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Abstract 

Theoretical Descriptions of Electron Transport Through Single Molecules:   
Developing Design Tools for Molecular Electronic Devices 

Natalie R. Carroll 
Karl W. Sohlberg, Ph. D. 

 
 
 

There are vast numbers of organic compounds that could be considered for use 

in molecular electronics.  Hence there is a need for efficient and economical 

screening tools.  Here we develop theoretical methods to describe electron 

transport through individual molecules, the ultimate goal of which is to establish 

design tools for molecular electronic devices.  To successfully screen a 

compound for its use as a device component requires a proper representation of 

the quantum mechanics of electron transmission.  In this work we report the 

development of tools for the description of electron transmission that are: Charge 

self-consistent, valid in the presence of a finite applied potential field and (in 

some cases) explicitly time-dependent.  In addition, the tools can be extended to 

any molecular system, including biosystems, because they are free of restrictive 

parameterizations. Two approaches are explored: (1) correlation of substituent 

parameter values (σ), (commonly found in organic chemistry textbooks) to 

properties associated with electron transport, (2) explicit tracking of the time 

evolution of the wave function of a nonstationary electron. In (1) we demonstrate 

that the σ correlate strongly with features of the charge migration process, 

establishing them as useful indicators of electronic properties.  In (2) we employ 

a time-dependent description of electron transport through molecular junctions.  

To date, the great majority of theoretical treatments of electron transport in 
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molecular junctions have been of the time-independent variety. Time 

dependence, however, is critical to such properties as switching speeds in binary 

computer components and alternating current conductance, so we explored 

methods based on time-dependent quantum mechanics.  A molecular junction is 

modeled as a single molecule sandwiched between two clusters of close-packed 

metal atoms or other donor and acceptor groups. The time dependence of 

electron transport is investigated by initially localizing an electron on the donor 

and following the time development of the corresponding non-stationary 

wavefunction of the time-independent Hamiltonian.  We demonstrate that the 

time-dependent treatment of electron transport predicts physically intuitive 

results, while providing insights not available from time-independent methods.   
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Chapter 1. Background 

 

1.1 Electron Transport Applications 

 

Electron transport through individual molecules is a central aspect in 

nanotechnology, a field that deals with dimensions from inter-atomic distances to 

the size of current silicon transistor devices (~90 nm) [1].  As a result, 

nanotechnology has become relevant in a wide spectrum of disciplines ranging 

from biology to computer science.  In biological systems, electron transport is 

central to the biochemical pathways that govern the redox state of complexes, 

the reactivity of substrate intermediates and the optical properties of 

biomolecules [2-4]. Accurate control over electron transport is a task that has 

been perfected by enzymes and their supporting molecules throughout evolution. 

For us to use the electron transport properties of molecules as efficiently as do 

biosystems, however, we must understand fundamental aspects through 

experimentation and theory.   

Electron transport is the key to functional electronic device components, 

and is responsible for imparting interesting current/voltage (IV) characteristics to 

molecules integrated into circuits [1, 4-8]. One obvious application of molecular 

devices is in the computer industry, where the well-known and empirically 

observed “Moore’s Law” states that the typical feature size in electronic devices 

has decreased geometrically with time over the past four decades. The first 

computers ever built took up entire rooms and had vacuum tubes that collectively 
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weighed 30 tons.  Nowadays the devices in our computers are small enough to 

carry, with transistor sizes of approximately 70 nm in length.  This dramatic 

progression has given rise to the steady improvements in computer performance 

that have come to be an expectation of the computer hardware industry [1, 9].  

An extrapolation based on Moore’s Law, however, projects that in order to 

maintain this progression, in the near future it will be necessary to fabricate 

devices with feature sizes on the scale of individual molecules.  

 

1.2 Molecular Electronic Devices 

 

1.2.1 Fabrication of Devices 

 

In order to perform electrical measurements on molecular devices, it is 

necessary to integrate them into circuits.  What follows is a brief review of the 

common ways molecular devices are fabricated.  

I.  Self-assembled monolayers (SAMs) can be composed of thio-

terminated organic molecules.  A clean metal surface is immersed in a solution 

containing the species of interest for the monolayer assembly to take place.  The 

molecules of the monolayer bond to the metal surface through the thio end.  The 

other end of the molecule may be sulfur terminated or not, and remains exposed 

for the electrical measurements.  Many types of dithiolated molecules have been 

incorporated into SAM devices ranging from saturated systems like alkanes to 
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polyaniline oligomers.  Once the SAMs are formed, they are densely packed with 

intermolecular distances as low as 0.5 nm [4].    

In order to measure the electrical properties of SAM molecules, a 

Scanning Tunneling Microscope (STM) is often used [10].  A STM uses a tip 

composed of platinum or tungsten, which when close enough to the surface of a 

conducting sample, will tunnel electrons [11].  These types of measurements 

have revealed interesting non-linear I/V characteristics in SAM molecules, which 

will be discussed shortly  [12, 13].    Figure 1.1 shows a schematic for a SAM 

device with sulfur-terminated 1,4-(ethynylphenyl)phenylene as the molecular 

component.  The figure also shows the STM tip.  This would be the setup in order 

to perform electrical measurements on the device. 
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Figure 1. 1 A schematic of a Self-Assembled Monolayer (SAM) device with thio-
terminated 1,4-(ethynylphenyl)phenylene as the molecular component. 

 
 
 

II.  Nanopores are conceptually similar to SAMs in the sense that the 

molecules assemble onto a metal surface, but the contact between the metal 

surface and molecule is controlled in attempts to limit one molecule (or a few) to 

a nanoscale window of metal.  (Figure 1.2) As the name implies, a pore is etched 

into some type of material.  Typically, a Si3N4 membrane (supported by a silicon 

wafer) is etched so that the bottom of the pore just breaks the surface of the 

membrane on the side where the molecules will be assembled.  The pore is filled 

with metal through vapor deposition.  The electrode, composed of the membrane 

with metal-filled pores and the supporting silicon wafer, is immersed in a solution 
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containing the molecule of interest.  The thiolate ends of the molecule self- 

assemble on the exposed window of gold metal, and the other ends may or may 

not be coated with metal (through vapor deposition) [12].  Figure 1.2 is an 

idealized schematic for a nanopore device with the same molecular component 

as in figure 1.1. 
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 Figure 1. 2.  Idealized schematic of a nanopore device. 
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In order to show all of the device components in figure 1.2, the size scale is not 

accurate.   Figure 1.3 shows a more realistic picture of a nanopore device 

flanked by two gold electrodes [12].  

Figure 1. 3.  A nanopore device flanked by two gold electrodes [12]. 
 
 

III. Break junctions are constructed by pulling a thin metal wire until it 

“breaks”, while immersed in a solution containing the molecule of interest.  Figure 

1.4 shows a scanning electron microscope image of metal wire before failure 

[14].   The molecules then self-assemble on the metal surface similarly to how 

they assemble in SAM devices.  The whole device is then removed from the 

solution.  There will generally be a number of molecules between the ends of the 
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broken wire, but ideally only one is captured between the tips due to the 

curvature of the electrodes  [9, 15].  Figure 1.5 is an outline of how break 

junctions are constructed [15]. 

Figure 1. 4.  Scanning electron microscope image of a break junction before 
failure [14]. 
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 Figure 1. 5.  Overview of the fabrication of a break junction [15]. 
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1.2.2 Properties of Devices and Chemical Substituent Effects 

 

Much empirical information about electron transport through individual 

molecules has come from the emerging field of molecular electronics.  Indeed 

numerous compounds have exhibited behavior that promises utility in molecular 

electronic devices [1, 4-8].  In this field, the prospect of “tuning” electronic 

properties has motivated investigations into the substituent effect on transport 

properties. For example, Reynolds et al. suggest that methyl (~CH3) substituted 

thienylene-vinylene oligomers demonstrate enhanced carrier hopping transport 

due to the electron-donating nature of the ~CH3 group [16].  Substituents have 

also been found to alter the band gap structure in the conducting polymer 

poly(difluoroacetylene) [17], and alter the transport behavior in metal-molecule-

metal systems containing functionalized conjugated organic compounds [18, 19].   

Perhaps the most dramatic substituent effect comes from the work of 

Chen et al..  They reported the fabrication and characterization of molecular 

electronic devices based on self-assembled monolayers (SAMs) of conjugated 

organic molecules sandwiched between two gold electrodes  [4, 8, 12, 13, 20, 

21].  They found that the current/voltage (I/V) characteristics of such molecular 

electronic junctions (based on phenylene-ethynylene derivatives) exhibit a very 

strong substituent dependence. In particular, the introduction of a nitro (~NO2) 

substituent produces a nonlinear current/voltage characteristic, termed negative 

differential resistance (NDR).  Because NDR may be used to effect binary 

switching and memory storage, both fundamental to digital computation, 
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molecular devices that exhibit NDR have stimulated considerable interest. They 

hint that it may be possible to create digital computer device elements at the 

molecular scale [6, 10, 12, 13, 15, 22].  

 

1.3 Theoretical Studies 

 

1.3.1 Time-independent studies 

 

Today, theoretical descriptions of electron transport in molecular junctions 

almost invariably involve the application of time-independent (electron) scattering 

theory. A review of the fundamentals of time-independent scattering theory in 

application to molecular electronic junctions may be found in a 2003 review 

article by Sohlberg and Matsunaga  [9]. The work is closely related to the theory 

of scanning tunneling microscopy  [23] in the sense that there is potential barrier 

to electron flow through which electrons tunnel, but in the case of molecular 

junctions the barrier is the molecule itself  [9, 24].  A recent special issue of 

Chemical Physics  [25] contains articles from many experts on the subject of 

molecular electronics, with strong representation from theorists.  Additionally, the 

scientific literature has numerous reports of theoretical studies that shed light into 

electrical conduction in nano-sized devices [17, 19, 26-34].  

Similarly to the experimental work discussed in section 1.2, theoretical 

studies have examined aspects that affect electron transport.  For example, the 

influence on electron tunneling due to molecular orbital alignment [10], contact 
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geometry effects [35], and charge injection barriers  [36] have been the focus of 

theoretical investigations.  Despite the considerable body of theoretical work, 

questions still remain about the influence of an applied potential, about the 

importance of the interface between the metal electrode and the molecule, and 

about the role of the junction molecule itself, etc. [33, 37, 38].   

 

1.3.2 Time-dependent studies 

 

There have been virtually no theoretical investigations of the time-

dependence of electron transport, which is an aspect of electron transport that 

affects the switching speeds of binary computer components, and alternating 

current (AC) conductance.  Of the very few time-dependent treatments, most 

notable is the work of Baer and coworkers  [36]. They have recently studied AC 

impedance in molecular junctions using time-dependent density functional theory 

[39].  The time dependence is incorporated into their calculations as a 

perturbation  

                                       )t(ŴĤ)t(Ĥ e += ,    (1.1) 

where 
eĤ  is the unperturbed Hamiltonian, and )t(Ŵ contains an external and 

time dependent electric field pulse  

                                                    
22

0 T2/)Tt(e)t(f −−= , (1.2) 

with a duration of time T [24, 40].  From this, they derive information on the AC 

conductance and impedance in molecules, and non-adiabatic state couplings 
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[39, 41].  Their approach, however, makes it difficult to extract atomistic details 

about the movement of charge across molecular devices. 

Additionally, they have employed a numerical equivalent to time- 

dependent correlation functions (not explicit time dependence) to examine gate-

response in three-terminal devices [42].  

 

1.4   Electron transport models 

 

The collection of work on molecular junctions has lead to different models 

used to explain the process of electron transport.  What follows is a brief 

description of the foremost models. 

Hopping transport – This transport occurs between regions of localized 

charge within the molecule, which may be a result of chemical composition or 

imperfections in a device [43].  The electron effectively “hops” from site to site 

through thermal excitations. 

Quantum mechanical tunneling – This transport occurs when an incident 

electron is able to tunnel through a barrier which is presumably posed by the 

molecule.  The electron transport rate (KET) is dependent on the tunneling 

distance (molecular length) through 

                                                   KET = A(T)e(-β⋅R) , (1.3) 

where A(T) is a pre-factor depending on temperature, β which is an exponential 

factor dependent on the chemical nature of the junction molecule, and R is the 

distance between the donor and acceptor regions  [9, 44].   
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Resonant tunneling – This transport occurs when there is double barrier to 

in the electron transport, resulting in a “well” where eigenstates can exist.  If an 

incident electron attains the energy of an eigenstate within the “well” upon 

tunneling through the first barrier, the electron will have a finite probability of 

tunneling through the second barrier.  The existence of a double barrier to 

electron transport is greatly determined by molecular structure and the nature of 

chemical substituents  [45-47]. 

 

1.5 Outline of Thesis 

 

The bulk of this work is devoted to developing methods for the theoretical 

description of electron transport through single molecules.  The ultimate objective 

of this area of research is to develop design tools that could aid in the fabrication 

of molecular electronic devices.  Although the main focus is in the field of 

molecular electronics, the methods developed here are based on a completely 

general electronic structure description, which makes the methods easily 

extendable to any system. 

This thesis is divided into two general sections: the time independent and 

time dependent studies of electron transport.  Chapter 2 will expand on the 

computational and theoretical techniques used to correlate electron transport 

properties to pre-existing data, i.e. substituent parameter values.  This chapter 

suggests that the substituent parameter values may be employed as a design 

tool for the fabrication of electronic devices.  Chapter 3 is divided into two 
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sections.  The first part of this chapter will discuss the theoretical methods 

employed to study the effect a potential field has on a molecular device.  The 

second part of chapter 3 and all of chapter 4 will discuss two ways to specify a 

time-dependent wavefunction, and (as opposed to the methodology developed 

by Baer and coworkers) will allow us to time-evolve the wavefunction so that we 

can track charge through the molecule over time.  This approach gives us (a) an 

atomistic view of time-dependent electron flow and (b) insights into the chemical 

aspects that govern the electron transport event.  

The thesis concludes with a conclusion, then four appendices containing 

general information on the theoretical methods used, and the codes that perform 

the calculations necessary for each study in Chapters 2, 3 and 4. 
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Chapter 2. Correlation of Substituent Parameter Values to Electron 

Transport Properties. 
 
 
 
2.1 Introduction 
 
 
  

The influence of a functional group on the chemical and physical 

properties of a molecule, better known as the substituent effect, is central to 

chemistry.  In the 1930’s, in one of the early attempts to quantify this effect, 

Hammet noted that substituents systematically change the free energy of proton 

dissociation of benzoic acids and the free energy of hydrolysis of ethyl benzoates 

[48].  By plotting the substituent induced changes in these chemical processes 

on orthogonal axes, a linear trend, termed a linear free energy relationship 

(LFER), was revealed.  From the correlation Hammet developed a set of 

substituent parameter values (σ), which may be used as a tool to predict the 

reactivity properties of other substituted aromatic compounds [48]. Upon 

examination of a table of σ values it is evident that they correlate with qualitative 

ideas about the electron withdrawing and donating effects of their corresponding 

substituents, i.e. they implicitly contain electronic structure information. For 

electron withdrawing groups, σ > 0 (for ~NO2, σ = 0.81), as opposed to electron 

donating groups where σ < 0 (for ~CH3, σ = -0.14) [48].  The magnitude of the 

parameter quantifies the strength of the effect. 

Seven decades later, Hammet’s work continues to motivate the search for 

other properties correlated to substituent parameters.  While much of the 

research in chemistry considers chemical changes resulting from variation of the 
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functional groups present in a system, recent results that explicitly correlate 

physical observables to substituent parameter values include experimental 

measurements of NMR chemical shifts [49], electrochemical parameters [49], 

dipole moments [50], hydrogen bond distances [51], electron affinities  [52] and 

aromatic radical stabilities [53]. Theoretical calculations have been reported on 

the effect of substituents on thermodynamic values [54], barriers to proton 

transfer [55], bond dissociation energies  [56] and molecular orbital energies [49]. 

In the emerging field of molecular electronics, the promise of “tuning” the 

electronic properties of materials with the substituent effect has motivated 

investigations into the dependence of electronic structure on the functional 

groups present. For example, Reynolds et al. suggest that methyl (~CH3) 

substituted thienylene-vinylene oligomers demonstrate enhanced carrier hopping 

transport due to the electron donating nature of the ~CH3 group [16].  

Substituents have also been found to alter the band gap structure in the 

conducting polymer poly(difluoroacetylene) [17], and the transport behavior in 

metal-molecule-metal systems containing functionalized conjugated organic 

compounds [18, 19].  

 Recently, a substituent effect with potentially far-reaching ramifications 

has been observed. Chen et al. have reported the fabrication and 

characterization of molecular electronic devices based on self-assembled 

monolayers (SAMs) of conjugated organic molecules sandwiched between two 

gold electrodes [4, 8, 12, 13, 20, 21].  They found that the current/voltage (I/V) 

characteristics of such molecular electronic junctions based on phenylene-
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ethynylene derivatives exhibit a very strong substituent dependence. In 

particular, the introduction of a nitro (~NO2) substituent produces a nonlinear 

current/voltage characteristic termed negative differential resistance (NDR).  

NDR describes the situation where the current I passing through a device 

decreases as the potential difference V applied across the device is increased. 

Since I(V) typically has a positive slope overall, NDR gives rise to peaks in the 

I(V) curve of such devices.  Because NDR may be used to effect binary switching 

and memory storage, both fundamental to digital computation, molecular devices 

that exhibit NDR have stimulated considerable interest. They hint at the to 

creation of digital computer device elements at the molecular scale [6, 10, 12, 13, 

15, 22].  

Motivated by the experimental and theoretical evidence outlined above, 

and the observation that σ values implicitly contain electronic structure 

information, we report a novel application of σ values.  We correlate σ values 

with two aspects of electron transport: electron transport energies and explicit 

calculations of charge transfer in polyenic wires containing substituted phenyl 

groups.   

The goal of the present study is to test the capability of σ values for 

predicting molecular electronic device properties. The development of such 

devices is a challenging goal, one that if realized could revolutionize 

computation, and hence remote sensing, medicine etc.  If σ values have 

sufficient predictive power, they would serve as an efficient and economical 
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screening tool for selecting appropriate chemical species from which to fabricate 

devices and therefore accelerate the development of molecular electronics.   

 

2.2 Theoretical Models 

 

  2.2.1 Electron transport model 

 

A simple description of electron transport across a molecular is as follows (Figure 

2.1): Starting with a neutral species, an electron from the donating electrode is 

placed into the Lowest Unoccupied Molecular Orbital (LUMO) of the neutral 

junction molecule.  The energy cost associated with attaching an electron to a 

neutral molecule is the vertical attachment energy denoted Ev.  The anionic 

species then relaxes, allowing the molecular geometry to respond to the 

additional negative charge into the radical anion.  The energy difference between 

the radical anion, (now fully relaxed) and the relaxed neutral species is the 

adiabatic attachment energy denoted Ea.  The adiabatic attachment energy is the 

negative of the electron affinity (EA), i.e. Ea = -EA [46].  As the electron moves 

from the junction to the accepting electrode, renuetralization occurs from the 

relaxed radical anion geometry.  The energy cost of this process is the vertical 

detachment energy denoted En. Figure 2.1 shows a potential energy profile for a 

~NO2 substituted (2’-amino-4-ethynylphenyl-4’- ethynylphenyl-5’-nitro-1-

benzenethiolate) molecular junction, and the energies associated with the 

electron transfer process, which are collectively termed electron transport 
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energies. According to experimental and theoretical evidence, the chemical 

nature of a substituent can alter the potential energy profile along the electron 

transport coordinate and therefore alter the electron transport properties of the 

molecular junction [45, 46]. Specific implications of changing the electron 

transport energies for the transport properties of molecular junctions are 

discussed in Ref. [46]. 

Figure 2. 1.  The potential energy surface of Negative Differential Resistance 
(NDR) exhibiting molecules.  The axes are in arbitrary units. 
 

 
 

To examine the substituent effect on electron transport energies, we have 

carried out ab initio computations of Ea, Ev, and En at the HF/6-31++G  [57-61] 

level of theory for 16 different substituted benzene molecules.  As a consistency 

check, a subset of these calculations was repeated with density functional theory 
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methods (DFT/B3LYP/6-311+G**) [60-63].  All computations were performed with 

the GAMESS code [64].    

  

2.2.2 Charge transfer and molecular resistance model   

 

To calculate charge transfer and estimate molecular resistance, we 

employ a method similar to one developed by Gonzales and Morales [65], where 

information about the electron transport properties of a molecule is extracted 

from semi-empirical ZINDO/S-CI calculations of its ground electronic state and 

charge transfer state (CTS). Gonzales and Morales considered donor-bridge-

acceptor (D-Bn-A) systems, i.e. D = ~CH3, A = ~CHO, and Bn = (CH=CH)n, where 

n=1 to 10 specifies the length of the acetylenic bridge [65].  In these systems, the 

electron donor and acceptor groups on opposite sides of the molecule mimic an 

applied potential.    

