))

xwt(T ) = ek.

To see this, note that the set S S YT ((1k)) contains only semi-standard tableaux that are vertical

strips of length k. Since we know that each one of these tableaux has increasing columns, then we

see that each T ∈ S S YT ((1k)) is unique. Thus, any term of xT in the sum must be a monomial

with variables having exponent either zero or one. Namely each term is of the form xi1 xi2 . . . xik for

1 ≤ i1 < i2 < . . . < ik. These are precisely the terms of ek.

Example 56. Suppose now λ = (k). In this case we have

s(k)(x) =
∑

T∈S S YT ((k))

xT = h(k).

To see this, note that the set S S YT ((k)) contains only semi-standard tableaux that look like hor-

izontal strips of length k. Since we know that each one of these tableaux has weakly increasing

rows, then we see that each T ∈ S S YT ((k)) contains any k subset of n. For instance, T can contain

k ones or it can contain exactly the set {1, . . . , k}. Thus we see that any term, xT , is a monomial in

variables to any power. Namely each term is of the form xi1 xi2 . . . xik for 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik.

These are precisely the terms of hk.

Before we show that the Schur functions form a basis for Λn, we must show that they are

symmetric.

Proposition 57. [Sag00] For any partition λ, The Schur function sλ(x) is a symmetric function.
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Proof. One way to write the Schur functions is

sλ =
∑
α

Kλαxα,

where Kλα is the number of semi-standard tableaux of shape λ and weight α. Furthermore we know

that any element of the symmetric group can be written as a product of transpositions. Thus it

suffices to show that Kλσi(α) = Kλα, where σi is a transposition. To show this, we find an involution

φi on the set S S YT (λ, α). Namely, we define the Bender-Knuth involution

φi = S S YT (λ, α) −→ S S YT (λ, σi(α))

as follows. Given T ∈ S S YT (λ, α), each column contains either an i, i + 1 pair; exactly one of

i, i + 1; or neither. Call the pairs fixed and all other occurrences of i or i + 1 free. Define φi(T ) by

switching the number of free i’s and (i + 1)’s in each row. To illustrate, if i = 2 and

T =

3
2 2 3 3 3 3
1 1 1 1 2 2 2 2 2 3

then the 2’s and 3’s in columns two through four and seven through ten are free. So

φ2(T ) =

3
2 2 2 3 3 3
1 1 1 1 2 2 2 3 3 3

It is easy to show that φi(T ) is a semi-standard tableau. Since the fixed i’s and (i + 1)’s come in

pairs, this map has the desired exchange property. It is also clear that φi is an involution. Thus sλ is

a symmetric function. �

Since we know that sλ is symmetric then it can be written as a linear combination of the mono-
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mial symmetric functions, mµ. In particular if µ ` n, then

sλ =
∑
µ

µ`|λ|

Kλµmµ

where the Kostka number Kλµ is the number of tableau of shape λ and weight µ. For a given n > 0,

we get the following linear system.


sλ(1)

sλ(2)

...

 =


Kλ(1)λ(1) Kλ(1)λ(2) . . .

Kλ(2)λ(1) Kλ(2)λ(2) . . .

...
...

. . .




mλ(1)

mλ(2)

...


Call the coefficient matrix of this linear system the Kostka matrix, [Kλµ]λ,µ`n.

Theorem 58. [Sag00] The Kostka matrix [Kλµ]λ,µ`n is invertible.

Corollary 59. {sλ : λ ` n} is a basis for Λn.

Example 60. The set of all partitions of 3 are S = {(1, 1, 1), (2, 1), (3)}. Theorem 58 gives us the

system 

s(3)(x)

s(2,1)(x)

s(1,1,1)(x)


=



1 1 1

0 1 2

0 0 1





m(3)(x)

m(2,1)(x)

m(1,1,1)(x)


where the coefficient matrix is [Kλµ]λ,µ`3.



28

Chapter 5

Symmetric functions over Q(q, t)

In this chapter we consider symmetric functions with additional parameters t and q. Specifi-

cally, we will first consider the Hall-Littlewood polynomials which are symmetric functions with

coefficients in Q(t), the set of rational functions in t. We will then consider the famous Macdon-

ald polynomials which are also symmetric functions with coefficients in Q(q, t), the set of rational

functions in q and t.

5.1 Hall-Littlewood polynomials

The Hall-Littlewood polynomials were originally defined as a basis for the algebra of symmetric

functions depending on a parameter t. The motivation for the Hall-Littlewood polynomials comes

from problems in group theory that led to the definition of the Hall algebra [Lit61]. The Hall-

Littlewood polynomials have also been known to have applications to character theory of finite

linear groups [Gre55], representations of symmetric groups [Mor65][Sch11], affine Hecke algebras

[Lus81], statistical mechanics [KR88] and representations of quantum affine algebras and affine

crystals [LLT97] [LS07].

From the symmetric functions view point, the Hall-Littlewood polynomials have a definition

which is similar to the Schur functions. The Hall-Littlewood polynomials are a basis of the ring of

symmetric functions over a field containing a parameter t. Namely, for the field of fractions over

the polynomials in t, Q((t)), we set

Λt = Q((t))[h1, h2, . . .].

In Λt, we have the following definition of the Hall-Littlewood polynomials.
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Definition 61. The Hall-Littlewood polynomials, Hλ(x; t), are defined as the symmetric functions

satisfying

Hλ(x; t) = sλ + terms of the form rλµ(t)sµ, (5.1)

for µ > λ (under the lexicographic or dictionary order), and

〈Hλ(x; t),Hµ(x; t)〉t = 0

if λ , µ. Here, the scalar product 〈·, ·〉t is defined so that

〈pλ, pµ〉t = zλδλµ
`(λ)∏
i=1

(1 − tλi).

We can use this definition to compute the Hall-Littlewood polynomials.

Example 62. In this example we will show how to compute Hall-Littlewood polynomials indexed

by partitions of 3. Immediately, Equation 5.1 gives us that H(3)(x; t) = s(3)(x). Next, to compute

H(2,1)(x; t), Equation 5.1 tells us that

H(2,1)(x; t) = s(2,1)(x) + r(2,1),(3)(t)s(3)(x) . (5.2)

This tells us that

〈H(2,1)(x; t),H(3)(x; t)〉t = 〈s(2,1)(x),H(3)(x; t)〉t + r(2,1),(3)(t)〈s(3)(x; t), s(3)(x; t)〉t . (5.3)

Solving for r(2,1),(3)(t) in Equation 5.3, and substituting into Equation 5.2, we get

H(2,1)(x; t) = s(2,1) −
〈s(2,1),H(3)〉t

〈H(3),H(3)〉t
H(3).

By caclulating the expansion of Schur functions in terms of power symmetric functions, we get that
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〈s(2,1), s(3)〉t = t2 − t and 〈s(3), s(3)〉t = 1 − t. Thus, we have H(2,1)(x; t) = s(2,1)(x) + ts(3)(x).

A similar method can be used to compute H(1,1,1)(x; t). Namely,

H(1,1,1)(x; t) = s(1,1,1) −
〈s(1,1,1),H(2,1)〉t

〈H(2,1),H(2,1)〉t
H(2,1) −

〈s(1,1,1),H(3)〉t

〈H(3),H(3)〉t
H(3).

Using the previous example, we get that the scalar product 〈s(1,1,1), s(2,1)〉t = t2 − t, 〈s(1,1,1), s(3)〉t =

t2 − t3, and 〈s(2,1), s(2,1)〉t = (1 − t)(1 − t + t2). From these calculations, we find that

H(1,1,1)(x; t) = s(1,1,1)(x) + (t + t2)s(2,1)(x) + t3s(3)(x).

There are many other ways to compute the Hall-Littlewood polynomials. For instance, they

can be defined by means of the creation operators [Jin91]. Another way to compute the Hall-

Littlewood polynomials is through the Kostka-Foulkes polynomials and the Schur functions. For

given partitions λ and µ, the Kostka-Foulkes polynomials, Kλ,µ(t), are families of polynomials that

generalize the Kostka numbers. Specifically, Kλ,µ(1) = Kλ,µ. It was the work of Lascoux and

Schützenberger in 1978, [LS78], which beautifully characterized the Kostka-Foulkes polynomials

and gave the transition matrix between Hall-Littlewood and Schur polynomials. Their work showed

an intrinsically positive formula for the Kostka-Foulkes polynomials by associating a statistic (non-

negative integer) called cocharge to each semi-standard tableaux.

5.1.1 Cocharge of a tableau

Lascoux and Schützenberger found an intrinsically positive formula for the Kostka-Foulkes

polynomials by associating a statistic (non-negative integer) called cocharge to each semi-standard

tableaux and proving that

Kλ,µ(t) =
∑

T∈S S YT (λ,µ)

tcocharge(T ) . (5.4)

Definition 63. The cocharge of a standard tableau T is the sum of the entries in the index vector
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I(T ) = [0, I2, . . . , Im] which is defined by setting Ir = Ir−1 when the content of r is larger than the

content of r − 1 and otherwise setting Ir = Ir−1 + 1.

The notion is extended to give the cocharge of a semi-standard tableau with generic weight by

successively computing the index of an appropriate subset of i cells containing the letters 1, 2, . . . , i.

Definition 64. From a specific x in cell c of a tableau T , the desired choice of x + 1 is the south-

easternmost one lying above c. If there are none above c, the choice is the southeasternmost x + 1

in all of T .

Consider now any semi-standard tableau T with partition weight. Starting from the rightmost 1

in T , use Definition 64 to distinguish a standard sequence of i cells containing 1, 2, . . . , i. Compute

the index and then delete all cells in this sequence. Repeat the process on the remaining cells. The

total cocharge is defined to be the sum of all the index vectors.

Example 65. The cocharge of the following tableau is 25:

6
4 5
3 4
2 2 3 5
1 1 1 2 3 7

5
4

2 3
1 1 2 3

3
1 2

I = [0, 1, 2, 3, 3, 4, 4] I = [0, 1, 1, 2, 3] I = [0, 0, 1]

Theorem 66. [LS78] For partitions λ and µ,

Kλ,µ(t) =
∑

T∈ S S YT (λ,µ)

tcocharge(T ).

The Kostka-Foulkes polynomials appear in other contexts including affine Kazhdan-Lusztig

theory [Lus81] and affine tensor product multiplicities [NY97]. Furthermore, the Kostka-Foulkes

polynomials encode the dimensions of certain bigraded S n-modules [GP92].
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5.1.2 Charge of a tableau

While one can state the results of Lascoux and Schützenberger using the cocharge statistic on

semi-standard tableaux, it is sometimes convenient to state the results in terms of the charge statistic

on them. The charge statistic is computed in a similar spirit to that of the cocharge, except this time

we redefine the index vector over choice of the standard sequence of the tableau.

Definition 67. The charge of a standard tableau T is the sum of the entries in the index vector

I(T ) = [0, I2, . . . , Im] which is defined by setting Ir = Ir−1 when the content of r is smaller than the

content of r − 1 and otherwise setting Ir = Ir−1 + 1.

The notion is extended to give the charge of a semi-standard tableau with generic weight by

successively computing the index of an appropriate subset of i cells containing the letters 1, 2, . . . , i.

Algorithm 68. From a specific x in cell c of a tableau T , the desired choice of x + 1 is the south-

easternmost one lying above c. If there are none above c, the choice is the south-easternmost x + 1

in all of T .

Consider now any semi-standard tableau T with partition weight. Starting from the rightmost 1

in T , use Algorithm 68 to distinguish a standard sequence of i cells containing 1, 2, . . . , i. Compute

the index and then delete all cells in this sequence. Repeat the process on the remaining cells. The

total charge is defined to be the sum of all the index vectors.

Example 69. The charge of the following tableau is 9:

6
4 5
3 4
2 2 3 5
1 1 1 2 3 7

5
4

2 3
1 1 2 3

3
1 2

I = [0, 0, 0, 0, 1, 1, 2] I = [0, 0, 1, 1, 1] I = [0, 1, 1]
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We can now define the charge analog of the Kostka-Foulkes polynomials. We then show how

these polynomials are related to the Kostka-Foulkes polynomials.

Definition 70. For partitions λ and µ, let

K̃λ,µ(t) =
∑

T∈S S YT (λ,µ)

tcharge(T )

We can now use the following fact to relate the charge and cocharge statistic over semi-standard

tableaux.

Theorem 71. [Hag05] Given partitions λ and µ, if T ∈ S S YT (λ, µ), then

charge(T ) = n(µ) − cocharge(T ) .

Theorem 71 gives us the following Corollary relating K and K̃.

Corollary 72. For partitions λ and µ,

Kλ,µ(t) = tn(µ)K̃λ,µ(1/t) .

The work of Lascoux and Schützenberger on the Kostka-Foulkes polynomials was in the Cox-

eter group of type A. However, no generalization of this formula to other types is known. There are

other applications of the type A Hall-Littlewood polynomials that extend to arbitrary types. Some

of the applications are related to fermionic multiplicity formulas [AK07] and affine crystals [LS07].

For more on Hall-Littlewood polynomials of type A and other arbitrary types, we refer the reader

to [JDT94] [Mac95], [NR03], [Ste05].
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5.2 Macdonald polynomials

In this section we discuss a set of famous symmetric functions over Q(q, t) known as the Mac-

donald polynomials. During the 1980’s, it was discovered that Selberg’s integral, [Sel44], had a

number of extensions. One of these extensions, due to Kadell, involved inserting symmetric func-

tions which depended on a partition, a set of n variables in xi, and another parameter. These are

now known as the Jack symmetric functions, first studied by H. Jack [Jac70]. A problem of find-

ing a q-analogue of the Jack symmetric functions which are an extension of Selberg’s integral was

posed by Kadell, [Kad88]. This was soon solved afterwords by Macdonald, [Mac88], and these

q-analogues of the Jack symmetric functions are now famously referred to as the Macdonald poly-

nomials, Pλ(x; q, t). More on the connection of Pλ(x; q, t) to Kadell’s generalization of Selberg’s

integral can be found in [Mac95].

The Macdonald polynomials Pλ(x; q, t) are symmetric functions with coefficients in Q(q, t), the

set of rational functions in q and t. These Macdonald polynomials form a basis of the space of

symmetric functions with two parameters

Λq,t = Q((q, t))[h1, h2, . . .].

Macdonald’s construction of Pλ(x; q, t), involves the dominance order over partitions and an exten-

sion of the Hall-inner product.

Definition 73. The q, t extension of the Hall-inner product is given by

〈pλ, pµ〉q,t = δλµzλ
`(λ)∏
i=1

1 − qλi

1 − tλi
.

With this definition in mind, the following conditions uniquely define a family of symmetric

functions {Pλ(x; q, t)} parameterized by partitions λ, and these functions have coefficients in Q(q, t).
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Definition 74. The Macdonald polynomial Pλ(x; q, t) is defined uniquely by the condition

Pλ(x; q, t) =
∑
µ�λ

cλ,µmµ,

where cλ,µ ∈ Q[q, t] and cλ,λ = 1, and the condition

〈Pλ, Pµ〉q,t = 0 if λ , µ.

Macdonald proved that when the parameters q and t are fixed or set equal in Pλ(x; q, t), then

Pλ(x; q, t) relates to the symmetric function bases of Section 4.

Proposition 75. [Mac88] For a partition λ,

1. Pλ(x; t, t) = sλ(x)

2. Pλ(x, q, 1) = mλ(x)

3. Pλ(x, 1, t) = eλ′(x)

4. when λ = (1n), P(1n)(x; q, t) = en(x) = s(1n)(x).

5.3 The q, t-Kostka polynomials

Macdonald’s study of Pλ(x; q, t) found some very interesting properties. To see some of these

properties, we first modify Pλ(x; q, t). Let Jµ(x; q, t) denote the so-called Macdonald integral form,

defined in [Hag05]. Expanding Jµ in terms of sλ(x(1 − t)) gives us

Jµ(x; q, t) =
∑
λ`|µ|

Kλ,µ(q, t) sλ(x(1 − t)),
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for some Kλ,µ(q, t) ∈ Q[q, t]. The famous Macdonald positivity conjecture stated that

Kλ,µ(q, t) ∈ N[q, t] .

The work of M. Haiman on the geometry of Hilbert schemes was ultimately needed to prove the

positivity conjecture [Hai01]. Macdonald posed a refinement of his positivity conjecture which is

still open today.

Conjecture 76. For given partitions λ, µ, there are statistics q-stat(T, µ) and t-stat(T, µ) given by

some combinatorial rule such that

Kλ,µ =
∑

λ∈S YT (λ)

qqstat(T,µ)ttstat(T,µ).

The work of A. Garsia and M. Haiman [GH96b] shows it is more natural to work with the

polynomials

K̃λ,µ(q, t) = tn(µ)Kλ,µ(q, 1/t).

These polynomials are connected to the Kostka-Foulkes polynomials.

K̃λ,µ(0, t) = Kλ,µ(t) =
∑

T∈S S YT (λ,µ)

tcocharge(T ).

Macdonald found a statistical description for K̃λ,µ(q, t) when λ = (n−k, 1k) is a hook-shape [Mac95].

A combinatorial description of K̃λ,µ(q, t) when µ is any hook-shape was proven by J. Stembridge

[Ste94]. Stembridge’s result can be stated using a modification of the major index, the co-major

index, of a permutation σ.
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Definition 77. For a permutation σ ∈ S n,

coma j(σ) =
∑

i
σi>σi+1

(n − i) .

With the co-major index, we can express Stembridge’s result of the q, t-Kostka polynomials.

Theorem 78. [Ste94] For partition λ and µ = (n − k, 1k),

K̃λ,µ =
∑

T∈S YT (λ)

qma j(T,µ)tcoma j(T,rev(µ′)),

where rev(η) = (η`, η`−1, . . . , η1) for any composition η into ` parts.

Until the mid 1990’s, there were no combinatorial results for K̃λ,µ when µ has more than one

column. In 1995, the first statistic for K̃λ,µ when µ has two columns was obtained by S. Fischel

[Fis95]. Soon after, L. Lapointe and J. Morse [LM98] and M. Zabrocki [Zab98a] independently

found alternate descriptions for the two column case of µ in K̃λ,µ. A paper by A. Garsia and J.

Remmel [GR96] details a recursive formula for the K̃λ,µ when λ is a hook plus the square (2, 2).

