
Automatic Construction, Maintenance, and Optimization

of Dynamic Agent Organizations

A Thesis

Submitted to the Faculty

of

Drexel University

by

Evan Andrew Sultanik

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

September 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190335252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Copyright 2010
Evan Andrew Sultanik. All Rights Reserved.

ii

Dedications

This dissertation is dedicated to. . .

• my parents, Judi and Jeff, who furnished me with the requisite curiosity, patience, and free-

doms; and

• my wife Nadya—my most fervent supporter through this long process—who postponed her

dreams in deference to mine.

iii

Acknowledgments

It is with great pleasure that I thank all of the people that helped me get to this point. I have often

fantasied what I would say to them, but now in writing I struggle with how. This dissertation would

not have been possible had my advisor, William C. Regli, lacked the patience and foresight in guiding

me into the world of academic research. I am equally indebted to my co-advisor, Ali Shokoufandeh,

who taught me technical diligence and tempered my writing with humility. I must also thank my

late mentor, Pragnesh Jay Modi, who—during his brief tenure in my education—so profoundly

affected the course of my research by introducing me to multiagent optimization. I am also grateful

to Moshe Kam who in many ways has also acted as an unofficial co-advisor.

The content of this dissertation would not have been what it is had neither Dr. Regli provided me

the freedom to identify and frame the problems of my choice, nor Dr. Shokoufandeh donated his time

in my pursuit. Some of my pedantic freedom was also attributable to several fellowships I received

throughout my matriculation, for which I owe sincere thanks to the George Hill, Jr. Endowment and

the Koerner family. The remainder of my support was in the form of grants from various United

States government entities, all of which were ultimately made possible by annual financial support

from Viewers Like You.

I would also like to extend my thanks to everyone who donated time in proof-reading and com-

menting on this document, notably Robert N. Lass and my wife Nadya Sultanik (née—and known

professionally as—Nadya Belov). Robert deserves additional mention, as he was my collaborator

on much of my work during my studies, including the Mobed algorithm (cf. §6.2). Most notably,

I owe my deepest gratitude to my committee members: Rachel Greenstadt, Jeremy Johnson, Sven

Koenig, and Joseph Macker, for their time and continuous input on my ideas.

Most of all I must again thank Nadya for taking care of everything else going on in my life during

the void that was the completion of this dissertation.

For additional credits see page 148.

iv

Acknowledgments

v

Table of Contents

List of Tables . viii

List of Figures . ix

Abstract . xii

1. Introduction . 1

1.1 Exemplary Problems & Scenarios . 4

1.1.1 Location Design & Vehicle Routing Problems . 4

1.1.2 Art Gallery Problems . 5

1.1.3 Steiner Network Problems . 6

1.1.4 Dynamic Organization Problems . 6

1.1.5 The Pseudotree Creation Problem . 9

1.2 Overview of the Proposed Approach . 10

1.3 Evaluating Multiagent Systems . 12

1.4 Contributions . 15

2. Optimization Using the Primal-Dual Schema . 18

2.1 Approximation Algorithms . 18

2.2 The Primal-Dual Schema . 19

2.3 Proper Functions . 21

2.4 Conclusions . 23

3. The General Algorithm . 25

3.1 Multidirectional Graph Search . 26

3.1.1 A Primal-Dual Formulation . 26

3.1.2 The Distributed Model . 29

3.1.3 Correctness Proofs . 32

3.2 Efficiency of the Algorithm . 38

vi

3.2.1 Primary Communication Rounds . 39

3.2.2 Secondary Communication Rounds . 42

3.2.3 Time-Approximation Tradeoff . 44

3.2.4 Local Efficiency . 46

3.3 Conclusions . 47

4. Probabilistic Approximation Bounds . 48

4.1 Distributions of Trimmed Sums . 49

4.2 The Exponential Distribution . 53

4.3 Normal Distributions . 54

4.4 The Expected Value of Z . 56

5. Solving Constrained Forest Problems . 60

5.1 Steiner Network Problems . 60

5.2 Location Design Problems . 62

5.2.1 Problem Formalization . 63

5.2.2 Parallel Computation Model . 66

5.2.3 Analysis . 68

5.2.4 Distributing the Algorithm . 77

5.3 Art Gallery Problems . 81

5.3.1 Distributed Dominating Sets . 83

5.3.2 The Algorithm . 85

5.3.3 Empirical Analysis . 95

5.3.4 Art Gallery Variants . 96

5.4 Conclusion . 98

6. Dynamic Agent Organizations . 100

6.1 Online Topology Updates . 100

6.2 Pseudotree Construction . 108

6.2.1 The Mobed Algorithm . 109

TABLE OF CONTENTS TABLE OF CONTENTS

vii

6.2.2 Analysis . 117

6.3 Conclusions . 122

7. Conclusions . 125

Bibliography . 130

Appendix A: Notation, Nomenclature, and Glossary 138

Index . 143

Vitæ Curriculum Brevis . 147

viii

List of Tables

2.1 Constrained forest problems and their associated indicator functions. 22

3.1 A summary of lower bounds on the MST problem. 44

ix

List of Figures

1.1 The interaction graph of a multiagent system layered on top of the corresponding
network topology. 3

1.2 An example weighted distribution network, (a), along with the optimal spanning
forest and depot assignment for various depot opening costs, (b) & (c). 5

1.3 An articulating ad hoc sensor network. 6

1.4 A multiagent variable assignment problem mapped atop a peer-to-peer network. . 8

1.5 a6, whose interaction graph neighbors are a2 and a5, requests to join the existing
hierarchy in (a). If DFS is simply re-run the hierarchy in (b) results. Note that the
parents of both a4 and a5 change. The optimal hierarchy in terms of minimal depth and
edits—which could not have been produced by a DFS traversal—is in (c). 9

1.6 Worst-case time and space complexities of a number of sorting algorithms. 13

1.7 Asymptotic complexity bounds for three distributed constraint optimization algo-
rithms. 14

2.1 Standard procedure for approximating solutions to hard integer programming prob-
lems. 19

4.1 CDF for the distribution of the sum of the m smallest order statistics of a sample
of size 10 from the standard uniform distribution. 51

4.2 CDF for the distribution of the sum of the ` largest order statistics of a sample of
size 10 from the standard uniform distribution. 52

4.3 CDF for the distribution of the sum of the ` largest order statistics of a sample of
size 10 from the standard exponential distribution. 54

4.4 CDF for the distribution of the sum of the m smallest order statistics of a sample of
size 10 from the standard normal distribution, calculated from a Monte Carlo simulation. 55

x

4.5 CDF for the distribution of the sum of the ` largest order statistics of a sample of
size 10 from the standard normal distribution, calculated from a Monte Carlo simulation. 56

4.6 CDF for the distribution of the sum of the m smallest order statistics of a sample
of size 10 from the standard normal distribution truncated in the range [0, 1], calculated
from a Monte Carlo simulation. 57

4.7 CDF for the distribution of the sum of the ` largest order statistics of a sample
of size 10 from the truncated standard normal distribution truncated in the range [0, 1],
calculated from a Monte Carlo simulation. 57

5.1 Normalized cost of the solutions for a number of randomly generated Steiner network
problems. 61

5.2 Average number of messaging rounds required for the algorithm to reach quiescence
for a number of randomly generated Steiner network problems. 62

5.3 Solution quality of the algorithm for a number of randomly generated Steiner net-
work problems. 62

5.4 Example of the augmented location design graph and its optimal solution. 65

5.5 Sketch of the distributed location design and routing algorithm. 70

5.6 Example of an art gallery, visibility graph, and optimal guard placement. 83

5.7 A sketch of the multidirectional constrained graph search algorithm solving the Art
Gallery constrained forest problem. 86

5.8 Illustration of the “Two Peasants” method of point set polygonization. 96

5.9 Solution quality of the distributed art gallery algorithm for art gallery problems of
various size. 96

6.1 Illustration of the circumstances under which the dynamic addition of a new vertex
will maintain dual feasibility. 102

6.2 An execution of the Mobed algorithm for addition of a new agent to an existing
hierarchy. 115

LIST OF FIGURES LIST OF FIGURES

xi

6.3 Mobed’s handling of race conditions using engaged blocks. 116

6.4 Average number of rounds for Mobed to reach quiescence for a single agent addition.121

6.5 Illustration of the worst case configuration for DFS edit distance. 121

6.6 Comparison of the edit distance of DFS to Mobed. 122

LIST OF FIGURES LIST OF FIGURES

xii

Abstract
Automatic Construction, Maintenance, and Optimization

of Dynamic Agent Organizations
Evan Andrew Sultanik

Advisors: William C. Regli, Ph.D. and Ali Shokoufandeh, Ph.D.

The goal of this dissertation is to generate organizational structures that increase the overall

performance of a multiagent coalition, subject to the system’s complex coordination requirements

and maintenance of a certain operating point. To this end, a generalized framework capable of

producing distributed approximation algorithms based on the new concept of multidirectional graph

search is proposed and applied to a family of connectivity problems. It is shown that a wide variety

of seemingly unrelated multiagent organization problems live within this family. Sufficient conditions

are identified in which the approach is guaranteed to discover a solution that is within a constant

factor of the cost of the optimal solution. The procedure is guaranteed to require no more than

linear—and in some well defined cases logarithmic—communication rounds. A number of examples

are given as to how the framework can be applied to create, maintain, and optimize multiagent

organizations in the context of real world problems. Finally, algorithmic extensions are introduced

that allow for the framework to handle problems in which the agent topology and/or coordination

constraints are dynamic, without significant consequences to the general runtime, memory, and

quality guarantees.

1

Chapter 1: Introduction

The goal of this dissertation is to formalize the coordination requirements of complex systems;

the vision is that such systems might distributedly self-organize in order to increase the overall

performance of the coalition. This phenomenon manifests itself in human societies: Workers often

naturally coalesce into a leadership structure, as in a corporation. Efficiency is often achieved

through the parallelism inherent in managerial hierarchies. How can such concepts be extended to

the domain of intelligent software agents? The problem posed by this dissertation can be stated as

follows:

Given a notion of the way in which a group of agents need to interact, what is the best

organizational structure for the system that might expedite the process of coordination

while maintaining a certain operating point?

This shall be referred to as the Dynamic Distributed Multiagent Hierarchy Generation (Dyn-

DisMHG) problem.

The proliferation of mobile and handheld computers—such as laptops, personal digital assistants,

and smart phones—has propelled distributed computing into mainstream society. Over the past

decade these technologies have spurred interest in both decentralized multiagent systems and wireless

mobile ad hoc networks. Such networks, however, present many challenges to information sharing

and coordination. Interference, obstacles, and other environmental effects conspire with power- and

processing-limited hardware to impose a number of challenging networking characteristics. Messages

are routinely lost or delayed, connections may be only sporadically available and frequently lost, and

network transfer capacity is nowhere near that available on modern wired networks.

Many distributed optimization problems arise by virtue of these networks’ limitations on effi-

ciency and robustness, while others arise merely due to the networks’ existence. For example, some

problems are naturally distributed, requiring extra effort to capture and centralize the state of the

2

world such that a traditional centralized technique can be employed. Furthermore, hardware limi-

tations can be so severe that there may not even exist a single node with the resources to compute

a global solution. This dissertation addresses problems that arise in such situations.

When deploying a dynamic distributed system, one must always weigh the cost incurred by

network communication against any benefits of using a centralized approach. In some cases, the

problem may be changing so fast or the communications overhead so expensive that a centralized

algorithm is not able to maintain stability due to dynamism and/or the fact that the system state

is distributed across the network [1]. It is therefore imperative to emphasize local decision making

and autonomy over a centralized analogue, insofar as it is possible.

Sensor networks, for example, often communicate over ad hoc networks. Such networks suffer

from high amounts of bit and frame errors, requiring constant retransmission of data. Moreover,

mobile ad hoc networks (MANETs) suffer high packet losses and frame error rates, resulting in

less than 50% of the theoretical maximum throughput being achieved [2]. Since MANET network

topology is inherently in flux, the additional messaging overhead of a centralized control approach

can have a significant negative effect on the controllability, stability, and overall robustness of the

system.

Not all distributed solutions are satisfactory, however. A reasonable distributed algorithm must

run in worst case polynomial time at each agent and require no more than a linear number of

communication rounds to find a solution. The latter requirement is necessary since the global state

can always be centralized in linear time via näıve flooding.

In distributed systems there is very often a logical or societal structure that is overlaid upon the

actual communications network, dictating the patterns in which the agents interact. In the remainder

of this dissertation, such structures shall be interchangeably referred to as agent hierarchies, overlay

networks, interaction graphs, or constrained forests. As an example, note the interaction graph

and network topology in Figure 1.1. The interaction graph is constructed completely by the agents

(possibly as a function of the problem they are trying to solve), while the network topology is an

artifact of the physical orientation of the agents and is usually not controllable. Isomorphism between

Chapter 1: Introduction

3

Network Topology

Interaction Graph

a1

a2

a3
a4

a5

a6

Figure 1.1: The interaction graph of a multiagent system layered on top of the corresponding
network topology. A message from a2 to a6—necessitated by the application-layer coordination
algorithm and social topology—takes a circuitous route through the network.

the overlay topology and the network topology can be very important; discrepancy between the two

can cause unnecessary delays in messaging. Messaging at the application layer will be dictated by

the logical topology of the interaction graph, which in Figure 1.1 induces a circuitous route through

the network.

This dissertation identifies a family of connectivity problems that are efficiently distributedly

approximable with a bounded performance guarantee using the general paradigm of the primal-dual

schema. This is a bit surprising because many combinatorial problems formulated as linear program-

ming optimizations are known to be P-Complete (i.e., they are likely inherently sequential). It is

shown that a wide variety of seemingly unrelated multiagent organization problems live within this

family. Optimally solving many such problems is NP-Hard, necessitating bounded approximation,

vi&., tractable algorithms that find solutions within a constant factor of optimal. It is argued in

§1.3 that, for distributed multiagent algorithms, “tractable” should be taken to mean any algorithm

whose local runtime is no worse than polynomial in the size of the problem and, more importantly,

requires no more than a linear number of messaging rounds. This dissertation proposes a frame-

work that meets these requirements. Our examination of a family of problems illustrates that the

framework can be applied to create, maintain, and optimize multiagent organizations in the context

of real world problems.

Chapter 1: Introduction

4

1.1 Exemplary Problems & Scenarios

This section serves to motivate some of the multiagent organization problems for which this disser-

tation is concerned.

1.1.1 Location Design & Vehicle Routing Problems

The Location Design and Routing problem asks to find a subset of “depot” nodes and a spanning

forest of a graph such that every connected component in the forest contains at least one depot [3]. A

typical scenario takes the form of creating an optimal distribution network: Given a network of roads,

how many distribution centers need be built—and in which locations—such that deliveries can be

carried out as quickly as possible? What if the cost of building distribution centers is nonuniform with

respect to location? Scenarios are not strictly limited to logistical domains; in computer networking

and multiagent systems, for example, the unavailability of a central server/database necessitates

data redundancy in the system [4]. Many peer-to-peer systems, such as service oriented computing

platforms and distributed hash tables, promote certain nodes as supernodes. In this setting, the

supernodes are akin to the depots in the location design and routing problem. The problem of

selecting which subset of peers should perform a certain role such that they are well dispersed in the

network—what is referred to as the supernode selection problem [5]—is therefore equivalent to the

location design and routing problem. Similar problems also appear in the fields of sensor networks

and peer-based grid computing [6]. It is important to consider distributed solutions to this problem

as it is naturally distributed; extra effort is required to centralize the problem. Furthermore, as is

the case in many sensor networks, there may not be a single node with adequate resources to solve

the global problem. Computation is therefore subject to the same topology as the network itself.

Figure 1.2 gives an example of a weighted distribution network, Figure 1.2a, along with two optimal

solutions, Figures 1.2b & 1.2c, depending on the cost of opening a depot. In general, finding a set

of depots and a spanning forest of minimal weight is NP-Hard [7].

Chapter 1: Introduction 1.1 Exemplary Problems & Scenarios

5

15
0

10
0

150

224
(a) A
weighted
distribution
network
where a depot
can be opened
at any vertex.

D

D

D

(b) Optimal
solution if
the depot
opening cost
is ∈ [100, 150].

D

(c) Optimal
solution if
the depot
opening cost
is ∈ [150, 224].

Figure 1.2: An example weighted distribution network, (a), along with the optimal spanning
forest and depot assignment for various depot opening costs, (b) & (c).

1.1.2 Art Gallery Problems

Art gallery problems generally ask to find the minimum number of guards required to observe the

interior of a polygonal area [8]. Over the past thirty years since their proposition, these problems have

been thoroughly studied by the computational geometry community. Interest in art gallery problems

has seen a recent resurgence given their application to a number of areas of multiagent systems. For

example, many robotics, sensor network, wireless networking, and surveillance problems can be

mapped to variants of the art gallery problem [9]. Since such problems are naturally distributed, a

logical approach is to apply the multiagent paradigm (i.e., each guard is an agent).

As a motivating scenario, consider a wireless sensor network such as the one pictured in Figure 1.3.

Since one goal of the network is to maximize survivability, it may be desirable to conserve battery

power by having as few sensors active as necessary, especially for sensors with wide overlapping fields

of view. The problem is then to find a minimum subset of sensors that need to remain active in order

to provide a desirable level of coverage. As another scenario, consider a group of mobile robots each

equipped with a wireless access point. The objective of the robots is to maximally cover an area

with the wireless network. As the robots are traveling between waypoints, though, it is highly likely

that there will be a large amount of overlap in the coverage. Therefore, in order to save power, the

Chapter 1: Introduction 1.1 Exemplary Problems & Scenarios

6

a2
a1

a3

a4

(a) An ad hoc sensor network wirelessly coordi-
nating to optimize interior coverage.

a2

a3

a1

a4

(b) Dynamically-generated orientation.

Figure 1.3: In (a), an ad hoc sensor network must distributedly reorient. In (b), agents a1

and a4 rotate to guard the interior.

robots might want to choose a maximum subset of robots that can lower their transmit power while

still retaining coverage. The difficulty in each of these scenarios is for the agents to collectively find

the solution without relying on centralization of computation. Centralization is infeasible either due

to lack of resources (i.e., no single agent has powerful enough hardware to solve the global problem)

or due to lack of time (i.e., centralizing the problem will take at least a linear number of messaging

rounds). The decision versions of these problems are equivalent to art gallery problems which are

known to be NP-Complete [10, 11] and APX-Hard [12].

1.1.3 Steiner Network Problems

Steiner network problems generally ask to find a minimum weight set of edges that interconnect

subsets of a graph’s vertices. Many variants of Steiner network problems are NP-Complete, one

of which was among Karp’s original 21 NP-Complete problems [13].

The applications of Steiner networks to distributed systems are manifold. For example, a common

approach to ad hoc multicast networking is to construct an acyclic overlay network connecting all

nodes in a group, such that multicast packets can be broadcast across the overlay network [14, 15].

1.1.4 Dynamic Organization Problems

It is useful to impose organizational structure over multiagent coalitions. Hierarchies, for instance,

allow for compartmentalization of tasks: If organized correctly, tasks in disjoint subtrees of the hier-

Chapter 1: Introduction 1.1 Exemplary Problems & Scenarios

7

archy may be performed in parallel. Intuitively, the shallower the hierarchy the more subordinates

per manager, leading to more potential for parallelism. The difficulty lies in determining a minimum

depth hierarchy that is isomorphic to the problem being solved. In a business, for example, there is

very little sense in assigning an accountant from the billing department as the superior of a marketing

associate. Given a notion of the way in which the agents need to interact, the initial problem, then, is

to determine the best hierarchy that might expedite the process of coordination. Henceforth we will

refer to this problem as the Dynamic Distributed Multiagent Hierarchy Generation (DynDisMHG)

problem.

Solutions to the DynDisMHG problem currently have direct application in the field of multiagent

systems, including distributed problem solving [16], cooperative multiagent systems [17], distributed

constraint reasoning (DCR), command and control, mobile ad hoc networks (MANETs), sensor nets,

and manufacturing. For example, the computation time required by most complete DCR algorithms

is determined by the topology of a hierarchical ordering of the agents [18, 19, 20, 21]. The difficulty

is that (1) most algorithms assume that an oracle exists to provide an efficient hierarchy; and (2) the

few existing solutions to the Multiagent Hierarchy Generation problem are either centralized or do

not deal well (or at all) with dynamic addition and removal of agents from the hierarchy.

Let us consider the multiagent variable assignment problem pictured in Figure 1.4. Dotted lines

represent connections in the interaction graph, vi&. constraints between variables. It is assumed

that the variable assignment algorithm to be employed (e.g., a DCR algorithm) only requires com-

munication between agents whose variables are constrained to each other. The network topology is

linear; any messages sent between hosts h1 and h3 must be relayed through h2. Observe that the

interaction graph is decoupled from (i.e., non-isomorphic to) the network topology. For instance,

any messages agent a2 might have to send a4 regarding their constrained variables v5 and v9 must

be routed through host h2. By reorganizing the interaction graph (i.e., the variable/agent mapping

and/or the agent/host mapping), it may be possible to reduce the overhead imposed by network

routing, thereby reducing the cost of coordination.

Other potential applications of a solution to DynDisMHG exist in MANETs. Protocols such as

Chapter 1: Introduction 1.1 Exemplary Problems & Scenarios

8

Host h1 Host h2 Host h3

Agent a1

Agent a2

Agent a3 Agent a4
v2v1 v3

v4 v5

v6 v8v7 v9

Network Routing

Figure 1.4: A multiagent variable assignment problem mapped atop a peer-to-peer network.
The topology is linear: h1 ↔ h2 ↔ h3. Dotted lines represent connections in the interaction
graph, vi&. constraints between variables.

Fireworks [22] overlay a communications structure onto a wireless network, which is highly dynamic

as the nodes are constantly moving. There is the potential for cross-layer design: If the mobile

nodes are executing a multiagent system, a communications structure could be created to exploit

knowledge of both network and application layer properties.

There has been interest in DCR algorithms that are able to solve constantly changing prob-

lems [23, 24], including those in which agents can dynamically enter and leave the hierarchy [25].

All existing provably superstabilizing (i.e., “complete”) dynamic DCR algorithms, however, make a

similar assumption to their static DCR counterparts: that a separate algorithm exists to generate

and maintain the dynamically changing agent hierarchy.

Similar to dynamic DCR, there has been much interest in hierarchies of holonic multiagent

systems (or holarchies), with wide ranging applications in distributed problem solving and man-

ufacturing [26]. Some have even claimed that a prerequisite for innovation in multiagent systems

is the capability for subsets of agents to dynamically create ad hoc hierarchies, called “adhocra-

cies” [27]. Empirical evaluations have concluded that agents in a dynamic hierarchy are able to

perform distributed problem solving better than agents in a static hierarchy [28]. It is anticipated

that solutions to the problem of distributed multiagent hierarchy/holarchy/adhocracy generation

will motivate many other applications.

Chapter 1: Introduction 1.1 Exemplary Problems & Scenarios

9

a1

a2

a3

a4

a5

a6

(a)

a1

a2

a3

a4

a5

a6

(b)

a1

a2

a3

a4

a5

a6

(c)

Figure 1.5: a6, whose interaction graph neighbors are a2 and a5, requests to join the existing
hierarchy in (a). If DFS is simply re-run the hierarchy in (b) results. Note that the parents
of both a4 and a5 change. The optimal hierarchy in terms of minimal depth and edits—which
could not have been produced by a DFS traversal—is in (c).

1.1.5 The Pseudotree Creation Problem

Agent hierarchies, often called “variable orderings,” are employed in many Distributed Constraint

Reasoning (DCR) algorithms, usually as a means to parallelize computation for portions of the

constraint graph. Most provably optimal DCR algorithms require a special hierarchy in the form

of pseudotree [29, 110]. Furthermore, the computational complexity of such algorithms is often a

function of the breadth of the tree, since branches in the tree are what allow for parallelism. One

metric for the amount of possible parallelism in a tree is induced-width; in general, the problem of

finding a minimum-induced-width spanning tree of a graph is NP-Hard [31].

A valid hierarchy inherently has the property that each pair of neighboring agents in the inter-

action graph are either ancestors or descendants of each other in the hierarchy. This ensures that

no interaction will necessarily occur between agents in disjoint subtrees. Therefore, interactions in

disjoint subtrees may occur in parallel.

It is relatively trivial to prove that a simple depth-first traversal of the interaction graph will pro-

duce a valid hierarchy. Distributed algorithms for performing such a DFS traversal are known [32,

33]. Heuristics for guiding the DFS traversal for multiagent problem solving have also been pro-

posed [34]. A general problem with DFS-based approaches, though, is that they will often produce

sub-optimal hierarchies (i.e., trees that are unnecessarily deep). For example, the hierarchy in

Figure 1.5b might have been generated using a DFS traversal, however, the best-case hierarchy in

Figure 1.5c could not have been generated using DFS.

Chapter 1: Introduction 1.1 Exemplary Problems & Scenarios

10

A decentralized algorithm for creating valid pseudotree hierarchies has been proposed [29], how-

ever, its efficiency relies upon a priori knowledge about the maximum block size of the interaction

graph, and it is also unclear how it might be extended to dynamic hierarchies. Some DCR algorithms

construct a DFS-based pseudotree as the problem is being solved [32, 18, 35], and yet another has

been proposed to handle a relaxed version of pseudotrees [36], however, it is likewise unclear how

these algorithms might be extended to handle the intricacies of concurrency imposed by dynamic

hierarchies. A number of algorithms based on asynchronous backtracking have been developed that

dynamically reorder the agents within the hierarchy as the problem is being solved [28, 37], but this

approach has only been explored in terms of static DCR problems and it is unclear how it might be

extended to problems in which agents can dynamically be added and removed.

DFS-based algorithms are relatively inexpensive (most require only a linear number of rounds),

so an argument might be made that DFS could simply be re-run every time the tree changes, possi-

bly through the use of a self-stabilizing algorithm. In certain instances, however, such an approach

might cause a large disparity between the original hierarchy and the hierarchy resulting after the

perturbation, as pictured in Figure 1.5. Continuing the example of a business, the marketing depart-

ment should not necessarily have to change its managerial structure every time a new accountant

is hired in the billing department. An approach with a minimal number of edits to the existing

hierarchy is therefore desirable. One way to ensure a constant number of edits is to simply add

new agents as a parent of the root of the hierarchy. The problem with this method, however, is

that if many new agents are added then the hierarchy will tend toward a chain, which is the worst

case topology in terms of parallelism. What is ultimately desirable, then, is an approach that both

minimizes edit distance between successive hierarchies and also minimizes tree depth.

1.2 Overview of the Proposed Approach

A thesis of this dissertation is that the aforementioned motivating scenarios, and others like them,

can all be reduced to connectivity problems—problems in which each vertex requires to be connected

to some subset of the other vertices. Such problems occur when a group of agents need to efficiently

communicate with each other subject to a set of constraints on their topology. The idea of reducing

Chapter 1: Introduction 1.2 Overview of the Proposed Approach

11

such problems to the connectivity domain is not new; it has been espoused by many in the approx-

imation algorithms community. A detailed example of how and why these reductions occur is given

below in §2.3 after the introduction of some requisite formalism. A primary contribution of this

dissertation, then, is introduction of a novel generalized framework capable of automatically pro-

ducing distributed approximation algorithms that can solve a large family of connectivity problems.

In doing so we have a way of constructing and optimizing organizational structures in distributed

systems (subject to prescribed constraints on the underlying topology).

The ability to distributedly construct, optimize, and maintain organizational structures and

overlay networks with certain desirable properties has direct application in multiagent systems,

including the fields of:

• distributed problem solving [16]: computation can be parallelized by constructing high

degree overlay networks;

• cooperative multiagent systems [17]: Pareto-optimal orderings can be found through over-

lay networks;

• distributed constraint reasoning [110]: construction of pseudotrees (requisite for most

provably optimal distributed constraint reasoning algorithms);

• command and control [38]: determining optimal control hierarchies;

• mobile ad hoc networking [15]: creating Steiner networks for efficient multicast;

• sensor networks [39, 40]: power management; and

• multiagent manufacturing [26]: distributed task allocation.

Once a solution is found, small perturbations in the problem may occur. For example, a node

may either connect to or disconnect from the network. If the change is minor and/or localized, it

stands that a new solution might be easily found without resorting to re-solve the problem from

scratch. Additional contributions of this dissertation are the discovery of methods that allow for

dynamic maintenance of the optimized overlay networks as the problem changes, when possible.

Chapter 1: Introduction 1.2 Overview of the Proposed Approach

12

1.3 Evaluating Multiagent Systems

Many connectivity problems are NP-Hard, such as the famous Traveling Salesman Problem, Vertex

Cover, &c., meaning that finding optimal solutions to the problems is likely to be intractable.

Efficient greedy, heuristic, and local search algorithms do exist to solve such problems, however,

if/when a solution is found there is no way of knowing how close the solution is to optimal. Some

distributed optimization algorithms—the Adopt family of algorithms, for example [19, 41]—provide

a means of terminating when a solution is found that is within a given delta of optimal. This can be

problematic, however, if the cost of the optimal solution is unknown. What is ultimately desirable is

a theoretical bound on the distance from the optimal solution as a factor (i.e., a relative performance

guarantee). In approximation algorithm parlance, an algorithm that is ε-OPT produces solutions

that are no worse than ε times the cost of the optimal solution. Note that this is different than the

notion of “k-optimality” in the distributed constraint reasoning literature, wherein the term refers

to a solution in which no subset of k or fewer agents working together can improve the cost of the

overall solution [42].

Development of complexity theory has been one of the major achievements of computer science,

as it allows for evaluation and comparison of the efficiency of algorithms in a scalable way [43].

Complexity theory proposes evaluation of algorithms in terms of both the number of times the

most expensive operation is performed and the amount of data that are stored in memory. These

quantities are taken as a function of the size of the problem. While such metrics do not reveal how

much actual time is required for a computation on a certain problem instance, they do allow for

interpolating how techniques scale as the problem size increases. The assumption that computation

speed and memory will double every couple years makes a polynomial factor in the cost irrelevant

in the long term [43, 44]. As an example of complexity of computation, Figure 1.6 plots a number of

common sorting algorithms with respect to their asymptotic worst-case computational and memory

complexities. Sometimes the efficiency of algorithms is at the expense of another metric, such as

the stability of the sort (i.e., whether or not the relative ordering of equally weighted entries is

preserved). Nonetheless, a priori analysis can inform a systems engineer as to which algorithm

Chapter 1: Introduction 1.3 Evaluating Multiagent Systems

13

Space Complexity

C
om

p
u
ta

ti
on

al
C

om
p
le

x
it
y

c log n n n log n nc

n
n

lo
g
n

n
c

cn
n

!

b

f

a

d

c

h

e

g

Stable

a Heapsort

b Merge sort

c Introsort [45]

d Bubble sort

e Strand sort

f Quicksort†

g Brute force (DFS)

h Bogosort

†Assuming that memory pointers require logarithmic space.

Figure 1.6: Worst-case time and space complexities of a number of sorting algorithms.

should be employed in a given domain. Complexity theory can even be used to devise non-uniform

algorithms that dynamically choose the best sorting technique at runtime given properties of the

input [45].

One of the primary challenges is in creating efficient distributed asynchronous algorithms; these

types of algorithms are difficult to design since each computing device does not necessarily know the

state of the others at any point in time. Synchronous distributed algorithms, on the other hand,

have the disadvantage of being forced to execute at the speed of the slowest computing device,

and require a globally synchronized clock [46, 18]. Asynchronous algorithms have non-deterministic

program flow dependent on random fluctuations in communications latency, bandwidth and message

loss; a single distributed algorithm may perform drastically differently in one network setting than

in another. It is therefore unclear how the metrics used in traditional complexity theory might be

extended to distributed algorithms.

In the context of distributed algorithms, communications can be measured on a third axis as

in Figure 1.7. For example, the Distributed Stochastic Algorithm (DSA) [47] requires very little

memory at each node and very little local computation, but has a relatively high worst-case commu-

Chapter 1: Introduction 1.3 Evaluating Multiagent Systems

14

Space Complexity

C
om

p
u
ta

ti
on

al
C

om
p
le

x
it
y

c log n n n log n nc

n
n

lo
g
n

n
c

cn
n

!

Com
m
un

ica
tio

n
a

Optim
al

Non-Optimal b

c

d

a DSA [49]

b (BnB-)Adopt [19, 41]

c DPOP [20]

d MB-DPOP(1) [50]

Figure 1.7: Asymptotic complexity bounds for three distributed constraint optimization al-
gorithms.

nications overhead (possibly sending an exponential number of messages in asynchronous networks).

The Adopt algorithm [19] also has a high communications overhead and even higher memory and

local computation complexities, however, Adopt has guaranteed optimality and bounded approxima-

tion, both of which DSA lacks. The Distributed Pseudotree Optimization Procedure (DPOP) [20]

has the highest memory and computation complexity, but very low communications overhead. Such

analysis may be sufficient to inform a systems engineer as to which algorithm might be best suited

for a given domain. Probabilistic methods (notably from Queuing Theory [48]) are sometimes used

to compare distributed algorithms, but more often than not discrete event simulation is required.

Virtually all literature on measuring communication complexity with respect to the asymptotic

complexity of distributed algorithms consists of defining metrics that project the communication axis

onto the computation axis [51, 52, 53, 54]. Doing so, however, does not capture the multivariate

nature of communication. For example, a message sent over the Internet from one side of the world

to the other will always1 have at least 66 milliseconds of latency2. A sensor network may have
1Assuming correctness of the Special Theory of Relativity, correctness of the Principle of Causality, and lack of

subterranean networks.
2Taking the diameter of the Earth as 12,756 km and the speed of light as 299,792,458 m/s.

Chapter 1: Introduction 1.3 Evaluating Multiagent Systems

15

very low latency but may be constrained by bandwidth/power. Therefore, despite transmitting an

equivalent number of messages, a single distributed algorithm that is deployed on the Internet may

have very different asymptotic properties than the same algorithm deployed on a sensor network;

properties that cannot be solely captured in the computation of the algorithm (e.g., power usage from

bandwidth). Assuming local computation is tractable (e.g., polynomial time), then the time required

for a distributed algorithm to reach quiescence (i.e., to terminate) can be measured by bounding

the time required to transmit the longest causal chain of messages that needs to be sent [51, 53].

