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ABSTRACT 
Microstructure Sensitive Design: Exploiting Material Anisotropy in Mechanical Design 

Joshua R. Houskamp 
Surya R. Kalidindi, Ph.D. 

 
 
 
 

A new mathematical framework called Microstructure Sensitive Design (MSD) was 

recently developed to facilitate solutions to inverse problems in microstructure design 

where the goal is to identify the complete set of relevant microstructures that are 

predicted to satisfy a set of designer specified criteria for effective properties or 

performance. In this work, MSD has been successfully applied to a few design case 

studies involving polycrystalline metals and continuous fiber reinforced composites 

(CFRC). The solutions obtained are, as expected, strongly influenced by the selected 

homogenization theories. In the case studies presented here, elementary first-order 

theories are used for both the polycrystalline metals and the continuous fiber reinforced 

composites. In the composite case, elementary first-order theories spanning two length 

scales have been selected to obtain effective properties of continuous fiber reinforced 

composite material systems. Having selected these first-order theories, we proceeded to 

demonstrate the viability of applying the MSD framework to designing optimal 

orientation distributions in both polycrystalline metals and continuous fiber reinforced 

composites for the selected mechanical design problems. Specifically, the mechanical 

design case study used in this work involved maximizing the load carrying capacity of an 

orthotropic plate with a circular hole and loaded in in-plane tension. MSD results for this 

case study show a potential improvement of 27% in nickel polycrystals and 267% 



xii 

improvement in AS4-Epoxy composites investigated in this study. Additionally the 

mechanical design of a pressure vessel containing a partially through axial flaw is 

examined; the potential improvement in energy dissipated during crack growth is 31%. 
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CHAPTER 1.  INTRODUCTION 

In recent years, the discipline of materials science has witnessed the emergence of a 

grand challenge that had always implicitly defined this multidisciplinary field, namely, 

the ability to identify and process specific materials to yield microstructures that are 

predicted to meet or exceed multiple properties/performance criterion stipulated by the 

designer. Olson[1, 2] labeled this new paradigm as the “goals-means” approach where the 

target properties are used to define the processing routes to acquire the microstructure 

with those properties. This contrasts sharply with the traditional “cause and effect” 

approach that is driven mainly by innovations in processing, which typically focuses only 

a limited number of readily manufacturable microstructures. This inverted paradigm of 

materials design is especially critical for highly constrained design (HCD) applications, 

where the designer faces increasingly complex requirements with multiple property 

objectives/constraints and material anisotropy affecting system performance. It is in this 

context that a new microstructure design framework called Microstructure Sensitive 

Design (MSD) [3] was recently proposed. 

MSD comprises a novel methodology to identify the best of all possible 

microstructures within a given mechanical and physical framework that meet the 

stipulated design performance requirements. Thus, information flow is in the ‘inductive’ 

direction: design objectives → properties → microstructure → processing. A dominant 

characteristic of MSD is its use of spectral representations in all aspects of the problem. 

These representations of microstructure can be used with established homogenization 

theory to estimate the effective properties of the material, and to frame the design 

requirements. The tensorial nature of spectral representations of microstructure and 
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microstructure/properties relations insures that an optimally compact and complete 

representation of microstructure is used – no more and no less than what is precisely 

needed for the representation of the problem. The reader is referred to earlier papers [3, 

4] for further details of the technique, where the example of the optimal design of 

material microstructure for a compliant beam component and a hole in a plate were 

worked out in detail, respectively. This work details a fully integrated design 

methodology, and extends the MSD framework to a new material system.  

MSD uses spectral representations of the distribution functions that characterize 

statistically the internal structure of a given material system, and formulates invertible 

quantitative linkages between these microstructure representations and their associated 

macroscale properties using existing homogenization theories or composite theories 

(often recast in a Fourier space).  

Materials design is a broad area of research with several competing methodologies. 

Although many claim to be designing microstructures it is clearly evident that they lack 

the element of invertibility that is central to design. Many proposed “design” 

methodologies in current literature are simply forward models, or evaluation tools. In the 

interest of keeping this thesis concise the discussion on competing materials design 

methodologies will be restricted here to two approaches, which will be qualified as novel 

engineering materials design. Engineering Materials Design will be restricted to 

methodologies that have promise in the realm of engineering design. This definition will 

restrict the discussion of the several emerging nanotechnologies whereby materials are 

designed and built up atom by atom to have ‘ideal’ properties. While this may be a reality 

someday, it appears that this future is a long way off for any meaningful engineering 
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design. Similarly, this definition of design will prevent strictly forward models (multi-

scale modeling) from being called design tools. While the multi-scale modeling tools are 

very useful tools in establishing forward models, multi-scale modeling does not yet have 

a framework that can determine the microstructure that is most useful for a particular 

design. 

Under the restricted definition of design described above, two techniques currently 

exist that merit discussion here. These are the systems approach pioneered by Olsen [2, 5] 

and topology optimization methods [6-16], Of these techniques, the systems approach 

considers materials to be isotropic and therefore substantially limits the design space. 

Topology optimization largely considers the local states to be isotropic materials at the 

local state but the morphological arrangements of isotropic phases induce an effective 

anisotropic response at the macroscale [6-16].  

An important distinguishing feature of MSD is that it rigorously accounts for the 

anisotropy of properties associated with the local state. Since materials are inherently 

anisotropic at the local state specifically with respect to mechanical properties, it is 

expected that the MSD methodology would prove to be much more beneficial for several 

engineered material systems. An additional advantage of MSD is the fact that it 

delineates a complete set of relevant material internal structures for a specified design 

problem; this will become apparent later with the discussion of property closures in 

Chapters 6 and with selected case studies Chapter 9.  

The main focus of this thesis is to develop and evaluate the advantages and 

limitations of using an integrated MSD-FE Design Tool to design the internal structure of 
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a given materials system for meeting or exceeding targeted properties/performance 

criterion that can be applied to engineering design. 

In this thesis, we will focus on continuous fiber reinforced composites and 

polycrystalline fcc metals. The treatment of discontinuously reinforced composites is 

expected to require the use of higher-order distribution functions in the statistical 

description of the material internal structure and is being pursued by others in the 

research group [17]. Furthermore, in the ensuing discussion, for clarity of presentation, 

we will present the mathematical framework of MSD for two specific classes of 

composites and one class of polycrystalline metals: (i) two-dimensional (2-D) 

composites, (ii) three-dimensional (3-D) composites, and (iii) cubic metals. Although the 

2-D composite microstructures are essentially a subset of the 3-D composite 

microstructures, it will be seen that the Fourier basis required for the description of the 

complete set of 2-D composite microstructures is substantially simpler. It is hoped that 

this would help the reader in understanding better the mathematically complex concepts 

presented in this thesis. Chapter 3 will focus on the statistical description of the internal 

structure of fiber reinforced composites and cubic polycrystalline metals. Chapter 4 will 

present the delineation of microstructure hulls (the complete set of relevant 

microstructures) in Fourier space. The first-order homogenization relations selected for 

this first application of MSD to continuous fiber reinforced composites and 

polycrystalline metals are discussed in Chapter 5. These spectral representations will be 

used in Chapter 6 to formulate quantitative microstructure-property linkages in Fourier 

space and delineate the property closures (the complete set of all possible property 

combinations that could be achieved for a given material system). Chapter 7 discusses in 
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detail the components of the MSD tools with existing engineering design tools (FE). 

Chapter 8 discusses the integration and optimization methodologies. Case studies 

presented in Chapter 9 demonstrate the application of the MSD-FE design tool and 

presents results obtained in the MSD Framework for two simple design case studies.  
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CHAPTER 2.  MATERIALS DESIGN 

The concept of materials design has been an emerging research topic for quite some 

time. Traditionally materials design has been driven by innovations in processing; this 

approach relies substantially on serendipity and exceptional observational skills (for 

example, the development of steel from iron and brass from bronze). However, the 

definition of materials design adopted here requires an intentional and informed approach 

to manipulating the material microstructure to obtain improved properties. The drive to 

design materials is driven by several factors: design better materials, better understand 

their behavior, design better structures with them, and shorten the development cycle 

from concept to implementation [18]. Computational materials design was identified to 

be specific area of opportunity for improvement, particularly where several material 

properties are often competing (i.e. strength and fracture toughness) [18]. Properties of 

materials are inherently linked to the microstructures and therefore present a grand 

opportunity for a design framework that can efficiently handle properties that are 

sensitive to the underlying microstructure. 

Materials development has strong implications for the U.S. economy and 

considerations on national defense, and as such, the National Research Council has 

studied the effects of materials research and development. The cost of developing new 

materials is considerable but the failure to develop new and better materials can be even 

more costly, leading to a decline in the overall standing of the economy [18]. Materials 

development plays a strong role in the economy of the U.S. in addition to the national 

security [18]. Material design is a subject of interest among a wide group of parties 

including the Department of Defense, individual research groups [19, 20], as well as 
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companies that are more familiar to consumers such as Gillette [21], involved in a wide 

array of industries. 

2.1. CURRENT DESIGN METHODS 
Current engineered materials design methodologies may be grouped into three 

categories: topology optimization, a systems approach, and MSD. The details of the MSD 

framework will be addressed in subsequent chapters. 

The most prevalent approach is topology optimization. In topology optimization, the 

problem is formulated as a material distribution problem and the focus is on the spatial 

arrangement of two to three, usually isotropic, phases resulting in macroscopically 

anisotropic materials. One of the phases under consideration is typically a void space 

which enhances the design space significantly, which means the designers may achieve 

properties ranging from no properties (void phase) to properties normally achieved by 

using bulk ‘isotropic’ materials. Initially published in 1988 by Bendsøe and Kikuchi [22] 

(currently) of the Technical University of Denmark and University of Michigan, 

respectively. The ideas of Bendsøe and Kikuchi lead the development Optistruct in 1994, 

[23] the software is available from Altair. The technique optimizes material placement in 

2D and 3D space within the selected physical framework. Topology is an iterative 

optimization method in a discretized space and the performance is evaluated by finite 

element methods. Since 1994 there has been much activity in the area of topology 

optimization, several case studies have been successfully presented in literature and 

include materials with extreme thermal expansions [9, 24], piezoelectrics [11, 25], snap 

fit connectors [26], multiphysics actuators [27, 28], and negative Poisson’s ratios [24]. 

Another approach called Materials by Design ®[5, 29] applies systems engineering 

concepts to materials design. Pioneered by Professor G. Olson in the Steel Research 
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Group at Northwestern University, this approach uses the link between microstructure 

(such as grain size and alloys) to affect the macroscopic properties (such as toughness 

and strength). The systems approach uses “reciprocity” to associate macroscopic 

properties with characteristic microstructure variables. The use of reciprocity for 

determining the microstructure variables is an imprecise definition that needs to be 

carefully applied in order to avoid considering non-physical material properties as design 

variables. This approach uses a set of forward models i.e. thermodynamic models, finite 

element methods (FEM), and solidification models to design materials. The set of 

forward models are empirically linked by the user using his or her judgment. The 

Materials by Design ® technique has largely assumed that the materials are isotropic and 

neglected anisotropy completely. The systems approach has had some notable successes 

in the design of stronger and tougher steel alloys [5]. The systems approach to materials 

design has been commercialized and is called Materials by Design ® by QuesTek.  

At this point it may be worthwhile to also describe the current process typically used 

by mechanical designers. Most often, the typical designer relies upon compiled material 

databases [30-36] that generally provide only isotropic material properties. In rare cases, 

anisotropy may be considered in elasticity (for example for single crystals and for 3-D 

continuous reinforced composites). More enlightened designers use a systematic 

materials selection process in combination with iterative design on the geometry of the 

component usually using finite element methods (FEM). The most prevalent systematic 

materials selection database was developed by Ashby [30, 31]. He realized that 

knowledge designs often depend on more than one key material property. Ashby’s 

approach was to plot properties of materials such that the designer has a visualization of 
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the combination of properties that are feasible from various materials. Although, these 

charts are useful for broad material comparisons, they cannot be used for highly 

constrained design since they are not refined enough to account the precise effect of the 

microstructure of a material on its properties and provide estimates of feasible property 

combinations. The charts were built using experimental data and are therefore limited to 

the set of materials and microstructures that have been experimentally tested. Therefore 

the charts do not reflect all of the feasible combinations of properties for a particular 

material system [37]. 

Microstructure Sensitive Design is a rigorous mathematical technique that has been 

recently developed by collaboration between Dr. B. Adams of Brigham Young 

University and Dr. S. R. Kalidindi of Drexel University. The MSD approach is a method 

that specifically accounts for material anisotropy and was initially published in 2001 [38]. 

It is a methodology that potentially can result in substantial gains in highly constrained 

designs. It presents a single unified mathematical framework that addresses 

microstructure representation, homogenization and performance of materials. The 

following chapters discuss the MSD framework and several applications of the 

methodology in detail. 

Microstructure Sensitive Design is not in direct competition with either of the 

previously mentioned design techniques. The three techniques often address different 

often complimentary factors in materials design. Microstructure Sensitive Design in 

unique in that it addresses material anisotropy at the local state and how it affects the 

macroscale properties. 
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CHAPTER 3.  MSD FRAMEWORK 

The starting point in MSD, is the statistical description of the material microstructure 

using local state distribution functions. The first order representation of statistics of 

microstructure is the 1-point distributions that reflect the probability density associated 

with realizing a specified local state (can be defined as an ordered series of several 

microstructural variables) in the neighborhood of a point thrown randomly into the 

microstructure (assumed to be a representative volume element of the material). Higher 

order descriptions, called n-point spatial correlation functions, are also possible [7, 39-42] 

[37], though neglected for the remainder of this work. These distributions are used to 

establish quantitative linkages between the microstructure and the bounds on their 

effective properties (using homogenization and/or statistical continuum theories) [37]. 

The MSD framework relies heavily upon spectral methods for representation of 

statistics of microstructures as well as effective properties and performance. The 

efficiency of MSD is derived from the fact that the Fourier basis used is already 

optimized to represent tensorial variables in the most economical way (i.e. the coordinate 

transformation properties expected from tensors are captured with the least number of 

terms in the Fourier expansion). It is worth noting that most physical properties of 

interest in design are tensorial in nature such as elasticity, plasticity, and thermal 

properties. The critical aspects of the MSD framework revolve around microstructure 

representation and homogenization methods (property estimates) which are discussed in 

detail in section 3.1 and Chapter 5.  

3.1. MICROSTRUCTURE REPRESENTATIONS 
Selection of the local descriptors of importance from the complex internal structure of 

a given material system for a given design problem is often the most difficult step. The 
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MSD framework described here relies heavily on the availability of robust physics-based 

models that can predict the macroscale properties for a specified material internal 

structure with reasonable or quantifiable accuracy. It is emphasized once again that the 

current focus of MSD is not on developing new physics in establishing the internal 

structure-property linkages, but in establishing these relationships using known physics in 

an invertible framework so that the problems of materials design can be addressed. 

For this work, the local state, h, at any location in any material is adequately 

described by an ordered set of variables. The ordered variables may include phase, 

orientation, dislocation density, crosslink density, etc., for the materials of interest. For 

brevity the current examples are restricted to the phase (ρ) and orientation (g). The 

microstructure variables may readily be extended following the current framework for 

additional microstructural variables that are deemed to be important to the physics of the 

problem. For example a continuous fiber reinforced composites (CFRC) the phase 

denoted by ρ and the orientation of the material frame denoted by g constitutes the local 

state description, i.e. ( )gh ,ρ=  is shown in Figure 2. The examples involving 

polycrystalline metals described in this work are restricted to a single phase 

( constant=ρ ), and therefore, the only microstructure variable considered in those 

examples is the local lattice orientation. 

3.1.1. CONTINUOUSLY REINFORCED FIBROUS COMPOSITES 
The local material frame is usually aligned along the principal axes of material 

anisotropy (in the present case it would be aligned with the fiber orientation). In the most 

general case, the local material frame is defined by a proper orthogonal rotation tensor, 

i.e. ( )3SOg ∈  ( ( )3SO  represents the set of all proper orthogonal tensors in the familiar 
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Euclidean 3-dimensional space). Additionally, materials often exhibit certain symmetries 

in the description of the local properties that are derived from the detail of the internal 

structure at the local scale. In order to take these into account and represent economically 

the local state space, a fundamental set or fundamental zone of local material frames is 

identified as ( ) ρGSO /3 , where Gρ represents the symmetry subgroup associated with the 

selected local state descriptor, ρ. 

Although the 2-D composite microstructures are essentially a subset of the 3-D 

composite microstructures, it will be seen that the Fourier basis required for the 

description of the complete set of 2-D composite microstructures is substantially simpler. 

It is also important to note that 2-D idealization for composites is much more common 

than the 3-D idealization. This comes largely from the processing methods commonly 

used, which often involve building composite laminates using thin single plies to build up 

a structure. 

For the current example in composites we will restrict our attention to composite 

materials with only two phases: an anisotropic reinforcing fiber phase, f, and an isotropic 

matrix phase, m. Because of the isotropy of the matrix phase, it does not need a 

specification of material axes. However, the fiber reinforcement phase needs 

specification of a local material frame at any fiber location in the material system. As 

noted above, this would normally mean that the local material frame needs to be specified 

by a proper orthogonal tensor belonging to the fundamental set ( ) ρGSO /3 . It will be 

further assumed here that the fiber phase has transversely isotropic mechanical properties 

with respect to the fiber axis. The local anisotropy in the fiber phase is then defined 

completely by the specification of a single material axis. In two dimensional (2-D) 
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composites where all fiber orientations are restricted to a single plane, the material axis 

can be specified by a single angle, )[ πθ ,0∈  (see Figure 2). In three dimensional (3-D) 

composites, the material axis can be specified by an ordered pair of angles, 

)[ )[ πβπφ ,0,,0 ∈∈  (see Figure 2). 

In summary, the local state space representing the complete set of all possible distinct 

local states, for the 2-D and 3-D composite systems considered in this study, can be 

expressed as 

{ } ( ) )[{ }
( ) ) )[[{ }πβπφβφ

πθθ

,0,,0,,  ,  :3

,0,  ,  ,  :2
33

3

22
2

∈∈==−

∈===−

rHHHHD

rHmHHHHD
ffm

fmfm

∪

∪
 (3.1) 

where H represents the complete set of local states the composite may exhibit. 