After identifying the CTS, they obtained the charge transfer (Qa) from 

orbital analysis of the carbonyl group (CO) in the acceptor portion of the 

molecule.  Charge transfer Qa
n is calculated by monitoring the change in the CO 

charge between the ground and charge transfer states for the molecules (n=1 to 

10) in the series.  The normalized charge transfer (Qr
n) is found by dividing all 

Qa
n by the charge transfer Qa

0 of a hypothetical base molecule (CH3-(CH=CH)n-

CHO where n=0) derived by extrapolation. Finally, molecular resistance is 

estimated by using the formula  

                                                                            , (2.1) 
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where the factor of 12.91 (kJ⋅s⋅C-2) relates the inverse of a quantum of 

conductance (2e2/h, where e is the elementary charge expresses in atomic and h 

is Planck’s constant), to the molecular resistance in kΩ and Qr
n is used as an 

estimate of molecular transmissivity [65, 66].  

We have developed an ab initio implementation of the Gonzales and 

Morales semiempirical method  [60] to calculate the Qa to CO from the ground 

state to the charge transfer state during excitation.  This straight-forward 

extension into an ab initio methodology allows application of the method to 

molecular systems containing elements not included in the subset of available 

semiempirical parameterizations, and should facilitate future extension to more 

sophisticated electronic structure techniques.  We now detail the implementation.  

Initially, Hartree-Fock (HF) electronic structure calculations including full 

geometry optimization are carried out for the system of interest. Next, single-

point configuration interaction (CI) calculations are performed, including all 

possible single excitation configuration state functions (CSF) from valence to 

virtual orbitals.   

The CTS is the one with a dominant CSF describing a π  π∗ type 

transition, which can be identified by examining the CI expansion coefficients.  

For example, if a CSF has the occupancy vector v  = (2,2,2,2,2,0,0,0,0,0), it 

indicates that a ground electronic state is the Hartree-Fock configuration with 10 

molecular orbitals of which 5 lowest energy orbitals are doubly occupied.  On the 

other hand, if a dominant CSF for an electronic state has the occupancy vector 

CTSv = (2,2,2,2,1,1,0,0,0,0), a HOMO electron has been excited to the LUMO.  
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This CSF characterizes an excited electronic state, but not necessarily a CTS.  

Charge transfers are not always HOMO LUMO transitions, especially in 

molecules that are not as highly conjugated.  To ensure charge transfer with π  

π∗ character, the orbital eigenvectors are inspected to identify those with the 

largest contributions from p (π type) orbitals orthogonal to the plane of the 

molecule.  

 To calculate Qr, the density matrix (P) is calculated for the ground state 

and CTS from molecular orbital expansion coefficients (C ) and overlap matrix 

(S) from standard quantum chemical code output and an occupancy vector ( v ) 

for the state(s) in question [16, 46].  The general density matrix expression can 

be written in terms of the occupancy vector as 

                                                                 , (2.2) 

where M is the number of molecular orbitals, vi guarantees that only the nonzero 

occupancy orbitals are integrated into P, and C is the matrix of molecular orbital 

eigenvectors, which are themselves linear combinations of atomic orbitals, and  

Cµi is the contribution of atomic orbital “i” to molecular orbital “µ”.   Multiplying the 

ground or excited state Pµν elements by the Sµν elements, one arrives at a 

Mulliken population (ρ) for all atoms.  For atom A this is 

                                                                                  ,  (2.3) 

 where L is the number of expansion coefficients (atomic orbitals) and the µ index 

includes only those L centered on atom A.  The charge transfer (Qa) can be 

determined by taking the difference in electronic population on the carbonyl 

group acceptor atoms (CO) between the ground state and CTS 
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                                             Qa = ρCO,CTS - ρCO,ground . (2.4)  

          In order to calculate the molecular resistance, the Qr is needed.  We 

extrapolated Qa for the molecule CH3-(CH=CH)n-CHO where n = 0, and divided 

the Qa
n by the Qa

0.  The molecular resistance is obtained by using equation (2.1) 

as suggested by Gonzales and Morales [65].  

 We adopt the Mulliken population analysis in our charge distribution 

calculations. This choice demands the use of a small atom-centered basis set.  

Of course one can variationally approach the true energy of a molecule by 

adding more basis functions, but determination of the electron population is basis 

set dependent.  In fact it has been reported that Mulliken derived populations are 

unpredictable, erratic and do not converge as larger and more sophisticated 

basis sets are used.   [67, 68].  Larger basis sets result in mathematical overlaps 

that lack a physical interpretation.  Hence for a more realistic picture of the 

electron assignment to atoms in molecules, we require functions akin to the 

chemically intuitive atomic orbitals, i.e. a small basis, which can reveal consistent 

trends in charge distribution [67, 69-72].  The geometry optimizations, 

configuration interactions (CI) and charge transfer calculations were therefore 

carried out with an STO-6G  [73-75] basis.  Since INDO based semiempirical 

methods were designed to reproduce small basis HF results, our adopted 

population analysis scheme allows direct comparison to literature results [65, 76]. 
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2.2.3 Statistical and Data Analysis 

 

We seek the correlation of two independent variables. Therefore, an 

analysis was employed that equally weighs the σ values and the calculated 

electron transport quantities, (i.e. electron transport energies or charge transfer) 

and separates the error in the correlated independent variables to obtain the 

95.5% confidence interval. 

To weigh both independent variables equally, we identify the “best fit” line 

that minimizes the sum of the squares of the perpendicular distances from the 

line to the data points (xi, yi).  Instead of minimizing the sum of the squares of the 

residuals as in a traditional least-squares fit [77], we minimized ε(m, b) with 

respect to m and b,  

                   [ ]2
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where m is the slope, b is the y-intercept and (xi, yi) are the coordinates of the ith 

data point.  

 Next, we define the 95.5% confidence interval as an ellipse (figure 2.3), in 

which the major axis is the “best fit” line defined by optimized m and b values 

from equation 2.5.  To obtain separable deviations for x and y, (xi, yi) is 

transformed into (xi", yi") so that the “best fit” line and the centroid of (xi", yi") 

coincide with the x-axis and the origin respectively.  The deviations sx and sy are 

substituted into the standard equation of an ellipse yielding a 95.5% confidence 

interval (yellip) defined over the xellip domain                                                                  
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                                                                                          . (2.6)            

     

2.3 Results and Discussion 

 

2.3.1 Correlation of substituent parameter values to electron transport          
energies 

 
 
 
To explore the substituent effect on electron transport we performed a 

series of calculations on 16 substituted benzenes with substituents for which 

parameter values were available.  In order to simulate the electron transport 

events, each molecule in the study underwent four total energy calculations.      

EI -an initial geometry optimization of the neutral species, EII - a single point 

energy calculation of the one-electron reduced molecule at the optimized neutral 

geometry, EIII - a geometry optimization of the one-electron reduced species, and 

EIV a single point energy calculation for the neutral species at the optimized 

radical anion geometry.  The three electron transport energies were obtained as 

follows:  Ev = EII – EI, Ea = EIII – EI, and En = EIV – EIII, and they are vertical 

attachment energy, adiabatic attachment energy, and vertical renuetralization 

energy, respectively.  Figure 2.2 shows the points in the electron transport 

coordinate at which the EI through EIV are calculated in order to get the electron 

transport energies.  Of the three electron transport energies, the one that 

correlated best to σ values is the vertical attachment energy Ev with an R2 value 

of 0.595.  Table 2.1 provides the electron transport energies for each substituent 


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used in the study and the R2 value for each series.  Figure 2.3 shows the Ev vs. σ 

data and the 95.5% confidence interval. 

Figure 2. 2.  Points along the electron transport coordinate at which the energies 
are calculated in order to obtain the electron transport energies (Ev – vertical 
attachment energy, Ea – adiabatic attachment energy, and En – reneutralization 
energy). 
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Table 2. 1.  Calculated electron transport energies in atomic units for the series 
of16 different substituted benzenes. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substituent 
Substituent 
Parameter 

Value       
σ 

Ev  Ea  En  

hydroxy -0.38 0.084 0.075 -0.066 
amino -0.30 0.094 0.037 -0.037 
methyl -0.14 0.041 0.084 -0.083 

methoxy -0.12 0.088 0.080 -0.070 
hydrogen   0.00 0.092 0.093 -0.085 

fluoro   0.15 0.074 0.065 -0.056 
chloro   0.24 0.072 0.063 -0.053 

acetoxy   0.31 0.033 0.015 -0.001 
dichloromethyl   0.32 0.046 0.033 -0.032 
difluoromethyl   0.35 0.075 0.035 -0.035 

carboxy   0.44 0.032 0.013 0.006 
trichloromethyl   0.46 0.034 -0.016 0.073 

acetyl   0.47 0.030 0.014 0.001 
trifluoromethyl   0.53 0.045 0.026 -0.032 

cyano   0.70 0.039 0.029 -0.018 
nitro   0.81 -0.034 -0.057 0.080 

 R2 0.595 0.560 0.519 
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Figure 2. 3.  Correlation of vertical attachment energy (Ev) in atomic units to 
substituent values (σ).  The ellipse represents the 95.5% confidence interval. 
 

 
 

As a check, calculations of Ev were repeated for 10 of the molecules 

(benzene molecules with the substituents: ~CH3, ~NH2, ~OH, ~H, ~F, ~Cl, 

~CHCl2, ~CHF2, ~CF3, and ~NO2) using density functional theory (BL3LYP/6-

311++G*) [60-63].  While the DFT calculations resulted in smaller values for Ev, 

they produced the same trend in the correlation of substituent parameters to 

electron attachment energies.  Figure 2.4 shows the correlations of electron 

attachment energies (Ev) to σ, as calculated with DFT and HF theory, and their 

respective correlation coefficients squared. 
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Figure 2. 4.  Electron attachment energies (Ev) calculated by Density Functional 
Theory (DFT) and Hartree-Fock Theory (HF), correlated to the sigma parameter 
values (σ). 

 
 
 

The observed trend is consistent with chemical intuition. In the presence 

of an electron-withdrawing substituent, the core of the molecule should be more 

positive and therefore be more favorable for electron attachment. Conversely, in 

the presence of an electron-donating substituent, the core of the molecule should 

be more negatively charged and less favorable for electron attachment. Figure 

2.3 shows that attachment energies are indeed generally lower for systems with 

substituents of more positive σ. 
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The calculated Ev were also correlated to a different substituent parameter 

value; the resonance parameter (σ -).  This parameter accounts for the resonance 

interaction between a substituent and a negative (electron rich) site on a 

molecule [48, 78].  Since our working model of electron transport involves a one 

electron reduction, one might expect a better correlation using the σ - values and 

in fact that is the case.  As illustrated in Figure 2.5, for a subset of 12 substituents 

for which both parameter value types were available, (σ and σ -) the correlation of 

Ev to σ - has an R2 = 0.721 and the correlation of Ev to σ has an R2 = 0.635.  The 

result demonstrates that the σ - have a slightly improved correlation to the 

electron attachment energy, but a significance F-test revealed that the difference 

between the correlations was not statistically meaningful [77, 79]. 
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Figure 2. 5. Correlations of electron attachment energies (Ev) to σ and σ - for 12 
substituted benzene rings. 

 
 
 

Ref.  [46] suggests that NDR in a molecular junction is more probable for 

junction molecules with larger En. The above correlations suggest that to favor 

NDR one should consider substituents with high σ or σ -. The electron 

withdrawing nature tends to stabilize the radical anion formed during electron 

transport giving rise to higher En.  
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2.3.2 Correlation of substituent parameter values to normalized charge 

transfer and molecular resistance 
 
 
 
The electron transfer energies describe the energy profile experienced by 

an electron being transmitted across a molecule; therefore they implicitly contain 

information on the electron transport properties of a compound. Since we seek to 

determine the ability of sigma parameters to predict electron transport properties, 

a more desirable approach is to correlate the σ values explicitly to electronic 

transfer.  

 To validate our ab initio approach to the Gonzales and Morales 

semiempirical method of estimating electron transport, we performed calculations 

for their series of molecules, CH3-(HC=CH)n-COH with n = 1 to 10 and 

reproduced their normalized charge transfer (Qr
n) results. Figure 2.6 shows a 

graphical comparison of normalized charge transfer, calculated by Gonzales and 

Morales and our ab initio implementation. The agreement is excellent.   
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Figure 2. 6. Graphical comparison of normalized charge transfer (Qr) 
calculations between the Gonzales and Morales result and our ab initio 
implementation. 

 
 
       

The substituent effect on charge transfer and molecular resistance was 

next examined in a polyenic wire with a functionalized benzene ring embedded in 

it (see Figure 2.7). The charge transfer procedure was applied to the base 

molecule 5-(4-Penta-1,3-dienyl-phenyl)-penta-2,4-dienal, and to all the molecules 

resulting from the placement of 16 different substituents on the x site.  Figure 2.7 

shows the base molecule and the x site.  The Qr calculations on the 16 

substituents resulted in the best correlation to the σ values with an R2=0.863, 

which is illustrated in Figure 2.8.  This correlation excludes the ~NO2 substituent 

because it is an outlier at 95.5% confidence.  Evidently the electron transport 

properties introduced by the ~NO2 substituent are not wholly captured in its σ 
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value. The striking effect of the ~NO2 group is further illustrated by looking at the 

molecular resistance (Rm) data.  Figure 2.9 shows the plot of Rm vs. σ values.  

The substituent data points are the same as the ones on Figure 2.7. The high 

resistance result reflects the electron-withdrawing group’s ability to accumulate 

charge before destabilizing the species; in essence behaving as an electronic 

charge sink. 

Figure 2. 7. The base molecule used in the normalized charge transfer (Qr).  The 
x site was replaced with the substituents ~OH, ~NH2, ~CH3, ~OCH3, ~H, ~F, ~Cl, 
~O2CCH3, ~CHCl2, ~CHF2, ~CO2H, ~CCl3, ~OCCH3, ~CF3, ~CN, and ~NO2. 
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Figure 2. 8.  Correlation of Normalized Charge Transferred (Qr) to substituent 
parameter values (σ).  The substituents are:  1= ~OH, 2= ~NH2, 3= ~CH3,         
4= ~OCH3, 5= ~H, 6= ~F, 7= ~Cl, 8= ~O2CCH3, 9= ~CHCl2, 10= ~CHF2,         
11= ~CO2H, 12= ~CCl3, 13= ~OCCH3, 14= ~CF3, 15= ~CN, 16= ~NO2. 
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Figure 2. 9.  Correlation of Molecular Resistance (Rm) to substituent parameter 
values (σ).  The substituents appear in the order:  ~OH, ~NH2, ~CH3, ~OCH3, 
~H, ~F, ~Cl, ~O2CCH3, ~CHCl2, ~CHF2, ~CO2H, ~CCl3, ~OCCH3, ~CF3, ~CN, 
and ~NO2. 

 
 
 

In conclusion, a priori selection of a molecule for use in an electronic 

device will require screening tools because of the large number of organic 

compounds that could be chosen. We have investigated the possible use of 

substituent parameter values (σ) as a predictor of the electron transport 

properties of molecules. We show that the energies controlling electron 

attachment and detachment correlate weakly to σ, but normalized charge 

transfer correlates strongly to σ.  This work suggests that substituent parameter 

values may be of some value as an economical semi-quantitative predictor of 

electron transport properties.  
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Chapter 3. Time dependence of electron transport I: a molecular orbital 

basis. 
 
 
 
3.1 Introduction 
 
 
 

As outlined in the Introduction, to date there have been very few 

applications of time-dependent analysis to the study of electron transport 

properties in molecular electronic junctions.  In this chapter, the application of 

time-dependent quantum mechanics to the study of electron transport across a 

molecular junction is reported.  

Electron transport is investigated by following the time development of a 

localized electron wavefunction, which is expanded in a basis of eigenfunctions 

of the time-independent Hamiltonian for the entire device complex, (here referred 

to as the “supermolecule”). The electronic structure of the supermolecule is 

described with extended Hückel molecular orbital methodology, but two 

enhancements are required: First, high state density due to the presence of 

metallic clusters demands that orbital occupancy be set by Fermi-Dirac statistics.  

Second, the presence of an applied potential field requires that the Hamiltonian 

matrix be constructed in a charge-self-consistent manner. Variations in the 

junction molecule, contact geometry and applied potential are investigated. The 

results reveal: (i) no appreciable buildup of charge on the junction molecule in the 

presence of an applied potential and (ii) significant sensitivity of electron 

transport to the junction molecule/electrode contact geometry. The method (as 

well as its software implementation) is essentially completely general. There is no 
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requirement that the source of sink electrons be metallic, or even that the system 

to be studied bear any resemblance to nano-electronics at all, although that is 

the focus of this study. 

 

3.2 Theoretical Methods 

 

3.2.1 The model 

 

We employ a cluster model of a molecular junction. In the cluster model, 

the metal electrodes on either side of the junction molecule are modeled as finite 

clusters of metal atoms. An example is shown in Figure 3.1. Collectively, we will 

refer to the metal electrodes and the junction molecule as the “supermolecule” or 

“device complex”. To construct the model, the isolated dithiolated junction 

molecule (a single hydrogen atom replaces each metal cluster), is first optimized 

at the DFT-B3LYP/6-31G* level of theory [57-59].  The clusters are then 

constructed with the metal atoms fixed in a packing arrangement consistent with 

that of the pure metal. The cluster sizes must be chosen so that they are 

sufficiently large to exhibit bulk-like behavior. Our clusters include all atoms up to 

and including second-nearest neighbors to the junction molecule’s binding site.  

This yields a cluster of 18 atoms exposing a (111) surface onto which the 

junction molecule is bonded. This choice of cluster size is supported by the work 

of Cheng and Wang, who report the onset of bulk-like behavior in the 
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photoelectron spectrum of finite metal clusters comparable to or smaller in size 

than those employed in the present thesis work [80].   

Figure 3. 1.  Example of a molecular junction considered in this study.  The 
metal electrodes are modeled as finite clusters of metal atoms and the molecule 
is geometry optimized. 

 
 
 
As an additional check, a density of states (DOS) calculation was 

performed on the Al18-(111) surface cluster.  First, a single point energy 

calculation is carried out on the Al18-(111) cluster with extended Hückel theory.  

Since there are 4 atomic orbitals assigned to every metal atom, the calculation 

generates 72 molecular orbitals and 72 state energies.  The DOS is generated by 

adding up all the states that exist within a particular window of energy.  Overlaps 
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between the energy windows (1 eV) are not used to calculate the Al18-(111) 

DOS, therefore there is no smoothing, however, these conditions of energy 

window and overlap yield desirable features, as will be discussed [81]. Figure 3.2 

shows the DOS for the Al18 cluster (solid line) and the bulk (111) surface (dashed 

line).   The x-axis is the number of molecular orbitals present, and the y-axis is 

the average value for the corresponding energy interval.  This was compared 

with a DOS calculation by Hammer et al.  for an infinitely periodic model of the 

aluminum (111) surface [81, 82].  Comparing the two plots reveals the same 

qualitative features.  The bulk calculation by Hammer et al. is performed on an 

effectively infinite surface.  This yields a denser continuum of states so that 

peaks that are less well resolved than in the Al18 DOS. The Al18 cluster, however, 

shows relative peak and valley alignment to the DOS for the infinitely periodic 

surface, demonstrating that our metal cluster captures bulk-like electronic 

properties.  Our electronic structure calculations for the supermolecules also give 

indications that the minimum cluster size to reasonably approximate a bulk metal 

electrode has been surpassed, (vide infra). 
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Figure 3. 2.  Density of States (DOS) calculations for the Al18 cluster and an 
infinitely periodic Al (111) surface [81]. 

 
 
 

3.2.2 Time dependence 

 

The time dependent description of electron transport through a molecular 

junction ultimately reduces to performing dynamical calculations that track the 

evolution (delocalization) of a localized electron’s wavefunction by solving the 

time dependent Schrödinger equation (TDSE)  

                                                  -i dΨ(r,t)/dt = HΨ(r,t).       (3.1) 
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Here “H” is the total energy operator and Ψ(r,t) is the wavefunction, which 

depends on the spatial coordinates “r” and time “t”.  In the case of a time-

independent Hamiltonian, the wavefunction t),(rΨ  is separable into spatial  

( )(rΦ ) and time-dependent ( (t)Τ ) parts and may be written 

                                                 Ψ(r,t) = Τ(t)Φ(r).    (3.2) 

If we denote the eigen-solutions of the time-independent Schrödinger equation 

(TISE) as φk(r) so that 

                                                          Hφ(r) = Eφ(r),                         (3.3) 

we may write the spatial part of the time-dependent wavefunction in the form of 

an expansion in a basis of eigenfunctions φk(r) of the time-independent 

Schrödinger equation 

                                                       Φ(r) = Σk bkφk(r).                   (3.4) 

Here the bk are the expansion coefficients of the localized electron at time t=0. In 

essence they are the contributions from each molecular orbital to the 

wavefunction of the spatially restricted electron.  Substitution of this expansion 

into the TDSE and separation of variables yields, 

                                               Ψ(r,t) = Σk bk [exp(-iEkt/ )]φk(r).                      (3.5) 

Equation 3.5 is completely general and in the limit of an infinite expansion gives 

an exact solution of the TDSE.  

We employ a one-electron (extended Hückel) treatment, so in our case the 

φk(r) are molecular orbitals of the device complex and the Ek are their 
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corresponding orbital energies. Perhaps the most intuitive description of the 

spatial distribution of the electron wavefunction is in terms of atomic orbitals. To 

facilitate this description, the φk may in turn be written as a linear combination of 

“n” atomic orbitals (χn) 

                                                       φk= Σi ckiχi           (3.6)  

The first step is therefore to carry out an electronic structure calculation on the 

device complex to find its molecular orbitals φk in a basis of atomic orbitals χi. The 

time dependence of the localized electron wavefunction in terms of the atomic 

orbital basis, is found by substitution of equation 3.6 into equation 3.5 and is 

given by, 

                                        Ψ(r,t) = Σi  [Σk bkcki (exp(-iEkt/ ))]χi(r)              (3.7) 

In more compact notation, we may write 

                                                          Ψ(r,t) = Σi di(t)χi(r),              (3.8) 

where 

                                              di(t) = Σk bkcki (exp(-iEkt/ )).           (3.9) 

This representation is useful because it allows us to partition the wavefunction for 

the non-stationary electron into contributions from each atomic orbital, and to do 

so at any time. In chemical terms, it allows us to speak of the electron moving 

across the molecular space through the atomic orbitals.   
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3.2.3 Specifying the initial localization of the electron 

 

 Representation of the wavefunction in an atomic orbital (AO) basis also 

facilitates setting the initial conditions, i.e. localizing the electron. We may 

localize the electron by selecting coefficients ai such that the localized electron 

wavefunction f is given by  

                                                          f = Σi aiχi               (3.10) 

For example, we may “place” the electron initially into a specific atomic orbital “i” 

by setting ai = 1 and the remaining aj = 0. To time propagate this localized 

wavefunction by the method described above, we must express f in the 

molecular orbital (MO) basis, 

                                                           f = Σk bkφk.                     (3.11) 

This is done with the usual transformation of basis. We integrate over the 

localized electron wavefunction f with an arbitrary molecular orbital φn and equate 

to the case where f is expanded in an MO basis by 

                                     ∫ φnfdτ = ∫φn Σk bkφkdτ = Σk bk ∫φnφkdτ.         (3.12) 

Here the integral with volume element dτ is over all electronic coordinates. Since 

the MOs form an orthonormal basis, ∫φnφkdτ = δnk and it follows that, 

                                                    bn = ∫ φnfdτ               (3.13) 

or in expanded form, 

                                       bn = ∫ (Σk cnkχk)(Σi aiχi )dτ.       (3.14) 

Exchanging the order of integration and summation yields, 

                                bn = Σk Σi cnk ai ∫ χkχi dτ = Σk Σi cnk ai Ski             (3.15) 
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where Ski is an overlap integral over AO basis functions. This is the result we 

seek. The coefficients of the expansion of the localized wavefunction in the MO 

basis are given in terms of a simple summation over overlap integrals. The cnk 

and overlap integrals are “free” since they are products of the electronic structure 

calculation for the supermolecule. We may place the electron in any linear 

combination of AOs by specifying the ai and easily transform this expansion into 

the MO basis with equation 3.15. The time propagation of the initially localized 

wavefunction is then given exactly by equation 3.11. 

 

3.2.4 Determining time-integrated atomic-orbital occupancy probability 
 

 

From the time development of the electron wavefunction, we seek 

answers to questions such as, “Given an electron initially localized on the donor 

electrode, what is the probability that it has reached the acceptor electrode after 

time ∆t?” 

It is a trivial matter to calculate the probability ρi(t) for the occupancy of a 

given AO (index i) at time t. The probability is simply the norm of the expansion 

coefficient of that particular AO in the time dependent wavefunction at the 

specified value of t, in other words,  

                                                           ρi(t) =  [di
*(t)di(t)]. (3.16) 

Here “*” denotes complex conjugation. We note that if a set of 

independent samplings of a system yield probabilities ρi that a particular state of 
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the system is sampled, the time integrated probability that the state has never 

been occupied Pi
not after N samplings is  

                                    Pi
not = Πt=1..N [1-ρi(t)]. (3.17) 

In the case of our expansion in an atomic orbital basis, the probability that orbital 

χi is not occupied at time t is given by 

                                                     ρi
not(t) = 1- di

*(t) di(t). (3.18) 

If we assume that the occupancy of χi at time t is independent of the probability of 

its occupancy at t-δt, the probability that χi has never been occupied over a set of 

times t is given by 

                                               Pi
not  = Πt(1- di

*(t) di(t)). (3.19) 

This probability will go asymptotically to zero as the number of sampling times 

increases. 

 Obviously, the assumption that the occupancy of χi at time t is 

independent of the probability of its occupancy at t-δt is not generally valid. 

Consider a stationary state. If the contribution of orbital i is di at time t, it will be di 

at all future times t+δt as well. In this case, the occupancy of χi at time t is 

perfectly correlated to the probability of its occupancy at t-δt and Pi
not = (1- di

*(t) 

di(t)), with no time product. 

 The above two cases represent two extremes. We require a technique for 

computing the time integrated probabilities that accounts for the possibility that 

the occupancy of an orbital at time t is, to some degree, correlated to the 

probability of its occupancy at t-δt. One approach is to sample the time 

dependent wavefunction at very widely spaced times (δt very large) so that the 
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approximation of independence is more likely to be valid, but a more rigorous 

and efficient approach is to account for the correlation. To do so we define the 

correlation factor κ(t) where 

                                           κ(t) = { [d(t)·d(t-δt)]*  [d(t)·d(t-δt)]}1/2 (3.20) 

We note that κ(t) = 1 for a stationary state and κ(t) = 0 if the wavefunction at time 

t is orthogonal to (completely uncorrelated with) that at t – δt. The norm is used 

since d(t)·d(t-δt) is, in general, complex. We employ the correlation factor to 

attenuate adjacent factors in the time product by the degree to which they are 

correlated, (1 - κ(t)). The time integrated probability that state “i” has never been 

occupied in a set of discrete samplings in time, is given by 

                                        Pi
not  = Πt{1-  [di

*(t) di(t)]  [1-κ(t)]}. (3.21) 

 

3.2.5 Determining the time-independent MOs of the supermolecule  
 

We employ a charge-self-consistent implementation of the semi-empirical 

Mulliken Wolfsberg Helmholtz (a.k.a. “MWH” or “Extended Hückel”) electronic 

structure method to construct the molecular orbitals of the supermolecule [83].  In 

this method, experimental data is used to simplify the construction of the energy 

matrix (H).  The elements of H are given by  

                                                     jiij ĤH χχ= .   (3.22) 

The diagonal elements (Hii) are approximated by the negative of the valence 

orbital ionization energy (VOIE) for the corresponding atomic orbital χi [83].  The 
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off-diagonal elements are taken to be overlap-weighted averages of the 

corresponding VOIE values according to the standard MWH formula with the 

Wolfsberg-Helmholtz constant set to the usual 1.75 [83].  

 One implication of using VOIEs is that all atoms of an element will be 

assigned the same orbital ionization energy regardless of their location in a 

molecule, resulting in a method that is insensitive to an atom’s chemical 

environment, an assumption that is not generally valid. For example, in regions of 

low charge density we may expect the effective ionization energy to increase, 

since removing an electron from a positively charged center requires more 

energy than removing an electron from a neutral center. Conversely, in regions of 

increased electron density, we may expect the effective ionization energy to 

decrease, since removal of an electron from a negatively charged center requires 

less energy than from the corresponding center when neutral.  To account for 

this effect, a self-consistent charge (SCC) procedure was employed in the 

construction of the energy matrix. In the SCC procedure, the diagonal elements 

of the energy matrix are assumed to have quadratic dependence on the atomic 

charge (q)  

                                           )CqBqA()q(H n,inn,i
2
nn,inn,ii ++−= .       (3.23) 

Here “n” is the atom index and “i” denotes the specific atomic orbital. The 

constants Ai,n and Bi,n are derived from electronic structure calculations for the 

cation, neutral and anionic forms of an isolated atom of the same type as atom 

“n” and are taken from published tables [83].  Ci,n is the regular VOIE for an 

orbital of type i on an neutral atom of type n.  As a practical matter, the electronic 
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structure code initially assumes uncharged atoms (qn=0).  From equation 3.23, 

when orbital “i” is centered on an uncharged atom n, Hii,n = -Ci,n.  The program 

computes the molecular orbitals, and based upon a subsequent population 

analysis, the resulting atomic charges (qn).  The Hii,n are reset based on these 

charges by using equation 3.23, H is reconstructed, and the molecular orbitals 

are recomputed, resulting in new atomic charges.  The process is iterated to self-

consistency. By considering atomic charge, a property that depends on the 

atomic arrangement, equation 3.23 accounts for the influence a chemical 

environment has on the energy of an atom’s electron.  As described in the 

Results and Discussion section (3.3.1), the self-consistent charge (SCC) 

procedure makes a significant improvement in the electronic structure description 

over what is achieved with a traditional MWH calculation. It is also critical in 

cases of a finite applied potential, as will now be discussed. 

 

3.2.6 Applying a Potential  

 

The driving force for electron transport across a molecular junction arises 

from establishing a difference in potential between the two electrodes.  In order 

to mimic this experimental condition the metal clusters are placed at different 

potentials. As an initial guess, the potential drop is distributed linearly across the 

intervening junction molecule.  To do so, the device complex is aligned so that 

the electrodes are parallel to the y-z plane and the molecule’s longest dimension 

is aligned with the x-axis. In cases where the junction molecule is not perfectly 
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planar, the molecule’s average plane is calculated along the longest dimension, 

and aligned to the x-z plane.  Figure 3.3 shows the alignment and reference 

coordinate system for the benzene-1, 4-dithiol (BDT) complex.   The potential 

drop therefore occurs along the x-axis, which is perpendicular to the electrodes.  

Figure 3. 3.  Reference coordinate system for the benzene-1, 4-dithiol (BDT) 
complex.  Black spheres are carbon, white spheres are aluminum, triangles are 
sulfurs and asterisks are hydrogens. 
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aluminums ligated to the sulfurs at the terminal ends of the junction molecule.  

Vap/2 is subtracted from the low potential electrode and added to the high 

potential electrode, which results in a potential difference equal to Vap across the 

junction.  The initial variation in potential is a linear between the electrodes, i.e. 

the potential depends linearly on the x-coordinate.   This relationship is used to 

determine Vap for every atom in the junction molecule.    

 We next rewrite equation 3.23 to account for Vap.  Under a finite applied 

potential, the Hii are dependent on charge and position and have the form                                  

                                  )x(VCqBqA)q,x(H napn,inn,i
2
nn,innn,ii +++=  (3.24) 

where “i” is the atomic orbital index with atomic position xn. The energy matrix is 

iterated to charge self consistency as discussed in the previous section.   

The use of a self-consistent charge procedure requires a second 

modification of the standard MWH method. The atomic charges are 

approximated by an atomic orbital population analysis, which depends on the 

molecular orbital occupancies. In the canonical SCC procedure, the MO 

populations are set by assuming a ground state occupancy vector, that is, the 

lowest N/2 MOs (N is the total number of electrons) are full and form the 

occupied space. The remaining MOs are empty and form the virtual space.  The 

energetic region between the occupied and virtual space is the HOMO-LUMO 

gap (analogous to the band gap in a solid).  During the self-consistent charge 

procedure, if the ordering of the MO energies changes so that orbitals become 

degenerate or close to degenerate within the gap, the ground state configuration 

(as defined by the occupancy vector with the lowest corresponding energy) may 
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change from one iteration to the next. This gives rise to a discontinuous change 

in the charge distribution as a function of orbital energy. The self-consistent 

charge procedure may therefore jump back and forth among two or more 

configurations and never achieve convergence. In our representation of a 

molecular junction, the problem is particularly acute because the presence of two 

large clusters of metal atoms (the donor and acceptor electrodes) means that 

there is very high state density at the Fermi level, the threshold between the 

occupied and virtual spaces. In fact, if the state density is not high it is a clear 

indication that the donor and acceptor clusters are not sufficiently large to 

adequately approximate metallic electrodes. A valid cluster model therefore 

essentially guarantees this orbital crossing problem. The problem is further 

exacerbated by an applied potential. 

 The root of the convergence problem is the discontinuous change in the 

charge distribution with orbital energy. To resolve the problem, we employ an 

occupancy vector whereby the MO occupancies are allowed to be fractional, and 

because electrons are fermions, the occupancies are set by Fermi-Dirac 

statistics. In this way the orbital occupancies vary continuously (between 0 and 2) 

with orbital energy.  Setting the orbital occupancies requires setting the Fermi 

level (an insightful discussion may be found in Ref. [28]) and this has been a 

matter of considerable debate in the molecular electronics community. Within our 

description of the molecular junction, we employ a method of setting the Fermi 

level that is rigorous and parameter-free. The Fermi level is initially set by 

assuming a ground state occupancy vector and placing the Fermi Level in the 
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middle of the HOMO-LUMO gap. The occupancies of the MOs of the 

supermolecule are set by Fermi-Dirac statistics and the total occupancy is then 

computed. If the total occupancy exceeds the number of electrons in the device 

complex, the Fermi level is lowered. If the total occupancy is less than the total 

number of electrons in the supermolecule, the Fermi level is raised. The 

procedure is iterated until the total occupancy is equal to the total number of 

electrons in the device complex to within a specified convergence criterion 

(typically 1×10-5 elementary charge units). We have found that the SCC 

procedure typically converges in 20-30 iterations when employing the Fermi-

Dirac occupancy vector. In its absence, even with complicated momentum-

weighted optimization schemes, the convergence often required 1000 or more 

iterations, if it could be achieved at all.  

 

3.3 Results and Discussion 

 

3.3.1 Code validation 

 

We first note that with the SCC and Fermi-Dirac occupancy vector 

procedures turned off, the electronic structure code is a generic extended Hückel 

molecular orbital program and gives results in essentially exact agreement with 

commercial codes [84]. This code has been used successfully over many years 

for MO calculations [46, 85-87].  Next we observe that performing the SCC 

procedure results in molecular orbital energies that are closer to those obtained 
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by more accurate first-principles electronic structure calculations.  Figure 3.4 

shows the HOMO through HOMO(-4) molecular orbital energies for an isolated 

water molecule as calculated by Extended Hückel Theory (EHT), our code with 

the SCC implementation, and density functional theory (DFT) at the B3LYP/6-

31G* level of theory [57-59, 62].  Note that the SCC procedure offers a more 

accurate representation of the electronic structure than can be obtained by EHT 

alone. 

Figure 3. 4.  Molecular orbital (MO) energies for the water molecule at three 
levels of theory. Note that the use of self-consistent-charge leads to a significant 
improvement in the accuracy of the MO energies, where first-principles density 
functional theory (DFT) calculations are used as a benchmark.  The MOs shown 
are the 4 highest occupied molecular orbitals (HOMO to HOMO-3) 
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3.3.2 Influence of an applied potential on the electronic structure and 

charge distribution  
 

 Before investigating the time dependence of electron transport, we 

performed calculations to examine how an applied potential (Vap) affects the 

steady-state distribution of charge across a molecular junction. The molecular 

junction was modeled as a single molecule sandwiched between two clusters of 

aluminum atoms and bonded to each cluster through a thiol linkage (Figure 3.5). 

Each cluster is made up of 18 aluminum atoms arranged in the native face-

centered cubic close packing arrangement with the (1,1,1) Miller surface 

exposed.  Each cluster contains all second-nearest-neighbors to the terminal 

sulfur atoms in the molecule, which form the contacts between the junction 

molecule and the electrodes. Benzene (as benzene-1, 4-dithiol or BDT) and 

butane (as butane-1, 4-dithiol or BuDT) were employed as junction molecules.  

The applied potential Vap was varied from 0.0 to 3.0 (V). Figure 3.5 (two panels) 

shows a surface plot representing the change in charge from the zero-applied–

potential case as a function of Vap and the x-position across the junction.  The 

inserts show the dithiol-molecular complexes used in the calculations. The 

results demonstrate that in both cases, the molecule behaves remarkably like a 

conducting wire, transferring charge from donor to acceptor electrode while 

exhibiting no marked charge buildup.  This result is consistent with the widely 

discussed hypothesis that resistance in a molecular junction is predominantly 

due to the contacts, provided there is a conduction channel available through 

which charge can flow [31]. It also agrees with earlier theoretical calculations 
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showing that a benzene-1,4-dithiol in contact with two gold electrodes exhibits 

little charge buildup in the conjugated ring due to charge transfer from the Au 

[33]. 

Figure 3. 5. Left panel – Butane-1,4-dithiol (BuDT) molecular junction and the 
spatial redistribution of charge under various applied potentials. Right panel - 
same for benzene-1,4-dithiol (BDT) molecular junction.  Black spheres are 
carbon, white spheres are hydrogen, and triangles are sulfurs. 1 bohr = 0.5292 Å. 
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Based upon calculations with the SCC procedure on smaller systems, we 

analyzed the molecular orbital energies for a BDT junction as a function of the 

applied potential.  Figure 3.6 shows the molecular orbital fluctuations in the Fermi 

region of the device. Figure 3.7 shows how the HOMO-LUMO gap changes with 

applied potential for BDT.  The insert is the junction used in the calculation.  

There are significant fluctuations in the molecular orbital energies and even 

orbital crossings. This reveals why Fermi-Dirac statistics are necessary when 

assigning electron occupancy; there is a high density of states around the Fermi 

level.  In fact, before the Fermi-Dirac implementation, convergence was 

impossible around Vap = 2.0 V (i.e. where the HOMO-LUMO gap ≈ 0.0). 
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Figure 3. 6.  Molecular orbital fluctuations in the Fermi region of the benzene-
1,4-dithiol (BDT) molecular junction. 
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Figure 3. 7.  Difference between LUMO and HOMO (band gap or ∆E) as a 
function of Vap in the BDT device complex.  Atom identities are indicated in      
Fig. 3. 1. 

 
 
 
Next we consider the effect of Vap on the time dependence of electron 

transfer.  An electron is initially localized onto the donor electrode and the TDSE 

solved to reveal its time evolution. Figure 3.8 shows the integrated probability 

that the transported electron has reached the acceptor electrode as a function of 

time. For BDT it takes 150 atomic time units (2.4189 x 10-17 s = 0.024189 fs) to 

reach the acceptor, (time when probability exceeds 90%) at Vap = 1.0.  The 

process is approximately 33% longer in BuDT at the same Vap.  These processes 

are on the order of a few femtoseconds, in excellent agreement with known  
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transit times in molecular junctions [88, 89].  It is worth noting that such transit 

times are orders of magnitude shorter than most molecular vibrational periods, 

i.e. the molecule is essentially rigid for the duration of the electron transport  

event. We also note that the transport time in BDT is unaffected by Vap. 

Figure 3. 8. Integrated probability on acceptor orbitals as a function of time (in 
atomic units) for the benzene-1,4-dithiol (BDT) and butane-1,4-dithiol (BuDT) 
supermolecules. 
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series MC-S-(CH=CH)n-S-MC (where n=1 to 10) as the junction molecules and 

MC are the metal clusters.  For the electrodes, we employed 18-atom-aluminum 

(Al) clusters exposing the (1,1,1) Miller face.  Again, these clusters include all the 

second-nearest-neighbors to the Al atoms involved in bonding to sulfur.  We 

considered two contact geometries: type I - sulfur (S) complexed to a triad of 

aluminum atoms (a nominal hcp site), and type II - sulfur bonded straight onto an 

aluminum atom (referred to as an “atop” site).  Two sets of devices were then 

assembled by placing the n=1 to10 polyacetylenic series between electrodes in 

both types (I and II) of contact geometries.  Figure 3.9 (2 panels) shows the two 

device types for the n=2 junction molecule.  The bond length between S and Al 

(2.284 Å) was obtained from the average Al-S distance in the Al2S3 crystal 

structure obtained by Krebs et al. [90]. 
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Figure 3. 9.  MC-S-(CH=CH)n-S-MC where n=2 device in the different contact 
geometries.  Left panel – S bonded at hcp site, which is over the aluminum triad 
center.  Right panel – S bonded on atop site.  Atom identities are indicated in 
Figure 3.1. 
 
  
 

We calculated the time dependence of electron transport for the 

polyacetylenic series MC-S-(CH=CH)n-S-MC for two different contact geometries 

as shown in Figure 3.9.  We performed all calculations at Vap=0.0 because of the 

result in the previous section suggesting that transport times of conjugated 

molecules do not depend appreciably on Vap.   

 Figure 3.10 shows the time required to reach 95% probability as a function 

of acetylene unit n for both contact geometry types.  The result is consistent with 

the expectation that as the molecule increases in length, the transport time 

increases in an approximately linear fashion.  Note that there is an appreciable 

difference in transport time between the hcp and atop bonded junction 

molecules, and that transport time is shorter when the contact geometry is atop.  
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This is theoretical confirmation of the widely discussed hypothesis that contact 

geometry strongly influences the electron transport in molecular junctions.  

 

Figure 3. 10.  The time required to attain 95% probability as a function of 
acetylene unit “n” for the hcp and atop contact geometries. 
  

 
 

3.3.4 The substituent effect 
 

 

 We also considered the effect of chemical substituents on the junction 
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that tabulated substituent parameters correlate well with charge transfer for a 

donor group to an acceptor group in donor-bridge-acceptor systems, where the 

bridge contains a substituted aromatic ring [47].   For the present study, the 2- [4-

(2-mercapto-vinyl)-phenyl]-ethenethiol species was used as the base molecule 

and placed between two 18-atom Al clusters with the sulfurs bonded at the hcp 

site.  Figure 3.11 shows the base device complex.  The x represents the position 

at which 10 chemical groups were placed in order to examine the substituent 

effect on the time-dependence of electron transport.   The substituent groups (~x) 

considered were:  ~OH, ~CH3, ~OCH3, ~H, ~F, ~Cl, ~COOH, ~CF3, ~CN, and 

~NO2. The time dependence of electron transport for the substituted aromatic 

wires was calculated, and the results were correlated with tabulated substituent 

parameters.  No statistically significant correlation was found between substituent 

parameter value and the time required (time when probability exceeds 90%) for 

the transported electron to reach the acceptor electrode.  The average value was 

calculated to be 286 atomic time units for the electron transport event to take 

place, relatively independent of  (data not shown) the chemical substituent.  
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Figure 3. 11.  The base device complex for the substituent effect study.  The x 
position was replaced with the substituents ~OH, ~CH3, ~OCH3, ~H, ~F, ~Cl, 
~CO2H, ~CF3, ~CN, and ~NO2.  Atom identities are indicated in Figure 3.1. 
 
 
 
 Overall, our results demonstrate that transport time depends on molecular 

length to a greater degree than on chemical substituents.  This is supported by 

experimental evidence provided by Page et al., which suggests that electron 

tunneling occurs efficiently in polypeptide chains of 14 Å or less, regardless of 

the chemical nature of the chain molecule [91].  All molecules in the substituent 

effect study reported here are close to this 14 Å threshold.  Therefore both the 

work of Page and ourselves suggest that there is no appreciable enhancement in 

tunneling electron transfer due to chemical substituents unless the molecular 

species is considerably longer than 14 Å. An investigation of the substituent 

effect upon much longer junction molecules would be computationally demanding 
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(junctions as large as the one shown in figure 3.10 take several days on a UNIX 

box with a Pentium III processor) and is beyond the scope of the present work. 

 

3.4 Conclusions 

 

 In section 3.2, the junction is modeled as a single molecule sandwiched 

between two clusters of aluminum atoms. The time development of a localized 

electron wavefunction is followed by solving the time-dependent Schrödinger 

equation in a basis of eigenfunctions of the time independent Schrödinger 

equation for the entire device complex. It is shown that due to high density of 

states in the vicinity of the Fermi level resulting from the presence of metallic 

clusters, the occupancy vector in the solution of the time independent 

Schrödinger equation must be set with Fermi-Dirac statistics. Furthermore, to 

properly handle finite applied potentials, the Hamiltonian matrix must be 

constructed in a charge-self-consistent manner. 

 The calculations suggest that for two simple junction molecules (butane-

dithiol and benzene-dithiol) the molecule behaves remarkably like a conducting 

wire, transferring charge from donor to acceptor electrode while exhibiting no 

marked charge buildup.  This result is consistent with the widely discussed 

hypothesis that resistance in a molecular junction is predominantly due to the 

contacts (metal-molecule interfaces). Computed transit times are in excellent 

agreement with known transit times in molecular junctions. 
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 It is shown that the time for electron transport across the junction 

increases monotonically with molecular length over a polyacetylenic series MC-

S-(CH=CH)n-S-MC, where n=1 to 10.  This transport time, however, shows 

considerably sensitivity to contact geometry. 

 An investigation of transport time, for a set of functionally substituted 

junction molecules, showed no statistically significant correlation of the transit 

time to substituent parameter. It is suggested, based on other literature reports, 

that the efficiency of transport is relatively insensitive to the junction molecule 

species for junctions shorter than some critical threshold, which the junctions 

considered here presumably do not exceed. 
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Chapter 4. Time-dependence of electron transport II: a Configuration 

Interaction basis 
 
 
 
4.1 Introduction 

 

In Chapter 3 we studied the time dependence of electron transport 

through molecular junctions by following the time evolution of an initially localized 

electron by integration of the time dependent Schördinger equation (TDSE). We 

constructed the time dependent wave function based on a semiempirical 

(extended Hückel) electronic structure description of the system. The use of a 

semiempirical electronic structure description introduces two important 

approximations: i) empirical parameterization of certain fundamental integrals 

that occur in the solution of the time independent Schrödinger equation, ii) 

neglect of electron correlation effects. For a more robust description of the time 

dependence of electron transport, we seek to remove these two approximations. 

The use of ab initio electronic structure theory will serve to remove the restrictive 

parameterizations, but not all ab initio methods include electron correlation.  Non-

correlated ab initio methods, (i.e. Hartree-Fock theory) generate solutions to the 

Schrödinger equation that account for the electron–electron interactions in an 

average way.  (Refer to Appendix B for more information on Hartree-Fock theory 

and an example calculation.)  Numerous methods exist that attempt to recover 

some of the energy lost by treating electron-electron interactions this way. 

Collectively, these are referred to as post-Hartree-Fock methods, and the 

recovered energy is called the correlation energy (Ecorr) defined as 
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                                                      00corr EE −ε= ,  (4.1) 

where ε0 is the exact non-relativistic energy of the system, and E0 is the Hartree-

Fock energy [69].  The correlation energy physically corresponds to the fact that 

an electron’s motion is “correlated” to that of all of the other electrons in the 

system. In this chapter we describe the time dependence of electron transport in 

a donor-bridge-acceptor (D-B-A) molecular system by tracking the time evolution 

of a correlated and ab initio description of the electronic structure of a 

nonstationary state.  

 

4.2 Theoretical Methods 

 

4.2.1 Background on Configuration Interaction 

 

At the very beginning of a standard quantum chemical calculation, a set of 

atomic orbitals is assigned to each atom in the molecule.  The molecular orbitals 

are then built as linear combinations of atomic orbitals (LCAO-MO) and the 

molecular orbital energies are obtained.  With an appropriate method and basis 

set, the ground state of a molecule is appropriately described and the calculation 

could stop here.  There are cases, however, where the molecule is better 

described as a “mixture” of electronic configurations.  The configuration 

interaction method (CI) performs this task by describing the overall wavefunction 

(Ψ) as a linear combination of ground and excited electron configurations or 

determinants   
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                                                 ∑ ψ+ψ=Ψ

=1i
iiHFo aa ,     (4.2) 

where ai are the expansion coefficients, ψi are the excited determinants, a0 is the 

coefficient of the Hartree-Fock (HF) ground state, and ψHF is the ground state 

determinant.   

   Slater determinants are necessitated by the Pauli exclusion principle, 

which states that a many-electron wavefunction must be antisymmetric with 

respect to the exchange of two electrons [69].  Consider a two-electron system in 

a basis of atomic orbitals (χi), with molecular orbitals (φ) of the form 

                                                     ∑ χ=φ
=

2

1i
iinn C ,  (4.3) 

where Cin is the expansion coefficient for atomic orbital i in molecular orbital n.  

The two-electron ground state wavefunction can be written as a Hartree product 

(refer to Appendix B for more information), or the product of one-electron 

wavefunctions (molecular orbitals)  

                                                      )2()1(' 11 βα
ψψ=ψ , (4.4) 

where electron 1 is assigned to molecular orbital ψ1 in a spin up (α) state, and 

electron 2 is also assigned ψ1 but in a spin down (β) state.  In order for ψ' to 

satisfy the antisymmetry condition, it must be an eigenfunction of the permutation 

operator ( ijP̂ ), which exchanges the coordinates of two electrons as specified by 

                                                           ''P̂ij ψ−=ψ .           (4.5) 

 Substituting (4.4) into (4.5) yields 

                                         )1()2()2()1(P̂'P̂ 11111212 βαβα
ψψ=ψψ=ψ .   (4.6) 



                                                                                                                                         72     
                                                 )1()2()2()1( 1111 βαβα

ψψ−≠ψψ , (4.7) 

therefore    

                                                                    ''P̂ij ψ−≠ψ ,   (4.8) 

and ψ' is not an eigenfunction.  If the wavefunction (ψ'') is written as a linear 

combination of ψ' as 

                                      )1()2()2()1('P̂''' 111112 βαβα
ψψ−ψψ=ψ−ψ=ψ , (4.9) 

and Ψ'' is substituted for Ψ into the left hand side of (4.5), it yields 

                                       )2()1()1()2(''P̂ 111112 βαβα
ψψ−ψψ=ψ . (4.10) 

                   ))2()1()1()2(()1()2()2()1( 11111111 βαβαβαβα
ψψ−ψψ−=ψψ−ψψ , (4.11) 

and the antisymmetry condition is satisfied because 

                                                                   ''''P̂ij ψ−=ψ . (4.12) 

Another way of expressing Ψ'' is in determinant form  

                                                
)2()2(
)1()1(

N''
11

11

βα

βα

ψψ
ψψ

=ψ
, (4.13) 

 where N is a normalization constant, and Ψ'' is called a Slater determinant, 

equivalently written as 

                                                      )2()1('' 11 βα
ψψ=ψ .           (4.14) 

The Slater determinant in equation 4.14 describes the ground state configuration, 

but other states can be described as well, i.e. an excited state in which an 

electron in molecular orbital 1 is placed in molecular orbital 2.  Such a Slater 

determinant may be described as 

                                                                )2()1('' 21 βα
ψψ=ψ .  (4.15) 
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In a CI calculation, a number of Slater determinants are generated by 

exciting the ground state configuration, and once spin is factored out (spin 

adapted Slater determinants) these are refer to as configuration state functions 

(CSFs).  CSF1 derived from (4.14) and CSF2 derived from (4.15) would be 

written as vectors containing only the elements 0, 1 and 2 as CSF1 = (2,0), and 

CSF2 = (1,1).   

In practical calculations, the basis of CSFs is truncated in some way, such 

as by limiting it to certain excitation types, i.e. only CSFs describing single 

excitations from valence to virtual orbitals are generated.  The CI matrix becomes 

an NxN square matrix of N CSFs. Solving the eigenvalue problem for the CI 

matrix yields CI states (eigenvectors) defined as linear combinations of CSFs, 

and their corresponding state energies (eigenvalues). Comparatively, CSFs 

(Slater determinants) are to the CI states, what atomic orbitals are to molecular 

orbitals. 

 

4.2.2 Solution of the Time-Dependent Schrödinger Equation 

 

As in chapter 3, we seek to solve the time dependent Schrödinger 

equation (TDSE)  

                                                  )t,(H
t

)t,(i rr
Ψ=

∂
Ψ∂ .        (4.16) 

Here “H” is the total energy operator and Ψ(r,t) is the wavefunction, which 

depends on the spatial coordinates “r” and time “t”.  In the case of a time-
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independent Hamiltonian, the wavefunction t),(rΨ  is separable into spatial ( )(rψ ) 

and time-dependent ( (t)Τ ) parts and may be written 

                                                 Ψ(r,t) = Τ(t)ψ(r).    (4.17) 

If we denote the eigen-solutions of the time-independent Schrödinger equation 

(TISE) as Φk(r) so that 

                                                          Hψ(r) = Eψ(r),                         (4.18) 

we may write the spatial part of the time-dependent wavefunction in the form of 

an expansion in a basis of eigenfunctions Φk(r) of the time-independent 

Schrödinger equation 

                                                       
nn

n
n b)( φ∑=ψ r .                   (4.19) 

Here the bn are the expansion coefficients of the nonstationary state at time t=0. 

This is where the present method departs from that present in chapter 3. Here 

the Φn(r) are taken to be CI eigenstates of the TISE, rather than extended Hückel 

molecular orbitals. As before, the time evolution of the nonstationary state Ψ(r,t) 

is given by, 

                                               Ψ(r,t) = Σn bn [exp(-iEnt)]φn(r).                      (4.20) 

 It is instructive to consider the case where the overall wavefunction )t,(n rΨ  

is written as a linear combination of two CI states (n=1 and 2)  

                                       tiE
22

tiE
11

21 ebeb)t,( −− φ+φ=Ψ r ,                                  (4.21) 

one can prove that it as a solution to the TDSE by substituting (4.21) into (4.16) 

                        
( ) ( )tiE

22
tiE

11

tiE
22

tiE
11 21

21

ebebH
t

ebeb −−
−−

φ+φ=
∂

φ+φ∂ . (4.22) 
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Upon operation, the left hand side of (4.22) becomes 

                                                   tiE
222

tiE
111

21 ebEebE −− φ+φ , (4.23) 

 and the right hand side of (4.22) becomes 

                                                   tiE
222

tiE
111

21 ebEebE −− φ+φ . (4.24) 

(4.23) and (4.24) yield equivalent expressions, and therefore (3.50) is a solution 

of the TDSE.   

The probability density of this wavefunction is  

              ( )( )tiE
22

tiE
11

tiE
22

tiE
11

2121 ebebebeb −−∗ φ+φφ+φ=ΨΨ .      (4.25) 

Expanding (3.54) yields  

                                   ti
2121

ti
2121

2
2

2
2

2
1

2
1 ebbebbbb ωω−∗ φφ+φφ+φ+φ=ΨΨ  (4.26) 

where ( )12 EE −=ω .  Using the trigonometric identity 

                                          )cos(A2AeAe ii α=+ αα− , (4.27) 

 and substituting  2121bb φφ  for A, and  tω  for α in (4.27), equation (4.26) can be 

written as 

                              )tcos(bb2bb 2121
2
2

2
2

2
1

2
1 ωφφ+φ+φ=ΨΨ∗ . (4.28) 

 Eq. 4.28 shows that when the nonstationary state is a mixture of just two 

stationary states, the probability varies sinusoidally as a function of the energy 

difference between the two states. 
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4.2.3 Extending the population analysis 

 

Tracking electron flow means tracking changes in electron density over 

time. An approximate but intuitive procedure for the description of electron 

density is population analysis, as described in Appendix A1. Performing a 

population analysis on a single determinant wavefunction, i.e. one state or 

electronic configuration, is a relatively straightforward process.  For a molecular 

system described in terms of CI states, population analysis is more complex. 

This is because each CI state is a linear combination of Slater determinants or 

CSFs, which are products of one electron functions or molecular orbitals, which 

are linear combinations of atomic orbitals.   

The mathematical procedure to perform a population analysis on a CI 

state is as follows. 

I. Generate the density matrix for every CSF. 

The population analysis for a single determinant or CSF is obtained by 

writing the density matrix D in terms of an occupancy vector ( v ) 

                                         ∑
=

∗=
N

1k
knkmkmn CCvD .  (4.29) 

In a system of N molecular orbitals and M CSFs, M density matrices can be 

calculated because every CSF has its own occupancy vector defined by the 

excitation if describes.  For example, in a two electron system with 3 molecular 

orbitals (N=3), three CSFs (M=3) could be written as CSF1=(2,0,0), 

CSF2=(1,1,0) and CSF3=(0,2,0).  Each one precisely defines the occupancy of a 

configuration.  CSF1, CSF2, and CSF3 describe a ground state, a singly excited 
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state, and a doubly excited respectively. The density matrix for each 

configuration is defined as 

                                                         ∑
=

∗=
N

1k
knkm

L
k

L
mn CCvD  (4.30) 

where L is the CSF index, vk
L is the occupancy specified by CSF L.  It is useful to 

point out that the molecular orbitals from which the CSFs are constructed, are 

calculated from a SCF-HF calculation before the CI calculation, therefore the 

atomic orbital coefficients (C) never change. 

II. Generate the population matrix for every CSF. 

The overlap matrix S is also calculated before the CI calculation for the 

SCF-HF portion, and will not change with CSF or CI states.  Like the density 

matrix, the population matrix or DS can be constructed for every CSF 

                                              ∑=
=

∗
N

mnknkm

L

k

L

mn
1k

S)CCv(DS  (4.31) 

III. Generate the atomic orbital populations (population vector) for every 

CSF. 

To acquire the populations of every atomic orbital (ρ), all the contributions 

to a particular atomic orbital must be added  

                                         ∑ ∑ ∑=∑ ∑=ρ
=∈

∗
N

m

N

n

N

mnknkm

L

k

N N

n

L

mn

L

A
1kAm

S)CCv(DS .    (4.32) 

According to (4.32), an atom will have a different population depending on the 

CSF being described, so there will be a “set” of populations for every CSF.  

These sets never change from one CI state to another.  As will be seen below, 
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what changes is the contribution from a given L

Aρ  to a CI state because the CSFs 

have different expansion coefficients in every CI state. 

IV. Calculate the population for every CI state 

To calculate the population of every atomic orbital for the Jth CI state ( JL

Aρ ), 

the populations ( L

Aρ ) from above are multiplied by the square of the CSF 

expansion coefficients for CI state J as described by 

                                                   ∑∑ ρ=ρ
M

L

N

J

L

AJLJL

JL

A ff ,                                             (4.33)  

where fJL is the contribution of CSF L to CI state J.  The atomic charges QA for 

every CI state are found by subtracting the 
JL

Aρ from the nuclear charge ZA 

                                                   JL

AA

J

A ZQ ρ−= .                                          (4.34) 

 

4.2.4 Specifying the initial localization of the electron 

 

In section 3.2.3, the electron localization was performed by placing an 

electron in a single atomic orbital and expanding the AO in a basis of molecular 

orbitals.  In a system of N molecular orbitals, and ND donor atomic orbitals, the 

expansion coefficients (bn) for the N molecular orbitals are given by                                     

                                                   ∑∑=
N

k

N

i
kiinkn

D

SaCb ,     (4.35) 

where ai is the weight assigned to donor atom i. (See chapter 2 section 2.2.2.)  

The resultant wavefunction is not a stationary state.  It is a linear combination of 

eigenfunctions or stationary states and will propagate over time.  This procedure 
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is mathematically simple because the molecular orbitals themselves are linear 

combinations of atomic orbitals.  Qualitatively, equation 4.35 is essentially 

gathering molecular orbitals with large contributions to the donor atomic orbital 

and assigning them large values of bn. 

 In a CI wavefunction, the CSFs are the basis functions, and the stationary 

states (eigenvectors) are the CI states.  The goal is to describe a localized 

electron as a linear combination of CI states, however, solving for (4.35) is 

computationally and mathematically impractical.  The problem is complicated by 

the fact that CSFs are products of molecular orbitals.  This added level of 

complexity requires a different approach to localization.  

 As described in section 4.2.4, the expansion coefficients (bJ) for the CI 

states that result in the desired electronic structure, must be found.  The first 

step, however, is to decide on what the desired electronic structure is.  As is 

described in section 4.2.3, the population for every atom in a CI state (
JL

Aρ ) can 

be calculated. One could choose a linear combination of CI states that minimizes 

the charge on a donor atom.  The result is a linear combination of CI states with 

a coefficient numerically equal to one for the largest contributing CI state, and 

coefficients numerically equal to zero for all others.  This essentially describes 

only one CI state, which is a stationary state (eigenvector) of the CI matrix and it 

will not time propagate.  Just optimizing the charge on one atom is not sufficient.  

The solution taken here is to optimize a charge difference between the donor and 

acceptor atoms in the molecule, and to find the linear combination of CI states 
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that describes a zwitterionic condition.  A description of how the expansion 

coefficients (bJ) for the CI sates is given in Appendix A3, section 3.  

  

4.3 Results and Discussion 

 

 4.3.1 Donor-Bridge-Acceptor System 

 

We examine the donor-bridge-acceptor (D-Bn-A) systems, i.e. D = ~CH3,  

A = ~CHO, and Bn = (CH=CH)n, where n=1 to 10 specifies the length of the 

acetylenic bridge [65].  In these systems, the electron donor and acceptor groups 

on opposite sides of the molecule mimic an applied potential. The geometry 

optimizations, and configuration interaction (CI) calculations were carried out with 

an STO-6G  [73-75] basis using the GAMESS quantum chemical code [64]. 

Consider the test molecule CH3-(CH=CH)n-CHO where n =10. The donor 

atom is chosen as the methyl carbon and the acceptor atom is the carbonyl 

oxygen.  Once the (bJ) that maximize the donor-acceptor charge separation are 

found, the CI wavefunction can be time-propagated, and the donor and acceptor 

charges can be tracked over time.  Figure 4.1 shows the charge fluctuations on 

the donor atom.  Note that the charge fluctuations are approximately sinusoidal in 

nature and have a characteristic peak-to-peak distance. This suggests that the 

time dependent wavefunction may be roughly approximated by a two-state 

oscillation. Upon analysis of the expansion coefficients of the nonstationary state, 

which is optimized to maximize charge separation between the donor and 
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acceptor moieties, it may be seen that the problem indeed essentially breaks 

down into a two state description in which the states represent the extremes of 

electron transport; the electron localized on the donor atom and the electron 

localized on the acceptor atom.  Furthermore the transport time is proportional to 

the energy difference between the two states, a simple consequence of the two-

state picture.  The periodicity is the oscillating frequency between contributing 

states to the donor-acceptor charge separation.  This fluctuation arises from a 

transition common to all the molecules in the series.  The transition is from a 

zwitterionic state to an adjacent zwitterionic state, but with an inverse charge 

separation.  The transition time is defined as the peak-to-peak length divided by 

two and is shown in figure 4.2 as a function of molecular length (Å).  As 

expected, the time increases as the molecular length increases, and it is noted 

that there is a periodic step behavior every 3-4 acetylene units.  
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Figure 4. 1.  Electronic charge fluctuations on the donor atom (methyl 
carbon) in the molecule CH3-(CH=CH)n-CHO where n =10. Adjacent points in the 
time domain are connected as a visual aid.  
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Figure 4. 2.  The transition times for the molecular series CH3-(CH=CH)n-CHO 
where n =1 to 10, as calculated by propagating the configuration interaction (CI) 
wavefunction and as predicted by the two-state approach.   

 
 
 

Also shown in figure 4.2 is the transition time as predicted by the two-state 
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observed (time development of the CI wavefunction) charge transfer times is that 

there are other CI states that contribute to the transition besides the states used 

in the two-state approach, but on average they both have the same slope and 

n=10
n=9

n=8n=7

n=6
n=5

n=4

n=3
n=2n=1

5

7

9

11

13

15

17

19

21

3 8 13 18 23 28
Length (Angst.)

Ti
m

e 
(a

tu
)

Average transfer time

Two-state prediction

Base molecule: CH3-(CH2=CH2)n-CHO

Length (Angstroms) 

Ti
m

e 
(a

to
m

ic
 u

ni
ts

) 



                                                                                                                                         84     
have time values in the same orders of magnitude.  In reality there is a non-zero 

contribution from every CI state, giving rise to the modulation in the charge 

fluctuation graph shown in figure 4.1.  In other words, the wave is not perfectly 

periodic.  Nevertheless, the two-state model provides a qualitative understanding 

of the time dependence of electron transport. Within the CI state contributions, 

one can find transitions to other zwitterionic states (secondary transitions) which 

will have small contributions to the overall wavefunction.  Figure 4.3 shows the 

transition time for a secondary transition along with the graphs shown in figure 

4.2.  Presumably this secondary transition modulates the two-state prediction.  

The result from the two-state prediction gives a degree of validation that our 

calculations yield a physically reasonable result. 
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Figure 4. 3.  Comparison of secondary transfer times with the two-state 
prediction and average transfer time as calculated by time developing the CI 
wavefunction times for the molecular series CH3-(CH=CH)n-CHO where n =1 to 
10.  
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conjugated and the other saturated. The molecule was geometry optimized at the 

HF/STO-6G level of theory  [73-75] with the GAMESS code [64].  We initially 

localize the electron as described in section 4.5 on the methyl donor atom and 

assign the oxygen atom of the carbonyl group as the acceptor.  As the 

wavefunction is time propagated, it is anticipated that the resistance toward 

electron flow will differ between the conjugated part of the molecule and the 

saturated part of the molecule. Figure 4.5 shows the accumulation of charge on 

the conjugated and saturated sections of the ring over time.  Figure 4.5 indicates 

that the time-dependent fluctuation in charge is similar in frequency for both 

sections of the molecule, but the amplitude is greater on the conjugated section.  

This suggests that the speed of electron transfer is governed by the dimensions 

of the molecule, but that the charge flux depends on the chemical environment.   
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Figure 4. 4.  The molecule used in the differential resistance study, 
acetaldehyde-(4-ethyl-cyclohexa-1,3-dienyl). 
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Figure 4. 5.  Charge accumulation over time on the conjugated and saturated 
regions of acetaldehyde-(4-ethyl-cyclohexa-1,3-dienyl). 
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Figure 4. 6.  Power spectra of charge fluctuation signals from the conjugated and 
saturated portions of the molecule.  
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the determinants and their contributions, yielding a compact picture of charge 

distribution.  Peak 1 describes a transition from a state (4) with no negative 

charge to a state (7) with a negative charge on the conjugated portion of the 

molecule.  The most interesting feature of this state is that it is the one with the 

largest charge difference between the conjugated and saturated regions 

(transverse polarity).  Peak 2 is the largest peak for the conjugated channel, and 

it is a transition between states (9 and 13) that both have high and similar 

transverse polarities. 

The conduction channel for the saturated portion of the molecule has 

Peak 1 as its largest contributor.  This conduction channel also contains a nearly 

unique frequency (virtually absent from the conjugated power spectra in figure 

4.6) at peak 3, a transition between states 11 and 17 (ν=0.0455 a.u.).  State 11 

has a high transverse polarity, but state 17 has an even charge distribution in the 

ring.  The uniqueness of peak 3 and a possible reason for it being a very 

important peak in this conduction channel, is that state 17 places more negative 

charge on the saturated portion than any other state.   

Overall, both conduction channels appear to use states that place 

negative charge on the conjugated portion more than any other state.  In the 

case of the saturated portion, there is a unique frequency that modulates the 

signal, allowing some charge to flow through this section of the molecule. 
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4.4 Conclusions 

 

 In section 3.2, a molecular junction is modeled as a single molecule 

sandwiched between two clusters of aluminum atoms. The time development of 

a localized electron wavefunction is followed by solving the time dependent 

Schrödinger equation in a basis of eigenfunctions of the time independent 

Schrödinger equation for the entire device complex.  It is shown that the time for 

electron transport across the junction increases monotonically with molecular 

length over a polyacetylenic series MC-S-(CH=CH)n-S-MC, where n=1 to 10.  

Computed transit times are in excellent agreement with known transit times in 

molecular junctions.   

 In the present chapter the nonstationary wavefunction is expanded in a 

linear combination of CI states.  We find that transition times are mainly governed 

by two states, and that the difference in energy between the two states is related 

to the electron transfer times.   We also note that while there are differences 

between the predicted (two-state) and observed (time development of the CI 

wavefunction) transfer times, the two-state approach reveals qualitative 

information about the electron transfer process like the nature of the states that 

are intimately involved, i.e. zwitterionic states.  Furthermore, the comparison of 

the predicted and observed approach serves as verification that our calculations 

yield physically reasonable results. Again, electron transit times are found to be 

in excellent agreement with known transit times in molecular junctions.  The 

advantage of time evolving a CI wavefunction is that it provides a better 
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electronic structure description because CI captures some of the correlation 

energy, and avoids restrictive parameterizations.   

   The disadvantage of the CI methodology is that the treatment of full 

devices, including metal electrodes, is computationally impractical at this point in 

time.  The methods discussed in Chapter 3 are not as robust because they treat 

the wavefunction as an uncorrelated one-electron product, but they are 

computationally more practical if one desires to perform these calculations on a 

supermolecule.     

 A calculation was also performed on a molecule that contains regions of 

differing resistance along parallel electron transport coordinates.  The result 

shows that there is a lower resistance to electron transfer through the conjugated 

portion of the ring, and that electron transfer is affected by molecular length and 

resistance due to chemical groups.  It was shown that conduction through both 

portions of the ring is governed by the same frequencies, and that most of the 

frequencies are transitions that place electronic charge on the conjugated part of 

the molecule.  The exception is the frequency that contributes almost exclusively 

to the saturated channel, which is a transition to the state that places more 

negative charge on the saturated portion than any other state. 

Overall, the methodology is not restricted to electron transport in 

molecular electronic junctions and may potentially be applied in any environment 

where electron transport occurs from one molecular component to a second 

through a third.  The current practical limit is determined by computational 

hardware resources.
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Appendix A. General Theory of Population Analysis and Obtaining Atomic 

Charges 
 
 

In a quantum chemical calculation, whether it is semi-empirical or ab initio, 

the molecular orbitals and corresponding molecular orbital energies are obtained 

by solving an eigenvalue problem, i.e. diagonalizing a matrix representation of 

the Hamiltonian H.  This matrix is constructed with valence orbital ionization 

energies (VOIEs) in the case of semi-empirical calculations or with the Fock 

operator in Hartree-Fock (ab initio) calculations [1].   

In a basis of N atomic orbitals, the resultant molecular orbitals (φ) are 

written as linear combinations of atomic orbitals (χ) 

                                                    ∑
=

χ=φ
N

1j
jjii c , (A1) 

where cji is the expansion coefficient for atomic orbital χj in molecular orbital i.    

The density matrix D is constructed from the molecular orbitals.  D contains all 

the information about the electron distribution and charge density, and its 

elements are defined as 

                                                   ∑
=

=
2/N

1n

*
jninij cc2D ,  (A2) 

where the summation index includes only the occupied molecular orbital 

coefficients which are then multiplied by 2 in a closed shell system between there 

are two electrons assigned to each occupied orbital.  From equation A2, D is 

intuitively related to the wavefunction’s probability density.  
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 To partition electrons over the molecule into atomic orbital contributions, 

Mulliken population analysis uses the overlap matrix S [1, 2] to obtain a 

population matrix denoted DS.  S is obtained from the integrals between two 

atomic orbitals and is often calculated at the beginning of quantum chemical 

calculations.  The elements of S are defined as 

                                                         ∫ τχχ= dS jiij , (A3) 

and they may be thought of as characterizing the strength of interaction between 

atomic orbitals χi and χj. 

The elements of the Mulliken population matrix or DS matrix are defined 

as 

                                                          ∑=
N

ij
ijijij SDDS . (A4) 

It is important to note that DS is a matrix whose elements are products of 

the elements of D and S, not the matrix dot product between D and S.  The 

population for atom A (ρA) can be obtained from adding all contributions centered 

on atom A and is written as 

                                                         ∑∑
∈

=ρ
N

Ai

N

j
ijA DS , (A5) 

where the “i” index includes only those DS elements that are centered on atom A.   

 In order to calculate the charge on atom A (QA), the population is 

subtracted from the nuclear charge (ZA) as, 

                                                            AAA ZQ ρ−= . (A6) 
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Appendix B. Modifications to DRAGON code 

 

In chapter 3 the theoretical methods used to calculate the time-

dependence of electron transport and the application of a potential field across 

molecular junctions are discussed.  This appendix provides a description of 

DRAGON, the FORTRAN program that performs those calculations.   

Karl Sohlberg wrote the first version of DRAGON in 1991.  It was primarily 

used to perform molecular orbital calculations by using Extended Hückel theory.  

The results from DRAGON calculations have been published and the code’s 

robustness has been validated over the years [1].  Later versions of the code 

implemented a wavefunction localization routine, a time-dependent wavefunction 

solver and a wavefunction time development scheme. 

 

B.1 Program Structure 

 

The main driver structure of the current version of DRAGON is shown 

below.    A description of the main program features and modifications directly 

follows.  The program line numbers appear on the right of each record (line) 

within the main program and will be referenced in the subsequent section. 

 

 

        MAIN PROGRAM  1 
        implicit real*8 (a-h,o-z) 2 
        parameter (nbasis=N) 3 
        external totoccfun 4  
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        real*8 x(nbasis),y(nbasis),z(nbasis),val(nbasis) 5 
        real*8 s(nbasis,nbasis),ss(nbasis,nbasis) 6 
        real*8 AA(nbasis),BB(nbasis),CC(nbasis) 7 
        real*8 h(nbasis,nbasis),hr(nbasis,nbasis) 8 
        real*8 am(nbasis,nbasis),qq(nbasis) 9 
        real*8 q(nbasis),qlast(nbasis) 10 
        real*8 alfr(nbasis),qqlast(nbasis) 11 
        real*8 eigenv(nbasis,nbasis),qvec(nbasis) 12 
        real*8 fv1(nbasis),fv2(nbasis) !work arrays 13 
        real*8 cm(nbasis,nbasis),lambda,RMS 14 
        real*8 cms(nbasis,nbasis) 15 
        real*8 binmo(nbasis),vaps,vapi,vapstep,vaptop 16 
        real*8 rtable(nbasis,2),r2table(nbasis,2) 17 
        real*8 temp,efermi 18 
        integer*4 itable(nbasis,3),nq,it 19 
        integer*4 symtab(90,4),nleft,nright 20 
        integer*4 index(nbasis),natoms 21 
        integer*4 iaccept(nbasis) 22 
        character*8 type(36) 23 
        logical opt 24 
 
        call clear(nbasis,h,s,alfr,eigenv,cm) 25 
 
        open(unit=58,file='CMY') 26 
        open(unit=3,file='dragon.chk') 27 
        call getinput(nbasis,norb,nfull,nhalf,x,y,z,itable, 28 
     >                      r2table,symtab,opt,val) 29 
          
        call printdata(nbasis,norb,x,y,z,itable,r2table,type) 30 
 
        nleft=81 31 
        nright=153 32        
        vapi=0.0d0 33 
        vapstep=0.1d0 34 
        vaptop=3.0d0         35 
        nvaptop=nint((vaptop-vapi)/vapstep) 36 
 
C       execute option to read in s matrix 37 
        if (opt) then 38 
           call reads(nbasis,norb,s) 39 
        else 40 
           call overlap(nbasis,norb,s,itable,r2table,symtab,x,y,z) 41 
           call savematrix(nbasis,norb,s) 42 
        endif 43 
  
        open(unit=19,file='vappop.vec') 44 
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        open(unit=55,file='FERMI') 45 
            
        Do nvap=0,nvaptop,1 46 
           vaps=(real(nvap)*vapstep)+vapi 47 
 
           call linvap(nbasis,x,r2table,rtable,vaps,nleft,nright) 48 
           call ABC(nbasis,itable,rtable,AA,BB,CC) 49 
 
           open(unit=88,file='RMS') 50 
           open(unit=99,file='SCC') 51 
           open(unit=66,file='fRMS') 52 
           open(unit=77,file='OCC')            53 
           open(unit=57,file='timecorr.mat') 54 
 
           write(6,*)'At vap = ',vaps 55 
           write(99,*)'At vap = ',vaps 56 
           write(55,*)'++++++++++++++++++++++++++++++++++' 57 
           write(55,*)'++++++++++++++++++++++++++++++++++' 58 
           write(55,*)'At vap = ',vaps 59 
            
                 lambda=-0.05 60 
                 it=1 61 
                 Do nq=1,1000,1 62 
                    write(6,*)'*******************************' 63 
                    write(6,*)' At iteration ', nq    64 
                    write(55,*)'*******************************' 65 
                    write(55,*)' At iteration ', nq    66 
      
                    call energy(nbasis,norb,s,h,rtable,nq)   67       
                    call renormalize(nbasis,norb,h,s,hr) 68 
 
                    write(6,*)'S matrix:' 69 
                         do is=1,norb,1  70 
C                           write(6,1002)(s(is,j),j=1,6) !debug 71 
                              do js=1,norb,1 72 
                                 ss(js,is) = s(js,is) !preserve copy of S matrix 73 
                              end do 74 
                         end do 75 
 1002   format(6F10.3)  !used only for above debug write 76 
                     call rs(nbasis,norb,hr,alfr,1,eigenv,fv1,fv2,ierr) 77 
        print *,'return code on eigenvalue analysis: ',ierr 78 
 
             call normalize(nbasis,norb,eigenv,cm) 79 
             call output(nbasis,norb,alfr,eigenv,index,itable,type) 80 
         
             call popanal(nbasis,norb,cm,s,index,nfull,nhalf, 81 
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     >                      qvec,x,val,alfr,cms) 82 
             call charge(nbasis,itable,qvec,val,qq,natoms,q) 83  
             call scc(nbasis,val,qq,AA,BB,CC,h,qqlast,nq,lambda, 84 
     >                      RMS,qqdiffmax,natoms,q,qlast) 85                   
 
                   If ((nq.ge.2).and.(RMS.le.0.001))then 86 
                          write(6,*)'RMS = ',RMS, nq, 'Iterations' 87 
                          write(6,*)'Maxdiff = ',qqdiffmax 88 
                      Go to 900 89 
                   End if 90 
         End do 91 
 
 900            write(19,*)'At Vap = ' 92 
                write(19,*)vaps 93 
                write(66,*)nq,' iterations at Vap = ',vaps 94 
                write(66,*)'RMS = ',RMS,' Maxdiff = ',qqdiffmax 95 
 
                      Do n=1,nbasis 96 
                         write(19,*)qvec(n),x(n),val(n) 97 
                      End do 98 
 
        call dynamicsinput(nbasis,norb,naccept,iaccept, 99 
     >  idyn,s,cms,binmo,tstep,ntstep) 100 
 
        if (idyn.ne.0) call timedev(nbasis,norb,naccept,iaccept, 101 
     >  alfr,cm,binmo,tstep,ntstep,cms,vaps) 102 
   
        End do         103 
 
        close(58) 104 
        close(55) 105 
        close(56) 106 
        close(57) 107 
        close(77) 108 
        close(66) 109 
        close(88) 110 
        close(99) 111 
        close(19) 112 
        close(3) 113 
        stop 114 
        end 115 
C       END MAIN PROGRAM 
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B.2 Description 

  

 All subroutines that have been added or modified are denoted with a 

double dagger (‡).   

Line 3 – Parameter that specifies the number of basis functions (atomic 

orbitals) in the molecular system. 

Line 25 – Subroutine clear sets all VOIEs, overlap integrals, molecular 

orbital energies (eigenvalues) and atomic orbital coefficients (eigenvectors) to 

zero before each run. 

Lines 28 and 29 – Subroutine getinput‡ reads the values for center number 

(atom label), function type (as in orbital type, i.e. 1s, 2s, 2p, 3s, 3p, 3d), atomic 

number, zeta (effective nuclear charge), VOIE, x-coordinate, y-coordinate, z-

coordinate, and valence electrons for every atomic orbital used in the calculation.       

Line 30 – Subroutine printdata prints the data that is read by the getinput 

subroutine to a check file for debugging purposes. 

Line 31 – This specifies the atomic orbital (basis function) that is on the 

low potential side of the applied potential field (Vap).  This is not a center number, 

but the label of the basis function.   

Line 32 – This specifies the atomic orbital (basis function) that is on the 

high potential side of Vap.  As in above, this is the basis function label. 

Line 33 – This specifies the initial value of Vap. 

Line 34 – This specifies the step size to be taken between consecutive 

cycles of the Vap program loop. 
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Line 35 – This specifies the final value of Vap. 

Line 36 – This calculates the number of steps that will be required for the 

calculation from the values specified in lines 33 through 35. 

Line 39 – Subroutine reads acquires the overlap integrals for the 

calculation if they have been generated and saved as an external file. 

Line 41 – Subroutine overlap calculates the overlap integrals for the 

atomic basis specified in the input file. 

Line 42 – Subroutine savematrix saves the overlap matrix generated 

above for future use. 

Line 46 – Starts the Vap loop. 

Line 48 – Subroutine linvap‡ applies the potential in a linear fashion across 

the molecule as described in chapter 3, section xxx.  The values directly affected 

by this subroutine are the VOIEs.  The subroutine prints the original VOIEs next 

to the new calculated values, redefined as Hii (energy of orbital i) at a given Vap, 

to the screen for debugging purposes.  The subroutine is shown below. 

 

Implicit real*8 (a-h,o-z) 
real*8 x(nbasis),vaps 
real*8 r2table(nbasis,2),rtable(nbasis,2) 
real*8 xleft,xright,xmiddle,xlength 
integer*4 nbasis,norb,nleft,nright 
hperev=3.674930887d-2 
vap= vaps*hperev 
xleft = x(nleft) 
xright = x(nright) 
xmiddle = (xleft + xright)/2.0d0 
xlength = xright - xleft 
 
write(6,*)'=================================' 
write(6,*)'In linvap' 
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write(6,*)'r2table and rtable are:' 
do 150 n=1,nbasis,1 
if (x(n).le.xleft) then 
rtable(n,2) = r2table(n,2) - vap/2.0d0 
end if 
if (x(n).ge.xright) then 
rtable(n,2) = r2table(n,2) + vap/2.0d0 
end if 
if ((x(n).gt.xleft).and.(x(n).lt.xright)) then 
rtable(n,2) = r2table(n,2) + vap*((x(n)-xmiddle)/xlength) 
end if 
 
write(6,*)'In LINVAP' 
write(6,*)r2table(n,2),rtable(n,2)   !!!DEBUG!!! 
150   continue 
write(6,*)'=================================' 
return 
end 

 

 Line 49 – Subroutine ABC‡ acquires the constants required to calculate 

the Hii in the self-consistent charge (SCC) portion of the code.  The Hii depend 

quadratically on charge (q) through  

                      )CqBqA()q(H n,inn,i
2
nn,inn,ii ++−= , (B1) 

where Ai,n , Bi,n , and Ci,n are specific to orbital type i and atom n.  The A and B 

constants are hard-coded into the subroutine and include values for H, C, N, O, 

F, Al, S, and Cl.  The C constants are the VOIEs that were obtained from the 

input file.  They correspond to the uncharged atom initial guess.  It also prints out 

the values for A, B and C for all the atomic orbitals in the calculation onto the 

screen for debugging purposes.  The subroutine in shown below.  

 

        Implicit real*8 (a-h,o-z) 
        Integer*4 itable(nbasis,3) 
        Real*8 rtable(nbasis,2) 
        Real*8 AA(nbasis),BB(nbasis),CC(nbasis) 
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        Real*8 hperK 
        hperK=4.55788514d-3 
        write(6,*) 'Coeficients: A, B, C' 
         
         Do n=1,nbasis 
            If (itable(n,3).eq.1) then       !H 1s 
               AA(n)=109.84*hperK 
               BB(n)=219.2*hperK 
               CC(n)=rtable(n,2) 
            End if 
 
            If (itable(n,3).eq.6) then 
               If (itable(n,2).eq.2) then     !C 2s 
                   AA(n)=27.95*hperK 
                   BB(n)=141.6*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.2) then     !C 2p 
                   AA(n)=27.95*hperK 
                   BB(n)=118.2*hperK 
                   CC(n)=rtable(n,2) 
               End if 
             End if 
 
            If (itable(n,3).eq.7) then 
               If (itable(n,2).eq.2) then      !N 2s 
                   AA(n)=28.16*hperK 
                   BB(n)=162.2*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.2) then      !N 2p 
                   AA(n)=28.16*hperK 
                   BB(n)=133.2*hperK 
                   CC(n)=rtable(n,2) 
               End if 
            End if 
 
            If (itable(n,3).eq.8) then 
               If (itable(n,2).eq.2) then      !O 2s 
                   AA(n)=27.95*hperK 
                   BB(n)=184.6*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.2) then      !O 2p 
                   AA(n)=27.94*hperK 
                   BB(n)=149.75*hperK 
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                   CC(n)=rtable(n,2) 
               End if 
            End if 
 
            If (itable(n,3).eq.9) then 
               If (itable(n,2).eq.2) then      !F 2s 
                   AA(n)=28.07*hperK 
                   BB(n)=205.7*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.2) then      !F 2p 
                   AA(n)=27.93*hperK 
                   BB(n)=165.5*hperK 
                   CC(n)=rtable(n,2) 
               End if 
            End if 
 
            If (itable(n,3).eq.13) then 
               If (itable(n,2).eq.6) then      !Al 3s 
                   AA(n)=13.5*hperK 
                   BB(n)=89.0*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.6) then      !Al 3p 
                   AA(n)=13.29*hperK 
                   BB(n)=71.1*hperK 
                   CC(n)=rtable(n,2) 
               End if 
            End if 
 
            If (itable(n,3).eq.16) then 
               If (itable(n,2).eq.6) then      !S 3s 
                   AA(n)=12.23*hperK 
                   BB(n)=124.0*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.6) then      !S 3p 
                   AA(n)=13.17*hperK 
                   BB(n)=98.5*hperK 
                   CC(n)=rtable(n,2) 
               End if 
            End if 
 
            If (itable(n,3).eq.17) then 
               If (itable(n,2).eq.6) then      !Cl 3s 
                   AA(n)=13.70*hperK 
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                   BB(n)=126.7*hperK 
                   CC(n)=rtable(n,2) 
               End if 
               If (itable(n,2).ne.6) then      !Cl 3p 
                   AA(n)=13.49*hperK 
                   BB(n)=106.3*hperK 
                   CC(n)=rtable(n,2) 
               End if 
            End if 
 
         write(6,*)itable(n,2),itable(n,3),AA(n),BB(n),CC(n) 
 
 
         End do 
         return 
         end 

 

Line 60 – Specifies a convergence parameter for the SCC cycles. 

Line 62 – Starts the SCC iterations until convergence is attained. 

Line 67 – Subroutine energy calculates the energy matrix from the Hii 

values.  In DRAGON, the off-diagonal elements Hij are calculated by using the 

Wolfsberg-Helmholtz approximation 

                                                   
2

75.1)HH(S
H jjiiij

ij

+
= . (B2)  

 Line 68 – Subroutine renormalize‡ performs an orthogonalization on the 

energy matrix H.  In the simplest of situations, S is a unit matrix and the 

eigenvectors (molecular orbitals) can be obtained from diagonalizing H directly.  

When S is not a unit matrix, which is the case the majority of the time, H can be 

symmetrically orthogonalized with the S-1/2 matrix.  S-1/2 is obtained by 

diagonalizing S  

                                                            s = UtSU  (B3) 
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with a unitary matrix U, taking the inverse square root of the diagonal elements of 

s yielding s-1/2, and then back-transforming with U to get S-1/2  

                                                        S = Us-1/2Ut. (B4) 

H is transformed to an orthogonalized energy matrix (Hortho) with 

                                                      Hortho = S-1/2HS-1/2, (B5) 

and returned by this subroutine. 

 Line 77 - Subroutine rs solves the real symmetric eigenvalue problem and 

returns the eigenvalues (molecular orbital energies) and eigenvectors (molecular 

orbitals) by diagonalizing Horth.  The returned eigenvectors (CNorm) are normalized 

and have the form 

                                                          CNorm = S1/2C. (B6) 

Line 80 – Subroutine output writes the results of subroutine rs to a check 

file. 

Lines 81 and 82 – Subroutine popanal‡ performs a population analysis on  

the molecular orbitals (CNorm) obtained from rs.  Two things must be done by this 

subroutine before the actual population analysis is applied as described by 

Appendix A1.  First, the molecular orbitals have to be transformed to C with the 

S-1/2 matrix through 

                                                 C = S-1/2CNorm = S-1/2S1/2C. (B7) 

Second, the molecular orbital occupancies must be determined at every value of 

applied potential.  It was discussed in chapter 3 that Vap induces fluctuations in 

the molecular orbital energy levels and this gives rise to convergence issues 

because of degenerate or close-to-degenerate molecular orbitals within the 
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Fermi region.  This subroutine calculates the electron occupancy (Pi) in each 

molecular orbital with Fermi-Dirac statistics 

                                                     
1e

2P kT/)EE(i fi +
= −  (B8) 

where Ef is the Fermi energy, Ei is the molecular orbital energy, k is the 

Boltzmann constant and T is the Kelvin temperature.  The Pi become the 

occupancy vector ( v ) at every value of Vap , and hence have to be recalculated 

at every iteration in the applied potential cycle.  The majority of occupied 

molecular orbitals will contain exactly 2 electrons (Pi = 2) , but within the Fermi 

region, the MOs will have partial occupancies with values anywhere between 0 

and 2.  The density matrix defined in Appendix A1 can be re-written in terms of 

the population vector ( v ) as 

                        ∑
=

∗=
N

1n
jninnij CCvD , (B9) 

where the index n runs through the all of the molecular orbitals (N) in the system. 

The subroutine then performs the population analysis on the redefined D in the 

way described in appendix A.  As a final check, the subroutine takes the sum of 

the individual atomic orbital populations.  This sum should equal the number of 

electrons in the system.  The subroutine is shown below.   

 

       implicit real*8 (a-h,o-z) 
        external totoccfun 
        real*8 s(nbasis,nbasis),ss(nbasis,nbasis) 
        real*8 x(nbasis),val(nbasis) 
        real*8 cm(nbasis,nbasis)  !normalized eigenvectors 
        real*8 cms(nbasis,nbasis) !s^(1/2) * normalized eigenvectors 
        real*8 pm(nbasis,nbasis)  !population matrix 
        real*8 qvec(nbasis)       !gross populations 
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        real*8 occ(nbasis)        !MO occupancy vector 
        integer*4 index(nbasis) 
C       For rs subroutine 
        real*8 w(nbasis)          !eigenvalues of s matrix 
        real*8 z(nbasis,nbasis)   !eigenvectors of s matrix 
        real*8 ww(nbasis,nbasis)  !diagonalized s 
        real*8 xx(nbasis,nbasis)  !temporary array 
        real*8 zww(nbasis,nbasis) !z * ww 
        real*8 fv1(nbasis),fv2(nbasis) !work arrays 
C       For dinv subroutine 
        parameter (LWORK = 1048) 
        real*8 zinv(nbasis,nbasis)     !z^(-1) 
        real*8 work(LWORK) 
        integer ipvt(nbasis) 
C       For occupancy subroutine 
        real*8 temp,efermi 
        real*8 alfr(nbasis) 
        logical fermidirac 
 
C       Make copy of s matrix 
        do is=1,norb,1  
           do js=1,norb,1 
              ss(js,is) = s(js,is) 
C             write(6,1003)js,is,ss(js,is) 
           end do 
        end do 
 
C       Find eigenvalues and eigenvectors of s matrix 
        matz = 1 !compute eigenvectors 
        call rs(norb,norb,ss,w,matz,z,fv1,fv2,ierr) 
        write(3,*)'Return code on s-matrix eigenvalue analysis: ',ierr 
 
C       Form ww = w^(-1/2) from w. (w is the diagonalized s matrix.) 
        do i=1,norb,1 
           do j=1,norb,1 
              if (i.eq.j) then 
                 ww(i,i) = 1.0d0/(sqrt(w(i))) 
              else 
                 ww(j,i) = 0.0d0 
              endif 
           enddo 
        end do 
 
C       Make copy of z matrix 
        do is=1,norb,1  
C          write(6,*)'vector ',is 
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           do js=1,norb,1 
              zinv(js,is) = z(js,is) 
C             write(6,1003)js,is,zinv(js,is) 
           end do 
        end do 
 
C       find zinv = s^(-1), input z returns zinv 
        call DGETRF(norb,norb,zinv,norb,ipvt,info) 
        write(3,*)'DGETRF INFO code is: ',info 
        write(6,*)'DGETRF INFO code is: ',info 
        call DGETRI(norb,zinv,norb,ipvt,work,LWORK,info) 
        write(3,*)'DGETRI INFO code is: ',info 
        write(6,*)'DGETRI INFO code is: ',info 
 
C       Do the inverse similarity transform. 
        call dmmult(norb,z,ww,zww) 
        call dmmult(norb,zww,zinv,xx) 
C       re-normalize cm. cms = s^(-1/2)*cm 
        call dmmult(norb,xx,cm,cms) 
 
C       Generate 0 K occupancy vector 
        do k=1,nfull,1 
           n = index(k) 
           occ(n) = 2.0d0 
        end do 
        do k=nfull+1,nfull+nhalf,1 
           n = index(k) 
           occ(n) = 1.0d0 
        end do 
        do k=nfull+nhalf+1,norb,1 
           n = index(k) 
           occ(n) = 0.0d0 
        end do 
        write(3,*)'MO    - 0 K Occupancy vector' 
        do k=1,norb,1 
           write(3,1001)k,occ(k) 
        end do 
 
 
C      Switch off logical fermidirac to skip Fermi-Dirac statistics 
       fermidirac = .true. 
       temp = 300.0d0            !hard code temperature 
          if (fermidirac) then   ! Set occ(*) by Fermi-Dirac statistics 
          do i=1,norb,1          !find homo and lumo 
             if (occ(i).gt.0) nhomo = i 
          end do 
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          nlumo = nhomo + 1 
 
C Getting the density of states around the band gap 
         ehom = alfr(nhomo)   !HOMO chunk 
         ehom1=alfr(nhomo-1) 
         ehom2=alfr(nhomo-2) 
         ehom3=alfr(nhomo-3) 
         ehom4=alfr(nhomo-4) 
 
         elum = alfr(nlumo)   !LUMO chunk 
         elum1 = alfr(nlumo+1) 
         elum2 = alfr(nlumo+2) 
         elum3 = alfr(nlumo+3) 
         elum4 = alfr(nlumo+4) 
 
C KWS 10 Sept 2003. Use full spectrum of MO energy levels for 
C window within which to locate Fermi level. (Necessary for vap    
C =0.) 
          ehomo = alfr(1) 
          elumo = alfr(nbasis) 
          nelect = 2*nfull + nhalf 
          write(6,*)'In POPANAL fermi part' 
C          write(6,*)nhomo,ehomo,nlumo,elumo 
C         Find efermi between ehomo and elumo 
          call bisect(totoccfun,occ,alfr,ehomo,elumo, 
     >                efermi,temp,nbasis,nelect) 
       
          write(3,*)'The Fermi level is ',efermi 
          write(55,*)'The Fermi level is' 
          write(55,*) efermi 
          write(55,*)'HOMO chunk' 
          write(55,*)ehom4,ehom3,ehom2,ehom1,ehom 
          write(55,*)'LUMO chunk' 
          write(55,*)elum4,elum3,elum2,elum1,elum 
           
          If (efermi.le.ehom) then 
             write(55,*)'-------LOW FERMI LEVEL---------' 
          End if 
 
          write(3,*)'MO    - Occupancy vector at T = ',temp 
C          write(55,*)'MO    - Occupancy vector at T = ',temp 
   
C**************************************************** 
C              Pop Check 
C****************************************************        
          esum=0.0d0 
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          Do n=1,nbasis,1 
             esum=esum+occ(n) 
          End do 
  
          write(55,*)'Occ sum is ', esum 
 
C*************************************************** 
          do k=1,norb,1 
             write(3,1001)k,occ(k) 
C             write(55,1001)k,occ(k) 
          end do 
       endif ! End Fermi-Dirac statistics 
 
 
 
C Generate P matrix. 
C Initialize the matrix. 
        do i=1,norb,1 
           do j=1,norb,1 
              pm(j,i) = 0.0d0 
           end do 
        end do 
C Sum over molecular orbitals (k) to find each element. 
        do i=1,norb,1 
           do j=1,norb,1 
              do k=1,norb,1 
C                pm(j,i) = pm(j,i) + occ(k)*cm(j,k)*cm(i,k) 
                 pm(j,i) = pm(j,i) + occ(k)*cms(j,k)*cms(i,k) 
              end do 
           end do 
        end do 
C       do i=1,norb,1 
C          do j=1,norb,1 
C             write(6,*)i,' ',j,' ',pm(j,i) 
C          end do 
C       end do 
C Populations by diagonal elements of P.S product matrix 
        call dmmult(norb,pm,s,xx) 
        ptot = 0.0d0 
        do i=1,norb,1 
C          write(6,*)i,' ',xx(i,i) 
           ptot = ptot + xx(i,i) 
        end do 
        write(6,*)'ptot = ',ptot 
 
C Generate gross population matrix. 
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        do i=1,norb,1 
           qvec(i) = 0.0d0 
        end do 
        do i=1,norb,1 
           do k=1,norb,1 
              qvec(i) = qvec(i) + pm(i,k)*s(k,i) 
           end do 
        end do 
 
C Print out populations. 
        write(3,*)' ' 
        write(3,*)'Atomic orbital - Population' 
        psum = 0.0d0 
        do i=1,norb,1 
C           write(19,*)qvec(i),x(i),val(i) 
           write(3,1001)i,qvec(i) 
           psum = psum + qvec(i) 
        end do 
        write(3,1002)psum 
        
 1001   format(I7,'  ',F10.6) 
 1002   format('Total population is:  ',F10.6) 
 1003   format(2I7,'  ',F15.9) 
        return 
        end 

    

Line 83 – Subroutine charge‡ adds up all atomic orbital populations on an 

atom, and finds the charge (Q) on that atom by subtraction the orbital population 

sum from its nuclear charge (Z).  The subroutine is shown below. 

 

     Implicit Real*8(a-h,o-z) 
         Integer*4 nbasis,itable(nbasis,3),natoms 
         Integer*4 orb,ninit,orbs(500),itablew(nbasis,3) 
         Real*8 qvec(nbasis),val(nbasis),q(nbasis) 
         Real*8 sum,sumf(500),vals,valf(500),qq(nbasis) 
 
         Do n=1,nbasis 
            itablew(n,1)=itable(n,1) 
         End do         
  
         natoms=1 
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C         write(6,*) 'In CHARGE, center number is' 
C         Do n=1,nbasis 
C            write(6,*)itablew(n,1) 
C         End do 
       
         Do n=1,nbasis-1 
              If ((itablew(n,1).ne.itablew((n+1),1))) then 
                  natoms=natoms+1 
              End if 
         End do 
 
C         write(6,*)'ATOMS',natoms 
 
         ninit=1 
 
         Do i=1,natoms 
              orb=0 
              sum=0.0 
              vals=0.0 
 
              itablew(i,1)=itablew(ninit,1) 
 
              Do n=ninit,nbasis 
                   If (itablew(n,1).eq.itablew(ninit,1))then 
                      orb=orb+1 
                      sum=sum+qvec(n) 
                      vals=vals+val(n) 
                   End if 
                   If (itablew(n,1).ne.itablew(ninit,1))then 
C                        ninit=n 
                       Go to 100 
                   End if 
 
              End do 
 
 100                sumf(i)=sum 
                    orbs(i)=orb 
                    valf(i)=vals 
                    q(i)=valf(i)-sumf(i) 
 
                   Do ii=ninit,ninit+orb-1 
                      qq(ii)=q(i) 
C                      write(6,*),valf(i),qq(ii) 
                   End do 
 



                                                                                                                                         122     
                   ninit=n 
 
C                    write(6,*)'Atom',i,'with',orbs(i),'orbitals' 
C                    write(6,*)'With neutral val charge',valf(i) 
C                    write(6,*)'Has a population',sumf(i) 
C                    write(6,*)'and a charge of',q(i) 
         End do 
           
         open(unit=56,file='Q') 
         write(56,*)'Atom and charge' 
         Do i=1,natoms 
            write(56,*)i,q(i)      
         End do 
 
C Assign every atom its charge 
C         write(6,*)'In charge:' 
         Do n=1,nbasis 
C            write(6,*) itable(n,1),qq(n) 
         End do 
 
         Return 
         End 

 

 Lines 84 and 85 – Subroutine scc‡ calculates the new values of Hii by 

using equation (B1) from the charges acquired from subroutine charge, and the 

A,B and C constants from subroutine ABC.  This subroutine also returns the 

RMS difference (RMSD) between the atomic charges of two consecutive runs to 

the main program driver.  The RMSD for iteration “i” is defined as 

                                          
M

)QQ(
RMSD

M

1n

2
1i,ni,n

i

∑
=

−−
= , (B10) 

where n is the atom index, M is the number of atoms, Qn,i is the charge on atom n 

at iteration i, and Qn,i-1 is the charge on atom n from the previous (i-1) iteration.  

The subroutine is shown below. 
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    Implicit Real*8(a-h,o-z) 
         Integer*4 nbasis,orb(500),nq,natoms 
         Real*8 val(nbasis),h(nbasis,nbasis),lambda 
         Real*8 AA(nbasis),BB(nbasis),CC(nbasis),qq(nbasis) 
         Real*8 qqlast(nbasis),qqdiff(nbasis),qdamp(nbasis) 
         Real*8 qlast(nbasis),qdiff(nbasis),damp(nbasis) 
         Real*8 sum,RMS,RMSold,RMSD,qqdiffmax,q(nbasis) 
         Real*8 qsum 
 
C         write(6,*)'Atom and charge' 
C         write(6,*)natoms 
C         Do i=1,natoms 
C            write(6,*)i,q(i) 
C         End do 
 
C         evperh=27.212d0 
          
 
          If (nq.eq.1)then 
             Do n=1,nbasis 
                qqlast(n)=0.0 
                qdamp(n)=qq(n) 
             End do 
             Do i=1,natoms 
                qlast(i)=0.0 
                damp(i)=q(i) 
                RMSold=0.0 
             End do 
           Go to 800 
           End if 
         
                      
C          write(6,*)'In scc, the values of h come in as' 
C          Do n=1,nbasis 
C              write(6,*)n, h(n,n) 
C          End do 
 
C          write(6,*)'In scc, the qlast,qcurrent,qdiff, and qdamp are:' 
          sum=0.0 
          Do n=1,nbasis 
               qqdiff(n)=qq(n)-qqlast(n) 
               qdamp(n)=qqlast(n)-(lambda*(qqdiff(n))) 
C              write(6,*)qqlast(n), qq(n),qqdiff(n),qdamp(n) 
               sum=sum+((qqdiff(n))*qqdiff(n)) 
          End do 
          qsum=0.0          
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          Do i=1,natoms 
               qdiff(i)=q(i)-qlast(i) 
               damp(i)=qlast(i)-(lambda*(qdiff(i))) 
C               write(6,*)qlast(i), q(i),qdiff(i),damp(i) 
               qsum=qsum+((qdiff(i))*(qdiff(i))) 
          End do 
 
 800         write(6,*)'In scc, after using equation A*q*q + B*q +C' 
C          write(6,*)'qdamp, h' 
           write(99,*)'+++++++++++++++++++++++++++++++++++' 
           write(99,*)'At it = ',nq,' and lambda = ',lambda 
           write(99,*)'charges , and Q diff are:' 
          Do n=1,nbasis 
              h(n,n)=-
((AA(n)*qdamp(n)*qdamp(n))+(BB(n)*qdamp(n))+CC(n)) 
C              write(6,*) qdamp(n),h(n,n) 
              write(99,*) qdamp(n),qqdiff(n) 
              qqlast(n)=qdamp(n)      !SAVE CURRENT CHARGES 
          End do 
 
          Do i=1,natoms 
              qlast(i)=damp(i) !SAVE CURRENT CHARGES 
          End do 
 
C         Sorting the q differences so meet the second criteria of 
C         maximum charge difference 
  
          qqdiffmax=-9000000000.0 
 
          Do i=1,natoms 
             If ((abs(qdiff(i))).gt.qqdiffmax) qqdiffmax=abs(qdiff(i)) 
             write(99,*) qdiff(i)             
          End do 
                     
 
          RMS=sqrt(qsum/natoms) 
          RMSD=RMSold-RMS 
          RMSold=RMS 
          write(88,*)'At it = ',nq,' RMS = ',RMS, ' RMSD = ',RMSD 
          write(6,*)'QSUM',qsum 
          write(6,*)'At it = ',nq,' RMS = ',RMS, ' RMSD = ',RMSD 
          write(6,*)'Max Q Diff = ',qqdiffmax 
          write(99,*)'At it = ',nq,' RMS = ',RMS, ' RMSD = ',RMSD 
          write(99,*)'Max Q Diff = ',qqdiffmax 
          return 
          End 
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 Lines 86 through 90 – This portion of the MAIN program determines if the 

convergence criteria has been met.  If so, the SCC iteration cycle is terminated 

and the final molecular orbital coefficients (C) enter the time-development stage 

of the program. 