Therefore, in contrast to these other measures, it is of utmost importance to minimize the number

of communication rounds in distributed algorithms.

In cooperative multiagent systems agents are non-adversarial insofar as their goal is to optimize

some global objective [17]. In such systems it may be more efficient to have agents disseminate the

global state using a gossip algorithm [55, 56, 57], for if every agent has a reasonable belief as to

the global state then each can locally employ a centralized approximation algorithm to solve the

problem. A näıve gossip algorithm can disseminate global state to the entire network in a number

of communication rounds equal to the diameter of the network, which will in the worst case be O(n)

rounds. Therefore, if all agents in the system are trusted and have hardware sufficient to solve the

global problem centrally, then there is little sense in deploying a distributed algorithm that runs in

ω(n) rounds.

It is therefore a primary goal of this dissertation to create algorithms that balance the resource

usage of memory, computation, and messaging.

1.4 Contributions

This dissertation shows that a large family of multiagent organization problems can be solved effi-

ciently in a distributed manner. Many of these problems are NP-Hard and are therefore intractable

in centralized, sequential computation. We show that, in allowing distribution and exploiting locality

in the primal-dual schema, speedups are achievable. In fact, we show that distributed algorithms can

approximate a solution in linear time and, under certain well defined conditions, can even quiesce

in polylogarithmic or even logarithmic time. This is a bit surprising because many of the problems

Chapter 1: Introduction 1.4 Contributions

16

soluble to our approach are known to be P-Complete.

These claims are supported by distributed algorithms recently discovered by Sozio [58], Sadeh [59],

& al. These approaches, however, lack the desired generality and approximation/messaging bounds,

the attainability of which is demonstrated herein.

The primary novel contribution of this dissertation is therefore a generalized distributed algorithm

that can solve constrained forest problems with a constant optimization bound in no worse than

linear communication rounds. We introduce such an algorithm called the Generalized Distributed

Constrained Forest Algorithm for Constrained Multidirectional Search. We show that the algorithm

is correct and complete (i.e., it is guaranteed to find a feasible solution if one exists). We also

provide a series of examples of how to instantiate this framework for specific problems, including

Steiner network problems, art gallery/dominating set problems, and location design & vehicle routing

problems.

Strong bounds on the convergence of the algorithm alone is not sufficient, however. We therefore

prove that if the edge weights of the input graph are mapped to a metric space that conforms to

a specific set of constraints, then the solutions produced by our algorithm are guaranteed to be

2-OPT . We show that this requirement is necessary to achieve the speedup from concurrency. If the

input graph is not weighted in a sufficient metric space for the theoretical guarantees to hold, then

we show that there exists an ε such that the solution our algorithm discovers is with high probability

ε-optimal.

The ultimate problem we are working toward solving is that of dynamic multiagent organization.

Ideally, the algorithm should not have to completely re-optimize subsequent to every perturbation of

the problem. Therefore, we identify a family of events from which our algorithm can recover faster

than having to re-optimize from scratch. There are also instances when the topological constraints

on the desired forest are too expressive to be captured by our current primal-dual model. In some

cases the instantaneous approximation bound on the solution is not as important as the stability of

the solution. For example, for highly dynamic problems it may be better to have an organizational

structure that is relatively fixed, as opposed to a structure that is in constant flux as it tries to keep

Chapter 1: Introduction 1.4 Contributions

17

pace with the topological constraints of the ever changing problem. For such cases, we introduce an

algorithmic extension called Multiagent Organization with Bounded Edit Distance (Mobed).

Chapter 1: Introduction 1.4 Contributions

18

Chapter 2: Optimization Using the Primal-Dual Schema

This chapter covers the background mathematical constructs on top of which the algorithms that

are later introduced in this dissertation are based.

2.1 Approximation Algorithms

A common procedure for approximating solutions to hard integer programming problems is illus-

trated in Figure 2.1. First, the hard optimization problem is formulated as an integer program (IP)

whose integrality constraints are relaxed to produce a continuous optimization problem. The con-

tinuous problem is then solved and converted back to a feasible solution to (IP). The difficulty is

that solving the continuous relaxation can be very expensive for problems with many constraints.

Let us consider the Steiner network problem as an example. Given a subset of a network’s vertices

T ⊆ V , the Steiner network problem can be represented as the following integer program [60]:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅

xe ∈ {0, 1}, ∀e ∈ E,

(IP)

where each variable xe is an indicator as to whether the edge e is a member of the final Steiner

network, w(e) is the weight of edge e, δ(S) is the set of edges having exactly one endpoint in S,

x(F) 7→
∑
e∈F xe, and f : 2V → {0, 1} is a function such that f(S) = 1 if and only if ∅ 6= S∩T 6= T .

19

Optimization Problem

Integer Programming Formulation (IP)

Relaxed to a Continuous Optimization Formulation

Solution to the Continuous Problem

Approximated Solution to (IP)

Figure 2.1: Standard procedure for approximating solutions to hard integer programming
problems.

A continuous optimization relaxation for this integer program is the following linear program:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E.

(LP)

The difficulty arises due to the fact that the ∀S ⊂ V quantification expands to an exponential

number of constraints. Much work has been done to overcome this apparent obstacle, resulting in

the realization that not all of the constraints need be evaluated. The process by which this can be

accomplished is reviewed in the following sections.

2.2 The Primal-Dual Schema

The idea behind the primal-dual schema is that the dual formulation of (LP)—the continuous

optimization problem (a.k.a. the primal)—can be used to guide the solution of (LP) [61]. The

Chapter 2: Optimization Using the Primal-Dual Schema2.2 The Primal-Dual Schema

20

dual formulation for the Steiner network problem is

maximize
∑
S⊂V

f(S)yS

subject to: ∑
S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

(D)

It is a folklore result that the solution to the dual is a lower bound on the solution to the primal.

This property is called weak duality . Furthermore, the optimal solution to the dual will have the

same value as the optimal solution to the primal. This property is called strong duality . Finally,

the complementary slackness property ensures that a primal variable can have a positive value

only if its associated dual constraint is tight [62]. These properties conspire to produce a general

method for sequentially approximating hard integer programming problems, which is often called

the primal-dual strategy or schema. This general method is given in Algorithm 1.

Algorithm 1 The general primal-dual schema, as adapted from [63].
1: procedure Primal-Dual(IP)
2: Let (CO) be the continuous optimization relaxation of (IP).
3: Let (D) be the dual to (CO).
4: Initialize vectors x = 0 and y = 0 which are, respectively, the solutions for (CO) and (D).

/* Note that y will initially be dual feasible, but x may be primal infeasible. */
5: while x is primal infeasible do
6: While maintaining dual feasibility, deterministically increase the dual values yi until one

dual variable becomes tight (i.e., that variable cannot be increased any more without breaking
a dual constraint).

7: For a subset of the tight dual constraints, increase the primal variable corresponding to
them by an integral amount.

8: end while
9: The cost of the dual solution is used as a lower bound on OPT .

10: end procedure

The first algorithm using the primal-dual schema was devised to solve the assignment problem

and is due to Kuhn [64], who named it the “Hungarian Method”. The method was later dubbed

primal-dual by Dantzig, Ford, and Fulkerson [65]. Although they did not originally state their work

as using the primal-dual method, Bar-Yehuda and Even proposed the first approximation algorithm

Chapter 2: Optimization Using the Primal-Dual Schema2.2 The Primal-Dual Schema

21

based on the schema in solving the weighted vertex cover problem [66].

Proposing distributed algorithms using the primal-dual schema has been the subject of study

of a number of recent results [67, 59]. Problems that have been studied using this schema include

Steiner problems [68], point-to-point connectivity problems [69], distributed scheduling [70], vertex

cover [71, 72], facility location [58], and k-connectivity [59]. Some of these approaches provide

theoretical runtime bounds and others provide theoretical approximation bounds, however, almost

none provide both. The only approach that does provide both approximation and runtime bounds is

due to Sadeh [59], however, the runtime bound is superlinear. What these approaches seem to miss

is the following observation: Pushing up the dual variables until they become tight (i.e., lines 6 and 7

of Algorithm 1) appears to require only local information. This dissertation shows that, with proper

bookkeeping, the entire while loop in Algorithm 1 can be executed in parallel between agents. In

doing so, it is possible to get good bounds on both runtime and optimality. Creating distributed

algorithms that realize this claim is the primary contribution of this dissertation.

2.3 Generalizing the Schema: Proper Functions

One of the early generalized applications of the primal-dual technique to approximation algorithms

was proposed by Goemans and Williamson [73, 14]. Recall that in the formulation of the Steiner

network problem (q.v. §2.1), the primal constraints are defined using an indicator function f . For

the case of the Steiner network problem, f is defined such that f(S) = 1 if and only if ∅ 6= S∩T 6= T .

The intuition behind this function is that a partially constructed portion of the network, S ⊆ V , is

active (i.e., it needs to continue growing) if the network does not yet contain all necessary vertices

in T . Goemans and Williamson had the brilliant insight that by simple modification to this f

function the same paradigm can be used to solve a number of different connectivity problems [73].

For example, let T be the set of depot vertices and let R be the set of non-depot vertices; then

setting f(S) 7→ 1 if and only if S ∩ T = ∅ will solve the Location Design and Routing Problem.

Examples of other functions that solve preexisting connectivity problems are given in Table 2.1.

A function on the powerset of a set of vertices, f : 2V → {0, 1}, is said to be proper if the

following are true:

Chapter 2: Optimization Using the Primal-Dual Schema 2.3 Proper Functions

22

Table 2.1: Constrained forest problems and their associated indicator functions.

N
a
m

e
P

r
o
b
l
e
m

f
(S

)
=

1
iff
..
.

M
in

im
um

-w
ei

gh
t

pe
rf

ec
t

m
at

ch
in

g
F

in
d

a
m

in
im

um
-c

os
t

se
t

of
no

n-
ad

ja
ce

nt
ed

ge
s

th
at

co
ve

r
al

l
ve

rt
ic

es
.

|S
|i

s
od

d.

T
-j

oi
n

[7
3]

G
iv

en
an

ev
en

su
bs

et
T

of
ve

rt
ic

es
,

fin
d

a
m

in
im

um
-c

os
t

se
t

of
ed

ge
s

th
at

ha
s

od
d

de
gr

ee
at

ve
rt

ic
es

in
T

an
d

ev
en

de
gr

ee
at

ve
rt

ic
es

no
t

in
T

.

|S
∩
T
|i

s
od

d.

M
in

im
um

sp
an

ni
ng

tr
ee

/f
or

es
t

F
in

d
a

m
in

im
um

w
ei

gh
t

fo
re

st
th

at
m

ax
im

iz
es

co
nn

ec
ti

vi
ty

be
-

tw
ee

n
ve

rt
ic

es
.

∃u
∈
S
,v

/∈
S

:u
;
v
∈
G

.

G
en

er
al

iz
ed

St
ei

ne
r

tr
ee

F
in

d
a

m
in

im
um

-c
os

t
fo

re
st

th
at

co
nn

ec
ts

al
l

ve
rt

ic
es

in
T
i

fo
r

i
=

1,
..
.,
p
.

∃i
∈
{1
,.
..
,p
}

:∅
6=
S
∩
T
i
6=
T
i.

P
oi

nt
-t

o-
po

in
t

co
nn

ec
ti

on
G

iv
en

a
se

t
C

=
{c

1
,.
..
,c
p
}

of
so

ur
ce

s
an

d
a

se
t
D

=
{d

1
,.
..
,d
p
}

of
de

st
in

at
io

ns
in

a
gr

ap
h
G

=
〈V
,E
〉,

fin
d

a
m

in
im

um
-c

os
t

se
t
F

of
ed

ge
s

su
ch

th
at

ea
ch

so
ur

ce
-d

es
ti

na
ti

on
pa

ir
is

co
nn

ec
te

d
in
F

.

|S
∩
C
|6=
|S
∩
D
|.

P
ar

ti
ti

on
in

g
(w

/t
ri

an
gl

e
in

eq
ua

lit
y)

F
in

d
a

m
in

im
um

-c
os

t
co

lle
ct

io
n

of
ve

rt
ex

-d
is

jo
in

t
tr

ee
s,

pa
th

s,
or

cy
cl

es
th

at
co

ve
r

al
l

ve
rt

ic
es

.
S
6≡

0(
m

od
k
).

L
oc

at
io

n
de

si
gn

/r
ou

ti
ng

Se
le

ct
de

po
ts

am
on

g
a

su
bs

et
D

of
ve

rt
ic

es
of

a
gr

ap
h
G

=
〈V
,E
〉

an
d

co
ve

r
al

l
ve

rt
ic

es
in
V

w
it

h
a

se
t

of
cy

cl
es

,
ea

ch
co

nt
ai

ni
ng

a
se

le
ct

ed
de

po
t,

w
hi

le
m

in
im

iz
in

g
th

e
su

m
of

th
e

fix
ed

co
st

s
of

op
en

in
g

de
po

ts
an

d
th

e
su

m
of

th
e

co
st

s
of

th
e

ed
ge

s
in

th
e

cy
cl

es
.

∅
6=
S
⊆
V
.

Chapter 2: Optimization Using the Primal-Dual Schema 2.3 Proper Functions

23

Null Property: f(∅) = 0;

Symmetry Property: ∀S ⊆ V : f(S) = f(V \ S); and

Disjointness Property: ∀A,B ⊆ V : (A ∩B = ∅) =⇒ f(A ∪B) ≤ max{f(A), f(B)}.

If f is proper then Goemans and Williamson’s algorithm has two additional properties: the algorithm

will run in polynomial time, and the solution it produces will be 2-OPT (i.e., the cost of the solution

will be no more than two times the cost of the optimal solution). Goemans and Williamson named the

class of problems representable as proper functions as constrained forest problems. Many constrained

forest problems are NP-Hard, hence the motivation to find an approximate solution in polynomial

time.

The space of functions amenable to solution via the primal-dual schema has also been expanded to

include other families. For example, both well spaced functions [60] and supermodular functions [74]

have been investigated. A function f : 2V → {0, ρ1, ρ2, . . . , ρk} is said to be well spaced if ∀i ∈

{1, 2, . . . , k − 1} : ρi+1 ≥ |A|ρi, where A is the set of active vertices. A function f : 2V → Z is said

to be weakly supermodular if f(V) = 0 and for every A,B ⊆ V at least one of the following holds:

• f(A) + f(B) ≤ f(A \B) + f(B \A)

• f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

Note that proper functions are weakly supermodular; an algorithm for solving constrained forest

problems defined by weakly supermodular functions was first given in [75] and has an approximation

factor of 2
|A|∑
i=1

1
i
. This was later improved to a factor of 2 by Jain in [74].

2.4 Conclusions

While the primal-dual schema has been known for many years, it did not reach its current level

of awareness until the approximation algorithms community took hold of it in the 1990s. Thanks

to the discoveries of Aggarwal [60], Goemans & Williamson [75], Vazirani [61], & pl. al., it is now

known that the schema works very well for bounded approximation. They were able to realize that

not all of the exponential constraints in the primal and exponential variables in the dual need to

Chapter 2: Optimization Using the Primal-Dual Schema 2.4 Conclusions

24

be represented, let alone computed, in order to approximate a solution with bounded optimality in

polynomial time. Furthermore, a large family of problems defined by proper functions and their

extensions are amenable to the schema [14].

Of the few distributed approaches for solving constrained forest problems that do exist, some

provide theoretical runtime bounds and others provide theoretical approximation bounds, however,

almost none provide both and absolutely none have sublinear runtime bounds. A major contribution

of this thesis is the discovery that further efficiency improvements can be achieved by reconstructing

the schema in a distributed manner to exploit the relative locality of the interactions in the algorithm.

We will show that for a large family of problems we can maintain bounded approximation in a

linear—and in some cases even polylogarithmic—number of phases.

In the next chapter a new distributed algorithm for solving constrained forest problems is intro-

duced based upon the primal-dual schema. The algorithm is guaranteed to run in a linear number

of communication rounds and, in certain well defined circumstances, logarithmic communication

rounds. Furthermore, if the problem is encoded properly, the solution our algorithm discovers is

guaranteed to be no worse than 2 times the cost of optimal. In Chapter 4 it will be shown that—even

without proper encoding of the problem—the expected value of the approximation bound will be

constant for a large family of edge weight distributions. In Chapter 5, examples are given as to how

this framework can be instantiated (e.g., furnished with distributed protocols) for specific problems

and their associated proper functions. Also in that chapter the approach is empirically evaluated for

several real-world domains. Finally, in Chapter 6 we provide algorithmic extensions that can handle

dynamic changes of the underlying structure.

Chapter 2: Optimization Using the Primal-Dual Schema 2.4 Conclusions

25

Chapter 3: The Generalized Distributed Constrained Forest Algorithm

Given a weighted graph with specified start and goal vertices, a bidirectional graph search performs

two simultaneous searches: one initiated from the start vertex and the other from the goal vertex.

When there is an overlap in the two searches’ fringes, a path between the start and goal is discovered.

Furthermore, if the goal-test function is modified such that the algorithm terminates when both

searches expand the same node and an optimal search algorithm is used (e.g., A∗), then the resulting

path will be of minimum length. Now consider the generalization of this problem in which the

search is further constrained by specifying an arbitrary number of intermediate vertices that must be

interconnected through some path. We call such intermediate vertices terminals. This generalization

captures a number of different problems—many of which are NP-Hard—including path planning

with waypoints, finding a minimum length tour (vi&. the traveling salesman problem), and the

Steiner tree problem [60], which are collectively called constrained forest problems.

The idea of multidirectional search has existed for quite some time in the context of unconstrained

search [76], however, there is very little in the literature on multidirectional constrained search. An

algorithm was recently discovered for the related problem of distributedly clearing the entire search

space [77]. There have also been a number of resent results in the context of multiagent path

planning, such as the AA∗ algorithm employed in the AGENTFLY framework [78], however, these

approaches are primarily concerned with online planning and distributed deconfliction. Similar

speedups in graph search have also recently been achieved through disk-based search [79]. A family

of distributed best-first search algorithms also exists [19], however, this is in the context of distributed

constraint reasoning and not general graph search.

We define multidirectional graph search as the process of finding a tree in the search space that

connects all of the terminals by simultaneously performing a search emanating from each terminal.

Given one intelligent agent per terminal, this approach is inherently distributable, with potential

for significant speedups from concurrency. The difficulty is in proving that

26

1. the concurrent searches will not induce a cycle in the output;

2. the resulting tree will have an upper bound on its weight;

3. the solution technique is resilient to the fact that each agent only has local information and

no shared memory; and

4. the overhead of these invariants will not outweigh the potential speedup from concurrency.

This chapter introduces the algorithm and prove these properties. After the introduction and defi-

nition of some requisite formalism, property 1 is proven below in Corollary 1 of §3.1.3. Property 2

is proven in Proposition 3, property 3 will be apparent from the definition of the method itself

(Algorithm 2), and property 4 is proven by showing that the algorithm requires at most linear—and

sometimes only logarithmic—messaging rounds in Proposition 5 of §3.2.

3.1 Multidirectional Graph Search for Constrained Forests

The basic mechanism of the algorithm is quite simple: Each terminal concurrently performs a best-

first search using a special potential function to prioritize the fringe nodes. During each round the

node of minimum potential is expanded from each search’s fringe, thus adding an edge to the final

forest. When two of the concurrent searches expand the same node, then they merge their remaining

fringes and continue as a single search. When all of the searches have merged together, it implies

that the forest spans all of the terminals—meaning that the forest is a feasible solution—so the

algorithm terminates. An overview of the entire process is given in Algorithm 2.

The remainder of this section provides the notation and descriptions required to formally define

and model the algorithm. This is used at the end of the section to prove correctness and completeness,

and will be expanded later in the chapter to provide formal bounds on the runtime and performance

of the algorithm.

3.1.1 A Primal-Dual Formulation

In order to prove the various properties of the algorithm, it is useful to cast the search problem as

an equivalent optimization problem. In fact, the underlying mechanism of the algorithm is that it

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

27

Algorithm 2 The multidirectional graph search algorithm.
1: procedure Multidirectional-Graph-Search(T, v, w, δ)

Require: T is the set of terminals. v ∈ T is the terminal running this instance of the search algorithm. w is
a function that maps edges to their associated weight in the metric space

ˆ
ω̃, 3

2
ω̃

˜
∈ Q. δ is a successor

function such that δ(S) is the set of edges having exactly one endpoint in S.
Ensure: H = 〈Ṽ , Ẽ〉 is the resulting forest.

2: Ṽ ← {v} /* The initial solution has just our vertex. . . */
3: Ẽ ← ∅ /* . . .and no edges */

4: F ← δ({v}) /* The fringe of our search, initialized to v’s incident edges */

5: ∀u ∈ V : g(v)← 0 /* Initialize the path-cost function, implicitly setting yS ← 0 for all S ⊂ V */

6: while (Ṽ ∩ T 6= T) ∧ (F 6= ∅) do /* while H does not contain all terminals and the fringe is not
empty */

7: Find an edge in e = 〈v, u〉 ∈ F such that ε = w(e)− g(u)− g(v) is minimized.
8: if u either is being or already was expanded by another search then
9: Union Ṽ , Ẽ, F , and g with the respective data structures of the search that already expanded
u and then merge our execution with that search.

10: if The other search also expanded the edge 〈v, u〉 this round then
11: ε← ε

2

12: end if
13: end if
14: for all k ∈ Ṽ : k is incident to an edge in the fringe do
15: g(k)← g(k) + ε /* Implicitly set yṼ ← yṼ + ε */
16: end for
17: F ← (F \ {e}) ∪ δ({u}) /* Remove e and add the edges incident to u */

18: Ṽ ← Ṽ ∪ {u}
19: Ẽ ← Ẽ ∪ {e}
20: end while
21: end procedure

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

28

casts the optimization problem as an integer program whose integrality constraints are relaxed to

produce a continuous optimization problem (a.k.a. the primal). The dual formulation of the primal

is then used to guide the solution of the primal. The solution is then converted back to a feasible

solution of the integer program. This is a well known general method for sequentially approximating

hard integer programming problems, which is often called the primal-dual strategy or schema [61].

Recall that the complementary slackness property (q.v. §2.2) ensures that a primal variable can

have a positive value only if its associated dual constraint is tight. This property allows us to use

the dual to guide the solution of the primal. In a more tangible sense, it is what informs us as to

the potential function that should be used to prioritize the fringe nodes in the best-first search.

Let f : 2V → {0, 1} be an auxiliary function such that f(S) = 1 if and only if the set S contains

some terminals but not all terminals:

f(S) 7→

1 if ∅ 6= S ∩ T 6= T,

0 otherwise.

Note that f is proper (q.v. §2.3). Recall from §2.1 that the optimization problem of finding a mini-

mum weight tree that spans the terminals can then be captured as the following integer program [60]:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅

xe ∈ {0, 1}, ∀e ∈ E,

(IP)

where each variable xe is an indicator as to whether the edge e is a member of the final tree, V

is the set of the graph’s nodes, δ(S) is the set of edges having exactly one endpoint in S, and

x(F) 7→
∑
e∈F xe, ∀F ⊆ E. Therefore, any forest H = 〈Ṽ , Ẽ〉 ⊆ G will be a feasible solution to the

problem if
(
f(Ṽ) = 0

)
=⇒

(
Ṽ ∩ T = T

)
.

Let (LP) denote the linear programming relaxation of (IP) obtained by replacing the integrality

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

29

restriction with xe ≥ 0. The dual of (LP) is

maximize
∑
S⊂V

f(S)yS

subject to: ∑
S:e∈δ(S)

yS ≤ w(e), ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

(D)

An edge is tight if w(e) =
∑
S:e∈δ(S) yS . Let Z∗LP be the cost of the optimal solution to (LP) and let

Z∗IP be the cost of the optimal solution to (IP). It is easy to see that Z∗LP ≤ Z∗IP.

The way the algorithm’s multidirectional search corresponds to solving the primal-dual optimiza-

tion problem is as follows. Since the algorithm starts off with an empty tree, the initial solution, H,

is dual feasible but not necessarily primal feasible. By choosing an edge from the fringe that mini-

mizes the potential function (cf. line 7 of Algorithm 2), we are essentially choosing a dual constraint

to become tight. By the complementary slackness property, this means that an associated primal

variable (i.e., the edge) can become a part of the final tree (line 19). The path-cost update (line 15)

is essentially closing the duality gap, which implicitly pushes up the values of the dual variables yS

for all S ⊆ V that are currently involved in a search. The potential function is what ensures that H

remains dual feasible (this is proven below in Proposition 2). Finally, the while loop (line 6) ensures

that H is primal feasible.

3.1.2 The Distributed Model

This section serves to define a model of distributed computation that captures the primal-dual

optimization scheme on which the algorithm is based. This distributed model is then used in the

following section to provide theoretical bounds on the optimality of the algorithm.

We assume that the communications network provides guaranteed delivery and ordering of mes-

sages, however, there may be arbitrary latency (i.e., the network is asynchronous [46]). We further

assume that all agents are honest and correct and there are no malicious interlocutors, and thus

need not consider the problem of Byzantine failure. There is one agent per terminal. The agents

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

30

are non-adversarial insofar as their primary goal is to find a feasible solution to the search problem.

The collective is therefore a cooperative multiagent system [17]. Agents’ perceptions of the graph

are consistent, possibly through the use of a distributed consensus algorithm, however, each agent

only requires local knowledge of its neighbors in the graph. Each vertex has a unique identifier with

a globally agreed ordering. This ordering can be used to construct a total ordering over the edges

(e.g., by combining the unique identifiers of the incident vertices).

The algorithm is round-based, with each round corresponding to a single iteration of the while

loop on line 6 of Algorithm 2. The rounds proceed asynchronously between each of the searches.

Therefore, as the searches merge throughout the execution of the algorithm, the rounds naturally

become synchronized.

Let Ht = 〈Ṽt, Ẽt〉 be the partially constructed tree at the beginning of round t (i.e., the tth

iteration of the while loop on line 6 of Algorithm 2). Let Ct be the set of connected components

in Ht. For sake of brevity and simplicity, let µt : V → Ct be a function mapping vertices to their

associated connected component during round t; therefore, µt(v) 7→ Ci =⇒ v ∈ Ci(∈ Ct). A

connected component Ci ⊆ V such that f(Ci) = 1 (i.e., Ci contains at least one terminal but not

all of the terminals) is still actively performing its search; such components are therefore called

active. The fringe of a connected component’s search is therefore the set of edges in the cut-set of

the component. Let gt : V → Q be a mapping of vertices to a rational number during round t. In

the context of search, these values represent an estimate on the path-cost of each vertex, however,

they also represent an upper bound on the duality gap in the associated optimization problem.

Let Jt : V ×V → {0, 1} be a binary relation defining which edges will be added to the tree during

round t. Each active component will choose to add the edge in its fringe that has minimal duality

gap. Therefore, Jt(u, v) = 1 if and only if f(µt(u)) = 1 and

〈u, v〉 = arg min
〈i,j〉∈δ(µt(u))

w(〈i, j〉)− gt(i)− gt(j). (3.1)

Ties in the minimization are broken based upon the ordering of the edges. Let J+ denote the

transitive closure of J .

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

31

Note that J does not necessarily commute: (∃t : Jt(u, v)) 6=⇒ (∃s : Js(v, u)). In the case when

Jt(u, v) = Jt(v, u), the union between µt(u) and µt(v) is said to be mutual . Also note that as long

as there exists a feasible solution to (IP) then the minimization ensures that each search must have

exactly one edge in the fringe that becomes tight each round:

∀C ∈ Ct : f(C) =
∑

〈u,v〉∈δ(C)

Jt(u, v).

Ht is the partially constructed tree during round t, initialized to H0 = 〈V, ∅〉. The partial tree is

updated each round with the set of all edges that became tight during the round:

Ht+1 = Ht ∪ {〈u, v〉 ∈ E : Jt(u, v) ∨ Jt(v, u)}.

For a set S ⊆ V , let yS be the dual variable associated with S. Initially all such variables are

set to zero. Note that in actuality these variables need not be made part of an implementation of

the algorithm; they exist solely for the purpose of proving properties of the algorithm. These dual

variables are implicitly updated as follows:

yS ←

w(〈i,j〉)−gt(i)−gt(j)

1+Jt(j,i)
if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.

(3.2)

The g values are initialized such that ∀v ∈ V : g0(v) = 0. They are updated each round such

that

gt+1(v) = gt(v) + yµt(v). (3.3)

The value gt(v) can therefore be interpreted as the amount of slack remaining in the dual variables

during round t before an edge incident to vertex v becomes tight.

Let τ be the number of rounds required for the algorithm to reach quiescence. Therefore, τ is

the earliest round during which there are no active components: τ = mint∈N0 (∀C ∈ Ct : f(C) = 0).

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

32

3.1.3 Correctness Proofs

Lemma 1. Any cycle in the intersection graph1 of Ht+1 formed from Ct must consist solely of edges

along the cuts between active components.

Proof. Assume, on the contrary, that there exists a cycle containing an edge that is incident to

at least one inactive component. Let 〈u, v〉 be such an edge and assume µt(v) is inactive; then

(3.1) implies that v’s connected component has no outgoing edges,

∀i ∈ µt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

The potential cost of an edge is the fractional quantity associated with ε on line 7 of Algorithm 2.

Lemma 2. Any cycle in the intersection graph of Ht+1 formed from Ct must consist of edges of

equal potential cost.

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle; then (3.1) implies that all edges in a cycle must

be cuts between existing connected components. Therefore, µt(u1) 6= µt(v1). Furthermore, there

must be another edge in the cycle, e2 = 〈u2, v2〉, such that µt(v2) = µt(u1). It must also be true

that Jt(u1, v1) = Jt(u2, v2) = J+
t (u1, v2) = 1. By Lemma 1 all components in the cycle are active.

Therefore, applying (3.1) gives

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2).

In general, this inequality will hold for the incoming and outgoing edges of any connected component
1An intersection graph is formed from a family of sets C = {C1, C2, C3, . . .} by creating one super-vertex vi for

each set Ci and connecting it to any other vertex vj by an edge whenever vi and vj ’s corresponding sets have a
nonempty intersection. This produces the edge set {〈vi, vj〉 : µ(vi) ∩ µ(vj) 6= ∅}.

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

33

in the cycle. Therefore, by transitivity,

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2)

≤ w(e1)− gt(u1)− gt(v1),

implying that

w(e1)− gt(u1)− gt(v1) = w(e2)− gt(u2)− gt(v2).

Proposition 1. The intersection graph (q.v. footnote 1 on page 32) of Ht+1 formed from Ct is

acyclic.

Proof. Assume, on the contrary, that there is a round t during which a cycle of length ` is formed.

Since the graph is simple, ` > 1. By Lemma 2, all of the edges in the cycle must be of equal potential

cost. Therefore, each connected component will have had a tie between two fringe edges which must

have been broken using the edge ordering. Therefore, either ` = 1 or there are two edges with the

same unique identifier, both of which are contradictions.

Claim 1. If all edge weights are coprime, then Proposition 1 will hold even if the unique identifier

ordering assumption does not.

Corollary 1. H0, . . . ,Hτ are all acyclic.

Proof. Since H0 = 〈V, ∅〉, the base case is acyclic. Induction over Proposition 1 then proves the

corollary.

Lemma 3. Let t′ be the round during which an edge e = 〈u, v〉 is added to the spanning forest. Then

e will not be in the cut of any component in a subsequent round: ∀t > t′, C ∈ Ct : e /∈ δ(C).

Proof. µt′+1(u) = µt′+1(v) = µt′(u)∪µt′(v). Therefore, in all rounds subsequent to t′ both endpoints

of e are in the same component and thus cannot be in the fringe.

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

34

Proposition 2. The vector y is a feasible solution to (D) and has the property

∑
e∈Hτ

w(e) ≤
∑
e∈Hτ

∑
S:e∈δ(S)

yS .

Proof. The fact that y is a feasible solution to (D) is a straightforward result of the fact that

y is initially zero and is updated according to (3.2). Let t be the round during which an edge

e = 〈u, v〉 ∈ Hτ was added to the forest. It follows from the definition of (3.3) that

(
gt(u) =

t−1∑
i=0

yµi(u)

)∧(
gt(v) =

t−1∑
i=0

yµi(v)

)
.

Furthermore, at the beginning of round t the potential for e is ε = w(e) − gt(u) − gt(v). Once e is

added to Ht, the dual variables yµt(u) and yµt(v) are updated according to (3.2). Then there are

three possible cases:

1. f(µt(u)) = f(µt(v)) = Jt(u, v) = Jt(v, u) = 1;

2. f(µt(u)) = f(µt(v)) = Jt(u, v) + Jt(v, u) = 1; or

3. f(µt(u)) + f(µt(v)) = 1.

In case 1 (handled on line 11 of Algorithm 2),

yµt(u) + yµt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε =⇒ w(e) =

t∑
i=0

(
yµi(u) + yµi(v)

)
. (3.4)

For case 2, assume without loss of generality that Jt(u, v) = 1 and Jt(v, u) = 0. For case 3, assume

without loss of generality that f(µt(u)) = 1 and f(µt(v)) = 0. Then for both of these cases note

that yµt(u) = ε
1+Jt(v,u) = ε, implying

w(e) = yµt(u) +
t−1∑
i=0

(
yµi(u) + yµi(v)

)
. (3.5)

Lemma 7 implies that the summations in (3.4) and (3.5) comprise all sets that cut e, thus completing

the proof.

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

35

Lemma 4 (Theorem 3.6 of [14]). For any t ≤ τ , let I be the intersection graph of the final spanning

forest Hτ formed from Ct. Remove all isolated vertices in I that correspond to components in Ct that

are inactive. Then no leaf in I corresponds to an inactive component.

Proof sketch. The contrary leads to the necessity that at least one edge incident to an inactive

component cannot be a part of Hτ , which is a contradiction.

Proposition 3. If there exists an ω̃ such that all edge weights are in the range
[
ω̃, 3

2 ω̃
]

then the

cost of the final tree Hτ is bounded above by
(

2− 2
|V |

)
Z∗IP.