The required details of the spatial distribution of the local state in the internal 

structure of a given composite material system are fully dictated by the effective 

properties under consideration in a specific design problem and the homogenization 

theories selected for their estimation. Most composite (homogenization) theories utilize 

statistical descriptions of the spatial correlations of microstructure in establishing 

linkages between the internal structure and effective macroscale properties of a given 

material system. A rigorous framework exists for defining the necessary (normalized) 

distribution functions (see e.g. [12]), and these are usually referred to as the spatial 

correlation functions. The simplest of these are the 1-point (1-pt.) distribution that simply 

reflect the probability density of realizing a specific local state, h, in the immediate 

neighborhood of a point thrown randomly into the internal structure of the material, and 

is usually denoted as ( )hf . The 1-pt. distribution essentially contains information about 

the volume fractions of the distinct local states in the microstructure, and does not reflect 
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any spatial correlations of these local states. The first order spatial correlations of the 

local states are actually captured by the 2-pt. correlation function, ( )rhhf ′,2 , which 

describes the probability density associated with finding the local states h and h′  in the 

immediate neighborhood of the tail and the head of a vector r thrown randomly into the 

internal structure of the material. As mentioned earlier, in this first foray of MSD into 

composite material systems, we will restrict our attention to the 1-pt distributions and the 

associated first-order homogenization theories described in Section 5.1. Extension of 

MSD to include the 2-pt spatial correlation function, and the utilization of the advanced 

homogenization theories (also called statistical continuum theories [39, 43-46]) that use 

the 2-pt spatial correlations is still in its infancy [47]. 

The 1-pt distribution, f(h), is usually defined as probability density (as opposed to 

defining directly the probability itself), because the local state space (H) is often a 

continuous space. For a continuous local state space the 1-pt distribution is defined such 

that  

( ) ( ), 1h

H

dVf h dh f h dh
V

= =∫   (3.2) 

where VdVh  denotes the volume fraction of the material that is associated with a local 

state that lies in the neighborhood dh of h. It should be stressed here that dh needs to be 

defined as an invariant measure of the local state space (see e.g. [48]). In the composite 

material systems being studied here, the local state space consists of some discrete local 

states (e.g. the separation of material into m and f) and some continuous state spaces (see 

Eq. (3.1)). Therefore, the 1-pt statistics of the microstructure will be specified for these 

materials by a combination of volume fractions (for the discrete local states describing 
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the phase) and distribution functions (for the continuous local state space describing the 

material frame of the reinforcing fiber phase). For the idealized 2-D composites, the 1-pt 

statistics are specified by the set ( ){ }θfV f , , where Vf is the total volume fraction of the 

reinforcing phase, and f(θ) is suitably defined by Eq. (3.2). Likewise, for the 3-D 

composites, the 1-pt. statistics of the internal structure of the composite are described by 

( ){ }βφ,, fV f .  

We shall find it convenient in MSD to seek Fourier representations of the 

distributions described above. The orthonormal basis selected depends strongly on the 

description of the local state space. These can vary from the primitive indicator functions 

[49] to classical exponential functions [49] to spherical harmonics [48], depending on the 

specific application. Building on previous work [38], the following Fourier 

representations are adopted for the distributions described above for the 2-D and 3-D 

composite systems.  
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      (3.3) 

In the Fourier representations shown in Eq. (3.3), classical exponential functions were 

used for f(θ) and the surface spherical harmonic functions, ( )βφ,m
lk  [48], were used for 

f(φ,β). While other choices of Fourier basis are possible, it will be seen later that these 

choices of the Fourier basis produce the most economical representation of the internal 

structure-property relationships being sought. The coefficients { }lF  and { }m
lF  will be 

referred to as the Fourier coefficients of the material internal structure, and represent 
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uniquely the functions f(θ) and f(φ,β) as single points in their respective infinite 

dimensional Fourier spaces. 

As mentioned earlier, certain material and processing symmetries arise in most 

problems. These symmetries not only reduce the local state space (Eq. (3.1)), but also 

reduce the number of terms needed in the Fourier representations shown in Eq. (3.3). In 

the problems under consideration here, the following symmetries reflect the fact that the 

assignment of local material axis at any fiber location can be accomplished in two 

equivalent ways (positive and negative directions along the fiber). 

( ) ( ) ( ) ( )βφβπφπθπθ ,,  , ffff =+−=+  (3.4) 

Imposition of the symmetries in Eq. (3.4) compact the Fourier representations in Eq. 

(3.3) into the following forms: 
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the notation on the summation sign implies that l is even and is a direct consequence of 

the continuous fiber assumption Eq. (3.4). 

In addition to the implicit symmetries of the problem such as those in Eq. (3.4), one 

can impose additional symmetries on the problem dictated by other factors. For example, 

one can impose orthorhombic sample symmetry, i.e. only those internal structures that 

reflect orthorhombic sample symmetry (obtained by the processing or manufacturing 

routes) are to be considered in the design. In the case studies presented here, we will 

impose orthorhombic sample symmetry. This will impose the following requirements: 
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These requirements further restrict the associated local state spaces and further 

compact the Fourier representations of the 1-pt. distributions as follows: 
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Note that the imposition of the orthorhombic sample symmetry precludes the need for 

the imaginary terms in the Fourier expansion of the distribution functions ( ( )βφµ ,lk�  are 

real-valued functions, while ( )βφ,m
lk  are complex-valued functions [48]) and reduces 

dramatically the number of independent terms in the series expansion (M(l)). This 

indicates that the number of these functions depends on the value of l and these have been 

enumerated in [48]. Furthermore, the orthonormality of the Fourier basis, the 

normalization requirement of Eq. (3.2), and the requirement for an invariant measure of 

local state space, result in the derivation of the following expressions for the Fourier 

coefficients in Eq. (3.8). 
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Note that the invariant measures of local state space used in Eq. (3.9) have been 

normalized to yield f(θ) = f(φ,β) = 1 for material internal structures that contain a uniform 
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distribution of all the local states from their respective fundamental sets of local state 

space. For these special microstructures, it also follows from Eq. (3.9) that only the first 

Fourier coefficient (corresponding to l = 0) is non-zero and its value is equal to one. 

3.1.2. POLYCRYSTALLINE METALS 
Polycrystalline metals exhibit anisotropy that is very important scientifically as well 

as industrially. For example aluminum in deep drawing exhibits earring, that is 

nonuniform deformation that results in uneven edges at top of a deep drawn aluminum 

can, as shown in Figure 3. It is understandable that earring requires an extra trimming 

step to produce a final aluminum can which is costly and undesirable. The source of this 

anisotropy is in the distribution of the crystallographic orientations of the grains of the 

metal, schematically shown in Figure 4. As with the composite system, it is convenient to 

represent individual grain orientations with respect to a fixed reference frame (in this case 

the sample frame). In the polycrystalline metal, this requires a set of three rotations to 

transform the sample frame to the crystal frame. These rotations are commonly referred 

to as Euler angles; the notation used here is described by Bunge [48, 50] and most 

commonly used for textured materials. Figure 5 shows the set of rotations explicitly, i) 

rotation around the axis sZ  (sample Z axis in Figure 5) of an angle 1ϕ , ii) rotation around 

the axis sX ′  (new axis obtained after first rotation of the axis sZ ) of an angle Φ , iii) 

rotation around the axis sZ ′  (new axis sZ obtained after the second rotation of about sX ′ ) 

of an angle 2ϕ . 

Mathematically, the coordinate transformation is described by an orthonormal 

rotation matrix g . 

cs gee =           (3.10) 
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where se  and ce  are the basis vectors describing the sample frame and crystal frame, 

respectively. The rotation matrix g  can be decomposed to describe each rotation 

mentioned previously as 
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The overall rotation is described by the multiplication of the rotations as 
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With no symmetry (triclinic) any lattice orientation can be represented within the bounds 

of Φ  from 0 to π  and both 1ϕ  and 2ϕ from 0 to π2 . With the symmetries under 

consideration in this thesis some orientations would have multiple, equivalent 

representations.  

The sample symmetry also influences the range of the Euler angles. The symmetry 

elements for the orthorhombic symmetry are three 2-fold symmetry axes parallel to each 

of the three sample axes; these symmetries reduce the range of 1ϕ  to a quarter of its 

original size, thus 1ϕ  varies from 0 to π/2. The crystal symmetry changes the range of the 
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two other angles Φ  and 2ϕ . For example an n-fold symmetry axis reduces the Euler 

space by a factor n [51]. 

Cubic crystals have 24 distinct fundamental zones when we take into account the 

lattice symmetry. The orthorhombic sample symmetry will further reduce the size of the 

fundamental zone by a factor of 4. The fundamental zone most commonly used for a 

cubic-orthorhombic polycrystalline material is: 
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The local state h in Eq. 3.2 is then represented by only one parameter, the lattice 

orientation g. For these materials, the 1-point correlation function is referred to as the 

Orientation Distribution Function or simply as ODF and is denoted by f(g). The local 

state space H is, in this case, equivalent to the fundamental zone of the Euler space. The 

fundamental zone is dependent on the crystal and sample symmetries.  

In this work, polycrystalline nickel was studied, which has a face centered cubic (fcc) 

crystal arrangement. The sample symmetry is taken to be orthorhombic (many of the 

typical processing operations used on metals such as rolling produce this symmetry) as is 

rolling is typically used to produce thin plates. 

Fourier representations of the distributions described above for the cubic- 

orthorhombic microstructure systems is most efficiently done by generalized spherical 

harmonics that have the symmetries built in. Discussion of how the symmetries are 
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incorporated are given in detail in [50]. The ( )gT l
µν

.:
1 will represent the basis functions 

that incorporate the symmetries. In spherical harmonics, the ODF is expressed as 
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As is the case with the orthorhombic composites, the imposed orthorhombic 

symmetry precludes the need for imaginary terms in the Fourier expansion ( ( )gT l
µν

.:
 are 

real valued functions while ( )gT mn
l  are complex valued functions [50]).The derivation 

for determining the Fourier coefficients is shown in Appendix D. The resulting 

expression for the Fourier coefficients for a given single crystal microstructure is 

( ) ⎟
⎠
⎞⎜

⎝
⎛+= ill gTlF µνµν *

.:
12         (3.16) 

Note that an invariant measure has used to normalize ( ) 1=gf  for the material 

internal structures that contain uniform distribution of all the local states. This special 

microstructure, directly following from Eq. (3.16) is such that only the first Fourier 

coefficient (corresponding to l=0) is nonzero and its value is equal to one. The physical 

realization of this would be a completely random textured polycrystalline metal, which 

results in completely isotropic material properties. 

In concluding this chapter, the following connections were made between the 

distribution functions described above and their direct experimental measurement. First, 

it is important to note that these distributions are to be measured on a statistically relevant 

collection (ensemble) of samples, obtained with nominally similar manufacturing process 

                                                 
1 Note the imposed symmetry is represented using a two-fold notation. The (:.) above the basis functions 
represent the cubic material symmetry (:), and orthorhombic processing symmetry (.). 
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or conditions. Second, each sample (also called the representative volume element or 

RVE) is expected to be sufficiently large in size that the measured distributions from the 

different samples of the ensemble are sufficiently close to each other (within a specified 

acceptable tolerance). Third, since most measurements probes used are unable to 

interrogate the interior of a material, one has to resort to some sort of automated serial 

sectioning [52-54] to reconstruct the internal structure of the material, and then extract 

the distributions described above from those reconstructions. The recent advances in 3-D 

X-ray tomography [55, 56] offer tremendous promise in this regard. Assuming that a 

three dimensional description of the material internal structure has been acquired using 

one of these techniques, the 1-pt distributions may be established as follows: 

A large number of points could be thrown randomly into the internal structure and 

each point would then be associated with one of the possible local states. The local state 

space, H, should be discretized into several cells, such that each cell has the same 

invariant measure dh. For higher accuracy, the fundamental set should be discretized into 

a very large number of cells. However, the cell size should not be made smaller than the 

resolution limits of the measurement techniques used. Each material point can be 

associated with one of the discretized cells in the fundamental set of the local state space. 

From the fraction of points associated with each cell, the value of the distribution 

function for that cell can be computed using the first part of Eq. (3.2), and the integration 

in Eq. (3.9) permits computation of the Fourier coefficients. 
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CHAPTER 4. MICROSTRUCTURE HULLS 

The term microstructure hull is used to represent the complete set of distributions in 

the appropriate Fourier space that correspond to all physically realizable microstructures. 

In the realm of one point statistics of microstructure, the microstructure hull becomes an 

infinite dimensional convex space that contains the complete set of microstructures that 

are relevant to the physics of the problem. In the case studies that follow, the orientation 

descriptor of the local state was deemed to be the most important source of material 

property variability. It is recognized that there are other microstructure variables that 

affect properties as well, however most other material variables are either scalar 

quantities (the mathematical treatment presented can be easily extended) or the physics is 

less completely understood. 

The complete set of microstructures to be considered for composite materials 

considered in this case is a two phase composite; considering an isotropic matrix and an 

anisotropic fiber phase. The matrix is isotropic and the 1-pt statistics of the matrix are 

completely determined by a single parameter, i.e. the volume fraction of the matrix. The 

fiber distributions in 2D and 3D have orientation dependence, and the range of 

microstructures that are physically realizable, are described in section (4.1). Likewise, 

polycrystalline metals are orientation dependent.. The detailed descriptions of the feasible 

microstructures are given in section (4.2). 

4.1. COMPOSITE MICROSTRUCTURE HULL 
As noted earlier, the focus here will be the 1-pt microstructure hull. In order to 

delineate the microstructure hull, it is convenient to start with certain special 

microstructures that are called “eigen” microstructures or “single-state” microstructures 
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in MSD. The local state distributions for these eigen microstructures are conveniently 

represented by Dirac functions: 

( ) ( ) ( )
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if h H
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= − − = ∀ ⊂⎨ ∉⎩

∫  (4.1) 

The distribution functions described in Eq. (4.1) imply that the eigen microstructures 

are allowed to possess only one local state. In practical terms, this means that a 2-D 

orthorhombic composite eigen microstructure is realized by assembling laminates with 

orientation θ and –θ  in equal parts. Similarly an orthorhombic 3-D composite eigen 

microstructure can be realized by assembling a set of four unidirectional laminate 

systems that are selected specifically to satisfy the required elements of the orthorhombic 

symmetry group. The concept of eigen microstructures is repeated for polycrystalline 

metals as a decomposition of polycrystalline materials into a representative set of single 

crystals. 

The complete set of all physically realizable 1-pt. distributions, M, can now be 

represented as 

( ) ( ) ( ); 1; 0;j j j j j
j j

M f h f h h h h Hα δ α α
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= = − = > ∈⎨ ⎬
⎩ ⎭

∑ ∑  (4.2) 

Eq. (4.2) reflects the fact that any physically reliable microstructure has to be 

comprised of the elements of the set of eigen microstructures described earlier, and that 

this assemblage has to be accomplished in such a way that the volume fractions of the 

various eigen microstructures must be positive and add up to one. 

Substituting the Dirac distributions of Eq. (3.9) into Eq. (4.1) yields the Fourier 

coefficients for the eigen microstructures. Let M̂  represent the complete set of Fourier 
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coefficients for all eigen microstructures. This set for the idealized 2-D and 3-D 

composite materials considered here can be expressed as: 
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Using M̂ together with Eq. (4.3), one can construct the complete set of Fourier 

coefficients corresponding to all physically realizable microstructures, referred to as 

microstructure hull in MSD and denoted as M~ . 
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Equation (4.4) essentially defines M~  as a compact convex hull (region) in Fourier 

space, where the vertices of the convex hull are elements of M̂ . Note that this compact 

convex hull exists in an infinite dimensional Fourier space. It can be shown that the 

projections of this convex hull in any of its finite dimensional subspaces are also convex. 

Figure 6 depicts the projection of the convex hull defined in Eq. (4.4) in the lower 

dimensions of their respective Fourier spaces. Note that any physically realizable 

idealized 2-D or 3-D composite material under consideration here is guaranteed a 

representation either on the surface or inside of the hulls depicted in Figure 6. The 

locations of a few selected microstructures are also shown. The eigen microstructures in 

this case happen to lie on the curved line segment ABC. Point D on the boundary of the 

microstructure hull is not an eigen microstructure. However, it lies exactly midway on the 

line joining Points A and C, and can therefore be realized by mixing the microstructures 
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corresponding to these points in equal volume fractions. Therefore, Point D corresponds 

to a 0/90 laminate composite. Similarly the interior points of the hull can be realized in a 

number of different ways. For example, Point O (at the origin) can be realized by mixing 

microstructures corresponding to points D and B in equal parts or by mixing 

microstructures corresponding to points E and F in equal parts. It should therefore be 

recognized that the interior points of the hulls shown in Figure 6 do not correspond to a 

single unique microstructure. Just as important, a distribution corresponding to a point 

outside the depicted hull in Figure 6 will not correspond to a physically realizable 

microstructure. 

4.2. METAL POLYCRYSTALLINE MICROSTRUCTURE HULL 
The polycrystalline hull is obtained in the same manner as the composite 

microstructure hull. Similarly the focus here will be on the 1-pt. polycrystalline 

microstructure hull. In order to delineate the microstructure hull; it is convenient to start 

once again with the “eigen” microstructures. In the context of polycrystalline metals, an 

eigen microstructure corresponds to a microstructure with a single orientation. i.e. a 

single crystal. The state distributions for these single crystals are represented in Eq. (4.1) 

where h is replaced by g. 

The complete set of physically realizable 1-pt distributions, M, can be represented by 
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Eq. (4.5) is analogous to Eq. (4.2) for composites, and reflects that any physically 

realizable microstructure has to be comprised of the elements of the set of all eigen 

microstructures, or equivalently that any polycrystal is made from a set of single crystals. 
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The assemblage of these single crystals is such that the volume fractions of the single 

crystals must be positive and sum to one. 

By substituting the Dirac distributions of Eq. (3.16) into Eq. (4.1) yields the Fourier 

coefficients for the single state microstructures. Let M̂ represent the complete set Fourier 

coefficients of single state microstructures. This set for cubic orthorhombic metals is 

expressed as2: 
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Using Eqns. (3.16) and (4.1) and making use of Eq. (4.6) one can now identify the 

complete set of Fourier coefficients corresponding to all physically realizable 

microstructures, referred to as microstructure hull in MSD and denoted as M~ . 
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Equation (4.7) defines M~  the compact convex hull for polycrystalline metals in 

Fourier space, where the vertices are elements of M̂ . Note that this compact convex hull 

exists in infinite dimensions in Fourier space. Figure 7 depicts the first three non-zero 

Fourier coefficients. Note that any physically realizable microstructure under 

consideration is guaranteed a representation either inside or on the surface of the hull in 

Figure 7. 

