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Ilya A. Rybak, Ph.D 

 

 

 

More than 90 years ago, Graham Brown demonstrated that the cat spinal cord can 

generate a locomotor rhythm in the absence of input from higher brain centers and 

afferent feedback, and proposed a general schematic for the spinal central pattern 

generator (CPG) generating rhythmic alternating activity of flexor and extensor 

motoneurons during locomotion, the “half-center” model. Since that time, the half-center 

concept has been used as the basis in many CPG models. Despite many advantages, 

classical half-center models of the locomotor CPG have been so far unable to reproduce 

and explain the generation of more complex activity patterns expressed during 

locomotion by some bifunctional motoneurons actuating muscles controlling more than 

one joint, such as posterior biceps and semitendinosus (PBSt) and rectus femoris (RF), 

which were found to be active within a portion of one phase or generated activity during 

both phases. During normal locomotion, the activity patterns of PBSt and RF are 

modulated by supra-spinal inputs and afferent feedback and vary with gate and locomotor 

conditions. However, even during fictive locomotion in the absence of afferent feedback 

and patterned supra-spinal inputs, PBSt and RF demonstrate a variety of complex activity 

patterns, similar to those observed in real locomotion under different conditions. This 

suggests that the complex patterns of bifunctionals are defined by the intrinsic spinal 

CPG organization. The non-trivial activity profiles expressed by bifunctional 

motoneurons have been considered as a strong argument against a bipartite half-center 
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organization of the spinal locomotor CPG. The challenging task of this study was to find 

and propose a neural organization of the spinal locomotor CPG that is able to reproduce 

the full repertoire of PBSt and RF activities observed during fictive locomotion within 

the framework of the bipartite organization of the locomotor CPG, implement it in a 

computational model, and validate the model by reproducing the behavior of bifunctional 

motoneurons during various types of deletions occurring during fictive locomotion. This 

study represents a significant step towards understanding the organization of the 

mammalian spinal locomotor CPG, shaping complex patterns of bifunctional 

motoneurons, and offers a mechanism for their control by afferent feedback. 
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Chapter 1: Introduction 

1.1 Central Pattern Generators 

 Various rhythmic or repetitive actions are observed in animals, such as 

respiration, scratching, chewing and locomotion (flying, swimming and walking). Most 

of these motor behaviors are controlled by specialized neural networks called central 

pattern generators (CPGs). The term CPG is used to refer to a network of neurons whose 

collective activity produces and controls specific rhythmic motor activity such as 

locomotion (Stuart 2007). CPGs are activated and controlled by higher brain centers, but 

their rhythmogenic mechanisms are defined by intrinsic properties of neurons comprising 

each CPG and the network architecture of their interactions. Moreover sensory input and 

afferent feedback can modulate and/or modify the CPG operation and the rhythmic 

pattern generated to adjust the latter to the particular motor task and the environment. 

 Each CPG has a specific network organization, and the connections between 

neural populations within the CPG appear to be genetically determined (Selverston 

2005). Though, these connections‟ weights are not fixed and can be altered to modify the 

activity of the CPG to fit the particular task or conditions. These alterations can be 

achieved through various neuromodulators affecting the properties of different pre and 

post-synaptic ionic channels (Selverston 2005).  

 The rhythmicity generated by a CPG is the result of intrinsic bursting properties 

of some or all of the individual neurons forming the CPG, or the result of the network 

architecture and specific interactions between non bursting neurons. It also may be the 

result of an interplay between both of these mechanisms (Selverston 2005). Intrinsic 

bursting of neurons occurs due to certain types of ionic channels, such as persistent 
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sodium and voltage activated calcium channels, which are responsible for burst initiation, 

and maintenance of the neuron‟s depolarized state throughout the burst duration such that 

spiking is maintained. Bursting activity can end due to spike adaptation, which results 

from slow changes to certain ionic channels‟ dynamics, leading to reduced activity and 

eventually termination. It can also be triggered through intrinsic mechanisms such as 

calcium dependant potassium channels, which are activated by increased concentrations 

of calcium within the neuron (Bellingham 1998). Finally, a burst‟s duration can also be 

intrinsically controlled with a transient potassium current (IA) (Av-Ron 1994). Network 

architecture determined rhythmicity, on the other hand, operates mainly through 

excitatory connections among neurons, or populations of neurons, that are expected to be 

coactive (agonists), while burst termination and phase switching occurs as a result of 

reciprocal inhibition between antagonistic neurons or populations (Selverston 2005). 

Therefore two antagonistic populations within a CPG can at the same time play a role in 

determining each other‟s activity profile, in addition to each of them controlling one of a 

pair of antagonistic muscles. Reciprocal inhibition can also play a role in maintaining the 

timing of CPGs relative to each other, whether in phase or out of phase, for example the 

reciprocal inhibition between CPGs controlling two limbs that operate out of phase with 

each other. 

CPGs, which are responsible for controlling a range of motor activities in several 

non mammalian and invertebrate species, have been extensively studied and fully or 

partially described, such as the CPGs responsible for the control of swimming in crayfish 

(Stein 1971), tritonia (Getting 1975), lamprey (Grillner 2003), and leeches (Kristan and 

Weeks 1983); the CPG controlling flight in locusts (Robertson and Pearson 1985); CPGs 
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controlling walking in insects (Buschges et al. 2008) and turtles (Stein 2005). 

Additionally, CPGs responsible for the control of digestion, respiration, cardiac activity, 

and swimming have been described in crustaceans (Hooper and DiCaprio 2004). The 

studies of such systems have played an essential role in expanding the understanding of 

the cellular and network bases of similar systems responsible for rhythmic motor activity 

in vertebrates. For example, the isolated spinal cord of a lamprey was found to be able to 

produce well coordinated locomotor activity in the absence of sensory feedback (Grillner 

et al. 1995; Grillner et al. 1998; Grillner and Wallen 2002). Furthermore, a neural model 

of the lamprey's spinal circuitry coupled with a mechanical model of the lamprey's body 

was able to reproduce swimming motion at different speeds, and realistic turning 

movements when simulated with variable descending inputs from supra-spinal centers 

(Ekeberg 1993; Ekeberg et al. 1995). That said, a lot remains to be unraveled when it 

comes to more complex systems such as the locomotion of rats, cats, primates and 

humans, seeing as in these cases the circuitry underlying the locomotory rhythm has not 

yet been fully described. And even though we believe that systems described in 

invertebrates can offer great insights into the organization of networks controlling 

locomotion in vertebrates it is reasonable to assume that the circuitry in higher order 

animals is likely to be much more complex than the one found in invertebrates, such as 

the lamprey, due to the involvement of more than one limb, multiple segments per limb, 

and the degree of coordination that operating such a system requires. The locomotor 

system of a lamprey is simpler; it is limited to a small number of neurons controlling each 

body segment such that when one side of a segment contracts the opposite side relaxes. 

Body segments are interconnected with each other and coordinated in such a way that 
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creates a travelling wave of contractions and relaxations that propel the animal forward, 

backwards or steers the animal in the desired direction (Grillner 2003). The coordination 

between body segments is achieved by having a delay of activity between the leading 

segment and the ones following it, with the delay increasing the farther away a body 

segment is from the leading end, creating a lag in the activation of consecutive body 

segments. The speed of a travelling wave of activity, whether towards or away from the 

head, determines the movement speed in the corresponding direction, such that the faster 

the wave propagates, the faster the lamprey moves, and the shorter the delay is between 

consecutive segments‟ activation (Grillner 2003). Clearly the control system required for 

propelling a bi-pedal or quadra-pedal vertebrate has to be much more complex than that, 

additionally such a control system has to deal with maintaining the body‟s stability and 

prevent it from falling off to one side. 

In mammals, several neural networks have been identified within the central 

nervous system that control different repetitive rhythmic motor activity (Guertin and 

Steuer 2009), these CPG networks include: (1) The CPG controlling respiration, which 

studies suggest is located in the ventral part of the medulla in a region referred to as the 

pre-Bötzinger complex (Smith et al. 1991). Similar networks controlling respiratory 

motor activity have also been identified in mollusks (Syed et al. 1990). (2) The CPG 

controlling mastication, or chewing, located in the brainstem (Nakamura and Katakura 

1995), not only controls the motion of the jaws but also the various facial and tongue 

muscles involved in the mastication process. In addition to chewing, data from several 

studies suggests that swallowing is produced by the rhythmic activity of a CPG located in 

the medulla (Jordan et al. 1992). Modulation of these basic rhythms is achieved through 
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sensory feedback relaying the properties of the food being chewed and proprioception of 

the jaws, tongue and face. (3) The process of ejaculation results from rhythmic activity of 

the pedundal motoneurons. This rhythmic activity originates in a network of neurons 

called the lumbar spinothalamic (LSt) neurons, located in lumbar L3 and L4 segments of 

the spinal cord and forming a CPG referred to as the spinal generator of ejaculation 

(SGE) (Truitt and Coolen 2002). In addition to projecting to the pedundal motoneurons, 

the SGE also projects its activity to the forebrain and receives sensory inputs from the 

sexual organs through the pedundal and dorsal nerves of the penis (Schroder 1985). 

Stimulation of these nerves has been shown to elicit an ejaculatory response in low-

thoracic transected rats (McKenna et al. 1991). Similar data has also been reported in 

men (Wieder et al. 2000). (4) Another process that relies on rhythmic activity generated 

by a CPG is macturition, or urination. Elimination of urine involves the coordination of 

the activity of several muscles in the urinary bladder, bladder neck, urethra, and urethral 

sphincter (Nadelhaft and Vera 1995). Several studies have suggested that the CPG 

responsible for the control of the macturition process is located in the thoracolumbar and 

lumbosacral regions of the spinal cord (Sugaya et al. 1997; Vizzard et al. 1995). (5) The 

CPG controlling the scratch mechanism. Scratching is characterized by an animal 

bringing its hind limb forward towards the region triggering the scratch response, and 

then following that with repetitive rhythmic movements of the hind limb against the 

animal‟s body (Stein 2008). Studies have shown that the scratch CPG is located in the 

L7-S1 region of the spinal cord (Barajon et al. 1992), moreover it was suggested that an 

overlap between the scratch and locomotion CPGs exists, particularly since both 

processes involve the activation of similar muscle synergies (Berkowitz 2008). Yet 



6 

recordings of premotor neurons active during scratch but not during locomotion have 

been obtained in turtles, pointing towards only a partial overlap between the scratch and 

locomotion CPGs (Berkowitz 2002). 

1.2 Neural Control of Locomotion 

The generation and control of the locomotor rhythm has been mainly studied in 

animal models although there is mounting evidence for the existence of a CPG 

controlling locomotion in humans (Hultborn and Nielsen 2007; Minassian et al. 2007). 

The mammalian locomotor CPG components and organization remain mostly unknown; 

however it is believed that the CPG is mainly located in the thoracolumbar segments 

(Cina and Hochman 2000; Dimitrijevic et al. 1998; Gerasimenko et al. 2008; Nishimaru 

et al. 2000) of the spinal cord. 

Early in the study of locomotion in vertebrates, during the latter part of the 19
th

 

century and the first half of the 20
th

 century, the prevailing hypothesis for the control of 

stepping was that it resulted from reflex reactions, suggesting that sensory and 

proprioceptive stimulations played a central role in the control of locomotion. It was 

believed that reflex stepping was generated as a result of afferent stimulations the limbs 

receive during locomotion in addition to muscular proprioceptors that generate signals 

relaying the position of the limbs and muscle properties (Stuart and Hultborn 2008). 

However at the same time, in 1874, spinal cord transected dogs, held over ground level, 

were shown to generate short episodes of locomotor activity after one of their limbs was 

dropped from a flexed position (Freusberg 1874), revealing that the spinal cord was 

capable of generating a locomotor rhythm on its own. Comparable observations were 
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made by Philippson (1905), who also studied rhythmic air stepping of dogs‟ hind limbs 

held off the ground, and concluded that locomotion was the result of both, central and 

reflex mechanisms (Clarac 2008). Philippson (1905) was able to map the sequence of 

reflex stimulations that he believed were behind the stepping reaction, even though he did 

note that there might be an additional central mechanism contributing to stepping that he 

was not able to identify. At the time, little attention was paid to Freusberg's and 

Philippson‟s findings, concerning the probability of a central mechanism contributing to 

the control of locomotion (Clarac 2008), which challenged the widely accepted reflex 

stepping theory of that time. 

Another scientist during that time, who argued for stepping being a reflex 

reaction, was Charles Sherrington. His extensive work on spinal cord transected cats and 

dogs provided evidence suggesting that the basic motor pattern of walking was the result 

of reflex actions from proprioceptors acting on spinal centers (Sherrington 1910a). 

Following transection of the spinal cord, and after a period of spinal shock, the hind 

limbs were capable of executing reflex stepping movements which strikingly resembled 

those of natural step. Sherrington studied different reflex reactions that were elicited 

through various types of stimulus; he determined which muscles were involved in each 

reflex reaction and the strength of the responses that they produced (Sherrington 1910a). 

He then went on to determine which of the reflex reactions the he was able to produce 

could possibly play a role in the locomotion process. Finally, Sherrington compared the 

reflex reactions that he thought were responsible for producing the locomotor rhythm in 

different types of preparations (intact, decerebrate, and spinal) and pointed out the 

similarities and difference.  
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Even though in several of Sherrington‟s papers and studies there was evidence 

pointing towards a central mechanism being involved in the control of stepping, and even 

though Sherrington himself mentioned the possibility of the existence of such a 

mechanism, he continued to argue for the reflex reaction concept and peripheral control 

of locomotion. Sherrigton believed that similarities between hind limb stepping and 

scratching existed (Sherrington 1910b, c), and although he had previously shown that 

deafferentation of the limb involved in scratch did not abolish scratching, rather it left the 

rhythm unchanged (Sherrington 1906), he maintained that stepping was the result of a 

reflex reaction. Sherrington held that the locomotor rhythm was produced due to cyclic 

input from proprioceptors of the hip flexor muscles in addition to other reflexes, because 

rhythmic stepping was not eliminated even after cutting all hind limb cutaneous nerves. 

Moreover, on the issue of air stepping, where the animal is lifted off the ground during 

the observed locomotor rhythm, Sherrington disagreed with the views of Philippson 

(1905), he argued that although the lack of contact with the ground meant that limbs 

received no cutaneous stimulus, but muscular propioceptors remained active and were 

capable of producing afferent feedback signals that reached the spinal cord and induced 

the stepping rhythm (Clarac 2008). Sherrington believed that muscular and cutaneous 

afferents played a major role in the control of stepping. 

Sherrington (1910a) also discovered that the stepping reaction elicited through 

limb stimulation may have a frequency different to that of the stimulus being applied. He 

reacted to his discovery by remarking: “… the rhythm is therefore central in seat”. 

Sherrington also suggested that certain specialized neurons in the spinal cord can 

transform tonic peripheral inputs into basic central stepping motor commands, since 
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locomotion could be elicited through continuous stimulation of the skin or the spinal 

cord; yet he maintained his position that the locomotor rhythm was mainly the result of a 

reflex mechanism. Nevertheless, Sherrington had a change of heart towards the end of his 

career, he conceded to a friend that he no longer believed that control of locomotion laid 

peripherally (Stuart and Hultborn 2008), and that he thought that reflex stepping as a 

theory did not explain the complexity of the stepping action. Sherrington, considered 

reflex stepping a useful concept initially, but as researchers uncovered more details in the 

field of stepping and locomotion it could no longer offer the desired explanations. 

1.3 Thomas Graham Brown and the Half-Center CPG 

The first scientist to clearly argue for central control of locomotion was Thomas 

Graham Brown. He was also the first to develop the idea of a spinal half-center rhythm 

generator that is at the heart of the control of locomotion (Clarac 2008). Based on his 

experiments showing that the basic pattern for stepping was generated entirely in the 

spinal cord in the absence of peripheral afferent input, in spinal cord transected cats, 

rabbits and guinea-pigs (Graham Brown 1911a, 1914), Brown developed his half-center 

concept of the spinal mechanism responsible for the control of locomotion. This idea, 

which is currently widely accepted, did not receive much acceptance during Brown‟s 

time and up until the 1960‟s (Delcomyn 1980; Stuart and Hultborn 2008). Brown, who 

was a student of Sherrington, also saw a similarity between the control of hind limb 

stepping and scratching in guinea pigs and rabbits (Graham Brown 1910, 1911b). Along 

with Sherrington, Brown demonstrated that scratching was preserved after 

deafferentation of the hind limbs. Unlike Sherrington though, Brown found that this 
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observation held a clue to the control of stepping, namely that stepping, like scratching, is 

probably controlled by a central spinal mechanism (Graham Brown 1911a). Brown went 

further in trying to prove his hypothesis, he experimented with cats that were 

decerebrated, transected (at segment T12), deafferented (by severing most of the dorsal 

and lumbar roots exiting the hind limb), and paralyzed with an anesthetic. The animals 

were lying on one side when stepping movements in the hind limbs was spontaneously 

evoked (narcosis progression). The level of anesthetic used was shown to abolish 

proprioceptive and exteroceptive reflexes but not locomotor activity; Brown was able to 

record rhythmic alternating flexor-extensor activation patterns in the hind limbs (Graham 

Brown 1911a). The rhythmic bursts that Brown observed were in nerve fibers carrying 

motoneuron signals to a flexor muscle (tibialis anterior) and an extensor muscle 

(gastrocnemius) (Clarac 2008). This proved that the source of activity that Brown 

observed in hind limb motoneurons was neither supra-spinal, nor was it the result of 

stimulations experienced by limbs during locomotion, nor did it depend on the state or 

position of the muscles involved in the stepping action. Rather, Brown‟s work suggested 

that control of hind limb stepping lay with the central mechanism located in the lumbar 

part of the spinal cord (Graham Brown 1911a). Leading Brown to propose his half-center 

model consisting of two groups of spinal neurons mutually inhibiting each other and 

capable of producing the basic stepping rhythm (Fig. 1). Functionally, the two half-

centers are antagonistic, when one is active the other is silent. This idea of mutual 

inhibition in the spinal cord was not new at the time, Sherrington had proposed it earlier, 

but had suggested that mutual inhibitory connections were under the control of 

proprioceptive feedbacks (Stuart and Hultborn 2008). Brown suggested that a locomotor 
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rhythm was generated in the following way: (1) Activity in the first group of neurons 

(half-center) activates motoneurons innervating extensor muscles, and simultaneously 

inhibits the opposite half-center preventing the activity of antagonist muscles. (2) Phase 

switching occurs when the active group of neurons becomes fatigued allowing the 

opposite group of neurons to escape its inhibition, or the opposite group, on its own, 

manages to overcome the inhibition. 

Brown also experimented with removing half of the lumbar cord along the antero-

posterior axis in decerebrate and spinal rabbits, guinea pigs and cats, and observing any 

remaining rhythmic activity (Graham Brown 1913). He performed these experiments 

under light anesthesia, which allowed sensory afferents to provide enough general 

excitation to lumbar centers to activate them. Brown observed normal stepping 

movements of the hind limb ipsilateral to the intact spinal cord, while the contralateral 

hind limb, on the side of the damaged spinal cord, showed no movement. These finding 

offered further insights into the organization of the spinal centers controlling stepping. 

Namely, it suggested that each hind limb is controlled by a separate half-center CPG that 

may function in or out of phase relative to the CPG controlling the opposite hind limb 

(Stuart and Hultborn 2008). 

As for the role of afferents, whether muscle proprioceptives or cutaneous 

feedbacks, Brown thought that these mechanisms had an important role to play in the 

control of locomotion. This role however was not in the generation of the basic rhythm; 

rather it was in the regulation and augmentation of the centrally produced rhythm 

(Graham Brown 1911a). Therefore, according to Brown, afferent feedbacks can play a 
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role in dynamically modifying the locomotor rhythm depending on environmental 

conditions and the state of the hind limbs. 

In summary, Brown‟s findings can be summarized in the following five points 

(Graham Brown 1911a): (1) The locomotor rhythm is composed of three stages that 

repeat in the following order: flexion, balance between flexion and extension, and 

extension. (2) Spinal cord stimulation in an animal with all limb muscles deafferented 

and paralyzed (other than the muscles being recorded), produces an alternating flexor-

extensor muscle rhythm. (3) The rhythm observed in a deafferented animal is similar to 

the rhythm observed before the afferents were cut. (4) The locomotor rhythm is the result 

of central spinal mechanisms with intrinsic phasic oscillations that do not depend on 

external phasic inputs or peripheral stimulations. (5) In an intact animal, where afferents 

are preserved, proprioceptive feedbacks play a regulatory role that is not essential to the 

production of the locomotor rhythm. 

As mentioned earlier, Brown‟s ideas were not widely accepted during his time 

and received little appreciation from his educator Sherrington. While Sherrington did find 

validity in the idea of a mechanism intrinsic to the spinal cord capable of controlling the 

stepping rhythm, he did not accept the idea that afferent feedbacks and reflexes only 

played a regulatory role (Sherrington 1913). Therefore, the half-center concept remained 

in obscurity until the 1960s when Andreas Lundberg brought it back to light and gave it 

the acceptance that it deserved (Clarac 2008). 
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1.4 Alternative CPG Models 

Several other organizations of the circuitry responsible for locomotion have been 

proposed. Here we offer a brief description of these hypotheses. First, the Miller and 

Scott model (1977), which proposed that Renshaw cells are responsible for the 

alternation between flexion and extension. Increased activity in one motoneuron pool 

gradually causes its own inhibition by the corresponding Renshaw cell population. 

Simultaneously, that Renshaw cell population facilitates the activity of the antagonistic 

motoneuron pool by inhibiting the corresponding Ia interneuron population which would 

otherwise inhibit the activity of the antagonistic motoneuron pool. This model fails to 

clearly explain how the basic rhythm is generated, furthermore it has been demonstrated 

that the activity of Renshaw cells is not essential for the generation of a basic locomotor 

rhythm (Pratt and Jordan 1987). More evidence against the Miller and Scott model comes 

from studies with nicotinic antagonist mecamylamine (MEC), which greatly reduces 

Renshaw cell activity. It was shown that the basic locomotor pattern and Ia interneuron 

activity persists even after the application of MEC (Noga et al. 1987). 

Another CPG model that has been proposed is the flexor burst generator model 

(Duysens 1977; Pearson and Duysens 1976) which consists of a rhythmically bursting 

activity generator that directly drives flexor motoneurons, and inhibits extensor 

motoneurons indirectly through an inhibitory interneuron. Extensor motoneurons are 

excited by a tonic drive, which allows them to be active as long as the flexor burst 

generator is silent. The issue with the flexor burst generator concept is that the evidence 

for an asymmetric organization of the CPG is underwhelming (Duysens 2006). 

Moreover, such an organization fails to explain several characteristics of fictive 



14 

locomotion, namely non-resetting deletions in which extensor activity is maintained 

(tonic) while flexor activity is abolished (silent) (McCrea and Rybak 2008) (spontaneous 

deletions are discussed in greater details in later sections of this study). On the other 

hand, mounting evidence, based on studies of spontaneous deletions occurring during 

fictive locomotion and scratch, suggest that the locomotor CPG has a symmetrical 

organization (Lafreniere-Roula and McCrea 2005). 

A ring model has also been suggested as a possible organization of the locomotor 

CPG (Gurfinkel and Shik 1973; Szekely et al. 1969). The architecture of the ring CPG is 

composed of at least five groups of neurons, two pure extensors, two pure flexors, and 

one bifunctional, that directly or indirectly project to motoneuron pools. The sequence of 

activity of the CPG groups and hence motoneuron pools, is determined by a propagated 

inhibitory drive that flows around the ring at a variable speed depending on the particular 

phase duration. This model organization has failed to gain wide acceptance, and remains 

a conceptual model. 

The last CPG organization discussed here is that of the unit burst generator, UBG. 

Due to the difficulty in separating motoneuron activity into one of two groups, pure 

flexor or pure extensor, it was suggested that the locomotor CPG does not produce 

alternating flexor-extensor activity (Grillner and Zangger 1974, 1979). Rather, it was 

proposed that the CPG produces a delicate pattern where all motoneuron activity is 

initiated and terminated at precise moments in the step cycle; this includes delays in 

onsets and offsets of motoneuron pools active in the same phase, and the activity of some 

motoneurons during both phases of locomotion. This idea led to the suggestion that the 

CPG was comprised of UBG modules, where each UBG controls only a few of the limb‟s 
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motoneuron pools (Grillner 1981). Individually, each UBG is a half-center oscillator, and 

the activity of the UBGs making up a CPG is coordinated by a number of excitatory and 

inhibitory interconnections between the different UBGs. This organization has several 

weaknesses: (1) it has not yet provided an explanation of how complex bifunctional 

motoneuron activity patterns can be generated (McCrea and Rybak 2008);  

(2) considering that it is a single level architecture, it fails to explain some of the 

observed affects of afferent stimulation, in addition to non-resetting deletions, where 

activity deletion is observed in all agonist motoneuron pools yet somehow the phase of 

the locomotor rhythm is maintained (McCrea and Rybak 2008). 
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Chapter 2: Control of Locomotion 

Further evidence of the ability of the neural circuitry, found in the spinal cord of 

vertebrates, to control rhythmic locomotor movement regardless of any other rhythmic 

input into the spinal cord has been presented by several researchers. Mammals, in 

addition to lower vertebrates, whose cerebral cortex had been removed, have been found 

capable of reproducing complex locomotor patterns that are usually observed in intact 

animals (Grillner 1985). The spinal cord contains the neural circuitry necessary for 

generating the locomotor rhythm through recruiting and controlling the level of activation 

of various muscles involved in stepping and locomotion (Grillner 1985). An isolated 

spinal cord from a newborn rat can produce locomotor-like alternating rhythmic activity 

in hind limb motoneurons and muscles if an NMDA receptor agonist is introduced to the 

isolated spinal cord (Kudo and Yamada 1987; Smith and Feldman 1987). It has also been 

shown that locomotor activity, resembling that observed in intact animals, can be induced 

by 5-HT, dopamine, and 5-HT in combination with NMDA (Kiehn and Kjaerulff 1996). 

The application of pharmacological agents is generally used to mimic the effects of 

descending supra-spinal drive from the brain to the locomotor CPG to continuously 

activate it (Kiehn and Butt 2003). The role of supra-spinal inputs, into this spinal 

circuitry, does not exceed that of an activator signal. For example, neonatal cats that had 

their cortex removed, can, once physically competent, move around in a fashion that is 

very similar to an intact normal cat (Bard and Macht 1958; Bjursten et al. 1976). In these 

neonatal cats, if the basal ganglia are left intact, the animal is capable of initiating and 

carrying out complex locomotor patterns. It was also shown that repetitive low strength 

electrical stimulation applied to a particular region of a decerebrate cat‟s brainstem (the 
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mesencephalic locomotor region (MLR)), was enough to elicit walking movement (Shik 

et al. 1966a; Shik and Orlovsky 1976). Additionally, the strength of the stimulation could 

be used to control the speed of the locomotor rhythm, such that if the stimulus‟ strength 

was increased gradually, the animal would start with a slow walk and gradually speed up 

to a trot and finally start to gallop (Grillner and Wallen 1985), suggesting that the 

brainstem plays an essential role in the initiation of locomotion. The function of the 

brainstem can thus be reproduced through direct stimulation of particular regions in the 

mesencephalon that usually have to be activated in order for the locomotor rhythm to be 

initiated, namely the MLR. 

As in decerebrate cats, spinalized and deafferented cats have also been shown 

capable of producing walking movements. It has been demonstrated that a cat spinalized 

at the T12 level and completely deafferented (L3-S4), can walk if the animal is either 

tonically stimulated at the L6 dorsal root level, or if Nialamide and L-DOPA were 

administered to the spinal cord region (Grillner and Zangger 1974, 1979). Moreover, a 

transected spinal cord at the mid-thoracic region can still generate locomotor movements 

in a cat placed on a treadmill, if sensory afferents are left intact (Forssberg et al. 1980; 

Shurrager and Dykman 1951), suggesting that sensory afferents have an initiatory role to 

play in a transected animal even though they do not directly create the rhythm. Similarly, 

deafferented cats whose spinal cord has been left intact, when stimulated at the brainstem 

level, specifically at the MLR, reproduce the basic locomotor pattern (Grillner and 

Zangger 1975, 1984). Therefore, supra-spinal inputs into the locomotory regions of the 

spinal cord are not essential for producing the basic locomotor rhythm, just like afferent 
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sensory feedback from the limbs; the source of rhythmicity is the neural circuitry within 

the spinal cord. 

2.1 Location of Locomotor CPG  

Several components of the locomotor CPG have been recently identified and 

partially characterized (Brownstone and Wilson 2008; Kiehn et al. 2008), the cellular and 

genetic organization is no longer a complete mystery. Researchers have used activity 

dependent labeling to locate spinal neurons active during locomotion. These studies have 

revealed neurons in the lumbar area of the spinal cord of rabbits and cats which are 

rhythmically active during locomotion (Dai et al. 2005; Viala et al. 1988). Kjaerulff et al. 

(1994) used sulforhodamine-101, an activity dependent marker, to reveal rhythmic CPG 

neuron candidates in vitro isolated spinal cord preparations of rats. Labeled cells were 

discovered in L1–L6 segments, bilaterally near the central canal and in the medial 

intermediate zone. Similarly, Cina and Hochman (2000), using sulforhodamine and a 

fictive locomotion preparation, discovered that a limited number of neurons, mainly in 

segments L1–L5, were labeled and therefore rhythmically active during fictive 

locomotion. The amount of rhythmic neurons they found was less than 0.1% of all cells 

constituting these segments, which led them to predict that the locomotor CPG is likely 

composed of a relatively small number of neurons (Cina and Hochman 2000). Moreover, 

spinal cord sectioning in combination with pharmacological blocking agents have been 

used to reveal that the hind limbs CPG network in neonatal rats and mice extends from 

the lower thoracic (Th11-Th13) down to the lumbar region (L1-L6) of the spinal cord 

(Kiehn and Butt 2003). However, it has been suggested that the rostral parts (Th11-L2) of 
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the CPG network in neonatal rats are more involved in the rhythm generation process 

compared to caudal parts (Kjaerulff and Kiehn 1996). In addition, other studies have 

revealed that key CPG components are probably present in the upper lumbar cord 

segments (Christie and Whelan 2005; Dimitrijevic et al. 1998; Kiehn 2006; Nishimaru et 

al. 2000). This pattern is not consistent across all species since there is evidence that in 

cats (Langlet et al. 2005) key CPG components are located at a more caudal position, in 

the mid-lumbar segments. As for the transversal distribution of rhythmic interneurons 

within the segments of the spinal cord, activity dependant labeling points to a ventro-

medial distribution (Carr et al. 1995; Kjaerulff et al. 1994). In particular research findings 

suggest that all CPG elements are located in laminae VIII, X and the medial parts of 

lamina VII of the thoracic and lumbar spinal cord (Kjaerulff and Kiehn 1996). 

2.2 Role of Afferent Inputs 

Based on all data available to us we are aware that the locomotor CPG is capable 

producing rhythmic activity on its own without any phasic input or afferent feedback, but 

that does not mean that sensory feedbacks have no role to play during locomotion of 

intact animals. A spinal cord isolated from all brain structures can generate a locomotor 

rhythm, if afferent feedbacks from hind limbs are left intact (Shik and Orlovsky 1976). 

Afferents also provide the necessary regulation of step cycle period and stability control. 

An experiment showing how hind limb afferents can affect the function of the CPG is 

one where a spinal cat performs treadmill locomotion (mentioned in the previous 

section). The transected cat maintains the ability to adjust its stepping speed, therefore if 

the treadmill's speed is varied positively or negatively, the cat's locomotor speed changes 
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such that it matches the speed of the treadmill (Andersson et al. 1981; Forssberg et al. 

1980; Grillner 1975; Grillner and Wallen 1982; Pearson and Duysens 1976; Shurrager 

and Dykman 1951). Therefore afferents inputs are responsible for controlling the 

locomotor CPG and setting its rhythm. Furthermore, if the treadmill's speed is increased 

beyond a certain point, the two hind limbs' movement becomes synchronized (as opposed 

to out of phase at slower speeds of locomotion) and the stepping rhythm becomes similar 

to that usually observed during galloping (Forssberg et al. 1980; Shurrager and Dykman 

1951). Since supra-spinal inputs, that in normal cases provide activating drive to the 

locomotor CPG, are not present in the spinal animal, therefore it is safe to suggest that the 

animal would not walk were it not for afferent inputs into the locomotor CPG. Hence, 

afferents can play a role in the initiation of the locomotor CPG in a spinal animal; 

moreover, they also play a role in determining phase durations and period length of the 

CPG due to their phasic nature. When the treadmill's speed increases, the hind limb 

flexor muscles get stretched earlier during the stance phase, this results in the CPG 

switching from extension to flexion, due to afferent feedback, earlier than it would have, 

thereby decreasing the period of the CPG and increasing the speed of locomotion. On the 

other hand, when the treadmill slows down, the limb now requires more time to reach the 

latter part of the stance phase where it would usually provide an afferent signal from 

flexor muscles being stretched. This signal, which in spinal animals controls the 

switching from extension to flexion, now prolongs the extension phase and increases the 

duration of the CPG's period. 

In an intact animal, the locomotor CPG switches from flexion to extension and 

vice versa on its own, the basic alternating rhythmicity of the locomotor rhythm is 
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centrally generated, yet afferent inputs remain important for foot positioning, 

maintenance of coordination, and overall stability during locomotion (Rossignol et al. 

2008). Even though sensory afferents are not essential for producing the basic locomotor 

rhythm, they are important for accurate adaptable locomotion, allowing the CPG to 

quickly adjust to perturbations. Sensory feedbacks alone cannot produce a robust 

locomotor pattern, but they are essential when considering locomotion on an uneven 

surface with possible obstacles; in such a situation they offer the necessary modulation of 

the CPG, required for successfully walking across a bumpy surface (Grillner 1985). 

2.3 Role of MLR 

Descending supraspinal inputs that are believed to initiate rhythmic locomotor 

activity in the spinal CPG, originate from the MLR. The term MLR refers to a region of 

the brainstem, close to the caudal part of the nucleus cuneiformis, containing 

reticulospinal neurons (Garcia-Rill and Skinner 1987) responsible for, or contribute to, 

the initiation of locomotion once stimulated. The MLR has also been found to elicit 

walking in primates as well as reptiles and swimming in bony, cartilaginous, and 

cyclostome fish (Eidelberg et al. 1981; Grillner and Wallen 1985; Shik et al. 1966b, 

1967; Shik and Orlovsky 1976). The MLR structure has been identified in several species 

so far, in lampreys, fish, reptiles, birds and primates (Grillner et al. 2008; Jordan 1991) 

and it was found to be evolutionary conserved. Electrical stimulation (20-60Hz, 20-

100µA) or chemical stimulation of the MLR elicits locomotion in mesencephalic and 

thalamic cats (Orlovsky 1969; Orlovsky et al. 1999; Shik et al. 1966b) as well as in 

lightly anesthetized cats (Sirota and Shik 1973). In mesencephalic cats, MLR stimulation 
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allows the animal to walk on its own free of any support, however the locomotion is 

machine-like and if obstacles are placed in the cat‟s trajectory, it fails to avoid them (Shik 

and Orlovsky 1976).  

Evidence suggests that in an intact animal, tonic MLR activity promotes 

locomotion at different speeds depending on the strength of activity of the MLR (Shik 

and Orlovsky 1976); at rest MLR activity is inhibited by other brain centers. When the 

MLR is stimulated, depending on the strength of the stimulation, a tetrapod, such as a cat, 

may exhibit walking, trotting or galloping (Grillner et al. 2008). Stimulation of the MLR 

produces variable locomotor speeds, the stronger the stimulation the faster the speed of 

progression (Mori 1987; Mori et al. 1991; Sirota and Shik 1973). 

The MLR is not a necessary structure; locomotion can be initiated and maintained 

even if the MLR is destroyed (Orlovsky 1969; Sirota and Shik 1973). It determines the 

intensity of muscle contractions, or the power produced by the animal during locomotion. 

The speed of walking and frequency of stepping are indirectly controlled depending on 

the power developed by the muscular system and external conditions, such as the slope of 

the surface (Orlovsky et al. 1999). In mesencephalic cats, stronger MLR stimulation was 

found to produce a higher propulsive force when the speed of the treadmill was kept 

constant (Shik et al. 1966b). 
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Chapter 3: Analysis of Locomotor Activity 

3.1 Fictive Locomotion 

The ability of the CPG to generate a locomotor rhythm in the absence of rhythmic 

supra-spinal inputs and afferent feedback was verified through studying fictive 

locomotion in decerebrate and deafferented immobilized cat preparations (Burke et al. 

2001; Edgerton et al. 1976; Grillner and Zangger 1979; Noga et al. 2003; Shik and 

Orlovsky 1976). In this reduced experimental preparation, cortical descending inputs, 

rhythmic proprioceptive afferents and other sensory afferent feedbacks are absent 

(McCrea 2001). CPG activity is therefore triggered by tonic stimulation of the MLR 

(Rossignol 1996), or by pharmacological agents introduced into the spinal cord that 

mimic the actions of descending pathways (noradrenergic agonists, L-DOPA (Jankowska 

et al. 1967a, b; Lundberg 1981)). Activity produced by the CPG can be recorded in nerve 

fibers as elctroneurograms (ENGs), as well as through interneuron recordings of specific 

motoneurons in the spinal cord.  

The spinal circuitry operating during fictive locomotion is a subset of the 

locomotor system that functions during normal locomotion in intact animals. Yet, the 

rhythm observed during fictive locomotion experiments resembles that of normal 

locomotion with regards to the sequence of motoneuron activation and the frequency of 

the step cycle (Rossignol 1996). Fictive locomotion experiments are particularly 

important when studying the pure CPG operation, free from any modulations due to 

influences external to the CPG. They offer greater insights into the operation of the CPG 

and the role of afferent and supra-spinal inputs, compared to the study of normal 

locomotion only. For instance, if an activity pattern of a certain motoneuron pool, 
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observed during normal locomotion, remains unchanged in a fictive locomotion 

preparation, this suggest that this particular activity pattern is centrally generated by the 

CPG, but we cannot draw any conclusions regarding the role of afferents in this situation. 

On the other hand, if a particular motoneuron pool activity pattern disappears entirely 

during a fictive locomotion experiment, compared to normal locomotion, in this case it is 

difficult to determine what the role of the afferent is. The afferent might be influencing 

the generation of the motoneuron activity in different ways: (1) The particular 

motoneuron activity might be entirely created by the afferent signal, and therefore when 

the signal is eliminated so is the activity; (2) The activity is centrally generated by the 

CPG but the afferent signal is necessary for the generation of the motoneuron activity, 

because (a) the afferent plays a “permissive role”, for example by preventing a certain 

inhibition within the central network; or (b) it provides the necessary additional excitation 

for the activity to be generated (Grillner 1985). 

3.2 Comparison of Fictive and Real Locomotion 

It is beneficial to consider motoneuron and muscle synergies when investigating 

the organization of the CPG since it has been suggested that the limb is controlled as a 

whole during its stereotyped movement in locomotion, rather than at the single muscle or 

joint level (Shik and Orlovsky 1976). There is a close similarity in activity profiles and 

synergies of motoneurons innervating one-joint muscles during fictive locomotion and 

the corresponding muscles during normal locomotion. The use of fictive locomotion 

preparations of decerebrate cats offers a unique opportunity to examine patterns of 

motoneuron activation and synergies formed by the CPG in the absence of afferent 
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feedback and patterned supra-spinal signals. During normal locomotion, afferent 

feedback may change these activation patterns and muscle synergies to adjust locomotor 

behavior to constantly changing external environment conditions and limb mechanics. 

Recent studies (Markin et al. 2007; Markin et al. 2008) have demonstrated a significant 

similarity in the activity of several motoneuron pools (and their corresponding muscle 

synergies) between fictive and normal locomotion, and identified specific differences in 

the activity of other motoneuron pools innervating two-joint muscles. These findings 

provided important insights into the organization and operation of the spinal CPG. 

3.2.1 Bifunctional Motoneurons 

During normal locomotion, the activities of extensor and flexor motoneurons are 

locked to the corresponding extension or flexion phase. In contrast, bifunctional 

motoneurons activating muscles spanning more than one joint (biarticular), such as 

posterior biceps semitendinosus (PBSt) (hip extensor/knee flexor) and rectus femoris 

(RF) (hip flexor/ knee extensor) express different activity patterns depending on the gait 

of the animal, speed of locomotion or locomotor conditions (Carlson-Kuhta et al. 1998; 

Halbertsma 1983; Smith and Carlson-Kuhta 1995). For example, the activity of PBSt 

during locomotion can be described as flexor or extensor related, depending on the 

primary muscle group it is co-active with, or biphasic. PBSt has commonly been 

considered to be a flexor, as it is mostly flexor related during trot or level walking 

(Grillner 1981; Halbertsma 1983). However, when walking upslope or galloping on level 

ground PBSt is purely extensor related (Smith and Carlson-Kuhta 1995). It has also been 

observed expressing double bursts when walking on level ground (depending on speed), 
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upslope, downslope, trotting, and crouching (Smith et al. 1998), and the duration of its 

activity in either phase varies depending on gait or posture (Carlson-Kuhta et al. 1998). 

RF shows similar variability in activity during locomotion depending on gait and 

locomotor conditions (Pratt et al. 1996; Smith and Carlson-Kuhta 1995). 

While afferent feedback and supra-spinal inputs contribute to the formation of 

multiple patterns of PBSt and RF activity during real locomotion, these motoneurons 

demonstrate a variety of behaviors during fictive locomotion in decerebrate cats in the 

absence of sensory feedback and supra-spinal inputs. Different patterns of PBSt and RF 

activities, during fictive locomotion in different experimental preparations, have been 

previously reported (Grillner and Zangger 1979; Guertin et al. 1995; Orsal et al. 1986; 

Perret and Cabelguen 1980; Perret 1983). For example, PBSt was flexor related in drug 

induced locomotion in acute spinal cats (Grillner and Zangger 1979), extensor related 

during spontaneous locomotion in some decerebrate fictive preparation (Perret and 

Cabelguen 1980) and also expressed biphasic activity with short flexor and prolonged 

extensor bursts (Grillner and Zangger 1984). With peripheral stimulation during fictive 

locomotion, PBSt activity was reportedly altered from being flexor related to extensor 

related (Perret 1983) while RF activity changed from biphasic to extensor related (Orsal 

et al. 1986). 