Proof. Without loss of generality, assume yS > 0 =⇒ f(S) = 1. This property ensures that∑
S⊂V yS ≤ Z∗LP. Since it is clear that Z∗LP ≤ Z∗IP, we then have

∑
S⊂V yS ≤ Z∗LP ≤ Z∗IP. Proposi-

tion 2 ensures that the weight of Hτ is

∑
e∈Hτ

w(e) ≤
∑
e∈Hτ

∑
S:e∈δ(S)

yS =
∑
S⊂V

yS |Hτ ∩ δ(S)|.

To prove this theorem we will show by induction over the construction of Hτ that

∑
S⊂V

yS |Hτ ∩ δ(S)| ≤
(

2− 2
|R|

) ∑
S⊂V

yS . (3.6)

The base case certainly holds at round zero since all yS are initialized to zero. Let A be the set

of edges added to the spanning forest during an arbitrary round t. For each edge e = 〈u, v〉 ∈ A,

let εe denote the potential value associated with that edge: εe = w(e)− gt(u)− gt(v). Now sort A

according to descending potential value, such that ei ∈ A is the edge with the ith largest potential.

At the end of a round t, the left-hand side of (3.6) will increase by at most

∑
C∈Ct:f(C)=1

yC |Hτ ∩ δ(C)| =
∑

C∈Ct:f(C)=1

∑
〈u,v〉∈A:u∈C

Jt(u, v)εe
1 + Jt(v, u)

|Hτ ∩ δ(C)|. (3.7)

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

36

If we can prove that this increase is bounded above by the increase of the right-hand side, namely

(
2− 2
|V |

) |A|∑
i=1

i× εei , (3.8)

then we will be done.

First, observe that (3.7) can be bounded above by

(
max
e∈A

εe

) ∑
C∈Ct:f(C)=1

∑
〈u,v〉∈A:u∈C

Jt(u, v)|Hτ ∩ δ(C)|. (3.9)

Next, observe that (3.8) can be bounded below by

(
min
e∈A

εe

)(
2− 2
|V |

)
|A|
(
|A|
2

+
1
2

)
. (3.10)

Now let I be the intersection graph of the final spanning forest Hτ formed from Ct. Remove all

isolated vertices in I that correspond to inactive components in Ct. Notice that I is a forest, and by

Lemma 4 no leaf in I corresponds to an inactive component. Let Na be the set of vertices in I that

correspond to active components: Na = {C ∈ Ct : f(c) = 1}, and let Ni be the set of vertices in I

corresponding to inactive components. The degree of a vertex v in I corresponding to component

C, denoted dv, must be |{e ∈ δ(C) : e ∈ Hτ}|. Then the summation of (3.9) can be rewritten as

∑
v∈Na

dv =
∑

v∈Na∪Ni

dv −
∑
v∈Ni

dv ≤ (2|Na| − 2) .

This inequality holds since I is a forest with at most |Na| + |Ni| − 1 edges, and since each vertex

corresponding to a guarded component has degree at least 2. Substituting this result back into (3.9)

we have

(3.7) ≤ (3.9) ≤
(

max
e∈A

εe

)(
2− 2
|V |

)
|A|,

since the number of active components is always no more than |V |. Therefore, (3.7) ≤ (3.10) ≤ (3.8)

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

37

if during every round the following invariant holds:

max
e∈A

εe ≤
(
|A|
2

+
1
2

)
min
e∈A

εe,

which is clearly true because all of the edge weights are in
[
ω̃, 3

2 ω̃
]
. Hence the theorem is proven.

By using induction over the growth of a connected component, it is possible to identify an

alternative set of conditions under which the algorithm is guaranteed to produce 2-optimal solutions

that do not rely on assumptions about the distribution of edge weights. Roughly speaking, if we

can bound the number of edges that will later be added to an active component then we can also

prove 2-optimality. In order to prove this, let d : N0 × 2V → N0 be an auxiliary function such

that d(t, S ⊆ V) returns the number of edges incident to the vertices in S that will become tight in

rounds later than t:

d(t, S) 7→

∣∣∣∣∣
{
〈x, y〉 ∈

⋃
v∈S

δt(v) :

(
∃t′ : t < t′ ≤ τ ∧

(
Js(x, y) ∨ Js(y, x)

))}∣∣∣∣∣ .
Proposition 4. Algorithm 2 will produce a 2-optimal solution if ∀e = 〈u, v〉 ∈ Ẽ :

∃t : Jt(u, v) = 1 ∧ Jt(v, u) = 0︸ ︷︷ ︸
e was not added mutually

∧ d(t, {u}) ≤ 1︸ ︷︷ ︸
∨

∃t : Jt(u, v) = Jt(v, u)︸ ︷︷ ︸
e was added mutually

∧ d(t, {u, v}) ≤ 3︸ ︷︷ ︸
 .

(at most one additional edge incident to u becomes tight in a later round)

(at most three additional edges incident to u and v become tight in a later round)

Proof. We still need to ultimately prove the following invariant:

∑
e∈Hτ

w(e) ≤ 2
∑
S⊂V

yS .

Now let us consider the addition of a single edge e = 〈u, v〉 of potential ε = w(e) − gt(u) − gt(v)

during an arbitrary round t. Without loss of generality assume that Jt(u, v) = 1, but Jt(v, u) is

Chapter 3: The General Algorithm 3.1 Multidirectional Graph Search

38

arbitrary. The increase of the right-hand side of the invariant is always ε. Now, for sake of analysis,

assume that the constrained forest Ht : t ∈ {0, 1, . . . , τ} is actually represented as a directed graph,

where each edge 〈i, j〉 ∈ Ht implies that i’s component chose to add the edge to j during round t:

〈i, j〉 ∈ Ht =⇒ Jt(i, j).

Therefore, if an edge choice is mutual then 〈i, j〉 and 〈j, i〉 will both be in Ht. Now let I be the

intersection graph of Hτ formed from Ct. For every component C ∈ Ct, let iC denote the vertex

in I corresponding to C. Then the increase of the left-hand side of the invariant can be exactly

represented as
ε× deg+(iµt(u)), if Jt(u, v) 6= Jt(v, u)

ε
2 ×

(
deg+(iµt(u)) + deg+(iµt(v))

)
, otherwise.

This result can be interpreted as follows: In order to maintain the invariant (and thereby prove

2-optimality). . .

1. . . .if the addition of e is not mutual then there can be at most one other edge in δt(u) that

becomes tight in a later round; or

2. . . .if the addition of e is mutual then there can be at most three other edges in δt(u) ∪ δt(v)

that become tight in a later round.

These requirements are satisfied by the conditions of the proposition.

3.2 Efficiency of the Algorithm

Now that we have established the correctness and approximation bounds of the algorithm, this

section analyzes its efficiency with respect to the number of communication rounds required for it

to reach quiescence.

For sake of analysis, let us first assume that each line in Algorithm 2 (qq.v. page 27) can be

executed in a constant number of communication rounds; this assumption will be relaxed later in

§3.2.2. Note that line 6 of Algorithm 2 contains the only loop of the algorithm whose body requires

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

39

message passing. Therefore, the total number of communication rounds will be asymptotically equal

to the number of iterations of the while loop, which we shall call primary communication rounds.

Communication rounds that are required for executing the lines of the algorithm within the loop

(e.g., intermediate rounds required for a connected component to choose which fringe edge it will

make tight) are called secondary communication rounds.

3.2.1 Primary Communication Rounds

It is easy to see that the number of primary rounds required for the algorithm to reach quiescence,

τ , is equal to the diameter of the search space, which is in turn O(n), since every acyclic subgraph

has O(n) edges and the algorithm adds at least one edge per round. This upper bound can in fact be

tightened for many common cases, which we shall now demonstrate. Let Af (t) = A(t) be an upper

bound on the number of active components at the beginning of round t. Similarly, let Lf (t) = L(t)

be an upper bound on the total number of components at the beginning of round t. Clearly,

A(t) ≥ |{C ∈ Ct : f(C) = 1}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every active component will union with another component during each round. Regardless

of whether such a component chooses to union with an active or inactive component, the total

number of components will decrease by one half the number of active components. Therefore L(t) =

L(t − 1) − A(t − 1)/2. Now let us consider the extrema for the change in the number of active

components. If all active components choose to union with other active components and all unions

are mutual (q.v. the definition of mutuality on page 31), then we have A(t) = A(t − 1)/2. On

the other hand, if as many active components union with inactive components as possible, then

A(t) ≤ min
(
A(t−1), L(t−1)−A(t−1)

)
. Therefore, assuming mutual unions, the general recurrences

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

40

for A(t) and L(t) are:

A(t) = max

(
A(t− 1)

2
,min

(
A(t− 1), L(t− 1)−A(t− 1)

))
, (3.11)

L(t) = L(t− 1)− A(t− 1)
2

.

Let n be the total number of vertices, n = |V |, and let α ≤ n be the number of terminals:

α = |{v ∈ V : f({v}) = 1}|. (3.12)

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : f(C) = 1}| = (3.12) = α,

L(0) = |C0| = n.

Claim 2. A(t− 1)/2 will always dominate the maximization in (3.11).

Validation of this claim will be given in the proof of the following proposition.

Proposition 5. The algorithm will terminate after τ = O(log n) iterations of the main loop (line 6

of Algorithm 2) if α ≥ n
2 and all component unions are mutual.

Proof. This follows from the fact that the algorithm will terminate once all components are inactive:

∀t ∈ N0 : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that the A(t) recurrence will converge exponentially,

implying that τ = O(log n).

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

41

If Claim 2 holds, then it is clear that the A(t) recurrence will converge exponentially:

A(t) =
A(0)

2t
,

L(t) = n−
t∑
i=0

A(0)
2i

.

Let k = A(0)
n and observe that the conditions of this proposition ensure k ≥ 1

2 . Substituting k × n

for A(0) ensures that the minimization in A(t) will always evaluate to L(t− 1)−A(t− 1) because

∀t ∈ N0 : A(t) ≥ L(t)−A(t)

⇐⇒ n
k

2t
≥ n

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

⇐⇒ 2k
2t

≥ 1−
t∑
i=0

k

2i

⇐⇒ k ≥ 2t

1 + 2t+1
,

which is true because 2t/(1 + 2t+1) is bounded above by 1
2 . Therefore, provided Claim 2 holds,

(3.11) can be simplified to

A(t) = max
(
A(t− 1)

2
, L(t− 1)−A(t− 1)

)
.

Claim 2 obviously holds for the base case of t = 1 because A(0)/2 = k × n is bounded below by

L(0)−A(0) = n− n
2 . Therefore, Claim 2 will hold as long as

A(t)
2
≥ L(t)−A(t).

This equates to

k ≥ 2t+1

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

≥ 2× 4t

2t + 4t+1
,

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

42

which must be true because (2× 4t)/(2t + 4t+1) is bounded above by 1
2 .

3.2.2 Secondary Communication Rounds

In some communications networks—such as a wired local area network (LAN)—the assumption that

there is a constant number of secondary communication rounds for each primary round is valid. In

fact, it will be valid for any network in which the cost of sending a message between any pair of

agents is constant. Routing may be necessary in some networks like MANETs, in which case the

cost of sending a message between agents is a function of the number of routing hops that separate

them. Analyzing the total number of rounds in such cases is the subject of this section.

If network routing is necessary, the number of messaging rounds required to send a message

between any pair of agents in the same connected component is equal to the diameter of the com-

ponent. Therefore, the number of rounds required to choose a fringe edge (line 7 of Algorithm 2)

would be on the order of the diameter of the active connected component. During primary round

t, the diameter of every connected component is O(t). Therefore, the number of secondary rounds

between primary round t and primary round t+ 1 will be O(t).

The worst case therefore occurs when the problem instance contains only two terminals, in which

case the algorithm will require O(n) primary rounds. The total number of rounds (vi&., the sum of

both primary and secondary rounds) will therefore be bounded above by

n∑
i=1

i = O(n2). (3.13)

Despite the fact that this is O(n2), the summation converges to that upper bound very slowly. To

measure the rate of the convergence we shall use a variation of d’Alembert’s ratio test. Given a

sequence {xk} that converges to a constant L,

lim
k→∞

xk = L,

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

43

we take the following limit

lim
k→∞

|xk+1 − L|
|xk − L|

= r,

and say that r is the rate of convergence. If r = 0 then the sequence converges to L superlinearly.

If 0 < r < 1 then the sequence converges linearly. If r = 1 then the sequence converges sublinearly.

Applying this test to the ratio of the the sum in (3.13) and its asymptotic bound of n2, we see that

L = 1
2 :

lim
n→∞

1
2 (n2 − n)

n2
=

1
2
.

Taking the limit of the ratio,

lim
k→∞

∣∣∣ (k+1)2−k−1
2(k+1)2 − 1

2

∣∣∣∣∣k2−k
2k2 − 1

2

∣∣ = lim
k→∞

∣∣∣∣ k

k + 1

∣∣∣∣ = 1,

it is clear that the sum in (3.13) converges to its bound of O(n2) sublinearly with respect to n.

In the best case, the number of terminals in the problem instance is greater than or equal to
⌊
n
2

⌋
and the majority of edge additions are mutual. From Proposition 5 we know that this will result in

O(log n) primary rounds. Therefore, the total number of rounds (primary plus secondary) will be

logn∑
i=1

i =
log(n) (log(n) + 1)

2
= O(log2(n)),

which is polylogarithmic. Applying the same rate of convergence test as above:

lim
n→∞

1
2

(
log(n)

(
log(n) + 1

))
n2

= L =
1
2
,

and lim
k→∞

∣∣∣∣ log2(k + 1) + log(k + 1)− 1
log2(k) + log(k)− 1

∣∣∣∣ = r = 1.

In the best case in terms of the number of terminals, we can likewise conclude that the convergence

of the number of rounds to its upper bound of O
(
log2(n)

)
is also sublinear.

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

44

Table 3.1: A summary of lower bounds on the MST problem restricted to n-vertex graphs of
diameter at most Λ, where B is the number of bytes sent per message and ε is the constant of
approximation. This table is excerpted from [80, cf. Table 1] and is attributable to Elkin.

Λ Lower Bound on the
Exact Computation

Lower Bound on the
Time-Approximation

Tradeoff

nd : 0 < d < 1
2 Ω

(√
n

B

)
τ2 × ε = Ω

(n
B

)

Θ(log n) Ω
(√

n

B log n

)
τ2 × ε = Ω

(
n

B log n

)

Constant (at least 3) Ω
((n

B

) 1
2−

1
2Λ−2

)
τ2+ 2

Λ−2 × ε = Ω
(

n

B × Λ

)

3.2.3 Time-Approximation Tradeoff

Elkin recently discovered unconditional lower bounds on the time-approximation tradeoff in dis-

tributedly solving the minimum spanning tree (MST) problem [80]. Recall from Table 2.1 that

the MST problem is a constrained forest problem. In fact, the problem is a matroid and thus our

approach is always guaranteed to find the optimal solution. Since the MST problem is in a sense

a best case scenario for our approach, Elkin’s lower bounds provide a benchmark on how close our

approach achieves the bound. Elkin’s results are transcribed in Table 3.1.

As we can see from Elkin’s results, in the general case when the diameter of the graph, Λ, is

equal to n, the time-approximation tradeoff is τ2 × ε = Ω
(n
B

)
, where B is the number of bytes

sent per message. In the worst case, our algorithm will have to transmit a message with a payload

containing all of the graph’s edges (e.g., if a fringe vertex is neighboring all other vertices). This

message will be of size O(log |E|) bytes. Given that our algorithm’s approximation bound, ε, equals

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

45

2, we have:

2τ2 = Ω
(

n

log |E|

)
⇓

τ = Ω

(√
n

log
(
n
2

))
= Ω (log n) .

Therefore, our runtime bound of τ = O(log n) (q.v. Proposition 5) actually achieves the lower bound.

Extending our notion of subdividing rounds espoused in the previous sections, let us consider

further subdividing rounds such that only a fractional amount of dual variable slack is pushed up

during each sub-round. Borrowing Elkin’s notation (at the expense of overloading our own), let

ωmax be the ratio between the maximal and the minimal weight of an edge in the input graph [80,

cf. page 332]. Divide each primary round into
⌈

2
3ωmax

⌉
sub-rounds. During each sub-round increase

the non-tight dual variables by a value of 3
2 . Therefore, during sub-round i ∈

{
1, 2, . . . ,

⌈
2
3ωmax

⌉}
,

only edges of weight in the range

(
ω̃ +

3
2

(i− 1), ω̃ +
3
2
i

]
(3.14)

will become tight. Since ∀i ∈ N : |(3.14)| ≤ 3
2 , the original 2-optimality invariant from Proposition 3

holds, even if ωmax is greater than 3
2 .

As long as there exists some constant c such that ωmax ≤ 3
2 logc(n), then the round splitting will

only increase the total number of rounds by a factor of O(logc(n)), which retains polylogarithmic

runtime. This in effect gives a tradeoff on runtime: If we have a finite a priori upper bound on

ωmax, then we can perform the round splitting with
⌈

2
3ωmax

⌉
sub-rounds. The better the bound on

ωmax the lower the c parameter, and thereby the fewer sub-divided rounds that are necessary. If a

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

46

constant c does exist, then the total number of rounds will increase by a factor of

O

log

log(2

3ωmax)
log logn

!
(n)

 .

3.2.4 Local Efficiency

The only data structures employed in Algorithm 2 are those of Ṽ , Ẽ, and F . Ṽ can contain at most

all of the vertices, so |Ṽ | = o(n). Ẽ and F can contain at most all of the edges, so |Ẽ| = o(|E|) and

|F | = o(|E|). Therefore, the maximum memory usage at any node executing the algorithm is

O(|E|) = O

(
n2 − n

2

)
.

In terms of local computation, we showed in §3.2.1 that the number of iterations of the while

loop of the algorithm is asymptotically sublinear with respect to the number of vertices. It is also

clear that the operations in lines 2–5 can be implemented in sublinear time. The most expensive

local operations in the body of the while loop are lines 7, 9, 14, and 17.

Line 7 In our analysis of memory complexity, we established that

|F | = O

(
n2 − n

2

)
,

which will thereby also be the complexity of finding the minimum element in F .

Line 9 The most expensive operation on this line is performing the symmetric difference of the

searches’ fringes for their merger. The symmetric difference of two sets can be performed in

asymptotic linear time with respect to the size of the larger set. Since |F | = O(|E|), this

operation can likewise be performed in O
(
n2−n

2

)
time.

Line 14 |Ṽ | ≤ |V |, so this operation will run in O(n) time.

Line 17 u can be incident to at most |V | − 1 edges, so this operation will run in O(n) time.

Chapter 3: The General Algorithm 3.2 Efficiency of the Algorithm

47

Therefore, the most expensive operation inside of the main while loop runs in O
(
n2−n

2

)
time. Since

the while loop will iterate at most n times, the worst-case local computation of the algorithm is

bounded above by

O (n×m) = O

(
n3 − n2

2

)
,

where m is the number of edges in the search space. This bound is clearly polynomial.

3.3 Conclusions

This chapter has introduced a new distributed multidirectional graph search algorithm for con-

strained forest problems based on the primal-dual schema. We have shown that each node in the

search space only needs to know the status of the fringe of its search in order to make a decision, the

locality of which inherently allows for the distribution of the algorithm. In Corollary 1 we showed

that the distribution will not induce a cycle in the final solutions, the result of which is strength-

ened by Proposition 2’s assurance that the solutions of the algorithm are feasible. Proposition 3

proves that a constant approximation bound is achievable and, furthermore, that we can sustain

that bound for graphs with well behaved edge weights. Finally, in §3.2.3 we showed that our runtime

bounds meet the theoretical lower bound, and gave an algorithmic extension for 2-approximating

constrained forest problems of arbitrary edge distribution if a finite upper bound on ωmax is known.

There are, however, a few more issues to address with respect to distributed multidirectional

graph search. First, there is the question of how the algorithm performs on graphs in which the

edge weights do not map to the metric space required for the theoretical approximation guarantees

to hold and there is no a priori finite upper bound on ωmax that would allow for round splitting. In

Chapter 4 it will be shown that—even without the required embedding of edge weights and in the

absence of the round splitting technique—the expected value of the approximation bound will be

constant for a large family of edge weight distributions. Secondly, no examples have yet been given

as to how this framework can be instantiated (e.g., furnished with distributed protocols) for specific

problems and their associated proper functions. Finally, it is unclear how this approach might fare

empirically in real-world domains. These last two topics are subjects of Chapter 5.

Chapter 3: The General Algorithm 3.3 Conclusions

48

Chapter 4: Bad Things Rarely Happen to Good Graphs

The previous chapter proved that multidirectional graph search can be used to distributedly discover

constrained forests. Furthermore, if the edge weights are known to be distributed in a proper metric

space then the solutions are guaranteed to be 2-optimal. But what if the distribution of edge

weights is unknown and/or does not satisfy the requirements for the theoretical 2-optimality bound

to hold? This chapter answers the previous question by investigating the expected value of the

worst case behavior of constrained forest algorithms. In order to do this, we shall first need to

introduce the problem using statistical notation. On how this statistical problem relates to the

previous approximation algorithms problem will then be expounded.

Let X = [X1, X2, . . . , Xn]T be a vector random variable drawn from a known non-negative1

distribution with cumulative distribution function F (x) and probability density function f(x). Let

X(n,k) be the distribution of the kth order statistic of X (i.e., the kth smallest element of the vector).

Given m, ` ∈ {1, 2, . . . , n}, let Z be the ratio distribution defined by the sum of the ` largest order

statistics divided by the m smallest order statistics:

Z =

n∑
i=n−`+1

X(n,i)

m∑
k=1

X(n,k)

.

What can be said about Z? What are its probability density function (PDF), cumulative distribution

function (CDF), and expected value?

Before proceeding in addressing these questions, let us first discuss why this problem is relevant

to approximation algorithms. Consider a combinatorial optimization problem on a finite structure,

such as a graph. We want to find a subset of the edges of the graph that minimize some objective

function subject to a set of constraints. In this context, X can be thought of as the set of edge
1By “non-negative” we mean that the distribution is truncated in the range [0,∞) such that F (0) = 0.

49

weights, assuming the edge weights are independent and identically distributed random variables

drawn from the distribution F (x). Now let us assume that we have a lower bound on the number

of edges in the optimal solution. This bound is m. For example, if we are trying to find a minimum

spanning tree and we know that the graph is connected, then the optimal solution will have a

number of edges exactly equal to the number of vertices minus one. As another example, in the

Steiner network problem with α terminals, m must be greater than or equal to
⌊
α
2

⌋
. Therefore, the

cost of the optimal solution will have a probability distribution bounded below by the sum of the m

smallest order statistics of X. This is the denominator of Z. Now consider ` as an upper bound on

the number of edges chosen by our algorithm. If our algorithm is finding a forest, then ` is clearly

bounded above by the number of vertices minus one. How bad would it be if our algorithm had

the worst behavior: choosing a solution containing the ` heaviest edges? The cost of this solution

would be equal to the sum of the ` largest order statistics of X, which constitutes the nominator

of Z. Therefore, Z is a very loose lower bound on the probability distribution of the bound of

approximation of this worst case algorithm. The faster the CDF of Z converges to 1 then the lower

the expected approximation bound of the algorithm.

In the remainder of this chapter we analyze the asymptotic behavior of Z for a number of

common probability distributions of X. Using the central limit theorem, we generalize these results

by discovering that, for large ` and m, the expected value of Z is `
m , regardless of the distribution

of X. We conclude by examining some surprising consequences of this general result.

4.1 Distributions of Trimmed Sums

In order to define the probability distribution of Z we will need to know the distribution of the sum

of consecutive order statistics (what are also often called “trimmed sums”). The problem is that

there is no known generalized closed form for this distribution. We can, however, devise a recursive

definition.

Csörgő and Simons discovered a recurrence relation for the CDF and PDF of the distribution

of the sum of the m smallest order statistics of non-negative integer-valued random variables [81].

In the following, we generalize their approach by devising a recurrence relation for the PDF that is

Chapter 4: Probabilistic Approximation Bounds 4.1 Distributions of Trimmed Sums

50

applicable to any non-negative distribution (not just integer-valued ones).

We are interested in finding the probability that the sum of the m smallest order statistics equals

a given value: P
[∑m

i=1X(n,i) = x
]
. The recurrence is quite simple: The probability that the sum

of the m smallest order statistics equals x is equal to the integral over all possible values of the mth

smallest order statistic multiplied by the probability that the smaller m − 1 order statistics sum

to the remaining value in x. The PDF for a specific order statistic (encompassing the base case of

m = 1) is well defined for most distributions. Therefore, the probability that the smallest m order

statistics of a sample of size n sums to x is

P

[
m∑
i=1

X(n,i) = x

]
=
∫ x

0

P [X(n,m) = s1]
∫ x−s1

0

P [X(n,m−1) = s2]

∫ x−s1−s2

0

P [X(n,m−3) = s3] · · ·
∫ x−

Pm−1
i=1 si

0

P [X(n,1) = sm] dsm · · · ds3 ds2 ds1,

which reduces to the following recurrence:

P

[
m∑
i=1

X(n,i) = x

]
=

P
[
X(n,1) = x

]
if m = 1,∫ x

0

P
[
X(n,m) = s

]
P

[
m−1∑
i=1

X(n,i) = x− s

]
ds otherwise.

(4.1)

A similar recurrence follows for the sum of the ` largest order statistics:

P

[
n∑

i=n−`+1

X(n,i) = x

]
=

P
[
X(n,n) = x

]
if ` = 1,∫ x

0

P
[
X(n,`) = s

]
P

[
n∑

i=n−`+2

X(n,i) = x− s

]
ds otherwise.

(4.2)

While there does not appear to be a general closed form for this recurrence, it is possible to analyze

for specific distributions.

First, let us consider the continuous uniform distribution on the range [a, b] where 0 ≤ a ≤ b.

Call a random variable sampled from this distribution U(a, b). It is well known that the PDF for

the kth order statistic for a sample of size n of the continuous uniform distribution falls under a

Chapter 4: Probabilistic Approximation Bounds 4.1 Distributions of Trimmed Sums

51

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
[∑ m i=

1
U

(0
,1

) (
n
,i
)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.1: CDF for the distribution of the sum of the m smallest order statistics of a sample
of size 10 from the standard uniform distribution.

β-distribution with parameters k and n− k + 1:

P
[
U(a, b)(n,k) = x

]
=
xk−1(1− x)n−kΓ(n+ 1)

Γ(k)Γ(n− k + 1)
. (4.3)

Remarkably, this PDF is dependent on neither a nor b. This implies that for any 0 ≤ a ≤ b and

0 ≤ c ≤ d then
m∑
i=1

U(a, b)(n,i)
d=

m∑
j=1

U(c, d)(n,j). (4.4)

Therefore, we consider the standard uniform distribution U(0, 1), the results of which can be gen-

eralized to any other continuous uniform distribution by virtue of (4.4). Plugging (4.3) into the

recurrence of (4.1) allows us to numerically evaluate the trimmed sum of order statistics. The CDF

for the sum of order statistics of U(0, 1) on a sample of size 10 is given in Figures 4.1 and 4.2. It is

clear that the CDF converges to 1 with a very high gradient, especially for small m. This implies

that, for uniform distributions, the distribution of the first moment (i.e., expected value) of the sum

of the m smallest order statistics is relatively invariant.

Chapter 4: Probabilistic Approximation Bounds 4.1 Distributions of Trimmed Sums

52

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

P
[∑ n i=

n
−
`+

1
U

(0
,1

) (
n
,i
)
≤
x
]

x

` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7
` = 8
` = 9
` = 10

Figure 4.2: CDF for the distribution of the sum of the ` largest order statistics of a sample
of size 10 from the standard uniform distribution.

By the central limit theorem, for large enough m and ` the distribution of the sum of order statis-

tics will fall under a normal distribution, regardless of the underlying distribution of X. The sum of

the smallest m order statistics will asymptotically have the mean mE[X] and variance Var(X)m−1.

Likewise, the largest ` order statistics will have mean `E[X] and variance Var(X)`−1. For the con-

tinuous uniform distribution, this asymptotically translates to the following normal distributions:

P

[
m∑
i=1

U(a, b)(n,i) ≤ x

]
d= N

(
m(a+ b)

2
,

(b− a)2

12m

)
(4.5)

P

[
n∑

i=n−`+1

U(a, b)(n,i) ≤ x

]
d= N

(
`(a+ b)

2
,

(b− a)2

12`

)
. (4.6)

Therefore, the expected value of the sum of the order statistics of every continuous uniform

distribution has very low variance. This means that for continuous uniform distributions the quotient

of the expected values of the nominator and denominator in Z should give a relatively unbiased

estimation of the true expected value of Z, which itself should have very low variance.

Chapter 4: Probabilistic Approximation Bounds 4.1 Distributions of Trimmed Sums

53

4.2 The Exponential Distribution

In many respects, the exponential distribution is the worst case as its memoryless property ensures

the Z distribution will have unbounded outliers. This distribution is of specific import given its

manifestation in many real-world systems. We therefore want to examine how quickly the exponential

distribution’s trimmed sums’ CDF converges to 1.

Nagaraja recently showed that the sum of the ` largest order statistics of a random variable X

taken from the standard exponential distribution has the following PDF [82]:

P

[
n∑

i=n−`+1

X(n,i) = x

]
= n

(
n− 1
`− 2

) `−1∑
i=1

(
`− 2
i− 1

)
(−1)`−i−1 exp

(
−n− i+ 1
n− `+ 1

x

)

× 1
(n− `+ 1)!

∫ x

0

exp
(

`− i
n− `+ 1

j

)
jn−`dj,

the expected value of which is

E

[
n∑

i=n−`+1

X(n,i)

]
=

n∑
i=n−`+1

i∑
j=1

1
n− j + 1

.

We can see from Figure 4.3 that this distribution also converges at a very high gradient.

Therefore, for the standard exponential distribution with a sample of size n, the expected value

for Z is

E[Z] =
E
[∑n

i=n−`+1X(n,i)

]
E
[∑n

i=1X(n,i)

]
− E

[∑n
i=m+1X(n,i)

]
=

∑n
i=n−`+1

∑i
j=1

1
n−j+1∑n

i=1

∑i
j=1

1
n−j+1 −

∑n
i=m+1

∑i
j=1

1
n−j+1

=

∑n
i=n−`+1

∑i
j=1

1
n−j+1∑m

i=1

∑i
j=1

1
n−j+1

=

∑`
i=1

∑n−`+i
j=1

1
n−j+1∑m

i=1

∑i
j=1

1
n−j+1

=
∑`
i=1 Ψ(−n)−Ψ(i− `)∑m
j=1 Ψ(−n)−Ψ(j − n)

=
`

m
Ψ(−n)−

∑`
i=1 Ψ(i− `)∑m
j=1 Ψ(j − n)

=
`

m
H−n−1 −

∑`
i=1Hi−`−1∑m
j=1Hj−n−1

, (4.7)

Chapter 4: Probabilistic Approximation Bounds 4.2 The Exponential Distribution

54

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

P
[∑ n i=

n
−
`+

1
X

(n
,i
)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.3: CDF for the distribution of the sum of the ` largest order statistics of a sample
of size 10 from the standard exponential distribution.

where Hn is the nth harmonic number and Ψ is the digamma function:

Ψ(x) =
d

dx
log Γ(x).

The summations in (4.7) can be further reduced to the rather cumbersome closed form of

` sin(π n) sin(π `)
(

Ψ (`)n−Ψ (n)n− n− 1
)

+ `πn
(

sin(π n) cos (π `)− cos (π n) sin (π `)
)

nm sin (π n) sin (π `)
(

Ψ (m− n)−Ψ (−n)
) .

Therefore, the trimmed sum of order statistics of the exponential distribution is well behaved,

similar to the continuous uniform distribution.

4.3 Normal Distributions

Discovering expressions for the distributions of trimmed sums of normally distributed random vari-

ables is still an open problem. We can, however, plot such distributions using Monte Carlo simu-

lation. First, a vector of size 10 was randomly populated with variates drawn from the standard

Chapter 4: Probabilistic Approximation Bounds 4.3 Normal Distributions

55

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15

P
[∑ m i=

1
N

(0
,1

) (
n
,i
)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.4: CDF for the distribution of the sum of the m smallest order statistics of a sample
of size 10 from the standard normal distribution, calculated from a Monte Carlo simulation.

normal distribution N (µ = 0, σ = 1). The vector is then sorted and the sums of the m smallest and

` largest elements is taken. This process was repeated 32000 times, the results of which are given in

Figures 4.4 and 4.5.

As we can see, the normal distribution exhibits the same quick convergence as the uniform and

exponential distributions, albeit skewed by the fact that the normal distribution is not positive.

Therefore, let us consider the standard normal distribution truncated on the interval [0, 1]:

P
[
N[0,1](0, 1) ≤ x

]
=

∫ x
0
P [N (0, 1) = t] dt

P [N (0, 1) = 1]− P [N (0, 1) ≤ 0]
=

0, x < 0

1, x > 1

erf
(
x
√

2
2

)
erf
(√

2
2

) , otherwise.

(4.8)

Since (4.8) is continuous and monotone, the Newton-Raphson method can be used to quickly calcu-

late the inverse CDF to arbitrary precision. This, in turn, allows for production of a random variate

for the truncated standard normal distribution using inverse transform sampling. The variate can

Chapter 4: Probabilistic Approximation Bounds 4.3 Normal Distributions

56

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15

P
[∑ n i=

n
−
`+

1
N

(0
,1

) (
n
,i
)
≤
x
]

x

` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7
` = 8
` = 9
` = 10

Figure 4.5: CDF for the distribution of the sum of the ` largest order statistics of a sample
of size 10 from the standard normal distribution, calculated from a Monte Carlo simulation.

then be used for Monte Carlo simulation, as described above. The results for the truncated standard

normal distribution are given in Figures 4.6 and 4.7, and exhibit a similarly fast convergence.