In concluding this chapter, it is important to take away the message that the 

microstructure hull is i) convex and ii) contains all physically realizable 1-pt. distribution 

functions. Convexity is important because search algorithms in convex spaces are widely 

                                                 
2 Note the change of indices on the spherical harmonics  
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known. The more important aspect is that the hull contains all 1-pt. distributions that may 

be obtained physically, and that if the 1-pt. distribution lies outside the hull, it cannot 

exist physically. The consequence of this is that the selection of microstructures is 

bounded to real microstructures and there is a method to determine whether a 

microstructure exists from its Fourier representation. 
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CHAPTER 5.  HOMOGENIZATION 

Homogenization theories are commonly used in studies of composite materials that 

consist of domains of different local states (phases or orientation for composites and 

lattice orientation for polycrystalline metals). Homogenization is a method for addressing 

the effective (or continuum level) properties of material consisting of multiple local states 

or phases at their respective volume fractions. In this work the homogenization is based 

on the volume fractions and requires only one-point statistics of the microstructure, 

consistent with the previous chapter on microstructure representation. 

The emphasis here is on formulating and exploring invertible microstructure-effective 

property linkages using known homogenization theories. We will therefore focus mainly 

on the mathematical framework of MSD, and in doing so we will limit ourselves to the 

currently used homogenization theories in composite textbooks and literature, ignoring 

their known inadequacies and limitations. It is envisioned that advanced homogenization 

theories, when they become available in the literature, can be readily incorporated into 

the general mathematical framework of MSD following the same techniques given in this 

chapter. 

In general, any local property that has a dependence on the local state (e.g. lattice or 

fiber orientation) can be represented in the same Fourier space that was used to represent 

the statistics of the microstructure. Any general property may be represented as 
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for the 2-D and 3-D composites, and polycrystalline metals. Where { } { } { }mn
l

m
ll PPP  and , ,  

represent the set of Fourier coefficients specific to the selected tensorial property. If the 

simple volume averaging homogenization rule (often corresponding to the upper bound 

theory) is selected for the macroscale effective property of the material, it can be 

expressed as 

( ) ( )dhhPhfP
H
∫=         (5.2) 

It can be seen that the Fourier representation of the functions ( )hP  and ( )hf  will 

beneficial in the following sections, in evaluating the integral shown in Eq. (5.2), because 

of the orthonormality of the Fourier basis. 

5.1. HOMOGENIZATION: COMPOSITES 
Composites often consist of materials with very different material properties, such as 

the carbon (AS-4) fiber, epoxy matrix composite studied herein. The most commonly 

used homogenization scheme is the rule of mixtures, which suggest that the composite 

properties are represented by the proportion of the material present (treating the 

constituent materials as isotropic). This work specifically incorporates anisotropy, and 

therefore the homogenization schemes are necessarily altered. The homogenization 

scheme that was used for this study was a two level scheme; the first level estimates the 

effective properties of a single ply, the second level estimates the effective properties for 

the entire composite. The details for the homogenization scheme are given in the 

following sections.  

The first order homogenization methods presented here however neglect physical 

features such as interface bonding. For more realistic material performances, significantly 

more sophisticated homogenization methods are required.  
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5.1.1. FIRST-ORDER ELASTICITY HOMOGENIZATION THEORIES 
 As mentioned earlier, our goal in this paper is to explore the application of MSD 

concepts to continuous fiber reinforced 2-D and 3-D composites using first-order theories 

for their effective elastic and failure behavior. It is also not the goal to present a 

comprehensive review of the currently used homogenization theories, but merely to 

summarize briefly the specific homogenization theories were selected (mainly for their 

simplicity) for this study. 

For the 2-D and 3-D composite materials systems of interest here, it is convenient to 

consider a two-scale homogenization theory. In this approach (see e.g. [57, 58]), the 

composites are idealized to be comprised of a number of unidirectional reinforced 

laminate systems (see Figure 6), all of which contain the same amount of the reinforcing 

fiber phase (i.e. the volume fraction of the reinforcing fiber phase, fV , in all of the 

constituent laminate systems is the same; only the fiber orientation is different in the 

various laminate subcomponents). For the present study, the following equations have 

been selected from earlier literature [59] to estimate the effective properties of a 

unidirectional laminate subcomponent: 
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where Sij are the five independent constants in the local elastic compliance and stiffness 

tensors of a unidirectional laminate assuming transverse isotropy (with the 1-axis aligned 

with the fiber orientation), Ef1, Ef2, Gf12, Gf23, and νf12 are the five independent elastic 

constants of the fiber phase (again assuming transverse isotropy with respect to fiber 

axis), and Em and Gm are elastic properties of the matrix phase (assuming isotropy). The 
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local compliance and stiffness tensors of the laminate subsystems in a given 2-D or 3-D 

composite can be prescribed completely using the Sij parameters described in Eq. (5.3) 

(see e.g. [60]). These local compliance and stiffness tensors can then be transformed into 

the global sample frame (see Figure 2) by the fourth-rank coordinate transformation law: 

,l l
abcd ap bq cr ds pqrs abcd ap bq cr ds pqrsS Q Q Q Q S C Q Q Q Q C= =  (5.4) 

where the superscript l denotes that the tensor components are expressed in the local 

reference frame (see Figure 2), and Qij are the components of the transformation 

(rotation) matrix. The transformation matrices for the 2-D and 3-D composites of interest 

here can be expressed as: 

[ ]

[ ]

cos sin 0
2 : sin cos 0

0 0 1

cos sin 0
3 : sin cos cos cos sin

sin sin cos sin cos

D Q

D Q

θ θ
θ θ

β β β
β β β

−⎡ ⎤
⎢ ⎥− = ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ − Φ⎡ ⎤
⎢ ⎥− = Φ Φ −⎢ ⎥

Φ Φ⎢ ⎥⎣ ⎦

 (5.5) 

Rigorous first-order bounds, commonly referred to as the Hill-Paul bounds [61, 62], 

will be employed in this study at the second scale of homogenization when obtaining the 

effective macroscale elastic properties of the multi-laminate composite material systems 

shown in Figure 2. The first-order bounds for certain components of the fourth-rank 

elastic stiffness tensor can be expressed as  (without summation over repeated indices3) 

[63] 

                                                 
3 The standard convention of implied summation over repeated indices is used, except where noted 
otherwise specifically. 
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where . denotes an ensemble or volume average4 (here it is taken to refer to the volume 

average over the laminate subsystems), Cabcd and Sabcd denote the components of the 

laminate subsystem’s elastic stiffness and compliance tensors in the sample reference 

frame (see Eq. (5.2)), and *
abcdC  are the components of the effective elastic stiffness 

tensor in the sample reference frame. 

As noted earlier, more advanced homogenization theories exist and are a topic of 

research in current literature. The scope of this study will, however, be limited to the 

first-order theories and the 1-pt. description of the microstructure distributions. Note also 

that the elementary homogenization theories selected here require evaluation of ensemble 

averages of various quantities over the microstructure. The ensemble average of any 

quantity, A, can be evaluated using 1-pt. distributions as 

( ) ( )dhhfhAA
H
∫=         (5.7) 

It can be seen that the Fourier representation of the functions ( )hA  and ( )hf  will prove 

beneficial in evaluating the integral shown in Equation (5.7), because of the 

orthonormality of the Fourier basis. 

Substitution of Eq. (5.4) into Eq. (5.7) yields expressions for the components of the 

local stiffness and compliance tensors in the sample frame that are dependent on the local 

state parameters (θ in 2-D composites and (Φ,β) in 3-D composites). To denote this 

dependency, these components shall be denoted as Sabcd(θ) and Sabcd(Φ,β), respectively. 
                                                 
4 For statistically homogeneous microstructures, ensemble averages are equal to the volume averages. All 
the microstructures considered in this study are assumed to be statistically homogenous. 
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Note that these functions can also be expressed in the same Fourier spaces that were used 

to represent the 1-pt distributions characterizing the internal structure of the material. 

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

0,2

/ 2

0

0,2 1

/ 2 / 2

0 0

cos ,

2 cos

, , ,

2 , , sin

abcd abcd l
l

abcd l abcd

M l

abcd abcd l l
l

abcd l abcd l

S l

S l d

S k

S k d d

π

µ µ

µ

π π
µ µ

θ θ

θ θ θ
π

φ β φ β

φ β φ β φ φ β
π

∞

=

∞

= =

= Ξ

Ξ =

= Ξ

Ξ =

∑

∫

∑ ∑

∫ ∫

�

�

 (5.8) 

Computation of the Ξ coefficients in Eq. (5.8) reveals that these coefficients are non-

zero only for l = 0,2,4. As an example, Table 1 lists the expressions for labcd Ξ  in terms of 

Sij.  

The ensemble averages in the Eq. (5.8) for bounds (Eq. (3.9)) can be evaluated as 

( )
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∑
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The major advantage of using the MSD framework is realized in Eq. (5.9). First, note 

that the ensemble averages needed to obtain the bounds (or estimate) require the use of 

only a finite number of terms in the Fourier expansion of the 1-pt distributions. In other 

words, the higher-order microstructure coefficients (F coefficients for l > 4) do not have 

any influence on the ensemble averages for the properties of interest. We expect this 

important feature to carry over to other physical properties as well. The microstructure-

property linkage expressed in Eq. (5.9) is invertible. The ensemble averages described by 

Eq. (5.9) denote hyperplanes in the Fourier space. If one selects a specific desired value 
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for the ensemble average for any of the compliance component, the intersection of Eq. 

(5.9) and the microstructure hull (Figure 6) denote the set of 1-pt distributions that would 

yield the desired ensemble average. Furthermore, the hyperplane defined by Eq. (5.9), 

when it intersects the hull depicted in Figure 6, dissects the hull into two regions – one 

region depicting the set of 1-pt distributions with an ensemble average inferior to the 

desired value, and the other region with an ensemble value superior to the desired value. 

Of course, when the hyperplane does not intersect with the hull, it implies that the 

specified value for the ensemble average is not feasible for the selected material system. 

Further reflection on Eqs. (3.9), (5.7), and (5.9) reveals that iso-property 

hypersurfaces can be depicted for bounds or estimates of all effective properties. Figure 8 

shows examples of iso-property surfaces for selected components of the effective 

compliance tensor for the class of 2-D composite systems studied in this paper. Note that 

multiple design objectives or constraints can be depicted simultaneously in the types of 

plots shown in Figure 8, identifying the set of all 1-pt distributions that are predicted to 

satisfy several design criteria. 

In studies on selected classes of continuous fiber reinforced composites, appropriately 

weighted averages of the first-order bounds have been found to yield reasonably accurate 

estimates of the effective properties [57, 64]. The weights used in these models were 

found to be dependent on the type of fibers and matrix materials used [58]. In this study, 

it has been assumed that reasonably good estimates of the effective properties of the 2-D 

and 3-D composites being studied can be obtained using the following class of weighted 

average models (WAM) [64]:  

( )* up low
abcd abcd abcdC   C 1 Cα α≈ + −   (5.10) 
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where α is the weighting factor [ ]( )1,0∈α , and the superscripts ‘up’ and ‘low’ denote the 

respective upper and lower bounds for the stiffness component of interest. 

It should be noted that advanced homogenization theories do currently exist, 

especially for the effective elastic properties of composite material systems. These 

higher-order theories (see e.g. [39, 46, 65]) require more detailed information on the 

spatial distribution of the reinforcing phase in the internal structure of the composite 

system, and have only been critically evaluated experimentally in a limited class of 

material systems (see [66] for application of higher-order theories to polycrystalline 

material systems). It is envisioned that the MSD framework will incorporate these 

theories in near future (the reader is referred to [47] for a demonstration of the 

incorporation of the higher-order theories in the MSD framework for polycrystalline 

material systems). 

5.1.2. FIRST-ORDER FAILURE CRITERIA 
The development of a comprehensive theoretical model for the effective failure 

properties of a composite material system is significantly more complicated, and lags 

substantially behind the developments described earlier for their effective elastic 

properties. It is fully acknowledged that the development of robust linkages between the 

internal structure of the composite and the failure properties would require a sophisticated 

approach that takes into account the nature of the fiber-matrix interaction and a detailed 

description of the spatial distribution of the fiber reinforcement in the internal structure of 

the material. In the present study, however, we adopt a very simple model based on the 

Tsai-Hill description [60, 67, 68] and a consideration of only a limited number of failure 
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modes [57, 59], to estimate the failure strength of a unidirectional laminate in off-axis 

simple compression loading: 
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where Sfc is the axial compressive strength of the fiber, Sms is the shear strength of the 

matrix, Smc is the compressive strength of matrix, and θ  denotes the angle between the 

orientation of the fibers in the laminate subsystem and simple compression loading 

direction (usually defined in the sample reference frame). The effective strength of the 

composite is assumed to be given by volume averaging the failure strengths of the 

constituent laminate subsystems. 
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Equations. (5.11) and (5.12) can be suitably modified for 3-D composites. 

5.2. HOMOGENIZATION: POLYCRYSTALLINE METALS 
In MSD, a polycrystalline material is treated essentially as a composite material, in 

which individual grains of different lattice orientations are considered as the constituents 

of the composite material system. The overall behavior of the material depends on the 

distribution of the crystallographic orientations inside the material.  

5.2.1. ELASTICITY: POLYCRYSTALLINE METALS 
The fourth-rank elastic stiffness of a cubic crystal in its own reference frame (aligned 

with the [100] directions) can be expressed as 

( ) ( )
3

c
ijkl 12 44 11 12 44

1

C  C 2ij kl ik jl il jk ir jr kr lr
r

C C C Cδ δ δ δ δ δ δ δ δ δ
=

= + + + − − ∑  (5.13) 
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where C11, C12, and C44 are material constants representing the independent elastic 

constants for cubic symmetry, and δij represents the Kronecker delta function. The same 

elastic stiffness can be expressed in the fixed global reference frame (attached to the 

sample) as 

ijkl pqrsC  Cc
ip jq kr lsg g g g=   (5.14) 

where gij represents the rotation matrix described in Eq. 3.13. This transformation can be 

represented conveniently as a set of Bunge angles [50], as described in Chapter 3.1.2. The 

upper bound theory5 is employed to obtain the elastic stiffness of the polycrystal 

representing the material microstructure. 

( ) ( )dggCgfC ijkl
M

ijkl

c

∫∫=   (5.15) 

In Eq. (5.15), f(g) represents the orientation distribution function (ODF) defined 

earlier . The integral in Eq. (5.15) is performed over the set, Mc, comprising all possible 

single crystal orientations (taking into account cubic symmetry of the crystals); this set is 

called the material set. 

Note that for a given microstructure, the elastic constants needed for the design of the 

orthotropic thin plate in section 8.1 (namely Ex, Ey, Gxy, and νxy) can be obtained from 

ijklC , using established relations in literature. 

5.2.2. PLASTICITY: POLYCRYSTALLINE METALS 
Components are usually designed for performance within the elastic range, and the 

onset of plasticity is considered failure of the component. As the focus of the MSD is to 

                                                 
5 As mentioned earlier, MSD framework is being extended to include 2-point statistics of the details of the 
microstructure; use of the higher order details of the microstructure will automatically facilitate use of a 
more refined homogenization theory. 
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exploit material anisotropy in design, anisotropic plasticity is considered. The anisotropic 

plasticity is considered in the form of Hill’s anisotropic yield surface [60] with the 

orthotropic symmetry imposed. 

Orthotropic Hill yield description [60] is used to assess the initiation of plastic 

deformation in the plate:  

( ) ( ) ( ) 122 222222 =+++−+−+− xyzxyzyyxxxxzzzzyy NMLHGF σσσσσσσσσ  (5.16) 

where F, G, H, L, M, and N are orthotropic yield strength parameters that depend on the 

details of the material microstructure. The overall approach taken here was to use a 

Taylor-type crystal plasticity model and extract the relevant properties for the design (F, 

G, H, L, M, and N) from the predictions of the crystal plasticity model for a given 

microstructure. The details of the crystal plasticity model [69] used in this study are 

briefly reviewed next, using a notation which is now standard in modern continuum 

mechanics. In particular, the deformation gradient is denoted by F, the velocity gradient 

by L, and the symmetric Cauchy stress by T. 

Assuming small elastic stretches but large plastic deformations, the equation for stress 

at a material point in a single crystal is expressed as 

{ } ( ){ }* * *T * * * 1 * * T1 = [ ],  *= -1 ,  det  2
− −=T C E E F F T F F T F  (5.17) 

where C is the fourth order elasticity tensor described earlier (Eq. 5.14), and F* is an 

elastic deformation gradient defined in terms of the deformation gradient F and a plastic 

deformation gradient F p  with det F p  = 1.0 (plastic incompressibility), by 

* 1 *,   det 0p−=F FF F ;   (5.18) 

The plastic deformation gradient is, in turn, given by the flow rule 
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where o
αm  and o

αn  are time-independent orthonormal unit vectors which define the slip 

direction and the slip plane normal of the slip system α in a fixed (initial) reference 

configuration, respectively, and αγ� is the plastic shearing rate on this slip system. The 

plastic shearing rate on the slip system α is taken as 
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α α α α
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τγ γ τ τ= ≅ •T S� �   (5.20) 

where τα and sα are the resolved (Schmid) shear stress and the slip resistance associated 

with slip system α, oγ�  is a reference value of slip rate (typically set to 0.001 s-1), and m is 

a slip rate-sensitivity parameter (for plastic deformation of metals at low homologous 

temperatures, this parameter is given a very small value, typically around 0.01, to 

approach rate-independent behavior). For the present problem, we are only interested in 

the yield properties. Consequently, sα for all slip systems was assumed to be same and 

equal to so. 

The most widely used approach to obtain the response of a polycrystal from the 

response of the individual grains is to use extended Taylor's assumption of iso-

deformation gradient in all of the crystals comprising the polycrystal. Furthermore, if all 

grains are assumed to be of the same size, the Cauchy stress in the polycrystal can be 

taken as a simple number average of the Cauchy stresses in the various grains. Therefore, 

employing these assumptions, the macroscopic Cauchy stress in the polycrystal ( T ) can 

be expressed as 
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1
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where N is the number of crystals in the aggregate, and )(kT  is the Cauchy stress in the 

crystal (labeled (k)). 