In the late 1990’s, A. Garsia and G. Tesler [GT96] proved that K̃λ,µ is a polynomial with positive

integer coefficients when λ is a hook plus the square (2, 2) plus the cell in position (2, 3) or (3, 2).

A more recent combinatorial result in 2005 comes from the work by J. Haglund, M. Haiman

and N. Loehr using the inversion and the major statistics. To see this result we need the property of

Yamanouchi of a word.

Definition 79. A word w ∈ Zn
+ is Yamanouchi if each of its final segments wk,wk+1, . . . ,wn has

partition weight. Set Yam(λ) to be the set of Yamanouchi words with weight {1λ1 , 2λ2 , . . . , `λ`}.

Example 80. For the partition (2, 2, 1), the set

Yam((2, 2, 1)) = {32211, 32121, 23121, 21321, 23211} .
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Theorem 81. [HHL05] For a partition µ with µ1 ≤ 2,

K̃λ,µ =
∑

σ:µ→Z+

w(σ)∈Yam(λ)

qinv(σ)tma j(σ).
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Chapter 6

Affine Schubert calculus

Recall that the ring of symmetric functions Λ is generated over Z by the homogeneous sym-

metric functions h1, h2, . . .. The ring Λ is equipped with an algebra involution ω : Λ→ Λ given by

ω(hi) = ei, where ei is the elementary symmetric function. We use the involution ω on Λ to give it

the structure of a Hopf algebra.

The ring Λ has a coproduct ∆ : Λ→ Λ ⊗Z Λ given by

∆ : Λ −→ Λ ⊗Z Λ

hi 7−→
∑
0≤ j≤i

h j ⊗ hi− j

where h0 := 1. The coproduct together with the Hall-inner product gives Λ the structure of a self-

dual commutative and cocommutative Hopf algebra. There is a sub-Hopf algebra and a quotient of

it that is of most interest.

Definition 82. For any positive integer n, set

Λ(n) = Λ/〈mλ | λ1 ≥ n〉 and Λ(n) = Z[h1, h2, . . . , hn−1].

We see that Λ(n) is a quotient of the Hopf algebra of Λ, and Λ(n) is a sub-Hopf algebra of Λ.

Furthermore, the Hall-inner product, 〈· , ·〉, gives Λ(n) and Λ(n) the structures of dual Hopf algebras.

Possible candidates for dual bases are {mλ | λ1 ≤ n − 1} for Λ(n) and {hλ | λ1 ≤ n − 1} for Λ(n). The

involution ω of Λ restricts to an involution on Λ(n). By duality, there is an involution ω+ of Λ(n)

characterized by 〈 f , g〉Λ = 〈ω( f ), ω+(g)〉Λ, for f ∈ Λ(n) and g ∈ Λ(n).
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6.1 Affine Grassmannian Gr

The affine Grassmannian of G = S L(n,C) is given by Gr = G(C((t))/G(C[[t]], where C[[t]]

is the ring of formal power series and C((t)) = C[[t]][t−1] is the ring of formal Laurent series.

The algebraic nil-Hecke ring construction of Kostant and Kumar [KK86] and the work of Peter-

son [Pet97] developed the study of Schubert bases associated to Schubert cells of Gr in the Bruhat

decomposition of G(C((t))),

{ξw ∈ H∗(Gr,Z) | w ∈ S̃ 0
n} and {ξw ∈ H∗(Gr,Z) | w ∈ S̃ 0

n} ,

indexed by affine Grassmannian permutations. The cap product yields a pairing

〈· , ·〉Gr : H∗(Gr) × H∗(Gr) −→ Z ,

under which the Schubert bases {ξw ∈ H∗(Gr,Z) | w ∈ S̃ 0
n} and {ξw ∈ H∗(Gr,Z) | w ∈ S̃ 0

n} are dual.

Quillen (unpublished) and Garland and Raghunathan [GR75] showed that the space Gr is

homotopy-equivalent to the group Ω SU(n,C) of based loops into SU(n,C). Thus H∗(Gr) and

H∗(Gr) are endowed with the structures of dual commutative and co-commutative Hopf algebras.

In [Bot58], R. Bott explicitly calculated these Hopf algebras. By identifying the generators, there

are isomorphisms H∗(Gr) � Λ(n) and H∗(Gr) � Λ(n) such that the following diagram

Λ(n) × Λ(n)

H∗(Gr) × H∗(Gr)

Z

〈· , ·〉Gr

〈· , ·〉

commutes.
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A natural problem was to identify the Schubert classes ξw and ξw with symmetric functions.

Inspired by an empirical study of the polynomials A(k)
λ (x; t) when t = 1, distinguished bases for Λ(n)

and Λ(n) that refine the Schur basis for Λ were introduced and connected to the quantum cohomol-

ogy of Grassmannians in [LM08, LM07]. In 2008, confirming a conjecture of M. Shimozono, T.

Lam proved in [Lam08] that the Schubert classes ξw and ξw are represented respectively by these

bases, the k-Schur functions and the dual k-Schur functions (also called affine Schur functions).

Theorem 83. [Lam08] Under the isomorphism H∗(Gr) � Λ(n), the Schubert class ξw is sent to the

dual k-Schur function Sw ∈ Λ(n), and under the isomorphism H∗(Gr) � Λ(n), the Schubert class ξw

is sent to the k-Schur function s(k)
w , where k = n − 1.

The dual k-Schur functionsS(k)
w are weight generating functions of combinatorial objects known

as weak k-tableaux and they were first introduced by L. Lapointe and J. Morse in [LM05]. On the

other hand, the parameterless k-Schur functions s(k)
w are conjectured to be the t = 1 specializations

of A(k)
λ (x; t) first introduced by A. Lascoux, L. Lapointe and J. Morse in [LLM03] as the k-Atoms,

in their study of the Macdonald polynomials. This suggests that there is a link from the theory of

Macdonald polynomials to quantum and affine Schubert calculus.

6.2 The k-Schur functions

In 2003, L. Lapointe, A. Lascoux and J. Morse were studying the q, t-Kostka coefficients when

they discovered the existence of the k-Schur functions, A(k)
λ (x, t). Their version of the Macdonald

symmetric function, Hλ(x; q, t), is defined so that it’s a unique basis which has the property that

Hλ(x; q, t) = rλ(q, t)sλ(x/(1 − q)) + terms of the form rλµ(q, t)sµ(x/(1 − q))

with µ > λ and

〈Hλ(x; q, t),Hµ(x; q, t)〉q,t = 0 if λ , µ .
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Lapointe, Lascoux and Morse’s empirical study of Hµ(x; q, t) led to a refinement of Macdon-

ald’s positivity conjecture. The version of the Macdonald polynomial, Hλ(x; q, t), can be achieved

through the one in Definition 74. For more on this please see [Mac95].

Conjecture 84. [LLM03] For any fixed integer k > 0, and λ ∈ Pk (a partition where λ1 ≤ k),

Hλ(x; q, t) =
∑
µ∈Pk

K(k)
µλ (q, t) A(k)

µ (x; t) ,

where K(k)
µλ (q, t) ∈ N[q, t] for some family of polynomials defined by certain sets of tableauxAk

µ as

A(k)
µ (x; t) =

∑
T∈Ak

µ

tcharge(T ) sshape(T ) .

Lapointe, Lascoux and Morse made further conjectures about A(k)
µ (x; t), strengthening the ties

of their work to related fields of algebraic combinatorics.

Conjecture 85. [LLM03] For any fixed integer k > 0, the set {A(k)
λ (x; t)}λ∈Pk exists and forms a basis

for

Λt
(k) = span{Hλ(x; q, t) | λ ∈ Pk} .

Furthermore, for any k′ > k,

A(k)
λ (x; t) =

∑
µ

B(k,k′)
λµ (t) A(k′)

λ (x; t) where B(k,k′)
λµ (t) ∈ N[t] ,

and A(k)
λ (x; t) = sλ for k ≥ |λ|.

Conjectures 84 and 85 strengthens Macdonald’s conjecture 76. Pursuant work of Lapointe

and Morse, [LM03a, LM03b, LM04, LM05, LM07, LM08], led to connections of the k-Schur

functions with geometry, physics and representation theory. A matter of determining an algorithm

or a formula for computing A(k)
λ (x; t) was discovered by Lapointe, Lascoux and Morse which first
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appeared in [LM03a]. Subsequently, various conjecturally equivalent definitions have arisen, each

of them having different benefits and view points. For more on this see [LLM+13].

6.3 The k-Schur functions at t = 1

In this section we present a construction for the k-Schur functions from the previous Section

6.2 when the parameter t is set to one. The k-Schur functions, s(k)
λ , we consider will form a basis

for the space

Λ(k) = Q[h1, h2, . . . , hk] .

This Hopf algebra Λ(k) is dual to the quotient

Λ(k) = Λ/〈mλ | λ > k〉 .

The dual k-Schur functions, S(k)
λ , will form a basis for the dual space Λ(k). We will index the k-

Schur functions and their dual elements by (k + 1)-cores. To define the dual k-Schur functions we

need the weak tableaux.

6.3.1 Weak k-tableaux

Definition 86. Let λ be a (k + 1)-core, and α = (α1, . . . , αd) be a composition of |λ| with no part

larger than k. A weak k-tableau of weight α is a semi-standard filling of shape λ with letters

1, . . . , d such that the collection of cells filled with letter i is labeled by exactly αi distinct (k + 1)-

residues.

Example 87. For k = 6, the weak k-tableaux of weight (4, 3, 1) are

3
2 2 2
1 1 1 1

2 2 2 3
1 1 1 1

2 2 2
1 1 1 1 3

2 2 3
1 1 1 1 2
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3
2 2
1 1 1 1 2 3

3
2
1 1 1 1 2 2 2

2 3
1 1 1 1 2 3 .

The weak k-tableaux are a generalization of the semi-standard tableaux because for one reason

they generalize the Kostka numbers.

Definition 88. For any (k + 1)-core λ and µ ∈ Pk, the weak Kostka numbers, K(k)
λµ , are the number

of weak k-tableaux of shape λ and weight µ.

The weak Kostka numbers satisfy an important property. Let [K(k)
λµ ] denote the matrix whose

elements are the weak Kostka numbers over all (k + 1)-cores λ and µ ∈ Pk. The matrix [K(k)
λµ ] is uni-

triangular and thus invertible [LM05]. With this in mind, the k-Schur functions were characterized

in [LM07] by the system obtained from

hµ =
∑
λ∈Ck+1

K(k)
λµ s(k)

λ , (6.1)

for all µ ∈ Pk. This system defines the k-Schur functions because the elements hλ for λ ∈ Pk forms

a basis for the space Λ(k) and the transition matrix is invertible.

Example 89. For k = 6, the weak tableaux in Example 87 gives us

h(4,3,1) = s(6)
(4,3,1) + s(6)

(4,4) + 2s(6)
(5,3) + s(6)

(6,2,1) + s(6)
(7,1,1) + s(6)

(8,2) .

We can now use duality to produce the second basis S(k)
λ for the algebra Λ(k). We will need the

pairing

〈· , ·〉 : Λ(k) × Λ(k) −→ Q ,

where hµ ∈ Λ(k) and mλ ∈ Λ(k) are dual elements from the Hall-inner product. We define the dual
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k-Schur functions in terms of the monomial functions:

S
(k)
λ =

∑
µ:µ1≤k

〈hµ ,S
(k)
λ 〉 mµ

=
∑
µ:µ1≤k

∑
γ∈Ck+1

K(k)
γµ 〈s

(k)
γ ,S(k)

λ 〉 mµ

=
∑
µ:µ1≤k

K(k)
λµ mµ .

There is an involution on the set of weak k-tableaux of a fixed shape λ and weight α which

sends a tableau to another tableau of shape λ and weight that is a permutation of α in [LM07]. This

gives us that the dual k-schur functions are weight generating functions for weak k-tableaux.

Theorem 90. [LM07] For λ ∈ Ck+1,

S
(k)
λ =

∑
T :weak k-tableau

shape(T )=λ

xweight(T ) .

Example 91. To compute the dual k-Schur function S(3)
(5,2,1), we extract the weights of each weak

k-tableau of shape (5, 2, 1) from Example 87 to get

S
(3)
(5,2,1) = m(3,2,1) + 2m(3,1,1,1) + m(2,2,2) + 2m(2,2,1,1) + 3m(2,1,1,1,1) + 4m(1,1,1,1,1,1) .

The weak Kostka numbers are a result of the weak Pieri rule of [LM05], which is given in

terms of weak horizontal chains in the (k + 1)-core realization of the weak poset. There are other

realizations of the k-Schur functions and the dual k-Schur functions. The k-Schur functions can be

realized as weight generating functions for strong k-tableaux resulting from the strong Pieri rule.

The language of the affine symmetric group shows us another way to characterize the dual k-Schur

functions, which we consider in the next chapter.
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6.3.2 Cocharge of a weak k-tableau

The k-cocharge statistic on k-tableaux is first described in standard case as it is in these terms

that we will define it for semi-standard k-tableaux. Important to the definition is the number of

diagonals between two cells of a specific residue.

Definition 92. Given two cells c1 and c2 of a (k+1)-core, let diag(c1, c2) be the number of diagonals

of reside r that are strictly between c1 and c2 where r is the residue of the lower cell.

When it is well-defined to do so, functions defined with a cell as input can instead take a letter

as input. In particular, for standard k-tableaux it is natural to discuss the residue of a specific letter

(since any cell containing that letter has the same residue) instead of the residue of a specific cell.

Example 93. For k = 4, a standard k-tableau of weight (110) is

T =

101

82

53 74

44 60 101

10 21 32 53 74 90 101

For this T , we see that diag(44, 32) = 0, and diag(82, (1, 5)) = 1.

Definition 94. Given a standard k-tableau T of weight (1m), place a bar on the lowest occurrence

of the letter i, for 1 ≤ i ≤ m. Define the index vector I(T ) = [I1, I2, . . . , Im] recursively by setting

I1 = 0, and

Ii =


Ii−1 + 1 + diag(ī, i − 1) if i − 1 is strictly below i

Ii−1 − diag(i, i − 1) otherwise

for 2 ≤ i ≤ m. The k-cocharge of T is the sum of the entries of I(T ),

kcocharge(T ) =

m∑
i=1

Ii .
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Example 95. For the k-tableau T of Example 93 , Table 6.1 shows us that the kcocharge(T ) = 10.

i diag(i, i − 1) Ii

2 0 0 − 0 = 0
3 0 0 − 0 = 0
4 0 0 + 1 + 0 = 1
5 0 1 − 0 = 1
6 0 1 + 1 + 0 = 2
7 0 2 − 0 = 2
8 1 2 + 1 + 1 = 4
9 1 4 − 1 = 3

10 0 3 − 0 = 3

Table 6.1: k-cocharge of T from Example 93

One observation of Definition 94 is that the k-cocharge of a standard k-tableau is not always

positive, unlike the Lascoux-Schutzenberger cocharge on a tableau. For this reason, it is sometimes

useful to employ a different formulation of the k-cocharge. To see this alternate form, we first let

T≤i denote the subtableau obtained by deleting all the letters larger than i of the standard k-tableau

T . We also need to define a residue order.

Definition 96. Given a k-tableau T , the T-residue order of {0, 1, . . . , k} is defined by

r > r + 1 > · · · > k > 0 > 1 > · · · > r − 1 ,

where r is the residue of the lowest addable cell of T .

Example 97. For k = 4, consider the standard k-tableau

T =

63

34 50

10 21 42 63
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The T-residue order is 4 > 0 > 1 > 2 > 3. The T≤4-residue order is 3 > 4 > 0 > 1 > 2, which is

also the T≤5-residue order.

We now define a index vector over a given standard k-tableau. This index vector will give us

another formulation of the k-cocharge statistic over standard k-tableau.

Definition 98. Given a standard k-tableau T of weight (1m), define the index vector M(T ) =

[M1, . . . ,Mm] recursively by setting M1 = 0, and

Mi =


Mi−1 + 1 if res(i) > res(i − 1)

Mi−1 otherwise

for 2 ≤ i ≤ m.

Conjecture 99. For a standard k-tableau T of weight (1m),

kcocharge(T ) =

m∑
i=1

(
Mi + diag(ci, c(i))

)
,

where ci is the lowest cell containing an i in T≤i, and c(i) is the lowest addable cell of T≤i.

Example 100. For k = 4, recall that the standard k-tableau of weight (110) from Example 93 is

T =

101

82

53 74

44 60 101

10 21 32 53 74 90 101

Table 6.2 shows us that the kcocharge(T ) = 10.

The Lascoux and Schützenberger cocharge statistic on a semi-standard tableau is an exten-

sion of the cocharge statistic on a standard tableau. Similarly, the k-cocharge on a semi-standard

k-tableau will be an extension of the k-cocharge statistic on a standard k-tableau. The trick is to
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i T≤i-residue order Mi diag(ci, c(i))

2 2 > 3 > 4 > 0 > 1 0 0
3 3 > 4 > 0 > 1 > 2 0 0
4 3 > 4 > 0 > 1 > 2 1 0
5 4 > 0 > 1 > 2 > 3 1 0
6 4 > 0 > 1 > 2 > 3 2 0
7 0 > 1 > 2 > 3 > 4 2 0
8 0 > 1 > 2 > 3 > 4 3 1
9 1 > 2 > 3 > 4 > 0 3 0

10 2 > 3 > 4 > 0 > 1 3 0

Table 6.2: k-cocharge of T from Example 100

introduce a method for making an appropriate choice of standard sequences on the semi-standard

k-tableau.

Definition 101. From an i, of some residue r, in a semi-standard k-tableau T , the appropriate

choice of i + 1 will be determined by choosing its residue from the set, A, of all (k + 1)-residues

labeling (i + 1)’s. Reading counter-clockwise from r, this choice is the closest j ∈ A on a circle

labelled clockwise with 0, 1, . . . , k.

Example 102. For k = 4, the k-tableau of weight (2, 2, 2, 2, 2, 2, 1) is

T =

70

61

52 63

33 44 70

24 30 51 52 63

10 11 22 33 44 40 51 52 63

0

4

3 2

1

The bold cells of T shows the first standard sequence using Definition 101. The set of residues

labeling 5 in T is A = {1, 2}, and the residue of 4 in the first standard sequence is 0. Therefore, the

choice of 2 from A is made because 2 is closer to 0 than 1 when reading counter-clockwise on the
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above circle labeled with all the residues.