4.4 The Expected Value of Z

We have thus far established that the expected value of the sum of the order statistics of every contin-

uous uniform, standard exponential, standard normal, and truncated standard normal distribution

has very low variance. In fact, by the central limit theorem,

lim
n→∞

max
m=1...n

Var

(
E

[
m∑
k=1

X(n,k)

])
= lim
n→∞

Var

(
E

[
m∑
k=1

X(n,1)

])
=

1
12
.

Therefore, the quotient of the expected values of the nominator and denominator in Z should give

a relatively unbiased estimation of the true expected value of Z, which itself should have very low

variance.

Chapter 4: Probabilistic Approximation Bounds 4.4 The Expected Value of Z

57

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
[∑ m i=

1
N

[0
,1

](
0,

1)
(n
,i
)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.6: CDF for the distribution of the sum of the m smallest order statistics of a sample
of size 10 from the standard normal distribution truncated in the range [0, 1], calculated from
a Monte Carlo simulation.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
[∑ n i=

n
−
`+

1
N

[0
,1

](
0,

1)
(n
,i
)
≤
x
]

x

` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7
` = 8
` = 9
` = 10

Figure 4.7: CDF for the distribution of the sum of the ` largest order statistics of a sample of
size 10 from the truncated standard normal distribution truncated in the range [0, 1], calculated
from a Monte Carlo simulation.

Chapter 4: Probabilistic Approximation Bounds 4.4 The Expected Value of Z

58

By (4.5) and (4.6), for large enough m and ` the expected value for Z will be

E[Z] =
1
2`(a+ b)
1
2m(a+ b)

=
`

m
.

In the context of the approximation algorithm example, if the edge weights are drawn from any uni-

form distribution then, for large enough m, any sufficiently large, randomly chosen subset of ` edges

will with high probability be `
m times optimal, regardless of the objective function. Furthermore, if

` = O(m) then the solution is with high probability a constant factor of optimal.

In fact, this property holds in general:

P

[
m∑
i=1

X(n,i) ≤ x

]
d= N

(
mE[X],

Var(X)
m

)

P

[
n∑

i=n−`+1

X(n,i) ≤ x

]
d= N

(
`E[X],

Var(X)
`

)
,

and

E[Z] =
`E[X]
mE[X]

=
`

m
. (4.9)

This is a rather surprising result. This means that if we know the size of the optimal solution

is bounded below by m, then any randomly chosen solution of size at most ` will, on average, be

`
m times optimal. Consider the Steiner network problem as an example. If there are α terminals,

then we know that the optimal solution must have at least
⌊
α
2

⌋
edges. Any feasible solution to

the problem is going to be an acyclic graph, which will have at most n − 1 edges. Therefore, any

randomly chosen feasible solution to the Steiner network problem will be, on average, 2n−2
α times

optimal. If every vertex is a terminal, then any randomly chosen feasible solution is with high

probability 2-Optimal. Equation (4.9) has even stronger implications for problems like minimum

spanning tree. In that case, we know that (assuming the graph is connected) the optimal solution

has exactly n− 1 edges, and any feasible solution will also have exactly n− 1 edges. Therefore, any

randomly chosen feasible solution to the minimum spanning tree problem will with high probability

be a constant factor of optimal.

Chapter 4: Probabilistic Approximation Bounds 4.4 The Expected Value of Z

59

In conclusion, this chapter has motivated the fact that—even if the conditions of the theoretical

guarantees of 2-optimality (qq.v. Propositions 3 and 4) are not met—the solutions produced by the

distributed multiagent graph search algorithm are with high probability 2-optimal.

Chapter 4: Probabilistic Approximation Bounds 4.4 The Expected Value of Z

60

Chapter 5: Solving Constrained Forest Problems

Given a subset of the vertices of a graph, called terminals, the constrained forest problem asks to

find a minimum weight forest spanning the terminals subject to a set of topological requirements.

These requirements are often represented using proper functions (qq.v. §2.3). Many constrained

forest problems are NP-Hard. There were a number of groundbreaking results in the 1990s which

culminated in a very elegant and efficient centralized approximation algorithm for constrained forest

problems using the primal-dual schema [60, 73]. This opened the door for solving many constrained

forest problems in the sequential computation model.

In this chapter, we show that our generalized distributed constrained forest algorithm based on

multidirectional graph search can likewise be applied to a number of constrained forest problems.

First, we continue our analysis of Steiner network problems by empirically testing how close the

algorithm comes to the theoretical bounds described in Chapter 3. Later in this chapter we give two

additional examples of our framework’s application: the location design and routing problem and art

gallery problems. For each we give examples of the protocols that can be employed to fully distribute

the algorithm, along with more precise analysis of the number of rounds and quality of the solution.

Finally, we give empirical results for a number of cases in which the problem and/or domain does

not necessarily satisfy the conditions required for the aforementioned theoretical bounds to hold.

5.1 Steiner Network Problems

In order to test the average case performance of the generalized distributed constrained forest al-

gorithm, a series of graphs on 200 vertices of varying edge density were randomly generated using

the Erdős-Rényi model G(n, p) with n = 200 vertices and an edge density p ∈ [0.05, 1.0]). For each

edge density p, 32 random graphs were generated, the edges of which were weighted according to a

uniform distribution. The algorithm was then run with best case concurrency (i.e., one agent per

vertex). The optimality results for these experiments are given in Figure 5.1. This can be inter-

61

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

C
os

t
Edge Density

Figure 5.1: Normalized cost of the solutions discovered for 200 node random graphs with 200
terminals and varying edge density. Each data point is the distribution over 32 random graphs.
Boxes surround the middle two quartiles. The mean of each distribution is depicted as “ ”. A
normalized cost of 0.0 means that the optimal solution was discovered, whereas a cost of 1.0
means that the costliest possible solution was discovered.

preted as implying that the algorithm produces solutions that are very close to the optimal solution,

especially when the search space has a high branching factor. Given that the percentage of terminals

was very high, the number of messaging rounds required for the algorithm to reach quiescence was

only 3.93 with a standard deviation of 0.70.

Next, we investigated the algorithm’s worst case performance: when the edge density (i.e.,

branching factor) is low and the number of agents is limited. We therefore fixed the edge density at

0.1 and re-ran the experiments with a varying number of terminals. The results of these experiments

are in Figure 5.2. We see that even in the absolute worst case (i.e., with a very sparse graph and few

agents to perform the concurrent search) the number of messaging rounds required by the algorithm

is only about 12, and this quickly converges to the previous best case of about four rounds as the

number of terminals increases.

The intuition behind the empirical runtime results is that the algorithm will require approxi-

mately as many rounds as the diameter of the intersection graph (q.v. footnote 1 on page 32) of G

formed from the set of terminals. In the worst case this is clearly O(n), however, if the number of

terminals is high then the diameter is likely to be very small. Furthermore, if the graph is known to

have scale-free properties (which are very common in many relevant domains), then the diameter of

G will be logarithmic, thus the algorithm will run in O(log n) time.

Chapter 5: Solving Constrained Forest Problems 5.1 Steiner Network Problems

62

2
4
6
8

10
12
14
16
18
20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
es

sa
gi

ng
R

ou
nd

s
% Vertices that are Terminals

Figure 5.2: Average number of messaging rounds required for the algorithm to reach quiescence
for 200 node random graphs with an edge density of 0.1. Error bars represent variance.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
pp

ro
xi

m
at

io
n

B
ou

nd

% Vertices that are Terminals

Figure 5.3: Solution quality of the algorithm for a number of random graphs on 20 vertices
with varying number of terminals. The y-axis is the performance guarantee of the approximation
(a value of 1.0 means the optimal solution was found). Each column is the distribution over 32
random graphs, depicted using a similar scheme as that of Figure 5.1.

Finally, we investigated the average case approximation bounds of the algorithm. The number

of vertices was set at 20, being a size small enough such that calculation of the optimal solution is

tractable on modern hardware. We could then compare the approximated solution of the proposed

algorithm to the cost of optimal. These results are given in Figure 5.3. It is clear from the results

that the average case approximation bound is actually better than the theoretical upper bound of

2; on average the algorithm produces solutions about 1.3 times the cost of optimal.

5.2 Location Design & Vehicle Routing Problems

Recall from §1.1.1 that the Location Design and Routing problem asks to find a subset of “depot”

nodes and a spanning forest of a graph such that every connected component in the forest contains

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

63

at least one depot [3].

The sequential variant of this problem has been thoroughly studied in the literature [3, 73, 5, 7],

culminating in the discovery that the problem submits to bounded approximation in polynomial

time. There are therefore three primary motivations for developing a distributed approximated

solution to the problem:

1. the problem itself is naturally distributed—there may not be an obvious central node in which

to perform the optimization;

2. local properties of the problem seem to allow for speedups from distributed processing; and

3. in certain environments, such as sensor networks, hardware restrictions might necessitate de-

centralization in order to save memory.

Although there is very little in the literature on the parallelization and distribution of this specific

problem, the related problem of finding a minimum spanning forest has been widely studied and is

known to be soluble in logarithmic time with a linear number of processors [83, 84]. In fact, finding a

minimum spanning forest is a special case of the location design and routing problem in which depot

opening costs are very large (vi&., greater than the diameter of the graph). The converse, however,

is not true: There is no known trivial reduction from the location design and routing problem to

the spanning forest problem.

In the remainder of this section we introduce our algorithm for solving the distributed location

design and routing problem. In §5.2.1 formalizes the problem such that it can be mapped to an

equivalent constrained forest problem and §5.2.2 then introduces a parallel version of the algorithm.

Next, §5.2.3 proves a series of propositions about the algorithm, including its correctness, complete-

ness, and approximation & runtime bounds. Finally, in §5.2.4, we show that the parallel algorithm

can be distributed in an asynchronous network.

5.2.1 Problem Formalization

Given a graph G = 〈V,E〉 with both vertex and edge weights w : V ∪ E → Q, the Location Design

and Routing Problem asks to find a subset of “depot” vertices D ⊆ V and a spanning forest F ⊆ E

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

64

such that each connected component in F contains at least one depot. The cost of opening a depot

at a vertex is modeled using the vertex weights; for example, the cost of opening a depot at vertex

v ∈ V is w(v). Therefore, we want to minimize the weight of D and F :

minimize

(∑
d∈D

w(d)

)
+

(∑
e∈F

w(e)

)

subject to:

(∃d ∈ D : v is connected to d in F) , ∀v ∈ V

D ⊆ V,

F ⊆ E.

For sake of analysis, the representation of this optimization problem can be simplified by recasting it

as a variation of a constrained forest. Therefore, let us augment the graph with special depot vertices

di associated with each original vertex vi. Next, add an edge from each vertex to its associated depot

vertex, weighted with the cost of opening a depot at that vertex. The new overall set of edges is

the original set of edges unioned with the set of new depot edges. Let R = {v1, . . . , vn} be the

set of original (input) vertices and let T = {d1, . . . , dn} be the set of new special depot vertices

with the new overall set of vertices V = R ∪ T . A vertex vi will be a part of D (i.e., it will be

chosen to become a depot) if the edge from it to its associated depot vertex is a part of the final

spanning forest: 〈vi, di〉 ∈ F =⇒ vi ∈ D. The optimization problem can now be rewritten such

that it amounts to finding an acyclic subset of the new edges that connects each v ∈ R to at least

one d ∈ T . Since this subset is a forest that spans R we will hereafter refer to it as “the spanning

forest”. Note, however, that the spanning forest does not necessarily span all of T . An example of

this augmented graph is given in Figure 5.4a.

Assume that w(e) now denotes the edge weights. The new optimization problem on the aug-

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

65

100

10
0

10
0

10
0

15
0

10
0

150

224
(a) Augmented distribution
network.

(b) The optimal solution.

Figure 5.4: (a) gives the augmented graph corresponding to the distribution network in Fig-
ure 1.2a with a uniform depot opening cost of 100. Original vertices are and the special depot
vertices are . (b) is the optimal solution to the augmented network, corresponding to the
solution in Figure 1.2b.

mented graph can be captured as the following integer program:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ |S ∩ T |, ∀S ⊂ V : S 6= ∅

xe ∈ {0, 1}, ∀e ∈ E,

(LDRP-IP)

where each variable xe is an indicator as to whether the edge e is a member of the final spanning

forest, δ(S) is the set of edges having exactly one endpoint in S, and x(F) 7→
∑
e∈F xe. Therefore,

any forest F ⊆ E will be a feasible solution to the problem if every connected component S of the

forest has at least one depot. Let (LP) denote the linear programming relaxation of (LDRP-IP)

obtained by relaxing the integrality restriction on the variables to xe ≥ 0. The dual of (LP) is

maximize
∑
S⊂V

χ
(
S ∩ T

)
yS

subject to: ∑
S:e∈δ(S)

yS ≤ w(e), ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅,

(LDRP-D)

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

66

where χ : X → {0, 1} is an indicator function: χ(X) 7→ 1 ⇐⇒ X 6= ∅. An edge is tight if

w(e) =
∑
S:e∈δ(S) yS . Let Z∗LDRP-LP be the cost of the optimal solution to (LP) and let Z∗LDRP-IP

be the cost of the optimal solution to (LDRP-IP). It is a folklore result that Z∗LDRP-LP ≤ Z∗LDRP-IP.

5.2.2 Parallel Computation Model

The basic mechanism of the algorithm follows that of constrained multidirectional graph search. We

start off with an empty forest; each vertex is a member of its own connected component. Every round,

each depot-less component greedily chooses to add one of its cut edges to the forest, merging with

the component on the other end of the edge. When a component merges with another component

containing a depot, the new component after the union stops actively growing. When all components

contain depots the algorithm terminates.

For simplicity, the algorithm is first introduced as a parallel algorithm according to the concurrent

read exclusive write (CREW) parallel random access machine (PRAM) model. The remainder of this

section provides the notation and mathematics required to formally define and model the algorithm.

This will later be used in §5.2.3 to provide formal bounds on the runtime and performance of the

algorithm, and also to prove correctness and completeness. We will later show in §5.2.4 that this

same algorithm can be distributed in an asynchronous network.

Let Ft be the partially constructed spanning forest at the beginning of round t. Let Ct be

the set of connected components in Ft. For sake of brevity and simplicity, let µt : V → Ct be

a function mapping vertices to their associated connected component during round t; therefore,

µt(v) 7→ Ci =⇒ v ∈ Ci ∈ Ct. A vertex that is incident to at least one edge in the cut of its

connected component is said to be in the fringe. Let gt : V → R be a mapping of vertices to a real

number during round t. These values represent the amount of slack remaining in the dual variables

associated with a vertex. An example of this notation is given in Figure 5.5.

As it was the case earlier in Chapter 3, let Jt : V × V → {0, 1} be a binary relation defining

which edges will become tight during round t. Each depot-less component will choose to add the

edge in its fringe that has minimal weight and dual variable slack. Therefore, Jt(u, v) = 1 if and

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

67

only if (
µt(u) ∩ T = ∅

)
∧

(
〈u, v〉 = arg min

〈i,j〉∈δ(µt(u))

w(〈i, j〉)− gt(i)− gt(j)

)
. (5.1)

We assume that each edge has a unique identifier over which there is a total ordering. Ties in the

minimization are broken based upon the ordering of the edges. Let J+ denote the transitive closure

of J . Note that J does not necessarily commute: J(u, v) 6=⇒ J(v, u). Also note that as long as

there exists a feasible solution to (LDRP-IP) then the minimization ensures that each depot-less

connected component must have exactly one edge in the fringe that becomes tight each round:

∀C ∈ Ct, ∃〈v, u〉 ∈ δ(C) : C ∩ T = ∅ =⇒ Jt(v, u) = 1.

We denote by Ft the partially constructed spanning forest during round t, initialized to F0 =

〈V, ∅〉. The forest is updated each round with the set of all edges that became tight during the

round:

Ft+1 = Ft ∪ {〈u, v〉 ∈ E : Jt(u, v) ∨ Jt(v, u)}.

For a set S ⊆ V , let yS be the dual variable associated with S. Initially all such variables are set

to zero. Note that in actuality these variables need not be made part of an implementation of the

algorithm; they exist solely for the purpose of theoretically proving properties of the algorithm [73].

These dual variables are implicitly updated as follows:

yS ←

w(〈i,j〉)−gt(i)−gt(j)

1+Jt(j,i)
if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.

(5.2)

The g values are initialized such that ∀v ∈ V : g0(v) = 0. They are updated each round such

that

gt+1(v) = gt(v) + yµt(v). (5.3)

The value gt(v) can therefore be interpreted as the amount of slack remaining in the dual variables

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

68

during round t before an edge incident to vertex v becomes tight.

Let τ be the number of rounds required for the algorithm to terminate—or, in the case of the

distributed algorithm, the number of rounds required to reach quiescence. Therefore, τ is the earliest

round during which there are no components without depots:

τ = min
t∈N0

(
∀C ∈ Ct : C ∩ T 6= ∅

)
. (5.4)

The notation is now sufficient to introduce the parallel version of the algorithm, given in Algo-

rithm 3. A snapshot of the algorithm’s execution, along with an example of our notation, is given

in Figure 5.5.

5.2.3 Analysis

The various performance guarantees of the algorithm are proven in this section. First, Lemmas 5

and 6 lead to Proposition 6 which implies that the solutions found by the algorithm are acyclic

and thereby forests, implying that they are primal feasible. Proposition 7 states that the main loop

(line 10 of Algorithm 3) will have a logarithmic number of iterations. Claim 5 leads to Proposition 8

which states that the solutions found by the algorithm are dual feasible. Finally, Lemma 7 leads

to Proposition 9 which states that as long as the edge weights are embedded in the proper metric

space then the algorithm is a 2-approximation.

Lemma 5. Any cycle in the intersection graph (q.v. footnote 1 on page 32) of Ft+1 formed from Ct

must consist solely of edges along the cuts between depot-less components.

Proof. Assume, on the contrary, that there exists a cycle containing an edge that is incident to at

least one component containing a depot. Let 〈u, v〉 be such an edge and assume µt(v) contains at

least one depot. (5.1) implies that v’s connected component has no outgoing edges,

∀i ∈ µt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

69

Algorithm 3 The parallel location design and routing algorithm.
1: procedure Parallel-Location-Design(G,T,w)

Require: G = 〈V,E〉 is an undirected graph already augmented with the special depot vertices.
T ⊂ V is the set of “special” depot vertices. w : E → [1, 3

2] ∈ Q is a weight or cost function such
that each edge e ∈ E has an associated cost. µt : V → 2V is a convenience function mapping
vertices to their connected component in Ct.

Ensure: F ′ is the resulting spanning forest.
2: t← 0
3: F ← ∅ /* Implicitly set yS = 0 for all S ⊂ V */
4: for all v ∈ V do in parallel
5: S ← {v}
6: µ0(v)← S
7: C0 ← C0 ∪ {S}
8: g0(v)← 0
9: end for

10: while ∃C ∈ Ct : C ∩ T = ∅ do
11: t← t+ 1
12: Ct ← Ct−1

13: for all C ∈ Ct−1 do in parallel
14: I(C)← 0 /* I is a temporary map */
15: K(C)← ∅ /* K is a temporary map */
16: end for
17: for all C ∈ {S ∈ Ct−1 : C ∩ T = ∅} do in parallel
18: Find an edge e = 〈u, v〉 ∈ δ(C) such that u ∈ C and ε = w(e) − gt−1(v) − gt−1(u) is

minimized.
19: F ← F ∪ {e}
20: Ct ← (Ct \ ({µt−1(v)} ∪ {µt−1(u)})) ∪ {µt−1(v) ∪ µt−1(u)}
21: µt(u)← µt−1(v) ∪ µt−1(u)
22: K(C)← µt−1(v)
23: I(C)← ε
24: end for
25: for all v ∈ V do in parallel
26: if K(K(µt−1(v))) = µt−1(v) then
27: I(µt−1(v))← I(µt−1(v))

2
28: end if
29: gt(v)← gt−1(v) + I(µt−1(v))
30: end for
31: A ← the keys of I sorted by descending ε value. /* Implicitly used for analysis; need

not be implemented */
32: for i← 1 to |A| do /* Implicit */
33: for j ← 1 to i do /* Implicit */
34: yA[j] ← yA[j] + I(A[i]) /* Implicit */
35: end for
36: end for
37: end while
38: F ′ ← {e ∈ F : For some connected component N of 〈V, F \ {e}〉 it is true that N ∩ T = ∅}
39: end procedure

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

70

v1

v2

v3

v4

d1

d2

d3

d4

0

0

0

0

1 1

1

2

t=0

 ∀S⊂V :yS=0

C0={{v1},{v2},{v3},{v4},{d1},{d2},{d3},{d4}}

∀i∈{1,2,3,4}:g0(vi)=g0(di)=0

t=1

J1(v1,d1)=J1(v2,v3)=J1(v3,v2)=J1(v4,d4)=1

g1(v1)=g1(v4)=g1(v2)=g1(v3)=100

y{v1}=y{v4}=100, y{v2}=y{v3}=50

C1={{v1,d1},{v2,v3},{v4,d4},{d2},{d3}}

t=2

 J2(v3,d3)=1

y{v2,v3}=100

C2={{v1,d1},{v2,v3,d3},{v4,d4},{d2}}

τ=2 because every C∈C2 contains a depot.

Figure 5.5: Snapshots for three rounds of the algorithm solving the augmented distribution
network problem of Figure 5.4a. Connected components are visualized as dashed regions. The
labels denote the round number during which a connected component was created. Directions
on the edges represent the component that chose to make that edge tight. In other words,

=⇒ J(,).

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

71

The “potential cost” of an edge is the fractional quantity associated with ε on line 18 of Algo-

rithm 3.

Lemma 6. Any cycle in the intersection graph of Ft+1 formed from Ct must consist of edges of

equal potential cost.

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle. (5.1) implies that all edges in a cycle must be

cuts between existing connected components. Therefore, µt(u1) 6= µt(v1). Furthermore, there must

be another edge in the cycle, e2 = 〈u2, v2〉, such that µt(v2) = µt(u1). It must also be true that

Jt(u1, v1) = Jt(u2, v2) = J+
t (u1, v2) = 1. By Lemma 5 there are no depots in any of the components

in the cycle. Therefore, applying (5.1) gives

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2).

In general, this inequality will hold for the incoming and outgoing edges of any connected component

in the cycle. Therefore, by transitivity,

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2)

≤ w(e1)− gt(u1)− gt(v1),

implying that

w(e1)− gt(u1)− gt(v1) = w(e2)− gt(u2)− gt(v2).

Proposition 6. The intersection graph of Ft+1 formed from Ct is acyclic.

Proof. Assume, on the contrary, that there is a round t during which a cycle of length ` is formed.

Since the graph is simple, ` > 1. By Lemma 6, all of the edges in the cycle must be of equal potential

cost. Therefore, each connected component will have had a tie between two fringe edges which must

have been broken using the edge ordering. Therefore, either ` = 1 or there are two edges with the

same unique identifier, both of which are contradictions.

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

72

Claim 3. If all edge weights are coprime, then Proposition 6 will hold even if the unique identifier

ordering assumption does not.

Corollary 2. F0, . . . , Fτ are all acyclic.

Proof. Since F0 = 〈V, ∅〉, the base case is acyclic. Induction over Proposition 6 then proves the

corollary.

Let Af (t) = A(t) be an upper bound on the number of depot-less components at the beginning

of round t. Similarly, let Lf (t) = L(t) be an upper bound on the total number of components at the

beginning of round t. Clearly,

A(t) ≥ |{C ∈ Ct : C ∩ T = ∅}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every depot-less component will union with another component during every round.

Regardless of whether such a component chooses to union with a component containing a depot

or one that is depot-less, the total number of components will decrease by one half the number of

depot-less components. Therefore L(t) = L(t − 1) − A(t − 1)/2. Now let us consider the extrema

for the change in the number of depot-less components. If all depot-less components choose to

union with other depot-less components then we have A(t) = A(t − 1)/2. On the other hand, if

as many depot-less components union with components containing depots as possible, then A(t) ≤

min(A(t− 1), L(t− 1)−A(t− 1)). Therefore, the general recurrences for A(t) and L(t) are:

A(t) = max

(
A(t− 1)

2
,min

(
A(t− 1), L(t− 1)−A(t− 1)

))
, (5.5)

L(t) = L(t− 1)− A(t− 1)
2

.

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

73

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : C ∩ T = ∅}| = |R|,

L(0) = |C0| = |R|+ |T | = 2|R|.

Claim 4. A(t− 1)/2 will always dominate the maximization in (5.5).

Validation of this claim will be given in the proof of the following proposition.

Proposition 7. The algorithm will terminate after a logarithmic number of rounds (i.e., iterations

of the main loop on line 10 of Algorithm 3): τ = O(log n).

Proof. This follows from the fact that the algorithm will terminate once the number of depot-less

components is zero:

∀t ∈ N0 : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that, the A(t) recurrence will converge exponentially,

implying that τ = O(log n).

If Claim 4 holds, then it is clear that the A(t) recurrence will converge exponentially:

A(t) =
A(0)

2t

L(t) = 2|R| −
t∑
i=0

A(0)
2i

.

Let k = A(0)
2|R| and observe that k = 1

2 . Substituting 2k|R| for A(0) ensures that the minimization in

A(t) will always evaluate to L(t− 1)−A(t− 1) because

∀t ∈ N0 : A(t) ≥ L(t)−A(t)

⇐⇒ 2|R| k
2t
≥ 2|R|

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

⇐⇒ 2k
2t

≥ 1−
t∑
i=0

k

2i

⇐⇒ k ≥ 2t

1 + 2t+1
,

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

74

which is true because 2t/(1 + 2t+1) is bounded above by 1
2 . Therefore, provided Claim 4 holds,

(5.5) can be simplified to

A(t) = max
(
A(t− 1)

2
, L(t− 1)−A(t− 1)

)
.

Claim 4 obviously holds for the base case of t = 1 because A(0)/2 = 2k|R| is bounded below by

L(0)−A(0) = 2|R| − 2|R|
2 . Therefore, Claim 4 will hold as long as

A(t)
2
≥ L(t)−A(t).

This equates to

k ≥ 2t+1

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

≥ 2× 4t

2t + 4t+1
,

which must be true because (2× 4t)/(2t + 4t+1) is bounded above by 1
2 .

Claim 5. Let t′ be the round during which an edge e = 〈u, v〉 is added to the spanning forest. Then

e will not be in the cut of any component in a subsequent round:

∀t > t′, C ∈ Ct : e /∈ δ(C).

Proof. µt′+1(u) = µt′+1(v) = µt′(u)∪µt′(v). Therefore, in all rounds subsequent to t′ both endpoints

of e are in the same component and therefore cannot be in the fringe.

Proposition 8. The vector y is a feasible solution to (LDRP-D) and has the property

∑
e∈Fτ

w(e) ≤
∑
e∈Fτ

∑
S:e∈δ(S)

yS .

Proof. The fact that y is a feasible solution to (LDRP-D) is a consequence of the fact that y is initially

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

75

zero and is updated according to (5.2). Let t be the round during which an edge e = 〈u, v〉 ∈ Fτ

was added to the forest. From (5.3), note that

(
gt(u) =

t−1∑
i=0

yµi(u)

)∧(
gt(v) =

t−1∑
i=0

yµi(v)

)
.

Furthermore, at the beginning of round t the potential for e is

ε = w(e)− gt(u)− gt(v).

Once e is added to Ft, the dual variables yµt(u) and yµt(v) are updated according to (5.2). Then

there are three possible cases:

1. both u and v’s components are depot-less and e is added mutually: µt(u)∩ T = µt(v)∩ T = ∅

and Jt(u, v) = Jt(v, u);

2. both u and v’s components are depot-less and e is not added mutually: µt(u)∩T = µt(v)∩T = ∅

and Jt(u, v) 6= Jt(v, u); or

3. u’s component has a depot and v’s does not, or vice versa: |µt(u) ∩ T |+ |µt(v) ∩ T | = 1.

In case 1,

yµt(u) + yµt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε,

implying that

w(e) =
t∑
i=0

(
yµi(u) + yµi(v)

)
. (5.6)

For case 2, assume without loss of generality that Jt(u, v) = 1 and Jt(v, u) = 0. For case 3, assume

without loss of generality that µt(u) ∩ T = ∅ and µt(v) ∩ T 6= ∅. Then for both of these cases note

that

yµt(u) =
ε

1 + Jt(v, u)
= ε,

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

76

implying that

w(e) = yµt(u) +
t−1∑
i=0

(
yµi(u) + yµi(v)

)
. (5.7)

Claim 5 implies that the summations in (5.6) and (5.7) comprise all sets that cut e, thus completing

the proof.

Lemma 7 (Williamson, & al. [14, Theorem 3.6]). Let H be the intersection graph of the final

spanning forest Fτ formed from Ct. Remove all isolated vertices in H that correspond to components

in Ct that have depots. Then no leaf in H corresponds to a component containing a depot.

Proof. This is a transcription of the proof, reproduced here for completeness using our notation in

the specific domain of the Location Design and Routing Problem. Assume the contrary: Let v be

a leaf, let Cv be its associated component containing a depot, let e be the edge incident to v, and

let C ⊆ V be the component of F which contains Cv. Let N and C \ N be the two components

formed by removing edge e from the edges of component C. Without loss of generality, say that

Cv ⊆ N . The set N \ Cv is partitioned by some of the components of the current round; call these

C1, . . . , Ck. Since vertex v is a leaf, no edge in Fτ connects Cv to any Ci. Thus by the construction

of Fτ , ∀i ∈ {1, . . . , k} : Ci contains at least one depot. Since Cv also contains at least one depot, it

follows that N must too. Clearly, if two components S and B both contain depots and B ⊆ S, then

the component S \B must also contain a depot. Since we know that C contains a depot then N \C

must as well, and thus by the construction of Fτ , e /∈ Fτ , which is a contradiction.

We have thus far proven that Algorithm 3 produces a feasible solution to both (LDRP-IP)

and (LDRP-D) in a logarithmic number of rounds. It therefore only remains to bound the quality

of the solution, which we shall do now. To prove that the algorithm is a 2-approximation, we use

the same technique of defining an invariant over the weights of the edges added to the forest as in

the generalized algorithm.

Proposition 9. The cost of the final spanning forest Fτ is bounded above by
(

2− 2
|R|

)
Z∗LDRP-IP

if the normalized edge weights are in the range
[
1, 3

2

]
.

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

77

Proof sketch. The basic intuition of our result is that the average degree of a vertex in a forest of at

most n vertices is at most 2− 2
n . Cf. the proof of Proposition 3 on page 35.

This section has served to prove that the parallel version of the algorithm is correct, complete,

and maintains the runtime and approximation bounds we claim. In the next section we will show

that it can be trivially extended to a distributed algorithm.

5.2.4 Distributing the Algorithm

We make the same assumptions on the communications network as those of multidirectional graph

search given in §3.1.2. Namely, we assume that the communications network provides guaranteed

delivery of messages, however, there may be arbitrary latency (i.e., the network is asynchronous [46]).

Without loss of generality, we assume that there is one intelligent agent per vertex in the graph.

We further assume that all agents are honest and correct and thus need not consider the problem

of Byzantine failure [85]. The agents are non-adversarial insofar as their primary goal is to find a

feasible solution to the location design and routing problem. The collective is therefore what is called

a cooperative multiagent system [17]. Agents’ perceptions of the graph being optimized (e.g., the

network topology) are consistent, possibly through the use of a distributed consensus algorithm [46].

Each agent/vertex has a unique identifier with a globally agreed ordering. This ordering can be used

to construct a total ordering over the edges (e.g., by combining the unique identifiers of the incident

vertices).

The proposed distributed algorithm is round-based, with each round corresponding to a single

iteration of the main loop (line 10) of the parallel algorithm. The rounds proceed asynchronously

between connected components. Therefore, as the connected components grow throughout the

execution of the algorithm, the rounds naturally become synchronized.

The distributed version of the algorithm, given in Algorithm 4, uses simple synchronous message

passing in place of the shared memory of the parallel algorithm. The distributed algorithm is proven

deadlock-free in the following proposition.

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

78

Proposition 10. Algorithm 4 is deadlock-free.

Proof. The only blocking operations in the algorithm occur on lines 12, 15, 22, 27, and 38.

Waiting for an Update message on line 12 will clearly not deadlock since UpdateRequest messages

are sent on the line previous, and the procedure on line 1 immediately sends an Update message in

reply to requests.

Similarly, line 14 ensures that line 15 will not deadlock.

The fact that the procedure on line 7 contains no blocking operations ensures that any Union

message will be immediately replied with an Ack message. Therefore, line 22 will not deadlock.

Any vertices that choose to make an incident edge tight will block on line 27 unless either the

choice of edge was mutual or the connected component on the other end of the edge contains a

depot. Let 〈v, u〉 be such an edge. Note that J(v, u) = 1 and J(u, v) = 0. In such a case, v will be

added by u to I upon receipt of v’s Union message on line 14. Now, by a similar argument to the

proof of Lemma 6, note that there must be some x and y such that J+(u, y) and J(y, x) = 1 and

either J(x, y) = 1 or x’s component already contains a depot (otherwise there would be a cycle).

Therefore, u will not deadlock on line 27 and will eventually send an Adding message to v on line 32.

Finally, the main loop invariant on line 10 ensures that only depot-less components block on

line 12. Furthermore, (5.1) ensures that there must be exactly one vertex in each depot-less compo-

nent that chooses to add exactly one edge during each round. Therefore, line 38 will not deadlock.

Assuming all messages can be both unicast and broadcast in a constant number of messaging

rounds then, by the same argument as in the proof of Proposition 7, the main loop of the distributed

algorithm on line 10 will run in a logarithmic number of iterations and thereby will have a logarithmic

number of messaging rounds. If this assumption does not hold—for example, if ad hoc routing

is required—then the algorithm can be trivially extended to support the Broadcast-Message

function itself. To do this, the algorithm will use the partially constructed spanning trees within

each connected component for multicast.

The most expensive operations in the distributed algorithm are

1. determining the fringe edge with minimal potential; and

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

79

Algorithm 4 The distributed location design and routing algorithm. Message handlers are given
in Algorithm 5.

1: procedure Distributed-Location-Design(v, κ)
Require: κ is the cost of opening a depot at v.