The crystal plasticity models are used to obtain the yield strength of the polycrystal in 

three specific stress states, namely, uniaxial stress in x-direction, uniaxial stress in y-

direction, and equi-biaxial stress in x- and y- directions. Using these three yield strengths 

in the Hill’s anisotropic yield function (Eq. 5.16), we can obtain values for three of the 

anisotropic yield parameters, namely, F, G, and H. Next, imposing a monotonic simple 

shear deformation in the x-y, x-z, and y-z planes on a polycrystal and obtaining the shear 

yield of the polycrystal, and using that value in the Hill’s anisotropic yield function will 

provide a value for L, M, and N. Therefore, it is possible to use the Taylor-type 

polycrystal plasticity model and extract a set of values for all of the required anisotropic 

yield parameters in Hill’s anisotropic yield function as described above. It should be 

noted that an alternative, and more refined, description of yield function was proposed by 

Barlat et al. [70, 71] for orthotropic polycrystalline materials. It was, however, found that 

the results for the present case studies were not sensitive to either choice of the yield 

function. 

5.2.3. FRACTURE MECHANICS: POLYCRYSTALLINE METALS 
It should be once again be emphasized that our interest here in fracture mechanics is 

not in developing new fracture models, but using existing fracture models to explore 

invertible microstructure-effective property linkages using known fracture models. 

The J-integral was proposed by Rice [72] as a means of evaluating the crack driving 

force in the form of a path-independent line integral around 2D deformation fields of 
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linear or nonlinear elastic materials. In the case of an elastic material with monotonic 

loading, the J-integral has a precise physical meaning as the rate of total potential energy 

per unit crack tip advance [73]. The details of the formulation are described in Appendix 

C. For the simple case of crack in an isotropic linear elastic material, the critical value of 

the J-integral, denoted by IcJ , is expected to match with IcG  defined as the elastic crack 

driving force in Griffith’s theory [74] for purely elastic-brittle failure. The J-integral 

approach for evaluating the crack driving force is much more convenient as most modern 

finite element software are capable of evaluating this integral readily for complex 

geometries and loading conditions. Moreover, the J-integral approach can in principle be 

extended to incorporate nonlinear elasticity as well as some inelasticity (though limited to 

monotonic loading) [74]. However, once inelasticity is considered the J-integral is no 

longer the rate of total potential energy per unit crack tip advance and becomes a crack 

tip characterizing parameter. 

In current design, the evaluation of the J-integral is accomplished using isotropic 

material behavior, neglecting largely the inherent material anisotropy in most engineered 

material systems. There has been a few recent efforts to include anisotropy into fracture 

mechanics by Zhao [73] and Tian [75], who focused on anisotropic bimaterials. Some 

models using the J-integral approach have incorporated inelasticity by considering it as 

an extension of nonlinear elasticity [74]. In the MSD approach, the complete set of all 

feasible anisotropic elastic stiffness tensors (corresponding to all feasible textures) can be 

identified, thus raising the possibility that one can select a texture that will minimize the 

J-integral for a given application. In this study, the J-integral is evaluated numerically 

using finite element methods in ABAQUS [76].  
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CHAPTER 6.  PROPERTY CLOSURES 

An important consequence of having microstructure and properties defined in the 

spectral method is that their linkage can be inverted. It is worth remembering that the 

properties are influenced by only a finite subset of the Fourier representation of the 1-pt 

statistics of the microstructure. This feature permits us to evaluate the effective properties 

over a finite subspace of the microstructure hull and produce a properties closure that 

delineates the complete set of property combinations that are theoretically feasible in a 

given material system.  

Property closures are not required for the MSD Design Tool; however they do 

provide a valuable tool that can be used to quickly evaluate materials systems to 

determine if the materials system under consideration can indeed provide the 

combination of properties that are required in a specific application. The use of property 

closures is somewhat similar to using Ashby [31] cross plots. The difference in the 

property closure and Ashby cross-plots is that the information in the property closure is 

rigorously tied to physically realizable microstructures that can exhibit the specific 

combination of properties simultaneously. Ashby cross-plots are compiled from a 

database where a single property was measured, while this does show that 

microstructures exists that achieve property X and property Y,  there is no guarantee that 

any microstructure exists that may exemplify both property X and Y simultaneously. 

Therein lies the advantage of property closures based on the MSD framework, that 

microstructures exhibiting multiple properties simultaneously are physically realizable. 

6.1. PROPERTY CLOSURES: COMPOSITES 
It is now possible to construct property closures reflecting the complete set of 

combinations of specified effective properties for a given composite material system 



44 

using Eqs. (3.9) and Eq. (5.9) together with the microstructure hulls defined in Figure 6. 

Figure 8 depicts examples of elastic property closures for the material systems studied 

here. 

As an example, Figure 9 shows an elastic property-failure property closure computed 

using the above simplistic model for the failure strength of composite. 

6.2. PROPERTY CLOSURES: POLYCRYSTALLINE METALS 
The property closures for polycrystalline metals with cubic-orthorhombic symmetries 

have been previously solved by Proust [37, 63, 77, 78]. The property closures are not 

used directly in the MSD-FE design tool, However these property closures are an integral 

part of a proposed design framework and are valuable to the designers in determining if a 

particular set of material properties are feasible in a given materials system. 
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CHAPTER 7.  MSD DESIGN TOOL 

Using the MSD framework to create a design tool that bridges the gap between the 

material developer and the design engineer is the primary function of the MSD Design 

Tool. Once the design tool has been developed, it is the goal to be able to provide a 

straightforward design tool that allows the design engineers first to be aware of the 

impact that material anisotropy has on design and second to be able to exploit this 

material anisotropy in HCD. Case studies demonstrating the MSD Design tool are 

presented in Section 7.4. 

The MSD Design tool consists of three major components, finite element tool for 

mechanical analysis, MSD homogenization codes that provide the effective properties to 

the finite element code, and the iSIGHT shell environment for optimization. Each 

component will be discussed in detail in the following sections. 

7.1. ISIGHT 
iSIGHT is a commercially available optimization software that is currently used in an 

array of industries including automotive, aerospace, and defense [79, 80]. Microstructure 

optimization using finite element methods was conducted within an iSIGHT (software 

from Engineous Software) environment. iSIGHT was used as a shell program to 

encompass all the MSD codes and ABAQUS for the performance evaluation. iSIGHT 

also has preprogrammed optimization routines that are convenient for designers. It should 

be noted that the optimization routines can readily be supplanted by other codes should a 

designer have a preferred optimization routine. The initial goal was to demonstrate that 

the MSD concept can be integrated with existing design tools, and for this purpose, the 

optimization routines in iSIGHT were used as they were provided. 
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The schematic for the MSD-iSIGHT optimization loop is shown in Figure 11. The 

algorithm is designed only to calculate properties and performances for microstructures 

that are feasible, meaning the microstructures exist within the microstructure hull. The 

algorithm used to determine whether the microstructure exists is given by Lyon and 

Adams [81] with a set of 4225 coefficients from single crystals. 

Once the microstructure was determined to exist within the microstructure hull, the 

elastic and yield properties where determined. The scripting routines within iSIGHT are 

used to write the orthotropic elasticity constants and the anisotropic yield ratios into an 

ABAQUS input file. Once ABAQUS input file has been updated iSIGHT uses a batch 

file to call and run the ABAQUS job. When the job has completed the iSIGHT parses the 

ABAQUS data file for the reaction force on the fixed nodes, and the total plastic energy 

dissipated (PENER) at the nodes for the whole model. It was previously determined that 

the critical plastic energy dissipation of 0.6 (MPa) was used locally to determine when 

the material had yielded. This constant, was determined by the .02% offset method from 

the critical resolved shear stress. The critical resolved shear stress was taken as 100 

(MPa), which was selected arbitrarily, because the load carrying capacity simply scales 

with this number. The critical value of plastic dissipation (PENER) was kept constant 

throughout the entire process, i.e. determining the yield parameters, and the point of 

yielding in the ABAQUS model. iSIGHT was used to interpolate the exact load the plate 

was experiencing when the yield was first detected in the plate. From this point the 

optimization process was used to determine the next set of microstructure coefficients. 

7.1.1. OPTIMIZATION METHODS 
iSIGHT has many preprogrammed optimization codes, and several codes where 

explored before settling on the generalized reduced gradient optimization (LSGRG2). 
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Previous work [4] with three dimensions had used a sequential quadratic programming 

(NLPQL) optimization routine that was found to terminate early in higher dimensions, 

often leading to erroneous results. The generalized reduced gradient optimization [82, 83] 

routine was determined to be the most robust and straightforward optimization routine to 

use. The convergence epsilon was set to 0.001 and the gradient step size was set to 0.01. 

The gradient step size is the largest step size allowed in the search algorithm. The 

convergence epsilon corresponds to an effectively zero gradient. When the search 

algorithm finds a gradient of less than the convergence epsilon three times consecutively, 

the optimization is determined to have converged. In a sense the gradient step size and 

convergence epsilon is an indication of the sensitivity of the performance to the ODF. 

The gradient step size is the distance from the point that was just evaluated to the next 

guessed microstructure. It was determined that the minimum step size had to be of the 

order of 0.01, otherwise the performance was insensitive to the microstructure and the 

optimization stopped due to a lack of a gradient. 

7.2. FINITE ELEMENT TOOLS (ABAQUS) 
Finite element tools are widely used in the design field, as such they are considered 

an as a highly important component in the construction and implementation of the MSD 

Design tool. The finite element component has a twofold purpose in being incorporated 

to the MSD Design Tool, 1) it provides a means of mechanical analysis for complex 

problems 2) it provides a familiar starting point to the design engineer. 

In this work the finite element analysis tool that was interfaced with the MSD 

framework was ABAQUS [76]. ABAQUS was considered to be an ideal FE tool to 

incorporate due to the relative ease in incorporating customized material models. This 

was of particular importance in the verification of the work in this thesis. The case studies 
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discussed in section 7.4 were kept simple 1) because an analytical solution was known 

for the 2D plane stress problem and 2) to avoid additional complications associated with 

complex problems such as: mesh convergence, integration problems, and long running 

simulations. 

Though the MSD design tool is capable of considering a wide range of crystal and 

sample symmetries, we have restricted our considerations here to cubic materials with 

orthorhombic sample symmetry. In these case studies, the geometry was set to be a thin 

plate with a circular hole that is loaded in in-plane tension. The orthorhombic sample 

symmetry allows for a reduced model, and therefore a 1/8 model was used for the 

analysis, as shown in Figure 10. The mesh was also refined near the circular hole where 

the stress concentration is present and where yielding occurs. 

The models considered in this study were elastic-plastic problems where material 

anisotropy was considered for both elasticity and yielding. Elasticity is treated directly 

with an orthorhombic stiffness tensor. Plasticity was considered with no strain hardening 

(perfectly plastic). Plasticity as mentioned previously was considered to have a critical 

resolved shear stress of 100=crssτ  MPa. 

The yielding criteria was considered to be Hill’s orthotropic yield condition [84-87]. 

Detailed discussion of the yield description is presented in Chapter (5.2.2). It is important 

to note that there are other anisotropic yield models available and may provide equally 

valid results. In ABAQUS, the anisotropic yield is introduced by  

*plastic 

σy, ε0 

*potential 
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R1, R2, R3, R4, R5, R6 

where R1, R2, and R3 are the ratios of yielding in the principal direction normalized by 

yσ , and R4, R5, and R6 are the ratios of shear yielding in the principal direction 

normalized by 3yσ  [76]. The values for R1-6 are provided by the MSD code for 

plasticity.  

The FE model treats the materials on the continuum level, which corresponds to a 

polycrystalline metal where the grain sizes are much smaller than the element sizes. The 

properties in ABAQUS are given as homogenized effective properties. 

7.3. CUSTOM MSD CODES 
Several customized computer codes are required to execute microstructure 

optimization using the MSD Framework. The first code verifies that the microstructure 

coefficients of interest correspond to physically realizable microstructures (i.e. they exist 

within the microstructure hull). Additional codes are required to calculate the effective 

properties of that microstructure. The following sections discuss the codes that are 

required in more detail. 

7.3.1. MICROSTRUCTURE HULL 
The microstructure hull code is an integral part of the inverse problem, if the 

microstructure does not exist then no matter what improvements are made in the models 

the design is worthless. The microstructure hull is the first and probably most important 

constraint. It also provides the reassurance that any improvements due to microstructure 

are in theory, physically realizable (assuming the accuracy of the material models are 

accurate enough). 
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The algorithm to determine whether the microstructure exist within the microstructure 

hull was given by Lyon [81]. The final code that was used was written by Proust and the 

source code is available [37]. Only minor modifications to this code were required for the 

optimization integration, these modifications were restricted to the read and write 

statements and have no bearing on the overall algorithm with the exception of the 

handling of the null vector (point consisting of all zeros, which is a valid microstructure 

coefficient), which was originally not addressed. 

The MSD Design tool was setup and designed to run on a desktop computer, as many 

design engineers cannot afford the parallelized mainframes for design. The desktop PC in 

this study was a Dell Dimension 8200, 2.2 GHz Intel processor with 2 Gigabytes of 

RAM. The code used to determine whether the microstructure exists uses a set of 4225 

coefficients from single crystals from an evenly discretized Euler space. The single 

crystal microstructures are described to l=4, l=6, and l=8 (with 3, 7 and 12 independent 

terms, respectively) depending on the level of approximation of the problem. The 

properly optimized code takes less than a minute on a desktop computer to determine 

whether or not a guessed set of microstructure coefficients are feasible. This is a 

substantial improvement over other codes available for convex hulls, such as Qhull, [88] 

which calculates the entire hull, and runs for approximately 24 hours for 7 dimensions, 

and did not run to completion for twelve dimensions even with a reduced input file (1000 

single crystal coefficients). 

The microstructure hull code has an input of the microstructure coefficients and in 

this case returns the maximum length of the vector from the null vector to the exterior of 

the microstructure hull. If the length of the initial point exceeds the maximum length, the 
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microstructure is infeasible and a new set of microstructure coefficients should be 

guessed. 

7.3.2. HOMOGENIZATION 
The MSD codes for effective properties, Eq. (5.7), are separate for elasticity and 

plasticity. The MSD homogenization codes were produced to provide effective property 

estimates based on the upper bounds for both effective properties [37]. Both codes accept 

microstructure coefficients as input variables so a single file was required for both elastic 

and plastic homogenization codes. 

The property coefficients where separated from the codes so other materials may 

readily can be considered by simply changing material library files. The codes for 

elasticity and plasticity are shown in Appendix E and F, respectively 

7.4. ASSEMBLY 
The MSD-iSIGHT setup consisted of the iSIGHT optimization shell, microstructure 

hull code, MSD homogenization codes and the ABAQUS finite element. The codes listed 

were organized essentially in a linear fashion. Figure 15 is a general overview of the task 

arrangement. As mentioned previously, the microstructure coefficients were guessed in 

the iSIGHT environment, as long as the coefficients existed in or on the microstructure 

hull, the effective properties were calculated and the performance was evaluated. Figure 

16 illustrates the input variables and optimization variables for the MSD framework. 

File Parsing or reading the results from the MSD hull code, MSD homogenization, 

and ABAQUS files was an integral portion in completing the optimization loop. The file 

parsing from the MSD codes was straightforward, simply requiring iSIGHT to read the 

output results from the codes. Extracting the performance (load carrying capacity) was 

evaluated when PENER=0.6. ABAQUS was run in the mode standard and therefore had 
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time steps associated with the incremental nature for the solution. The time steps were 

allowed to vary, speeding the calculations for the elastic regime The complication comes 

from the difficulty that the time steps from model to model are not exactly the same, and 

that the solution at a time step where PENER=0.6 is not guaranteed. To overcome this 

inconvenience the values of PENER and the load carrying capacity were calculated for 

the steps immediately before PENER=0.6 and immediately after, the load carrying 

capacity was then linearly interpolated for the value of PENER=0.6. Since the time step 

is variable, the place in the ABAQUS output file is not identical from run to run, scripting 

can be used to find and interpolate the load carrying capacity for the critical value for 

plastic energy dissipated. The iSIGHT file parsing was used to read and interpolate the 

optimization variable, load carrying capacity. 

Controlling the execution for ABAQUS was done using the command line and a 

batch code. The following is the batch code that was used: 

del [job name].msg 

del [job name].log 

del [job name].sta 

del [job name].com 

del [job name].fil 

del [job name].spc 

del [job name].ipm 

del [job name].mdl 

del [job name].odb 

del [job name].prt 

del [job name].res 
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del [job name].stt 

del [job name].lck 

del abaqus.rpt 

where the job name in square brackets are replaced with the job name. The downside to 

this method is that all the ABAQUS result files are deleted after the relevant information 

to design is read. This may be remedied but requires more overhead in the terms of a 

script that will move, rename, or otherwise archive files. This was not deemed to be a 

particularly critical step as the model is only reporting loads and plastic energy 

dissipation; it may become more important with more complicated models (longer 

execution times) where other parameters may be of interest, but are not the optimization 

variable. The detailed file parsing script is shown in Appendix G. The iSIGHT MDOL 

file which contains the complete description of the MSD framework in use for the hole in 

a plate problem is presented in Appendix H. 
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CHAPTER 8. CASE STUDIES 

This work uses three case studies to demonstrate the viability of the MSD framework. 

Although the case studies are relatively simple, the case studies show clearly the 

feasibility of the integrated MSD-FE environment in engineering design. 

Holes and notches occur frequently in engineering design and cracks occur naturally 

in materials. Special attention is paid in designing components containing notches or 

holes, since it is well established that they have a major effect on design life of the 

components, especially in fatigue loading. Mechanical design handbooks [33, 35, 36] 

depict a number of charts providing estimates of stress concentration factors that depend 

on the geometry of the notch. However, in virtually all of the design handbooks, the 

material is assumed to possess isotropic mechanical properties. This practice, however, is 

in direct conflict with the trends in new materials development, where one of the major 

goals has been to enhance properties of the material in certain directions while sacrificing 

properties in other directions where they are not as needed (e.g. development of 

laminated composite systems). Anisotropy of the material is bound to play an extremely 

important role in highly constrained design (HCD) applications. In design of components 

with notches and holes, a relatively small reduction of the stress concentration factor can 

lead to a significant increase in the design life of the component (e.g. a 20% reduction in 

stress concentration factor can produce a 900% increase in the high-cycle fatigue life of a 

component made from SAE 4340 steel) [4]. 

