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Figure 9. The fracture toughness for a composite of chitosan and natural mineral, like 
hydroxyapatite, would much more closely mimic the ECM of natural bone tissue over 
metal implants.  This is a novel concept for developing new and improved bone 
replacement biomaterials.  [1] .................................................................................................... 24 

Figure 10. Macro/microscopic images of electrospun CTS fibers. Examples of electrospun 
chitosan microfibers (A) and of a fibrous mat (B). Scale bar for (A) is 200µm and for (B) is 
1cm. ............................................................................................................................................... 49 

Figure11. Electrospun CTS fibers crosslinked for 24hours with an aqueous 0.1% genipin 
solution.  Fiber diameter was observed to increase from 227.8± 154.3nm to 334.7 ± 119.1 
nm (n=10 independent samples, analyzing ~ 50 fibers/sample.  It can be seen that fibers 
obtain a flatter morphology and begin to swell after hydration, which can attribute to the 
increase in fiber diameter. .......................................................................................................... 50 

Figure12. The morphology of electrospun scaffolds evaluated by scanning electron. SEM 
micrographs of 0.1% genipin crosslinked CTS-GP (A) and 0.1% genipin crosslinked 1.0% 
HA-containing (B) chitosan nanofibers. Scale bars are 200nm. Inserts: Typical 
morphologies of nanofibers at lower magnification (scale bar for insert in A is 2µm and in 
B is 1µm).  Small nano-size projections were observed on the surface of the HA-containing 
scaffolds.  These were perceived to indicate the presence of HA along the surface of CTS-
GP nanofibers, which is mimetic to the natural architecture of bone ECM. .......................... 51 

Figure13.  X-ray diffraction spectra of hydroxyapatite (A), 0.1% genipin crosslinked 7% 
chitosan nanofibers (B) and 1.0% HA-containing 0.1% genipin crosslinked 7% chitosan 
nanofibers (C). The alignment of the peaks is indicated by the dashed lines.  Due to its 
highly crystalline structure, HA spectra have very defined peaks indicative of the 
diffraction of x-rays off of the crystal lattice (A).  Electrospun CTS-GP scaffolds have an 
amorphous structure, which is indicated by the non-specific spectra observed (B).  The 
composite HA-containing CTS-GP scaffolds obtain both of these properties having a non-
specific amorphous characteristic containing the crystalline peaks observed in HA (C). .. 52 

Figure14.  Fourier transform infrared spectra of hydroxyapatite (A), 0.1% genipin 
crosslinked 7% chitosan nanofibers (B) and 1.0% HA-containing 0.1% genipin crosslinked 
7% chitosan nanofibers (C). Peaks of interests are designated by arrows.  FTIR bands 
between 900-1100cm-1 and 500-600cm-1(A) indicative of phosphate bending and stretching 
respectively. FTIR Spectra of the CTS-HA-GP bio-composites revealed bands at 500-
600cm-1 that did not appear in the CTS-GP scaffold spectra (B and C), which can be 
attributed to the molecular interactions of HA and CTS. Additionally, there was a 
broadening of the band around 950cm-1 and 1085cm-1 that appeared on the CTS-HA-GP 
spectra, which has been attributed to the interaction of HA and CTS as well (C). ............... 54 

Figure15. Electron dispersion spectroscopy of CTS-GP and CTS-HA-GP bio-composite 
nanofibers. Spectral analyses comparing the elemental compositions of 0.1% genipin 
crosslinked chitosan nanofibers (A). Insert: 1.0% HA-containing 0.1% genipin crosslinked 
7% chitosan nanofibers show new peaks for calcium and phosphorous due to the 
presence of hydroxyapatite nanoparticles. Dot-analyses representing the elemental 
topographical distribution of carbon (B), oxygen (C), calcium (D) and phosphorous (E) of 
the HA-containing nanofibers. .................................................................................................... 55 

Figure16. Ultimate Tensile Strength (A) and Young’s moduli (B) of non-crosslinked (black 
bars 0.1% genipin and crosslinked (white bars) 7% chitosan nanofibers at different 
concentrations of hydroxyapatite.  While ultimate tensile strength remained relatively 
unchanged upon crosslinking, a significant change was observed when genipin 
crosslinking was performed.  These results indicate that genipin only increases the 
stiffness of a the material while relatively maintaining the tensile strength.  ** indicates 
statistical significance at p<0.01 by one way ANOVA with Tukey test. ................................. 57 

Figure 17. SEM imaging of  7F2 osteoblasts on CTS-GP and CTS-HA-GP nanofibers. SEM 
micrographs of 7F2 cells at day 7 on CTS-HA-GP scaffolds (A 500X and B 1000X) and CTS-
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GP scaffolds (C 500X and D 1000X), at day 14 on CTS-HA-GP scaffolds (E 500X and F 
1000X) and CTS-GP scaffolds (G 500X and H 1000X) and at day 21 on CTS-HA-GP scaffolds 
(I 500X and J 1000X) and CTS-GP scaffolds (K 500X and L 1000X). ....................................... 59 

Figure18. Metabolic activity, alkaline phosphatase expression and osteogenic marker 
expression of 7F2 osteoblasts on CTS-GP and CTS-HA-GP composite nanofibers. Alkaline 
phosphatase expression of 7F2 osteoblasts on days 1, 7, 14 and 21 (A), metabolic activity 
of 7F2 osteoblasts measured by alamar blue on days 1, 3, 7, 14 and 21 and mRNA 
expression of osteopontin and osteonectin of 7F2 osteoblasts on days 1, 14 and 21 on 
CTS-GP (C) and CTS-HA-GP (D) 0.1% genipin crosslinked chitosan nanofibers. * and ** 
indicate a significant difference (p < 0.05 and p < 0.01 respectively) between CTS-GP and 
CTS-HA-GP scaffolds at the same time point; ++ indicates a significant difference (p < 
0.01) of the specified scaffold compared to the same scaffolds at the earlier time point. .. 61 

Figure19. moMSC seeded on chitosan scaffolds at low density.  100,000 cells were seeded 
per scaffold type.  It is observed that cells do not proliferate when not in contact with each 
other and that the presence of HA in the CTS-GP scaffolds does not induce proliferation 
either.   Magnification is at 10X. ................................................................................................. 73 

Figure 20. moMSC seeded at high density on chitosan scaffolds.  500,000 cells per 
scaffold showed sufficient cell sheet formation after 3 weeks as well as patterned 
cytoskeleton indicative of osteoblast cytoskeletal arrangement.  Week 1 images taken at 
20X and Week 3 at 10X ................................................................................................................ 74 

Figure21. 3D rendering of the cells seeded on CTS-HA-GP scaffolds at 1 week (left) and 2 
weeks (right), showing a thickness of 8μm at 1 week and of 24μm at 2 weeks.  This 
thickness was maintained through 3 weeks (not shown).  These findings can lead to the 
conclusion that cells are forming multi-layer cell sheets on top of the scaffolds, indicative 
of the early stages of tissue formation. ..................................................................................... 74 

Figure22. Metabolic activity (left) and ALP activity (right) indicating that metabolic activity 
decreases by day 21 10 while ALP activity increases, indicating that cells are leaving the 
proliferation stage and entering the differentiating stage by day 21 on CTS-GP (CTS/GP) 
and CTS-HA-GP (CTS/GP/HA) scaffolds with and without the addition of an osteogenic 
growth medium (OGM).  ALP activity showed a  2 fold increase on HA-containing 
scaffolds, a 4.5 fold increase when cultured in the presence of an osteogenic medium, and 
a 6 fold increase when containing HA and cultured in osteogenic medium when compared 
to CTS-GP scaffolds alone.  This 6 fold increase indicates a cooperative/additive effect of 
the physicochemical cues, i.e. the presence of HA and the contents of the osteogenic 
medium.  * indicates statistical significance with p<0.05 and ** indicates statistical 
significance with p<0.01 with n = 4 specimens per group....................................................... 75 

Figure23. Stereotaxic setup to maintain anesthesia and skull stability in mouse surgeries.  
The ear bars enter the ear canals and lock into the zygomatic arch in order to maintain 
stability in the x and y directions while drilling.  The face mask maintains a constant flow 
of isofluorane to the mouse and allows the surgery to be completed without pain.  The 
tooth bar is used to stabilize the head in the z direction while drilling. ................................. 77 

Figure24. Surgical procedure for implanted CTS-GP and CTS-HA-GP scaffolds.  The mice 
were secured in the stereotaxic set up and hooked up to isofluorane anesthesia (A) and 
prepped for surgery by shaving and applying betadine to the surgery area (B).  The 
incision was made down the midline of the entire skull and hemostats were used to to 
keep the skin removed from the surgery site (C).  The defects were drilled on either side of 
the midline suture (D) and the scaffold was implanted to one of the defects (E).  Finally, the 
skin was sutured and Vetbond bioglue was used to prevent the mouse from removing the 
stitches or dislodging the scaffold while grooming (F). .......................................................... 78 
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Figure 25. 3D rendered images of MicroCT x-ray data.  The labels at the top of the 
schematic represent the different groups that were implanted as CTS-GP scaffolds without 
MSCs (NM w/o cells), CTS-GP scaffolds with MSCs (NM w/ cells), CTS-HA-GP scaffolds 
without MSCs (M w/o cells) and CTS-HA-GP with MSCs (M w/ cells) and the labels to the 
left of the schematic indicate the time points at wich animals were euthanized and 
analyzed.   It wass observed that the presence of HA on the scaffolds induces significantly 
enhanced bone regeneration and the presence of cells even further enhances bone 
regeneration, which can be seen by the formation of new calcified tissue present on the 
bottom row and the column furthest right. ............................................................................... 79 

Figure 26. Axiovision software was used to measure the % defect closure due to the 
presence of the scaffold relative to the control hole in each sample at different time points.  
It is shown that by the third week, the presence of cells and HA greatly enhance the 
osteoconductive properties of the CTS-GP scaffolds.   * indicates statistical significance 
with p<0.05 and ** indicates statistical significance with p<0.01 and n = 4 specimens per 
group. ............................................................................................................................................ 81 

Figure27. Harvested Skulls with CTS-GP scaffolds implanted (left) were used for 
histological analysis.  Rectangular samples from the top of the cranium were cut after 
decalcification (right) and embedded for sectioning. .............................................................. 82 

Figure 28. A comparison of H&E staining and Masson’s trichrome staining of normal bone 
tissue.  The bone marrow cavities, cortical bone and periosteum are labeled to indicate 
what these look like in normal tissue for comparison to regenerating tissue areas.  Images 
were taken from non-defective areas of the animal specimens to illustrate normal tissue.  
Images were taken at taken at 20X. ............................................................................................ 84 

Figure 29. H&E stains show the enhanced tissue formation around CTS-HA-GP scaffolds 
over control defects.  Scaffold/host interactions (A) show good tissue integration and no 
immunorejection.  New tissue formation can be show on the scaffold and the scaffold 
appears to form a tight junction with the host bone.  Fragments of the scaffold can be seen 
throughout new tissue networks (insert in A) surrounded by regular matrix indicative of 
new bone formation.  Control holes without scaffold (B), show only a minimal amount of 
fibrous tissue growing in the wound area, indicating that no bone regeneration is 
occurring.  The magnification for the images are 10X (A) and 20X (B). ................................. 84 

Figure 30.  Masson’s trichrome stains were used to further characterize the tissue/host 
interaction.  It shows good integration between host tissue and scaffold material (A).  Host 
bone is stained blue (collagen I) and red as normal bone tissue appears.  The junction of 
the tissue and scaffold shows no immunorejection and good integration.  New tissue is 
seen growing along the scaffold edges, indicating that the scaffold is conductive.  In the 
presence of MSCs seeded on the scaffold, endochondral ossification and angiogenesis is 
observed along where the scaffold surface met the host tissue (B).  Remnants of scaffold 
material can be seen around the endochondral tissue as black fragments.  The control 
defect shows poor tissue formation and just the presence of a small fibrous layer of tissue 
growing in the defect (C). ............................................................................................................ 85 

Figure31. A dual electrospinning set up was put together to synthesize scaffolds 
containing two different materials.  The syringe pumps were placed on either end of a 
rotating collector and loaded with their respective polymer solutions. The collector was 
rotated at ~20RPM to evenly collect fibers from both materials simultaneously. ................ 97 

Figure 32. Fluorescent images of PLGA/gelatin scaffolds show the presence of both 
compositions in the scaffolds after hydration (PLGA, red and gelatin, green).  However, the 
predicted effect of gelatin dissolving out was not observed, where these scaffolds had 
already been hydrated for removal of gelatin and the green fibers remain. .......................... 97 

Figure 33. Theoretical curves of the volume fractions of ECM production and cells over 
time to illustrate a predictive model of cell proliferation and ECM production over time as a 
function of the total volume of a cellular scaffold construct. ............................................... 104 
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Figure 34. A logarithmic curve fit was used to determine the equation used to convert AB 
fluorescence to cell number.  Cell number was then plotted vs. time to show the effects 
that gelatin had on growth rate of moMSCs. .......................................................................... 104 

Figure 35. Using the model for cell volume fraction in the porous scaffolds derived from 
Lemon et. al. we were able to fit the data to a predictive curve (top panel).  However, the 
interpreted data generated (Table 4) shows that the values for the effective carrying 
capacity and the rate of cell growth were not reliable or reproducible, indicating that this 
model did not accurately represent the data.  To adjust, a logistic growth model was used 
to model how the cells would behave growing on the surface of the scaffold in 2D and 
fitted to the data (bottom panel).  The values recorded for this fit (Table 4) were much more 
interpretative to the data, indicating that the cells are not infiltrating the scaffold and still 
remain growing on the surface. ................................................................................................ 106 

Figure 36. SEM indicates that gelatin is not dissolving out upon hydration of the PLGA 
scaffolds.  5% gelatin (A) shows the formation of beads and large globular regions, where 
15% and 20% (B and C respectively) both show the presence of larger gelatin fibers 
surrounded by thinner PLGA fibers. ........................................................................................ 108 

Figure 37. Macroscopic views of the fibers at 5% (A), 15% (B) and 20% (C) gelatin show 
that physical changes are occurring due to the presence of gelatin.  This is especially 
noticed in (B) where the scaffold has taken on a more gelatinous morphology rather than 
the normal electrospun fibrous morphology observed in (A and B). ................................... 109 

Supplementary Figure 1. The affinity of chitosan to bind different metal ions varies greatly, 
indicating the versatility of the material and its broad applications. Wei X, Zhang C, Gu Q. 
[Properties, products, and applications of chitosan].  2010.................................................. 135 

Supplementary Figure 2. The effects of increased porosity on the mechanical properties of 
chitosan scaffolds.  As observed, enhanced porosity will greatly increase the amount of 
strain chitosan can undergo, which will subsequently increase the Young’s modulus 
making a more elastic material with a decreased toughness.  Madihally SV, Matthew HW. 
Porous chitosan scaffolds for tissue engineering. 2009 ....................................................... 136 

Supplementary Figure 3.  The effects of blending materials to tune the mechanical 
properties of chitosan films were observed.  This high tenability indicates again the 
versatility of chitosan and its wide range of applications in a number of fields.  For 
biomedical purposes, these mechanics could be tuned to meet the different criteria of 
different tissues.  Tang et. al. Largely improved tensile properties of chitosan film via 
unique synergistic reinforcing effect of carbon nanotube and clay. 2008 .......................... 138 

Supplementary Figure 4. The assembling of magnetic nanofactories involves the 
combination of a cell capture module and a synthesis module.  The assembled 
nanofactory will attach to the surface of the cell, synthesize the “cargo” that will alter the 
response of the cell and then deliver it to the cell.  Fernandes et. al. AI-2 biosynthesis 
module in a magnetic nanofactory alters bacterial response via localized synthesis and 
delivery. Biotechnology and bioengineering.  2009 ............................................................... 141 
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Abstract 

Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with 

Genipin for Bone Tissue Engineering Applications 

Michael Frohbergh 

Dr. Peter I. Lelkes, PhD 

 

 

 

 

Reconstruction of large bone defects remains problematic in orthopedic and craniofacial 

clinical practice. Engineering a functional scaffold mimicking the architectural structure 

of bone and the regenerative capacity of periosteum offers a potential solution.  

Electrospun nanofibrous scaffolds are superior in surface area, biomimetic properties, and 

architecture for the proliferation, and differentiation of osteoprogenitor cells. Chitosan 

(CTS), the deacetylated form of chitin found in the exoskeleton of crustaceans, is a 

versatile biomaterial with structural similarity to the extracellular matrix (ECM) of bone.  

In this thesis, the need of fabricating a regenerative material for bone tissue engineering 

is addressed by demonstrating the ability of genipin crosslinked electrospun chitosan 

(CTS-GP) nanofibers mineralized with hydroxyapatite (CTS-HA-GP) to act as 

osteogenic templates capable of supporting osteoblast adhesion and differentiation with 

the potential to induce mesenchymal stem cell differentiation and craniofacial 

regeneration in vivo. Fibrous scaffolds with average fiber diameters of 227±154 nm as 

spun and 335±119 nm after crosslinking with genipin were generated. Physical, chemical 

and mechanical analyses were performed for scaffold characterization as well as 



xvii 

cytocompatability and osteogenic expression of 7F2 mouse osteoblasts to demonstrate the 

ability of these scaffolds to support functional osteoblasts.  Induction was also observed 

by the capacity of these scaffolds to induce osteogenic differentiation of human bone-

marrow derived mesenchymal stem cells in vitro.  Finally, the osseointegrative capacity 

of these scaffolds was observed by in vivo implantation into a murine calvarial defect 

model, demonstrating no immunorejection and the early presence of calcified tissue 

formation.     

Furthermore the need for enhanced porosity in electrospun scaffolds to induce proper cell 

infiltration into the scaffold using mesenchymal stem cells on PLGA scaffolds with 

sacrificed gelatin fibers was also explored. PLGA was used to look into optimizing an 

appropriate scaffold for bone regeneration due to its ease in fabrication and manipulation 

by observing mechanical properties and porosity at different ratios compared with cell 

infiltration.  However, it was observed that the gelatin was not being removed as 

hypothesized and was rather modifying the physical properties of the scaffold.  A 

mathematical model was developed to describe cell proliferation across the scaffolds and 

cell infiltration into the scaffold.    
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 Introduction 

 

1.1 Tissue Engineering, Biomaterials and Regenerative Medicine 

Tissue engineering is a multidisciplinary field aimed at revolutionizing the way we 

diagnose and treat disease and improve the quality of life.  It utilizes tools from biology, 

engineering and medicine to develop tissues and organs either in or outside of the body 

for diagnostic evaluation and eventual implantation.  From a material engineering stance, 

the fabrication of natural and synthetic scaffolds to act as templates to allow proper tissue 

formation and regeneration is a cornerstone foundation for tissue engineering.  From a 

biological stance, the use of specific growth factors, biomolecules and signaling cues 

aims at creating the appropriate spatial and temporal environment that the human body 

experiences during organogenesis and development.  The focus of this thesis will be the 

union of these two concentrations to create biomimetic scaffolds that aim at inducing 

bone tissue regeneration which is further complemented by the presence of cells to 

induce biological cues responsible for inducing enhanced interaction between the native 

tissue and the fabricated scaffolds.  To date, engineered scaffolds are generally lacking in 

the ability to either fully integrate with the surrounding tissue or are incapable of driving 

specific regeneration.  However, incorporation of cellular or biological components has 

shown to greatly enhance the integrative and regenerative capacity of these scaffolds.  

Here, we observe this phenomenon using electrospun scaffolds to mimic the natural 

extracellular matrix structure and organization along with the presence of mesenchymal 

stem cells to enhance osteoconduction. 
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1.2 Significance for the Advancement of Bone Tissue Engineering 

The field of bone tissue engineering focuses on developing regenerative materials, 

rather than the standard replacement materials that are available today.  Current strategies 

for bone replacement involve using inert materials to replace the structural properties of 

bone and also aid in the general functionality of support that the skeletal system provides.  

However, few therapies focus on the regeneration of tissue.  A major issue with replacing 

bone is stress shielding.  When using inert materials such as metals to repair bone 

fractures, the implant takes on the entire normal load that the bone is usually subject to.  

This mechanical stimulation causes the natural processes of resorption and renewal of 

bone.  When the load is removed and placed onto a permanent implant, the bone no 

longer goes through this process and begins to degrade over time, leading to 

complications such as osteoporosis and weakened tissue leading to new fractures.  It is 

for reasons like this that new substitutes are required to aid in bone regeneration rather 

than replacing in load bearing bones. 

In non-load bearing bones, such as cranial and maxillofacial bones, there is also more 

focus on replacement rather than studying strategies crucial to induce natural 

regeneration.  Craniofacial reconstruction involves the remodeling of the malformed or 

fractured skull or facial bones due to a genetic disorder or traumatic injury. In the United 

States alone, nearly 227,500 children are born with birth defects to the skull, head or face 

yearly. Such birth defects can lead to serious cosmetic and potentially life threatening 

issues. Special surgical techniques must be implemented with children considering that 

the bones are still undergoing development and not fully matured [6]. 
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In adults, craniofacial surgery is usually required after a traumatic head injury due to 

combat or accidents or when large tumors affect the integrity of craniofacial bones or soft 

tissue. In 2001, almost 25,000 people in the U.S. needed maxillofacial surgery as a result 

from trauma [6]. The National Cancer Institute estimates that annually nearly 250,000 

people in the U.S. suffer from orbital cavity and throat related cancers, 40,000 from bone 

and joint cancers and 130,000 from brain tumors which result in cranial resection for 

removal [7]. Critical size defects are fractures or pathologic areas that will not 

spontaneously heal on their own [8]. The surgeries necessary to restore these areas can 

sometimes leave the patient disfigured causing psychological problems and decreased 

quality of life. [6]. 

Bone grafting is the conventional practice in the reconstruction of critical size bone 

defects, most commonly using autologous bone harvested from the patient. However, 

there are several issues with this method. These autografts introduce a secondary 

operative site (usually the illial crest), which can lead to complications including donor 

site morbidity, infection, pelvic instability, hematoma development and pelvic fracture [9, 

10]. If a large graft is needed, the secondary site tends to be limited in its ability to 

compensate without causing permanent damage [11]. Furthermore, chronic pain has been 

reported from the donor site, which leads to a decrease in the patient’s quality of life [12]. 

Within the past 30 years, a variety of different types of biomimetic matrices in place 

of autologous grafts have been explored. Ideally these would be both osteoconductive 

(enhancing the invasion of bone progenitor cells into an inert matrix)  and osteoinductive, 

i.e. promoting the transformation of these recruited precursor cells into osteoblasts to 
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form new bone [13]. These matrices can be either inorganic, such in the case of 

hydroxyapatite (HA) [14-16], or organic as in demineralized bone matrix (DBM) [17].  

1.3 Bone Anatomy, Physiology and Function 

The macroscopic structure of bone, though varying among different types of bone, is 

generally broken up into a number of different segments.  The diaphysis is the shaft of a 

bone, while the epiphysis is the ends.  The metaphysis connects the diaphysis and the 

epiphysis.  The epiphyseal plate (or growth plate) is responsible for elongating bones 

during development.  Bone marrow resides in the medullary cavity, which is located in 

the center of most bones.  The medullary cavity is lined with trabeculae, which is the 

main constituent of trabecular bone.  The inner and outer layers of bones are the 

endosteum and periosteum respectively [18].  Hyaline cartilage covers joints to produce 

lubrication and reduce friction.   Figure 1 depicts the basic structure of long bones in the 

body. 
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There are two main types of bone found in the human body, namely primary bone, 

which is also called non-woven bone, and secondary bone, which is mature bone.  

Primary bone is the initial bone that forms during development and regeneration.  It is 

composed of a large number of osteocytes and irregularly arranged collagen fibers.  Over 

time, primary bone is replaced by secondary bone, the mature bone that is present 

throughout a fully developed human, characterized by its dense mineralization and 

organized structure [19].     