2: C ← ∅ /* The other fringe vertices in our component. */
3: N ← δ({v}) ∪ {〈v, dv〉} /* The neighborhood of v along with the special depot vertex dv

*/
4: F ← ∅ /* The spanning forest of our component. */
5: w(dv)← κ
6: for all i ∈ δ(C) ∪ {v} do
7: g(i)← 0
8: end for
9: I ← ∅

10: while F does not contain a depot do
11: Broadcast-Message(UpdateRequest) to all u ∈ N
12: Block until we have received and handled all Update messages from N .
13: Find an edge e = 〈v, u〉 ∈ N such that u /∈ C and ε = w(e)− g(v)− g(u) is minimized.
14: Broadcast-Message(Potential〈ε〉) to all c ∈ C
15: Listen for all broadcast Potential messages from the fringe
16: if ε is the smallest in the fringe and ties are broken in our favor then
17: N ← N \ {u}
18: if u = dv then
19: Cm ← {u}
20: else
21: Send-Message(Union〈e〉) to u
22: Wait for an Ack〈m,Cm〉 message from u
23: if m = Mutual then /* u also chose to make edge e tight */
24: ε← ε

2
25: else
26: if m = Not-Mutual then /* this means u does not yet have a depot */
27: Block until we have received and handled an Adding〈ea, εa, Ca〉 message

from u
28: end if
29: Cm ← Ca
30: end if
31: end if
32: Broadcast-Message(Adding〈e, ε, Cm〉) to all c ∈ C ∪ I
33: I ← ∅
34: C ← C ∪ Cm
35: g(v)← g(v) + ε
36: F ← F ∪ {e}
37: else
38: Block until we have received and handled an Adding message from another fringe

member
39: end if
40: end while
41: end procedure

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

80

Algorithm 5 Message handlers for Algorithm 4.
1: procedure Handle-Update-Request-Message(UpdateRequest sent by u)
2: Send-Message(Update〈v, g(v)〉) to u
3: end procedure
4: procedure Handle-Update-Message(Update〈vu, gu〉 sent by u)
5: g(vu)← gu
6: end procedure
7: procedure Handle-Union-Message(Union〈eu〉 sent by u)
8: if e = eu then
9: Send-Message(Ack〈Mutual, C〉)

10: else if F already contains a depot then
11: Send-Message(Ack〈Has-Depot, ∅〉)
12: else
13: Send-Message(Ack〈Not-Mutual, ∅〉)
14: I ← I ∪ {u}
15: end if
16: end procedure
17: procedure Handle-Adding-Message(Adding〈ea, εa, Ca〉)
18: F ← F ∪ {ea}
19: g(v)← g(v) + εa
20: C ← C ∪ Ca
21: end procedure

2. merging two connected components once an edge between them becomes tight.

Should efficient broadcast be unavailable, one way of implementing these operations is to have

broadcast messages convergecasted up the partially constructed spanning tree in the component.

This method was used to solve a similar problem in [68]. The root of the tree (e.g., the vertex

that was added the earliest and is of highest unique identifier) can then perform the operation and

unicast the result back down to the relevant fringe member(s).

This section has applied the technique of distributed multidirectional graph search to the location

design and routing problem. The algorithm guaranteed to run in a logarithmic number communica-

tion rounds. Provided that the weight of the heaviest edge added in a round is no more than 150%

of the lightest edge, the algorithm is guaranteed to produce a solution whose cost is no worse than

two times optimal. This invariant can be maintained in general by embedding the true edge weights

into [1, 3
2] ∈ Q.

Chapter 5: Solving Constrained Forest Problems 5.2 Location Design Problems

81

5.3 Art Gallery Problems

Art gallery problems generally ask to find the minimum number of guards required to observe the

interior of a polygonal area [8]. Over the past thirty years since their proposition, these problems have

been thoroughly studied by the computational geometry community. Interest in art gallery problems

has seen a recent resurgence given their application to a number of areas of multiagent systems. For

example, many robotics, sensor network, wireless networking, and surveillance problems can be

mapped to variants of the art gallery problem. Since such problems can be naturally distributed, a

logical approach is to apply the multiagent paradigm (i.e., each guard is an agent).

As a motivating scenario, consider a wireless sensor network such as the one pictured in Figure 1.3.

Since one goal of the network is to maximize survivability, it may be desirable to conserve battery

power by having as few sensors active as necessary, especially for sensors with wide overlapping fields

of view. The problem is then to find a minimum subset of sensors that need to remain active in

order to provide a desirable level of coverage. As another scenario, consider a group of mobile robots

each equipped with a wireless access point. The objective of the robots is to maximally cover an

area with the wireless network. As the robots are traveling between waypoints, though, it is highly

likely that there will be a large amount of overlap in the coverage. Therefore, in order to save power,

the robots might want to choose a maximum subset of robots that can lower their transmit power

while still retaining coverage. The difficulty in each of these scenarios is for the agents to collectively

find the solution without centralizing computation. Centralization is infeasible either due to lack of

resources (i.e., no single agent has powerful enough hardware to solve the global problem) or due to

lack of time (i.e., centralizing the problem will take at least a linear number of messaging rounds).

These problems are NP-Hard and can be modeled as art gallery problems.

Solving art gallery problems using multiagent systems is not a new idea. In Lass, & al. [86], we

applied the multiagent coordination paradigm of Distributed Constraint Optimization (DisCOP) to

a variant of the problem in which a fixed number of robotic guards must patrol a polygonal area.

The difficulty with using DisCOP, however, is that all known algorithms that provide a constant

bound on the quality of the solution will in the worst case be exponential in either messaging or

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

82

memory [87]. Whereas DisCOP is a general problem solving paradigm, Ganguli, & al., developed

a multiagent algorithm specifically for solving art gallery problems [88]. This algorithm has several

desirable properties including optimality, however, there is no theoretical bound on runtime.

The dominating set problem is a generalization of the art gallery problem that asks to find a

minimum subset of the vertices in a graph such that every vertex not in the subset has at least one

member of the subset in its neighborhood (vi&., related to the hitting set problem). This problem

is also NP-Complete [43]. The dominating set problem has been widely studied in the wireless

networking community given its applications to ad hoc routing [89] and efficient multicast [15]. The

majority of the proposed distributed algorithms for the dominating set problem, however, do not

have bounds on both runtime and solution quality. In the wireless networking community much

emphasis is placed on devising algorithms with a constant number of communication rounds. Ruan,

& al., propose a one-step greedy algorithm for approximating a solution to the dominating set

problem [90], however, the performance ratio is a function of the degree distribution of the graph.

Kuhn and Wattenhofer provide a more general result, producing an algorithm that has a variable

approximation bound as a function of the number of communication rounds executed. Kuhn and

Wattenhofer’s approach, however, is likewise tied to the degree distribution of the graph. Finally,

Huang, & al., show that with a slightly higher message complexity a solution no worse than 12 times

the cost of the optimal solution can be found [91]. This chapter introduces an algorithm based on

multidirectional constrained graph search that exhibits a lower constant of approximation in a worst

case linear—but often logarithmic—number of communication rounds.

This section introduces a novel distributed version of a multiagent approximation algorithm

based on the primal-dual schema for solving the distributed art gallery and dominating set prob-

lems (§5.3.1). We show that this algorithm is correct and complete and bound its runtime with

respect to communication rounds (§5.3.2). Next, we show through empirical analysis that the al-

gorithm will produce solutions within a constant factor of optimal with high probability (§5.3.3).

We then show that some well known variants of the problem can also be solved with the same

algorithm and, under certain reasonable assumptions about the distribution of edge weights, the

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

83

(a) (b) (c)

Figure 5.6: An art gallery, (a), with its associated visibility graph, (b), and an optimal
placement of guards, (c). Guard placement is represented by .

algorithm will produce a solution no worse than two times optimal (independent of the topology of

the problem) (§5.3.4).

5.3.1 Distributed Dominating Sets

This section defines the necessary formalism for the distributed dominating set problem, which is

equivalent to the original art gallery problem of finding a minimum set of vertices from which the

entire polygon is visible. This formalism is later used to define our algorithm.

Given two vertices of a polygon u and v, u is said to be visible from v if the line segment between

them is contained within the polygon, & vice versa. The exterior of the polygon is forbidden for

visibility graph edges. Given the vertices of a polygon, V , the Art Gallery Problem asks to find

a minimum subset of the vertices D ⊆ V such that for every v ∈ V there is at least one d ∈ D

that is visible. The visibility graph of a polygon is constructed by adding an edge between all pairs

of vertices that are visible to each other. For example, see Figure 5.6b. The Art Gallery Problem

therefore reduces to finding a dominating set of the vertices in the polygon’s visibility graph. Given

a visibility graph G = 〈V,E〉, the object is to find a D ⊆ V of minimum cardinality such that each

v /∈ D has at least one d ∈ D in its neighborhood. An example is given in Figure 5.6, with an

optimal solution depicted in Figure 5.6c.

The analysis of the dominating set problem can be simplified by representing it as a connectivity

problem. Therefore, let us augment the visibility graph with one special guard vertex di for each

original vertex vi, as in Figure 5.7a. Next, add an edge from each vertex to its associated guard

vertex with a weight of one. The new overall set of edges is the original set of edges from the

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

84

visibility graph unioned with the set of new guard edges. All original edges from the visibility graph

are given a weight of zero. Let R = {v1, . . . , vn} be the set of original vertices in the visibility graph

and let T = {d1, . . . , dn} be the set of new special guard vertices with the new overall set of vertices

V = R ∪ T . Now the problem reduces to that of finding a minimum weight forest that spans R

having the property that the length of the shortest path from any v ∈ R to a d ∈ T is no more than

two edges. We will hereafter refer to this forest as “the spanning forest”. Note, however, that the

spanning forest does not necessarily span all of T .

In this new connectivity representation, a vertex vi will be a part of D (i.e., it will be chosen

to become a guard) if the edge from it to its associated guard vertex is a part of the final spanning

forest: 〈vi, di〉 ∈ F =⇒ vi ∈ D. Let f : 2V → {0, 1} be the function defining whether a connected

component S ⊆ V satisfies the requirement that each vertex is close to at least one guard. f is

defined such that f(S) = 1 if and only if there exists an original vertex in S that is not within two

edges distance of a guard in S: f(S) = 1 ⇐⇒ ∃u ∈ S ∩ R ∀v ∈ S ∩ T : |u ; v| > 2. Note that f

is not proper. A component for which f(S) = 1 is said to be unguarded. The optimization problem

on the augmented graph can be captured as the following integer program:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅

xe ∈ {0, 1}, ∀e ∈ E,

(ART-IP)

where each variable xe is an indicator as to whether the edge e is a member of the final spanning

forest, δ(S) is the set of edges having exactly one endpoint in S, and x(F) 7→
∑
e∈F xe. Therefore,

any forest F ⊆ E will be a feasible solution to the problem if f(S) = 0 for every connected component

S of the forest. Let (ART-LP) denote the linear programming relaxation of (ART-IP) obtained by

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

85

replacing the integrality restriction with xe ≥ 0. The dual of (ART-LP) is

maximize
∑
S⊂V

f(S)yS

subject to: ∑
S:e∈δ(S)

yS ≤ w(e), ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

(ART-D)

Again, an edge is tight if w(e) =
∑
S:e∈δ(S) yS . Let Z∗ART-LP be the cost of the optimal solution

to (ART-LP) and let Z∗ART-IP be the cost of the optimal solution to (ART-IP). Needless to say that

Z∗ART-LP ≤ Z∗ART-IP.

5.3.2 The Algorithm

The basic mechanism of the algorithm is that of constrained multidirectional graph search. We start

off with an empty forest; each vertex is a member of its own connected component. Every round,

each unguarded component greedily chooses to add one of its cut edges in the visibility graph to the

forest, merging with the component on the other end of the edge. If the new component becomes

guarded as a result of the merger then the new component stops actively growing. This has the

effect of first finding a forest that spans the original visibility graph; then each connected component

in the forest finds the minimum set of special vertices that is sufficient to be guarded. When all

components are guarded the algorithm terminates. A technical sketch of the algorithm is given in

Figure 5.7.

The remainder of this section provides the notation and mathematics required to formally define

and model the algorithm. This will later be used to provide formal bounds on the runtime and

performance of the algorithm, and also to prove correctness and completeness. We make the same

assumptions on the communications network as in §5.2.4.

Let Ft be the partially constructed spanning forest at the beginning of round t. Let Ct be

the set of connected components in Ft. For sake of brevity and simplicity, let µt : V → Ct be

a function mapping vertices to their associated connected component during round t; therefore,

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

86

(a) Augmented graph. (b) Round 1. (c) Connectivity after
round 1.

(d) Round 2. (e) Connectivity after
round 2.

(f) Round 3.

(g) A guard is added. (h) Round 4. (i) A guard is added.

(j) Round 5. (k) A guard is added. (l) Round 6: Every ver-
tex is guarded, so the algo-
rithm terminates.

Figure 5.7: A sketch of the multidirectional constrained graph search algorithm solving the
Art Gallery constrained forest problem.

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

87

µt(v) 7→ Ci =⇒ v ∈ Ci(∈ Ct). A vertex that is incident to at least one edge in the cut of its

connected component is said to be in the fringe. Let gt : V → R be a mapping of vertices to a real

number during round t. These values represent the amount of slack remaining in the dual variables

associated with a vertex.

Let Jt : V ×V → {0, 1} be a binary relation defining which edges will become tight during round

t. Each unguarded component will choose to add the edge in its fringe that has minimal weight and

dual variable slack. Therefore, Jt(u, v) = 1 if and only if f(µt(u)) = 1 and

〈u, v〉 = arg min
〈i,j〉∈δ(µt(u))

w(〈i, j〉)− gt(i)− gt(j). (5.8)

Ties in the minimization are broken based upon the ordering of the edges. Let J+ denote the

transitive closure of J . Note that J does not commute: J(u, v) 6=⇒ J(v, u). Also note that as long

as there exists a feasible solution to (ART-IP) then the minimization ensures that each unguarded

connected component must have exactly one edge in the fringe that becomes tight each round:

∀C ∈ Ct : f(C) =
∑
〈u,v〉∈δ(C) Jt(u, v).

Ft is the partially constructed spanning forest during round t, initialized to F0 = 〈V, ∅〉. The

forest is updated each round with the set of all edges that became tight during the round: Ft+1 =

Ft ∪ {〈u, v〉 ∈ E : Jt(u, v) ∨ Jt(v, u)}.

For a set S ⊆ V , let yS be the dual variable associated with S. Initially all such variables are set

to zero. Note that in actuality these variables need not be made part of an implementation of the

algorithm; they exist solely for the purpose of proving properties of the algorithm [73]. These dual

variables are implicitly updated as follows:

yS ←

w(〈i,j〉)−gt(i)−gt(j)

1+Jt(j,i)
if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.

(5.9)

The g values are initialized such that ∀v ∈ V : g0(v) = 0. They are updated each round such

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

88

that

gt+1(v) = gt(v) + yµt(v). (5.10)

The value gt(v) can therefore be interpreted as the amount of slack remaining in the dual variables

during round t before an edge incident to vertex v becomes tight.

Let τ be the number of rounds required for the algorithm to reach quiescence. Therefore, τ is

the earliest round during which there are no unguarded components:

τ = arg min
t∈N0

(∀C ∈ Ct : f(C) = 0) . (5.11)

The performance guarantees of the algorithm are proven in this section. First, Lemmas 8 and 9

lead to Proposition 11 which implies that any solution found by the algorithm is acyclic and thereby a

forest, implying that it is primal feasible. Proposition 12 states that under certain common conditions

the main loop (line 9 of Algorithm 6) will have a logarithmic number of iterations. Finally, Claim 7

leads to Proposition 13 which states any solution found by the algorithm is dual feasible.

Lemma 8. Any cycle in the intersection graph (q.v. footnote 1 on page 32) of Ft+1 formed from Ct

must consist solely of edges along the cuts between unguarded components.

Proof. Assume, on the contrary, that there exists a cycle containing an edge that is incident to at

least one guarded component. Let 〈u, v〉 be such an edge and assume µt(v) is guarded. (5.8) implies

that v’s connected component has no outgoing edges,

∀i ∈ µt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

The potential cost of an edge is the fractional quantity associated with ε on line 12 of Algorithm 6.

Lemma 9. Any cycle in the intersection graph of Ft+1 formed from Ct must consist of edges of

equal potential cost.

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

89

Algorithm 6 The distributed art gallery/dominating set algorithm. Message handlers are defined
in Algorithm 7.

1: procedure Distributed-Art-Gallery(v)
Require: v is the vertex associated with the location of this agent.
Ensure: v will become a guard if 〈v, dv〉 ∈ F .

2: C ← ∅ /* The other fringe vertices in our component. */
3: N ← δ({v}) ∪ {〈v, dv〉} /* The neighborhood of v along with the special guard vertex dv

*/
4: F ← ∅ /* The spanning forest of our component. */
5: for all i ∈ δ(C) ∪ {v} do
6: g(i)← 0
7: end for
8: I ← ∅
9: while F is unguarded do

10: Broadcast-Message(UpdateRequest) to all u ∈ N
11: Block until we have received and handled all Update messages from N .
12: Find an edge e = 〈v, u〉 ∈ N such that u /∈ C and ε = w(e)− g(v)− g(u) is minimized.
13: Broadcast-Message(Potential〈ε〉) to all c ∈ C
14: Listen for all broadcast Potential messages from the fringe
15: if ε is the smallest in the fringe and ties are broken in our favor then
16: N ← N \ {u}
17: if u = dv then
18: Cm ← {u} /* v is to become a guard. */
19: else
20: Send-Message(Union〈e〉) to u
21: Wait for an Ack〈m,Cm〉 message from u
22: if m = Mutual then /* u also chose to make edge e tight */
23: ε← ε

2
24: else
25: if m = Not-Mutual then /* this means u is not yet guarded */
26: Block until we have received and handled an Adding〈ea, εa, Ca〉 message

from u
27: end if
28: Cm ← Ca
29: end if
30: end if
31: Broadcast-Message(Adding〈e, ε, Cm〉) to all c ∈ C ∪ I
32: I ← ∅
33: C ← C ∪ Cm
34: g(v)← g(v) + ε
35: F ← F ∪ {e}
36: else
37: Block until we have received and handled an Adding message from another fringe

member
38: end if
39: end while
40: end procedure

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

90

Algorithm 7 Message handlers for Algorithm 6.
1: procedure Handle-Update-Request-Message(UpdateRequest sent by u)
2: Send-Message(Update〈v, g(v)〉) to u
3: end procedure
4: procedure Handle-Update-Message(Update〈vu, gu〉 sent by u)
5: g(vu)← gu
6: end procedure
7: procedure Handle-Union-Message(Union〈eu〉 sent by u)
8: if e = eu then
9: Send-Message(Ack〈Mutual, C〉)

10: else if F is already guarded then
11: Send-Message(Ack〈Is-Guarded, ∅〉)
12: else
13: Send-Message(Ack〈Not-Mutual, ∅〉)
14: I ← I ∪ {u}
15: end if
16: end procedure
17: procedure Handle-Adding-Message(Adding〈ea, εa, Ca〉)
18: F ← F ∪ {ea}
19: g(v)← g(v) + εa
20: C ← C ∪ Ca
21: end procedure

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle. (5.8) implies that all edges in a cycle must be

cuts between existing connected components. Therefore, µt(u1) 6= µt(v1). Furthermore, there must

be another edge in the cycle, e2 = 〈u2, v2〉, such that µt(v2) = µt(u1). It must also be true that

Jt(u1, v1) = Jt(u2, v2) = J+
t (u1, v2) = 1. By Lemma 8 all components in the cycle are unguarded.

Therefore, applying (5.8) gives

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2).

In general, this inequality will hold for the incoming and outgoing edges of any connected component

in the cycle. Therefore, by transitivity,

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2)

≤ w(e1)− gt(u1)− gt(v1),

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

91

implying that

w(e1)− gt(u1)− gt(v1) = w(e2)− gt(u2)− gt(v2).

Proposition 11. The intersection graph of Ft+1 formed from Ct is acyclic.

Proof. Assume, on the contrary, that there is a round t during which a cycle of length ` is formed.

Since the graph is simple, ` > 1. By Lemma 9, all of the edges in the cycle must be of equal potential

cost. Therefore, each connected component will have had a tie between two fringe edges which must

have been broken using the edge ordering. Therefore, either ` = 1 or there are two edges with the

same unique identifier, both of which are contradictions.

Corollary 3. F0, . . . , Fτ are all acyclic.

Proof. Since F0 = 〈V, ∅〉, the base case is acyclic. Induction over Proposition 11 then proves the

corollary.

It is easy to see that τ = the diameter of the visibility graph = O(n) since every acyclic subgraph

has O(n) edges and the algorithm adds at least one edge per round. This upper bound can in fact

be tightened for many common cases, which we shall now demonstrate. Let Af (t) = A(t) be an

upper bound on the number of unguarded components at the beginning of round t. Similarly, let

Lf (t) = L(t) be an upper bound on the total number of components at the beginning of round t.

Clearly,

A(t) ≥ |{C ∈ Ct : f(C) = 1}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every unguarded component will union with another component during each round.

Regardless of whether such a component chooses to union with a guarded or unguarded component,

the total number of components will decrease by one half the number of unguarded components.

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

92

Therefore L(t) = L(t−1)−A(t−1)/2. Now let us consider the extrema for the change in the number

of unguarded components. If all unguarded components choose to union with other unguarded

components and all unions are pairwise, then we have A(t) = A(t− 1)/2. On the other hand, if as

many unguarded components union with guarded components as possible, then A(t) ≤ min(A(t −

1), L(t− 1)− A(t− 1)). Therefore, assuming pairwise unions, the general recurrences for A(t) and

L(t) are:

A(t) = max

(
A(t− 1)

2
,min

(
A(t− 1), L(t− 1)−A(t− 1)

))
, (5.12)

L(t) = L(t− 1)− A(t− 1)
2

.

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : f(C) = 1}| = |R|,

L(0) = |C0| = |R|+ |T | = 2|R|.

Claim 6. A(t− 1)/2 will always dominate in the maximization in (5.12).

Validation of this claim will be given in the proof of the following proposition.

Proposition 12. The algorithm will terminate after a logarithmic number of rounds if all component

unions are pairwise (i.e., iterations of the main loop on line 9 of Algorithm 6): τ = O(log n).

Proof. This follows from the fact that the algorithm will terminate once the number of unguarded

components is zero:

∀t ∈ N0 : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that, the A(t) recurrence will converge exponentially,

implying that τ = O(log n).

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

93

If Claim 6 holds, then it is clear that the A(t) recurrence will converge exponentially:

A(t) =
A(0)

2t
,

L(t) = 2|R| −
t∑
i=0

A(0)
2i

.

Let k = A(0)
2|R| and observe that k = 1

2 . Substituting 2k|R| for A(0) ensures that the minimization in

A(t) will always evaluate to L(t− 1)−A(t− 1) because

∀t ∈ N0 : A(t) ≥ L(t)−A(t).

2|R| k
2t
≥ 2|R|

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)
2k
2t

≥ 1−
t∑
i=0

k

2i

k ≥ 2t

1 + 2t+1
,

which is true because 2t/(1 + 2t+1) is bounded above by 1
2 . Therefore, provided Claim 6 holds,

(5.12) can be simplified to

A(t) = max
(
A(t− 1)

2
, L(t− 1)−A(t− 1)

)
.

Claim 6 obviously holds for the base case of t = 1 because A(0)/2 = 2k|R| is bounded below by

L(0)−A(0) = 2|R| − 2|R|
2 . Therefore, Claim 6 will hold as long as

A(t)
2
≥ L(t)−A(t).

This equates to

k ≥ 2t+1

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

≥ 2× 4t

2t + 4t+1
,

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

94

which must be true because (2× 4t)/(2t + 4t+1) is bounded above by 1
2 .

Claim 7. Let t′ be the round during which an edge e = 〈u, v〉 is added to the spanning forest. Then

e will not be in the cut of any component in a subsequent round: ∀t > t′, C ∈ Ct : e /∈ δ(C).

Proof. µt′+1(u) = µt′+1(v) = µt′(u)∪µt′(v). Therefore, in all rounds subsequent to t′ both endpoints

of e are in the same component and therefore cannot be in the fringe.

Proposition 13. The vector y is a feasible solution to (ART-D) and has the property

∑
e∈Fτ

w(e) ≤
∑
e∈Fτ

∑
S:e∈δ(S)

yS .

Proof. The fact that y is a feasible solution to (ART-D) is a straightforward result of the fact that

y is initially zero and is updated according to (5.9). Let t be the round during which an edge

e = 〈u, v〉 ∈ Fτ was added to the forest. From (5.10), note that

(
gt(u) =

t−1∑
i=0

yµi(u)

)∧(
gt(v) =

t−1∑
i=0

yµi(v)

)
.

Furthermore, at the beginning of round t the potential for e is ε = w(e) − gt(u) − gt(v). Once e

is added to Ft, the dual variables yµt(u) and yµt(v) are updated according to (5.9). Then there are

three possible cases:

1. f(µt(u)) = f(µt(v)) = Jt(u, v) = Jt(v, u) = 1;

2. f(µt(u)) = f(µt(v)) = Jt(u, v) + Jt(v, u) = 1; or

3. f(µt(u)) + f(µt(v)) = 1.

In case 1,

yµt(u) + yµt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε,

implying that

w(e) =
t∑
i=0

(
yµi(u) + yµi(v)

)
. (5.13)

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

95

For case 2, assume without loss of generality that Jt(u, v) = 1 and Jt(v, u) = 0. For case 3, assume

without loss of generality that f(µt(u)) = 1 and f(µt(v)) = 1. Then for both of these cases note

that

yµt(u) =
ε

1 + Jt(v, u)
= ε,

implying that

w(e) = yµt(u) +
t−1∑
i=0

(
yµi(u) + yµi(v)

)
. (5.14)

Claim 7 implies that the summations in (5.13) and (5.14) comprise all sets that cut e, thus completing

the proof.

5.3.3 Empirical Analysis

We have thus far proven that Algorithm 6 produces a feasible solution to both (ART-IP) and (ART-

D) in a linear—and often logarithmic—number of rounds. It therefore only remains to analyze the

quality of the solution.

A series of n-gons were randomly generated by connecting n uniformly distributed vertices in the

unit square of the Cartesian plane according to the folkloric “Two Peasants” method. This method

works by dividing the plane into half-spaces via the line that passes through the two vertices of

extremal value in the x dimension. The plane is then rotated such that the line between the

extremal vertices is parallel to the x-axis. In each half-space, the vertices are connected to each

other in order of increasing x value. This will result in a simple polygon. The method is depicted

in Figure 5.8. 32 random polygons were created for each value of n. An agent was instantiated at

each vertex of each randomly generated polygon and the algorithm run. The optimal dominating

set was also calculated using an exhaustive sequential method.

Figure 5.9 presents the distribution of optimality as a function of polygon size. Values on the

y-axis represent the constant of approximation; lower values are better, with 1.0 being the optimal

solution. Boxes represent the second and third quartiles of each distribution. The overall mean

constant of approximation is 3.13 with a standard deviation of 0.36. Therefore, we can say with

high probability that the algorithm will produce a solution with a constant approximation bound

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

96

Figure 5.8: Illustration of the “Two Peasants” method of point set polygonization. The
dashed line (“ ”) divides the unit square into half-spaces (shaded “ ” and “ ”) through
the two extremal vertices in the x dimension. Arrows represent the addition of edges to the
polygon, the direction of which indicate the order of their addition in the half-space.

0

2

4

6

8

10

12

4 6 8 10 12 14 16 18 20 22 24

O
pt

im
al

it
y

Number of Agents

Figure 5.9: Solution quality of the algorithm for art gallery problems of various size. The
x-axis is the size of the polygon (i.e., the number of agents) and the y-axis is the constant
of approximation. Each column is the distribution over 32 randomly generated polygons of
a specific size. Boxes surround the middle two quartiles. The mean of each distribution is
depicted as “ ”.

regardless of the problem size.

5.3.4 Art Gallery Variants

In this section we will show that some variants of the art gallery problem can be solved using the

same approach as described above. In fact, some harder problems can be approximated with a

constant theoretical bound on solution quality. For example, one popular variant is what is dubbed

the “Treasury Problem” [92], in which treasures dispersed in the polygon are what need to be

guarded. As another variant, one might need to minimize the distance between a guard and that

which he or she is guarding (e.g., due to a limited view distance of the sensor, or due to the mobility

of a robot). This variant is in fact equivalent to the treasury problem in which each treasure has

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

97

weighted importance [93].

In order to model this variant, we need only to embed the edge weights of the augmented graph

into the proper metric space. As long as all of the edges in the augmented graph are weighted in a

metric space with a normalized bijection in the range
[
1, 3

2

]
then we will show that the algorithm as

defined above will produce a solution that is no more than a factor of 2− 2
|R| away from optimal. This

can easily be done by parameterizing the relative cost between covering a vertex/treasure and the

distance between a guard and a vertex/treasure. To prove this claim, we use a technique of defining

an invariant over the weights of the edges added to the forest that can ultimately be bounded by the

average vertex degree of the forest. The basic intuition of our result is that the average degree of a

vertex in a forest of at most n vertices is at most 2− 2
n . This technique is exactly the same as that

first used in a proof due to Goemans and Williamson in [73, Theorem 3.6], in which they show that

certain connectivity problems can be sequentially 2-approximated in polynomial time. Our result

in fact generalizes that of Goemans and Williamson by proving that, with a slight change to the

potential function (and thereby the invariant), the approximation guarantee can be maintained even

if multiple edges are added per round (allowing for parallelism/distribution).

Lemma 10 (Williamson, & al. [14, Theorem 3.6]).

Let H be the intersection graph of the final spanning forest Fτ formed from Ct. Remove all isolated

vertices in H that correspond to components in Ct that are guarded. Then no leaf in H corresponds

to a guarded component.

Proof. This is a transcription of the proof, reproduced here for completeness using our notation in

the specific domain of art gallery problems. Assume the contrary: Let v be a leaf, let Cv be its

associated guarded component, let e be the edge incident to v, and let C ⊆ V be the component of

F which contains Cv. Let N and C \N be the two components formed by removing edge e from the

edges of component C. Without loss of generality, say that Cv ⊆ N . The set N \ Cv is partitioned

by some of the components of the current round; call these C1, . . . , Ck. Since vertex v is a leaf, no

edge in Fτ connects Cv to any Ci. Thus by the construction of Fτ , ∀i ∈ {1, . . . , k} : Ci is guarded.

Since Cv is also guarded, it follows that N must be too. Clearly, if two components S and B are

Chapter 5: Solving Constrained Forest Problems 5.3 Art Gallery Problems

98

both guarded and B ⊆ S, then the component S \ B must also be guarded. Since we know that

C is guarded then N \ C must as well, and thus by the construction of Fτ , e /∈ Fτ , which is a

contradiction.

Proposition 14. The cost of the final spanning forest Fτ is bounded above by
(

2− 2
|R|

)
Z∗ART-IP.

Proof sketch. The basic intuition of our result is that the average degree of a vertex in a forest of at

most n vertices is at most 2− 2
n . Cf. the proof of Proposition 3 on page 35.

Assuming all messages can be both unicast and broadcast in a constant number of messaging

rounds then, by the same argument as in the proof of 12, the main loop of the distributed algorithm

on line 9 can run in a logarithmic number of iterations and thereby will have a logarithmic number

of messaging rounds. If this assumption does not hold—for example, if ad hoc routing is required—

then the algorithm can be trivially extended to support the Broadcast-Message function itself.

To do this, the algorithm will use the partially constructed spanning trees within each connected

component for multicast.

The most expensive operations in the distributed algorithm are (1) determining the fringe edge

with minimal potential; and (2) merging two connected components once an edge between them

becomes tight. Should efficient broadcast be unavailable, one way of implementing these operations

is to have broadcast messages convergecasted up the partially constructed spanning tree in the

component. This method was used to solve a similar problem in [68]. The root of the tree (e.g., the

vertex that was added the earliest and is of highest unique identifier) can then perform the operation

and unicast the result back down to the relevant fringe member(s).

5.4 Conclusion

This chapter has presented a number of examples of how the generalized multidirectional graph

search algorithm and framework can be applied to a number of real world problems. Empirical

results for these problems agree with the theoretical bounds outlined in Chapters 3 and Chapter 4.

Chapter 5: Solving Constrained Forest Problems 5.4 Conclusion

99

Ultimately, we have furthered the results of Panconesi [67] by showing that the primal-dual opti-

mization scheme proposed by Goemans and Williamson [73] can be successfully distributed into an

algorithm with not only bounds on approximation, but also on runtime. This suggests that other

connectivity problems might yield to the same approach.

Chapter 5: Solving Constrained Forest Problems 5.4 Conclusion

100

Chapter 6: Dynamic Agent Organizations

The ultimate problem we are working toward solving is that of dynamic multiagent organization.

Ideally, algorithms should not have to completely re-optimize subsequent to every perturbation of

the problem. Vertices can enter and leave the graph at any time, and edges can be re-weighted

or removed. Superstabilizing distributed algorithms can start at any state and are guaranteed to

eventually converge to a solution. Can multidirectional graph search be extended such that it is

superstabilizing? Another reasonable question to ask is: What if the dynamic problem contains

constraints that are not trivially representable using proper functions? Both of these questions will

be answered in this chapter. In §6.1 we define extensions to multidirectional graph search to allow for

superstability subject to dynamic topological updates. In §6.2, a new, distributed superstabilizing

algorithm is introduced for the problem of pseudotree construction.

6.1 Online Topology Updates

Given a graph G = 〈V,E〉 with a proper function f , let H = 〈Ṽ , Ẽ〉 be a 2-optimal constrained forest

discovered by multidirectional graph search (Algorithm 2). Note that the nature of the algorithm

ensures that if there exists a feasible solution then, at the algorithm’s completion in round τ , H will

contain no active components. Now consider that during round τ+1 a new vertex, v, is added to the

input graph: G′ = 〈V ∪ {v}, E ∪ δ({v})〉. Clearly, re-running Algorithm 2 from scratch on the new

graph G′ will find the new 2-optimal solution H ′. What if, however, the algorithm is simply allowed

to continue off from where it left in round τ? Is it possible to exploit some of the computation

from the previous execution of the algorithm on G to find the new solution H ′ in fewer rounds?