For semi-standard k-tableaux, we must be careful about the residue order of Definition 96. We

can first think that the letters i that appear in a semi-standard k-tableau are ordered with respect

to the standard subsequences they belong to under Definition 101. Specifically, the i in the first

standard sequence is larger than the i from the second standard sequence, etc. This ordering is well

defined since each i has its own distinct residue r in the semi-standard k-tableau. Henceforth, the

index vector M of Definition 98 is computed with respect to the T≤ir -residue order when dealing

with the letter ir.

Example 103. For the k-tableau T of Example 102, we have the two standard sequences by Defi-

nition 101

70

61

52 63

33 44 70

24 30 51 52 63

10 11 22 33 44 40 51 52 63

& 63

44

30 51 63

10 22 44 51 63

Observe that

T≤51 =

33 44

24 30 51

10 11 22 33 44 40 51

The lowest addable cell of T≤51 has residue 2, so the T≤51-residue order is 2 > 3 > 4 > 0 > 1.

Conjecture 99 along with Table 6.3 tells us that the kcocharge(T ) = 16.

6.3.3 Charge of a weak k-tableau

Equation 6.1 gives us a characterization of k-Schur functions (without parameter t) by inverting

hµ =
∑
λ∈Ck+1

K(k)
λµ s(k)

λ ,
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ir T≤ir -residue order Mi diag(cir , c(ir)) Ii diag(ir, (i − 1)r)

24 2 > 3 > 4 > 0 > 1 1 0 1 0
33 4 > 0 > 1 > 2 > 3 1 0 1 0
40 1 > 2 > 3 > 4 > 0 1 0 1 0
52 3 > 4 > 0 > 1 > 2 1 0 1 0
61 3 > 4 > 0 > 1 > 2 2 2 4 2
70 3 > 4 > 0 > 1 > 2 3 1 4 0
22 3 > 4 > 0 > 1 > 2 0 0 0 0
30 3 > 4 > 0 > 1 > 2 1 0 1 0
44 0 > 1 > 2 > 3 > 4 1 0 1 0
51 2 > 3 > 4 > 0 > 1 1 0 1 0
63 4 > 0 > 1 > 2 > 3 1 0 1 0

Table 6.3: k-cocharge of T from Example 102

where the weak Kostka numbers, K(k)
λµ , count weak k-tableaux. In this subsection we present a

generalization of the weak Kostka numbers, which are polynomials in N[t]. Namely, these weak

Kostka-Foulkes polynomials are defined by refining the charge statistic of Subsection 5.1.2 to a

statistic which associates a non-negative integer called the k-charge to each k-tableau. In the spirit

of Equation 6.1, the Hall-Littlewood polynomials

Hµ(x; t) =
∑
λ∈Pn

K(k)
λµ (t) s̃(k)

λ (x; t),

characterize the functions {s̃(k)
λ (x; t)}, where µ ∈ Pn. Setting the coefficients

K(k)
λµ (t) =

∑
shape(T )=c(λ)

weight(T )=µ

tkcharge(T ),

gives us that K(k)
λλ (t) = 1, and since there are no weak k-tableaux of shape c(λ) and weight µ when

µ > λ in lexicographic order, then the k-charge matrix [K(k)
λµ (t)] is unitriangular.

We now give a formulation of the k-charge statistic defined directly on k-tableaux by Lapointe
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and Pinto [PL]. This will be described on standard weak k-tableaux, and the semi-standard case

will be defined in these terms.

Definition 104. Given a (k + 1)-core λ with cells c1 and c2, the number diag(c1, c2) is the number

of diagonals of residue x that are strictly between c1 and c2 where x is the residue of the lower cell

in λ.

When it is well-defined to do so, the function diag(c1, c2) can be defined with inputs which are

letters in cells c1 and c2 when we have a given weak k-tableau.

Definition 105. Given a standard k-tableau T on m letters, put a bar on the topmost occurrence of

letter i, for each i = 1, 2, . . . ,m. Define the index of T , starting from I1 = 0, by

Ii =


Ii−1 + 1 + diag(i, i − 1) if i is east of i − 1

Ii−1 − diag(i, i − 1) otherwise .

for i = 2, . . . ,m. The k-charge of T , denoted kcharge(T), is the sum of the entries in I(T ) =

[I1, . . . , Im].

Example 106. For k = 3, a standard k-tableau of weight (16) is

T =

42

23 60

10 31 42 53 60

Table 6.4 shows us that the kcharge(T ) = 8.

It is not clear that the k-charge of Definition 105 is a non-negative integer. As a result, it is

sometimes useful to use a formulation of the k-charge, derived by J. Morse from [DM13]. For any

tableau T , let T≤x denote the subtableau obtained by deleting all letters larger than x from T .
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i diag(i, i − 1) Ii

2 0 0 − 0 = 0
3 0 0 + 1 + 0 = 1
4 0 1 − 0 = 1
5 1 1 + 1 + 1 = 3
6 0 3 − 0 = 3

Table 6.4: k-charge of T from Example 106

Definition 107. Given a k-tableau T , the T -residue order of {0, . . . , k} is defined by

r > r − 1 > · · · > 0 > k > · · · > r + 2 > r + 1 ,

where r is the residue of the highest addable corner of T .

Example 108. For k = 3,

T =
43

10 21 32 43
and T≤3 = 10 21 32 .

The T-residue order is 2 > 1 > 0 > 3 and the T≤3-residue order is 3 > 2 > 1 > 0.

Just as the previous definition of k-charge, we define another index vector which is used in

computing another k-charge.

Definition 109. Given a standard k-tableau T on m letters, let the index J(T ) = [J1, . . . , Jm],

starting from J1 = 0, by setting for i = 2, . . . ,m,

Ji =


Ji−1 + 1 if res(i) > res(i − 1)

Ji−1 otherwise .

under T≤i-residue order.



54

We now define another k-charge statistic over standard k-tableaux and conjecture that it is equiv-

alent to the k-charge statistic in Definition 105.

Conjecture 110. For a standard k-tableau T of weight (1m),

kcharge(T ) =

m∑
i=1

(
Ji(T ) + diag(ci, c(i))

)
,

where ci is the highest cell containing an i and c(i) is the highest addable cell of T≤i.

Example 111. For k = 3, recall the that the standard k-tableau of weight (16) from Example 106 is

T =

42

23 60

10 31 42 53 60

Table 6.5 shows us that the kcharge(T ) = 8.

i T≤i-residue order Ji diag(ci, c(i))

2 2 > 1 > 0 > 3 0 0
3 2 > 1 > 0 > 3 1 0
4 1 > 0 > 3 > 2 1 0
5 1 > 0 > 3 > 2 2 1
6 1 > 0 > 3 > 2 3 0

Table 6.5: k-charge of T from Example 111

A consequence of Conjecture 110 is that Definitions 105 and 109 reduce to the charge of Las-

coux and Schützenberger of Definition 67.
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Corollary 112. Let T be a standard k-tableau of shape λ and weight (1m). If k > λ1 + `(λ)−1, then

kcharge(T ) = charge(T ) =

m∑
i=1

Ji(T ) .

We extend the definition of the k-charge to semi-standard k-tableaux by successively computing

on an appropriate choice of standard sequences over the k-tableau.

Definition 113. From an i (of some residue r) in a semi-standard k-tableau T , the appropriate

choice of i + 1 will be determined by choosing its residue from the set S of all (k + 1)-residues

labeling (i + 1)’s. Reading counter-clockwise from r, this choice is the closest j ∈ S on a circle

labelled clockwise with 0, 1, . . . , k.

Example 114. For k = 4, the k-tableau of weight (2, 2, 2, 2, 2, 2, 1) is

T =

70

61

52 63

33 44 70

24 30 51 52 63

10 11 22 33 44 40 51 52 63

0

4

3 2

1

The bold cells of T shows the first standard sequence using Definition 113. The set of residues

labeling 5 in T is S = {1, 2}, and the residue of 4 in the first standard sequence is 0. Therefore, the

choice of 2 from S is made because 2 is closer to 0 than 1 when reading counter-clockwise on the

above circle labeled with all the residues.

For semi-standard k-tableaux, we must be careful about the residue order of Definition 107. We

can first think that the letters i that appear in a semi-standard k-tableau are ordered with respect

to the standard subsequences they belong to under Definition 113. Specifically, the i in the first

standard sequence is larger than the i from the second standard sequence, etc. This ordering is well
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defined since each i has its own distinct residue r in the semi-standard k-tableau. Henceforth, the

index vector J of Definition 109 is computed with respect to the T≤ir -residue order when dealing

with the letter ir.

Example 115. For the k-tableau T of Example 114, we have the two standard sequences by Defi-

nition 113

70

61

52 63

33 44 70

24 30 51 52 63

10 11 22 33 44 40 51 52 63

& 63

44

30 51 63

10 22 44 51 63

Observe that

T≤63 =

52 63

33 44

24 30 51 52 63

10 11 22 33 44 40 51 52 63

The highest addable cell of T≤63 has residue 1, so the T≤63-residue order is 1 > 0 > 4 > 3 > 2.

Conjecture 110 along with Table 6.6 tells us that the kcharge(T ) = 12.
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ir T≤ir -residue order Ji diag(cir , c(ir)) Ii diag(ir, (i − 1)r)

24 3 > 2 > 1 > 0 > 4 0 0 0 0
33 2 > 1 > 0 > 4 > 3 0 0 0 0
40 2 > 1 > 0 > 4 > 3 1 1 2 1
52 1 > 0 > 4 > 3 > 2 1 0 1 1
61 0 > 4 > 3 > 2 > 1 1 0 1 0
70 4 > 3 > 2 > 1 > 0 1 0 1 0
22 4 > 3 > 2 > 1 > 0 1 0 1 0
30 3 > 2 > 1 > 0 > 4 1 0 1 0
44 2 > 1 > 0 > 4 > 3 1 0 1 0
51 2 > 1 > 0 > 4 > 3 2 0 2 0
63 1 > 0 > 4 > 3 > 2 2 0 2 0

Table 6.6: k-charge of T from Example 114

There are several other descriptions of k-charge not just on k-tableaux but also on other com-

binatorial objects. Subsection 10.2 introduces a new combinatorial object, affine Bruhat coun-

tertableaux, over which a new n-charge statistic is defined, for n = k + 1. In [LLM+13] a new

set of combinatorial objects called the strong k-tableaux are defined. For these strong k-tableaux

a spin statistic is defined and used to expand k-Schur functions (with the parameter t) in terms of

monomial functions. There are many other ways to define the k-Schur functions, and each of these

definitions are conjectured to be equivalent. For more on this, the reader is encouraged to look at

[LLM+13].
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Chapter 7

Affine Pieri rules

The main discovery in this thesis is that there is a fundamental connection between weak order

chains from u to v in S̃ 0
n and strong order chains from v to a translation of u. We start by addressing

the case that applies to Pieri rules, in which case the translation of an element uλ ∈ S̃ 0
n amounts to

sx−1sx−2 · · · sx+1uλ where x = λ1 − 1 (mod n).

7.1 Strong and weak Pieri rules

The Pieri rules for the H∗(Gr) and H∗(Gr) are given in [LM07, LLMS10]. The affine homology

rule is framed using saturated chains in the weak order on S̃ 0
n, whereas the cohomology rule is in

terms of strong order saturated chains.

Definition 116. A word a1a2 · · · a` with letters in Z/nZ is called cyclically decreasing if each letter

occurs at most once and i + 1 precedes i whenever i and i + 1 both occur in the word. An affine

permutation is called cyclically decreasing if it has a cyclically decreasing reduced word.

The affine homology Pieri rule for H∗(Gr) is given, for w ∈ S̃ 0
n and c0,m = sm−1 · · · s1s0 ∈ S̃ 0

n, by

ξc0,m ξw =
∑

v

ξvw, (7.1)

over all cyclically decreasing v of length m such that vw ∈ S̃ 0
n and `(vw) = `(w) + m. Thus, for

u ∈ S̃ 0
n, the term ξu occurs in the product of ξc0,mξw only when uw−1 is cyclically decreasing and

there is a saturated chain

w = w(0) l w(1) l · · · l w(m) = u .
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Alternatively, the rule can be formulated in the language of shapes using the action of the si-

generators on n-cores.

Lemma 117. [LLMS10] For u,w ∈ S̃ 0
n where `(uw−1) = m, uw−1 is cyclically decreasing with

reduced word j1 · · · jm if and only if a(u)/a(w) is a horizontal strip such that the set of residues

labelling its cells is { j1, . . . , jm}.

While the weak order determines the affine homology rule for H∗(Gr), the affine cohomology

Pieri rule is given as the sum over certain multisets of chains in the Bruhat (strong) order. The

multisets arise by imposing a marking on strong covers ρ lB γ in Cn.

Definition 118. We say (γ, c) is a marked strong cover of ρ if ρ lB γ and c is the content of the

head of a ribbon in γ/ρ (recall that Lemma 35 assures the skew shape is made up of ribbons). Then,

for 0 ≤ m < n and n-cores ν and γ, a strong m-strip from ν to γ is a saturated chain of cores

ν = γ(0) lB γ
(1) lB . . . lB γ

(m) = γ ,

together with an increasing “content vector” c = (c1, c2, · · · , cm), such that (γ(i), ci) is a marked

strong cover of γ(i−1) for 1 ≤ i ≤ m.

Example 119. For n = 4, there are 2 saturated chains from ν = (3) to γ = (4, 1, 1),

lB lB lB lB . (7.2)

The first chain with content vector c = (−1, 3) is thus the only strong 2-strip from ν to γ.

The affine cohomology Pieri rule is

ξc0,m ξw =
∑

S

ξz , (7.3)
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where the sum runs over strong m-strips S from a(w) to a(z). In contrast to the Pieri rule for H∗(Gr),

a given term ξz here may occur with multiplicity greater than 1.

7.2 Horizontal strong strips

As with the affine Pieri rule for the cohomology H∗(Gr), the Pieri rule [BS98] and the quantum

Pieri rule [FGP97] for (quantum) cohomology of the flag manifold are also determined by chains

in the Bruhat order (see (8.3)). However, it is the homology of Gr, not the cohomology, that is

algebraically tied to the quantum cohomology of the flag manifold (detailed in § 8). To align the

combinatorics with the algebra, we introduce a distinguished subclass of strong order chains that

characterize the affine homology Pieri rule. The fundamental observation is that the translation of

an n-core λ to the n-core R(n − 1, λ) = (λ1 + n − 1, λ) plays a crucial role.

Definition 120. A pair of n-cores (λ, ν) is a horizontal strong m-strip if λ ⊂ ν and there is a

saturated chain of cores

ν = ν(0) lB ν
(1) lB · · · lB ν

(m) = R(n − 1, λ) (7.4)

such that the bottom row of ν(i) is longer than the bottom row of ν(i−1), for 1 ≤ i ≤ m where

m = n − 1 + deg(λ) − deg(ν).

Example 121. For n = 4, λ = (1, 1), and ν = (3), (λ, ν) is not a horizontal strong strip since neither

of the strong chains from ν to R(n − 1, λ) shown in (7.2) have strictly growing bottom rows.

For λ = (3, 1, 1), the 4-cores ν such that (λ, ν) is a horizontal strong 2-strip begin with the chains

to R(3, λ):

lB lB
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lB lB

lB lB

We have chosen the terminology horizontal strong strip because, although not immediately

obvious, there always exists a strong strip from ν to R(n − 1, λ) of shapes that differ by ribbons

of height one when (λ, ν) is a horizontal strong strip. The following lemma associates horizontal

strong strips to the horizontality condition and we then connect to strong strips.

Lemma 122. [DM13] Given n-cores λ ⊂ ν and a saturated chain of shapes (7.4) whose bottom

rows strictly increase, there are adjacent ribbons S 1, . . . , S m in the bottom row of R(n−1, λ)/λ such

that the shape ν( j)/ν( j−1) is comprised of all copies of S j that can be removed from ν( j), for each

1 ≤ j ≤ m.

Proof. Consider λ ⊂ ν and a chain of n-cores (7.4) where the bottom rows increase in size. Let

S j denote the lowest ribbon in ν( j)/ν( j−1). Since the bottom row of ν( j) is strictly longer than the

bottom of ν( j−1), the head of S j lies in the bottom row of ν( j). Moreover, S j has height one since

λ ⊂ ν( j) ⊂ (n − 1 + λ1, λ) and (n − 1 + λ1, λ)/λ is a horizontal strip. Therefore, S j is a removable

ribbon lying entirely in the bottom row of ν( j). Lemma 36 then implies that ν( j)/ν( j−1) consists of all

copies of S j that can be removed from ν( j). �

Proposition 123. [DM13] For n-cores λ ⊂ ν, the pair (λ, ν) is a horizontal strong m-strip if and

only if there exists a strong m-strip from ν to R(n − 1, λ) whose content vector c satisfies c1 ≥ λ1.

Proof. Given any horizontal strong m-strip (λ, ν), we have a chain (7.4) that is characterized by

ribbons S 1, . . . , S m lying in the bottom row of R(n− 1, λ)/ν by Lemma 122. We can obtain a strong
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strip by associating it to the content vector (c1, . . . , cm), where ci is the content of the head of ribbon

S i. Then c1 ≥ λ1 since λ ⊂ ν.

On the other hand, consider cores ν = ν(0)lB ν
(1)lB · · ·lB ν

(m) = R(n−1, λ) such that the head hi

of a ribbon in ν(i)/ν(i−1) has content ci and λ1 ≤ c1 < · · · < cm. The last n− 1 cells in the bottom row

of R(n−1, λ) lie at the top of their column and therefore they are the only cells with content greater

than λ1 − 1. Therefore, hi must lie in the bottom row of ν(i) ⊂ R(n− 1, λ) implying that bottom rows

are strictly growing. �

Remark 124. The proof of Theorem 128 will establish a claim stronger than Proposition 123:

each horizontal strong strip (λ, ν) corresponds uniquely to a strong strip from ν to R(n − 1, λ) with

c1 ≥ λ1.

Example 125. For n = 4 and λ = (3, 1, 1), the n-cores ν such that (λ, ν) is a horizontal strong

2-strip are given in Example 121 and each corresponds to a unique strong 2-strip from ν to R(3, λ)

with c1 ≥ 3: their content vectors are (3, 5), (4, 5), and (4, 5), respectively.

Horizontal strong strips in hand, we now discuss their correspondence with weak order cycli-

cally decreasing chains. For a fixed x ∈ [n] = {0, . . . , n − 1} and y ∈ {0, . . . , n − 1}\{x}, it will be

inferred that x + 1 ≤ y ≤ x − 1 is taken with respect to the total order defined by

x + 1 < x + 2 < · · · < 0 < n − 1 < · · · < x − 1.

For n-cores λ and ν, a simple construction produces a cyclically decreasing word for wνw−1
λ from a

relevant strong chain from ν to R(n − 1, λ). For x = λ1 − 1 (mod n), define the map

ψ : ν = ν(0) lB ν
(1) lB · · · lB ν

(m) = R(n − 1, λ) 7−→ s j1 · · · s jn−1−m

where the elements j1 > · · · > jn−1−m of {x − 1, . . . , x + 1}\{a1, . . . , am} are obtained by taking am−i

to be the residue of the leftmost cell in the bottom row of ν(i+1)/ν(i), for 0 ≤ i < m. In reverse, a
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strong chain arises from a reduced expression for wνw−1
λ with the map

φ : s j1 · · · s jn−1−m 7−→ ν = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(m) = R(n − 1, λ) ,

where ν(i) is obtained from ν(i+1) by deleting all removable copies of the ribbon whose tail has

residue am−i and lies in the bottom row, where x + 1 ≤ am < · · · < a1 ≤ x − 1 are the elements of

{x − 1, . . . , x + 1}\{ j1, . . . , jn−1−m}.

Several lemmas are first needed to prove that φ and ψ give the desired bijection. Horizontal

strong strips (λ, ν) are defined on the level of cores where the key idea is to study strong chains

from ν to the n-translation of λ defined by R(n − 1, λ). A preliminary result puts the idea of this

translation into the framework of the affine Weyl group.

Lemma 126. [DM13] For wλ ∈ S̃ 0
n, the length `(wR(n−1,λ)) = n − 1 + `(wλ) and

wR(n−1,λ) = sx−1 · · · sx+1 wλ ,

where x = λ1 − 1 (mod n).

Proof. It suffices to prove that R(n − 1, λ) = a(sx−1 · · · sx+1w). Since the lowest addable corner of

λ has residue x + 1, sx+1 acts on λ by adding all corners of residue x + 1. Similarly, sx+2 adds

corners of residue x + 2 and by iteration, the degree of λ increases by n − 1 under the action of

sx−1 · · · sx+1. Since sx−1 · · · sx+1 is cyclically decreasing, Lemma 117 implies that it acts on λ by

adding a horizontal strip. The result follows by noting that R(n − 1, λ) is the unique core obtained

by adding a horizontal strip to λ and increasing degree by n − 1. �

For x ∈ {0, 1, . . . , n − 1}, let S x̂ = 〈s0, . . . , ŝx, . . . , sn−1〉 ⊂ S̃ 0
n be the subgroup generated by all

simple reflections except sx.

Lemma 127. [DM13] Given wλ, u ∈ S̃ 0
n where uw−1

λ is a cyclically decreasing permutation and

`(uw−1
λ ) = `(u) − `(wλ), then uw−1

λ ∈ S x̂ for x = λ1 − 1 (mod n).
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Proof. Let v = s j1 · · · s jm be a reduced expression for uw−1
λ . By the definition of a, the residues

labelling the cells in D = a(vwλ)/λ come from the set { j1, . . . , jm}. In fact, since `(vwλ) = `(wλ)+m,

the cells of D are labelled by precisely the set { j1, . . . , jm}. Since v is cyclically decreasing, we also

have that D is a horizontal strip by Lemma 117. Therefore, an extremal cell of residue jt that does

not lie at the end of its row occurs in λ for every 1 ≤ t ≤ m. Since x is the residue of the last cell in

the bottom row of λ, Property 32 implies that every extremal cell of λ with residue x lies at the end

of its row. In particular, x , jt and we have v ∈ S x̂. �

Theorem 128. [DM13] For n-cores λ and ν, (λ, ν) is a horizontal strong strip if and only if wνw−1
λ

is a cyclically decreasing permutation where `(wν) = `(wλ) + `(wνw−1
λ ).

Proof. From a horizontal strong m-strip (λ, ν), Lemma 122 gaurantees us a chain ν = ν(0) lB ν
(1) lB

· · · lB ν
(m) = R(n − 1, λ) , such that a ribbon S i+1 of ν(i+1)/ν(i) has height one and is a removable

ribbon in the bottom row of ν(i+1). It suffices to prove that the image s j1 · · · s jt of this chain under

ψ is a cyclically decreasing word for wνw−1
λ of length n − 1 − m since the definition of horizontal

m-strip implies that `(wν) = n − 1 − m + `(wλ).

The definition of ψ uses am−i to denote the residue of the tail of S i+1 and thus the residue of the

head of S i must be am−i − 1. By Lemma 35, we have wν(i) = τam−i,am−i−1wν(i+1) for 0 ≤ i < m, where

a0 = λ1−1 (mod n). In particular, wν = τam,am−1 · · · τa1,a0wR(n−1,λ). Since λ ⊂ ν, we have that λ1 ≤ am

and therefore x + 1 ≤ am < · · · < a1 ≤ x − 1 for x = λ1 − 1 (mod n). It follows from Lemma 126

that

wνw−1
λ = τam,am−1 · · · τa1,x (sx−1 · · · sx+1) ,

or wνw−1
λ = s j1 · · · s jn−1−m where j1 > · · · > jn−1−m are the elements of {x − 1, . . . , x + 1}\{a1, . . . , am}.

Since these are n − 1 − m distinct elements, the expression is reduced.

Before proving the reverse direction, note that s j1 · · · s jn−1−m is the unique reduced expression for

wνw−1
λ that is ordered by x − 1 ≥ j1 > · · · > jn−1−m ≥ x + 1 and it is determined uniquely from

ribbon tails in the given chain. Since a given chain under consideration is determined uniquely by
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its ribbon tails, the uniqueness claim of Remark 124 follows.

Suppose now that j1 · · · jn−1−m is a reduced word for a cyclically decreasing permutation wνw−1
λ

where `(wν) = `(wλ) + n−1−m. By Lemma 127, wνw−1
λ ∈ S x̂ for x = λ1−1 (mod n) and therefore

there are m elements x−1 ≥ a1 > a2 > · · · > am ≥ x + 1 in the set {x−1, . . . , x + 1}/{ j1, . . . , jn−1−m}.

The n− 1 removable cells in the bottom row of R(n− 1, λ), of residues x− 1, . . . , x + 1 from right to

left, can thus be tiled uniquely into ribbons whose tails are a1, . . . , am, from right to left. Therefore,

the shapes in the image of j1 · · · jn−1−m under φ

ν = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(m) = R(n − 1, λ)

have increasing bottom rows. We claim this is a strong saturated chain and λ ⊂ ν.

Let η(m) = ν(m) so that by Lemma 126, wη(m) = (sx−1 · · · sx+1)wλ. For 1 ≤ i ≤ m, define

wη(m−i) = τai,ai−1wη(m−i+1) = (sx−1 · · · ŝa1 · · · ŝa2 · · · · · · ŝai · · · sx+1)wλ ,

where a0 = x. Since wη(0) = s j1 · · · s jn−1−mwλ, we have that λ ⊂ η(0) by Lemma 117. If wη(m−i)lBwη(m−i+1) ,

then η(m−i) = ν(m−i) by Lemma 36 and the claim follows. To ensure that wη(m−i) lB wη(m−i+1) , it suffices

to show that wη(m−i+1) has length n − i + `(wλ). Note that `(wη(0)) = n − 1 − m + `(wλ) and consider

wη(m−i) of length n − 1 − i + `(wλ). By commuting relations, wη(m−i) = (ŝai−1 · · · ŝai)wµ for wµ =

(sx−1 · · · ŝa1 · · · · · · ŝai−1)(ŝai · · · sx+1)wλ. Since the lowest addable corner of λ has residue x + 1, the

lowest addable corner of µ has residue ai. Therefore, wη(m−i+1) = (ŝai−1 · · · sai+1sai)wµ has length

n − i + `(wλ). �

Corollary 129. [DM13] For 1 ≤ m < n and w ∈ S̃ 0
n,

ξc0,m ξw =
∑
u∈S̃ 0

n

ξu , (7.5)
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where the sum is over u such that (a(w), a(u)) is a horizontal strong (n − 1 − m)-strip.

Proof. A term v = wνw−1
λ occurs in the summand of (7.1) if and only if it is cyclically decreasing

of length m and `(wν) = `(wλ) + m. That is, if and only if (λ, ν) is a horizontal strong n− 1−m-strip

by Theorem 128. �

Example 130. The expansion ξc0,2ξ(3,1,1) = ξ(3,1,1,1) + ξ(4,1,1) + ξ(3,2,1) follows from Example 121 and

Corollary 129.
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Chapter 8

Quantum cohomology of flags

Here we show that the strong formulation of the Pieri rule for H∗(Gr) given in Corollary 129

can be applied to the problem of computing intersections in the (small) quantum cohomology of a

flag variety. The examination leads to a distinguished family of strong chains defined by a notion

of translation that generalizes R(n − 1, λ).

In this section, we switch to representing the indices of Schubert basis elements by partitions

λ ∈ Pn. Recall that R(n − 1, λ) was defined to be (λ1 + n − 1, λ) when λ is an n-core in § 7.2. Here,

we abuse notation and instead define R(n − 1, η) = (c(η)1 + n − 1, c(η)) for η ∈ Pn.

8.1 An affine Monk formula

The quantum cohomology ring QH∗(X) is defined for any Kähler algebraic manifold X, but we

consider only the complete flag manifold X = Fln of chains of vector spaces in Cn. The quantum

cohomolgy ring is simply QH∗(Fln) = H∗(Fln) ⊗ Z[q1, . . . , qn−1] for parameters q1, . . . , qn−1 as a

linear space but the multiplicative structure is much richer than the specialization of q1 = · · · =

qn−1 = 0. Cells in the Schubert decomposition of QH∗(Fln) are indexed by permutations w ∈ S n,

and the quantum product is defined by

σu ∗ σv =
∑

w

∑
d

qd1
1 . . . qdn−1

n−1 〈u, v,w〉d σw0w , (8.1)

where the structure constants are 3-point Gromov-Witten invariants of genus 0 which count equiv-

alence classes of certain rational curves in Fln. The understanding and computation of Gromov-

Witten invariants is a widely studied problem.

Although the construction is not manifestly positive, all 3-point, genus zero Gromov-Witten
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invariants 〈u,w, v〉d in (8.1) can be computationally obtained from the subset

{〈sr,w, v〉d : 1 ≤ r < n and w, v ∈ S n} (8.2)

since the quantum cohomology is generated by the codimension one Schubert classes. By defining

a family of quantum Schubert polynomials, Fomin, Gelfand, and Postnikov were able to prove

that there is a simple combinatorial characterization for this set that generalizes the classical Monk

formula [Mon59].

Theorem 131. [FGP97] (Quantum Monk formula) For w ∈ S n and 1 ≤ r < n, the quantum product

of the Schubert classes σsr and σw is given by

σsr ∗ σw =
∑

σwτa,b +
∑

qcqc+1 · · · qd−1σwτc,d (8.3)

where the first sum is over all transpositions τa,b such that a ≤ r < b and `(wτa,b) = `(w) + 1, and

the second sum is over all transpositions τc,d such that c ≤ r < d and `(wτc,d) = `(w) − `(τc,d) =

`(w) − 2(d − c) + 1.

We have found that the idea of horizontal strong strips extends to include combinatorics of the

flag Gromov-Witten invariants and the quantum Monk rule. Peterson asserted that QH∗(G/P) of a

flag variety is, up to localization, a quotient of the homology H∗(GrG) of the affine Grassmannian

GrG of G (proven in [LS12]). As a consequence, the Gromov-Witten invariants arise as homology

Schubert structure constants of H∗(GrG). The identification of 〈u, v,w〉d with the coefficients in

ξµ ξλ =
∑
ν

cνµ,λ ξν (8.4)

was made explicit in [LM]. The identification hinges on a correspondence between permutations
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in S n and certain partitions defined by

sh : w 7→ λ for λ′i =

(
n − i

2

)
+ invi(w0w) , (8.5)

where λ′ is the partition obtained by reflecting the shape of λ about the line y = x, the inversion

invi(u) is the number of u j < ui for i < j, and w0 = [n, n − 1, . . . , 1] is the permutation of maximal

length in S n.

Theorem 132. [LM] For u, v,w ∈ S n and d ∈ Nn−1,

〈u,w, v〉d = cηsh(u),sh(w) , (8.6)

where η is obtained by adding
(

n+1−i
2

)
− (n − i + 1)di + (n − i)di−1 cells to column i of sh(v), for

1 ≤ i < n.

The image of S n under the map sh is the set of n! partitions Pn
� = {λ : �/λ = vertical strip},

where the partition � = (n−1, n−22, . . . , 1n−1). This foreshadows that (n−1)-rectangles, the shapes

Rr = (rn−r) with n − r rows of length r, play a role in the combinatorics of quantum cohomology

of flag varieties as they have in various contexts of affine Schubert calculus (e.g. [LLM03, LM03a,

Mag07, LS12, BBTZ12]). At the root, for any partition λ ∈ Pn and 1 ≤ r < n,

ξλ∪Rr = ξRrξλ . (8.7)

Since a defining subset of Gromov-Witten invariants is given by (8.2), looking closely at sh(sr)

reveals the role of these shapes in the combinatorics of quantum cohomology. To be precise, it was

shown in [LM] that for any v,w ∈ S n and 1 ≤ r < n,

〈sr, v,w〉d = cη∪sh(v)∪Rr
R′r ,sh(w) , (8.8)
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where the ith column of η is (n − i)di−1 − (n + 1 − i)di and R′r is the shape obtained by deleting the

corner box from Rr. In particular, Monk’s classical formula is determined by csh(v)∪Rr
R′r ,sh(w) . Therefore,

for any u, v,w ∈ S n, all Gromov-Witten invariants 〈u, v,w〉d can be computed from the set

{
cνR′r ,λ : 1 ≤ r < n, λ ∈ Pn

�, and ν1 < n
}
. (8.9)

The η ∪ sh(v) ∪ Rr in (8.8) suggests that the formula for these invariants is related to elements

covered by the generic translation of λ defined by

R(r, λ) = c(λ ∪ Rr) .

Conjecture 133. [DM13] (Affine Monk formula) For 1 ≤ r < n and partition λ with λ1 < n,

ξR′r ξλ =
∑

c(ν)lB R(r,λ)

ξν , (8.10)

where c(ν)i < R(r, λ)i for some i such that (λ ∪ Rr)i = r.

Note that the expansion (8.10) can be derived from results in [BSSb] that determine the expan-

sion of a non-commutative k-Schur function indexed by R′r in terms of words in the affine nilCoxeter

algebra A.

Example 134. For n = 5, λ = (3, 2, 1, 1), and R′3 = (3, 2), term ξν occurs in the expansion of ξR′3
ξλ

when ν is a partition where c(ν) lB R(3, λ) and c(ν)i < R(3, λ)i for some i ∈ {1, 2, 3}.

lB lB lB
��

���
���

���
�XXXXXXXXXXXXlB

ν = (3, 3, 2, 2, 1, 1) ν = (4, 2, 2, 2, 1, 1) ν = (3, 3, 3, 1, 1, 1)
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Relation (8.7) then gives the terms in the expansion of ξR′3
ξλ∪Rr for any Rr. In particular,

ξR′3
ξλ∪R2 = ξ(3,3,2,2,1,1)∪R2 + ξ(4,2,2,2,1,1)∪R2 + ξ(3,3,3,1,1,1)∪R2 . (8.11)

Since sh([4, 2, 5, 3, 1]) = λ∪R2 ∈ P
n
�, this matches the quantum Monk expansion by Equation (8.8):

σs3 ∗ σ[4,2,5,3,1] = σ[4,3,5,2,1] + q3 σ[4,2,3,5,1] + q3q4 σ[4,2,1,3,5] .

8.2 Ribbon strong strips

When r = n − 1, Conjecture 133 reduces to a special case of the expansion given in Corol-

lary 129. The terms are defined by horizontal strong 1-strips, which are in fact the elements ν

covered by R(n − 1, λ) where c(ν)1 < R(n − 1, λ)1. Horizontal strong strips of generic length

1 ≤ b < n − 1 describe the expansion of ξ(n−1−b)ξλ. We thus turn to the more general expansion, for

1 ≤ b < r < n and partition λ ∈ Pn,

ξ(rn−1−r ,r−b) ξλ =
∑
ν∈Br,b,λ

ξν , (8.12)

as a guide to characterize a larger family of strong strips associated to the general translation R(r, λ).

While horizontal strong strips are certain shapes differing from R(n− 1, λ) by a horizontal strip,

the more general picture involves shapes that differ from R(r, λ) by a horizontal ribbon strip, a

sequences of shapes ν = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(m) such that ν(i)/ν(i−1) is comprised of ribbons whose

heads lie above a cell in ν (or in the bottom row), for all 1 ≤ i ≤ m. Rather than requiring that

bottom row lengths are increasing as we did for horizontal strong strip, we now require that a ribbon

tail lies in a specified set of columns. For 1 ≤ r < n and a partition λ with λ1 < n, let η = λ ∪ Rr.

Let m be the highest row of η that has length r and denote the set of r columns containing the last r

cells in row m of c(η) by colr(λ).
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Definition 135. Given n-cores λ and ν and 1 ≤ r < n, the pair (λ, ν) is a ribbon strong strip with

respect to r if there is a horizontal ribbon strip

ν = ν(0) lB ν
(1) lB · · · lB ν

(m) = R(r, λ)

with a ribbon tail of ν(i)/ν(i−1) lying in colr(λ) for all i > 0. Its length is defined to be m.

The expansion (8.12) can be derived from results in [BSSa] that determine the expansion of a

non-commutative k-Schur function indexed by (rn−1−r, b) in terms of words in the affine nilCoxeter

algebra A. We instead conjecture that the expansion is simply the sum over ν such that (c(λ), c(ν))

is a ribbon strong strip of length b with respect to r.

