
 
 
 
 

Characterizing and Managing Risk from Environmental Release of  

Pathogens of Concern 

 
 
 
 

A Thesis 
 

Submitted to the Faculty 
 

of 
 

Drexel University 
 
 
 
 

by 
 

Tao Hong 
 

in partial fulfillment of the 
 

requirements for the degree 
 

of 
 
 
 
 

Doctor of Philosophy 
 
 
 
 

December 2011 

 

  



ii 

 
 

 

 

 

 

 

 

 

 

 

 

© Copyright 2011 

Tao Hong. All Rights Reserved. 

  



iii 

 
 

Acknowledgements 

 

First and foremost I would like to acknowledge Dr. Patrick Gurian, my academic 

supervisor, for his guidance, dedication, and support in the course of my graduate studies 

at Drexel University. I am deeply impressed by his enthusiasm, inspiration, knowledge, 

wisdom, and keen insight. He has invested enormous efforts and provided tremendous 

help in every aspect throughout all phases of this venture, and I could not have completed 

this work without him.  

 

I would also like to express my appreciation to my thesis committee members, Dr. 

Charles Haas, Dr. Wen Jin, Dr. Anu Pradhan, and Dr. John Domzalski, for their valuable 

comments, suggestions, and recommendations. My thanks also go to my Master thesis 

committee members, Dr. Joan Rose and Dr. Mira Olson. In addition, it was both an honor 

and a privilege to work with Dr. Haas and Dr. Rose, true pioneers in this field. 

 

Moreover, I am grateful to the financial support through the Center for Advancing 

Microbial Risk Assessment, by the U.S. Environmental Protection Agency and U.S. 

Department of Homeland Security, under the Science to Achieve Results (STAR) grant 

program (grant number: R83236201). 

 

Last but definitely not least, many thanks are extended to my colleagues and 

friends for their assistance in many different ways during my stay at Drexel University.   



iv 

 
 

Table of Contents 
 
 
 
CHAPTER 1: BACKGROUND ......................................................................................... 1 
 

1.1 The history of biological attack ................................................................................. 1 

1.2 The 2001 anthrax letter attacks ................................................................................. 3 

1.3 Pathogens of Interest ................................................................................................. 5 

1.3.1 Bacillus anthracis ............................................................................................... 7 

1.3.2 Yersinia pestis ................................................................................................... 10 

1.3.3 Francisella tularensis ....................................................................................... 12 

1.3.4 Variola major .................................................................................................... 15 

1.3.5 Lassa virus ........................................................................................................ 16 

1.4 Objective of this dissertation ................................................................................... 18 

CHAPTER 2: A BAYESIAN APPROACH TO MODEL CALIBRATION FOR B. 
ANTHRACIS RISK ASSESSMENT ................................................................................. 22 
 

2.1. Introduction ............................................................................................................ 24 

2.2 Methods ................................................................................................................... 26 

2.2.1 Risk assessment model ..................................................................................... 26 

2.2.2 Spore Concentration Data ................................................................................. 32 

2.2.3 Modeling Approach .......................................................................................... 35 

2.2.4 Bayesian updating............................................................................................. 39 

2.2.5 Modeling Scenarios .......................................................................................... 40 

2.3 Results and Discussion ............................................................................................ 43 

2.4 Appendix A ............................................................................................................. 58 



v 

 
 

CHAPTER 3: CHARACTERIZING BIOAEROSOL RISK FROM ENVIRONMENTAL 
SAMPLING ...................................................................................................................... 63 
 

3.1 Introduction ............................................................................................................. 64 

3.2 Methodology ........................................................................................................... 65 

3.2.1 Fate and transport model (forward modeling) .................................................. 66 

3.2.2 Particle identification (inverse modeling) ........................................................ 70 

3.2.3 Modeled scenarios ............................................................................................ 74 

3.2.4 Evaluation framework ...................................................................................... 75 

3.3 Results ..................................................................................................................... 78 

3.4 Application of the sampling scheme ....................................................................... 94 

3.5 Discussion ............................................................................................................. 101 

3.6 Appendix B ........................................................................................................... 102 

CHAPTER 4: PRIORITIZING RISKS AND UNCERTAINTIES FROM 
INTENTIONAL RELEASE OF SELECTED CATEGORY A PATHOGENS............. 104 
 

4.1 Introduction ........................................................................................................... 106 

4.2 Methods ................................................................................................................. 110 

4.2.1 Fate and transport model ................................................................................ 110 

4.2.2 Release scenarios ............................................................................................ 115 

4.2.3 Dose-response functions ................................................................................. 116 

4.2.4 Linking pathogen concentrations to risk ........................................................ 117 

4.2.5 Model Inputs ................................................................................................... 125 

4.3 Results ................................................................................................................... 131 

4.3.1 Linking pathogen concentrations to risk ........................................................ 135 

4.3.2 Parameter uncertainties................................................................................... 150 



vi 

 
 

4.4. Discussion ............................................................................................................ 154 

4.5 Appendix C ........................................................................................................... 162 

CHAPTER 5: CONCLUSION AND FUTURE RESEARCH ....................................... 181 
 

5.1 General conclusion ................................................................................................ 181 

5.2 Future research ...................................................................................................... 183 

5.2.1 Assumptions and limitations .......................................................................... 183 

5.2.2 Response and recovery framework ................................................................. 187 

LIST OF REFERENCES ................................................................................................ 190 
 
VITA ............................................................................................................................... 206 
 

  



vii 

 
 

List of Tables 
 
 
 
Table 1-1 Features and representatives of biological agents   .............................................. 6

Table 2-1 Information of different modeling stages   ......................................................... 33

Table 2-2 Surface sample types and concentrations   ......................................................... 34

Table 2-3 Summary of updating scenarios   ....................................................................... 42

Table 2-4 Spearman's rank correlation between risk and inputs   ...................................... 49

Table 2-5 Models with highest coefficient of determinations (R2) for different numbers of 
regressores and size fractions based on pre-BMC data   .................................................... 52
 
Table 2-6 Models with highest coefficient of determinations (R2) for different numbers of 
regressores and unknown size fractions based on pre-BMC data   ..................................... 53
 
Table 3-1 Results for approaches to identify three size fractions   ..................................... 80

Table 3-2 Results for approaches to identify two size fractions   ....................................... 83

Table 3-3 Results for approaches to identify 1 micron size fraction   ................................ 90

Table 3-4 Results for approaches to identify 10 micron size fraction   .............................. 92

Table 3-5 The standard deviation and its uncertainty for the error term   .......................... 97

Table 4-1 Category A Pathogen’s Environmental Persistency   ....................................... 126

Table 4-2 Best Fit Dose-Response Model   ...................................................................... 127

Table 4-3 Model Inputs   ................................................................................................... 128

Table 4-4 Time scale for a 6-log risk reduction due to natural attenuation   .................... 145

Table 4-5 Concentrations of pathogens on horizontal surfaces associated with risk of 10-3

 ......................................................................................................................................... 147
 
Table 4-6 Equipment detection limit associated risk   ...................................................... 149

Table 4-7 Parameter uncertainties with most influence on risk   ...................................... 153

Table 4-8 Properties of parameters uncertainty   .............................................................. 158



viii 

 
 

Table 5-1 Table of major assumptions  ............................................................................ 185

  



ix 

 
 

List of Figures 
 
 
 
Figure 1-1 Dissertation Analysis Plan   .............................................................................. 19
 
Figure 2-1 Schematic of the modeled office   ..................................................................... 28
 
Figure 2-2 Time series of different model stages   ............................................................. 36
 
Figure 2-3 Flow chart of BMC updating   .......................................................................... 38
 
Figure 2-4 Prior and posterior CDF for the total released quantity, risk of exposed people, 

and the quantity of spores exit the room.   .................................................................. 44
 
Figure 2-5 Prior and posterior CDF for the resuspension rate   .......................................... 45
 
Figure 3-1 Schematic of single room office suite   ............................................................. 67
 
Figure 3-2 Number of spores in different environmental compartments over time for a 

single room model.   .................................................................................................... 72
 
Figure 3-3 Evaluation framework used in this study   ........................................................ 77
 
Figure 3-4 The distribution of Bacillus anthracis with different diameters after 8 hours.   89
 
Figure 3-5 The relationship between a sample scheme's reliability and its sample size   100
 
Figure 4-1 Schematic of model   ....................................................................................... 114
 
Figure 4-2 Different types of risks associated with aerosol release of 1 micron Category 

A pathogens.   ............................................................................................................ 132
 
Figure 4-3 Different types of risks associated with surface release of 1 micron Category 

A pathogens.   ............................................................................................................ 133
 
Figure 4-4 The ratio of accumulative inhalation and ingestion exposure.   ...................... 134
 
Figure 4-5 Relationship between risks to the exposed people and pathogen concentration 

identified from the HVAC filter.   ............................................................................. 136
 
Figure 4-6. Retrospective risks associated with B. anthracis HVAC concentrations after 

an aerosol release.   .................................................................................................... 138
 
Figure 4-7. Cumulative retrospective risks associated with Y. pestis HVAC 

concentrations after an aerosol release.   ................................................................... 139



x 

 
 

 
Figure 4-8 Cumulative retrospective risks associated with F. tularensis HVAC 

concentrations after an aerosol release.   ................................................................... 140
 
Figure 4-9 Cumulative retrospective risks associated with Variola major HVAC 

concentrations after an aerosol release.   ................................................................... 141
 
Figure 4-10 Cumulative retrospective risks associated with Lassa HVAC concentrations 

after an aerosol release.   ........................................................................................... 142
 
Figure 4-11 Risk and uncertainty for different pathogens   .............................................. 151

  



xi 

 
 

ABSTRACT 
 
 

Characterizing and Managing Risk from Environmental Release of Pathogens of Concern 
Tao Hong 

Patrick L. Gurian, Ph.D., Supervisor 
 
 

The 2001 anthrax letter attacks not only caused the deaths of 5 people, the 

distribution of prophylactic antibiotic therapy to more than 30,000 people, and the cost of 

hundreds of millions of dollars to decontaminate the affected buildings, but also 

reminded decision makers of the urgency of having a risk management framework for 

response and recovery from a biological incident in a timely manner. In order to address 

this concern, the overall objective of this dissertation is to develop mathematical models 

to promote the understanding of a biological attack, to reduce uncertainty and variability 

in risk assessments of bioterrorism agents, and to provide information for decision-

making steps to minimize the associated mortality and economic loss. This dissertation 

first adopted the Bayesian Monte Carlo (BMC) method to validate a previously published 

risk assessment framework by the author, which developed surface concentration 

standards for B. anthracis by linking surface contamination levels with estimates of risk 

to exposed individuals. The benefit of this analysis significantly reduced uncertainties in 

the estimated human health risk, which provided more accurate information for the 

decision makers seeking to identify the proper response. Then this dissertation focused on 

characterizing the risk of a biological release. It developed a 7-step evaluation framework 

for choosing the sampling and modeling approach which most accurately recovers details 

of a release from surface samples. The findings of this analysis not only answered the 

question "what is the best place to sample?", but also provided insights as to the quantity 
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of samples that should be taken. The last chapter of this dissertation extends the fate, 

transport, and risk assessment model by synthesizing available information on five 

Category A pathogens (Bacillus anthracis, Yersinia pestis, Francisella tularensis, Variola 

major and Lassa) to develop quantitative guidelines for how environmental pathogen 

concentrations may be related to human health risk. These findings provide critical 

information for developing a risk-informed biological attack response system. Questions 

such as "how to estimate if risks warrant the distribution of prophylactic antibiotics?", 

and "how to choose between active or passive decontamination approaches?" were 

addressed. 
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CHAPTER 1: BACKGROUND 
 
 

It has been ten years since Al Qaeda's terrorist attacks on the World Trade Center 

and the Pentagon, which were followed by the mailing out of a series of letters containing 

B. anthraces spores to multiple destinations in 2001. Since then, attention and resources 

(billions of dollars) have been spent by the US government in order to prevent future 

domestic terrorist attacks and to improve its emergency response system [109, 209]. 

Quantitative microbial risk assessment (QMRA), derived from chemical risk assessment, 

is a robust tool to prepare such a response system. It is designed to deliver critical 

information to decision makers, by estimating the casualties of a terrorist attack, and 

prioritizing different mitigation options [70, 71]. A standard QMRA framework is 

composed of four elements, hazard identification, dose-response evaluation, exposure 

assessment, and risk characterization [117]. However, a major challenge to a QMRA 

framework is the difficulty of handling uncertainty and variability, which can be due to a 

lack of precise knowledge or an inherent property of the factors under consideration [12, 

25, 122]. Thus, the overall objective of this dissertation is to develop mathematical 

models to promote the understanding of a biological attack, and reduce uncertainty in the 

risk assessment. 

 

1.1 The history of biological attack 

According to the Centers for Disease Control and Prevention's (CDC) definition, 

bioterrorism is "the deliberate release of viruses, bacteria, or other germs (agents) used to 
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cause illness or death in people, animals, or plants" [31]. A narrower view expressed by 

Carus is that nonideologically motivated uses of biological agents belong to the category 

of biocrimes.[29]. Compared to conventional weapons, biological ones, also known as 

"the poor man's atom bomb" [144], can produce panic, havoc and casualties which 

profoundly disrupt the stability of a society [190]. Four reasons can explain the 

emergence of bioterrorism: 1) natural access to the pathogens, 2) fewer technical 

challenges, 3) relatively low costs to launch an attack, and 4) more difficulty in detecting 

the victims' infection due to the pathogens' incubation period and the fact that many 

diseases not caused by bioterrorism have similar symptoms [192].  

 

Historically, the earliest record of employing biological agents as a warfare 

weapon can be traced back to ancient Roman civilization. The Romans threw carrion into 

their enemies' wells to pollute the drinking water [13]. In the 14th century, the Tatars 

utilized bubonic plague as a weapon to infiltrate the city of Kaffa, resulting in some of 

the inhabitants escaping in ships with infected rats and fleas. Later, those ships' multiple 

entrance to various Italian ports became the source of the Black Death, which wiped out 

nearly a third of Western Europe [13]. In the modern era, infamous instances of 

biological warfare happened during World War II (WWII), including the Japanese 

military's release of plague in China, and the Soviets' tularemia attack towards German 

Panzer troops [13]. Even after WWII, investigations of biological weapons were still 

continued. It was reported that more than 10 types of pathogens were able to be 

effectively delivered in forms of aerosol spray or bomblets [126, 190]. 
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In recent years, prior to the 2001 anthrax letter attacks, identified bioterrorism 

attacks and biocrimes included the release of Salmonella typhimurium to eleven 

restaurants' salad bars in order to influence an election in the city of Portland in 1984, 

causing the infection of 750 people; the release of Shigella dysenteriae into pastries by a 

co-worker, sending 12 people to the hospital in Dallas in 1996 [70]; and the release of 

Bacillus anthracis spores in Tokyo by the religious group Aum Shinrikyo between 1990 

and 1995, which failed to infect any people [13, 157]. After comparing attacks that 

happened before and after the 1990s, terrorist scholars found there was a revolutionary 

transformation in nature of terrorism, since the 'new terrorism' 1) is more inspired by 

religious beliefs; 2) has amorphous irreconcilable objectives; 3) has global targets; 4) has 

a horizontal and loose network; 5) pursues symbolic violence; 6) employs more lethal 

and indiscriminate violent tactics; and 7) is closely related to weapons of mass 

destruction [7, 64, 83, 105, 145, 165, 208]. 

 

1.2 The 2001 anthrax letter attacks 

The 2001 anthrax letter attacks have changed the realm of public health [95]. 

These letters not only caused the deaths of 5 people and the distribution of prophylactic 

antibiotic therapy to more than 30,000 people, but also required hundreds of millions of 

dollars to decontaminated the affected buildings [163]. Although the 2001 anthrax letter 

attacks are considered to be the "worst case of bioterrorism in U.S. history", they are 

treated as relative small scale attacks compared to the ones with the potential to bring 

thousands of deaths [65]. In 1970, the World Health Organization (WHO) predicted that 
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if 50 kg of B. anthracis spores were released by aircraft over an area with a population of 

5 million, the number of casualties would be around 25,000 [206]. In 1993, the US 

Congressional Office of Technology Assessment estimated that the lethality of releasing 

100kg of B. anthracis spores upwind of Washington, DC area was equivalent to a 

hydrogen bomb, causing 3 million deaths [187]. In a recently study, Wein et. al. indicated 

that if the released amount of B. anthracis spores were reduced to 1 kg with 50% 

dissemination efficiency over a large U.S. city of 1.39 million people, there could be as 

many as 146,269 mortalities [197]. Based on the above three estimates and the 2001 

anthrax letter attacks, a large-scale biological attack on a U.S. city could contaminate 

both indoor and outdoor environments, requiring a resource consuming decontamination, 

and rendering a city uninhabitable for long time period [65]. 

 

From the 2001 anthrax letter attacks, decision makers realized the urgency of 

having a risk management framework, for response and recovery from a biological 

incident in a timely manner [136, 188]. This framework should address a number of 

critical knowledge gaps in perspectives of risk characterization and future damage control, 

including propagating the uncertainties in the risk assessment, developing consensus-

based surface sampling methods and validating their results, justifying the selection of a 

decontamination endpoint, and creating a publicly acceptable prophylactic antibiotic 

storage and distribution plan [67, 176].  
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1.3 Pathogens of Interest 

In the year 1999, the Centers for Disease Control (CDC) reclassified biologic 

agents into three categories based on their ease of transmission, mortality rate, disruption 

of social order, and level of public panic. Table 1-1 lists the features of the three 

categories of pathogens and their representatives [30, 150, 190]. In this study, five 

pathogens (Bacillus anthracis, Yersinia. pestis, Francisella tularensis, Variola major and 

Lassa) from Category A are selected, and their risk to exposed people will be investigated. 
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Table 1-1 Features and representatives of biological agents  

Category Feature Pathogens 

Category A 

• Easily to disseminate 
• High mortality rates 
• Might cause public panic and 

social disruption 
• Require special action for public 

health preparedness 

• Bacillus anthracis 
• Clostridium botulinum toxin 
• Yersinia pestis 
• Variola major 
• Francisella tularensis 
• Ebola, and Lassa 

Category B 

• Moderately easy to disseminate 
• Moderate or low mortality rates  
• Require specific enhancements of 

CDC's diagnostic capacity and 
enhanced disease surveillance 

• Brucella species 
• Clostridium perfringens 
• Salmonella species 
• Burkholderia mallei 
• Burkholderia pseudomallei 
• Chlamydia psittaci 
• Coxiella burnetii 
• Ricinus communis 
• Staphylococcal enterotoxin B 
• Rickettsia prowazekii 
• Alphaviruses 
• Vibrio cholerae 
• Cryptosporidium parvum 

Category C 
• Available to be engineered and 

disseminated 
• Low mortality risk 

• Emerging infectious diseases 
such as Nipah virus and 
hantavirus 

Information extracted from [30, 150, 190] 
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1.3.1 Bacillus anthracis  

Bacillus anthracis is an aerobic, Gram-positive, non-motile, spore-forming 

bacterial species which is the causative agent of anthrax, a potentially fatal bacterial 

infection. The bacteria will sporulate when the environment is not suitable for continuous 

multiplication. Bacillus anthracis spores are resistant to heat, ultraviolet, drying, and 

many chemical disinfectants [50, 191]. Two reasons can be explained for terrorists using 

Bacillus anthracis spores as their weapon. One is that Bacillus anthracis particles can be 

readily obtained from scientific and natural sources, cultivated, possibly “weaponized”, 

stored, transported, and released as aerosols using a variety of delivery systems [94]; the 

other reason is the high mortality rate once people are infected. 

 

1.3.1.1 Forms of anthrax 

a) Cutaneous anthrax  

Cutaneous anthrax is the most common form of anthrax and accounts for 90%-95% 

of anthrax infections all over the world [50, 191]. Neck, head and extremities are 

common areas where infection may initiate after direct or indirect contact with infected 

animals or their products, while transmission by insects after feeding on infected animal 

is rare [143]. Antibiotic treatment is recommended for cutaneous anthrax which can 

reduce the mortality from 20% to almost 0% [50, 94]. 

 

b) Inhalational anthrax 

Inhalational anthrax is less common. It occurs after spores entering the upper 

respiratory system are engulfed and transported by alveolar macrophages to the 
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peribronchial lymph nodes, where the spores germinate and spread throughout the body 

in blood [50]. Only 18 cases of inhalational anthrax were reported in the US in the 20th 

century, most due to occupational exposure, such as meat-packing, animal hair-sorting 

and tanning [82, 94]. The early diagnosis of inhalational anthrax is difficult unless there 

is a known outbreak. However, the onset of symptoms can occur after several weeks from 

exposure [50]. Historically, the mortality rate of inhalational anthrax is over 90%, but the 

2001 anthrax letter attacks indicated that early antibiotic treatment could reduce the 

mortality rate to 45% [84]. 

 

c) Gastrointestinal anthrax 

Gastrointestinal anthrax is more common in herbivorous animals than in humans 

and usually occurs in undeveloped countries as a result of ingesting undercooked infected 

meat. There were no records of gastrointestinal anthrax in the USA before 1999 [50] or 

Britain before 1994 [191]. However, 24 cases of oral-oropharyngeal anthrax were 

attributed to ingesting contaminated water buffalo meat in the north part of Thailand, and 

6 infections were reported in Turkey in 1986 [168]. Since the symptoms of 

gastrointestinal anthrax are not specific, difficulties in diagnosing the disease may miss 

the recommended treatment period, which contributes to a relatively broad  mortality rate 

range from 4% to 50% [167, 191]. 

 

1.3.1.2 Epidemiology of anthrax 

Accidental human infection with Bacillus anthracis is very rare. It is estimated 

that there were only 2000 cases worldwide annually in the 1980s, and 80% of these cases 
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were initiated by industrial exposure [57]. The largest outbreak in the USA happened in 

1957. Nine (9) goat hair-processing plant workers were infected and 4 of them died. At 

worldwide level, 79 persons contracted anthrax and 68 of them died because of an 

accidental release of B. anthracis spores from a military laboratory in Sverdlovsk, 1979 

[1, 118]. It is estimated that aggressive antibiotic treatment could have increased the 

survival rate to 20% for people who suffered inhalational anthrax in Sverdlovsk [118]. 

Between 1979 and 1980, 182 died of anthrax out of 10,000 human infection cases in 

Zimbabwe; in Tibet, China, 162 deaths out of 507 infections occurred in 1989; and in 

western mountainous part of China, there were 898 human infections reported in 1996 

with a 5% fatality rate, and 1,210 human infections with a 3% fatality rate reported in 

1997. There are high numbers of human anthrax cases in Spain, from 152 in 1990 to 50 

in 1996 [57, 92]. Though the threat from accidental exposure to Bacillus anthracis has 

been reduced with the improvement of industrial hygiene and development of vaccines, 

the potential of employing this Category A agent as a weapon causing massive casualties 

is evidently high. 

 

1.3.1.3 Bacillus Anthracis as a weapon 

Before 2001, bioterrorism-related anthrax was a concern only in tabletop 

exercises [17]. However, since terrorists have employed Bacillus anthracis as a biologic 

weapon, the realm of public health has been changed. On September 18th, envelopes 

containing Bacillus anthracis spores were mailed to news media companies and 

government officials, leading to the first bioterrorism-related cases of anthrax in the 

United States [95, 135]. Around October 9th, a letter containing threatening language 
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along with Bacillus anthracis spores was opened in the mail handing area of a Senate 

office suite in the Hart Senate Office Building, Washington, DC [135, 199]. These 

attacks caused the deaths of 5 people and cost hundreds of millions of dollars to clean the 

contaminated buildings [163]. 

 

1.3.2 Yersinia pestis  

Yersinia. pestis (Y. pestis) is a facultative anaerobic, Gram-negative, non-motile, 

nonsporulating bacterial species which is the causative agent of plague, an acute and 

potentially fatal bacterial infection. Unlike B. anthracis, Y. pestis is susceptible to heat, 

ultraviolet, drying, and chemical disinfectants [76, 126]. 

 

1.3.2.1 Forms of plague 

a) Bubonic Plague 

Bubonic Plague is the most common form of plague. It is transmitted via the bite 

of an infected rodent flea which might inoculate up to thousands of organisms into 

patients' skin [27]. Surviving Y. pestis pathogens can enter the bloodstream, migrate to 

lymph nodes, cause hemorrhaging, and create painful buboes [44]. It is reported that 80% 

of bubonic plague cases can develop bactermia, 25% can develop septicemia and 10% 

can develop pneumonia as a complication, resulting in a 50%-60% mortality rate for 

infected people without medical interference [76]. Thus, antibiotic treatment is 

recommended for bubonic plague which can significantly reduce the mortality [32]. 
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b) Pneumonic Plague 

Similar to anthrax, pneumonic plague is less common. But it is human to human 

transmissible via close contacts (within 2 meters) with a final-stage patient whose red 

sputum contains an enormous number of pure culture bacilli [119]. Pneumonic plague 

occurs after Y. pestis is inhaled into the respiratory system [76]. Sometimes pneumonic 

plague can be misdiagnosed as influenza which may miss the best time for medical 

treatment [27, 100]. Literature reports indicate that appropriate antibiotic treatment can 

increase the survival rate to 85% from 0% survival probability without treatment. 

 

c) Septicemic Plague 

In septicemic plague, disseminated intravascular coagulation is caused by 

bacterial endotoxins, forming tiny clots throughout the body and uncontrollable bleeding. 

Usually, untreated septicemic plague is fatal, but early treatment with antibiotics is able 

to reduce the mortality rate to 4%-15% [27, 44].  

 

1.3.2.2 Epidemiology of plague 

Historically, at least 3 pandemics were caused by plague. The first recorded 

plague pandemic began in AD 541 afflicting the Eastern Roman Empire and caused the 

death of 100 million people (50% to 60% population loses) which is also known as the 

Justinian plague. The second pandemic, the black death, began in 1346 peaking in Europe 

which killed 30% to 60% of Europe's population (20 to 30 million). The third pandemic 

spread China in 1855, which killed more than 12 million people including people in India 

[44, 100, 115, 142, 169]. 

http://en.wikipedia.org/wiki/Septicemia�
http://en.wikipedia.org/wiki/Disseminated_intravascular_coagulation�
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The improvement of living condition, public hygiene level, and antibiotic therapy 

have blocked the possibility of plague-caused pandemics [44]. During the decade of 1994 

to 2003, the number of both suspected and confirmed human-plague cases was 28,530, 

with a fatality rate of 7.1% resulting in 2015 deaths, as reported by the World Health 

Organization (WHO) [203]. In the United States, 390 cases of plague were reported from 

1947 to 1996, with a median of 7 cases of plague per year approximately [33, 44, 76]. 

 

1.3.2.3 Y. pestis as a weapon 

Although it is technically challenging to weaponize Y. pestis, the feature of 

secondary person-to-person transmission makes it become a favorable biological weapon 

to some. In WWII, a secret branch of the Japanese army, Unit 731, attempted to use 

plague as a weapon in Harbin, the northern part of China. The former Soviet Union 

successfully created large quantities of Y. pestis that can be placed into weapons, while 

U.S. scientists failed due to pathogen's lack of persistence in the environment. Unlike 

naturally occurring plague, an outbreak of pneumonic plague, whose initial symptoms are 

similar to other severe respiratory illnesses, would be likely to happen if aerosolized Y. 

pestis were disseminated [44, 75, 99, 126]. In 1970, the WHO estimated that if 50 kg of Y. 

pestis were intentional aerosolized over a city with 5 million population, as many as 

36,000 people would die of pneumonic plague based on a mortality rate of 24% [202].  

 

1.3.3 Francisella tularensis 

Francisella tularensis (F. tularensis) is an aerobic, Gram-negative, non-motile, 

nonsporulating bacterial species which is the causative agent of tularemia. Humans are 
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very sensitive to tularemia, and it is reported that as few as 10 organisms are able to cause 

disease. Similar to Y. pestis, F. tularensis is often transmitted to humans via the bites of 

infected fleas [81, 144].  

 

1.3.3.1 Forms of tularemia 

a) Ulceroglandular Tularemia 

Ulceroglandular tularemia is the most common form of tularemia accounting for 

over 90% of cases in European countries. Ulceroglandular tularemia is usually caused 

through vectorborne transmission or direct skin contacts with infected animals, such as 

rabbits, moles, muskrats, and some domestic animals [81, 140, 180]. Once infected, a 

mosquito bite-like ulcer is developed, becoming tender and palpable by draining lymph 

nodes [62]. Other rare but initiated by membrane contact forms of tularemia includes 

oculoglandular tularemia, and oropharyngeal tularemia [62, 77].  

 

b) Pneumonic Tularemia 

If pathogens are inhaled through the respiratory system, pneumonic tularemia is 

likely to occur. The disease is transmissible from person to person. Although the 

mortality rate of inhalational tularemia is up to 30% without medical intervention, 

antibiotic treatment will greatly lower the rate to less than 2% [45, 48]. 

 

1.3.3.2 Epidemiology of tularemia 

The geographical distribution of tularemia is uneven with low prevalence in the 

southern hemisphere. Regions of high prevalence include Scandinavia, Russia, and the 
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United States. For the United States, the number of tularemia cases has been reduced 

from several thousand per year before 1950 to 125 during the last decade [15, 34, 35, 44]. 

High correlation has been reported between the outbreaks of human tularemia and rodent 

tularemia. For example, tularemia in voles and hares has been associated with human 

outbreaks in Sweden [181].  