In certain cases this is possible; the remainder of this section describes when and how, and gives a

superstabilizing extension to multidirectional graph search.

We will first identify under which circumstances the addition of v will maintain dual feasibility.

Let τ ′ > τ be the new round during which the continued execution of the algorithm (after the

101

addition of v) reaches quiescence. If we simply let the algorithm continue running as normal after

the addition of vertex v in a round subsequent to τ , we need to show that whatever was a feasible

solution before the addition of v remains a feasible solution after the addition of v. In order for dual

feasibility to persist, the dual constraints must remain satisfied:

∀e ∈ E ∪ δ({v}) :
∑

S:e∈δ(S)

yS ≤ w(e).

Since we know that these constraints hold at round τ (before the addition of v) it is therefore

sufficient to only consider the sets S that cut edges incident to v. By definition, the sum of the dual

variables that cut an edge equals the slack remaining on that edge. Therefore, the dual constraints

will be satisfied if the weight of each of v’s incident edges is greater than or equal to the amount of

slack in all of their incident component’s fringe edges. This scenario is depicted in Figure 6.1: For

each vertex u ∈ δ({v}) neighboring v, it must be true that each fringe edge 〈i, j〉 ∈ δ(µτ (u)) that is

in the cut of u’s component has slack less than or equal to the weight of 〈u, v〉:

∀〈i, j〉 ∈ δ(µτ (u)) : w(〈u, v〉) ≥ g(i) + g(j).

This concept—which in effect defines under which circumstances Proposition 2 will remain true after

the addition of a new edge—is formalized in the following proposition.

Proposition 15. If the weights of all of v’s incident edges are greater than or equal to the slack of

all of their neighboring vertices’ fringe nodes, i.e.,

∀e = 〈v, u〉 ∈ δ({v}) :
(
∀〈i, j〉 ∈ δ(µτ (u)) : w(e) ≥ gτ (i) + gτ (j)

)
, (6.1)

then, after the algorithm has re-quiesced in round τ ′, the sum of the weights of the edges in Hτ ′ is

bounded above by the sum of the dual variables that cut them,

∑
e∈Hτ′

w(e) ≤
∑
e∈Hτ′

∑
S:e∈δ(S)

yS , (6.2)

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

102

v

u1

u2

..
.

u3

. . .

uk. . .

i1

j1

i2 j2

i3

j3

. . .

. .
.

. .
.

Figure 6.1: In order to maintain dual feasibility after the addition of v, for each u incident
to v is must be true that the weight of 〈u, v〉 is greater than or equal to the slack of all of the
other edges 〈i, j〉 in the cut of u’s component (drawn in bold). The boundary of the cut with
respect to each connected component is depicted with a dashed line. Only the edges that are
across cuts are drawn.

and Hτ ′ is a feasible solution to (D). In other words, Proposition 2 will still hold.

Proof. We will first prove (6.2). If v is inactive, then none of v’s incident edges will become tight

and (6.2) will remain true. Therefore, let us consider the case when v is active. There must be at

least one edge incident to v that will be added to H in order for v to become inactive. Assuming

without loss of generality that a feasible solution to the new problem exists, v must have at least

one new incident edge that is added to the problem: δ({v}) ∩H ′ 6= ∅. We now use induction. As a

base case, we must show that Proposition 2 holds after the first addition of an edge in δ({v}) during

round τ + 1. To be precise, we need to show that

∑
e∈Hτ+1

w(e) ≤
∑

e∈Hτ+1

∑
S:e∈δ(S)

yS . (6.3)

From Proposition 2 we know that at the end of round τ the following must hold:

∑
e∈Hτ

w(e) ≤
∑
e∈Hτ

∑
S:e∈δ(S)

yS .

To prove (6.3), it is therefore sufficient to show that the weight of a new edge e ∈ δ({v}) will not

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

103

break this invariant:

w(e) ≤
∑

S:e∈δ(S)

yS .

By line 11 of Algorithm 2,

∑
S:e∈δ(S)

yS = yµτ+1(u) + yµτ+1(v)

=
ε

1 + Jτ+1(u, v)
+

ε

1 + Jτ+1(v, u)

=
ε

1 + Jτ+1(u, v)
+
ε

2

≥ ε

= w(e) + gτ+1(u) + gτ+1(v)

= w(e) + gτ+1(u),

because gτ+1(v) is initialized to zero and Jτ+1(u, v) ∈ {0, 1}. From the definition of (3.3),

w(e) + gτ+1(u) = w(e) +
τ∑
i=0

yµi(u)

= w(e) +
∑

S:e∈δ(S\{v})

yS

≥ w(e),

which proves (6.3).

Now we shall show that Hτ+1 remains a feasible solution to (D). Regardless of whether or not v

is a terminal, the inductive hypothesis maintains that the dual constraints are satisfied by ensuring

that the slack for all fringe edges does not exceed the edge’s weight:

∀〈v, u〉 ∈ δ({v}) :

∀e = 〈i, j〉 ∈ δ(µτ+1(u)) : w(e) ≥
∑

S:e∈δ(S)

yS ≥ gτ+1(i) + gτ+1(j)

 .

This provides dual feasibility and, thereby, proves the inductive base case. The same logic as in the

proof of Proposition 2 itself can then be used to prove the inductive case.

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

104

Proposition 16. If Proposition 15 holds for H ′ and all edge additions during the remaining τ ′ − τ

rounds are weighted in the range
[
ω̃, 3

2 ω̃
]
, then H ′ will also be 2-optimal.

Proof. Proposition 15 ensures that the weight of Hτ ′ is

∑
e∈Hτ′

w(e) ≤
∑
e∈Hτ′

∑
S:e∈δ(S)

yS =
∑

S⊂V ∪{v}

|Hτ ′ ∩ δ(S)|yS .

The burden of this proof is therefore to show that, after the addition of v, the new constrained forest

Hτ ′ is 2-optimal: ∑
S⊂V ∪{v}

|Hτ ′ ∩ δ(S)|yS ≤ 2
∑

S⊂V ∪{v}

yS . (6.4)

We shall use induction to show that (6.4) is invariant over the construction of Hτ , Hτ+1 . . . , Hτ ′ .

Given that Hτ is 2-optimal, it must be true that

∑
S⊂V

yS |Hτ ∩ δ(S)| ≤ 2
∑
S⊂V

yS .

This proves the base case. The proof of the inductive case then follows the same logic as that of the

proof of Proposition 3.

The following corollary is a direct consequence of Propositions 15 and 16:

Corollary 4. A new vertex can be added to the problem at any time without breaking the guarantee

of 2-optimality as long as its incident edges’ weights are greater than or equal to the slack of all of

their neighboring vertices’ fringe nodes.

Corollary 4 defines the circumstances in which new vertices may be dynamically added to the

problem without having to restart the algorithm from scratch. Extending this capability to general

multidirectional graph search (Algorithm 2) only requires a distributed means of determining if the

conditions of Proposition 15 are met—namely, if (6.1) is satisfied—and a protocol for handling race

conditions (e.g., if two vertices are added at once). A modified version of Algorithm 2 that allows

for dynamic addition of vertices is given in Algorithm 8.

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

105

Algorithm 8 The dynamic multidirectional graph search algorithm. The new code required for
dynamic variable addition is emphasized; the original code from Algorithm 2 is grayed out.

1: procedure Dynamic-Multidirectional-Graph-Search(T, v, w, δ)
Require: T is the set of terminals. v ∈ T is the terminal running this instance of the search algorithm. w is

a function that maps edges to their associated weight in the metric space
ˆ
ω̃, 3

2
ω̃

˜
∈ Q. δ is a successor

function such that δ(S) is the set of edges having exactly one endpoint in S.
Ensure: H = 〈Ṽ , Ẽ〉 is the resulting forest.

2: Ṽ ← {v} /* The initial solution has just our vertex. . . */
3: Ẽ ← ∅ /* . . .and no edges */

4: F ← δ({v}) /* The fringe of our search, initialized to v’s incident edges */

5: ∀u ∈ V : g(v)← 0 /* Initialize the path-cost function, implicitly setting yS ← 0 for all S ⊂ V */

6: Broadcast δ({v}) to our neighbors.
7: Wait for acknowledgement from our neighbors’ components that it is okay to proceed. /* e.g., using

Paxos [94] */
8: valid← True

9: for all 〈u, v〉 ∈ δ({v}) do
10: Fu ← δ(µ(u)) /* listen for and/or request the fringe edges of u’s component */

11: if ∃〈i, j〉 ∈ Fu : g(i) + g(j) > w(〈u, v〉) then /* Check if the conditions of Corollary 4 are met
*/

12: valid← False /* v cannot be added unless the algorithm is restarted from scratch */

13: end if
14: end for
15: for all u ∈ V that are neighboring v do
16: if valid then
17: Acknowledge receipt of Fu.
18: else
19: Tell u that the algorithm needs to be restarted.
20: Dynamic-Multidirectional-Graph-Search(T, v, w, δ) /* restart our instance of the algo-

rithm */

21: end if
22: end for
23: while (Ṽ ∩ T 6= T) ∧ (F 6= ∅) do /* while H does not contain all terminals and the fringe is not

empty */

24: while there are pending requests for our fringe edges do /* from line 10 */

25: Send Fv = {〈i, j, g(i), g(j)〉 : 〈i, j〉 ∈ F} to the requesting agent u.
26: Wait for an acknowledgement from u.
27: end while
28: Find an edge in e = 〈v, u〉 ∈ F such that ε = w(e)− g(u)− g(v) is minimized.
29: if u either is being or already was expanded by another search then
30: Union Ṽ , Ẽ, F , and g with the respective data structures of the search that already expanded

u and then merge our execution with that search.
31: if The other search also expanded the edge 〈v, u〉 this round then
32: ε← ε

2

33: end if
34: end if
35: for all k ∈ Ṽ : k is incident to an edge in the fringe do
36: g(k)← g(k) + ε /* Implicitly set yṼ ← yṼ + ε */
37: end for
38: F ← (F \ {e}) ∪ δ({u}) /* Remove e and add the edges incident to u */

39: Ṽ ← Ṽ ∪ {u}
40: Ẽ ← Ẽ ∪ {e}
41: end while
42: end procedure

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

106

Lines 6–22 of Algorithm 8 will only require worst-case O(n) messages and linear local computa-

tion, because the number of fringe edges is always O(n). Since the primary mechanism of Algorithm 8

is otherwise the same as in the original multidirectional graph search algorithm, the remainder of

the computation will have similar efficiency bounds.

Note, however, line 12 of Algorithm 8; is it necessary to always have the algorithm restart from

scratch if the conditions of Corollary 4 are not met? By recording the history of the search and

performing backtracking, the answer turns out to be “no”. In fact, we need only backtrack to the

most recent round in which the conditions of Corollary 4 are met. In some cases this will require

backtracking to round 0—in effect restarting the algorithm. More often than not, though, back-

tracking to round 0 will not be necessary. The added bookkeeping for this backtracking procedure

is given in Algorithm 9.

Since the original algorithm is bounded by a linear number of communication rounds, τ = O(n),

it stands that there can be at most O(n) backtracks for the addition of a single new vertex. Since

each backtrack only incurs a constant number of extra messaging rounds, Algorithm 9 will have

the same asymptotic runtime bounds as the original algorithm. Furthermore, the only new data

structure employed in the algorithm is the stack A. The size of each element in the stack is O(|V |2)

and there are at most τ elements in the stack at any time. Therefore, the additional memory

overhead of the new algorithm is still polynomial: |A| = O(τ |V |2) = O(n3).

With the backtracking technique of Algorithm 9, we also gain the ability to delete vertices and

update edge weights. To see this, we will first prove a rather intuitive proposition.

Proposition 17. As long as a feasible solution still exists after its deletion, any vertex that does not

have any incident edges in the constrained forest can be deleted from the problem while maintaining

2-optimality.

Proof. Let v be the node that is to be deleted. Since the conditions of the proposition require

that a feasible solution still exists after the removal of v, we only need to consider how v’s deletion

affects 2-optimality (Proposition 16). Since none of v’s incident edges are in the constrained forest,∑
e∈Hτ+1

w(e) remains unchanged after the removal of v. Therefore, the invariant used to prove 2-

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

107

Algorithm 9 The dynamic multidirectional graph search algorithm with backtracking. The new
code required for backtracking is emphasized; the original code from Algorithm 8 is grayed out.

1: procedure Dynamic-Multidirectional-Graph-Search-Backtracking(T, v, w, δ)
Require: T is the set of terminals. v ∈ T is the terminal running this instance of the search algorithm. w is

a function that maps edges to their associated weight in the metric space
ˆ
ω̃, 3

2
ω̃

˜
∈ Q. δ is a successor

function such that δ(S) is the set of edges having exactly one endpoint in S.
2–14: Lines 2–14 are unchanged from Algorithm 8.

15: for all u ∈ V that are neighboring v do
16: if valid then
17: Acknowledge receipt of Fu.
18: else
19: Tell u that the algorithm needs to be restarted to backtrack.
20: Dynamic-Multidirectional-Graph-Search(T, v, w, δ) /* restart our instance of the algo-

rithm */

21: end if
22: end for
23: A = {〈Ṽ , Ẽ, F, g, null, null, null, null, null〉} /* a stack for the history of the algorithm */

24: while (Ṽ ∩ T 6= T) ∧ (F 6= ∅) do /* while H does not contain all terminals and the fringe is not
empty */

25: while there are pending requests for our fringe edges do /* from line 10 */

26: Send Fv = {〈i, j, g(i), g(j)〉 : 〈i, j〉 ∈ F} to the requesting agent u.
27: Wait for an acknowledgement from u.
28: if u tells us to backtrack then
29: 〈Ṽ , Ẽ, F, g, v2, Ṽ2, Ẽ2, F2, g2〉 ← Stack-Pop(A)
30: if v2 6= null then
31: Split our search with agent v2, giving it the state Ṽ2, Ẽ2, F2, g2.
32: end if
33: end if
34: end while
35: Find an edge in e = 〈v, u〉 ∈ F such that ε = w(e)− g(u)− g(v) is minimized.
36: if u either is being or already was expanded by another search then
37: Stack-Push(A, 〈Ṽ , Ẽ, F, g, u, Ṽu, Ẽu, Fu, gu〉)
38: Union Ṽ , Ẽ, F , and g with the respective data structures of the search that already expanded

u and then merge our execution with that search.
39: if The other search also expanded the edge 〈v, u〉 this round then
40: ε← ε

2

41: end if
42: end if
43: for all k ∈ Ṽ : k is incident to an edge in the fringe do
44: g(k)← g(k) + ε /* Implicitly set yṼ ← yṼ + ε */
45: end for
46: F ← (F \ {e}) ∪ δ({u}) /* Remove e and add the edges incident to u */

47: Ṽ ← Ṽ ∪ {u}
48: Ẽ ← Ẽ ∪ {e}
49: end while
50: end procedure

Chapter 6: Dynamic Agent Organizations 6.1 Online Topology Updates

108

optimality in Proposition 16 remains unchanged, and the final solution must also be 2-optimal.

By this property, we need only backtrack to the most recent round during which v had no incident

edges in the constrained forest, at which point it can be safely removed. Therefore, updating edges

can simply be implemented by removing all incident vertices, adding/removing/updating the edges,

and re-adding the affected vertices.

In this section we have identified the sufficient conditions under which new vertices may be

added/deleted and edges modified in an existing constrained forest. Algorithm 8 implements these

processes, with no affect to the asymptotic efficiency bounds of the original multidirectional graph

search algorithm. Furthermore, if the conditions for these processes to take place are not met, we

have created a backtracking mechanism by which any such dynamic modification to the constrained

forest can occur. The backtracking mechanism is given in Algorithm 9, and only increases the

memory overhead of the algorithm polynomially.

6.2 Pseudotree Construction

A very reasonable question to ask is: What if a constrained forest problem contains constraints that

are not representable using proper functions or their extensions? A prominent example of this is the

pseudotree construction problem [29, 110]. Recall from §1.1.5 that a valid pseudotree inherently has

the property that each pair of neighboring agents in the interaction graph are either ancestors or

descendants of each other in the hierarchy. This ensures that no interaction will necessarily occur

between agents in disjoint subtrees. Therefore, interactions in disjoint subtrees may occur in parallel.

The general reason why this problem is not representable using a proper function is that (1) the

pseudotree is rooted, and (2) a global invariant must be maintained over the ancestor/descendant

relationships in the tree; this will be described in detail below.

Given a graph of expected interaction between the agents, this section introduces an algorithm,

called Multiagent Organization with Bounded Edit Distance (Mobed), for constructing and main-

taining an organizational hierarchy that is a valid pseudotree. It is shown that Mobed is correct and

that it outperforms alternative approaches by as much as 300% in terms of edit distance between

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

109

perturbations with little impact to computation and privacy.

6.2.1 The Mobed Algorithm

Let G = 〈A,E〉 be a graph consisting of an ordered set of agents, A, and a set of edges E. Each

edge 〈ai, aj〉 ∈ E implies that agent ai will need to interact with aj . We shall hereafter call this the

interaction graph. Let N : A → 2A be a function mapping agents to their (open1) neighborhood ;

N(ai) returns the set of all agents that share an edge with ai. In terms of the δ function that has

been used up until this point, N(ai) is equivalent to {aj ∈ A : 〈ai, aj〉 ∈ δ({ai})}. A multiagent

hierarchy for a given graph G = 〈A,E〉 is an unordered, labeled, rooted tree denoted by the tuple

T = 〈A, π : A → A〉, where π is a function mapping agents to their parent in the tree. The inverse

of the parent function, π−1(ai), shall be used to denote the set of children of agent ai. The notation

“R+” shall be used to represent the transitive closure of a binary relation R. Agent aj is said to be

the ancestor of an agent ai in a hierarchy if aj has the property (aj = π(ai))+. Likewise, agent aj

is a descendant of ai if (aj ∈ π−1(ai))+. For convenience—and at the expense of a slight abuse of

notation—let Ci be the set of ancestors of agent ai and let Di be the set of descendants of agent ai.

The depth of an agent in the hierarchy is the number of edges in the shortest path from that agent to

the root (which also happens to be equal to the number of the agent’s ancestors: |Ci|). A hierarchy

is said to be valid if all neighboring pairs of agents in the interaction graph are either ancestors or

descendants of each other in the hierarchy. Let ν : 2A×A → B be a validity testing function defined

as:

ν(I) 7→ (∀〈ai, aj〉 ∈ I : ai ∈ (Cj ∪Dj)) . (6.5)

Given an interaction graph G = 〈A,E〉, a multiagent hierarchy T is therefore valid for a given

problem if ν(E) = True.

We assume that each agent ai knows the existence of all of its neighbors: aj ∈ N(ai), however, it

may not know of all of the other agents in the network. Each agent that has already been placed in

the hierarchy only knows its parents, children, and interaction graph neighbors. Agents also know

the relative location of interaction graph neighbors (i.e., ancestor or descendant).
1A neighborhood is “closed” if it also contains ai.

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

110

As Mobed applies to DCR, it should be noted that our notion of an interaction graph can be

equated to DCR’s notion of a constraint graph. In this sense, though, our formalization is then in

the context of constraint graphs of agents as opposed to constraint graphs of variables (the latter of

which is the norm for DCR). This presentation was chosen for sake of both brevity and accessibility.

Nothing precludes this algorithm from being applied to constraint graphs with multiple variables

per agent; in such a case the work herein may be read such that “agents” are instead “variables.”

With these assumptions in mind, there are a number of challenges in devising a DynDisMHG

algorithm (complicated by the fact that there is no central server and agents act asynchronously in

an asynchronous network):

1. To what extent can privacy be maintained?

2. What if a new agent has at least two neighbors in disjoint hierarchies?

3. How are multiple, concurrent requests for addition and removal handled?

4. How is the hierarchy initialized?

5. To what extent can the perturbation of an existing hierarchy be minimized subsequent to the

addition or removal of an agent?

The remainder section introduces Mobed: an algorithm that addresses all of these challenges.

The Insertion Point

Given an existing hierarchy and a new agent, the first problem is to determine where in the hierarchy

that agent should be added such that the hierarchy remains valid. We shall now propose and prove

a series of lemmas that define such an insertion point. We first define (6.6) that tests whether or

not a given agent already in the hierarchy is a valid insertion point. In Lemmas 11 and 12 we prove,

respectively, that such an insertion point must exist and that it must be unique. In Lemmas 13

and 14 we prove that the new agent can be inserted either as the parent or child of the insertion

point.

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

111

Let η : A × 2A → B be a function that identifies the valid points in a hierarchy in which a new

agent can be added. The η function is defined such that η(ai; I) is True if and only if all of the

following are true:

• ai is an ancestor or descendant of all agents in I − {ai};

• ai either has no descendants in I or ai has more than one child whose subtree has agents in I;

and

• none of ai’s ancestors are insertion points for I.

η(ai; I) = v
(
{ai} × (I \ {ai})

)
∧

(
Di ∩ I = ∅ ∨

∣∣∣{aj ∈ π−1(ai) : (Dj ∪ {aj}) ∩ I 6= ∅
}∣∣∣ > 1

)
(6.6)

∧
(
∀aj ∈ Ci : ¬η(aj ; I)

)
.

We shall hereafter refer to an agent ai that satisfies η(ai; I) as an insertion point for the set I.

If an existing hierarchy is valid, it occurs that there must exist an insertion point for the neigh-

borhood of each agent that is to be added. In fact, the insertion point for each new agent must be

unique. We will prove these two properties in the following two lemmas.

Lemma 11. Given a valid hierarchy T = 〈A, π〉 and an agent ai /∈ A, if all of ai’s neighbors are

already in the hierarchy then there must exist an agent in the hierarchy, a` that is a valid insertion

point for ai:

N(ai) ⊆ A =⇒
(
∃a` ∈ A : η (a`;N(ai)) = True

)
. (6.7)

Proof. Let us assume, on the contrary, that N(ai) ⊆ A but there does not exist an agent a` such

that η(a`;N(ai)). This means that either ∀aj ∈ A : N(ai) \ {aj} * Dj ∪Cj ; every agent has exactly

one child whose subtree contains an agent in N(ai); or every agent has at least one ancestor that

is an insertion point for N(ai). The first case contradicts N(ai) ⊆ A. The second case implies

that the hierarchy T is cyclic (and therefore invalid) which is a contradiction. The third case either

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

112

means that a distinct a` must exist or it means that the hierarchy T is cyclic, both of which are

contradictions.

Lemma 12. The insertion point of a valid hierarchy must be unique.

Proof. Let us assume, on the contrary, that there are at least two agents in A that satisfy the

existential quantification of a` in (6.7); let us call two such agents a1 and a2. Both η(a1;N(ai)) and

η(a2;N(ai)) must be True, which implies that neither a1 nor a2 is an ancestor of the other, further

implying that a1 and a2 must be in disjoint subtrees. Since the hierarchy is valid it must not be

cyclic, and there must be some agent a3 that is the deepest common ancestor of a1 and a2. Since a1

and a2 are both insertion points for N(ai), all of the agents in N(ai) \ {a3} must be in C3, which by

definition of (6.6) means that η(a3;N(ai)) must be True, contradicting the fact that both a1 and

a2 are insertion points for N(ai).

Now that we have established that a unique insertion point must exist, a new question is raised:

In what way can the insertion point be used to incorporate the new agent into the existing hierarchy?

As we shall expose in the following lemma, the new agent may always be inserted as the new parent

of the insertion point.

Lemma 13. Given a valid hierarchy T = 〈A, π〉, the addition of a new agent ai /∈ A inserted between

a` ∈ A and π(a`) will produce a valid new hierarchy,

T ′ = 〈A ∪ {ai}, (π \ {〈π(ai), ai〉}) ∪ {〈a`, ai〉, 〈π(ai), a`〉}〉 ,

if a` is a valid insertion point: η(a`;N(ai)).

Proof. This will clearly be true when a` is the root of the hierarchy, since the addition of a new

agent at the root of the hierarchy will always be valid because the root is the ancestor of all other

agents. For all other cases, note that a` will be the only child of ai, thus ai will share all of a`’s

previous ancestors and descendants. Since a` was already a valid insertion point, ai must also remain

valid.

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

113

Let ad ∈ A be the deepest agent in the hierarchy that is either an ancestor or descendant of all of

ai’s interaction graph neighbors: ν({ad}×N(ai)) 7→ True. Therefore, ai can always be validly added

as the parent of ad or any of ad’s ancestors. This leads to the relatively näıve algorithm of always

adding a new agent as the parent of its associated ad. While this technique will always provide valid

hierarchies, it will also always produce chains which is the worst case in terms of parallelism. We

therefore need some way imposing branches in the tree. Under certain circumstances the new agent

may be added as a new leaf underneath the insertion point. The specifics of these circumstances are

expounded in the following lemma.

Lemma 14. Given a valid hierarchy T = 〈A, π〉, the addition of new agent ai /∈ A as a child of

a` ∈ A will produce a valid new hierarchy T ′ = 〈A∪ {ai}, π ∪ {〈ai, a`〉}〉 if N(ai)∩D` = ∅ and a` is

the insertion point for N(ai).

Proof. Assume, on the contrary, that the addition of ai as a child of a` will produce an invalid

hierarchy. By definition in (6.5), this means that there is at least one pair of neighboring agents that

are neither ancestors nor descendants of each other. Since the original hierarchy T was valid, we

know that such a pair of agents must be in {ai}×N(ai). Since ν({a`}×N(ai)) is true, we know that

all of ai’s interaction graph neighbors are either ancestors or descendants of a`. Since ai is added as

a child of a` and therefore shares all of a`’s ancestors, it must be true that ∃aj ∈ N(ai) : aj ∈ D`,

which contradicts N(ai) ∩D` = ∅.

General Principles

Based upon the results of the previous section, Mobed adds an agent ai to an existing hierarchy by

the following procedure:

1: find a valid insertion point a` /* one must exist according to Lemmas 11 and 12 */

2: if D` ∩N(ai) = ∅ then /* Lemma 14 */

3: π(ai)← a` /* add ai as a new leaf under a` */

4: else /* Lemma 13 */

5: π(ai)← π(a`) /* insert ai between a`’s parent. . . */

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

114

6: π(a`)← ai /* . . .and a` */

7: end if

Determining a` (step one in the procedure) can be performed by recursively passing messages up

the tree starting from all agents in N(ai). Without loss of generality, let us assume that all agents

in N(ai) are already present in the same hierarchy; this assures that there must be some agent aj

that will eventually receive |N(ai)| messages from its children. Then,

1: while aj received exactly one message regarding the addition of ai do

2: aj ← the child from which aj received the message

3: end while

4: a` ← aj

Using this method it is trivial to check whether D` ∩N(ai) = ∅ (step two in the procedure): If a`

did not receive any messages from its children then we know D` ∩ N(ai) = ∅ is true. Figure 6.2

provides an example execution of this algorithm.

Merging Hierarchies

We shall now consider the case when a new agent’s neighborhood contains agents in disjoint hierar-

chies. This may happen if ai is an articulation point of the interaction graph. The approach for this

case is simply to add ai as the new parent of the roots of T1 and T2. The problem, however, is that

no agent in N(ai) necessarily knows that they are in disjoint hierarchies and the addition process

as described above will deadlock.

The solution is as follows: Whenever a root of a hierarchy (e.g., a1 and a3) receives an addition

request regarding a new agent ai—regardless of whether that addition request was sent directly to

the root or whether it was propagated up the hierarchy—and that root has received fewer than

|N(ai)| such addition requests, then that root will additionally send a Root message to ai stating

that it is the root of a hierarchy. If ai ever receives |N(ai)| such messages then ai will become the

new parent of all agents from whom it received the messages.

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

115

a1

a2

a3

a4

a5

Add Me

Add Me

(a)

a1

a2

a3

a4

a5

A
d
d
in

g
a
5

(b)

a1

a2

a3

a4

a5

A
re

y
o
u

d
e
e
p
e
st?

(c)

a1

a2

a3

a4

a5

I
am
a
`

child

(d)

Figure 6.2: An execution of the algorithm for addition of a agent a5 to an existing hierarchy.
Solid edges represent edges in the existing hierarchy. Dashed edges represent message passing.
In (a), a5 initiates its addition to the existing hierarchy by sending messages to all aj ∈ N(a5).
In (b), a4 forwards the message on to its parent, a2. In (d), a2 receives two messages regarding
the addition of a5 and |N(a5)| = 2, however, a2 has a single child, so a2 asks that child if it is
deepest. Finally, in (d), a4 did not receive any messages from its children (D4 ∩ N(a5) = ∅),
so a2 adds a5 as a child.

Preventing Race Conditions

The algorithm as it is presented above will work correctly if there is exactly one agent being added

at a time. Due to the possibility of arbitrary message latency, there is a chance that concurrent

additions could result in inconsistent modifications to the hierarchy among the agents. To address

this we introduce a concept of engaged blocks of the hierarchy. When an agent aj receives an add

request regarding a new agent ai, then aj goes into engaged mode and proceeds as normal. If aj is

already engaged, however, it will immediately reply to ai with an AlreadyEngaged message. Such

an error condition implies that another agent in the subtree rooted at aj (or an agent on the path

from aj to the root) is in the process of either being added or removed; we shall call this agent ak.

Agent aj will also send an AlreadyEngaged message to ak. This process is depicted in Figure 6.3.

These messages contain a field stating whether k > i. If an agent ever receives such a message it

will inform all agents in its neighborhood that it is canceling its addition. If the agent’s identifier is

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

116

a2

a1 a3

a4a5 a6
Add Me

A
d
d

M
e

Add Me

Add Me

(a)

a2

a1 a3

a4a5 a6

A
d
d
in

g
a
5

A
d
d
in

g
a
6

(b)

a2

a1 a3

a4a5 a6

A
lr

e
a
d
y

E
n
g
a
g
e
d

fo
r
a
6
! A

lre
a
d
y

E
n
g
a
g
e
d

fo
r
a
5
!

(c)

Figure 6.3: Handling of race conditions using engaged blocks. In (a), agents a5 and a6

concurrently initiate their addition into existing hierarchies; a1 becomes engaged for a6 and
a3 becomes engaged for a5. In (b), agents a2 and a4 proceed with the algorithm as normal,
propagating the add requests to their parents. Finally, in (c) agents a1 and a3 both reply with
errors which are propagated back to a5 and a6 who perform a backoff before attempting to add
themselves again. Without the use of engaged blocks, note that agents a5 and a6 will compete
to be the root of the tree (i.e., the parent of a1 and a3), possibly causing an inconsistency in
the nodes’ perception of the topology.

lower priority than the other sent in the AlreadyEngaged message then that agent will perform an

exponential backoff before restarting its addition. Otherwise, the agent will only sleep for a constant

time period. Once the algorithm is complete, all agents that received an addition message regarding

ai become unengaged.

Initial Generation

The special cases addressed in the previous sections are sufficient to generate and maintain hierarchies

as long as a hierarchy already exists. How should the initial hierarchy be generated? Which agent

should become the first root?

The solution is to construct the initial hierarchy semi-synchronously: an agent will not attempt

addition of itself to a hierarchy until all of its higher-priority neighbors are already members of a

valid hierarchy. A new agent to be added to the hierarchy, ai, will send an AddMe to all aj ∈ N(ai),

as described above, however, ai will send them one-by-one in order of decreasing priority of j. After

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

117

each AddMe is sent, ai will block until receipt of a reply from aj before proceeding to the next,

lower-priority neighbor. The neighbor’s reply can be one of three possibilities: an AlreadyEngaged

message as described in §6.2.1, a NoTree message (meaning the neighbor has not yet been added

to a tree), or a AdditionStarted message (meaning that the neighbor does have a tree and has

started the addition process for ai as described above). If ai receives a NoTree message from aj

and j > i then ai will send a CancelSearch message to all ak ∈ N(ai) where k > j and ai will

block until it receives an AddRequest message from another agent. If, on the other hand, a NoTree

message is received from an aj where j < i then it is ignored. The addition will then proceed as in

§6.2.1. Pseudocode for the entire algorithm—implementing the constructs in §6.2.1–6.2.1—is given

in Algorithm 10.

Changes to Constraints and Agent Removal

Changes to constraints can be handled by removing and re-adding all affected agents. Removal of

an agent ai can be accomplished by making ai, π(ai), and all aj ∈ π−1(ai) engaged. All of the

children are then made the children of π(ai) and ai is removed. The hierarchy will remain valid.

6.2.2 Analysis

This section analyzes—both theoretically and empirically—the performance of Mobed. For the

empirical analysis, a series of random, connected graphs were randomly generated from a uniform

distribution with varying numbers of vertices and edge densities2. A set of 100 random graphs were

generated for each pair of number of vertices and edge density, for each of which both DFS and

Mobed were run to generate a valid hierarchy. A new vertex was then randomly added in such a

way as to maintain the given edge density, and both DFS and Mobed were then re-run to produce a

new valid hierarchy. Various metrics including the average number of rounds of computation (i.e.,

the length of the longest causal chain of synchronous messages required for the algorithm to reach

quiescence) and the edit distance between hierarchy perturbations were recorded.

2Edge density, ranging in [0, 1], is the percentage of possible edges that exist in the graph. A density of 0.0 means
that the graph has no edges while a density of 1.0 means that the graph is complete.

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

118

Algorithm 10 Mobed’s distributed addition of a new agent, regardless of whether or not any of
the agent’s neighbors are already in hierarchies or whether those hierarchies are disjoint. Message
handlers are given in Algorithm 11.
Note that the t argument is used as a type of logical clock to avoid processing messages that have
expired. If a message is ever received with a t value that is lower than any other message that has
been received from the sender then the message is discarded.

1: procedure Add-Agent(ai, t = 0)
Require: ai is the agent to be added. t is a counter for this addition attempt, initially set to zero.

