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ABSTRACT 

 
The Structure and Function of Biological Networks 

Daniel Duanqing Wu 
Xiaohua Hu 

 
Biology has been revolutionized in recent years by an explosion in the 

availability of data. Transforming this new wealth of data into meaningful 

biological insights and clinical breakthroughs requires a complete overhaul both 

in the questions being asked and the methodologies used to answer them. A 

major challenge in organizing and understanding the data is the ability to define 

the structure in biological systems, especially high level structures. Networks are 

a powerful and versatile tool useful in bridging the data and the complex 

biological systems. To address the importance of the higher-level modular and 

hierarchical structure in biological networks, we have investigated in this thesis 

the topological structure of protein-protein interaction networks through a 

comprehensive network analysis using statistical and computational techniques 

and publicly available protein-protein interaction data sets. Furthermore, we 

have designed and implemented a novel and efficient computational approach to 

identify modules from a seed protein. The experiment results demonstrate the 

efficiency and effectiveness of this approach in finding a module whose members 

exhibit high functional coherency. In addition, toward quantitative studies of 

protein translation regulatory networks (PTRN), we have developed a novel 

approach to reconstruct the PTRN through integration of protein-protein 
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interaction data and Gene Ontology annotations. We have applied 

computational techniques based on hierarchical random graph model on these 

reconstructed PTRN to explore their modular and hierarchical and to detect 

missing and false positive links from these networks. The identification of the 

high order structures in these networks unveils insights into their functional 

organization.  
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CHAPTER 1. INTRODUCTION 
 
Networks are a natural, powerful, and versatile tool for representing the 

structure of complex systems and have been widely used in many disciplines, 

ranging from sociology to physics to biology [Strogatz 2001, Newman 2001, 

Girvan and Newman 2002, Newman 2003a]. Examples of such complex networks 

include those of personal or social contacts in sociology and epidemiology, 

citation networks underlying collections of published papers in information 

science, the Internet and the World Wide Web in computer science and 

information technology, and a growing number of biological networks, such as 

protein-protein interaction networks, metabolic networks, and genetic regulatory 

networks.  

A network is a collection of network components representing its 

fundamental units and a set of connections featuring the relationship between 

these components. Traditionally, complex networks have been described by 

graph theory, in which the network components are represented by nodes (or 

nodes) and their relations by edges. Over the past decade, there have been strong 

interest and attention devoted toward better understanding the infrastructure 

underlying complex networks, particularly their topologies and the large-scale 

properties that can be derived. It is a fundamental belief that network functions 

are affected by network structures. 
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The functioning of complex biological systems demands the intricate 

coordination of various cellular processes and their participating components. 

Advances in technology and several crucial biological discoveries (such as the 

sequencing of human genome) have allowed experimental biology to provide 

much more detailed descriptions of these processes and components, resulting in 

large amount of biological data. This huge amount of data accompanied by the 

expectation that these data will provide detailed understanding of cellular 

processes has been driving the excitement in today’s biology and computer 

science. One of the great tasks in the post-genomic era is to organize, digest these 

data, and ultimately translate this new wealth of data into meaningful biological 

insights and clinical breakthroughs [Kitano 2002].   

However, studying complex biological networks has proved to be 

significantly challenging. Although useful, the data generated from high-

throughput techniques are often incomplete and contains un-ignorable errors. 

Complicated with their large sizes, biological networks do not lend themselves to 

direct inspection and offer no single place from which a complete picture of 

topology can be obtained. As a consequence, the topology is often inferred from 

appropriate network measurements through various sophisticated approaches, 

each having its own strengths, weaknesses, and resulting in a distinct view of the 

network topology.  Furthermore, the intrinsic dynamic and evolving nature of 

biological networks also makes the task more difficult. 
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The primary goal of this thesis is to decipher and utilize the structure of 

biological networks to shed new insights on the functions of biological systems, 

with focus on the modular and hierarchical architecture of biological networks, 

exemplified by protein translation regulatory networks (PTRN).   

 

1.1 Biological networks 

Biological networks have been used to model biological interactions at many 

different levels of detail, ranging from the atomic interactions in a folded protein 

structure to the relationship of organisms in a population or ecosystem. In the 

context of this thesis, we focus on molecular interaction networks when referring 

to biological networks.  

The molecular interactions between individual constituents including 

genes, proteins, and metabolites are examined at the level of the cell, tissue, and 

organ to ultimately describe the entire organism or system. Therefore, biological 

networks provide an effective and important systems biology approach to 

understand how system properties emerge from these interactions. 

 In the multi-layered organization of organisms, molecular interactions 

form the bridge between individual molecules and macro-scale organization of 

the cell through functional modules [Oltvai and Barabási, 2002]. Biological 

networks representing these interactions may be in the form of metabolic 

networks, signal transduction pathways, genetic regulatory networks, and 
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protein-protein interaction networks. These different types of networks provide 

complementary information useful in different contexts.  

Metabolic networks have a relatively longer history compared to other 

biological networks [Jeong et al 2000]. They characterize the process of 

biochemical reactions performing a particular metabolic function. There have 

been successful attempts at modeling, synthesizing and organizing metabolic 

networks into public databases such as the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [Kanehisa and Goto 2000, Krishnamurthy et al 2003], in which 

the metabolic interactions are represented in terms of various binary relations.  

Metabolic networks are chains of reactions linked to each other by 

chemical compounds (metabolites) through product-substrate relationships. A 

natural mathematical model for metabolic networks is a directed graph in which 

each node corresponds to a compound, and each edge corresponds to a reaction 

or an enzyme. The direction of an edge indicates whether the compound 

connected by the edge is a substrate or a product of the reaction/enzyme. It is 

also possible to replace this model by a directed graph if we are only interested 

in relations between enzymes. In such a model, the nodes of the graph represent 

the enzymes and a directed edge from one enzyme to another indicates that a 

product of the first enzyme is a substrate of the second. 

Signal transduction pathways model another dynamic mechanism in 

which how biological information is transferred between and within cells [Weng 
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et al 1999]. Cells are continually sensing and interacting with their environment, 

using signal transduction pathways and regulatory mechanisms to coordinate 

multiple functions so that they may respond and acclimate to an ever-changing 

environment [Ideker et al 2002].  

Genetic regulatory networks, most frequently referred to as 

transcriptional regulatory networks or just genetic networks, represent 

regulatory interactions between pairs of genes and are generally inferred from 

gene expression data through microarray experiments. A simple and frequently 

used mathematical model for genetic regulatory networks is a Boolean network 

model in which nodes correspond to genes and a directed edge from one gene to 

the other represents the regulatory effect of the first gene on the second. The 

edge is often labeled by either a positive (+) or negative (-) sign to represent up- 

or down-regulation, respectively. More sophisticated models that capture the 

degree of regulation through weighted graphs and/or differential equations 

have also been proposed [Alm and Arkin 2003]. 

Proteins are executors of cellular functions. They play critical roles in cell 

structure, biochemical activity and dynamic behavior, mostly by interacting with 

other proteins. A better understanding of the protein-protein interaction 

networks is a crucial step toward deciphering the structure, function, and 

dynamics of biological systems [Ideker and Sharan 2008]. So far, protein-protein 

interactions represent the largest and most diverse data sets available [Uetz et al 



 6 

2000, Walhout et al 2000, McGraith et al 2000, Rain et al 2001, Ito et al 2001, Ho et 

al 2002, Giot et al 2003, Li et al 2004]. Some of the data have been accumulated for 

decades obtained from dispersed literature done by small scale traditional 

laboratory experiments. The first large-scale maps were generated using yeast 

two-hybrid systems. High-throughput studies later used affinity purification 

followed by mass spectrometry. Various computational approaches have also 

been used to predict functional relations between proteins as well as physical 

protein-protein interactions [Bock and Gough 2001, Aloy and Russell 2002, Kim 

et al 2002, Aloy and Russell 2003, Han et al 2004, Huang et al 2004, Espadaler et 

al 2005, Ogmen et al 2005, Martin et al 2005, Pitre et al 2006, Najafabadi and 

Salavati 2008]. Therefore, PPI networks provide a natural starting point toward 

deciphering the structure and function of biological networks. In this thesis, I use 

protein-protein interactions as the primary data sets.  

 

1.2 Network models 

In order to capture features observed in real world networks, many theoretical 

network models have been proposed. These models play an important role in 

shaping our understanding of complex networks and help to explain the origin 

of observed network characteristics [Barabási and Oltvai 2004].  

Each of these models is characterized by the way in which networks are 

created as well as by a few statistical features that networks display, such as 
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degree distribution, average path length between pairs of nodes, and clustering 

coefficient. Among these models, there are four, namingly random networks, 

small-world networks, scale-free networks, and hierarchical networks, that have 

a direct impact on our understanding of biological networks and deserve a 

further introduction here.  

Random networks are the simplest, straightforward, yet mathematically 

elegant realization of a complex network, first studied from a pure mathematics 

point of view by [Erdös and Rényi 1959]. In a random network of N nodes, each 

pair of nodes is connected by an edge with uniform probability p, resulting in a 

graph with approximately 
( )

2

1−NN
p  randomly placed edges. The node degrees 

follow a Poisson distribution, indicating that most nodes have approximately the 

same number of links. The mean path length in a random network is 

proportional to the logarithm of the network size, demonstrating the 

characterized small-world property. 

The small-world model was first proposed by [Watts and Strogatz 1998] 

who started a large area of research related to the small-world topology. In a 

small-world network, even if it may have a large number of nodes, the typical 

distance between two nodes is very small.  Small-world networks have low 

average path lengths and high clustering coefficients. The small-world property 

seems pervasive in almost all networks [Fell and Wagner 2000, Newman 2000, 

Wagner and Fell 2001].  
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Scale-free networks have attracted much attention for more than a decade 

[Barabási and Albert 1999]. It is a theoretic model characterized by a connectivity 

distribution which decays as a power-law. This feature is suggested to be a direct 

consequence of two generic mechanisms: network evolution and preferential 

attachment. In a scale-free network, there are large variations in the number of 

links per node but there are also a few nodes that have many links, forming the 

so-called “hubs”. Like small-world networks, scale-free networks have low 

average path lengths and high clustering coefficients. It can be shown that a 

scale-free network has the small-world properties, but not all small-world 

networks are scale-free. Also, most biological networks approximate a scale-free 

topology, but not all biological networks in cell are scale-free [Pastor-Satorras 

and Vespignani 2001, Albert and Barabási 2002, Dorogovtsev and Mendes 2002]. 

Hierarchical networks describe the topology in which a root node (i.e. the 

top level) is connected to one or more other nodes that are one level lower in the 

hierarchy (i.e. the second level) with a link between each of the second level 

nodes and the top level root node, while each of the second level nodes that are 

connected to the top level root node also have one or more other nodes that are 

one level lower in the hierarchy (i.e., the third level) connected to it.  

The modular structure has been found in many biological networks 

[Ravasz et al 2002, Ravasz and Barabási 2003, Holme et al 2003]. Modules (or 

communities, a term often used in sociology) can be loosely defined as groups 
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within a network where links within modules are much denser than those across 

modules. Studying the modularity of a large network is potentially very useful 

[Lu et al 2006, Wang and Zhang 2007]. It not only provides structural 

information about the network, but also reveals the underlying mechanisms that 

determine the network structure and dynamics. 

While modular structure in a network concerns mostly the grouping 

(clustering) of network components, hierarchical structure goes beyond simple 

grouping by including organization at all scales in the network. Cellular 

functions have been widely believed to be organized in a modular manner 

hierarchically where each module at each hierarchical level performs a relatively 

independent task.  

The study of the modular and hierarchical structure in networks has 

received a lot of attention in recent years. Yet, many questions still remain to be 

answered. 

 

1.3 Motivations 

With the goal of deciphering and utilizing the structure of biological networks, 

this thesis attempts to address the following research questions: 

1) What are the modular and hierarchical structures of biological 

networks?  
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2) What are the efficient computational approaches (or How) to 

determine these structures? 

3) What are the biological significances of these structures?  

Network topology plays an important role in understanding network 

structure and performance. Several of the most important and commonly used 

topological features include degree, clustering coefficient, and average path 

length. As the first step in this endeavor, I will perform a comprehensive 

comparative study of these global topological features on protein-protein 

interaction networks from different species. I will use computational and 

statistical techniques and pre-existing data from publicly available sources. 

Protein translation is a vital cellular process for any living organism. There 

has been an extensive effort using computational methods in deciphering the 

transcriptional regulatory networks. However, research on translation regulatory 

networks has caught little attention in the bioinformatics and computational 

biology community probably due to the nature of available data and the bias of 

the conventional wisdom. In this thesis, I will reconstruct protein translation 

networks in yeast and perform a global network analysis of these reconstructed 

networks [Wu and Hu 2006c, Wu and Hu 2007]. This work attempts to facilitate 

the elucidation of the structure and properties of translation networks.  

Modular structure is a property common to many networks. This 

structure results from modules of densely connected nodes within a network. 
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Module discovery in biological networks may help us better understand the 

organizational principles of the biological systems. By separating the network 

into modules which may be functional groups could simplify the functional 

analysis considerably. Many methods have been proposed for module detection 

based on a variety of distinct approaches. However, most of the approaches 

either suffer from high computational cost or sacrificed quality. I have developed 

and implemented a novel algorithm for fast module identification by hierarchical 

growth [Wu and Hu 2005]. Since we deal with a data set with incompleteness 

and noise, I will also explore using hierarchical random graph model to infer the 

modular and hierarchical structures of PPI networks. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

 

In order to discuss networks formally, I first present the notion of a graph and an 

introduction of the most basic graph theoretic concepts in this chapter. The 

notations and naming conventions used in this thesis, however, are by no means 

the rule or unequivocal. One may often see other different notations in the 

literature.   

 

2.1 Graph theoretic definitions 

A network can be described in more formal mathematical language as a graph. 

However, we will use both terms interchangeably in this thesis. First, we define 

some basic concepts of graph theory that will allow us to compare and 

characterize different complex networks.  

The graph representation can be differentiated based on the level of 

organization. In the context of biological networks, the graph nodes are the 

network components which can be proteins, genes, metabolites, or modules. An 

edge between two nodes indicates an interaction between the corresponding 

molecules.  

A graph is usually denoted with ),( EVG , where V is the set of nodes and 

VVE ×⊆  is the set of edges connecting the nodes. An edge Euv∈  is a link 

between the pair of nodes u and v where Vvu ∈, . 
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The most common type of graph is called a simple graph. In simple graphs, 

there is at most one edge between any two nodes. If multiple edges are allowed 

between nodes, the graph is known as a multi-graph. A self-loop is an edge whose 

end nodes are the same node. A graph that may contain multiple edges and 

graph loops is called a pseudo graph. In this thesis, I will mainly use simple 

graphs.  

A sub-graph of a graph G is a graph whose node and edge sets are subsets 

of those of G. A super-graph of a graph G is a graph that contains G as a sub-graph. 