 

1.3.3.3 F. tularesis as a weapon 

F. tularesis has been viewed as a candidate biological weapon for ages due to its 

combination of high infectivity and severe illness in humans [159]. It is one of the 

pathogens investigated by Unit 731, a branch of Japanese secret army, during the Second 

World War. Scientists from the U.S. developed weapons aerosolizing F. tularesis 

between the 1950s and 1960s, which were gradually destroyed after 1969. The former 

Soviet Union was reported to develop antibiotic-resistant F. tularesis, and a former 

scientist, Ken Alibek, implied the usage of tularaemia as a bioweapon during WWII on 

the Eastern Front [45, 99, 140]. In 1969, a group of experts from WHO estimated that if 

50 kg of virulent F. tularesis were intentional aerosolized over a metropolitan area with a 

population of 5 million, the number of causalities would be 250,000 including 19,000 

deaths [202]. The Centers for Disease Control and Prevention (CDC) estimated that the 

economic loss caused by a terrorist releasing F. tularesis would be $5.4 million per 

100,000 exposed persons, which is based on WHO's model [98]. 
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1.3.4 Variola major 

As a member of Poxviridae, Variola major is one of the most complex viruses. It 

is the causative agent of smallpox with a fatality rate of 30% [125]. Similarly to Y. pestis 

and F. tularensis, smallpox can be transmitted by directly contacting an infectious 

person's droplet nuclei or aerosols expelled from the oropharynx [194]. 

 

1.3.4.1 Forms of smallpox 

Clinically, there are two types of smallpox, variola major and minor, where the 

former one is the severe and most common one. Four types of smallpox caused by these 

viruses have been identified. The most frequent type is ordinary smallpox, which 

accounts for 90% or more of cases. The second type is modified smallpox, which is mild 

but can infect previously vaccinated persons. The third and fourth types are named flat 

and hemorrhagic smallpox, which are rare but fatal. Variola minor is a less common 

presentation of smallpox, and a much less severe disease, with death rates historically of 

1% or less [125, 126, 150].  

 

1.3.4.2 Epidemiology of smallpox 

The earliest evidence of smallpox is found in the Egyptian mummies from 3000 

years ago [89]. Historically, smallpox has been spread throughout the world [81]. In the 

mid-18th century, smallpox was considered a major endemic disease, since it infected 

people globally, and killed 400,000 people per year [79]. In the 20th century, around 300-

500 million people died due to smallpox [155]. To eradicate smallpox, an intensified 

global eradication program began in 1967, which aimed to vaccinate over 80% of the 
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population, and to develop a system of detecting and containing cases and outbreaks 

[155]. The eradication of smallpox was certified by WHO in the year 1979 [125, 155].  

 

1.3.4.3 Variola major as a weapon 

Smallpox is a good bioterrorism agent because it is easy to grow and can resist 

heat [78]. It was first used as a biological weapon during the French and Indian Wars by 

the British, who distributed blankets used by smallpox patients to the American Indians, 

killing more than 50% for the affected tribes [54, 78]. In 1980, the WHO recommended 

that all remaining samples of the variola major virus should be destroyed or transferred to 

the reference laboratories in the US and Russia [78]. However, concerns about whether or 

not these virus samples were securely held were raised after the emergence of a report by 

Ken Alibek, a former deputy director of the Soviet Union's civilian bioweapons program. 

Alibek believed that the smallpox based bioweapons, such as bombs and intercontinental 

ballistic missiles, were secretly prepared until at least 1992. If this is true, it would cause 

serious problems once terrorists have access to these weapons, since the financial support 

for those research agencies has been sharply declined recently, which provide motivation 

for rogue scientists to sell organisms to terrorist groups [13, 78]. 

 

1.3.5 Lassa virus 

Lassa virus, the causative agent of Lassa fever, is transmitted by rats and was not 

identified until 1969 in the town of Lassa, Nigeria [151]. The Lass virus is an enveloped, 

single-stranded, bisegmented RNA virus [138]. Humans can contract this disease from 

the bite of an infected arthropod, from the aerosol of infected rodent excreta, or from 
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direct contact with infected animal carcasses [107]. Lassa fever can be transmitted 

between humans via close contacts [14].  

 

1.3.5.1 Symptoms of Lassa fever 

Clinically, the symptoms of Lassa fever are indistinguishable from other 

hemorrhagic fevers such as Ebola and Marburg. After an incubation period of six to 

twenty-one days, an acute illness with multiorgan involvement develops. Symptoms 

include fever, sore throat, and vomiting, while complications include mucosal bleeding, 

sensorineural hearing deficit, pleural effusion, pericardial effusion, and hemorrhage [151]. 

 

1.3.5.2 Epidemiology of Lassa fever 

Lass virus is endemic in West African countries, where there are 300,000 to 

500,000 infections annually, with approximately 5,000 deaths [138]. It is estimated that 

about 15-20% of hospitalized Lassa fever patients will die from the illness, while this 

number can increase to 50% during epidemics [51, 151]. The prevalence of antibodies to 

the virus in the populations is 8-52% in Sierra Leone, 4-55% in Guinea, and 21% in 

Nigeria [151]. 

 

1.3.5.3 Lassa virus as a weapon 

In 1999, CDC classified the Lass virus as Category A agent because it has the 

ability to cause widespread illness and death, is easy to disseminate, and be transmitted 

from person to person transmission. Large quantities of Lass virus-based weapons were 

produced by the former Soviet Union and Russia until 1992 [14]. 
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1.4 Objective of this dissertation 

To address gaps identified in the 2001 anthrax letter attacks, the overall objective 

of this dissertation is to develop mathematical models to promote the understanding of a 

biological attack, to reduce uncertainty and variability in risk assessments of bioterrorism 

agents, and to provide information for decision-making steps to minimize the associated 

mortality and economic loss, which is explained by three sub-objectives (Figure 1-1). 
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Figure 1-1 Dissertation Analysis Plan 
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The first objective is to validate a previously published risk assessment 

framework by the author, which developed surface concentration standards for B. 

anthracis by linking surface contamination levels with estimates of risk to exposed 

individuals [85]. The objective is accomplished by applying the Bayesian Monte Carlo 

(BMC) method to the indoor particle fate and transport model developed by Sextro et al. 

[162] and used by Hong et al. [85]. Field data [199] collected from the Hart Senate Office 

Building, after a letter containing B. anthracis spores was opened, are employed to 

update distributions for model parameter values (e.g., turbulence intensity, particle 

density, setting velocity, resuspension rate, sample recovery efficiency, risk to exposed 

people, etc.). While the available field data may not be sufficient to fully identify all 

parameters using classical model calibration techniques, when used in a BMC updating 

procedure they may allow for more informative parameter distributions to be developed. 

At a minimum, the BMC procedure can ascertain if the observations conflict 

substantively with the surrogate-based parameter estimates used previously [85, 162].  

 

The second objective aims to address the question of whether the risk due to a 

microbial release can be identified based on simple aggregate concentration 

measurements, such as could reasonably be made after an actual release. The successful 

estimation of this information is valuable in predicting the subsequent dispersion and 

human health risks. In order to assess how much detail on release can realistically be 

identified from surface sampling results, a variety of alternative model formulations and 

sampling schemes are considered, whose results are tested by a 7-step evaluation 

framework. The recommended sampling schemes are further investigated by applying 
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them to concentration measurements from a large scale field test, which aims to provide 

insights between a sampling scheme's uncertainty and its required sample size. 

 

The last objective extends the framework validated in Objective 1. It synthesizes 

available information on five Category A pathogens (Bacillus anthracis, Yersinia pestis, 

Francisella tularensis, Variola major and Lassa) to develop quantitative guidelines for 

how environmental pathogen concentrations may be related to human health risk. An 

integrated model of environmental transport and human health exposure to biological 

pathogens is constructed which 1) includes the effects of environmental attenuation, 2) 

considers fomite contact exposure (ingestion or dermal risk) as well as inhalational 

exposure, and 3) includes an uncertainty analysis to identify key input uncertainties. A 

reduced form model is also derived which allows for approximate estimation of risk 

without the need to conduct matrix manipulations. The findings from this study will 

provide a framework for developing many different environmental standards that are 

needed for making risk-informed response decisions, such as when prophylactic 

antibiotics should be distributed, and whether or not a contaminated area should be 

cleaned up [190]. 
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CHAPTER 2: A BAYESIAN APPROACH TO MODEL CALIBRATION FOR B. 
ANTHRACIS RISK ASSESSMENT 

 
 

Abstract  

In this study, the Bayesian Monte Carlo (BMC) method was applied to an indoor 

pathogen fate and transport model [85]. Uncertainty distributions for model parameters 

(i.e., release quantity, risk to exposed people, the amount of spores exiting the room, 

particle density, setting velocity, resuspension rate, sample recovery efficiency, etc.) were 

updated by comparing model predictions with measurements of B. anthracis spores made 

after one of the 2001 anthrax letter attacks [199]. The results indicated that uncertainties 

associated with the total quantity of spores released, the amount exiting the room, and 

risk to occupants could be significantly reduced. However, posterior distributions for fate 

and transport parameters and sample recovery efficiency were not greatly changed from 

their prior values, indicating that literature estimates of these parameters are not 

inconsistent with the observations made by Weis et al. [199]. Posterior estimates of risk 

for people in the room when the spores were released are on the order of 4.7×10-3 to 

2.2×10-2, which supports the decision to administer prophylactic antibiotics. Risks 

associated with spores leaving the room where spores were released are more difficult to 

characterize but a recommendation to perform risk assessments even for individuals 

outside the room when the release occurred appears justified. In addition, analyses were 

conducted to assess how effective different combinations of measurements were at 

reducing uncertainty in the estimate risk. This analysis revealed that if the size 

distribution of the released particulates is known, then environmental sampling can be 
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limited to accurately characterizing floor concentrations, otherwise samples from 

multiple locations, as well as particulate and building air circulation parameters need to 

be measured.  
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2.1. Introduction 

The series of 2001 anthrax letter attacks not only caused the deaths of 5 people 

and hundreds of millions of dollars in clean up costs [163, 178], but also highlighted the 

difficulties in assessing risks associated with bioterrorism agents [85]. Risk 

characterization of a biological attack requires a practical approach to estimate the total 

release quantity, as well as ground-truthed mathematical models to evaluate the 

subsequent dispersion and human health risks [146].  

 

Many researchers have developed models describing the fate and transport of 

various particulates in the indoor environmental [120, 131, 146, 149, 152, 162, 171, 173, 

184, 183, 189]. For instance, Hong et al. [85] applied the fate and transport model of 

Sextro et al. [162] in a risk assessment framework to inform the development of surface 

concentration standards for B. anthracis. However, predictions from these models are 

dependent on the quality of their inputs, which inevitably contain significant amounts of 

uncertainties given current knowledge. In particular, the parameter estimates for these 

models are based on surrogates, typically household dust, which may not be 

representative of the behavior of weaponized B. anthracis spores. One of the few sources 

of information on the environmental fate and transport of B. anthracis spores released 

during an actual bioterrorism event is a study by Weis et al. [199] which reported field 

data on the behavior of B. anthracis spores used in the 2001 anthrax letter attacks. These 

data may provide some basis for assessing whether the model parameter estimates used 

by Sextro et al. [162] and Hong et al. [85] are appropriate for a B. anthracis bioterrorism 

incident. However, the large number of parameters in these models may allow multiple 
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sets of different parameter values to fit the data equally well. In cases such as these, 

where parameter identifiability is a concern, the use of Bayesian Monte Carlo (BMC) 

techniques may be helpful [18]. 

 

The BMC approach [18] is a robust tool for model calibration. While classical 

model calibration methods require inputs to be either parameters fit to match the 

calibration data or fixed constants, the BMC approach allows inputs to be defined by 

probability distributions that reflect prior knowledge of their likely values. Posterior 

probability distributions are then developed by comparing the model predictions with 

observed data. Informative prior distributions can be developed in this domain because 

many parameters describing the indoor environment, such as turbulence intensity and air 

exchange rates, fluctuate within bounds that can be defined to some extent by available 

technical knowledge. BMC provides an approach to employ this prior knowledge of 

plausible parameter ranges to calibrate the model [18, 69, 160]. By drawing not only on 

the data, but also prior knowledge, BMC methods may be able applied in situations 

where classical model calibration would be unable to identify parameters (i.e., cases 

where the model would be overfit to the available data). There are numerous successful 

examples of BMC approaches, including applications to water quality evaluation [49], 

environmental health risk assessment [18, 40], traffic queue modeling [69], fate and 

transport of DDT in the environment [160], and identification of contaminant source 

characteristics from sensor network observations [41, 174, 175]. In many BMC studies 

the posterior distribution is estimated by reweighting the results of a Monte Carlo 

simulation. In this study due to the high dimensionality of the model being estimated (19 
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parameters), it becomes unlikely that any combination of prior model parameters will fall 

in a region of substantial posterior density. For this reason a Markov Chain Monte Carlo 

(MCMC) method is used to sample the posterior distribution. While the computational 

method used here differs from many previous studies, the framework of updating prior 

model parameters distributions with data is unchanged, and hence we consider this study 

to be an application of the BMC approach.  

 

In this paper, the BMC method is applied to the indoor particle fate and transport 

model developed by Sextro et al. [162] and applied by Hong et al. [85]. Field data [199] 

collected from the Hart Senate Office Building, after a letter containing B. anthracis 

spores was opened, are employed to update distributions for model parameter values. 

While the available field data may not be sufficient to fully identify all parameters using 

classical model calibration techniques, when used in a BMC updating procedure they 

may allow for more informative parameter distributions to be developed. At a minimum, 

the BMC procedure can ascertain if the observations conflict substantively with the 

surrogate-based parameter estimates used previously [85, 162]. 

 

2.2 Methods 

2.2.1 Risk assessment model 

The risk assessment model of Hong et al. [85] has two components, a fate and 

transport model, predicting the distribution of released B. anthracis spores in an office, 
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and a dose-response model, estimating human health risk from inhalation of the released 

B. anthracis spores. A schematic plot of the modeled office is provided in Figure 2-1.  
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Figure 2-1 Schematic of the modeled office 
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The office includes seven compartments: air, tracked floor, untracked floor, walls, 

ceiling, heating ventilation and air conditioning (HVAC), and the nasal passages of 

occupants of the office. B. anthracis spores are modeled as being released 

instantaneously to the air compartment and completed mixed. Spores deposit to the 

tracked floor, untracked floor, walls, and ceilings, can be removed by the HVAC filter, 

can exit the office after passing the HVAC filter, and can be inhaled by the occupants. 

Most of the movements are irreversible, however, B. anthracis spores deposited on the 

tracked floor have the ability to reenter the air due to human-caused resuspension. The 

fate and transport of released B. anthracis particles is described by a set of ordinary 

differential equations (Equation 1), for which a detailed solution can be found in Hong 

[85]: 
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where the numbers of spores in the different compartments are denoted by Mair (air), Mtf 

(tracked floor), Mutf (untracked floor), Mw (walls), Mf (filter), Mec (external compartment) 

Mce (ceiling), and Mn (nasal passages). The total air flow rate through the HVAC system 

is denoted by Q (m3/min), p (dimensionless) is the fraction of total air flow that is 

recirculated into the building by the HVAC system, e (dimensionless) is the efficiency of 

the filter at removing particles, and V is the volume of the room (m3). Removal to the 
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occupants’ nasal passages is modeled with I (m3/ min), denoting the breathing flow rate 

and en (dimensionless) the efficiency of the nasal passages at removing particles. 

Resuspension from the tracked floor due to occupants walking and other activities is 

modeled as a first order process with rate constant µ2 (s-1). Deposition from the air 

compartment is modeled as a first-order process with rate constants (s-1) of λtf (deposition 

to tracked floor), λutf (untracked floor), λw (walls), and λce (ceiling), which can be 

expressed by parameters representing the indoor air flow conditions [103, 130, 207]: 

( )
( )
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where D (m2/s) is the particle diffusivity, ke (s-1) is turbulence intensity, and Vt (m/s) is 

particle settling velocity, which is given in Equation 5 as a function of the particle's 

diameter (d), the viscosity of air (µair), the density of the particle (ρp), and the density of 

air (ρair). 

2 ( )
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ρ ρ
µ
−
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    (5) 

 

 

The completely mixed assumption in the fate and transport model can miss 

localize areas of high concentrations. However, it is still true that, assuming first order 

processes, the average surface concentration of the room will be proportional to the 
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integral of the average air concentration over time. Thus, updating can be performed on 

average surface concentrations, but the error in the measured concentrations needs to 

reflect the sampling variability of the mean. In addition, sampling may not be 

representative of average conditions but may focus on or accidentally omit the area in the 

immediate vicinity of the release. This contributes an addition element of uncertainty to 

the analysis that cannot be readily quantified. In most cases, we believe that sampling 

will be biased toward more highly concentrated areas, resulting in over estimates of the 

release amount and conservative (health-protective) estimates of risk. 

 

In addition to the fate and transport model described above, a risk assessment 

model is included to quantify the hazard posed by inhaling B. anthracis spores. An 

exponential dose-response model (Equation 6) is selected for particle sizes less than or 

equal to 5μM, while a beta-Possion dose-response model is used for 10μM particles 

(Equation 7) based on a study by Bartrand et al. [11]: 

( ) 1 kdoseRisk dose e−= −     (6) 

( ) 1 (1 )doseRisk dose α

β
−≈ − +     (7) 

where Risk (dose) is the probability of positive response (death) corresponding to a 

certain exposure level, k is the parameter of an exponential dose-response model, and α, β 

are parameters of a beta distribution describing variability in survival probability [71]. 

The dose is estimated by integrating the concentration of B. anthracis over the exposure 

time (Equation 8).  

2

1

 ( )
t

airt
dose Inh C t dt= ∫     (8) 
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The details of the fate and transport model, including the ranges of inputs (parameters to 

be updated), are provided in Table A-1 of the supporting information. 

 

2.2.2 Spore Concentration Data 

The spore concentration data used in the updating process are based on sampling 

of the Hart Senate Office Building after a letter containing B. anthracis spores was 

opened as one of the 2001 series anthrax attacks [198, 199]. Three rounds of air sampling 

were conducted including two types of sampling schemes: semiquiescent sampling and 

active sampling. In the semiquiescent sampling scheme, one person placed and adjusted 

the sampler, but no one was present in the room during the subsequent sampling period. 

While in the active sampling scheme, three people set up the sampler and simulated daily 

office activities during the sampling period. The profiles of different sampling schemes 

are summarized in Table 2-1. Air concentrations were measured in each sampling scheme, 

and the differences were attributed to levels of human-caused resuspension. Besides air 

concentrations, fabric office dividers' concentrations were sampled from vertical surfaces, 

and horizontal concentrations were sampled from the carpet, as shown in Table 2-2 [198]. 

However, it is likely that measurements reported in Table 2 vary from the true values due 

to imperfect sample recovery efficiency [21, 61, 66]. Two parameters, R_air and R_surf 

are introduced to represent the recovery efficiencies for air and surface samples, 

respectively. Prior distribution for these parameters (given in Table A-1 of Supporting 

Information) were based on a review of the literature [22, 23, 42, 56, 60, 61, 66, 80]. 
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Table 2-1 Information of different modeling stages 

Stage name 
Stage 

number 
Description 

Simulation 
duration 

Number 
of people 
simulated 

HVAC 
status 

Simulated 
parameter 

Initial release and 
quarantine period 

1 

Anthrax 
letter open 

period 
15 mins 10 on  

Vaccant 
period 

1 week 6days 
23 hours and 45 

minutes 
0 off  

Semiquiescent 
sampling period 

2 

Sampler 
setup 

10 mins 1 off  

Taking 
samples 

10 mins 0 off Cair_semi 

Interval between 
sampling period 

3  12 hours 0 off  

First round active 
sampling period 

4 

Sampler 
setup 

10 mins 3 off  

Taking 
samples 

10 mins 3 off Cair_act1 

Interval between 
sampling period 

5  12 hours 0 off  

Second round 
active sampling 

period 
6 

Sampler 
setup 

10 mins 3 off  

Taking 
samples 

10 mins 3 off 
Cair_act2 

Cfod_act2 

Ccap_act2 
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Table 2-2 Surface sample types and concentrations 

*Simulated spore concentrations on the HVAC filter of Stage 1 (CHVAC) is assumed to be log normally distributed with the mean 7.54 and standard error 0.67. 

 

Location Sampling period Symbol 
Concentration 

(CFUs/m3 ) 
Log 

concentration 
Mean 

concentration 

Mean of the log 
transformed 

concentration 

Standard error 
of the 

concentration 

Standard error of the 
log transformed 
concentration 

Air Semiquiescent Cair_semi 
14.1 2.7 

7.3 1.7 6.1 1.0 2.0 0.7 
6.0 1.8 

Air Active period 1 Cair_act1 
85.6 4.5 

35.2 2.8 44.2 1.6 16.7 2.8 
3.3 1.2 

Air Active period 2 Cair_act2 
49.1 3.9 

41.7 3.7 12.8 0.4 26.9 3.3 
49.1 3.9 

Fabric 
office 

dividers 
Active period 2 Cfod_act2 

1.0 0.0 
100.3 3.3 99.5 2.9 200.0 5.3 

100.0 4.6 

Carpet Active period 2 Ccap_act2 

1500.0 7.3 

2200.0 7.5 1571.6 0.7 
4000.0 8.3 
1100.0 7.0 
4600.0 8.4 
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2.2.3 Modeling Approach 

Based on the details obtained from Weis’ paper [199] and personal 

communications [198], the modeling period is divided into 6 stages (Figure 2-2 and Table 

2-1). The final concentration computed from each stage serves as the following stage's 

initial concentration. Human exposure occurred during the first hour of Stage 1. The 

HVAC system was shut down to prevent the dispersion of B. anthracis spores after the 

first two hours. After a nearly two-week quarantine period, a round of semi-quiescent 

sampling (Stage 2) was conducted followed by a settling period (Stage 3), a round of 

active sampling (Stage 4), another settling period (Stage 5), and a second round of active 

sampling period (Stage 6). In the active sampling period, the resuspended B. anthracis 

spores are modeled as being 1 micron in diameter, reflecting the observation of Weis et. 

al. [199] that resuspended spores were all of small diameter due to the resuspension 

process breaking the aggregated spores into small ones. Settling is allowed between the 

different sampling periods. Semiquiescent sampling is modeled by assuming 10 minutes 

of resuspension due to the activity of one person during sampler setup followed by 10 

minutes of measurement during which no further resuspension occurs. Air concentrations 

used for the updating process are the average of the modeled values during the 

measurement phase. Active sampling is modeled by assuming 10 minutes of resuspension 

due to three persons' simulated daily office activities followed by 10 minutes of 

continued resuspension-causing activity during measurement. Again air concentrations 

used for the updating process are the average of the modeled values during the 

measurement phase. 

  



 
 

 
 

36 

 

Figure 2-2 Time series of different model stages 
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A flow chart of the BMC updating process is shown in Figure 3. Monte Carlo 

simulation is used to develop a discrete distribution of model outputs using prior 

distributions of model parameters. Then the likelihood of each simulated output is 

evaluated by comparing to observations using Bayesian approach [128, 148]. Prior 

probability distributions are given in Table A-1. A truncated normal (log-normal) 

distribution is selected for parameters whose boundaries are available [139]. Correlations 

between inputs and the output of interest (i.e., the risk to an exposed person) are 

evaluated to identify the important uncertainties in input parameters. The absolute value 

of the input-output correlation coefficient indicates the importance of the contribution of 

the uncertainty in this input to the uncertainty in the output. The simulation results 

reported here are based on 150,000 iterations in MATLAB [114].  
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Figure 2-3 Flow chart of BMC updating 
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2.2.4 Bayesian updating 

The posterior probability media( ')P Cθ
 

 of modeled parameters is acquired by 

updating the parameters of the fate and transport model with the measured B. anthracis 

spore concentrations adjusted for recovery efficiency: 

( ' , ) ( )
( ')

( ' , ) ( ) 
overall media pred

media
overall media pred

L C C P
P C

L C C P d
θ

θ θ
θ

θ θ θ

×
=

×∫

   
 

        (9) 

where P(θ


) is the joint prior probability of the model parameters, media 'C


 is the mean 

measurement adjusted for recovery which equals sampling results ( mediaC


) divided by the 

associated sample recovery efficiency (R_air or R_surf), and predC


 represents 

concentrations predicted by the fate and transport model as a function of model 

parameters θ


. ( ' , )overall media predL C Cθ
  

 is the likelihood of obtaining a set of adjusted 

concentration observations ( media 'C


) given model predictions ( predC


), which are 

conditional on model parameters θ


. The likelihood is the joint probability of acquiring 

the observed mean B. anthracis concentrations from the 5 types of samples (Table 2-2). 

Thus the likelihood can be rewritten as a function of the t-distribution: 

air_semi, air_semi,air_act1, air_act2, air_act1, air_act2,fod_act2, cap_act2 fod_act2, cap_act2

1( )
2( ' , ) ( ' , ) (1
( )

2

media

media predoverall media pred
media mediamedia

media

L C C L C C

ν

θ θ
νν π= =

+
Γ

= ∏ = +
Γ

∏
    12 ( )

2)
media

mediat ν

ν

+
−

 (10) 

where subscript media indexes the types of samples: samples are taken from the carpet, 

fabric office dividers, semi-quiescent air, active air sampling period 1, and active air 
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sampling period 2. νmedia is the number of degrees of freedom of the estimated mean of a 

particular observation, Γ is the Gamma function, and tmedia is computed as: 

'
/

media

media pred
media

C

C Ct
S n

−
=     (11) 

 

Usually differences between measurements and model predictions are assumed to 

follow a normal distribution with a mean of zero [18, 148, 172], but the normal 

distribution is replaced by a student's t distribution in this study, since the true standard 

deviation of the sampled values (measurements) is unavailable and only an estimated 

standard deviation ( ,media mediaCS ) is available. Concentration values are log transformed to 

reflect the standard assumption in environmental engineering of multiple dilutions 

yielding a log normal distribution [139].  

 

2.2.5 Modeling Scenarios 

The fractions of released B. anthracis in the letter opened in 2001 were analyzed 

by Battelle Memorial Institute, and the percentages of released spores with diameter 1 

µm, 3 µm, 5 µm, and 10 µm were found to be 0.14%, 1.46%, 8.40%, and 90%, which are 

used as constants during the updating [102]. In addition to updating with the data 

available from the Weis study [199] (Scenario 1), hypothetical scenarios are created to 

explore what could be learned if different information were available (Table 2-3). 

Scenario 2 tests how the outcomes of BMC updating would be changed if 100% sample 

recovery efficiency is assumed. Thus, Scenario 2 inherits most of the prior information 
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from Scenario 1 except that two sample recovery efficiencies (R_air, R_surf) are set as 1. 

Scenario 3 evaluates how the performance of BMC updating would change if 

reaerosolization sampling is not conducted. In this scenario only concentrations sampled 

from fabric office dividers and carpet are used in the updating, and the air concentration 

information is ignored. Scenario 4 is designed to test whether or not the performance of 

the Bayesian updating approach could be enhanced if additional samples had been taken 

(it is assumed that these additional samples yielded similar results to the existing 

samples). The sample mean remains unchanged from Scenario 1, but the standard errors 

of the measurements are reduced by 50%, which roughly corresponds to the availability 

of 4 times more data. Scenario 5 examines how incorporating information from an 

additional sampling location, the HVAC system filter, affects the updating results 

(additional simulated data on the HVAC filter mean concentration and standard deviation 

are used in the updating process). 
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Table 2-3 Summary of updating scenarios 

Symbol Scenario Feature 

0 Prior Monte Carlo Simulation based on prior information. 

1 Scenario 1 BMC updating with default settings. 

2 Scenario 2 BMC updating similar to Scenario 1 except 100% sample recovery 
efficiency is given. 

3 Scenario 3 BMC updating without observations from reaerosolization. 

4 Scenario 4 BMC updating with 50% less standard errors of the observations. 

5 Scenario 5 BMC updating with simulated observations from HVAC. 
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2.3 Results and Discussion 

Figures 2-4, 2-5, S1, and S2 summarize the probability distributions before and 

after Bayesian updating from different scenarios for 19 parameters. Uncertainties in the 

risk to the occupants via inhalation during the first hour of the release (i.e. before the 

room was evacuated), the total release quantity (successfully aerosolized), and the 

amount of spores that exit the room are substantially reduced by updating with the 

available data (Scenario 1). While the 5th to 95th percentile range for the estimated risk 

before BMC updating extends over roughly 5 orders of magnitude (9.35×10-6 to 1), the 

posterior range is around 1 order of magnitude (4.70×10-3 to 2.15×10-2). Similarly, the 5th 

to 95th percentile range for the release quantity prior to the BMC updating extends over 

roughly 9 orders of magnitude (1.06×104 to 1.01×1012), but the posterior range is reduced 

to 1 order of magnitude (5.20×106 to 2.40×107). The estimate of the amount of spores 

exiting the room ranges over roughly an order of magnitude from 1.34×106 to 4.39×107 

(Table A-2).  
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Figure 2-4 Prior and posterior CDF for the total released quantity, risk of exposed people, and the quantity of spores exit the room.  
(The bottom and top of the box are 25th and 75th percentile, the band inside the box is the 50th percentile, and the upper and lower whiskers represent the 5th 

and 95th percentile, respectively. The number 1 to 5 represent BMC updating scenarios, while 0 represents the prior scenario.) 
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Figure 2-5 Prior and posterior CDF for the resuspension rate 
(The bottom and top of the box are 25th and 75th percentile, the band inside the box is the 50th percentile, 
and the upper and lower whiskers represent the 5th and 95th percentile, respectively. The number 1 to 5 
represent BMC updating scenarios, while 0 represents the prior scenario.) 
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Figure 2-5 shows the uncertainty bounds for resuspension rates are not greatly 

changed by the updating process. Only the resuspension rate for spores with a diameter of 

10 micron is affected, and even this parameter is changed only modestly (the prior mean 

value of 2.02×10-4 shifts to a posterior mean of 2.90×10-4). In general, uncertainties in 

other fate and transport model parameters as well as the sample recovery efficiencies are 

not substantially reduced by the updating process (see Supporting Information for details). 

While the data cannot be used to improve estimates of parameters describing the fate and 

transport of weaponized B. anthracis, the updating process does indicate that there is not 

a demonstrable conflict between the parameter estimates obtained from surrogates, such 

as house dust, and the observed behavior of B. anthracis spores.  

 

The only difference between Scenarios 1 and 2 is the sample recovery efficiency, 

where the later one assumes that all the sampled B. anthracis are correctly measured, 

indicating that samples taken from the air and surface are unbiased. As a result, 

parameters like the total release quantity, risk and the amount exiting the room from 

Scenario 2 are lower than those from other scenarios, because one believes the sampling 

results represent the true deposited quantity. Scenario 3 (without reaerosolization 

sampling) has only modestly larger credible bounds for release quantity, risk and amount 

exiting the room across all the five BMC updating scenarios. This suggests that simple 

surface concentration measurements do almost as good a job of characterizing an attack 

as a more involved procedure that involves resuspension and air sampling. Due to the 

exclusion of air sampling, posterior distributions for spore's resuspension rate and air 

sample recovery efficiency are not successfully updated. 
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Comparing to Scenario 1, Scenario 4 quadruples the number of observations, 

which greatly reduces uncertainty in the release amount (90% CI: 5.64×106 to 1.75×107) 

and in the risk estimates (90% CI: 5.50×10-3 to 1.80×10-2), although little improvement is 

obtained for the estimate of the amount of spores exiting the room. The additional data 

does not improve the estimates of resuspension rate for all particle sizes, but the 

distribution of the resuspension rate of the 10 µm particles is shifted to somewhat higher 

values and has the smallest uncertainty bound. The 10 µm particles account for the 

majority of the release on a mass basis. Hence it is easiest to identify parameters for this 

size fraction. The posterior estimates for density and settling velocity of released particles 

also decrease; the latter one is a function of the former one (Equation 5), suggesting that 

increasing the number of samples can better identify particles' aerodynamic properties. 

Obtaining concentration information on the HVAC filter (Scenario 5) did not 

substantially reduce the uncertainty in parameter estimates in comparison to Scenario 1, 

except for the fraction of recirculated air (see Figure A-1 in Supporting Information).  

 

Comparing across the default scenario and four additional scenarios, one finds 

that 1) having additional samples (N=12 from each surface in Scenario 3 rather than N=3 

from Scenario 1) can greatly improve characterization of the release; 2) assuming a 100% 

sample recovery efficiency (Scenario 2) would lead one to underestimate the extent of a 

release; 3) the characterization is not greatly improved by measuring the concentration on 

the HVAC filter; 4) the samples taken from reaerosolization do not appear to greatly aid 

characterization of the release; and 5) the updating process does not greatly improve 
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estimates of fate and transport parameters, but in general parameters based on surrogates 

such as hose dust are not in conflict with the observed behavior of B. anthracis spores. 

 

Table2-4 shows Spearman's rank correlations between parameter values and the 

output of interest, risk, via inhalation during the first hour of Stage 1. Correlations are 

shown for the prior distribution of parameter input values and the posterior values from 

different scenarios. When the updating process reduces a correlation coefficient, this 

input's uncertainty has been successfully reduced and the remaining uncertainty is less 

important. While the correlation coefficient increases, this indicates that because the 

uncertainties in other inputs have been reduced, the uncertainty in this input is now 

relatively more important [148]. In Table 2-4, a significantly increased correlation is 

found for the resuspension rate of 10 micron spores, particle density and the two sample 

recovery efficiencies (except Scenario 2 with 100% sample recovery), while the 

correlation for mass released decreases from its prior value. The mass of released spores 

constitutes the major prior uncertainty, but this uncertainty can be updated with 

considerable success (resulting in a lower posterior correlation coefficient). In fact, if a 

larger sample size were available (Scenario 4), the mass released would no longer be the 

dominant source of uncertainty. As more information is obtained on mass released 

(Scenario 4), learning more about fate and transport parameters, such as the 

reaerosolization rates, and particle settling velocity, becomes relatively more important. 

Unfortunately, these parameters were not readily updated through this process. 
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Table 2-4 Spearman's rank correlation between risk and inputs 

Parameter Meaning Diameter 
(µm) Prior 

Posterior 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

µ2 Resuspension rate 

1 5.70×10-3 1.10×10-3 4.30×10-3 -1.03×10-2 1.01×10-2 2.01×10-2 

3 -7.60×10-3 1.75×10-2 -1.19×10-4 -8.30×10-3 1.38×10-2 6.10×10-3 

5 -2.80×10-3 -2.80×10-3 -2.10×10-3 -1.48×10-2 1.31×10-2 2.04×10-2 

10 -6.40×10-3 -6.38×10-1 -8.16×10-1 6.34×10-2 -6.55×10-1 -6.86×10-1 

P The fraction of recirculated air  -6.03×10-4 3.30×10-2 3.52×10-2 4.09×10-2 5.53×10-2 1.33×10-2 

Vt (ρp) 
Particle settling velocity 

(Density)  -1.99×10-2 -3.50×10-1 -1.63×10-1 -2.75×10-1 -4.35×10-1 -3.56×10-1 

Ke Turbulence intensity of the 
exposure stage  -5.03×10-4 4.15×10-2 2.93×10-2 2.20×10-2 4.42×10-2 1.53×10-2 

ACH Air change rate  -2.94×10-2 -9.52×10-2 -5.27×10-2 -3.28×10-2 -1.04×10-1 -5.24×10-2 

R_air Air sample recovery 
efficiency  1.60×10-3 -2.69×10-1 NA NA -3.70×10-1 -2.80×10-1 

R_surf Surface sample recovery 
efficiency  1.60×10-3 -4.56×10-1 NA -6.00×10-1 -7.18×10-1 -4.10×10-1 

Mass_t Total release quantity  9.99×10-1 8.93×10-1 9.37×10-1 9.54×10-1 8.27×10-1 9.07×10-1 

Moderate and strong correlation coefficients (value greater than 0.5) are present in bold, while weak ones (between 0.1 and 0.5) are shown in Italic.
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Correlations from Table 2-4 are only based on a bivariate analysis. Complex 

multivariate relationships may exist in which the value of knowing one parameter is 

dependent on the amount of uncertainty in other variables. For example, in Scenario 5 

information on the HVAC filter concentration was observed to provide little reduction in 

uncertainty. However, an exploratory analysis revealed that when the HVAC filter 

concentration was known, the fraction of recirculated air became closely correlated with 

risk. Thus, HVAC filter concentration was of little use on its own, but when coupled with 

knowledge of the air circulated through the filter, it became valuable in characterizing the 

release. To identity these types of multivariate relationships, regression analyses were 

conducted in which risk estimated by the model was regressed on model input values for 

the amount of spores measured from three different surfaces (i.e., carpet, fabric office 

dividers, and the HVAC filter), and 3 particulate fate and transport parameters (i.e., the 

HVAC air change rate, the HVAC air recirculation rate, and the density of weaponized B. 

anthracis). 

 

Table 2-5 presents the regression models with the highest coefficient of 

determinations (R2) for different number of regressors when the particulate size fractions 

of released B. anthracis are fixed at values observed in the 2001 attacks [102]. Results 

indicate that the amount of spores measured from the untracked floor provides the most 

information on the risk, if only one parameter can be measured. The second, third, and 

fourth parameters to enter the regression are not spore concentrations but rather are 

particulate and building air circulation parameters: particle density, air exchange rate, and 

the HVAC air recirculation rate. Note that in Regression 4, HVAC filter replaces 
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untracked floor as the most informative sampling location. This supports the observation 

during the exploratory analysis that HVAC filter becomes more informative as air 

circulation parameters are better specified. The amount of spores measured on the wall is 

the last parameter entering the regression. Table 2-6 shows the best regression models 

when the fractions of released spores are treated as random variables, reflecting a 

situation in which the size fractions of released B. anthracis spores are not known. This 

reflects the situation when a sample of the released agent cannot be recovered in 

sufficient quantity to allow its size distribution to be identified. In this case spores 

concentrations on the HVAC filter enter the regression first, indicating it is a good 

sample location. The remaining variables to enter are air recirculation fraction, air change 

rate, particle density, untracked floor, and walls. As with the previous case, 

characterizing the particulate and air circulation may be as important as charactering 

spore concentrations.  
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Table 2-5 Models with highest coefficient of determinations (R2) for different numbers of 
regressores and size fractions based on pre-BMC data 

Model 
Number Function Parameter Coefficients Std. Error 

Residual 
Standard 
Deviation 

R2 

1 Risk~f(Untracked 
floor)+Const. 

Untracked floor 1.70×10-3 1.15×10-5 
1.53×10-5 7.54×10-1 

Const. -1.89×10-2 1.46×10-4 

2 Risk~f(Untracked floor, 
Particle density)+Const. 

Untracked floor 1.70×10-3 1.12×10-5 

1.48×10-5 7.69×10-1 Particle density -1.30×10-3 5.86×10-5 

Const. -9.60×10-3 4.51×10-4 

3 
Risk~f(Untracked floor, 
Air change rate, Particle 

density)+Const. 

Untracked floor 1.70×10-3 1.12×10-5 

1.48×10-5 7.70×10-1 
Air change rate -1.03×10-4 2.49×10-5 

Particle density -1.30×10-3 5.86×10-5 

Const. -9.60×10-3 4.51×10-4 

4 

Risk~f(HVAC filter, Air 
change rate, Air 

recirculation fraction, 
Particle density)+Const. 

HVAC filter 1.70×10-3 1.12×10-5 

1.48×10-5 7.71×10-1 

Air change rate -1.80×10-3 2.73×10-5 

Air recirculation fraction -1.70×10-3 2.29×10-5 

Particle density 3.72×10-4 5.83×10-5 

Const. -2.16×10-2 4.72×10-4 

5 

Risk~f(HVAC filter, 
Untracked floor, Air 

change rate, Air 
recirculation fraction, 

Particle density)+Const. 

HVAC filter 9.50×10-3 1.09×10-3 

1.47×10-5 7.72×10-1 

Untracked floor -7.80×10-3 1.10×10-3 

Air change rate -9.40×10-3 1.07×10-3 

Air recirculation fraction -9.50×10-3 1.10×10-3 

Particle density 7.80×10-3 1.04×10-3 

Const. -7.55×10-2 7.60×10-3 

6 

Risk~f(HVAC filter, 
Untracked floor, Walls, 

Air change rate, Air 
recirculation fraction, 

Particle density)+Const. 

HVAC filter 9.90×10-3 1.30×10-3 

1.47×10-5 7.72×10-1 

Untracked floor -8.20×10-3 1.40×10-3 

Walls 3.04×10-5 6.15×10-5 

Air change rate -9.80×10-3 1.30×10-3 

Air recirculation fraction -9.90×10-3 1.33×10-3 

Particle density 8.10×10-3 1.28×10-3 

Const. -7.80×10-2 9.10×10-3 

a. All the values are log-transformed before linear regression. 
b. Parameters HVAC filter, Untracked floor, and Walls refer the amount of B. anthracis measured from those surfaces 
c. Mean  prediction is -6.76 
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Table 2-6 Models with highest coefficient of determinations (R2) for different numbers of 
regressors and unknown size fractions based on pre-BMC data 

Model 
Number Function Parameter Coefficients Std. Error 

Residual 
Standard 
Deviation 

R2 

7 Risk~f(HVAC 
filter)+Const. 

HVAC filter 8.70×10-4 5.13×10-5 
9.26×10-5 3.05×10-1 

Const. -6.00×10-3 6.09×10-4 

8 
Risk~f(HVAC filter, Air 

recirculation 
fraction)+Const. 

HVAC filter 1.10×10-3 5.56×10-5 

8.78×10-5 3.77×10-1 Air recirculation fraction -1.10×10-3 1.29×10-4 

Const. -9.70×10-3 7.21×10-4 

9 

Risk~f(HVAC filter, Air 
change rate, Air 

recirculation 
fraction)+Const. 

HVAC filter 1.30×10-3 5.78×10-5 

8.50×10-5 4.19×10-1 
Air change rate -1.10×10-3 1.62×10-4 

Air recirculation fraction -1.20×10-3 1.25×10-4 

Const. -1.11×10-2 7.26×10-4 

10 

Risk~f(HVAC filter, Air 
change rate, Air 

recirculation fraction, 
Particle density)+Const. 

HVAC filter 1.30×10-3 5.76×10-5 

8.50×10-5 4.22×10-1 

Air change rate -1.10×10-3 1.62×10-4 

Air recirculation fraction -1.20×10-3 1.25×10-4 

Particle density 5.96×10-4 3.28×10-4 

Const. -1.57×10-2 2.60×10-3 

11 

Risk~f(HVAC filter, 
Untracked floor, Air 

change rate, Air 
recirculation fraction, 

Particle density)+Const. 

HVAC filter 1.30×10-3 5.79×10-5 

8.50×10-5 4.22×10-1 

Untracked floor -5.57×10-6 8.81×10-6 

Air change rate -1.10×10-3 1.62×10-4 

Air recirculation fraction -1.20×10-3 1.25×10-4 

Particle density 4.85×10-4 3.71×10-4 

Const. -1.47×10-2 3.00×10-3 

12 

Risk~f(HVAC filter, 
Untracked floor, Walls, 

Air change rate, Air 
recirculation fraction, 

Particle density)+Const. 

HVAC filter 1.30×10-3 5.79×10-5 

8.50×10-5 4.23×10-1 

Untracked floor -2.69×10-4 3.13×10-4 

Walls -2.64×10-4 3.14×10-4 

Air change rate -1.10×10-3 1.62×10-4 

Air recirculation fraction -1.20×10-3 1.25×10-4 

Particle density 7.36×10-4 4.76×10-4 

Const. -1.61×10-2 3.40×10-3 

a. All the values are log-transformed before linear regression. 
b. Parameters HVAC filter, Untracked floor, and Walls refer the amount of B. anthracis measured from those surfaces 
c. Mean  prediction is -5.74. 
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It is notable that when the size fractions of released spores are provided (Table 2-

5), the regression model can generate more reliable risk prediction (lower residual 

standard deviation) than the situation where size fraction is unknown (Table 2-6). In fact, 

when the size distribution is known, accurate knowledge of average concentrations on 

even a single surface provides sufficient information such that further characterization of 

the transport parameters of the room reduces the residual standard deviation only a little 

(from 1.53×10-5 in Regression 1 to 1.47×10-5 in Regression 6). In contrast, when the size 

distribution is not known, having more information becomes more important in 

characterizing the human risk (R2 from 9.26×10-5 in Regression 7 to 8.50×10-5 in 

Regression 12). Even when all 6 parameters are measured accurately there is still more 

uncertainty than when only floor concentration is measured and the size distribution is 

known (i.e., the residual standard deviation is higher for Regression 12 than for 

Regression 1). 

 

Based on the posterior risk estimates calculated here for the people in the building, 

the decision to provide prophylactic antibiotic treatment in the 2001 anthrax letter attacks 

is justified [36, 121]. The best estimate for risk to occupants of the room where the spores 

were released is roughly 1 in 100 (based on Scenario 1). Costs and side effects of 

antibiotic treatment are modest and may be justified for exposures much lower than this. 

For example the analysis of Mitchell-Blackwood et al. suggests that benefits would 

exceed costs for risk levels exceeding 1 in 6,547 [121]. 
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The model also provides an estimate of the number of spores leaving the room. It 

is complex and difficult to predict the fate and transport of B. anthracis spores in the 

outdoor environment since a significant amount of uncertainties can be found from many 

factors, such as the weather, surrounding topography, etc. To roughly assess the scale of 

possible impacts, extrapolations are conducted based on a previous assessment carried 

out by the World Health Organization (WHO) in 1970, and a recent investigation carried 

by Wein and Craft on the human health adverse impacts from an outdoor release of B. 

anthracis spores [94, 197]. The WHO's report estimated that the number of casualties 

would be around 25, 000, if 50 kg of B. anthracis spores were released by aircraft over an 

area with a population of 5 million, corresponding to an expected mortality of 5×10-12 per 

spore released [94]. This rate is then computed as the ratio between the number deaths 

divided by the amount of total released spores. Wein et. al. indicated that if the released 

amount of B. anthracis spores were reduced to 1 kg with 50% dissemination efficiency 

over a large U.S. city with 1.39 million people, the most conservative mortality is linked 

to the people who only receive post- attack antibiotic, which could as much as 146,269, 

corresponding to mortality rate of 1.5×10-9 per spore released [197]. In our study, around 

107 spores (10-8 kg) are estimate as exiting the release location. If such amount of spores 

were dispersed in the settings of WHO's study, the expected mortality would be around 

the level of 10-5, while if such a release happed in the scenarios of Wein's study, a 

mortality of  1.5×10-2 would be expected. The previous two extrapolations are made 

under ideal situations, and these results should be further analyzed in the future. The 

WHO-based figure would suggest expected mortality was minimal. The figure based on the study 

of Wein and Craft would suggest that there was a non-negligible risk of infection outside the 

room. Since much of the risk would be contained within the building this supports the decision to 



56 

 

widely administer prophylactic antibiotics to occupants of the building even if they were not in 

the room where the release occurred. Whether risk outside the building could reach actionable 

thresholds is not clear from this analysis, but it does suggest that in the event of a future release, 

site-specific modeling would be justified to identify any potentially problematic exposures 

outside the building. 

 

This paper presents an application of the BMC method in updating uncertainty for 

an integrated fate, transport, and risk assessment model. While substantive reductions in 

the uncertainties of model fate and transport parameters were not achieved by the BMC 

updating process, neither did the data exclude the parameter estimates obtained from 

literature information on surrogates for B. anthracis. Four hypothetical scenarios were 

included to test the performance of the BMC updating given different types of data. 

Results suggest that a larger sample size would help to reduce input uncertainties, that 

assuming a perfect sample recovery would cause risk underestimation, and that 

measurements from the HVAC filter and air after resuspension activities did not greatly 

improve model posterior estimates, unless a variety of other parameters can also be 

measured. In addition, multivariate regressions based on different types of data indicate 

that measurements of different surface concentrations and particulate and air circulation 

parameters are necessary when the particulate size distribution is unknown. When the 

size distribution is known then measuring a single surface provides most of the 

information on the release quantity. This study provides a general framework for 

applying the Bayesian Monte Carlo approach to characterize a biological attack. In the 

future, the Bayesian approach can be applied to other phases of the response management 

framework, such as guidance on remediation of contaminated buildings [111]. To make 
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the approach more readily applicable, the MATLAB code developed here could be 

programmed into a software package to perform the updating which would enable the 

approach to be employed after an incident by individuals without specialized computer 

knowledge. In addition, the speed of BMC updating could be improved by conducting 

most of the computations using a parallel computing approach, such as using a GPU 

instead of a CPU [137]. 
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2.4 Appendix A 

Table A-1. Model Inputs  

Parameter Unit Meaning Diameter Distribution Mean Standard 
deviation Boundary 

Mass_t spores Total release 
quantity  Truncated 

log-normal 8 2.41 [3.0-1.3×101] 

R_air  Air sample recovery 
efficiency  

Truncated 
normal 

0.22 0.05 [0.0-1.0] 

R_surf  Surface sample 
recovery efficiency  0.05 0.02 [0.0-1.0] 

ρp g/cm3 Particle density  1000 607 [1.0×103-3.0×103] 

ACH  Air change rate  1.55 0.88 [1.0×10-1-3.0] 

P  The fraction of 
recirculated air  0.50 0.3 [0.0-1.0] 

Ke  Turbulence intensity 
of exposure stage  

Truncated 
normal 

0.23 0.14 [1.0×10-5-4.5×10-1] 

Ke1  

Turbulence intensity 
of stage i 

 0.34 

0.07 

[2.3×10-1-4.5×10-1] 

Ke2   0.12 [1.0×10-5-2.3×10-1] 

Ke3,5   0.12 [1.0×10-5-2.3×10-1] 

Ke4,6   0.34 [2.3×10-1-4.5×10-1] 

µ2 m/min Resuspension rate 

1 

Truncated 
log-normal 

-11.90 1.71 [-1.5×101- -9.0] 

3 -6.25 0.70 [-7.4- -5.1] 

5 -4.98 0.33 [-5.5- -4.4] 

10 -4.57 0.72 [-5.8- -3.4] 

en  
Efficiency of the 
nasal passages at 

removing particles 

1 

Truncated 
normal 

0.14 0.07 [2.0×10-2-2.5×10-1] 

3 0.45 0.14 [2.2×10-1-6.8×10-1] 

5 0.62 0.12 [4.2×10-1-8.1×10-1] 

10 0.77 0.09 [6.2×10-1-9.1×10-1] 

Mass_f  Size fraction of 
released spores 

1 

Constant 

0.14% 

NA NA 
3 1.46% 

5 8.40% 

10 90% 
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Table A-2 Prior and posterior distributions for model inputs 

Parameter Meaning Prior Mean 
Mean (90% CI) 

Posterior Mean (90% CI) 

Scenario 1 
Mean (90% CI) 

Scenario 2 
Mean (90% CI) 

Scenario 3 
Mean (90% CI) 

Scenario 4 
Mean (90% CI) 

Scenario 5 
Mean (90% CI) 

Risk Inhalational risk 3.85×10-1  
(9.35×10-6-1) 

1.05×10-2  
(4.70×10-3-2.15×10-2) 

2.10×10-3  
(6.40×10-4-4.90×10-3) 

1.34×10-2  
(2.70×10-3-3.42×10-2) 

1.00×10-2  
(5.50×10-3-1.80×10-2) 

1.19×10-2  
(5.00×10-3-2.53×10-2) 

Mass_t Total release 
quantity 

2.12×1011  
(1.06×104-1.01×1012) 

1.16×107  
(5.20×106-2.40×107) 

2.28×106  
(7.02×105-5.87×106) 

2.03×107  
(3.15×106-3.77×107) 

1.02×107  
(5.64×106-1.75×107) 

1.29×107  
(5.53×106-2.69×107) 

R_air Air sample 
recovery efficiency 

2.20×10-1 
(1.39×10-1-3.02×10-1) 

2.26×10-1 
(1.48×10-1-3.04×10-1) NA 2.19×10-1 

(1.37×10-1-3.02×10-1) 
2.19×10-1 

(1.43×10-1-2.95×10-1) 
2.22×10-1 

(1.43×10-1-3.00×10-1) 

R_surf Surface sample 
recovery efficiency 

5.03×10-2 
(1.82×10-2-8.26×10-2) 

4.64×10-2 
(1.97×10-2-7.68×10-2) NA 5.00×10-2 

(1.85×10-2-8.28×10-2) 
4.53×10-2 

(2.15×10-2-7.07×10-2) 
4.63×10-2 

(2.11×10-2-7.51×10-2) 

ρp Particle density 2.00×103  
(1.20×103- 2.79×103) 

1.87×103  
(1.12×103-2.69×103) 

1.86×103  
(1.14×103-2.70×103) 

1.94×103  
(1.15×103-2.77×103) 

1.58×103  
(1.04×103-2.44×103) 

1.84×103  
(1.11×103-2.72×103) 

ACH Air change rate 1.55  
(3.94×10-1- 2.70) 

1.55  
(4.32×10-1-2.71) 

1.57 
(4.25×10-1-2.71) 

1.54  
(3.69×10-1-2.70) 

1.54  
(3.76×10-1-2.65) 

1.51  
(3.81×10-1-2.68) 

P The fraction of 
recirculated air 

5.03×10-1 
(1.05×10-1-8.99×10-1) 

5.06×10-1  

(1.14×10-1-8.99×10-1) 
5.01×10-1  

(9.35×10-2-9.00×10-1) 
5.10×10-1  

(1.13×10-2-8.88×10-1) 
5.21×10-1  

(1.03×10-1-9.14×10-1) 
5.49×10-1  

(1.65×10-1-9.12×10-1) 

Ke 
Turbulence 
intensity of 

exposure stage 

2.28×10-1  
(4.61×10-2-4.10×10-1) 

2.42×10-1  
(5.99×10-2-4.10×10-1) 

2.39×10-1  
(5.56×10-2-4.15×10-1) 

2.42×10-1  
(6.11×10-2-4.14×10-1) 

2.66×10-1  
(8.40×10-2-4.20×10-1) 

2.39×10-1  
(5.61×10-2-4.14×10-1) 

Ke1 

Turbulence 
intensity of stage i 

3.40×10-1  
(2.51×10-1-4.29×10-1) 

3.41×10-1  
(2.50×10-1-4.30×10-1) 

3.40×10-1  
(2.52×10-1-4.29×10-1) 

3.42×10-1  
(2.51×10-1-4.30×10-1) 

3.39×10-1  
(2.51×10-1-4.26×10-1) 

3.41×10-1  
(2.51×10-1-4.30×10-1) 

Ke2 1.18×10-1  
(2.60×10-2-2.08×10-1) 

1.18×10-1  
(2.55×10-2-2.10×10-1) 

1.19×10-1  
(2.42×10-2-2.09×10-1) 

1.17×10-1  
(2.53×10-2-2.09×10-1) 

1.18×10-1  
(2.24×10-2-2.09×10-1) 

1.19×10-1  
(2.63×10-2-4.28×10-1) 

Ke3,5 1.18×10-1  
(2.49×10-2-2.08×10-1) 

1.24×10-1  
(3.25×10-2-2.11×10-1) 

1.22×10-1  
(3.04×10-2-2.11×10-1) 

1.22×10-1  
(2.99×10-2-2.10×10-1) 

1.36×10-1  
(4.58×10-2-2.16×10-1) 

1.24×10-1  
(3.23×10-2-2.10×10-1) 

Ke4,6 3.41×10-1  
(2.52×10-1-4.30×10-1) 

3.39×10-1  
(2.52×10-1-4.30×10-1) 

3.40×10-1  
(2.52×10-1-4.28×10-1) 

3.39×10-1  
(2.51×10-1-4.27×10-1) 

3.40×10-1  
(2.52×10-1-4.30×10-1) 

3.40×10-1  
(2.53×10-1-4.29×10-1) 

Vt 
(m/s) 

Particle settling 
velocity 

6.00×10-5  
(3.59×10-5-8.39×10-5) 

5.62×10-5  
(3.36×10-5-8.10×10-5) 

5.60×10-5  
(3.43×10-5-8.11×10-5) 

5.82×10-5  
(3.47×10-5-8.32×10-5) 

4.76×10-5  
(3.12×10-5-7.33×10-5) 

5.53×10-5  
(3.33×10-5-8.18×10-5) 

5.40×10-4  
(3.23×10-4-7.55×10-4) 

5.06×10-4  
(3.03×10-4-7.29×10-4) 

5.04×10-4  
(3.09×10-4-7.30×10-4) 

5.24×10-4  
(3.12×10-4-7.49×10-4) 

4.28×10-4  
(2.81×10-4-6.59×10-4) 

4.97×10-4  
(3.00×10-4-7.37×10-4) 

1.50×10-3  
(8.98×10-4-2.10×10-3) 

1.40×10-3  
(8.41×10-4-2.00×10-3) 

1.40×10-3  
(8.58×10-4-2.00×10-3) 

1.50×10-3  
(8.67×10-4-2.10×10-3) 

1.20×10-3  
(7.81×10-4-1.80×10-3) 

1.40×10-3  
(8.32×10-4-2.00×10-3) 

6.00×10-3  
(3.60×10-3-8.40×10-3) 

5.60×10-3  
(3.40×10-3-8.10×10-3) 

5.60×10-3  
(3.40×10-3-8.10×10-3) 

5.80×10-3  
(3.50×10-3-8.30×10-3) 

4.80×10-3  
(3.10×10-3-7.30×10-3) 

5.50×10-3  
(3.30×10-3-8.20×10-3) 

a. 0-Semiquiescent sampling period first stage place the sampler  1-Semiquiescent sampling period second stage sample 2,4-Period between Semiquiescent and Active Period 3,5-Active Sampling period 
b. The number 1 to 4 represent BMC updating scenario, while 0 represents the prior scenario.  
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Table A-2 Prior and posterior distributions for model inputs (continued) 

Parameter Meaning Diameter Prior Mean 
Mean (90% CI) 

Posterior Mean (90% CI)  

Scenario 1 
Mean (90% CI) 

Scenario 2 
Mean (90% CI) 

Scenario 3 
Mean (90% CI) 

Scenario 4 
Mean (90% CI) 

Scenario 5 
Mean (90% CI) 

µ2 
(m/min) 

Resuspension 
rate 

1 2.63×10-7  

(1.22×10-8-1.09×10-6) 
2.63×10-7  

(1.23×10-8-1.08×10-6) 
2.69×10-7  

(1.24×10-8-1.11×10-6) 
2.60×10-7  

(1.25×10-8-1.07×10-6) 
2.61×10-7  

(1.19×10-8-1.10×10-6) 
2.56×10-7  

(1.26×10-8-1.05×10-6) 

3 3.74×10-5  
(1.29×10-5-8.09×10-5) 

3.71×10-5  
(1.27×10-5-8.16×10-5) 

3.72×10-5  
(1.28×10-5-8.12×10-5) 

3.73×10-5  
(1.27×10-5-8.18×10-5) 

3.71×10-5  
(1.29×10-5-8.18×10-5) 

3.69×10-5  
(1.26×10-5-7.95×10-5) 

5 8.62×10-5  
(6.92×10-5-1.00×10-4) 

8.60×10-5  
(6.93×10-5-1.00×10-4) 

8.62×10-5  
(6.95×10-5-1.00×10-4) 

8.66×10-5  
(6.95×10-5-1.00×10-4) 

8.63×10-5  
(6.96×10-5-1.00×10-4) 

8.64×10-5  
(6.94×10-5-1.00×10-4) 

10 2.02×10-4  
(6.76×10-5-4.42×10-4) 

2.90×10-4  
(1.10×10-4-5.04×10-4) 

3.09×10-4  
(9.48×10-5-5.36×10-4) 

2.29×10-4  
(7.05×10-5-4.84×10-4) 

3.51×10-4  
(1.64×10-4-5.37×10-4) 

2.69×10-4  
(9.51×10-5-4.91×10-4) 

en 

Efficiency of 
the nasal 

passages at 
removing 
particles 

1 1.38×10-1  
(4.57×10-2-2.28×10-1) 

1.38×10-1  
(4.83×10-2-2.29×10-1) 

1.38×10-1  
(4.39×10-2-2.32×10-1) 

1.37×10-1  
(4.41×10-2-2.29×10-1) 

1.37×10-1  
(4.52×10-2-2.29×10-1) 

1.38×10-1  
(4.59×10-2-2.29×10-1) 

3 4.50×10-1  
(2.68×10-1-6.33×10-1) 

4.51×10-1  
(2.66×10-1-6.33×10-1) 

4.52×10-1  
(2.66×10-1-6.34×10-1) 

4.46×10-1  
(2.62×10-1-6.30×10-1) 

4.51×10-1  
(2.64×10-1-6.35×10-1) 

4.54×10-1  
(2.64×10-1-6.38×10-1) 

5 6.18×10-1  
(4.61×10-1-7.72×10-1) 

6.22×10-1  
(4.64×10-1-7.74×10-1) 

6.21×10-1  
(4.61×10-1-7.74×10-1) 

6.19×10-1  
(4.63×10-1-7.73×10-1) 

6.22×10-1  
(4.60×10-1-7.75×10-1) 

6.18×10-1  
(4.63×10-1-7.71×10-1) 

10 7.67×10-1  
(6.51×10-1-8.83×10-1) 

7.66×10-1  
(6.52×10-1-8.78×10-1) 

7.68×10-1  
(6.52×10-1-8.83×10-1) 

7.66×10-1  
(6.48×10-1-8.77×10-1) 

7.63×10-1  
(6.48×10-1-8.83×10-1) 

7.67×10-1  
(6.49×10-1-8.82×10-1) 

Dose/ Mass_t 

Fraction of 
inhaled spores 

and total 
released 

1 1.60×10-3  
(1.00×10-3-2.10×10-3) 

1.60×10-3  
(1.00×10-3-2.00×10-3) 

1.60×10-3  
(1.00×10-3-2.00×10-3) 

1.60×10-3  
(1.00×10-3-2.10×10-3) 

1.60×10-3  
(1.00×10-3-2.10×10-3) 

1.60×10-3  
(1.10×10-3-2.10×10-3) 

3 1.20×10-3  
(8.15×10-4-1.60×10-3) 

1.20×10-3  
(8.17×10-4-1.60×10-3) 

1.20×10-3  
(8.18×10-4-1.60×10-3) 

1.20×10-3  
(8.24×10-4-1.60×10-3) 

1.20×10-3  
(8.46×10-4-1.70×10-3) 

1.20×10-3  
(8.40×10-4-1.60×10-3) 

5 8.30×10-4 
(5.95×10-4-1.20×10-3) 

8.51×10-4  
(6.09×10-4-1.20×10-3) 

8.53×10-4  
(6.09×10-4-1.20×10-3) 

8.44×10-4  
(6.05×10-4-1.20×10-3) 

9.05×10-4  
(6.42×10-4-1.30×10-3) 

8.70×10-4  
(6.14×10-4-1.20×10-3) 

10 3.79×10-4 
(2.75×10-4-5.38×10-4) 

4.05×10-4  
(2.90×10-4-5.72×10-4) 

4.08×10-4  
(2.89×10-4-5.78×10-4) 

3.90×10-4  
(2.81×10-4-5.51×10-4) 

4.59×10-4  
(3.18×10-4-6.32×10-4) 

4.12×10-4  
(2.91×10-4-5.90×10-4) 

Total 4.30×10-4 
(3.15×10-4-6.00×10-4) 

4.55×10-4  
(3.30×10-4-6.34×10-4) 

4.58×10-4  
(3.29×10-4-6.41×10-4) 

4.42×10-4  
(3.21×10-4-6.15×10-4) 

5.09×10-4  
(3.61×10-4-6.98×10-4) 

4.34×10-4  
(3.32×10-4-6.54×10-4) 

Mass_ex 

Total 
pathogen exit 

the release 
room 

1 1.32×1011  
(5.60×103-5.71×1011) 

7.30×106  
(1.24×106-1.75×107) 

1.45×106  
(2.00×105-3.97×106) 

1.35×107  
(8.07×105-2.51×107) 

6.23×106  
(1.00×106-1.29×107) 

7.60×106  
(1.05×106-1.90×107) 

3 8.74×1010  
(3.46×103-3.71×1011) 

4.92×106  
(6.74×105-1.26×107) 

9.76×105  
(1.14×105-2.74×106) 

8.85×106 
(4.58×105-1.66×107) 

4.30×106 
(5.80×105-9.72×106) 

5.02×106 
(5.85×105-1.34×107) 

5 5.84×1010  
(2.18×103-2.40×1011) 

3.36×106  
(3.90×105-9.16×106) 

6.65×105  
(6.59×104-1.93×106) 

6.00×106 
(2.64×105-1.14×107) 

3.02×106 
(3.47×105-7.23×106) 

3.40×106 
(3.34×105-9.65×106) 

10 2.65×1010  
(9.14×102-1.04×1011) 

1.62×106  
(1.55×105-4.66×106) 

3.18×105  
(2.70×104-9.33×105) 

2.91×106 
(9.78×104-5.67×106) 

1.56×106 
(1.48×105-4.13×106) 

1.62×106 
(1.32×105-4.81×106) 
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Figure A-1 Prior and posterior CDF for particle transport parameters 
(The bottom and top of the box are 25th and 75th percentile, the band inside the box is the 50th percentile, 

and the upper and lower whiskers represent the 5th and 95th percentile, respectively. The number 1 to 4 
represent BMC updating scenarios, while 0 represents the prior scenario.) 
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Figure A-2 Prior and posterior CDF for the settling velocities 
(The bottom and top of the box are 25th and 75th percentile, the band inside the box is the 50th percentile, 

and the upper and lower whiskers represent the 5th and 95th percentile, respectively. The number 1 to 4 
represent BMC updating scenarios, while 0 represents the prior scenario.) 
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CHAPTER 3: CHARACTERIZING BIOAEROSOL RISK FROM 
ENVIRONMENTAL SAMPLING 

 
 

Abstract  

In the aftermath of a release of microbiological agents, environmental sampling 

must be conducted to characterize the release sufficiently so that mathematical models 

can then be used to predict the subsequent dispersion and human health risks. Because 

both the dose-response and environmental transport of aerosolized microbiological agents 

are functions of the effective aerodynamic diameter of the particles, environmental 

assessments should consider not only the total amount of agent but also the size 

distributions of the aerosolized particles. This chapter evaluates different approaches to 

estimating risk from measurements of microorganisms deposited on surfaces after an 

aerosol release. For a various combinations of sampling surfaces, size fractions, HVAC 

operating conditions, size distributions of release spores, and uncertainties in surface 

measurements, the accuracy of model predictions are tested in order to assess how much 

detail can realistically be identified from surface sampling results. The recommended 

modeling and sampling scheme is one choosing 3, 5 and 10µm diameter particles as 

identification targets and taking samples from untracked floor, wall and the HVAC filter. 

This scheme provides reasonably accurate, but somewhat conservative, estimates of risk 

across a range of different scenarios. Performance of the recommended sampling scheme 

is tested by using data from a large scale field test as a case study. Sample sizes of 10-25 

are sufficient to develop order of magnitude estimates of risk. Larger sample sizes have 

little benefit unless uncertainties in sample recoveries can be reduced. 
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3.1 Introduction 

After the 2001 anthrax attacks, many researchers have focused on how to 

effectively estimate human health risk during a bio-terrorist attack, so that appropriate 

response actions can be taken [16, 17, 19, 20, 37, 46, 52, 55, 88, 93, 94, 121, 146, 158, 

196, 199]. Thus, many models have been developed, including pathogen dose-response 

models [11, 90] and environmental transport models [152, 162, 174, 175, 189]. These 

previous modeling efforts have recognized that the size distribution of the particulates has 

a substantial impact on the risk. For example, a previous study [85] estimated that a B. 

anthracis spore concentration of 100/m2 on a floor would correspond to a risk of one in a 

thousand if the spores were finely aerosolized, 1μm diameter particles, but one in a 

million if the spores were present as 10μm diameter clumps. Smaller particles settle more 

slowly and are less readily removed by HVAC system filters [162]. These properties 

allow them to disperse over larger areas and persist longer in the air than larger particles. 

In addition, fine particulates are more respirable, and thus present greater risks when 

inhaled than larger particles [11]. 

 

Previous modeling efforts have generally accounted for these aerosol size effects 

by modeling a number of discrete particle sizes [11, 85, 149, 162]. However, little 

previous research has examined how to conduct sampling in order to effectively 

parameterize these models. While some aerosol samplers can provide information on 

particulate sizes, aerosol concentrations decline rapidly after a release making it unlikely 

that response will be rapid enough to characterize a release based on aerosol 
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concentrations. The material used in the attack may not be recovered in sufficient 

quantity for a size distribution analysis to be conducted. Surface sampling techniques 

generally provide information on only the total number of organisms or gene copies 

present, not the size fractions of particulates that organisms are associated with. Because 

different size particles partition into various environmental compartments at different 

rates, the concentrations found in different environmental compartments may allow the 

size distribution of the release to be identified.  

 

This study addresses the question of how much can be learned from simple 

aggregate concentration measurements, such as could reasonably be made after an actual 

release. In order to assess how size distributions can realistically be identified from 

surface sampling results, a variety of alternative model formulations and sampling 

schemes are evaluated following a 7-step framework. The recommended modeling and 

sampling scheme is then applied to a case study using parameter estimates from a large 

scale field test, which aims to provide insights between a sampling scheme's reliability 

and its required sample size. 

 

3.2 Methodology  

The method has two components. First, forward modeling is conducted, in which 

characteristics of a release are assumed and a fate and transport model is used to estimate 

spore concentrations in different environmental compartments. The B. anthracis spore 

concentrations predicted by the fate and transport model then serve as inputs for different 
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inverse modeling approaches, which are evaluated on their ability to match the forward 

modeling results. The overall goal of this analysis is to identify sampling and modeling 

schemes, specifically as a combination of sampling locations and modeled particle sizes, 

which allow the release quantities for different spore sizes, their associated risks, and the 

amount exiting the release room to be characterized with the least error. 

 

3.2.1 Fate and transport model (forward modeling) 

The general fate and transport model for a simple office with a HVAC system is 

expressed as: 

( ) ( )d M t T M t
dt

=




      
where ( )M t


 is the quantity of spores in different compartments, and T


 is a matrix of 

transfer coefficients. Based on Figure 3-1, the modeled office is divide into 7 internal 

compartments: air, tracked floor, untracked floor, walls, ceiling, HVAC, and the nasal 

passages of an occupant of the office, and an eighth compartment that consists of all areas 

external to the room.  
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Figure 3-1 Schematic of single room office suite 
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Thus the general fate and transport model can be written as: 



















































































−

−

++++−−−

=













































=

•

•

•

•

•

•

•

•

n

ce

ec

f

w

utf

tf

air

n
ce

w

utf

tf

n
cewutftf

n

ce

ec

f

w

utf

tf

air

M

M

M

M

M

M

M

M

V
eI

V
Qp

V
Qep

μ

μ
V
eI

V
Qpe

M

M

M

M

M

M

M

M

dt
dM  

0000000 
0000000

0000000)1(

0000000

0000000
0000000
000000

000000) (]1)1[(

2

2

λ

λ
λ
λ

λλλλ

 (1) 

where Mair(t) is the number of spores in the air compartment, Mtf(t) is the number of 

spores on the tracked surface of the floor, Mutf(t) is the number of spores on the untracked 

surface of the floor, Mw(t) is the number of spores on the walls, Mf(t) is the number of 

spores on the filter, Mec(t) is the number of spores in the external compartment, Mce(t) is 

the number of spores on the ceiling, Mn(t) is the number of spores in the occupant’s nasal 

passages. Mair, Mtf, Mutf, Mw, Mf, Mec, Mce and Mn are all given in units of spores 

(number of organisms). Next we define the following parameters: Q is the discharge from 

the air compartment (units of m3/s), µ2 is the resuspension rate from the tracked surface 

into the air compartment (units of s-1), p is the fraction of air recirculated into the building 

by the HVAC system, e is the efficiency of the filter at removing particles, en is the 

efficiency of the nasal passages at removing particles, I is the inhalation rate of the 

occupant (units of m3/s), and V is the volume of the room (units of m3). λtf, λutf, λw and λce 

are the deposition rates for aerosolized pathogens onto the tracked surface, the untracked 

surface and the floors, walls, and ceiling respectively (units of s-1), which can be 

expressed by parameters representing the indoor air flow conditions: 
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    (4) 

where D (m2/s) is the particle diffusivity, ke (s-1) is turbulence intensity, and v (m/s) is 

particle settling velocity, which is given in Equation 5 as a function of the particle's 

diameter (d, units of m), the viscosity of air (µair, units of kg/(m×s)), the density of the 

particle (ρp, units of kg/m3), and the density of air (ρair, units of kg/m3).  

2 ( )
18

p air
t

air

gd
V

ρ ρ
µ
−

=
    (5) 

For the details of the solution to Equation 1, please refer to Hong et. al. [85]. Parameter 

values are provided as Supplementary Information.  

 

Such compartment modeling approaches are widely used, although their 

limitations must be acknowledged. This modeling approach assumes that each 

compartment is completely mixed, which is not accurate at the immediate time of a 

release but becomes much more accurate as the release disperses over time. Thus, the 

methodology presented here is intended for use in areas somewhat removed from the 

initial release such that concentrations on different surfaces (walls, untracked floor, and 

HVAC filter) can be considered reflective of more or less the same time-averaged air 

concentration. The model used here is based on literature studies of how particulates 



70 

 
 

behave in the indoor environmental [129, 131, 146, 162, 171, 173, 184, 183]. In the case 

of B.anthracis spores, a verification of the above mentioned fate and transport model has 

been undertaken [87] by comparing the results of a completely mixed compartment 

model with observations of B.anthracis spore concentrations from the Hart Senate Office 

Building reported by Weis et. al. [199]. The observed behavior of the spores was 

generally consistent with model predictions, allowing the model to be used to generate 

order of magnitude estimates of risk [87]. This verification analysis used a Bayesian 

Monte Carlo approach to identify release parameters. While the Bayesian Monte Carlo 

approach has promise, it does require the identification of prior distributions for 

parameters and thousands of model runs to characterize posterior distributions, which is 

complicated and computationally intensive. In the following section, the potential of a 

more straightforward and rapid classical approach to identifying release characteristics is 

evaluated. 

 

3.2.2 Particle identification (inverse modeling) 

Because all of the processes in Equation 1 are first order, the release quantity 

(Mr)�������⃗  can be expressed as the product of a matrix, commonly termed the inverse transfer 

matrix (T−1 ��������⃗ ) and the mass of deposited B. anthracis spores in each environmental 

compartment (Ms�����⃗ ) [148]:  

 Mr�����⃗ = T−1 ��������⃗ Ms�����⃗      (6) 

 

The inverse transfer matrix (T−1 ��������⃗ ) in Equation 6 is a function of time, as specified 

by the transfer matrix (T
 ) of the fate and transport model. This matrix goes through an 
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initial period of rapid change, when deposition from the air compartment is the dominant 

process. Then resuspension, a much slower process, becomes the rate controlling process. 

This is illustrated in Figure 3-2 which shows the mass in different compartments over 

time for the four different particle sizes considered. The mass in each compartment varies 

in the first few minutes and then stabilizes within several hours of the release. This 

stabilization is not a true steady state, as eventually resuspension will deplete 

concentrations on tracked surfaces (and in fact a gradual decline in tracked floor 

concentration can be seen over several hours for the 10µm fraction, as this fraction is 

most readily resuspended). However, this period after the initial deposition phase is 

termed "quasi-steady state" because surface concentrations are roughly stable over the 

time period during which initial release characterization would be expected to occur 

(days). The T−1 ��������⃗  matrix can be considered roughly constant in this period. 
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Figure 3-2 Number of spores in different environmental compartments over time for a 
single room model. 

The approximate transition from the phase of initial deposition of the aerosol to a quasi-steady state (see 
text) is indicated by a vertical line in each plot. 
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At quasi-steady state, if the diameter of spores are divided into four groups: 1μm, 

3μm, 5μm, and 10μm [88], Equation 6 can be expanded to give: 

 �

Mr1
Mr3
Mr5
Mr10

�  =

⎣
⎢
⎢
⎡
KsurfA_1 KsurfA_3 KsurfA_5 KsurfA_10
KsurfB_1 KsurfB_3 KsurfB_5 KsurfB_10
KsurfC_1 KsurfC_3 KsurfC_5 KsurfC_10
KsurfD_1 KsurfD_3 KsurfD_5 KsurfD_10⎦

⎥
⎥
⎤
−1

 

⎣
⎢
⎢
⎡
Ms_surfA
Ms_surfB
Ms_surfC
Ms_surfD⎦

⎥
⎥
⎤
 (7) 

Where Ksurfi_j  is the distribution coefficient for spores with diameter of j on surface i, 

Ms_sur�i is the unbiased mass measurements of the total spores on surface i, and Mrj is the 

initial release quantity for spores whose diameters are j µm. It is the Mrjvalues which 

need to be identified from sampling so that the impacts of the release can be modeled. 

 

Because of the difficulties associated with recovering samples from surfaces [21, 

61, 66], leading to potential errors in the sampling and analysis steps, measurements from 

the surfaces vary from their true values. Thus, it is necessary to evaluate the impacts of 

such errors in measurements of Ms�����⃗  on the characterized release quantity, Mr�����⃗
� . Simulated 

measurement errors are constructed by Hadamard multiplying (element by element 

product, symbol ○) Ms�����⃗ , the environmental compartment concentration values from the 

fate and transport model, by a coefficient (Z�⃗ ), whose elements are assumed to be 

normally distributed with mean of 1 and standard deviation of 0.3. Thus equation (8) 

links the estimated release quantity Mr�����⃗
� , with measured values subject to random errors: 

Mr�����⃗
� = T−1 ��������⃗ �Ms�����⃗ ○ Z�⃗ �     (8) 
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3.2.3 Modeled scenarios 

Three sets of size distributions of released B. anthracis spores are employed to 

test the robustness of candidate modeling and sampling schemes. The nominal size 

distribution is based on the lab analysis of the 2001 anthrax letter attack: the fractions of 

1, 3, 5, and 10µm are 0.14%, 1.46%, 8.40%, and 90%, respectively [102]. The second set 

doubles the quantity of spores with diameters of 1, 3, and 5µm, and reduces the amount 

of 10µm; thus the new fractions are 0.28%, 2.92%, 16.80%, and 80%, respectively. This 

size fraction represents the situation where more fine particles are released, which is 

termed "light". While the third size fraction, termed "heavy", has half the number of 1, 3, 

and 5µm spores (size fractions are 0.07%, 0.73%, 4.20%, and 95%) as compared to the 

nominal situation. Since different HVAC operation situations might change the fate and 

transport properties of released spores and impact human exposure, three HVAC 

operating conditions are considered, representing low, medium, and high air recirculation 

rates (p=0.5, 0.75, 0.95) for each set of size distributions considered. In addition, surface 

concentration measurements with errors (model predictions multiplied by a matrix Z) and 

without errors are considered. Since the impacts of measurement error are modeled by a 

matrix Z�⃗  whose elements are random numbers, it is necessary to propagate this 

uncertainty. Thus medians and 90% confidence intervals from Monte Carlo simulations 

with 1000 iterations are included. In total each candidate scheme is evaluated under 18 

conditions (3 HVAC operational conditions × 3 size fraction distributions × with and 

without measurement errors). 
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3.2.4 Evaluation framework 

Only 3 out of 8 modeled locations (wall, untracked floor, and HVAC filter) are 

considered feasible for sampling in this study. The indoor air, external air, ceiling, and 

human nasal passage compartments in the fate and transport model (Equation 1) are 

excluded due to the relatively low concentration values that would be expected in these 

compartments several hours after a release, which could not be measured accurately. The 

tracked floor is excluded because it provides essentially the same information as the 

untracked floor but with less reliability as it is less stable over time. This indicates that no 

more than three size fractions can be identified from the release quantity, while the full 

model includes four size fractions.  

 

The steps of the model evaluation framework used in this study are illustrated in 

Figure 3-3: 1) the full model, consisting of all 4 size fractions is run and concentrations in 

the different environmental compartments at quasi-steady state are simulated, as well as 

the risk to the occupants of the room and the amount of spores exiting the room; 2) a set 

of compartments is chosen for measuring B. anthracis spore concentrations; 3) particle 

sizes are selected to be modeled; given that only 3 environmental compartments are 

considered suitable for measurement and that the full model has 4 particle sizes, the 

number of size fractions to be modeled based on available measurements must be 

reduced from the number in the full model, hence this is termed the reduced model; 4) the 

inverse transfer matrix at quasi-steady for the reduced model is computed, and the matrix 

(Z�⃗ ), representing measurement error, is generated; 5) Monte Carlo simulations are 

conducted, and the release quantities are calculated with Equation 6. When simulated 
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measurement errors are included in the environmental concentrations, then Equation 8 is 

used. When measurement errors are present, it is possible to obtain negative estimates of 

mass. Zeros are substituted for any negative estimates; 6) using the release quantities 

estimated from the reduced model, the risk to occupants of the room and the number of 

spores exiting this room are calculated; and 7) the ratios of the reduced model and full 

model are determined for the risk to occupants and amount of spores exiting the room. 
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Figure 3-3 Evaluation framework used in this study
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For an identification approach to be effective, the ratios of quantities such as 

human risk and the amount of spores exiting the room between the reduced form and the 

full model (based on four size fractions) should be close to one but should not have much 

risk of falling substantially below one. Ratios greater than one represent conservative 

models, meaning that a model that overestimates risk to the occupants of the room, which 

in most cases would be preferred to an approach that underestimates risk. Likewise an 

approach that overestimates the number of spores leaving the room (which would inform 

estimates of risk to those downwind of the release) would generally be preferred over an 

approach that underestimates the number of spores leaving the room. However, in order 

to provide a reasonable prediction, these ratios should not be too far away from one.  

 

3.3 Results 

The first modeling and sampling schemes considered are those ones with three 

different size fractions. The fraction of spores with the diameter of 10µm is always 

identified because it constitutes the vast majority of the release, while the other two 

identification targets are selected from the remaining three candidate particle sizes. Table 

3-1 presents results for identification approaches for three particle sizes. If the surface 

sampling results are perfect (no errors), ratios for the occupants' risk, and the amount of 

spores exiting the room are very close to 1, indicating that these approaches closely 

match the full model. However, once sampling inefficiency and potential errors are 

considered. The median ratios from some sampling schemes overestimate risk by a factor 

of 2 or 3. This indicates that predictions for the release quantity and ratios are sensitive to 
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measurement errors. Across the different size fraction identification schemes, the ones 

using 3, 5 and 10µms as the identification targets outperform others, because the 5th 

percentiles for the ratios of human health risk and the amount of spores exiting the room 

are closer to 1, which means adopting this sampling schemes reduces the potential extent 

of underestimation due to sampling error. 
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Table 3-1 Results for approaches to identify three size fractions 

Selected 
compartments 

Size fractions to 
be identified (µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 

Walls 

HVAC filter 

1,3,10 

Nominal 

0.50 1.15 1.83 0.68 5.02 1.06 1.34 0.88 2.12 

0.75 1.14 1.92 0.73 4.90 1.06 1.38 0.90 2.14 

0.95 1.11 1.68 0.69 4.61 1.05 1.31 0.89 2.10 

Light 

0.50 1.20 1.37 0.59 3.48 1.12 1.26 0.85 1.99 

0.75 1.18 1.31 0.57 3.38 1.11 1.25 0.86 1.94 

0.95 1.14 1.27 0.55 3.18 1.09 1.21 0.85 1.91 

Heavy 

0.50 1.11 2.47 0.88 6.56 1.03 1.41 0.91 2.32 

0.75 1.10 2.56 0.88 6.63 1.03 1.45 0.94 2.35 

0.95 1.08 2.32 0.89 6.45 1.03 1.42 0.91 2.30 

Overall    0.57 6.63   0.85 2.35 

1,5,10 

Nominal 

0.50 1.00 1.40 0.61 3.70 1.00 1.19 0.85 1.70 

0.75 1.00 1.44 0.65 3.58 1.00 1.20 0.87 1.70 

0.95 1.00 1.31 0.63 3.35 1.00 1.16 0.86 1.68 

Light 

0.50 1.00 1.12 0.55 2.53 0.99 1.10 0.81 1.53 

0.75 1.00 1.08 0.53 2.47 0.99 1.10 0.83 1.51 

0.95 1.00 1.07 0.54 2.33 0.99 1.07 0.82 1.46 

Heavy 

0.50 1.00 1.82 0.80 4.76 1.00 1.24 0.87 1.91 

0.75 1.00 1.88 0.81 4.80 1.00 1.28 0.89 1.91 

0.95 1.00 1.77 0.77 4.69 1.00 1.25 0.86 1.88 

Overall    0.53 4.80   0.81 1.91 
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Table 3-1. Results for approaches to identify three size fractions (continued) 

Selected 
compartments 

Size fractions to 
be identified (µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 
Walls 

HVAC filter 
3,5,10 

Nominal 

0.50 1.00 2.53 0.79 6.05 1.00 1.52 0.96 2.69 

0.75 1.00 2.58 0.89 6.05 1.00 1.54 0.95 2.71 

0.95 1.00 2.35 0.92 5.61 1.01 1.48 0.96 2.66 

Light 

0.50 1.00 1.80 0.75 3.99 1.00 1.36 0.92 2.39 

0.75 1.00 1.71 0.78 3.75 1.01 1.35 0.91 2.37 

0.95 1.00 1.57 0.77 3.53 1.01 1.28 0.90 2.25 

Heavy 

0.50 1.00 3.43 1.03 8.13 1.00 1.61 0.97 2.98 

0.75 1.00 3.48 1.02 8.47 1.00 1.65 1.00 3.02 

0.95 1.00 3.21 1.00 8.24 1.00 1.60 0.97 2.93 

Overall    0.75 8.47   0.90 3.02 

a.The size fractions of 1, 3, 5, and 10µm for the nominal scenario are 0.14%, 1.46%, 8.40%. and 90%, The size fractions of 1, 3, 5, and 10µm for the light scenario for the light 
scenario are 0.28%, 2.92%, 16.80%, and 80%. The size fractions of 1, 3, 5, and 10µm for the heavy scenario and 0.07%, 0.73%, 4.20%, and 95%. 
b. If a negative release quantity is identified, it will be assumed 0. 
c. Bold shows the qualified surface particle size combination. 
d. Values in the 'Overall' row come from the lowest 5% and the highest 95% ratios. 
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If two size fractions are to be estimated, again the 10µm size fraction is always 

included in the model because it accounts for the majority of spores. The other 

identification target is selected from the 1, 3, and 5µm diameter size fractions, while two 

sampling surfaces are selected from untracked floor, wall, and the HVAC filter. Table 3-2 

provides the results for the identification approaches based on two sampling surfaces. If 

measurement error is not considered, three candidate sampling schemes satisfy the 

evaluation criteria: 1) identifying 5 and 10µm particle sizes by sampling from the 

untracked floor, and the walls; 2) identifying 5 and 10µm particle sizes by sampling from 

the walls and the HVAC filter; and 3) identifying 3 and 10µm particle sizes by sampling 

the untracked floor and the HVAC filter. However, if the effect of measurement error is 

considered, the 5th percentile ratios for the human risk are less than 0.5 for the selected 

combinations, indicating serious underestimations of risk are possible due to sampling 

error. As a result, none of the two particle size approaches are recommended. 

 



 

 

83 

Table 3-2 Results for approaches to identify two size fractions 

Selected compartments 
Size fractions to 

be identified 
(µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 
Walls 

1,10 

Nominal 

0.50 0.68 0.69 0.45 1.12 0.93 0.93 0.60 1.28 

0.75 0.68 0.69 0.43 1.06 0.92 0.92 0.63 1.26 

0.95 0.68 0.68 0.42 1.08 0.92 0.92 0.62 1.23 

Light 

0.50 0.58 0.59 0.35 0.84 0.86 0.86 0.62 1.14 

0.75 0.58 0.58 0.34 0.84 0.86 0.86 0.61 1.12 

0.95 0.60 0.59 0.36 0.82 0.86 0.86 0.61 1.09 

Heavy 

0.50 0.78 0.85 0.55 1.35 0.96 0.98 0.64 1.36 

0.75 0.78 0.83 0.54 1.34 0.96 0.99 0.62 1.38 

0.95 0.77 0.82 0.54 1.32 0.96 0.97 0.63 1.34 

Overall    0.34 1.35   0.60 1.38 

3,10 

Nominal 

0.50 0.88 0.90 0.47 1.75 0.98 1.01 0.69 1.33 

0.75 0.90 0.91 0.45 1.68 0.99 0.99 0.72 1.32 

0.95 0.92 0.92 0.44 1.70 0.99 1.00 0.73 1.31 

Light 

0.50 0.85 0.87 0.37 1.38 0.97 0.98 0.73 1.23 

0.75 0.87 0.86 0.37 1.37 0.97 0.97 0.73 1.22 

0.95 0.90 0.88 0.41 1.36 0.99 0.99 0.74 1.21 

Heavy 

0.50 0.92 0.98 0.58 2.12 0.99 1.04 0.72 1.40 

0.75 0.93 0.94 0.57 2.08 0.99 1.04 0.71 1.40 

0.95 0.95 0.95 0.56 2.13 1.00 1.04 0.71 1.37 

Overall    0.37 2.13   0.69 1.40 
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Table 3-2 Results for approaches to identify two size fractions (continued) 

Selected compartments 
Size fractions to 

be identified 
(µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 
Walls 5,10 

Nominal 

0.50 1.08 1.11 0.49 2.39 1.02 1.05 0.74 1.39 

0.75 1.10 1.11 0.46 2.30 1.02 1.05 0.76 1.37 

0.95 1.15 1.14 0.45 2.30 1.03 1.05 0.77 1.36 

Light 

0.50 1.11 1.14 0.39 1.90 1.03 1.04 0.77 1.30 

0.75 1.13 1.13 0.39 1.89 1.04 1.03 0.78 1.30 

0.95 1.19 1.16 0.46 1.86 1.06 1.06 0.80 1.30 

Heavy 

0.50 1.06 1.10 0.59 2.88 1.01 1.08 0.75 1.48 

0.75 1.07 1.03 0.59 2.79 1.01 1.08 0.74 1.46 

0.95 1.11 1.10 0.58 2.89 1.02 1.09 0.75 1.42 

Overall    0.39 2.89   0.74 1.48 

Untracked floor 
HVAC 1,10 

Nominal 

0.50 3.67 3.74 0.42 21.23 1.88 1.89 0.81 7.46 

0.75 3.71 3.68 0.40 21.04 1.92 1.92 0.79 7.67 

0.95 3.69 3.75 0.37 18.44 1.94 1.94 0.76 6.92 

Light 

0.50 4.45 4.47 0.29 14.56 2.60 2.60 0.76 7.14 

0.75 4.46 4.59 0.29 14.02 2.64 2.63 0.80 6.91 

0.95 4.37 4.08 0.25 13.26 2.66 2.50 0.74 6.83 

Heavy 

0.50 2.83 1.94 0.53 25.86 1.46 1.48 0.79 7.01 

0.75 2.88 2.03 0.54 25.25 1.49 1.51 0.82 6.99 

0.95 2.90 2.77 0.53 25.27 1.50 1.54 0.82 7.22 

Overall    0.25 25.86   0.74 7.67 
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Table 3-2 Results for approaches to identify two size fractions (continued)  

Selected 
compartments 

Size fractions to 
be identified 

(µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 
HVAC 

3,10 

Nominal 

0.50 1.12 1.13 0.42 4.83 1.05 1.18 0.79 1.96 

0.75 1.11 1.12 0.40 4.83 1.05 1.19 0.75 1.99 

0.95 1.09 1.09 0.37 4.20 1.05 1.16 0.76 1.87 

Light 

0.50 1.16 1.16 0.29 3.32 1.10 1.13 0.72 1.87 

0.75 1.15 1.14 0.29 3.15 1.10 1.12 0.74 1.81 

0.95 1.11 1.04 0.26 2.98 1.08 1.08 0.71 1.75 

Heavy 

0.50 1.08 1.04 0.54 5.91 1.03 1.25 0.77 1.98 

0.75 1.08 1.04 0.55 5.75 1.03 1.23 0.78 1.95 

0.95 1.06 1.05 0.53 5.78 1.02 1.23 0.77 2.00 

Overall    0.29 5.91   0.71 2.00 

5,10 

Nominal 

0.50 0.96 0.96 0.43 3.74 0.98 1.12 0.77 1.59 

0.75 0.94 0.95 0.41 3.73 0.98 1.12 0.75 1.56 

0.95 0.92 0.92 0.38 3.24 0.97 1.08 0.74 1.53 

Light 

0.50 0.94 0.94 0.29 2.57 0.97 1.02 0.68 1.44 

0.75 0.93 0.92 0.29 2.41 0.96 1.01 0.70 1.42 

0.95 0.90 0.84 0.26 2.28 0.94 0.98 0.70 1.36 

Heavy 

0.50 0.97 1.07 0.55 4.57 0.99 1.19 0.77 1.68 

0.75 0.96 1.07 0.56 4.45 0.99 1.18 0.76 1.70 

0.95 0.94 1.03 0.54 4.46 0.98 1.18 0.76 1.67 

Overall    0.29 4.57   0.68 1.70 
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Table 3-2 Results for approaches to identify two size fractions (continued)  

Selected 
compartments 

Size fractions to 
be identified (µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Biased 

50% 5% 95% 50% 5% 95% 

Wall 
HVAC 

1,10 

Nominal 

0.50 0.64 0.68 0.45 1.08 1.00 1.00 0.68 1.38 

0.75 0.63 0.67 0.45 1.04 1.00 1.01 0.69 1.36 

0.95 0.64 0.66 0.44 1.03 1.00 1.00 0.68 1.34 

Light 

0.50 0.53 0.54 0.35 0.81 0.99 1.00 0.72 1.29 

0.75 0.53 0.53 0.35 0.79 0.99 0.99 0.73 1.25 

0.95 0.54 0.54 0.34 0.77 0.99 0.99 0.74 1.24 

Heavy 

0.50 0.75 0.85 0.58 1.33 1.00 1.03 0.65 1.43 

0.75 0.75 0.84 0.57 1.30 1.00 1.02 0.65 1.42 

0.95 0.74 0.83 0.55 1.29 1.00 1.01 0.67 1.45 

Overall    0.34 1.33   0.65 1.45 

3,10 

Nominal 

0.50 0.83 0.85 0.48 1.98 1.01 1.04 0.73 1.50 

0.75 0.84 0.87 0.50 1.87 1.01 1.04 0.73 1.48 

0.95 0.88 0.90 0.48 1.92 1.01 1.03 0.72 1.45 

Light 

0.50 0.77 0.78 0.38 1.51 1.01 1.03 0.76 1.36 

0.75 0.80 0.80 0.38 1.45 1.01 1.02 0.77 1.31 

0.95 0.85 0.85 0.37 1.42 1.02 1.02 0.77 1.27 

Heavy 

0.50 0.88 1.03 0.63 2.41 1.00 1.07 0.69 1.57 

0.75 0.89 1.02 0.61 2.36 1.00 1.06 0.68 1.59 

0.95 0.92 0.99 0.59 2.37 1.01 1.04 0.70 1.58 

Overall    0.37 2.41   0.68 1.59 
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Table 3-2 Results for approaches to identify two size fractions (continued)  

Selected 
compartments 

Size fractions to 
be identified (µm) 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Biased 

50% 5% 95% 50% 5% 95% 

Wall 
HVAC 5,10 

Nominal 

0.50 1.18 1.19 0.53 3.91 1.00 1.09 0.78 1.92 

0.75 1.23 1.28 0.55 3.69 1.00 1.10 0.76 1.91 

0.95 1.34 1.35 0.52 3.75 1.00 1.09 0.77 1.82 

Light 

0.50 1.24 1.27 0.41 3.05 0.99 1.07 0.80 1.63 

0.75 1.30 1.32 0.42 2.86 0.99 1.06 0.79 1.58 

0.95 1.43 1.43 0.41 2.89 0.99 1.06 0.80 1.52 

Heavy 

0.50 1.13 1.41 0.70 4.88 1.00 1.15 0.74 2.11 

0.75 1.16 1.38 0.67 4.59 1.00 1.13 0.73 2.07 

0.95 1.24 1.37 0.65 4.72 1.00 1.11 0.75 2.06 

Overall    0.41 4.88   0.73 2.11 

a.The size fractions of 1, 3, 5, and 10µm for the nominal scenario are 0.14%, 1.46%, 8.40%. and 90%, The size fractions of 1, 3, 5, and 10µm for the light scenario for the light 
scenario are 0.28%, 2.92%, 16.80%, and 80%. The size fractions of 1, 3, 5, and 10µm for the heavy scenario and 0.07%, 0.73%, 4.20%, and 95%. 
b. If a negative release quantity is identified, it will be assumed 0. 
c. Bold shows the qualified surface particle size combination. 
d. Values in the 'Overall' row come from the lowest 5% and the highest 95% ratios. 
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Table 3-3 includes the results when a single size fraction, the 1µm size fraction, is 

selected for identification. When samples are taken from either the untracked floor or the 

HVAC filter, the ratios for the human risk and the amount of spores leaving the room are 

greatly overestimated, indicating these identification strategies are not accurate. 

However, if samples are collected from walls, the ratios for human risk are close to one, 

but the ratios of quantity of spores leaving the room are far below one. This phenomenon 

arises because 1µm deposit to the walls in greater proportion than other size fractions 

(Figure 3-4). Thus assuming all spores are 1µm results in an underestimation of total 

release quantity. Since the estimated release quantity is lower than its actual value, the 

approach also underestimates the number of spores leaving the room. However, the 

estimate of risk is close to the full model because all the spores are assumed to be from 

the most dangerous size fraction, 1µm [11]. Table 3-4 includes the results for approaches 

to identify 10µm size fraction. In contrast to the 1µm scenarios, release quantities are 

underestimated. When samples are taken from untracked floor and the HVAC filter, the 

ratios of human risk and the amount of spores exiting the room are less than one. 

However if samples are taken from walls, the release quantity is overestimated due to its 

low rate at which 10µm spores deposit to walls compared to other size fractions. This 

results in an overestimation of the number of spores leaving the room (see Figure 3-4). 
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Figure 3-4 The distribution of Bacillus anthracis with different diameters after 8 hours. 
The percentages in the table are distributions of B. anthracis spores among different compartments, while the heights of different colors in one bar denote the 

distribution of spore sizes in that compartment. 

  

Air compartment Floor Wall HVAC filter Outside Nasal Passage 
1 μm 0.49% 12.95% 0.62% 55.74% 29.93% 0.27% 
3 μm 0.01% 27.13% 0.08% 65.53% 7.04% 0.21% 
5 μm 0.02% 41.19% 0.03% 54.71% 3.89% 0.16% 
10 μm 0.13% 66.89% 0.01% 31.02% 1.86% 0.09% 
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Table 3-3 Results for approaches to identify 1 micron size fraction 

Selected 
compartments 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 

Nominal 

0.50 183.54 184.80 119.86 230.24 84.83 85.72 47.44 123.82 

0.75 175.64 176.12 111.43 220.65 83.78 84.12 45.01 123.21 

0.95 165.41 165.92 107.83 205.04 82.25 82.64 45.59 118.42 

Light 

0.50 114.72 114.18 73.57 145.08 72.48 71.97 40.02 105.94 

0.75 108.57 110.13 69.70 138.18 70.91 72.45 39.07 105.43 

0.95 100.74 99.65 64.65 124.95 68.68 67.56 37.69 97.80 

Heavy 

0.50 255.79 251.93 156.45 320.39 92.01 89.89 47.17 134.83 

0.75 248.06 249.84 153.65 314.43 91.39 92.41 47.42 137.76 

0.95 237.74 236.79 148.31 298.00 90.49 89.92 47.22 133.99 

Overall    64.65 320.39   37.69 137.76 

Wall 

Nominal 

0.50 1.02 1.02 0.64 1.38 0.33 0.33 0.20 0.44 

0.75 1.01 1.02 0.65 1.39 0.33 0.33 0.21 0.46 

0.95 1.00 1.01 0.67 1.33 0.34 0.34 0.23 0.45 

Light 

0.50 0.79 0.79 0.54 1.03 0.35 0.35 0.24 0.46 

0.75 0.79 0.79 0.54 1.04 0.36 0.36 0.25 0.48 

0.95 0.79 0.79 0.56 1.02 0.37 0.37 0.27 0.48 

Heavy 

0.50 1.26 1.26 0.74 1.78 0.31 0.31 0.18 0.44 

0.75 1.25 1.25 0.74 1.80 0.31 0.31 0.19 0.45 

0.95 1.24 1.24 0.72 1.75 0.32 0.32 0.18 0.45 

Overall    0.54 1.80   0.18 0.48 
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Table 3-3 Results for approaches to identify 1 micron size fraction (continued) 

Selected 
compartments 

Set of size 
distribution 

HVAC 
operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

HVAC filter 

Nominal 

0.50 25.70 25.49 14.96 35.66 8.57 8.49 4.90 12.08 

0.75 24.90 25.01 14.17 34.88 8.51 8.55 4.76 12.13 

0.95 23.72 23.37 13.97 32.68 8.41 8.28 4.87 11.78 

Light 

0.50 17.67 17.53 10.97 24.00 8.23 8.16 5.03 11.36 

0.75 17.01 16.91 11.21 22.73 8.15 8.09 5.29 11.05 

0.95 16.06 16.11 10.23 21.23 7.98 8.01 5.00 10.71 

Heavy 

0.50 34.15 34.31 18.87 47.85 8.76 8.80 4.76 12.48 

0.75 33.43 33.77 17.36 47.63 8.73 8.82 4.45 12.66 

0.95 32.31 32.19 17.86 46.61 8.68 8.64 4.71 12.75 

Overall    10.97 47.85   4.45 12.75 

a.The size fractions of 1, 3, 5, and 10µm for the nominal scenario are 0.14%, 1.46%, 8.40%. and 90%, The size fractions of 1, 3, 5, and 10µm for the light scenario for the light 
scenario are 0.28%, 2.92%, 16.80%, and 80%. The size fractions of 1, 3, 5, and 10µm for the heavy scenario and 0.07%, 0.73%, 4.20%, and 95%. 
b. If a negative release quantity is identified, it will be assumed 0. 
c. Bold shows the qualified surface particle size combination. 
d. Values in the 'Overall' row come from the lowest 5% and the highest 95% ratios. 
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Table 3-4 Results for approaches to identify 10 micron size fraction 

Selected 
compartments 

Set of size 
distribution 

HVAC operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

Untracked floor 

Nominal 

0.50 0.44 0.44 0.21 0.64 0.85 0.85 0.41 1.25 

0.75 0.42 0.42 0.22 0.60 0.84 0.83 0.45 1.21 

0.95 0.39 0.40 0.21 0.58 0.82 0.83 0.44 1.21 

Light 

0.50 0.27 0.27 0.16 0.39 0.72 0.73 0.42 1.06 

0.75 0.25 0.26 0.15 0.37 0.71 0.73 0.42 1.04 

0.95 0.24 0.23 0.13 0.33 0.69 0.68 0.38 0.96 

Heavy 

0.50 0.61 0.61 0.31 0.93 0.92 0.91 0.47 1.39 

0.75 0.60 0.60 0.31 0.88 0.91 0.92 0.47 1.35 

0.95 0.57 0.57 0.30 0.84 0.90 0.89 0.47 1.33 

Overall    0.13 0.93   0.38 1.39 

Wall 

Nominal 

0.50 0.57 0.57 0.36 0.77 1.11 1.11 0.70 1.49 

0.75 0.56 0.56 0.36 0.76 1.12 1.12 0.72 1.53 

0.95 0.55 0.55 0.35 0.74 1.15 1.15 0.74 1.54 

Light 

0.50 0.44 0.44 0.30 0.59 1.20 1.19 0.82 1.59 

0.75 0.44 0.44 0.30 0.58 1.22 1.22 0.85 1.62 

0.95 0.43 0.44 0.31 0.57 1.27 1.28 0.89 1.67 

Heavy 

0.50 0.71 0.71 0.41 0.99 1.06 1.06 0.61 1.49 

0.75 0.70 0.70 0.42 1.00 1.07 1.08 0.64 1.54 

0.95 0.68 0.69 0.40 0.95 1.08 1.10 0.63 1.51 

Overall    0.30 1.00   0.61 1.67 
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Table 3-4 Results for approaches to identify 10 micron size fraction (continued) 

Selected 
compartments 

Set of size 
distribution 

HVAC operation 
condition 

Ratio of occupants' risk Ratio of spores exiting the room 

No measurement 
error 

Measurement error No measurement 
error 

Measurement error 

50% 5% 95% 50% 5% 95% 

HVAC filter 

Nominal 

0.50 0.49 0.49 0.28 0.69 0.95 0.95 0.53 1.34 

0.75 0.47 0.47 0.26 0.67 0.95 0.94 0.52 1.35 

0.95 0.45 0.45 0.24 0.64 0.94 0.94 0.51 1.33 

Light 

0.50 0.34 0.34 0.21 0.46 0.92 0.92 0.58 1.24 

0.75 0.32 0.32 0.21 0.44 0.91 0.90 0.58 1.23 

0.95 0.30 0.30 0.19 0.42 0.89 0.89 0.55 1.21 

Heavy 

0.50 0.65 0.66 0.36 0.95 0.98 0.99 0.53 1.43 

0.75 0.63 0.63 0.33 0.92 0.97 0.96 0.50 1.41 

0.95 0.61 0.60 0.33 0.88 0.97 0.96 0.53 1.40 

Overall    0.19 0.95   0.51 1.43 

a.The size fractions of 1, 3, 5, and 10µm for the nominal scenario are 0.14%, 1.46%, 8.40%. and 90%, The size fractions of 1, 3, 5, and 10µm for the light scenario for the 
light scenario are 0.28%, 2.92%, 16.80%, and 80%. The size fractions of 1, 3, 5, and 10µm for the heavy scenario and 0.07%, 0.73%, 4.20%, and 95%. 
b. If a negative release quantity is identified, it will be assumed 0. 
c. Bold shows the qualified surface particle size combination. 
d. Values in the 'Overall' row come from the lowest 5% and the highest 95% ratios. 
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3.4 Application of the sampling scheme 

Based on the above results, identifying 3, 5, and 10µm particle size fractions 

based on samples from the untracked floor, walls, and the HVAC filter is recommended 

as a modeling and sampling scheme. To examine how such an approach might be 

applied, and what degree of uncertainty would be present in results, concentration 

measurements from a large scale field test are analyzed below. 

 

In September 2008, Battelle Energy Alliance conducted five release events of 

Bacillus atrophaeus, a surrogate for Bacillus anthracis, at Idaho National Laboratory 

(INL) in a typical two-story commercial building (Building PBF632) in order to support 

the Department of Homeland Security (DHS), the Environmental Protection Agency 

(EPA), and the Joint Program Executive Office Chemical and Biological Defense's 

(JPEOCBD) Sample Collection Operation Test Plan. Among the five tested release 

events, Events 1, 2, and 4 were performed on the first floor of the building, while Events 

3 and 5 were performed on the second floor. For each release event, Bacillus atrophaeus 

spores were aerosolized through a battery powered generator, and surface concentrations 

were measured using collection methods: vacuum, wipe, and swab. Between release 

events, the building was decontaminated and the effectiveness of decontamination was 

verified by clearance samples. For details of this field test, please refer to the official 

report [4].  
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To create the matrix Z�⃗ , it is necessary to estimate sample recovery variability and 

uncertainty associated with different collection methods. This was done using settling 

plate samples as a reference by a multivariate regression model. Recovery efficiencies (γj) 

are estimated as: 

, , , , , ,
1 1

Y =
ji nn

i j k i i k j j k i j k
i j

I Jβ γ ε
= =

+ +∑ ∑     (13) 

where the dependent variable is the log transformed surface concentration Yi,j,k, i indexes 

the combination of room and sampling event where the sample was taken (thus rooms are 

indexed separately for each of the sampling events), j indexes collection method, and k 

indexes the measurements within each room-event and sampling method combination. 

The model has two classes of parameters: 1) βi the nuisance parameters, which account 

for the effects of Ii,k, the indicator of location-event combination (Ii,k is 1 when the kth 

sample is from the ith location-event combination and 0 otherwise), and 2) γj the 

collection method recovery fractions, which account for the effects of Jj,k, the collection 

method indicator (Jj,k is 1 when the kth sample is sampled by the jth collection method and 

0 otherwise). The error terms of this regression (εi,j,k) are collection method specific, 

following a normal distribution with a mean of zero and a standard deviation of σj (εi,j,k 

~N(o,σj)). Parameters are estimated by maximum likelihood estimation (MLE) using data 

from the 3 release events with more than 55% detectable concentrations (Events 1, 4, and 

5) for a total of 550 observations, which consist of 146 swabs samples, 76 Vacuum 

samples, 227 wipes samples, and 101 settling plate samples. The inverse of the 

information matrix is used to estimate standard errors of model parameters. The standard 

error of γj, denoted by σj, is of particular interest since this is the uncertainty in mean 

recovery (relative to the settling plate data that were used as a reference). The normality 
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of the residual errors from the best fitted model has been verified, and values of σj and σγ, 

are present in Table 3-5 by sample collection method.   
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Table 3-5 The standard deviation and its uncertainty for the error term 

Collection method 
Parameter value (log scale) Sample quantity (log scale) 

σγ σj n=1 n=4 n=25 

Swab 0.32 0.94 0.99 0.57 0.38 

Vacuum 0.18 0.67 0.69 0.38 0.22 

Wipe 0.25 0.97 1.00 0.54 0.31 
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For samples taken from an unknown surface, the overall uncertainty has two 

sources, uncertainty in mean recovery (σγ) and variability in the recovery from sample to 

sample (σj). The sampling variability can be reduced by increasing sample size. However, 

unless a reference method is available, increasing the sample size will not reduce 

uncertainty in the recovery fraction. While a reference method (i.e., settling plate data) 

was available for this field study, it would not be available in the aftermath of an actual 

biological attack. Thus for a given collection method j, its residual error, (i.e., the 

elements of matrix Z�⃗ ), is generated by the following distribution: 

2
2ln ~  (0, )j

j N
nγ

σ
ε σ +

    (14)
 

where n is the sample size. 

 

Based on errors calculated in this manner and shown in Table 3-5, nine different Z�⃗  

matrices are developed, one for each of three sample collection methods (swabs, vacuum, 

and wipes) and three sample sizes (1, 9, and 25). These Z matrices estimated from the 

field data are tested on the previously recommended sampling and modeling scheme, 

taking samples from untracked floor, wall, and the HVAC filter to identify 3, 5 and 10µm. 

A Monte Carlo simulation of 1000 iterations is used for each sampling scheme, and the 

ratios of human risk and amount of spores exiting the room are computed. The impacts of 

imperfect sample recovery and sample size are investigated by checking the quotients 

between the 95th percentile and 5th percentile of these two ratios, which represents the 

uncertainty of the results. The closer this quotient is to 1, the less uncertainty in the 

sampling scheme. Figure 3-5 illustrates this quotient as a function of sample size for nine 
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sampling schemes. Uncertainties in number of spores exiting the room are smaller than 

those in health risks to occupants of the release room. Thus health risk to occupants of the 

room drives the sample size requirement. Based on these inputs, it is suggested to take at 

least 25 samples, which results in roughly one order of magnitude difference between the 

95th percentile and 5th percentile estimations for risk estimates in the release room. 

Sample sizes larger than 25 provide little benefit as the remaining uncertainty is due to 

uncertainty in mean recovery (σγ) rather than sampling variability (σj). Given that a 

reference method (i.e., settling plates) would not be available in a real release, additional 

samples will not reduce uncertainty in recovery rates. Accordingly once the sample size 

is sufficient to reduce the effect of σj on overall uncertainty then there is little benefit to 

further sampling. One potential option to reduce σγ would be to conduct positive control 

studies. While this option is not explored further here, the expected reduction in σγ could 

be used with the approach described here to estimate the benefit of such positive control 

studies. Among the three sample collection methods, samples taken by wipes have the 

most sampling variability and hence are the most sensitive to sample size, followed by 

swab and vacuum. One should beware that conclusions might change under different 

settings, such as the type of released agents, release location (indoor vs. outdoor), the 

sample extraction method used, the material used for sampling, etc. 
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Figure 3-5 The relationship between a sample scheme's reliability and its sample size 

(Identification targets are 3, 5 and 10µm, and samples are taken from untracked floor, wall and the HVAC filter) 
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3.5 Discussion 

This analysis provides a framework for determining how much detail can feasibly 

be included in models and provides guidance on appropriate sampling schemes. This 

analysis suggests that 1) a 3 size fraction model (3, 5, and 10µm), which can be estimated 

based on aggregate surface sampling of the untracked floor, wall, and the HVAC filter, 

provides reasonable and conservative estimates of risk and number of spores leaving the 

release room; and 2) in an example application, a sample size of about 25 provided order 

of magnitude estimates of risk, but unless a reference is available to enable uncertainties 

in recovery to be reduced, there is little benefit to taking more than 25 samples. 

 

Calculations involved in this paper depends on the complete mixing assumption, 

which is generally true for fine particles as deposition rates are slow relative to mixing 

rates. However, the immediate vicinity of a release may contain large amounts of coarse 

particles due to rapid deposition of these particles before mixing can occur. More detailed 

work, such as computational fluid dynamics modeling could provide guidance as to how 

to interpret surface concentration in the immediate vicinity of a release. The approach 

described here is applicable only to areas removed from the initial release. Whether this 

framework is applicable can be readily ascertained from sampling data. Areas of a room 

showing spatial variability in sampling results would be areas for which the complete 

mixing assumption is not valid. Results from areas with consistent and uniform 

concentrations would be appropriate for use with this method.  
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3.6 Appendix B 

Table B-1. Inputs and their values used in Equation 1 and 6 

Parameter 
Symbol Meaning Unit Best 

Estimate Source 

V Volume of model the office m3 78.4 Author 
decision 

Q Discharge from the air compartment m3/s 0.087 [59] 

p Fraction of air recirculated into the building by 
the HVAC system  0.8 [8] 

ρp Particle density kg/m3 1000 Author 
decision 

ACH Air change rate times/hour 4 Author 
decision 

Inh Occupants' inhalation rate m3/hour 1.02 [101] 

e The efficiency of the filter at removing 
particles 

1µm 0.098 

[162] 
3µm 0.49 

5µm 0.74 

10µm 0.88 

en 
The efficiency of the nasal passages at 

removing particles 

1µm 0.14 

[104, 
161] 

3µm 0.45 

5µm 0.62 

10µm 0.77 
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Table B-1. Inputs and their values used in Equation 1 and 6 (continued) 

Parameter 
Symbol Meaning Unit Best Estimate Source 

λw(ce) 
Deposition rates onto the walls 

(ceilings) hour-1 

1µm 0.1 

[162] 
3µm 0.4 

5µm 0.8 

10µm 0.9 

λtf(utf) 
Deposition rates onto the tracked 

(untracked) surface hour-1 

1µm 0.1 

[162] 
3µm 0.6 

5µm 2.0 

10µm 8.1 

µ2 
Resuspension rate from the untracked 

surface into the air compartment hour-1 

1µm 1.2×10-4 

[162] 
3µm 1.9×10-3 

5µm 3.8×10-3 

10µm 3.4×10-2 
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CHAPTER 4: PRIORITIZING RISKS AND UNCERTAINTIES FROM 
INTENTIONAL RELEASE OF SELECTED CATEGORY A PATHOGENS 

 

 

ABSTRACT 

This paper synthesizes available information on five Category A pathogens 

(Bacillus anthracis, Yersinia pestis, Francisella tularensis, Variola major and Lassa) to 

develop quantitative guidelines for how environmental pathogen concentrations may be 

related to human health risk in an indoor environment. An integrated model of 

environmental transport and human health exposure to biological pathogens is 

constructed which 1) includes the effects of environmental attenuation, 2) considers 

fomite contact exposure (ingestion or dermal risk) as well as inhalational exposure, and 3) 

includes an uncertainty analysis to identify key input uncertainties, which may inform 

future research directions. A reduced form model is also derived which allows for 

approximate estimation of risk without the need to conduct matrix manipulations. The 

findings from this study provide a framework for developing the many different 

environmental standards that are needed for making risk-informed response decisions, 

such as when prophylactic antibiotics should be distributed, and whether or not a 

contaminated area should be cleaned up. The approach is based on the assumption of 

uniform mixing in environmental compartments and is thus applicable to areas 

sufficiently removed in time and space from the initial release that mixing has produced 

relatively uniform concentration. Results indicate that when pathogens are released into 

the air, risk from inhalation is the main component of the overall risk, while risk from 

ingestion (dermal contact for B. anthracis) is the main component of the overall risk 
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when pathogens are present on surfaces. Concentrations sampled from untracked floor, 

walls and the filter of heating ventilation and air conditioning (HVAC) system are 

proposed as indicators of previous exposure risk, while samples taken from touched 

surfaces are proposed as indicators of future risk if the building is reoccupied. A Monte 

Carlo uncertainty analysis is conducted and input-output correlations used to identify 

important parameter uncertainties. An approach is proposed for integrating these 

quantitative assessments of parameter uncertainty with broader, qualitative considerations 

to identify future research priorities.  
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4.1 Introduction 

Biological weapons, also known as “the poor man’s atom bomb”, have been 

included in terrorists’ arsenal because of their capability of producing mass causalities 

combined with natural access to the pathogens, manageable technical challenges and 

relatively low costs to launch an attack [144, 190, 192]. Prior to the 2001 anthrax letter 

attacks, identified bioterrorism attacks included the release of Salmonella typhimurium to 

eleven restaurant salad bars in the city of Portland in 1984 to influence an election, which 

caused the infection of 750 people, and the release of B. anthracis spores in Tokyo by the 

religious group Aum Shinrikyo between 1990 and 1995, which failed to infect any people 

[13, 157]. The 2001 anthrax letter attacks infected 22 people (11 inhalational cases and 

11 cutaneous cases [108]), caused the deaths of 5 people, and cost hundreds of millions 

of dollars in clean up costs [163]. The attacks revealed that the U.S. lacked the guidelines 

for a quick response to such attacks, as well as decontamination standards for 

bioterrorism agents [86]. 

 

As a result, research has been undertaken to better understand the risks resulting 

from a bioterrorist attack. Sextro et al. modeled the spread of B. anthracis spores in a 

hypothetical office suite, estimated occupants' exposure, and found that activity-related 

resuspension was an important source of human exposure [162]. This model did not 

consider environmental decay of the pathogen. While B. anthracis is a persistent 

pathogen whose environmental decay rate can be treated as zero for a short time 

simulation [166], Sextro et al.'s model would need to be modified to include 

environmental attenuation in order to be used to estimate the fate and transport of non-
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persistent biological agents. Price et al. [11] created a framework to link the degree of 

contamination in a building to the risk to the occupants, which could also be used to 

establish a decontamination standard if an acceptable risk level is provided. In addition, 

Price et al. linked the number of negative samples to the level of statistical confidence in 

the determination that the building had been effectively decontaminated [146]. However, 

this study did not provide a mechanistic model to describe the long term fate and 

transport and overall mass balance of the released pathogens, instead using a 

proportionality relationship to link the short term surface concentration of deposited 

pathogens to the short term concentration of aerosolized ones. Hong et al. [12] modeled 

the distribution of both air and surface-released B. anthracis spores in an office, and used 

concentrations found in different environmental media (i.e., surface, wall, ventilation 

filter, etc.) to infer future or past aerosol exposure. At the same time, they applied 

probability sampling theory in determining the minimum sampling area corresponding to 

certain levels of confidence in meeting allowable residual risk targets. The variability 

during sampling recovery and the potential for clumping of B. anthracis were taken into 

account. Besides not including pathogen decay, the above-mentioned studies quantify 

only inhalational risk, and omit threats from ingestion and dermal contact. 

 

While models for B. anthracis have focused on a single pathway, inhalation 

exposure, mathematical models have been developed for influenza that take multiple 

disease transmission routes, such as inhalation and ingestion, into account [9, 182, 195]. 

Nicas and Gang introduced a Markov chain model to quantify multiple-pathway exposure 

to influenza for a health-care worker who had close contact with a patient. Three 
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exposure routes were concerned, hand-mucous membranes, inhalation, and direct 

projection of pathogen-containing droplets onto mucous membranes. In a subsequent 

study, Nicas et al. applied their model to quantify the relative importance of different 

influenza virus exposure pathways, and pointed out that model uncertainties had 

significant impacts on the conclusion as to which pathway is dominant [132, 133]. 

Atkinson and Wein constructed a four-person household transmission model to quantify 

the dominant transmission route for pandemic influenza [9, 195]. Both of the studies 

performed analysis on the recognized major transmission pathways: droplet, airborne, 

and contacts [2, 193]. However, the above-mentioned studies adopted fixed parameter 

values in the computations instead of distributions across possible values, which does not 

account for variability and uncertainty. There is evidence that including uncertainty and 

variability is important. Smieszek compared predictions from a mechanistic exposure 

model and empirical data from a contact diary study to analyze the impacts of different 

contact intensities and durations. Results showed that treating all the contacts equally 

overestimated the expected number of infected individuals [170]. A study by Julian et al. 

used Monte Carlo simulation to analyze variability and uncertainty in the risk due to 

nondietary ingestion of rotavirus relying on a micro-level activity time series, which may 

inspire future high-resolution microbial risk assessment [63, 96].  

 

These multiple pathway models have been applied to common transmissible 

pathogens but have not addressed Category A agents. They have generally sought to 

identify which pathways are of concern, rather than informing the development of 

quantitative standards for response actions. To address the need for such quantitative 
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standards this paper synthesizes available information on five Category A pathogens to 

develop a framework for relating environmental pathogen concentrations to human health 

risk. The five pathogens considered are: B. anthracis, Y. Pestis, F. tularensis, Variola 

major, and Lassa. Properties of each of these pathogens are described below. 

 

B. anthracis is a Gram-positive, facultative anaerobic, rod-shaped bacterium of 

the genus Bacillus. It is the causative agent of anthrax, an acute disease in humans and 

animals, which is highly lethal in some forms. B. anthracis is one of only a few bacteria 

that can form long-lived spores. Y. pestis, the causative agent of plague, is a Gram-

negative facultative anaerobic bipolar-staining bacillus bacterium belonging to the family 

Enterobacteriaceae. Plague may be manifested in one of three forms: bubonic, 

pneumonic, and septicemic plague [106]. Francisella tularensis is a pathogenic species 

of Gram-negative bacteria that causes the zoonotic disease tularemia. F. tularensis is 

reported to be one of most infectious organisms known. It is an intracellular pathogen, 

replicating mainly in macrophages, and has also been reported in amoebae [186]. Variola 

major is the causative agent of smallpox. There has been no effective treatment 

developed for this disease, which has an average 30% mortality rate. Lassa virus, the 

causative agent of one type of hemorrhagic fever, infects more than 200,000 people per 

year causing more than 3,000 deaths with a mortality rate of about 15% among the 

hospitalized cases [51]. The selected Category A pathogens represent a range of 

environmental persistencies from a pathogen with a very low decay rate (B.anthracis), to 

several with high decay rates (Y.Pestis, F. tularensis, and Lassa), as well as one with a 

moderate decay rate (Variola major). 

http://en.wikipedia.org/wiki/Pathogen�
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The objective of this study is to expand the framework that Hong et al. [85] 

developed for linking environmental concentrations of B. anthracis with human health 

risk by 1) including the effects of environmental attenuation, 2) considering a variety of 

different pathogens instead of a single one (B. anthracis), 3) taking account of contact 

exposure (ingestion or dermal risk) as well as inhalational exposure, and 4) conducting an 

uncertainty analysis and identifying key input uncertainties. Both detailed and reduced 

form solutions to the equations linking risk to environmental concentrations are 

developed, which could benefit in making risk-informed response decisions, such as 

determining when prophylactic antibiotics should be distributed, and whether or not a 

contaminated area should be cleaned up. Monte Carlo methods are used to assess 

uncertainty in the results and identify important uncertainties in input parameters so that 

future research may be directed towards reducing them. 

 

4.2 Methods 

4.2.1 Fate and transport model 

In this study, an occupant is modeled as continuously present in a one-room office 

with a heating, ventilation, and air conditioning (HVAC) system (Figure 4-1). This 

person has the chance of inhaling aerosolized pathogens and ingesting pathogens 

deposited on the touched surfaces through the surface-hand-mouth transmission route. 

For B. anthracis, the ingestion risk is replaced by cutaneous risk since this was a more 

important exposure route than ingestion in the 2001 anthrax letter attacks [108]. A system 

of first-order differential equations is established to describe the fate and transport of 
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released pathogens (Equation 1). Pathogens are modeled as transitioning among 10 states: 

air, touched surfaces (horizontal surfaces from which spores may be re-suspended by 

human activities), tracked floor (horizontal surfaces from which spores may be re-

suspended by walking or other activities), untracked floor (horizontal surfaces from 

which there is no re-suspension), walls, HVAC filter, the nasal passages, hands of an 

occupant of the office, all areas external to the room, and inactivated pathogens. 

Mathematically this is represented by: 
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 (Eq. 1) 

 

The numbers of spores in the compartments are denoted by Mair (air), Mts, 

(touched surfaces), Mtf, (tracked floor), Mutf, (untracked floor), Mw (walls), Mf (filter), 

Mec (external compartment), Mce (ceiling), Mn (nasal passages), Mh (hands), and Md 

(decay). Deposition from the air compartment is modeled as a first-order process with 

rate constants of λts (deposition to touched surfaces), λtf (deposition to tracked floor), λutf 

(untracked floor), λw (walls), and λce (ceiling). A second source of removal is by the 

HVAC system. The total air flow rate through the HVAC system is denoted by Q (units 
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of m3/s), p (dimensionless) is the fraction of total air flow that is recirculated into the 

building by the HVAC system, e (dimensionless) is the efficiency of the filter at 

removing particles, and Vol is the volume of the room (m3). Removal to the occupants’ 

nasal passages is also modeled with Inh (m3/s), denoting the breathing flow rate, and en 

(dimensionless), the efficiency of the nasal passages at removing particles. Removal by 

losing viability is modeled as a first order rate with separate decay rates for air and other 

surfaces, denoted by the subscripts γair, and γf. Resuspension from the tracked floor due to 

occupants walking and other activities is also modeled as a first order process with rate 

constant µ2 (units of s-1). The interactions between human and fomites are represented by 

hand-surface (rhs) and surface- hand (rsh) contact rates, as well as mass transfer fractions 

between hand to surface (fhs), surface to hand (fsh), and hand to mouth (fhm). 

 

The deposition rates can be expressed in terms of parameters representing the 

indoor air flow conditions [103, 131, 207]: 
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where D is the particle's diffusivity, Ke is turbulence intensity, and Vt is particle settling 

velocity, which is given in Equation 5 as a function of the particle's diameter (D), the 

viscosity of air (µair), the density of the particle (ρp), and the density of air (ρair). 
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Figure 4-1 Schematic of model 
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4.2.2 Release scenarios 

Two pathogen release scenarios are considered. In the first scenario, pathogens 

are released to the air compartment. The occupant directly inhales aerosolized pathogens 

and ingests the deposited ones via surface-hand-mouth contacts. Environmental 

concentrations measured at the end of the exposure period are used to characterize the 

risk from the past aerosol release, and as such it is termed the retrospective scenario. In 

the second scenario, pathogens are initially present on the touched surfaces, where they 

may be ingested by surface-hand-mouth contacts. In addition, human-caused 

resuspension introduces the pathogens into the air where they can be inhaled by the 

occupant. Environmental concentrations at the beginning of the exposure period are used 

to predict the future risk and as such the scenario is termed the prospective scenario. This 

scenario addresses the residual risk present after aerosolized particles have had the 

opportunity to deposit onto surfaces, a key issue in establishing a decontamination 

standard. 

 

Solving Equation 1 yields the concentration of released pathogens in each 

compartment over time. The total exposure dose (doset) is composed of two sources: 

inhalation and ingestion. Based on Equation 6, the inhalation dose is obtained by 

integrating the inhalation rate (Inh) and the pathogen’s air concentration (Cair) over the 

total exposure duration (t2-t1), while the ingestion dose equals the integral of the hand-

mouth contact rate (rhm), mass transfer fraction from hand to month during each contact 

(fhm), the involved area of a human hand (Ah), and the pathogen’s concentration on the 

hand (Ch) over the same exposure period: 
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2 2

1 1

 ( )  ( )
t t

t air h hm hm ht t
dose Inh C t dt A r f C t dt= +∫ ∫   (Eq. 6) 

 

For dermal contact, ingestion dose is replaced by the total amount of pathogen 

transferred to the hand from touched surfaces: 
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t t

t air sh sh tst t
dose Inh C t dt r f C t dt= +∫ ∫   (Eq. 7) 

 

This equation is applied for B. anthracis instead of Equation 6, where Cts is 

pathogen's concentration on the touched surface. However, separate dose-response 

coefficients are used for the different exposure pathways for anthrax. The dermal dose-

response parameter is tuned so as to produce equal numbers of dermal and inhalation 

cases for the aerosol release scenario, as was observed in the 2001 attacks. 

 

4.2.3 Dose-response functions 

The exponential (Equation 7) and beta-Poisson (Equation 8) dose-response 

models, which have been widely used in microbial risk assessment [71], are used in this 

study: 

( ) 1 tRdose
tP dose e−= −     (Eq. 7) 

1
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( ) 1 1 2 1t
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   (Eq. 8) 

 

In Equations 7 and 8, P (doset) is the probability of positive response (infection, 
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illness, or death) for a population average dose, which allows for Poisson variability in 

individual exposure [71]. R is the parameter of the exponential dose-response model, N50 

and α are the parameters of the beta-Poisson model. When the risk is relatively small, a 

first-order Taylor series can be used to approximate Equations 7 and 8 as [85]: 

( )t tP dose Rdose≈     (Eq. 7a) 

50
1

( )
( )
2 1

t t tP dose dose doseN

α

α α
β

≈ =

−
   

(Eq. 8a) 

 

This transformation can simplify the low dose risk estimation, which is where this 

approach is intended for use (i.e., for areas removed from the initial release where 

concentrations will be relatively uniform over spatial scales of interest. When the 

exposure dose is high, the full model (Equations 7 and 8) should be used. 

 

4.2.4 Linking pathogen concentrations to risk 

4.2.4.1 Retrospective scenario 

Given that it is rarely possible to have real-time pathogen air concentrations 

during a biological attack, the objective in the retrospective scenario is to use surface 

samples to infer what exposure and risk resulted from the release. Thus, the following 

discussion develops relationships between pathogen concentrations on surfaces and 

average dose.  
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After an aerosol release, the amount of pathogens in the air (Mair), on the touched 

surfaces (Mts), and on occupants' hands (Mh) can be acquired by solving Equation 9, 

which is obtained by separating out the compartments which exchange microbes from 

Equation 1, with the resuspension process omitted because of its minimal impact over the 

short time period required for the aerosol release to disperse (hours) [85]: 
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The number of pathogens in the air, on the touched surface, and on hands are 

provided by Equation 10 to 12 as solutions to Equation 9.  

-At
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where sinh and cosh are hyperbolic trigonometric functions. Symbols Θ and Ω stand for 

the common terms 2( ) 4C F Ee− +  and 2Ee A AC AF CF− + + −  in Equations 11 

and 12, respectively. The coefficients represented by A to F are listed below: 
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B tsλ=       

ts sh shC r fγ= +       

hs hsD r f=       
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Combining Equations 10, 12 with Equation 6, the total exposure dose from time t1 

to t2 can be written in terms of the amount of pathogens released (Equation 13).  
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 (Eq. 13) 

where the coefficients represented by G and H are listed below: 

G=
Inh
Vol

      

H= hm hmr f       

 

The overall risk is composed of inhalation risk and ingestion risk. In this study, it 

is assumed that these two types of risk are independent of each other; in this case the 

overall risk is expressed in Equation 14: 

1- (1- )(1- )overall inh ingRisk Risk Risk=   (Eq. 14) 
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In reality there is little evidence to assess the joint effects of inhalation and ingestion 

exposures, but this assumption is probably most defensible at low risk levels when the 

probability of successful colonization by both routes is low. 

 

Equations 13 and 14 solve the forward problem of estimating risk from a known 

release amount. The inverse problem is to estimate the release amount from measured 

environmental concentrations. The amount of released pathogens (Mair0), can be 

estimated by Equation 11, if the number of pathogens deposited on the touched surfaces 

(Mts) can be acquired from surface sampling and the time after release (t) is known. 

However, the mass on touched surface is influenced by many parameters such as touch 

rate and transfer rate, which are generally highly uncertain. The mass on the untracked 

floor is most suitable for estimating the release quantity as it provides an integration of 

air concentration values over time without human interference. This can be obtained by 

taking the expression from the fourth row of Equation 1: 

At
airo

dMutf e M Mutf utf utfdt
λ γ−= −    (Eq. 15) 

and integrating it to give the release quantity, where t stands for the elapsed time when 

measurements are taken: 
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   (Eq. 16) 

 

Once the release quantity (Mair0) is known, Equation 13 can be used to estimate 

risk. Concentrations in the compartments omitted from Equation 9 (i.e., the 

compartments that do not transfer microbes to other compartments, namely HVAC filters, 
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walls, nasal passages, and the external compartments) can be obtained by integrating the 

produce of the air concentration and the transfer rates from the air over time. 

 

4.2.4.2 Prospective scenario 

The prospective scenario considers a case where the initial aerosol release has 

dissipated. However, the time scale for attenuation of microbes can be much longer on 

surfaces than in the air (i.e., pathogens on surfaces are not subject to attenuation by 

deposition or by air exchange with the exterior of the building). Thus, much of the 

longer-term risk to occupants will come from microbes on surfaces as surface can serve 

as a reservoir both for re-suspension into the air compartment and for exposure via fomite 

contact. In such cases surfaces could be sampled to assess whether a building is suitable 

for re-occupancy. Thus, the prospective scenario can be thought of as a re-occupancy 

assessment. The initial conditions are that Category A pathogens are present on the 

touched surfaces in a quantity equal to the area of the touched surfaces (Asurf) multiplied 

by the corresponding concentration (Csurf), which would be estimated from surface 

sampling (Equation 17). Thus the initial conditions can be expressed as: 
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    (Eq. 17) 

 

Due to the longer time scale associated with the prospective scenario, human-

caused resuspension cannot be omitted. Thus, the tracked floor compartment is included 

in the system of equations to be solved:
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Since taking the resuspension into account increases the solutions' complexity, it 

is less cumbersome to express the solution (Equations 20 to 21) in terms of the 

eigenvalues ( D


) and eigenvectors (ν


) of the following matrix [153]: 
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 (Eq. 19) 

tDtDtDtD
air eCeCeCeCM 4,43,32,21,1

4,143,132,121,11
−−−− +++= νννν   (Eq. 20) 

tDtDtDtD
ts eCeCeCeCM 4,43,32,21,1

4,243,232,221,21
−−−− +++= νννν   (Eq. 21) 

tDtDtDtD
tf eCeCeCeCM 4,43,32,21,1

4,343,332,321,31
−−−− +++= νννν   (Eq. 22) 

tDtDtDtD
h eCeCeCeCM 4,43,32,21,1

4,443,432,421,41
−−−− +++= νννν   (Eq. 23) 

where C


 is a vector of the coefficients determined by the ratio of the vector of initial 

conditions ( Init


) and eigenvectors (ν


) of Equation 19a (Equation 24): 

1

C v Init
−

=
  

    (Eq. 24) 

 

Equations 20 to 23 provide the concentrations of the pathogen on different 

surfaces over time. The total exposure dose can be calculated via integration. To 

conservatively estimate exposure dosage, one may use the maximum exposure duration 

which is achieved if t1=0 and t2=∞. 
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The equations derived in this section provide the exposure input for dose-response 

models (Equations 7 and 8) and thereby link the surface concentration of a pathogen with 

an occupant's future risk. Solving for prospective risk requires working out the 

eigenvectors for Equation 19 and then inverting the resulting matrix to obtain the solution 

(Equation 24). Solving for retrospective risk involves essentially the same procedure, 

although in our presentation these operations have been shown without matrix notation. 

In order to simplify the solution procedure, one may seek to further decouple portions of 

the system of equations to develop approximate solutions that do not require matrix 

operations. This procedure is shown in Appendix I, and Equations 26 and 27 (a is for 

ingestion risk, b is for dermal contact risk) are the resulting approximate solutions.  
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(Eq. 27b) 

where rhmfhm is set to 1 for dermal contact, and ϕretro, ϕpros, and ϕhand are given by: 

[1 (1 ) ]n
retro ts tf utf w air

Inhe Qe p
Vol Vol
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2   pros fomite sh shr fφ µ γ= + +    (Eq. 29) 

_ + + hand ing hm hm fomite hs hsr f r fφ γ=    (Eq. 30a) 

_ + hand dermal fomite hs hsr fφ γ=    (Eq. 30b) 

 

For the beta-Poisson model these equations would hold at low dose, except that R 

would be replaced by α/β. At higher doses (where the Taylor series linearization does not 

hold) one would compute the exposure dose using Equations K and N from the Appendix 

C, and then input this dose into the appropriate dose response model. 
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4.2.5 Model Inputs 

Environmental decay rates, best fit dose-response models, and dose response 

parameters for different pathogens are listed in Tables 4-1 and 4-2, while other 

parameters such as the dimensions of the room, the operational parameters of the HVAC 

system, the deposition velocities of released pathogens, etc. are included in Table 4-3. 

Since the particle size of a pathogen affects its deposition velocity, resuspension rate, 

filter removal, and even dose-response coefficient [11], this study considers four different 

aerodynamic diameters: 1 µM, 3 µM, 5 µM, and 10 µM.  
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Table 4-1 Category A Pathogen’s Environmental Persistency 

a. Uniform distribution is assumed between the maximum and minimum values. 
b. Due to the lack of information on Lassa, the average of the decay rates of Bunyaviridae hantavirus, Sicilian virus Sabin, and Crimean-Congp on fomites are used for 
Lassa. 

 

Pathogen 

Averaged 
decay rate 
in the air 

(γair) (hr-1) 

Range of decay rate 
in the air (γair) (hr-1)a Condition Source 

Averaged decay 
rate on fomite 

(γf) (hr-1) 

Range of decay rate on 
the fomite (γf) (hr-1)a Condition Source 

B. anthracis 8.16×10-5 (1.11×10
-5

, 1.97×10
-4

) NA [26, 124] 3.36×10-5 (1.92×10
-5

, 4.64×10
-5

) NA [26, 68, 134, 
179] 

Y. pestis 2.75 (2.10, 3.49) T=26°C, 
rH=20-87% [205] 4.55×10-1 (0.04, 1.24) 

T=11-22°C, rH=30-
55% metal, steel, 
glass, paper, and 

Polyethylene 

[154, 204] 

F. tularensis 3.27 (0.55, 9.20) T=20-40°C, 
rH=85% [38, 39, 58] 2.39×10-1 (0.01, 0.46) T=25-37°C, rH=10-

100% on metal [204] 

Variola major 4.55×10-2 (1.00×10
-2

, 1.30×10
-1

) 
T=10-34°C, 
rH=20-80% [73, 74] 6.89×10-3 (5.45×10

-3
, 9.95×10

-3
) 

T=25-37°C, rH=3-
96% on glass [112] 

Lassa 2.6 (0.78, 4.14) T=24-28°C, 
rH=30-80% [177] 7.67×10-1b (0.68, 0.92) T=20°C, rH=NA on 

aluminum [72] 
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Table 4-2 Best Fit Dose-Response Model 

a. In exponential dose-response model, k is used as virulence coefficient, while in beta-Poisson dose-response model, the ratio of α/β is used as virulence coefficient.  
b. The intestinal risk is replaced by cutaneous risk since the fractions of inhalational anthrax and cutaneous anthrax were the same in the 2001 anthrax letters attacks 
[108] 
c. The data for 2.1 µm particles are used. 
d. The data for 4.5 µm or less in diameter are used. 
e. The data for the age group of 5 days and above are used. 

Pathogen Strain 
information Exposed animal and route Dose-response 

function type 

Best-fit 
Virulence 

coefficienta 

Ranges of virulence 
coefficients (95% 

Confidence Interval) 

Distributions of virulence 
coefficients Source 

B. anthracisb ATCC 6605 
Female Hartley guinea 

pigs (250 to 300 g), 
intranasal 

Exponential 7.15×10-6 (6.26×10-6, 7.43×10-6) Normal distribution 
(6.93×10-6, 3.98×10-7) [3] 

Y. pestis CO92 C57BL/6 mice, intranasal Exponential 1.02×10-3 (9.87×10-4, 1.05×10-3) Normal distribution 
(1.02×10-3, 1.91×10-5) [106] 

F. tularensis SCHU S-4 
Monkey (4000-5000g), 

aerosol Exponential 5.32×10-2 (5.28×10-2, 5.36×10-2) Normal distribution 
(5.32×10-2, 2.22×10-4) [43]c 

Variola 
major Yamada

 

Swiss Webster albino 
mice (age from 2 hr to 6 

days), intraperitoneal

 

Beta-Poisson 2.31×10-6 (8.19×10-7, 4.80×10-6) Normal distribution 
(2.65×10-6, 1.21×10-6) [113]d 

Lassa NA 
Out-bred Hartley guinea 

pigs (180 to 300g), 
aerosol

 

Beta-Poisson 3.58×10-2 (4.16×10-4, 5.59×10-1) Log-Normal distribution (-
1.69, 0.80) [177]e 
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Table 4-3 Model Inputs 

Symbol Meaning Units Value Source 

V Room dimensions m3 5.6×5.6×2.5 Assumed a typical office [59, 162] 

Ats Area-touchable surfaces m2 5.6×5.6×0.75×0.25  

Atf Area-tracked floor m2 5.6×5.6×0.75×0.75  

Autf Area-untracked floor m2 5.6×5.6×0.25  

Ace Area- ceiling m2 5.6×5.6  

Aw Area- wall m2 5.6×2.5×4  

Af Filter area m2 3.8×10-2  
(2.8×10-2-5.6×10-2)  Q/A = 137m/min (91-183 m/min) 

An Area of nasal passages m2 0.8 [104] 

Ah 
Area of hand touched 

surface m2 2.0×10-3 Authors' assumption 

ACH Air changes per hour hr-1 4 [8] 

Q Discharge m3/s 0.087 Q = V×ACH/3600 (in seconds) 

f Proportion tracked  0.75 [8] 

Init Amount of released 
pathogens Count 1.0×104 Authors' assumption 

D Particle diffusivity m2/s D=1μM 2.8×10-11 Estimated from [130] 

   D=3μM 8.5×10-12  

   D=5μM 5.0×10-12  

   D=10μM 2.5×10-12  

e Filter efficiency  D=1μM 0.098 [162] 

   D=3μM 0.49  

   D=5μM 0.74  

   D=10μM 0.88  
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Table 4-3 Model Inputs (Continued) 

Symbol Meaning Diameter Unit 

Value scale 

Lower 
bound 

Source 
Upper 
bound 

Source Input value Source 

en 
Nasal passages 
particle remove 

efficiency 

1μM  0.02 [104] 0.25 [161] 0.14 
Midpoint of 

range 

3μM  0.22  0.68  0.45  

5μM  0.42  0.81  0.62  

10μM  0.62  0.91  0.77  

µ2 Resuspension rate 

1μM s-1 1.2×10-10 [162, 185] 3.3×10-8 [162, 185] 3.3×10-8 [162, 185] 

3μM  1.7×10-7  1.7×10-6  5.3×10-7  

5μM  1.1×10-6  3.3×10-6  2.2×10-7  

10μM  8.8×10-7  9.4×10-6  1.1×10-6  

Inh Breathing rate  m3/hr 0.8 [101] 2.0 [101] 1.02 [101] 

p Recirculation 
fraction   0 [8] 1 [8] 0.75 [162] 

ρ Density of particle  g/cm3 1.0 Authors' 
assumption 3.0 Authors' 

assumption 1.0 Authors' 
assumption 

Ke Turbulence intensity  s-1 2.60×10-2 [207] 4.50×10-1 [207] 2.40×10-1 Midpoint of 
range 
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Table 4-3 Model Inputs (Continued) 

Symbol Meaning (Unit) Upper 
bound Source Lower 

bound Source Best 
estimate Source 

fh-s 
Mass transfer fraction 
from hand to surface 
during each contact 

0.338 [5] 0.010 [6] 0.174 Middle point 

fs-h 
Mass transfer fraction 
from surface to hand 
during each contact 

0.658 [141] 0.008 [6] 0.333 Middle point 

fh-m 
Mass transfer fraction 
from hand to mouth 
during each contact 

0.410 [141] 0.330 [141] 0.350 [132] 

rh-m Hand-mouth contacting 
rate (hr-1) 8 Authors' assumption 5 Authors' assumption 8 [132] 

rh-s 
Hand-surface 

contacting rate (hr-1) 6 Authors' assumption 3 Authors' assumption 6 Authors' assumption 
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4.3 Results 

Figure 4-2 presents the inhalation, ingestion and overall risks associated with the 

aerosol release (i.e., the retrospective scenario) of 1 micron Category A pathogens. The 

overall risk matches the inhalation risk, indicating that risk from inhalation is the main 

component of overall risk. Particle deposition drives the time required for this risk to 

reach steady state. Hence, the time to reach this asymptote is the same for different 

pathogens of the same size.  

 

Figure 4-3 presents different types of risks associated with the presence of 1 

micron Category A pathogens on surfaces (i.e., the prospective scenario), which indicates 

that risk from ingestion (dermal contact for B. anthracis) is the main component of 

overall risk. In Figure 4-3, the time scale over which each pathogen's overall risk reaches 

its asymptote varies over 4 orders of magnitude, which can be explained by the huge 

variability among pathogen attenuation rates. 

 

To summarize which exposure routes dominate under which conditions, Figure 4-

4 presents the ratio of accumulated inhalation and ingestion exposure. If pathogens are 

aerosolized (retrospective scenario), the dominant exposure route is inhalation (see also 

Figure 4-2), because inhalation is more significant for small particle sizes, which remain 

in the air longer before settling. If pathogens are initially present on a surface 

(prospective scenario), the dominant exposure route is ingestion (see also Figure 4-3), 

and this trend is most significant for small particle sizes as they are least prone to 

resuspension. 
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Figure 4-2 Different types of risks associated with aerosol release of 1 micron Category A pathogens. 

(Release quantity is 1000 unclumped pathogens. For B. anthracis, the ingestion risk is replaced by cutaneous risk since the fractions of 
inhalational anthrax and cutaneous anthrax were the same in the 2001 anthrax letters attacks[108]) 
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Figure 4-3 Different types of risks associated with surface release of 1 micron Category A pathogens. 

(Release quantity is 1000 unclumped pathogens. For B. anthracis, the ingestion risk is replaced by cutaneous risk since the fractions of 
inhalational anthrax and cutaneous anthrax were the same in the 2001 anthrax letters attacks [108]) 
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Figure 4-4 The ratio of accumulative inhalation and ingestion exposure. 
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4.3.1 Linking pathogen concentrations to risk 

Another application of the model is to link measured pathogen concentrations on 

the surfaces with health risk. In the case of a persistent pathogen, a surface concentration 

reflects a fraction of the integral of the air concentration (provided there has been no 

resuspension from the surface). In contrast, for a pathogen subject to environmental 

decay, surface concentrations reflect both the integrated air concentrations and surface 

decay over time. The relationship between surface concentration and accumulated 

(retrospective) dose changes as pathogen concentrations attenuate on the surface over 

time. As deposited microbes decay, each surviving microbe becomes indicative of a 

larger number having been present previously. Figure 4-5, which depicts the retrospective 

risk for a concentration of 10 pathogens per m2 on an HVAC filter, illustrates this. If one 

finds the concentration of Lassa virus particles is 10 pathogens per m2 with a diameter of 

1 µm on an HVAC system filter 1 hour after a release, this implies that occupants were 

subject to a risk of 1.0×10-3 due to the past 1 hour of exposure. The same concentration 

found 4 hours after the release would imply a risk close to 1.0×10-2, as fewer of the 

deposited virus remain viable after 4 hours. In reality it may not be realistic to detect 

pathogens in the environment on anything approaching the time scale of several hours, 

but this serves as an example of how great a challenge it is to use environmental samples 

to characterize risks associated with a pathogen that attenuates in the environment. In 

contrast risks associated a given concentration of B. anthracis (a persistent microbe) are 

relatively constant over time.  
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Figure 4-5 Relationship between risks to the exposed people and pathogen concentration identified from the HVAC filter. 

(A concentration of 10 organisms/m2 was found at HVAC filter at different time after an aerosol release.) 
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The results of this modeling can be summarized in a series of charts that link 

surface concentration to previous exposure risk for different time periods (Figures 4-6 to 

4-10). The slope of each figure is proportional to the pathogen's dose-response coefficient. 

The difference between curves for the same pathogen for different time periods reflects 

the environmental persistence of the pathogen. A rapidly decaying pathogen will have 

widely separated curves to reflect that the same concentration of pathogens remaining 

after a longer time period implies a higher exposure risk (i.e., each pathogen remaining 

indicates that a greater number were present during the earlier part of the exposure 

period), while a persistent pathogen will have closely spaced curves as the risk to 

concentration relationship is relatively constant over time. 
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Figure 4-6. Retrospective risks associated with B. anthracis HVAC concentrations after an aerosol release. 
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Figure 4-7. Cumulative retrospective risks associated with Y. pestis HVAC concentrations after an aerosol release. 
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Figure 4-8 Cumulative retrospective risks associated with F. tularensis HVAC concentrations after an aerosol release. 
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Figure 4-9 Cumulative retrospective risks associated with Variola major HVAC concentrations after an aerosol release. 
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Figure 4-10 Cumulative retrospective risks associated with Lassa HVAC concentrations after an aerosol release. 
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There are essentially two options for addressing prospective (re-occupancy) risk, 

restrict access to the contaminated site until pathogen concentrations decline to 

acceptable levels through natural attenuation or actively decontaminate the site. The 

selection of a strategy depends on the survival capability of the pathogens. If the passive 

decontamination approach is chosen, the time required depends on the initial 

concentration to reach a given residual risk target, but one can get a rough idea of the 

relative feasibility of this approach by comparing the time to achieve a significant 

concentration reduction across different pathogens. The time scale for a 6-log risk 

reduction due to natural attenuation for different pathogens is shown in Table 4-4. Values 

in Table 4-4 vary by more than 4 orders of magnitude. B. anthracis has a best estimate of 

17,100 days or over 46 years. It is probably more appropriate to compare the upper bound 

as pathogens will reside in a wide variety of different microenvironments and decay rates 

would be expected to vary among microenvironments. Decontamination would only be 

achieved once even the pathogens in the more protected microenvironments have 

decayed. For B. anthracis this upper bound would be over 82 years. In contrast, a greater 

than 6 order of magnitude decay of Lassa would occur in less than a day. These estimates 

are very sensitive to the assumption of log linear decay. Deviations from log linear decay 

are widely reported. However in many cases a biphasic approach could be adopted in 

which a rapid log-linear decay rate is used for the first several days and a second, lower 

log-linear decay rate is used subsequently. While parameters for such biphasic 

attenuation models are not yet available for these pathogens, the approach presented here 

can be readily adapted to biphasic decay. The relevant equations would be unchanged, 
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but the mass distribution in each compartment at the end of the first phase would 

constitute the initial conditions for the second phase. 
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Table 4-4 Time scale for a 6-log risk reduction due to natural attenuation 

Pathogen 
Time (days) 

Min Max Best estimate 

B. anthracis 1.24×104 3.00×104 1.71×104 

Y. pestis 4.63×10-1 1.44×101 1.27 

F. tularensis 1.25 5.75×101 2.41 

Variola major 5.79×101 1.05×102 8.38×101 

Lassa 6.25×10-1 8.46×10-1 7.50×10-1 
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Table 4-5 presents the concentrations of pathogens associated with a 1 in 1000 

risk. Concentrations corresponding to different risk levels can be found by multiplying 

these values by the desired risk level/10-3, provided that the risk is low enough to be 

approximately a linear function of exposure (which is roughly accurate for risks <10-2). In 

the retrospective scenarios (the first two columns), the concentrations become lower 

(standards would become more stringent) as the time after the release increases. Values 

for B. anthracis presented here are substantially lower than reported previously [85], as 

the previous study considered only inhalation risk, while this study considers dermal risk 

as well as inhalation risk for B. anthracis. Even if sampling could be conducted within 24 

hours (which is an extremely optimistic assumption), it would be difficult to characterize 

risk at the 1 in 1,000 level for any of the pathogens, as this would require quantifying 

pathogens at levels ranging from 5-7 pathogens/m2 for Variola major to 10-11/m2 for 

Lassa. 
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Table 4-5 Concentrations of pathogens on horizontal surfaces associated with risk of 10-3 
(Prospective exposure duration =1 year) 

Pathogen Diameter 
Concentrations (organisms/m2) 

Retrospective sampling 8 
hours after release 

Retrospective sampling 24 
hours after release 

Prospective for immediate 
occupancy 

Prospective after 24 
hours access restriction 

Prospective after 48 
hours access restriction 

B. anthracis 

1μM 1.6 2×10-1 3.0×101 3.0×101 2.9×101 

3μM 4.2 4×10-1 6.4×102 6.7×102 7.0×102 

5μM 7.0 7×10-1 1.9×103 2.0×103 2.2×103 

10μM 1.6×101 1.0 7.6×103 1.2×104 2.1×104 

Y. pestis 

1μM 2×10-3 1×10-6 1.8×102 9.0×106 4.9×1011 

3μM 9×10-3 2×10-6 1.8×102 9.3×106 5.3×1011 

5μM 1×10-2 2×10-6 1.8×102 9.5×106 5.8×1011 

10μM 1×10-2 1×10-6 1.8×102 1.8×107 2.0×1012 

F. tularensis 

1μM 2×10-4 2×10-6 1.7 5.1×102 1.6×105 

3μM 7×10-4 4×10-6 1.0 5.3×102 1.7×105 

5μM 9×10-4 4×10-6 1.0 5.3×102 1.8×105 

10μM 8×10-4 2×10-6 1.0 1.1×103 7.0×105 

Variola major 

1μM 3.1×101 7.0 1.1×103 1.4×103 1.6×103 

3μM 7.3×101 7.0 1.3×103 1.8×103 2.1×103 

5μM 8.0×101 7.0 1.6×103 2.2×103 2.7×103 

10μM 7.4×101 5.0 4.7×103 1.2×104 2.5×103 

Lassa 

1μM 6×10-6 1×10-11 8.0 7.4×108 7.3×1016 

3μM 2×10-5 4×10-11 8.0 7.9×108 8.0×1016 

5μM 3×10-5 4×10-11 9.0 8.3×108 8.8×1016 

10μM 4×10-5 3×10-11 8.0 1.5×109 3.0×1017 
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For the prospective case (columns 3-5), if a pathogen decays rapidly, most of the 

risk will attenuate relatively rapidly. In such cases a much less stringent concentration 

standard can be set if access to the building is restricted for a period after the sampling is 

conducted. The differences in values for different Category A pathogens are driven by 

virulence and environmental persistency, which are both pathogen dependent. B. 

anthracis has relatively high concentrations despite being very persistent, because it has a 

relatively low infectivity (proportional to parameter k from dose-response functions). The 

strictest concentration values are for F. tularensis despite its low persistence because of 

its high infectivity.  

 

The concentrations associated with immediate re-occupancy are in many cases 

well below applicable limits of detection. For example a negative sampling result for 

Lassa, used to estimate the prospective risk for immediate occupancy, would not provide 

much confidence because the applicable standard of 9 organisms per m2 is well below 

feasible detection levels. However, a negative result coupled with a 24-hour restriction on 

access would provide some level of confidence as the standard for this case of 7.36×108 

organisms per m2 is readily detectable. In this latter case, demonstrating achievement of a 

risk target of 1 in a million (a concentration of 7.36×105 organisms per m2 or 73.6 

organisms per cm2) would likely be feasible as well. If one assumes that a 0.09 m2 

surface is sampled with a recovery of 0.38 [85, 110], and a detection limit of 10 

organisms, then the resulting minimum detectable pathogen concentration is 292 

organisms per m2. Table 4-6 compares risks associated with this concentration across 

different organisms.  



149 

 

Table 4-6 Equipment detection limit associated risk 

Pathogen Diameter Risk (95% confidence interval) 

B. anthracis 

1μM 2.30×10-2 (5.81×10-4, 4.33×10-1) 

3μM 6.80×10-4 (2.25×10-5, 6.54×10-3) 

5μM 1.92×10-4 (1.00×10-5, 1.16×10-3) 

10μM 1.17×10-5 (3.18×10-6, 2.84×10-4) 

Y. pestis 

1μM 2.86×10-3 (9.63×10-5, 1.63×10-2) 

3μM 2.85×10-3 (1.01×10-4, 1.58×10-2) 

5μM 2.84×10-3 (1.04×10-4, 1.51×10-2) 

10μM 2.69×10-3 (1.04×10-4, 1.37×10-2) 

F. tularensis 

1μM 2.57×10-1 (1.54×10-2, 9.17×10-1) 

3μM 2.55×10-1 (1.58×10-2, 8.96×10-1) 

5μM 2.54×10-1 (1.60×10-2, 8.65×10-1) 

10μM 2.31×10-1 (1.56×10-2, 8.06×10-1) 

Variola major 

1μM 2.79×10-4 (9.72×10-6, 6.10×10-4) 

3μM 2.43×10-4 (7.84×10-6, 5.06×10-4) 

5μM 2.14×10-4 (5.93×10-6, 4.06×10-4) 

10μM 7.35×10-5 (3.42×10-6, 3.32×10-4) 

Lassa 

1μM 5.43×10-2 (1.04×10-2, 7.00×10-1) 

3μM 5.43×10-2 (1.09×10-2, 7.00×10-1) 

5μM 5.42×10-2 (1.12×10-2, 6.99×10-1) 

10μM 5.26×10-2 (1.12×10-2, 6.95×10-1) 

It is assumed that the detection limit is 10 organisms which comes from sampling a 0.09 m2 surface 
with the pathogen concentration 292 organisms per m2 and the recovery rate is 0.38 [85]. 
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4.3.2 Parameter uncertainties 

Another objective of this study is to compare risk and uncertainties across 

different pathogens. Using the input distributions listed in Table 4-1 and Table 4-2, 

Equations 26 and 27 are evaluated in a Monte Carlo analysis to estimate risks for 

different pathogens, and results from retrospective and prospective scenarios are 

presented in the form of box plots (Figure 4-11). The relative risk presented by different 

pathogens in an air release are largely determined by their dose-response parameters, 

because the exposure duration in air is limited by the particle deposition rate (which is the 

same across different pathogens) rather than the decay rate. However, air decay rate does 

have an impact, when decay is rapid enough to occur over the time scale during which 

particulates are typically suspended (minutes to hours depending on the diameter of the 

particles) which is the case for Y. pestis, F. tularensis, and Lassa. The relative risks for 

different pathogens in a surface release are affected by both fomite decay rates and dose-

response parameters. In general the risk from releasing the same amount of pathogens can 

be ranked as Lassa, F. tularensis, Y. Pestis, B. anthracis, and Variola major (in 

decreasing order). This analysis does not include secondary transmission risks (which 

may be particularly important for all but B. anthracis and F. tularensis [30]) and as such 

does not capture a critical component of risk for pathogens, such as Variola major, which 

are subject to secondary transmission. Instead it addresses the question as to which 

pathogens are subject to the greatest uncertainty in setting surface concentration 

standards for primary exposure. Uncertainties presented by Lassa are highest across most 

of the cases, indicating that this organism may be a priority for further study (pending 

consideration of factors such as its likely use in an attack). 
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Figure 4-11 Risk and uncertainty for different pathogens 

Medians shown in red, 1st and 3rd quartiles in blue. (1. B. anthracis, 2. Y. pestis, 3. F. tularensis, 4. Variola major, and 5. Lassa) 
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Correlations between the input parameter values and the model output (risk) are 

used to assess the importance of uncertainties in different parameters. These correlations 

were computed separately for each pathogen, for ingestion and inhalation risk for both 

the retrospective and prospective scenarios for all four particle sizes considered. Table 4-

7 summarizes the 3 most important uncertain inputs by exposure pathway and scenario 

for each pathogen (with the range of values across the four particle sizes shown in 

brackets). Detailed results are included in Appendix II (Tables S2-S6). Uncertainties in 

mass transfer fraction from surface to hand (fsh) have major impacts on ingestion dose, 

and uncertainty in the breathing rate (Inh) plays an important role in determining the 

inhalation dose in the retrospective scenario. In the prospective scenario, the ingestion 

dose is most closely related to the mass transfer fraction from surface to hand (fsh), while 

the inhalation dose is most closely related to the pathogen resuspension rate (µ2). 
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Table 4-7 Parameter uncertainties with most influence on risk 

Pathogen 
Retrospective scenario Prospective scenario 

Ingestion risk Inhalation risk Ingestion risk Inhalation risk 

B. anthracis 

Dose-response coefficient (r) 
(0.66-0.76) 

Air change rate (ACH) (0.31-
0.72) 

Dose-response coefficient (r) 
(0.63-0.87) 

Air change rate (ACH) (0.44-
0.75) 

Mass transfer fraction from 
surface to hand (fsh) (0.21-

0.36) 

Breathing rate (Inh) (0.27-
0.65) 

Mass transfer fraction from 
surface to hand (fsh) (0.16-

0.32) 

Breathing rate (Inh) (0.14-
0.53) 

Air change rate (ACH) 
(0.081-0.21) 

Density of the particle (ρp) 
(0.052-0.61) 

Resuspension rate (µ2) 
(0.047, 0.29) 

Resuspension rate (µ2) 
(0.022-0.32) 

Y. pestis 

Decay rate on fomite (γf) 
(0.56-0.61) 

Breathing rate (Inh) (0.73-
0.78) 

Decay rate on fomite (γf) 
(0.53-0.56) 

Decay rate on fomite (γf) 
(0.51-0.63) 

Mass transfer fraction from 
surface to hand (fsh) (0.47-

0.51) 

Air change rate (ACH) (0.28-
0.52) 

Mass transfer fraction from 
surface to hand (fsh) (0.34-

0.38) 

Resuspension rate (µ2) (0.21-
0.35) 

Density of the particle (ρp) 
(0.12-0.24) 

Density of the particle (ρp) 
(0.026-0.54) 

Hand-surface contacting rate 
(rhs) (0.071-0.079) 

Breathing rate (Inh) (0.15-
0.18) 

F. tularensis 

Mass transfer fraction from 
surface to hand (fsh) (0.44-

0.67) 

Decay rate in the air (γair) 
(0.46-0.75) 

Decay rate on fomite (γf) 
(0.64-0.65) 

Decay rate on fomite (γf) 
(0.42-0.59) 

Decay rate in the air (γair) 
(0.23-0.43) 

Breathing rate (Inh) (0.35-
0.69) 

Mass transfer fraction from 
surface to hand (fsh) (0.41-

0.47) 

Resuspension rate (µ2) (0.18-
0.33) 

Decay rate on fomite (γf) 
(0.33-0.49) 

Decay rate on fomite (γf) 
(0.18-0.42) 

Hand-surface contacting rate 
(rhs) (0.12-0.13) 

Decay rate in the air (γair) 
(0.14-0.26) 

Variola 
major 

Mass transfer fraction from 
surface to hand (fsh) (0.45-

0.67) 

Dose-response coefficient (r) 
(0.44-0.73) 

Mass transfer fraction from 
surface to hand (fsh) (0.60-

0.67) 

Dose-response coefficient (r) 
(0.30-0.61) 

Dose-response coefficient (r) 
(0.38-0.54) 

Air change rate (ACH) (0.19-
0.54) 

Dose-response coefficient (r) 
(0.51-0.57) 

Air change rate (ACH) (0.25-
0.45) 

Air change rate (ACH) (0.11-
0.37) 

Breathing rate (Inh) (0.25-
0.40) 

Resuspension rate (µ2) (0.15-
0.46) 

Resuspension rate (µ2) (0.25-
0.39) 

Lassa 

Dose-response coefficient (r) 
(0.60-0.70) 

Dose-response coefficient (r) 
(0.69-0.87) 

Dose-response coefficient (r) 
(0.72) 

Dose-response coefficient (r) 
(0.61-0.80) 

Mass transfer fraction from 
surface to hand (fsh) (0.40-

0.47) 

Breathing rate (Inh) (0.26-
0.28) 

Mass transfer fraction from 
surface to hand (fsh) (0.51) 

Breathing rate (Inh) (0.17-
0.23) 

Decay rate in the air (γair) 
(0.057-0.21) 

Decay rate in the air (γair) 
(0.082-0.31) 

Resuspension rate (µ2) (0.26-
0.40) 

Decay rate in the air (γair) 
(0.089-0.24) 

Values of coefficients between selected parameters and risks to the exposed people are listed in parenthesis.  
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As noted above this analysis captures only one aspect of uncertainty, that of 

uncertainty in primary exposure. This may be the appropriate framework for pathogens 

that are not subject to secondary transmission as well as for decisions where one seeks to 

cut off environmental transmission of a pathogen after a widespread environmental 

contamination event. Additional risk and uncertainty would be applicable for decisions 

where secondary transmission is a concern.  

 

4.4. Discussion 

This study presents an integrated fate and transport, dose-response model to 

estimate the inhalation and ingestion risks associated with environmental pathogens. 

Scenarios to estimate the past risk and to predict future risk are introduced. A reduced 

form model is developed and used to compare risks and uncertainties for different 

pathogens.  

 

In addition, this study also identified important parameter uncertainties in risk 

assessment models. Specifically, the input-output correlations presented in Table 4-7 

indicate which parameter uncertainties have the greatest effect on risk estimates. 

However, several other factors must be considered in settling research priorities. Whether 

the high correlation is due to variability or epistemic uncertainty is one such factor. 

Parameters such as inhalation rate and air exchange rate will vary considerably from 

person to person and from building to building, respectively. However, they are not 

subject to great epistemic uncertainty. The ranges within these parameters vary have 
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already been well characterized. Additional research would not reduce the inherent 

variability in such parameters but only serve to further characterize an already well-

characterized variability distribution. 

 

Another factor to consider is whether a particular parameter is common across 

pathogens such that a study of a single surrogate organism might be helpful in improving 

risk assessments for multiple pathogens. Strictly speaking, any parameter can be 

considered pathogen specific. However, some distinctions can perhaps be made between 

dose-response parameters and environmental decay rates, both of which are observed to 

vary over orders of magnitude and depend on very complex pathogen-host and pathogen-

environment interactions, and general physical transfer rates, such as surface-hand and 

hand-surface transfer fractions and re-aerosolization rates, which might vary less from 

pathogen to pathogen. 

 

A third consideration is the extent to which an uncertainty is reducible by further 

research. Dose-response is an example of an uncertainty that is difficult to reduce through 

research. In part this is due to cost, as such research generally requires vertebrate animals 

and extensive biosafety precautions. There are other more fundamental challenges as well. 

Laboratory experiments 1) must be conducted at high doses with limited numbers of 

animals, leaving great uncertainty as to the effects of lower doses; 2) generally do not 

consider the effects of previous exposures, which might greatly affect the dose response 

coefficients; and 3) must be conducted with animal models that may not accurately 

represent human dose response. Despite these limitations, further animal studies would at 
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least reduce the confidence intervals for the dose-response parameters used here. These 

dose-response model parameter uncertainties are the uncertainties reflected in the 

correlations summarized in Table 4-7 (i.e., applicability of the animal model to humans 

and validity of extrapolation from high to low dose were not addressed by this analysis), 

which means that further animal dosing studies would effectively reduce the uncertainty 

considered here. Thus, dose-response uncertainty is considered by the authors to be 

researchable, although the difficulties and expense of working with vertebrate animals 

with extensive biosafety precautious are significant. 

 

As an example of how one might integrate these different factors, Table 4-8 

summarizes the authors' view of future research priorities based on these different factors. 

In Table 4-8, The percentages in the right hand columns indicate the frequency with 

which the parameter was one of the top three sources of risk for different pathogens (the 

retrospective scenario percentages are based on inhalation risk, and the prospective 

scenario percentages are based on ingestion risk). A low research priority for research is 

assigned to all three parameters subject to variability rather than epistemic uncertainty: 

breathing rate, density, and air exchange rate. The remaining 6 parameters all were 

judged to be subject to epistemic uncertainty. The degree of "Generality" (divided into 3 

categories in order of priority: common across pathogens, similarities expected, pathogen 

specific) was an important factor in distinguishing among high and medium priority 

parameters, with both of the medium priority parameters (decay on fomites and decay in 

the air) considered to be pathogen specific. Three of the high priority parameters 

(resuspension rate, hand surface contact rate, and mass transfer fraction for surface to 
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hand) were ranked highly partly because similarities across organisms would be expected 

making surrogate research more generally relevant and partly because the input-output 

correlations indicated they were important parameters. Dose-response parameters were 

given high priority for research despite being judged both pathogen-specific and difficult 

to research, because these parameters were relatively frequently among the parameters 

responsible for the greatest uncertainty in risk (13% of retrospective cases and 20% of 

prospective cases). 
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Table 4-8 Properties of parameters uncertainty 

Authors' 
priority Parameter Symbol 

Uncertainty 
vs. 

Variability 
Generality Researchable 

Percentage in the top 3 
uncertainty parameters 
among retrospective 

scenario (%) 

Percentage in the top 3 
uncertainty parameters 

among prospective 
scenario (%) 

High 
Mass transfer 
fraction from 

surface to hand 
fsh Both Similarities 

expected Yes 0 33 

High Dose-response 
coefficients k Both Pathogen specific Difficult 13 20 

High Resuspension rate µ2 Both Similarities 
expected Yes 0 20 

High Hand-surface 
contacting rate rhs Both Similarities 

expected Yes 0 13 

Moderate Decay rate on 
fomite γf Both Pathogen specific Yes 7 13 

Moderate Decay rate in the 
air γair Both Pathogen specific Yes 13 0 

Low Breathing rate Inh Variability Common across 
pathogen Yes 33 0 

Low Air change rate ACH Variability Common across 
pathogen Yes 20 0 

Low Density of the 
particle ρp Variability Common across 

pathogen Yes* 13 0 

* Density can readily be measured but it is not clear that laboratory values could reflect density in an actual release 
+ The percentages in the retrospective scenario is based on inhalation risk in the retrospective scenario, while the percentages in the prospective scenario is based 
   on ingestion risk in the prospective scenario of Table 4-7. 
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Judgments listed in Table 4-8 are all based on the authors' understanding and 

previous experience. The intent is to provide an example framework for integrating the 

computational results provided by the model with broader considerations that influence 

the costs and benefits expected from future research. The sources of input into this 

ranking process should be broadened by scientifically collecting opinions from experts in 

the future [127].  

 

The fate and transport model is based on the assumption that pathogens are instantly 

uniformly mixed in a compartment. This fails to capture the short-term dynamics 

associated with the immediate vicinity of a release. For example, surface samples might 

not be reflective of the localized high concentrations associated with opening a letter 

containing pathogens and might underestimate risk in this case. A more detailed approach, 

such as computational fluid dynamics, would be a useful extension to this study. The 

study also considers risk from a release of only one pathogen. Little information is 

available on the effects of mixtures of pathogens. This approach would be most valid at 

low risk levels when interactions among pathogens, such as successful colonization by 

more than one pathogen would be unlikely. 

 

Another assumption is that pathogen attenuation rate outside the host is log linear 

over time. In reality microorganisms often exhibit “tailing” in which a small, highly 

resistant subpopulation attenuates at a very low rate. Thus the assumption of log-linear 

decay may not be health protective. Accordingly the values calculated here are not 

intended as suggested environmental standards. These calculations are provided to 
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illustrate the suggested approach and to allow a comparison of uncertainties so that future 

research can be prioritized. 

 

This study modeled environmental fate and transport using a small number of 

homogeneous compartments when in reality surfaces may vary in characteristics, such as 

the frequency with which they are touched, the rate at which pathogens attenuate 

(influenced in turn by relative humidity, intensity of ultraviolet light, etc. [166]), and the 

ease with which pathogens are re-aerosolized or transferred to hands from them. 

Modeling these heterogeneities may improve our understanding of pathogen fate and 

transport in the environment but would require detailed parameter inputs beyond what are 

currently available in the literature. Such heterogeneities might provide protected 

microenvironments that could allow pathogens to persist longer and present greater 

health risks than estimated here, which makes this a priority for future research. 

 

The framework developed here may help inform whether active decontamination 

is required after a release. If a pathogen with a slow environmental attenuation rate is 

released (i.e., B. anthracis), then environmental decontamination may be required. In 

contrast, if a pathogen with fast environmental attenuation rate is released (eg., Lassa), 

the decision maker may opt to restrict access to the contaminated site until the residual 

risk declines to a level judged acceptable for re-occupancy. The choice between active 

decontamination and passive attenuation involves comparing the costs of remediation and 

opportunity costs of restricting access to the building. While previous research has 

addressed policy options for bioterrorism, this research has not considered the 
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opportunity costs of removing buildings from service [91, 123]. Thus, further study is 

needed to inform the choice between active remediation and passive attenuation. 

 

This analysis considered viable organisms. However, the environmental 

concentrations which would be used as inputs to the risk models developed here would 

likely be measured by quantitative PCR (qPCR), which has been proven effective in 

quantifying biological warfare agents (i.e., B. antracis, and Y. pestis) due to its rapid, 

early, and accurate results [200]. Despite the advantages of qPCR analysis, several 

knowledge gaps need to be addressed The first is that the qPCR does not distinguish 

between living or dead pathogens. While researchers have identified assays to 

discriminate between viable and dead fecal bacteroidales bacteria, similar methods have 

not been applied to Category A pathogens [10, 53]. Second there is little information on 

the decay of the qPCR signal over time, which would be an essential parameter for the 

retrospective assessment of risk after a release. Thus, studies are needed to quantify 

parameters such as, the efficiency of DNA extraction, the degradation of nucleic acids 

overtime, and the reactivity of primer and probe [24, 110, 156].  
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4.5 Appendix C 

This appendix describes how the system of equations given by Equation 1 in the 

main body of the paper can be simplified to allow reduced form solutions to be developed. 

 

Retrospective scenario 

In the retrospective scenario,  resuspension makes a negligible contribution to 

dose, due to the relatively short exposure period compared the rates of resuspension (in 

this case the exposure period is assumed to be is 8 hours, the duration of a working day). 

Neglecting re-suspension separates the air compartment from the effects of other 

compartments so that air concentration follows a simple first order decay model. The 

inhaled dose can be calculated as:  
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where 

[1 (1 ) ]n
retro ts tf utf w air

Inhe Qe p
Vol Vol

φ λ λ λ λ γ= + + + + + + − −   (Eq. 31) 

 

The ingested pathogens (doseing_retro) are the organisms which deposit on the 

touched surface (Mts) from the initial release in the air (Mair0) (Equation B):  
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remain alive until being transferred to the hand (Mhand) (Equation C): 
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and are ingested (doseing_retro) during surface-hand-mouth contact in the exposure period 

(Equation D): 
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where 

2   pros fomite sh shr fφ µ γ= + +     (Eq. 32) 

+ + hand hm hm fomite hs hsr f r fφ γ=     (Eq. 33) 

 

To simplify the calculation, three assumptions are made during the derivation of 

Equation D: 1) pathogen resuspension and back transfer from hands to the surface are 

omitted due to their relatively low rates resulting in small fractions being back transferred, 

which is also health conservative; 2) all integration steps are from t=0 to t=a which 

provides an upper bound on the amount of pathogen transferred to the next step; 3) the 
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pathogens will not be transferred to hands until depositing on the touched surface, and the 

pathogens will not be ingested until they are transferred to hands.  

 

Prospective scenario 

In the prospective scenario, the majority of the inhaled dose (doseinh_pros) comes 

from two sources (Figure C-1). The first source consists of organisms that are inhaled 

right after being resuspended (doseinh1_pros) (Equation E).  

1 2
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a a
t t
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∫ ∫    (Eq. E) 

 

The second are those organisms which experienced a certain number of "surface-

hand-surface" travels before being resuspended and inhaled doseinh2_pros (Equation F).  
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∫ ∫    (Eq. F) 

where Θ is the total fraction of resuspended pathogens surviving a number of n "surface-

hand-surface" cycles: 
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Θ is composed as a summation of a geometric series with element of Θn, where n 

indexes the number of "surface-hand-surface" cycle. In the nth cycle, pathogens survived 

from the n-1th cycle (Θn-1Mtso) are first transferred to hands (Equation H), and then back 

transferred to the surface (Equation I). 
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For both sources, pathogen resuspension happens before inhalation. The 

maximum inhalation dose is reached when the exposure duration goes to infinity 

(Equation K): 
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Similarly, the prospective ingestion dose (doseing_pros) comes from two sources 

(Figure C-2). The first source is direct ingestion of the pathogens released on the touched 

surface (doseing1_pros) (Equation L):  
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where 1
0 1

0

pros

a
t

sh sh tsr f M e dtφ−∫  is the mass transferred to victims hand.  

 

The second source is those organisms which experience a certain number of 

"surface-hand-surface" travels before being ingested (doseing2_pros) (Equation M), which 

contains the common factor Θ as described above. The maximum ingestion dose is 

reached when exposure goes to infinity (Equation N).  
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Table C-1 compares the exposure dose approximated by the above-mentioned 

equations with the exact results from solving Equation 18. The overall risk is acquired by 

inputting inhalation and ingestion doses into Equation 14 separately for the retrospective 

(Equation 26) and the prospective scenario (Equation 27). 
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Figure C-1. Pathogen flow for estimating the inhalation dose in the prospective scenario. 

  



169 

 

 

Figure C-2. Pathogen flow for estimating the ingestion dose in the prospective scenario. 
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Table C-1. Comparison Exposure Dose between Approximated Analytical Equation and 
Simulated Results (1 µm) 

Pathogen 
Release 

scenario 

Inhalation dose Ingestion dose 

Approximated 

analytical equation 

Full numerical 

simulation 

Approximated 

analytical equation 

Full numerical 

simulation 

B. anthracis 

Retrospective* 1.12×104 1.12×104 2.75×101 2.37×101 

Prospective* 2.07×103 2.10×103 7.62×105 7.64×105 

Y. pestis 

Retrospective* 3.32×103 3.42×103 1.98 1.96 

Prospective* 8.83×10-1 8.83×10-1 9.84×102 9.83×102 

F. tularensis 

Retrospective* 3.13×103 3.23×103 3.22 3.15 

Prospective* 1.56 1.56 1.94×103 1.94×103 

Variola major 
Retrospective* 1.08×104 1.08×104 2.57×101 2.23×101 

Prospective* 1.65×102 1.65×102 6.33×104 6.32×104 

Lassa 

Retrospective* 3.48×103 3.58×103 1.14 1.14 

Prospective* 5.34×10-1 5.30×10-1 5.28×102 5.27×102 

*Total release quantity is 1 million spores for both retrospective and prospective scenario. The simulation period 
in retrospective scenario is 8 hours, while it is one year in prospective scenario.  
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Table C-2. Correlation coefficients for B. anthracis 

  Retrospective scenario Prospective scenario 
  Ingestion risk Inhalation dose Ingestion dose Inhalation dose 

Hand-mouth 
contacting rate 

(rh-m) 

1 µm 0.0034 -0.013 -0.019 -0.0093 
3 µm 0.0055 -0.018 0.0027 -0.0012 
5 µm -0.0064 -0.019 0.0011 0.0037 
10 µm 0.011 -0.021 0.0011 0.0062 

Hand-surface 
contacting rate 

(rh-s) 

1 µm 0.071 0.0018 0.066 -0.054 
3 µm 0.094 -0.0010 0.086 -0.020 
5 µm 0.12 -0.0038 0.011 -0.013 
10 µm 0.12 -0.0096 0.092 -0.011 

Mass transfer 
fraction from 
hand to mouth 

during each 
contact (fh-m) 

1 µm -0.0084 -0.018 0.00050 -0.0093 
3 µm -0.00055 -0.016 -0.013 -0.0012 
5 µm -0.0037 -0.012 -0.0058 0.0037 
10 µm -0.0075 -0.0063 0.010 0.0062 

Mass transfer 
fraction from 

hand to surface 
during each 
contact (fh-s) 

1 µm -0.0042 0.00070 0.055 0.047 
3 µm 0.0048 0.0050 0.021 0.020 
5 µm -0.0050 0.0075 0.0003 0.015 
10 µm 0.0060 0.0096 0.0085 0.012 

Mass transfer 
fraction from 

surface to hand 
during each 
contact (fs-h) 

1 µm 0.21 0.0077 0.16 -0.25 
3 µm 0.30 0.010 0.26 -0.082 
5 µm 0.34 0.012 0.32 -0.046 
10 µm 0.36 0.015 0.28 -0.043 

Decay rate in 
this air (γair) 

1 µm 0.00030 0.0055 0.0013 -0.0020 
3 µm 0.00080 0.0089 0.0013 -0.0053 
5 µm 0.0075 0.0078 0.0049 -0.0009 
10 µm 0.0023 0.0026 -0.0021 0.0053 

Decay rate on 
fomite (γf) 

1 µm -0.012 -0.017 -0.0097 -0.013 
3 µm 0.011 -0.018 -0.0005 -0.00080 
5 µm 0.0022 -0.018 0.0002 0.0022 
10 µm -0.00090 -0.018 -0.0070 0.0031 

Dose-response 
coefficient 

1 µm 0.66 0.058 0.87 0.027 
3 µm 0.72 0.088 0.73 0.053 
5 µm 0.76 0.11 0.77 0.075 
10 µm 0.76 0.14 0.63 0.012 
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Table C-2. Correlation coefficients for B. anthracis (continued) 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Breathing rate 
(Inh) 

1 µm 0.0065 0.27 0.021 0.14 
3 µm -0.0065 0.40 0.017 0.25 
5 µm -0.00040 0.53 0.0067 0.34 

10 µm 0.0021 0.65 -0.0026 0.53 

Nasal passages 
particle remove 
efficiency (en) 

1 µm -0.0030 -0.0093 -0.0064 -0.0038 
3 µm 0.0028 0.0020 0.0099 -0.012 
5 µm 0.0036 -0.017 0.00070 -0.0010 

10 µm 0.0029 0.0083 -0.00090 0.0078 

Air change rate 
(ACH) 

1 µm -0.18 -0.68 -0.0038 -0.44 
3 µm -0.21 -0.72 -0.029 -0.70 
5 µm -0.16 -0.62 -0.052 -0.75 

10 µm -0.081 -0.31 -0.052 -0.63 

Resuspension rate 
(µ2) 

1 µm -0.0040 0.00060 -0.047 0.32 
3 µm 0.0070 -0.0012 -0.26 0.088 
5 µm -0.012 0.0052 -0.18 0.022 

10 µm -0.0068 0.089 -0.29 0.058 

Turbulence 
intensity (ke) 

1 µm 0.013 0.0084 -0.0024 -0.0040 
3 µm 0.0023 0.012 -0.013 0.00050 
5 µm 0.011 0.012 -0.0059 0.0031 

10 µm 0.0077 0.0067 -0.0067 0.0043 

Density of the 
particle (ρp) 

1 µm 0.10 -0.052 -0.0049 -0.035 
3 µm 0.080 -0.24 0.018 -0.096 
5 µm 0.075 -0.40 0.014 -0.17 

10 µm 0.030 -0.61 0.011 -0.40 
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Table C-3. Correlation coefficients for Y. pestis 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Hand-mouth 
contacting rate 

(rh-m) 

1 µm 0.032 0.0033 0.0071 -0.011 
3 µm 0.035 0.0087 0.0079 -0.015 
5 µm 0.038 0.012 0.0085 -0.0069 
10 µm 0.042 0.015 0.010 -0.013 

Hand-surface 
contacting rate 

(rh-s) 

1 µm 0.13 -0.012 0.071 -0.014 
3 µm 0.14 -0.014 0.074 -0.017 
5 µm 0.14 -0.017 0.076 -0.011 
10 µm 0.14 -0.022 0.079 -0.0067 

Mass transfer 
fraction from 
hand to mouth 

during each 
contact (fh-m) 

1 µm 0.029 -0.034 0.037 0.026 
3 µm 0.028 -0.035 0.036 0.036 
5 µm 0.029 -0.034 0.038 0.025 
10 µm 0.030 -0.029 0.036 0.026 

Mass transfer 
fraction from 

hand to surface 
during each 
contact (fh-s) 

1 µm -0.11 -0.0019 -0.059 0.027 
3 µm -0.12 -0.0024 -0.060 0.0053 
5 µm -0.12 -0.0028 -0.062 0.023 
10 µm -0.12 -0.0022 -0.065 0.013 

Mass transfer 
fraction from 

surface to hand 
during each 
contact (fs-h) 

1 µm 0.47 0.014 0.34 -0.0088 
3 µm 0.48 0.020 0.35 0.0026 
5 µm 0.49 0.021 0.36 -0.015 
10 µm 0.51 0.018 0.38 -0.0023 

Decay rate in 
this air (γair) 

1 µm -0.10 -0.30 -0.0057 -0.079 
3 µm -0.082 -0.24 -0.0066 -0.058 
5 µm -0.066 -0.18 -0.0059 -0.066 
10 µm -0.042 -0.083 -0.0051 -0.042 

Decay rate on 
fomite (γf) 

1 µm -0.56 -0.0029 -0.53 -0.51 
3 µm -0.57 0.0037 -0.54 -0.56 
5 µm -0.59 0.0048 -0.55 -0.63 
10 µm -0.61 -0.0072 -0.56 -0.57 

Dose-response 
coefficient 

1 µm 0.0058 0.053 0.032 0.032 
3 µm 0.0039 0.056 0.032 0.035 
5 µm 0.0039 0.058 0.032 0.028 
10 µm 0.0055 0.059 0.030 0.038 
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Table C-3. Correlation coefficients for Y. pestis (continued) 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Breathing rate 
(Inh) 

1 µm 0.0072 0.73 -0.014 0.15 
3 µm 0.0048 0.76 -0.014 0.16 
5 µm 0.0028 0.78 -0.014 0.18 

10 µm -0.00091 0.76 -0.015 0.16 

Nasal passages 
particle remove 
efficiency (en) 

1 µm -0.015 0.011 -0.022 -0.012 
3 µm 0.0029 -0.014 -0.011 -0.0053 
5 µm 0.0019 0.0060 0.0088 -0.0048 

10 µm 0.0087 -0.0079 -0.00028 -0.0015 

Air change rate 
(ACH) 

1 µm -0.11 -0.44 0.0036 -0.080 
3 µm -0.13 -0.52 0.0034 -0.11 
5 µm -0.12 -0.48 0.0035 -0.11 

10 µm -0.070 -0.28 0.0023 -0.057 

Resuspension rate 
(µ2) 

1 µm -0.0018 0.026 -0.0048 0.35 
3 µm -0.028 0.018 -0.0013 0.31 
5 µm -0.00099 0.023 -0.016 0.21 

10 µm -0.00023 0.019 -0.019 0.33 

Turbulence 
intensity (ke) 

1 µm 0.0040 -0.010 0.0018 0.015 
3 µm 0.0037 -0.0064 0.0020 0.0074 
5 µm 0.0037 -0.0039 0.0023 0.013 

10 µm 0.0037 -0.0015 0.0019 0.010 

Density of the 
particle (ρp) 

1 µm 0.24 -0.026 -0.0083 -0.0058 
3 µm 0.22 -0.15 -0.0076 -0.033 
5 µm 0.19 -0.30 -0.0071 -0.070 

10 µm 0.12 -0.54 -0.0085 -0.12 
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Table C-4. Correlation coefficients for F. tularensis 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Hand-mouth 
contacting rate 

(rh-m) 

1 µm 0.033 0.016 0.011 0.0079 
3 µm 0.033 0.017 0.011 0.0071 
5 µm 0.032 0.017 0.013 -0.0044 
10 µm 0.033 0.019 0.017 -0.0082 

Hand-surface 
contacting rate 

(rh-s) 

1 µm 0.14 0.0020 0.12 0.020 
3 µm 0.17 0.0024 0.12 0.017 
5 µm 0.18 0.00099 0.13 0.021 
10 µm 0.20 -0.0019 0.13 0.023 

Mass transfer 
fraction from 
hand to mouth 

during each 
contact (fh-m) 

1 µm 0.0069 0.0043 0.033 0.0091 
3 µm 0.011 0.0094 0.034 0.0080 
5 µm 0.015 0.013 0.035 0.0067 
10 µm 0.020 0.017 0.038 0.010 

Mass transfer 
fraction from 

hand to surface 
during each 
contact (fh-s) 

1 µm -0.12 -0.0077 -0.085 0.0063 
3 µm -0.14 -0.0037 -0.090 0.00034 
5 µm -0.15 0.0023 -0.096 0.014 
10 µm -0.17 0.017 -0.10 0.0060 

Mass transfer 
fraction from 

surface to hand 
during each 
contact (fs-h) 

1 µm 0.44 -0.012 0.41 0.0031 
3 µm 0.52 -0.016 0.42 -0.0039 
5 µm 0.58 -0.018 0.44 -0.0030 
10 µm 0.67 -0.023 0.47 -0.00091 

Decay rate in 
this air (γair) 

1 µm -0.43 -0.75 0.0055 -0.26 
3 µm -0.40 -0.73 0.0050 -0.24 
5 µm -0.35 -0.67 0.0035 -0.22 
10 µm -0.23 -0.46 -0.0036 -0.14 

Decay rate on 
fomite (γf) 

1 µm -0.33 -0.18 -0.65 -0.42 
3 µm -0.39 -0.21 -0.65 -0.50 
5 µm -0.43 -0.26 -0.64 -0.56 
10 µm -0.49 -0.42 -0.64 -0.59 

Dose-response 
coefficient 

1 µm 0.015 0.0049 0.021 0.0015 
3 µm 0.017 0.0091 0.022 -0.00098 
5 µm 0.017 0.0097 0.022 -0.000097 
10 µm 0.016 0.0061 0.020 0.013 



176 

 

Table C-4. Correlation coefficients for F.tularensis (continued) 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Breathing rate 
(Inh) 

1 µm -0.023 0.35 -0.011 0.12 
3 µm -0.029 0.45 -0.013 0.14 
5 µm -0.033 0.54 -0.015 0.17 

10 µm -0.038 0.69 -0.018 0.20 

Nasal passages 
particle remove 
efficiency (en) 

1 µm -0.024 -0.0042 0.011 0.00061 
3 µm 0.015 0.00042 0.0077 -0.018 
5 µm 0.00056 0.0051 0.010 -0.013 

10 µm 0.0072 -0.00095 0.0066 0.012 

Air change rate 
(ACH) 

1 µm -0.13 -0.23 0.0025 -0.087 
3 µm -0.16 -0.30 0.0026 -0.10 
5 µm -0.15 -0.31 0.0036 -0.11 

10 µm -0.089 -0.22 0.0048 -0.073 

Resuspension rate 
(µ2) 

1 µm 0.0029 -0.0027 0.0053 0.26 
3 µm -0.0079 0.015 -0.0075 0.26 
5 µm -0.016 -0.011 -0.020 0.18 

10 µm -0.0076 0.038 -0.060 0.33 

Turbulence 
intensity (ke) 

1 µm 0.0032 0.018 0.020 0.018 
3 µm -0.0020 0.013 0.020 0.0078 
5 µm -0.0056 0.010 0.020 0.00072 
10 µm -0.011 0.0089 0.021 -0.011 

Density of the 
particle (ρp) 

1 µm 0.22 -0.0066 -0.019 -0.014 
3 µm 0.23 -0.077 -0.019 -0.040 
5 µm 0.21 -0.18 -0.018 -0.067 

10 µm 0.15 -0.44 -0.015 -0.13 
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Table C-5. Correlation coefficients for Variola major 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Hand-mouth 
contacting rate 

(rh-m) 

1 µm 0.070 0.040 0.057 -0.018 
3 µm 0.080 0.048 0.062 -0.013 
5 µm 0.081 0.044 0.056 -0.0078 
10 µm 0.075 0.033 0.061 -0.0065 

Hand-surface 
contacting rate 

(rh-s) 

1 µm 0.10 -0.0070 0.19 0.0013 
3 µm 0.12 -0.0092 0.19 0.00018 
5 µm 0.14 -0.0060 0.19 -0.0045 
10 µm 0.16 0.0036 0.17 -0.0011 

Mass transfer 
fraction from 
hand to mouth 

during each 
contact (fh-m) 

1 µm 0.021 0.013 0.016 0.0092 
3 µm 0.016 0.0036 0.019 0.0047 
5 µm 0.013 -0.0039 0.021 0.0088 
10 µm 0.011 -0.013 0.025 0.0016 

Mass transfer 
fraction from 

hand to surface 
during each 
contact (fh-s) 

1 µm -0.11 0.0027 -0.16 0.022 
3 µm -0.13 0.0025 -0.17 0.030 
5 µm -0.15 0.0039 -0.17 0.029 
10 µm -0.16 0.0044 -0.15 0.027 

Mass transfer 
fraction from 

surface to hand 
during each 
contact (fs-h) 

1 µm 0.45 -0.013 0.67 -0.033 
3 µm 0.54 -0.012 0.67 -0.017 
5 µm 0.61 -0.011 0.67 -0.011 
10 µm 0.67 -0.0064 0.60 0.00058 

Decay rate in 
this air (γair) 

1 µm -0.023 -0.055 -0.010 -0.19 
3 µm -0.014 -0.032 -0.015 -0.14 
5 µm -0.0090 -0.024 -0.0066 -0.11 
10 µm -0.0043 -0.017 -0.013 -0.081 

Decay rate on 
fomite (γf) 

1 µm 0.0045 0.0030 -0.059 -0.11 
3 µm -0.0021 -0.0025 -0.017 -0.15 
5 µm -0.0072 -0.0047 -0.014 -0.15 
10 µm -0.012 -0.0060 -0.00080 -0.12 

Dose-response 
coefficient 

1 µm 0.38 0.44 0.57 0.30 
3 µm 0.45 0.57 0.56 0.45 
5 µm 0.50 0.67 0.56 0.57 
10 µm 0.54 0.73 0.51 0.61 
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Table C-5 Correlation coefficients for Variola major (continued) 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Breathing rate 
(Inh) 

1 µm -0.0043 0.25 0.010 0.18 
3 µm -0.00019 0.32 0.0038 0.27 
5 µm 0.00032 0.37 0.0099 0.34 

10 µm -0.00060 0.40 0.015 0.36 

Nasal passages 
particle remove 
efficiency (en) 

1 µm -0.015 -0.077 -0.0043 -0.025 
3 µm -0.048 -0.024 0.0057 0.018 
5 µm -0.015 0.0052 0.013 -0.00094 

10 µm -0.0092 -0.0059 -0.011 -0.0064 

Air change rate 
(ACH) 

1 µm -0.37 -0.54 0.018 -0.41 
3 µm -0.36 -0.53 0.0042 -0.45 
5 µm -0.27 -0.42 -0.0092 -0.45 

10 µm -0.11 -0.19 -0.028 -0.25 

Resuspension rate 
(µ2) 

1 µm 0.0031 -0.0038 -0.46 0.36 
3 µm 0.0045 0.0069 -0.15 0.39 
5 µm -0.0041 0.011 -0.16 0.25 

10 µm -0.013 0.039 -0.35 0.39 

Turbulence 
intensity (ke) 

1 µm 0.0043 0.010 -0.022 -0.015 
3 µm 0.0096 0.016 -0.018 -0.017 
5 µm 0.0077 0.013 -0.020 -0.012 

10 µm 0.0028 0.055 -0.024 -0.0089 

Density of the 
particle (ρp) 

1 µm 0.19 -0.069 -0.0065 -0.039 
3 µm 0.14 -0.20 -0.0022 -0.14 
5 µm 0.099 -0.29 0.0025 -0.21 

10 µm 0.031 -0.40 0.018 -0.31 
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Table C-6 Correlation coefficients for Lassa 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Hand-mouth 
contacting rate 

(rh-m) 

1 µm 0.014 0.0017 0.033 0.0088 
3 µm 0.017 0.0035 0.033 0.022 
5 µm 0.020 0.0059 0.033 0.021 
10 µm 0.024 0.0095 0.033 0.019 

Hand-surface 
contacting rate 

(rh-s) 

1 µm 0.098 -0.022 -0.055 -0.0023 
3 µm 0.10 -0.024 -0.055 -0.0031 
5 µm 0.11 -0.027 -0.055 -0.0081 
10 µm 0.11 -0.031 -0.055 -0.0083 

Mass transfer 
fraction from 
hand to mouth 

during each 
contact (fh-m) 

1 µm 0.019 -0.0038 0.033 0.0088 
3 µm 0.023 -0.0042 0.033 0.022 
5 µm 0.024 -0.0050 0.033 0.021 
10 µm 0.025 -0.0079 0.033 0.019 

Mass transfer 
fraction from 

hand to surface 
during each 
contact (fh-s) 

1 µm -0.074 0.011 -0.055 -0.0023 
3 µm -0.083 0.0077 -0.055 -0.0031 
5 µm -0.090 0.0045 -0.055 -0.0081 
10 µm -0.098 0.0018 -0.055 -0.0083 

Mass transfer 
fraction from 

surface to hand 
during each 
contact (fs-h) 

1 µm 0.40 -0.018 0.51 0.0027 
3 µm 0.42 -0.016 0.51 -0.0058 
5 µm 0.44 -0.013 0.51 -0.0015 
10 µm 0.47 -0.0086 0.51 -0.012 

Decay rate in 
this air (γair) 

1 µm -0.21 -0.31 -0.025 -0.24 
3 µm -0.16 -0.24 -0.025 -0.18 
5 µm -0.12 -0.18 -0.025 -0.17 
10 µm -0.057 -0.082 -0.025 -0.089 

Decay rate on 
fomite (γf) 

1 µm -0.092 -0.017 -0.093 -0.057 
3 µm -0.099 -0.018 -0.093 -0.057 
5 µm -0.11 -0.020 -0.092 -0.079 
10 µm -0.11 -0.025 -0.091 -0.078 

Dose-response 
coefficient 

1 µm 0.60 0.69 0.72 0.61 
3 µm 0.64 0.75 0.72 0.73 
5 µm 0.67 0.80 0.72 0.80 
10 µm 0.70 0.87 0.72 0.73 
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Table C-6 Correlation coefficients for Lassa (continued) 

  Retrospective scenario Prospective scenario 
  Ingestion dose Inhalation dose Ingestion dose Inhalation dose 

Breathing rate 
(Inh) 

1 µm 0.0066 0.26 0.011 0.17 
3 µm 0.0093 0.27 0.011 0.19 
5 µm 0.011 0.28 0.011 0.23 

10 µm 0.012 0.28 0.011 0.20 

Nasal passages 
particle remove 
efficiency (en) 

1 µm 0.016 0.030 0.0022 0.011 
3 µm 0.0040 -0.012 -0.0033 0.0050 
5 µm -0.0049 0.0014 0.016 0.011 

10 µm 0.0029 0.018 0.010 0.0022 

Air change rate 
(ACH) 

1 µm -0.13 -0.20 -0.0030 -0.15 
3 µm -0.14 -0.22 -0.0031 -0.16 
5 µm -0.13 -0.19 -0.0031 -0.17 

10 µm -0.070 -0.098 -0.0031 -0.085 

Resuspension rate 
(µ2) 

1 µm 0.0065 0.0084 0.40 0.021 
3 µm 0.022 0.016 0.38 0.026 
5 µm 0.0090 0.0030 0.26 0.0042 

10 µm 0.011 0.00046 0.37 -0.021 

Turbulence 
intensity (ke) 

1 µm 0.0054 -0.0056 -0.0013 0.0067 
3 µm 0.0069 -0.0041 -0.0013 -0.0021 
5 µm 0.0080 -0.0023 -0.0014 0.0063 

10 µm 0.0098 0.00054 -0.0013 -0.0033 

Density of the 
particle (ρp) 

1 µm 0.19 -0.0056 0.0085 0.011 
3 µm 0.17 -0.050 0.0085 -0.033 
5 µm 0.15 -0.11 0.0086 -0.090 

10 µm 0.087 -0.19 0.0088 -0.16 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 
 
 

5.1 General conclusion 

This dissertation developed methods for characterizing risks from a release of 

biological agents. The contributions of this dissertation include: 1) a BMC approach to 

calibrate inputs for an integrated fate, transport, and risk assessment model; 2) an 

approach for determining the location and quantity of samples for characterizing a release 

of pathogenic microbes; 3) a framework employing surface contaminations of pathogenic 

microbes to infer human health risk; 4) applying this framework to 5 Category A 

pathogens, and systematically analyzed sources of uncertainty in modeled parameters. 

 

Chapter 2 adopted the BMC method, a robust tool for high dimensional model 

calibration, to update parameter values for an integrated fate, transport, and risk 

assessment model. As a Bayesian approach, this method compared model predictions, 

based on people's prior belief, with surface measurements for concentrations of released 

B. anthracis on various locations, and reweighted the distributions for model inputs. The 

benefits of applying the BMC process include: 1) updated parameter ranges (or validation 

of prior knowledge) for a model predicting the spatial distribution of released biological 

agents; 2) significantly reduced uncertainties in the estimated human health risk, which 

provide more accurate information for the decision makers seeking to identify the proper 

response (i.e., when to distribute prophylactic antibiotic). In addition, Chapter 2 
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conducted a multivariate regression analysis, which aimed to select the best human health 

risk indicators. 

 

Chapter 3 focused on characterizing important information of a biological release, 

such as the quantity and particulate size, based on surface sampling results. It developed a 

7-step evaluation framework for choosing the sampling and modeling approach which 

most accurately recovers details of a release from surface samples. Then the performance 

of the recommended sampling scheme was tested by feeding with data from a large scale 

field test. The findings from this chapter not only answered the question "what is the best 

place to sample?", but also provided insights for the question "how many samples should 

be taken?". However, the answers to those two questions depend on the precision of 

sampling results, which is usually impacted by the sample recovery efficiency. Ideally, 

the required number of surface samples should equal the number of particle sizes to be 

identified. When one considers that the sampling results could be biased, more samples 

are necessary. Thus, the methodology developed in this chapter shows its value, since it 

systemically enumerates and evaluates all the possible approaches and chooses the one 

most resistant to bias. This sampling plan evaluation process should be considered as part 

of preparations towards a biological agent attack. Field tests should be executed before a 

'real' bioterrorism attack, since the characterized release amount and its consequences 

identified from different sampling plans can be compared with the 'correct information', 

which would be unavailable during a biological agent attack. 
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Chapter 4 extended the fate, transport, and risk assessment model by synthesizing 

available information on five Category A pathogens (Bacillus anthracis, Yersinia pestis, 

Francisella tularensis, Variola major and Lassa) to develop quantitative guidelines for 

how environmental pathogen concentrations may be related to human health risk. These 

findings provide critical information for developing a risk-informed biological attack 

response system. Questions such as " how to estimate if risks warrant the distribution of 

prophylactic antibiotics?", and " how to choose between active or passive 

decontamination approaches?" were addressed. In addition, this chapter differentiated the 

sources of uncertainties (epistemic uncertainty vs. variability) for modeled parameters. 

An approach was proposed for how to integrate these quantitative assessments of 

parameter uncertainty with broader, qualitative considerations to identify future research 

priorities. 

 

5.2 Future research 

5.2.1 Assumptions and limitations 

In all risk assessments, the estimated risk is based on a number of assumptions, 

which were summarized in Table 5-1. Thus, future researches should be mainly focused 

on those assumptions. The fate and transport model, predicting the spatial distribution of 

released biological agents, was a critical element for the risk assessment framework, 

since many conclusions were drawn based on its predictions. However, this model was 

established based on the assumption that pathogens were instantly uniformly mixed in a 

compartment. This assumption failed to capture localized areas of high risks, such as a 
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high concentrated puff of pathogens right after initial release. Thus the approach 

developed in the dissertation was more appropriate for the situation somewhat removed 

in time and space from the initial release. In the future, I recommend a more detailed 

approach, such as computational fluid dynamics, to extend the fate and transport model, 

although this would be quite computationally intensive.  
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Table 5-1 Table of major assumptions 

Where Assumption Why Drawback Future suggestion 

Fate and transport 
model 

Instantly uniformly 
mixed 

Simplify the 
model 

Fail to capture 
localized areas of 

high risks 

Build a zonal 
model or CFD 

model 

Dose-response 
model 

Same dose-
response 

coefficient for 
different exposure 

routes 

Knowledge gap Fail to represent 
low dose and 

repeated doses 
over time 

Computer 
simulation 

(computational 
biology) Model is based on 

high dose lab tests 
with limited 

animals 

Knowledge gap 

Analytical method Viable pathogens 
are measured Knowledge gap 

Actual response 
characterization 

may include 
measurements of 

non-viable 
organisms such as 

qPCR 

Develop 
quantitative 

knowledge of 
qPCR signal 

decay over time 

Pathogen 
attenuation rate 

Log linear over 
time 

Simplify the 
model 

Could 
underestimate 

pathogens' survival 
rate 

Consider other 
types of model 

such as biphasic 
exponential 

model 
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As another important component for the risk assessment framework, many 

assumptions were employed in deriving the dose-response model. In order to improve its 

predictive power, the following related questions are worth further investigation: 1) How 

to extrapolate the results from high dose laboratory tests with limited numbers of animals 

to the effects of lower doses, which is more common during a biological attack?; 2) How 

will the dose response model be changed if the effects of previous exposure on the same 

population is included?; and 3) How to model interactions from exposure to multiple 

pathogens? 

 

The surface sampling results used in Chapter 2 were based on measured viable 

pathogen concentrations. It was quantified by PCR (qPCR), which has been proven to be 

effective in quantifying biological warfare agents (i.e., B. antracis, and Y. pestis) due to 

its rapid, early, and accurate results [200]. Despite the advantages of qPCR analysis, 

several knowledge gaps need to be addressed in the future. The first is that qPCR does 

not distinguish between living or dead pathogens. While researchers have identified 

assays to discriminate between viable and dead fecal bacteroidales bacteria, similar 

methods have not been applied to Category A pathogens [10, 53]. Second there is little 

information on the decay of the qPCR signal over time, which would be an essential 

parameter for the retrospective assessment of risk after a release. Thus, studies are needed 

to quantify parameters such as, the efficiency of DNA extraction, the degradation of 

nucleic acids overtime, and the reactivity of primer and probe [24, 110, 156].  
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Pathogen attenuation rate outside the host was assumed to be log linear over time 

in Chapter 3. However, in reality microorganisms often exhibit “tailing” in which a small, 

highly resistant subpopulation attenuates at a very low rate. Thus the assumption of log-

linear decay may not be health protective. In the future, this attenuation rate should be 

considered as a function of time, which could better characterize pathogens' inactivation 

process. Candidate models include biphasic exponential model, exponentially damped 

model, Juneja & Marks type I, II models, general logistic model, and Gompertz model 

[97, 201]. 

 

In order to make the BMC updating model more readily applicable, the MATLAB 

code developed here could be programmed into a software package to perform the 

updating which would enable the approach to be employed after an incident by 

individuals without specialized computer knowledge. In addition, the speed of BMC 

updating could be improved by conducting most of the computations using a parallel 

computing approach, such as using a GPU instead of a CPU [137]. 

 

5.2.2 Response and recovery framework 

Although models and methods developed in this dissertation successfully 

enhanced the ability of characterizing a biological attack, it only addressed a small 

portion of a biological attack response and recovery framework. Thus, for the purpose of 

reducing the consequences of a terrorist attack, and rebuilding public confidence, future 

research attention should be paid on the phases of initial response, decontamination, and 

aftermath restoration. In the phase of initial response, biological agent detection is the 
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trigger of the whole response system. Thus, it should be given highest research priority, 

recourses should be allocated to constructing an economic and robust pathogen detection 

network, which would be capable of detecting multiple pathogens in real time at a low 

false alarm rate [116]. In this phase, another critical problem should be considered is how 

to treat the exposed people, since without timely medical intervention, the mortality rate 

for inhalational anthrax is almost 100%. Currently antibiotic storage and distribution 

systems, which have the capability to distribute antibiotics to the exposed people before 

the appearance of clinical symptoms, are designed for only three cities, Seattle, Boston, 

and Philadelphia [47]. Thus this system should be expanded and applied for the cities 

with high probability of suffering a biological attack in the future.  

 

In the phase of decontamination, cost-benefit analysis should be introduced to 

lower the overall cost but maintain the residual risk within an acceptable level at the same 

time. Lessons learnt from the 2001 anthrax attacks indicated that the economic loss due 

to the disruption of work could be more than the decontamination cost [147]. Thus, it is 

necessary to have a set of criteria to differentiate whether it is more economical to 

decontaminate or destroy contaminated items. In addition, the following questions are 

worthy of further research: 1) how to choose the proper decontamination method 

especially for weaponized biological agents; 2) how to treat decontamination waste, 

which is a challenge to the environment; and 3) how to validate environmental sampling 

and laboratory analytical methodologies, which verify the effectiveness of 

decontamination [28, 164].  
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In the phase of restoration, future analysis should be focused on the following 

aspects: 1) how to determine a decontaminated area is clean enough, and people are ready 

to come back? 2) should different restoration actives (i.e., residential, business) happened 

parallel or sequentially; 3) how long the health conditions for the reoccupants need to be 

monitored; 4) what is the best strategy to let the public accept the residual contamination 

risk after reoccupation. In reality, the last question should be answered first. Because the 

official confirmation that an area is safe for reoccupation is meaningless, if the public still 

consider their health to be at risk. Thus, it is critical to enable the public to understand 

risk issues they may not be familiar with, which will require the participation of a many 

parties, such as government, media, etc.  
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