2: H ← N(ai)
3: for all aj ∈ N(ai) in order of descending j do
4: Send-Message(HasTree?) to aj
5: wait for a reply from aj
6: if the reply is AlreadyEngaged then
7: handle as described in §6.2.1.
8: else if the reply is NoTree then
9: if j > i then

10: send a CancelSearch(t) message to all am ∈ N(ai) where am > aj .
11: wait to receive an AddRequest message
12: return Add-Agent(ai, t+ 1)
13: else
14: H ← H \ {aj}
15: end if
16: else if the reply is a success then
17: do nothing
18: end if
19: end for
20: for all aj ∈ H do
21: Send-Message(AddMe, ai, |H|, t) to aj
22: end for
23: R← ∅ /* R is a set and therefore does not allow duplicates */
24: while |R| < |H| do
25: if the next message is a Root message from aj then
26: R← R ∪ {aj}
27: if |R| = |H| then /* |N(ai)| contains agents in disjoint hierarchies */
28: for all ar ∈ R do
29: π(ar)← ar /* Become the new parent of ar */
30: Tell ar that we are its new parent and that it can become unengaged.
31: end for
32: end if
33: else if the next message is Added(p, c) from aj then
34: π(ai)← p /* our new parent is p */
35: π(c)← ai /* our new child is c */
36: R← H
37: end if
38: end while
39: send an AddRequest to all lower-priority agents to whom ai has ever sent a NoTree message.
40: end procedure

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

119

Algorithm 11 Message handlers for agent addition.
1: procedure Handle-AddMe(an, q, t) sent from aj

Require: an is the agent requesting to be added and ai is the agent that received (and is processing) the

message. m : V → N, r : V → 2π
−1(ai), and s : V → B are all maps retained in memory. m maps

variables to an integer, r maps variables to the power set of ai’s children, and s maps variables to a
boolean. If a key does not exist in s then its value is taken to be False. av is the agent for whom ai is
currently engaged, or ∅ if ai is unengaged.

2: if ai is not yet in the hierarchy then
3: Send-Message(NoTree, t) to an
4: return
5: else if av 6= ∅ 6= an then
6: Send-Message(AlreadyEngaged, v > n, t) to an and av
7: av ← ∅
8: Clear all of the maps in memory and tell aj to cancel its search, forwarding the message to all

agents in the current engaged block.
9: return

10: else
11: av ← an /* make ai engaged for an */

12: end if
13: if aj = an then /* aj is the variable requesting to be added */

14: m(an)← 1, r(an)← ∅, and s(an)←True
15: else if aj ∈ π−1(ai) then /* aj is one of our children */

16: m(an)← m(an) + 1
17: r(an)← r(an) ∪ {aj}
18: end if
19: if m(an) = q then /* ai satisfies (6.5) for N(an) */

20: if |r(an)| = 1 then /* ai is not the deepest */

21: q′ ← q
22: if s(an) 7→True then /* ai was originally sent a message from an (meaning ai ∈ N(an)) */

23: q′ ← q′ − 1
24: end if
25: ak ← the single variable in r(an)
26: Send-Message(AddMe, an, q

′, t) to ak
27: av ← ∅
28: remove m(an), r(an), and s(an) from memory
29: else /* ai is the deepest vertex satisfying (6.5) */

30: if r(an) 6= ∅ then /* we have at least one descendant that is in N(an) (Lemma 13) */

31: π(an)← π(ai)
32: π(ai)← an
33: Send-Message(Added, π(an), ai) to an
34: else /* Lemma 14 */

35: π(an)← ai
36: Send-Message(Added, ai, ∅) to an
37: end if
38: av ← ∅
39: Tell all of the agents in r(an) that the search is over and clear all of the maps in memory.
40: end if
41: else if our vertex ai is not the root of the pseudotree then
42: Send-Message(AddMe, an, q, t) to π(ai) /* Forward the message to our parent */

43: else /* This may occur if there are two or more variables in N(an) from disjoint hierarchies */

44: Send-Message(Root, ai, t) to an
45: end if
46: end procedure

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

120

Computational Complexity

Let us consider the worst-case computational complexity of adding a new agent ai to an existing

valid hierarchy T = 〈AT , π〉. We assume that N(ai) ⊆ AT and there are no other agents attempting

to be concurrently added. The agent will first send one message to each neighbor in N(ai). Each

aj ∈ N(ai) will then forward the message up the tree. In the worst case in terms of synchrony, each

of the |N(ai)| messages will have to traverse up the tree to the root, followed by the root propagating

a single message back down to the insertion point. The addition of a single agent therefore requires

worst case O(|N(ai)|dT) rounds, where dT is the depth of T . In the worst case in terms of existing

hierarchy topology, T will be a chain and the worst case number of rounds for a single insertion is

O(|N(ai)||AT |). Construction of a hierarchy from scratch for a worst-case fully-connected interaction

graph therefore requires

O

 |A|∑
i=1

i· |A|

 = O

(
|A|(|A|+ 1)2

2
− |A|(|A|+ 1)

2

)
= O

(
|A|3

)

rounds. The best-case runtime, however, is O(|N(ai)|), which in the real world will often be quite

small. Therefore, the runtime in terms of number of rounds will always be polynomial and—if N(ai)

is bounded—individual additions will run in amortized linear time. This bound is supported by the

empirical results (Figure 6.4).

Edit Distance

The edit distance between two hierarchies, T1 = 〈A1, π1〉 and T2 = 〈A2, π2〉, is defined as the

minimum number of child-parent relationships that must be reassigned, added, or deleted in order

for the two trees to become isomorphic:

Edit-Distance(A1, A2) =
∣∣∣{〈ai, π1(ai)〉 : ai ∈ A1

}
	
{
〈aj , π2(aj)〉 : aj ∈ A2

}∣∣∣ .

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

121

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

#
of

R
ou

nd
s

Agents

Density 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 6.4: Average number of rounds for Mobed to reach quiescence for a single agent
addition.

Ideally, after a single addition of an agent the edit distance between the original hierarchy and the

resulting hierarchy will be minimized. The worst case edit distance for DFS will occur whenever

the existing hierarchy T = 〈AT , π〉 consists of a root with |AT | − 1 children and the agent being

added, ai /∈ AT , has the property N(ai) = AT (cf. Figure 6.5). In this case |A| edits may occur. In

contrast, Mobed bounds the number of edits for each agent addition at two.

During our empirical analysis, edit distance according to the metric formalized above was noted

for both DFS and Mobed between the initial and post-vertex-addition hierarchies. Figure 6.6 gives

a1

a2 a3 aj. . .

ai

Add Me

Add Me

Add Me

Add Me

Add Me

Figure 6.5: Worst case configuration for DFS edit distance: The existing hierarchy T =
〈{a1, a2, . . . , aj}, π〉 consists of a root, a1, with j − 1 children, and the agent being added, ai, is
connected to all a1, a2, . . . , aj in T .

Chapter 6: Dynamic Agent Organizations 6.2 Pseudotree Construction

122

-50

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

%
A

ve
ra

ge
E

di
t

D
is

ta
nc

e

Agents
Density 0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

Figure 6.6: Comparison of the edit distance of DFS to Mobed. The y-axis is the percentage
difference between DFS and Mobed; positive values imply DFS performed worse.

the percentage difference between the edit distance of DFS and Mobed; positive percentages mean

that DFS had a worse edit distance. DFS performed worse for sparse graphs (density ≤ 0.5).

Although DFS performed better on dense graphs, it was only ever one edit better. We believe that

Mobed performs better on sparse graphs because in such instances Mobed is more likely to be able

to add the new vertex as a leaf in the tree, which is the best case for both parallelism and edit

distance.

Our definition of edit distance is quite favorable to DFS; in some domains a better metric may

be the number of ancestor-descendant relationships that are modified as a result of each change to

the interaction graph. Such perturbations in the context of DCR might cause large portions of the

previously explored search space to be expanded again. With this stricter metric, Mobed still has a

bounded edit distance of two, while DFS may perform much worse.

6.3 Conclusions

In this chapter we have tried to show how dynamic changes to the problem can be handled. First,

we showed how multidirectional graph search can be extended to be a superstabilizing algorithm

Chapter 6: Dynamic Agent Organizations 6.3 Conclusions

123

capable of handling dynamic changes consistent with proper functions. We were able to extend

the algorithm such that it can handle dynamic modification with little or no additional overhead.

This was accomplished by identifying a set of circumstances under which the algorithm execution

could be continued after the addition or removal of a vertex. If such conditions are not met, a new

backtracking mechanism is added that allows for the algorithm to revert to the most recent round

in which the conditions are met. In doing so, the multidirectional graph search algorithm becomes

superstabilizing; the algorithm is guaranteed to converge back to a valid state after any dynamic

perturbation of the problem.

In the second half of the chapter, we investigated topologies which do not obey proper functions.

We devised a new algorithm, Mobed, for solving a subset of such problems that take the form of the

dynamic pseudotree construction problem. Mobed constructs and maintains multiagent hierarchies

with bounded edit distance between hierarchy perturbations. Mobed was compared to the only

other viable solution to the DynDisMHG problem: distributed DFS. It was shown that Mobed will

always reach quiescence in a linear number of rounds for each agent addition with respect to the

total number of agents, but under certain circumstances it can theoretically run in constant time.

Re-running DFS after such a perturbation would also require a linear number of rounds, but may

have arbitrarily bad edit distance. The edit distance of Mobed is always bounded at two edits, which

is very low. For sparse graphs (density less than 0.5) Mobed has at least as good an edit distance

as DFS, and exhibited as much as a 300% benefit. For those instances when Mobed exhibited a

higher edit distance than DFS (i.e., when the graph is dense) its edit distance was no more than one

edit worse. Privacy is also maintained in Mobed insofar as agents only ever have knowledge of their

interaction graph neighbors, hierarchy parents, and hierarchy children. Therefore Mobed is a viable

replacement for DFS as a solution to the DynDisMHG problem, especially for sparse interaction

graphs.

There are still some cases which have not been investigated in this chapter. For example, back-

tracking in multidirectional graph search may not always be necessary if additional memory is avail-

able to store more of the problem state. In the future we will also empirically analyze the average case

Chapter 6: Dynamic Agent Organizations 6.3 Conclusions

124

efficiency of this approach. Furthermore, we will empirically analyze the use of Mobed in distributed

problem solving algorithms. There is also much work to be done in studying constrained forest gener-

ation techniques that better balance the tradeoff between computational efficiency/messaging, edit

distance, and privacy, and also methods to maintain other invariants on the constrained forest’s

topology.

Chapter 6: Dynamic Agent Organizations 6.3 Conclusions

125

Chapter 7: Conclusions

This dissertation has shown that a large family of multiagent organization problems—collectively

called constrained forest problems—can be solved efficiently in a distributed manner. Many of these

problems are NP-Hard and are therefore intractable in centralized, sequential computation. We

show that, in allowing distribution and exploiting locality in the primal-dual schema, speedups

are achievable. In fact, we have shown that distributed algorithms can approximate a solution in

linear time and, under certain well defined conditions, can even quiesce in polylogarithmic or even

logarithmic time. This is a bit surprising because many of the constrained forest problems soluble

to our approach are known to be P-Complete.

The primary novel contribution of this dissertation is a generalized distributed constrained mul-

tidirectional search algorithm based on the primal-dual schema that can solve constrained forest

problems with a constant optimization bound in no worse than linear communication rounds. We

have shown that the algorithm is correct and complete (i.e., it is guaranteed to find a feasible solu-

tion if one exists). We have also provided a series of examples of how to instantiate this framework

for specific problems, including Steiner network problems, art gallery/dominating set problems, and

location design & vehicle routing problems.

Strong bounds on the convergence of the algorithm alone is not sufficient, however. We have

therefore proven that if the edge weights of the input graph are mapped to a metric space that

conforms to a specific set of constraints, then the solutions produced by our algorithm are guaranteed

to be 2-optimal. It has been shown that this requirement is necessary to achieve the speedup from

concurrency. If the input graph is not weighted in a sufficient metric space for the theoretical

guarantees to hold, it was shown that there exists an ε such that the solution our algorithm discovers

is with high probability ε-optimal. We have also motivated the fact that—even if the conditions of

the theoretical guarantees of 2-optimality (qq.v. Propositions 3 and 4) are not met—the solutions

produced by the distributed multiagent graph search algorithm are with high probability 2-optimal.

126

The distributed approximation algorithm for multidirectional graph search is capable of finding a

tree in the search space that connects all of a set of terminals by simultaneously performing a search

emanating from each terminal. Each agent only requires local knowledge (i.e., within the connected

component of the forest), and there is no requirement of shared memory. That this type of search

is efficiently distributable is an important result. We have shown that the algorithm and protocol

will run in O(n) communication rounds, however, empirical evidence suggests that the average case

runtime is much lower. Furthermore, it was shown that the algorithm will produce a solution whose

cost is within a factor of two of optimal. Once again, empirical evidence suggest that the average

approximation bound is much closer to optimal (at about 1.3).

The constrained multidirectional search algorithm was also adapted for the location design and

routing problem, retaining the same runtime bounds. Again, provided that the weight of the heaviest

edge added in a round is no more than 150% of the lightest edge, the algorithm is guaranteed to

produce a solution whose cost is no worse than two times optimal. This invariant can be maintained

in general by embedding the true edge weights into [1, 3
2] ∈ Q. Empirical results suggest that the

algorithm will in fact produce 2-optimal solutions for arbitrary edge weight distributions.

As another example of the framework’s instantiation, the algorithm was extended for application

to the art gallery and dominating set problems. It was shown that it is guaranteed to run in a

number communication rounds on the order of the diameter of the visibility graph. The algorithm

produces a solution whose cost is no worse than a constant factor of optimal with high probability.

For art gallery variants in which the distances between guards and treasures/vertices must also be

minimized, the algorithm is proven to be a 2-optimal approximation, provided that the edge weights

are embedded in the proper metric space. It is known that the decision version of this and many

other art gallery variants are APX-Hard [12], however, to the best of our knowledge the question

of whether art gallery problems are in APX is an open problem. By identifying a class of art gallery

problems that are amenable to 2-approximation using our algorithm, we have discovered that this

class of problems is also in APX (and is thereby APX-Complete).

Ultimately, we have furthered the results of Panconesi [67] by showing that the primal-dual

Chapter 7: Conclusions

127

optimization scheme proposed by Goemans and Williamson [73] can be successfully distributed into

a multiagent algorithm with not only bounds on approximation, but also on runtime. This suggests

that other multiagent coordination problems might yield to the same approach.

The ultimate problem we are working toward solving is that of dynamic multiagent organization.

Ideally, the algorithm should not have to completely re-optimize subsequent to every perturbation of

the problem. Therefore, we identified a family of events from which our algorithm can recover faster

than having to re-optimize from scratch. There are also instances when the topological constraints

on the desired forest are too expressive to be captured by our current primal-dual model. For

such cases, we introduce an algorithmic extension called Multiagent Organization with Bounded

Edit Distance (Mobed). Mobed was compared to the only other viable solution to the DynDisMHG

problem: distributed DFS. It was shown that Mobed will always reach quiescence in a linear number

of rounds for each agent addition with respect to the total number of agents, but under certain

circumstances it can theoretically run in constant time. Re-running DFS after such a perturbation

would also require a linear number of rounds, but may have arbitrarily bad edit distance. The edit

distance of Mobed is always bounded at two edits, which is very low. For sparse graphs (density less

than 0.5) Mobed has at least as good an edit distance as DFS, and exhibited as much as a 300%

benefit. For those instances when Mobed exhibited a higher edit distance than DFS (i.e., when the

graph is dense) its edit distance was no more than one edit worse. Privacy is also maintained in

Mobed insofar as agents only ever have knowledge of their interaction graph neighbors, hierarchy

parents, and hierarchy children. Therefore Mobed is a viable replacement for DFS as a solution to

the DynDisMHG problem, especially for sparse interaction graphs.

In the future we will empirically analyze the use of the generalized multidirectional graph search

algorithm and Mobed in distributed systems and problem solving algorithms. There is also much

work to be done in studying hierarchy generation techniques that better balance the tradeoff between

computational efficiency/messaging, edit distance, and privacy, and also methods to maintain other

invariants on the hierarchy’s topology.

Despite the fact that proper functions capture a large family of constrained forest problems that

Chapter 7: Conclusions

128

are amenable to our approach, there is also work to be done in further generalizing the algorithms

such that more expressive well behaved functions can be used (e.g., well spaced, supermodular,

submodular, and integer valued functions). A generalization of the quality of the solution for primal-

dual methods as applied to constrained forest problems is also still an open question, as is the related

problem of identifying necessary and sufficient conditions for the distribution of edge weights that

will allow for a constant bound of approximation. Finally, we believe that algorithms of this ilk are

a fruitful method for achieving speedups in constrained search and many other areas of multiagent

systems through parallelism.

Many of the techniques espoused in this dissertation have potential application to the domain

of social networking. Human systems and societies have often beckoned researchers with questions

like, “Does unchecked, natural human competition lead to social inequity?” Such problems have

been studied by sociologists [95], biologists [96, 97], and even physicists [98, 99]. Recent interest in

social, “small-world” networks has also involved the computer science community [100], however, the

majority of the existing work is focused on studying these systems with the intention of application

to human societies, and therefore implicitly assume an adversarial environment. The scientific

and engineering communities are mostly interested with data mining problems—e.g., classifying

cliques in social networks, or targeting ripe demographics for directed advertising. It is not difficult,

however, to envision certain agent-based societies in which, although each agent has its own goal,

the agents are completely non-adversarial. Furthermore, existing studies seem to focus on modeling

and simulating social hierarchies; given their assumption that the mechanics by which societies

are formed are immutable aspects of human nature, little or no emphasis is placed on societal

construction and control. These mechanics are mutable in computerized systems. Understanding

of—and algorithms on—these types of social systems would appear to have wide application in

many areas, especially once the dynamics of computerized agents and communications constraints

are considered. If one were able to model such social systems as networks of interaction constraints,

the techniques explored in this dissertation might be extended to optimize such systems subject to

their agents’ requirements.

Chapter 7: Conclusions

129

The following is a list of interesting and important open questions that arise from the results of

this dissertation:

• Given the organizational structure employed by a set of agents, what is the underlying set

of constraints that governs their interaction? (In a sense, this is the inverse of the problem

explored in this dissertation.)

• To what extent can Elkin’s time-approximation tradeoff bounds (q.v. §3.2.3) be unconditionally

achieved for constrained forests in general?

• Given a predictive model of the communication constraints between agents, to what extent is it

possible to construct an agent organization or social hierarchy that better enables coordination?

• To what extent do the existing techniques for social modeling apply in cooperative, non-

adversarial systems?

• If we allow for adversarial agents, how can these techniques be extended to accommodate

varying levels of trust?

• In some organizational topologies, certain agents will have more “power” or “social influence”

than others. Can one discuss (or quantize) the social influence between agents?

• Given a communications protocol, is it possible to place an a priori upper bound on the

amount of social influence a single individual may have?

• To what extent can the maximum social influence of a single individual be minimized by solely

modifying the communications network and/or manually defining the social hierarchy?

In the coming years, mobile computing technologies will undoubtedly continue to infiltrate every

aspect of our daily lives, bringing us ever closer to this dissertation’s vision of self-organizing agent

organizations. The most significant impact will be gained through seamless, coalition-driven collab-

oration to aid humans in their daily functions. Successful collaboration will be achieved through the

development of mechanisms for efficient construction and maintenance of self-organizing networks.

Chapter 7: Conclusions

130

Bibliography

[1] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications
of the ACM, 17(11):643–644, 1974. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/361179.
361202. Cited on page 2.

[2] G. Xylomenos, G.C. Polyzos, P. Mahonen, and M. Saaranen. TCP performance issues over
wireless links. IEEE Communications Magazine, 39(4):52–58, 2001. Cited on page 2.

[3] Gilbert Laporte. Location-routing problems. In Bruce L. Golden and Arjang A. Assad, editors,
Vehicle Routing: Methods and Studies, pages 163–197. Elsevier, 1988. Cited on pages 4 and 63.

[4] Maxim Peysakhov, Robert N. Lass, William C. Regli, and Moshe Kam. An ecological approach
to agent population management. In Proceedings of the Twentieth National Conference on
Artificial Intelligence, pages 146–151, 2005. Cited on page 4.

[5] Virginia Lo, Dayi Zhou, Yuhong Liu, Chris Gauthier-Dickey, and Jun Li. Scalable supernode
selection in peer-to-peer overlay networks. In Proceedings of the Second International Workshop
on Hot Topics in Peer-to-Peer Systems, pages 18–27, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2417-6. doi: http://dx.doi.org/10.1109/HOT-P2P.2005.17.
Cited on pages 4 and 63.

[6] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware: Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms, pages 329–350, London, UK, 2001.
Springer-Verlag. ISBN 3-540-42800-3. Cited on page 4.

[7] Jan Melechovský, Christian Prins, and Roberto Wolfler Calvo. A metaheuristic to solve a
location-routing problem with non-linear costs. Journal of Heuristics, 11(5–6):375–391, 2005.
ISSN 1381-1231. doi: http://dx.doi.org/10.1007/s10732-005-3601-1. Cited on pages 4 and 63.

[8] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987. ISBN
0-19-503965-3. Cited on pages 5 and 81.

[9] Héctor González-Banos and Jean-Claude Latombe. A randomized art-gallery algorithm for
sensor placement. In Proceedings of the Seventeenth Annual Symposium on Computational
Geometry, pages 232–240, New York, NY, USA, 2001. ACM. ISBN 1-58113-357-X. doi:
http://doi.acm.org/10.1145/378583.378674. Cited on page 5.

[10] Alok Aggarwal. The Art Gallery Theorem: its Variations, Applications and Algorithmic As-
pects. PhD thesis, Johns Hopkins University, 1984. Cited on page 6.

[11] Der-Tsai Lee and Abel W. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986. ISSN 0018-9448. doi: http://dx.
doi.org/10.1109/TIT.1986.1057165. Cited on page 6.

[12] Stephan Eidenbenz, Peter Widmayer, and Christoph Stamm. Inapproximability results for
guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001. Cited on pages 6 and 126.

[13] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103, New York, 1972.
Plenum. Cited on page 6.

[14] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-
dual approximation algorithm for generalized steiner network problems. Combinatorica, 15
(3):435–454, September 1995. Cited on pages 6, 21, 24, 35, 76, and 97.

131

[15] Joseph Macker, Ian Downard, Justin Dean, and Brian Adamson. Evaluation of dis-
tributed cover set algorithms in mobile ad hoc network for simplified multicast for-
warding. SIGMOBILE Mobile Computing Communications Review, 11(3):1–11, 2007.
doi: 10.1145/1317425.1317426. URL http://portal.acm.org/citation.cfm?id=1317425.
1317426&coll=Portal&dl=GUIDE&CFID=64765812&CFTOKEN=41652687. Cited on pages 6, 11,
and 82.

[16] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1-2):165–200, 1998. ISSN 0004-3702. doi: http://dx.doi.org/10.
1016/S0004-3702(98)00045-9. Cited on pages 7 and 11.

[17] Katia Sycara, Keith Decker, Anandeep Pannu, Mike Williamson, and Dajun Zeng. Distributed
intelligent agents. IEEE Expert: Intelligent Systems and Their Applications, 11(6):36–46, 1996.
Cited on pages 7, 11, 15, 30, and 77.

[18] Marius C. Silaghi and Makoto Yokoo. Distributed constraint reasoning. In Juan
Ramón Rabuñal Dopico, Julián Dorado de la Calle, and Alejandro Pazos Sierra, editors,
Encyclopedia of Artificial Intelligence, pages 507–513. Information Science Reference, 2008.
Cited on pages 7, 10, and 13.

[19] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asyn-
chronous distributed constraint optimization with quality guarantees. Artificial Intelligence
Journal, 161(1–2):149–180, 2005. Cited on pages 7, 12, 14, and 25.

[20] Adrian Petcu and Boi V. Faltings. A scalable method for multiagent constraint optimization.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 266–271,
2005. Cited on pages 7 and 14.

[21] Anton Chechetka and Katia Sycara. No-commitment branch and bound search for distributed
constraint optimization. In Proceedings of the fifth international joint conference on au-
tonomous agents and multiagent systems, pages 1427–1429, Hakodate, Japan, 2006. ACM
Press. ISBN 1-59593-303-4. doi: http://doi.acm.org/10.1145/1160633.1160900. Cited on
page 7.

[22] Lap Kong Law, Srikanth V. Krishnamurthy, and Michalis Faloutsos. Understanding and ex-
ploiting the trade-offs between broadcasting and multicasting in mobile ad hoc networks. IEEE
Transactions on Mobile Computing, 6(3):264–279, 2007. Cited on page 8.

[23] Adrian Petcu and Boi Faltings. S-DPOP: Superstabilizing, fault-containing multiagent com-
binatorial optimization. In Proceedings of the Twentieth National Conference on Artificial
Intelligence, pages 449–454, July 2005. Cited on page 8.

[24] Adrian Petcu and Boi Faltings. R-DPOP: Optimal solution stability in continuous-time op-
timization. In Proceedings of the International Conference on Intelligent Agent Technology,
November 2007. Cited on page 8.

[25] Robert N. Lass, Evan A. Sultanik, and William C. Regli. Dynamic distributed constraint
reasoning. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
pages 1886–1887, 2008. Cited on page 8.

[26] Klaus Fischer, Michael Schillo, and Jörg Siekmann. Holonic and multi-agent systems for man-
ufacturing. In Holonic Multiagent Systems: A Foundation for the Organisation of Multiagent
Systems, volume 2744 of Lecture Notes in Computer Science, pages 1083–1084. Springer, 2004.
Cited on pages 8 and 11.

[27] Chris J. van Aart, Bob Wielinga, and Guus Schreiber. Organizational building blocks for design
of distributed intelligent system. International Journal of Human-Computer Studies, 61(5):
567–599, 2004. ISSN 1071-5819. doi: http://dx.doi.org/10.1016/j.ijhcs.2004.03.001. Cited on
page 8.

Bibliography

http://portal.acm.org/citation.cfm?id=1317425.1317426&coll=Portal&dl=GUIDE&CFID=64765812&CFTOKEN=41652687
http://portal.acm.org/citation.cfm?id=1317425.1317426&coll=Portal&dl=GUIDE&CFID=64765812&CFTOKEN=41652687

132

[28] Makoto Yokoo. Asynchronous weak-commitment search for solving distributed constraint
satisfaction problems. In Proceedings of the First International Conference on Principles and
Practice of Constraint Programming, pages 407–422, 1995. Cited on pages 8 and 10.

[29] Anton Chechetka and Katia Sycara. A decentralized variable ordering method for distributed
constraint optimization. In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, July 2005. Cited on pages 9, 10, and 108.

[110] Evan A. Sultanik, Robert N. Lass, and William C. Regli. Dynamic configuration of agent
organizations. In Proceedings of the International Joint Conference on Artificial Intelligence,
July 2009. Cited on pages 9, 11, and 108.

[31] Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability—a survey. BIT Numerical Mathematics, 25(1):1–23, March 1985. Cited on
page 9.

[32] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Backtracking in distributed con-
straint networks. In Proceedings of the European Conference on Artificial Intelligence, pages
219–223, 1998. Cited on pages 9 and 10.

[33] Zeev Collin and Shlomi Dolev. Self-stabilizing depth-first search. Information Processing
Letters, 49(6):297–301, 1994. Cited on page 9.

[34] John Davin and Pragnesh Jay Modi. Hierarchical variable ordering for distributed constraint
optimization. In Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1433–1435, New York, NY, USA, 2006. ACM. Cited
on page 9.

[35] Marius Silaghi and Makoto Yokoo. Dynamic DFS tree in ADOPT-ing. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, Septem-
ber 2007. Cited on page 10.

[36] James Atlas and Keith Decker. A complete distributed constraint optimization method for non-
traditional pseudotree arrangements. In Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, pages 1–8, New York, NY, USA, 2007. ACM.
ISBN 978-81-904262-7-5. doi: http://doi.acm.org/10.1145/1329125.1329262. Cited on page 10.

[37] Roie Zivan and Amnon Meisels. Dynamic ordering for asynchronous backtracking on DisCSPs.
Constraints, 11:179–197, 2006. Cited on page 10.

[38] Thomas R. Ioerger and Linli He. Modeling command and control in multi-agent systems. In
Proceedings of the 8th International Command and Control Research and Technology Sympo-
sium, June 2003. Cited on page 11.

[39] Dimitrios J. Vergados, Nikolaos A. Pantazis, and Dimitrios D. Vergados. Energy-efficient route
selection strategies for wireless sensor networks. Mobile Networks and Applications, 13(3–4):
285–296, 2008. URL http://portal.acm.org/citation.cfm?id=1414641.1414646&coll=
Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443. Cited on page 11.

[40] Qunfeng Dong. Maximizing system lifetime in wireless sensor networks. In Proceedings of
the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles,
California, 2005. IEEE Press. ISBN 0-7803-9202-7. URL http://portal.acm.org/citation.
cfm?id=1147685.1147690&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443. Cited
on page 11.

[41] William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: an asynchronous branch-
and-bound DCOP algorithm. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, volume 2, pages 591–598, Estoril, Portugal,

Bibliography

http://portal.acm.org/citation.cfm?id=1414641.1414646&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1414641.1414646&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1147685.1147690&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1147685.1147690&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443

133

2008. International Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-
0-9817381-1-6. URL http://portal.acm.org/citation.cfm?id=1402298.1402307&coll=
Portal&dl=GUIDE&CFID=63340268&CFTOKEN=98798546. Cited on pages 12 and 14.

[42] Jonathan P. Pearce and Milind Tambe. Quality guarantees on k-optimal solutions for dis-
tributed constraint optimization problems. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence, pages 1446–1451, Hyderabad, India, 2007. Morgan Kauf-
mann Publishers Inc. URL http://portal.acm.org/citation.cfm?id=1625509. Cited on
page 12.

[43] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, January 1979. Cited on pages 12 and 82.

[44] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. McGraw-Hill, second edition, 2001. Cited on pages 12 and 141.

[45] David Musser. Introspective sorting and selection algorithms. Software: Practice and Experi-
ence, 27(8):983–993, 1997. Cited on page 13.

[46] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997. ISBN 1558603484. Cited
on pages 13, 29, and 77.

[47] Ying Zhang and Alan K. Mackworth. Parallel and distributed algorithms for finite constraint
satisfaction problems. In Proceedings of the Third IEEE Symposium on Parallel and Distributed
Processing, pages 394–397, 1991. Cited on page 13.

[48] Harsh Bhatia, Rathinasamy Lenin, Aarti Munjal, Srini Ramaswamy, and Sanjay Srivastava.
A queuing-theoretic framework for modeling and analysis of mobility in WSNs. In Proceedings
of the Eighth Performance Metrics for Intelligent Systems Workshop. The National Institute
of Standards and Technology, September 2008. Cited on page 14.

[49] Weixiong Zhang, Zhao Xing, Guandong Wang, and Lars Wittenburg. An analysis and appli-
cation of distributed constraint satisfaction and optimization algorithms in sensor networks.
In Proceedings of the Second International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, pages 185–192, New York, NY, USA, 2003. ACM. ISBN 1-58113-683-8. doi:
http://doi.acm.org/10.1145/860575.860605. Cited on page 14.

[50] Adrian Petcu and Boi Faltings. MB-DPOP: a new memory-bounded algorithm for distributed
optimization. In Proceedings of the 20th International Joint Conference on Artifical Intelli-
gence, pages 1452–1457, Hyderabad, India, 2007. Morgan Kaufmann Publishers Inc. URL
http://portal.acm.org/citation.cfm?id=1625510. Cited on page 14.

[51] Amnon Meisels, Eliezer Kaplansky, Igor Razgon, and Roie Zivan. Comparing performance
of distributed constraints processing algorithms. In Proceedings of the Third International
Workshop on Distributed Constraint Reasoning, Bologna, Italy, July 2002. URL citeseer.
ist.psu.edu/meisels02comparing.html. Cited on pages 14 and 15.

[52] John Davin and Pragnesh Jay Modi. Impact of problem centralization in distributed con-
straint optimization algorithms. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 1057–1063, Utrecht, The Netherlands,
2005. ACM Press. ISBN 1-59593-093-0. doi: http://doi.acm.org/10.1145/1082473.1082633.
Cited on page 14.

[53] Marius Silaghi, Robert N. Lass, Evan A. Sultanik, William C. Regli, Toshihiro Matsui, and
Makoto Yokoo. Constant cost of the computation-unit in efficiency graphs for dcops. In
Proceedings of the International Conference on Intelligent Agent Technology, December 2008.
Cited on pages 14 and 15.

Bibliography

http://portal.acm.org/citation.cfm?id=1402298.1402307&coll=Portal&dl=GUIDE&CFID=63340268&CFTOKEN=98798546
http://portal.acm.org/citation.cfm?id=1402298.1402307&coll=Portal&dl=GUIDE&CFID=63340268&CFTOKEN=98798546
http://portal.acm.org/citation.cfm?id=1625509
http://portal.acm.org/citation.cfm?id=1625510
citeseer.ist.psu.edu/meisels02comparing.html
citeseer.ist.psu.edu/meisels02comparing.html

134

[54] Leslie Lamport. Time, clocks and the ordering of events in a distributed system1. Communi-
cations of the ACM, 21(7):558–565, July 1978. Cited on page 14.

[55] Yaacov Fernandess, Antonio Fernández, and Maxime Monod. A generic theoretical framework
for modeling gossip-based algorithms. SIGOPS Operating Systems Review, 41(5):19–27, 2007.
doi: 10.1145/1317379.1317384. URL http://portal.acm.org/citation.cfm?id=1317379.
1317384&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261. Cited on page 15.

[56] Alexandros G. Dimakis, Anand D. Sarwate, and Martin J. Wainwright. Geo-
graphic gossip: efficient aggregation for sensor networks. In Proceedings of the
5th international conference on Information processing in sensor networks, pages
69–76, Nashville, Tennessee, USA, 2006. ACM. ISBN 1-59593-334-4. doi:
10.1145/1127777.1127791. URL http://portal.acm.org/citation.cfm?id=1127777.
1127791&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261. Cited on page 15.

[57] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Random-
ized gossip algorithms. IEEE Transactions on Information Theory, 52(6):2508–2530,
2006. URL http://portal.acm.org/citation.cfm?id=1148663.1148679&coll=GUIDE&dl=
ACM&CFID=64961512&CFTOKEN=44495261. Special issue of IEEE Transactions on Information
Theory and IEEE/ACM Transactions on Networking. Cited on page 15.