The two types of secondary bone found in the body are cortical bone and trabecular 

bone.  Cortical bone composes the outer mineralized surface while trabecular bone is 

Figure 1. The typical anatomy and structure of bone.  The two main segments of 

long bone are epiphysis and diaphysis.  Bone consists of compact bone and 

trabecular bone.  The outer lining is the periosteum and the inner lining is the 

endosteum.  The medullary cavity contains bone marrow.  Image taken from 

http://thesebonesofmine.wordpress.com/2011/02/28/the-biological-basis-of-bone-

anatomical-directional-terms/ 
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within and contains the bone marrow, where hematopoietic and mesenchymal stem cells 

reside.  The hierarchical structure of cortical bone is organized into a lamellar structure, 

which is composed of osteons surrounding Haversian canals, where blood vessels and 

neurons enter bone.  Lacunae are small cavities in the osteons which contain osteocytes, 

cells that are responsible for maintaining the bone.  Canaliculi are small canals that allow 

small blood vessels to connect lacunae for cellular communication and nutrient/waste 

transfer between osteocytes.  Along with osteons, there are also the outer circumferential 

lamellae, which is the outermost layer of bone connected to the periosteum and the inner 

circumferential lamellae, which completely encircles the bone marrow [18].  The 

hierarchical structure of compact bone is depicted in Figure 2.  Trabecular bone is where 

bone marrow resides.  Bone marrow aid in bone regeneration, as it houses mesenchymal 

stem cells that can be differentiated into osteoblasts for bone formation.  It is also highly 

vascularized and is a site for hematopoietic progenitor cells [18, 19].  The structure of 

trabecular bone can also be seen in Figure 2.   
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There are four specific types of cells in bone tissue.  Osteoprogenitor cells are 

mesenchymal stem cells that undergo osteogenic differentiation into osteoblasts.  They 

are most active during development of the skeletal system, but are frequently reactivated 

during the normal bone turnover process and large numbers are activated during fracture 

repair.  They reside mainly in the periosteum, or outer layer of bone, and can also be 

found in the endosteum, the inner layer of bone, and lining the canals.  Osteoblasts are 

responsible for bone remodeling.  They consistently lay down the organic matrix of bone, 

which is called osteoid.  Once an osteoblast has completely surrounded itself with 

osteoid, it is called an osteocyte.  Osteocytes maintain bone in adults.  The resorption of 

bone is performed by osteoclasts.  These are large, multi-nucleated cells that 

Figure 2. The hierarchical structure of compact bone.  The microstructure is composed of an 

organized lamellar structure containing osteons containing lacunae as the functional unit of 

bone and the Haversian system containing vasculature and nerves inter-connected by 

canaliculi.  The inner region is trabecular bone where hematopoietic and mesenchymal stem 

cells reside.  Image taken from the National Cancer Institute page of Bone Structure.  

http://training.seer.cancer.gov/anatomy/skeletal/tissue.html.  
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enzymatically digest bone matrix and deposit it into circulation via endocytosis.  The 

turnover process of bone is the term given to the constant remodeling of bone during 

adulthood.  Osteoblasts are much more active during development, however the ratio of 

matrix deposition to matrix resorption steadily evens out with age. [20].  Figure 3 

illustrates the different types of cells found in bone tissue.  At some point, the ratio of 

resorption may become larger than deposition, which can lead to bone degenerative 

diseases mainly seen in senior citizens, such as osteoporosis. 

 

The outer layer of bone is called the periosteum.  The periosteum is divided into an 

outer fibrous layer, containing mainly fibrous ECM proteins and molecules as well as 

fibroblasts and is highly vascularized, while the inner cambium layer is composed of 

periosteal cells.  These cells are multipotent cells shown to be capable of differentiating 

Figure 3.  The progression of osteogenic progenitor cells leads to osteoblasts which synthesize 

bone matrix and osteocytes which maintain it.  Osteoclasts are larger cells responsible for bone 

resorption.  A balance in matrix deposition from osteoblasts and matrix resorption from 

osteoclasts leads to homeostatic turnover.  When the ratio begins to favor resorption, 

degenerative diseases like osteoporosis are observed.  Image taken from  

http://spaces.imperial.edu/thomas.morrell/cha_6_tortora_bone_tissue.htm.  
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into osteoblasts and chondrocytes [21, 22].  Sharpey’s fibers are large bundles of collagen 

fibers that affix the periosteum to cortical bone.  During development, sharpey’s fibers 

are low in number, allowing the periosteum to move more freely, causing a much more 

highly activated layer of osteoprogenitor cells to induce tissue formation.  Periosteum 

plays a large role in the initiation of bone regeneration during injury [2, 19, 20, 23].  

Figure 4 shows the layers and structure of periosteum.  The inner layer of bone, the 

endosteum, is a thin layer of osteoprogenitor cells, osteoblasts and connective tissue that 

attaches the cortical bone to the trabecular bone [20].   
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The two main functions of bone tissue are structural support and internal organ 

protection.  A very tight interaction between the skeletal system and the muscles, tendons 

and ligaments in the body give animals and vertebrates the wide range of motion and 

stability we need to survive.  Also, cranial bones, rib cages and other regions provide 

protection for vital internal organs such as the brain, heart, lungs, etc.  What distinguishes 

bone from other connective tissue is the presence of a highly mineralized, hence dense 

and rigid matrix.  Bone matrix consists of an organic component (mainly collagen I) and 

an inorganic component (hydroxyapatite) [18-20].  This biphasic nature is unique to all 

other tissues in the body and gives bone the structural integrity for support, mobility and 

protection. 

Figure 4. The periosteum is divided into two distinct layers.  The fibrous layer contains 

Sharpey’s fibers which are responsible for attaching the periosteum to the surface of cortical 

bone.  The inner cambium layer is an osteoprogenitor-rich cell layer which is highly active 

during development.  It also plays a key role in the initiation of wound healing [2]. 
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1.4 Bone Development 

Bone development generally occurs in two distinct ways.  Endochondral ossification 

is the mineralization of cartilage matrix converting it into bone matrix.  Intramembranous 

ossification is the direct deposition of bone matrix from osteoblasts.  Both begin with the 

production of non-woven immature bone, can lead to the formation of cortical and 

trabecular bone and are crucial for normal skeletal development.  Endochondral 

ossification is initiated by chondrocyte hypertrophy and intramembranous ossification 

from osteoblasts surrounding the cartilage matrix.  As chondrocytes die, osteoblasts 

infiltrate and begin to mineralize the cartilage matrix, resulting in bone tissue.  The 

perichondrium, or outer layer of cartilage, becomes infiltrated by osteoprogenitor cells 

and vasculature and becomes periosteum.  This blocks nutrient flow to all surrounding 

chondrocytes and they die.  The resulting product is newly formed bone tissue.  

Generally, endochondral ossification produces the short and long bones of the skeletal 

system.  Cartilage remains in two places after endochondral ossification, as hyaline 

cartilage covering the joints and in the epiphyseal plate, which continues to grow as 

cartilage and elongate bones to their proper length, when the epiphyseal plate is then 

replaced by the epiphysis [18, 20, 24].  The steps of endochondral ossification are 

illustrated in Figure 5. 
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Intramembranous ossification is the production of mineralized bone matrix by 

osteoblasts and is usually responsible for the formation of flat bones, such as cranial and 

maxillofacial bones.  This process is initiated in highly vascularized mesenchyme areas, 

where mesenchymal stem cells begin to differentiate into osteoblasts.  As the osteoblasts 

begin to become surrounded by matrix, they become osteocytes.  Separate colonies of 

osteocytes and bone matrix form an irregular collagen I matrix (primary bone) which 

grow quickly and begin to fuse.  Areas of mesenchymal stem cells that do not 

differentiate give rise to the bone marrow.  Areas that do not calcify become the 

periosteum and endosteum [18, 19, 24].     

Figure 5. A representative schematic of endochondral ossification illustrates the steps involved for 

bone development.  Cartilage tissue begins to calcify as osteoblasts invade the region and begin 

depositing matrix (step 1).  As osteoblasts begin to proliferate, chondrocyte hypertrophy occurs 

resulting in apoptosis (step 2).  As vasculature penetrates the newly forming bone matrix, 

osteoblasts proliferate further and form ossification centers which eventually completely replace 

the cartilage (steps 3 and 4).  As blood vessels spread, the osteoblasts begin to form the mature 

structure of bone tissue including the formation of lacunae for osteocytes and the 

Haversian/canaliculi system for vascular penentration (step 5).   Image taken from 

http://wps.aw.com/bc_martini_eap_5/108/27708/7093409.cw/index.html 
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1.5 Fracture Repair 

During injury in long and short bones, bone cells and matrix are destroyed.  Initiation 

of healing begins by clotting from the surrounding vascularization.  Clots, remaining 

bone matrix debris and cells are removed by macrophages, which is followed by the 

formation of granulation tissue.  Granulation tissue is replaced by endochondral 

ossification, where fibrocartilage begins to form which is slowly replaced by calcified 

bone matrix and osteoblasts [25]. 

In irregular and flat bones, a similar process of clearing, clotting and granulation 

occurs.  However, this is followed by intramembranous ossification due to the large 

presence of mesenchymal tissue in these areas.  In summary, repair occurs similarly to 

the processes of development.  However, in some instances, defects are too large to be 

healed by spontaneous bone formation.  It is these instances where replacement materials 

are used and the need for tissue engineered constructs to induce regeneration and bridge 

these large gaps becomes relevant [25].   
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 The Role of Periosteum in Bone Regeneration 

Although it is clear that osteoprogenitor cells reside in the cambium layer of the 

periosteum [2], the origins of these periosteal cells still remain unknown.  

Osteoprogenitor cells are hypothesized to originate from mesenchymal stem cells. Based 

on the biomarkers present, there is a lack of evidence for the origin of these 

osteoprogenitor cells during fracture repair and if there are other cells present as well 

[18].  The cellular signaling that regulates the stages of repair, including inflammation, 

differentiation and bone formation are not well studied.    

As mentioned, the current gold standard for craniofacial reconstruction involves 

autologous graft materials due to the presence of an intact and functional periosteal layer 

[23, 26].  Current methods for manufacturing bone grafts from either synthetic/natural 

materials or the use of donor grafts from cadavers are not optimal due to the lack of a 

functional periosteum [23].  Engineered materials lack the ability to successfully integrate 

with the host tissue and fail to induce osseointegration.  This integration between the host 

and the graft is what will cause the migration of osteoprogenitor cells into the graft from 

the host and induce quicker, more regenerative responses and bone formation.   

In the skull, the outer fibrous layer of the periosteum consists of fibroblasts and 

Sharpey’s fibers, which are responsible for binding the cranial bones firmly, but at the 

same time allowing them to move and absorb shock or trauma.  These fibers are most 

abundant in areas where bones are commonly subjected to the greatest forces in 

separation.  The inner layer of the periosteum harbors multipotent cells that have a 

fibroblast like morphology and can differentiate towards either a chondrogenic or an 

osteogenic lineage. [21].     
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Cell labeling and tracking has shown the contribution of the periosteum and 

endosteum to bone healing to be about 90% while other resident stromal cells and 

circulating marrow cells contribute to as low as 10% during the healing process.  One 

study demonstrated the importance of the periosteum in bone regeneration by removing it 

from an autograft prior to implantation.  A 73% decrease in new bone formation occurred 

when the periosteum was missing, as well as a 10-fold decrease in neovascularization.  

There was also a 75% decrease of osteoclast migration onto the bone scaffold, which led 

to poor remodeling of the damaged area and a hindrance in new bone formation.  On the 

other hand, removal of bone marrow cells had a minimal effect on the regenerative 

capacity of the autograft [27]. 

Another study observed the migratory patterns of periosteal cells onto a graft.  It was 

observed, using β-Galactosidase as a tag, that the cells were mainly seen to localize on 

and around the graft, differentiating into osteoblasts, chondrocytes, osteocytes and vessel 

lining cells.  This study shows the multipotency of these cells as well as shows that they 

tend to remain on the surface of the graft rather than migrating into it.  By days 7 and 10, 

70% and 90% of the cells present on the surface of the graft were β-Gal positive 

respectively.  This indicates that the periosteal cells are crucial in beginning the healing 

process of a bone fracture or injury.  Further, by day 28, most cells were β-Gal negative, 

indicating that as healing progresses, the host cells begin to infiltrate the scaffolds and the 

role of the periosteum as an initiator is complete [28].   

Although the molecular signaling involved in the initiation and morphogenesis of 

periosteal bone healing is not well defined, a number of molecules, such as BMPs, 

Hedgehog proteins and Wnt proteins are known to play active roles.  FGFs and IGFs 
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have also been shown to be upregulated in bone healing [23].  The general consensus 

suggests that the wound healing shares some similarities with the natural fetal limb 

budding and normal bone development.  Some studies suggest that BMP-2 is upregulated 

during the formation of the periosteal callus, which is the initiator to bone healing during 

a cortical bone fracture [29].  Interestingly, knockout of BMP-2 during organogenesis 

does not cause any irregularities during bone development, however it has shown to 

disrupt the progression of healing during injury (Figure 6) [4].  Similarly, it is known that 

hedgehogs and Wnt proteins are involved processes such as differentiation and 

morphogenesis, however their involvement in bone healing is still unknown [30]. 
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The main component of the periosteum responsible for healing is the cellular 

component.  It is these cells that begin the healing process.  It is also the reason that 

allografts and engineered materials are not nearly as successful as autografts.  Studies 

have shown that covering the surface of allografts with living tissue can increase bone 

regeneration.  For example, seeding an allograft with mesenchymal stem cells expressing 

BMP2 enhanced bone remodeling, angiogenesis and the mechanical stability of the 

allograft due to host/graft incorporation [31].  Moreover, PCL/calcium phosphate graft 

seeded with porcine stromal cells was capable of forming new bone tissue when 

Figure 6. Above, BMP knockout mice 

(b,d and f) show that there are minor 

skeletal abnormalities during 

development when BMP2 is knocked 

out.  However, to the right, BMP-2 

knockout (row 2 in figure a, c and e) 

during fracture healing causes no 

regeneration in the perosteal callus 

formation (a) and also no prominent 

periosteal formation at the cellular level 

(c and e).  This lack of periosteal 

function leads to no tissue regeneration, 

indicating its importance in initiation 

[4].   
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implanted subcutaneously in a rat model.  The study showed that endochondral 

ossification was initiated and bone formation was achieved (Figure 7) [3].   

 

Another potential solution to enhancing the potency of allograft bone substitutes is to 

use a type of periosteal covering around the allograft, either with a cell sheet or 

engineered material.  The main goal here is to induce osseointegration of the host bone 

with the allograft via cell signaling and recruitment from the covering.  The main 

problem with allografts is they do not induce osseointegration, so the graft remains 

decellularized and leads to the formation of necrotic tissue that cannot mimic bone in 

structure or mechanical properties [3, 32, 33].  This all begins with proper and 

appropriate vascularization, which has been shown to have a reciprocal effect on 

Figure 7. Scaffold constructs wrapped in cell sheets were seeded with cells for 49 days and 

harvested after 28 days.  They showed good vascularization (a), osteogenesis (b, c and e) as 

opposed to fibrous tissue without cells sheets and endochondral ossification (f and g).  

Cortical bone and marrow cavities were observed (h and i) and specific bone and cartilage 

markers osteocalcin (j), collagen I (k) and collagen II (l) [3].   
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osteogenesis.  Factors such as VEGF, PDGF not only aid in vascularization, but also aid 

in bone formation as well.  Also, FGFs and BMPs also aid in vessel formation, which 

shows that all of these angiogenic and osteogenic factors work synergistically, indicating 

the necessity and upmost importance of vessel formation for bone healing.  With 

vascularization of the allografts via periosteal wrapping, new, viable bone tissue can be 

formed rather than necrotic tissue that leads to fibrosis and poor mechanical strength [34]. 

The three main criteria to produce a periosteal sleeve around a graft material are live 

osteogenic cells, osteoinductive genes or factors and an osteoconductive scaffolding 

material.  In terms of cell sourcing, the most common choices are mesenchymal stem 

cells derived from the bone marrow or adipose derived stem cells, as well as periosteal 

cells [23].  These cell types offer a unique opportunity to avoid ethical issues involved 

with embryonic stem cells as well as provide a renewable and autologous cell source.  

Interestingly, fibroblasts have also been shown to have osteogenic potential, especially 

human derived dermal and gingival fibroblasts [35].  This was verified in a study that 

showed osteogenic differentiation of human fibroblasts in the presence of BMPs on a 

tricalcium phosphate porous scaffold [36].  Also, studies have been developing the idea 

of using BMPs in human studies.  BMPs are proven to induce bone formation and 

osteogenic differentiation in animal models, but human studies show a lack of bone 

formation except in very large and sustained release.  They also have very little effect on 

non-union fractures.  In contrast, parathyroid hormone treatments have been shown to 

enhance bone regeneration in humans.  This is thought to act through the upregulation of 

Wnt proteins and IGFs [37].   
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The microenvironments in which stem cells and progenitor cells reside is called a 

niche.  The niches are composed of nanofibrous extracellular matrix proteins, including 

collagens, elastins and others.  One of the main focuses of fabricated tissue scaffolds is 

biomimetic properties, and one of those properties is mimicking this nanofiber structure.  

Fiber formation techniques have emerged in the form of electrospinning, self-assembly 

and phase separation.  The goal is to create an environment that makes the cell feel at 

“home,” and emulate this niche and its components.  Structure and mechanics are shown 

to be two of the main causes to induce cellular instructions, like differentiation or 

proliferation [23]. 

The periosteum lines the entire cortical bone surface throughout the body. Many of 

the biochemical cues and mechanical stimuli to drive cell migration and differentiation of 

osteoprogenitor cells residing there come from cortical bone.  The main constituents 

leading to periosteal activity are the vascularization of cortical bone during formation and 

remodeling, electrochemical signaling that occurs between periosteum and cortical bone 

and blood circulation/oxygen tension that occurs in the vessels found in cortical bone.  

Oxygen tension plays a role in periosteal cell differentiation to either a chondrogenic or 

osteogenic lineage.  At 10-15% oxygen levels, chondrogenesis is at its highest, where 

significantly low or high levels (less than 5% or greater than 90%) lead to chondrogenic 

hypertrophy and the induction of osteogenesis [22]  Physical properties, such as 

elasticity, tensile strength, toughness, etc. also induce changes in bone patterning and 

morphogenesis during development, and these cues also aid in repair and remodeling 

[21]. 
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All of these studies have paved the way to exploring how engineered constructs 

mimicking and integrating with periosteum can lead to appropriate bone formation in 

critical sized defects.  Although the main focus of bone repair now is either autografts or 

replacement materials, a shift to regeneration has become the focus over the past decade.  

To these means, cellular infiltration and interaction becomes of upmost important and 

specific properties of recruiting cells from the host tissue to migrate into the tissue, 

suppressing immunorejection and mimicking the ECM to promote cell attachment and 

functionality.      
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 Chitosan as a Biopolymer for Tissue Engineering 

Chitin is a naturally occurring polysaccharide found in the form of crystalline 

microfibrils that form the structural components of the exoskeleton of crustaceans. It is 

also included in the cell walls of fungi and yeast as well as other organisms that utilize 

the strength and reinforcement of chitin [5, 38, 39]. Chitin is the world’s second most 

abundant polymer after only cellulose.  Chitin’s chemical structure is very similar to 

cellulose with the only difference being the hydroxyl at the C2 position of cellulose is 

replaced by an acetamido group in chitin (Figure 8) [5].  

 

 

Figure 8. Molecular structure of cellulose, chitin and chitosan.  Notice the close similarity 

between chitin and cellulose only replacing the ethyl group on the C2 carbon with an 

acetamido group.  Further, deacetylating chitin yields the usable biopolymer chitosan, 

applicable in many areas of tissue engineering [5].   
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The most common source of chitin is from the waste generated by shrimp and crab 

processing facilities. Chitin can be extracted through a process that includes the addition 

of hydrochloric acid to dissolve calcium carbonate from exoskeletons followed by an 

alkaline treatment to remove proteins. Chitin can be further processed to form chitosan, 

its most versatile derivative used for agricultural purposes [40], filtration [41], industrial 

uses [42] and biomedical applications [43-50], by using an alkaline treatment to partially 

deacetylate chitin [51].  However, deacetylation will almost never proceed to 100% 

completion (95% is considered the maximum) and the polymer chain is expected to 

degrade significantly if it is exposed to these strong alkaline treatments for extended 

periods of time.  It is generally accepted that a polymer with greater than 70% 

deacetylation be considered chitosan [52].   

In terms of bone tissue engineering, chitosan is an attractive biomaterial due to its 

enhanced mechanical properties when modified or crosslinked.  Use of chitosan may help 

to overcome problems such as stress shielding that occurs with metallic bone implants.  

Stress shielding occurs when the implant removes the entire mechanical load from the 

bone [53].  Bone is known to regenerate and remodel itself as load is applied, so when a 

metal implant takes on the entire load that is applied in everyday motion, the bone no 

longer remodels and repairs itself, which leads to degradation and deterioration [53].  

Chitosan can be blended with ceramics similar to that found in bone tissue, like 

hydroxyapatite or tricalcium phosphate, to mimic the mechanical properties and 

bioactivity of natural bone [50, 54, 55].  Mineralized chitosan scaffolds can be implanted 

into bone tissue, with the aid of a cast to keep the bone set in place, to begin self-

regeneration.  Not only would mineralized chitosan scaffold more closely mimic natural 
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bone better than metal (Figure 9), but these scaffolds will also have a much more similar 

fracture toughness then metal replacements [1].   

 

For applications in non-load bearing bones, structural integrity and support are 

less of a requirement and there is more of a focus towards regenerative capacity.  

Scaffold fabrication techniques such as electrospinning offer an ideal, platform 

technology to act as a template to promote tissue integration from the host.  

Electrospinning is a promising method for scaffold fabrication due to the structural 

resemblance of the fibers of the electrospun matrix to the natural fibrous ECM of bone   

[54].  Electrospinning involves extruding a polymeric solution through a charged syringe 

Figure 9. The fracture toughness for a composite of chitosan and natural mineral, like 

hydroxyapatite, would much more closely mimic the ECM of natural bone tissue over metal 

implants.  This is a novel concept for developing new and improved bone replacement 

biomaterials.  [1] 
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tip and gathering the polymer fibers on a collector [56].  Co-electrospinning involves the 

electrospinning of two different types of polymers, a polymer together with microspheres 

or nanoparticles, or a polymer/composite solution containing an inorganic material [57, 

58][59]. Recent approaches address the possibility of co-electrospinning chitosan with 

other materials to generate biocomposite scaffolds for bone tissue engineering and 

emulate the composition and nanostructure of the bone [59-62]. 

   A challenge in fabricating bone tissue scaffolds for weight bearing bones is 

obtaining enough mechanical strength (tensile modulus of 10GPa) [63]. However, when 

dealing with non-load bearing bones, such as craniofacial or other flat bones, the 

scaffolds will rather mend and regenerate the wounds instead of providing load-bearing 

support. Thus, our goal was to create a patch for craniofacial defects mimicking the 

mechanics of the periosteal bone with a tensile modulus ~ 120MPa. [64].  This is still a 

rather high range for as-spun natural nanofibers, which is usually in the range of 75MPa 

for electrospun chitosan [60], so crosslinking is needed to enhance the mechanical 

properties of the base material. 

There are many techniques including physical, enzymatic and chemical 

crosslinking methods to enhance the mechanical properties of bio-polymers to match 

those of bone [65-67]. Genipin is a natural, non-toxic crosslinker derived from the fruit of 

gardenia extracts. It binds to the free, outer amine groups of a chitosan polymer chain, 

forming new bonds between the fibers and leading to an increases in mechanical strength 

[68].  