8.1. HOLE IN AN ORTHOTROPIC PLATE SUBJECTED TO AN IN-PLANE LOAD 
The hole in an orthotropic plate subjected to an in-plane tension was a problem that 

selected because an analytical solution exists for the plane stress case. The analytical 

solution that follows was used as verification that the finite element model was 
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approaching the plane stress solution for the thin plate. The elastic stress distribution 

around a circular hole in a thin orthotropic plate, was derived by Lekhnitskii [89] to be 

circumferential in nature for the plane stress case, and given by  
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where θ is the angle measured from the x-axis, ∞σ is the stress applied at the edge of the 

plate (in the x-direction), Gxy and νxy are shear modulus and Poisson’s ratio in the x-y 

plane, and Ex and Ey are Young’s moduli in the x- and y- directions, respectively. Note 

that only four elastic constants (Ex, Ey, Gxy, and νxy) appear in this plane-stress design 

problem, and that their values are dictated by the details of the material microstructure. 

Orthotropic Hill yield description [60] (Eq. 5.13) is used to assess the initiation of 

plastic deformation in the plate. Substituting the solution for the stress field around the 

hole (Eqs. 8.1-8.3) into where Eq. (5.13) is for plane stress, yields 

( ) ( ) ( ){ }2 4 4 2 2cos sin 2 sin cos 1G H F H N Hθθσ θ θ θ θ+ + + + − =  (8.4) 

Note that, based on Eq. (5.13), the terms (G+H) and (F+H) can be related to uniaxial 

yield strengths of the material in x and y directions, respectively, and N can be related to 

the shear yield strength of the material in the x-y plane. Note also that the equi-biaxial 

strength of the plate loaded in x and y directions is related to (G+F) and therefore one can 
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derive an expression for H in terms of the uniaxial yield strengths in x and y directions 

and the biaxial yield strength. 

In summary, the engineering performance of the plate in this design is controlled by 

four elastic parameters (Ex, Ey, Gxy, νxy) and three plastic yield parameters (G+H, F+H, 

N-H). For given values of these seven parameters, Eqs. (8.1) - (8.4) along with Eq. (5.13) 

provide an expression for ∞σ as a function of θ. The load carrying capacity is simply 

determined by the minimum value of ∞σ  that satisfies Eq. (8.4) anywhere in the range 

[ ]90,0∈θ . The seven parameters listed above control the performance of the plate, and 

are in turn strongly dependent on the details of the microstructure. FE methods were used 

for the general case; the plane stress case was used for an analytical comparison to the 

MSD-FE results. 

The plate considered in the finite element case is a thin plate with a small circular 

hole shown schematically in Figure 1. The critical dimensions of the plate are w=h, 

t=w/200, and the hole diameter, a=w/100 and was modeled as reduced 1/8 model along 

the lines of symmetry shown in Figure 10. 

The microstructural design variable selected here is the one-point statistics (i.e. 

volume fractions) of the distribution of crystal lattice orientations (i.e. crystallographic 

texture). Therefore it is necessary to develop relationships between the macroscale elastic 

and plastic properties listed above and crystal orientations and their (statistical) 

distributions. 

8.1.1. COMPOSITES 
The MSD framework was also applied to continuous fibrous reinforced composites 

(CFRC) consisting of transversely isotropic fibers and an isotropic matrix. In this case 
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study, we restrict our attention to the fiber orientation distribution function and with a 

fixed volume fraction of fiber ( )5.0=fV . The primary objective in this design (see Figure 

1) is the maximization of the load carrying capacity. The plate must provide this load 

carrying capacity without failing. Thus, both elastic and composite failure are germane to 

the problem. 

The materials system studied here is a carbon fiber (AS4) reinforced Shell epoxy 

matrix. The elastic properties for the AS4 carbon fiber are E11= 234.6 GPa, E22=13.8 

GPa, G12=13.8 GPa, and G23=5.5 GPa [57]. The matrix is assumed to be isotropic and the 

elastic properties are given as E=2.94, and ν =0.33 [68]. The Tsai-Hill failure criteria is 

used to predict failure, the important parameters are tensile strength of the fiber (Sfc=870 

MPa), the shear strength of the matrix (Sms=28.9 MPa), and the compressive strength of 

the composite (Smc=50 MPa) as reported by Kalidindi and Abusafieh [57]. 

The solution for the composite hole in a plate used the analytical solution provided 

earlier. The potential improvement from the worst to best case scenario with the given 

materials system is a factor of 3.6. The highest load carrying capacity for the physics of 

the problem was a D5.36± composite see Figure 13.  

8.1.2. POLYCRYSTALLINE METAL 
In this case study, we restrict our attention to only the crystal lattice orientation as a 

variable of the microstructure and their volume fractions (i.e. crystallographic texture).  

The primary objective in this design (see Figure 1) is the maximization of the load 

carrying capacity. The plate must provide this load carrying capacity without plastic 

yielding (primary constraint). Thus, both elastic and yielding properties are germane to 

the problem. 
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The material system considered in this study is polycrystalline nickel. The single 

crystal elastic stiffness coefficients are C11=246.5 GPa, C12=147.3 GPa, and C44=124.7 

GPa [90]. The plastic properties stress ratios are calculated using an extended Taylor 

model [91] to determine the active slip systems for each uni-axial loading condition. The 

method is described in detail by Proust [37], and the yield parameters were determined by 

the .02% offset method from the critical resolved shear stress. The critical resolved shear 

stress was taken as 100 (MPa), which was selected arbitrarily, because the load carrying 

capacity simply scales with this number. 

Starting from the random microstructure and using the generalized reduced gradient 

optimization method, the MSD-design tool discussed earlier in Chapter 7 was used to 

determine the maximum and minimum load carrying capacity for the thin plate with a 

circular hole. 

The load carrying capacity was improved regardless of the how many Fourier 

coefficients were used to represent the microstructure, the results for the MSD 

predictions are presented in Table 3 in the MSD column. However the maximum 

predicted performance dropped from 1.38 crssτ  to 1.26 crssτ . The discrepancy was not 

unexpected and is discussed in the following chapter. 

8.2. PRESSURE VESSEL WITH A PART THROUGH AXIAL FLAW 
Textured metals are byproducts of the processing methods used to obtain the preform 

used to construct the final components. In the case of pressure vessels (particularly large 

pressure vessels) the preform is often from rolled plates (that are textured due to the 

processing), which are welded together. It is widely accepted that there will be cracks 

present in the pressure vessel as a consequence of the various fabrication steps involved 

in their manufacture. The inherent anisotropy of the elastic and plastic behavior of the 
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sheet (caused by the texture in the plate) should be expected to have a strong influence on 

the fracture behavior; this aspect is often overlooked. In this study, we looked at the 

elastic crack driving force in the sheet as a function of the inherent texture in the plate. 

For the present case study, the influence of plasticity and its anisotropy is not considered. 

This case study addresses a cylindrical pressure vessel with a part through axial flaw, 

shown schematically in Figure 12. The flaw is elliptical and located on the inner surface 

of the pressure vessel, it is oriented such that the length of the crack is oriented parallel 

with the cylinder axis. This configuration corresponds to the worst case scenario for crack 

location and orientation. 

Brittle fracture of pressure vessels is catastrophic accompanied with disastrous effects 

in terms of loss of life, environmental effects, and in terms of lost time and materials. To 

avoid brittle failure the “leak before break” design philosophy is employed during the 

design of pressure vessels. This work does not supplant the leak before break design 

philosophy but instead illustrates that by exploiting material anisotropy through the 

control of the underlying texture and minimizing the elastic crack driving force for a 

given geometry and loading condition the pressures can be increased while maintaining 

the leak before break criteria. This will be accomplished using the integrated MSD-FE 

design tool mentioned previously. 

The pressure vessel in consideration was assumed to be made from a cubic material 

(polycrystalline nickel) with orthotropic sample symmetry. The elastic properties for this 

case study are identical to the properties quoted for nickel in the hole in a plate case 

study, the single crystal elastic stiffness coefficients are C11=246.5 GPa, C12=147.3 GPa, 

and C44=124.7 GPa [90]. Nickel was chosen for the material properties as it does have a 
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high degree of inherent elastic anisotropy. The choice for pure nickel is valid for high 

temperature corrosive environments. It is likely that in such a case the material of choice 

would actually be a nickel alloy, but more refined material properties where unavailable. 

The choice in materials properties can be refined for a more realistic model of 

performance.  

The J-integral originally proposed by Rice [92] has been used to characterize the 

driving force in fracture. In the elastic regime the J-integral is path independent and has a 

clear and precise physical significance as the rate of potential energy release per unit 

crack tip advance[73]. This concept has seen wide use in analyzing fracture in linear 

fracture mechanics with both isotropy and anisotropy [73]. To a limited degree the 

approach has been extended for nonlinear fracture mechanics as well, however the 

nonlinear approach exceeds the current scope of the problem, though it is worth noting 

that this work can be directly extended to include yielding properties to consider more 

realistic crack growth rates. 

The model from Parks and White [93] was selected from the set of reference models 

from ABAQUS as it was well established benchmark that has been thoroughly verified 

for the isotropic crack. The model is shown in Figure 12 as a 3D model of 1/8th of the 

pressure vessel. The model was modified from isotropic elasticity to orthotropic elasticity 

(in cylindrical coordinates). No plasticity was considered in this case study. All other 

aspects of the reference model remained the same as the original reference model. The 

cylindrical coordinates for the material orientation was used to effectively model a rolled 

sheet that would have been formed to a cylindrical pressure vessel; perfect bonding was 

assumed. 
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The microstructure optimization variable is the polycrystalline metals are the first 

three Fourier coefficients of ODF (i.e. 13
4

12
4

11
4 ,, FFF ) as these are the only ones that 

influence the elastic properties of the sheet. The performance variable to be optimized is 

the 1J -integral which is consistent with a tensile crack opening stress, and is the 

dominant loading type in a pressure vessel with the current crack configuration. The 

MSD framework for this problem was setup in exactly the same way it was set up for the 

case study involving the thin plate with a central circular hole. The main difference is that 

this case study involved a purely elastic response. The optimization method was the same 

as that used in the earlier case study, i.e. the generalized reduced gradient method with 

the same optimization criteria (convergence and minimum gradient). 

The poles figures for the maximum and minimum J-integral are shown in Figure 19. 

The improvement in performance which entirely based upon the J-integral is an 

improvement of 31% improvement. 



62 

CHAPTER 9. DISCUSSION OF RESULTS 

The MSD framework was used in several case studies involving both polycrystalline 

metals and continuous fiber reinforced composites. These results are discussed in this 

chapter.  

9.1. COMPOSITES 
The MSD representation and framework were derived for the new class of materials, 

continuous fiber reinforced composites. The application of the MSD framework with 

simple homogenization models from literature and texts provide a framework to exploit 

the customizability of composites. 

This is the first known technique that provides a method to optimize the fiber 

orientation distribution for composites. The analysis was kept at the 2-D level for 

composites; for the 2-D composites (laminates) the highest load carrying capacity was 

determined to be ( D5.36=θ ) for the material system under consideration for both upper 

and lower bounds, and subsequently the WAM model. The estimated load carrying 

capacity however varies significantly with the consideration of the bounds, as can be seen 

by the peak values in Figure 9. It is important to note that optimal solution is dependant 

on the material system (effective properties) and the volume fraction of fibers. The load 

carrying capacity of composite has not been examined thoroughly to study the effects of 

the effective properties and volume fraction of fibers. 

The test case study for CFRC is presented without additional verification and is left as 

a recommendation for future work. 

9.2. POLYCRYSTALLINE METAL 
The MSD Design tool was run on a desktop PC, in this study was a Dell Dimension 

8200, 2.2 GHz Intel processor with 2 Gigabytes of RAM. The optimization methods 
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proved to be able to optimize the microstructure for the hole in a plate problem with a run 

time of 10.5 hours with the microstructure representation at l=8 in spherical harmonics. 

The optimization time was the shortest for l=4 at approximately 4 hours, which was 

expected as the number of variables is minimal. The optimization for l=6 was 

incrementally longer at roughly 7 hours. The bulk of the optimization time is spent 

evaluating the FEM model. The nearly linear increase in optimization times is not 

entirely representative of the complexity of the problem as some refinements in the 

tuning of the optimization were made. It is expected that the tuned optimization scheme 

would perform somewhat faster at lower Fourier representations (l=4 has 3 variables, l=6 

has 7 variables, and l=8 has 12 variables). It should be cautioned that since the problem is 

largely elastic with small scale yielding, the bulk of the physics is captured at l=4, and 

higher order microstructure representations are refinements in the description of the yield 

surface. 

The solutions given by the final optimization are in good agreement with earlier 

results based on analytical results [4, 81]. The results are tabulated in Appendix A. 

The MSD calculations indicate the potential improvement (from worst case to best 

case scenario) is 26.7% which is a significant improvement particularly interesting when 

fatigue lifetimes are considered. The improvement from isotropic to case is only 

marginally improved over the worse case scenario, with a performance of 1.06 crssτ , 

which yields the surprising result of an improvement (isotropic to best case scenario) of 

18.9%. 
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9.2.1. VERIFICATION 
Verification of the model is important for the proof of concept. Two types of 

verifications can readily be considered 1) experimental and 2) an independent numerical 

model. There are several difficulties in experimental verification, first and foremost that 

the solution for the highest load carrying capacity is a texture that is not a readily known 

texture (i.e., rolling, or fiber textures) and the processing to achieve the prescribed 

optimal texture is, at this point, unknown. The upper bound assumption (simple volume 

fraction) homogenization method presents its own problems. The overall performance an 

experimental sample may not perform near the upper bound solution.  

As the difficulties with the experimental verification leaves doubts as to how valid the 

verification would be, a numerical simulation was used for verification. The numerical 

verifications have the advantage that the same assumptions on the bounds can be 

employed, also many instantiations of the microstructure may be evaluated as the 

microstructure is by no means uniquely defined with l=4, 6, or 8 (3, 7, or12 Fourier 

coefficients respectively). The non-uniqueness of the microstructure however, is not 

critical as the higher order Fourier coefficients are only refinements of the initial 

coefficients. Therefore the MSD solution identifies a class of microstructures that have a 

similar performance metric. 

The independent verification model was chosen to be a crystal plasticity model [94-

96]. Crystal plasticity models are largely accepted in as being accurate for the average 

deformation behavior of polycrystalline metals and have been around for some fifty years 

[91]. The crystal plasticity model is a widely accepted model and is in use today. Crystal 

plasticity models continue to be a current research topics as well [94, 96-103]. This 

approach is accurate predicting the averaged texture evolution of grains experiencing 



65 

deformation; however they are not accurate in predicting lattice rotations for discrete 

crystals. The models are also very good at predicting stresses and strains in deforming 

metals where slip is the predominant deformation mechanism. 

The complication is in that the crystal plasticity model requires discrete lattice 

orientations as opposed to Fourier coefficients of the ODF. Microstructures were 

reconstructed to have ODFs identical to the MSD solutions at l=4, 6, and 8 respectively. 

It is important to note that microstructures with the initial coefficients are not uniquely 

defined. As such, during the verification process multiple (twenty) microstructures were 

created. Figure 18 illustrates the several different instantiations for the ODF defined up to 

l=6 for the maximum performance of the hole in a plate. The pole figures on the bottom 

portion of Figure 18 are from ODFs with same initial microstructure coefficients 

(coefficients up to l=6); however the higher order coefficients (beyond l=6) are 

unconstrained. The reconstructed microstructures on the lower part of Figure 18 are 

shown to a high level of detail, at l=32. This means that simply a class of microstructures 

are identified that have a similar performance. 

The verification FEM was done on twenty instantiations of microstructures with the 

constrained to having the Fourier coefficients that match the same predicted optimal 

solution. The results are presented in Table 3 where it is clear that the independent 

verification is converging with the MSD with increasing l. Predictions for microstructures 

defined to l=8 are within 5% of the crystal plasticity code. 

The verification process indicates the MSD solution converges with the crystal 

plasticity model within an acceptable error when the microstructure is not completely 

defined. This indicates that a class of microstructures are identified that have a similar 
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performance metric. And the obvious conclusion is that the more details that are defined 

in the microstructure, the more the two models converge. 

It should be noted that the verification models took approximately three times longer 

to complete than the initial MSD predictions. This suggests that the MSD technique is far 

less computationally intensive and may provide reasonable estimates for performance in 

much shorter timeframes. 

Previous work by Parks and White verified the FEM model was in good agreement 

with experimental results [93]. The model only considers material behavior in the elastic 

regime. The crystal plasticity models have already been shown to converge with the MSD 

solutions in the elastic regime [4, 37]. No additional verification is presented for the 

pressure vessel with a part through axial flaw. 



67 

CHAPTER 10. CONCLUSIONS 

Microstructure Sensitive Design has been shown to be a useful tool for designing 

materials when the physics of the problem are well understood. It is readily apparent that 

the use of computers and models is necessary to consider designs where the 

microstructure is optimized to provide optimal performance of the overall component.  

The case studies show an enriched design space when local anisotropy considered, 

showing significant room for improvement in the case studies presented. The 

development of a microstructure design tool has provided an additional that allows the 

designer an opportunity to further improve designs, particularly highly constrained 

designs and has the potential to make significant improvements with consideration of 

anisotropy. 

MSD has been shown to be applicable to both cubic polycrystalline metals, and 

continuously reinforced fibrous composites. Combined with previous work by Proust on 

cubic and hexagonal closed packed metals [37], The MSD approach can be applied to a 

wide range of material classes. 

The MSD approach has been shown that the accuracy of solutions is dependant on 

truncation of Fourier series and governing physics. Incorporating new governing physics 

will likely be of interest to address additional problems such as heat transfer, and 

magnetic properties; careful attention needs to be paid to the accuracy of the MSD 

solutions if truncations to the series are made. 

MSD has identified a class of microstructures that provide a similar performance 

metric. A unique microstructure may not be determined when a truncation in the series is 

used though when the series sufficiently captures the physics, set of microstructures may 

be identified to have a similar performance. This non-uniqueness may actually be prove 
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to be beneficial by providing a broad set of microstructures that will meet the design 

requirements, from which the microstructure achieved by the easiest or cheapest 

processing route should have a performance similar to the optimal solution. 

As a tool the MSD Framework can be readily incorporated into commercial design 

codes such as ABAQUS and iSIGHT. This means the MSD Framework can be readily 

incorporated into the existing design process without having to introduce a completely 

new set of tools to designers. This should result in quick incorporation in the design 

process. 