[58] Mauro Sozio. Efficient Distributed Algorithms via the Primal-Dual Schema. PhD thesis, “La
Sapienza” University, Rome, September 2006. Cited on pages 16 and 21.

[59] Amir Sadeh. Distributed primal-dual approximation algorithms for network design problems.
Master’s thesis, The Open University of Israel, December 2008. Cited on pages 16 and 21.

[60] Manica Aggarwal and Naveen Garg. A Scaling Technique for Better Network Design. In Pro-
ceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 233–240,
Philadelphia, PA, USA, 1994. Society for Industrial and Applied Mathematics. ISBN 0-89871-
329-3. URL http://portal.acm.org/citation.cfm?id=314464.314498\&coll=Portal\
&dl=ACM\&CFID=31452541\&CFTOKEN=77022537#. Cited on pages 18, 23, 25, 28, and 60.

[61] Vijay V. Vazirani. Primal-Dual schema based approximation algorithms (Abstract). In
Computing and Combinatorics, pages 650–652, 1995. URL http://citeseer.ist.psu.edu/
vazirani95primaldual.html. Cited on pages 19, 23, and 28.

[62] Vašek Chvátal. Linear Programming. W. H. Freeman, New York, 1983. Cited on page 20.

[63] Carlo Lombardi. Primal-dual algorithms. Lecture Notes, June 2008. Cited on page 20.

[64] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955. Cited on page 20.

[65] George Bernard Dantzig, Lester Randolph Ford, Jr., and Delbert Ray Fulkerson. A primal-
dual algorithm for linear programs. In Harold W. Kuhn and Albert W. Tucker, editors, Linear
Inequalities and Related Systems, pages 171–181, Princeton, NJ, 1956. Princeton University
Press. Cited on page 20.

[66] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2:198–203, 1981. Cited on page 21.

[67] Alessandro Panconesi. Fast Distributed Algorithms Via Primal-Dual (Extended Abstract),
volume 4474, pages 1–6. Springer, Heidelberg, 2007. Cited on pages 21, 99, and 126.

1This is one of the most cited computer science papers of all time [101] and contains perhaps the most amusing
footnote of any academic paper ever2 (which was the inspiration for the footnotes on page 14 of this dissertation).

2. . . even more amusing than this footnote.

Bibliography

http://portal.acm.org/citation.cfm?id=1317379.1317384&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1317379.1317384&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1127777.1127791&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1127777.1127791&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1148663.1148679&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1148663.1148679&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=314464.314498\&coll=Portal\&dl=ACM\&CFID=31452541\&CFTOKEN=77022537#
http://portal.acm.org/citation.cfm?id=314464.314498\&coll=Portal\&dl=ACM\&CFID=31452541\&CFTOKEN=77022537#
http://citeseer.ist.psu.edu/vazirani95primaldual.html
http://citeseer.ist.psu.edu/vazirani95primaldual.html

135

[68] Marcelo Santos, Lúcia M. A. Drummond, and Eduardo Uchoa. A distributed primal-dual
heuristic for steiner problems in networks. In Experimental Algorithms, volume 4525, pages
175–188. Springer, 2007. Cited on pages 21, 80, and 98.

[69] Ricardo C. Corrêa, Fernando C. Gomes, Carlos A. S. Oliveira, and Panos M. Pardalos. A
parallel implementation of an asynchronous team to the point-to-point connection problem.
Parallel Computing, 29(4):447–466, May 2002. Cited on page 21.

[70] Alessandro Panconesi and Mauro Sozio. Fast distributed scheduling via primal-dual. In Pro-
ceedings of the twentieth annual symposium on Parallelism in algorithms and architectures,
pages 229–235, Munich, Germany, 2008. ACM. ISBN 978-1-59593-973-9. Cited on page 21.

[71] Samir Khuller, Uzi Vishkin, and Neal Young. A primal-dual parallel approximation technique
applied to weighted set and vertex cover. Journal of Algorithms, 17(2):280–289, October 1994.
Cited on page 21.

[72] F. Grandoni, J. Könemann, Alessandro Panconesi, and Mauro Sozio. Primal-dual based dis-
tributed algorithms for vertex cover with semi-hard capacities. In Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed computing, pages 118–125, Las
Vegas, NV, USA, 2005. ISBN 1-59593-994-2. Cited on page 21.

[73] Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24:296–317, 1995. Cited on pages 21,
22, 60, 63, 67, 87, 97, 99, and 127.

[74] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, page
448. IEEE Computer Society, 1998. ISBN 0-8186-9172-7. URL http://portal.acm.org/
citation.cfm?id=796444. Cited on page 23.

[75] Michael X. Goemans, Andrew V. Goldberg, Serge Plotkin, David B. Shmoys, Éva Tardos, and
David P. Williamson. Improved approximation algorithms for network design problems. In
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223–232,
January 1994. Cited on page 23.

[76] J. E. Dennis, Jr. and Virginia Torczon. Direct search methods on parallel machines. SIAM
Journal on Optimization, 1(4):448–474, November 1991. Cited on page 25.

[77] David Ilcinkas, Nicolas Nisse, and David Soguet. The cost of monotonicity in distributed graph
searching. Distributed Computing, 22(2):117–127, September 2009. Cited on page 25.

[78] David Šǐslák, Pavel Jisl, Přemysl Volf, Michal Pěchouček, David Nicholson, David Woodhouse,
and Niranjan Suri. Integration of probability collectives for collision avoidance in agentfly. In
Proceedings of 8th International Conference on Autonomous Agents and Multiagent Systems,
pages 69–76, May 2009. Cited on page 25.

[79] Richard E. Korf. Linear-time disk-based implicit graph search. Journal of the ACM, 55(6):
1–40, 2008. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/1455248.1455250. Cited on
page 25.

[80] Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the dis-
tributed minimum spanning tree problem. In Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing, pages 331–340, New York, NY, USA, 2004. ACM. ISBN
1-58113-852-0. doi: http://doi.acm.org/10.1145/1007352.1007407. Cited on pages 44 and 45.

[81] Sándor Csörgő and Gordon Simons. Precision calculation of distributions for trimmed sums.
The Annals of Applied Probability, 5(3):854–873, 1995. Cited on page 49.

Bibliography

http://portal.acm.org/citation.cfm?id=796444
http://portal.acm.org/citation.cfm?id=796444

136

[82] H. N. Nagaraja. Order statistics from independent exponential random variables and the sum
of the top order statistics. In N. Balakrishnan, Enrique Castillo, and José Maŕıa Sarabia,
editors, Advances in Distribution Theory, Order Statistics, and Inference, Part III, Statistics
for Industry and Technology, pages 173–185. Birkhäuser, Boston, 2006. Cited on page 53.

[83] Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding
spanning forests and for other basic graph connectivity problems. In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 438–447, Philadelphia, PA,
USA, 1996. Society for Industrial and Applied Mathematics. ISBN 0-89871-366-8. Cited on
page 63.

[84] Richard Cole, Philip N. Klein, and Robert E. Tarjan. Finding minimum spanning forests in
logarithmic time and linear work using random sampling. In Proceedings of the Eighth Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 243–250, New York, NY,
USA, 1996. ACM. ISBN 0-89791-809-6. doi: http://doi.acm.org/10.1145/237502.237563. Cited
on page 63.

[85] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982. ISSN 0164-0925.
doi: http://doi.acm.org/10.1145/357172.357176. Cited on page 77.

[86] Robert N. Lass, Michael J. Grauer, Evan A. Sultanik, and William C. Regli. A decentralized
approach to the art gallery problem. In Proceedings of the 17th Fall Conference on Computa-
tional Geometry, November 2007. Cited on page 81.

[87] Amnon Meisels. Distributed Search by Constrained Agents: Algorithms, Performance, Com-
munication. Springer-Verlag, London, 2008. ISBN 1848000391, 9781848000391. Cited on
page 82.

[88] Anurag Ganguli, Jorge Cortés, and Francesco Bullo. Visibility-based multi-agent deployment
in orthogonal environments. In Proceedings of the American Control Conference, pages 3426–
3431, New York, July 2007. Cited on page 82.

[89] Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in ad hoc
wireless networks. In Proceedings of the 3rd International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pages 7–14, New York, NY, USA,
1999. ACM. ISBN 1-58113-174-7. doi: http://doi.acm.org/10.1145/313239.313261. Cited on
page 82.

[90] Lu Ruan, Hongwei Du, Xiaohua Jia, Weili Wu, Yingshu Li, and Ker-I Ko. A greedy approx-
imation for minimum connected dominating sets. Theoretical Computer Science, 329(1–3):
325–330, 2004. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2004.08.013. Cited on
page 82.

[91] Chuanhe Huang, Chuan Qin, and Yi Xian. A distributed algorithm for computing connected
dominating set in ad hoc networks. International Journal of Wireless and Mobile Computing,
1(2):148–155, 2006. ISSN 1741-1084. doi: http://dx.doi.org/10.1504/IJWMC.2006.012474.
Cited on page 82.

[92] Linda L. Deneen and Shashikant Joshi. Treasures in an art gallery. In Proceedings of the 4th
Canadian Conference on Computer Geometry, pages 17–22, 1992. Cited on page 96.

[93] Svante Carlsson and H̊akan Jonsson. Guarding a treasury. In Proceedings of the 5th Canadian
Conference on Computer Geometry, pages 85–90, 1993. Cited on page 97.

[94] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column),
32(4):51–58, December 2001. Cited on page 105.

Bibliography

137

[95] James Samuel Coleman. Foundations of Social Theory. Belknap, New York, 1994. Cited on
page 128.

[96] Lee Alan Dugatkin. Winner and loser effects and the structure of dominance hierarchies.
Behavioral Ecology, 8:583–587, 1997. Cited on page 128.

[97] Charlotte K. Hemelrijk. Towards the integration of social dominance and spatial structure.
Animal Behavior, 59:1035–1048, 2000. Cited on page 128.

[98] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Phase diagram of a model of
self-organizing hierarchies. Physics A, 217:373–392, 1995. Cited on page 128.

[99] Lazaros K. Gallos. Self-organizing social hierarchies on scale-free networks. International
Journal of Modern Physics C, 16(8):1329–1336, 2005. Cited on page 128.

[100] Michael Kirley. Dominance hierarchies and social diversity in multi-agent systems. In Proceed-
ings of the 8th annual conference on Genetic and Evolutionary Computation, pages 159–166,
New York, NY, USA, 2006. ACM. ISBN 1-59593-186-4. doi: http://doi.acm.org/10.1145/
1143997.1144026. Cited on page 128.

[101] CiteSeer. Most cited articles in computer science, September 2006. http://citeseer.ist.
psu.edu/articles.html. Cited on page 134.

[102] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Menlo Park, 1986.
Cited on page 148.

[103] Donald E. Knuth. The TEXbook. Addison-Wesley, Menlo Park, 1984. Cited on page 148.

[104] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-13446-2. Cited on page 148.

Bibliography

http://citeseer.ist.psu.edu/articles.html
http://citeseer.ist.psu.edu/articles.html

138

Appendix A: Notation, Nomenclature, and Glossary

Notation

≡ The definition of an identity.

R+ The transitive closure of a binary relation R.

X × Y If X and Y are sets, the Cartesian product (or direct product) of two sets:

{(x, y)|x ∈ X ∧ y ∈ Y }, otherwise multiplication.

∏ The Cartesian product over the elements of a set.∏
i∈{1,2,3,4}Xi ≡ X1 ×X2 ×X3 ×X4.

2X The power set of X.

|X| Cardinality, when X is a set; the absolute value of X otherwise.

〈a, b, c〉 A tuple containing elements a, b, and c.

\ The relative complement set operator: A \B ≡ {x ∈ A : x /∈ B}.

	 The symmetric difference set operator: A	B ≡ (A ∪B)− (A ∩B).

XT The transpose of a matrix X.

erf(x) The error function: erf(x) =
2√
π

∫ x

0

e−t
2
dt.

max
x∈X

f(x) The maximum value of f(x) over all elements in the set X.

f : A→ B A function, f , mapping the elements of set A to the elements of the set B.

f(a) 7→ b The statement that function f maps a ∈ A to b ∈ B.

f−1(b) The inverse of a function; given a function f : A → B, f−1 maps B to a

subset of A such that f−1(b) 7→ {a ∈ A : f(a) 7→ b}.

=⇒ The material conditional (i.e., implies operator); p =⇒ q ≡ ¬p ∨ q.

u ; v The path between vertices u and v in a graph.

⇐⇒ If and only if: p⇐⇒ q ≡ (p =⇒ q) ∧ (q =⇒ p).

d= The operands exhibit the same distribution.

139

O(g(x)) Given two functions f(x) and g(x) defined on some subset of R, we say f(x)

is O(g(x)) as x → ∞ if and only if ∃x0∃y > 0 such that |f(x)| ≤ y|g(x)|

for x > x0.

L1 ≤p L2 The language L1 is polynomial-time reducible to a language L2; there exists

a polynomial-time function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈

{0, 1}∗, x ∈ L1 ⇐⇒ f(x) ∈ L2.

Appendix A: Notation, Nomenclature, and Glossary

140

Nomenclature

∅ The empty set.

B A boolean domain: {True,False}.

δ A function δ : 2V → 2V×V such that given a set of vertices of a graph S ⊆ V ,

δ(S) 7→ C implies that each edge in C contains exactly one endpoint in S.

N Unless otherwise stated, N : V → 2V is a function mapping vertices of a

graph to their neighbors. N(v) 7→ {x, y} means that vertices x and y are

directly connected to v. Note that N is an “open” neighborhood function,

meaning that v itself is never returned in the set N(v).

N0 The natural numbers, including zero (i.e., non-negative integers).

NP The class of languages (i.e., problems) can be verified by a polynomial-time

algorithm. A language L belongs to NP if and only if there exist a two-input

polynomial-time algorithm A and a constant c such that L = {x ∈ {0, 1}∗ :

there exists a certificate y with |y| = O (|x|c) such that A(x, y) = 1}.

NP-Hard Non-deterministic Polynomial-time Hard. A class of languages (i.e., prob-

lems) that contains all languages L such that for all L′ ∈ NP, L′ ≤p L.

Q The rational numbers.

R The real numbers.

§ A section of this document, e.g., “§2.1” refers to the first section of the

second chapter.

Appendix A: Notation, Nomenclature, and Glossary

141

“we”/“us”/“our”
Pluralis modestiæ. The author has attempted to forgo first person singular

pronouns in an effort to engage the reader, remain somewhat modest, and

tempt assumptions of schizophrenia.

Z The integers.

The definitions for O(g(x)), L1 ≤p L2, NP, and NP-Hard were adapted from [44].

Glossary of Abbreviations, Acronyms, and Initialisms

a.k.a. also known as

CDF Cumulative Distribution Function

cf. confer consult

CREW Concurrent Read Exclusive Write

DisCOP Distributed Constraint Optimization Problem (sometimes also abbreviated

“DCOP”)

DPOP The Distributed Pseudotree Optimization Procedure

DSA The Distributed Stochastic Algorithm

DynDisMHG Dynamic Distributed Multiagent Hierarchy Generation

& et and

& [pl.] al. et [pluribus] alii/aliæ/alia and [many] other men/women/things

&c. et cetera and the rest

e.g. exempli gratia for example

i.e. id est that is [to say]

IP Integer Program

LAN Local Area Network

LP Linear Program

MANET Mobile Ad Hoc Network

Appendix A: Notation, Nomenclature, and Glossary

142

MAS Multiagent System

MST Minimum Spanning Tree

Mobed Multiagent Organization with Bounded Edit Distance

ε-OPT An algorithm is ε-Optimal (ε-OPT) if its solutions are guaranteed to be no

worse than ε times the cost of the optimal solution.

PRAM Parallel Random Access Machine

PDF Probability Density Function

q.v. quod vide for which, see (herein)

qq.v. quæ vide for which (plural), see (herein)

TikZ TikZ iĆ k e i n ZeiĚenprogramm TikZ is not a drawing program

vice versa Latin for “the other way around”.

vi&. videlicet/videre licet that is to say (precisely)

Appendix A: Notation, Nomenclature, and Glossary

143

Index

Important references are given in italics.

active components, 30
agent

hierarchy, 2
algorithm

Adopt, 12, 14
approximation, 18, 48
asynchronous, 13
distributed consensus, 30, 77
Distributed Pseudotree Optimization, q.v. Distributed Pseudotree Optimization Procedure (DPOP)
Distributed Stochastic (DSA), q.v. Distributed Stochastic Algorithm (DSA)
generalized distributed constrained forest, 16, 60
gossip, 15
multidirectional graph search, 26–38, 85, 100
Newton-Raphson, q.v. Newton-Raphson method
superstabilizing, q.v. superstability
synchronous, 13
Two Peasants, q.v. Two Peasants method

ancestor, 109
APX, 126
APX-Complete, 126
APX-Hard, 6, 126
art gallery problem, 5–6, 81–98

blocks, engaged, q.v. engaged blocks
broadcast, 78, 98
Byzantine, failure, 77

causality, principle of, 14
central limit theorem, 52, 56
command and control, 11
complementary slackness, 20, 28
complexity theory, 12
Concurrent Read Exclusive Write (CREW), 66
constrained forest, 2, 23, 25, 60
convergecast, 80, 98
cooperative multiagent systems, 11, 15, 30, 77

deadlock, 77, 114
deconfliction, distributed, 25
density, edge, q.v. edge density
depth, 109
descendant, 109
distributed constraint optimization (DisCOP), q.v. distributed constraint reasoning (DCR)
distributed constraint reasoning (DCR), 11, 14
distributed problem solving, 11
Distributed Pseudotree Optimization Procedure (DPOP), 14
Distributed Stochastic Algorithm (DSA), 13

144

distribution
β, 51
exponential, 53
non-negative, 48
normal, 52, 54
ratio, 48
uniform, 50

dominating set problem, 82
Dynamic Distributed Multiagent Hierarchy Generation (DynDisMHG) problem, 1, 6–8

applications, 11
challenges, 110

edge density, 60, 117
edit distance, 120
engaged blocks, 115
ε-OPT, 12
Erdős-Rényi model, 60
expected value, 48

facility location problem, 21
failure, Byzantine, 29
function

cumulative distribution (CDF), 48
digamma, 54
probability density (PDF), 48
proper, 21, 60
supermodular, 23
well spaced, 23

graph
constraint, 110
interaction, 2, 109
intersection, 32, 61
random, q.v. Erdős-Rényi model
visibility, 83

grid computing, 4

harmonic number, 54
hierarchy, multiagent, q.v. pseudotree
hitting set problem, 82
Hungarian method, 20

k-connectivity, 21
k-optimality, 12

Location Design and Vehicle Routing problem, 4, 62–80

MANET, q.v. network, mobile ad hoc
Mobed, q.v. Multiagent Organization with Bounded Edit Distance (Mobed)
multiagent manufacturing, 11
Multiagent Organization with Bounded Edit Distance (Mobed), 17, 108–117
multicast, 6, 11, 78, 82, 98

neighborhood, 109
network

ad hoc, 2

Index

145

asynchronous, 29
mobile ad hoc, 2, 11
overlay, 2
sensor, 4, 11
Steiner, q.v. Steiner network problem
topology, 2

Newton-Raphson method, 55
NP, 140
NP-Complete, 6, 82
NP-Hard, 3, 4, 9, 12, 15, 23, 25, 60, 81, 125, 140

order statistic, 48

P-Complete, 3, 16, 125
Parallel Random Access Machine (PRAM), 66
path planning, 25
point set polygonization, 95
point-to-point connectivity problem, 21
potential cost, 32, 71
primal, 28
primal-dual schema, 19, 28, 60
primary communication rounds, 39
pseudotree, 9, 100

creation problem, 9–10
generation, initial, 116–117
insertion point, 110–113
merging, 114
validity, 109

queuing theory, 14
quiescence, 15, 31

relativity, special theory of, 14

scheduling, distributed, 21
search

bidirectional graph, 25
depth-first (DFS), 9, 117
disk-based, 25
multidirectional graph, 16, 25
unconstrained, 25

secondary communication rounds, 39
simulation

discrete event, 14
Monte Carlo, 54

Steiner network problem, 6, 18, 21, 25, 49, 60–62
strong duality, 20
sum of consecutive order statistics, q.v. trimmed sum
supernode, 4
superstability, 100

terminal, 25, 60
tightness, 20, 29
traveling salesman problem, 12, 25
treasury problem, 96

Index

146

trimmed sum, 49, 54
Two Peasants method, 95

unicast, 78, 98

variable ordering, q.v. pseudotree
vertex cover, 12, 21

weak duality, 20

Z∗, 29

“ Any inaccuracies in this index may be explained by the fact that
it has been sorted with the help of a computer.”—Donald Knuth

Volume 3 of The Art of Computer Programming

Index

147

Vitæ Curriculum Brevis

Evan A. Sultanik concurrently earned the degrees of Bachelor of Science in Mathematics from the
Drexel University College of Arts and Sciences and both Bachelor & Master of Science in Computer
Science from the Drexel University College of Engineering in 2006, having graduated with honors
distinction from Pennoni Honors College. His Masters thesis was on Enabling Multi-Agent Coor-
dination in Stochastic Peer-to-Peer Environments and was co-advised by Drs. William C. Regli,
Pragnesh Jay Modi, and Moshe Kam. During that time Evan occupied a joint position in the
Drexel University Geometric and Intelligent Computing Laboratory (GICL), the Applied Commu-
nications and Information Networking (ACIN) Institute, and was a de jure member of the Data
Fusion Laboratory (DFL). Upon deciding to continue his study toward a Ph.D., Evan took on
Dr. Ali Shokoufandeh as a co-advisor to Dr. Regli. In a previous life during the “dot-com bubble”,
Evan worked as a software engineer at the document management company Feith Systems.

Evan is a member of the Association for the Advancement of Artificial Intelligence (AAAI),
the Association for Computing Machinery (ACM), the Institute for Electrical and Electronics Engi-
neers (IEEE), the IEEE Communications Society, the American Association for the Advancement of
Science (AAAS), the National Eagle Scout Association (NESA), and the eGullet Society for Culinary
Arts and Letters.

Aside from when he is required to write in a biographical format, Evan does not often refer to
himself in the third grammatical person.

Selected Publications

[105] Evan Sultanik, Donovan Artz, Gustave Anderson, Moshe Kam, William Regli, Max Peysakhov, Jonathan
Sevy, Nadya Belov, Nicholas Morizio, and Andrew Mroczkowski. Secure Mobile Agents on Ad Hoc Wireless
Networks. In Proceedings of the Fifteenth Innovative Applications of Artificial Intelligence Conference (IAAI).
Association for the Advancement of Artificial Intelligence, August 2003.

[106] Maxim Peysakhov, Donovan Artz, Evan Sultanik, and William Regli. Network Awareness for Mobile Agents
on Ad Hoc Networks. In Proceedings of the Third International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 368–375, 2004.

[107] Evan Sultanik and William Regli. Service Discovery on Dynamic Peer-to-Peer Networks Using Mobile Agents.
In Gianluca Moro, Sonia Bergamaschi, and Karl Aberer, editors, Agents and Peer-to-Peer Computing, volume
3601 of Lecture Notes in Computer Science, pages 132–143. Springer-Verlag, Berlin, July 2005. ISBN 3-540-
29755-3.

[108] Evan A. Sultanik, Maxim D. Peysakhov, and William C. Regli. Agent Transport Simulation for Dynamic
Peer-to-Peer Networks. In Jaime S. Sichman and Luis Antunes, editors, Multi-Agent-Based Simulation VI,
volume 3891 of Lecture Notes in Artificial Intelligence, pages 162–173. Springer-Verlag, Berlin, July 2006.

[109] Evan A. Sultanik, Pragnesh Jay Modi, and William C. Regli. On Modeling Multiagent Task Scheduling as a
Distributed Constraint Optimization Problem. In Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI), pages 1537–1536, January 2007.

[110] Evan A. Sultanik, Robert N. Lass, and William C. Regli. Dynamic Configuration of Agent Organizations. In
Proceedings of IJCAI , July 2009. Cited on pages 9, 11, and 108.

[111] Robert N. Lass, Evan A. Sultanik, and William C. Regli. Metrics for Multiagent Systems. Chapter 1 of
Raj Madhavan, Edward Tunstel, and Elena Messina, editors, Performance Evaluation and Benchmarking of
Intelligent Systems, pages 1–19. Springer-Verlag, New York, 2009.

[112] William C. Regli, Israel Mayk, Christopher J. Dugan, Joseph B. Kopena, Robert N. Lass, Pragnesh Jay
Modi, William M. Mongan, http://www.cs.drexel.edu/ jsalvage/, and Evan A. Sultanik. Development and
Specification of a Reference Model for Agent-Based Systems. IEEE Transactions on Systems, Man, and
Cybernetics—Part C, 39(5):572–596, September 2009.

[113] Evan A. Sultanik, Ali Shokoufandeh, and William C. Regli. Dominating Sets of Agents in Visibility Graphs:
Distributed Algorithms for Art Gallery Problems. In Proceedings of AAMAS , May 2010.

http://www.sultanik.com/
http://www.drexel.edu/math/
http://www.drexel.edu/
http://www.drexel.edu/coas/
http://www.cs.drexel.edu/
http://www.cs.drexel.edu/
http://www.drexel.edu/coe/
http://www.drexel.edu/honors/
http://records.library.drexel.edu/record=b1627939~S9
http://records.library.drexel.edu/record=b1627939~S9
http://www.cs.drexel.edu/~regli/
http://teamcore.usc.edu/memorial.htm
http://www.moshekam.org/
http://gicl.cs.drexel.edu/
http://www.acincenter.org/
http://www.acincenter.org/
http://www.datafusionlab.org/
http://www.datafusionlab.org/
http://www.cs.drexel.edu/~ashokouf/
http://www.feith.com/
http://www.aaai.org/
http://www.acm.org/
http://www.ieee.org/
http://www.ieee.org/
http://www.comsoc.org/
http://www.aaas.org/
http://www.aaas.org/
http://www.nesa.org/
http://www.egullet.org/
http://www.egullet.org/
http://www.sultanik.com/
http://www.datafusionlab.org/index.php?PAGE=PROFILE&ID=13
http://www.moshekam.org/
http://www.cs.drexel.edu/~regli/
http://gicl.cs.drexel.edu/people/peysakhov/
http://gicl.cs.drexel.edu/people/sevy/
http://gicl.cs.drexel.edu/people/sevy/
http://amrox.me/
http://www.aaai.org/Library/IAAI/2003/iaai03-018.php
http://www.aaai.org/Library/IAAI/2003/iaai03-018.php
http://www.aaai.org/Conferences/IAAI/iaai03.php
http://gicl.cs.drexel.edu/people/peysakhov/
http://www.sultanik.com/
http://www.cs.drexel.edu/~regli/
http://portal.acm.org/citation.cfm?id=1018769
http://portal.acm.org/citation.cfm?id=1018769
http://www.ifaamas.org/AAMAS/aamas04/
http://www.ifaamas.org/AAMAS/aamas04/
http://www.sultanik.com/
http://www.cs.drexel.edu/~regli/
http://www.springerlink.com/content/k5907v8l31826670/
http://www.sultanik.com/
http://gicl.cs.drexel.edu/people/peysakhov/
http://www.cs.drexel.edu/~regli/
http://www.springerlink.com/content/2u64122g64787817/
http://www.springerlink.com/content/2u64122g64787817/
http://www.sultanik.com/
http://teamcore.usc.edu/memorial.htm
http://www.cs.drexel.edu/~regli/
http://www.aaai.org/Library/IJCAI/2007/ijcai07-247.php
http://www.aaai.org/Library/IJCAI/2007/ijcai07-247.php
http://www.ijcai-07.org/
http://www.ijcai-07.org/
http://www.sultanik.com/
http://www.cs.drexel.edu/~urlass/
http://www.cs.drexel.edu/~regli/
http://www.ijcai.org/papers09/Papers/IJCAI09-059.pdf
http://ijcai-09.org/
http://www.cs.drexel.edu/~urlass/
http://www.sultanik.com/
http://www.cs.drexel.edu/~regli/
http://www.springerlink.com/content/r62r6272n3m07p41/
http://www.springerlink.com/content/r62r6272n3m07p41/
http://www.cs.drexel.edu/~regli/
http://gicl.cs.drexel.edu/people/tjkopena/
http://www.cs.drexel.edu/~urlass/
http://teamcore.usc.edu/memorial.htm
http://teamcore.usc.edu/memorial.htm
http://www.cs.drexel.edu/~wmm24/
file:Jeff K. Salvage
http://www.sultanik.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5204734&arnumber=4926156&count=8&index=6
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=5204734&arnumber=4926156&count=8&index=6
http://www.sultanik.com/
http://www.cs.drexel.edu/~ashokouf/
http://www.cs.drexel.edu/~regli/
http://www.cse.yorku.ca/AAMAS2010/

148

Colophon

The majority of the text of this dissertation was devised at the Applied Communications and Infor-
mation Networking (ACIN) Institute in Camden, New Jersey. The text was written using Esterbrook
fountain pens1 that were also devised in Camden, just a couple blocks away from ACIN. The text
was typeset using the LATEX document markup language [102] for the TEX document preparation
system [103]. The bibliography was automatically generated using BibTEX. Typing and editing
were executed using a combination of Emacs2 and Vim3 on computers running GNU/Linux. All
figures were produced in TikZ4 and all graphs were rendered using Gnuplot6. The æsthetics of this
document are attributable to these excellent tools.

The LATEX class file for the Drexel University thesis format was created in 2010 by W. Trevor King. It
is the merger of the preexisting Department of Computer Science thesis format and the Department
of Physics thesis format:

W. Trevor King

Walter Mankowski
December 2009

Evan A. Sultanik
December 2009

Jeff Abrahamson
May 2007

Evan A. Sultanik
April 2006

Jeff Abrahamson
May 2005

Cheuk Yiu Ip
February 2005

Christopher S. Dahn
April 2004

Christopher D. Cera
March 2003

Mitchell Peabody
2002

David T. McWherter
July 2000

Vincent A. Cicirello
February 1999

Robert Bernecky
July 1997

François Pitt Daniel J. Cross

Tsvetelin Tsankov
& Randall Rojas

M
erg

ed Rewrite

Modified

Modified

Modified

Modified

Modified

Drexel Computer Science

Patched

Patched

Patched

Patched

Patched

Maintenance

Based on

Based on

University of Toronto

Drexel Physics

All of the typefaces used in this dissertation are from the Computer Modern family7, created by
Donald Knuth in METAFONT [104].

This dissertation contains approximately fifty-one thousand four hundred twenty-nine words and two
hundred ninety-seven thousand two hundred seventy-five characters, including those of this sentence.

For additional credits see page iii.

For legal notices see the copyright page.

1Nibs: 9550 (firm extra-fine; bookkeeping), 2284 (broad; signature stub), and 9128 (flexible extra-fine; Pitman
shorthand).

2http://www.gnu.org/software/emacs/
3http://www.vim.org/
4TikZ is a recursive acronym for “TikZ ist kein Zeichenprogramm”5. http://sourceforge.net/projects/pgf/
5. . . which is German for “TikZ is not a drawing program”.
6http://www.gnuplot.info/
7Except for the use of Yannis Haralambous’ Fractur font on page 142 and Knuth’s METAFONT font above. (Both

fonts are also used in this footnote.)

http://www.physics.drexel.edu/~wking/
http://www.cs.drexel.edu/~walt/
http://www.cs.drexel.edu/~eas28/
http://www.cs.drexel.edu/~jeffa/
http://www.cs.drexel.edu/~eas28/
http://www.cs.drexel.edu/~jeffa/
http://cera.us/
http://people.csail.mit.edu/mizhi/
http://www.cs.cmu.edu/~cache/
http://www.cs.drexel.edu/~cicirello/
http://www.snakeisland.com/rbe.htm
http://www.cs.utoronto.ca/~fpitt/
http://www.physics.drexel.edu/~dcross
http://www.temple.edu/physics/directory/faculty/tsankov.html
http://www.stat.ucla.edu/~rrojas/
http://www.cs.drexel.edu/
http://cs.toronto.edu/
http://www.physics.drexel.edu/
http://www-cs-faculty.stanford.edu/~knuth/
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://sourceforge.net/projects/pgf/
http://www.gnuplot.info/
http://omega.enstb.org/yannis/

	Front Matter
	Title Page
	Copyright Page
	Dedications
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract

	Main Matter
	Introduction
	Exemplary Problems & Scenarios
	Location Design & Vehicle Routing Problems
	Art Gallery Problems
	Steiner Network Problems
	Dynamic Organization Problems
	The Pseudotree Creation Problem

	Overview of the Proposed Approach
	Evaluating Multiagent Systems
	Contributions

	Optimization Using the Primal-Dual Schema
	Approximation Algorithms
	The Primal-Dual Schema
	Proper Functions
	Conclusions

	The General Algorithm
	Multidirectional Graph Search
	A Primal-Dual Formulation
	The Distributed Model
	Correctness Proofs

	Efficiency of the Algorithm
	Primary Communication Rounds
	Secondary Communication Rounds
	Time-Approximation Tradeoff
	Local Efficiency

	Conclusions

	Probabilistic Approximation Bounds
	Distributions of Trimmed Sums
	The Exponential Distribution
	Normal Distributions
	The Expected Value of Z

	Solving Constrained Forest Problems
	Steiner Network Problems
	Location Design Problems
	Problem Formalization
	Parallel Computation Model
	Analysis
	Distributing the Algorithm

	Art Gallery Problems
	Distributed Dominating Sets
	The Algorithm
	Empirical Analysis
	Art Gallery Variants

	Conclusion

	Dynamic Agent Organizations
	Online Topology Updates
	Pseudotree Construction
	The Mobed Algorithm
	Analysis

	Conclusions

	Conclusions

	Back Matter
	Bibliography
	Notation, Nomenclature, and Glossary
	Notation
	Nomenclature
	Glossary

	Index
	Vitæ Curriculum Brevis
	Colophon

	popUpCopyright:
	popUp:

