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ABSTRACT 

Biomedical Information Extraction: Mining Disease Associated Genes from Literature 

Zhong Huang 

Xiaohua Tony Hu, Ph.D. 

 

 Disease associated gene discovery is a critical step to realize the future of personalized 

medicine. However empirical and clinical validation of disease associated genes are time 

consuming and expensive. In silico discovery of disease associated genes from literature is 

therefore becoming the first essential step for biomarker discovery to support hypothesis 

formulation and decision making. Completion of human genome project and advent of high-

throughput technology have produced tremendous amount of data, which results in exponential 

growing of biomedical knowledge deposited in literature database. The sheer quantity of 

unexplored information causes information overflow for biomedical researchers, and poses big 

challenge for informatics researchers to address user's information extraction needs.  This thesis 

focused on mining disease associated genes from PubMed literature database using machine 

learning and graph theory based information extraction (IE) methods. Mining disease associated 

genes is not trivial and requires pipelines of information extraction steps and methods. Beginning 

from named entity recognition (NER), the author introduced semantic concept type into feature 

space for conditional random fields machine learning and demonstrated the effectiveness of the 

concept feature for disease NER. The effects of domain specific POS tagging, domain specific 

dictionaries, and named entity encoding scheme on NER performance were also explored. 
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Experimental results show that by combining knowledge base with concept feature space, it can 

significantly improve the overall disease NER performance. It has also shown that shallow 

linguistic features of global and local word sequence context can be used with string kernel 

based supporting vector machine (SVM) for efficient disease-gene relation extraction. Lastly, the 

disease-associated gene network was constructed by utilizing concept co-occurrence matrix 

computed from disease focused document collection, and subjected to systematic topology 

analysis. The gene network was then merged with a seed-gene expanded network to form 

heterogeneous disease-gene network. The author identified and prioritized disease-associated 

genes by graph centrality measurements. This novel approach provides a new mean for disease 

associated gene extraction from large corpora.  
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CHAPTER 1. INTRODUCTION 

 During the past decades, high-throughput proteomics techniques have been widely 

employed for identifying disease associated genes, proteins, and metabolites. It led to rapid 

accumulation of experimental data and research reports. Identifying biomarkers and their 

interaction network underlying different diseases has become an important step to realize the 

future personal medicine. Based on NIH definition, the biomarker is a wide range of markers that 

can be objectively measured and evaluated to indicate normal biological or pathogenic processes 

(Biomarkers Definitions Working Group 2001). To aid biomarker discovery, text mining 

techniques have been utilized to analyze heterogeneous data sources. PubMed database 

comprises 23 million literature citations in biomedical fields and have been undergoing rapid 

update with growing experimental data analysis from high-throughput -omics study. To develop 

an efficient text mining approach to reveal underlying disease associated biomarkers from huge 

amount of literature are therefore extremely needed. Biomarkers show significant diversity 

ranging from genes, proteins, nucleic acid, and small metabolites, and have been applied 

throughout disease prediction, prognosis, and during various stages of drug discovery. Moreover, 

due to the nature of high variability of gene, protein, and disease names used in biomedicine 

literature reports, semantic search and information extraction played an important role in 

biomarker mining from literature. Named Entity Recognition (NER) combined with semantic 

annotation of biological entities including domain specific ontology, dictionary and thesaurus are 

often used to extract biological entities from text in order to achieve high accuracy and recall. In 

the context of this thesis, biomarker candidates discovery is considered as discovery of hidden 

semantic relations between diseases and genes. With the advancement of text mining technology 
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and accumulation of proteomics data in faster pace, more and more researches have been focused 

on finding potential biomarker candidates from literature database as the first step of biomarker 

discovery. However, Finding disease associated genes from literature is a difficult task involving 

variety aspects of information extraction, from named entity recognition to relation extraction 

and extracted gene ranking. As a result, current knowledge on biomarkers in biomedical 

literature has largely remained unexplored. In this thesis we will present systemic approaches 

using information extraction theory to address several research questions related to the issue. 

1.1. Biomarker introduction 

 Biomarker is biological substance that is commonly used in clinic tests and basic life 

science research to indicate certain biological states including disease. The NCI thesaurus 

defines biomarker as “a variation in cellular or biochemical components or processes, structures, 

or functions that is objectively measurable in a biological system and that characterizes normal 

biologic processes, pathogenic processes, an organism’s state of health or disease, likelihood of 

developing a disease, prognosis, or response to a particular therapeutic intervention”. 

Accordingly, biomarker can be classified into different categories for their specific role. Early 

detection biomarker is used as indicator of early stage of diseases, ranging from diabetes to 

cancer, and is becoming increasingly important as medicine paradigm is shifting from traditional 

passively reacting to disease towards proactively predicting and preventing of diseases. 

Diagnostic biomarker is routinely used in clinical tests as laboratory evidence of some diseases. 

Currently oncology and neurology are two major driven forces for diagnostic biomarker research 

and development. Prognostic biomarker determines the chances of patient to recover from 

disease or disease recurring. Surrogate biomarker is regarded as valid substitute of clinical 
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outcomes that are impractical to measure directly, such as death. As biomarker concept has been 

adopted by pharmaceutical industry in their R&D, data with surrogate biomarker has also been 

submitted to FDA for new drug application in recent years. Efficacy and toxicity biomarker are 

important indicators of efficacy or toxicological effects for a drug treatment in an in vivo or in 

vitro system. With advancement of translational medicine, there is also a need to bridge the 

preclinical research with clinical application using translational biomarker, which serves as the 

cross-species indicator of treatment response in both animal/organism models (preclinical setting) 

and human (clinical setting). Although anatomical structures acquired by imaging techniques are 

included in biomarker category as imaging biomarker, it is out of the scope for this thesis. We 

will focus discussion on biomarker of biological molecule origin with predictive power in 

medicine, typically genes, proteins, and metabolic products.  

 Biomarker discovery is traditionally based on hypothesis guided research using low-

throughput laboratory techniques. In this model, scientists focus on only a few genes of interests 

that are guided by hypothesis and generated from prior knowledge. The advantage of this 

approach is that biomarkers and its participating cell signaling pathways are well characterized 

and the results are often validated empirically by independent laboratories. The disadvantage is 

obvious, due to the extreme complexity of genome (estimated 30,000 genes) and proteome 

(estimated 1,000,000 proteins and their derivatives), the traditional biomarker discovery 

approach is time-consuming and inefficient. New biomarker discovery platform is built on 

genomics, proteomics, lipidomics, and metabolomics data. The „-omics‟ data are produced by 

modern high-throughput technologies represented by DNA microarray for genomics study, and 

2D electrophoresis, mass spectrometry, protein microarray for proteomics study. Generally at 
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least two groups of samples, one from health control subjects and another from patients or 

treated subjects, are needed to identify biomarkers. The ultimate goal of biomarker discovery is 

to reliably differentiate protein patterns among different groups. At the last stage of biomarker 

discovery, the differentially revealed proteins or peptide fingerprints are further validated using 

variety of computing and empirical methods.  

 Biomarker discovery is the critical step to realize the future personalized medicine. In this 

paradigm shifting view of medicine, the genetic background of individual is being taken into full 

consideration for disease prediction, prevention, diagnosis, and treatment. On one hand, current 

medicine failed to address individual variations that lead to high percentage of non-

responsiveness among population for some treatment regimens. For example 50-100% cancer 

patients (lung, breast, brain) are not responding well to chemotherapy (Jones 2002). On the other 

hand, rapid advancement of full-genome sequencing technology is making individual‟s full 

genome sequencing more readily available to general population. In late 2006, Biomarker 

Consortium was founded in an aim to bring pharmaceutical industry, academia, healthcare 

organizations, NIH, and FDA together to accelerate and standardize the biomarker-centered 

basic and translational research. It is expected in the future biomarker will be widely applied on 

basic research and development, therapy, public disease prevention etc under the new framework 

of personalized medicine. 

1.2. In silico discovery of biomarkers and information extraction 

 Published scientific papers amount to significant part of knowledge expressed as natural 

language to describe genes, proteins, metabolic molecules, drugs, diseases, and their semantic 

relationships. However, it poses great challenge for text mining systems to parse and extract 
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valuable information from such unstructured and noisy textual data.  In 1950s Zellig Harris 

(Harris 1958) had formulated the idea of linguistic transformation of scientific papers into set of 

kernel sentences as the semantic structure. Modern information extraction (IE) methods follow 

Harris's philosophy by transforming unstructured text data into annotated corpora and utilizing 

statistical modeling to learn the underlying structures, with the ultimate goal of applying learned 

models on automatic extraction of  structured semantic data from large unstructured text sources.  

 To assist the annotation process and further provide domain specific background 

information, ontology and metathesaurus including Gene Ontology, UMLS metathesurus etc, 

have been developed and integrated into most state-of-the-art IE systems. For example, Semantic 

relationships between biomedical entities are defined in UMLS semantic network. Currently it 

contains 134 entity types and 54 relations between those entity types. There are five major 

semantic types including organism, anatomical structure, biologic function, chemical, physical 

object, idea or concept. The primary link between the semantic types is the "isa" link which 

connects semantic types to a hierarchical tree. Other major semantic relationships include 

physically related to, spatially related to, temporally related to, functionally related to, and 

conceptually related to. This semantic network provides an invaluable tool for variety of IE tasks. 

 Like most IE tasks, mining biomarkers, e.g. genes associated with disease in the context 

of this thesis, is not trivial and requires pipelines of information extraction steps and 

methodologies. As will be discussed in detail in chapter 2, the pipeline generally include  text 

preprocessing, feature representation, named entity recognition, relationship extraction, and 

prioritizing or ranking of extracted information. So far, web based tools including PolySearch 

(Cheng et al. 2008), iHop (Hoffmann and Valencia 2005), EBIMed (Rebholz-Schuhmann et al. 
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2006), and Semedico (Wermter et al. 2009) are four representative systems that can be used for 

biological entity associations mining from biomedical literatures. However above methods are 

largely based on dictionary, bag-of-words machine learning, and rule-based approaches. 

Therefore it is still an open research question to represent and utilize the semantic contextual 

features in entity association mining. 

1.3. Motivations and research questions 

 Several challenges must overcome to improve the IE performance for disease associated 

gene mining. Firstly, biomedical named entities are highly variable and ambiguous compared 

with other domains, largely due to lack of naming conventions in different area of study, 

frequent use of abbreviations, synonyms etc. Recognition and disambiguation are two important 

steps to map variations of biomedical names in the text to unique biomedical entities in the 

curated databases. This problem is especially prominent in disease named entity recognition and 

need to be tackled for disease-associated gene mining. Secondly, despite wide application of IE 

on biomedical domain, the specific disease associated gene extraction is still new and much more 

works are needed based on current IE framework. At each step of entity recognition, 

normalization, and relation extraction, it is critical for machine learning approaches to capture 

the most representative textual features and semantic contextual information. Finally, although 

text graph representation to information retrieval has been studied in past years and has been 

shown to be a powerful representation model (Blanco and Lioma 2011), so far not much work 

has been done to apply graph theory on disease associated gene mining.  

 Motivated by above challenges, in this thesis different approaches were proposed to 

address following research questions: 
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 1. How to better represent text with concept features to improve disease NER using 

machine learning based approach? 

 2. How to utilize linguistic features to develop efficient relation extraction model for 

disease-gene relation extraction? 

 3. How to represent gene-gene and gene-disease network in concept space and achieve 

dimension reduction for the concept text graph? How to incorporate concepts mined from 

literature with empirical data from protein interaction database to reveal and prioritize disease-

associated genes by network topology analysis? 

 The rest of the thesis is organized as follows: 

 In chapter 2 the literature review on information extraction including document feature 

representation and concept space modeling is introduced. State-of-the-art information extraction 

algorithms related to machine learning, statistical modeling, and graph theory are highlighted.  

 In chapter 3 we attempt to address research question 1 on document feature 

representation and utilization of concept feature for conditional random fields modeling in 

disease and gene named entity recognition. Two annotated biomedical corpora will be used to 

experiment text preprocessing and different feature set for conditional random fields based 

learning of disease and gene NER. 

 In chapter 4 we will address research question 2 on relation extraction modeling by 

exploring the effect of contextual features on disease-gene relation extraction, using string kernel 

based support vector machine classification approach. 
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 In chapter 5 a graph theory based IE framework will be proposed to answer research 

question 3 in the context of specific disease associated gene mining, e.g. how to represent gene-

gene and gene-disease network in concept space and achieve dimension reduction for the 

concept text graph? And how to incorporate concepts mined from literature with empirical data 

from protein interaction database to reveal and prioritize disease-associated genes by network 

topology analysis? In the proposed integrated approach, concepts extracted from the disease 

focused literature will be semantically filtered, normalized, and used to construct text graph by 

concept co-occurrence to model the disease-associated gene network. The network will be 

further expanded by utilizing protein interaction data. And finally the network topology will be 

analyzed to identify and rank genes associated with the disease by centrality measurements. 

 In chapter 6 we will summarize what have been learned and discuss future works.  
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CHAPTER 2. LITERATURE REVIEW 

 The thesis concerns itself with information extraction of disease associated genes from 

biomedical text. More specifically, it focuses on recognition and extraction of genes, diseases, 

and their relationships from PubMed literature database. The chapter will give background and 

literature review on related text mining fields and general text mining workflow. Advances on 

information extraction (IE) including machine learning based and graphical model based IE 

methods will be introduced in more details. 

2.1. Text mining and its core processing steps 

 Text mining (TM) can be broadly defined as a knowledge discovery process from large 

corpora of unstructured text collections. It is derived from data mining framework that utilizing 

machine learning and statistical methods to extract explicit rules and patterns from large and 

noisy data. Additionally, due to complexity of human languages, extra steps including natural 

language processing (NLP), information retrieval (IR), and knowledge management are also 

required as part of integrated text mining process. The mined information, often represented by a 

statistical model, can then be applied to real-world data for text classification, clustering, 

question and answering, or summarization tasks. 

 Statistical modeling and machine learning methods play a central role in modern text 

mining. Two critical steps are involved. The first is the feature selection which converts the 

unstructured text into structured data, and represent document with set of features and associated 

statistics. The second is the model selection which tries to model the random process by using 
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the statistics collected in the first step. The generated model can then be applied on real-world 

textual data to predict the outcome of the process. 

 The source of document collection for text mining come from dynamic online and static 

offline text repositories. In biomedical domain, PubMed database from National Library of 

Medicine (NLM) (NCBI) is a major source of dynamic information which contains more than 23 

millions of abstracts in life science and is growing at an estimated rate of 40,000 new records 

each month (Pustejovsky et al. 2002). It has attracted much attention in computer and linguistic 

research fields in order to solve the information overloading problem when querying such huge 

database. In this thesis we utilized PubMed as a major source of text collection for disease-

associated gene mining. 

 Analogue to data preprocessing in data mining, large collections of documents also need 

to be preprocessed for heterogeneous text input formats standardization and document 

representation. During this step the original textual data are normalized and non-informative data 

are removed by techniques of format converting, stop words removing, tokenization, part-of-

speech (POS) tagging etc. Furthermore, the text needs to be represented by a set of document 

features, normally modeled by the representational model, to transform the unstructured 

document to its structured counterpart. Compared with data mining system, the textual feature 

sets are generally much larger in dimensionality and requires deliberate consideration for 

different text mining tasks. Indeed, most text mining algorithms and methods rely on this 

representative feature set to retrieve, extract, classify, and clustering information. It is noted that 

feature sparsity is the characteristic of text mining which is caused by high dimensionality of 

feature set for a large document collection while only small portion of the feature set is present in 
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each document (Feldman and Sanger 2007). To help reaching the balance between including rich 

set of features representing raw text more accurately and selecting the most essential features in 

terms of computation efficiency, external ontology and knowledge base pertaining to the 

underlying domain are often needed.  

 Text features can be generated from characters, words, terms, concepts, phrases, 

character n-grams, syntactic parse trees in the document. Characters are the most basic text unit 

consisting of letters, numbers, special symbols etc. Despite its high dimensionality, character 

feature space is regarded as the most comprehensive representation of the document. Document 

can also be represented by word level features after stop word filtering and tokenization. 

Tokenization algorithms parse the document by removing punctuations, numbers etc from the 

text. The term feature consists of either single word or multi-words phrases extracted from 

document after tokenization, lemmatization, and POS tagging. Lemmatization is used to 

normalize variants of word that share the same root (e.g. 'is', 'was', 'were' can be lemmatized to 

their root word 'be'). Similar to term feature, the concept feature is a single word or multi-words 

phrases that describes a concept extracted from document using annotated corpora, domain 

ontology, or lexicon. The difference between term and concept feature is that the later doesn't 

necessarily contain words/phrases from the document. For example the concept apoptosis can be 

used to represent programmed cell death in the document even though the concept word itself 

doesn't occur in the text. Concept feature has been implemented in several text mining systems 

including KDT (Feldman and Dagan 1995), which utilized concept hierarchy to represent the 

document. 
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 As an important branch of data mining, text mining has become increasingly important in 

biomedical domain due to exponential explosion of clinical and research data. How to represent 

knowledge in a computational efficient way, to help researchers with knowledge visualization in 

multi-dimension space, and to facilitate the knowledge discovery process, is remarkably 

challenging involving multiple disciplinary efforts. From the cognitive science point of view, 

there are generally two goals for information and data representation. They are explanatory and 

constructive modeling respectively. Explanatory modeling formulates theories that are subject to 

experimental or simulation test. The constructive modeling, on the other hand, designs and builds 

artifacts that can accomplish certain cognitive tasks. There are generally two approaches to build 

information and data model. One is symbolic approach focusing on symbol manipulation. 

Another is associationism approach that attempts to associate and connect different information 

elements to form a semantic information network. In (Gärdenfors 2004) Gaerdenfors articulates 

that above methods are not adequate to model some cognitive phenomena and thus advocates a 

third modeling method that is based on geometrical structure of the information space. This new 

way of representing is termed conceptual modeling. Under the theory of conceptual spaces, 

Gaerdenfors proposed to represent information on the conceptual level using it as the framework.  

 Quality dimensions are used to represent qualities of objects and form framework that 

connects different objects by relationships. In conceptual space a collection of quality 

dimensions defines the space. Conceptual spaces are considered to be facilitator of knowledge 

sharing. Moreover, the paradigm shifts of disciplines can be regarded as conceptual spaces shift.  
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 To present the conceptual model in mathematical way, conceptual space S can be 

described as multiple quality dimensions D1,..., Dn space with each point in the space represented 

as vector v = <d1, ..., dn>. n is the number of dimensions.  

 The concept can be a region in the conceptual space. To precisely define the region of the 

concept in the space, it is necessary to follow criterion to define the topology structure of 

concepts in the multiple quality dimensions. Criterion P is described as follows: 

 Criterion P: A natural concept is a convex region of a conceptual space. By this criterion, 

every point between two points v1  and v2 in the region should also be localized in the region. 

This is also the 'betweenness' notion often mentioned in cognitive psychology. Natural concept 

notion is the key for the conceptual space modeling.  

 Convexity of space region works very well when it is applied on Prototype theories. In 

prototype theory, members of the objects are not equally representative. Some members are 

regarded as more representative than others, thus belongs to prototypical members. In convex 

region, a point can be judged as per its centrality. Those points with high centrality can form the 

prototype members. 

 Voronoi tessellation method is another example that convex space fits well with 

prototypic theories (Aurenhammer 1991). For a set of prototypical points (P1, ..., Pi) of the 

categories, every point P in the space can be measured by its distance to each of the points in the 

set Pi's. Based on the distance similarity, point p may belong to the same category as set of Pi. 

Therefore it will partition the space into convex areas. This technique has been used by others 

(PETITOT 1988) for characterization of the categorical perception of phonemes.  
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 Gardenfors discussed semantics in the conceptual space framework in (Gärdenfors 2004) 

and proposed the criterion L. lexical expressions are represented semantically as natural concepts. 

 It still remains great challenge to apply conceptual space model on various domains, as 

the author has admitted. Thus it will also lead to great potentials for researchers in their domain 

of expertise to discover and build the underlying geographical structures of quality dimensions. It 

should be noted that in Gaerdenfors‟ conceptual space the quality dimensions are identified and 

measured through human‟s perception, which is different to the objective measurement in 

Physical world. Gaerdenfors' conceptual space theory may improve the organizing, sharing, 

visualization, and potentially re-discovery of knowledge in biomedical domain. In chapter 3 and 

5, we will present our works that integrate semantic concept feature for biological entity 

recognition and their relation network modeling. 

 So far we have discussed how to convert unstructured textual data into structured data 

represented by document features as a whole. Depending on the information needs, further 

process are needed for information retrieval, extraction, and ultimately knowledge discovery. In 

2.2. we will focus on information extraction (IE) and in 2.3 we will give a background review on 

the application of IE on biomedical domain, e.g. finding disease-associated genes from literature. 

2.2. Information extraction 

 Information extraction is the process of recognition and extraction of entities and their 

relationships from text. IE has been widely applied on news wire, customer care and other 

commercial domains. In biomedical domain, information extraction is particularly attracting to 

researchers seeking novel relations between entities like genes, proteins, and drugs. 
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 Same natural language processing steps can be applied on information extraction as other 

text mining tasks. Those include pipeline consisting of section and sentence splitting, 

tokenization, lemmatization, POS tagging, linguistic parsing and dependency analysis steps. The 

main goal of IE is to extract structured data including named entities and their predicted relations 

from unstructured and often noisy text.  

2.2.1. Named entity recognition 

 Named Entity Recognition (NER) first appeared in Message Understanding Conferences 

(MUC) for recognition and classification of persons, organizations, locations (Grishman and 

Sundheim 1996). When applied on biomedical domain, NER has shown to be more challenging 

than general domains due to its versatile naming conventions, spelling variations, abbreviation, 

and synonyms. In general, approaches to NER can be categorized as being dictionary and rule-

based,  machine learning based, and the hybrid method.  

2.2.1.1. Dictionary and rule-based NER 

 Dictionary approach is the most straight-forward method to identify named entity through 

dictionary matching. Rule based extraction relies on hand crafted or learned rules from annotated 

examples. The rule can be defined as list of contextual patterns that capture prominent properties 

of entities and the context in which they appear. The pattern is generally based on bag of features 

for tokens, which include but not limited to token itself, orthographical and morphological 

properties, dictionary entry matches, and POS. Taken the gene name "Epithelial Growth Factor" 

appearing in the text as example, the rule can be defined as two conditions shown below: 
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({Dictionary Lookup=Gene} {Orthography Type=Capitalized word}{3})  → Gene Names 

 Similar to the regular expression pattern matching, above example specifies a condition 

that the token matches with a entry in gene dictionary, and a condition that the token is 

capitalized consecutively for three times. In general, the hand-crafted rule is highly dependent on 

the domain knowledge. 

 If the source corpus is manually annotated, machine learning algorithms can be applied to 

automatically induce rules from a set of annotated training text by following a greedy hill 

climbing strategy. Such heuristic rule learning algorithms were proposed and implemented in 

(LP)
2
 (Ciravegna 2001), FOIL (Quinlan 1990), and WHISK (Stephen Soderland, Claire Cardie 

1999). 

2.2.1.2. Machine learning (ML) based NER 

 Machine learning based NER approach, on the other hand, is language independent and 

more robust in terms of system performance. ML based approaches can be further divided into 

supervised learning and semi-supervised learning methods. Supervised ML utilizes large 

annotated corpus while semi-supervised ML only needs small size of annotated corpus (seeds) 

along with large un-annotated corpus. 

 ML approach based on probabilistic models have been shown to give better accuracy and 

robustness against noisy in NER as well other IE tasks. Among them, hidden Markov models 

(HMMs), maximal entropy (ME), and conditional random fields (CRFs) are prominent methods 

for ML based NER. HMM is the extension of Naive Bayes model and both belong to generative 
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approach modeling the joint probability distribution. CRF is regarded as the extension of ME 

model and both belong to discriminative approach modeling the conditional distribution. 

Hidden Markov model (HMM) 

 

Figure 2-1. Hidden Markov model (HMM) for NER. The observation probability for token 

ki ϵT  {k1, k2, ..., kn} depends only on its current state ti. And the current state ti depends 

only on its previous state ti-1. 

 HMMs are based on finite-state machine (FSM) which models the probability of finite 

state transitions and symbol emissions. The theory was first published by Baum etc (Baum et al. 

1970) and was later applied on speech recognition. When it is applied on natural language NER, 

the problem can be formulated as a sequence labeling problem to find the likelihood of stochastic 

tag or label sequence S = {t1, t2, ..., tn} for a observed sequence of tokens T = {k1, k2, ..., kn} that 

maximizes the joint probability P(S,T). Figure 2-1 illustrates the Bayes network graph of the 

HMM. S can be regarded as set of states of a finite state machine with each state corresponding 

to a named entity tag or label. Each observed token k is defined as <f, w> where w is the token 

and f is the feature set for w. Each hidden tag t can be defined as <p, c, f> where p is the position 

of current token in the named entity, c is its entity class, and f is its feature set. Formally, the 

joint probability P(S,T) is defined as: 
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𝑃 𝑆,𝑇 = 𝑃 𝑆 𝑇 𝑃(𝑆)  2-1 

 There are two assumptions concerning to this model. First is the so called Markov 

property which assumes the state ti depends only on its previous state ti-1. Second is the 

assumption that each observed token ki depends only on state ti. Therefore 2-1 can be represented 

as: 

𝑃 𝑆,𝑇 =  𝑃(𝑘𝑖
𝑛
𝑖=1  𝑡𝑖 𝑃(𝑡𝑖|𝑡𝑖−1)  2-2 

 If we relax the first assumption to assume state ti depends on its previous state ti-1 and ti-2. 

the first-order equation of 2-2 can be extended to following second-order form: 

𝑃 𝑆,𝑇 =  𝑃(𝑘𝑖
𝑛
𝑖=1  𝑡𝑖 𝑃(𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2,)  2-3 

 The solution is thus to find the sequence of states that maximizes the probability in 2-2 

and 2-3 among all possible state sequences. However, Given a HMM and a training corpus, it is 

computationally prohibitive to calculate all probabilities exhaustibly. Instead, this problem can 

be efficiently solved by Vertibi algorithm (Viterbi 1967), a dynamic programming algorithm, 

using three probability distributions shown below. 

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥  𝑃 𝑞𝑛  𝑥𝑛 𝑃 𝑥𝑛  𝑥𝑛−1 𝑃(𝑥0)𝑁
𝑛=1   2-4 

 where 𝑃(𝑥0)  is the initial probabilities of state 𝑥0 , 𝑃 𝑥𝑛  𝑥𝑛−1  is the state transition 

probabilities, and 𝑃 𝑞𝑛  𝑥𝑛  is the observation probabilities of the observed token 𝑞𝑛 .  

Maximum entropy model (ME) 
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 ME was first proposed by Jaynes in (Jaynes 1957). In information theory, entropy is 

defined as measurement of uncertainty in a random variable x, i.e. the higher the uncertainty, the 

bigger the entropy. It can be formally written as : 

𝐻 𝑝 = − 𝑝 𝑥 log2 𝑝 𝑥    2-5 

 The philosophy of ME comes from the statistical inference on the basis of partial 

knowledge which makes as few assumptions or constraints as possible for the model output. In 

other words, ME model contains the maximum entropy with only those information constraints 

that are justified by the empirical data but not any arbitrary constraints. As a consequence, ME 

model preserves as much uncertainty or information content as possible (Ratnaparkhi 1997).  

 For natural language processing (NLP) tasks including NER, the problem can be stated as 

to estimate the probability of class a for a given context b in which a occurs, e.g. P(a,b). The ME 

solution to this problem can be represented below to maximize the entropy: 

𝐻 𝑝 = − 𝑝 𝑥 log𝑝(𝑥)𝑥∈𝜀  2-6 

 where x=(a,b), a belongs to set of possible classes A, b belongs to set of possible contexts 

B, and 𝜀 = A x B. 

 By ME principle, equation 2-6 should accord with known facts about the partial 

knowledge. The known facts, also termed features, are expressed as a binary function shown in 

example below: 

𝑓𝑗 =  
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑒𝑣𝑒𝑛𝑡
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
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 Let k be the number of features and 1 ≤  j ≤ k. The constraints can be expressed as: 

𝐸𝑝𝑓𝑗 = 𝐸𝑝 𝑓𝑗   2-7 

 where 𝐸𝑝𝑓𝑗  is the ME model p's expectation of 𝑓𝑗 , and 𝐸𝑝 𝑓𝑗  is the observed expectation of 

𝑓𝑗  from sample data. According to 2-6, they can be represented as: 

𝐸𝑝𝑓𝑗 =  𝑝 𝑥 𝑓𝑗
𝑥∈𝜀

(𝑥) 

𝐸𝑝 𝑓𝑗 =  𝑝  𝑥 𝑓𝑗
𝑥∈𝜀

(𝑥) 

 We then can define P set of all conditional probability distributions conforming to the 

constraints. 

𝑃 =  𝑝   𝐸𝑝𝑓𝑗 = 𝐸𝑝 𝑓𝑗 , j =  {1, 2, . . . , k}}  2-8 

 It is worth note that ME models the conditional probability distribution while HMM 

models joint distribution. By applying the ME principle, we can choose the most informative 

model with the maximum entropy: 

𝑝∗ = argmax𝑝∈𝑃 𝐻(𝑝)  2-9 

Conditional Random Fields (CRF) 

 CRF described in (Lafferty et al. 2001) is the state-of-the-art ML method for sequence 

classification problems including NER. Given a sequence of observations x={x1, ..., xn} the CRF 
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tries to model the probability p(y|x) of output y={y1, ..., yn}. CRF combines the idea of Hidden 

Markov Model (HMM) which deals with sequences problem, and Max-Entropy (ME) that 

utilizes many correlated features. In the meantime, it avoided label bias problem compared to 

Maximum Entropy Markov Models (MEMM) (McCallum et al. 2000), and is capable of 

handling arbitrary features with relaxed independence assumption as compared to HMM.  

 In text mining fields, the sequence of words is regarded as special case of linear chain of 

output nodes as illustrated below.  

 

Figure 2-2. Simple illustration of first-order linear chain CRF graph. Y is sequence of 

output and X is the sequence of observations. 

 Lets define the undirected graph G = (V, E) such that a node v ∈ V and the random 

variable represents an element Yv of Y which is indexed by the vertices of G. The (Y, X) is a 

conditional random field when conditioned on X, and the random field Yv obeys the Markov 

property with respect to G. e.g. p(Yv | X, Yw, w ≠ v) = p(Yv | X, Yw, w ~ v) where w ~ v denotes the 

neighbors in G. Therefore the CRF is a random field globally conditioned on the observation X. 
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 For text labeling problem, let o = {o1, o2, …, oT} be the observed sequence of words from 

a sentence with length r. Let S be a set of states in a finite state machine with each associated a 

label. The conditional probability of a state sequence s = {s1, s2, …, sT} is calculated as: 
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where  1, , ,k t tf s s o t is a feature function with k as weight that can be learned during model 

training. The Zo is a normalization factor of all state sequences which is used to sum up all 

conditional probabilities to 1 and is calculated as: 
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 The objective function to be maximized in CRF model training is the log-likelihood of 

the state sequences given observation sequences: 
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 where (
   

|
i i

s o ) is the empirical distribution of training data. The L-BFGS algorithm is 

used for CRF parameter estimation and can be treated as a black-box optimization procedure 

(McCallum 2003).  

 In a nutshell, given a sentence of n words for named entity labeling problem (figure 2-3), 

we want to predict the tag T for a given word W using linear-chain CRF such that 

    
1

| expP T W F T
Z

   and maximize the weight  F T  .  



23 
 

 

Figure 2-3. Illustration of linear-chain CRF as a labeling problem. W1-Wn is sequence of 

observation (words) and T1-Tn is sequence of tags. 

 In Chapter 3 we utilized second order linear-chain CRF for disease and gene named 

entity recognition. 

2.2.2. Relation extraction 

 Relation extraction is one of the most important subject in IE. It refers to the method of 

identification and extraction of semantic relationships between named entities in the text. 

Broadly speaking, relations include semantic and grammatical relations, negation, and 

coreference etc. In biomedical domain, protein-protein interaction and disease-associated gene 

mining are two examples of relation extraction applications. 

 The relation extraction task can be defined as to identify the relations specified above 

between two entities in the text, normally at the sentence level, and assign the relation type to 

one of predefined relation types. Methods for relation extraction include supervised learning if 
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large corpora of annotated data is available, or semi-supervised and bootstrapping method if 

annotated corpora is limited.  

 For supervised learning utilizing annotated positive and negative examples, context 

information surrounding the related entities are extracted as features for learning the relation 

using statistical learning classifiers. Feature spaces that are useful for relation classification is 

reviewed in (Jiang and Zhai 2007). Among them, entity attributes e.g. entity types, bag of words, 

n-grams, grammar productions, dependency paths etc can be used as discriminative features for 

feature based classification. For corpora with large training set, the feature space is huge and 

makes it infeasible to search the space exhaustibly. In (Jiang and Zhai 2007) those feature spaces 

are systematically exploited by a bottom up approach, starting with a set of minimum features 

and adding more complex features to experiment the classification performances. Their results 

show that the basic unit features, which consists of bigrams and syntactic parse tree, is sufficient 

to achieve state-of-the-art performance while over fitting the classifier by adding complex 

features may decrease the overall performance. It suggests for each feature space, different 

feature representations may be redundant, even though it can increase robustness to noise but in 

the meantime may introduce more errors. Deliberate selection of most representative features is 

thus necessary to achieve better performance for feature based classification.  

 In (Zelenko et al. 2003) a kernel based relation classification method was introduced 

which is adapted from kernel method described in (Shawe-Taylor and Cristianini 2004). In 

contrast to feature based methods that directly rely on extracted features, kernel based methods 

utilize kernel function to compute the similarity score between pair of objects. Let {x
i
, E1

i
, E2

i
, r

i
} 

represent an input training instance where x
i
 denotes the sentence, E1

i
 and E2

i
 denote entities, r

i
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denotes the relationship and 𝑟𝑖 ∈ 𝑌 (relation types), 1≤i≤N (N is the size of the training set). Let 

Xi denotes the {x
i
, E1

i
, E2

i
} of a training instance, and X ={x, E1, E2} denotes a new instance for 

which the relation is to be predicated. The relation 𝑟  for the new instance can be computed by: 

𝑟 = argmax𝑟∈𝑌  𝛼𝑖𝑟𝐾(𝑋𝑖 ,𝑋)𝑁
𝑖=1   2-13 

 where 𝐾(𝑋𝑖 ,𝑋) is the kernel function for similarity computing, and 𝛼𝑖𝑟can be estimated 

during training process (Sarawagi 2007). Kernel function 𝐾(𝑋𝑖 ,𝑋) is defined over structures like 

parse tree or dependency graph, without the need to convert those structures to flat sequence of 

features required by feature based methods. In chapter 4 we will present our work of extracting 

disease-gene relationship from text corpora based on kernel method and SVM classifier. 

2.3. Graph theory and information extraction 

 Graph theory plays an important role in many disciplines including biomedical domain, 

where biological network is found to be an invaluable tool to model the complex biological 

processes. In chapter 5 we will apply graph theory on disease associated gene networks 

construction. In this section we will review the fundamental basics of graph theory, focusing on 

undirected graph. 

 A graph G is a finite set of vertices V(G) connected by set of edges 𝜀(𝐺), defined as G = 

{V(G), 𝜀(𝐺)}. If the edge connecting two vertices is directed, the graph is a directed graph, or a 

undirected graph if otherwise. Most biological networks, including protein-protein interaction 

network and gene-disease network described in chapter 5, are treated as undirected graph.  
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  For undirected graph, there exist at most one edge between any two vertices. The size or 

order of a graph is defined as its total number of vertices. Let u and v be the vertices in above 

graph G. The degree for a node u is the total number of edges at u, or its neighbors denoted as 

 𝑁(𝑢) , e.g. deg 𝑢 =  𝑁(𝑢) . For edge uv in the edge set 𝜀(𝐺) of a graph, vertex u's neighbors 

 𝑁(𝑢)  is given by: 

 𝑁(𝑢) = {𝑣 ∈ 𝑉 𝐺 ∶ 𝑢𝑣 ∈ 𝜀(𝐺)}  2-14 

 where edge uv is equal to vu for undirected graph. 

 The degree distribution P(k) defines the probability distribution of all nodes with degree 

of k, e.g. 
𝑛𝑘

𝑛
 where n is the total number of nodes in the graph and nk is the number of nodes with 

exact degree of k. If P(k) distribution follows the power law, e.g. P(k) ~ k
-r
, it is called a scale-

free network (Barabási, A. 1999). 

 Given set of ordered vertices v1~vn and set of graph edges 𝜀(𝐺), the undirected graph G 

can be mathematically represented as a binary symmetric adjacency matrix A: 

𝑎𝑖𝑗 =  
1, 𝑖𝑓 𝑣𝑖𝑣𝑗 ∈ 𝜀(𝐺)

0, 𝑖𝑓 𝑣𝑖𝑣𝑗 ∉ 𝜀(𝐺)
   2-15 

 where 𝑣𝑖   𝑎𝑛𝑑 𝑣𝑗  are adjacent if 𝑣𝑖𝑣𝑗 ∈ 𝜀(𝐺). 

 Example of the symmetric adjacency matrix A for a simple undirected graph is illustrated 

below: 
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Figure 2-4. Illustration of symmetric adjacency matrix for a simple undirected graph. 

 A walk in the graph G is a finite sequence of vertices and edges between the initial and 

terminal vertices u, v. If u ≠ v it is a open walk, otherwise it is a closed walk. In above example, a 

walk between a and d could be a,b,c,d or a,c,d and their connecting edges. The length of the path 

between u and v is k-1, where k denotes the number of vertices along the walk. The distance  

δ(u,v) is the shortest path between u and v. The diameter of the network is defined as the longest 

shortest paths of all calculated shortest path in the graph. 

 A local measurement for the degree of  a node u's clustering tendency is the clustering 

coefficient Cu, which equals to: 

𝑐𝑢 =
2𝑒𝑢

𝑘𝑢 (𝑘𝑢−1)
                2-16 

 where ku is the number of neighbors of node u, eu is the number of connected pairs 

between all neighbors of u. It can be understood as number of triangles pass through the node u 

divided by the maximum possible triangles that can be formed by its neighbors. In above 

example, node c's clustering coefficient is 1/3, e.g. actual triangles pass through c of 1 (abc) 

divided by maximum possible triangles of 3 (abc, acd, bcd). Intuitively, it is an important 
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measurement of small-world network in which most nodes in the network are not connected 

directly and can only be reached from others by a small number of hubs. The characteristic of 

small-world network is that the distance (shortest path) between any two random nodes grows 

slowly to the number of nodes in the network N, e.g. proportionally to the logarithm of N. 

 Biology network consists of biological objects as nodes, and interactions between objects 

as edges. The biological objects account for genes, proteins, metabolites, and phenotypes or 

diseases. The structure properties or topology of complex real-world networks, including biology 

networks, are often exploited by comparing them with their random network counterpart (Erdős–

Rényi random graph model) (P. Erdos 1960) which is stochastically generated by adding edges 

to same set of vertices with equal probability. Unlike the random network which follows a 

Poisson degree distribution and tend to have a lower average clustering coefficient, biology 

networks have been shown to have a power law degree distribution and much higher average 

clustering coefficient (Jeong et al. 2000) (Lee et al. 2009), and are organized by statistically 

significant motifs (Shen-Orr et al. 2002). Another characteristic of biology network is its small 

world property (Watts and Strogatz 1998), e.g. the diameter and average path lengths are small 

and proportional to the logarithmic of total node numbers. This phenomenon has been observed 

in variety of biology networks including metabolic networks (Wagner and Fell 2001), genetic 

networks (Tong et al. 2004), and protein interaction networks (Wagner 2001) (Yu et al. 2004). It 

is worth note however, current biology networks are based on sampled sub-networks consisting 

of only fraction of known biological objects instead of the complete network with all biological 

objects. Caution is needed when making conclusion on overall biology network structure based 

on aforementioned partial and sometimes inaccurate data (Mason and Verwoerd 2007a).  
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 One important task for complex network modeling is to identify the most important 

vertices that are crucial to the network stability. In biology network it is to identify the most 

important genes and proteins that are critical to the network robustness and resistant to errors and 

attacks, as failure on those hubs will likely affect survival of the organism. In this regards, 

analysis of network centrality is an essential step. Commonly used centrality measures include 

degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality.  

A. Degree centrality 

 The degree centrality is measured by nodes degrees. It has been reported in several 

protein interaction network studies that high degree nodes correlate with the essentiality of 

proteins (Zotenko et al. 2008).  

B. Closeness centrality 

 Closeness centrality measures the distance δ(u, v) between nodes u and v. A node is 

deemed to be important when it can communicate more quickly with other nodes in the network. 

In protein interaction network, nodes with high closeness centrality plays role of bottleneck or 

cross-road that are often correlated with the degree centrality (Wuchty and Stadler 2003).  

C. Betweenness centrality 

 Betweenness centrality measures the number of shortest paths passing through a node. 

Nodes lies between higher proportion of shortest paths are thought to be more important than 

nodes with fewer shortest paths passing through. In (Joy et al. 2005) it is found that yeast 

proteins with high betweenness but low degree are abundant in the network. The finding leads to 
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the hypothesis that proteins with high betweenness centrality but low degree connectivity is 

likely to be more essential.  

D. Eigenvector centrality 

 Eigenvector centrality is calculated using the principal eigenvector of the adjacency 

matrix described before. In contrast to the degree centrality which assumes each neighbor 

contributes equally to its centrality, eigenvector centrality assigns high centrality scores to nodes 

that are connected to many central nodes. In other words, nodes with high eigenvector centrality 

scores receive more communications from other highly connected nodes and is thus more 

informative.  

 Applying different centrality measurements on biology networks is still an active 

research field. There is no simple unified solution to rank importance or essentiality for different 

types of biological objects and their interactions. Much more work is needed to disambiguate and 

further characterize the biology network topology. In chapter 5 we will further explore the 

topology of gene and disease-gene networks using different centrality measurements to identify 

and rank important disease-associated genes.  

 Term co-occurrence has been used to statistically represent text as graph model (Blanco 

and Lioma 2011). In this undirected text graph, vertices are terms and edges are term co-

occurrence. It is assumed that co-occurring entities, including gene and protein, are functionally 

related. Co-occurrence based probabilistic models have been described for chemical compound-

gene associations (Zhu et al. 2005), mutation-gene associations (Rebholz-Schuhmann et al. 

2004), and cancer-gene associations (Zhu et al. 2006). By utilizing controlled vocabulary (MeSH 
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and GO), an algorithm was also proposed for scoring the possible associations between human 

genes and genetically inherited diseases based on co-occurrence (Perez-Iratxeta et al. 2002). In 

this thesis the gene-gene and gene-disease associations are extracted from biomedical text using 

concept co-occurrence. The network is further expanded using small number of seed genes and 

protein-protein interaction dataset. Our approach provide a novel way of identifying, prioritizing, 

and visualizing the important genes associated with specific disease. 
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CHAPTER 3. BIOMEDICAL NAMED ENTITY RECOGNITION BY 

MACHINE LEARNING 

3.1. Introduction 

 Named Entity Recognition (NER) refers to the computational method to automatically 

recognize named entities (NE) in natural language documents, e.g. to relate it to a named entity 

(NE) in the domain of interest. For biomedical domain, an NE  is defined as a term or phrase that 

denotes a biomedical object, for instance a protein, gene, disease, or drug with which a semantic 

hierarchy is associated. In this dissertation we will focus on gene, protein, and disease named 

entity type, which are directly associated with biomarker candidates discovery work presented 

here.  

 NER in biomedical text mining is particularly challenging. It is evidenced by the fact that 

many alias, different naming conventions, abbreviations, variety of organisms may refer a same 

protein/gene/disease with different terms, or a term may refer to biologically different entities. 

For example, named entity p53 may refer to a protein name in one context, but may also be used 

to denote the molecular weight of a protein with 53 Kd in another context.    

 Major classes of biomedical named entities includes genes, proteins, cells, drugs, 

chemicals, and diseases. Several high impact databases, including HUGO, Swiss-Prot, GenBànk, 

IPI, MedMaster, USP, UMLS, have been developed with intensive manual curation to support 

biomedical research community. Those databases provide rich resource for developing domain 

specific dictionaries, lexicons, and knowledge base for many text mining systems.  
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 Some interesting patterns have been identified for biomedical NE. Linguistic pattern like 

upper case, comma, hyphen, slash, digit, and bracket have been noticed in examples such as 

'proteolipid protein - 1', 'Thioredoxin h-type 1' etc. Many entities also contains semantic 

description (e.g. Epithelial Growth Hormone EGF, with description of protein expression 

location and function). However it is difficult to infer the functions for commonly seen 

abbreviations in literature without analysis of its semantic context in the place of occurrence (e.g. 

TCF may refer to gene 'T cell factor' or biomatrix 'Tissue culture fluid').  Due to the fact that 

biomedical names are expressed in various linguistic forms (plurals, compounds, abbreviations, 

anaphoric expressions)  and relaxed forms of descriptions (prepositional phrases, relative phrases, 

phrases across sentences etc), the text mining system therefore should address above variations 

with respect to its problem-solving goals. A survey of name ambiguities, synonyms, and 

variations is given in table 3-1. 

Table 3-1. Examples of biomedical entities and their linguistic or semantic form. 

Example Biomedical Name Linguistic or semantic form 

Rpg1p/Tif32p Compound name 

TCF Abbreviation 

91 and 84 proteins Coordination 

p38 MAPKs Plural 

It, this protein, this enzyme Anaphoric expression 
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Human epithelial growth factor Semantic description 

c-Jun N-terminal kinase (JNK) Acronym 

N-acetylcysteine, N-acetyl-cysteine, NAcytylCysteine Synonym 

3.1.1. Challenges in biomedical NER 

 As described above, biomedical NER is challenged by several aspects, e.g. ambiguous 

names, large amount of synonyms, acronyms, and linguistic variations. Furthermore, with rapid 

deposition of new literatures regarding novel gene and protein identifications, names of new 

biomedical entities needs to be taken into account for different text mining systems. It is 

especially true for biomarker candidates discovery which ideally should include finding 

associations between disease and new gene/protein names.   

 In light of the challenges in biomedical NER, the Critical Assessment of Information 

Extraction system in Biology (BioCreAtivE) was founded in 2004 which consists of a 

community-wide effort for evaluating information extraction in biomedical domain (Hirschman 

et al. 2005b). BioCreative II task 1A is concerned with the gene mention (GM) tagging, e.g. NE 

extraction of gene and gene product mentions in document. BioCreative II task 1B is human 

gene normalization (GN) task, which requires the text mining system to unambiguously map the 

human genes extracted from the text to the unique EntrezGene identifiers (Hirschman et al. 

2005a). GN task is one step further after GM task in an aim to create distinct linkage between 

extracted NE and its biological database counterpart. 
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 Another annotated corpus of MEDLINE abstracts, GENIA corpus, is also widely used as 

golden-standard for evaluation of NER algorithms (Kim et al. 2003). 

3.1.2. Approaches for biomedical NER 

 Several text mining systems have been implemented for biomedical NER tasks using 

different approaches. Those approaches, in summary, can be categorized into following four 

categories. 

3.1.2.1 Dictionary-based approaches 

 Dictionary-based approach is the most straightforward approach that tries to find all NE 

from text by looking up the dictionary. Some nomenclatures have been extensively applied on 

biomedical text mining. The HUGO Nomenclature for instance, provides more than 21,000 

human gene entries (Cotton et al. 1998). The Swiss-Prot, the UniProt database containing more 

than 180,000 protein records has also been frequently used. The BioThesaurus collects 

comprehensive compilation of several million human protein and gene names mapped to UniProt 

knowledgebase entries using cross-reference in iProClass database (Liu et al. 2006). Unlike 

machine learning based approach, one advantage of dictionary based approach is that it has 

external database identifier (ID) built-in for each entry, thus provides external metadata 

annotation to the extracted names. However, it suffers from several limitations including false 

positive caused by name ambiguity, false negative cause by spelling variations and synonyms, 

and inability to cover newly created names. In addition, it heavily depends on creation and 

curation of lexicon for the specific domain which may consist of millions of entries and is very 

labor intensive. To address aforementioned spelling variation issue, (Tsuruoka and Tsujii 2004) 
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used approximate string searching and variant generator methods to achieve a significant 

improvement of F-measure (10.8%) on GENIA corpora evaluation as compared with exact 

matching algorithms.  

3.1.2.2 Rule-based approaches 

 Rule-based approach can better deal with word orthographic and morphological 

structures, as compared with dictionary based approach. In (Fukuda et al. 1998) a method using 

surface clue on character strings was presented to identify core terms followed by handcrafted 

patterns and rules to concatenate adjacent words as named entity. The rule based approach 

largely depends on the domain specific named entities with common orthographic or 

morphologic characteristics. Thus makes it difficult to extend to other domains since the 

handcrafted rules are often domain specific and cannot be applied to a new domain due to 

different naming conventions. 

3.1.2.3 Machine learning based approaches 

 Machine learning approaches are most frequently used and have achieved the best 

performance in BioCreative II gene/protein NER tasks. Different supervised machine learning 

methods including HMMs (Collier et al. 2000) (Zhou 2006), SVM (Jonnalagadda et al. 2013), 

MEMMs (McCallum et al. 2000), CRF (Lafferty et al. 2001), and Case-based reasoning (Neves 

et al. 2010)  have been used in NER systems. In addition to supervised methods that utilize only 

the annotated text corpora, in order to solve data sparseness issue which often encountered when 

using large feature set on an relatively small training dataset, some semi-supervised methods are 

also presented recently to take advantage of large size of un-annotated text corpora. Such semi-

supervised machine learning algorithms include semi-CRFs (Mann and McCallum 2007), semi-
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SVMs (Kristin P. Bennett 1999), SVD-ASO (Ando and Zhang 2005), and FCG (Li et al.). 

Hybrid approach combining machine learning methods with dictionary or rule-based methods 

can also be used to improve the overall performance. For example in (Sasaki et al. 2008) a 

hybrid system combining dictionary and machine learning based statistical NER was used for 

protein name recognition. The critical step of machine learning approaches is to select the most 

discriminative feature. Commonly used features include orthographical word formation patterns, 

morphological patterns, part-of-speech POS tagging, lemmatization, token window, and 

conjunction of contextual features.  

 Machine learning (ML) based approaches use vector space to represent the text data and 

construct the model using labeled training data so that the model can be applied to predict 

unlabeled data. The key to success of ML based approaches lies on selecting vector features that 

have the most discriminative power.  For NER task, the machine learning model is trained using 

training corpora which contains the specially formatted text and its associated annotation text. 

The annotation follows some guidelines tailored to certain collaborative activities such as 

BioCreative and BioNLP. An example of BioCreative training data is shown below: 

P00001606T0076 Comparison with alkaline phosphatases and 5-nucleotidase 

P00030937A0119 SGPT, SGOT, and alkaline phosphatase concentrations were 

essentially normal in all subjects.  

Text file: text sentence preceded by sentence identifier. 

P00001606T0076|14 33|alkaline phosphatases 

P00001606T0076|37 50|5-nucleotidase 

P00030937A0119|0 3|SGPT 

P00030937A0119|5 8|SGOT 

P00030937A0119|13 31|alkaline phosphatase 

 

 Annotation file: annotation for each sentence proceeded by sentence identifier. The start and 

end position of each name are indicated (space not counted). 
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 Two categories of corpora are commonly adopted by biomedical NER research 

community. One is golden-standard corpora (GSC) manually annotated by domain experts. The 

golden-standard corpora that have been widely cited include BioCreative (Hirschman et al. 

2005b), JNLPBA (Kim et al. 2004), GENETAG (Tanabe et al. 2005), and PennBioIE (Kulick et 

al. 2004). Another corpora, also called silver-standard corpora (SSC), are those automatically 

annotated by NER systems. One such representative SSC is CALBC (Collaborative Annotation 

of a Large Biomedical Corpus) (Rebholz-Schuhmann et al. 2010). CALBC initiative aims to 

solve problem of small number of GSC (15,000-22,000 annotated sentences) due to labor 

intensive manual annotation, by automatically generating large scale named entity annotation 

(714,283 Medline abstracts)  using a harmonized approach with annotations predicted by 

different NER systems. 

 Before using text as input to train machine learning model, the text preprocessing step is 

required to first divide document into sentences and tokens. Normalization techniques including 

stemming, lemmatization, part-of-speech POS tagging, and chunking are used at this step to 

provide local analysis of the token. Each token is subsequently tagged with the annotation 

scheme for the training corpora. Several annotation schemes have been applied on NER: The IO 

scheme tags token as either within (I) or outside (O) of the named entity. The BIO scheme is the 

most commonly used scheme which added beginning (B) of the named entity on top of IO 

scheme. The BMEWO scheme is used to further distinguish the NE containing multiple tokens 

and those containing only one token (W) by tagging the middle (M) and the end (E) of the token. 

The BIOLU scheme is used to indicate begin, inside, outside, last (L), and unit (U) (e.g. one 

word NE) of the token. Following example shows an original sentence taken from an MEDLINE 

abstract (PMID 10022891) and its annotation using BIO scheme. 
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We have identified a transcriptional repressor , Nrg1 , in a genetic screen 

designed to reveal negative factors involved in the expression of STA1 , 

which encodes a glucoamylase .  

 

We|O  have|O  identified|O  a|O  transcriptional|B-PROTEIN  repressor|I-

PROTEIN  ,|O  Nrg1|B-PROTEIN  ,|O  in|O  a|O  genetic|O  screen|O  designed|O  

to|O  reveal|B-PROTEIN  negative|I-PROTEIN  factors|I-PROTEIN  involved|O  

in|O  the|O  expression|O  of|O  STA1|B-PROTEIN  ,|O  which|O  encodes|O  a|O  

glucoamylase|B-PROTEIN  .|O   

 

 Since feature representation and selection is a critical step required for NER machine 

learning, following paragraphs will review the current progress on text feature processing before 

discussing machine learning algorithms on NER.  

 Several surveys of state-of-the-art machine learning NER systems have been given in 

(Nadeau and Sekine 2007), (Leaman et al. 2008) and (David Campos , Sérgio Matos 2012). 

Among them, feature sets including orthographic features, morphological features, contextual 

features, and lexicons have been utilized to train variety of machine learning models. The authors 

concluded that those feature sets are essential to build a NER system with high F-measures as 

evaluated with golden-standard corpora (David Campos, Sérgio Matos 2012). 

 Orthographic features concerns with word formation. A linguistic orthography is a 

standard system to capture the token's word formation which includes capitalization, 

hyphenation, emphasis, punctuation, symbol, digit, and word breaks. Taken the example of a 

biological entity name "Interleukin-1 β", the first token starts with an upper case "L" followed by 

a hyphen and a Greek character, to denote a cytokine name. It is obviate that such orthographical 

feature can help to distinguish the named entity from other tokens within the context. 
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 Morphological feature is used to analyze common structures of tokens being studied, 

which include suffixes/prefixes, char n-grams, and word shape. For example, the suffix '-ase' 

often denotes an enzyme, and '-in' often indicates a protein name. The char n-grams, on the other 

hand, extend the suffix/prefix to include characters in the middle of the token. The word shape 

pattern can be generalized to find the word/digit/symbol composition for a given token. For 

instance, the biomedical name "Interleukin-1" can be represented by the word pattern 

Aaaaaaaaaaa#1 or a#1. 

 The local context of a token is also an important feature need to be captured. The 

relatedness measure between tokens and extracted features can be established through window or 

conjunctions  to add contextual information to the token and utilize it as discriminative feature.  

 Compared with gene named entity recognition, so far disease named entity recognition 

has received much less attention and the performance needs to be improved (Leaman et al. 2008). 

In this chapter we attempt to address the research questions on how to improve the disease NER 

by incorporating domain knowledge base and semantic concept into preprocessing and feature 

representation, as the first step towards mining disease associated genes from literature. 

 3.2. Experiments design and methods 

3.2.1. Data set 

 Two datasets were used for our NER experiments. For protein and gene name recognition 

we used the golden-standard GENETAG corpora from BioCreative II challenge of gene mention 

task (Hirschman et al. 2005b). The corpus contains 20,000 sentences chosen randomly from 

MEDLINE abstracts with low score of term similarity among documents to ensure its 
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heterogeneity. The corpus is divided into a training set of 15,000 sentences for model training, 

and a test set of 5,000 sentences for human judgment of participant‟s NER system performance. 

Training set was annotated by experts with biomedical background.  

 For human disease NER task the golden-standard BioText corpus was used. BioText 

corpus was originally annotated for disease and treatment mentions (Rosario and Hearst 2004) 

and is part of BioText Project at UC Berkley. The corpus was obtained from MEDLINE 2001 

and contains 3655 annotated sentences. In our experiments, sentences labeled with <TO SEE> 

while lacking the close tag were removed and result in a final corpus of 3580 annotated 

sentences. Due to relatively small dataset, the 5 x 2 fold cross-validation (Dietterich 1998) was 

used for evaluation. The test is executed for 5 iterations of 2-fold cross-validation. Compared 

with 10 fold cross-validation, it is more powerful in terms of detecting real system performance 

differences rather than the biased splitting of testing data. 

 To extract the concepts from sentences we used semantic types of UMLS metathesaurus. 

It defines a comprehensive hierarchical tree of semantic network to represent all concepts in the 

UMLS metathesaurus as well as their relationships. This semantic network currently contains 

133 semantic types and 54 relationships. Figure 3-1 shows the UMLS semantic network 

hierarchy related to disease.   
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Figure 3-1. UMLS semantic network disease related semantic type hierarchy. 

3.2.2. System architecture 

 Figure 3-2 shows the system architecture for disease NER. The corpus was first pre-

processed by tokenization and lemmatization before feature extraction. Following (Leaman et al. 

2008), we used feature set consisting of POS, lemma, orthographical and morphological features 

(patterns for word capitalization, letter and digit combinations, prefixes and suffixes). Numbers 

were normalized by converting digits to single digit "0". We used a simple tokenization method 

to tokenize the sentence. For POS tagging, we experimented with two different POS taggers 

implemented in Dragon Toolkit (Zhou et al. 2007), namely Hepple tagger and MedPost tagger. 

MedPost tagger is a POS tagger (Smith et al. 2004) specifically designed for biomedical text as 

compared with the more generic Hepple tagger (Hepple 2000).  
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Figure 3-2. System architecture (A) and pipelines (B) for CRF machine learning based 

disease NER. 

A 

B 
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3.2.3. Feature engineering for NER 

 The architecture is a two-stage pipeline involving first stage of training the machine 

learning model for the NER, and the second stage of labeling the NE from raw text which is 

unseen in the training stage. The raw text of training data set is first tokenized using a tokenizer 

and the stop word is removed using a stop word list. At the feature processing step, collection of 

features is generated for each token, based on the experiment design detailed below in table 3-2.  

Table 3-2. Feature set used for machine learning. 

Category Id Features Example and note 

Orthographic 

features 

Fcap Capitalized word (start, 

end, all cap, mixed) 

Interleukin, kappaB, MBP, 

RalGDS 

 Fdig Digits and counting 1, 12, 107 

 Fsym Symbols -, /, [ ], \, :, ;, ., ”, *, =, %, „, ( ), 

+ 

Morphological 

features 

Fwordshape Word shapes Represent “P50” as “A* 

 Flem Lemma  

 Fpos POS tag  

 Fngrams Char n-grams  

 Ffixes Suffixes and prefixes  

Contextual 

features 

Fwindow Windows For sentence “Our data show 

that the transcriptional activity 

of IL-6 increases during 



45 
 

CVVH”, the window feature of 

{-1, 1} for token “IL-6” can be 

captured as “of” and 

“increases”. 

 Fconjunction Conjunctions For sentence “Our data show 

that the transcriptional activity 

of IL-6 increases during 

CVVH”, the conjunction 

feature of {-1, 1} of token “IL-

6” can be captured as “of@-

1_&_increases@1”. 

 Flexicon Adding biomedical 

knowledge to the set of 

features using lexicon 

BioThesaurus dictionary 

lookup 

 Exact dictionary matching using a disease dictionary was utilized to add biomedical 

knowledge semantic information to the feature.  

 One limitation of exact dictionary matching for NER is that it often gives false negative 

for spelling variations and newly created terms in the text. Moreover, it is highly dependent on 

the availability of domain specific dictionary which is not easily portable to other domains. For 

this reason, we used semantic types of UMLS metathesaurus to extract disease related concept 

from text as one of discriminative features, along with features described above, for NER 

machine learning. We used the approximate dictionary lookup algorithm in (Zhou et al. 2006) to 

capture the significant word in the text instead of capturing all words of the concept, and map it 

to the ontology term, e.g. UMLS semantic concept.  
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 Let concept c = {s1, s2, s3, ... , sn}, where s1-sn are variant concept names that belong to c. 

N(w) denotes number of concepts whose variant names contain word w. 

 The relative significance score of word w to the concept c is defined as: 

 𝐼 𝑤, 𝑐 = 𝑚𝑎𝑥 𝐼  𝑤, 𝑠𝑗   | 𝑗 ≤ 𝑛   (3-1) 

 where:  𝐼 𝑤, 𝑠𝑗  =  
0                    𝑤 ∉ 𝑠𝑗

1/𝑁(𝑤)

 1/𝑁(𝑤𝑗𝑖 )𝑖
     𝑤 ∈ 𝑠𝑗

  (3-2) 

 The significant scores matrix containing normalized words as rows and concepts as 

columns were built using UMLS Metathesaurus (Zhou et al. 2006) and stored as sparse matrix 

for efficient retrieval. In equation 3-1 shown above, the wji denotes the word at i-th row which is 

found in concept sj at j-th column. 

 The concept lookup algorithm uses rule-based pattern matching to search the word 

boundary and extract the concept term from text. In this study we used the default threshold 

score of 0.95 and the maximum number of skipped words of 1 which have been shown to give 

the best results for UMLS based biological concept extraction.  

 The word that is mapped to an UMLS concept is then filtered by its semantic type shown 

in figure 3-1. Only those concepts with semantic type of "DISEASE OR SYNDROME" are kept. 

The word with filtered semantic type is assigned a label and encoded as a new binary feature for 

model training at next step. The algorithm for the conceptual semantic feature generation is 

shown in Figure 3-3. 
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Figure 3-3. Algorithm for the binary semantic concept feature engineering of disease 

named entity recognition. 

 The token is converted to name-value pair to feed the machine learning algorithm. As 

shown in table 3-3, each token is converted to list of binary features with value of either 1 

(feature present) or 0 (feature not present) and associated with its name (token). Our feature 
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engineering approach was integrated into Banner toolkit (Leaman et al. 2008) to take advantage 

of its NER processing pipeline.  

Table 3-3. The m x n matrix illustration of feature vectors for each token in the sentence. 

 Feature 1 Feature 2 Feature 3 … Feature n 

Token 1 0 1 1 …. 0 

…. …. …. …. …. …. 

Token m 1 0 0 …. 1 

 

3.2.4. Conditional Random Fields (CRF)  

 We used conditional random fields (CRF) machine learning algorithm which has been 

proved to be a high performance method for label sequence problem. In (Lafferty et al. 2001) 

CRF was proposed as an undirected graphical model and the conditional probability of output 

nodes can be calculated based on other designated input nodes. The model defines a single log-

linear distribution over label sequences of Y, given the observation sequence of X (Wallach 

2004). In Chapter 2 (2-2-1-2) we have described the model in details. For our experiments, We 

used the 2-order CRF implemented in Mallet toolkit  (McCallum 2002). 

3.2.5. Evaluation method 

 Precision (P), recall (R), and F-measure (F-score) were used to evaluate NER 

experiments shown in formula below: 
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P = TP / (TP + FP) (3-3) 

R = TP/ (TP + FN) (3-4) 

F-score  = (2 x P x R) / (P + R)  (3-5) 

 where TP, FP, and FN are numbers of true positive, false positive, and false negative 

respectively. F-measure is a weighted average score combining both precision and recall, with 

score value ranging between 1 (the best) and 0 (the worst). 

3.3. Result and discussion 

3.3.1. Disease named entity recognition 

 We first compared the biomedical domain specific POS tagger MedPost tagger with  

generic Hepple tagger for disease NER task using BioText corpora. As shown in table 3-4, 

experimental results show an improvement in F-score by 1.23 using MedPost tagger over Hepple 

tagger when the disease specific dictionary is used. Compared with baseline Hepple tagger with 

non disease specific dictionary, the MedPost tagger with disease dictionary enhanced the F-

measure by 1.67. The disease dictionary contains 25,944 entries of manually curated human 

disease names while non disease specific dictionary contains only gene and protein names. When 

a larger dictionary combining both non disease specific dictionary and disease specific dictionary 

was used, it slightly decreased precision, recall, and F-score of MedPost tagger.  

Table 3-4. Evaluation with Hepple tagger and MedPost tagger. Non disease specific 

dictionary contains biological entities not specific to disease. The combined dictionary 

contains both non disease dictionary entries and the disease dictionary entries. 
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POS tagger + dictionary Precision (%)  Recall (%)  F-score (%)  

Hepple Tagger + non disease 

specific dictionary 

62.82  47.79  54.28  

Hepple Tagger + disease dictionary 63.29 48.21 54.72 

MedPost Tagger + disease 

dictionary 

64.93 49.15 55.95 

MedPost Tagger + combined 

dictionary 

64.45 48.80 55.54 

 We also compared different encoding scheme for disease named entity recognition. As 

discussed above in CRF section, NER can be modeled as a sequence labeling problem. Let x = 

{x1, x2, ... , xn} be the sequence of tokens for the input sentence, the problem is to determine the 

output sequence of labels t = {t1, t2, ... , tn} such that ti ∈ L (set of labels) for 1≤i ≤n. The output 

label consists of two parts, e.g. the named entity type and its positional information.  In this 

experiment we compared 3 named entity position encoding scheme, namely IO, BIO, and 

BIOEW. The IO coding is the simplest coding scheme that labels tokens as either Inside (I) or 

outside (O) of the named entity type. The BIO scheme adds Beginning (B) of the entity to IO 

scheme. The most complex coding is BIOEW which indicates the End (E) of entity and whether 

the token is a single word entity (W) on top of BIO scheme. Results shown in table 3-5 suggests 

the more complex coding schemes do not necessarily increase the F-score for BioText corpus 

NER task. The IO encoding scheme gives slightly better F-score than BIO and BIOEW schemes. 
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This is in agreement with the finding in (Leaman et al. 2008) that uses the BioCreative II corpus 

for gene/protein NER task. The IO setting is retained for our experiments. 

Table 3-5. Results of evaluating different entity encoding scheme on BioText NER task. 

Hepple tagger and non disease specific dictionary were used as baseline for encoding 

scheme comparison. 

Encoding scheme Precision (%)  Recall (%)  F-score (%)  

IO  62.82 47.79 54.28 

BIO  63.40 47.13 54.07 

BIOEW  63.11 46.61 53.61 

 

 As shown in table 3-4, the preliminary experiment using exact disease dictionary 

matching indicates the biomedical knowledge can improve the performance of disease NER. 

However, one limitation of exact dictionary matching is that it cannot handle spelling variants. 

We further experimented the effect of using concept semantic type as a new feature for disease 

NER. Table 3-6 shows results using the disease concept semantic type, e.g. "DISEASE OR 

SYNDROME" (type-1). The result without concept semantic type feature (type-0) is used as 

baseline for comparison.  

Table 3-6. Results of evaluating effect of concept semantic types as feature for disease NER. 

Type-1 is "DISEASE OR SYNDROME" semantic type. Type-0 denotes no concept 

semantic feature added. 
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 Precision (%)  Recall (%)  F-score (%)  

Type-0  64.93 49.15 55.95 

Type-1 65.98 49.67 56.67 

 Table 3-6 shows that by adding "DISEASE OR SYNDROME" semantic type as feature 

to train the CRF model it achieves overall 0.72 increase of F-score, with 1.05 and 0.52 increase 

in precision and recall respectively. 

 Three NER systems for disease recognition using the BioText corpus and 5 x 2 cross-

validation was reported in (Leaman et al. 2008). Comparing with reported results, our semantic 

concept type feature based method gives the highest F-score of 56.67 (BANNER: 54.84, 

ABNER: 53.44, and LingPipe: 51.15). This is largely due to the increase of recall (BANNER: 

45.55, ABNER: 44.86, LingPipe: 47.50). The performance of disease NER using BioText by 

different systems are relatively poor, as compared with performance on gene and protein NER 

using BioCreative II gene mention task. This could be due to several reasons. First, the BioText 

golden-standard corpus is considerably small (3655 sentences versus 20,000 sentences for 

BioCreative II corpus), which is more likely to cause the data sparseness and out-of-vocabulary 

(OOV) issue. Secondly, unlike BioText that has only one annotation, the BioCreative II gene 

mention task provides an alternative annotation. Recently the silver-standard corpora (SSC), e.g. 

the automatically annotated corpora produced by machine learning models, have been used to 

supplement the golden-standard corpora (GSC) in an aim to boost the machine learning 

performance (Chowdhury and Lavelli 2011). It provides an alternative way to overcome above 

limitations caused by corpora size for disease NER task. 
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3.3.2. Gene named entity recognition 

 In addition to disease named entity recognition, we also exploited gene named entity 

recognition using BioCreative II corpora. As shown in table 3-7, BIO encoding scheme 

significantly enhanced the prediction performance by 7.64 as compared with IO scheme. BIOEW 

encoding only increased F-measure of IO scheme by 1.2. The BIO scheme is thus used for all 

gene NER tasks in rest of the thesis. 

Table 3-7. Effect of encoding scheme on gene NER by CRF method (BioCreativeII corpora). 

MedTagger and non disease specific dictionary were used. 

 Precision (%)  Recall (%)  F-measure (%)  

IO  87.42  69.40  77.38  

BIO  87.93 82.29 85.02 

BIOEW  83.05  74.57  78.58  

 

3.4. Conclusion and future work 

 The first challenge for our information extraction task is posed by the high variable 

nature of biomedical named entity. Named Entity Recognition (NER) has been an active research 

fields in biomedical text mining. In the past years, much attention has been focused on semantic 

types related to protein, gene, and other named entities in biology domain. Human disease named 

entity recognition in literatures, however, has not received much attention. Comparing the NER 

solutions for gene and protein named entities, existing machine learning solutions lacks same 
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level of precision and recall for disease named entity recognition. The development of machine 

learning based NER for disease named entity is largely focused on local features of tokens in the 

sentence by integrating its linguistic, orthographic, morphological, local contextual 

characteristics.  

 In this chapter we presented a new method of utilizing biomedical knowledge by both 

exact matching of disease dictionary and adding semantic concept feature through UMLS 

semantic type filtering, in order to improve the human disease named entity recognition by 

machine learning. By engineering the concept semantic type into feature set, we demonstrated 

the importance of domain knowledge on machine learning based disease NER. The background 

knowledge enriches the representation of named entity and helps to disambiguate terms in the 

context thereby improves the overall NER performance.  

 For the future work, it is interesting to further explore the effect of adding other relevant 

concept semantic types to feature set as high dimensional arbitrary features can be well handled 

in CRF model. It is also interesting to exploit the possibility of utilizing large silver-standard 

corpora, such as CALBC (Rebholz-Schuhmann et al. 2010), to train our concept based machine 

learning model and test it on the small size golden-standard corpus. It has been observed that by 

selecting those sentences of SSC containing annotations rather than the full SSC results gives the 

performance boost (Chowdhury and Lavelli 2011). 

 Another direction for the future work is to improve the computing efficiency by feature 

induction. Extraction of contextual features for each token by adding features of preceding and 

succeeding tokens through window, or by grouping features of preceding/succeeding tokens 

through conjunction has been studied in works (Zhang and Johnson 2003). Because the CRF is 



55 
 

log-lineal model, conjunction of features are necessary for projecting the feature space to a high 

dimensional space. On the other hand, considering for each token we have n features to select 

from to form the feature conjunction, it is important that the most informative features are 

selected. Although one significant advantage of CRF based sequence labeling over other 

machine learning algorithms such as HMMs is that it can handle arbitrary features without 

considering independence assumption, it is computationally infeasible to use complete set of 

contextual features surrounding the token, as it can result in extremely large feature set 

containing millions of features (Sha and Pereira 2003). In (McCallum 2003) a feature induction 

method was introduced to deal with the problem by automatically construct the most 

discriminative feature conjunctions. Starting from an empty feature set, feature induction 

algorithm takes input of list of user defined features and iteratively adds them to a dynamic 

feature set during training. Only those features with information gain will be preserved in the 

updated feature set. The feature induction algorithm given in (McCallum 2003) is summarized 

below: 
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algorithm feature induction for linear-chain CRF 

input:  

(1) Training set: paired sequences of feature vectors and labels. 

(2) A finite state machine with labeled states and transition structure 

output: A finite state CRF model that generate the most likely label sequences given an 

input sequence 

Feature set K = 0 

Do: Create list of candidate features using observational tests, conjunctions of 

observational tests with existing features 

 Limit number of conjunctions to those with highest information gain. 

 Add to K. 

Apply an iterative quasi-Newton method to adjust CRF parameters to increase 

conditional likelihood of the label sequences given the input sequences. 

while: convergence criteria is not met.  
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CHAPTER 4. INFORMATION EXTRACTION OF SEMANTIC 

RELATIONS BETWEEN DISEASE AND ITS ASSOCIATED GENES 

4.1. Introduction 

 In this chapter we will discuss current research on information extraction (IE) of semantic 

relations from biomedical literature, and present our work on automatically extraction of disease 

gene relations utilizing the textual linguistic features with a string kernel based SVM classifier.  

 As discussed in chapter 1 and 2, disease associated biomarker mining from literature is a 

critical preliminary step prior to the laboratory research and clinical study phase. So far very few 

biomarkers have been identified and applied as clinical diagnostic and prognostic markers. On 

the other hand, the knowledge deposited in biomedical literature database doubles every 2-5 

years which leads to accumulation of total 23 million citations in PubMed (NCBI). With current 

implementation of PubMed search engine, manual extraction of such information is the least 

efficient and most labor intensive way. It is therefore desirable to develop new method to 

automatically extract disease associated genes from literature. The problem can be formulated as 

semantic relations extraction from literature, which is a subject of information extraction study. 

Information extraction concerns itself with extraction of entities and their semantic relations 

from the unstructured text. Those relationships can be attributes of the entity, static facts, or 

dynamic events that exist between entities. In this chapter we are particularly interested in 

extracting fact relationships between biomedical entities, e.g. those facts that may imply a 

biological entity (gene or gene product) being a biomarker candidate of certain disease entity. 
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 Most information extraction systems follow the bottom-up strategy to extract structured 

information frames from unstructured text. Like the relational database, the goal is to populate 

the predefined data frame with information extracted from the text. Taking a simple example of 

extracting name, title, contact number from highly heterogeneous web pages, the IE task is to 

parse the web content and extract person name as named entity, and its attributes including title, 

phone number etc. Generally it involves steps to tokenize the input text, analyze the 

morphological and lexical structure, analyze the syntactic structure, and integrate above 

annotated components in a domain knowledge framework representing the entities and their 

relationships. Because the natural language has characteristic of long-distance dependency 

(Jianfeng Gao 2005), one has to first resolve the co-reference or anaphora issue in order to 

extract relations between entities. It is particularly important for domains like social study, where 

names are frequently co-referenced between sentences. However this problem is much less 

significant in biomedical domain, therefore not tackled in this chapter. During each step the text 

words are disambiguated, syntactically parsed, and co-reference or anaphora resolution resolved. 

In previous chapter we have focused our work on biomedical named entity recognition, e.g. NER 

for gene and disease. In this chapter we will focus our efforts on extracting their semantic 

relationships in the context of biomarker definition, which can be viewed as an structured 

information framework containing disease and its associated genes or gene products. 

4.2. Related works 

 Relation extraction has been extensively studied in newspapers, web content, emails etc. 

In biomedical domain, by querying PubMed with all known protein names it was found 269,000 

out of 1.88 million PubMed abstracts were classified as being containing protein-protein 
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interaction relations (Donaldson et al. 2003). In another study ~150,000 gene and protein 

relations were extracted from one million PubMed abstracts (Fundel et al. 2007). And the 

number is soaring in recent years due to application of high-throughput technology. To facilitate 

automatic extraction of biomedical relations from the fast growing literature reports, BioCreative 

II (Hirschman et al. 2005b) and BioNLP (Pyysalo et al. 2012) (Björne et al. 2010) have included 

relation extraction tasks for protein-protein interaction, co-reference, and entity relations 

extraction. Both events rely on annotated GENIA corpora and focused on PPI, protein-

component and subunit complex relation extraction. For relation extraction task the annotated 

corpora is indispensible for statistical machine learning based modeling, rule induction using 

rule-based methods, and for performance evaluation. Table 4-1 summarized current public 

annotated corpora for relation extraction in biomedical realm. For disease-gene relation 

extraction, to our knowledge, so far there is no publically available annotated corpora dedicated 

to this specific niche.  

Table 4-1. Public biomedical corpora for relation extraction tasks. PPI denotes protein-

protein interaction. AImed and HPRD50 are the only two corpora focusing on human PPI 

only. 

Corpora Corpora size Type References 

AImed 225 abstracts PPI (human) (Bunescu et al. 2005) 

BioInfer 1100 sentences PPI (Pyysalo et al. 2007) 

HPRD50 145 sentences PPI (human) (Fundel et al. 2007) 

IEPA 303 abstracts PPI (Ding et al. 2002) 
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LLL 77 sentences PPI (Nédellec 2005) 

GENIA 9372 sentences PPI (Kim et al. 2003) 

GREC 240 abstracts Gene regulation (Thompson et al. 2009) 

IntAct 693 sentences PPI (Raja et al. 2013) 

 

 Generally speaking, relation extraction can be binary or multi-way of directed or 

undirected entity pairs. For directed pair in subject-object relation, the object of the relation is the 

target and the subject entity is the agent. The binary relation involves only two entities related to 

each other. While the multi-way relations involves three or more entities linked by the 

relationship. The protein-component and subunit complex relation extraction is a multi-way 

relation extraction where typically more than three proteins or protein subunits form a functional 

complex. Above two relations are illustrated in figure 4-1. 

 

Figure 4-1. Illustration of common biomedical relations. A. Directed binary relation 

(activation) between two gene and protein pair. B. Undirected multi-way relation (binding) 

between subunits of a protein complex. (PMID 1326789, 16899085). 
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 In following section we will discuss major relation extraction methods including 

statistical machine learning based approach, and rule-based approach.  

4.2.1. Machine learning and statistics based relation extraction 

 First we define the relation as 𝑟 𝑒1, 𝑒2, . . . ,  𝑒𝑛  where ei are entities with relation r in the 

text. The sentence s from which ei are identified can be represented as 

𝑠 = (𝑤1,𝑤2, 𝑒1, . . . ,𝑤𝑚 ,  𝑒𝑛), where 𝑤𝑗  1 ≤ 𝑗 ≤ 𝑚  is the word in the text. Given a corpora of 

positive and negative relation examples, in which ei are annotated for an relation, the 

discriminative classifier can be trained using set of text features representing its local or global 

context shown below. Thus we can represent relation extraction as a classification problem that 

can be solved by supervised machine learning. 

 Commonly used features in relation extraction are summarized below: 

 Bag-of-words, bigrams surrounding the entity (before, between, and after), lemma 

 Entity types 

 The distance between entities and the word sequence 

 Syntactic parse tree paths, tree distance between entities 

 Parse tree is a tree graph representing syntactic structure of natural language based on 

formal grammar (Feldman and Sanger 2007). Constituent parse tree and dependency parse tree 

are two types of parse tree commonly used in text mining, with former one analyzed by 

constituency grammars (e.g. phrase structure grammars) and later one analyzed by dependency 

grammars without considering noun phrase (NP) or verb phrase (VP) categories. The 
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constituency parse tree of a given sentence is more complex than its corresponding dependency 

parse tree and therefore is more computationally expensive. The constituency parse tree and 

dependency parse tree from an example PubMed sentence are given below. We generated both 

parse trees using the annotation pipeline in Stanford Core NLP toolkit. 

"Activation of mitogen-activated protein kinase kinase by v–Raf in NIH 3T3 cells and 

in vitro" (PMID 1326789) 

constituency parse tree: 

(ROOT 
  (NP 
    (NP 
      (NP (NN Activation)) 
      (PP (IN of) 
        (NP 
          (NP 
            (NP (JJ mitogen-activated) (NN protein) (NN kinase) (NN kinase)) 
            (PP (IN by) 
              (NP (LS v)))) 
          (: --) 
          (NP 
            (NP (NN Raf)) 
            (PP (IN in) 
              (NP (NN NIH) (NN 3T3) (NNS cells))))))) 
    (CC and) 
    (ADVP (FW in) (FW vitro)))) 
 
Dependency parse tree: 
 
[Activation/NN 
  prep_of:[kinase/NN 
           amod:mitogen-activated/JJ 
           nn:protein/NN 
           nn:kinase/NN 
           prep_by:v/LS 
           dep:[Raf/NN prep_in:[cells/NNS nn:NIH/NN nn:3T3/NN]]] 
  cc:and/CC 
  advmod:[vitro/FW nn:in/FW]] 

 

 In (Jiang and Zhai 2007) feature spaces for relation extraction was systematically 

exploited using parse tree graph representation of the relation instance. It shows constituency 

parse tree feature gave better performance than dependency parse tree and sequence feature. But 
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the difference is small, suggesting each of three feature spaces is capable of capturing most 

structural information between entities. Further comparison between unigram, bigram, and 

trigram features shows the bigram performs significantly better than unigram, but trigram feature 

didn't improve it further.  

 For sentence 𝑠 = (𝑤1,𝑤2, 𝑒1, . . . ,𝑤𝑚 ,  𝑒𝑛) where wj is the word and ei is the entity with 

defined relation, the feature set ideally should include as much discriminative power as possible 

for ei while minimizing the computational cost. Feature set containing full syntactic parsing is 

also called heavy-weighted feature set. 

 Based on the specific relation extraction problem e.g. binary or multiclass relation 

extraction, different classifiers including SVM, Max Entropy, Naive Bayes etc, can be used for 

the classification task. Support Vector Machine (SVM) is the most commonly used machine 

learning classifier for relation extraction.  

 Figure 4-2 shows the linear SVM model trained with samples from two classes by the 

hyperplane H. The machine learning task is to find the hyperplane that can separate two classes 

of vectors with maximum margin between two of them. 

 For a training set with sample size of L  

 (xi, yi), xi ∈ R
d
 , yi ∈ {+1,-1}, i = 1, 2, …, L 

 The SVM is to find the hyperplane H:  W
T
x+r =0 

 Maximize W(α) =  𝛼𝑖𝐿
𝑖=1  - 

1

2
 𝛼𝑖 𝛼𝑗 𝑦𝑖 𝑦𝑖𝐿
𝑖 ,𝑗=1  <xi, xj> 
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 Subject to  𝛼𝑖𝐿
𝑖=1  𝑦𝑖 =  0 

 Where 𝛼𝑖 ≥ 0, 𝑖 = 1, 2,… , 𝐿 

 𝛼𝑖 is the non-negative Lagrangian multipliers. Vector 𝛼𝑖 > 0 when xi is a support vector, 

and 𝛼𝑖 = 0 when it is not. 

 

Figure 4-2. Illustration of Linear Support Vector and Hyperplane separation. 

 

 In case the data points between two classes are not linearly separable, a kernel function is 

needed to map dataset into higher dimensional space so that classes become separable. Kernel 

function 𝐾(𝑋𝑖 ,𝑋) can also be thought of a similarity function for pair of structures X and 𝑋𝑖  in 

the feature space (Kim et al. 2008). Lets represent each training data instance i as (𝑥𝑖 ,𝐸1
𝑖 ,𝐸2

𝑖 , 𝑟𝑖) 

and Xi = (𝑥𝑖 ,𝐸1
𝑖 ,𝐸2

𝑖 ) , where r denotes the relationship, E denotes the entity, and x denotes the 

sentence. For a new instance X = (𝑥,𝐸1,𝐸2) we can classify it by predicting its relation 𝑟  with 

formula 4-1 (Sarawagi 2007). 
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 𝑟 = argmax𝑟∈𝑦  ∝𝑖𝑟 𝐾(𝑋𝑖 ,𝑋)𝑁
𝑖=0    (4-1) 

 The ∝𝑖𝑟  is the estimated weight for each training instance i, and y is the class. N denotes 

number of training sets. 

 Kernels for computing 𝐾 𝑋𝑖 ,𝑋  used in relation extraction is based on string kernels 

proposed in (Lodhi et al. 2002), mathematically represented in 4-2 as: 

 𝐾 𝑋𝑖 ,𝑋 =  ∅𝑢 𝑋𝑖 
𝑇∅𝑢(𝑋)𝑢∈𝑈  (4-2) 

 where U is the set of all possible sub-structure in structure Xi and X. The ∅𝑢 𝑋𝑖  and 

∅𝑢 𝑋  are decay factor ∈ (0,1). The term "structure" can be generalized to any object including 

string, sequence of words, parse tree etc. For relation extraction the structures are represented as 

word sequences before/between/after related entities using Bag of features kernel approach, or 

parse trees containing the entity using Tree kernel approach (Bach and Badaskar 2007). Kernels 

developed using above approaches include tree kernel (TK) (Zelenko et al. 2003), dependency 

tree kernel (DTK) (Culotta and Sorensen 2004), shortest path dependency kernel (SPDK) 

(Bunescu and Mooney 2005), subsequence kernel (SK) (Bunescu and Mooney 2006), composite 

kernel (CK) (Zhang 2006)(Zhang et al. 2011).  

 If the learning method utilizes only the labeled data for training, it is supervised machine 

learning. If it utilizes small set of labeled and large set of unlabeled data for training, it is semi-

supervised. Semi-supervised methods rely on iterative learning by taking output of learner from 

last iteration and are becoming an important alternative to supervised approach, due to limited 

availability of high quality labeled data. 

4.2.2. Pattern-based relation extraction 
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 This approach uses handcrafted patterns or automatically generated patterns to extract 

relations. Patterns can be simple regular expression matching rules, or more complicated surface 

patterns consisting of POS tags and phrasal structures. The most sophisticated pattern 

representation involves syntactic and semantic structure analysis by full parsing, for instance to 

produce subject-verb-object (SVO) structure or predicate-argument structure (PAS) (Surdeanu et 

al. 2003). The major advantage of manual pattern is its high precision. The major disadvantage 

for handcrafted patterns is poor generalization from one domain to another, which also leads to 

relatively low recall because the manual pattern will not be able to cover all possible relation 

structures. This issue can be alleviated by automatically generated patterns. Bootstrapping 

methods, for example, extract patterns from small set of relation examples (seeds) and iteratively 

expand the seeds by applying them on new data (Agichtein and Gravano 2000).   

4.2.3. Disease and gene relationship extraction 

 Disease-associated genes are important biomarker candidates which have been used as 

indicators of diagnosis, disease progression, and treatment efficacy for the past years. For 

example, in neurodegenerative diseases including Alzheimer's disease, Huntington's disease, 

Parkinson's disease, the genetic factor plays a critical role and consequently the disease-causing 

genes were studied extensively. On the other hand, the gene-disease relation extraction from 

literature haven't received similar level of attention as protein-protein interaction, protein and its 

sub-cellular localization. Therefore, there are still large rooms left to improve performance of 

disease-gene relation extraction. In this chapter, we applied machine learning kernel methods 

based on works in (Bunescu and Mooney 2005) and (Giuliano et al. 2006) to extract Huntington 

disease - gene relation from PubMed literatures. 
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 In terms of information extraction needs, two approaches have been applied on disease-

gene relation mining, namely global mining of general disease-gene association and selective 

mining of specific disease-gene associations. EDGAR is a system for global extraction of genes, 

drugs, and cell types interactions from PubMed literature and can be used to query the disease-

gene associations (Rindflesch et al. 2000). BITOLA is a literature-based information extraction 

system designed to extract relations between different concepts, such as disease and gene 

association, by association rule algorithm (Hristovski et al. 2005). The association rule has form 

of 𝑥 → 𝑦(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡) where support is their co-occurrence frequency and confidence 

is the percentage of records containing y concept (e.g. pathological functions or symptoms) with 

all records containing x concept (e.g. disease). For disease (x) gene (z) relation association, the 

algorithm first finds all concepts y such that  𝑥 → 𝑦 and then finds all concepts z (e.g. genes) 

such that 𝑦 → 𝑧. The algorithm then filter out all concepts z whose chromosomal location do not 

co-localize with chromosomal location of disease concept x by using HUGO gene nomenclature 

and LocusLink genetic loci information. Finally, the remaining set of z concepts (genes or gene 

products) are ranked as candidate disease associated genes. Recently, an rule-based with 

keyword matching algorithm for disease-gene extraction was also presented (Jung et al. 2013). In 

another work (Chun et al. 2006a) the binary pair of gene-disease was extracted from PubMed 

sentences using dictionary based matching approach followed by machine learning NER filtering. 

The filtering step which removed large set of false positive introduced by dictionary matching, 

improved precision of relation extraction by 26.7%, suggesting the critical role of entity 

recognition step for overall performance of disease-gene relation extraction. For specific disease 

gene relation extraction, in (Chun et al. 2006b) annotated corpora for prostate and gastric cancers 
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from PubMed were constructed to train the maximum entropy based NER and relation extractor. 

The authors reported a 92.1% precision of topic-classified relation recognition.    

4.3. Experiments and Results 

4.3.1. Experiment design and datasets 

 In our experiment we focused on Huntington disease related gene extraction and casted it 

to a binary classification problem. Taken following NER tagged sentence describing association 

between HD and NR2B, NR2A as an example: 

We conclude that these two genes, coding for <GENE>NR2B</GENE> and 

<GENE>NR2A</GENE> subtypes mainly expressed in the striatum, may influence the 

variability in AO of <DISEASE>HD</DISEASE>. (PMID 15742215) 

 In this example two gene entities and one disease entity were identified to have disease-

gene association relations r(NR2B, HD), r(NR2A, HD). Here we consider the relation being all 

molecular interactions including expression, genetic variation, regulatory modification, or 

general description of associations in the text.  

 Since annotated corpora for machine learning based disease-gene relation extraction isn't 

available, we started by constructing it using the PubMed citations in Genetic Association 

Database (GAD) (Kevin Becker, Kathleaen Barnes, Tiffani Bright 2004). GAD is a database 

containing manually curated genetic association information for human disease with links to 

corresponding PubMed citations. We compiled list of all PubMed ids related to Huntington 

disease from GAD and retrieved all abstracts from PubMed using Entrez e-Util API. Abstracts 

were automatically split into sentences and tagged with NER tagger described in our work in 

chapter 3. Sentences with at least one gene mention and one disease mention were selected. 
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Because the disease-gene relation extraction is considered as a binary relation extraction, in case 

the sentence contains more than one gene or disease mention, our system automatically makes 

copies of the sentence (instance of the sentence) so that each gene-disease pair is tagged as a 

training example. After manual verification and curation of all tagged sentences, a training 

datasets consisting of 117 positive examples and 64 negative examples was constructed. The 

annotated corpora was then processed by contextual kernel functions, and used subsequently to 

train and test on SVM classifier by 10 fold cross-validation. The performance of the SVM 

classifier was compared against a protein-protein interaction golden standard corpora AImed, 

which collects only human protein interactions. Table 4-2 shows the statistics of the two corpora 

used in our experiments and figure 4-3 summarized the system architecture of our kernel based 

relation extraction system. 

Table 4-2. Statistics of two corpora used in the experiments. The constructed Huntington 

disease corpora from PubMed contains 181 annotated sentences and the AImed corpora 

contains 5625 annotated sentences. 

 AIMED dataset  Huntington disease dataset  

Positive examples  1008  117  

Negative examples  4617  64  

Total  5625  181  
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Figure 4-3. system architecture of kernel based Huntington disease-gene relation extraction 

system. 

4.3.2. Kernel based SVM classifier for relation extraction 

 Kernel methods are used to map the input data into a high dimensional feature space so 

that linearly non-separable classes become separable by a linear algorithm. For our disease-gene 

classification problem, we used kernel functions implemented in JRSE package (Giuliano et al. 

2006) shown below (4-3 to 4-8):  

 𝐾 𝑥1, 𝑥2 =
 ∅(𝑥1 ,∅(𝑥2))

  ∅(𝑥1   ∅(𝑥2) 
 (4-3) 
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 The kernel is normalized by 2-norm of embedding vectors ∅ 𝑥1  and ∅(𝑥2). It is based 

on string kernel using bag-of-features approach. Given two entities and an interaction relation 

shown in following examples, (Bunescu and Mooney 2006) found three patterns for words 

around related entities: 

 Fore-Between (FB): relation is asserted using words before and between the entities. For 

example "interaction of Entity_1 with Entity_2". 

 Between (B): relation is asserted using words between entities. For example "Entitye_1 

is associated with Entity_2". 

 Between-After (BA): relation is asserted using words between and after entities. For 

example "Entity_1 and Entity_2 interaction". 

 Formally, for the relation R, all three patterns (P) can be represented as a row vector: 

 ∅𝑃 𝑅 = (𝑡𝑓 𝑡1,𝑃 , 𝑡𝑓 𝑡2,𝑃 , , , 𝑡𝑓(𝑡𝑛 ,𝑃))  (4-4) 

 where ti (1<i<n) is the token in the pattern and tf(ti,P) is its frequency of occurrence in 

pattern P. For all three patterns a kernel termed Global Context kernel 𝐾𝐺𝐶  is defined as: 

 𝐾𝐺𝐶(𝑅1,𝑅2) = 𝐾𝐹𝐵 𝑅1,𝑅2 + 𝐾𝐵 𝑅1,𝑅2 + 𝐾𝐵𝐴(𝑅1,𝑅2)  (4-5) 

 where KFB, KB, and KBA denotes kernels for Fore-Between, Between, and Between-After 

bag-of-words patterns based on 4-4 respectively. 

 It is observed in (Bunescu and Mooney 2006) above patterns use no more than 4 words to 

assert the relation. Therefore in our experiment for disease-gene relation classification, we used 

tri-grams contiguous tokens kernel.  
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 In addition to above global context kernel KGC, a Local Context kernel (LC) is define to 

take following four features of related entities into account. 

 Token 

 Lemma 

 POS tag 

 Orthographic (capitalization, punctuation, numerals) 

 The local context LC = (t-w, ..., t-1, t0, t+1, ..., t+w) can be formally represented as a row 

vector:  

 𝜑𝐿 𝑅 = (𝑓1 𝐿 ,𝑓2 𝐿 , , ,𝑓𝑛 𝐿 ) (4-6) 

 For each feature at position L, the feature function fi returns 1 if it is active, or 0 if 

otherwise. Here we used default window size of 1. The local context kernel 𝐾𝐿𝐶  for entity E1 and 

E2 is therefore defined as: 

 𝐾𝐿𝐶(𝑅1,𝑅2) = 𝐾𝐸1 𝑅1,𝑅2 + 𝐾𝐸2 𝑅1,𝑅2   (4-7) 

 Finally, the combo kernel 𝐾𝑆𝐿  combining both global and local context kernel is defined 

as: 

 𝐾𝑆𝐿(𝑅1,𝑅2) = 𝐾𝐺𝐶 𝑅1,𝑅2 + 𝐾𝐿𝐶 𝑅1,𝑅2   (4-8) 

 Table 4-3 summarized the kernels and its configuration used in our experiments. 
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Table 4-3. Kernels and configuration used in the experiments. 

Kernel  Features  Configuration  

Global context (GC)  Fore-between  Tri-gram  

Between  Tri-gram  

Between-after  Tri-gram  

Local context (LC)  Token, lemma, POS, 

orthographic  

Windows size = 1  

Shallow Linguistic (SL)  GC + LC  Tri-gram, window = 1  

 

 All kernels in the toolkit are embedded into SVM package LIBSVM (Chang and Lin 

2011) for model training and testing.  

4.3.3. Evaluation of linguistic context based kernel method on AImed corpora 

 Before applying above kernel based classification methods on Huntington disease 

corpora, we evaluated their performance on the human protein-protein interaction corpora AImed. 

Table 4-4 shows the performance matrices (precision, recall, and F-measure) using 10-fold cross-

validation. The results indicate global context kernel performs significantly better than local 

context kernel, and the combined kernel slightly increased the F-measure by 0.76%. 
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Table 4-4. Performance evaluation of three kernel based methods on human protein-

protein interaction corpora AImed. 

LC GC LC+GC 

Precision  Recall  F-measure  Precision  Recall  F-measure  Precision  Recall  F-measure  

0.4424 0.7332 0.5493 0.6245 0.777 0.6912 0.6212 0.8014 0.6988 

  

4.3.4. Disease-gene relation extraction from Huntington disease corpora 

 We applied the linguistic kernel based SVM classification on our Huntington disease 

corpora. Similar to the results in 4-3-3, table 4-5 shows global context kernel outperformed local 

context kernel in our binary disease-gene relation classification task, with significant increase of 

recall by 15.31% and F-measure by 9.34%. Compared with global context kernel, the combined 

kernel decreased the F-measure by 4.7% and recall by 7.93%. It suggests the most discriminative 

linguistic characteristics are largely contained in tri-grams global context before, between, and 

after two related entities in our annotated corpora.  

Table 4-5. Kernel based disease-gene classification using annotated Huntington disease 

corpora. 

LC GC LC+GC 

Precision  Recall  F-measure  Precision  Recall  F-measure  Precision  Recall  F-measure  

0.9621 0.7205 0.8211 0.9623 0.8736 0.9145 0.9614 0.7943 0.8675 

 

4.4. Conclusion and future work 
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 In contrast to full syntactic tree parsing, shallow linguistic parsing computes the basic 

text structure using bag-of-features approach. Our preliminary results obtained using shallow 

linguistic kernel methods on an annotated Huntington disease corpora suggest the global tri-

grams context surrounding related entities are critical for disease-gene relation extraction, which 

is in agreement with PPI relation extraction evaluation using AImed corpora. It is noted however, 

due to limited Huntington disease PubMed citations from GAD our annotated dataset is 

relatively small, which will likely miss some complicated sentences in real-world. Therefore for 

future work it is necessary to increase the corpora size by adding new PubMed abstracts 

referenced by other gene-disease relation databases, for example OMIM (NCBI). A similar 

corpora for hypertension gene relation extraction was constructed from GAD in (Tsai et al. 2009) 

with total 939 annotated sentences. It may not be surprising as comparing with 203864 abstracts 

returned by the PubMed query using "hypertention" as MeSH term, only 8843 abstracts were 

returned by PubMed query using "Huntington diesase" as MeSH term. An alternative way of 

expanding the less commonly seen diseases corpora is to use phrases in GeneRIF database as 

shown in work (Bundschus Markus et al. 2008), in which the authors extracted 5720 phrases 

with gene and disease associations. 

 In conclusion, in this chapter we exploited the linguistic kernel based machine learning 

approach in extracting relations between disease and gene. Our results suggest bag-of-features 

kernel-based SVM classification is a promising resolution for specific disease-gene association 

mining. With future expansion of the training corpora, it can be applied on real-world problem 

for known disease associated gene extraction and novel gene prediction. 
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CHAPTER 5. MINING DISEASE ASSOCIATED GENES USING 

INFORMATION EXTRACTION AND GRAPH THEORETIC 

APPROACHES 

 

5.1 Introduction  

 In chapter 4 we focused on relation extraction of disease and disease associated genes 

from literature. The machine learning based approach has several advantages including 

robustness in processing noise dataset, but its application is largely limited by the availability of 

training collection and its quality and quantity. To overcome the problem of requiring annotated 

corpora for relation extraction in specific domain, in this chapter we present our novel strategy 

on concept co-occurrence based approach for disease and its associated gene extraction.  

 With completion of human genome project, thousands of genes have been identified to be 

linked with variety of human diseases. Online Mendelian Inheritance in Man (OMIM) (NCBI), 

and Genetic Association Database (GAD) (Kevin Becker, Kathleaen Barnes, Tiffani Bright 

2004), among many other online databases, have been utilized extensively to aid discovery of 

new genetic factors leading to diseases. New findings ranging from basic research to clinical 

reports have been constantly published and indexed by PubMed. Biomedical researchers are 

increasingly depending on gathering  published data of their interest to formulate research 

hypothesis before conducting basic and clinical study. Given millions of published papers 

deposited in PubMed, it is not surprising one can easily be overwhelmed. Information extraction 
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as a subject of broad information retrieval plays an important role in finding hidden relational 

information from unstructured biomedical text, for instance in identifying genetic roles in human 

disease. Large database such as OMIM, Entrez Gene (NCBI), and GAD contains validated links 

between genes and diseases with reference to literatures, but due to laborious manual curation 

process, novel findings especially those related to newly identified genes in more recent 

published  papers are often not included.  

 Information extraction by text mining in biomedical domain is one of the hot spots in 

natural language processing community, and is also regarded as a more difficult task than 

general information retrieval as it not only requires retrieval of relevant documents containing 

the information, but also requires structured retrieval of entities, relationships, and their 

associated attributes. For the past decades several high impact methods were proposed to address 

the difficulty. Rule-based methods involve manual creation of rules and patterns but has major 

limitation on covering many variations in large unstructured and often noisy corpus. Statistical 

model based approaches overcome the issue by introducing Hidden Markov (HM), Maximum 

Entropy (ME), and Conditional Random Fields (CRF) models. Rule-based methods are generally 

easier to interpret while statistical model based methods are generally more robust to noisy 

unstructured text. Depending on the context of information extraction needs, above methods are 

commonly used in parallel or integrated way.  

 Extraction of relations from collections of documents follows two different ways. Given 

a relation between two entities r{e1, e2} where r denotes relation type and e1/e2 denote two 

different entities, the rule based methods and statistical model based methods attempt to match or 

predict the relation pair by using rich set of local and global linguistic features. This is normally 
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done at sentence level and we have discussed it in more detail in chapter 4. However it doesn't 

take into consideration that the two entities may be correlated in different sentences at paragraph 

level or abstract level. Taken an example of sentences from PubMed (23341638), where gene 

mentions "AP-1" and "SOX2" are located at different sentence than the disease "Huntington 

disease" mentioning sentence.  

 "On the basis of the sequence of regions that change in methylation, we identify AP-1 

and SOX2 as transcriptional regulators associated with DNA methylation changes, and we 

confirm these hypotheses using genome-wide chromatin immunoprecipitation sequencing (ChIP-

Seq). Our findings suggest new mechanisms for the effects of polyglutamine-expanded HTT. 

These results also raise important questions about the potential effects of changes in DNA 

methylation on neurogenesis and cognitive decline in patients with Huntington disease." 

(PubMed 23341638) 

 To accommodate such scenario, a deep syntactic parse tree across sentences is often 

needed to address co-reference concerns. However it is computationally prohibitive for large 

scale text mining task. Another approach to this problem is to utilize term co-occurrence counts 

in 'bag of words' way at abstract level, or at specified word window, to determine whether they 

are significantly co-related. Extracted terms are then ranked for researchers to make informed 

decision and novel hypothesis formulation.  

 In this chapter, we are concerned with extraction of disease associated genes from 

literature and prioritize them using graph theory methods. We will propose an integrated text 

mining and graph analysis approach to identify disease associated genes, using Huntington's 

disease as a case study. We first prepared a corpora by querying the PubMed with MeSH terms 
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of the specific disease to collect all documents that use the disease MeSH term as their major 

topic. The text collection is indexed by UMLS metathesaurus concepts and co-occurrence matrix 

are constructed. The extracted concepts are further disambiguated to construct gene-gene and 

disease-gene network. We then compiled a list of known disease associated genes from GAD 

database as initial seed genes associated with the disease and expand them to a large gene 

interaction network. The literature mined interaction network was then merged with the seed 

gene expanded network to form a heterogeneous disease-gene network for network analysis 

using graph theory. By using information extraction and network analysis methods, we intended 

to extract list of disease associated genes and prioritize them. 

 The rest of the chapter is organized as follows. An overview of related works on co-

occurrence based information extraction and biological network analysis is given in 5.2, 

followed by description of our gene-disease association extraction system architecture and 

methods in 5.3. The results is discussed in 5.4, and conclusion and future work are given in 

section 5.5. 

5.2 Related works 

 Gene-disease association extraction has been attracting much attention in recent years 

since the completion of human genome project and with the rapid development of proteomic 

technology. In (Adamic et al. 2002) a method to extract gene sets relevant to query of disease 

was presented using statistical analysis of gene-disease co-occurrence. Intuitively, if a gene 

mention occurs at the same frequency in a small disease-focused document collection as in a 

large non-disease focused document collection, based on normal approximation to the binomial 

distribution one would conclude the gene is not statistically associated with the disease. By using 
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a large number of PubMed collection (3 million abstracts) the authors could rank genes that are 

statistically correlated with leukemia and breast cancer. In (Singh and K 2005) a statistical 

method using term frequency and document frequency for co-occurrence of the diseases and 

proteins was presented. Similar to (Adamic et al. 2002), this study also used both positive 

collection (specific to disease of interest) and negative collection, but the negative collection is 

considerably smaller (40,000-45,000). In another study term co-occurrence based method has 

also been used together with rule-based association relation mining to rank gene-gene, gene-

disease associations in (Cheng et al. 2008).  

 Gene network study under graph theory framework has been widely applied in finding 

genetic linkage of variety of phenotypes (Mason and Verwoerd 2007b)(Lu et al. 2011)(Lage et al. 

2007). A general overview on information extraction using gene interaction network was given 

in chapter 2 literature review. In (Gonzalez et al. 2007) the authors first obtained a list of 

atherosclerosis associated genes or gene products from CBioC (Collaborative Bio Curation ) 

database, which contains automatically extracted facts including protein-protein interaction, 

gene-disease and gene-bioprocess relations and their accuracy were rated by a social network of 

biomedical researchers. The variants of gene names were then normalized to HUGO 

nomenclature (HUGO Gene Nomenclature Committee) and used as initial set to expand the 

network by nearest-neighbor algorithm using CBioC dataset. The extended set of genes were 

ranked by a heuristic scoring algorithm to predict the most likely disease associated genes. This 

approach integrated human annotation with the automated text mined gene-disease association 

relations. However their database are not publicly available. In another study (Chen and 

Sivachenko 2006) the authors created initial set of 70 Alzheimer's disease associated genes from 

OMIM (NCBI) and HUGO database. The set was extended by nearest-neighbor expansion to 
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construct a network consisting of 657 human proteins and 775 interactions using OPHID 

database which contains total ~9000 human proteins and ~40,000 interactions (Brown and 

Jurisica 2005). The authors then conducted statistical analysis to find all significant sub-networks 

that form higher connectivity among protein nodes than those randomly selected protein nodes 

from OPHID. Proteins in sub-network are scored using a heuristic relevance score function that 

takes into consideration of their overall role in the network and contribution to the sub-network. 

However the interactions among neighbors are not considered thus leads to bias towards the seed 

genes in their final ranked gene list.  

 In addition to heuristic scoring methods, centrality measurement of gene network is 

another important way to rank the node in the graph. Several studies have successfully applied 

degree, betweenness, and essentiality measurements from graph theory to rank importance of the 

genes in the interaction network (Joy et al. 2005)(Jeong et al. 2001)(Goh et al. 2007). In (Ozgür 

et al. 2008) a prostate cancer specific gene interaction network was built around a list of seed 

genes known to be related to the disease. Instead of expanding the initial gene set using protein-

protein interaction dataset from database, the genes associated with the initial gene set were 

mined from literature by syntactic dependency tree parsing and SVM classification. Specifically, 

sentences were filtered using a set of manually created interaction words to retain those 

sentences containing at least one seed gene and an interaction word. Syntactic dependency parse 

tree was applied to each sentence to extract the shortest path between two gene pairs. The 

similarity between extracted paths was measured by word-edit distance and was used as SVM 

kernel function to train a classification model on two golden standard corpus. The trained system 

was then applied on new sentences from PubMedCentral database to build gene interaction 

network related to prostate cancer. The text mined gene network was analyzed by node centrality 
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in the graph. Their results suggest that betweenness, eigenvector, and degree centrality perform 

best in ranking top 10 and 20 genes associated with prostate cancer. 

 In addition to homogeneous gene-gene or protein-protein interaction (PPI) networks, 

recently a holistic view of phenotype-gene interaction was also proposed to study the molecular 

mechanisms of common human disease. In this heterogeneous phenotype-gene network that 

combines both genetically similar phenotypes with their associated genes, it is possible to infer 

candidate disease associated genes by network topology measurement taking into consideration 

of phenotype-phenotype, phenotype-gene, and gene-gene associations (Yao et al. 2011). In (Lage 

et al. 2007)(Wu et al. 2008)(Lee et al. 2011) human disease associated candidate genes are 

inferred from the heterogeneous phenotype-gene network by their topological closeness to the 

disease based on the assumption that phenotypically similar human diseases are likely caused by 

functionally related genes.  

5.3 Experiments and results  

5.3.1 System design architecture 

 Figure 5-1 shows the system architecture of mining disease-associated genes from 

literature and ranking them based on network analysis. Our assumption is that the co-occurrence 

of the gene with the disease in the literature indicates its association likelihood with the disease, 

even though the association type may vary. The system integrated four major steps to 1) collect 

disease focused corpora for concept extraction and indexing, 2) perform union operation on gene 

co-concepts, followed by gene name disambiguation and normalization, 3) create initial seed of 

known disease-associated genes and expand seed genes to construct gene interaction network for 

the given disease, 4) build disease-gene heterogeneous network based on literature mined and 
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seed gene extended interaction network for network analysis and candidate disease-associated 

gene ranking. 

 

Figure 5-1. System architecture for disease-associated gene mining. 

5.3.2. Corpora preparation and indexing 

 We continued to choose Huntington disease as case study in our experiment. To prepare 

the corpora related to this disease, we queried PubMed literature database, currently containing 

more than 23 million citations for biomedical literatures, using MeSH term of the disease. MeSH 

(Medical Subject Headings) (NCBI) terms is set of controlled vocabulary thesaurus for indexing 
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PubMed abstracts and it allows us to collect abstracts with the disease as their major topic. Total 

8843 abstracts concerning Huntington disease were downloaded from PubMed using Entrez 

eUtil web service.  We used Dragon toolkit (Zhou et al. 2007) to extract and index biomedical 

concepts from document collection using UMLS meta-thesaurus. UMLS meta-thesaurus is one 

of the most comprehensive meta-thesaurus containing millions of biomedical and health related 

concepts, synonymous names, and their relations organized in a semantic network. Therefore we 

reasoned it is the most suitable resource from which the biomedical related concepts can be 

extracted. However, the limitation of concept based disease-associated gene extraction is that it 

is often ambiguous and redundant due to variations of biomedical named entities, which will 

introduce noise and result in high dimensionality problem. To address this concern, we 

performed co-concept union and disambiguation which we will discuss later. As mentioned 

earlier in this chapter, the concept extraction and indexing was performed at abstract level 

instead of sentence level to avoid losing any gene mention that are not co-localized with the 

disease mention in the same sentence, but do carry the information of disease association relation. 

The concept co-occurrence sparse matrix was build using the dragon toolkit during indexing 

process. 

5.3.3. Semantic context analysis of Huntington disease 

 We analyzed all concepts with semantic type "Disease or Syndrome" (UMLS TUI: T047) 

extracted from the corpora. The Huntington disease concept were extracted as UMLS concept 

C0020179 for Huntington Chorea (HD) and C0751208 for Juvenile Huntington Disease. 

According to wikipedia, "HD is the most common genetic cause of abnormal involuntary 

writhing movements called chorea, which is why the disease used to be called Huntington's 
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chorea". Juvenile Huntington Disease is an early onset HD at age before 20 and accounts for 5-

10% of HD cases (Warby, Simon C, Rona K Graham 2010). All disease/syndrome concepts co-

occurrence counts were normalized against Huntington Chorea (C0751208). Figure 5-2 shows 

the top 25 correlated disease/syndromes with C0751208 (HD), indicating its close association 

with syndromes including motor disorder, undernutrition, senile dementia, movement disorder, 

dystonia disorder, circadian dysregulation, late-onset disorder and early disease onset, gastric 

motor dysfunction, dyskinesia, and Parkinson like disorders. The disease is also closely related to 

other neurodegenerative diseases including Parkinson disease and Gehrig disease. The extensive 

spectrum of disease/syndrome concepts gave the semantic context annotation for the disease 

from another angle.  

 

Figure 5-2. Disease and symptom concept co-occurrence pattern. Co-occurrence (y-axis) 

was normalized against Huntington Chorea (C0020179). Two concepts for Huntington 
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disease (Huntington Chorea C0020179 and Juvenile Huntington Disease C0751208) were 

extracted from document collection. 

5.3.4. Co-concept union and human gene name normalization 

 We first filtered the extracted concepts to include all possible genes and gene products 

using selected UMLS semantic types. Considering the ambiguity in the UMLS meta-thesaurus 

(Lang et al. 2009) we expanded semantic types to include not only gene concept, but also 

nucleotide, molecular sequences, peptide, enzyme, receptor and protein related concepts. Table 

5-1 shows the expanded semantic types used for filtering. Although non gene or gene products 

will be introduced with the expanded semantic type, further gene name disambiguation step will 

exclude them from the final human gene list. 

Table 5-1. Expanded UMLS semantic types related to gene and gene products used for 

concept semantic filtering. 

Semantic type group Category TUI Description 

GENE Genes & Molecular Sequences T028 Gene or Genome 

GENE Genes & Molecular Sequences T087 Amino Acid Sequence 

GENE Genes & Molecular Sequences T088 Carbohydrate Sequence 

GENE Genes & Molecular Sequences T085 Molecular Sequence 

GENE Genes & Molecular Sequences T086 Nucleotide Sequence 

CHEM Chemicals & Drugs T192 Receptor 

CHEM Chemicals & Drugs T116 Amino Acid, Peptide, or Protein 

CHEM Chemicals & Drugs T126 Enzyme 

CHEM Chemicals & Drugs T125 Hormone 
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CHEM Chemicals & Drugs T129 Immunologic Factor 

CHEM Chemicals & Drugs T114 Nucleic Acid, Nucleoside, or Nucleotide 

 

 Gene mention normalization is an important step to map gene names and their variants to 

unique and officially approved symbols. For example, human GABBR1 gamma-aminobutyric 

acid (GABA) B receptor is also known as GB1, GPRC3A, GABABR1, and GABBR1-3. It can 

be normalized to Entrez Gene id 2550 referencing to its official name and all synonyms. If a 

gene name is mapped to more than one unique database entry, a further disambiguation step is 

required. Dictionary based and machine learning based methods are two commonly used 

approaches for gene mention disambiguation. Many studies have been devoted to this area of 

study. In order to bring community effort in this research area, BioCreative II has organized gene 

normalization (GN) task in conjunction with the gene mentioning (GM) task since 2006 

(Hirschman et al. 2005a).  

 We utilized the dictionary based method implemented in Moara java toolkit which stores 

BioThesaurus and Gene Ontology (GO) (Gene Ontology Consortium 2001) in a local MySQL 

database to normalize and disambiguate gene names (Neves et al. 2010). The BioThesaurus (Liu 

et al. 2006) is a comprehensive collection of protein and gene names with more than 2.8 million 

names extracted from different databases using cross-references provided by iProClass (Wu et al. 

2004). The disambiguation method takes input of the extracted gene mention and its text context, 

searches BioTheasaurus for the exact match. If more than one match is found it will generate an 

representative document for the gene in question using information from Entrez Gene and Gene 

Ontology (GO) databases to compare (1) the cosine document similarity between the text context 
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and the generated gene representative document, (2) the common tokens between the two 

documents, or (3) both document cosine similarity and common tokens between two documents. 

Cosine similarity is a well established document similarity measurement in IR based on vector 

space model, in which text is modeled by a vector of terms. Formally, it is represented as: 
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 where 
𝐷
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𝑄
→ denotes the document and query vector respectively, 

𝐷
→ .

𝑄
→ denotes their 

dot product,  
𝐷
→ 𝑎𝑛𝑑  

𝑄
→  denotes the length (or norm) of the document and query vectors. 

 The information used for representative gene document include gene aliases, symbols, 

description and summary, phenotypes, relations etc, all stored in local MySQL database. Using 

aforementioned disambiguation step, the predicted gene with highest score is selected as the 

normalized gene. 

 Total 15654 UMLS concepts were extracted from 8843 abstracts. After semantic type 

filtering and gene normalization step, 3416 human genes and gene products were mapped to 

unique Entrez Gene id. Among normalized human genes, total 336 were found to be associated 

with more than one UMLS concepts. For example, 6 extracted UMLS concepts with CUI 

C0806318 (HD gene.CAG repeats), C0252274 (HD protein, human), C0872189 (Huntington 

gene), C0872190 (Huntington protein), C0247953 (IT15 gene product, human), and C1415504 

(HTT gene) were normalized to the Entrez gene identifier 3064 (HD gene or HTT).  

5.3.5. Text graph and disease-associated genes extraction 
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 Driven by big data collected from large scale genome-wide gene expression measurement 

(microarray) and proteins/metabolites identification (mass spectrometry), graph theory has been 

applied on biomedical network study widely in recent years. For a literature overview of graph 

theory and biological networks please refer to chapter 2. In this section we focus on a special 

type of graph network, e.g. text graph. It has been well exploited in linguistic studies that 

correlation of words, terms, concepts can be represented and modeled as text graph, where 

vertices denote words or terms, and edges denote co-occurrence, syntactic, semantic, or 

orthographic relations between terms (Blanco and Lioma 2011). Early work conducted in 

(Minsky 1968) applied graph theoretic approaches on information retrieval (IR) and follow up 

studies have extended it to web search (Lawrence Page) and variety of IR applications to 

improve the retrieval performance.  

 We extracted gene-related biomedical concepts from literature and further disambiguated 

and mapped them to human genes. We next analyzed the correlation data between gene-gene and 

gene-disease in an aim to identify candidate HD associated genes. The correlation networks 

constructed in 5.3.4 are based on concept co-occurrence and no gene or protein expression data 

from external database is involved, therefore is treated as an undirected text graph, where nodes 

are normalized genes or Huntington disease, edges are their interactions and the co-occurrence 

counts are edge weights. Formally, the graph is defined as undirected graph G {V,E}, where G 

denotes the graph with set of vertices V, and set of edges E between pair of vertices u and v (u, v 

∈ V). Undirected graph G can be represented as an edgelist containing all edges in the graph, 

where uv ∈ E and u, v ∈ V. If the connection between two vertex u and v is either 0 (no 

connection) or 1 (connected), the graph is an un-weighted binary graph. Otherwise it is a 

weighted graph. Another way of network representation is a n x n symmetric matrix with vertices 
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as rows and columns, their binary relation or weighted relation as cell values. Equation 5.2 

shows a symmetric binary adjacency matrix A containing element Aij for un-weighted binary 

graph. 

 𝐴𝑖𝑗 =   
1  𝑖𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
   (5.2) 

 In equation 5.3 for a weighted undirected graph, Aij equals to the connection strength 

between pair of vertices: 

 Aij = weight of connection between vertex i and j                  (5.3) 

 The topological properties of network was pioneered by works in (P. Erdos 1960) on 

random graph and was later generalized to non random graphs. Random graph, by its name, is 

randomly generated graph for study under graph theory and probability theory. Major undirected 

and un-weighted graph topological properties used in this chapter are formally defined below: 

 1). Degree distribution 

 For each node u ∈ V, the degree is defined as number of edges connected to u. The degree 

distribution measures the probability of vertex u, e.g. P(u) having degree of k.  

 2). Average cluster coefficient distribution 

 The cluster coefficient Cu of node u is defined as: 

  𝑐𝑢 =
2𝑒𝑢

𝑘𝑢 (𝑘𝑢−1)
                (5.4) 

 where ku is the number of neighbors of node u, eu is the number of connected pairs 

between all neighbors of u (Watts and Strogatz 1998). It measures the tendency of nodes 
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clustering together. The average cluster coefficient distribution measures the average cluster 

coefficient of  all nodes in the graph with k neighbors (k=2...n).  

 3). Neighborhood connectivity distribution 

 The neighborhood connectivity of node u is the average connectivity of all neighbors of u 

and connectivity is defined as number of its neighbors (Maslov and Sneppen 2002). The 

neighborhood connectivity distribution measures the average of the neighborhood connectivity 

of all nodes with k neighbors (k = 0, 1, ... n).  

 4). Topological coefficient 

 The topological coefficient Tu of node u is defined as: 

  𝑇𝑢 =  
𝑎𝑣𝑔 (𝐽 (𝑢 ,𝑚))

𝑘𝑢
  (5.5) 

where ku is neighbors of node u and J(u,m) is the number of neighbors that shared between node 

u and m (Stelzl et al. 2005). It is a measurement of extend to which a node shares neighbors with 

others in the network. 

 5). Closeness centrality and its distribution 

 The closeness centrality of node u is defined as: 

  𝐶𝑐 𝑢 =  
1

𝑎𝑣𝑔 (𝐿 𝑢 ,𝑚 )
  (5.6) 

where L(u,m) denotes the length of the shortest path between node u and m (Newman 2003). The 

shortest path is also used to compute the network diameter which equals to the maximum length 
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of shortest paths between two nodes in the graph. The closeness centrality of all nodes against its 

neighbors is given as the network closeness centrality distribution. 

 6). Betweenness centrality and its distribution 

 The betweenness centrality of node u is defined as: 

  𝐶𝑏 𝑢 =    
𝜎𝜋 (𝑢)

𝜎𝜋
 𝑠≠𝑢≠𝑡   (5.7) 

 s, u, and t are nodes (𝑠 ≠ 𝑢 ≠ 𝑡). 𝜎𝜋  denotes the number of shortest paths between s and t, 

and 𝜎𝜋(𝑢) denotes number of shortest paths between s and t that u lies on (Brandes 2001). 

Compared to the global connectivity measurement, it is an more important local centrality 

measurement for a network node that equals to the number of shortest paths between all nodes 

that pass through the node. Similar to closeness centrality distribution, we plot the betweenness 

centrality distribution  as betweenness centrality of all nodes against its neighbors. 

 We developed BasicGraphCreation program using JUNG graph toolkit to construct the 

initial correlation network. The pseudo code is shown in figure 5.3. Figure 5.4 shows the 

generated correlation network with 3416 vertices and 47892 edges. 

 For networks generated by Cytoscape, we used two widely cited plug-ins, Network 

Analyzer (Assenov et al. 2008) and CentiScaPe (Scardoni et al. 2009), to compute the network 

parameters. For network generated by JUNG Java toolkit, we computed network parameters 

using its scoring algorithms and R package. 
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Figure 5-3. Pseudo code for building initial gene correlation network. 

 

 

Figure 5-4. The dense sub network of gene correlations. Each gene vertex is labeled with its 

Entrez gene id. 
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 Since we are interested in prioritizing genes that most likely associated with the disease, 

we filtered the network by including only the top n gene correlations ranked by their weights, e.g. 

co-occurrence between gene pairs. The resulting network consists of 310 connected vertices and 

was imported into Cytoscape (Shannon et al. 2003) for enhanced visualization. Figure 5-5-A 

shows that most genes are connected to the central hub gene (Entrez id 3064: HD gene or HTT) 

and the highly connected gene cluster is shown in 5-5-B.  

 

Figure 5-5. A) the network consisting of top n gene correlations. B) the highly connected 

gene cluster. The node is labeled with the Entrez gene id and the node size is mapped to its 

degree. 
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 After filtering network using its co-occurrence weight, we transformed the network to a 

undirected un-weighted binary graph. We computed the degree centrality, closeness centrality, 

and betweenness centrality for each gene and the top 20 ranked human genes are listed in table 

5-2. 

Table 5-2. The top 20 human genes ranked by degree, closeness, and betweeness centrality. 

The number in the parenthesis indicates Entrez gene unique id. 

Rank Degree centrality Closeness centrality Betweeness centrality 

1 HTT (3064) HTT (3064) HTT (3064) 

2 BDNF (627) APC (324) BDNF (627) 

3 GRINA (2907) SLC6A4 (6532) GRINA (2907) 

4 AR (367) CREBBP (1387) AR (367) 

5 NOS2 (4843) SEC16B (89866)  NOS2 (4843) 

6 APC (324) GABRR1 (2569)  SEC16B (89866) 

7 SLC6A4 (6532) MAP3K14 (9020) SLC6A4 (6532) 

8 CREBBP (1387) MAPK1 (5594) APC (324) 

9 MAP3K14 (9020) TS (775) MAP3K14 (9020) 

10 SEC16B (89866)  SET (6418) MAPK1 (5594) 

11 GNAO1 (2775) FACT (6749) LY6E (4061) 

12 GABRR1 (2569) CASP2 (835) GNAO1 (2775) 

13 LY6E (4061) ENG (2022) CREBBP (1387) 

14 MAPK1 (5594) ATP8A2 (51761) DHDDS (79947) 

15 WTS (9113) BLM (641) GABRR1 (2569) 

16 CASP2 (835) CHERP (10523) ATP8A2 (51761) 
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17 DRD2 (1813) PPP1R1B (84152) DRD2 (1813) 

18 FACT (6749) DRD1 (1812) CASP2 (835) 

19 TS (775) JNK (5599) BLM (641) 

20 ATP8A2 (51761) OTT (64783) CNTF (1270) 

 

 Several studies have taken the phenotype into gene network construction (Yao et al. 

2011)(Wu et al. 2008)(Lage et al. 2007)(Köhler et al. 2008) which leads to a heterogenic gene-

phenotype network. It provided a new way to study gene-gene interaction, phenotype-gene 

interaction (disease-gene interaction), and phenotype-phenotype interaction in the same 

heterogeneous network. To study the Huntington disease and gene correlation, we added HD 

disease to form a literature mined heterogeneous disease-gene network. Figure 5-5 shows the 

heterogeneous network for HD disease and its correlated genes. The network is filtered using 

edge weight cutoff of 500 (A) and 1000 (B) respectively. It shows a network with clustering 

coefficient of 0.31, which is significantly higher than the corresponding random network of 

0.0138, indicating its non-random network characteristics. The network analysis is given in 

figure 5-7. The degree distribution log-log plot (5-7-A) shows a scale-free network following a 

weak power law of degree distribution which fits function 𝑦 = 15.388𝑥−0.696  (correlation = 

0.778, R-squared = 0.564). Further analysis on the average clustering coefficient distribution 

(figure 5-7-B) suggests a highly clustered network with small number of neighborhood and then 

follows a power law cluster coefficient distribution with larger number of neighbors. The 

neighborhood connectivity distribution (figure 5-7-C) shows a decreasing function of node 

neighbors, suggesting edges between low connected and high connected nodes dominate the 

network. The topological coefficient distribution (figure 5-7-D) is the tendency measurement for 



97 
 

the node in our text graph to have shared neighbors, which indicates a power law decreasing of 

tendency for nodes with large number of neighbors. Two centrality distributions (figure 5-7-E 

and figure 5-7-F) suggest that few nodes with high centrality interconnect with majority of low 

centrality nodes. Among the high centrality nodes, the HTT (HD gene) forms the central hub for 

the network as indicated in table 5-2 and figure 5-4. Indeed, previous studies have demonstrated 

HTT plays the pivotal role in Huntington disease and the HTT-interactome, e.g. the interaction 

network around HTT, has been extensively studied using  proteomic approaches (Shirasaki et al. 

2012). 

 

Figure 5-6. the heterogeneous disease-gene correlation network with edge weight cutoff of 

500 (A) and 1000 (B). The red circle indicates the human genes and green rectangle 

indicates the HD disease. Entrez gene id is used to label gene node, "0" is used as the HD 

disease label. The network for A contains 292 node, 1243 edges, with cluster coefficient of 

0.31, diameter of 2, average path length of 1.971, and average number of neighbors of 8.514. 

A B 
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Figure 5-7. network analysis for degree distribution (A), average clustering coefficient 

distribution (B), neighborhood connectivity distribution (C), topological coefficients (D), 

closeness centrality (E), and betweenness centrality (F). 

5.3.6. HD disease associated gene network construction using seed genes 

 To construct a gene network related to Huntington disease using empirical protein-

protein interaction dataset, we started by collecting known disease-associated genes from 
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Genetic Association Database (GAD) (Kevin Becker, Kathleaen Barnes, Tiffani Bright 2004) 

and use them as seed genes. The GAD is a public repository collecting genetic associated data 

related to human diseases and is manually curated by National Institute on Aging. Total 41 genes 

associated with Huntington disease were compiled as seed genes to build gene interaction 

network using protein-protein interaction data from NCBI Entrez database (Table 5-3). The 

resulting network shown in figure 5-8 is a scale-free network with 1890 nodes and diameter of 6, 

cluster coefficient of 0.085, characteristic path length of 3.538, and average number of neighbors 

of 2.599. Further network analysis shown in figure 5-9 indicates the network follows a strong 

power-law degree distribution. The network topology follows a similar pattern with our text 

mined network but with more diverse distributions. 

 We analyzed the concept extraction and normalization for the 41 seed genes from GAD. 

Among them, 36 (87.8%) were extracted by our conceptual based information extraction and 

normalized to Entrez gene id that were validated manually. Table 5-3 shows the 41 seed genes 

and their extracted corresponding UMLS concepts and normalized Entrez id/symbols. 5 genes 

that do not have their corresponding UMLS concepts extracted were not normalized. It could be 

due to lack of related abstracts in our PubMed collection, lack of UMLS concept coverage, or not 

being extracted during text mining process. All 41 genes, however, were used for extended 

network construction detailed below. 

Table 5-3. List of 41 seed genes compiled from GAD database and their corresponding 

UMLS concept CUI. Concepts and symbols marked with * were not extracted or 

normalized during text mining process. 

Seed genes Entrez id Normalized Entrez symbol Extracted UMLS CUI 
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ADORA2A 28882 2 a a C0255998 

APOE 348 apoe C0003595, C1412481, C1370077 

ATG16L1 55054  * * 

ATG3 64422  * * 

ATG5 9474 5 atg C0531514 

ATG7 10533 7 atg C0758241 

ATN1 1822 drpla C1414155 

ATXN1 6310 1 ataxin C0380755, C0297041, C0807868, 

C1419828 

BDNF 627 bdnf C0084873, C1332408, C0966355 

BECN1 8678 1 becn C1412785, C1453431 

CBS 875 cbs C1439329 

CREBBP 1387 cbp C0056695, C1337090, C1454863, 

C0256079, C1455376  

FEN1 2237 1 fen C0541280, C0525494, C0252912, 

C1414583 

FMR1 2332 1 fmr C0806150, C1414649 

FTL 2512 ftl C1414852 

GRIK1 2897 5 glur C0536091  

GRIK2 2898 6 glur C0385096, C1415294 

GRIN2A 2903 2 a grin C1415299 

GRIN2B 2904 2 b grin C1415300 

GSTO1 9446 1 gsto C1421933 
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GSTO2 119391 2 gsto C1427885 

HAP1 9001 1 hap C1455520, C1455519 

HD 3064 hd C0252274, C0872190, C1456457, 

C1415504, C0247953, C0872189, 

C0806318 

HDAC1 3065 1 hd C1333891, C1333892, C1334032 

HEXA 3073 *  * 

HIP1 9026 1 hip C1415546, C1310518 

JPH3 57338 3 jph C1422484 

MAP2K6 5608 6 mek C1334475 

MAP3K6 9064  * * 

MAPT 4137 protein tau C0085401 

MTHFR 4524 mthfr C0919427 

MTR 4548 mtr C1417453 

MTRR 4552 mtrr C1417458 

OGG1 4968 1 ogg C1335081, C1313359, C0050091, 

C0167195 

PEX7 5191  * * 

POU3F2 5454 2 3 f pou C0250353, C1418762 

PRNP 5621 prnp C1418941, C0291825, C0285899 

STH 246744 saitohin C1137121 

TBP 6908 tbp C1337106 

UCHL1 7345 thiolesterase ubiquitin C0164005, C1436157, C1421309, 
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C1435231  

ZDHHC17 23390 14 hip C1175645 

 

 

Figure 5-8. Hunting disease associated gene network using 41 seed genes compiled from 

GAD. 
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Figure 5-9. network analysis of Huntington disease associated gene network expanded from 

41 seed genes. 

5.3.7. Merge of literature mined HD disease-gene network with seed gene expanded 

network 

 We merged the seed gene expanded interaction network with the disease-gene 

heterogeneous network mined from literature to form a super graph by network union. Since 
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both networks utilized Entrez gene id as node identifier therefore identifier translation step is not 

needed, and the super graph is merged by Entrez identifier matching. As described in section 

5.3.4, the Huntington disease is identified by unique id 0 in the merged network. The union 

process can be defined as follows: 

 For graphs G1{V1, E1} and G2{V2, E2} the union of both graphs is G{V, E}, where 

𝑉 = 𝑉1 ∪ 𝑉2 𝑎𝑛𝑑 𝐸 = 𝐸1 ∪ 𝐸2. 

 Figure 5-10 shows the merged heterogeneous disease-associated gene network. The 

center located HD disease is colored in red and the seed genes in green. The merged network is 

the neighborhood of the 41 seed genes and Huntington disease node. 
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Figure 5-10. Merge of text graph with the GAD 41 gene network. The HD disease is 

highlighted in red color, and seed genes are in green color. Each gene node is labeled by its 

Entrez official name and the Huntington disease node is labeled by its official name. 

 We computed the 3 centrality measurements for gene nodes in the merged network and 

the top 25 most central genes is presented in table 5-4. In table 5-5 the precision of centrality 

ranking for top 10 and 25 genes are given as percentage of the top ranked 10 or 25 genes that are 

from the 41 seed gene set, which we use it as golden standard for evaluation. The betweenness 
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centrality performs best for top 10 (92% precision) and top 25 (92.2% precision) disease 

associated gene ranking. The degree centrality achieves 70% and 44.4% precision for top 10 and 

25 genes ranking respectively. The closeness centrality achieves 60% and 22.4% for top 10 and 

25 genes ranking. 

Table 5-4. Top 25 genes ranked by centrality of the merged disease-gene heterogeneous 

network. Genes in bold font are seed genes and others are inferred disease associated genes. 

Rank Degree centrality Betweeness centrality Closeness centrality 

1 HDAC1 HDAC1 MTHFR 

2 HTT HTT NAA38 

3 CREBBP CREBBP HTT 

4 ATXN1 ATXN1 UBC 

5 TBP UBC HDAC1 

6 BDNF TBP CREBBP 

7 ATN1 ATN1 TBP 

8 GRINA PRNP HSPA4 

9 AR HAP1 AR 

10 NOS2 MAPT PIAS1 

11 HAP1 APOE EP300 

12 MAPT UCHL1 TP53 

13 SEC16B  BECN1 MAPK8 

14 SLC6A4 GRIN2B SP1 

15 PRNP CBS CTBP1 
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16 APC ATG7 MYC 

17 MAP3K14 FTL JUN 

18 GNAO1 FEN1 SET 

19 LY6E HEXA CTNNB1 

20 ERK HSPA4 BDNF 

21 APOE FMR1 PPARG 

22 DHDDS ATG3 SUMO1 

23 ATP8A2 BDNF HEY2 

24 GABRR1 ATG16L1 ACACA 

25 BLM MTR CREB1 

 

Table 5-5. Percentage of top 10 and 25 genes associated with Huntington disease based on 

41 seed genes. 

Top n Degree centrality Betweeness centrality Closeness centrality 

10 0.7 0.9 0.6 

25 0.44 0.92 0.24 

 

 In figure 5-11 we plotted the scatter chart for degree and betweenness centrality of top 20 

ranked genes. Their biological significance to the Huntington disease will be discussed in section 

5.4. 
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Figure 5-11. Scatter plot for degree (x-axis) and betweenness (y-axis) centrality of top 20 

Huntington disease associated genes ranked by betweenness centrality. 

5.4. Discussion and conclusion 

 In this chapter we presented a novel method to extract and rank disease associated genes 

through information extraction and network analysis. By using concept based information 

extraction approach we were able to build co-occurrence matrix between biomedical concepts 

using UMLS metathesaurus. We analyzed the correlation of extracted syndromes and diseases 

with HD disease to gain deeper understanding of semantic context about HD in our document 

collection. We also showed that concepts related to genes and gene products can be filtered and 
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joined by gene normalization, which allow us to construct a text graph containing concepts of 

interest, e.g. genes and disease, in order to analyze their associations under graph theory. 

Topological analysis of networks constructed from literature mining, seed gene expanding from 

database, and the heterogeneous network combining two, provided an integrated approach to 

study gene-disease associations. By taking global network topology into account, the hidden 

relations between gene-gene and gene-disease that do not occur in the same document can 

potentially be identified.  

 Our experiments suggest concepts network mined from literature forms a scale-free 

network with HTT gene as its central hub, consistent with the finding that biological networks 

are scale-free with power law distribution of connectivity around network hubs. As shown in 

figure 5-1 system architecture, our experiment starts with topic-focused PubMed document 

collection on Huntington disease, on which many empirical studies have been carried out to 

exploit its genetic association factors in an aim to find novel diagnostic and prognostic 

biomarkers. By using known HD associated genes from GAD as golden standard, we have 

shown our concept based extraction and gene normalization approach could retrieve 87.8% of 

known HD associated genes from 8843 PubMed abstracts out of millions of PubMed citations. 

We used the normalized genes and the HD disease to construct the heterogeneous disease-gene 

network. Network analysis using centrality of graph theory indicates the HTT is the central hub 

which is in well agreement with existing clinical and basic researches on HD (Bordelon 2013) 

(Shirasaki et al. 2012). Our integrated approach also revealed several predicted HD associated 

genes with high network centrality property. Among top ranked predicted genes in table 5-5 and 

figure 5-10, UBC is the polyubiquitin gene involved in ubiquitin proteolytic process and it has 

been shown presence of  ubiquitin-positive neuronal inclusion bodies in HD brains (Li and Li 
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2011) as well as involvement of UBC gene (Bett et al. 2009). NOS2 or iNOS has been reported 

to be inhibited by Minocycline which delays Huntington disease progression in mouse model 

R6/2 (Thomas et al. 2004). HSPA4 is reported in NCBI AceView database to be functionally 

associated with Huntington disease (Cornett et al. 2005). The ERK is recently proposed as a 

novel target for Huntington disease in (Bodai and Marsh 2012). The NMDA receptors (GRIN 

glutamate receptor, ionotropic, N-methyl-d-aspartate) may also influence the variability in age of 

onset (AO) of HD (Arning et al. 2005). HD Research Crossroads database contains over 800 

extensively curated genes relevant to HD (Kalathur et al. 2012). In (Kalathur et al. 2012) a global 

profiling based on this database have predicted 24 candidate genetic modifier of HD disease.  

Among top 25 of our predicted genes, SUMO1, CREB1, and HSPA4 are on their genetic 

modifier list. 

 To the same problem of finding candidate genes associated with human diseases from 

literature there exists different methods including co-occurrence based, rule based, and machine 

learning based relation extraction, with each having its own advantages and disadvantages. It is 

noted however, the co-occurrence based approach has its limitations on ranking newly identified 

disease associated genes, as that not many papers have been published to support the finding 

which leads to lower co-occurrence counts. By integrating bag-of-words co-occurrence, rule-

based syntactic analysis and statistical method, and graph theory will likely to boost the novel 

disease-associated gene identification in terms of extraction precision and recall. It will be a 

subject of our future work. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

 Information extraction (IE) in biomedical domain concerns itself with extraction of 

entities and their relationships for concise and precise data representation as well as decision 

making. Inspired by the growing interests on exploiting disease-gene relations and its application 

on future personalized medicine, in this thesis we focused our work on mining specific disease 

associated genes using IE methods ranging from the disease and gene entity recognition, to 

relation extraction and graph representation of their interaction networks.  

6.1. Contributions of this thesis 

6.1.1 Disease and gene named entity recognition 

 As the first step towards information extraction of disease associated genes, in chapter 3 a 

statistical machine learning approach (CRF method) was utilized to formulate the disease NER 

as a sequential prediction problem. The key to success of this approach lies on how document 

features are presented and how domain knowledge are utilized for the conditional statistical 

modeling. To this end, we explored rich set of textual features, and analyzed effect of domain 

specific POS tagging , domain specific dictionary, and entity encoding schemas on NER system 

performance. The results show that they are important factors contributing to the performance 

improvement of our disease NER system. We then utilized the sentence level semantic concept 

information as one of discriminative features for disease named entity recognition. Our method 

takes advantage of semantic types related to disease concept in UMLS metathesaurus by fuzzy 

dictionary lookup. We developed a new algorithm to engineer semantic concept feature into 

feature space for CRF training. The results show significant improvement for the performance of 

current disease NER methods with this new feature. To our knowledge, this is the first time the 
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semantic concept type is used as an important feature to improve biomedical named entity 

recognition. 

 Regarding the first research question, e.g. how to better represent text with concept 

features to improve disease NER using machine learning based approach, experimental results 

show UMLS semantic concept can be effectively incorporated into machine learning based NER 

to improve the overall disease NER performance and the concept feature and domain knowledge 

base enhanced NER outperforms state-of-the-art systems on this specific problem. 

6.1.2. Disease-gene relation extraction 

 In chapter 4 we focused on another aspect of IE, e.g. relation extraction for disease-gene 

associations. We attempt to answer the question on how to develop efficient relation extraction 

machine learning model for disease associated gene mining. In this study we constructed an 

annotated corpora with human diseases and gene entities, annotated by NER system described in 

chapter 3 followed by manual curation. The relation extraction system uses the string kernel 

based SVM classification method to learn the global and local contextual information 

surrounding the two entities. Experimental results show that the global tri-grams 'bag-of-words' 

feature is more effective than local contextual features for disease-gene relation extraction, 

suggesting this shallow linguistic kernel based machine learning is a feasible and efficient 

approach to extract disease-gene relations from large text corpora. 

6.1.3. Mining disease associated genes using IE and graph theory 

 Machine learning based relation extraction for mining disease-associated genes suffers 

from one major limitation, which is its reliance on annotated training corpora. In many real-
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world applications the quantity and quality of annotated corpora are not guaranteed. Moreover, 

biomarker information is often dispersed in the entire abstract, thus making the machine learning 

based relation extraction at sentence level not an ideal solution to this problem.  

 In chapter 5 we presented a novel approach to identify and prioritize disease associated 

genes using concept co-occurrence and graph theory. In order to address research question on 

how to represent gene-gene and gene-disease network in concept space and achieve dimension 

reduction for the concept text graph, as well as how to incorporate concepts mined from 

literature with empirical data from protein interaction database to reveal and prioritize disease-

associated genes by network topology analysis, we constructed text graph to represent disease 

gene network based on concept co-occurrence matrix. We demonstrated the feasibility of 

creating such text graph from large document collection by filtering the semantic types of 

concept and further gene name disambiguation and normalization. We expanded the network 

using a set of experimentally validated seed genes and protein-protein interaction dataset. The 

topology of resulting disease-gene heterogeneous network is analyzed, and important gene nodes 

are ranked by network centrality measurements. In consistent with findings on topology of most 

biological networks, the expanded heterogeneous network shows scale-free property, power law 

degree distribution, and connected by central hub genes. We demonstrated that centrality 

measurements not only retrieved known disease associated genes, but also revealed novel disease 

associated genes. These results provide us some useful insights into graph representation of 

concept space in biomedical information extraction field.   

6.2. Future work 
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 Mining biomarker genes from literature, as an increasing important subject of 

information extraction, involves multiple steps and each step can be approached by different 

methods. In this thesis we applied state-of-the-art machine learning methods, graph theory, and 

to some extent the concept space framework, to address key issues related to biomedical entity 

recognition as well as relation and knowledge extraction.  

 There are several aspects need further works with regards to above steps. 

 Firstly, in addition to concept type feature, semantic feature space need to be further 

exploited for machine learning based NER. A richer semantic feature space is expected to reduce 

the feature sparsity and noise commonly seen with bag-of-words feature space. Meanwhile high 

dimensionality of feature space can be addressed by feature induction method, which iteratively 

reduce high dimensional feature set by only preserving those features with information gain 

during training process. It is also interesting to utilize large silver-standard corpora such as 

CALBC for machine learning based NER, especially for certain biomedical subdomains that lack 

golden-standard corpora. 

 Secondly, for our preliminary work on machine learning based relation extraction, it is 

necessary to expand the annotated corpora size by including documents referenced by other 

major genetic association databases. Alternatively, phrases that describe disease-gene 

associations can be utilized to replace the manually annotated corpora. Source of such phrases 

can come from GeneRIF database, and potentially other online databases including OMIM, 

EntrezGene, and other metathesaurus and ontologies. Although shallow linguistic based 

contextual features have been shown in our results to be efficient for kernel based relation 
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learning, other features including parse tree and semantic features may also be considered in our 

future work. 

 Finally, in chapter 5 the text window between co-location of conceptual entities can be 

defined to distinguish co-occurrence at phrasal, sentence, paragraph, and section level. This 

granulate of constraint applied on the discoursed concept entities will be useful to improve 

computing of the association measurement and to better represent the associated entities in the 

text graph. Additionally, rule-based syntactic analysis and statistical method can be incorporated 

into our graph theory based solution to boost the recall and precision of disease associated gene 

identification and ranking. It is noted that newly published disease-associated genes with co-

occurrence below cutoff threshold may not be ranked high. By utilizing large control negative 

corpora and statistical co-occurrence based methods their ranking may be boosted to reveal more 

predicted novel genes. 
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