A graph is directed if its edges are directed (pointing toward either one of 

the ends) and undirected otherwise. A graph is complete (or called a clique) if every 

node has a connecting edge to every other node. The complete graph of n nodes 

is often denoted by nk where nk  would have 
2

)1( −nn
 edges.  

Nodes that share a common edge are adjacent. The degree of a node is the 

number of edges incident with it, i.e. a measure of immediate adjacency. In 

directed graphs, the in-degree of a node is the number of edges ending at the 

node, whereas the out-degree is the number of edges beginning at the node. A 

node of degree zero is an isolated node. If the edge set is finite, then the total sum 

of node degrees is equal to twice the number of edges. A degree sequence is a list 

of degrees of a graph in non-increasing order. A sequence of non-increasing 

integers is realizable if it is a degree sequence of some graph.  
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The degree distribution, defined as the fraction of nodes in the network that have 

a specified degree, is a function describing the probability of a node having the specified 

degree.  

The set of neighbors, called the (open) neighborhood )(vNG , for a node v in a 

graph G, consists of all nodes adjacent to v but not including v. When v is also 

included, it is called a closed neighborhood, denoted by ][vNG . In this thesis, when 

stated without any qualification, a neighborhood is assumed to be open. 

The diameter of a network, <l>, is defined as the average distance between 

any two nodes. The distance between two nodes is defined as the number of 

edges along their shortest path. 

The clustering coefficient is used to quantify the probability that an edge 

exists between two neighboring nodes of a node. For example, in a network, if 

node A and node C are neighbors of node B, i.e. B connects to both A and C, then 

the clustering coefficient defines how probable that node A directly connects to 

node C. Formally, the clustering coefficient is defined as  

)1(

2

−
=

ii

i
i kk

e
C , 

where ik  is the number of neighbors of node i, ie  is the number of edges 

connecting these neighbors, and 
2

)1( −ii kk
 denotes the maximum number of 

possible edges connecting these neighbors. A global measurement related to iC  
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is the average clustering coefficient C  over all nodes in the network, 

characterizing the overall tendency of nodes to form clusters or groups.  

 

2.2 Topology of protein-protein interaction networks  

In their pioneering work, [Barabási and Albert 1999] describe a highly 

heterogeneous protein-protein interaction (PPI) network with scale-free 

connectivity properties in yeast. The signature of scale-free networks, as 

opposing to random networks, is that the degrees (or connectivity) of nodes 

follow a power-law, i.e.  

γ−≈ kkP )( , 

where )(kP  is the probability of a node having a degree of k and 0>γ .  

Power law feature has been observed in many networks, such as PPI 

networks of S. cerevisiae, H. pylori, C.elegans, and D. melanogaster [Walhout et al 

2000, Li et al 2004, Giot et al 2003].  

In PPI networks, not only the degree distribution exhibits power-law 

dependence, other topological properties have also been shown to be scale-free. 

One such property is the clustering coefficient. Yook and colleagues [Yook et al 

2004] observe that the clustering coefficient of S. cerevisiae follows a power-law. 

[Ng and Huang 2004] confirms the popular scale-free topology across six 

different species based on degree distribution and diameter. 
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However, not all research agrees on the power-law behavior in all PPI 

networks. [Thomas et al 2003] find that the connectivity distribution in a human 

PPI network does not follow power law. They argue that current belief of power 

law distribution may reflect a behavior of a sampled sub-graph. Since we only 

have an incomplete and low coverage sample of an entire protein interactome, 

the behavior in a sampled sub-graph does not necessarily imply the same 

behavior for the whole graph. They call for the attention to the importance of 

assessing the accuracy of the observed degree distribution in reference to the full 

proteome. From a slightly different angle, [Tanaka et al 2005] report that some 

PPI networks do not follow power law if using a rank-degree plot instead of 

regularly used frequency-degree plot. [Colizza et al 2005] evaluate three PPI 

networks constructed from yeast data sets. Although they observe that the 

connectivity distribution follows power law, only one of the three networks 

approximates power law behavior for the clustering coefficient. [Soffer and 

Vazquez 2004] find that the power law dependence of the clustering coefficient is 

to some extent caused by the degree correlations of the networks, with high 

degree nodes preferentially connecting with low degree ones.  

A more recent study by [Yang et al 2008] provides an improved method 

for extracting accurate topological information about real PPI networks from 

experimentally-obtained sub-networks. They found that random sampling of 

networks preserves topological information, regardless of the type of network 
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analyzed. Their results indicate that the degree distribution of the original 

network may not be scale-free, but in fact exhibit an exponential distribution. As 

mentioned earlier, PPI data obtained from high-throughput techniques have 

unavoidable limitations including false positive, false negative, and assumed 

binary interactions [Gandhi et al 2006]. [Yang et al 2008] argue that these false 

positives may contribute to the observed power-law behavior of the PPI 

networks based on the following rationale: (i) the high confidence Drosophila 

network (purportedly containing fewer false positives [Bader et al 2004]) has a 

stronger exponential component (also observed by [Przulj et al 2004]); (ii) many 

proteins preferentially behave as either baits or preys but not both, suggesting an 

experimentally-introduced preferential attachment phenomenon (introduction of 

hubs by experimental bias) which, as shown by [Barabási and Albert 1999], is a 

key factor for occurrence of power-law distributions; and (iii) the degree 

distribution of a mammalian PPI network obtained by [Ma'ayan et al 2005] from 

the literature, which should have a much lower rate of false positives, exhibits an 

almost purely exponential distribution.  

Therefore, even though some questions in this fundamental area have 

been addressed, many important ones still resist complete resolution. We will 

discuss a comprehensive evaluation of the topological structure of a variety of 

PPI networks in Chapter 3. 
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2.3 Protein translation regulatory networks (PTRN) 

The central dogma of molecular biology describes that the genetic information is 

transferred from DNA to mRNA through transcription and from mRNA to 

protein via translation. In every living organism, translation is a vital cellular 

process in which the information contained in the mRNA sequence is translated 

into the corresponding protein by the complex translation machinery.  

There are three major steps in protein biosynthesis: initiation, elongation, 

and termination. Initiation is a series of biochemical reactions leading to the 

binding of ribosome on the mRNA and the formation of the initiation complex 

around the start codon [Pain 1996]. This process involves various regulatory 

proteins (the so-called initiation factors). Eukaryotic protein synthesis exploits 

various mechanisms to initiate translation, including cap-dependent initiation, 

re-initiation, and internal initiation. For the majority of mRNAs in the cell, 

translation is carried out through the cap-dependent pathway. Although 

debatable, it is widely believed that some cellular mRNAs contain internal 

ribosome entry sites (IRES) and there exists a cap-independent, IRES mediated 

translation [Merrick 2004]. During elongation, codon-specific tRNAs are 

recruited by the ribosome to grow the polypeptide chain one amino acid at a 

time while the ribosome moves along the mRNA template (one codon at a time). 

This process also involves various elongation factors and proceeds in a cyclic 

manner. In termination phase, the termination codon is recognized by the 
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ribosome. The newly synthesized peptide chain and eventually the ribosomes 

themselves are released.    

Recent years have witnessed the breakthrough in high-throughput 

technologies that have been used in monitoring the various components of the 

transcription and translation machineries. DNA microarrays enable the 

estimation of the copy number for every mRNA species within a single cell and 

the changes in gene expression temporally or under different physiological 

conditions [Lockhart and Winzeler 2000]. Two-dimensional gel electrophoresis 

coupled with tandem mass spectrometry makes it possible to measure 

simultaneously specific protein levels for thousands of proteins in the cell. These 

high-throughput technologies and the success of several genome projects are 

rapidly generating an enormous amount of data about genes and proteins that 

govern such cellular processes as transcription and translation. Analyzing these 

data is providing new insights into the regulatory mechanisms in many cellular 

systems. One of the major goals in post-genomic era is to elucidate in a holistic 

manner the mechanisms by which sub-cellular processes at the molecular level 

are manifest at the phenotypic level under physiological and pathological 

conditions.  

The complexity and the large sizes of the transcription and translation 

machineries make computational approaches attractive and necessary in 

facilitating our understanding the design principles and functional properties of 
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these cellular systems. Transcriptional regulation, used by cells to control gene 

expression, has been a focus in a variety of computational methods to infer the 

structure of genetic regulatory networks or to study their high level properties 

[de Jong 2002]. However, research on translational regulatory networks has 

caught little attention in the bioinformatics and computational biology 

community. This contrast may partly due to two factors. Firstly, transcriptional 

control, other than translational control, has long been regarded by conventional 

wisdom as the primary control point in gene expression. Secondly, the success of 

genome projects and the application of high-throughput technologies provide 

tremendous amount of data about transcriptional regulation that are readily 

available for computational analysis. On the contrary, data about translational 

control are still very limited and probably too specialized so that they are 

consumed primarily by biologists. 

Proteins, rather than DNAs or mRNAs, are the executors of the genetic 

program. They provide the structural framework of a cell and perform a variety 

of cellular functions such as serving as enzymes, hormones, growth factors, 

receptors, and signaling intermediates. Biological and phenotypic complexity 

eventually derives from changes in protein concentration and localization, post-

translational modifications, and protein-protein interactions. Expression levels of 

a protein depend not only on transcription rates but also on such control 

mechanisms as nuclear export and mRNA localization, transcript stability, 
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translational regulation, and protein degradation. Results from biological 

research have demonstrated that translational regulation is one of the major 

mechanisms regulating gene expression in cell growth, apoptosis, and 

tumorigenesis [Holland 2004]. Therefore, study of protein translation networks, 

especially from systems biology perspective, may provide new insights into our 

understanding of this important cellular process.  

Very limit work has been done in this regard. Mehra and colleagues 

[Mehra et al 2003] develop a genome-wide model for the translation machinery 

in E. coli that provides mapping between changes in mRNA levels and changes 

in protein levels in response to environmental or genetic perturbations. They also 

propose a mathematical and computational framework [Mehra and 

Hatzimanikatis 2006] that can be applied to the analysis of the sensitivity of a 

translation network to perturbation in the rate constants and in the mRNA levels 

in the system.  

However, much more research is needed in this area. Towards the goal of 

understanding how translation machinery functions from a system’s perspective, 

it is imperative that we have a better understanding of the global properties of 

protein translation regulatory networks, especially integrated with functional 

perspectives. We will present our work on reconstructing and analyzing protein 

translation regulatory networks in Chapter 5 and Chapter 6.  
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2.4 Identifying network modular structure 

The study of modular (or community, both terms will be used interchangeable in 

this thesis) structure in a network is not new. It is closely related to the graph 

partitioning in graph theory and computer science as well as the hierarchical 

clustering in sociology [Newman 2003a]. However, recent years have witnessed 

an intensive activity in this field partly due to the dramatic increase in the scale 

of networks being studied. Many algorithms for finding communities in 

networks have been proposed. They can be roughly classified into two 

categories, divisive and agglomerative.  

The divisive approach takes the route of recursive removal of nodes (or 

edges) until the network is separated into its components or communities, 

whereas the agglomerative approach starts with isolated individual nodes and 

joins together small communities.  

One important algorithm is proposed by Girvan and Newman (the GN 

algorithm) [Girvan and Newman 2002]. The GN algorithm is based on the 

concept of betweenness, a quantitative measure of the number of shortest paths 

passing through a given node (or edge). The nodes (or edges) with the highest 

betweenness are believed to play the most prominent role in connecting different 

parts of a network. The GN algorithm detects communities in a network by 

recursively removing these high betweenness nodes (or edges). It has produced 

good results and is well adopted by different authors in studies of various 
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networks [Newman 2003a], but has a major disadvantage which is its 

computational cost. For sparse networks with n nodes, the GN algorithm is of 

)( 3nO  time. Various alternative algorithms have been proposed [Newman 2004a, 

Newman 2004b, Newman and Girvan 2004, Donetti and Munoz 2004, White and 

Smyth 2005, Lancichinetti et al 2009, Mucha et al 2010], attempting to improve 

either the quality of the community structure or the computational efficiency of 

finding communities. 

The GN algorithm has been applied to a number of metabolic networks 

from different organisms to detect communities that relate to functional units in 

the networks [Holme et al 2003]. It has also been adapted to analyze a network of 

gene relationships as established by co-occurrence of gene names in published 

literature and to detect communities of related genes [Wilkinson and Huberman 

2004]. 

A slightly different approach is to identify community structure in 

protein-protein interaction network by growing from a given seed protein or 

proteins. This may also be used to answer question such as what is the 

community a given protein (or proteins) belongs to [Maraziotis et al 2007]. Due 

to the complexity and modularity of biological networks, it may be more feasible 

computationally to study a community containing one or a few proteins of 

interest. Hashimoto and colleagues [Hashimoto et al 2004] have used such an 

approach to growing genetic regulatory networks from seed genes. Their work is 
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based on probabilistic Boolean networks and sub-networks are constructed in the 

context of a directed graph using both the coefficient of determination and the 

Boolean function influence among genes. The similar approach is also taken by 

Flake and colleagues [Flake et al 2002] to find highly topically related 

communities in the Web based on the self-organization of the network structure 

and on a maximum flow method. 

Related works also include those that predict co-complex proteins. Jansen 

and colleagues [Jansen et al 2002] use a procedure integrating different data 

sources to predict the membership of protein complexes for individual genes 

based on two assumptions: first, the function of any protein complex depends on 

the functions of its subunits; and second, all subunits of a protein complex share 

certain common properties. Bader and Hogue [Bader and Hogue 2003] report a 

Molecular Complex Detection (MCODE) clustering algorithm to identify 

molecular complexes in a large protein interaction network. MCODE is based on 

local network density – a modified measure of the clustering coefficient. Bu and 

colleagues [Bu et al 2003] use a spectral analysis method to identify the 

topological structures such as quasi-cliques and quasi-bipartites in a protein-

protein interaction network. These topological structures are found to be 

biologically relevant functional groups. In our previous work, we developed a 

spectral-based clustering method using local density and node neighborhood to 

analyze the chromatin network [Hu et al 2004, Hu 2005].  
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Additional works along this line of research are based on the concept of 

network modularity introduced by Hartwell and colleagues [Hartwell et al 1999]. 

The works by [Spirin and Mirny 2003] and [Rives and Galitski 2003] both used 

computational analyses to cluster the yeast protein-protein interaction network 

and discovered that molecular modules are densely connected with each other 

but sparsely connected with the rest of the network. 

Comprehensive comparisons of different approaches to community 

structure identification or clustering in terms of robustness, sensitivity and 

computational cost can be found in [Danon et al 2005, Brohee and van Helden 

2006]. 

Another active research frontier in this area is the identification of 

functional modules in PPI networks, who share common cellular function 

beyond the scope of classical pathways, by means of detecting differentially 

expressed regions in PPI networks. This requires on the one hand an adequate 

scoring of the nodes in the network to be identified and on the other hand the 

availability of an effective algorithm to find the maximally scoring network 

regions. [Ideker et al 2002] have proposed to identify interaction modules in this 

setting by devising firstly an adequate scoring function on networks and 

secondly an algorithm to find the high-scoring sub-networks. The underlying 

combinatorial problem has been proven to be NP-hard for additive score 

functions defined on the nodes of the network. [Ideker et al 2002] use a heuristic 
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strategy based on simulated annealing and develop a score to measure the 

significance of a sub-network that includes the integration of multivariate P-

values. This score has been extended by [Rajagopalan and Agarwal 2005] to 

incorporate an adjustment parameter in conjunction with a greedy search 

algorithm in order to obtain smaller subgraphs. This approach however, 

excludes the possibility to combine multiple P-values. Variants of greedy search 

strategies have also been used by [Sohler et al 2004, Cabusora et al 2005, Nacu et 

al 2007]. An alternative edge scoring based on correlation of gene expression has 

been proposed by [Guo et al 2007]. All the former methods are heuristic 

approaches that cannot guarantee to identify the maximally scoring subgraph. 

Some of these often computationally demanding approaches tend to deliver 

large high-scoring networks, which may be difficult to interpret. [Dittrich et al 

2008] have proposed a new approach that is characterized by a modular scoring 

function, based on signal-noise decomposition implemented as a mixture model. 

This solution permits the smooth integration of multivariate P-values derived 

from various sources, delivers provably optimal and suboptimal solutions to the 

maximal scoring sub-graph problem by integer-linear programming (ILP) in 

reasonable running time, and allows to control the resultant sub-network size by 

an adjustment parameter, which is statistically interpretable as false-discovery 

rate (FDR). 
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We will present a novel and efficient approach for detecting protein 

modules in PPI networks in Chapter 4.  

 

2.5 Hierarchical structure in complex networks  

This line of research is somewhat related to work on the modular structure identification, 

however, at a higher level beyond the modular structure, dealing with uncovering some 

homogeneity in the heterogeneity of nodes in complex networks [Shen et al 2009]. From 

statistics perspectives, finite mixture distributions appear to be the framework to choose.  

[Daudin et al 2008] propose a finite mixture model for random graphs and use an 

EM algorithm to estimate the parameters. The joint distribution of the random variables 

that describe each group to which a node belongs is approximated (in the E-step of EM 

algorithm) by the product of the conditional distribution of each variable given the rest. 

They resort to a heuristic criterion to obtain the number of groups.  [Handcock et al 2007] 

report latent position cluster model where each node is assigned a latent position in a 

Euclidean space. They use two methods to determine the latent position and the cluster 

membership of the nodes, a two-stage maximum-likelihood estimation (EM at second 

stage) and a standard Markov chain.  

To address the important questions such as “How can we tell what a network 

looks like, when we can’t actually look at it and don’t even have a clue what it looks 

like?” [Newman and Leicht 2007] propose a method using mixture model and EM to 

explore networks where nodes are classified to groups based on the observed patterns of 

connections between them. 
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Many studies indicate that there exists a high degree of clustering or 

modularity in biological networks. [Ravasz et al 2002] report that the network 

modules combined with each other in a hierarchical manner form a hierarchical 

network, which accounts for the coexistence of modularity, local clustering, and 

scale-free topology in the network. More evidences [Ravasz and Barabasi 2003, 

Barabasi and Oltvai 2004, Ma et al 2004] have been reported for the existence of 

hierarchical structure in many biological and non-biological networks. In these 

analyses, emphasis is put on detecting global signatures of a hierarchical 

architecture, such as the clustering coefficient. However, this scaling is neither 

necessary nor sufficient for a network to be hierarchical [Soffer and Vazquez 

2004].   

To assess whether a network is organized in a hierarchical architecture 

and to identify the different levels in the hierarchy, [Sales-Pardo et al 2007] 

propose an unsupervised method using hierarchical random graphs and show 

its ability of extracting the hierarchical organization of complex biological, social, 

and technological networks.  

More recently, [Clauset et al 2008] present a technique, also using 

hierarchical random graphs, to infer hierarchical structure from network data. 

They use the hierarchical random graph model to gain insight into the structure 

of real networks. Starting with a real network, they estimate what dendrogram is 

most likely to fit that particular network. The parameters of the hierarchical 
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graph model contain condensed information about the actual network. One 

caveat of this approach is a high number of variables that require fitting. In a 

model with |V| nodes, this model requires (|V|-1) probability fittings. To solve 

this problem, they determine the right model by using Monte Carlo sampling of 

hierarchical random graphs with a probability proportional to the likelihood that 

the model results in the observed network.  

By analyzing three real networks, the metabolic network of Treponema 

pallidum, a network of associations between terrorists, and a food web of 

grassland species, [Clauset et al 2008] demonstrate that their method can detect 

the hierarchical structure in these real-world networks and the existence of 

hierarchy can simultaneously explain and quantitatively reproduce many 

commonly observed topological properties of networks. Additional features of 

this method include its robustness against noisy data and its ability to predict 

missing connections in partly known networks with high accuracy by using 

knowledge of hierarchical structure. 

In Chapter 6, we will discuss our work on analyzing the hierarchical 

structure and predicting missing links in reconstructed protein translation 

regulatory networks.    
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CHAPTER 3. MINING AND ANALYZING THE TOPOLOGICAL 
STRUCTURE OF PROTEIN-PROTEIN INTERACTION NETWORKS 

 

3.1 Introduction 

Proteins are important players in executing the genetic program. When carrying 

out a particular biological function or serving as molecular building blocks for a 

particular cellular structure, proteins rarely act individually. Rather, biological 

complexity is encapsulated in the structure and dynamics of the combinatorial 

interactions among proteins (as well as other biological molecules) at different 

levels, ranging from biochemical pathways to ecological phenomena [Barabási 

and Oltvai 2004]. Therefore, one of the key challenges in the post genomic era is 

to understand these complex molecular interactions that confer the structure and 

dynamics of a living cell. 

The development of high-throughput data collection techniques has 

generated tremendous amount of data about protein-protein interactions (PPI). 

This provides a rich data source for further investigations including those 

employing computational approaches in an attempt to understand and model 

the structure and dynamics of biological systems [Bork et al 2004]. 

  Modeling protein-protein interactions often takes the form of graphs or 

networks, where nodes represent proteins and edges represent the interactions 

between pairs of proteins. Research on such networks so far has revealed a 

number of distinctive topological properties, including the “small world effect”, 
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the power-law degree distribution, and clustering (or network transitivity), and 

the community structure [Girvan and Newman 2002]. These properties are 

shared by many biological networks and appear to be of biological significance. 

Examples of such biological relevance include the correlation between gene 

knock-out lethality and the connectivity of the encoded protein [Jeong et al 2001], 

and between the evolutionary conservation of proteins and the connectivity 

[Fraser et al 2002, Fraser et al 2003, Wuchty 2004]. Consequently, topological 

information has been exploited in the predictive functional assignment of 

uncharacterized proteins and the theoretical modeling for the evolution of PPI 

networks [Pei and Zhang 2005, Bu et al 2003, Hu et al 2004, Hu 2005, Valente and 

Cusick 2006].   

Different data sets of protein-protein interactions, however, contain 

information gathered from different experimental systems where interactions are 

detected under different conditions. One caveat is that there is a surprisingly 

small overlap among different data sets [Deane et al 2002]. Moreover, these data 

sets are constantly being updated. Therefore, it is important to evaluate these 

available PPI data sets and to validate any conclusions drawn from these data.  

In this chapter, we present a comprehensive evaluation of the topological 

structure of PPI networks across different species, with different confidence 

levels, and from different experimental systems.  
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3.2 Method 

We represent a network as a simple graph, meaning that it is undirected, 

unweighted, and without self-loops. Each node of the graph represents a protein 

and each edge represents an interaction between the two proteins connected by 

it. 

3.2.1 Data sets 

We analyze the topology of three sets of PPI networks.  

1) The species-specific set includes E. coli, H. pylori, S. cerevisiae, D. 

melanogaster, C. elegans, M. musculus, and H. sapiens PPI networks. The data sets 

were downloaded from the Database for Interacting Proteins (DIP) [Xenarios et 

al 2000].  

2) The experimental systems-specific set includes fly and yeast PPI 

networks. The data sets were downloaded from the General Repository for 

Interactions Datasets (GRID) [Breitkreutz et al 2003]. From fly data set, we 

constructed three individual PPI networks, each representing the protein 

interactions detected by one of the following experimental systems: 

Enhancement, Suppression, and Two Hybrid. From yeast data set, three 

individual PPI networks constructed represent three different experimental 

systems: Affinity Precipitation, Synthetic Lethality, and Two Hybrid. For each 

data set, we also constructed a network representing the entire set of protein 

interactions.  
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3) The third set contains PPI networks with different confidence levels. 

The data set was downloaded from the Biomolecular Interaction Network 

Database (BIND) [Bader et al 2003]. We used the fly data set to build three PPI 

networks: the first one containing interactions with confidence score >= 0.5 (high 

confidence), the second on with confidence score >= 0.3 (medium confidence), 

and the third one containing all interactions. 

 

3.2.2 Measurements of network topology 

We measure the basic topological properties of each PPI network, including:  

• The number of proteins, measured by the number of nodes. 

• The number of interactions, measured by the number of edges. 

• The number of connected nodes within the network. 

• The size of the largest (or giant) component, measured by the size of 

the largest connected sub-graph. 

We also measure three degree related metrics:  

• The maximum degree ( maxK ). 

• The average degree ( >< k ), defined as  

VEk /2>=< , 

Where E  is the total number of edges and V  is the total number of 

nodes. 
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• The degree distribution ( )(kP ) which defines the frequency of a node 

in the network with degree k. 

• The diameter of a network, >< l , defined as the average distance 

between any two nodes. The distance between two nodes is defined as 

the number of edges along their shortest path. 

• The clustering coefficient iC , defined as  

)1(
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where ie  is the number of edges connecting the neighbors of node i 

and 2)1( −ii kk  denotes the maximum number of possible edges 

connecting these neighbors.  

• The average clustering coefficient, defined as  

V

C
C i i∑= , 

where V  is the total number of nodes in the network. Assuming the 

same degree distribution, we use the following to obtain an average 

clustering coefficient of a random network [Newman 2003b]:  
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We also calculate a local property called node density >< D . The 

definition of node density is inspired by [Bader and Hogue 2003] who define a 
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local density by expanding the definition of the clustering coefficient for node i to 

include i itself in the formula when calculating iC .    

All statistical analyses are performed using SPSS software package. 

3.3 Results 

3.3.1 Basic properties of the PPI networks 

Table 3-1, Table 3-2, and Table 3-3 list the basic properties of all PPI networks 

used for our analysis. The sizes of networks vary significantly across species, 

indicating the varied status in data collecting and documenting for the specific 

data source and virtually our understanding of PPI for these organisms. Table 3-

1 shows the small sizes of so called giant components for H. sapiens and 

especially for M. musculus, meaning that we have a fairly large number of 

unconnected small sub-graphs in these two networks. As one can expect, the size 

of the giant component decreases in higher confidence networks while the 

number of unconnected sub-graphs increases. 

 

 

 
Table 3-1 PPI networks of different species. 
Species Proteins Interactions Components Giant Component(*) 
E. coli 1640 6658 200 1396 (85.1%) 
H. pylori 702 1359 9 686 (97.7%) 
S. cerevisiae (Core) 2614 6379 66 2445 (93.5%) 
D. melanogaster 7441 22636 52 7330 (98.5%) 
C. elegans 2629 3970 99 2386 (90.8%) 
M. musculus 327 274 79 49 (15.0%) 
H. sapiens 1059 1318 119 563 (53.2%) 
*Number inside the parenthesis: percentage of the size of the giant component in the entire network. 
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Table 3-2 PPI networks of different confidence levels. 
Network Confidence Proteins Interactions Components Giant Component 
Fly00 > 0 7064 21111 68 6929 (98.1%) 
Fly30 >= 0.3 6382 9157 213 5881 (92.1%) 
Fly50 >= 0.5 4689 4877 590 3068 (65.4%) 

 

 

 

Table 3-3 PPI networks of different experimental systems. 

Network Experimental 
Systems 

Proteins Interactions Components Giant Component 

Fly Combined 7938 25827 72 7793 (98.2%) 
Fly-E Enhancement 1054 1819 56 902 (85.6%) 
Fly-S Suppression 1121 2247 44 1020 (91.0%) 
Fly-TH Two Hybrid 5614 17544 12 5591 (99.6%) 
Yeast Combined 4918 18119 48 4824 (98.1%) 

Yeast-AP 
Affinity 

Precipitation 
2388 7405 39 2292 (96.0%) 

Yeast-SL 
Synthetic 
Lethality 

1468 4773 44 1343 (91.5%) 

Yeast-TH Two Hybrid 3937 6358 138 3632(92.3%) 

 

 

 

3.3.2 Average global topological properties of PPI networks 

In Table 3-4, we report the average global topological properties of PPI networks. 

Across species, PPI networks all exhibit small values of average degree and 

diameters, even though the absolute values differ significantly. Also, except for 

C. elegans, PPI networks for all other species have larger average clustering 

coefficient comparing to the corresponding random clustering coefficient, 

indicating a non-random and hierarchical structure within these networks.   
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As shown in Table 3-4, networks with higher confidence level have higher 

diameters, higher average clustering coefficient, a lower average degree, and 

shifting further away from random structure. Because we can reasonably assume 

that the higher the confidence level, the closer a proposed networks to the real 

one, this makes it plausible to postulate the presence of organizational 

architecture in PPI networks.  

Also shown in Table 3-4 is the significant impact of different experimental 

systems on the topological structure of the resulting networks. In fly data set, PPI 

networks obtained from “enhancement” and “suppression” systems have an 

average clustering coefficient dramatically larger than that of networks built 

from “two hybrid” system. Similar results are also shown in yeast PPI networks, 

with significantly smaller average clustering coefficient for “two hybrid” 

networks. The diameters of networks tend to be insensitive to differed 

experimental systems.  

Contrary to the average clustering coefficient, the average node density 

shows much lesser variability across species. It is less susceptible to the changes 

in confidence levels and in experimental methods.    
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Table 3-4 Average global topological properties of PPI networks. 
Network Kmax <k> <l> <D> <C> <Crand> 

E. coli 152 8.12 3.73 0.7053 0.5889 0.1168 
H. pylori 54 3.87 4.14 0.4514 0.0255 0.0403 
S. cerevisiae (Core) 111 4.88 5.00 0.5609 0.2990 0.0103 
D. melanogaster 178 6.08 4.39 0.3920 0.0159 0.0097 
C. elegans 187 3.02 4.81 0.4885 0.0490 0.0462 
M. musculus 12 1.68 3.57 0.6082 0.1011 0.0062 
H. sapiens 33 2.49 6.80 0.5703 0.1658 0.0098 
Fly00 178 5.98 4.45 0.4002 0.0281 0.0095 
Fly30 59 2.87 7.06 0.4989 0.0518 0.0015 
Fly50 42 2.08 9.42 0.5636 0.0793 0.0008 
Fly 178 6.51 4.39 0.4077 0.0675 0.0104 
Fly-E 110 3.45 4.44 0.6206 0.3441 0.0725 
Fly-S 124 4.01 4.30 0.6004 0.3459 0.0735 
Fly-TH 144 6.25 4.23 0.3813 0.0093 0.0123 
Yeast 288 7.37 4.12 0.4659 0.1538 0.0240 
Yeast-AP 69 6.20 4.43 0.5177 0.2646 0.0163 
Yeast-SL 157 6.50 3.84 0.5402 0.2324 0.1600 
Yeast-TH 288 3.23 4.96 0.5372 0.0869 0.0368 

 

 

 

3.3.3 Degree distribution 

Degree distribution, )(kP , is the probability that a selected protein has exactly 

degree k. We evaluate the distribution of degrees )(kP  as a function of k. Figure 

3-1, Figure 3-2, and Figure 3-3 show the degree distribution for all the networks 

we evaluate. The log-log plot clearly demonstrates the power law dependence of 

)(kP  on degree k. For our analysis, we select to use directly the raw data, instead 

of following [Jeong et al 2001] with exponential cutoff. The results of statistical 

analysis are listed in Table 3-5. Without exponential cutoff, our regression 

analysis yields power-law exponents γ  between 1.31 and 2.76, in fairly good 

agreement with previously reported results.  
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Even though the regression analysis and figures clearly show strong 

power-law degree distribution, we want to conduct further statistical analysis to 

test if the power law model adequately captures all the features in the testing 

data. Using SPSS software package, we create a scatter plot of residues by fit 

values for the power law model. The result is shown in Figure 3-4, which clearly 

indicates a pattern in the data that is not captured by the power law model. This 

means that the power law is a model that has excellent fit statistics, but has poor 

residuals, indicating its inadequacy. 
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Figure 3-1 Degree distribution of PPI networks of different species. 
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Figure 3-2 Degree distribution of PPI networks of different confidence levels. 
 

 

 

3.3.4 The average clustering coefficient distribution 

We have shown results of average clustering coefficient for PPI networks in a 

previous section. The clustering coefficient spectrum has been used to 

characterize quantitatively the hierarchical organization of the network structure 

[Colizza et al 2005]. We now take a closer look at the distribution of the 

clustering coefficient by averaging the clustering coefficient over nodes with 

degree k  
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where kn  is the number of proteins with degree k and kki ,
δ  is the discrete delta 

function.  

The results, as shown in Figure 3-5, Figure 3-6, and Figure 3-7, indicate 

that while E. coli and S. cerevisiae (also shown in Table 3-4) PPI networks show 

somewhat weak power law distribution, networks of other species do not follow 

a power law. Different experimental systems and different confidence levels do 

not seem to change this non-scale-free behavior. 

 

3.3.5 The average node density distribution 

Finally, we evaluate the distribution of the average node density over the nodes 

with degree k. The results for the node density spectrum ( )(kD  over degree k) 

display consistent power law behavior for all the networks (Figure 3-8 for 

different species, Figure 3-9 for different experimental systems, and Figure 3-10 

for different confidence levels). 
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Figure 3-3 Degree distribution of PPI networks of different experimental 
systems. 
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Figure 3-4 Residuals vs fit values. 
 

 

Table 3-5 Statistical analysis of PPI networks. 

Networks γ† (R2) α† (R2) β† (R2) 
E. coli 1.355 (0.882) 0.562 (0.656) 0.536 (0.756) 
H. pylori 1.651 (0.899) 0.495 (0.373) 0.826 (0.985) 
D. melanogaster 1.945 (0.923) 3.050 (0.311) 0.836 (0.989) 
S. cerevisiae (Core) 1.977 (0.911) 0.893 (0.721) 0.759 (0.867) 
C. elegans 1.599 (0.839) 0.625 (0.362) 0.833 (0.976) 
M. musculus 2.360 (0.931) 0.598 (0.431) 0.689 (0.965) 
H. sapiens 2.025 (0.931) 0.657 (0.190) 0.626 (0.699) 
Fly00 1.980 (0.930) 0.382 (0.194) 0.789 (0.913) 
Fly30 2.540 (0.931) 0.698 (0.265) 0.780 (0.918) 
Fly50 2.763 (0.915) 0.791 (0.375) 0.783 (0.920) 
Fly 1.947 (0.934) 0.555 (0.334) 0.758 (0.865) 
Fly-E 1.518 (0.858) 1.020 (0.539) 0.769 (0.886) 
Fly-S 1.527 (0.936) 0.879 (0.513) 0.747 (0.893) 
Fly-TH 1.912 (0.923) 0(0) 0.783 (0.867) 
Yeast 1.761 (0.919) 0.752 (0.326) 0.728 (0.698) 
Yeast-AP 1.819 (0.904) 0.635 (0.301) 0.619 (0.664) 
Yeast-SL 1.311 (0.830) 0.650 (0.342) 0.674 (0.734) 
Yeast-TH 1.614 (0.843) 1.453 (0.664) 0.947 (0.918) 
† P(k) ~ k-γ, C(k) ~ k-α, D(k) ~ k-β  
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Figure 3-5 Average clustering coefficient C(k) as a function of degree k in PPI 

networks across different species. 
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Figure 3-6 Average clustering coefficient C(k) as a function of degree k in PPI 

networks derived from different experimental systems. 
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Figure 3-7 Average clustering coefficient C(k) as a function of degree k in PPI 

networks with different confidence levels. 
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Figure 3-8 Average node density D(k) as a function of degree k in PPI networks 

across different species. 
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Figure 3-9 Average node density D(k) as a function of degree k in PPI networks 

derived from different experimental systems. 
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Figure 3-10 Average node density D(k) as a function of degree k in PPI 

networks with different confidence levels. 

 

 

 

3.4 Discussion 

In this chapter, we used the graph theory and statistical approaches to analyzing 

the topological structure of protein-protein interaction networks across different 

species. We also evaluated the impacts of different confidence levels and 

different experimental systems on the topology of PPI networks. We have shown 

the polarity on our data and perhaps knowledge about the PPI networks across a 

variety of species.  

Our results confirmed that PPI networks have small diameters and small 

average degrees. All networks we evaluated display power law degree 

distribution. However, further statistical analysis indicates an inadequacy of 
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such model in capturing certain features in the data. We strongly believe that 

further investigation into this issue may shed some new lights on our 

understanding of PPI networks.  

Most of the networks we evaluated also reveal a larger clustering 

coefficient, indicating the non-random structure of the networks. The values of 

the clustering coefficient varied significantly across different species, indicating 

possible specie-specific behavior. However, this may also result from the 

incompleteness and noise of the data, since we have shown significant 

differences in the clustering coefficient between networks with different 

confidence levels. In addition, networks consisting of interactions detected from 

different experimental systems differed significantly in the values of the 

clustering coefficient. The spectrum of the average clustering coefficient over the 

nodes degree k fails to exhibit scale free behavior in most of the networks tested. 

One interesting finding from our results is the power law distribution of 

average node density over the node degree k. This may not be total surprise 

because by computing node density, we introduce a new k into the formula. The 

intriguing part of this finding is coincident to a new definition introduced by 

[Soffer and Vazquez 2004] to eliminate degree correlation bias. They argue that 

the dependence of the clustering coefficient with degree k is partially due to this 

bias. The new definition they propose actually eliminates the power law 

behavior. On the contrary, we did not observe the power law distribution of 
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)(kC  over degree k, but the power law behavior appears when we modify the 

)(kC  to )(kD . We expect this information will be helpful because we have 

already seen its use in the application by [Bader and Hogue 2003]. 
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CHAPTER 4. A NOVEL AND EFFICIENT APPROACH FOR IDENTIFYING A 
PROTEIN MODULE FROM A SEED 

 

4.1 Introduction 

One of the ultimate goals in molecular biology is to determine how genes and 

their encoding proteins function in the cell. It was an exciting event when gene 

knock-out technique first emerged, empowering biologists a revolutionary 

approach to discover gene function by deleting a specific gene and observing its 

phenotype. A nearly complete collection of single gene knockouts has been 

performed for Saccharomyces cerevisiae [Giaever et al 2002]. However, the function 

of a large number of genes remains unknown because single knockouts are no 

longer believed to be very informative due to genetic redundancy and systematic 

multiple gene deletions for more than two genes quickly become impossible due 

to the high number of possible gene combinations [Tong et al 2001; Tong et al 

2004]. 

With the advance in high-throughput experimental technologies, more 

and more large-scale biological networks are being defined. System level 

understanding of these biological networks becomes a key challenge of the post-

genomic era. The results in Chapter 3 and other accumulating evidence indicate 

that biological networks are composed of interacting modules of individual 

components [Barabasi and Oltvai 2004; Hartwell et al 1999; Ravasz et al 2002; 

Rives and Galitski 2003; Wu and Hu 2006a; Wu and Hu 2006b]. Therefore, a 
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promising computational approach to discovery of functions of genes and 

proteins is to identify functional modules in biological networks. Because 

modules are sets of genes or proteins that perform biological processes together, 

it is possible to classify proteins with unknown function by determining what 

module they belong to [Palla et al 2005]. Correct identification of functional 

modules also has important biotechnological and pharmaceutical applications.  

The work described in this chapter will be focused on the concept of 

modularity, which will be measured in networks based on protein-protein 

interaction data. Our intent is to find modules in a systematic way based on the 

topology of the networks that we have presented a detailed analysis in Chapter 

3.  

To find modular structure, we aim to choose a method that will isolate the 

phenomenon of interest, while not being unduly sensitive to the specifics of the 

approach. Our approach will be constructed to organize biological systems 

according to their inherent structure, to use this information to contextualize 

current publicly available data, and to evaluate if this information contributes to 

our understanding of these data.   

Specifically, we begin with the question of “what is the module a given 

protein (or proteins) belongs to”. We attempt to address this question by 

identifying a module of which a given protein (or proteins) is a member.  Such a 

module will contain a set of proteins that interact with one another more than 
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they interact with other proteins outside the module. We will evaluate whether 

such a module accurately captures the partitioning of cellular function and can 

explain the data of interest. 

 

4.2 The ModuleBuilder Algorithm 

4.2.1 Graph notation 

Again, we intuitively model the protein-protein interaction network as an 

undirected graph, where nodes represent proteins and edges represent 

interactions between pairs of proteins.  

An undirected graph, ),( EVG = , is comprised of two sets, nodes V and 

edges E. An edge e is defined as a pair of nodes (u, v), denoting the direct 

connection between nodes u and v. The graphs we use are undirected, 

unweighted, and simple – meaning no self-loops or parallel edges. 

In our algorithm, we extend the quantitative definitions of a module 

defined by [Radicchi et al 2004]. Specifically, in a strong sense, each node in a 

module connects to other nodes inside the module more than it connects to those 

outside the module. For a weak module, the sum of edges connecting all nodes 

inside the module is greater than the sum of edges connecting to outside nodes.  
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DEFINITION 1 

Let ),( EVG  be a graph, )','(' EVG  be a sub-graph of G ( GG ⊂' ). Let i be a node of 

G’. The in-module degree for node i, )'(Gk in
i , is defined as the number of edges 

connecting node i to other nodes inside G’. The out-module degree of node i, 

)'(Gkout
i , is defined as the number of edges connecting node i to other nodes that 

are in G but not in G’. The affinity coefficient of node i to G’ is defined as the ratio 

of the in-module degree of i to the size of G’, 
'

)'(

G

Gk in
i .  

 

DEFINITION 2 

Given a graph G and a sub-graph G’ ( GG ⊂' ), G’ is a module in a strong sense if 

one of the following conditions is satisfied: 

1) )'(Gk in
i  > )'(Gkout

i  for each node i in G’.  

2) The sum of all degrees within G’ is greater than the sum of all degrees 

from G’ to the rest of G. 

 

4.2.2 The ModuleBuilder algorithm 

The algorithm, called ModuleBuilder (MB), accepts the seed protein s, gets the 

neighbors of s, finds the core of the module to build, and expands the core to find 

the eventual module.  
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The two major components of ModuleBuilder are FindCore and ExpandCore. 

FindCore (line 8 to line 14) actually performs a naïve search for maximum clique 

in the neighborhood of the seed protein by recursively removing nodes with the 

lowest in-module degree until either  

1) All nodes in the core set have the same in-module degree ( minmax kk = , 

i.e., the resulting sub-graph is a clique) or;  

2) All nodes except the seed have the same in-module degree (a star-like 

structure).  

The algorithm performs a breadth first expansion in the core expanding 

step. It first builds a candidate set containing the core and all nodes adjacent to 

each node in the core (line 16). A candidate node will then be added to the core if 

it meets one of the following conditions (line 21):  

1) Its in-module degree is greater than its out-module degree, i.e., the 

quantitative definition of a module in a strong sense ( )'(Gk in
i  > )'(Gkout

i ) or;  

2) Its affinity coefficient is greater than or equals to the affinity threshold f.  

We define the affinity coefficient of a node to a network as the fraction of 

its in-module degree over the size of the sub-graph. We introduce the affinity 

coefficient and the affinity threshold f to provide a degree of relaxation when 

expanding the core because it is too restrictive to require every expanding node 

to be a strong sense module member. Even though a candidate node may not 

have an in-module degree larger than out-module degree, it may connect to all 
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(or even most of) other members of the network, indicating a strong tie between 

the candidate node and the network. When the affinity threshold f is set to 1, it 

means that in order to be eligible to add to the core set, the candidate node has to 

connect to all other nodes in the core set. However, f may be relaxed to be less 

than 1 if necessary or so desired.   

In addition, a distance parameter, d, is used to restrict how far away a 

candidate node to the seed can be considered eligible for expansion. Quite often, 

a given seed may not always situate in the center of the resulting module. The 

distance parameter serves as the shortest path threshold to ensure that all 

members of the obtained sub-network will be within specified proximity to the 

seed. A large enough value of d, such as one that is larger than the longest path 

from the seed to all other nodes in the network, will virtually lift this distance 

restriction.  

 

4.2.3 Complexity of the ModuleBuilder algorithm 

The FindCore is a heuristic search for a maximum complete sub-graph in the 

neighborhood N of seed s. Let k be the size of N, then the worst-case running 

time of FindCore is )( 2kO . The ExpandCore part costs, in the worst case, 

approximately |V| + |E| + overhead. |V| accounts for the expanding of the 

core; at most, all nodes in V, minus what are already in the core, would be 

included. |E| accounts for calculating the in- and out-module degrees for the 
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candidate nodes that are not in the core but are in the neighborhood of the core. 

The overhead is caused by recalculating the in- and out-module degrees of 

neighboring nodes every time the FindCore is recursively called. The number of 

these nodes is dependent on the size of the module we are building and the 

connectivity of the module to the rest of the network, but not the overall size of 

the network. For biological networks, the graphs we deal with are mostly sparse 

and small world; therefore, the running time of our algorithm is close to linear. 

 

4.3 Experiments and results 

To test our algorithm, we downloaded a data set of interactions for Saccharomyces 

cerevisae from the General Repository for Interaction Datasets (GRID) 

[Breitkreutz et al 2003]. The GRID database contains all published large-scale 

interaction datasets as well as available curated interactions such as those 

deposited in BIND [Bader et al 2003] and MIPS [Mewes et al 2002]. The yeast 

dataset we downloaded has 4,907 proteins and 17,598 interactions. 

We applied our algorithm against the network built from the downloaded 

data set. The average running time for finding a community of about 50 

members is about 20 ms.  
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Algorithm 1 ModuleBuilder(G, s, f, d)  
1: G(V, E) is the input graph with node set V and edge set E.  
2: s is the seed node; f is the affinity threshold; d is the distance threshold. 
3: N ← {Adjacency list of s } ∪{s}  
4: C ← FindCore(N)  
5: C’ ← ExpandCore(C, f, d) 
6: return C’ 
 
7: FindCore(N)  
8:  for each v ∈N 
9:    calculate k in

v (N) 

10: end for 
11:  Kmin ← min { k in

v (N), v ∈N} 

12:  Kmax ← max { k in
v (N), v ∈N} 

13:  if Kmin = Kmax or (k in
i (N) = k in

j (N), jisjiNji ≠≠∈∀ ,,,, ) then 

return  N 
14: else return FindCore(N – {v}, k in

v (N) = Kmin) 
  
15: ExpandCore(C, f, d)  
16:  D ← 

CwCvEwv ∉∈∈
∪

,,),(
{ v, w} 

17: C’ ← C 
18:  for each t ∈D, t ∉C, and distance(t, s) <= d 
19:    calculate k in

t (D) 

20:    calculate kout
t (D) 

21:    if k in
t (D) > kout

t (D) or k in
t (D)/|D| > f then  

      C’ ← C’ ∪ { t} 
22:  end for 
23: if C’ = C then return C 
24:  else return ExpandCore(C’, f, d) 

Figure 4-1 ModuleBuilder algorithm 
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Because there is no alternative approach to our method, we decide to 

compare the performance of our algorithm to the work on predicting protein 

complex membership by [Asthana et al 2004]. Asthana and colleagues reported 

results of queries with four complexes using probabilistic network reliability (we 

will refer their work as PNR method in the following discussion). Four modules 

are identified by ModuleBuilder using one protein as seed from each of the query 

complexes used by the PNR method. The seed protein is selected randomly from 

the “core” protein set. The figures for visualizing the identified modules are 

created using Pajek software [Batagelj and Mrvar 1998]. The module figures are 

extracted from the network we build using the above mentioned data set with 

out-of-module connections omitted. The proteins in each module are annotated 

with a brief description obtained from the MIPS complex catalogue database. As 

a comparison, we use Complexpander, an implementation of the PNR method 

[Asthana et al 2004] and freely available at 

http://llama.med.harvard.edu/Software.html, to predict co-complex using the 

core protein set that contains the same seed protein used by ModuleBuilder. For 

all our queries when using Complexpander, we select the option to use the MIPS 

complex catalogue database. We record the ranking of the members in our 

identified modules that also appear in the co-complex candidate list predicted by 

Comlexpander. 
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The first module, shown in Figure 4-2, is identified using TAF6 as seed. 

TAF6 is a component of the SAGA complex which is a multifunctional co-

activator that regulates transcription by RNA polymerase II [Wu et al 2004]. The 

SAGA complex is listed in MIPS complex catalogue as a known cellular complex 

consisting of 16 proteins. As shown in Table 4-1, the module identified by our 

algorithm contains 39 members, including 14 of the 16 SAGA complex proteins 

listed in MIPS (indicated by an asterisk in the Alias column). The module also 

contains 14 of 21 proteins listed in MIPS as Kornberg’s mediator (SRB) complex. 

The rest of the proteins in the community are either TATA-binding proteins or 

transcription factor IID (TFIID) subunits or SRB related. TFIID is a complex 

involved in initiation of RNA polymerase II transcription. SAGA and TFIID are 

structurally and functionally correlated, make overlapping contributions to the 

expression of RNA polymerase II transcribed genes [Wu et al 2004]. SRB complex 

is a mediator that conveys regulatory signals from DNA-binding transcription 

factors to RNA polymerase II [Guglielmi et al 2004]. In addition, 27 of the top 50 

potential co-complex proteins (9 of the top 10), not including the seed proteins, 

predicted by Complexpander are in the identified module. 
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Figure 4-2 The SAGA/SRB module. 

 

 

Table 4-1 Members of the SAGA/SRB module. 
Proteina Alias Description Rank 

YDR448w ADA2b general transcriptional adaptor or co-activator 1 

YNR010w CSE2 c subunit of RNA polymerase II mediator complex  

YGR252w GCN5 b histone acetyltransferase 2 

YPL254w HFI1 b transcriptional coactivator 3 

YMR112c MED11 c mediator complex subunit  

YDL005c MED2 c transcriptional regulation mediator 20 

YOR174w MED4 c transcription regulation mediator 23 

YHR058c MED6 c RNA polymerase II transcriptional regulation mediator  

YOL135c MED7 c member of RNA Polymerase II transcriptional regulation mediator 
complex 

21 

YBR193c MED8 c transcriptional regulation mediator 24 

YDR176w NGG1 b general transcriptional adaptor or co-activator 10 

YGL025c PGD1 c mediator complex subunit 37 

YBL093c ROX3 c transcription factor  

YCL010c SGF29 b SAGA associated factor 43 

YER148w SPT15 the TATA-binding protein TBP 15 

YOL148c SPT20 b member of the TBP class of SPT proteins that alter transcription site 
selection 

4 

YDR392w SPT3 b general transcriptional adaptor or co-activator 13 
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YBR081c SPT7 b involved in alteration of transcription start site selection 5 

YHR041c SRB2 c DNA-directed RNA polymerase II holoenzyme and Kornberg^s 
mediator (SRB) subcomplex subunit 

 

YER022w SRB4 c DNA-directed RNA polymerase II holoenzyme and Kornberg^s 
mediator (SRB) subcomplex subunit 

27 

YGR104c SRB5 c DNA-directed RNA polymerase II holoenzyme and Kornberg^s 
mediator (SRB) subcomplex subunit 

 

YBR253w SRB6 c DNA-directed RNA polymerase II suppressor protein 19 

YDR308c SRB7 c DNA-directed RNA polymerase II holoenzyme and kornberg^s 
mediator (SRB) subcomplex subunit 

46 

YCR081w SRB8 DNA-directed RNA polymerase II holoenzyme and Srb10 CDK 
subcomplex subunit 

 

YDR443c SSN2 DNA-directed RNA polymerase II holoenzyme and Srb10 CDK 
subcomplex subunit 

 

YPL042c SSN3 cyclin-dependent CTD kinase  

YGR274c TAF1 TFIID subunit (TBP-associated factor), 145 kD 14 

YDR167w TAF10 b TFIID and SAGA subunit 7 

YML015c TAF11 TFIID subunit (TBP-associated factor), 40KD 18 

YDR145w TAF12 b TFIID and SAGA subunit 8 

YML098w TAF13 TFIID subunit (TBP-associated factor), 19 kD 17 

YCR042c TAF2 component of TFIID complex 22 

YPL011c TAF3 component of the TBP-associated protein complex 50 

YBR198c TAF5 b TFIID and SAGA subunit 9 

YGL112c TAF6 b TFIID and SAGA subunit  

YMR227c TAF7 TFIID subunit (TBP-associated factor), 67 kD  

YML114c TAF8 TBP Associated Factor 65 KDa  

YMR236w TAF9 b TFIID and SAGA subunit 11 

YHR099w TRA1 b component of the Ada-Spt transcriptional regulatory complex 12 
aThe open reading frame (ORF) name is used. 
bProteins belong to SAGA complex listed in MIPS. 
cProteins belong to SRB complex listed in MIPS.  

 

 

 

The second module is discovered using NOT3 as seed (Figure 4-3 and 

Table 4-2). NOT3 is a known component protein of the CCR4/NOT complex 

which is a global regulator of gene expression and involved in such functions as 
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transcription regulation and DNA damage responses. MIPS complex catalogue 

lists 5 proteins for NOT complex and 13 proteins (including the 5 NOT complex 

proteins) for CCR4 complex. The NOT module identified is composed of 40 

members. All 5 NOT complex proteins listed in MIPS and 11 of the 13 CCR4 

complex proteins are members of the module. POL1, POL2, PRI1, and PRI2 are 

members of the DNA polymerase alpha (I) – primase complex, as listed in MIPS. 

RVB1, PIL1, UBR1, and STI1 have been grouped together with CCR4, CDC39, 

CDC36, and POP2 by systematic analysis [Ho et al 2002]. The module also 

contains 20 out of 26 proteins of a complex that is probably involved in 

transcription and DNA/chromatin structure maintenance [Gavin et al 2002]. 

 

 

 

Figure 4-3 The CCR4/NOT module. 
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Table 4-2 Members of the CCR4/NOT module. 
Proteina Alias Description Rank 

YDR376w ARH1 mitochondrial protein putative ferredoxin-NADP+ reductase 38 

YGR134w CAF130 c CCR4 Associated Factor 130 kDa 8 

YJR122w CAF17 b CCR4 associated factor  

YNL288w CAF40 c CCR4 Associated Factor 40 kDa 9 

YJR060w CBF1 centromere binding factor 1  

YAL021c CCR4 bc transcriptional regulator 3 

YDR188w CCT6 c component of chaperonin-containing T-complex (zeta subunit) 30 

YDL165w CDC36 bc  transcription factor 40 

YCR093w CDC39 bc  nuclear protein 1 

YDL145c COP1 c coatomer complex alpha chain of secretory pathway vesicles 11 

YMR025w CSI1 Subunit of the Cop9 signalosome, involved in adaptation to 
pheromone signaling 

46 

YGR092w DBF2 b ser/thr protein kinase related to Dbf20p 6 

YDL160c DHH1 b DExD/H-box helicase, stimulates mRNA decapping, 17 

YGL195w GCN1 c translational activator 26 

YOL133w HRT1 Skp1-Cullin-F-box ubiquitin protein ligase (SCF) subunit  

YIL106w MOB1 b required for completion of mitosis and maintenance of ploidy 10 

YER068w MOT2bc transcriptional repressor 2 

YGL178w MPT5 multicopy suppressor of POP2  

YIL038c NOT3bc general negative regulator of transcription, subunit 3  

YPR072w NOT5bc component of the NOT protein complex 5 

YGR086c PIL1 Long chain base-responsive inhibitor of protein kinases Phk1p 
and Phk2p, acts along with Lsp1p to down-regulate heat stress 
resistance 

 

YBL105c PKC1 ser/thr protein kinase  

YNL102w POL1c DNA-directed DNA polymerase alpha, 180 KD subunit 32 

YBL035c POL12 c DNA-directed DNA polymerase alpha, 70 KD subunit 28 

YNR052c POP2 bc required for glucose derepression 4 

YIR008c PRI1 c DNA-directed DNA polymerase alpha 48kDa subunit (DNA 
primase) 

34 

YKL045w PRI2 c DNA-directed DNA polymerase alpha , 58 KD subunit (DNA 
primase) 

31 

YPL010w RET3 coatomer complex zeta chain 39 

YDR190c RVB1 RUVB-like protein 29 

YPL235w RVB2 c RUVB-like protein 21 

YGL137w SEC27 c coatomer complex beta^ chain (beta^-cop) of secretory pathway 
vesicles 

7 

YER022w SRB4 DNA-directed RNA polymerase II holoenzyme and Kornberg^s 
mediator (SRB) subcomplex subunit 

44 

YOR047c STD1 dosage-dependent modulator of glucose repression  



 64 

YOR027w STI1 stress-induced protein  

YLR150w STM1 specific affinity for guanine-rich quadruplex nucleic acids  

YOR110w TFC7 c TFIIIC (transcription initiation factor) subunit, 55 kDa 25 

YDL185w TFP1 c encodes 3 region protein which is self-spliced into TFP1p and 
PI-SceI 

27 

YGR184c UBR1 ubiquitin-protein ligase  

YJL141c YAK1 ser/thr protein kinase  

YDR259c YAP6 transcription factor, of a fungal-specific family of bzip proteins  
aThe open reading frame (ORF) name is used. 
bProteins belong to CCR4/NOT complex listed in MIPS. 
cProteins considered part of a complex involved in transcription and DNA/chromatin structure 
maintenance.  

 

 

 

The third module is identified by using RFC2 as the seed (Figure 4-4 and 

Table 4-3). RFC2 is a component of the RFC (replication factor C) complex, the 

“clamp loader”, which plays an essential role in DNA replication and DNA 

repair. The module identified by our algorithm has 17 members. All five proteins 

of RFC complex listed in MIPS complex catalogue database are members of this 

module, as shown in Table 4-3. All but one member in this module are in the 

functional category of DNA recombination and DNA repair or cell cycle 

checkpoints according to MIPS. This module also includes the top 8 ranked 

proteins predicted by Complexpander. 
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Figure 4-4 The RFC module. 
 

 

 
Table 4-3 Members of the RFC module. 

Proteina Alias Description Rank 

YMR048w CSM3c Protein required for accurate chromosome segregation during 
meiosis 

 

YMR078c CTF18c required for accurate chromosome transmission in mitosis and 
maintenance of normal telomere length 

6 

YPR135w CTF4c DNA-directed DNA polymerase alpha-binding protein  

YOR144c ELG1c Protein required for S phase progression and telomere 
homeostasis, forms an alternative replication factor C complex 
important for DNA replication and genome integrity 

7 

YBL091c MAP2 methionine aminopeptidase, isoform 2  

YCL061c MRC1c Mediator of the Replication Checkpoint  

YNL102w POL1c DNA-directed DNA polymerase alpha, 180 KD subunit 19 

YBL035c POL12c DNA-directed DNA polymerase alpha, 70 KD subunit 5 

YJR043c POL32c polymerase-associated gene, third (55 kDa) subunit of DNA 
polymerase delta 

 

YER173w RAD24c cell cycle checkpoint protein 1 

YKL113c RAD27c ssDNA endonuclease and 5^-3^exonuclease  

YOR217w RFC1bc DNA replication factor C, 95 KD subunit 8 

YJR068w RFC2bc DNA replication factor C, 41 KD subunit  

YNL290w RFC3bc DNA replication factor C, 40 kDa subunit 2 

YOL094c RFC4bc DNA replication factor C, 37 kDa subunit 4 
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YBR087w RFC5bc DNA replication factor C, 40 KD subunit 3 

YNL273w TOF1c topoisomerase I interacting factor 1  
aThe open reading frame (ORF) name is used. 
bProteins belong to RFC complex listed in MIPS. 
cProteins listed in the functional category of DNA recombination and DNA repair or cell cycle 
checkpoints in MIPS.  

 

 

 

We use ARP3 as seed to identify the last module (Figure 4-5). ARP2/ARP3 

complex acts as multi-functional organizer of actin filaments. The assembly and 

maintenance of many actin-based cellular structures likely depend on 

functioning ARP2/ARP3 complex [Machesky and Gould 1999]. The identified 

module contains all 7 proteins of the ARP2/ARP3 complex listed in MIPS (Table 

4-4). Not including the seed (ARP3), these proteins represent the top 6 ranked 

proteins predicted by Complexpander. As indicated in Table 4-4, there are 14 

members belonging to the same functional category of budding, cell polarity, 

and filament formation, according to MIPS. 

By using the MIPS complex data as “gold standard”, we also calculate the 

recall and precision of the four modules (or co-complexes as called by 

Complexpander) obtained by ModuleBuilder and Complexpander. The results are 

presented in Table 4-5 and Figure 4-6.  

Comparing the recall values, ModuleBuilder performs better than 

Complexpander in two cases (81.1% vs 73% for SAGA/SRB and 84.6% vs 38.5% for 
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CCR4/NOT) and performs as good as Complexpander in the other two cases ( 

both are 100%).   

Comparing the precision scores, ModuleBuilder performs much better than 

Complexpander in all four cases.   

 

 

Figure 4-5 The ARP2/ARP3 module. 
 

 

 
Table 4-4 Members of the ARP2/ARP3 module. 

Proteina Alias Description Rank 

YLR111w YLR111w hypothetical protein  

YIL062c ARC15bc subunit of the Arp2/3 complex 1 

YLR370c ARC18b subunit of the Arp2/3 complex 4 

YKL013c ARC19bc subunit of the Arp2/3 complex 3 

YNR035c ARC35b subunit of the Arp2/3 complex 5 

YBR234c ARC40bc Arp2/3 protein complex subunit, 40 kilodalton 6 

YDL029w ARP2bc actin-like protein 2 

YJR065c ARP3b actin related protein  

YJL095w BCK1c ser/thr protein kinase of the MEKK family  

YPL084w BRO1 required for normal response to nutrient limitation  

YBR023c CHS3c chitin synthase III  
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YNL298w CLA4c ser/thr protein kinase  

YNL084c END3c required for endocytosis and cytoskeletal organization  

YBR015c MNN2 type II membrane protein  

YCR009c RVS161c protein involved in cell polarity development  

YDR388w RVS167c reduced viability upon starvation protein  

YFR040w SAP155c Sit4p-associated protein  

YBL061c SKT5c protoplast regeneration and killer toxin resistance protein  

YNL243w SLA2c cytoskeleton assembly control protein  

YHR030c SLT2c ser/thr protein kinase of MAP kinase family  
aThe open reading frame (ORF) name is used. 
bProteins belong to ARP2/ARP3 complex listed in MIPS. 
cProteins listed in the functional category of budding, cell polarity, and filament formation in MIPS.  

 

 

 

Table 4-5 Comparison of the results from ModuleBuilder (MB) and 
Complexpander (CE). In MIPS complex category, there are 37 proteins in 
SAGA/SRB complexes, 13 proteins in CCR4/NOT complex, 5 proteins in RFC 
complex, and 7 proteins in ARP2/ARP3 complex. 

SAGA/SRB CCR4/NOT RFC ARP2/ARP3 Complex 
/Module MB CE MB CE MB CE MB CE 

# of Proteins 39 60 40 50 17 72 20 64 
# in MIPS 30 27 11 5 5 5 7 7 
Recall 81.1% 73.0% 84.6% 38.5% 100.0% 100.0% 100.0% 100.0% 
Precision 76.9% 45.0% 27.5% 10.0% 29.4% 6.9% 35.0% 10.9% 
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Figure 4-6 Recall and precision of ModuleBuilder (MB) and Complexpander 
(CE). 

 

 

 

4.4 Discussion 

We present in this chapter an efficient approach to building a module from a 

given seed protein. It uses topological property of modular structure of a 

network and takes advantage of local optimization in searching for the module 

comprising of the seed protein. Due to the complexity and modularity of 

biological networks, it is more desirable and computationally feasible to model 

and simulate a network of smaller size. Our approach builds a module of 
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manageable size and scales well to large networks. Its usefulness is 

demonstrated by the experimental results that all the four modules identified 

reveal strong structural and functional relationships among member proteins. It 

provides a fast and accurate way to find a module comprising a protein or 

proteins with known functions or of interest. For those module members that are 

not known to be part of a protein complex or a functional category, their 

relationship to other members in the same module may deserve further 

investigation which in turn may provide new insights.   

Although we do not explicitly use our approach to the prediction of co-

complexed proteins, the results of comparing with the PNR method developed 

by [Asthana et al 2004] have shown that the modules identified by our approach 

do include the top ranked candidates of co-complexed proteins. Both the recall 

and precision scores depict better performance of ModuleBuilder over 

Complexpander in retrieving the complex proteins (Table 4-5 and Figure 4-6).  

Compared to the methods in predicting co-complexed proteins, our 

approach can discover a module rather than a single complex. In the context of 

this discussion, the notion of a module can be a complex, but it can also be a 

functional group consisting of several complexes, such as the SAGA/SRB 

module (Figure 4-2). This does provide benefits of delineating the structure-

function relationships beyond a single complex. In this spirit, one part of our 

future work is to further explore the relaxation threshold (f) aiming to identify 
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either a more tightly connected module under a more strict expanding condition 

or a more loosely connected module under a relaxed condition so that we could 

study interactions of different strengths within a module. 

Our approach does not consider the quality of data in our downloaded 

data set. By using the strong sense definition of a module [Radicchi et al 2004], 

we could reduce the noises to some degree. However, to improve the quality of 

an identified module, we have to take into account the quality of data and that is 

another part of our future work. One possible way is to use the probabilities 

assigned to individual protein pairs as used by [Jansen et al 2002; Radicchi et al 

2004; Bader 2003; Bader et al 2004]. 
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CHAPTER 5. GLOBAL ANALYSIS OF PROTEIN TRANSLATION 
REGULATORY NETWORKS IN YEAST 

 

5.1 Introduction 

The central dogma of molecular biology describes that the genetic information is 

transferred from DNA to mRNA through transcription and from mRNA to 

protein via translation. Transcriptional regulation and translational regulation 

are two critical control points in any biological systems.  

As we have discussed earlier in Chapter 1 and Chapter 2, the complexity 

and the large sizes of the transcriptional and translational machineries make 

computational approaches attractive and necessary in facilitating our 

understanding the design principles and functional properties of the cell. 

Transcriptional regulation, used by cells to control gene expression, has been a 

focus in a variety of computational methods to infer the structure of genetic 

regulatory networks or to study their high level properties. However, research 

on translational regulatory networks has caught little attention in the 

bioinformatics and computational biology community, either being 

underestimated or neglected. 

In every living organism, translation is a vital cellular process in which the 

information contained in the mRNA sequence is translated into the 

corresponding protein by the complex translation machinery. Therefore, study of 

protein translational regulation plays an important role in our understanding of 
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the molecular mechanisms of living cells. Traditionally this study has been 

carried out by using reductionistic approaches, i.e. through experiments that are 

individually designed to identify specifically targeted proteins and/or 

interactions. However, with the completion of genome sequence projects and 

development of a wide range of functional genomics tools, it has become 

possible to apply system-level approaches to understand the function of 

biological systems and in particular protein translational control. Whereas the 

final objective of systems biology is to enable quantitative prediction of the 

dynamics of cellular processes, an important first step is to reconstruct the 

network structure of these processes  

Toward the goal of understanding how translation machinery functions 

from a system’s perspective, it is imperative that we have a better understanding 

of the global properties of protein translation networks, especially integrated 

with functional perspectives. In this chapter, we take this first step in pursuing 

such a goal. We use a graph theoretic approach to reconstruct and investigate 

protein translation regulatory networks (PTRN) in yeast by integrating the 

protein-protein interaction data, the functional annotations documented in MIPS 

and GO databases, and some of the recent research results on cellular localization 

and protein phosphorylation in regard to PTRN. 
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5.2 Methods 

5.2.1 Graph notation 

We will use the same graph notations as described in previous chapters. 

5.2.2 Data sets 

The yeast protein-protein interactions data were downloaded from the General 

Repository for Interaction Datasets (GRID) [Breitkreutz et al 2003]. We select 

GRID because it contains arguably the most comprehensive data. The GRID 

database includes all published large-scale interaction datasets as well as 

available curated interactions such as those deposited in BIND [Bader et al 2003] 

and MIPS [Mewes et al 2002]. The yeast dataset we downloaded has 4,948 

distinct proteins and 18,817 unique interactions. From this network, we derive 

the protein translation networks which contain all proteins with MIPS functional 

categories related to protein translation as described in Section 3.  

We also compiled yeast functional annotations and essentiality of proteins 

from MIPS and GO. Protein phosphorylation data were obtained from [Ptacek et 

al 2005] and protein localization data from [Huh et al 2003]. 

 

5.2.3 Analysis of network topology 

We measure the following basic properties of a PTRN: 1) the number of proteins, 

measured by the number of nodes; 2) the number of interactions, measured by 
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the number of edges; 3) the size of the largest (or giant) component, measured by 

the size of the largest connected sub-graph. 

We also measure the following topological metrics:  

• The average degree (<k>), defined as  

V

E
k

2
= , 

where E  is the total number of edges and V  is the total number 

of nodes. 

• The degree distribution, )(kP , which measures the frequency of a 

node having degree of k. 

• The diameter of a network l , as defined in Chapter 3. 

• The clustering coefficient iC  of a node i, as defined in Chapter 3.  

• The average clustering coefficient of a network C  and its 

equivalent random network randC , as defined in Chapter 3. 

All statistical analyses are performed by using SPSS software package. 

 

5.3 Results 

5.3.1 Global properties of PTRNs within the full yeast interactome 

We extract two sets of proteins that are involved in protein biosynthesis from 

MIPS functional category database. Table 5-1 shows the functional categories 

used.  
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The first set, we name it N1247, contains 136 unique proteins and belongs 

to the following categories:  

• 12.04 (translation) 

• 12.04.01 (translation initiation)  

• 12.04.02 (translation elongation)  

• 12.04.03 (translation termination)  

• 12.07 (translational control) 

The second set, referred as N12, contains 479 unique proteins in all 

categories listed in Table 5-1. Therefore, the first set of proteins is actually a 

subset of the second. 

We first study the PTRN by using these two sets of proteins in the context 

of the full yeast interaction network, constructed from yeast protein-protein 

interaction data from GRID. The basic properties of the full yeast interaction 

network and the PTRN are shown in Table 5-2.  

One interesting observation of the PTRN is the existence of proteins that 

do not have any interacting partners in the full network. We call them the loner 

proteins. This reflects the low coverage of the current interaction database rather 

than the actual lack of interactions.  

Two fundamental network metrics, node degree and clustering coefficient, 

are employed to evaluate the global network characteristics. The node degree 

describes the number of interacting partners for each node in the network, 
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whereas the clustering coefficient quantifies how well connected are the 

neighbors of a node in the network. These metrics provide useful insights into 

the architecture of the underlying network. 

 

 

 
Table 5-1 MIPS functional categories related to protein translation. 
Category Description # of Proteins 
12 protein synthesis 22 
12.01 ribosome biogenesis 63 
12.01.01 ribosomal proteins 245 
12.04 translation 18 
12.04.01 translation initiation 40 
12.04.02 translation elongation 21 
12.04.03 translation termination 9 
12.07 translational control 55 
12.10 aminoacyl-tRNA-synthetases 39 

 

 

 

Table 5-2 Properties of the full yeast interaction network and the protein 
translation regulatory networks. 
Network N1247 N12 Full 

# of interacting proteins  785 1471 4948 

# of loner proteins 13 76 0 

# of unique interactions  1100 2715 18817 

Average degree <k> 10.18 8.08 7.61 

Average clustering coefficient <Ck> 0.1096 0.1241 0.1118 

Crand 0.0555 0.0304 0.0243 
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For the first PTRN (N1247), the core set of proteins extracted from MIPS, 

contains 136 unique proteins. There are 13 of them that do not have interacting 

partners in the full network. The remaining 123 proteins form a network 

containing 1100 unique interactions that involve additional 662 proteins. As 

shown in Table 5-2, the average degree of N1247 is significantly higher than the 

other larger PTRN and the full network.   

For the second PTRN (N12), the number of extracted unique proteins from 

MIPS is 479. Again, 76 of them are not shown interacting partners in the data we 

used. There are additional 1068 proteins interacting with the remaining 403 

proteins through 2715 distinct interactions. 

All three networks show a larger average clustering coefficient than the 

corresponding >< randC , indicating a non-random structure of the underlying 

networks. 

The degree distribution is a function describing the probability of a node 

having a specified degree. It is used regularly to classify networks, such as 

random networks (Poisson distribution) or scale-free networks (power law 

distribution).  As shown in Figure 5-1, the degree distribution for the full 

interaction network displays an approximate power law. However, the two 

translation networks show only weak power law degree distributions.  

Regression analysis is performed and the power values with R squares are 

shown in Figure 5-1. When we use an alternative approach to evaluate the 
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degree distributions [Newman 2003a], in which the probability )(kP  is for all k 

values greater than or equal to k, we find that the degree distributions for the two 

translation networks fit better to an exponential regression instead of a power 

law. It has been proved [Newman 2003a] that the cumulative distribution follows 

a power law if the original distribution does so, but with a different exponent 

that is one less than the original exponent. Therefore, considering the nature of 

the data we have (incomplete and may contain noise), the result in Figure 5-2 

indicates that the scale-free or non-scale-free topology of the PTRN remains an 

issue to be solved.   
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Figure 5-1 Degree distributions. The cyan lines show the power law 
regression. 
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Figure 5-2 Cumulative degree distributions. a) Semi-logarithmic plot with 
exponential regression. b) Log-log plot. 
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5.3.2 Reconstruct PTRN 

To further investigate and gain more insights into the organization of PTRN, we 

construct the following networks:  

1. The first network (named N1247S hereafter, Figure 5-3) contains 

only the first set of 136 proteins described in Section 3.1. All edges 

are extracted from the full interaction network. This network only 

contains interactions between proteins that are both in N1247.    

2. The second network (N1247SA, Figure 5-4) is extended from 

N1247S. It is in fact the isolated N1247 network mentioned in last 

section, containing other proteins that interact with those in N1247. 

Each interaction in the network has at least one of the interacting 

partners in N1247.  

3. The third network (N12S, Figure 5-5a) contains only proteins in 

N12. In addition to all of the proteins in N1247, network N12S also 

contains ribosomal proteins, proteins involved in ribosome 

synthesis, and proteins with aminoacyl-tRNA transferase activities.  

4. The fourth network (N12SA, Figure 5-5b) is extended from N12S 

containing proteins either in N12 or interacting with proteins in 

N12.  

The basic properties of networks are listed in Table 5-3. It is noted that all 

these constructed networks has significantly lowered average degree due to the 
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existence of the “loner proteins” that do not interact with others. Again, no 

interactions here do not necessarily mean no interactions in reality. Rather, the 

lack of interactions is either due to the lack of data in our data sets (false 

negatives) or the lack of qualified interactions (such as restraints posted on 

N1247S and N12S).  

As demonstrated in Figure 3, the interactions between proteins within this 

group are surprisingly low. Most of the interactions exist in clusters 

corresponding to the three stages of protein translation. The highest connected 

cluster belongs to the group of proteins (in green) that are involved in translation 

initiation. This no double reflects the belief that translation initiation is one of the 

most important points in translational control and the active research leading to 

the high coverage in this area. Figure 3 also indicates the same logic for proteins 

involved in translation elongation (in yellow). Probably the most surprising 

finding is that there are very few direct interactions of translational control 

proteins (in blue) either between themselves or with proteins from other clusters 

(especially those in translation initiation as one might expect). One possible 

reason behind this finding may be that the interactions between the control 

proteins and others are transient such that current technologies such as high-

throughput ones are unable to capture them (false negatives). Another reason 

might be that the control may exert through indirect (intermediates) interactions. 
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Nonetheless, Figure 3 demonstrates the usefulness of network and cluster 

analyses in helping to delineate the translation process. 

By extending the network N1247S to include all interacting partners, 

N1247SA becomes much more connected, as indicated by the increased size of 

the giant component (from 41% of total proteins to 89%), and the decreased 

number of loner proteins. There are 662 proteins outside these defined categories 

that interact with proteins in N1247. A subsequent and natural question to ask is: 

what are those proteins? The answer is quite intriguing. Table 3 lists the top 10 

functional categories to which these 662 proteins belong. It should be noted that 

one protein may be listed in multiple categories. We examine these functional 

categories at different levels (where available) in the function hierarchy used by 

MIPS. At the top level, more than 46% of these proteins are in the functional 

category of “CELL CYCLE AND DNA PROCESSING”, 42% in 

“TRANSCRIPTION”, and more than 37% in “METABOLISM”. Subsequent levels 

further detail the distributions of these proteins in child categories of the top 

level parents. This result clearly demonstrates the close relationship between 

translation and other cellular processes especially transcription and metabolism. 
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Table 5-3 Functional categories of proteins interacting with translation 
networks. 
Functional 
Category 

Description % of Proteins 

Top level   
10 CELL CYCLE AND DNA PROCESSING 46.2% 
11 TRANSCRIPTION 42.0% 
1 METABOLISM 37.5% 

16 
PROTEIN WITH BINDING FUNCTION OR COFACTOR 
REQUIREMENT (structural or catalytic) 31.0% 

20 
CELLULAR TRANSPORT, TRANSPORT FACILITATION 
AND TRANSPORT ROUTES 26.7% 

14 PROTEIN FATE (folding, modification, destination) 26.1% 
42 BIOGENESIS OF CELLULAR COMPONENTS 20.7% 
43 CELL TYPE DIFFERENTIATION 11.6% 
32 CELL RESCUE, DEFENSE AND VIRULENCE 11.3% 
34 INTERACTION WITH THE CELLULAR ENVIRONMENT 10.0% 

Second level   
10.03 cell cycle 24.2% 
10.01 DNA processing 21.9% 
11.04 RNA processing 20.1% 
11.02 RNA synthesis 19.6% 
20.09 transport routes 16.0% 
16.03 nucleic acid binding 13.3% 
43.01 fungal/microorganismic cell type differentiation 11.6% 
1.05 C-compound and carbohydrate metabolism 11.2% 

14.07 protein modification 10.9% 
32.01 stress response 10.3% 

Third level   
11.02.03 mRNA synthesis 17.7% 
10.03.01 mitotic cell cycle and cell cycle control 14.5% 
11.04.03 mRNA processing (splicing, 5'-, 3'-end processing) 11.8% 
43.01.03 fungal and other eukaryotic cell type differentiation 11.6% 
10.01.05 DNA recombination and DNA repair 10.0% 

16.01 protein binding 9.8% 
16.03.03 RNA binding 9.2% 
34.11.03 chemoperception and response 7.6% 
01.05.01 C-compound and carbohydrate utilization 7.4% 
01.04.01 phosphate utilization 7.3% 

Fourth level   
11.02.03.04 transcriptional control 10.4% 

16.01 protein binding 9.8% 
16.03.03 RNA binding 9.2% 

43.01.03.05 budding, cell polarity and filament formation 9.2% 
11.04.03.01 splicing 7.6% 

10.03.01 mitotic cell cycle and cell cycle control 7.3% 
01.04.01 phosphate utilization 7.3% 

99 UNCLASSIFIED PROTEINS 7.1% 
11.04.01 rRNA processing 6.3% 

10.01.05.01 DNA repair 6.2% 
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Figure 5-3 Network N1247S. All proteins are in MIPS functional categories of 
12.04 (translation, orange), 12.04.01 (translation initiation, green), 12.04.02 
(translation elongation, yellow), 12.04.03 (translation termination, red), and 
12.07 (translational control, blue). 
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Figure 5-4 Network N1247SA. At least one of the interacting proteins is in 
N1247. Proteins in N1247 are indicated by red. Proteins in N12 but not in 
N1247 are indicated by cyan. All other proteins are black. 
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Figure 5-5 Networks N12S and N12SA. (a) Network N12S represents proteins 

in N12. (b) Network N12SA contains all proteins that are either in N12 or 

interacting with proteins in N12. For both networks, proteins in N1247 are in 

red, remaining N12 proteins are in cyan, all other proteins are in black. 
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Table 5-4 Properties of PTRN. 
Network N1247S N1247SA N12S N12SA Full 
# of proteins  136 798 479 1547 4948 
# of unique interactions  152 1100 543 2715 18817 
# of proteins in giant component 56 714 218 1394 4857 
# of loner proteins 60 13 230 76 0 
Average degree <k> 2.24 2.76 2.27 3.51 7.61 
Diameter <l> 3.57 4.67 4.36 4.79 4.07 

 

 

 

5.3.3 Essentiality of proteins in PTRN 

Network degree (or connectivity) has long been related to protein essentiality 

[Jeong et al 2001]. Therefore, we examine here the essentiality of proteins in the 

translation networks using a gene disruption data set downloaded from MIPS. 

As shown in Figure 5-6, about 28% of the proteins in the translation networks are 

lethal to disruption and 70% of them are non-essential.  

We also examine the essentiality of the loner proteins. As one can expect, 

the percentage of loner proteins that are essential decreases significantly. Only 

15% of the loner proteins are essential. In three networks studied, the average 

degrees of essential proteins are significantly higher than those of non-essential 

proteins (Figure 5-7), demonstrating that more connected proteins (with higher 

degrees) are more likely to be essential. 
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Figure 5-6 Essentiality of proteins in PTRN. 
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Figure 5-7 Essentiality of proteins in PTRN. Error bar at 95% confidence 

intervals, p < 0.05, between lethal and viable proteins in all networks (ANOVA 

test). 
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Figure 5-8 Cellular localization of proteins in translation regulatory network. 
 

 

 

5.3.4 Cellular localization of proteins in PTRN 

As one may expect, most of the proteins in the translation networks are located 

in cytoplasm and mitochondria (Figure 5-8). However, since the translation 

machinery in cells is highly complex and translational control may involve many 

different mechanisms, we see a variety of distributions of proteins in such locales 

as nucleolus and nucleus. 
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5.3.5 Protein phosphorylation and PTRN  

Protein phosphorylation is a major regulatory mechanism that controls many 

basic cellular processes. A phosphorylation map for yeast is recently generated 

by [Ptacek et al 2005]. By using their data, we map the proteins in translation 

networks to either kinases or substrates for kinases. About 22% of the proteins in 

translation networks are identified substrates for protein kinases. Even though 

neither N1247S nor N12S contains any of the 87 kinases testing the map we used, 

there are 12 proteins in N1247SA and 22 proteins in N12SA are in deed protein 

kinases. In addition, 31 proteins in N1247S are substrates for 30 different kinases; 

69 kinases can phosphorylate 190 proteins in N1247SA; 56 kinases can 

phosphorylate 105 proteins in N12S and 361 proteins are substrates for 78 kinases 

(that is almost 90% of the 87 kinases in the yeast kinase-substrate map). 

 

5.4 Discussion 

In this chapter, we present a systematic global analysis of protein translation 

networks in yeast. As far as we know, this is the first report of this kind of study.  

We first construct the full protein-protein interaction network and 

examine the translation proteome in the context of this full network. We define 

the translation proteome by using the MIPS functional category. The average 

degree of the protein interaction network containing the major translation-

related proteins is significantly higher than an expanded translation network and 
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the full network. While the full network is scale-free, the degree distributions of 

the translation networks do not display clear power law behavior. The clustering 

coefficients of the translation networks indicate non-random or hierarchical 

structures of underlying networks. Reconstruction and analysis of the translation 

networks clearly demonstrate: 1) the existence of clusters corresponding to 

different stages of the translation process; 2) the close relationship between 

translation machinery and other cellular processes especially transcription and 

metabolism; and 3) the relationship between the translation networks and 

protein phosphorylation. 

This work is the first step in our effort to elucidate the structure and 

properties of the protein translation networks. Such effort may facilitate the 

computational dissection of translation networks and provide new insights into 

mechanisms of translational control from a system’s perspective. 
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CHAPTER 6. ANALYZING PROTEIN TRANSLATION REGULATORY 
NETWORKS USING HIERARCHICAL RANDOM GRAPHS 

 

6.1 Introduction 

In Chapter 5, we present a global network analysis of Protein Translation 

Regulatory Networks (PTRN) in yeast. In this chapter, we extend our efforts to 

study another important network feature of the PTRN: hierarchy.  

Complex networks are believed to be organized through multiple scales. 

On the smallest scale is the collection of individual nodes. Some basic properties 

such as node degree can provide information about these single nodes. The next 

scale arises when nodes are interacting with each other in pairs. With three or 

more nodes coming into play, we may see the next scale such as network motifs. 

Larger groups of nodes form modules. Hierarchy describes such multi-scale 

organization by explaining how single nodes connect to each other to form 

motifs, how motifs in turn are organized into modules, and how modules are 

combined to shape the entire network.  

Biological processes are hierarchically organized, evident from 

interactions between molecules within a cell to relationships among members of 

an ecological system, and hierarchical structure plays an important role in the 

dynamics of these processes. 

Active research has been done to assess whether a network is actually 

organized in a hierarchical manner and to identify the different levels in the 
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hierarchy. The majority of the work has been focusing on identifying ‘‘global 

signatures’’ of a hierarchical network architecture. For example, [Ravasz et al 

2002] have shown that the metabolic network of several organisms can be 

organized into highly connected modules that hierarchically combine into larger 

units. They have demonstrated that the uncovered hierarchical modularity 

closely overlaps with known metabolic functions in E. coli.  

Out of many methods proposed to investigate the hierarchical 

organization in a network [Guimerà et al 2005; Soffer et al 2005; Sales-Pardo et al 

2007], an especially appealing one is the algorithm based on hierarchical random 

graph model introduced by [Clauset et al 2007; Clauset et al 2008].  

In a nutshell, the basis of the hierarchical random graph model is how two 

nodes in the network are connected. Each pair of nodes in a non-hierarchical 

random graph is connected with the same probability. However, in a hierarchical 

random graph, the probability of any two nodes connecting to each other is no 

longer a constant. Instead, they are connected with a hierarchy of probabilities.    

One advantage of hierarchical random graph model is its high flexibility. 

With suitable inner probabilities selected, this model has demonstrated to be able 

to capture most of the currently known network characteristics: degree 

distributions, degree–degree correlations, undirected motifs, and modules. 

What makes this algorithm especially appealing and valuable is its ability 

to detect false positives and missing links in relation to biological networks. 
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Despite the vast efforts and progress in high throughput technologies, available 

cellular information is still sparse. Even in such well-studied organism as 

Saccharomyces cerevisiae, the gene regulatory or the protein–protein interaction 

network is far from complete, evident also from our analysis about protein 

translation regulatory network in Chapter 5. Besides the missing links (false 

negatives) in data, every experimental method may also induce unavoidable 

biases. For example, low throughput experiments for protein–protein interaction 

measurements tend to focus on well-known proteins due to constraints in cost 

and time, whereas high throughput experiments without quality control are 

notorious for producing false positives [Vidal 2001]. The false negatives or false 

positives in the network naturally will impact the outcome of network analysis.  

Using the hierarchical random graph model and the associated hierarchy 

of link probabilities, the algorithm by [Clauset et al 2008] allows for the discovery 

of false positive and false negative links. False positives are identified by the 

links that exist but with low link probability found by the method. False 

negatives are identified by the links that do not exist in the network but have 

high link probabilities.  

In the following, we define a PTRN that contains proteins involved in 

translational regulation and controls. We then describe the hierarchical random 

graph model and the adapted approach we use based on this model to infer the 
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hierarchical structure of the constructed network and further to predict missing 

links within the network. 

 

6.2 Methods 

6.2.1 Data sets 

We use the same data sets as used in Chapter 5. Again, the yeast protein-protein 

interactions data were downloaded from the General Repository for Interaction 

Datasets (GRID). We select GRID because it contains arguably the most 

comprehensive data. The GRID database includes all published large-scale 

interaction datasets as well as available curated interactions such as those 

deposited in BIND and MIPS. The yeast dataset we downloaded has 4,948 

distinct proteins and 18,817 unique interactions. From this network, we derive 

the protein translation networks which contain proteins with MIPS functional 

categories related to protein translation as described next. 

 

6.2.2 Construction of PTRN 

We extract proteins that are involved in protein biosynthesis from MIPS 

functional category database as shown in Table 6-1. The extracted proteins 

belong to the following categories: 12.04 (translation), 12.04.01 (translation 

initiation), 12.04.02 (translation elongation), 12.04.03 (translation termination), 

and 12.07 (translational control). There are totally 133 unique proteins in this 
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dataset. We then build the network by using protein-protein interaction data, 

including interactions among the selected proteins only and ignoring all other 

interactions. With the exclusion of the isolated proteins – those without any 

edges connecting to them – and self-looping interactions, the resulted network 

contains 108 nodes and 342 edges.   

There are several reasons for such a construction. First of all, our interest 

in this research has been focused on protein translation regulatory networks. 

Secondly, protein-protein interaction data are notorious noisy and incomplete. 

The approach we take allows us not only to study the hierarchy but also to 

predict missing links even with the noise and incompleteness in the background. 

At current stage, it is also more feasible computationally with networks of 

smaller sizes. In addition, we want to examine if hierarchical structure exists 

even in such isolated sub-networks. 

 

 

Table 6-1 MIPS functional categories related to protein translation. A protein 
may belong to more than one category. The number of proteins is the number 
of entries stored in each category. 
 
Category Description # of Proteins 

12.04 translation 88 
12.04.01 translation initiation 40 
12.04.02 translation elongation 21 
12.04.03 translation termination 9 
12.07 translational control 55 
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6.2.3 Hierarchical random graphs 

Our approach is based on a hierarchical random graph proposed by [Clauset et 

al 2008], incorporating with work by [Sales-Pardo et al 2007]. There are two 

important assumptions in this approach. Firstly, if a network has sub-networks 

with an equal probability connecting them, then the network can be represented 

by splitting off the sub-network one at a time until the last one. Secondly, there 

may be more than one hierarchical random graph that best fits the observed 

network data.  

In hierarchical random graphs, the probabilities of connecting any two 

nodes and sub-networks are independent of the presence or absence of other 

connections. This is similar to the classical Erdös-Rényi random graph. However, 

in the hierarchical random graph, the probabilities are dependent on the 

topological structure of the graph. 

 

6.2.3.1 Graph notation 

We user the same graph notations defined in previous chapters. 

 

6.2.3.2 Definition of a hierarchical random graph 

Let ),( EVG =  be a graph. Let n be the size of node set, n = |V|. Let D be the 

dendrogram with n leaves representing nodes of G. Let r be an internal node of D 

with a probability rP which denotes the probability that an edge exists between 
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two nodes sharing r as their lowest common ancestor in D. A hierarchical 

random graph is thus defined by }){,( rPD . 

 

6.2.3.3 Inferring the hierarchical structure 

As stated earlier, one assumption is that the likelihood of all hierarchical random 

graphs is a priori equal. By Bayes’ theorem, the probability that a model }){,( rPD  

explains the observed data is proportional to the posterior probability or 

likelihood L.  

Let rE  be the number of edges in G with r as their lowest common 

ancestor, rL  and rR  be the numbers of leaves in the left and right sub-trees 

rooted at r in D. We have 
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Conveniently, instead of using the above equation directly, we use its logarithm 

form: 

∑
∈
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Figure 6-1 A sample network G and the likelihood of two possible 
dendrograms D1 and D2 (Modified from [Clauset et al 2007]). 
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6.2.3.4 Markov chain Monte Carlo method 

Since it is an NP hard problem to maximize L(D, {Pr}), the estimation is done by 

using a Markov chain Monte Carlo method by sampling D with probability 

proportional to their likelihood L(D).  

To create the Markov chain we need to pick a set of transitions between 

possible dendrograms, as illustrated by Figure 6-1. To accept or reject a newly 

generated dendrogram, we evaluate the likelihood change, as done by [Clauset 

et al 2008],  

∆logL= logL(D′) − logL(D). 

If ∆logL is nonnegative, meaning that the newly generated D′ is at least as 

likely as D; otherwise, the transition is not accepted.  

There are typically many dendrograms with roughly equal likelihoods. In 

order to increase the effectiveness of the acceptance and rejection rate, we 

incorporate the idea used in [Sales-Pardo et al 2007] by introducing the 

modularity change, ∆Q. Modularity of a network with m modules is defined 

[Newman and Girvan 2004, Newman 2006] as 

∑
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where L is the total number of edges in the network, li is the number of edges 

within module i, di is the sum of degrees of all of the nodes inside module i.  
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With networks of relative small sizes, the Markov chain converges fairly 

quickly. Therefore, it is suitable for our constructed PTRNs. 

 

6.2.4 The hierarchical random graph algorithm 

We now describe the algorithm that we developed to explore the 

hierarchical structure of PTRN networks and to predict missing links within 

these networks in Figure 6-2. 

 

6.3 Results 

6.3.1 Fitting the hierarchical random graph to data 

We construct our protein translation network using protein-protein interactions 

among extracted proteins and then fit the hierarchical random graph model to 

the constructed network. Figure 6-3 shows an example of maximum likelihood 

dendrogram with logL = -539. The dendrogram clearly divides the majority of 

proteins into groups coherent to their MIPS function categories. 
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1 Construct PTRN. 
2 Fit PTRN to Markov chain Monte Carlo (MCMC) algorithm and obtain a fitted 

hierarchical random graph dendrogram Df. 
3 Df is fed back into MCMC.  
4 Sample dendrograms at regular intervals thereafter from those generated by MCMC.  
5 A consensus dendrogram Dc is obtained by outputting only the dendrogram features in 

the majority of the sampled models. 
6 To predict missing links, do the following: 
6.1 Find all pairs of nodes that do not have edges between them in the original network. 
6.2 For each pair of nodes i, j found in 6.1, calculate the average probability <Pij> over the 

corresponding probabilities, Pij, in each of the sampled dendrograms. 
6.3 Output the pairs i, j in decreasing order of <Pij>. 

Figure 6-2 The hierarchical random graph algorithm. 

 

 

Figure 6-3 An example of maximum likelihood dendrogram with logL= -539. 
The leaves are labeled with protein names with corresponding MIPS function 
categories in parentheses. The probabilities are shown as gray-scale values. 



 104 

 

 

 

 

 

 

Figure 6-4 The consensus dendrogram. 
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6.3.2 Consensus dendrogram 

Figure 6-4 shows an example of a consensus dendrogram constructed from the 

sampled hierarchical random graphs. A consensus dendrogram is a summary of 

a set of dendrograms that fit the observed data. We may expect it to capture the 

topological features consistent across the majority of the dendrograms and can 

better characterize the structure of the network than any individual dendrogram. 

 

6.3.3 Prediction of missing links 

The most interesting and possibly the most useful application of hierarchical 

random graphs is the prediction of missing interactions in networks in which the 

available information is incomplete as in the case of protein-protein interaction 

data, especially in our case of studying protein translation regulatory networks. 

Table 6-2 is the compiled result of top 15 possible missing links with the highest 

probabilities from 10 runs of the predicting algorithms.  

On top of the list is the interaction between SUP35 and PAT1. SUP35 is 

translation termination factor eRF3, involved in the termination of protein 

translation. PAT1 is topoisomerase II-associated deadenylation-dependent 

mRNA-decapping factor. It is required for faithful chromosome transmission, 

maintenance of rDNA locus stability, and protection of mRNA 3'-UTRs from 

trimming. There is no interaction between these two proteins in our downloaded 
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data sets. However, this interaction has been reported rather recently [Wilmes et 

al 2008]. 

An intriguing finding of the prediction results is that a few proteins have 

multiple highly probable missing links, such as GCD11, SUI3, SUI2, RLI1, IST1, 

and HCR1. GCD11 is the gamma subunit of the translation initiation factor eIF2, 

involving in the identification of the start codon. Its interaction with HCR1 has 

been reported recently [Wilmes et al 2008]. RLI1 is an essential iron-sulfur 

protein required for ribosome biogenesis and translation initiation. Its interaction 

with SUI3 is also reported [Wilmes et al 2008]. SUI3 is the beta subunit of the 

translation initiation factor eIF2, involved in the identification of the start codon 

and possibly in mRNA binding as well. HCR1 is a dual function protein involved 

in translation initiation as a substoichiometric component (eIF3j) of translation 

initiation factor 3 (eIF3) and is required for processing of 20S pre-rRNA. The 

interaction between SUI3 and HCR1 has also been reported [Wilmes et al 2008]. 

 

6.4 Discussion 

In this chapter, we present the exploratory analysis of a protein translation 

regulatory network using hierarchical random graphs.  
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Table 6-2 Prediction of missing links. 
Protein 1 Protein 2 Probability Reference 
SUP35 PAT1 0.8895 [Wilmes et al 2008] 
RLI1 PRT1 0.7343  

GCD11 IST1 0.7163  
GCD11 SUI1 0.7161  
GCD11 RLI1 0.7159  
GCD11 HCR1 0.7157 [Wilmes et al 2008] 
SUI3 HCR1 0.6977  
SUI3 TIF35 0.6976  
SUI3 FUN12 0.6976  
SUI3 RLI1 0.6976 [Wilmes et al 2008] 
SUI3 TIF34 0.6973  
SUI2 FUN12 0.6683  
SUI2 HCR1 0.6682 [Wilmes et al 2008] 
SUI2 IST1 0.6681  
SUI2 SUI1 0.6681  

 

 

 

We constructed a protein translation network by extracting proteins 

categorized in MIPS function database [Mewes et al 2002] and protein-protein 

interaction data curated in BioGRID [Bader et al 2003]. One important feature of 

such reconstructed networks is its incompleteness. Our current knowledge about 

the links may only be a fraction of all interactions among these proteins that may 

exist in reality. It thus is an enormous challenge to study such partial networks. 

As shown in Figure 6-3, by using the hierarchical random graphs, the 

reconstructed dendrogram divided the majority of proteins into groups 

corresponding to their MIPS function categories.  Our results clearly 

demonstrated 1) the existence of the hierarchical structure in the constructed 
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protein translation network; and 2) the usefulness of the hierarchical random 

graph model in exploring the network structure.  

Our results also show the ability of predicting missing links in networks 

by using the hierarchical random graph. At least four of the top 15 predicted 

missing links has been reported recently [Wilmes et al 2008]. It is very beneficial 

for experimental biologists to use such drastically narrowed list to formulate and 

validate hypotheses. One of our future work will be to collaborate with biologists 

to validate the predicted missing links and eventually help build up a much 

more complete translation regulatory network.  

A limitation of current approach using Markov chain Monte Carlo is its 

high computational cost. Improving the computation efficiency in the future will 

allow us to apply this approach to larger networks. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

 

7.1 The summary of topological analysis of biological networks 

In order to discover and validate the topological structure of biological networks, 

we have started this thesis with a comprehensive evaluation of the topological 

structure of protein-protein interaction (PPI) networks by mining and analyzing 

graphs constructed from the popular data sets publicly available to the 

bioinformatics research community. We compare the topology of these networks 

across different species, different confidence levels, and different experimental 

systems used to obtain the interaction data. In regard to the characterized scale-

free signature, our results confirm that the degree distribution follows a power 

law in some of the networks whereas not in others. Furthermore, further 

statistical analysis shows that residues are not independent on the fit values, 

indicating that the power law model may be inadequate. Our results also show 

that the dependence of the average clustering coefficient on the node degree is 

far from a power law, contradicting many published results. For the first time, 

we show that the average node density exhibits a strong powder law 

dependence on the node degree for all the networks studied, regardless of 

species, confidence levels, and experimental systems. 
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7.2 The summary of module detection 

Modular structure is a topological property common to many networks. We have 

developed in this thesis an efficient and accurate approach to detect a module in 

a protein-protein interaction network from a given seed protein. Our 

experimental results show strong structural and functional relationships among 

member proteins within each of the modules identified by our approach, as 

verified by MIPS complex catalogue database and annotations.  

In addition, the experimental results show that the performance of our 

approach is superior in terms of recall and precision to a published method, 

Complexpander. The usefulness of our approach is also demonstrated by its 

successful applications in mining, dynamic fuzzy simulation [Hu et al 2007], and 

predictive modeling of biological networks from biomedical literature databases 

[Hu and Wu 2007]. 

 

7.3 The summary of analyzing protein translation regulatory networks 

7.3.1 Global analysis of protein translation regulatory networks in yeast 

Protein translation is a vital cellular process for any living organism. The 

maturation of high-throughput technologies and the success of genome projects 

make it possible to apply computational approaches to the study of biological 

systems. The availability of interaction databases in particular provides an 

opportunity for researchers to exploit the immense amount of data in silico such 
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as studying biological networks using network analysis. There has been an 

extensive effort using computational methods in deciphering the transcriptional 

regulatory networks. However, research on translation regulatory networks has 

caught little attention in the bioinformatics and computational biology 

community probably due to the nature of available data and the bias of the 

conventional wisdom. In this paper, we present a global network analysis of 

protein translation networks in yeast, a first step in attempting to facilitate the 

elucidation of the structures and properties of translation networks. We extract 

the translation proteome using MIPS functional category and analyze it in the 

context of the full protein-protein interaction network. We further derive the 

individual translation networks from the full interaction network using the 

extracted proteome. We show that the protein translation networks do not 

exhibit power law degree distributions in contrast to the full network. In 

addition, we demonstrate the close relationship between the translation 

networks and other cellular processes especially transcription and metabolism. 

We also examine the essentiality and its correlation to connectivity of proteins in 

the translation networks, the cellular localization of these proteins, and the 

mapping of these proteins to the kinase-substrate system. These results have 

potential implications for understanding mechanisms of translational control 

from a system’s perspective. 
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7.3.2 Hierarchical structure in protein translation regulatory networks 

In this thesis, we present an exploratory analysis of yeast protein translation 

regulatory networks using hierarchical random graphs. We derive a protein 

translation regulatory network from a protein-protein interaction dataset. Using 

a hierarchical random graph model, we show that the network exhibits well 

organized hierarchical structure. In addition, we apply this technique to predict 

missing links in the network.  

The hierarchical random graph mode can be a potentially useful technique 

for inferring hierarchical structure from network data and predicting missing 

links in partly known networks. The results from the reconstructed protein 

translation regulatory networks have potential implications for better 

understanding mechanisms of translational control from a system’s perspective. 

 

7.4 The contribution of the thesis 

The contribution of this thesis work is many-fold.  

First, we develop a novel approach to detect a protein module from a 

given seed. The proposed method is very efficient and effective in terms of 

finding a structural and functional coherent protein module. It is also very 

scalable, performing very well for large networks as well as smaller ones.  

Second, by performing a comprehensive evaluation of protein-protein 

interaction networks, we report a couple of new discoveries about the topological 
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behaviors, naming the scale-free node density distribution over degree and the 

inadequacy of the well-received scale-free feature in describing the degree 

distribution.  

Third, as far as we know, we are the first one in attempting to identify, 

characterize, and reconstruct the protein translation regulatory networks through 

network analysis and mining. We have not noticed other published research on 

this subject. This is indeed a task proved to be more challenging than we initially 

anticipated. It demands quite in-depth domain knowledge both in biology and 

computational fields. Nonetheless, we have been able to analyze and mine the 

protein translation regulatory networks. In addition, we have explored in 

identifying the hierarchy structure as well as missing and false positive links in 

these reconstructed networks.  

 

7.5 Future work   

In this thesis, we have developed an efficient approach to detect a protein 

module from a given seed. We apply this approach on finding several protein 

modules whose members demonstrate structural and functional coherency.  

However, there are certain aspects about this approach needs additional work. 

First is to adapt it so that it may be used to discover all possible modules in the 

entire network. Second is to modify it so that when it is used to identify all 

modules, it will allow identifying modules with overlapping members. 
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As to the protein translation regulatory networks, a lot of work remains to 

be done. First, efficient computational methods are needed to extract and 

reconstruct PTRN to a reasonably complete state. These include finding the 

component proteins and the missing links, especially for those “lower” proteins. 

Second, in regard to the hierarchical random graph model, develop a more 

efficient algorithm to improve the performance in the probability fitting step. 

Third, develop an efficient computational framework so that it may be used to 

study the hierarchy architecture on all the scales, from the individual component 

scale to the medium scales (such as motifs, modules) and all the way to the entire 

network scale. Ideally, details about members at each lower scale will be 

encapsulated and hidden from a higher scale.   
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