26 

Another challenge with electrospun scaffolds is the limited pore size that is 

generated due to the densely packing of fibers during the electrospinning process.  These 

scaffolds do contain interconnected pores throughout, which generate a relatively high 

porosity; however there is limited ability for the cells to infiltrate the scaffolds due to a 

lack of adequate pore size [69].  A number of methods have been employed to increase 

pore sizes in electrospun scaffolds.  One promising technique is the incorporation of 

sacrificial fibers that can be removed post-spinning [69-71], which in turn leads to the 

creation of larger pore sizes in the scaffolds,  enhanced cell migration into the scaffolds 

and eventually to osseointegration of the bone scaffolds in vivo.  Although crosslinking 

CTS with GP has been proposed to increase the stiffness of hydrogels used for soft tissue 

engineering [72], this approach has been considered only recently for bone engineering 

[73, 74] and was not reported for CTS-HA composite scaffolds until the studies presented 

here [50]. 

The versatility and biocompatibility of chitosan offer a set of unique and 

promising capabilities for developing appropriate scaffolds for bone tissue engineering.  

This thesis adds some new results and information   to the overall goal of engineering 

suitable, biomimetic scaffolds that are capable of promoting cell growth and viability 

while integrating host tissue infiltration and inducing self-regeneration and natural 

healing rather than replacement. 
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 Materials and Methods 

4.1 Materials 

Medium molecular weight chitosan (CTS, 75% - 85% deacetylated), trifluoroacetic 

acid (TFA, ≥98%), and hydroxyapatite (HA, reagent grade, <200 nm nanoparticles), 

1,1,1,3,3,3-Hexafluoro-2-propanol (HFP), ascorbate-2-phosphate, β-glycerosphosphate, 

ferric chloride, Beibrich’s Scarlet, Acid Fuchin, phosphomolybolic acid and 

phosphotungstic acid were purchased from Sigma-Aldrich Co. Ltd. (St. Louis, MO). 

Hematoxylin, eosin Y, 37% formaldehyde, hydrochloric acid (HCl), aniline blue and 

Permount were purchased from Fisher Scientific (Kalamazoo, MI).  Picric acid was 

purchased from EMS (Hatfield, PA).  Genipin (GP, ≥ 98% pure) was purchased from 

Wako Pure Chemical Industries Ltd. (Osaka, Japan).  Ultrapure bovine gelatin was 

purchased from HiMedia (Mumbai, India).  Glacial acetic acid was purchased from 

Amresco (Solon, OH).  Ethyl acetate was purchased from EMD (Billerica, MA).  Poly-

lactic-co-glycolic acid (PLGA, 90:10 L:G ratio) was provided courtesy of Changchun 

Institute of Applied Chemistry, Chinese Academy of Science, P.R. China.  1,1′-

Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) and 3,3′-

Dioctadecyloxacarbocyanine perchlorate (DiO) fluorescent dyes were provided courtesy 

of Dr. Alan Waggoner from Carnegie Mellon University (Pittsburgh, PA).  The alamar 

blue colorimetric assay kit was purchased from AbD Serotec (Raleigh, NC). The alkaline 

phosphatase colorimetric assay was purchased from Abcam (Cambridge, MA). All PCR 

kits and master mixes were purchased from Qiagen (Valencia, CA) and all primers from 

Applied Biosystems (Carlsbad, CA).  Mouse mesenchymal stem cells (moMSC) and 

green fluorescent protein tagged moMSC (GFP moMSC) were provided courtesy of a 
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material transfer agreement from the University of Texas A&M.  Dexamethasone was 

purchased from Alfa Aesar (Ward Hill, MA).  Xylene was purchased from VWR 

Laboratories (West Chester, PA).  CD-1 strain female mice (-30g) were purchased from 

The Jackson Laboratory (Bar Harbor, ME).  All surgical supplies were purchased from 

PennVet (Lancaster, PA).  Trephines (2.1mm diameter) were purchased from Fine 

Science Tools (Foster City, CA).    

4.2 Fabrication of Electrospun and Modified Chitosan Scaffolds 

4.2.1 Electrospinning 

CTS and HA-containing CTS scaffolds were electrospun from a solution of CTS 

dissolved in TFA to yield 7% (w/v) CTS. HA-containing scaffolds were generated by 

admixing 0.8%, 1.0% or 2.0% HA nanoparticles (w/v) to the CTS solution. All solutions 

were stirred at room temperature for at least 5 days. Electrospinning was performed in a 

homemade system, essentially as previously described [75, 76]. In brief, 5 mL glass 

syringes (BD, multifit syringes) containing 4 ml each of the above solutions were 

mounted in a KDS200 syringe pump (KD Scientific). The flow rate was set to 1.2 ml/hr. 

A voltage of 15 kV between the syringe tip and the target, generated by an ES-30 Gamma 

High Voltage Research power supply (Gamma High Voltage Research), was applied by 

connecting the cathode to the syringe needle and the anode to a rectangular 6 × 2 cm 

aluminum collecting plate placed 15 cm from the tip of the needle. 
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4.2.2 Crosslinking 

Electrospun scaffolds were crosslinked with 0.1 % (w/v) GP. The scaffolds were first 

stabilized (“waterproofed”) by soaking them for 20 minutes in 0.5% sodium hydroxide 

(NaOH) dissolved in 100% ethanol, followed by five 30 second washes with 1X 

phosphate buffer solution (PBS) to remove any trace amounts of ethanol [77]. The 

stabilized scaffolds were then crosslinked in 0.1% (w/v) genipin dissolved in 1X PBS for 

24 hours. The crosslinking process was terminated by washing the scaffolds in PBS, as 

described above. The resulting scaffolds were termed chitosan-genipin crosslinked 

scaffolds (CTS-GP) or chitosan-hydroxyapatite-genipin crosslinked composite scaffolds 

(CTS-HA-GP).   

4.3 Scaffold Characterization 

4.3.1 Scanning Electron Microscopy  

For ultrastructural analysis, circular scaffold samples of 10.3 mm diameter were 

sputter coated with carbon for about 30 seconds. The samples were viewed and digitally 

photographed in a Zeiss Supra50VP field emission scanning electron microscope 

(FESEM) equipped with an Oxford Instruments INCA Energy Dispersive Spectrometer 

at 5 kV with the SE2 detector using a 30 µm final aperture.  

4.3.2 Electron Dispersive X-ray Spectroscopy (EDS) 

 An FESEM equipped with an EDAX electron dispersive X-ray spectroscopy system 

was used to assess calcium and phosphorous contents of the scaffolds. X-ray spectra were 

taken at 10 kV using a 60 µm final aperture. EDS was performed using the FESEM at an 

acceleration voltage of 10 kV.  
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4.3.3 X-ray Diffraction (XRD) 

XRD was performed using a Siemens D500 powder diffractometer using 

conventional Bragg–Brentano geometry in q – 2q configuration, with CuKa source (l = 

0.154 nm). 2q scans were acquired from 10 – 600 with a step of 0.030 and 1s dwell time 

per point.  

4.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR spectra were collected on a Varian Inc. FTS3000 Excalibur FTIR spectrometer 

equipped with a Deuterated Triglycine Sulfate (DTGS) detector and KBr beam splitter. 

The spectra were recorded at resolution of 4cm-1 in transmission mode. 

4.3.5 Mechanical Properties 

The mechanical properties of the scaffolds were tested using the Instron 5564 Table 

Mounted Materials Testing System and Merlin Series IX software (Instron, Norwood, 

MA). Hydrated CTS-GP and CTS-HA-GP scaffolds were cut into strips of 22.7 ± 2.3 mm 

x 5.4 ± 0.7 mm (n = 28). Samples were prepared by either waterproofing CTS-HA-GP 

scaffolds and then washing 5 times in 1X PBS or by waterproofing followed by 

crosslinking in 0.1% GP for 24 hours and then washing 5 times with 1X PBS. All 

samples were stored in 100 mm petri dishes containing 1X PBS until testing. To simulate 

a “biologic” environment, samples were tested under wet conditions immediately upon 

removal from the PBS. A gauge length of 10 mm was used for all samples. The strain 

rate was set at 1 mm/min. The Young’s modulus was calculated from the linear portion of 

stress-strain curves. The ultimate tensile strength (UTS) was determined by calculating 
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the stress at break normalized to the cross-sectional area of the scaffold. The measured 

average thickness of the scaffolds was 25.3  16.2 m (n = 28). 

4.4 Osteocompatibility 

4.4.1 Cell Culture 

Murine 7F2 osteoblast-like cells were obtained from ATCC and cultured in alpha 

modification of Minimum Essential Medium (-MEM) containing 1 g/L glucose, 10% 

fetal bovine serum (FBS), 2 mM L-glutamine, 1% (v/v) penicillin-streptomycin. Cells 

were placed in T-25 cell culture flasks in an incubator set to 37oC and 5% carbon dioxide. 

The medium was changed every second day. The cells were passaged at a 1:3 ratio and 

expanded three times by trypsinization prior to seeding onto the scaffolds, as described 

below. 

4.4.2 Seeding of 7F2 cells on scaffolds 

Circular scaffolds with a diameter of 10.3 mm, cut from either the CTS-HA-GP 

(1.0% HA) or CTS-GP electrospun sheets, were placed in 24 well plates, secured with a 

Viton O-ring [78], stabilized, and crosslinked with 0.1% GP, as described above. The 

samples were sterilized with UV light for one hour and pre-treated by soaking in 

complete medium overnight. 7F2 cells were seeded in aliquots of 50 µl containing 10,000 

cells by carefully pipetting onto the center of the scaffold. The cell–seeded scaffolds were 

then placed into an incubator for one hour. After this time period, 450 µL of medium 

consisting of low glucose (1 g/L) -MEM, 10% FBS, 2mM L-glutamine and 1% (v/v) 

penicillin-streptomycin was added to each well. The cells were cultured for up to 21 days 
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during which time the medium was changed every other day. Cells were also cultured in 

a similar manner on tissue culture polystyrene (TCP) as a negative control.  

4.4.3 Cell Morphology 

To evaluate the morphology of cells growing on the scaffolds, samples were fixed on 

days 7, 14 or 21 post-seeding, as above, and serially dehydrated in ethanol and 

hexamethyldisilazane (HMDS) for 10 minutes in each concentration as previously 

described [79]. The samples were left to air dry in a chemical fume hood overnight at 

room temperature, sputter coated with carbon, and observed under SEM, as described 

above. Attempts at critical point drying the samples were abandoned, since CPD 

significantly reduced the sizes of the scaffold to a point that they were unusable.  

4.4.4 Cell Viability and Proliferation 

Cell viability and proliferation were continually monitored over a 21 day period using 

the continual alamarBlue™ (AB) assay on days 0, 3, 7, 14 and 21 as previously described 

[80]. In brief, 7F2 cells were seeded in 24 well plates onto TCP as well as onto circular 

CTS-GP and CTS-HA-GP scaffolds at a density of 3.5×104 cells/well. At the time points 

stated above, AB was added at 10% (v/v) in triplicate to each well. The plates were then 

returned to the incubator for three hours. For zero control, AB was also either added to 

wells containing only medium or scaffolds and media. After 3 hours, 200 µl aliquots of 

the supernatant were pipetted in triplicate into 96 well plates and the AB fluorescence 

was read in a Synergy 4 microplate reader (Biotek, Winooski, VT) at an excitation 

wavelength of 545 nm and an emission wavelength of 590 nm. The data were analyzed 

using Gen5 software (Biotek) and samples were normalized to their respective zero 
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controls. The cells were re-fed with fresh medium and placed in the incubator to be 

analyzed at the next time point.  

4.4.5 Alkaline Phosphatase (ALP) assay 

ALP is an early marker for differentiation towards the osteocytic phenotype [60]. 

Murine 7F2 osteoblast-like cells were seeded, on TCP, CTS-GP and CTS-HA-GP 

scaffolds in 24 well plates at a density of 3.5×104 cells/well. ALP activity was measured 

colorimetrically on days 0, 7, 14 and 21 using a commercial kit (Abcam, ab83369). At 

each time point, three cell-seeded scaffolds were homogenized in a glass tube 

homogenizer containing 300 L of lysis buffer (kit component). The supernatant was 

collected and centrifuged at 1350 rpm for 3 minutes to remove all insoluble debris. 30 L 

aliquots of the resultant samples were added to a 96 well plate followed by 50 L of 

assay buffer and 50 L of para-Nitrophenylphosphate (pNPP) solution. Following 

incubation for one hour at room temperature, 20 L of stop buffer was added to the 

samples and the absorbance was read in the microplate reader at 420 nm, as described 

above. To assess the ALP activity of control cells growing on TCP, the wells were rinsed 

with 300 L of 1X PBS, followed by addition of 1X lysis buffer for 10 minutes. After 

that, the supernatant was collected and cell remnants were scraped with a cell scraper for 

manual lysis. The protocol for analyzing ALP activity was then followed, as above.  

4.4.6 RNA Isolation and quantitative real time RT-PCR  

7F2 cells were trypsinized after 7, 14 or 21 days of culture on TCP, CTS-GP and 

CTS-HA-GP scaffolds. The cells were pelleted by centrifugation at 800 RPM for 5 

minutes. After a 1X PBS wash, the resulting pellet was stored at -80 °C prior to RNA 
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isolation. A Qiagen RNeasy Mini Kit was used to isolate RNA by columnar 

centrifugation and DNase digestion, as per the manufacturer’s instructions. RNA integrity 

was initially determined by electrophoresis on 1.0% agarose gels. Quantitative real-time 

reverse transcription polymerase chain reaction (qRT-PCR) was performed with a Qiagen 

One-Step Kit combined with TaqMan expression assays according to the manufacturer’s 

instructions. qRT-PCR was performed using a Realplex II thermal cycler (Eppendorf, 

Hamburg, Germany) using the following Taqman primers (from Applied Biosystems, 

Carlsbad, CA): Spock (Osteonectin, Mm00486393_m1), Alkaline Phosphatase 

(Mm01187115_m1), Spp1 (Osteopontin, Mm00436767_m1). GAPDH 

(Hs99999905_m1) was used as an internal ‘housekeeping’ control. Primer efficiency was 

determined by linear regression of a dilution series. Cycle threshold (CT) results were 

analyzed by the Pfaffl Method. The results were normalized to TCP and GAPDH prior to 

logarithmic transformation [81]. Each experimental condition and gene primer was 

analyzed in triplicate. 

4.5 Osteoinductive Capacity of Scaffolds 

4.5.1 Cell Culture 

Murine (mouse) Mesenchymal Stem Cells (moMSCs) were obtained from the 

University of Texas A&M Health Science Center College of Medicine Institute for 

Regenerative Medicine headed by Dr. Darwin Prokop.  This facility was recently given 

NIH funding to provide high quality human, mouse and rat mesenchymal stromal cells to 

researchers (See: http://medicine.tamhsc.edu/irm/msc-distribution.html).  These cells 

were expanded in Iscove’s Modified Dulbecco’s Medium (IMDM) containing 1g/L 

https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs99999905_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&SearchRequest.Common.SortSpec=SPECIES+asc&searchValue=null&searchBy=null&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=GAPDH&kwdropdown=ge&adv_kw_filter1=ALL&inventoried=*&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&adv_boolean3=AND&displayAdvSearchResults=null&SearchRequest.Common.ResultsPerPage=25&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=2&isSL=null&msgType=ABGEKeywordResults
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glucose and supplemented with 10% FBS + 10% horse serum (HS), 2mM L-glutamine 

and 2% antibiotic-antimitotic (ABAM).  Cells were placed in T-25 cell culture flasks in 

an incubator set to 37oC and 5% carbon dioxide.  The medium was changed every third 

day.  The cells were passaged three times by trypsinization prior to seeding on the 

scaffolds.  

4.5.2 Seeding of moMSC on Scaffolds 

 Circular scaffolds with a diameter of 10.3 mm, cut from either the CTS-HA-GP 

(1.0% HA) or CTS-GP electrospun sheets, were placed in 24 well plates, secured with a 

Viton O-ring [78], stabilized, and crosslinked with 0.1% GP, as described above. The 

samples were sterilized using 10% ABAM overnight and then subsequently washed 3 

times with DI water.  The scaffolds were acclimated with medium by soaking in 

complete IMDM overnight. The moMSC were seeded in aliquots of 50 µl containing 

either 100,000 cells (low density) or 500,000 cells (high density) by carefully pipetting 

onto the center of the scaffold. The cell–seeded scaffolds were then placed into an 

incubator for one hour. After this time period, 450 µL of complete IMDM or osteogenic 

medium, which was complete IMDM medium containing 100nM dexamethasone, 

200μM ascorbate-2-phosphate and 10mM β-glycerophosphate was added to each well in 

accordance to experimental conditions. The cells were cultured for up to 21 days during 

which time the medium was changed every third day. Cells were also cultured in a 

similar manner on tissue culture polystyrene (TCP) as a negative control.  
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4.5.3 Stem Cell Viability, Metabolic Activity and Proliferation 

Viability and metabolic activity indicating proliferation of moMSCs was maintained 

using AB assays at days 1, 4, 7, 14 and 21 according to the same protocol as stated 

previously in section 2.5.4.  The moMSC were seeded at densities of 500,000 cells per 

well on TCP, 10mm CTS-GP scaffolds and 10mm CTS-HA-GP scaffolds and cultured 

for the said time points in either IMDM or osteogenic medium.  Fluorescent readings 

were recorded using the Syngergy4 microplate reader. 

4.5.4 Cell Morphology 

Cell morphology was observed using fluorescent microscope imaging 

DAPI/phalloidin staining at days 7, 14 and 21 to show cell survival over the 3 week time 

period and observe cellular morphology of moMSC grown on CTS-GP and CTS-HA-GP 

scaffolds and compared to moMSC cultured on TCP.  Briefly, scaffolds were fixed in 

10% formalin at the above mentioned time points for 20 minutes followed by subsequent 

washing with DI water and 60mM glycine to remove excess aldehyde groups.  The fixed 

cells were permeabilized in 0.5% Triton-X 100 for 20 minutes and then washed in 3 

washes of immunofluorescent (IF) wash containing 130mM NaCl, 7mM Na2HPO4, 

3.5mM Na2H2PO4, 7.7mM NaN3, 0.1% bovine serum albumin (BSA), 0.2% Triton-X 100 

and 0.05% Tween-20 in DI water for 10 minutes each.  This was followed by blocking in 

IF wash + 10% goat serum (primary blocker) for 1 hour.  Finally, cells were washed with 

a secondary blocker containing primary blocker + 1:100 dilution of antigen binding 

fragment 2 [F(Ab)2] containing 5μg/mL DAPI and a 1:1000 dilution of green phalloidin.  

Although immuno-washes are generally not required for simple nuclear/cytoskeletal 

staining, genipin has a very high autofluorescent property and this wash reduced this and 
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enhanced imaging.  Cells fluoresced blue nuclei (DAPI) and green cytoskeleton 

(phalloidin). 

 MSC-scaffold interaction was observed at days 7, 14 and 21 also via SEM to observe 

cell attachment and cell spreading characteristics on scaffold surfaces.  SEM images were 

taken according to the same protocol as discussed above in section 2.5.3. 

4.5.5 Alkaline Phosphatase Activity  

ALP activity was observed in the moMSC cultured on CTS-GP and CTS-HA-GP 

scaffolds on days 7, 14 and 21.  Scaffolds were collected from samples cultured in 

IMDM and in osteogenic medium, ALP activity was assayed as described above (see 

section 4.4.5). 

4.6 Osteoconductive Capacity  

4.6.1 Scaffold Preparation for In Vivo Implantation 

CTS-GP and CTS-HA-GP scaffolds were cut into 10mm circular scaffolds and fitted 

into 24 well plates using Viton O-rings.  The scaffolds were sterilized in 10% ABAM 

overnight and subsequently washed three times with DI water and acclimated with 

IMDM medium overnight.   

GFPmoMSC were provided by the University of Texas A&M.  GFP tagged cells are 

useful for tracking cells during in vivo implants during the surgery to observe cell 

viability in the body.  The cells were cultured in complete IMDM in T-cell culture flasks 

and expanded 2 passages.  They were then seeded onto the prepared scaffolds at a 

seeding density of 100,000 cells/scaffold.  Scaffolds were then prepared for implantation 
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and divided into sub-groups of CTS-GP without moMSCs, CTS-GP with moMSCs, CTS-

HA-GP without moMSCs and CTS-HA-GP with moMSCs.  Scaffolds that were seeded 

with cells were seeded 3 days prior to implanting to allow appropriate cell attachment and 

initial cell interaction with the scaffold.  From the designated samples above, 2.5mm 

circular specimens were cut from each sample and used as the implant scaffolds. 

4.6.2 Animal Model and Scaffold Implantation 

CD1 female mice weighing about 30g were obtained from Jackson Laboratories as 

the appropriate model for observing bone regeneration in a calvarial defect.  Mice were 

housed in cages containing an adequate food and water supply, monitored daily and at a 

population of no more than 5 mice per cage.  Cages were cleaned daily and changed out 

once a week.  All caretaking, surgical procedures and post-operative care were in 

accordance with an IACUC-approved protocol.  All mice were allowed to become 

acclimatize with their new environments before any surgical procedures were performed. 

For implantation, scaffolds were cut from the 10mm scaffolds into 2.5mm samples.  

Each sample was removed from a separate scaffold of its sub-type (noted above) to 

obtain results from individual scaffolds for all time points.  Scaffolds not seeded with 

cells were placed into a Petri dish containing 1X PBS with calcium and magnesium and 

brought into the surgical room.  Scaffolds with cells were placed into individual petri 

dishes and stored in the incubator until right until the surgical procedures.  In between 

mice, a new scaffold would be retrieved and brought into the surgical room.   

Before beginning surgery, mice were placed into an isofluorane chamber for 15 

minutes for initial anesthesia preparation.  After, the mice were fitted into a stereotaxic 



39 

setup fitted with a surgical gas mask pumping isofluorane to maintain proper anesthesia.  

A tooth bar was used to position the mouse’s head straight while the gas mask was fitted.  

Ear bars were then inserted into the zygomatic arch of each ear to maintain stereotaxic 

stability throughout the duration of the surgery.  0.25mL of ketoprofen was given as a 

subcutaneous shot as an anti-inflammatory prior to surgery as well as 24 hours post-

surgery.  Optical lube was used to maintain moisture in the eyes and avoid cataract 

formation due to over-drying of the eyes during surgery.  The top of the cranium was 

shaved and swabbed with betadine to prevent outside infection during surgery.  An 

incision was made in the proximal to distal direction across the surface of the cranium 

and hemostat clamps were used to peel the skin laterally to expose the calvaria.  Sterile 

saline solution was used to keep the skull moist while exposed and also to reduce the 

burning effect the drill may have on bone tissue.  A 2.1mm trephine equipped to a drill 

controlled by a foot petal was used to remove two sections from either lateral side of the 

midline of the skull.  One of these holes was left empty as a blank control while the other 

was fitted with one of the scaffold sub-sets mentioned above in section 4.6.1.  A small 

amount (the dab of a pin) of Vetbond (3M, St. Paul, MN) surgical glue was used to 

secure the scaffold in place.  The incision was then stitched closed using 6-0 surgical 

sutures and further secured using Vetbond.  The Vetbond also acted as a barrier between 

the mice’s grooming of the wound and the scaffold, prominently prevent scaffold 

destruction due to repeated scratching.  Upon completion of the surgery, each mouse was 

removed from the stereotaxic equipment and placed back into the cage.  Scaffolds were 

retrieved at 1 month, 2 months and 3 months from individual mice (n= 4 for each group) 

to assess calvarial regeneration over the course of time.   
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4.6.3 Harvesting of Tissue 

At the predetermined time points mice were euthanized using 0.1ml of Beuthanasia 

solution via IP injection.  The mice were placed into an isofluorane chamber, 

anesthetized and then given the IP injection.  Euthanasia was considered complete once 

the mouse stopped breathing. The mice were decapitated with sheers and skulls were 

harvested by complete removal of the skin from the head.  Harvested skulls were placed 

in 10% formalin in 4oC overnight for fixation and then stored in 1X PBS until analysis. 