MSD has promise providing faster forward models by using spectral representations 

without sacrificing accuracy from existing crystal plasticity models. With further 

development, considerable time savings is realized with MSD due to the unified 

mathematical framework used represent microstructures, properties and performance. It 

should also be realized that significant gains are made when simply the microstructure 

and effective property estimates are in the same mathematical framework and 

performance evaluation is done in finite element methods. 

10.1. RECOMMENDATIONS FOR FUTURE WORK 
One criticism of the work described here is that there has been no experimental 

verification presented. To date there has been no experimental verification due to the in 

ability to achieve the desired ODFs in samples of meaningful size. The inverse problem 

of determining processing routes to achieve materials with a specified ODF is a major 

problem to overcome, though if it can be achieved it will add credibility to the MSD 

approach. It is important to note that this work is currently in progress at Drexel 

University [17] and there has been some notable successes in applying spectral methods 

to the texture evolution of polycrystalline metals which is an important step on the way to 
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solving this inverse problem. If  specified ODFs may be manufactured it will be possible 

to experimentally verify the predictions for optimal textures for specific engineering 

cases. Then it may become a challenge to ensure that the processing can be done 

economically to fully exploit material anisotropy commercially. 

The experimental verification of the inverse problem of designing a composite 

structure with a specified fiber orientation distribution appears more tractable in the case 

of CFRC where more control is possible in the manufacture of the composite. In fact the 

part of the motivation behind expanding MSD to composites was the promise that it there 

may be an easier path to experimental verification of the MSD framework. 

The MSD-FE framework should be expanded to incorporate saving the finite element 

output in a database, particularly if more information is desired from the model. This can 

readily be achieved in an ad hoc fashion by introducing a script that changes the model 

filenames sequentially after the file is parsed. In the longer term a more efficient method 

would be desirable, to avoid clutter in working directories. It should be noted that this is 

mostly a consequence of the optimization routine; most optimization methods fail to 

incorporate knowledge the designer has a priori. This can be addressed using more 

sophisticated optimization rules and databases for simpler problems however, more 

complicated problems may quickly reduce to having few if any “fundamental solutions.” 

This researcher recommends that the MSD design framework should be extended to 

fatigue and further into fracture mechanics where the contribution to the expanded design 

space can make a significant improvement, as mentioned previously a small improvement 

in yield strength can induce a large improvement in fatigue life. If the improved fatigue 

performance can be combined in reduction in stress concentration near a fracture the 
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improvements can be further magnified. This class of mechanics problems also addresses 

a larger group of designers that may find the MSD design framework a desirable tool. 

The application of MSD to fracture should not be considered complete at this 

juncture. For completeness, the MSD design framework should be applied to a material 

with anisotropic elasticity and anisotropic plasticity. The problem also needs to be 

experimentally verified, which adds the additional complication that the route to 

“construct” a given ODF in a material needs to be addressed. 
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APPENDIX A- TABLES 

 
 
 
 

Table 1 Expressions for the spectral coefficients in the representation of compliance 
components of the laminate sub-components in the sample reference frame for the 2-D 
composites, computed from Eq. (22). 

Elastic Property Fourier Coefficients for 2D Continuously Reinforced Composites 

l=0 l=2 l=4 

1111Ξ  11 22 12 66
1 3 1 1
8 8 4 2

S S S S+ + + 11 22
1 1
4 4

S S−  11 22 12 66
1 1 1 1

16 16 8 4
S S S S+ − −

2222Ξ  11 22 12 66
3 3 1 1
8 8 4 2

S S S S+ + + 11 22
1 1
4 4

S S− +  11 22 12 66
1 1 1 1

16 16 8 4
S S S S+ − −

3333Ξ 22S  0 0 

2233Ξ  23 12
1 1
2 2

S S+  23 12
1 1
4 4

S S−  0  

1133Ξ  23 12
1 1
2 2

S S+  23 12
1 1
4 4

S S− +  0  

1122Ξ 11 22 12 66
1 1 3 1
8 8 4 2

S S S S+ + − 0  11 22 12 66
1 1 1 1

16 16 8 4
S S S S− − + +

2323Ξ  22 23 66
1
2

S S S− +  22 23 66
1 1 1
2 2 4

S S S− − 0  

1313Ξ  22 23 66
1
2

S S S− +  22 23 66
1 1 1
2 2 4

S S S− + + 0  

1212Ξ 11 22 12 66
1 1 1 1
8 8 4 2

S S S S+ − + 0  11 22 12 66
1 1 1 1

16 16 8 4
S S S S− − + +
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Table 2 The microstructure coefficients for the optimized hole in a plate, with increasing 
microstructure representation. 

Microstructure 
Coefficient Maximum Minimum 

 4=l  6=l  8=l  4=l  8=l  
11
4F  -3.15 -2.61 -0.40 4.95 3.46 
12
4F  -0.99 2.07 0.40 -1.35 -0.14 
13
4F  -1.36 0.81 -1.47 -4.95 -3.84 
11

6F  - -1.04 -2.34 - -1.40 
12

6F  - 1.30 -1.34 - -0.40 
13

6F  - -1.56 -3.13 - -3.23 
14

6F  - -0.39 0.36 - 0.45 
11

8F  - - 0.21 - 8.57 
12

8F  - - -0.09 - -0.19 
13

8F  - - -4.57 - -4.77 
14

8F  - - -0.02 - -0.50 
15

8F  - - 4.28 - 6.60 
 
 
 
 

Table 3 The predictions of the highest load carrying capacity for nickel. MSD predictions 
are shown with increasing microstructure representation (l). The FEM load carrying 
capacity is shown for twenty instantiations of reconstructed microstructures with their 
standard deviation in performance. The average error is the error of the MSD calculations 
with respect to the FEM predictions for the corresponding microstructures. 

Predictions of highest load carrying capacity 
Series Rank (l) MSD ( )crssτ  FEM ( )crssτ  Average Error (%) 

4 1.38 1.01 05.0±  25 
6 1.28 1.17 04.0±  9 
8 1.26 1.24 5105.1 −×±  1.6 
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Table 4 The maximum and minimum performance of a pressure vessel with a part 
through axial flaw. 

Microstructure 
Coefficient Minimum Performance Maximum Performance 

11
4F  -1.82 4.08 
12
4F  -1.61 2.11 
13
4F  -3.94 5.27 

J-Integral ( )2mmMPa  1198  1565  
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APPENDIX B- FIGURES 
 
 
 
 

 
Figure 1 A plate with a circular hole, loaded in in-plane tension. 

 
 
 

 
Figure 2 Idealization of a continuous fiber reinforced composite into unidirectional 
laminate sub-components (A) 2-D composites, (B) 3-D composites.  
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Figure 3 Earring in deep drawing of aluminum due to crystallographic texture. 
Compliments of Dr. Roger Doherty, Drexel University. 

 
 
 

 
Figure 4 Schematically shows a polycrystalline metal; each grain may have an 
independent orientation. 

 

x y
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Figure 5 Euler angles describing the rotation of a crystal from the sample frame to the 
crystal frame in the series of 21 ,, ϕϕ Φ . 

 
 
 

 
Figure 6 The microstructure hull for 2D transversely isotropic-orthorhombic materials. 
The hull is shown in the first two dimensions in Fourier space 
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Figure 7 The first three non-zero coefficients for the cubic-orthorhombic symmetry. 

 
 
 

 
Figure 8 Isoproperty hypersurfaces delineating the set of microstructures in Fourier space 
that meet prescribed conditions. 
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Figure 9 The property closure for the effective elastic properties ( )*

1111C GPa and 

( )*
1212C GPa  of the composite material system studied here. The material system studied 

was a AS-4 Carbon fiber [57] and epoxy [68] system with a fiber volume fraction (Vf) of 
0.5, where α is the weighting factor of the upper bounds contribution to the properties. 

 
 
 

 
Figure 10 The finite element mesh for the 1/8 of the plate model with a circular hole. 
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Figure 11 The flowchart for iSIGHT, MSD, ABAQUS microstructure optimization is 
shown above. 

 
 
 



88 

 
Figure 12 Schematically shows the cylindrical pressure vessel (upper left). The 1/8th 
model above is the ABAQUS example file (center), with the  part through axial flaw 
show in detail (lower right). 

 
Figure 13 the optimal fiber orientation distribution for a composite with a volume 
fraction of (Vf=0.5) AS-4 and shell epoxy for a composite with a cirular hole. 
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Figure 14 An example of a performance closure for a thin orthotropic plate containing a 
central circular hole and subjected to in-plane compression. Closures are shown for three 
different values of the interpolation parameter α in the WAM model, where the 
weighting factor of the upper bounds contribution to the properties is α . 
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Figure 15 The iSIGHT shell for the optimization of the hole in a plate study. 
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Figure 16 The iSIGHT list of parameters including: the optimization variables (Fourier 
coefficients), properties (elastic and plastic) and optimization objective (reaction force). 
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Figure 17 The optimal (highest load carrying capacity) texture is shown in pole figures 
(top) and in the first three non-zero dimensions of the microstructure hull (green). The 
minimum performance pole figures (bottom) and Fourier coefficient are shown (blue). 
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Figure 18 Several different instantiations of microstructures with the first seven identical 
coefficients.  
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Figure 19 The pole figures for maximum J-integral (top and blue circle) and minimum J-
integral (bottom and green triangle) are shown for the pressure vessel with a part through 
axial flaw. 
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13
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12
4F



95 

 
Figure 20 An elastic body containing a crack, the J-integral is calculated over the closed 
integral contour Γ . 

Crack

Γ 

X 

Y 

O 
n ds 



96 

APPENDIX C J-INTEGRAL FORMULATION 
 
 
 
 

Consider a nonlinear elastic body containing a crack, Figure 20 the J-integral is 

defined as  

∫
Γ ∂

∂
−= ds

x
u

TwdyJ i
i         (A.1) 

Where  

∫=
ij

ijij dw
ε

εσ
0          (A.2) 

is the strain energy density, 

jiji nT σ=           (A.3) 

is the traction vector, Γ is an arbitrary contour around the tip of the crack, n is the unit 

vector normal to Γ ; σ , ε , and u are the stress, strain, and displacement field, 

respectively. By tradition Γ is taken as a smooth curve around the crack front. 

Rice, J. R., 1968 [72], showed that the J-integral is a path-independent line integral 

and it represents the strain energy release rate of linear or nonlinear elastic materials:  

dA
dJ Π

=           (A.4) 

where WU −=Π is the potential energy, the strain energy U stored in the body minus 

the work W done by external forces and A is the crack area.  

The dimension of J is  

( )
Area

EnergyJDimension =         (A.5) 
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For linear elastic materials, the J-integral is in fact the strain energy release rate, G , 

and both are related to the stress intensity factor K in the following fashion: 

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−
==

Strain Plane    1

Stress Plane                

2
2

2

ν
E

K
E

K

GJ       (A.6) 
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APPENDIX D DERIVATION FOR CALCULATING FOURIER COEFFICIENTS 
FOR GENERAL SPHERICAL HARMONICS 

 
 
 
 

Any function f(g) dependent on the lattice orientation g can be represented in Fourier 

series by generalized spherical harmonics: 

( ) ( )∑ ∑∑
∞

=

+

−=

+

=

=
0l

l

lm

l

ln

mn
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where mn
lF  represent the Fourier coefficients of the function f(g) and ( )gT mn

l  are the 

generalized spherical harmonics. These harmonics for the complete set of orthonormal 

basis functions for SO(3) [104]. This representation is generalized for any crystal or 

sample symmetry. Using Euler angles defined by Bunge the generalized spherical 

harmonics are expressed as a function of 21 ,, ϕϕ Φ [48] 

( ) ( ) 12 cos ϕϕ inmn
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immn
l ePegT Φ=        (A.2) 

The ( )Φcosmn
lP  function is an associated Legendre polynomial 
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    (A.3) 

The Legendre polynomial is purely real if m+n is even and purely imaginary if m+n 

is odd. Since the in fact form an orthonormal basis yields [48] 

( ) ( )
12

*

)3( +
= ′′′′′

′∫∫∫ l
dgdTgT nnmmllnm

l
SO

mn
l

δδδ
      (A.4) 

where ijδ represents the Kronecker delta function. dg represents the invariant measure 

that can be expressed in a function of Euler angles 
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212 sin
8

1 ϕϕ
π

ddddg ΦΦ=        (A.5) 

To determine the Fourier coefficient mn
lF  for any function f(g), the procedure is as 

follows. Multiplying both sides of Eq. (A.1) by the conjugate of one of the spherical 

harmonic functions 
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Eq. A.6 is then integrated on each side over SO(3) (or where symmetries are 

accounted for the FZ, SO(3)/G), 
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Using the normalization from Eq. (A.4) 
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If the function f(g) represents the microstructure of a single state, it can be defined 

using Dirac’s function ( )igg −δ  defined as 

( )
⎩
⎨
⎧ Ω∈

=−∫∫∫
Ω otherwise

ifg
dggg i

i 0
1

δ        (A.9) 

Where Ω  is the domain of single states. By substituting Eq. (A.9) into (A.8) for f(g) 

the Fourier coefficients for a single state can be evaluated [48] as 

( ) ( )i
mn

l
mn

l gTlF *12 +=         (A.10) 

Using Eqs (A.2), (A.3), and (A.10), it can be shown the first term in the Fourier series 

is always equal to one, 100
0 =F  for any texture. 
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If the microstructure is not a single state, and consists of multiple crystal orientations 

(as a polycrystal) the Fourier coefficients are in proportion to the volume fraction ( )α  of 

that state [48].  

( )
( )

∑∑
∑

=+=
j

j

j
j

j

mn
lj

mn
l

gT
lF 1;12

*

α
α

α
 

 



101 

APPENDIX E ELASTICITY HOMOGENIZATION SOURCECODE 
 
 
 
 

The following is the source code for the effective elastic properties: 

/* 
//Elastic 1.0 
//this code is used to calculate the upper bound values of all the 
//components of the stiffness tensor of a cubic-orthorhombic material 
// 
//Elastic 1.1 
//this code has been modified to be used with the Fourier coefficients 
//of the microstructure taking into account the factor (2l+1) 
//Gwenaelle Proust  
 
//Elastic 2.0 
// This code has been updated: 
//  Pi has be correctly defined 
//  Format of code has compartmentalized 
//  Code has been setup to calculate elastic stiffness for 
//  multiple Fourier coefficients if desired. 
//  Note this puts an integer (number of coefficient triplets) 
//   in the input file before FCoefficients. 
//  Column Headers are inserted in the output.txt file. 
//Josh Houskamp 4/22/2005 
 
//Elastic 3.0 5/23/2005 
//This code calculates the elastic constants for any large number of 
// coefficients.  
*/ 
#include<fstream.h> 
#include<iostream.h> 
#include<istream.h> 
#include<math.h> 
#include<iomanip.h> 
#define PI     4*atan(1) 
 
double MIN (double a, double b){ 
 if (a<b) return a; 
 else return b; 
} 
 
int main(){ 
 char buffer[256]; 
 //Open the file for the microstructure coefficients 
 double F[4]; 
 F[0]=1;    //F000 is always egual to 1 
 double coef[24]; 
 double consC[3], consS[3]; 
  
 //Reads the basic elastic Constants (C11,C12,C44,S11,S12,S44) 
 ifstream elastic ("elastic.txt"); 
 while ( elastic.eof() ){ 
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  elastic.getline(buffer,100); 
 } 
 elastic>>consC[0]>>consC[1]>>consC[2]>>consS[0]>>consS[1]>>\ 

consS[2]; 
 elastic.close(); 
  
 //Reads the Property-Fourier Coefficients 
 ifstream coeff ("coef.txt"); 
 if ( ! coeff.is_open()){ 
  cout<< "error opening coef file"; return (1); 
 } 
 while ( coeff.eof() ){ 
  coeff.getline(buffer,100); 
 } 
 for (int i=0; i<24;i++) coeff>>coef[i]; 
 coeff.close(); 
  

//Reads Microstructure Coefficients (for more than one 
//microstructure) 

 
 ofstream outputfile ("Econsts.txt"); 
 ifstream Fcoefficient ("Fcoefficient.txt");  
  
 int NumCoeffs=1; 
 if (! Fcoefficient.is_open()){ 
  cout << "Error opening Fcoefficient file"; return (1); 
 } 
 // 
 ////Uncomment the following line 
 Fcoefficient>> NumCoeffs ; 
  
 if (outputfile.is_open()){ 
  outputfile<< "C1111\tC2222\tC3333\tC1212\tC1313\ 

tC2323\tC1122\tC1133\tC2233\n"; 
  for(int l=0;l<NumCoeffs;l++){ 
   Fcoefficient >>F[1]>>F[2]>>F[3]; 
   for (int i=1;i<4;i++) F[i]=F[i]/9;  
//we divide the Fourier coefficients by 2l+1. in this case l=4 b/c only 
//elastic properties 
   double A[6]; //A[0]=A1111; A[1]=A2222; A[2]=A3333;  

 //A[3]=A1212; A[4]=A1313; A[5]=A2323 
   for (int k=0;k<6;k++) A[k]=0; 
   for (int j=0; j<4; j++){ 
    A[0]=A[0]+F[j]*coef[j]; 
    A[1]=A[1]+F[j]*coef[j+4]; 
    A[2]=A[2]+F[j]*coef[j+8]; 
    A[3]=A[3]+F[j]*coef[j+12]; 
    A[4]=A[4]+F[j]*coef[j+16]; 
    A[5]=A[5]+F[j]*coef[j+20]; 
   } 
   double C[9],S[6];  
// Calculation of the volume average of all the stiffness and  
//compliance components 
   for(int jj=0;jj<9;jj++) C[jj]=0; 
   for( jj=0;jj<6;jj++) S[jj]=0; 
   //C1111 
   C[0]=consC[1]+2*consC[2]+(consC[0]-consC[1]\ 
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-2*consC[2])*A[0]; 
//C2222 

   C[1]=consC[1]+2*consC[2]+(consC[0]-consC[1]\ 
-2*consC[2])*A[1];  

//C3333 
   C[2]=consC[1]+2*consC[2]+(consC[0]-consC[1]\ 

-2*consC[2])*A[2];  
   //C1212 
   C[3]=consC[2]+(consC[0]-consC[1]-2*consC[2])*A[3];  
   //C1313 
   C[4]=consC[2]+(consC[0]-consC[1]-2*consC[2])*A[4];  
   //C2323 
   C[5]=consC[2]+(consC[0]-consC[1]-2*consC[2])*A[5]; 
   //C1122 
   C[6]=consC[1]+(consC[0]-consC[1]-2*consC[2])*A[3]; 
   //C1133 
   C[7]=consC[1]+(consC[0]-consC[1]-2*consC[2])*A[4]; 
   //C2233 
   C[8]=consC[1]+(consC[0]-consC[1]-2*consC[2])*A[5]; 
   //S1111 

S[0]=consS[1]+0.5*consS[2]+(consS[0]-consS[1]-0.5\ 
*consS[2])*A[0]; 

   //S2222 
   S[1]=consS[1]+0.5*consS[2]+(consS[0]-consS[1]-0.5\ 

*consS[2])*A[1]; 
   //S3333 

S[2]=consS[1]+0.5*consS[2]+(consS[0]-consS[1]-0.5\ 
*consS[2])*A[2]; 

   //S1122 
S[3]=consS[1]+(consS[0]-consS[1]-0.5*consS[2])*A[3]; 

   //S1133 
S[4]=consS[1]+(consS[0]-consS[1]-0.5*consS[2])*A[4]; 

   //S2233 
S[5]=consS[1]+(consS[0]-consS[1]-0.5*consS[2])*A[5]; 

    
   //Inversion of the volume average compliance tensor 
   double Sinv1111=0, Sinv2222=0, Sinv3333=0,\ 

 Sinv1122=0, Sinv1133=0, Sinv2233=0,\ 
determinant=0; 

   determinant=S[0]*(S[1]*S[2]-S[5]*S[5])\ 
-S[3]*(S[3]*S[2]-S[5]*S[4])+S[4]*(S[3]*S[5]\ 
-S[1]*S[4]); 

   Sinv1111=(S[1]*S[2]-S[5]*S[5])/determinant; 
   Sinv2222=(S[0]*S[2]-S[4]*S[4])/determinant; 
   Sinv3333=(S[0]*S[1]-S[3]*S[3])/determinant; 
   Sinv1122=(S[4]*S[5]-S[3]*S[2])/determinant; 
   Sinv1133=(S[3]*S[5]-S[4]*S[1])/determinant; 
   Sinv2233=(S[5]*S[4]-S[3]*S[2])/determinant; 
    
   // Calculation of the off-diagonal bounds 
   double Cstar1122=0, Cstar1133=0, Cstar2233=0; 
   Cstar1122=MIN(C[6],Sinv1122)+sqrt(fabs(C[0]\ 

-Sinv1111)*fabs(C[1]-Sinv2222)); 
   Cstar1133=MIN(C[7],Sinv1133)+sqrt(fabs(C[0]\ 

-Sinv1111)*fabs(C[2]-Sinv3333));  
//The following line corrected 4/18/05 
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   Cstar2233=MIN(C[8],Sinv2233)+sqrt(fabs(C[1]-\ 
Sinv2222)*fabs(C[2]-Sinv3333)); 
 

   //the output file order is: C1111, C2222, C3333, 
// C1212, C1313, C2323, C1122, C1133, C2233 

   outputfile <<C[0]<<"\t"<<C[1]<<"\t"<<C[2]<<"\t"\ 
<<C[3]<<"\t"<<C[4]<<"\t"<<C[5]<<"\t"\ 
<<Cstar1122<<"\t"<<Cstar1133<<"\t"<<\ 
Cstar2233<<endl; 

  } 
 } 
 Fcoefficient.close(); 
 outputfile.close(); 
 return (0); 
} 
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APPENDIX F PLASTICITY HOMOGENIZATION SOURCECODE  
 
 
 
 

The following is the source code for the effective plastic properties:  

Please note that this source code is limited to taking only up to l=8 coefficients. The 

logic is not in place to expand this code to higher orders of spherical harmonics 

automatically. 

/* 
//Version 1.0 Gwenaelle Proust 
//This program calculates the yield strength for different orientations 
//knowing the Euler angles 
//of each orientation and the coefficient of the polynomial functions 
//used to describe the Fourier coefficients 
//use the Newton-Raphson with bisection (to be sure of the convergence) 
//technique for the calculation of q 
//this code has been modified to take into account the factor 2l+1 in 
//the Fourier coefficients of the microstructure 
//this code will need to be modified if one wants to go further than 12 
//dimensions in the Fourier space 
 
//Version 1.1 Josh Houskamp 6/1/2005 
 //Fixed definition of Pi. (though its not used?) 
 //Fixed spelling errors in comments. 
 //The Fcoefficient.txt file now reads an integer (the number of 
//Fourier coefficients to calculate properies for) 
 //then the sets of (12) fourier Coefficients. 
 //Rearranged order or read file statements to facilitate reading 
//multiple Fcoefficients. 
*/ 
 
#include<fstream.h> 
#include<iostream.h> 
#include<istream.h> 
#include<math.h> 
#include<iomanip.h> 
#include"qimproved.h" //file for the calculation of q with the NR 

//method 
#define PI  4*datan(1) //3.1415926535897931  
 
//function to calculate the yield strength for a specific orientation 
//given the value of q for S11 
double yieldS11(double coef[7][3][13], double F[13], int numterms,\ 
double q){ 
 double f=0; 
 for (int in1=0;in1<=numterms; in1++){ 
  double x=1; 
  double factor=0; 
  for (int in2=0;in2<7;in2++){ 
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   factor=factor+(coef[in2][0][in1]-0.5*\ 
(coef[in2][1][in1]+coef[in2][2][in1]))*x; 

   x=q*x; 
  } 
  f=f+factor*F[in1]; 
 } 
 return f; 
} 
 
//function to calculate the yield strength for a specific orientation 
//given the value of q for S22 
double yieldS22(double coef[7][3][13], double F[13], int numterms,\ 
double q){ 
 double f=0; 
 for (int in1=0;in1<=numterms; in1++){ 
  double x=1; 
  double factor=0; 
  for (int in2=0;in2<7;in2++){ 
   factor=factor+(coef[in2][1][in1]-0.5*\ 

(coef[in2][0][in1]+coef[in2][2][in1]))*x; 
   x=q*x; 
  } 
  f=f+factor*F[in1]; 
 } 
 return f; 
} 
 
//function to calculate the yield strength for a specific orientation 
given the value of q for S33 
double yieldS33(double coef[7][3][13], double F[13], int numterms,\ 
double q){ 
 double f=0; 
 for (int in1=0;in1<=numterms; in1++){ 
  double x=1; 
  double factor=0; 
  for (int in2=0;in2<7;in2++){ 
   factor=factor+(coef[in2][2][in1]-0.5*\ 

(coef[in2][1][in1]+coef[in2][0][in1]))*x; 
   x=q*x; 
  } 
  f=f+factor*F[in1]; 
 } 
 return f; 
} 
 
int main () { 
 ofstream opp ("q.txt"); 
 //Open the file for the microstructure coefficients 
 int numberterms=13; 
 int NumOries; 
 double F[13]; 
 F[0]=1; //F000 is always egual to 1 

//read the coefficients form the file coef 
 //coefficients for the normal stress S11 

double coefS11[7][3][13];   
//coefficients for the normal stress S22 

 double coefS22[7][3][13];   
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//coefficients for the normal stress S33 
 double coefS33[7][3][13];   
 //coefficients for the 3 shear stresses S12, S13, S23 in this 

//order 
 double cshear[3][13]; 

ifstream coeff ("input.txt"); 
 if (! coeff.is_open()){ 
  cout << "Error opening file"; return (1); 
 } 
 //while (! coeff.eof() ){ 
 // coeff.getline (buffer,100); 
 //} 
 ifstream fin("input.txt"); 
 if (fin){ 
  for (int ab3=0;ab3<3;ab3++){ 
   for (int ab4=0;ab4<13;ab4++){    

//read the coefficients for calculation 
    for (int ab5=0;ab5<7;ab5++){   

// of normal stress S11 
     fin>>coefS11[ab5][ab3][ab4]; 
    } 
   } 
  } 
  for (int a=0;a<3;a++){ 
   for (int b=0;b<13;b++){ 
    for (int c=0;c<7;c++){     

//read the coefficients for calculation 
     fin>>coefS22[c][a][b];    

// of normal stress S22 
    } 
   } 
  } 
  for (int d=0;d<3;d++){ 
   for (int e=0;e<13;e++){ 
    for (int f=0;f<7;f++){     

//read the coefficients for calculation 
     fin>>coefS33[f][d][e];    

//of normal stress S33 
    } 
   } 
  } 
  for (int g=0; g<3; g++){ 
   for (int h=0; h<13; h++){  
   //read the coefficeints for the 3 shear stresses 
    fin>>cshear[g][h]; 
   } 
  } 
 } 
 else{ 
  cout<<"Error with input.txt file"<<endl; 
 } 
 fin.close(); 
 
 ifstream Fcoefficient ("Fcoefficient.txt");  
 ofstream outputfile ("PlasticConst.txt"); 
 if (! Fcoefficient.is_open()){ 
  cout << "Error opening Fcoefficient.txt file"; return (1); 
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 } 
 //if(! outputfile.is_open())cout << "Error opening  

//Fcoefficient.txt file"; return (1); 
 outputfile <<"S11\tS22\tS33\tTau12\tTau23\tTau13\n"; 
 Fcoefficient>>NumOries; 
 for(int k=0;k<NumOries;k++){  
 
 Fcoefficient>>F[1]>>F[2]>>F[3]>>F[4]>>F[5]>>F[6]>>F[7]>>F[8]>>\ 

F[9]>>F[10]>>F[11]>>F[12]; 
  //Fcoefficient.close(); 
  for (int i=1;i<4;i++) F[i]=F[i]/9;  

//divide by 2l+1 for l=4 
  for (i=4;i<8;i++) F[i]=F[i]/13;  

//divide by 2l+1 for l=6 
  for (i=8;i<13;i++) F[i]=F[i]/17;  

//divide by 2l+1 for l=8 
  char buffer[256]; 
  
  if (outputfile.is_open()){ 
   double q; 
   double solution; 
 
   //FIND THE RIGHT VALUE OF q FOR THE NORMAL STRESS S11  

//CONDITION: SIGMA22=SIGMA33 
   q=qcalculS11(coefS11,F,numberterms-1); 
   opp<<q<<endl; 
   solution=yieldS11(coefS11, F, numberterms-1, q); 
   outputfile <<solution<<"\t"; 
  

//FIND THE RIGHT VALUE OF q FOR THE NORMAL STRESS S22  
//CONDITION: SIGMA11=SIGMA33 

   q=qcalculS22(coefS22,F,numberterms-1); 
   solution=yieldS22(coefS22, F, numberterms-1, q); 
   outputfile <<solution<<"\t"; 
 
   //FIND THE RIGHT VALUE OF q FOR THE NORMAL STRESS S33  

//CONDITION: SIGMA11=SIGMA22 
   q=qcalculS33(coefS33,F,numberterms-1); 
   solution=yieldS33(coefS33, F, numberterms-1, q); 
   outputfile <<solution<<"\t"; 
   //CALCULATE THE NORMAL SHEAR STRESSES ORDER TAU12,  

//TAU23, TAU 13  
   double shear[3]; 
   for (int aa=0; aa<3; aa++) shear[aa]=0; 
   for (int bb=0; bb<3; bb++){ 
    for (int cc=0;cc<13;cc++) shear[bb]=\ 

shear[bb]+F[cc]*cshear[bb][cc]; 
    outputfile<<shear[bb]<<"\t"; 
   } 
   outputfile<<endl; 
  } 
 } 
 Fcoefficient.close(); 
 outputfile.close(); 
 return (0); 
} 
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APPENDIX G ISIGHT FILE PARSING 
 
 
 
 

The following code is the ASCII version of the file parsing technique used to read the 

ABAQUS output file. Please note that this file will need to change if another model is 

used. 

File Parse 
PENER = 0.0 
    ReactionForce = 0.0 
    reactionforce = 0.0 
    while ( $PENER  <  0.6 ) { 
        find "THE FOLLOWING TABLE IS PRINTED AT THE NODES FOR ELEMENT 
TYPE C3D8 AND ELEMENT SET" ignore  
        find "MAXIMUM" ignore  
        moveto word + 1 
        read PENER as "%f" 
        if ( $PENER  <  0.6 ) { 
            pener = $PENER 
            reactionforce = $ReactionForce 
            ReactionForce = 0.0 
        } 
        find "THE FOLLOWING TABLE IS PRINTED FOR NODES BELONGING TO 
NODE SET" ignore  
        moveto line + 4 
        ReactionForce = 0 
        for ( i  =  0 ; $i  <=  49 ; i  =  $i + 1) { 
            moveto word + 1 
            read ReactionForceTemp as "%f" 
            ReactionForce = $ReactionForce + $ReactionForceTemp 
            if ( $PENER  <  0.6 ) { 
                reactionforce = $ReactionForce 
            } 
        } 
    } 
    provide $reactionforce  
    provide $pener  
    provide $PENER  
    provide $ReactionForce  
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APPENDIX H ISIGHT MDOL FILE 
 
 
 
 

This is the ASCII file description of the complete optimization of the hole in a plate 

case study.  

MDOLVersion: 9.0 
CompilerOptions: warn 
 
Task Task0 
 
    TaskHeader Task0 
        Version: 1.0 
        Evaluation: donotrun 
        ControlMode: user 
        RunCounter: 1 
        BoundsPolicy: adjustvalue 
        CheckPoint: unknown 
    End TaskHeader Task0 
 
    Outputs Task0 
    End Outputs Task0 
 
    Task Task1 
 
        TaskHeader Task1 
            Version: 1.0 
            Evaluation: optimize GeneralizedReducedGradient 
            ControlMode: user 
            RunCounter: 6142 
            BoundsPolicy: adjustvalue 
            CheckPoint: unknown 
        End TaskHeader Task1 
 
        Inputs Task1 
            Parameter: F410 Type: real InitialValue: 3.46074369675876 
            Parameter: F412 Type: real InitialValue: -0.143433351842112 
            Parameter: F414 Type: real InitialValue: -3.84449219014729 
            Parameter: C1133 Type: real InitialValue: 14775.5 
            Parameter: C2233 Type: real InitialValue: 10954.8 
            Parameter: C1212 Type: real InitialValue: 6602.89 
            Parameter: C1313 Type: real InitialValue: 11048.5 
            Parameter: C2323 Type: real InitialValue: 10908.4 
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            Parameter: C1111 Type: real InitialValue: 31938.3 
            Parameter: C2222 Type: real InitialValue: 32078.5 
            Parameter: C3333 Type: real InitialValue: 27632.8 
            Parameter: C1122 Type: real InitialValue: 10260.3 
            Parameter: S11 Type: real InitialValue: 2.77665 
            Parameter: S22 Type: real InitialValue: 2.8129 
            Parameter: S33 Type: real InitialValue: 2.69567 
            Parameter: S12 Type: real InitialValue: 1.39785 
            Parameter: S23 Type: real InitialValue: 1.69562 
            Parameter: S13 Type: real InitialValue: 1.70494 
            Parameter: F610 Type: real InitialValue: -1.39948880240132 
            Parameter: F612 Type: real InitialValue: -0.39798046721264 
            Parameter: flag Type: integer InitialValue: 1 Description: "Flag tells the hull 
bounds program to continue" 
            Parameter: F614 Type: real InitialValue: -3.22610129852194 
            Parameter: F616 Type: real InitialValue: 0.445090984535687 
            Parameter: Dimensions Type: integer InitialValue: 12 
            Parameter: F810 Type: real InitialValue: 8.57364442011326 
            Parameter: F812 Type: real InitialValue: -0.186979154789191 
            Parameter: F814 Type: real InitialValue: -4.77055852704273 
            Parameter: F816 Type: real InitialValue: -0.498726533054286 
            Parameter: F818 Type: real InitialValue: 6.59657383054447 
        End Inputs Task1 
 
        Outputs Task1 
            Parameter: Lambda Type: real 
            Parameter: LambdaMax Type: real 
            Parameter: Lambdadiff Type: real 
            Parameter: ReactionForce Type: real 
            Parameter: K Type: real 
            Parameter: PENER Type: real 
            Parameter: reactionforce Type: real 
            Parameter: pener Type: real 
            Parameter: RF Type: real 
        End Outputs Task1 
 
        Calculations Task1 
            Calculation Lambda 
                Parameters 
                    F410 F412 F610 F414 F612 F810 F614 F812 F616 F814 
                    F816 F818 Lambda 
                Statements 
                    Lambda = 
sqrt(F410^2+F412^2+F414^2+F610^2+F612^2+F614^2+F616^2+F810^2+F812^2+F81
4^2+F816^2+F818^2) 
                End Statements 
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            End Calculation Lambda 
 
            Calculation GPaTOMPa1 
                Parameters 
                    C2323 C2233 C1212 C1122 C3333 C2222 C1313 C1133 C1111 
                Statements 
                    C1111 = C1111*1000 
                    C1122 = C1122*1000 
                    C1133 = C1133*1000 
                    C1212 = C1212*1000 
                    C1313 = C1313*1000 
                    C2222 = C2222*1000 
                    C2233 = C2233*1000 
                    C2323 = C2323*1000 
                    C3333 = C3333*1000 
                End Statements 
            End Calculation GPaTOMPa1 
 
            Calculation Calculation4 
                Parameters 
                    reactionforce ReactionForce pener PENER RF 
                Statements 
                    RF = ((ReactionForce-reactionforce)/(PENER-pener))*(0.6-
pener)+reactionforce 
                End Statements 
            End Calculation Calculation4 
        End Calculations Task1 
 
        SimCode GPHULL 
            InputFiles GPHULL 
                FileDescription directiontxt 
                    FileType: standard 
                    TemplateFile: "iSIGHT_direction.txt" 
                    InputFile: "direction.txt" 
                    Parameters 
                        F410 F412 F414 F610 F612 F614 F616 F810 F812 F814 
                        F816 F818 
                    Instructions 
                        require F810 F812 F814 F816 F818  
                        require F614 F616  
                        require F610 F612  
                        require F410 F412 F414  
                        moveto word + 1 
                        replace word with $F410 as "%f"  
                        replace word with $F412 as "%f"  
                        replace word with $F414 as "%f"  
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                        replace word with $F610 as "%f"  
                        replace word with $F612 as "%f"  
                        replace word with $F614 as "%f"  
                        replace word with $F616 as "%f"  
                        replace word with $F810 as "%f"  
                        replace word with $F812 as "%f"  
                        replace word with $F814 as "%f"  
                        replace word with $F816 as "%f"  
                        replace word with $F818 as "%f" 
                    End Instructions 
                End FileDescription directiontxt 
            End InputFiles GPHULL 
 
            OutputFiles GPHULL 
                FileDescription LambdaMaxtxt 
                    FileType: standard 
                    OutputFile: "LambdaMax.txt" 
                    Parameters 
                        LambdaMax Lambda Lambdadiff 
                    Instructions 
                        find "Lambda =" ignore  
                        read Lambda as "%f" 
                        provide $Lambda  
                        find "=" ignore  
                        read LambdaMax as "%f" 
                        provide $LambdaMax  
                        Lambdadiff = $LambdaMax - $Lambda 
                        provide $Lambdadiff 
                    End Instructions 
                End FileDescription LambdaMaxtxt 
            End OutputFiles GPHULL 
 
            SimCodeProcess GPHULL 
                Program: "./Hull12D.exe" 
                ProcessType: transient 
                Environment: unrestored 
                ElapseTime: 5m 
                Prologue 
                    WriteInputSpecs: directiontxt 
                Epilogue 
                    ReadOutputSpecs: LambdaMaxtxt 
            End SimCodeProcess GPHULL 
 
        End SimCode GPHULL 
 
        SimCode ElasticConstants1 
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            InputFiles ElasticConstants1 
                FileDescription Fcoefficienttxt 
                    FileType: standard 
                    TemplateFile: "iSIGHT_Fcoefficient.txt" 
                    InputFile: "Fcoefficient.txt" 
                    Parameters 
                        F410 F412 F414 F610 F612 F614 F616 
                    Instructions 
                        require F614 F616  
                        require F610 F612  
                        require F410 F412 F414  
                        moveto word + 1 
                        replace word with $F410 as "%f"  
                        replace word with $F412 as "%f"  
                        replace word with $F414 as "%f" 
                    End Instructions 
                End FileDescription Fcoefficienttxt 
            End InputFiles ElasticConstants1 
 
            OutputFiles ElasticConstants1 
                FileDescription Econststxt 
                    FileType: standard 
                    OutputFile: "Econsts.txt" 
                    Parameters 
                        C1111 C2222 C3333 C1212 C1313 C2323 C1122 C1133 C2233 
                    Instructions 
                        moveto line + 1 
                        read C1111 as "%f" 
                        provide $C1111  
                        read C2222 as "%f" 
                        provide $C2222  
                        read C3333 as "%f" 
                        provide $C3333  
                        read C1212 as "%f" 
                        provide $C1212  
                        read C1313 as "%f" 
                        provide $C1313  
                        read C2323 as "%f" 
                        provide $C2323  
                        read C1122 as "%f" 
                        provide $C1122  
                        read C1133 as "%f" 
                        provide $C1133  
                        read C2233 as "%f" 
                        provide $C2233 
                    End Instructions 
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                End FileDescription Econststxt 
            End OutputFiles ElasticConstants1 
 
            SimCodeProcess ElasticConstants1 
                Program: "./ElasticProps.exe" 
                ProcessType: transient 
                Environment: unrestored 
                ElapseTime: 1m 
                Prologue 
                    WriteInputSpecs: Fcoefficienttxt 
                Epilogue 
                    ReadOutputSpecs: Econststxt 
            End SimCodeProcess ElasticConstants1 
 
        End SimCode ElasticConstants1 
 
        SimCode PlasticConstants1 
            InputFiles PlasticConstants1 
                FileDescription Fcoefficienttxt 
                    FileType: standard 
                    TemplateFile: "iSIGHT_Fcoefficient.txt" 
                    InputFile: "Fcoefficient.txt" 
                    Parameters 
                        F410 F412 F414 F610 F612 F614 F616 F810 F812 F814 
                        F816 F818 
                    Instructions 
                        require F810 F812 F814 F816 F818  
                        require F614 F616  
                        require F410 F412 F414 F610 F612  
                        moveto word + 1 
                        replace word with $F410 as "%f"  
                        replace word with $F412 as "%f"  
                        replace word with $F414 as "%f"  
                        replace word with $F610 as "%f"  
                        replace word with $F612 as "%f"  
                        replace word with $F614 as "%f"  
                        replace word with $F616 as "%f"  
                        replace word with $F810 as "%f"  
                        replace word with $F812 as "%f"  
                        replace word with $F814 as "%f"  
                        replace word with $F816 as "%f"  
                        replace word with $F818 as "%f" 
                    End Instructions 
                End FileDescription Fcoefficienttxt 
            End InputFiles PlasticConstants1 
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            OutputFiles PlasticConstants1 
                FileDescription PlasticConsttxt 
                    FileType: standard 
                    OutputFile: "PlasticConst.txt" 
                    Parameters 
                        S11 S22 S33 S12 S23 S13 
                    Instructions 
                        moveto line + 1 
                        read S11 as "%f" 
                        provide $S11  
                        read S22 as "%f" 
                        provide $S22  
                        read S33 as "%f" 
                        provide $S33  
                        read S12 as "%f" 
                        provide $S12  
                        read S23 as "%f" 
                        provide $S23  
                        read S13 as "%f" 
                        provide $S13 
                    End Instructions 
                End FileDescription PlasticConsttxt 
            End OutputFiles PlasticConstants1 
 
            SimCodeProcess PlasticConstants1 
                Program: "./PlasticConst1.1.exe" 
                ProcessType: transient 
                Environment: unrestored 
                ElapseTime: 30s 
                Prologue 
                    WriteInputSpecs: Fcoefficienttxt 
                Epilogue 
                    ReadOutputSpecs: PlasticConsttxt 
            End SimCodeProcess PlasticConstants1 
 
        End SimCode PlasticConstants1 
 
        SimCode Abaqus 
            InputFiles Abaqus 
                FileDescription abaqusUSETHISinp 
                    FileType: standard 
                    TemplateFile: "iSIGHT_abaqus_USETHIS.inp" 
                    InputFile: "abaqus_USETHIS.inp" 
                    Parameters 
                        C1133 C2233 C1212 C1313 C2323 C1111 C2222 C3333 C1122 S11 
                        S22 S33 S12 S23 S13 
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                    Instructions 
                        require S11 S22 S33 S12 S23 S13  
                        require C1313 C2323 C1111 C2222 C3333 C1122 C1133 C2233 C1212  
                        find "*Elastic, type=ORTHOTROPIC" ignore  
                        moveto $Line_Start 
                        moveto line + 1 
                        delimiter "," 
                        replace word with $C1111  
                        replace word with $C1122  
                        replace word with $C2222  
                        replace word with $C1133  
                        replace word with $C2233  
                        replace word with $C3333  
                        replace word with $C1212  
                        replace word with $C1313  
                        moveto $Line_Start 
                        moveto line + 1 
                        replace word with $C2323  
                        find "*Potential" ignore  
                        moveto $Line_Start 
                        moveto $Line_Start 
                        moveto line + 1 
                        replace word with $S11  
                        replace word with $S22  
                        replace word with $S33  
                        S12 = $S12 * sqrt( 3 ) 
                        S13 = $S13 * sqrt( 3 ) 
                        S23 = $S23 * sqrt( 3 ) 
                        replace word with $S12  
                        replace word with $S13  
                        replace word with $S23 
                    End Instructions 
                End FileDescription abaqusUSETHISinp 
            End InputFiles Abaqus 
 
            OutputFiles Abaqus 
                FileDescription NickelPureElasticdat 
                    FileType: standard 
                    OutputFile: "Nickel-PureElastic.dat" 
                    Parameters 
                        ReactionForce PENER reactionforce pener 
                    InstructionFile: "includedinMDOL1554082316.fdc" 
                End FileDescription NickelPureElasticdat 
            End OutputFiles Abaqus 
 
            SimCodeProcess Abaqus 
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                ScriptLanguage: DOSBatch 
                Script 
                    c: cd \Research\iSIGHT12d 
                    del Nickel-PureElastic.dat 
                    del Nickel-PureElastic.msg 
                    del Nickel-PureElastic.log 
                    del Nickel-PureElastic.sta 
                    del Nickel-PureElastic.com 
                    del Nickel-PureElastic.fil 
                    del Nickel-PureElastic.spc 
                    del Nickel-PureElastic.ipm 
                    del Nickel-PureElastic.mdl 
                    del Nickel-PureElastic.odb 
                    del Nickel-PureElastic.prt 
                    del Nickel-PureElastic.res 
                    del Nickel-PureElastic.stt 
                    del abaqus.rpy 
                    del Nickel-PureElastic.lck 
                    abaqus job=Nickel-PureElastic input=abaqus_UseThis.inp interactive 
                End Script 
                ProcessType: asynchronous 
                Environment: unrestored 
                ElapseTime: 1h 40m 
                AsynchronousRun 
                    AsyncFile: "Nickel-PureElastic.sta" 
                    AsyncPattern: "THE ANALYSIS HAS COMPLETED" 
                    AsyncDelay: 0s 
                End AsynchronousRun 
                Prologue 
                    WriteInputSpecs: abaqusUSETHISinp 
                Epilogue 
                    ReadOutputSpecs: NickelPureElasticdat 
                AuxiliaryOutputFiles: "Nickel-PureElastic.msg" 
                                      "Nickel-PureElastic.log" 
                                      "Nickel-PureElastic.sta" 
                                      "Nickel-PureElastic.com" 
                                      "Nickel-PureElastic.fil" 
                                      "Nickel-PureElastic.spc" 
                                      "Nickel-PureElastic.ipm" 
                                      "Nickel-PureElastic.mdl" 
                                      "Nickel-PureElastic.odb" 
                                      "Nickel-PureElastic.prt" 
                                      "Nickel-PureElastic.res" 
                                      "Nickel-PureElastic.stt" 
                                      "abaqus.rpt" 
            End SimCodeProcess Abaqus 
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        End SimCode Abaqus 
 
        SimCode DeleteOutput 
            SimCodeProcess DeleteOutput 
                ScriptLanguage: DOSBatch 
                Script 
                    del results.txt 
                End Script 
                ProcessType: transient 
                Environment: unrestored 
                ReturnCodes: 1 
                ElapseTime: 1s 
            End SimCodeProcess DeleteOutput 
 
        End SimCode DeleteOutput 
 
        SimCode DelAbaqusFiles 
            SimCodeProcess DelAbaqusFiles 
                ScriptLanguage: DOSBatch 
                Script 
                    del Nickel-PureElastic.msg 
                    del Nickel-PureElastic.log 
                    del Nickel-PureElastic.sta 
                    del Nickel-PureElastic.com 
                    del Nickel-PureElastic.fil 
                    del Nickel-PureElastic.spc 
                    del Nickel-PureElastic.ipm 
                    del Nickel-PureElastic.mdl 
                    del Nickel-PureElastic.odb 
                    del Nickel-PureElastic.prt 
                    del Nickel-PureElastic.res 
                    del Nickel-PureElastic.stt 
                    del Nickel-PureElastic.lck 
                    del abaqus.rpt 
                End Script 
                ProcessType: transient 
                Environment: unrestored 
                ReturnCodes: 1 
                ElapseTime: 5m 
            End SimCodeProcess DelAbaqusFiles 
 
        End SimCode DelAbaqusFiles 
 
        TaskProcess Task1 
            Control: [ 
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                Sequential [ 
                    DelAbaqusFiles 
                    DeleteOutput 
                    Lambda 
                    If (Lambda  !=  0.0) [ 
                        GPHULL 
                    ] 
                    If (Lambdadiff >= 0.0) [ 
                        Sequential [ 
                            ElasticConstants1 
                            PlasticConstants1 
                            GPaTOMPa1 
                            Abaqus 
                            Calculation4 
                        ] 
                    ] 
                ] 
            ] 
        End TaskProcess Task1 
 
        Optimization Task1 
            PotentialVariables: 
                F410 F412 F414 C1133 C2233 C1212 C1313 C2323 C1111 C2222 
                C3333 C1122 S11 S22 S33 S12 S23 S13 F610 F612 
                flag F614 F616 Dimensions F810 F812 F814 F816 F818 
            Variables: 
                F410 F412 F414 F610 F612 F614 F616 F810 F812 F814 
                F816 F818 
            VariableScaling 
                Parameter: F410 ScaleFactor: 1.0 
                Parameter: F412 ScaleFactor: 1.0 
                Parameter: F414 ScaleFactor: 1.0 
                Parameter: C1133 ScaleFactor: 1.0 
                Parameter: C2233 ScaleFactor: 1.0 
                Parameter: C1212 ScaleFactor: 1.0 
                Parameter: C1313 ScaleFactor: 1.0 
                Parameter: C2323 ScaleFactor: 1.0 
                Parameter: C1111 ScaleFactor: 1.0 
                Parameter: C2222 ScaleFactor: 1.0 
                Parameter: C3333 ScaleFactor: 1.0 
                Parameter: C1122 ScaleFactor: 1.0 
                Parameter: S11 ScaleFactor: 1.0 
                Parameter: S22 ScaleFactor: 1.0 
                Parameter: S33 ScaleFactor: 1.0 
                Parameter: S12 ScaleFactor: 1.0 
                Parameter: S23 ScaleFactor: 1.0 
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                Parameter: S13 ScaleFactor: 1.0 
                Parameter: F610 ScaleFactor: 1.0 
                Parameter: F612 ScaleFactor: 1.0 
                Parameter: flag ScaleFactor: 1.0 
                Parameter: F614 ScaleFactor: 1.0 
                Parameter: F616 ScaleFactor: 1.0 
                Parameter: Dimensions ScaleFactor: 1.0 
                Parameter: F810 ScaleFactor: 1.0 
                Parameter: F812 ScaleFactor: 1.0 
                Parameter: F814 ScaleFactor: 1.0 
                Parameter: F816 ScaleFactor: 1.0 
                Parameter: F818 ScaleFactor: 1.0 
            InputConstraints 
                Parameter: F410 LowerBound: -5.0 UpperBound: 7.0 
                Parameter: F412 LowerBound: -7.8 UpperBound: 7.75 
                Parameter: F414 LowerBound: -5.8 UpperBound: 5.9 
                Parameter: F610 LowerBound: -8.25 UpperBound: 7.6 
                Parameter: F612 LowerBound: -9.5 UpperBound: 4.25 
                Parameter: F614 LowerBound: -12.25 UpperBound: 12.25 
                Parameter: F616 LowerBound: -7.5 UpperBound: 7.4 
                Parameter: F810 LowerBound: -7.5 UpperBound: 12.5 
                Parameter: F812 LowerBound: -12.0 UpperBound: 12.0 
                Parameter: F814 LowerBound: -10.75 UpperBound: 10.75 
                Parameter: F816 LowerBound: -13.0 UpperBound: 12.9 
                Parameter: F818 LowerBound: -10.0 UpperBound: 10.0 
            PotentialObjectives: 
                Lambda LambdaMax Lambdadiff ReactionForce K PENER reactionforce 
pener RF F410 
                F412 F414 C1133 C2233 C1212 C1313 C2323 C1111 C2222 C3333 
                C1122 S11 S22 S33 S12 S23 S13 F610 F612 flag 
                F614 F616 Dimensions F810 F812 F814 F816 F818 
            Objectives 
                Parameter: RF Direction: maximize Weight: 1.0 ScaleFactor: 1.0 
            OutputConstraints 
                Parameter: Lambdadiff LowerBound: 0.0 Weight: 1.0 ScaleFactor: 1.0 
 
            OptimizePlan SeqQuadProg 
                DefaultUpperBound: 1.0E15 
                UseScaling: yes 
                OptimizeStep Step1 
                    Technique: "Sequential Quadratic Programming - NLPQL" 
                    Prologue 
                        RestoreBestSolution: no 
                        RerunTask: no 
                    Epilogue 
                        RestoreBestSolution: no 
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                        RerunTask: no 
                    Options 
                        FiniteDifference: 0.01 
                        UseRestarts: yes 
                Control: [ 
                    Step1 
                ] 
 
            OptimizePlan GeneralizedReducedGradient 
                DefaultUpperBound: 1.0E15 
                UseScaling: yes 
                OptimizeStep Step1 
                    Technique: "Generalized Reduced Gradient - LSGRG2" 
                    Prologue 
                        RestoreBestSolution: no 
                        RerunTask: no 
                    Epilogue 
                        RestoreBestSolution: no 
                        RerunTask: no 
                    Options 
                        GradientStepSize: 0.01 
                OptimizeStep Step2 
                    Technique: "Sequential Quadratic Programming - NLPQL" 
                    Prologue 
                        RestoreBestSolution: yes 
                        RerunTask: no 
                    Epilogue 
                        RestoreBestSolution: yes 
                        RerunTask: no 
                    Options 
                Control: [ 
                    Step1 
                    Step2 
                ] 
 
            OptimizePlan ReducedGradient 
                DefaultUpperBound: 1E15 
                UseScaling: yes 
                Control: [ 
                ] 
        End Optimization Task1 
 
        TaskPlan Task1 
            StopTaskPlanOnError: no 
            Control: [ 
                SeqQuadProg 
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                GeneralizedReducedGradient 
            ] 
        End TaskPlan Task1 
 
        DataStorage Task1 
            Restore: no 
            DataLog: "Final_12Dmax.db" Mode: append 
            DataLookUp: "Task1.db" 
            MatchMode: Exact 
            Levels: all 
            StoreGradRuns: yes 
            StoreApproxRuns: yes 
        End DataStorage Task1 
 
    End Task Task1 
 
    End TaskProcess Task0 
 
    Optimization Task0 
        Variables: none 
        VariableScaling 
 
        # PLAN TO BE CONFIGURED BY ADVISOR: 
        OptimizePlan PriorityRankedPlan 
            Control: [ 
            ] 
    End Optimization Task0 
 
    TaskPlan Task0 
        StopTaskPlanOnError: no 
        Control: [ 
            PriorityRankedPlan 
        ] 
    End TaskPlan Task0 
 
    DataStorage Task0 
        Restore: no 
        DataLog: "Task0.db" Mode: overwrite 
        DataLookUp: "Task0.db" 
        MatchMode: Exact 
        Levels: all 
        StoreGradRuns: yes 
        StoreApproxRuns: yes 
    End DataStorage Task0 
 
End Task Task0 
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APPENDIX I- ABBREVIATIONS 
 
 
 
 
CFRC Continuous Fiber Reinforced Composites 
FE  Finite Element 
FEM  Finite Element Methods 
HCD  Highly Constrained Design 
MSD  Microstructure Sensitive Design 
ODF Orientation Distribution Function 
FZ Fundamental Zone 
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