 Lines 99 and 100 – Subroutine dynamicsinput reads information from an 

external file (edyn.inp) for the time-development phase.  The first record in the 

external file commands the program to perform the time-dependent propagation.  

The second record specifies the number of donor and acceptor atomic orbitals.   

Starting at the third record, the identity of the donor atomic (basis) functions and 

the weight (ai, where i is the index of donor functions) placed on each function 

are listed.  For example, consider a carbon atom with a 2s, a 2px, a 2py and a 

2pz orbital centered on it, and with basis function labels 1, 2, 3 and 4.  To treat 

this carbon as a donor, one may “localize” an electron on it by distributing the 

electron into quarters among all the functions centered on the atom.  This portion 

of edyn.inp will read: 

1  0.25 

2  0.25 

3  0.25 

4  0.25 

 As outlined in chapter 3, section (xxx), this subroutine finds the expansion 

coefficients (bn) to the localized electron in the molecular orbital basis from the 
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information in the edyn.inp file.  In a basis of N molecular orbitals with ND donor 

basis functions, the bn are specified by 
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To reiterate, C is obtained from the SCC procedure, the ai are the weights 

assigned to every donor function I in edyn.inp, and S was calculated and saved 

in lines 41 and 42 of the MAIN program. 

 The next records specify the identity of the acceptor atomic (basis) 

functions, and the last record gives the interval length between time steps and 

the number of time steps to be taken. 

 Lines 101 and 102 – Subroutine timedev time propagates the localized 

wavefunction (the linear combination of molecular orbitals) obtained by 

subroutine dynamicsinput.  It adds up all the atomic orbital contributions (dk, 

where k is the basis function index) at time t by solving 
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where i is 1− , and En is the molecular orbital energy.      
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Appendix C. Description of the KPAX code 

 

The calculations in Chapter 2 for the charge transfer to the carbonyl 

acceptor from the methyl donor group, and Chapter 4 for the multi-electron (CI) 

wavefunction time-development were performed using the KPAX code.  This 

code has had two major versions as outline below. 

The first version was developed to perform a population analysis on the 

ground and/or any excited state from a CI calculation as discussed in 2.2.2. 

The second version is an extension of the original which performs a 

generalized population analysis for any CI state.  It can also acquire the 

population for a linear combination of CI states given their state energies and 

individual CSF contributions.  This is necessary for performing the time 

development on the CI wavefunction. 

There is a complement to the KPAX code called LUNA, which localizes 

the CI wavefunction by searching for the linear combination of CI states that 

results in the zwitterionic state that places the most negative charge on the donor 

atom in the molecule.  This appendix provides descriptions of KPAX and LUNA, 

the FORTRAN programs that perform these procedures, and the files that 

support the programs.   
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C.1 KPAX Program Structure 

 

The main driver structure of the current version of KPAX is shown below.    

A description of the main program features and modifications directly follows.  

The program line numbers appear on the right of each record (line) within the 

main program and will be referenced in the subsequent section. 

 

 
C     ***CMAX Piece***                                                                           1 

 
        Implicit Real *8 (a-h,o-z) 2 
        Parameter (NCSF=324, NAMO=36,Nao=43) 3 
        Parameter (NSTATE=10,Natoms=15) 4 
        Parameter(nstep=300) 5 
        Real *8 a(5 ,1), CMO(500,500), DM(500,500), SM(500,500)  6 
        Real *8 occv(Nao,NCSF),CDM(500,500),tstep,time 7 
        Real *8 cm(NCSF),d(NCSF),CMODPOP(Nao),CSUM 8 
        Real *8 DSM(500,500), POP(NCSF,Nao),WPOP(NCSF,Nao) 9 
        Real *8 SUM, SUMOD,COEF(NSTATE,NCSF) 
        Real *8 MODPOP(NSTATE,Nao) 10 
        Real *8 Z(Natoms),tevcm(NCSF),TIMPOP(NCSF,Nao) 11 
        Real *8 TMODPOP(Nao),t(nstep),CHECKPOP(NCSF,Nao) 12 
        Integer *4 Ngroup, Nrem, Nao, Ngocc, Neocc, NFZC 13 
        Integer *4 ICSF(NSTATE,NCSF),LAB(Nao),ntstep,nbasis 14 
        Integer *4 nstep,it 15  
        Complex*16 czero,uni,zt 16 
        Character *(1) Eig, OrbitalNumber, Lin, Symmetry 17 
        Character *(1) DMatrix,EVALS,STATENUM 18 
        Character *(1) CSFLIN, DASH,ID 19 
        Character *(1) ORB(Nao) 20 
        Open (file="MOn=2-pl3.log",unit=10) 21 
        Read (10,*) NA 22 
        Read (10,*) Eig 23 
        Read (10,*) Lin 24 
        tstep=1.0d0 25 
        nbasis=Nao 26 
 
C ****For the First Set of 5 MOs**** 27 
  
        Ngroup=(Nao/5) 28 
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        Nrem=MOD(Nao,5) 29 
        Print *, Ngroup, Nrem, Nao 30 
         
C       ***This is for the groups with 5 Eigenvectors*** 31 

            
Do K=1,Ngroup 32 

 
                              
Read (10,*) OrbitalNumber 33 

             Read (10,*) EVALS 34 
             Read (10,*) Symmetry 35 
 
             Do L=1,Nao 36 
                  Read (10,*) (a(M,1),M=1,5) 37 
C         Print *, (a(M,1),M=1,5)                                                                    38 
           Do I=1,5                                                                                       39 
              M=((K-1)*5)+I                                                                            40 
       CMO(M,L)=a(I,1)                                                                    41 
C                     Print *, CMO(M,L)                                                                      42 
    End do                                                                                43 
             End Do                                                                                                 44 
   
C             Print *, '_____________________________'                                   45 
 
  End Do            46 
 
C ***Now for the remainder group***        47 
 
  If (Nrem.NE.0) Then             48 
  
            Read (10,*) OrbitalNumber 49 
            Read (10,*) EVALS 50 
            Read (10,*) Symmetry 51 
 
            Do L=1,Nao 52 
                Read (10,*) (a(M,1),M=1,Nrem) 53 
C               Print *, (a(M,1),M=1,Nrem) 54 
                  Do I=1,Nrem 55 
                     M=((Ngroup)*5)+I 56 
                     CMO(M,L)=a(I,1) 57 
                  End do 58 
           End Do 59 

         
End If 60 

 
 Do N=1,Nao                                   61 
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C        Print *, (CMO(M,N),M=1,Nao) !DEBUG  62                          
C        Print *, '_______________________________________' 63 
           End Do 64  
 
          Close (10) 65 
 
C  ***SMAX Piece*** 66 
  
        Open (file="Sn=2-pl3.log",unit=30) 67 
        Read (30,*) OrbitalNumber 68 
 
C                    ****For the First Set of 5 MOs**** 69 
 
C       ***This is for the groups with 5 Columns*** 70 
 
        Do K=1,Ngroup 71 

                                                                                                                                           
J=Nao-((K-1)*5) 72 

             Do L=1,J 73                       
If (L.LT.5.OR.L.EQ.5) Then 74 

             Read (30,*) (a(M,1),M=1,L) 75 
 
                     Do I=1,L 76 
                        M=((K-1)*5)+I 77 
                        N=((K-1)*5)+L 78 
                        SM(M,N)=a(I,1) 79 
                     End Do 80 
             End If 81 
             
  
             If (L.GT.5) Then 82 
             Read (30,*) (a(M,1),M=1,5) 83 
 
                      Do I=1,5 84 
                         M=((K-1)*5)+I 85 
                         N=((K-1)*5)+L 86 
                         SM(M,N)=a(I,1) 87 

                   End Do 88          
End If 89 

 
             End Do 90 
 
            Read (30,*) OrbitalNumber 91 
         
        End Do 92 
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C       ***Now for the remainder group*** 93 
 
         If (Nrem.NE.0) Then 94           

J=Nrem 95 
             Do L=1,J 96 
                 If (L.LT.5.OR.L.EQ.5) Then 97 
                  Read (30,*) (a(M,1),M=1,L) 98 
 
                  Do I=1,L 99 
                     M=(Ngroup*5)+I 100 
                     N=(Ngroup*5)+L 101 
                     SM(M,N)=a(I,1) 102 
                  End do 103 
                 End If 104 
          End Do 105 
         End If 106 
 
        Close (30) 107 
 
        call basisgen(Natoms) !Identify the atoms by expanding the basis.      108 
 
 
C *****Calculation of the Density Matrix (CDM)*** 109 
C *****Also of the Mulliken Atomic Overlap Population-DS Matrix*** 110 
 
C       I.  First Read in the occupancy information (CSFs) used to calculate 111  
C       the CI states.     112 
  
        Open (file="n=2-spaced", unit=40) 113 
        Open (file="Density.chk",unit=50) 114 
        Open (file="POPMat.chk",unit=60) 115 
        Open(file="Mullpop.chk",unit=70) 116 
        Read (40,*) NFZC 117 
 
        Do M=1,NCSF 118 
 
            Do J=1,NFZC 119 
               occv(J,M)=2.0d0  !Setting the occ for frozen core 120 
            End do 121 
                
            Read(40,*)(occv(N,M),N=NFZC+1,Nao) 122 
             
         End do 123 
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         Close (40) 124 
 
        Do L=1,NCSF !*******START CSF loop here*************** 125 
            
           write (70,*)'*******CSF= ',L,' *****************' 126 
            
              Do N=1,Nao 127 
                 Do M=1,Nao 128 
 
                    SUM=0.0 129 
 
                    Do K=1,Nao 130 
                         SUM=SUM+((occv(K,L))*(CMO(K,M))*(CMO(K,N))) 131 
                    End Do 132 
 
                    CDM(M,N)=SUM 133 
                    DSM(M,N)=(CDM(M,N))*(SM(N,M)) 134 
              
                End Do 135 
 
         End Do 136 
 
               Do K=1,Nao 137 
                  Do N=1,Nao 138 
                     write(50,*) CDM(K,N) 139 
                     write(60,*) DSM(K,N) 140 
                  End do 141 
                
                  write(60,*)'----------------' 142 
                  write(50,*)'----------------' 143 
               End do 144 
                  
C ***Calculating the Mulliken Population in each AO for each CSF***  145 
 
        Do M=1,Nao 146 
            SUM=0.0 147 
            Do N=1,Nao 148 
                 SUM=SUM+DSM(N,M) 149 
            End Do 150 
               
            SUMOD=0.0 151         
 
             If (M.GT.1) Then 152 
                Do K=1,M-1 153 
                   SUMOD=SUMOD+DSM(M,K) 154 
                End Do 155 
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             End If 156  
        
           POP(L,M)=SUM+SUMOD    !POP should never change 157 
           write (70,*) POP(L,M) !AO Population for every CSF  158 
        End Do 159 
        End do 160 
 
C       ********Read in contributions to every CSF for the CI states**** 161 
 
         Open(file="STtestn=2-pl3.log",unit=80) 162 
         Open(file="coef.chk",unit=90) 163 
 
         Do N=1,NSTATE 164 
 
            Read(80,*)STATENUM 165 
            Read(80,*)CSFLIN 166 
            Read(80,*)DASH 167 
 
            Do M=1,NCSF 168 
               Read(80,*)ICSF(N,M),COEF(N,M)  169 
               write (6,*)ICSF(N,M),COEF(N,M)  170 
            End do 171 
             
         End do 172 
         Close(80) 173 
 
         Do N=1,NSTATE 174 
 
              Do M=1,NCSF 175  
                  write(90,*) ICSF(N,M),'    ',COEF(N,M) 176 
              End do 
 177 
         End do 178 
 
         Open(file="wpop.check",unit=95) 179 
         Open(file="StatePop.chk",unit=97) 178 
 
         Do N=1,NSTATE 179 
            write (95,*)'*****FOR STATE ', N, ' *******' 180 
            Do M=1,NCSF 181 
               write(95,*)'_____CSF ', M,' ___________' 182 
               Do L=1,Nao 183 
                  WPOP(M,L)=POP(M,L)*((COEF(N,M))**2) 184 
                  write(95,*) WPOP(M,L), POP(M,L), COEF(N,M) 185 
               End do 186 
            End do 187 
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C *****Loop to add up the individual atomic orbitals contributions from each  188 
C                                CSF. *****             189 
                 
             write(97,*)'For state ',N                 190 
                
             write(97,*)'sum of CSF contributions to POP vector' 191 
 
             SUMCHECK=0.0d0              192 
 
             Do L=1,Nao 193 
 
                STSUM=0.0d0 194 
 
                Do M=1,NCSF 195 
                   STSUM=STSUM+WPOP(M,L) 196 
                End do 197 
                 
                MODPOP(N,L)=STSUM 198 
  
                write(6,*) STSUM 199 
                write(97,*)STSUM, MODPOP(N,L) 200 
                 
                SUMCHECK=SUMCHECK+STSUM 201 
  
             End do 202 
 
             write(97,*)'Population check -',SUMCHECK,' Electrons'  203 
 
         End do 204  
 
         Close(95) 205 
         Close(97) 206 
         
         
          czero = (0.0d0,0.0d0) 207 
          zt = czero                        !Initialize time 208 
 
          Do it=1,nstep 209 
          
          write(6,*)zt, '****'   210 
         
         call timedev(nbasis,norb,tstep,ntstep,NSTATE,NCSF,COEF, 211 
     >                 tevcm,POP,TIMPOP,TMODPOP,zt) 212 
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         call popgen(Natoms,Nao,NSTATE,TIMPOP,TMODPOP,zt, 213 
     >                 CMODPOP)  214                
 
C          write(6,1001)t,dsum 215 
           zt = zt + dcmplx(tstep) 216 
 
         end do           !time loop 217 
 
         Stop  218 
         End 219 
                    
 
 
C.2 Description 

 

 Lines 3 and 4 – Parameters that specify the number of Configuration state 

functions or CSFs (NCSF), the number of CSF active molecular orbitals or the 

valence orbitals (NAMO), the number of basis functions (Nao), the number of CI 

states (NSTATE), and the number of atoms (Natoms).  These parameters must 

be changed for every molecular system. 

 Lines 27 through 64 – This portion of KPAX reads the molecular orbitals 

                                                          ∑
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 from a GAMESS electronic structure output file. 

 Lines 71 through 106 – This portion of KPAX reads the overlap integrals 

                                                            ∫ τχχ= dS jiij  (C2) 

 from a GAMESS electronic structure output file. 

 Line 108 – Subroutine basisgen expands atomic xyz data from a 

GAMESS input file into the correct order of atomic orbitals.  This is to identify 
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which atomic orbitals belong to a particular atom in the molecule.  The subroutine 

is shown below. 

         Implicit Real*8 (a-h,o-z) 
         Character *(1)DASH 

           Integer *4 Natoms 
           Integer*4 CN(Natoms) 
           Real *8 Z(Natoms),x(Natoms) 
 
           Open(file="ATOMIDn=2-pl3.log",unit=77) 
           Open(file="basisgen.chk",unit=76) 
                 
           Read(77,*)DASH 
           Read(77,*)DASH 
           Read(77,*)DASH 
         
           Do k=1,Natoms 
             Read(77,*)CN(k),Z(k),x(k) 
             write(6,*)CN(k),Z(k),x(k) 
           End do        
                
           Close(77)  
 
           ih=1 
           io=1 
           Do i=1,Natoms 
              If (Z(i).eq.1.0) then 
                 ih=ih+1 
              End if 
              If (Z(i).ne.1.0) then 
                 io=io+1 
              End if 
           End do 
 
           nbasis=(ih-1)+((io-1)*5) 
           write(76,*)'NBASIS :' 
           write(76,*) nbasis  
 
            ib=1 
            Do i=1,Natoms 
 
               If(Z(i).eq.1.0) then 
                  write(76,*)CN(i),Z(i),x(i),1.0 
                  ib=ib+1 
               End if 
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               If (Z(i).eq.6.0)then 
                  write(76,*)CN(i),Z(i),x(i),6.0  
                  ib=ib+1 
 
                  Do m=1,4    
                     write(76,*)CN(i),Z(i),x(i),0.0 
                     ib=ib+1 
                  End do 
               End if 
 

C           *****For Oxygen containing species******* 
               If (Z(i).eq.8.0)then 
                  write(76,*)CN(i),Z(i),x(i),8.0 
                  ib=ib+1 
 
                  Do m=1,4    
                     write(76,*)CN(i),Z(i),x(i),0.0 
                     ib=ib+1 
                  End do 
               End if 

C           ****************************************** 
 

C           *****For Nitrogen containing species******* 
               If (Z(i).eq.7.0)then 
                  write(76,*)CN(i),Z(i),x(i),7.0 
                  ib=ib+1 
 
                  Do m=1,4    
                     write(76,*)CN(i),Z(i),x(i),0.0 
                     ib=ib+1 
                  End do 
               End if 

C           ****************************************** 
 

C           *****For Fluorine containing species******* 
               If (Z(i).eq.9.0)then 
                  write(76,*)CN(i),Z(i),x(i),9.0 
                  ib=ib+1 
 
                  Do m=1,4    !F 2p 
                     write(76,*)CN(i),Z(i),x(i),0.0 
                     ib=ib+1 
                 End do 
               End if 

C           ****************************************** 
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            End do 
 
           Close(76) 
           Return 
           End 
 

 Line 117 – Parameter specifying the number of frozen core orbitals 

(NFZC), which is read form an external file. 

 Lines 118 through 123 – This portion of the code sets the occupancy 

vector ( v ) for every CSF.  The occupancies for the core molecular orbitals are 

set as 2v NFZC...1n == .  The occupancies for the remaining orbitals, the CI active 

orbitals, Nao...1NFZCnv +=  are read from a GAMESS CI output file as the CSF 

occupancies.  There will be one v for every CSF, and they will not change from 

CI state to CI state. 

 Lines 127 through 136 – This portion calculates the density matrix D for 

every CSF 
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where L is the CSF index and N=Nao.  It is important to note that C does not 

change from CSF to CSF; the v do.  The population matrix is also calculated by 

multiplying DL by the elements of the overlap matrix S, 

                                               ∑
=

∗=
N

1k
mnknkm

L
k

L
mn S)CCv(DS . (C4) 
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Lines 146 though 160 – This portion calculates the population ( mρ ) for every CSF  
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where L is the CSF index. 

 Lines 179 through 187 – This calculates the population for every CI state J 

given the linear combinations of CSFs (eigenvectors) with expansion coefficients 

“f” as 
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where J is the CI state index, L is the CSF index, M=NCSF and fJL is the 

contribution from CSF L to CI state J.  The contributions “f” are read from a 

GAMESS output file. 

 Lines 211 and 212 – Assuming that the localized wavefunction is already 

specified (the linear combination of CI states with expansion coefficients bn is 

known), the subroutine timedev propagates the wavefunction.  It adds up the 

contributions to each CSF (dJL
 ) 
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where i is 1− , EJ is the CI state energy, and K=NSTATE.  This is found for 

every time in the time iteration cycle. 

 Lines 213 and 214 – Subroutine popgen, discussed in more detail in 

Appendix A2, calculates the population P(t) on atomic orbital “A” from the dJL 

acquired above and the population for every CSF ( L
Aρ )  
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C.3 Specifying the localized wavefuntion 

 

Before the time development portion of the code is performed, the linear 

combination of CI states must be chosen.  Here, the combination that yields the 

largest charge separation between donor and acceptor atoms is desired.  If the 

charge on the donor is QD and the charge on the acceptor is QA, 

                                        AD QQQ −=∆  (C9) 

should be minimized.  The procedure to find the bJ is as follows: 

1. Run KPAX without time development.  Files containing the atomic charges 

for every CI state will be generated. 

2. Extract the charges for the donor and acceptor atoms for every CI state.  

These are denoted as acceptor charge vector QVA and donor charge 

vector QVD, both of dimension NSTATE. 

3. Subtracting the charge vectors above and normalizing the resultant vector 

(∆QV= N*QVD -  N*QVA) becomes the initial guess for the CI state 

expansion coefficients (bn,guess) since it contains information about which 

states contribute to large charge differences.   

4. The FORTRAN code LUNA takes the bn,guess and performs a population 

analysis by calculating 
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 at t=0. 
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5. ∆QV is recalculated, and step 4 is repeated.  This procedure is iterated 

until equation C9 is minimized, and the appropriate bn enter the time 

development phase of KPAX. 

 

C.4 KPAX and LUNA file system 

 

 Below is Table C1 showing the files important to the FORTRAN programs 

KPAX and LUNA. 
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File Name unit Read Write 
Description 

How is it Generated? 
LUNA 
Read 

LUNA 
Write 

MOfile.log 10 x   
Molecular orbitals or Eigenvectors.   

The fist record contains the number of atomic orbitals  
(NA,Nao, or nbasis). 

MOEDIT on gamess log file     

Sfile.log 30 x   Overlap Matrix SEDIT on gamess log file  
(QPL=3)     

file-spaced 40 x   The CSFs with spacing between the characters SPACER perl script     
STtestfile.log 80 x   Reads the individual CSF contributions to every CI state STEDIT on gamess log file     

ATOMIDfile.log 77 x   Conatins the number(label) and Z forevery atom in the moelcule ATOMID on gamess log file x   
BINSTATES 65 x   Non-eigenvector to be propagated LUNA   x 

STATE-ENERGY 66 x   Collection of CI state energies by hand from gamess log file x   
Density.chk 50   x Density Matrix for every CSF.  This stays the same in every state. Written by KPAX     
POPMat.chk 60   x Population matrix (DS) for every CSF.  This stays the same in every state. Written by KPAX     
Mullpop.chk 70   x Population Vector for every CSF.  This stays the same in every state. Written by KPAX x   

coef.chk 90   x Collects individual CSF contributions for every state, COEF(N,M),  
where N =NSTATE, and M=NCSF Written by KPAX x   

wpop.check 95   x This is the population matrix for every CI state. Written by KPAX     
StatePop.chk 97   x Population vector for every CI state. Written by KPAX     
StatePop.chk 87 x   Population vector for every CI state.  Called on by pogen subroutine. "     
basisgen.chk 76   x Expands the xyz file into the full basis including valence information Written by KPAX   x 

basisgen.chk 88 x   Expands the xyz file into the full basis including valence information.   
Called on by popgen subroutine " x   

state_q.txt 86   x Atomic charges per CI state Written by KPAX     

TIME_q.txt 89   x Atomic charges at every time.  This is a contraction of CI states Written by KPAX   x  
t =0.0 

STATE-CON 67   x Sum of all state contributions to every CSF Written by KPAX     
TIMEV-POP 68   x Population Matrix, TIMPOP(M,L),  at time t. Written by KPAX     
TIMEV-MULL 

-POP 69   x Population Vector at time t. Written by KPAX     

142 
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Appendix D. Hartree-Fock calculation of the H3- complex 

  

 As chemists, the image we carry in our minds of electrons occupying a 

localized region of space termed “orbital” is very intuitive [1, 2].  From this idea 

we can infer the three dimensional shape of molecules, determine magnetic 

behavior and make statements about the strength of bonds, among many other 

predictions [1].  While this model has been invaluable in forming the basis of our 

chemical intuition, it must not be forgotten that an orbital, as we know it, is 

nothing more than a mathematical function attempting to describe the behavior of 

an electron in a molecule.  This model is better known as Hartree-Fock theory 

(HF), and although it is an approximation it serves as a starting point to the more 

sophisticated ab initio calculations today [2], i.e. Møller-Plesset Perturbation 

Theory, Configuration Interaction (CI) [3].  Other methods are motivated by 

Hartee-Fock theory and describe electronic structure in an analogous fashion.  

For example, in Density Functional Theory (DFT) the description is virtually 

identical to the HF description except for the inclusion of terms that depend on 

electron density [1].  The purpose of this appendix is to outline a HF calculation, 

and thereby acquaint the reader with this fundamental quantum chemical 

method.   

   In order to understand the way a HF calculation is conducted, let’s first 

think about the most complete description of an N-electron, and M-nuclei system, 

by listing the operators that address all possible events taking place in the 

molecule at any point in time. 
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1) The electrons are moving so they will have kinetic energy.  The 

corresponding operator is 

                                                   ∑∇−=
i

2
ie 2

1T̂ , (D1) 

where i is the index running over N electrons ∇2 is the kinetic energy 

operator in an appropriate coordinate system. 

2) The nuclei are also moving, very slowly, but there is still a kinetic energy 

contribution from them.  The corresponding operator is 

                                               ∑
α

α
α

∇−= 2
n m

1
2
1T̂ , (D2) 

           where α is the index running over all M nuclei, and mα is the mass of  
 
           nucleus α. 
 

3) The electrons and nuclei are attracted to each other through coulomb 

interactions represented by a potential energy term.  The corresponding 

operator is  

                                                     ∑∑
α α

α−=
i i

ne r
Z

V̂ , (D3) 

           where rαi is the distance between nucleus α and electron i, and Zα is the  
 
           nuclear charge of nucleus α. 
 

4) The electrons will interact with each other through repulsive coulomb 

potential energy terms.  The corresponding operator is 

                                                           ∑∑
>

=
j ji ij

e r
1V̂ , (D4) 

 
           where rij is the distance between electron i and j. 
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5) Finally, the nuclei will repel each other through coulomb potential energy 

terms as well.  The corresponding operator is 

                                                      ∑ ∑
α α>β αβ

βα=
r

ZZ
V̂n , (D5) 

          where rαβ is the distance between nucleus α and β, and Zα and Zβ are the  
 
          corresponding nuclear charges. 
   
 Overall, the molecular Hamiltonian can be written as the sum of terms 
  

(D1) through (D5), leading to the simplest and completely accurate 
 
description of any molecular system 
 

                                              nenene V̂V̂V̂T̂T̂Ĥ ++++= . (D6) 
 
 The implicit problems in describing these terms is quantifying the electron-

electron interactions and the relationship between nuclear and electronic motion.  

As of right now the molecular Hamiltonian is in terms of nuclear and electronic 

coordinates, and this situation is at the root of the first simplification:  the Born-

Oppenheimer approximation.  Because nuclei are so much heavier than 

electrons, the nuclei are regarded as static while the electrons are zipping by 

them, making the internal motions in the molecule separable.  This simplifies 

things by reducing (D5) to a constant term  that depends on the nuclear 

coordinates only.  In addition, the term (D2) goes to zero because the nuclei 

have no kinetic energy under this assumption.  The molecular Hamiltonian can 

be rewritten in terms of the electronic coordinates only as, 

                                              nenee VV̂V̂T̂Ĥ +++= . (D7) 

Next, we make the independent electron approximation  
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                                    )r()...r()r()r...r,r( Nk2j1iN21 φφφ=Ψ , (D8) 

where the overall wavefunction (Ψ)  is written as a product of one-electron 

wavefunctions (φ), and r is the collection of coordinates for electron N.  This 

description of Ψ is also known as the Hartree product and it has a couple of 

shortcomings.  First, it assumes that other electrons affect an electron’s position 

only in an average way.  This means that an electron “feels” an electron right 

next to it as much as it “feels” an electron on the other side of the molecule.    

 Second, the Hartree product violates the Pauli exclusion principle, which 

states that electrons must be identical and indistinguishable, instead of placing 

electrons in specific φ orbitals.  For example, in a two-electron system, one can 

write the Hartree product as, 

                                          )r()r()r,r( 2j1i21 φφ=Ψ ,                               (D9) 

but in order to not violate the Pauli exclusion principle, the Hartree product 

should also be written as, 

                                      )r()r()r,r( 1j2i12 φφ=Ψ .                                  (D10) 

To account for all possible electron-orbital combinations, a Slater determinant is 

written as a linear combination of the above possible configurations 

                                   )]r()r()r()r([N)r,r( 1j2i2j1i21 φφ−φφ=Ψ ,                         (D11) 

where N is a normalization factor.  Rewriting the wavefunction as a Slater 

determinant still leaves the problem of the averaged out effect electrons have on 

each other, and as you will see, it is the fundamental approximation in Hartree-

Fock theory.   
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 From a mathematical standpoint, an infinite number of functions would 

give the HF limit energy, but in reality this would require an infinite amount of 

time.  This is why the primary objective of Hartree-Fock theory is to find the set of 

orbitals that best approximates the ground state of an N-electron system, i.e. find 

the collection of functions that gives the lowest calculated energy.  This is the 

Basis set approximation.  Two questions immediately arise:  First, what kind of 

functions would be the best ones to use?  Second, how many of them should be 

used?  We can expand any of the φ molecular orbitals in a basis of atomic 

orbitals χ as 

                                                             ∑
α

αα χ=φ ii c , (D12) 

where α is the number of atomic orbitals, and cαi is the contribution of χα to the 

molecular orbital.  The economical answer to the questions posed above is to 

use a smaller number of functions that closely resemble the overall system, but 

that are easy to manipulate mathematically.  While there are functions that 

adequately describe electronic behavior, Gaussian functions are favored 

because they are easier to work with.  Their properties allow more of them to be 

used and simplify the mathematics, as opposed to using better functions (like 

Slater-type functions) that are more cumbersome to employ.  The most attractive 

feature of Gaussian functions is that they have spherical symmetry, and when 

taking the product of two of them, you end up with a new Gaussian function with 

a new center.  The new center and area of the product of Gaussians have simple 
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definitions and the integrals involving them for Hartree-Fock calculations have 

already been solved and for this reason they are used in this exercise.  

 The problem now is to find the cαi that minimize equation (D12), and for 

that we need a matrix representation of the molecular Hamiltonian.  As derived 

by Roothaan and Hall [3], the variational problem can be written as 

                                       ∑∑
α

ααα χ=χ
N

ii

N

i
ii cEcF ,                                         (D13) 

where F is the Fock operator, C is the coefficient matrix and S is the overlap 

matrix.  The Fock operator has the form 

                                          ∑
α

αααα −+=
N

core )KJ(hF ,                                (D14)      

where N is the number of atomic orbitals.  The first term of (D14) is the sum of 

the kinetic energy and the nucleus-electron coulombic attraction for electron α; 

equations (D1) and (D3) respectively.  The second part of (D14) describes the 

electron-electron terms arising from coulombic repulsions (Jα) and exchange 

(Kα).   

 Multiplying both sides of (D13) by φβ, and writing it in matrix notation yields 

                                                      FC = SCE,                                                (D15) 

where  

                                                αββα χχ= FF ,                                          (D16) 

and  

                                                 αββα χχ=S .                                            (D17) 
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 It will be useful to write (D16) in terms of the density matrix D as 

                         ∑ 







χχχχ






−χχχχ+= αβαββαβα

N

ij
iiijij

core

2
1DhF ,               (D18) 

where the D is defined over the occupied molecular orbitals as 

                                                ∑=
2/N

k
jkikij c*cD .                                              (D19) 

Expression (D18) is typically written more compactly as 

                                         ij

N

ij
ij

core GDhF βαβαβα ∑+= .                                              (D20) 

where Gβαij is the two electron portion of equation D18.  Expression (D15) implies 

that the molecular orbitals can be acquired by solving the eigenvalue problem, 

but the operator itself depends on the wavefunction, that is, the operator depends 

on the coefficients it is supposed to solve for.  The solution to (D15) must be 

found iteratively.  Conventionally, in a Hartree-Fock calculation the density matrix 

is used to converge the calculation, giving rise to the name Self-Consistent Field 

(SCF).    

 The Hartree-Fock procedure is outlined below for the H3
- species.  The 

molecule is modeled as an equilateral triangle with side dimension = 1.824 Bohr.  

The basis is composed of three identical Gaussian functions (χ) of the form 

                                                 
2

A )Rr(
4/3

A e2 −α−







π
α

=χ ,                                   (D21) 
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where the Gaussian exponent α = 0.4166214 and RA is the coordinate of atom A.  

Figure D.1 shows the molecule and dimensions of the system used in this study.  

For more information on the integrals discussed below, refer to Reference [2]. 

 

Figure D. 1.  The molecule used in the Hartree-Fock (HF) study. 

 

1. The overlap matrix will be necessary for several steps in the Hartree-

Fock calculation.  Conveniently, the overlap (product) of two Gaussian orbitals is 

already known as  

                                      PBA Kχ=χχ .                                         (D22) 
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where K is a proportionality constant of the form 

                                    
2

BA

2
RR

eK
−

α+α
α

−
= .                                  (D23) 

The new Gaussian function χP is centered on coordinate RP 

                                          
α
+α

=
2

)RR(R BA
P ,                                     (D24) 

and has an exponent ρ  

                                                 α=ρ 2 .                                             (D25) 

Now the overlap matrix S can be built by taking the 9 possible overlaps 

                   := S












1 0.5000009716 0.5000009716
0.5000009716 1 0.5000009716
0.5000009716 0.5000009716 1

      (D26) 

 

  2.   The Kinetic energy integrals specified by (D2) are also known.  In 

atomic units, they have the form 

          
2

BA

2
RR

2
2/3

2
BA

22

B
2

A e
2

RR
2
23

22
1 −

α
α

−








α
π









−

α
α

−
α

α
=χ∇−χ ,    (D27) 

and building the kinetic energy matrix T yield 

                                                 

 := T












0.6249186003 0.1680731760 0.1680731760
0.1680731760 0.6249186003 0.1680731760
0.1680731760 0.1680731760 0.6249186003

.                (D28) 

3.  The potential energy due to the coulombic attraction between electrons 

and nuclei “C” as specified by (D3) have been evaluated.  There will be 3 

matrices.  Conceptually they correspond to I - the interactions between electron 

on atom A and all nuclei (VA), II - the interactions between electron on atom B 
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and all nuclei (VB), III – and the interactions between the combined electron 

density of electrons on atom A and B to all the nuclei (VC).  The integral 

describing the attraction of electron on atom B for nucleus A is  

                             )(erf2
2r

Z 2/1
2/14/6

B
AB

A
A τ








τ
π









π
α

α
π

−=χ−χ ,                    (D29) 

where τ is defined as 

                                                  2
AB )RR(2 −α=τ .                                         (D30) 

The three resultant matrices are 

          

 := VA












-1.029997459 -0.4171631139 -0.4171631139
-0.4171631139 -0.5380407760 -0.3033953493
-0.4171631139 -0.3033953493 -0.5380407760  ,                       (D31)

 

         

 := VB












-0.5380407760 -0.4171631139 -0.3033953493
-0.4171631139 -1.029997459 -0.4171631139
-0.3033953493 -0.4171631139 -0.5380407760   , and              (D32)

 

          

 := VC












-0.5380407760 -0.3033953493 -0.4171631139
-0.3033953493 -0.5380407760 -0.4171631139
-0.4171631139 -0.4171631139 -1.029997459  .                        (D33)

 

 

4.  The initial guess is the core Hamiltonian matrix (Hcore), which is built by 

adding T, VA, VB, and VC.  The resultant matrix is 

            

 := Hcore












-1.481160411 -0.9696484010 -0.9696484010
-0.9696484010 -1.481160411 -0.9696484010
-0.9696484010 -0.9696484010 -1.481160411 .                   (D34) 
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5.  The two electron integrals have to be computed next, and they have 

also been solved.  There will be 81 integrals with 6 unique values.  For example, 

integral (AA|BB) is the repulsion felt by electrons on separate atoms, and it has 

the form 

                              )(erf2
)4(4

)BBAA( 2/1
2/1

4/12

2/12

2/5

λ







λ
π









π
α

αα
π

= .                    (D35) 

The number of integrals, their identity and corresponding values are:                   

3 x (AA|AA) =  0.728318, 

6 x (AA|BB) = 0.495632, 

24 x (AB|AA) = 0.326126, 

12 x (AB|AB) = 0.182080, 

24 x (AB|AC) = 0.163064, and 

12 x (AA|BC) = 0.269251. 

6.  For the SCF portion of the calculation, the initial guess must be 

orthogonalized as discussed in previous sections of this thesis. Here, the 

canonical orthogonalization is used, where the transformation matrix X=Us-1/2. 

The s-1/2 is found diagonalizing S with a unitary matrix U, and taking the inverse 

square root of the diagonal elements.  The procedure is as follows. Using the fact 

that there must be a matrix U that diagonalizes S so that UtSU=s, where s is the 

eigenvalue matrix, transforming matrix U is found to be  

                                     

 := U













1
3 3

1
3 3

1
3 3

1
3 3  − 

1
2

1
6 3 −  − 

1
2

1
6 3

1
3 3 −  − 

1
2

1
6 3  − 

1
2

1
6 3

.                            (D36)
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The s-1/2 is 

                      

 := sis












0.7071067814 0. 0.
0. 1.414213562 0.
0. 0. 1.414213562 ,                     (D37) 

yielding transformation matrix X 

 = X












0.23570 3 0.47140 3 0.47140 3
0.23570 3  − 0.70710 0.23570 3 −  − 0.70710 0.23570 3
0.23570 3 −  − 0.70710 0.23570 3  − 0.70710 0.23570 3       (D38) 

 

  

 The core Hamiltonian matrix is the initial guess for the Fock matrix 

(F≈Hcore). The matrix X found above used to perform a unitary transformation on 

F 

                                                            F' = XtFX,                                            (D39) 

in order to obtain F' 

                        

 := Fp0












-1.7103 0.0001 0.0001
0.00002 -1.0232 0.00005
0.00002 0.00005 -1.0232 .                                  (D40)

 

 

7. Diagonalizing F' results in a unitary C matrix (C') 

                                                     F'C' = C'E                                                 (D41) 

with eigenvectors C' 

                        

 := Cp0












1.00000 0.00021 -0.22851
0.00003 0.70711 -0.70711
0.00003 0.70711 0.70711 ,                                (D42) 

with a corresponding eigenvalue matrix E 
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 := E0












-1.71030 0. 0.
0. -1.02315 0.
0. 0. -1.02315 .                         (D43)

 

To get back to the real coefficients, C' must be transformed with X 

                                                   C = XC',                                              (D44) 

in order to obtain C 

                                

 := C0












0.40825 1.15470 0.
0.40825 -0.57735 1.00000
0.40825 -0.57735 -1.00000 .                          (D45)

 

8.  The first density matrix D can be built now. In this system, there are 4 

electrons which occupy 2 molecular orbitals; therefore D only includes the first 

two eigenvectors of C  

                                                    ∑
=

=
2

1k
jkikij C*CD  ,                                            (D46) 

where D 

                                

 := DO












3.00000 -1.00000 -1.00000
-1.00000 1.00000 1.00000
-1.00000 1.00000 1.00000 .                            (D47) 

 

9.  Now that the D is known, the first complete Fock matrix can be 

assembled.  The two electron portion (G) as specified by (D20), can be 

calculated as 
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 := TEI0













0.36416 0.16306 0.16306 0.16306 0.40459 0.18772 0.16306 0.18772 0.40459
0.16306 0.091040 0.081530 -0.06574 0.16306 0.02844 0.02844 0.081530 0.18772
0.16306 0.081530 0.091040 0.02844 0.18772 0.081530 -0.06574 0.02844 0.16306
0.16306 -0.06574 0.02844 0.091040 0.16306 0.081530 0.081530 0.02844 0.18772
0.40459 0.16306 0.18772 0.16306 0.36416 0.16306 0.18772 0.16306 0.40459
0.18772 0.02844 0.081530 0.081530 0.16306 0.091040 0.02844 -0.06574 0.16306
0.16306 0.02844 -0.06574 0.081530 0.18772 0.02844 0.091040 0.081530 0.16306
0.18772 0.081530 0.02844 0.02844 0.16306 -0.06574 0.081530 0.091040 0.16306
0.40459 0.18772 0.16306 0.18772 0.40459 0.16306 0.16306 0.16306 0.36416 .  (D48)

 

 

Multiplying G by D and adding this to Hcore yields the Fock Matrix F of the next 

iteration cycle 

                                        

 := Fp












0.14374 -0.15494 -0.15494
-0.15494 0.12604 -0.27495
-0.15494 -0.27495 0.12604 .                        (D49) 

 

 10.  Steps 6 through 9 are repeated until D has converged to within some 

criteria.  This calculation converges in two iterations.  The final molecular orbitals 

(C) are 

                                    

 := C1












0.28984 1.18996 0.
0.46434 -0.53329 -1.00000
0.46434 -0.53329 1.00000  ,                             (D50) 

with corresponding molecular orbital energies (E) 

 

                                    

 := E1












-0.13554 0. 0.
0. 0.51212 0.
0. 0. 0.80198 .                          (D51) 
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Appendix E.  List of Abbreviations 

 
 
 

AO – Atomic Orbital 

CI – Configuration Interaction 

CSF – Configuration State Function 

CTS – Charge Transfer State 

DFT – Density Functional Theory 

DOS – Density Of States 

Ea – Adiabatic attachment Energy 

EHT – Extended Hückel Theory 

En – Vertical detachment Energy 

Ev – Vertical attachment Energy 

HF – Hartree-Fock Theory 

HOMO – Highest Occupied Molecular Orbital 

LUMO – Lowest Unoccupied Molecular Orbital 

MO – Molecular Orbital 

NDR – Negative Differential Resistance 

SAM – Self-Assembled Monolayer 

SCC – Self Consistent Charge 

TDSE – Time-dependent Schrödinger Equation 

TISE – Time-independent Schrödinger Equation 
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