Example 136. For n = 5 and λ = (4, 2), the ribbon strong strips of length 2 with respect to r = 3

are

lB

↓↓↓

lB

↓↓↓

lB

↓↓↓

lB

↓↓↓

lB

↓↓↓

lB

↓↓↓

lB

↓↓↓

lB

↓↓↓

Conjecturally, this gives the expansion

ξ ξ = ξ + ξ + ξ .

Conjecture 137. [DM13] Given n-cores λ and ν and 1 ≤ r < n, the pair (λ, ν) is a ribbon strong

strip with respect to r if and only if there exists a strong strip

ν = ν(0) lB ν
(1) lB · · · lB ν

(m) = R(r, λ) (8.13)



73

with a ribbon tail of ν(i)/ν(i−1) lying in colr(λ) for all i > 0.

Proposition 138. [DM13] Given n-cores λ and ν, (λ, ν) is a horizontal strong strip if and only if

(λ, ν) is a ribbon strong strip with respect to n − 1.

Proof. Let p be the number of rows of length n − 1 in p(λ) and thus the bottom p + 1 rows of

p(λ) ∪ Rn−1 have length n − 1. Note by definition of c that the last n − 1 cells in rows 1, . . . , p + 1

of c(p(λ) ∪ Rn−1) lie at the top of a column and have residues λ1, λ1 + 1, . . . , λ1 + (n − 2) (mod n).

Further, coln−1(λ) is defined by taking the last n − 1 columns in row p + 1.

Assume (λ, ν) is a horizontal strong strip. Lemma 122 implies that ν( j)/ν( j−1) consists of all

copies of S j that can be removed from ν( j) where S j is a removable ribbon in the bottom row of ν( j).

For j = m, the discussion in the previous paragraph implies that a copy of S m lies in row p + 1. By

iteration, a copy of S j (and in particular, its tail) lies in the last n − 1 columns of row p + 1 for all

j = 1, . . . ,m.

On the other hand, consider a chain of n-cores ν = ν(0) lB ν
(1) lB · · ·lB ν

(m) = R(n− 1, λ) where

the tail of a ribbon S j in ν( j)/ν( j−1) lies in one of the last n − 1 columns in row p + 1 of R(n − 1, λ).

Since the number of cell in S j is smaller than n and there are n − 1 cells at the top of a column

in row p, S m must have height one. Therefore, it can be removed from every row 1, . . . , p + 1 of

R(n − 1, λ). By iteration, there is a copy of S j in the bottom row of (n − 1 + λ1, λ) for j = 1, . . . ,m.

Since the tail of S 1 is on of the last n − 1 cells in row p + 1 of residue λ1, . . . , λ1 + (n − 2) mod n,

λ ⊂ ν. �

Proposition 139. [DM13] For 1 ≤ r < n and for n-cores λ and ν, a ribbon strong strip (λ, ν)

with respect to r has length one if and only if ν lB R(r, λ) and νi < R(r, λ)i for some i such that

(λ ∪ Rr)i = r.

Proof. For η ∈ Pn, let λ = c(η) and let m be the highest row of length r in Rr ∪ η. Note that the

highest cell of R(r, λ) in the leftmost column of colr(λ) lies in a row no higher than row m+(n−1−r)

and that rows m,m − 1, . . . ,m − (n − 1 − r) of Rr ∪ η have length r.
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Given (λ, ν) is a ribbon strong strip with respect to r of length one, ν lB R(r, λ) and the tail of

a ribbon S ⊂ R(r, λ)/ν lies in a column of colr(λ). Suppose the head of S lies in row a. If a ≤ m,

then ν lB R(r, λ) and νi < R(r, λ)i for some i such that (λ ∪ Rr)i = r. When a > m, all cells of S lie

in colums of colr(λ) and therefore in rows between m + 1 and m + n − 1 − r. Proposition 9 [LM04]

ensures that a removable copy of S also lies in rows m − (n − 1 − r), . . . ,m − 1,m, and the forward

direction thus follows from Lemma 36.

On the other hand, consider n-cores λ and ν such that νilBR(r, λ)i for some i where (λ∪Rr)i = r.

In particular, there is a ribbon S ⊂ R(r, λ)/ν containing at least one cell in row i. If the tail t of S is

not in a column of colr(λ) then t lies in row i < m. By Proposition 9 [LM04], there is an extremal

cell t̃ of the same residue as t that lies in a column of colr(λ). Consider the subset S̃ of extremal

cells in R(r, λ) that is formed by taking all extremal cells between t̃ (as the highest) and a cell h̃ of

the same residue as the head of S . Since S can be removed from R(r, λ), its head lies at the end of

its row. Property 32 then implies that h̃ is at the end of its row and thus S̃ is a removable ribbon.

By Lemma 36, S̃ ⊂ R(r, λ)/ν proving the claim. �
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Chapter 9

Explicit representatives for Schubert classes

The perspective of horizontal strong strips applies to the study of the (co)homology classes

of the affine Grassmannian. Here we derive a new combinatorial object with which to study the

representatives for Schubert classes of H∗(Gr) and H∗(Gr).

9.1 Polynomial realization of H∗(Gr) and H∗(Gr)

Quillen (unpublished) and Garland and Raghunathan [GR75] showed that Gr is homotopy-

equivalent to the group Ω SU(n,C) of based loops into SU(n,C). Results from [Bot58] can be used

to obtain a polynomial identification of H∗(Gr) and H∗(Gr) inside the ring of symmetric functions

Λ = Z[h1, h2, . . . , ].

Traditionally, bases for the space of symmetric function are indexed by partitions. Descriptions

of the homology and cohomology ring are most natural in terms of the functions hλ and the mono-

mial symmetric functions mλ. The homology H∗(Gr) is identified by the subring Λ(n) of Λ and the

cohomology H∗(Gr) can be identified by the quotient Λ(n) where

Λ(n) = Z[h1, . . . , hn−1] and Λ(n) = Λ/〈mλ : λ1 ≥ n〉 .

These spaces are naturally paired under the Hall-inner product on Λ.

The Schur function basis for Λ is self-dual with respect to the Hall-inner product ([Sag00]).

Recall that this basis is a fundamental combinatorial tool to study tensor products of irreducible

representations and intersections in the geomety of the Grassmannian variety.

Refinements of the Schur basis for Λ to bases for Λ(n) and Λ(n) give a combinatorial framework

that can be applied to the cohomology and homology of Gr. Let k = n − 1 throughout. The basis
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of k-Schur functions for Λ(n) was introduced in [LM05], inspired by the Macdonald polynomial

study of [LLM03] summarized in the introduction. The basis for Λ(n) that is dual to the k-Schur

basis with respect to the Hall-inner product arose in the context of the quantum cohomology of

Grassmannians in [LM08]. Appealing to the algebraic nil-Hecke ring construction of Kostant and

Kumar [KK86] and the work of Peterson [Pet97], Lam [Lam08] proved that the Schubert classes

ξw and ξw can be represented explicitly by the k-Schur functions in Λ(n) and Λ(n), respectively.

For our purposes, we define the k-Schur functions of H∗(Gr) as the weight generating functions

of a combinatorial object called affine factorizations and then introduce the homology k-Schur

functions by duality.

Definition 140. For any composition α ∈ N` with parts smaller than n and w ∈ S̃ n of length |α|, an

affine factorization for w of weight α is a decomposition

w = v` · · · v1 ,

where vi is a cyclically decreasing permutation of length αi.

The representatives for the Schubert classes of H∗(Gr) are then defined, for λ ∈ Cn, by

S
(n)
λ =

∑
wλ=vr ···v1

x`(v
1)

1 · · · x`(v
r)

r , (9.1)

over all affine factorizations vr · · · v1 of w (In [Lam06], by dropping the condition that wλ is affine

Grassmannian, these are extended to a more general family of functions that relate to the stable

limits of Schubert polynomials [LS82, Sta84]). The set {S(n)
λ }λ∈Cn is a basis for Λ(n) and we take the

k-Schur representatives for Schubert classes of H∗(Gr) to be the dual basis {s(n)
ν }ν∈Cn with respect to

the Hall-inner product. That is, the k-Schur functions are defined by the relation

〈S
(n)
λ , s

(n)
ν 〉 = δλν . (9.2)
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9.2 Affine Bruhat countertableaux

Here we derive a new combinatorial object with which to study H∗(Gr) and H∗(Gr) by consid-

ering the association between cyclically decreasing permutations and horizontal strong strips that

was made in Section 7.2. Recall that the sequence (3.1) can be represented by its countertableau

filling, derived by placing an r + 1 − i in λ(i)/λ(i−1).

Definition 141. Fix composition α = (α1, . . . , αr) with αi < n and n-core λ(r) of degree |α|. An

affine Bruhat countertableau of shape λ(r) and weight α is a skew tableau λ(r) = µ(0) ⊂ · · · ⊂ µ(r)

such that

µ(x) = (µ(1)
1 , . . . , µ(x−1)

x−1 , λ(r−x)
1 + n − 1, λ(r−x)) , (9.3)

where (λ(x−1), λ(x)) is a horizontal strong (n − 1 − αx)-strip for 1 ≤ x ≤ r and λ(0) = ∅.

An affine Bruhat countertableau (or ABC) is represented by its skew countertableau filling

where r − x + 1 is placed in the cells of µ(x)/µ(x−1). We denote the set of ABC’s of shape λ and

weight α by ABC(λ, α) and let ABC(λ) be their union over all weights α.

Example 142. For n = 6, µ(0) = (4, 3, 0) ⊂ (9, 4, 2) ⊂ (9, 8, 3) ⊂ (9, 8, 5) = µ(3) is an ABC of shape

(4, 3) and weight (3, 3, 1), represented by its countertableau filling

A =
3 3 2 1 1

3 2 2 2 2
3 3 3 3 3

.

The corresponding strong strips are

λ(3) = lB

3

3 lB

3 3

3 3 lB

3 3

3 3 3 3 lB

3 3
3

3 3 3 3 3 . = (λ(2)
1 + 5, λ(2)) .

λ(2) = lB 2 2 2 lB
2

2 2 2 2 = (λ(1)
1 + 5, λ(1)) .

λ(1) = lB 1 lB 1 1 = (λ(0) + 5) .
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Lemma 143. [DM13] Relation (9.3) uniquely identifies the element µ(0) ⊂ · · · ⊂ µ(r) in ABC(µ(0), α)

with the sequence ∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) = µ(0) where (λ(p−1), λ(p)) is a horizontal strong

(n − 1 − αp)-strip,

Proof. The forward direction is immediate from the definition of ABC. On the other hand, consider

a sequence ∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) where (λ(p−1), λ(p)) is a horizontal strong (n− 1−αp)-strip for

1 ≤ p ≤ r. Let µ(0) = λ(r), and for 1 ≤ p ≤ r, define µ(p) by Relation (9.3). From this, we find that

µ(p) = (λ(r−1)
1 + n − 1, . . . , λ(r−p+1)

1 + n − 1,R(n − 1, λ(r−p))) ,

and need only to confirm that µ(p)/µ(p−1) is a horizontal strip for 1 ≤ p ≤ r. Note that

µ(p−1) = (λ(r−1)
1 + n − 1, . . . , λ(r−p+1)

1 + n − 1, λ(r−p+1)) .

The claim follows by recalling that when (λ(r−p), λ(r−p+1)) is a horizontal strong strip, R(n−1, λ(r−p))/λ(r−p+1)

is a horizontal strip. �

Theorem 144. [DM13] For any n-core λ,

S
(n)
λ =

∑
A∈ABC(λ)

xweight(A) . (9.4)

Proof. Fix a composition α of length r with parts smaller than n and an n-core λ such that deg(λ) =

|α|. Define a map on domain ABC(λ, α) by sending

Θ : A 7−→ vr · · · v1 where vi = wλ(i)w−1
λ(i−1) ,

for the unique sequence λ(0) ⊂ · · · ⊂ λ(r) associated to A via Lemma 143. We claim that Θ is a

bijection whose image is the set of affine factorizations of wλ of weight α. For this, we must prove

that vi is a cyclically decreasing permutation of length αi, `(wλ) = |α| and that Θ is a bijection.
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When α = (α1) has only one part, the unique element of ABC(λ, α) corresponds to the sequence

∅ ⊂ λ where λ = (α1). Its image under Θ is v1 = w(α1) = sα1−1 · · · s0, the only decomposition of wλ

into one cyclically decreasing permutation v1 of length α1. By induction, assume that the sequence

∅ = λ(0) ⊂ · · · ⊂ λ(r−1), where (λ( j−1), λ( j)) is a horizontal strong (n − 1 − α j)-strip, corresponds

uniquely to a decomposition of wλ(r−1) = vr−1 · · · v1 into cyclically decreasing permutations v j of

length α j, for j < r. Since vr = wλ(r)w−1
λ(r−1) is cyclically decreasing of length αr if and only if

(λ(r−1), λ(r)) is a horizontal strong (n−1−αr)-strip by Theorem 128, the result follows by induction.

�

Because S(n)
λ is a symmetric function, the coefficient of xα in (9.4) equals the coefficient of mµ,

where µ is the non-increasing rearrangement of the parts of α. The set of monomial symmetric

functions indexed by elements in Pn = {λ ∈ P : λ1 < n} is a basis for Λ(n) and in fact, the transition

matrix from {S(n)
λ }λ∈Cn to {mµ}µ∈Pn is unitriangular. The unitriangularity relation is described by an

identification from [LM05] of n-cores with partitions of Pn, given by the map

c : Pn −→ Cn ,

where c−1(γ) = (λ1, . . . , λ`) and λi is the number of cells in row i of γ with hook-length smaller than

n. The unitriangularity relation is taken with respect to the dominance order on partitions of the

same degree, where λ�µwhen λ1+· · ·+λs ≤ µ1+· · ·+µs for all s. It was proven in [LM05, Lam06]

that for any λ ∈ Pn,

S
(n)
c(λ) = mλ +

∑
µ∈Pn

µ 6�λ

Kn
λµ mµ . (9.5)

Corollary 145. [DM13] For λ, µ ∈ Pn, Kn
λµ is the number of ABC’s of shape c(λ) and weight µ. In

particular, there is a unique ABC of shape c(λ) and weight λ and ABC(c(λ), µ) = ∅ when µ 6�λ.

Proposition 146. [DM13] [LM07] For an n-core λ where deg(λ) < n, we have S(n)
λ = sλ.
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Proof. Given an n-core λ where deg(λ) < n and a partition µ of length r where |µ| = deg(λ), we

shall prove that there is a bijection between ABC(λ, µ) and S S YT (λ, µ).

By Lemma 143, A ∈ ABC(λ, µ) is defined by a sequence of n-cores

∅ ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ (9.6)

where (λ(i−1), λ(i)) is a horizontal strong (n − 1 − µi)-strip. Note in particular that n − 1 − µi =

n − 1 + deg(λ(i−1)) − deg(λ(i)). Since Theorem 128 implies that wλ(i)w−1
λ(i−1) is cyclically decreasing

of length `(wλ(i)) − `(wλ(i−1)) = µi, there are µi distinct residues labelling the cells of the horizontal

strip λ(i)/λ(i−1) by Lemma 117. If λ ∈ Cn with deg(λ) < n, then no two cells that lie at the top of

their column in λ(i) ⊂ λ can have the same n-residue. Therefore, λ(i)/λ(i−1) is a horizontal µi-strip,

implying that (9.6) is an element of S S YT (λ, µ).

On the other hand, given a semi-standard tableau T ∈ S S YT (λ, µ) defined by (9.6), it suffices to

show that (λ(i−1), λ(i)) is a horizontal strong n − 1 − µi-strip for all i. By definition of semi-standard

tableau, λ(i)/λ(i−1) is a horizontal µi-strip for 1 ≤ i ≤ r. Since deg(λ) < n, µi distinct residues

label the cells of λ(i)/λ(i−1) and deg(λ(i)) − deg(λ(i−1)) = µi. Therefore, by Lemma 117, wλ(i)w−1
λ(i−1) is

cyclically decreasing with length µi. Theorem 128 then implies the result. �

An ABC countertableau A comes equipped with a ribbon tiling specified by its defining strong

strips. Let the column residue of every cell in column c be c−1 (mod n). Recall that the bijection φ

identifies a horizontal strong (n−1−m)-strip (λ(i), λ(i+1)) with a reduced word j1 · · · jm for wλ(i+1)w−1
λ(i)

by a tiling of R(n − 1, λ(i))/λ(i+1) with ribbons of height one that are determined by placing a tail in

the rightmost cell of the bottom row with residue t ∈ {x − 1, . . . , x + 1}\{ j1, . . . , jm} for x = λ(i)
1 − 1

(mod n). Therefore, since A is given by µ(0) ⊂ · · · ⊂ µ(r) where µ(r+1−i) = (µ(r−i)
1 , . . . , µ(r−i)

r−i ,R(n −

1, λ(i))), these ribbons tile row r+1− i of A where the residues of their tails are now column residues

and ribbons containing letter j > i in row i are copies of the ribbons specified in row j.

A diagram derived from an ABC A of weight µ ∈ Pn called the extension ext(A) is a useful tool



81

to convert between affine factorizations and ABC’s.

Definition 147. For a given ABC A of weight µ ∈ Pn, the extension ext(A) is formed by appending

a ribbon of length λ(x)
1 − λ

(x−1)
1 + 1 to the end of row x, and then deleting any letter larger than x in

row x and the tail of every ribbon containing x.

Example 148. For n = 6 and an ABC A of weight (3, 3, 3, 1), we have

4 2 1 1
4 3 2 2 2 2

4 4 4 3 3 3
4 4 4 4 4

7−→

1 1 1
2 2 2

3 3 3
4

Lemma 149. [DM13] For A ∈ ABC(λ), j1 · · · j` is a reduced word for vi in the affine factorization

Θ(A) = vr · · · v1 if and only if the cells containing i in ext(A) have column residues { j1, . . . , j`}.

Proof. Consider the ABC given by µ(0) ⊂ · · · ⊂ µ(r) where

µ(r−i+1) = (λ(r−1)
1 + n − 1, . . . , λ(i)

1 + n − 1,R(n − 1, λ(i−1)))

and

µ(r−i) = (λ(r−1)
1 + n − 1, . . . , λ(i)

1 + n − 1, λ(i)) .

The parts of µ(r−i+1) and µ(r−i) differ only in the top i rows where we find the cells of A containing

an i forming the horizontal strip D = R(n − 1, λ(i−1))/λ(i). In particular, the bottom row of D in A

has an i in columns λ(i)
1 + 1, . . . , λ(i−1)

1 + n− 1. To determine which cells of ext(A) contain i, a ribbon

of length λ(i) − λ(i−1) + 1 is appended to the end of this row and we must appeal to the strong strips

to delete the tails.

Theorem 144 implies that Θ(A) = vr · · · v1 is an affine factorization for wλ where vi = wλ(i)w−1
λ(i−1) .

For each i, the proof of Theorem 9.4 uniquely identifies a reduced word j1 · · · jn−1−m for vi with the

strong chain

λ(i) = ν(0) lB · · · lB ν
(m) = R(n − 1, λ(i−1)) ,



82

where ν(i−1) is obtained from ν(i) by deleting all removable copies of the ribbon whose tail has

residue am−i+1 and lies in the bottom row, for the elements x + 1 ≤ am < · · · < a1 ≤ x − 1

of {x − 1, . . . , x + 1}\{ j1, . . . , jn−1−m} and x = λ(i−1) − 1 (mod n). Appending a ribbon of length

λ(i)
1 − λ

(i−1)
1 + 1 to the end of the bottom row of R(n − 1, λ(i−1))/λ(i) gives a skew shape where

{ j1, . . . , jn−1−m} is the set of column residues labeling the cells in the bottom row excluding ribbon

tails. �
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Chapter 10

The t-generalized affine Schubert polynomials

Macdonald’s basis of P-functions (see [Mac95]) are defined by

Pλ(x; t) =
1

vλ(t)

∑
w∈S n

w(xλ
∏
i< j

xi − tx j

xi − x j
) (10.1)

where vλ(t) =
∏

j≥0
∏m j

i=1
1−ti
1−t for m j the multiplicity of j in λ. For convenience, we work with the

deformation P̃λ(x; t) = t−n(λ)Pλ(x; t−1) where n(λ) =
∑

i(i − 1)λi. The set of P̃-functions forms a

basis for Λ that generalizes the monomial basis; when t = 1, P̃µ(x; 1) = mµ. One of the most

important features of this basis is that the Kostka-Foulkes polynomials are inscribed in the Schur

to P̃-function transition matrix:

sλ =
∑
µ

Kλµ(t) P̃µ(x; t) . (10.2)

Moreover, the q = 0 case of the Macdonald polynomials {Hµ(x; 0, t)} arise as the the dual basis to

{P̃µ} with respect to the Hall-inner product.

10.1 Cocharge of an ABC

The n-cocharge of an ABC depends on computing an index vector in a similar spirit. However,

the role of n brings forth an additional concept.

Definition 150. Any ribbon in an ABC that is filled with letter i but does not lie in row i is called

an offset. Set the number of cells that are not tails in all the offsets,

o f f (A) =
∑

R: offset in A

(size(R) − 1) ,
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The o f f (A) is one of the two components needed when computing n-cocharge. The index is

the other, computed on the extension of A. Our construction of the index considers only the cells in

ext(A). For A of weight 1m, ext(A) is standard; there is exactly one cell in each row i (coming from

the single ribbon head with an i in row i of A). In this case, the k-cocharge is defined by computing

an index vector I = [0, I2, . . . , Im] defined by

Ir+1 =


Ir when r + 1 is east of r

Ir + 1 when r + 1 is west of r .

Example 151. From the ABC of weight (17):

A =

2 1 1
5 3 2 2

4 3 3 3
6 5 4 4
7 7 5 5 5

6 6 6
7 7 7

7−→ ext(A) =

1
2

3
4

5
6

7

7−→ I = [0, 0, 1, 1, 2, 2, 3]

Equipped with a method to obtain the index when ext(A) has a single i in row i, we describe a

method for extracting standard fillings from an ABC of arbitrary weight µ ∈ Pn.

Algorithm 152. Given an ABC A of weight µ ∈ Pn, consider its labelling by column residues.

Iteratively earmark a standard sequence starting with the rightmost 1. From an x (of column

residue i) the appropriate choice of x + 1 will be determined by choosing its column residue from

the set B of all column residues labelling the x + 1’s. Reading counter-clockwise from i, this choice

is the closest j ∈ B on a circle labelled clockwise with 0, 1, . . . , n − 1.

Example 153.

1 1 1
2 2 2

3 3 3
4

0 1 2 3 4 5 0 1 2 3 4 5

1 1 1
2 2 2

3 3 3
4

0 1 2 3 4 5 0 1 2 3 4 5

1 1 1
2 2 2

3 3 3
4

0 1 2 3 4 5 0 1 2 3 4 5
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I = [0, 1, 1, 2] I = [0, 1, 1] I = [0, 0, 1]

Definition 154. For an ABC A of weight µ ∈ Pn, the n-cocharge of A is defined by

n-cocharge(A) =
∑

r

Ir(A) + o f f (A) .

We use the Schur expansion in P̃-functions (10.2) as a guide to introduce a new family of

symmetric functions involving the parameter t that play a role in affine Schubert calculus and the

theory of Macdonald polynomials.

Definition 155. For λ ∈ Pn, set

S
(n)
c(λ)(x; t) =

∑
µ∈Pn

Kn
λµ(t) P̃µ(x; t) , (10.3)

where the coefficients are taken to be the n-cocharge generating functions of ABC’s (or weak

Koskta-Foulkes polynomials),

Kn
λµ(t) =

∑
A∈ABC(c(λ),µ)

tn-cocharge(A) . (10.4)

For each n > 1, consider the restricted linear span of Macdonald polynomials Hλ(x; 0, t) and

the P̃-functions defined by

Λt
(n) = L{Hλ(x; 0, t) : λ1 < n} and Λ(n)t

= L{P̃λ(x; t) : λ1 < n} .

When t = 1, these reduce to Λ(n) and Λ(n), respectively.

Proposition 156. [DM13] For n > 1, the set {S(n)
λ (x; t)}λ∈Cn forms a basis for Λ(n)t

that reduces to

a set of representatives for the Schubert cohomology classes of Gr when t = 1.

Proof. Since P̃µ(x; 1) = mµ, we have that {S(n)
λ (x; 1)} = {S

(n)
λ } which gives a set of Schubert repre-
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sentatives {ξwλ} in H∗(Gr) by Theorem 144. The set {P̃λ(x; t) : λ ∈ Pn} is linearly independent and

therefore a basis for Λ(n)t
. Therefore, S(n)

λ (x; t) ∈ Λ(n)t
implies that it suffices to show the transition

matrix between P̃-functions and {S(n)
λ (x; t)}λ∈Cn is invertible. The matrix is square since there is a

bijection between n-cores and elements of Pn and in fact invertible since Corollary 145 implies

Kn
ηµ(t) = tn-cocharge(B) +

∑
A∈ABC(c(η),µ)

η 6�µ

tn-cocharge(A)

where B is the unique ABC of wieght η and shape c(η). �

Let the set of functions {s(n)
γ (x; t)}γ∈Cn be the basis for Λt

(n) defined by the duality relation, with

respect to the Hall-inner product,

〈S(n)
µ (x; t), s(n)

γ (x; t)〉 = δµγ . (10.5)

Since the Macdonald polynomial Hλ(x; q, t) reduces to the Hall-Littlewood polynomial Hλ(x; t)

when q = 0, we are now able to prove there is a natural tie between affine Schubert calculus and

Macdonald polynomials.

Corollary 157. [DM13] For each n-core λ, s(n)
λ (x; 1) represents the Schubert class ξwλ

in H∗(Gr)

and for every µ ∈ Pn, the Macdonald polynomial at q = 0 satisfies the non-negative expansion

Hµ(x; 0, t) =
∑
λ

Kn
λµ(t) s(n)

c(λ)(x; t) .

Proof. The result follows by noting that (10.5) reduces to (9.2) when t = 1 by Proposition 156 and

that (9.2) defines the k-Schur functions representing the Schubert class ξwλ
. �

Combinatorial results on ABC’s can be used to prove that when n > |λ|, both s(n)
λ (x; t) and

S
(n)
λ (x; t) reduce to the Schur function sλ.
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Lemma 158. [DM13] Given a partition λ where |λ| < n, if T is a semi-standard tableau of shape

λ then Definition 198 reduces to Definition 64.

Proof. Consider x of n-residue i in T . Note that |λ| < n implies that there is a unique cell c of

residue i that contains x. Let j be the first entry on the circle reading counter-clockwise from i that

is a residue of a cell containing x+1. If there is an x+1 above c, then the south-easternmost cell con-

taining an x+1 that is above c has residue j since there are no x+1’s of a residue counter-clockwise

between i and j. If there are none above c, then for the same reason, the south-easternmost cell

containing an x + 1 has residue j. �

Proposition 159. [DM13] For λ ∈ Cn with deg(λ) < n, S(n)
λ (x; t) = s(n)

λ (x; t) = sλ.

Proof. Let λ ∈ Cn with deg(λ) < n. By Lemma 143, A ∈ ABC(λ, µ) is defined by a sequence of

n-cores

∅ ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ (10.6)

where (λ(i−1), λ(i)) is a horizontal strong (n− 1− µi)-strip. This sequence is in one to one correspon-

dence with a unique element T ∈ S S YT (λ, µ) by Proposition 146. Lemmas 117 and 149 imply

that the set of residues labelling cells of λ(i)/λ(i−1) is the same as the set of column residues of cells

containing the letter i in ext(A). Since Definition 198 depends only on residues, it remains to show

that the index vector on a standard sequence matches.

Note that the cocharge index of a standard sequence of T can be defined by ordering the residues

of T with respect to

x + 1 < x + 2 < · · · < 0 < 1 < · · · < x − 1 < x , where x = λ(i)
1 − 1 (mod n), (10.7)

and setting Ii = Ii−1 when the residue of the cell containing i is larger than the residue of i − 1

and Ii = Ii−1 + 1 otherwise. Recall also that the index for an ABC is computed by geographically

comparing a cell containing i − 1 in ext(A) to a cell containing i; if i is east of i − 1 then Ii = Ii−1
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and Ii = Ii−1 + 1 otherwise. We claim that the colum residue of the cell containing i is larger than

that containing i − 1 only when i is east of i − 1.

First we claim that if λ(i−1)
1 < λ(i)

1 , then there is no ribbon S containing i − 1 that has a non-tail

cell in columns [λ(i−1)
1 + 1, λ(i)

1 ] of A. By way of contradiction suppose such a ribbon S containing

i − 1 with a non-tail cell c of column residue r exists in A. By Lemma 149, λ(i−1) has a cell of

residue r. Since c is in columns [λ(i−1)
1 + 1, λ(i)

1 ], where λ(i−1)
1 < λ(i)

1 , then λ(i)/λ(i−1) has a cell in the

bottom row of residue r. Thus T has two distinct cells, not on the same diagonal and of residue r.

This contradicts the assumption that deg(λ) < n.

Observe that the (i− 1)st row of A has its rightmost cell in column λ(i−2)
1 + n− 1. Since ext(A) is

constructed by first appending λ(i−1)
1 +λ(i−2)

1 +1 cells to the (i−1)st row of A, then the cells containing

i − 1 in ext(A) are within columns

[λ(i−1)
1 + 1, (λ(i−2)

1 + n − 1) + (λ(i−1)
1 − λ(i−2)

1 + 1)] = [λ(i−1)
1 + 1, λ(i−1)

1 + n].

Similarly, the cells containing i in ext(A) are within columns [λ(i)
1 + 1, λ(i)

1 + n]. Since there are no

ribbons containing i − 1 that have a non-tail cell in columns [λ(i−1)
1 + 1, λ(i)

1 ] of A, then the cells

containing i−1 in ext(A) are actually within columns [λ(i)
1 +1, λ(i−1)

1 +n]. Since [λ(i)
1 +1, λ(i−1)

1 +n] ⊆

[λ(i)
1 + 1, λ(i)

1 + n], then when i is east of i − 1 in ext(A), its column residue is larger with respect the

same ordering (10.7).

It remains to prove that o f f (A) = 0. By contradiction, if o f f (A) > 0 then A has a ribbon O

of length greater than 1 and filled with the letter i that is not in the ith row, for some 1 ≤ i ≤ `(µ).

On the one hand, note that O has cells which are at the top of their columns in R(n − 1, λ(i−1)), and

not in the bottom row. There is a horizontal ribbon in the bottom row of R(n− 1, λ(i−1)) whose cells

are at the top of their columns and of the same residue as those of O. By Lemmas 149, the set

of residues labeling cells of λ(i)/λ(i−1) is the same as the set of column residues of cells containing

letter i in ext(A). Thus, in R(n − 1, λ(i−1)), the residues of non-tail cells of O are the same as the
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residues labeling a horizontal strip S in λ(i)/λ(i−1).

On the other hand, if λ ∈ Cn with deg(λ) < n, then no two cells that lie at the top of their

columns in λ(i) ⊂ λ can have the same n-residue. Thus the residues labeling cells of λ(i)/λ(i−1) are

unique. Since O is not in the bottom row of R(n − 1, λ(i−1)), and it is of length greater than 1, then

it must be the case that there is a non-tail cell of it which is above a cell of S . This contradicts the

fact that R(n − 1, λ(i−1))/λ(i−1) is a horizontal strip; constructed by adding a cell to the top of every

column of λ(i−1) and n − 1 cells to its bottom row. �

10.2 Charge of an ABC

In this section we are concerned with defining a n-charge statistic over ABC’s which is in similar

spirits to that of the cocharge statistic. To do this, we set the bottom row of ABC A is row one, and

the left-most column is column one. With this in mind, a cell of an ABC which is in row r and

column c will be sometimes referred to as (r, c).

Definition 160. Let A be an ABC of weight µ ∈ Pn. For each 1 ≤ i ≤ `(µ), let A≤i be the ABC A

restricted to the top i rows of A and those cells with filled with letters t ≤ i.

Example 161. If the ABC

A =

4 2 1 1
4 3 2 2 2 2

4 4 4 3 3 3
4 4 4 4 4

=⇒ A≤3 =
2 1 1

3 2 2 2 2
3 3 3

Definition 162. Given α ∈ Pn, an n-tableau of weight α is a sequence of n-cores ∅ = λ(0) ⊂ λ(1) ⊂

. . . ⊂ λ(`(α)), where (λ(i−1), λ(i)) is a horizontal strong (n−1−αi)-strip. A n-tableau is represented by

its tableau filling where i is placed in the cells of λ(i)/λ(i−1). If T is an n-tableau of weight α, then

for each 1 ≤ i ≤ `(α), let T≤i be the tableau restricted to those cells with letters t ≤ i. Observe that

T≤i is an n-tableau for each 1 ≤ i ≤ `α.
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Example 163. If the 5-tableau

T =

4
3 3
2 2 3
1 1 1 2 3 3

=⇒ T≤3 =
3 3
2 2 3
1 1 1 2 3 3

In this section we will consider properties of certain types of ABC’s. Namely, those ABC’s

whose shape and weight are related.

One of our goals is to characterize the unique ABC with shape(A) = c(weight(A)) ∈ Cn. To

reach this goal we slightly modify the definition of the extension of an ABC A given in [DM13]

(pg. 16) for ease of notation.

Definition 164. The extension ext(A) is formed from A by appending a ribbon of length λ(x)
1 −

λ(x−1)
1 + 1 to the end of row x and then deleting any letter from a ribbon of length one. An extended

ribbon is the appended ribbon of length λ(x)
1 −λ

(x−1)
1 + 1 to the end of row x. Consecutive extended

ribbons are two extended ribbons such that there is no extended ribbon in any row between the

rows with them.

With this definition, we show an example of an ABC A with shape(A) = c(weight(A)), and

make some observations.

Example 165. If we have the ABC of weight (3, 2, 2, 2, 1) and shape c(3, 2, 2, 2, 1) = (7, 4, 3, 2, 1),

A =

5 2
3 3 3 2

5 4 3 3 3
5 5 5 4

5 5 5

=⇒ ext(A) =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

The extended ribbons of ext(A) are the 4-ribbon filled with one’s, the 3-ribbon filled with two’s, and

the 3-ribbon filled with four’s. The extended ribbon filled with two’s and the extended ribbon filled

with four’s are two consecutive extended ribbons.
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Remark 166. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Observe that for each

1 ≤ i ≤ `(µ), ext(A) has only one ribbon filled with i and in row i. The length of this ribbon is µi +1.

Furthermore, the ribbons from a staircase pattern. Namely, any row between two consecutive

extended ribbons has a ribbon whose tail is exactly one column to the left of the tail of the ribbon

in the row above.

These observations on the ABC’s A with c(weight(A)) = shape(A) help to shape our key

Lemma’s.

Lemma 167. Let A be an ABC of weight µ and T the corresponding n-tableau. A has an i-offset,

of length x, with a tail in (r, c) if and only if T has no ribbon filled with the letter i, of length x − 1,

whose tail is in (r, c).

Proof. Suppose T is defined by the sequence of n-cores ∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(`(µ)). A has an

i-offset of length x with a tail in (r, c) if and only if R(n− 1, λ(i−1))/λ(i) has non-empty cells in row r

and in columns c, c + 1, . . . , c + x − 1. This is true if and only if λ(i)/λ(i−1) has no cells in row r and

columns c, c + 1, . . . , c + x − 1 and the rth row from the top. �

For an ABC with weight µ ∈ Pn and shape c(µ), Lemma 167 reduces very nicely.

Corollary 168. Let A is an ABC with weight µ ∈ Pn and shape(A) = c(µ). Then A has an i-offset,

of length µi + 1, with tail in row r if and only if T has no µi-ribbon filled with i and in row r.

Lemma 169. Let A be an ABC of weight µ ∈ Pn, and T the corresponding n-tableau. The ext(A)

has a extended ribbon in the ith row if and only if T has a ribbon of length µi whose cells contain i

in the bottom row.

Proof. Using Γ, let T be the n-tableau, corresponding to A, defined by the sequence of n-cores

∅ = λ(0) ⊂ λ(1) ⊂ . . . ⊂ λ(`(µ)). The ext(A) has a extended ribbon in the ith row, of column residue

x, if and only if the southeastern-most cell of R(n − 1, λ(i−1)) has residue (x − 1) mod n. Using the
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definition of R(n− 1, λ(i−1)), we then have that the southeastern-most cell of λ(i−1) has residue x− 1,

which implies λ(i)/λ(i−1) has a µi-ribbon in the bottom row. Reversing this argument completes the

proof. �

Lemma 170. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). If ext(A) has two consec-

utive extended ribbons in rows i and j, with i < j, then µi + ( j − i) = n. Furthermore, the head of

the extended ribbon in the ith row is in the same column as the tail of the extended ribbon in the jth

row.

Proof. Using Γ, let T be the n-tableau, corresponding to A, defined by the sequence of n-cores

∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(`(µ)). By Lemma 169, ext(A) has extended ribbons in rows i and j if and

only if λ(i)/λ(i−1) has a µi-ribbon in the bottom row and λ( j)/λ( j−1) has a µ j-ribbon also in the bottom

row. Since i < j, then the µi-ribbon is to the left of the µ j-ribbon in the bottom row of λ( j)/λ(i−1).

Furthermore, since ext(A) has no extended ribbons in any row between i and j, then the µi-ribbon

is directly to the left of the µ j-ribbon in the bottom row of λ( j)/λ(i−1). This tells us that in λ`(µ), the

cell in the jth row and first column has residue x + 1 if and only if the cell in the ith row, µth
i column

has residue x. Finally since the length of the ith row in λ(i) is µi, it follows that µi + ( j − i) = n.

To see the next implication, let R be the extended ribbon in the jth row and Q be the extended

ribbon in the ith row of ext(A). Let S be the ribbon in the ( j − 1)th row that is not an offset in

ext(A). Since R is a extended ribbon in a row directly below to the one S is in, then the tail of R

is n columns to the right of the tail of S in ext(A). On the other hand, the head of Q is µi + ( j − i)

columns to the right of the tail of S . The implication follows since n = µi + ( j − i). �

Definition 171. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). For each 1 ≤ i ≤ `(µ),

Ri is the set of left-most µi cells of every extended ribbon in ext(A)≤i, except for their tails.

Note that every ABC has at least one extended ribbon; the one in the top row. This tells us that

Ri , ∅.
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Example 172. For the ABC A in Example 165, since

ext(A) =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

=⇒ ext(A)≤3 =
1 1 1 1

3 3 3 2 2 2
3 3 3

Since the weight µ of A is such that µ3 = 2, then R3 is the set of bold cells in ext(A)≤3. Namely, This

tells us that

R3 = {(2, 8), (2, 9), (3, 5), (3, 6)} .

Definition 173. For any cell of an ABC, we define the diagonal through that cell to be the line

going through its bottom left corner and the top right corner.

One of our objectives is to show that for a given ABC A, where c(weight(A)) = shape(A), the

ribbon in the bottom row of ext(A)≤i, filled with i has a diagonal through its tail which also goes

through the tail of a unique extended ribbon. The example below illustrates this for an ABC A with

c(weight(A)) = shape(A).

Example 174. For the ABC A in Example 165, we know

ext(A)≤3 =
1 1 1 1

3 3 3 2 2 2
3 3 3

Observe that the bottom row of ext(A≤3) has a ribbon of filled with 3. Furthermore, the diagonal

through the tail of this ribbon goes through the tail of the extended ribbon filled with 2 as indicated

by the bold cells.

Proposition 175. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Let I be the ribbon

filled with i and in the bottom row of ext(A)≤i. The diagonal through the tail of I goes through the

tail of some extended ribbon R in ext(A)≤i. Furthermore, there is no extended ribbon in any row

below the row with R.
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Proof. If I is a extended ribbon of ext(A)≤i, then we are done. If I is not a extended ribbon, then let

t be the cell of ext(A)≤i, located in some row j and t is on the same diagonal as the one through the

tail of I. Furthermore, suppose that there is no row r < j which has a cell on the same diagonal as

the one through t. Since shape(A) = c(weight(A)), and t is on the same diagonal as the one through

the tail of I, then the ribbon filled with the letter j in the jth row of ext(A)≤i, must have a tail of

column residue the same as that of t. Remark 166 tells us that t must be the tail of the unique ribbon

filled with the letter j in the jth row of ext(A)≤i. Let R be this unique ribbon filled with j in the jth

row of ext(A)≤i.

Since there is no cell in ext(A)≤i in any rows above j that is on the diagonal throught t, then the

ribbon, S , in the ( j − 1)th row filled with j − 1 must have a tail in some column that is west of the

column with t. Since the shape(A) = c(weight(A)), then the column residue of the tail of S must be

r + 1, where r is the column residue of t. So if the tail of S is in a column west of the column with

t, then the tail of S must be exactly n − 1 columns west of the column t is in. This implies that R

must be a extended ribbon as it is not in A≤i.

Finally observe that if there is a row r > j which has a extended ribbon, then since the

shape(A) = c(weight(A)), we have that the bottom row of ext(A)≤i must have at least two ribbons

filled with i. This contradicts the facts of Remark 166. �

Suppose A is an ABC with weight µ ∈ Pn and shape(A) = c(µ). If ext(A)≤i has any ribbon I

filled with the letter i and in the bottom row, then Proposition 175 tells us that there are µi cells in

the bottom row of ext(A)≤i such that the diagonal through them goes through certain cells of the

lowest extended ribbon. More precisely, if I is the ribbon filled with i, located in the bottom row

of ext(A)≤i, then define Bi to be all the cells of I excluding its tail. This definition gives us the

following Corollary to Proposition 175.

Corollary 176. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Fix an i such that

1 ≤ i ≤ `(µ). The diagonal through each (r, c) ∈ Bi goes through a unique cell of Ri.
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We now show that for a given ABC A, such that c(weight(A)) = shape(A), the lowest extended

ribbon of ext(A)≤i has a diagonal through its tail which also goes through the tail of the ribbon in

the bottom row filled i.

Example 177. For the ABC A in Example 165 with weight µ = (3, 2, 2, 2, 1), we know by Example

174 that

ext(A)≤3 =
1 1 1 1

3 3 3 2 2 2
3 3 3

and ext(A)≤5 =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

For i = 3, B3 = {(1, 7), (1, 8)} and Example 172 gives us R3 = {(2, 8), (2, 9), (3, 5), (3, 6)}.

Observe that the diagonal through the cell (1, 7) ∈ B3 goes through the cell (2, 8) ∈ R3 and the

diagonal through the cell (1, 8) ∈ B3 goes through the cell (2, 9) ∈ R3, as indicated by the bold

cells in ext(A)≤3.

For i = 5, B5 = {(1, 9)} and R5 = {(2, 10), (4, 8), (5, 5)}. Observe that the diagonal through the

cell (1, 9) ∈ B5 goes through the cell (2, 10) ∈ R5, as indicated by the bold cells in ext(A)≤5.

Proposition 178. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Let I be the ribbon

in the ith row of ext(A)≤i and filled with the letter i. Let R is a extended ribbon such that there is

no extended ribbon in any row below the row with R. Then the diagonal through the tail of R goes

through the tail of I.

Proof. If the column residue of the tail of R is x and if the shape(A) = c(weight(A)), then the

column residue of the tail of I is (x − i + b) mod n, where b is the row that R is in. Since R is the

lowest extended ribbon in ext(A)≤i, then the claim follows by considering the column residues of

the tail of non-offset ribbons in rows b, b + 1, . . . , i. �

Our next objective is to show that for a given ABC A, such that c(weight(A)) = shape(A), the

diagonal through the tail of an i-offset goes through the tail of a unique extended ribbon.
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Definition 179. Given an ABC A, for any i in 1 ≤ i ≤ weight(A), an i-offset of ext(A) is an offset

filled with i.

The example below illustrates this for an ABC A with c(weight(A)) = shape(A).

Example 180. For the ABC A in Example 165, we know that

ext(A)≤5 =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

Observe that the diagonal through the tail of the 5-offset goes through the tail of the extended

ribbon filled with 2, as indicated by the bold cells in ext(A)≤5.

Proposition 181. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Fix i such that

1 ≤ i ≤ `(µ). If ext(A)≤i has an i-offset, then the diagonal through the tail of it goes through the tail

of a unique extended ribbon.

Proof. The proof will be given by induction on the i-offsets of ext(A)≤i. For the base case, consider

the lowest i-offset, say S , in ext(A)≤i. From the definition of A, there is a ribbon F filled with i in

the bottom row of ext(A)≤i. The tail of S is q columns west of the column with the tail of F and S

is n − q rows above F.

Let R be a extended ribbon in some row b such that there are no extended ribbons in any row

r > b of ext(A)≤i. Note that such a extended ribbon must exist in ext(A)≤i since the top row has a

extended ribbon. Propositions 175 and 178 give us that F has a tail which is d columns west of the

column with the tail of R and F is d rows below the row with R.

We now show that there is a extended ribbon in some row above the row with R. By way of

contradiction, suppose R is in the top row of ext(A)≤i. This implies that its tail is in column n, so

the number of columns between the tail of S and the tail of R must be less than n. Since the tail of

S is q + d − 1 columns west of the column with the tail of R, then d ≤ n − q + 1. Recall that F is
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d rows below R and that S is n − q rows above F, so d = n − q + 1. Now S is in the top row of

ext(A)≤i, which contradicts Corollary 168. Thus there is a extended ribbon in some row above the

row with R. Let Q and R be consecutive ribbons, where Q is in some row a < b. Lemma 170 tells

us that the tail of R is in the same column as the head of Q and that µa + (b − a) = n.

We now show that the tail of S is in a column that is west of the column with the tail of Q. By

way of contradiction, suppose that the tail of S is in a column that is weakly east of the column

with the tail of Q. Since the column with the tail of S is q + d west of the tail of R and the column

with the tail of Q is µa columns west of the tail of R, then q + d ≤ µa. Since µa + (b − a) = n, then

d + b − a ≤ n − q. Since F is d + b − a rows south of the row with Q and F is also n − q rows

south of row with S , then we get that the row with S is north of the row with Q. Thus the tail of

S is north-west of the tail of Q in ext(A)≤i. This is a contradiction as S is an i-offset implying that

any cell below it in ext(A)≤i is empty. A similar argument shows that the tail of S is in a row that is

below the row that the tail of Q is in. Hence the tail of Q is north-east of the tail of S in ext(A)≤i.

Figure 10.1 shows us the relative placement of S , F,R,Q and the distances between them. If Q

is x rows north of the row with S , then it is a check to see that the tail of Q is x columns east of the

column with the tail of S .

For the induction step, we have almost the same setup as Figure 10.1, except now F is an

i-offset. The argument then follows similar to the base case. �

Suppose A is an ABC with weight µ ∈ Pn and shape(A) = c(µ). If ext(A)≤i has any i-offsets

for each 1 ≤ i ≤ `(µ), then Proposition 181 tells us that there are µi cells of each i-offset such that

the diagonal through each one goes through certain cells of a extended ribbon. More precisely, let

Oi to be the set of all cells in ext(A)≤i which belong to any i-offset, excluding its tail. Note that if

ext(A)≤i has no i-offsets, then Oi = ∅. However, when ext(A)≤i has at least one i-offset, then we

have the following Corollary to Proposition 181.

Corollary 182. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Fix an i such that
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q
d + 1

d + 1

b − a − 1
µa + 1

n − q

i i

b b

a a

i i
S

F

R

Q

Figure 10.1: Ribbons S , F,R,Q of ext(A)≤i

1 ≤ i ≤ `(µ). Suppose that ext(A≤i) has at least one i-offset in it. The diagonal through any cell

(r, c) ∈ Oi goes through a unique cell of Ri.

Example 183. For the ABC A in Example 165, we know by Example 180 that

ext(A)≤5 =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

Thus for i = 5, O5 = {(2, 6)} and R5 = {(2, 10), (4, 8), (5, 5)}. Observe that the diagonal through the

cell (2, 6) ∈ O5 goes through the cell (4, 8) ∈ R5, as indicated by the bold cells.

Next we consider certain types of ribbons in an n-tableau and show how they are connected to

cells of extended ribbons in an ABC. To see this connection, we first need a definition.

Definition 184. For a given µ ∈ Pn, Let T be the n-tableau defined by the sequence ∅ = λ(0) ⊂

λ(1) ⊂ · · · ⊂ λ(`(µ)) = c(µ). For each 1 ≤ i ≤ `(µ), we say that a µi-ribbon of T is an n-connected
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µi-ribbon of i if and only if λ(i)/λ(i−1) has that µi-ribbon and it is not the top most µi-ribbon.

When T is an n-tableau whose corresponding ABC A has weight µ ∈ Pn and shape c(µ), then

T≤i has a µi-ribbon in its top row whose tail is in the first column.

Example 185. For the ABC A in Example 165, since the corresponding 4-tableau is

T =

5
4 4
3 3 5
2 2 4 4
1 1 1 2 2 4 4

=⇒ T≤4 =

4 4
3 3
2 2 4 4
1 1 1 2 2 4 4

Observe that T≤4 has a 4-connected 2-ribbon of i = 4 in rows one and two.

We are almost ready to show the correspondence between certain ribbons in n-tableau and

extended ribbons of ABC’s. We first show this correspondence through an example.

Example 186. The ABC A in Example 165 has the corresponding 4-tableau T of Example 185.

Thus

T≤4 =

4 4
3 3
2 2 4 4
1 1 1 2 2 4 4

⇐⇒ ext(A)≤4 =

1 1 1 1
3 3 3 2 2 2

3 3 3
4 4 4

Example 185 tells us that in T≤4, the tails of the 4-connected 2-ribbons filled with 4 are in cells

(2, 3) and (1, 6). Observe that each of the diagonals through the cells (2 + 1, 3) = (3, 3) and

(1 + 1, 6) = (2, 6) of ext(A)≤4 go through the tails of the extended ribbon in rows four and two,

respectively.

Proposition 187. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Let T be the corre-

sponding n-tableau of A. Fix i such that 1 ≤ i ≤ `(µ). Suppose that T≤i has at least one n-connected

µi-ribbon of i with tail in some position (r, c). Then the diagonal through the cell in position (r+1, c)

of ext(A)≤i goes through the tail of a unique extended ribbon.

Proof. The proof is by induction on the n-connected µi-ribbons. For the base case, consider the

top-most n-connected µi-ribbon of i, say S , of T≤i. Suppose that S has a tail in position (r, c). From
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the definition of A, we see that ext(A)≤i has a cell e in position (r + 1, c). We show that the diagonal

through the cell e also goes through the tail of the unique extended ribbon R in the top row of

ext(A)≤i. Since shape(A) = c(weight(A)), then shape(A≤i) = c(weight(A≤i)), which says that the

top row of T≤i has µi cells filled with the letter i. If S is the top-most n-connected µi-ribbon filled

with the letter i, then r = n − c. This tells us that e is n − c − 1 rows bellow the row R is in. On the

other hand, since the tail of R is in the nth column of ext(A)≤i, then the number of columns between

e and the tail of R is n − 1 − c. Thus the diagonal through e goes through the tail of R.

Next suppose that the (p − 1)th n-connected µi-ribbon of i in T≤i has a tail in position (r, c), for

some p > 1. Let e be the cell in position (r + 1, c) of ext(A)≤i. Furthermore suppose that there is

a diagonal through e which also goes through the tail of a unique extended ribbon R. This tells us

that e is d columns west and d rows south of the tail of R.

If the pth n-connected µi-ribbon in T≤i has a tail in column c + q then that tail is in row r + n− q.

Thus, there is a cell f in ext(A)≤i which is q columns east and n − q rows south of e.

Next, suppose there is no extended ribbon in any rows below the row with R. Lemma 169 tells

us then that the pth n-connected µi-ribbon in T≤i can’t be in the bottom row. So there is a ribbon in

the bottom row of A≤i filled with the letter i, such that the diagonal through the tail, t, goes through

the tail of R. This implies that the cell t is the cell e, giving us a contradiction as t is in the lowest

row of A≤i and f is in some row below it. Thus there is a extended ribbon, Q, in some row below

the row with R. Let Q and R be consecutive ribbons, where Q is in some row a and R is in some

row b < a. Lemma 170 tells us that the head of R is in the same column as the tail of Q and that

µb + (a − b) = n.

Now if the tail of Q is in a row weakly south of the row with f , then we have that n+d ≤ a−b+q.

Since αb + (a−b) = n, then we get that αb +d ≤ q. This says that the tail of Q is in a column weakly

west of the column with f . Thus the tail of Q is weakly south-west of f . This is a contradiction

as there are only empty cells weakly south-west of f in ext(A)≤i. A similar argument shows us that

the tail of Q is in a column east of the column with f . Hence the tail of Q is north-east from the
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cell f .

Figure 10.2 shows us the relative placements of R,Q, e, f and the distances between them. If f

is x rows south of the row with Q, then it is a check to see that f is x columns west of the column

with the tail of Q. Finally, Lemma 170 gives us the uniqueness of Q. �

q

a − b − 1
µb + 1

n − q

a a

b b

d

d
e

f

Q

R

Figure 10.2: Cells e, f and ribbons R,Q in ext(A)≤i

Suppose A is an ABC with weight µ ∈ Pn and c(µ) = shape(A). Let T be the n-tableau

corresponding to A. Fix i in 1 ≤ i ≤ `(µ). If T≤i has any n-connected µi-ribbbons of i, then

Proposition 187 tells us that the diagonal through each cell of this ribbon goes through certain cells

of a unique extended ribbon. More precisely, let Ii be the set of all cells in T≤i which belong to any

n-connected µi-ribbon of i except for its tail. Note that if T≤i has no n-connected µi-ribbon of i, then

Ii = ∅. However, when T≤i has at least one n-connected µi-ribbon of i, then we have the following

Corollary to Proposition 187.

Corollary 188. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Let T be the corre-
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sponding n-tableau. Fix an i such that 1 ≤ i ≤ `(µ). Suppose that T≤i has at least one n-connected

µi-ribbon of i. If (r, c) ∈ Ii, then the diagonal through the cell (r + 1, c + 1) of A≤i goes through a

unique cell of Ri.

Example 189. The ABC A in Example 165 has the corresponding 4-tableau T of Example 185.

Thus

T≤5 =

5
4 4
3 3 5
2 2 4 4
1 1 1 2 2 4 4

⇐⇒ ext(A)≤5 =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

For i = 5, I5 = {(3, 3)} and R5 = {(2, 10), (4, 8), (5, 5)}. Observe that the diagonal through the cell

(3 + 1, 3 + 1) = (4, 4) goes through (5, 5) ∈ R5, as indicated by the bold cells.

The sets Ii,Oi,Bi from Corollaries 176, 182, 188 have an interesting property about their size.

Example 190. For the ABC A in Example 165 and its corresponding 4-tableau from Example 185,

we know by Examples 177, 183, and 189 that B5 = {(1, 9)},O5 = {(2, 6)} and I5 = {(3, 3)}. Since

B5 ∩ O5 = B5 ∩ I5 = O5 ∩ I5 = ∅ =⇒ |B5 ∪ O5 ∪ I5| = |B5| + |O5| + |I5| = 3

Proposition 191. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). For each i with

1 ≤ i ≤ `(µ),

|Ii ∪ Oi ∪ Bi| = |Ii| + |Oi| + |Bi|.

Proof. Suppose the corresponding n-tableau of A is defined by the sequence ∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂

λ(`(µ)). If Ii. Observe that if λ(i)/λ(i−1) has any non-empty cells in the bottom row, then it has exactly

µi non-empty cells in the bottom row. Lemma 169 then tells us that ext(A)≤i has a extended ribbon

in its bottom row. Thus, if (i, c) ∈ Ii then (i, c) < Bi. Hence, Ii ∩ Bi = ∅. Lemma 167 tells us that

Ii ∩ Oi = ∅. The definition of an offset gives us that Oi ∩ Bi = ∅, and the claim follows. �

We now show how the tails of each extended ribbon are mapped to either tails of an i-offset or
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tails of an n-connected µi-ribbon.

Proposition 192. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Let T be the corre-

sponding n-tableau of A. Fix i such that 1 ≤ i ≤ `(µ). Suppose ext(A)≤i has a extended ribbon R

such that there is a extended ribbon in some row below the row with R. Then the diagonal through

the tail of R goes through a cell t, in some position (r, c), such that either t is the tail of an i-offset,

or the cell in position (r − 1, c) of T≤i is the tail of an n-connected µi-ribbon, but not both.

Proof. We proceed by way of induction on the extended ribbons. For the base case, let R be the

extended ribbon in the top row of ext(A)≤i. Let t be the cell in position (r, c) such that t is on the

diagonal going through the tail of R and there is no cell in row r−1 which is also on the diagonal. If

t is on the diagonal, and t is in position (r, c), then t is r rows south and r columns west of from the

tail of R. Furthermore, since the tail of R is in position (1, n), then we must have that r + c = n + 1.

If there is an extended ribbon in some row below the row with R, then Proposition 178 tells us

that t is not in the bottom row of ext(A)≤i. Since the tail of R is in position (1, n), then we see that

r + c = n + 1.

Suppose that t is not the tail of an i-offset. We show that the cell (r − 1, c) of T≤i is the tail of

a n-connected µi-ribbon. Suppose that T is defined by the sequence ∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(i) ⊂

· · · ⊂ λ(`(µ)). Since there is no cell in any row below r which is also on the diagonal through t, then

the cell t̃ in (r−1, c) of T≤i is in λ(i)/λ(i−1). Furthermore, if r + c = n + 1, then t̃ has the same residue,

say x, as that of the cell in (1, `(λ(i))) of T . Since shape(A) = c(µ), then the top row of T≤i has µi

cells of residue x, x + 1, . . . , x + µi − 1, each taken mod n. This implies that row r − 1 of λ(i)/λ(i−1)

has µi cells of residue x, x + 1, . . . , x + µi − 1, each taken mod n. Furthermore, the cell t̃ is the cell

of residue x.

If the cell directly west of t̃ is in λ(i)/λ(i−1), then there would be an i-offset in ext(A)≤i with tail in

(r−1, c−1). This would contradict the assumption that there is no cell in any row below r which is

also on the diagonal through t. Hence there is a n-connected µi-ribbon in T≤i with tail in (r + 1, c).
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For the induction step, suppose there is a n-connected µi-ribbon of T≤i with tail in (r̃, c̃) where

the cell t̃ in position (r̃+1, c̃) is on the same diagonal as the one through the tail of a unique extended

ribbon R of ext(A)≤i. Let Q be a consecutive extended ribbon in some row below the row with R.

Suppose R is in some row a and Q is in some row b > a. Lemma 170 tells us that the tail of R is in

the same column as the head of Q and that µa + (b − a) = n.

Let t be the cell in position (r, c) of ext(A)≤i, which is on the same diagonal as the tail of Q.

Furthermore suppose there is no cell in any row below r which is also on the diagonal through t.

Figure 10.3 shows us the relative placement of t̃, t,R,Q and the distances between them. Using the

fact that µa + (b−a) = n, it is a check to see that if t is q columns east of t̃, then t is n−q rows south

of t̃. Thus, if we assume that t is not the tail of an i-offset, then the cell at (r − 1, c) of T≤i is the tail

of an n-connected µi-ribbon. A similar argument as the induction step shows that if t̃ is the tail of

an i-offset in Figure 10.3, then t is also the tail of an i-offset. Finally Lemma 167 tells us that either

t is the tail of an i-offset or the cell (r − 1, c) is the tail of an n-connected µi-ribbon, but not both.

�

b − a − 1
µa + 1

b b

a a

d̃

d̃

d

d

t̃

t

Q

R

Figure 10.3: Cells e, f and ribbons R,Q in ext(A)≤i
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Example 193. The ABC A in Example 165 which has the corresponding 4-tableau T from Example

185 gives us

ext(A)≤5 =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

⇐⇒ T≤5 =

5
4 4
3 3 5
2 2 4 4
1 1 1 2 2 4 4

We observe that the diagonal through the tail at (2, 9) goes through the tail at (1, 8) of a ribbon

filled with five. The diagonal through the tail at (4, 7) goes through the tail at (2, 5) of a 5-offset.

The diagonal through the tail at (5, 4) goes through the cell at (4, 3), and the cell (4 − 1, 3) = (3, 3)

of T≤5 s the tail of a 4-connected 1-ribbon with i = 5.

We are now ready to state our main theorem of this section which relates the set Ri and Ii ∪

Oi ∪ Bi.

Theorem 194. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ). Let T be the corresponding

n-tableau of A. Fix i such that 1 ≤ i ≤ `(µ). There is a bijection between the set Ri and the set

Ii ∪ Oi ∪ Bi.

Proof. Corollaries 176, 182, 188 tells us the diagonal through each cell (r, c) ∈ Ii ∪ Oi ∪ Bi also

goes through a unique element (x, y) ∈ Ri. Furthermore, Propositions 178 and 192 tells us that the

diagonal through (x, y) ∈ Ri goes through a unique cell (a, b) ∈ Ii ∪ Oi ∪ Bi. �

Example 195. The ABC A in Example 165 and its corresponding 4-tableau T from Example 185

gives us

ext(A)≤5 =

1 1 1 1
3 3 3 2 2 2

3 3 3
5 5 4 4 4

5 5

⇐⇒ T≤5 =

5
4 4
3 3 5
2 2 4 4
1 1 1 2 2 4 4
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We know by Examples 177 and 190 that

B5 ∪ O5 ∪ I5 = {(3, 3), (2, 6), (1, 9)} and R5 = {(2, 10), (4, 8), (5, 5)} .

Theorem 194 tells us that (3, 3) corresponds with (5, 5), (2, 6) corresponds with (4, 8) and (1, 9)

corresponds with (2, 10).

The n-cocharge of an ABC A was defined in [DM13]. The n-cocharge of an ABC was used

to introduce a new family of symmetric functions, S(n)
c(λ)(x; t), which play a role in affine Schubert

calculus and the theory of Macdonald polynomials. When the functions S(n)
c(λ)(x; t) are expanded in

terms of a deformation of Macdonald’s basis of P-functions (See [Mac95]), the coefficients are the

n-cocharge generating functions of ABC’s (or weak Kostka-Foulkes polynomials),

Kn
λµ(t) =

∑
A∈ABC(c(λ),µ)

tn-cocharge(A) .

In [DM13], the weak Kostka-Foulkes polynomials are shown to generalize the Kostka-Foulkes

polynomials. These Kostka-Foulkes polynomials, Kλµ(t), were beautifully characterized by Las-

coux and Schützenberger [LS78] by computing an index vector on certain sub-words of a semi-

standard tableau of shape λ and weight µ. The weak Kostka-Foulkes polynomials were computed

using a similar index vector on sub-words of an ABC along with another component involving

offsets of that ABC.

The n-charge statistic of an ABC depends on computing an index vector in a similar spirit to the

n-cocharge statistic. To see the definition of n-charge of A, we first define some of its components.

Recall from [DM13] that the number of cells that are not tails in all the offsets is

o f f (A) =
∑

R: offset in A

(size(R) − 1) .
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We recall the definition for the extension of an ABC A from [DM13]. The extension of A is

formed by appending a ribbon of length λ(x)
1 − λ

(x−1)
1 + 1 to the end of row x, and then deleting any

letter larger than x in row x and the tail of every ribbon containing x.

Example 196. For n = 6 and an ABC A of weight (3, 3, 3, 1), we have

A =

4 2 1 1
4 3 2 2 2 2

4 4 4 3 3 3
4 4 4 4 4

7−→ ext(A) =

1 1 1
2 2 2

3 3 3
4

Our construction of the index considers only the cells in ext(A). For A of weight 1m, ext(A) is

standard; there is exactly one cell in each row i (coming from the single ribbon head with an i in

row i of A). In this case, the n-charge is defined by computing an index vector Ĩ = [0, Ĩ2, . . . , Ĩm]

defined by

Ĩr+1 =


Ĩr when r + 1 is west of r

Ĩr + 1 when r + 1 is east of r .

Example 197. From the ABC of weight (17):

A =

2 1 1
5 3 2 2

4 3 3 3
6 5 4 4
7 7 5 5 5

6 6 6
7 7 7

7−→ ext(A) =

1
2

3
4

5
6

7

7−→ Ĩ = [0, 1, 1, 2, 2, 3, 3]

Equipped with a method to obtain the index when ext(A) has a single i in row i, we describe a

method for extracting standard fillings from an ABC of arbitrary weight µ ∈ Pn.

Algorithm 198. Given an ABC A of weight µ ∈ Pn, consider its labelling by column residues.

Iteratively earmark a standard sequence starting with the rightmost 1. From an x (of column

residue i) the appropriate choice of x + 1 will be determined by choosing its column residue from

the set B of all column residues labelling the x + 1’s. Reading counter-clockwise from i, this choice
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is the closest j ∈ B on a circle labelled clockwise with 0, 1, . . . , n − 1.

Example 199. For the ABC A from Example 196, we have the following standard sequences and

their respective index vectors.

1 1 1
2 2 2

3 3 3
4

0 1 2 3 4 5 0 1 2 3 4 5

1 1 1
2 2 2

3 3 3
4

0 1 2 3 4 5 0 1 2 3 4 5

1 1 1
2 2 2

3 3 3
4

0 1 2 3 4 5 0 1 2 3 4 5

Ĩ = [0, 0, 1, 1] Ĩ = [0, 0, 1] Ĩ = [0, 1, 1]

Definition 200. For an ABC A of weight µ ∈ Pn, the n-charge of A is defined by

n-charge(A) =
∑

r

Ĩr(A) − o f f (A) − β(A) ,

where β(A) is the number of cells in the shape(A) whose hook-length exceeds n.

Example 201. For the ABC A from Example 196, we have that o f f (A) = 1. Since the shape(A) =

(6, 3, 2, 1) ∈ C6, then β(A) = 2. Example 199 tells us that the sum of all the charge indices is 5.

Thus we have that the

n-charge(A) = 5 − 1 − 2 = 2 .

We now consider the n-charge for ABC’s of shape = c(weight). For such ABC’s it will be

shown that their n-charge is exactly zero.

Example 202. For n = 4, since the ABC of weight (3, 2, 2, 2, 1) and shape c(3, 2, 2, 2, 1) = (7, 4, 3, 2, 1),

A =

5 2
3 3 3 2

5 4 3 3 3
5 5 5 4

5 5 5

=⇒ ext(A) =

1 1 1
2 2

3 3
4 4

5

Observe that since the shape(A) = (7, 4, 3, 2, 1) then β(A) = 7, and A tells us that o f f (A) = 3. We
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have the standard sequence given by the bold cells below.

1 1 1
2 2

3 3
4 4

5

1 1 1
2 2

3 3
4 4

5

1 1 1
2 2

3 3
4 4

5

I = [0, 1, 1, 2, 2] I = [0, 1, 1, 2] I = [0]

This gives us the

n-charge(A) = 10 − 3 − 7 = 0 .

Theorem 203. Let A be an ABC of weight µ ∈ Pn, and shape(A) = c(µ), then

n-charge(A) = 0.

Proof. It suffices to show that
∑

r Ir(A) = o f f (A)+β(A). Fix any i in 1 ≤ i ≤ µi. If A has x extended

ribbons, then we see that the sum of the charge index of the letter i in A is µi x−µi. Since |Ri| = µi x,

then µi x−µi = |Ri| −µi. Theorem 194 and Proposition 191 tells us that |Ri| = |Ii|+ |Oi|+ |Bi|. Thus,

the sum of the charge index of the letter i in A is

µi x − µi = |Ii| + |Oi| + |Bi| − µi

= |Ii| + |Oi| + µi − µi

= |Ii| + |Oi|.

Next, observe that

o f f (A) =

`(µ)∑
i=1

|Oi| & β(A) =

`(µ)∑
i=1

|Bi|.

A double sum over 1 ≤ i ≤ `(µ), and for each i the charge index of the letter i is the same as
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∑
r Ir(A). This gives us that the

∑
r

Ir(A) =

`(µ)∑
i=1

(µi x − µi)

=

`(µ)∑
i=1

(|Ii| + |Oi|)

= o f f (A) + β(A).

�

10.3 Weak Kostka-Foulkes polynomials

Recall from [DM13] the definition of the n-cocharge of an ABC A is

n-cocharge(A) =
∑

r

Ir(A) + o f f (A) ,

where the method of extracting a standard filling is the same as that of Definition 198, and the index

vector is given by

Ir+1 =


Ir when r + 1 is east of r

Ir + 1 when r + 1 is west of r .

In [DM13] a new family of symmetric functions, S(n)
cλ (x; t), were defined in terms of a deformation

of the Macdonald’s P-functions (see [Mac95]), where the coefficients are taken to be the n-cocharge

generating functions of ABC’s. For λ, µ ∈ Pn, the weak Kostka-Foulkes polynomials are

Kn
λ,µ(t) =

∑
A∈ABC(c(λ),µ)

tn-cocharge(A) .
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The symmetric functions, s(n)
c(λ)(x; t), which are dual to (S )(n)

c(µ) under the Hall-inner product, are

connected to the q = 0 case of the Macdonald polynomials

Theorem 204. [DM13] For µ ∈ Pn, the Macdonald polynomials at q = 0 satisfies the non-negative

expansion

Hµ(x; 0, t) =
∑
λ∈Pn

Kn
λ,µ(t)s(n)

c(λ)(x; t) .

The functions s(n)
c(λ)(x; t) and S(n)

c(µ)(x; t) are shown to connect to the cohomology of the affine

Grassmannian in [DM13], but here we focus on the weak Kostka-Foulkes polynomials, Kn
λ,µ(t), and

show that they form a change of basis matrix between Hµ(x; 0, t) and s(n)
c(λ)(x; t).

Definition 205. Given 2 ≤ n ≤ m, we set S n
m = {ν ∈ Pn | |ν| = m}. The weak Kostka-Foulkes matrix

is

[Kn
λ,µ(t)]λ,µ∈S n

m ,

where the columns and the rows are arranged by elements of S n
m in lexicographic order.

Example 206. For m = 5 and n = 4, we have S 4
5 = {(15), (2, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2)}. By

Theorem 204 we have the system



H(15)(x; 0, t)

H(2,1,1)(x; 0, t)

H(2,2,1)(x; 0, t)

H(3,1,1)(x; 0, t)

H(3,2)(x; 0, t)



=



t8 t7 + t6 + t5 t6 + t5 + t4 + t3 t4 + t3 + t2 1

0 t5 t4 + t3 t3 + t2 1

0 0 t3 t2 1

0 0 0 t2 1

0 0 0 0 1





s(4)
(15)

(x; t)

s(4)
(2,1,1)(x; t)

s(4)
(2,2,1)(x; t)

s(4)
(3,1,1)(x; t)

s(4)
(3,2)(x; t)


where the coefficient matrix is [Kn

λ,µ(t)]λ,µ∈S n
m .

The weak Kostka-Foulkes matrix of Example 206 is invertible for all t , 0. In fact, this is true
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for any 2 ≤ n ≤ m . To show the invertibility of the weak Kostka-Foulkes matrix, we need to

establish a relationship between the n-charge and n-cocharge of a given ABC.

Theorem 207. For any ABC A of weight µ ∈ Pn,

n-cocharge(A) = n(µ) − β(A) − n-charge(A) .

Proof. The proof follows immediately from showing that

m∑
r=1

Ĩr +

m∑
r=1

Ir = n((1m)) ,

where (1m) is a partition of length m whose parts are all ones. This follows by induction and the

observation that Im+1 + Ĩm+1 = m. �

Example 208. Example 201 shows us that the ABC A from Example 196 has n-charge(A) = 2. The

n-cocharge(A) = 8. Since the weight of A is µ = (3, 3, 3, 1) and the shape of A is (6, 3, 2, 1), then

n(µ) = 12 and β(A) = 2. Applying Theorem 207 gives us 8 = 12 − 2 − 2.

Corollary 21 of [DM13] tells us that there is a unique ABC of weight µ ∈ Pn and shape c(µ).

Thus each diagonal entry of the weak Kostka-Foulkes matrix corresponds to a unique ABC whose

weight is µ and shape is c(µ). For these types of ABC’s, Theorem’s 203 and 207 show us that the

n-cocharge is non-negative. This gives rise to the following Corollary of the weak Kostka-Foulkes

matrix.

Corollary 209. For 2 ≤ n ≤ m, the weak Kostka-Foulkes matrix

[
Kn
λ,µ(t)

]
λ,µ∈S n

m

is invertible for all values of t , 0.
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