4.6.4 MicroCT Imaging and Fracture Area Measurements 

MicroCT imaging was used to observe new bone formation and to determine the 

density of new tissue formed.  Samples for imaging were prepared at the specified time 

points of 1, 2 and 3 months.  The animals were euthanized by IP injection of a 0.25mL 

Beauthanasia following 10 minutes in an isofluorane chamber.  After euthanasia, the 

animals head was immediately removed, skinned and placed into a 10% formalin solution 

overnight.  After, the remaining soft tissue, including remaining skin and muscle, tongue, 

brain and eyes are completely removed, leaving just the skull.  A μCT-50 scanner 

(Scanco Medical, Wayne, PA) housed at the University of Pennsylvania was used for 

imaging the samples.  The scanner was operated at an X-ray energy/intensity of 70kVp, 

114µA and 8W with a medium resolution.  A scout view reading from 0 – 145mm and 

angle of 90o as a rough scan of the whole skull to determine the appropriate region of 

interest (ROI).  A field of view (FOV) diameter of 38.9mm and a voxel size of 38μm 

with an integration time of 200ms were used as typical scanning parameters.  The number 

of scans (slices) was 211/8.02mm.  Along with imaging, fracture area measurements 

were recorded.  By selecting the specific ROI where the bone scaffold was implanted, a 
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measurement of the area of calcified tissue was obtained and analyzed using Axiovision 

Imaging Software.  The area of all sample sub-sets was analyzed and recorded as a 

percentage relative to defect without scaffold and compared between CTS-GP, CTS-HA-

GP and defects with no scaffold. 

4.6.5 Histological Staining for Bone Formation 

The organization of new bone tissue formation can be evaluated histologically, using 

hematoxylin and eosin (H&E) and Masson’s Trichrome staining.  After taking the 

MicroCT images, fixed samples were decalcified in a decalcification solution containing 

90% water, 10% HCl and trace amounts of sodium tartrate dehydrate, potassium sodium 

tartrate tetrahydrate, and EDTA (Protocol Decalcification Solution B, Fisher Scientific, 

Pittsburgh, PA) for 10 days until samples bone loses its rigid texture and becomes softer 

and more pliable.  After decalcification, the calvaria, or top portion of the skull, was 

removed from the rest of the skull by cutting with scissors, serially dehydrated using 

ethanol dilutions (30-100%) followed by xylene dilutions (50:50 xylene ethanol then 

twice in 100% xylene) for 15 minutes each and finally embedded in paraffin.  Once 

embedded, samples are put in the freezer overnight.  Frozen samples are then sectioned 

using a Leica microtome into 5μm thick slices.  Slices were placed in a warm water bath 

and then mounted onto lysine coated microscope slides and allowed to dry overnight. 

For routine H&E staining tissue sections were deparaffinized and rehydrated through 

a serial xylene/ethanol/water rehydration procedure and then stained with hematoxylin 

for 4 minutes, dipped in water until there was no more hematoxylin bleeding off, rinsed 
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in 1% acid alcohol, stained with eosin for 2 minutes, washed in water, quickly dehydrated 

and mounted using Permount. 

Masson’s Trichrome staining is used to illustrate the organization of newly formed 

tissue around the injury site.  Briefly, rehydrated tissue sections were fixed in Bouin’s 

solution for 1h at 56oC.  After fixation, sections were washed with running tap water for 

5min and stained in Weigert’s hematoxylin working solution for 10min.  This is followed 

by washing in running tap water for 10min and then 2 washes of distilled water.  Next, 

samples are stained in Biebrich Scarlet-acid fuchin for 10min and then washed in distilled 

water until the bleeding stops.  Then, the samples are differentiated in phopshomolybolic-

phosphotungstic acid solution for 12min and then analine blue solution for 5min.  Finally, 

samples are rinsed two times in distilled tap water, differentiated in 1% acetic acid 

solution, washed twice in distilled water and quickly dehydrated through an 

ethanol/xylene serial dilution and mounted with Permount.  The ingredients for Masson’s 

Trichrome Staining can be seen below in Table 1.          
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Table 1. List of solution for Masson’s Trichrome staining protocol. 

 

4.7 Enhanced Porosity of Electrospun Scaffolding Material 

4.7.1 Fabrication of Dual Electrospun PLGA/Gelatin Scaffolds 

PLGA scaffolds were electrospun from a solution of 10% PLGA dissolved in HFP.  

Gelatin solutions were prepared at 5%, 15% and 20% gelatin dissolved in a 3:2:1 ratio of 

acetic acid, ethyl acetate and water respectively.  A homemade dual spinning system was 

set up by placing a rotating aluminum collector in between 2 syringe pumps (One pump 

was the KDS200 and the other was Chemyx Fusion 100 syringe pump [Chemyx, 

Stafford, TX]).  The KDS200 has a metal casing, which proved to interfere substantially 

with gelatin, attracting most of the fibers to the wall of the pump rather than allowing 

Solution Ingredients 

Bouin’s Solution 75mL picric acid, 25mL formaldehyde, 

5mL glacial acetic acid 

Weigert’s Iron Hematoxylin Solution A 1g hematoxylin, 10mL 95% ethanol 

Weigert’s Iron Hematoxylin Solution B 4mL 29% ferric chloride, 95mL distilled 

water, 1mL concentrated HCl 

Weigert’s Iron Hematoxylin Working 

Solution 

Equal Parts solution A and solution B 

Biebrich Scarlet – Acid Fuchin Solution 90mL Biebrich Scarlet, 10mL acid fuchin, 

1mL glacial acetic acid 

Phosphomolybolic-Phosphotungstic Acid 

Solution 

25mL 5% phosphopolymolic acid, 25mL 

5% phosphotungstic acid 

Aniline Blue Solution 2.5g aniline blue, 2mL glacial acetic acid, 

100mL distilled water 

1% Acetic Acid Solution 1mL glacial acetic acid, 99mL distilled 

water 
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appropriate collection on the collector.  This was not seen to have as high an effect on the 

PLGA solutions, so the PLGA was loaded into the KDS200 while the gelatin into the 

Fusion 100, which has a plastic casing.  Two high voltage supplies were used to generate 

the field between each pump and the collector.  The collector was attached to a Series 

2224 Faulhaber DC-micromotor fitted with a Series 22E Faulhaber gearhead (MicroMo, 

Clearwater, FL) with a 19:1 differential ratio.  The collector was rotated at ~30RPM 

when a voltage of 6V was applied.  The spinning parameters for PLGA were 1.0mL/h, 

15kV and 12cm and for gelatin were 1.0mL/h, 15kV and 15cm and a 1:1 ratio of each 

solution was used, i.e. 5mL of each solution.  Scaffolds were removed from the collector 

by cutting one side with a razor and pealing the material off of the collector.  Pure PLGA 

scaffolds were collected as-spun and prepared for tests accordingly.  The composite 

PLGA/gelatin scaffolds containing 5%, 15% or 20% gelatin were then soaked in 3 

washes of water for 5 minutes each to ensure removal of gelatin from the scaffolds.  Once 

removed, scaffolds were prepared for tests accordingly. 

4.7.2 Analysis of Fiber Removal and Fiber Morphology 

While preparing the solutions as stated in section 4.7.1, the two lipophilic 

carbocyanine dyes 3,3'-Dioctadecyloxacarbocyanine Perchlorate (DiOC18) and 1,1'-

Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (DiIC18) [69] were added 

at a volume of 10μg/mL to gelatin and PLGA solutions respectively.  These lipophilic 

membrane dyes are often used to stain cell membranes and are lightly fluorescent in 

solution, but enhanced fluorescence is observed when bound to a cell membrane.  

However, previous studies have shown that these dyes are also capable of binding fibers 

as well [69]. So, these dyes were used to generate green (DiO) fluorescent gelatin fibers 
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and red (DiI) fluorescent PLGA fibers, which then could be distinguished in a fluorescent 

microscope.    Images were obtained using an Olympus FSX100 microscopy system.  

Images were obtained prior to removing gelatin fibers, after removing gelatin fibers and 

of PLGA scaffolds not containing gelatin.   

Further, SEM analysis was used to observe the morphology of fibers before and after 

gelatin removal.  The procedure for SEM analysis can be found above in section 4.3.1.  

Since these samples were required to soak in water to remove gelatin, a dehydration of 

these scaffolds was necessary for imaging.  The dehydration procedure can be found 

above in section 4.4.3.  For pure PLGA scaffolds, no dehydration was necessary.  For 

both fluorescent microscopy and SEM analysis, samples containing 0%, 5%, 15% and 

20% gelatin were observed. 

4.7.3 Mechanical Testing 

Mechanical testing of the scaffolds was performed using the Bose Electroforce 

material testing system (MTS) and the Wintest 7 software from Bose (Eden Prairie, MN).  

Samples of PLGA scaffolds containing 0%, 5%, 15% and 20% gelatin were prepared by 

cutting 20×5mm strips with thicknesses of 54±31µm measured using manual calipers.  

Strips were then soaked in 3 washes of water for 5 minutes each to remove gelatin.  All 

samples were then stored wet in small amounts of water in petri dishes.  Strips were 

loaded into the Bose grips while wet and were subject to tensile testing at a strain rate of 

0.5mm/sec until failure.  The load cell had a sensitivity of 22N.  From the data obtained, 

stress strain curves were generated and the elastic region was used to determine the 

Young’s moduli and ultimate tensile strength of the samples. 
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4.7.4 Modeling Cell Proliferation on Porous Electrospun Scaffolds 

Predictive modeling can be used to show how cells should penetrate a scaffold based 

on different pore sizes induced by different concentrations of gelatin incorporation.  The 

detailed model can be found in Chapter 7. MatLab software was used to generate 

descriptive code to create a mathematical model depicting behavior in a scaffold in terms 

of cell proliferation, ECM production and available space in the scaffold, as the cells 

proliferate and deposit their ECM. 

To validate the model, cells were seeded on scaffolds according to the procedure in 

section 2.7.4.  Cell viability and proliferation were monitored using the alamar blue 

assays over a 1 week period at days 1, 2, 3, 4 and 7.  The detailed procedure for AB 

assays can be found above in section 4.4.4. A calibration curve of cell proliferation was 

generated by seeding cells on all subsets of the PLGA scaffolds at densities of 10,000; 

50,000; 100,000; 500,000; 1,000,000; and 2,000,000 cells/well and AB reading taken 

after overnight  incubation  (assuming no cell proliferation on day 0/1) .  Experimental 

results were fitted to this calibration curve to determine cell numbers/densities over 1 

week period and then these values were fitted to the MatLab curve to compare predictive 

modeling vs. experimental data.  

For cell seeding, moMSCs were seeded onto PLGA scaffolds containing different 

gelatin concentrations at a density of 200,000 cells/well and allowed to attach to scaffolds 

for 1 hour prior to complete medium addition.  Cells were cultured in IMDM 

supplemented with 10% FBS, 2% ABAM and 200mM L-Glutamine where medium was 

changed every 3 days.  Cells were cultured for 7 days. 
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4.8 Statistics 

Unless indicated otherwise, scaffold all characterization and mechanical tests were 

repeated independently at least 3 times with triplicate samples each.  All cell culture 

experiments were ran in triplicate and repeated three times.  Animal experiments were 

performed at n=4 per experimental group.  All statistical significance was determined 

using a two-way ANOVA with Tukey test with p < 0.05 (*) and p <0.01 (**). 
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 Optimization and Characterization of Electrospun 
Chitosan/Hydroxyapatite/Genipin Scaffolds 

 

5.1 Morphology of Genipin crosslinked chitosan/hydroxyapatite 
nanofibers  

Optimization of the electrospinning process for generating pure chitosan (CTS) and 

chitosan-hydroxyapatite (CTS-HA) fibers was required because most current processes 

use fiber-forming high molecular weight additives, such as poly(ethylene oxide) (PEO), 

which can inhibit multi-layer growth of cells [82]. Initial optimization included 

systematically adjusting the solute concentration, flow rate, working distance and voltage 

of the electrospinning platform, as previously described [76, 83-85], to yield electrospun 

fibers that were continuous, uniform in shape and without beading.  The measured 

thickness of a typical, optimized, electrospun nanofibrous scaffold mat, such as shown in 

Figure 10A, was 25.3 ± 16.2 µm (n = 28, Figure 10B). The diameters of the individual 

non-crosslinked fibers in the mat, as evaluated by SEM, were on the average 227.8± 

154.3nm (n=10 independent samples, analyzing ~50 fibers/sample, Figure 12A). 

Crosslinking and hydration caused an increase in the diameter of the fibers to 334.7 ± 

119.1 nm (n=10 independent samples, analyzing ~ 50 fibers/sample (Figure 11). In 

contrast to the smooth surface of CTS-GP fibers (Figure 12A), CTS-HA-GP fibers 

contained nanoparticles dispersed on the surface (Figure 12B). 
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Figure 10. Macro/microscopic images of electrospun CTS fibers. Examples of electrospun 

chitosan microfibers (A) and of a fibrous mat (B). Scale bar for (A) is 200µm and for (B) is 

1cm.  
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Figure11. Electrospun CTS fibers crosslinked for 24hours with an aqueous 0.1% genipin 

solution.  Fiber diameter was observed to increase from 227.8± 154.3nm to 334.7 ± 119.1 nm 

(n=10 independent samples, analyzing ~ 50 fibers/sample.  It can be seen that fibers obtain a 

flatter morphology and begin to swell after hydration, which can attribute to the increase in fiber 

diameter. 
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5.2 Evaluation of Nanoparticle Deposits on CTS-HA-GP nanofibers  

Three independent approaches, X-ray diffraction (XRD), Fourier transform infrared 

spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDS), were employed to 

further characterize the chitosan scaffolds, specifically the nanoparticle deposits observed 

on the surface of the CTS-HA-GP nanofibers [86]. XRD spectroscopy shows the 

characteristic, highly crystalline structure for the pure HA powder, while the spectrum of 

CTS-GP scaffolds resembled that of amorphous electrospun CTS (Figure 13A and B).  

Figure12. The morphology of electrospun 

scaffolds evaluated by scanning electron. 

SEM micrographs of 0.1% genipin 

crosslinked CTS-GP (A) and 0.1% 

genipin crosslinked 1.0% HA-containing 

(B) chitosan nanofibers. Scale bars are 

200nm. Inserts: Typical morphologies of 

nanofibers at lower magnification (scale 

bar for insert in A is 2µm and in B is 

1µm).  Small nano-size projections were 

observed on the surface of the HA-

containing scaffolds.  These were 

perceived to indicate the presence of HA 

along the surface of CTS-GP nanofibers, 

which is mimetic to the natural 

architecture of bone ECM. 
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The spectra for the CTS-HA-GP composite fibers containing nanoparticles revealed three 

distinct peaks at 26.21, 30.24 and 32.41 degrees corresponding to HA. These new peaks 

indicate introduction of crystalline properties into the amorphous nanostructure of the 

CTS-GP scaffolds due to the presence of HA and, therefore, indicate the formation of a 

biocomposite material (Figure 13C). The phosphate groups in pure HA showed 

characteristic FTIR bands between 900-1100cm-1 and 500-600cm-1(Figure 14A) 

indicative of phosphate bending and stretching respectively [86]. FTIR Spectra of the 

CTS-HA-GP bio-composites revealed bands at 500-600cm-1 that did not appear in the 

Figure13.  X-ray diffraction spectra of 

hydroxyapatite (A), 0.1% genipin crosslinked 

7% chitosan nanofibers (B) and 1.0% HA-

containing 0.1% genipin crosslinked 7% 

chitosan nanofibers (C). The alignment of the 

peaks is indicated by the dashed lines.  Due to 

its highly crystalline structure, HA spectra 

have very defined peaks indicative of the 

diffraction of x-rays off of the crystal lattice 

(A).  Electrospun CTS-GP scaffolds have an 

amorphous structure, which is indicated by 

the non-specific spectra observed (B).  The 

composite HA-containing CTS-GP scaffolds 

obtain both of these properties having a non-

specific amorphous characteristic containing 

the crystalline peaks observed in HA (C). 
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CTS-GP scaffold spectra (Figures 14B and C), which can be attributed to the molecular 

interactions of HA and CTS. Additionally, there was a broadening of the band around 

950cm-1 and 1085cm-1 that appeared on the CTS-HA-GP spectra, which has been 

attributed to the interaction of HA and CTS as well (Figure 14C) [86]. Finally, EDS was 

used to determine the elemental composition of the individual nanofibers. CTS-GP 

scaffolds showed large peaks for carbon and oxygen and a small peak for nitrogen, 

indicating three of the main components of chitosan (Figure 15A). Fibers containing1.0% 

HA, additionally contained small amounts of calcium and phosphorus (insert in Figure 

15A). The peaks for 0.8% HA containing fibers were somewhat smaller, indicating that 

less HA had been incorporated, while at 2.0% HA the peaks were similar to those at 

1.0%, indicating saturation (data not shown). Elemental analysis of the EDS intensity 

maps showed the distribution of carbon (Figure 15B) and oxygen (Figure 15C) as the 

main organic components of the fibers, while inorganic calcium (Figure 15D) and 

phosphate were found (Figure 15E) in the form of HA nanoparticles on each fiber (Figure 

15B, C, D, and E, respectively).  
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Figure14.  Fourier transform infrared spectra 

of hydroxyapatite (A), 0.1% genipin 

crosslinked 7% chitosan nanofibers (B) and 

1.0% HA-containing 0.1% genipin crosslinked 

7% chitosan nanofibers (C). Peaks of interests 

are designated by arrows.  FTIR bands 

between 900-1100cm-1 and 500-600cm-1(A) 

indicative of phosphate bending and stretching 

respectively. FTIR Spectra of the CTS-HA-GP 

bio-composites revealed bands at 500-600cm-1 

that did not appear in the CTS-GP scaffold 

spectra (B and C), which can be attributed to 

the molecular interactions of HA and CTS. 

Additionally, there was a broadening of the 

band around 950cm-1 and 1085cm-1 that 

appeared on the CTS-HA-GP spectra, which 

has been attributed to the interaction of HA 

and CTS as well (C). 
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5.3 Mechanical Properties of CTS-HA-GP nanofibers 

The effect of HA on the mechanical properties of genipin crosslinked scaffolds was 

tested using three different concentrations of HA. As seen in Figure 16A, crosslinking 

with genipin increased the ultimate tensile strength (UTS), as determined by the stress at 

break normalized to the cross-sectional area of the scaffold, by approximately 50% when 

compared to the non-crosslinked scaffolds, however there was no significant difference 

between the UTS values, when the concentration of HA was increased from 0.8% - 2.0%. 

Increasing the HA concentration from 0.8%, 1.0%, and 2.0% increased the Young’s 

moduli of non-crosslinked CTS-HA scaffolds significantly from 0.8% to 1.0% (p < 0.05), 

Figure15. Electron dispersion 

spectroscopy of CTS-GP and CTS-

HA-GP bio-composite nanofibers. 

Spectral analyses comparing the 

elemental compositions of 0.1% 

genipin crosslinked chitosan 

nanofibers (A). Insert: 1.0% HA-

containing 0.1% genipin crosslinked 

7% chitosan nanofibers show new 

peaks for calcium and phosphorous 

due to the presence of 

hydroxyapatite nanoparticles. Dot-

analyses representing the elemental 

topographical distribution of carbon 

(B), oxygen (C), calcium (D) and 

phosphorous (E) of the HA-

containing nanofibers. 
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with no increase when the HA concentration was raised from 1.0% to 2.0% (Figure 16B). 

Crosslinking with GP resulted in a significant increase in the Young’s moduli to 77.2±8.6 

to 142.5±12.5 and 147.4±21.7 MPa for samples containing 0.8%, 1.0% and 2.0% HA, 

respectively. These measurements indicate a 4-5-fold increase (p < 0.01) in stiffness for 

all crosslinked samples over that of non-crosslinked samples (Figure 16B, n = 6 scaffolds 

per condition).  Like in the case of the UTS, there was a significant increase in the 

stiffness when the HA concentration was raised from 0.8% to 1.0% after crosslinking (p 

< 0.01) with no further increase when increasing the HA =concentration to 2.0%.  These 

results are comparable to the EDS results, indicating a saturation of HA on the scaffolds 

at 1.0%.  
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5.4 Morphology of 7F2 osteoblasts on CTS-HA-GP Scaffolds  

The morphology of the cells cultured on CTS-GP and CTS-HA-GP nanofibers was 

evaluated by SEM. At seven days post-seeding, cells formed extensive cell-scaffold and 

cell-cell interactions indicative of cellular proliferation/migration (Figure 17A and C) and 

cell-cell and cell-scaffold interactions, as inferred from the well-defined filopodia 

Figure16. Ultimate Tensile Strength (A) and Young’s moduli (B) of non-crosslinked (black 

bars 0.1% genipin and crosslinked (white bars) 7% chitosan nanofibers at different 

concentrations of hydroxyapatite.  While ultimate tensile strength remained relatively 

unchanged upon crosslinking, a significant change was observed when genipin crosslinking 

was performed.  These results indicate that genipin only increases the stiffness of a the 

material while relatively maintaining the tensile strength.  ** indicates statistical 

significance at p<0.01 by one way ANOVA with Tukey test. 
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extending from the lamellipodia and “grabbing” the nanofibers on both CTS-GP and 

CTS-HA-GP scaffolds (Figure 17B and D). The cells were observed for up to 21 days.  

By day 14, much more confluent monolayers were spread on the both scaffold types, 

indicating continued proliferation (Figure 17E – H).  Noticeable on day 14 was the 

presence of a rougher texture on the CTS-HA-GP scaffolds (Figure 17E and F) then on 

the CTS-GP scaffolds (Figure 17G and H), indicating an enhanced maturation of 7F2 

cells by the presence of a mineralized ECM deposition.  This morphology was 

maintained on CTS-HA-GP scaffolds up to 21 days and the rough texture was also 

observed on CTS-GP scaffolds on day 21, indicating the eventual maturation and 

mineralized ECM deposition (Figure 17I – L ).  
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Figure 17. SEM imaging of  7F2 osteoblasts on CTS-GP and CTS-HA-GP nanofibers. SEM 

micrographs of 7F2 cells at day 7 on CTS-HA-GP scaffolds (A 500X and B 1000X) and CTS-GP 

scaffolds (C 500X and D 1000X), at day 14 on CTS-HA-GP scaffolds (E 500X and F 1000X) and 

CTS-GP scaffolds (G 500X and H 1000X) and at day 21 on CTS-HA-GP scaffolds (I 500X and J 

1000X) and CTS-GP scaffolds (K 500X and L 1000X). 
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5.5 Capacity of CTS-HA-GP Scaffolds to Induce Osteogenic Maturation In 

Vitro  

Upon osteogenic differentiation, 7F2 pre-osteoblastic cells, secrete alkaline 

phosphatase (ALP) and mineralize their own matrix [87]. The osteoinductive potential of 

the scaffolds was determined by measuring the activity of ALP, an early osteogenic 

marker, using a colorimetric pNPP assay on days 7, 14, and 21 post-seeding (Figure 

18A). When grown on tissue culture plastic (TCP), 7F2 cells had low ALP activity that 

remained stable over a 21-day period and was consistently lower than when grown on the 

cross-linked CTS-GP scaffolds (p< 0.01). By day 14, ALP activity in cells growing on 

the CTS-HA-GP bio-composite scaffolds was 2.4 fold higher than on CTS-GP scaffolds 

(p < 0.01). Expression of this early osteogenic marker decreased on both scaffolds by day 

21 as differentiation continued and cells matured. Cell metabolic activity was assessed 

continually using the alamarBlueTM (AB) assay. As seen in Figure 18B, the metabolic 

activity increased in all samples after 3 days. On TCP, AB fluorescence continued to 

increase over 21 days, while CTS-GP samples remained stable and CTS-HA-GP bio-

composite samples decreased (Figure 18B). Cells cultured on TCP had the highest AB 

fluorescence at all time points, indicating maximal metabolic activity and, presumably, a 

minimal degree of differentiation. After an initial increase, the AB fluorescence of cells 

on CTS-HA scaffolds remained relatively stable over the experimental time course, 

suggesting a decrease in metabolic activity compared to TCP. This AB stability may also 

indicate that the cells are undergoing differentiation. Lastly, AB fluorescence on CTS-

HA-GP composite nanofibers decreased over time, which may indicate enhanced 

differentiation in comparison to the CTS-HA scaffolds.  
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Early and late markers of osteogenic differentiation were assessed by qRT-PCR, 

measuring RNA expression of osteopontin (OP) and osteonectin (ON), respectively. As 

seen in Figures 18C and D, the expression of OP, an early marker of osteogenic 

differentiation is highest 24 hours after cell seeding and then decreases progressively at 

days 14 and 21 on both the CTS-GP and CTS-HA-GP composite scaffolds. By contrast, 

the mRNA expression of ON, which is a late marker of osteogenic maturation, was at its 

lowest levels at 24 hours and increased on days 14 and 21 in cells growing on the CTS-

Figure18. Metabolic activity, alkaline phosphatase expression and osteogenic marker 

expression of 7F2 osteoblasts on CTS-GP and CTS-HA-GP composite nanofibers. Alkaline 

phosphatase expression of 7F2 osteoblasts on days 1, 7, 14 and 21 (A), metabolic activity of 

7F2 osteoblasts measured by alamar blue on days 1, 3, 7, 14 and 21 and mRNA expression 

of osteopontin and osteonectin of 7F2 osteoblasts on days 1, 14 and 21 on CTS-GP (C) and 

CTS-HA-GP (D) 0.1% genipin crosslinked chitosan nanofibers. * and ** indicate a 

significant difference (p < 0.05 and p < 0.01 respectively) between CTS-GP and CTS-HA-

GP scaffolds at the same time point; ++ indicates a significant difference (p < 0.01) of the 

specified scaffold compared to the same scaffolds at the earlier time point. 
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GP. However, on the CTS-HA-GP scaffolds, a significantly larger increase (by ~2 orders 

of magnitude) in ON expression, a marker of late osteogenic differentiation, between 24 

hours and day 14 (with a subsequent plateau at day 21) was noticed when compared to 

the CTS-GP scaffolds. These data indicate that the presence of HA accelerated/enhanced 

osteogenic differentiation/maturation of 7F2 cells. This was further clarified by a similar 

trend in the decrease of OP, a marker of early osteogenic differentiation, on the 

mineralized scaffolds between 24 hours and 14 days on the CTS-HA-GP scaffolds with 

respect to CTS-GP scaffolds. 

5.6 Discussion 

Repair of large bone defects remains a challenge in clinical practice and has spurned 

considerable reconstructive efforts by bone tissue engineering. The relative success of 

autografts in the repair of craniofacial defects has been ascribed to the recruitment of 

stem cells by functional periosteum [23]. Periosteum, the thin fibrous layer surrounding 

bone, harbors mesenchymal progenitor cells whose recruitment, activation, and 

osteogenic differentiation is essential for bone graft integration, healing and remodeling 

[88]. By blocking fibrotic infiltration, the periosteum can beneficially promote the 

movement of osteoblasts across an allograft’s surface while inducing their differentiation 

and proliferation [8]. Unlike autografts, however, allografts and other bone substitutes 

transplanted without this layer are, at best, osteoconductive. Our aim was to generate an 

allogeneic template scaffold that has the potential to act as a “bridge” on the periosteal 

interface of non-load bearing bone defects to induce osteogenic migration and self-

regeneration. In this study, we evaluated the physicochemical characteristics of such 
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scaffolds as well as their ability to promote adhesion, proliferation and osteogenic 

differentiation of osteoblast-like 7F2 cells. 

Ideally, an engineered allogenic bone scaffold will architecturally resemble bone 

matrix and have mechanical properties suitable for non-weight bearing, such as the repair 

of calvaria or similar craniofacial bones. Several two-step electrospinning processes have 

been described in the past for the formation of hydroxyapatite (HA) containing 

nanofibers by co- precipitating an HA solution and a polymer of interest, such as chitosan  

[60, 89]. In this study we developed a simpler, one-step solution, in which we dissolved 

chitosan (CTS) and dispersed HA in trifluoroacetic acid (TFA) to create a homogenous, 

electrospinnable solution/dispersion. While CTS completely dissolved in TFA, HA did 

not, as inferred from the turbid appearance of the solution containing HA versus the clear 

solution without it. However, the homogenous dispersion of HA nanoparticles in TFA did 

permit the formation of CTS fibers which incorporated HA nanoparticles on the surface 

of composite fibers (Figure 12). Furthermore, by increasing the concentration of CTS 

from 2.7%  to 7%, we were able to increase the previously reported thickness of the 

scaffolds by ~2 fold, from 10.1 ± 5.8 µm to 25.3 ± 16.2 µm [90].  

As another innovation, , we were able to electrospin CTS nanofibers without the use 

of a fiber-forming agents (FFAs), such as ultrahigh molecular weight polyethylene oxide 

(UHMWPEO) which is often used to enhance chain entanglement of materials that do not 

have high electrospinnability [91] [60]. Past studies have indicated a need for FFAs, such 

PEO, in the case of electrospun soy-protein-isolate (SPI) solutions that could not form 

continuous fibrous meshes without an FFA [92]. SPI is a new “green” material derived 

from the soy plant that is currently being evaluated as a potential scaffold for wound 
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dressings [92]. As a caveat, it has been reported that inclusion of FFAs into a scaffold 

may delay or reduce cell adhesion, proliferation and/or differentiation due to their 

inherent nature in inhibiting protein adsorption [54]. 

It was also discussed that optimization of the solution was required in order to 

achieve smooth, non-beaded fibers for evaluation.  Although a number of papers discuss 

electrospun CTS fibers [43, 75, 90, 93, 94], there are many factors that play into 

electrospinning CTS.  It can be observed in different literature selections many different 

concentrations of CTS, different solvents used and different spinning parameters.  These 

variations, we believe, are due to the stringent requirements for electrospinning CTS 

including humidity, temperature and % deacetylation.  In our study, we were able to 

obtain the best fibers in lower humidity, ~30% humidity as opposed to 50-60% and at 

lower temperatures, around 20o – 22oC as opposed to 27o – 30oC.  Our degree of 

deacetylation was 75%-85% which, along with humidity and temperature conditions, 

proved to produce smooth and continuous fibers without beads at a concentration of 7% 

CTS in TFA.  

To evaluate the topography, structure, and fiber composition of HA containing 

electrospun scaffolds, we used 4 independent material characterization techniques (SEM, 

XRD, FTIR, and EDS). By using multiple independent techniques, we were able to create 

a diverse, representative characterization as to where the HA nanoparticles were situated 

in accordance to the fibers/mats, the crystalline properties introduced to an otherwise 

amorphous scaffold, the molecular interactions that represent the presence of HA and an 

elemental analysis indicative of both CTS (organic) and HA (inorganic).  Analysis of 

SEM micrographs (Figure 11), revealed a mean fiber diameter of 335±119 nm for CTS-
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GP scaffolds. This large variability and heterogeneity in the size of electrospun CTS 

nanofibers has been described before and may be due to inhomogeneity of the solution 

[68, 95, 96]. CTS has an extremely high surface tension and requires harsh solvents, such 

as TFA for appropriate fiber formation upon electrospinning [90]. We surmise that the 

large variability in fiber diameter we observed may be caused by the harsh solvents 

and/or conditions required to electrospin chitosan without and FFA.  

EDS characterization ascertained that the nanofibers electrospun from the CTS 

containing 1.0% HA solution contained small amounts of calcium and phosphorous. The 

EDS peaks seen in Figure 15A show the presence of the main elemental components of 

chitosan: carbon, oxygen and nitrogen. Additionally, smaller phosphorous and calcium 

peaks are detected in the CTS-HA-GP scaffolds (Figure 15A, insert). To confirm the 

identities of the nanoparticles seen on the fibers, elemental analysis was performed. 

Carbon and oxygen (Figs. 15B and C), represented as white dots, make up the main 

components of the nanofibers, while smaller amounts of calcium and phosphorous 

(Figures 15D and E) are dispersed amongst the carbon and oxygen. Heinemann et. al. 

(2008) used qualitative EDS to determine the presence of calcium and phosphorous on 

collagen-coated chitosan scaffolds after seeding with 7F2 cells and concluded that the 

presence of these elements indicated mineralized matrix deposition from the 7F2 cells 

[97].  

The XRD spectra of the bio-composite HA/chitosan scaffolds show distinct peaks 

that specifically match those found in pure HA samples (Figure 13). The peaks in the 

CTS-HA-GP spectra are an indication of semi-crystalline HA structures present in the 

composites as opposed to the completely amorphous nature of CTS-GP scaffolds. As 
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additional evidence for the presence of HA in composite scaffolds, molecular interactions 

and vibrations in the CTS-HA-GP scaffolds were analyzed by FTIR. While calcium is 

vibrationally “undetectable,” some small bands between 1000-1100cm-1 and 500-600cm-1 

were noted on the HA-containing scaffold (Figure 14). These bands reportedly 

correspond to the presence of PO4 in the scaffold after HA mineralization [86, 98]. 

Broadening of the peak at 950 cm-1 and superposition of 1085cm-1 peaks (see Figure 14) 

have also been attributed to the interaction of HA and chitosan [98].  

Successfully engineered tissue constructs will physicochemically and structurally 

mimic the native tissue and its unique mechanical properties. While electrospun scaffolds 

morphologically resemble the fibrous structure of the ECM, the mechanical properties of 

fibrous scaffolds make them less suitable for use as bone analogs. Crosslinking can 

enhance the mechanical properties of the constructs and fine-tune them to approximate 

the fibrous tensile properties of bone ECM. Here we used genipin (GP) as a natural, 

increasingly popular non-toxic crosslinker [68, 72, 74].  Genipin has recently been shown 

to increase the mechanics of electrospun chitosan fibers and was observed via a suture 

pullout strength test [44].  Although there was a 48% increase in pullout strength when 

10mM genipin was added to the chitosan solution, this strength was still 51% less than 

the clinically excepted glutaraldehyde crosslinked collagen product Biomend Extend 

[44].  While the complete mechanism of how genipin crosslinks chitosan is still under 

investigation, but is described to be a spontaneous reaction between genipin and the NH2 

subunits on the chitosan chain [43]. . This stabilization in turn causes an increase in the 

scaffold stiffness: the Young’s modulus of our scaffolds increased significantly upon 

cross-linking, while the ultimate tensile strength was only marginally increased (Figures 
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16A and B). Since the mechanical properties of our scaffolds increased with HA 

concentrations up to 1.0% but not beyond that, we focused on 1.0% HA as a working 

concentration for other subsequent studies. In this study we tested our scaffolds while wet 

to mimic the aqueous environment of the human body. Upon crosslinking with GP, the 

Young’s modulus of these scaffolds increased about 4-fold to 142±13 MPa, which 

approximates the modulus of non-weight-bearing bone. 

 Our findings contrast those of Zhang et al. (2010), who recently reported that 

incorporation of HA reduces the mechanical strength of their electrospun 

chitosan/collagen scaffolds [60]. The Young’s modulus of their non-crosslinked 

chitosan/UHMWPEO scaffolds was 92.2 ± 19.1MPa and decreased to 57.3 ± 15.5 MPa 

and 48.2 ± 8.3 MPa upon incorporation of HA and HA/collagen respectively. In our 

experiments, the Young’s’ modulus of 1.0% HA-containing, non-crosslinked, 

waterproofed chitosan scaffolds was 25.2±9.2MPa (Figure 16B). The lower values for 

our scaffolds may reflect the absence of UHMWPEO or, alternatively, be due to a 

dispersion of the HA nanoparticles on/near the surface of the nanofibers rather than an 

incorporation into the molecular structure of the polymer solution. If the HA particles are 

in fact incorporated into the molecular structure, than they will disrupt molecular chains 

and therefore decrease its mechanical strength. This decrease would not occur if HA is 

simply dispersed on or near the surface of the scaffolds.  Another explanation is the 

substantial reduction in the amount of HA we used as compared to Zhang et. al. 2010.  

Our w/w% of HA and chitosan in solution is 14% HA nanoparticles with 86% CTS, 

whereas Zhang et. al. used 27.8% HA nanoparticles, 7.2% collagen and 57.8% CTS.  

This incorporation of double the amount of HA we used may have caused further 



68 

disruption in the formation of stable CTS, nanofibers, causing a significant decrease in 

the Young’ modulus.  Finally, as yet another explanation, the difference in mechanical 

properties of the scaffolds may also be due to the fact that Zhang et al. used collagen, 

which is more elastic than chitosan.  

 In terms of functional tissue engineering, our aim was to fabricate a scaffold with 

structural and mechanical properties similar to those of non-load bearing bone containing 

the regenerative capacity of periosteum. Specifically, our goal was to generate a bioactive 

scaffold capable of inducing/accelerating osteogenic differentiation similar to what 

occurs when osteoprogenitor cells from the periosteum migrate to damaged bone tissue.  

The periosteum plays a central role in the health of bone tissue, as it is the source and site 

for the recruitment of osteoprogenitor cells responsible for initial repair and regeneration 

at sites of injury [23, 27, 28]. In comparing the effects of ablating different sources of 

osteoprogenitor cells, recent studies showed that removal of progenitor cells from the 

bone marrow had minimal effect of osteogenesis, while removal of the periosteum caused 

a 73% decrease in new bone formation, indicating the crucial role of periosteum in 

regeneration [27, 28]. The osteogenic properties of our CTS-GP and CTS-HA-GP fibrous 

scaffolds were assessed in vitro using 7F2 mouse osteoblast like cells. As seen in Figure 

17, the cells attach to the scaffolds, proliferate and over a 14-day period cover the 

scaffold in a multilayered fashion. At the same time, the metabolic activity (as inferred 

from AB fluorescence) decreased over time in cells cultured on HA-containing scaffolds 

(Figure 18B). Cells undergoing differentiation cease proliferation leads to a decrease in 

their metabolic activity [99]. Hence, the decrease in AB fluorescence in our study is 

likely due to differentiation of cells, and corresponds to the increase in ALP activity seen 
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in Figure 18A. AB fluorescence is commonly used, upon calibration, to measure cell 

proliferation; a decrease in AB fluorescence is often interpreted as decreases in cell 

numbers [100]. However, in combination with the SEM images of proliferating cells in 

Figures 21A-D we surmise that decrease in AB fluorescence genuinely reflect a decrease 

in the metabolic activity of cells, which plateaued before reaching confluence on CTS-GP 

and declined on CTS-HA-GP scaffolds. We believe that this decrease is not due to cell 

death, but rather is a result of the cells undergoing enhanced differentiation in response to 

the osteogenic cues of the scaffolds (Figures 17 and 18).  More recently, Venugopal et. 

al. (2011) showed that the presence of HA in chitosan scaffolds caused a significant 

increase in matrix mineralization [101], further supporting our conclusion that decreased 

AB activity might reflect enhanced osteoblast differentiation.  

In line with previous studies, ALP activity at days 7 and 14 was significantly higher 

(p < 0.05, see Figure 18A), when the cells were cultured on HA-containing bio-composite 

scaffolds, as compared to both CTS-GP scaffolds and TCP [54, 60]. These data suggest 

that both the surface topography of the substrate and the innate biochemical cues in the 

scaffolds may play important roles in the osteogenic maturation process. The decrease in 

ALP activity by day 21 may be attributed to the further maturation of the 7F2 cells. ALP 

expression is reportedly higher at early stages of osteoblast differentiation peaking 

around days 14 or 15 [54, 60, 102].  In line with this notion, our study showed a decrease 

in ALP expression at day 21, indicating that maturation has progressed as also inferred 

from the upregulation in the expression of some of the later markers, such as osteopontin 

(OP), an extracellular structural protein responsible for mineralization of the ECM that is 

highly expressed in osteoblasts as they mineralize the ECM and also deters the migration 
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of osteoclasts into the site to avoid negating the mineralizing effects due to resorption, 

and osteonectin (ON), a post-proliferative glycoprotein responsible for binding 

differentiated osteoblasts to the calcium found in the fully mineralized ECM, [103]. As 

seen in Figures 18C and D, while both CTS-GP and CTS-HA-GP scaffolds promote 7F2 

cell maturation and differentiation, the cells cultured on the HA-containing scaffolds 

matured at a faster rate, evident by a sharp increase in ON and sharp decrease in OP 

mRNA from day 1 to day 14 on CTS-HA-GP scaffolds, as compared to the more gradual 

and linear increase on CTS-GP scaffolds (p < 0.01).  Our data are in line with previous 

studies demonstrating that chitosan scaffolds support osteogenesis of pre-mature 

osteoblasts and the osteogenic differentiation of human bone marrow derived 

mesenchymal stem cells (MSC) [104-107].  For example, chitosan nanofibers -reinforced 

poly(butylene succinate) microfibers induced osteogenic differentiation of human bone 

marrow derived MSC, as assessed by the increased gene expression of ALP, OP, bone 

sialoprotein, osteocalcin, Runx2 and Osterix [57]. Similarly, chitosan containing 

poly(caprolactone) nanofibers  promoted osteogenic maturation of MC3T3 mouse pre-

osteoblasts over a 14 day period, as assessed from the enhanced gene expression of 

collagen 1 and OP in the presence of chitosan when compared to TCP and PCL alone 

[59]. In adding to this body of evidence for the usefulness of chitosan as base material for 

bone scaffolds, our study is the first to show that the presence of HA and crosslinking 

with GP significantly enhances the mechanical strength of electrospun CTS based 

nanofibrous scaffolds and their capacity to induce osteogenic differentiation of 

osteoprogenitor cells.  
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 Evaluation of the Osteoinductive and 
Osteoconductive Properties of Electrospun CTS-HA-GP 

Scaffolds 
 

6.1 Osteogenic Differentiation of Mouse Mesenchymal Stem Cells 

Osteoinduction is defined as the ability of an agent to induce osteogenic 

differentiation.  Osteoinductive agents include growth factors, biomolecules or materials.  

The next aim in this project was to show the capacity of these scaffolds to induce 

osteogenic differentiation of mouse mesenchymal stem cells.  The previous chapter 

discussed the ability of these scaffolds to support the growth and maturation of 7F2 

mouse osteoblast-like cells.  These cells are already committed towards an osteogenic 

lineage, unlike MSCs that are multipotent, with the potential to differentiate towards 

osteogenic, adipogenic or chondrogenic lineages, respectively.  Guiding MSCs towards 

an osteogenic lineage would prove the true osteoinductive-potential of these scaffolds. 

To demonstrate this, scaffolds were seeded with moMSCs and monitored over a 21 

day period.  The increase in cell numbers and cell spreading were initially observed by 

staining with DAPI and phalloidin and fluorescently imaging the scaffolds at weeks 1 and 

3 at a density of 100,000 cells/well and 500,000 cells/well. When seeded at lower 

densities on the scaffolds, moMSCs show a reduced proliferative and do not achieve 

confluent monolayers with and without the presence of HA (Figure 19). After 1 week, the 

cells were at a very low confluency and sparsely spread out on the scaffold.  By week 3, 

the cells were still at a very low density, with limited cell-cell contact. When seeded at 

the higher density cells establish confluent monolayers and almost completely cover the 

scaffold after 7 days (Figure 20).  Based on these preliminary results, we monitored the 
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osteogenic properties using a high seeding density.  A 3D rendering of the cells seeded at 

a higher density, indicated a 3 fold increase in the thickness of cell layer at weeks 2 as 

compared to week1 (Figure 21).  In order to show the additive effect of using an 

osteogenic medium on the cells cultured on the osteogenic scaffold, we compared cell 

proliferation and differentiation in standard and osteogenic growth media.   
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Figure19. moMSC seeded on chitosan scaffolds at low density.  100,000 cells were seeded per 

scaffold type.  It is observed that cells do not proliferate when not in contact with each other 

and that the presence of HA in the CTS-GP scaffolds does not induce proliferation either.   

Magnification is at 10X. 
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Figure 20. moMSC seeded at high density on chitosan scaffolds.  500,000 cells per scaffold 

showed sufficient cell sheet formation after 3 weeks as well as patterned cytoskeleton 

indicative of osteoblast cytoskeletal arrangement.  Week 1 images taken at 20X and Week 3 

at 10X 

Figure21. 3D rendering of the cells seeded on CTS-HA-GP scaffolds at 1 week (left) and 2 

weeks (right), showing a thickness of 8μm at 1 week and of 24μm at 2 weeks.  This thickness 

was maintained through 3 weeks (not shown).  These findings can lead to the conclusion 

that cells are forming multi-layer cell sheets on top of the scaffolds, indicative of the early 

stages of tissue formation. 
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As mentioned in chapter 5, Alamar blue can be used to observe the metabolic activity 

of viable cells. Metabolic activity can be used to determine whether or not cells are in the 

proliferative stage or the differentiation stage [50].  As seen in Figure 22A, the cells are 

highly metabolically active throughout the first week. Metabolic activity decreased 

significantly day 10 on all scaffold and medium types and plateaued at days 14 and 21.  

This decrease in AB activity is not due to the cell apoptosis, as indicated by the 

persistence of cell proliferation throughout 2 weeks as shown in Figure 21 and by the 

continued confluence for up to 3 weeks as shown in Figures 20. 

 

 

In order to test whether this decrease in metabolic activity may be related to 

osteogenic differentiation, we measured ALP activity.  As seen in Figure 22B there was 

no change in the basal levels of  ALP activity in moMSC on both CTS-GP and CTS-HA-

GP scaffolds through the first 14 days in both growth medium and osteogenic medium 

Figure22. Metabolic activity (left) and ALP activity (right) indicating that metabolic activity 

decreases by day 21 10 while ALP activity increases, indicating that cells are leaving the 

proliferation stage and entering the differentiating stage by day 21 on CTS-GP (CTS/GP) and 

CTS-HA-GP (CTS/GP/HA) scaffolds with and without the addition of an osteogenic growth 

medium (OGM).  ALP activity showed a  2 fold increase on HA-containing scaffolds, a 4.5 fold 

increase when cultured in the presence of an osteogenic medium, and a 6 fold increase when 

containing HA and cultured in osteogenic medium when compared to CTS-GP scaffolds alone.  

This 6 fold increase indicates a cooperative/additive effect of the physicochemical cues, i.e. the 

presence of HA and the contents of the osteogenic medium.  * indicates statistical significance 

with p<0.05 and ** indicates statistical significance with p<0.01 with n = 4 specimens per group. 

** 
* 

** 

* 
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However, by day 21, cells seeded on CTS-HA-GP scaffolds and in the presence of 

osteogenic medium showed a significant increase in ALP activity.  An additive effect in 

the presence of HA and osteogenic medium on CTS-GP scaffolds was also observed. 

6.2 Osseointegrative Capacity of CTS-HA-GP Scaffolds to Induce In Vivo 
Bone Growth 

An important property of all bioactive scaffolds is the ability to allow natural tissue of 

the host to grow into the scaffold, also known as osseointegration in bone tissue Here, we 

used a calvarial defect in female CD1 mice to demonstrate in vivo the osteoconductive 

properties of our scaffolds.   

As describe in Materials Methods (4.6.2), scaffolds were implanted into calvarial 

defects induced in mice using a 2.1mm diameter trephine. Two defects were created on 

either side of the midline suture down the center of the brain. The experimental 

procedures were all performed under isofluorane anesthesia and using a suitable 

stereotaxic set up (Figure 23). 
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All surgeries were performed aseptically, The surgical procedure is depicted in Figure 

24 and is discussed in detail in Section 4.6.2. 

Figure23. Stereotaxic setup to maintain anesthesia and skull stability in mouse surgeries.  

The ear bars enter the ear canals and lock into the zygomatic arch in order to maintain 

stability in the x and y directions while drilling.  The face mask maintains a constant flow of 

isofluorane to the mouse and allows the surgery to be completed without pain.  The tooth 

bar is used to stabilize the head in the z direction while drilling. 
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Figure24. Surgical procedure for implanted CTS-GP and CTS-HA-GP scaffolds.  The mice 

were secured in the stereotaxic set up and hooked up to isofluorane anesthesia (A) and 

prepped for surgery by shaving and applying betadine to the surgery area (B).  The incision 

was made down the midline of the entire skull and hemostats were used to to keep the skin 

removed from the surgery site (C).  The defects were drilled on either side of the midline 

suture (D) and the scaffold was implanted to one of the defects (E).  Finally, the skin was 

sutured and Vetbond bioglue was used to prevent the mouse from removing the stitches or 

dislodging the scaffold while grooming (F). 
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Harvested specimens were observed under MicroCT imaging to see new bone 

formation.  As can be seen in Figure 25, 3D reconstructions of the x-ray data show that 

both the incorporation of MSCs onto the scaffolds and the presence of HA in the 

mineralized scaffolds induces and enhances tissue regeneration at the injury site.  As seen 

in the top row of Figure 25, no new tissue formation had occurred in any of the groups 

after 1 month.  However, by the second month, the presence of moMSCs on both CTS-

Figure 25. 3D rendered images of MicroCT x-ray data.  The labels at the top of the 

schematic represent the different groups that were implanted as CTS-GP scaffolds without 

MSCs (NM w/o cells), CTS-GP scaffolds with MSCs (NM w/ cells), CTS-HA-GP scaffolds 

without MSCs (M w/o cells) and CTS-HA-GP with MSCs (M w/ cells) and the labels to the 

left of the schematic indicate the time points at wich animals were euthanized and analyzed.   

It wass observed that the presence of HA on the scaffolds induces significantly enhanced 

bone regeneration and the presence of cells even further enhances bone regeneration, which 

can be seen by the formation of new calcified tissue present on the bottom row and the 

column furthest right.   
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GP (NM with cells) and CTS-HA-GP (M with cells) caused a shrinkage in the total area 

of the wound size (see Figure 26 for quantification).  Finally, by the third month, new 

tissue formation could be observed on all scaffold types except for the CTS-GP scaffolds 

without cells (NM without cells).  The presence of HA and moMSCs caused the defects 

to become smaller in size and small areas of calcified tissue could be observed in the last 

row of Figure 25.  This new tissue formation was quantified by measuring the area of the 

defects on each side of the cranium to see how much of the bone was regenerated due to 

the presence of the scaffolds.  The % of healing was determined by taking the area of the 

defect covered by the mineralized new tissue and normalizing it to the control defect 

without scaffold.  Figure 26 shows that the presence of HA in the CTS-GP scaffolds 

causes ~6 fold increase in the initiation of wound healing after 1 month (Table 2).  By 

month 2, we began to see the initiation of wound healing on the CTS-GP scaffolds with 

and without cells (~ a 4 fold increase then was previously observed at 1 month) and the 

development of improved wound healing with the presence of HA, which showed a 2 

fold increase without cells and a 4 fold increase with cells (Table 2).  By 3 months, CTS-

GP scaffolds without cells show a 2 fold increase from month 2, while the presence of 

cells on these scaffolds shows an 8 fold increase.  In the presence of HA, scaffolds 

continue to demonstrate improved healing, observed by ~4 fold increase without cells 

and ~2 fold increase with cells.  The final closure sites due to the different scaffold types 

can be observed in Table 2 and show that CTS-HA-GP scaffolds with moMSCs showed 

to have the highest wound healing effects.  It is also noted that the presence of HA was 

substantial in initiating wound healing and added greatly to the wound healing process 

(Table 2). 
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Table 2. Osteoconductive Properties of CTS-GP with and without HA and cells relative to control 

holes with scaffolds.  The values obtained for each sample are recorded as a percentage of new 

calcified tissue formation relative to area of the control hole from defects without scaffold 

implantation.  It is observed the significant increase in the presence of HA and further significant 

increase when cells are present on the scaffolds.  A synergistic effect between HA and MSCs is also 

observed.   

Time 

(months) 

CTS-GP without 

cells (% tissue 

formation 

relative to 

control defect) 

CTS-GP with 

cells (% tissue 

formation 

relative to 

control defect) 

CTS-HA-GP 

without cells (% 

tissue formation 

relative to 

control defect) 

CTS-HA-GP 

with cells (% 

tissue formation 

relative to 

control defect) 

1 1.08±0.28 1.89±1.13 5.5±0.73 6.46±0.7 

2 4.77±0.8 4.83±1.18 10.79±4.7 23.44±8.4 

3 9.98±2.9 32.63±12.16 37.12±4.45 45.55±4.43 

 

 

Figure 26. Axiovision software was used to measure the % defect closure due to the 

presence of the scaffold relative to the control hole in each sample at different time points.  

It is shown that by the third week, the presence of cells and HA greatly enhance the 

osteoconductive properties of the CTS-GP scaffolds.   * indicates statistical significance with 

p<0.05 and ** indicates statistical significance with p<0.01 and n = 4 specimens per group. 

** 

* 

** 

* 
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To assess osseointegration, i.e. the incorporation of the implanted scaffolds into the 

host tissue, we used H&E and Masson’s Trichrome stains.  The microCT data was able to 

show new bone formation using x-ray imaging which indicates mineralized dense tissue, 

however, staining allowed us to see how the scaffolds interacted with the tissue at the 

cellular level and see whether they were truly osteoconductive.  Samples (Figure 27 Left 

panel) were prepared by removing the top of the cranium from the remainder of the skull 

to yield a square shaped piece of tissue where both wounds were present (Figure 27 Right 

panel). Shown in Figure 28 is the histology of normal bone tissue as stained by H&E and 

Masson’s trichrome.  H&E staining revealed that the scaffolds were in fact interacting 

with the host tissue with a very minimal amount of immune rejection, as inferred from 

the lack of infiltrating immune cells and the absence of disorganized fibrous tissue 

formation at the host/scaffold site (Figure 29A).  Control holes where no scaffold was 

present showed minimal tissue growth, as inferred from the very thin layer of fibrous 

Figure27. Harvested Skulls with CTS-GP scaffolds 

implanted (left) were used for histological analysis.  

Rectangular samples from the top of the cranium 

were cut after decalcification (right) and 

embedded for sectioning. 
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tissue grown between the edges of the defect (Figure 29B). Masson’s Trichrome staining 

confirms osseointegration of the, demonstrated by the presence of new tissue (red and 

blue colors) surrounding remnants of the scaffold (black colors) (Figure 30A).  Of note, 

this tissue forming around the scaffold appeared to be organized tissue, indicative of 

healthy new tissue rather than the disorganized appearance of fibrous tissue and was 

devoid of nucleated large cells, indicative of lymphocytes and immune cells due to 

inflammation and immune rejection.  Importantly, in the case of cell-seeded CTS-HA-GP 

scaffolds, the regions adjacent to the host bone/scaffold junction indicated the presence of 

endochondral tissue (Figure 30B).  Again, the stains also showed that without the 

scaffold, only a minimal, thin layer of fibrous tissue forms in the defect with no new bone 

formation (Figure 30C).   
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Figure 28. A comparison of H&E staining and Masson’s trichrome staining of normal bone 

tissue.  The bone marrow cavities, cortical bone and periosteum are labeled to indicate what 

these look like in normal tissue for comparison to regenerating tissue areas.  Images were taken 

from non-defective areas of the animal specimens to illustrate normal tissue.  Images were taken 

at taken at 20X. 

Figure 29. H&E stains show the enhanced tissue formation around CTS-HA-GP scaffolds over 

control defects.  Scaffold/host interactions (A) show good tissue integration and no 

immunorejection.  New tissue formation can be show on the scaffold and the scaffold appears to 

form a tight junction with the host bone.  Fragments of the scaffold can be seen throughout new 

tissue networks (insert in A) surrounded by regular matrix indicative of new bone formation.  

Control holes without scaffold (B), show only a minimal amount of fibrous tissue growing in the 

wound area, indicating that no bone regeneration is occurring.  The magnification for the 

images are 10X (A) and 20X (B). 
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6.3 Discussion 

Scaffolds developed for tissue engineering should be appropriately tuned in order to 

closely mimic the native tissue and incorporate specific biological, physical, and 

chemical cues capable of aiding in the repair and/or regeneration of the target tissue.   

One of the aims of this thesis was to demonstrate the capacity of electrospun CTS-HA-

GP scaffolds, scaffolds to efficiently induce osteogenic differentiation of human 

Figure 30.  Masson’s trichrome stains were used to further characterize the tissue/host 

interaction.  It shows good integration between host tissue and scaffold material (A).  Host bone 

is stained blue (collagen I) and red as normal bone tissue appears.  The junction of the tissue and 

scaffold shows no immunorejection and good integration.  New tissue is seen growing along the 

scaffold edges, indicating that the scaffold is conductive.  In the presence of MSCs seeded on the 

scaffold, endochondral ossification and angiogenesis is observed along where the scaffold surface 

met the host tissue (B).  Remnants of scaffold material can be seen around the endochondral 

tissue as black fragments.  The control defect shows poor tissue formation and just the presence 

of a small fibrous layer of tissue growing in the defect (C).   
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mesenchymal stem cells (MSCs) by combining the inherent biological cues with 

mimicking the mineralized fibril structure of natural bone tissue and further combining 

that with the presence of an OGM to introduce chemical induction cues as well.  MSCs 

are lineage-restricted multipotent cells that are derived from the bone marrow, umbilical 

cord blood or adipose and have the potential to differentiate into bone, cartilage and 

adipose [108].  Due to technical and ethical issues of embryonic stem cells (ESCs), MSCs 

are preferentially used for bone tissue engineering [109]. Osteogenic differentiation in 

early passaged MSCs can be observed based on the cuboidal morphology of the cells, 

increased ALP activity and the deposition and mineralization of ECM proteins, such as 

collagen I and HA [110].  Osteogenic growth media supplements include dexamethasone, 

β-glycerophosphate and ascorbic acid, which have been shown to induce osteogenic 

differentiation of MSCs via the mitogen activated protein kinase pathway (MAPK) via 

temporal activation of downstream signaling molecules ERK (upregulation between days 

7-11 after induction) and JNK (upregulation 13-17 days after induction) [111]  Staining 

for specific markers, such as STRO-1, CD44 and CD124 indicate that mesenchymal stem 

cells have not differentiated [112].  The therapeutic effects of MSC for bone deformation 

can be seen in cases where direct injections of MSC into the bone marrow have induced 

the production of osteoblasts in order to combat osteogenesis imperfecta [113]. 

The first major concern with using biomaterials for cell culture and eventual 

regenerative scaffolds is that they will promote attachment viability and differentiation of 

different cells types.  We showed in chapter 5 that 7F2 cells were capable of proliferating 

on these scaffolds by seeding at a low density and reaching confluency by week 3.  In 

contrast to this, MSCs seeded at low density on both CTS-GP and CTS-HA-GP scaffolds 
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did not proliferate well on the scaffolds (Figure 19).  We believe that this is attributed to 

the fact that at low densities, MSC proliferation and migration is stunted due to limited 

cell-cell contact, which inhibits the cells from spreading and instead allows them to 

become quiescent.  This conclusion is drawn because cell attachment was observed on 

the scaffolds seeded at low density, but little cell spreading occurred and essentially no 

cell division.  It has been shown that MSCs require cell-cell interactions in order to 

promote their functionality, whether it is enhancing proliferation or differentiation [114, 

115].  In line with this notion, when cells were seeded at higher density, we observed 

continual cell growth.  After 1 week, the cultures essentially reached confluency which 

was maintained for 3 weeks.  The thickness of 3D reconstructions of the cell sheets on 

the scaffold was 3-fold times higher after 2 weeks when compared to 1 week (Figure 21) 

and did not increase further at week 3 (not shown).  This can either be attributed to cells 

penetrating into the scaffolds or to cells forming multi-layer sheets on the surface of the 

scaffolds.  Current literature indicates only limited  potential for  cell penetration into 

electrospun nanofibrous scaffolds due to the tight packing of the nanofibers during the 

electrospinning process [116].  Although it is unlikely that the cells are penetrating deep 

into these scaffolds, the multi-layer stacking indicates that these scaffolds are capable of 

supporting multi-layer cell sheet formation, which can lead to tissue formation.  Studies 

have also shown that differentiation can also be enhanced by high seeding density.  

Erickson et. al. (2012) showed that seeding MSCs at high densities into hyaluronic acid 

gels lead to enhanced chondrogenesis [115].  Another observation at 3 weeks is that the 

cytoskeleton stained with phalloidin becomes aligned and organized, as opposed to the 

disorganized arrangement of cytoskeleton seen at 1 week (Figure 20), indicative for 
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differentiated osteoblasts, which exhibit aligned cytoskeleton organization [117],  unlike 

the irregular arrangement observed in adipocytes. This finding can be taken as another, 

yet indirect, evidence for the notion that CTS-GP scaffolds may be promoting the 

differentiation of MSCs towards an osteogenic lineage. 

A few previous studies have explored that chitosan nanofibers have the potential to 

support MSC viability and promote the differentiation of MSCs by creating composite 

scaffolds containing chitosan and other materials, such as collagen and PLGA [104, 118] 

but, to our knowledge, no studies have focused on electrospun CTS-HA-GP scaffolds and 

their effects on MSC viability and osteogenic differentiation.  As mentioned in chapter 5, 

the AB assay can be used to assess metabolic activity of cells growing in culture.  

Decreases in metabolic activity can be due to loss of cell viability / decrease in cell 

numbers or to the enhancement of differentiation in culture due to decreased metabolic 

activity as differentiation increases [50].  By day 10, AB fluorescence shows significant 

decrease (Figure 22) and plateaus after day 14.  As indicated by Figure 20, the cell 

numbers are not decreasing, so this decrease in metabolic activity is most probably due to 

the cells starting to transition into a differentiative state.  This data is also corroborated by 

the results shown in Figure 21, where the 3D image showing the formation of multi-

layered cell sheets on the scaffolds remains constant from weeks 2 to 3.  The  notion of 

enhanced differentiation, ALP activity was further confirmed by measuring ALP activity 

as an indicator of  initial osteogenic differentiation [50].  Our data indicates an enhanced 

ALP expression at day 21 (Figure 22), which, in conjunction with our AB data, indicates 

that MSCs are differentiating towards an osteogenic lineage.  ALP activity is further 

enhanced in the presence of an osteogenic medium, indicating that there is an additive 
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effect between the chemical cues in the differentiation medium and the architectural 

properties of the electrospun scaffolds.  By taking these three independent observations 

of a) maintenance of confluent, multi-layered cell sheets between 2 and 3 weeks, b) 

plateauing of AB fluorescence between weeks 2 and 3 and c) indication of an additive 

effect between the physical structure of electrospun scaffolds, the biochemical effect 

from the presence of HA and the chemical cues initiated by the OGM, we have shown 

that CTS-HA-GP scaffolds promote cell adherence and viability and that they can help to 

stimulate osteogenic differentiation.  Without initiation into a differentiative state, MSCs 

will become quiescent if allowed to reach complete confluence [119].  We surmise that 

without the biochemical differentiative cue from HA nanoparticles or the chemical cues 

from the osteogenic medium, MSCs grown on CTS-GP scaffolds will not undergo 

substantial differentiation and will most likely become quiescent.  However, when 

osteogenic medium or HA are present, the cells differentiate towards the osteogenic 

lineage, as shown by the enhanced activity of ALP.  Further, an additive effect was noted 

when the two were used together.   

The physical and mechanical properties of biomaterials are important factors when 

dealing with osteogenic differentiation and integration.  The topographical properties of 

micro and nanoscale grooves and pits as well as the incorporation of hydroxyapatite, zinc 

and other naturally occurring inorganics in the body lead to enhanced spreading and 

production of osteoblasts [120]. Similarly, osteopontin expression is upregulated during 

mechanotransduction of scaffold-cell interactions, indicating that stiffness and strength 

can be used to promote osteoblasts to deposit mineralized matrix and begin remodeling.  

This occurs via a decrease in DNA methylation at the osteopontin promoter binding site 
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leading to an increase in osteopontin and osteogenic expression [121].  The progression 

of the osteogenic differentiation process can also be monitored temporally, given that 

many factors involved in cell-ECM signaling during differentiation are present at 

different stages and involved in mineral deposition.  For example, ALP, a cell-surface 

glycoprotein that is crucial for the initiation of mineralization, is present early on; its 

upregulation signals the initiation of matrix mineralization.  Osteopontin is secreted and 

bound to an integrin receptor to regulate mineralization during maturation. Osteocalcin 

regulates the activity of osteoclasts and is a post-proliferative marker of osteoblast 

differentiation [122]. 

Along with osteoinduction, it is also important to demonstrate the ability of our 

biomaterials to induce osseointegration. Generally, osteogenic materials will also be 

osteoconductive and promote not only the migration of host cells into the construct, but 

also initiate the processes of bone development and regeneration at sites where it would 

otherwise not occur.  In vivo regeneration of critical size defects requires the use of 

autografts, allografts or bioactive synthetic materials that can initiate substantial bone 

regrowth.  Autografts are limited in supply and require a secondary operative site that is 

usually linked with donor site morbidity and chronic pain [123] . Allografts often fail to 

induce bony ingrowth due to the lack of functional cell-allograft interaction and the 

absence of a periosteal layer containing osteoprogenitor cells. Synthetic materials also 

tend to be only osteoconductive because of the lack of a biological component [23].  This 

has been shown in a number of studies where the inclusion of growth factors or a cellular 

population is required to see sufficient bone growth in animal models [124-128].  Hence 

there is an unmet clinical need for a new, viable bone substitute material that is 
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marketable as an off-the shelf- product and which is osteoinductive as well as 

osteoconductive. 

An appropriate tissue scaffold will demonstrate two distinct properties:  1) the ability 

to induce host tissue migration and 2) a minimal amount of immune rejection from the 

host.  As mentioned in chapter 2, the crucial induction of bone tissue regeneration and 

healing is attributed to osteoprogenitor cell migration from the periosteum [21, 23, 26, 

28].  Critical size defects in bone injuries do not effectively heal because there is no 

tissue in the defect area for the osteoprogenitor cells to migrate onto in order to begin 

depositing matrix and initiate healing [23].  Biomaterials can be used to bridge this gap 

and provide a template to allow for the healing process to begin.  Electrospun scaffolds 

offer a high surface-area-to-volume ratio to promote migration from the periosteum and 

induce osteogenesis. 

To test the osteoconductive and osseointegrative properties of our biomaterial, 

calvarial defects were surgically created in mice and treated with CTS-GP and CTS-HA-

GP scaffolds either with MSCs seeded onto the scaffold prior to implant or without cells.  

Scaffolds containing cells were seeded 2 days prior to implantation with naïve MSCs that 

remained undifferentiated at the time of implant.  This has certain advantages to seeding 

with osteoblasts.  While osteoblasts are responsible for depositing the new matrix during 

wound healing, naive MSCs release factors that promote cell proliferation and migration 

in other cell types, e.g., as observed by the enhanced chondrocyte proliferation in the 

presence of MSCs [114],  or by the  increase in cartilage formation in the presence of 

undifferentiated MSCs in vivo [115].  No studies have observed the effects of 

osteoprogenitor cell migration into allograft scaffolds with undifferentiated MSCs to 
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date.  Critical size defects of 2.1mm were drilled to ensure no spontaneous bone regrowth 

in untreated wounds [8].  At each specific time point, host/scaffold interactions were 

observed using histology and calcified tissue formation was observed using microCT 

imaging.   On untreated wounds, fibrous tissue growth was observed, which is due to 

adverse immune response and exhibits an irregular matrix formation and the 

characteristic presence of numerous inflammatory cells [129, 130].  The tissue growing 

on and in the scaffold here is shown to have oriented matrix formation and is stained blue 

in the masson’s trichrome stain, which is indicative of collagen I, the main ECM 

component of newly forming bone tissue (Figures 29 and 30) [131].  This newly 

assembled tissue is growing around remnants of the scaffold that are indicated by the 

black amorphous fragments in Figure 30.  To our knowledge, this is the first study to 

demonstrate the ability of CTS-GP scaffolds to induce tissue ingrowth around a bone 

injury model. 

The main developmental process for bone tissue formation in the skull is 

intramembranous ossification [19, 20, 132].  In this process, osteoblasts form numerous 

ossification centers, which spread out to form the calcified bone tissue of the skull.  As 

seen in Figure 30B, implantation of our cell seeded scaffolds seems to reproduce a 

different developmental process in that endochondral tissue formation can be observed by 

the third month following implantation.  However, this is in contrast to the normal 

process of bone formation in the skull and may have some interesting implications.  We 

speculate that the implanted MSCs are recruiting osteoprogenitor cells from the 

surrounding periosteal tissue and induce chondrogenic differentiation via cell-cell 

signaling from the host tissue as observed by the formation of endochondral tissue 
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(Figure 30B).  Given that the cells residing in the periosteum are multipotent and can 

differentiate towards osteogenic or chondrogenic lineages [21] and that undifferentiated 

MSCs have the potential to enhance both chondrogenesis and osteogenesis [114, 115], 

signals from the host tissue may be inducing the earlier stages of chondrogenesis either in 

the cells seeded on the scaffold prior to implantation or in the host cells recruited to the 

implant site   This may lead to a new way of generating cranial tissue, via endochondral 

ossification rather than intramembranous ossification.  Recent studies have indicated that 

endochondral ossification can be seen between implanted PLGA/PCL wet-electrospun 

fibers and host bone junctions as an improved method of bone regeneration over the 

normal intramembranous ossification process [133] indicating that electrospun CTS-GP 

scaffolds may act as a promising template to promote endochondral ossification in cranial 

regeneration.   

The occurrence of de novo tissue formation around the scaffold (Figures 29 and 30) is 

a positive indication that these scaffolds are permissive and promote proper host 

integration without immune rejection and also show that there is sufficient tissue growing 

into the scaffold, as also confirmed by MicroCT, indicating presence of mineralized 

tissue and the initiation of osteogenic regeneration.  While tissue integration and 

immunosuppression are of upmost concern, the end goal is to have a scaffold that is 

osteoconductive.  Our MicroCT results suggest that the presence of cells and the presence 

of HA greatly enhances the osteogenic capacity of these scaffolds and leads to 

mineralized tissue formation by month 3. Quantitatively there is up to a 5 fold increase in 

”healing” over CTS-GP scaffolds without HA and MSCs (Figure 29).  Combined with 

the findings of endochondral tissue formation on CTS-HA-GP scaffolds after 3 months of 
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implantation, we can conclude that this de novo generated tissue is in the early stages of 

endochondral ossification and that mineralized ECM is beginning to replace cartilage 

tissue.  

The presence of MSCs or  other permissive biological components, such as HA, will 

greatly enhance the osteogenic capacity of an implanted scaffold due to the signals 

secreted by cells or the endogenous factors that promote cellular responses in vivo [2, 

129, 134, 135].  Current treatments for osteogenic injuries or disabilities use bone 

cements, metal or inert implantable replacement materials or autografts [23, 88].  While 

the latter is preferable due to the functional periosteal layer which can induce osteogenic 

healing, the former two lack cellular components and do not induce regeneration.  For 

this study, we were able to show that the presence of HA causes a significant increase in 

osteogenic capacity over CTS-GP scaffolds that lack HA, indicating its inductive 

properties and biochemical cues are of upmost importance for osteogenesis.  We 

hypothesize that osteoprogenitor cells in the periosteum come in contact with the surface 

of this material when it is placed over top of the defect and respond to the   biomimetic 

propensities of this scaffold including it mechanical properties and the presence of  HA 

[50, 64, 136].  The presence of MSCs induces endochondral tissue formation leading to 

osteogenesis with time and further enhances mineralized tissue formation.     

Chitosan has been used in a variety of biomedical applications for its beneficial 

properties, including its innate ability to suppress immunorejection [5, 72, 75, 137-139].  

Here, we have demonstrated not only the ability to act as a biocompatible material, but 

also its ability to induce osteogenesis.   In the past, chitosan has been incorporated into 

bone replacement materials in order to enhance the cell attachment on less adhesive 
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materials [5, 135, 138, 140], but such materials still act as replacement scaffolds and not 

regenerative materials.  Although replacement is one short-term remedy for bone fracture 

and defect, many of these materials have long-term complications and fail ultimately.  

The shift of tissue engineering over the past decade has gone from replacement to 

regeneration, encouraging the development and use of f regenerative materials such as 

CTS-HA-GP scaffolds fabricated via electrospinning.  Not only have many studies shown 

the in vitro capacity of electrospun scaffolds to be osteoinductive ([36, 50, 88, 141]), but 

we have now demonstrated the potential of such scaffolds  to bridge the gap in critical 

size bone defect in a mouse model of craniofacial injury.       
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 A Proof of Concept Study:  Fabrication and 
Evaluation of Electrospun PLGA Scaffolds with Enhanced 

Porosity from Sacrificial Fiber Removal 

7.1 Fabrication of Porous PLGA Scaffolds 

To fabricate porous electrospun scaffolds, a sacrificial material was concomitantly 

electrospun with PLGA and subsequently removed.  The set up can be seen in Figure 31.  

Briefly, the two solutions were loaded into two different syringe pumps and 

simultaneously electrospun onto the rotating collector at a 1:1 ratio with varying 

concentrations of gelatin.  PLGA fibers were stained with DiI and fluoresce red.  Gelatin 

fibers were stained with DiO and fluoresce green, which can be seen at different 

concentrations in Figure 32 A, B and C.   
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Figure31. A dual electrospinning set up was put together to synthesize scaffolds containing 

two different materials.  The syringe pumps were placed on either end of a rotating 

collector and loaded with their respective polymer solutions. The collector was rotated at 

~20RPM to evenly collect fibers from both materials simultaneously. 

Figure 32. Fluorescent images of 

PLGA/gelatin scaffolds show the presence of 

both compositions in the scaffolds after 

hydration (PLGA, red and gelatin, green).  

However, the predicted effect of gelatin 

dissolving out was not observed, where these 

scaffolds had already been hydrated for 

removal of gelatin and the green fibers 

remain. 
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An optimal scaffold for a tissue like bone needs to not only have ideal porosity, but 

also needs to have ideal mechanical properties.  We performed tensile testing with pure 

PLGA scaffolds as well as with scaffolds generated from 1:1 ratio working solutions of 

15% PLGA and 5%, 15% or 20% gelatin after removal of the water-soluble gelatin by 

immersion into a water bath and calculated the Young’s moduli and UTS from each 

different type of scaffold.  The results indicate that mechanical properties are greatly 

affected by the presence of gelatin in a logarithmic trend.  The young’s moduli and 

ultimate tensile strength of different scaffold conditions can be seen below in  

Table 3. 

 

Table 3. Mechanical Properties of varying concentrations of gelatin in PLGA scaffolds. 

Scaffold Conditions Young’s Modulus (MPa) Ultimate Tensile Strength (N) 

15% PLGA 2101.57±702.98 36.81±11.05 

15% PLGA + 5% Gelatin 113.95±22.45 6.71±1.52 

15% PLGA + 15% Gelatin 3.19±1.11 0.43±0.06 

15% PLGA + 20% Gelatin 56.12±16.8 3.93±0.47 

 

7.2 Cell Infiltration Into the Porous Scaffolds 

We hypothesized that rhe removal of gelatin will increase the porosity and internal 

surface area of the scaffolds by inducing larger pores and allowing cell growth in three 

dimensions rather than just on the surface of the scaffolds.  One important method of 

looking at biological patterns like cell growth is by using mathematical models to predict 

the behavior.  In order to model cell growth on our scaffolds, we adapted a model from 



99 

Lemon et. al. in which they modeled MSC proliferation on porous scaffolds as a function 

of ECM deposition and oxygen tension [142].  The model is derived as follows: 

𝑑𝑣
𝑠𝑡𝑒𝑚′

𝑑𝑡
= 𝑘

𝑠′𝑠′
𝑣𝑒𝑐𝑚𝑣𝑠𝑡𝑒𝑚′𝑣𝑣𝑜𝑖𝑑 − 𝑘

𝑠′𝑠′′
𝑣𝑠𝑡𝑒𝑚′                                  (1) 

describes the rate of change of undifferentiated MSC where vstem’ is the volume fraction 

of undifferentiated MSCs, ks’s’ is a rate constant for MSC proliferation, vecm is the volume 

fraction of ECM deposited by MSCs, vvoid is the volume fraction of uninhabited space in 

pores and ks’s’’ is a rate constant for ECM production.  The next part of the system is 

 
𝑑𝑣

𝑠𝑡𝑒𝑚′′

𝑑𝑡
= 𝑘

𝑠′′𝑠′′
𝑣𝑒𝑐m𝑣𝑠𝑡𝑒𝑚′′𝑣𝑣𝑜𝑖𝑑 + 𝑘

𝑠′𝑠′′
𝑣𝑠𝑡𝑒𝑚′                        (2) 

which describes the rate of change of differentiated MSC where vstem’’ is the volume 

fraction of differentiated MSCs and ks’’s’’ is a rate constant for MSC differentiation.  The 

final part of the system is  

 
𝑑𝑣𝑒𝑐𝑚

𝑑𝑡
= (𝑘

𝑒𝑠′
𝑣
𝑠𝑡𝑒𝑚′

+ 𝑘
𝑒𝑠′′

𝑣
𝑠𝑡𝑒𝑚′′

)𝑣𝑣𝑜𝑖𝑑                (3) 

where vecm describes the rate of change of ECM.   

The first terms on the right hand side of the first equations 1 and 2 represent cell 

proliferation while the second terms represent differentiation.  The rate of proliferation is 

taken to be proportional to vecm to model the stimulation of MSC proliferation by the AB 

assay. The right hand side of the third equation has both differentiated and 

undifferentiated cells contributing to ECM synthesis. To model a contact inhibition effect 

whereby growth of the tissue ceases once the pores have been filled, the rate of cell 
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proliferation and ECM synthesis is taken to be proportional to vvoid, this being the volume 

fraction of free space inside the scaffold pores.  Thus equation 4 is derived as follows, 

𝑣𝑣𝑜𝑖𝑑 = 1 − (𝑣𝑠𝑐𝑎𝑓𝑓 + 𝑣𝑠𝑡𝑒𝑚′ + 𝑣𝑠𝑡𝑒𝑚′′ + 𝑣𝑒𝑐𝑚)           (4)  

where vscaff is the volume fraction of the scaffold and is related to the scaffold porosity by  

𝑣𝑠𝑐𝑎𝑓𝑓 = 1 −
𝑝

100
                (5) 

where p is porosity.   

According to Grayson et. al. cells tend to stop proliferating well before pores are 

filled, indicating that there is some sort of inhibitory effect that is currently unclear [143].  

However, being that this is observed, a factor for effective carrying capacity of the 

scaffold must be employed and can be expressed a 

𝑣𝑣𝑜𝑖𝑑 = 𝑣𝑒𝑓𝑓 − (𝑣
𝑠𝑡𝑒𝑚′

+ 𝑣
𝑠𝑡𝑒𝑚′′ + 𝑣𝑒𝑐𝑚)            (6) 

where veff ≤ 1 – vscaff and veff is the effective carry capacity, which takes into account the 

free space in the pores of the scaffold.  This parameter of carrying capacity is related to 

cell proliferation due to the observation by Grayson et. al. stated above as well as to the 

fact that pores are empty voids in the scaffold.  Cells can only grow on the inner surface 

of these pores, but not in the free space accounting for the center of the pore with no 

surface contact for cells.  This equation gives a more adequate representation of cell 

growth rather than just accumulating for the complete presence and size of pores in the 

scaffold.   
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The initial three equations for undifferentiated, differentiated stem cells and ECM are 

to be expected at the initial conditions with vstem’ = vstem’,0, vstem’’ = vstem’’,0 and vecm = 0 at 

t = 0.  By making the assumptions that differentiation causes no change to cell properties 

such as size, proliferation rate or viability (simplifying to an easily workable model for 

prediction), we simplify as follows with ks’s’ = ks’’s’’ = ks and kes’ = kes’’ = kes and by 

adding vstem’ + vstem’’ = vstem we can obtain the system of equation:  

                                                                                                                                 

𝑑𝑣𝑠𝑡𝑒𝑚

𝑑𝑡
= 𝑘𝑠𝑣𝑒𝑐𝑚𝑣𝑠𝑡𝑒𝑚(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚 − 𝑣𝑒𝑐𝑚)            (7) 

𝑑𝑣𝑒𝑐𝑚

𝑑𝑡
= 𝑘𝑒𝑠𝑣𝑠𝑡𝑒𝑚(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚 − 𝑣𝑒𝑐𝑚)             (8) 

We can solve these equations by setting the initial conditions vstem = vstem’,0 + vstem’’,0 

= vstem,0 and vecm = 0 at t = 0. 

Applying the chain rule to these 2 equations yields the differential equation 

 
𝑑𝑣𝑠𝑡𝑒𝑚

𝑑𝑣𝑒𝑐𝑚
=

𝑘𝑠𝑣𝑒𝑐𝑚

𝑘𝑒𝑠
                  (9) 

which is integrated to give 

  𝑣𝑠𝑡𝑒𝑚 = 𝑣𝑠𝑡𝑒𝑚,0 + 𝛼𝑣𝑒𝑐𝑚
2

                 (10) 

where 𝛼 =
1

2
𝑘𝑠 𝑘𝑒𝑠⁄    which can then be substituted into dvecm for  

𝑑𝑣𝑒𝑐𝑚

𝑑𝑡
= 𝑘𝑒𝑠(𝑣𝑠𝑡𝑒𝑚,0 + 𝛼𝑣𝑒𝑐𝑚

2 )(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚,0 − 𝑣𝑒𝑐𝑚 − 𝛼𝑣𝑒𝑐𝑚
2 )         (11) 

which can be solved explicitly, for example, by the method of partial fractions giving: 
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𝑡 =
1

𝛼𝑘𝑒𝑠
[𝑓1𝑙𝑜𝑔𝑒 (

𝐶1

𝐶1+𝑣𝑒𝑐𝑚
) + 𝑓2𝑙𝑜𝑔𝑒 (

𝐶2

𝐶2+𝑣𝑒𝑐𝑚
) + 𝑓3𝑙𝑜𝑔𝑒 (

𝐶3

𝐶3+𝑣𝑒𝑐𝑚
2 ) + 𝑓4𝑡𝑎𝑛

−1 (
𝑣𝑒𝑐𝑚

√𝐶3
)]           (12) 

where 

𝐶1 =
1

2
𝛼−1 (1 − √1 + 4𝛼(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚,0))          (13) 

𝐶2 =
1

2
𝛼−1 (1 − √1 + 4𝛼(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚,0))                       (14) 

𝐶3 = 𝛼−1𝑣𝑠𝑡𝑒𝑚,0                (15) 

𝑓1 = −(𝐶3 + 𝐶1
2)−1(𝐶1 − 𝐶2)

−1              (16) 

𝑓2 = −(𝐶3 + 𝐶2
2)−1(𝐶1 − 𝐶2)

−1             (17) 

𝑓3 = −
1

2
(𝐶1 + 𝐶2)(𝐶3 + 𝐶1

2)−1(𝐶3 − 𝐶2
2)−1                 (18)  

𝑓4 = −(𝐶1𝐶2 − 𝐶3)(𝐶3 + 𝐶1
2)−1(𝐶3 + 𝐶2

2)−1𝐶3
−1 2⁄

            (19) 

With f1-4 and C1-2 are arbitrary constants for simplification and solution.  The volume 

fractions of undifferentiated and differentiated cells can be determined as follows by 

combining vstem’ and vstem to give  

1

𝑣
𝑠𝑡𝑒𝑚′

𝑑𝑣
𝑠𝑡𝑒𝑚′

𝑑𝑡
=

1

𝑣𝑠𝑡𝑒𝑚

𝑑𝑣𝑠𝑡𝑒𝑚

𝑑𝑡
− 𝑘

𝑠′𝑠′′
                   (20) 

which is integrated with respect to time using the initial conditions to give  

𝑣
𝑠𝑡𝑒𝑚′

= (𝑣
𝑠𝑡𝑒𝑚′,0

𝑣𝑠𝑡𝑒𝑚,0⁄ ) 𝑣𝑠𝑡𝑒𝑚𝑒
(−𝑘

𝑠′𝑠′′
𝑡)

           (21) 

and using vstem = vstem’ + vstem’’ it follows that  
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𝑣
𝑠𝑡𝑒𝑚′′

= 𝑣𝑠𝑡𝑒𝑚 [1 − (𝑣
𝑠𝑡𝑒𝑚′,0

𝑣𝑠𝑡𝑒𝑚,0⁄ ) 𝑒
(−𝑘

𝑠′𝑠′′
𝑡)
]               (22) 

 By solving for the system above, it can be shown that dt/dvecm < 0, thus given a 

particular value of t, there can be only one value of vecm.  By substituting this solution 

into equation 10 gives the value of vstem at that value of t.  The equilibrium value for vecm 

denoted as vecm,ss can be calculated by setting the right hand side of equation 11 to zero, 

yielding the quadratic equation 

 𝛼𝑣𝑒𝑐𝑚,𝑠𝑠
2 + 𝑣𝑒𝑐𝑚,𝑠𝑠 + 𝑣𝑠𝑡𝑒𝑚,0 − 𝑣𝑒𝑓𝑓 = 0            (23) 

whose positive solution using the quadratic formula is 

 𝑣𝑒𝑐𝑚,𝑠𝑠 = −𝐶1 = 𝑘𝑠 𝑘𝑒𝑠⁄ (√1 + 2𝑘𝑠 𝑘𝑒𝑠(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚,0)⁄ − 1)         (24) 

The equilibrium for vstem is then 𝑣𝑠𝑡𝑒𝑚,𝑠𝑠 = 𝑣𝑒𝑓𝑓 − 𝑣𝑒𝑐𝑚,𝑠𝑠 = 𝑣𝑒𝑓𝑓 −

𝑘𝑠 𝑘𝑒𝑠⁄ (√1 + 2𝑘𝑠 𝑘𝑒𝑠(𝑣𝑒𝑓𝑓 − 𝑣𝑠𝑡𝑒𝑚,0)⁄ − 1)                    (25) 

Lemon et. al. observed the differences of cell migration into scaffolds as a function of  

different oxygen tensions.  Here, we adapted their model to see the effect of varying 

gelatin concentrations in PLGA scaffolds on MSC migration [142].  Using MatLab code, 

we obtained the predictive model based on the data generated by Lemon et. al. and 

reproduced the volume fraction of ECM production in their scaffold (Figure 33), which 

then enabled us  to predict  the volume fraction of MSCs in  our scaffold (Figure 33).  

These graphs were generated from the experimental values from the Lemon et. al. paper, 

where cell dimensions and scaffold parameters were taken from from Grayson et. al. 
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[144] Briefly, volume fraction of cells was calculated as the  number of cells seeded 

times the volume of a typical MSC (spherical with a 20µm diameter, giving a volume of 

4.18mm3) divided by the volume of the scaffold.  Using their equations and our 

consistent scaffold diameter of 10.3mm, we generated the volume fraction of cells for our 

scaffolds. 

 

 

 

Figure 33. Theoretical curves of the volume fractions of ECM production and cells over 

time to illustrate a predictive model of cell proliferation and ECM production over time as 

a function of the total volume of a cellular scaffold construct. 

Figure 34. A logarithmic curve fit was used to determine the equation used to convert AB 

fluorescence to cell number.  Cell number was then plotted vs. time to show the effects that 

gelatin had on growth rate of moMSCs. 
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To actually meansure how the cells proliferate on the porous scaffolds as 

compared to the model predictions, we monitored cell viability/cell numbers using AB 

assays on the different scaffold conditions over a 1-week period.  A calibration curve was 

plotted so that fluorescence could be converted into cell number and compared to the 

model directly.  Using an exponential curve fit (Figure 34, left panel), we could obtain 

cell numbers at the different scaffold contents over time.  We then generated predictive 

curves using our obtained data and the lsqcurvefit function on MatLab and fitted our data 

to this function to generate the carrying capacity, cell volume fractions and the rates of 

ECM production and cell growth into the electrospun scaffolds (Figure 35, left panel).  

The data (Table 4) was highly variable, indicating that the volumetric curve fit was not 

appropriate for this model.  We then fitted the data to a simpler logistic growth curve 

using 𝑃(𝑡) =
𝑘𝑃0𝑒

𝑟𝑡

𝑘+𝑃0(𝑒𝑟𝑡−1)
  and the cftool function in MatLab that would be indicative of 

cells growing on a 2D substrate, i.e. the surface of the scaffold.  When fitting the data to 

this model (Figure 35, right panel) a much better fit was obtained and much more 

indicative values as well (Table 5).    

Table 4. Specific values of carrying capacity and rates of ECM production and cell growth obtained 

by cell number data.  These values were obtained by fitting to the porous scaffold model from Lemon 

et. al. 

 
Values Obtained When Fitting to the Porous Scaffold Model 

Gelatin 

Resnorm 
(Noise 
Ratio) 

Carrying 
Capacity 
(Veff) 

Initial Volume 
Fraction (Vstem,0) 

Rate of ECM 
Production (kes) 

Rate of Cell 
Growth (kss) 

0% 0.1672 0.6833 0.0695 3.9226 4.5971 

5% 0.2105 0.4821 0.0396 4.2417 24.864 

15% 0.5104 0.4065 0.0552 3.8224 14.8577 

20% 0.5853 0.7553 0.0579 4.4255 2.9395 
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Figure 35. Using the model for cell volume fraction in the porous scaffolds derived from Lemon 

et. al. we were able to fit the data to a predictive curve (top panel).  However, the interpreted 

data generated (Table 4) shows that the values for the effective carrying capacity and the rate 

of cell growth were not reliable or reproducible, indicating that this model did not accurately 

represent the data.  To adjust, a logistic growth model was used to model how the cells would 

behave growing on the surface of the scaffold in 2D and fitted to the data (bottom panel).  The 

values recorded for this fit (Table 4) were much more interpretative to the data, indicating that 

the cells are not infiltrating the scaffold and still remain growing on the surface. 
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Table 5.  Carrying capcity and cell growth rate values obtained by fitting the cell number data to a 

logistics growth curve.  These data proved to be a better representation of biological function. 

Values Obtained When Fitting to the Logistic Growth Model 

 
Carrying Capacity (k) 

Initial Volume Fraction 
(P0) Rate of Cell Growth ® 

0% 0.199 0.044 0.846 

5% 0.1799 0.01765 1.324 

15% 0.1854 0.03971 0.9296 

20% 0.1931 0.0493 0.7 
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In trying to understand why this porosity model did not apply to the cells, we 

evaluated the fiber morphology and the presence of newly formed pores due to gelatin 

removal using SEM (Figure 36A, B and C).  As seen in these images the gelatin fibers do 

not appear to be completely removed, as also indicated by fluorescent microscopy. 

Macroscopic images indicate that the gelatin fibers are changing morphology and 

becoming more gel-like rather than maintaining their fibrous structure (Figure 37A, B 

and C).  This is especially noticed at a concentration of 15% gelatin (Figure 37C) where 

the scaffold becomes translucent and forms a gel rather than an electrospun fibrous mat. 

At 5% and 20%, (Figure 37B and D respectively) the fibrous macrostructure is 

maintained, however the Youngs moduli and UTS display a significant decrease from 

those of PLGA alone (Table 3), indicating that the gelatin induces a substantial structural 

change and mechanical decrease after hydration.  As the gelatin appears to remain in the 

scaffold after wetting, the introduction of water may allow for softer, gel-like structures 

to incorporate on/around the PLGA fibers.  
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Figure 36. SEM indicates that gelatin is not 

dissolving out upon hydration of the PLGA 

scaffolds.  5% gelatin (A) shows the formation 

of beads and large globular regions, where 15% 

and 20% (B and C respectively) both show the 

presence of larger gelatin fibers surrounded by 

thinner PLGA fibers. 
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7.3 Discussion 

A main challenge with electrospun scaffolds is the limited pore size that is generated 

due to the densely packing of the fibers during the electrospinning process.  These 

scaffolds do contain interconnected pores throughout, which generate a relatively high 

porosity; however there is limited ability for the cells to infiltrate the scaffolds due the 

small size of the pores  [69].  A number of methods have been employed to increase pore 

sizes in electrospun scaffolds.  One promising technique is the incorporation of sacrificial 

fibers to be removed post-spinning [69-71], which enhances cell migration into the 

electrospun scaffolds via the creation of larger pore sizes in vitro.  This can be used as a 

Figure 37. Macroscopic views of the fibers at 

5% (A), 15% (B) and 20% (C) gelatin show 

that physical changes are occurring due to the 

presence of gelatin.  This is especially noticed 

in (B) where the scaffold has taken on a more 

gelatinous morphology rather than the normal 

electrospun fibrous morphology observed in 

(A and B). 
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potential conduit into the idea that this will also enhance tissue formation into bone 

scaffolds in vivo. 

As a proof-of-concept model to this end, we aimed at synthesizing porous PLGA 

nanofibrous scaffolds by using gelatin as a sacrificial material with the possible end goal 

of applying this to chitosan scaffolds.  Since chitosan is a more difficult material to work 

with, we first optimized the scaffold fabrication conditions using a simpler, more 

reproducible material, such as PLGA.  By developing an electrospinning set up allowing 

for two materials to be collected on one rotating collector (Figure 32), we were able to 

obtain scaffolds containing varying w/w ratios of PLGA to gelatin to theoretically vary 

the pore size.  We left the concentration of PLGA constant at 15% and varied the 

concentration of gelatin from 5% to 15% to 20%, obtaining theoretical “porosities” of 

0%, 25%, 50% and 57%.  Using these values, we were able to effectively change to 

carrying capacity of the theoretical scaffold by adjusting the scaffold volume relative to 

the inclusion of porosity developed from gelatin removal.  We used this method to 

develop the graphs seen in Figure 34.  Based on the model developed by Lemon et. al. we 

adjusted the theoretical growth of MSCs in terms of volume fraction on/in the PLGA 

scaffolds when the scaffolds were hydrated and morphologically changed.  The data 

shows that we can generate predictive curves and fit the data to this model, however the 

values obtained did not show a good correlation to biological function.  The lsqcurvefit 

function of MatLab takes the data obtained (cell growth via AB assay) and fits it to the 

equation generated by Lemon et. al. (Figure 36).  The values should follow a similar 

trend, however, as seen in Table 4, this does not occur.  The mathematics used to fit the 

data was substantially noisy and not a good model of what was occurring on the 
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scaffolds.  This is also noticed by the extremely variable carrying capacity and cell 

volume fraction, which indicates that this was not a good representation of the biological 

function of these scaffolds.   

To correct for this, we decided to fit the data to a logistics growth model, which is a 

good representation of modeling cell behavior in 2D, or in our case, growing on the 

surface of the scaffold rather than penetrating in.  When we fit the data to these curves, 

which were generated using the cftool function in MatLab (a simpler curve fitting tool), 

we see a much better fit between data and model for both cell growth rate and the 

effective carrying capacity of the scaffolds (Figure 36) and conclude that the cells were 

remaining on the surface of the scaffold and not penetrating into the scaffold interior. 

This would then lead us to our final conclusion, that the gelatin was not being 

removed and porosity was not being generated, as originally hypothesized.  To validate 

this assumption, we observed the fibers under SEM and found that the water-soluble 

gelatin was indeed not being removed from the PLGA scaffolds by immersion into water, 

as predicted..  PLGA nanofibers can be seen to be surrounded by varying sizes of gelatin 

fibers in the scaffolds (Figure 37).  At 5%, beads of gelatin were entangled by PLGA 

fibers, whereas at 15% and 20%, the gelatin and PLGA fibers can be seen to be 

intermingling with each other.  However, (Table 3), there is a significant change in the 

stiffness of these scaffolds with gelatin incorporation after hydration.  This would 

indicate that the physical properties of the scaffolds are different based on gelatin content 

making them tunable and versatile scaffolds applicable for many different tissue types.   
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 Future Work and Considerations 

 

8.1 Modified CTS-HA-GP Scaffold Conditions for Enhanced Cell/Tissue 
Infiltration 

As mentioned in chapter 7, PLGA/gelatin was used as a proof of concept model test 

the usefulness of using sacrificial fibers for enhanced porosity in electrospun scaffolds.  

Though the results were unexpected, we did observe mechanical and physical changes to 

the scaffold when gelatin was incorporated.  Building on this data and idea, it would be 

feasible to attempt using a similar method to enhance the porosity of chitosan scaffolds.  

However, using the data obtained from the PLGA studies, appropriate changes can be 

made to improve the scaffold properties.  Rather than using gelatin, a synthetic material 

that is water soluble, such as PEO, may prove easier to remove.  Also, as important as 

mechanical properties are, the cellular integrative properties of the scaffold are of much 

more importance, such as having a scaffold that is capable of producing the right cues to 

induce host tissue osteoprogenitor cells to migrate into the tissue.  Once we have shown 

that cells can migrate into the scaffolds, these cells can use the scaffold as a template to 

begin depositing their own mineralized matrix, which will develop into new functional 

bone.   

Tissue infiltration was observed on the CTS-HA-GP scaffolds by histological analysis 

of in vivo experiments (Figure 30). Further enhancing the porosity might further enhance 

tissue infiltration and host cell migration into the scaffold.  This could prove to be very 

useful in terms of biocompatibility and speeding up the development of bone tissue in 

vivo.  Improved osteoinduction of CTS-HA-GP scaffolds 
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In this study we used ALP activity as an early marker of osteogenic differentiation.  

In order to complete this picture of osteogenesis, it would be important to further 

characterize this process using gene expression and protein synthesis of specific bone 

markers.  For the scope of this project, where we wanted to show that these scaffolds 

were capable of inducing MSCs differentiation towards an osteogenic lineage, using an 

ALP assay to observe the onset of osteogenesis sufficed.  However, osteogenic gene 

profiling could lead to mechanistic studies trying to understand how these scaffolds can 

induce osteogenic differentiation.   

Cell attachment and integrin expression can carefully regulate genetic expression and 

cellular function, whether it be proliferation, migration or differentiation.  To our 

knowledge, no studies have demonstrated the attachment mechanisms for chitosan 

nanofibers.  Studying what cell-matrix adhesion proteins are upregulated upon seeding 

could give insight into how osteogenesis progresses on these scaffolds.  Specific integrin 

binding is upregulated as the main ECM component of bone, collagen I, is deposited.   

By studying the upregulation of these integrins, we can determine the rate at which ECM 

production correlates to the time at which differentiation begins Lemon et. al. determined 

that ECM production is delayed as proliferation occurs [142], which may give an 

indication as to the effects that ECM production plays on differentiation vs. the effects 

the actual fibrous scaffold has on it.  

Another cell-ECM molecule involved in osteogenic differentiation is syndecan-4, an 

intramembranous proteoglycan complex.  Chitosan is a polysaccharide with a  very 

similar structure to the natural GAGs found in native bone tissue.  If syndecan-4 shows 

upregulation, it may be inferred that the molecular configuration of chitosan can mimic 
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these GAGs and lead to differentiation via the proteoglycan pathway rather than an 

integrin pathway.  It may even be observed that these pathways act synergistically and 

both pathways are upregulated, speeding up osteogenesis. 

To monitor osteogenic differentiation, it would be important to also formulate a 

complete profile of gene expression and protein synthesis over a time period of 3-5 

weeks.  Most experiments were carried out over three weeks, the normal amount of time 

allotted for differentiation, however these cells, as results from Figure 30 indicate, may 

be undergoing endochondral ossification.  If this is, in fact, occurring, it would be 

important to extend the time of experimentation and observe for both chondrogenic and 

osteogenic markers of MSC differentiation.  Chondrogenic markers such as transcription 

factor Runx1, aggrecan, collagen type II and Sox9 could be studied to see if MSCs are 

initially entering a chondrogenic phase.  Then, specific genetic markers, such as 

transcriptions factors Runx2 and Osterix indicate the initiation of osteogenesis.  Further, 

observing intracellular protein synthesis of osteopontin, osteonectin and osteocalcin all 

indicate osteogenesis is approaching the stage of mature osteoblasts.  Finally, observing 

the production of bone specific ECM proteins, such as collagen type I and vitronectin as 

well as looking for mineralization would prove that mature osteoblasts are beginning to 

synthesize the important matrix required for mature bone tissue and regeneration.    

Osteogenesis in our scaffolds was enhanced both by high seeding density and the 

used of an osteogenic growth medium.  Although HA did significantly increase the 

osteogenic potential of the scaffolds, the use of OGM further increased ALP activity, 

indicating an additive effect between chemical and physical cues.  By incorporating 
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specific factors, such as BMPs into the scaffold, a significant increase in osteogenesis 

may be observed.  

8.2 Improved Methodology for In Vivo Analysis 

One problem observed when the samples were harvested for the in vivo analysis was 

that some of the scaffolds had moved off of the wound site and were located elsewhere 

on the skull.  We concluded that this was probably due to the mice grooming themselves 

or clawing at the irritated areas.  This could be overcome by using a good, biological 

adhesive to hold the scaffold in place.  Although vetbond was used to try and secure the 

scaffolds in spot, a very minimal amount was used in order to ensure that it was not 

causing any reaction between the scaffold/tissue junctions. Using a more biological fibrin 

glue may be a good alternative to this. 

It would also be valuable to look deeper into the scaffold/tissue interactions by 

studying the specific immune responses (if any) that are being generated by the scaffold.  

This could be done by immunostaining for specific lymphocytes or other immune cells to 

be present or absent around the defect area.   

Finally, mineralization on the scaffold would indicate that osteoprogenitor cells have 

migrated into the host tissue and began depositing the mineralized matrix required for 

bone regeneration.  Using an alizarin red stain, it would be possible to observe and 

quantify this mineralization. 
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Appendix – Supplemental Material 

Protocol for Making Electrospun CTS-HA-GP Working Solution 

1. 0.35g of medium molecular weight CTS and 0.05g of HA are added to 5mL of 

TFA and stirred for 7 days to ensure proper mixing and dissolution of the solvent.  

The yielding solution is 7% CTS and 0.1% HA (v/v) 

2. After 7 days of stirring, the solution is loaded into a 5mL glass syringe and inserted into 

the syringe pump.  The syringe pump is set for 1.0mL/h and hooked up to a high voltage 

supply (positive lead to the needle and negative lead to the collecting plate) and held at a 

constant 15kV. 

3. The collecting plate is situated 15cm from the needle tip and the pump is activated to 

produce nanofibrous scaffolds. 

4. In order to ensure maximum fiber collection, the tip must be wiped clean every 10-15 

minutes to avoid clogging. 

5. Scaffolds are collected after all solution is dispersed and stored in the cabinet until ready 

for use. 

MatLab Code for Generating the 3D and 2D Models Used to Observe Cell Behavior  

Code to Plot Theoretical Curves from Literature Values 

%syms veff vstem0 kss kes 

  

  
%set constant variables 
veff= 0.193      ;%proportional to porosity 
vstem0= 0.18    ;%proportional to seeding density 
kes= 1.98; 
kss= 15.2; 

  
a= 1/2 * kss/kes; 
c1=1/2*(a^(-1))*(1-(1+4*a*(veff-vstem0))^.5); 
c2=1/2*a^-1*(1+(1+4*a*(veff-vstem0))^.5); 
c3=a^-1*vstem0; 
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f1=-(c3+c1^2)^-1*(c1-c2)^-1; 
f2=(c3+c2^2)^-1*(c1-c2)^-1; 
f3=-1/2*(c1+c2)*(c3+c1^2)^-1*(c3+c2^2)^-1; 
f4=-(c1*c2-c3)*(c3+c1^2)^-1*(c3+c2^2)^-1*c3^(-1/2); 

  
%syms vecm 
%t=((a^2*kes)^-1)*(f1*log(c1/(c1+vecm))+f2*log(c2/(c2+vecm))... 
%    +f3*log(c3/(c3+vecm^2))+f4*atan(vecm/c3^.5)); 
vecm=0:.001:.12; 
t=((a.^2.*kes).^-1).*(f1.*log(c1./(c1+vecm))+f2.*log(c2./(c2+vecm))... 
    +f3.*log(c3./(c3+vecm.^2))+f4.*atan(vecm./c3.^.5)); 

  
vstem=vstem0+a.*vecm.^2; 

  
%ezplot(t,[0,.15]); 
plot(t,vstem) 
xlabel('time(d)') 
ylabel('Cell Volume Fraction') 

 

Code to Fit Obtained Data to the 3D Model from Lemon et. al. 

function t = mikesfun(x,xdata) 
%F = x(1)*exp(x(2)*xdata); 

  
% x(1) => veff= 0.193;     %proportional to porosity 
% x(2) => vstem0= 0.015;    %proportional to seeding density 
% x(3) => kes= 1.98; 
% x(4) => kss= 15.2; 

  
%a= 1/2 * kss/kes; 
 a= 1/2 * x(4)/x(3); 
%c1=1/2*(a^(-1))*(1-(1+4*a*(veff-vstem0))^.5); 
 c1=1/2*(a^(-1))*(1-(1+4*a*(x(1)-x(2)))^.5); 
%c2=1/2*a^-1*(1+(1+4*a*(veff-vstem0))^.5); 
 c2=1/2*(a^(-1))*(1+(1+4*a*(x(1)-x(2)))^.5); 
%c3=a^-1*vstem0; 
 c3=a^-1*x(2); 
f1=-(c3+c1^2)^-1*(c1-c2)^-1; 
f2=(c3+c2^2)^-1*(c1-c2)^-1; 
f3=-1/2*(c1+c2)*(c3+c1^2)^-1*(c3+c2^2)^-1; 
f4=-(c1*c2-c3)*(c3+c1^2)^-1*(c3+c2^2)^-1*c3^(-1/2); 

  

  
vecm = sqrt((xdata-x(2))./a); 

  
%t=((a^2*kes)^-1)*(f1*log(c1/(c1+vecm))+f2*log(c2/(c2+vecm))... 
%    +f3*log(c3/(c3+vecm^2))+f4*atan(vecm/c3^.5)); 

  
t=((a.^2.*x(3)).^-1).*(f1.*log(c1./(c1+vecm))+f2.*log(c2./(c2+vecm))... 
    +f3.*log(c3./(c3+vecm.^2))+f4.*atan(vecm./c3.^.5)); 
end 
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vstem0=0.001:0.001:0.150; 
x = zeros(length(i),4); 
resnorm = zeros(length(i),1); 

  
for i=1:150 
    [x1,resnorm1] = 

lsqcurvefit(@mikesfun,[0.193,i/1000,1.98,15.2],g05,time); 
    x(i,:) = real(x1); resnorm(i) = resnorm1;  
end 

  
plot(vstem0,real(resnorm)) 

 

Code to Fit Obtained Data to the 2D Logistic Growth Model 

Days   = [1 2 3 4 7]'; 
VCFg00 = [0.077679542 0.126931779 0.146994885 0.183787247 

0.196007068]'; 
VCFg05 = [0.052099761 0.109903986 0.150304384 0.176447921 

0.177595734]'; 
VCFg15 = [0.072562668 0.122034461 0.154474862 0.161272691 

0.188675762]'; 
VCFg20 = [0.074572603 0.119041787 0.149649126 0.154444453 

0.193100517]'; 
cftool 

 

Supplemental Material on the Processing and Use of Chitosan as a Biopolymer 

Over 100 billion tons of chitin are produced each year from various living sources.  

Only 75,000 tons of shrimp shells are actually produced each year and in 1988 Japan only 

produced 2000 tons of chitosan but as of the year 2000, India alone had the potential to 

produce 60,000-80,000 tons of chitosan per year. Some major manufacturing companies 

include BioPrawn, Chito-Bios, Kate international and Seafresh Chitosan. [145] 

The degree of deacetylation, the distribution of deacetylation and the molecular 

weight of chitosan are some of the most important variables that will determine the 

physical and chemical properties of chitosan. Chitosan is generally sold as greater than 
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75% deacetylated or 75-80% deacetylated because these levels can be achieved without 

significant chain degradation or additional processing. The molecular weight of 

unmodified chitin is over 1,000,000g/mol but the molecular weight of most commercial 

chitosan can range from 100,000 to 1,200,000 grams/mol depending on how it is 

processed [51]. 

Chitin’s usefulness as a biomedical material is strongly limited by its insolubility, but 

the conversion of acetamido groups to primary amine groups creates a polymer with a 

positive charge in an acidic pH (less than 6) and this is what makes chitosan soluble and 

so much more useful but also more susceptible to degradation [52]. The solubility of 

chitosan also depends on the distribution of N-acetyl groups. When chitosan has a 

uniform distribution of acetyl groups, the polymer is less crystalline which results in an 

increase in solubility. The solubility of chitosan can also be enhanced by creating water 

soluble salts through spray drying at 175°C [146]. 

Chitosan is rich in primary amine groups, making it a polycation.  These functional 

groups have the potential to interact favorably with negatively charged substances, 

including proteins, cell membranes and anionic materials such as alginate.  They also 

give chitosan its hemostatic properties [147]. Chitosan will coagulate whole blood in a 

process that does not depend on the classic coagulation mechanisms but instead is 

believed to be caused by interactions with red blood cell membranes and positively 

charged chitosan [148].  

Chitosan can also be used to form complexes with transition metals which can be 

useful for water purification and recovery of metals such as copper and mercury [38]. 
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Nitrogen in the primary amine acts as an electron donor, which gives chitosan the ability 

to selectively chelate metals even though they are positively charged.  It was shown that 

samples with greater than 55% deacetylation were most useful for this application. 

Chitosan’s affinity for different metals can vary greatly (Supplementary Figure 1) [38].  

 

 

Chitosan can be used to form films, coatings, hydrogels, fibers and sponges. Each of 

these forms has its own unique properties, its own strengths and weaknesses and each 

form can also be fabricated and modified in a number of ways. However one attribute 

that Chitosan is generally known for is its toughness or its ability to undergo large 

amounts of plastic deformation [149].  

Chitosan scaffolds can be made by freezing chitosan gels or solutions followed by 

lyophilization. This material is stiff and inelastic, but when hydrated it will quickly swell 

and then dissolve. This can be prevented by allowing the material to equilibrate in 0.1M 

Supplementary Figure 1. The affinity of chitosan to bind different metal ions varies greatly, 

indicating the versatility of the material and its broad applications. Wei X, Zhang C, Gu Q. 

[Properties, products, and applications of chitosan].  2010 



136 

NaOH for half an hour; however the base will cause changes in the crystallinity of the 

material which will cause shrinkage and shape change, which is only partially reversed 

when the material is moved into a solution with neutral pH.   Non-porous scaffolds can 

be strained up to 30-40% and porous scaffolds can be strained from 30-110% with more 

porous scaffolds being capable of undergoing more strain (Supplementary Figure 2) 

[150].  

 

While the non-porous bulk scaffold showed a young’s modulus on the order of 

200kPa, the mechanical properties of a chitosan thin film are significantly higher. Thin 

films of about 100µm were created by simply pouring a 2% Chitosan solution into a 

Supplementary Figure 2. The effects of increased porosity on the mechanical properties of 

chitosan scaffolds.  As observed, enhanced porosity will greatly increase the amount of 

strain chitosan can undergo, which will subsequently increase the Young’s modulus making 

a more elastic material with a decreased toughness.  Madihally SV, Matthew HW. Porous 

chitosan scaffolds for tissue engineering. 2009 
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hydrophobic glass plate and heating at 50° C. The tensile strength of these Chitosan films 

is on the order of 40 MPa and the young’s modulus is on the order of 10 MPa 

(Supplementary Figure 3), almost 50 times higher than the porous scaffolds, but these 

thin films could only be strained 12% before failure. The use of composite materials 

combining chitosan, clay and carbon nanotubes also affected the mechanical properties 

[151]. For example the addition of 3% clay can increase the tensile strength from 40MPa 

to over 70MPa while reducing the strain at break from 12% to 4.5%. Similar results were 

also seen for the addition of 0.4% carbon nano tubes, however the addition of both clay 

and carbon nanotubes had a synergistic effect, increasing the tensile strength at break to 

over 110MPa, and increase the strain at break to close to 7% (Supplementary Figure 3) 

[151].   
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   Chitosan being a natural biopolymer, has good biodegradability and metabolism 

aspects, which means it is well tolerated as a biomaterial than other innately different 

materials like metals or ceramics [152].   Biodegradabilty is a result of chemical 

enzymatic attack on the biomaterial. Chitosan is primarily broken down by lysozyme in 

the body [153]. It has been reported that N-acylated chitosans are sparingly digestible by 

lysozymes as opposed to N-acetyl chitosan [154]. These results can be used to counter 

the problem and engineer chitosan derivatives with longer functionality periods in the 

body. 

Supplementary Figure 3.  The effects of blending materials to tune the mechanical 

properties of chitosan films were observed.  This high tenability indicates again the 

versatility of chitosan and its wide range of applications in a number of fields.  For 

biomedical purposes, these mechanics could be tuned to meet the different criteria of 

different tissues.  Tang et. al. Largely improved tensile properties of chitosan film via unique 

synergistic reinforcing effect of carbon nanotube and clay. 2008 
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One of the issues is that it is difficult to achieve a burst release with chitosan delivery 

vehicles. Chitosan is ideal for a sustained and prolonged release, but the initial loading 

dose (rapid release of drug into the system), which is responsible for quick onset of action 

is better achieved by other delivery systems. Chitosan is being used with other competitor 

biomaterials, so as to devise a system which addresses advantages and disadvantages of 

both the materials. Alginate-chitosan microspheres have been used to achieve 

embolization effects and release profiles for delivery of antineoplastic drugs to tumor 

sites [155].  Another example is chitosan with poly(organophosphazene) hydrogels, 

which is used to achieve loading capacity and prolonged release at the same time [156].  

Due to its mechanically stable and tough properties, chitosan has become a highly 

studied compound in the field of bone tissue engineering.  Because bones are very stiff, 

chitosan must be modified via crosslinking or coupled with a more rigid material.  A 

ceramic of calcium phosphate can be used to make an external casing for a chitosan 

sponge.  The ceramic provides the strength necessary while the bone regrows and the 

chitosan sponge provides a biologically active matrix in which osteoblasts can attach and 

lay down the mineralized matrix to regenerate bone [138].   

One potential use could be the delivery of osteoinductive genes to a damaged area of 

the spinal cord.  PLA-PEG bone grafts have been tested for spinal fusion techniques 

because of their stiff properties.  Chitosan may be a good material to incorporate in these 

grafts to generate a material that has predictable degradation rates as well as large pores 

that can support new bone growth while maintaining the necessary strength before the 

bone has regenerated.  The grafts can be made as hydrogels to enclose the osteoinductive 
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genes which would release slowly over time and speed up the formation of new bone to 

result in spinal fusion where there is a damaged disc [138]. 

The tissue engineering market is expected to be one of the leading applications of 

chitosan after drug delivery applications and chitosan is at the forefront of research.  

Chitosan hydrogel composites can be suitable as immunoisolation materials, chitosan-

laminin or chitosan-alginate composites improve cell-scaffold interactions and chitosan-

peptide materials can allow proliferation of human endothelial cells where chitosan alone 

will not [135].  These composites can be fine-tuned to potentially meet the focused needs 

of tissue engineering applications and wound healing applications, which also have 

emerging prospects for utilization of chitosan. 

Chitosan is also involved in the production of magnetic nanofactories.  The goal of 

these magnetic nanofactories is that they will be ingested orally and act as defense 

modules inside the body.  In other words, they will be able to detect a bacterial invader, 

use the body’s natural materials to synthesize an antibiotic and then employ this 

antibiotic in the body’s defense.   

Developed at the University of Maryland by Dr. Rohan Fernandes and Dr. William E. 

Bentley, what these nanofactories do mechanistically is alter the response of target cells 

by attaching to the surface of the cell and delivering specific “cargo” into it 

(Supplementary Figure 4).  The initially developed nanofactories are dual-modulated.  

The first module is the cell capture module, which is comprised of chitosan and 

magnetite (chitosan-mag) and the second module is the synthesis module, which is in 

charge of synthesizing the substance that will alter response [157].  What this means is 
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that scientists will be able to initiate localized cellular therapy.  Since the material is 

being synthesized at the site of the target cell, it will only be expressed there and there 

will be no side effects elsewhere in the body [158]. 

 

 

Recently, chitosan has been used a potential candidate for biomimetic scaffolds.  For 

example, chitosan tends to form into film-like structures with long, tubal pores when it is 

freeze dried and lyophilized.  These tubal pores are not inter-connected and range from 

~120-150 microns in diameter.  These pores, while appropriate for bone scaffolds, are too 

large to allow appropriate mechanical strength and would also not be sufficient for 

cellular compatibility.  The average pore size for cells, nutrients and wastes to travel 

through in a scaffold should be between 50-200 microns in diameter.  Pores larger than 

200 microns will not allow for proper cell adhesion and poor proliferation [159]. 

In order to overcome this dilemma, Kim et. al. developed a protocol for developing 

interconnected porous scaffolds made of chitosan having high tensile strength in 2008.  

Supplementary Figure 4. The assembling of magnetic nanofactories involves the 

combination of a cell capture module and a synthesis module.  The assembled nanofactory 

will attach to the surface of the cell, synthesize the “cargo” that will alter the response of the 

cell and then deliver it to the cell.  Fernandes et. al. AI-2 biosynthesis module in a magnetic 

nanofactory alters bacterial response via localized synthesis and delivery. Biotechnology and 

bioengineering.  2009 
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The procedure involved dissolving chitosan in an acidic solvent (formic acid, 

trifluoroacetic acid, etc.) and then adding an organic aliphatic alcohol (THF, acetonitrile, 

etc.) that chitosan was not soluble in.  A base (NaOH) was used to neutralize the pH of 

the solution and precipitate the chitosan into the organic solvent layer that was above the 

inorganic layer.  Once precipitated, the product was freeze-dried and lyophilized so that a 

porous scaffold could be obtained.  These scaffolds showed to have highly interconnected 

pores and a much higher tensile strength [159].  Tunable properties like this further 

enhance the versatility of chitosan as a biopolymer. 
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Supplementary Figures 

 

 

Supplementary Figure 5.  An initial gene expression profile of Runx2 and Osteopontin was 

performed on the differentiation of MSCs towards an osteogenic lineage on CTS-GP scaffolds 

with and without HA to determine the osteoinductive capacity of the scaffolds.  We obtained 

inconclusive results due to an inability to obtain pure RNA from the samples.  We hypothesize 

that scaffold fragments contaminated the samples so the impurity results in unreliable data.  The 

labels above are coordinated with CTS-GP (NM), CTS-GP in OGM (NMO), CTS-HA-GP (M) 

and CTS-HA-GP in OGM (MO). 
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Supplementary Figure 6.  Upon collection of the samples, it was observed that 6 samples 

displayed that the scaffold was moved from its original implantation site and migrated elsewhere 

on the skull (middle skull shows it moved towards the center and right skull shows it moved 

down towards the nose).  The skull to the left is a comparative sample where the scaffold 

remained in place. 
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