In a recent qualitative comparison of ENG patterns obtained during fictive 

locomotion with the corresponding EMG patterns observed during normal locomotion 

(Fig. 2) showed striking similarities in the profiles of one-joint flexors and extensors, 

however, some differences could be identified (Markin et al. 2008). In contrast to the 

one-joint muscles and their corresponding motoneurons, the activity profiles of nerves 
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innervating two-joint muscles (PBSt and RF) (Fig. 2A) clearly differed from the EMG 

activity of these muscles recorded during normal locomotion (Fig. 2B) (Markin et al. 

2008). Specifically, (1) during fictive locomotion, PBSt motoneuron activity never 

exhibited a short second burst at the end of flexion (swing) similar to that recorded from 

PBSt during normal locomotion, (2) during normal locomotion, PBSt did not express a 

typical extensor activity like the one exhibited by PBSt motoneurons during fictive 

locomotion, and (3) during normal locomotion, RF motoneurons never exhibited a flexor 

burst similar to the one observed during fictive locomotion, and the onset of its late 

extensor burst was delayed relative to that observed during fictive locomotion. 

3.2.2 Motoneuron Synergies 

Finding groups of motoneuron synergies during fictive locomotion studies, 

without the influence of afferent feedback, allowed for the identification of possible 

synergies hardwired into the spinal locomotor CPG for control of locomotion. 

Comparison of this classification with ones done during normal locomotion (Krouchev et 

al. 2006; Markin et al. 2008) showed similarity in the classification of most synergies; 

especially for motoneurons of one-joint muscles. 

The question was whether afferent feedback directly controls the rhythm 

generator and hence affects motoneurons via synergies engaged by the CPG, or it uses 

synergies independent of the CPG to directly control the activity of individual 

motoneuron populations. If activity profiles and groups of synergists identified during 

fictive and normal locomotion were the same, then it could be suggested that afferent 

feedback does nothing more than control the locomotor cycle and phase durations, i.e. 
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only controls the operation of the rhythm generator, defining timing of phase transitions 

and durations of the locomotor cycle and its phases. On the other hand, differences in the 

activity of synergist groups between fictive and normal locomotion would suggest a 

possible direct effect of afferent feedback on the activity of these synergist groups. 

Analysis of the differences in the activity profiles of most one-joint flexors and 

extensors during fictive and normal locomotion (Fig. 2) revealed that their behavior was 

very similar. Therefore, activity of these synergist groups is most likely controlled by the 

CPG and/or by afferent feedback via the CPG (synergies inherent to the CPG 

organization). In contrast, the behavior of two-joint motoneurons and muscles, such as 

PBSt, RF, EDL and FDL, were different. Therefore, activity of these motoneuron pools 

seems to be largely determined by afferent feedback acting at a location different from 

the rhythm generator. This suggestion about a possible role for motion-dependent 

feedback in regulating activity of two-joint muscles is consistent with results of previous 

studies of fictive locomotion (Perret and Cabelguen 1980) and different forms of normal 

locomotion in which two-joint muscles demonstrated mutable activity patterns, whereas 

one-joint extensors and flexors typically maintained similar reciprocal activity. 

Nevertheless the activity patterns exhibited by bifunctional motoneurons, such as 

PBSt and RF, during fictive locomotion, differed from one experiment to another even 

though no afferent stimulus was present. Therefore it is reasonable to suggest that the 

locomotor CPG does indeed include neural components that produce these patterns 

observed during fictive locomotion. Moreover, it can also be suggested that afferent 

inputs can directly interact with these component networks to determine appropriate 

bifunctional motoneuron profiles necessary for the successful completion of a locomotion 
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task. Therefore, in the absence of afferent feedback and supra-spinal control, the activity 

patterns of PBSt and RF motoneurons during fictive locomotion are expected to be solely 

defined by the activity of the locomotor CPG and neural interactions within it. Thus 

studying PBSt and RF behavior during fictive locomotion may provide better insights 

into the organization of the locomotor CPG. 

3.3 Analysis of the Half-Center Model Performance 

The bipartite half-center organization of the locomotor CPG was originally 

proposed by Brown (1914) and expanded by Lundberg, Jankowska and their colleagues 

(Jankowska et al. 1967a, b; Lundberg 1981; Stuart and Hultborn 2008). Brown provided 

the first evidence that the basic locomotor rhythm is generated by mechanisms intrinsic to 

the spinal cord. These and later investigations led to the widely accepted concept of 

CPGs which reside within the central nervous systems of invertebrates and vertebrates 

and control various rhythmic movements. Brown (1914) also proposed a general 

schematic for the spinal CPG generating rhythmic alternating activity of flexor and 

extensor motoneurons during locomotion, the half-center model. His ideas were 

embraced by Lundberg and his colleagues in their description of how spinal interneurons 

involved in flexion reflexes could serve as the basic building block of the circuitry 

responsible for mammalian locomotion (Jankowska et al. 1967a, b; Lundberg 1981). The 

key points of the half-center CPG organization shown in Fig. 1 are: (1) Each limb is 

controlled by a separate CPG; (2) Each CPG contains two groups of excitatory 

interneurons (i.e., the half-centers) that directly project to, and control the activity of, 

flexor and extensor motoneurons; (3) Mutual inhibitory interconnections between the 
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half-centers ensure that only one can be active at a time; (4) An undefined “fatigue” 

process gradually reduces excitation in the active half-center; (5) Phase switching occurs 

when the reduction in the excitability of one half-center falls below a critical value and 

the opposing center is released from inhibition; (6) Inhibition of antagonist motoneurons 

is tightly coupled to the excitation of agonists. 

The appeal of the half-center hypothesis for the control of locomotion includes 

corroborating evidence on the organization and activity of lumbar interneurons during 

locomotor-like flexor and extensor motoneuron activity. Systemic administration of the 

noradrenergic precursor, L-DOPA, evokes spontaneous alternating activity of flexors and 

extensors (Grillner 1969; Grillner and Zangger 1979; McCrea and Rybak 2008). 

Intracellular motoneuron recordings during L-DOPA induced locomotion revealed strong 

mutual inhibitory interactions between interneuronal pathways to flexors and extensors 

(Jankowska et al. 1967b). Also interneuron recordings showed a strong reciprocal 

organization of interneurons that were rhythmically active in the absence of sensory 

stimulation and were also part of the reorganization of flexion reflexes that occur in these 

preparations (Jankowska et al. 1967a). A key feature of the half-center hypothesis is that 

there is an intrinsic spinal organization of interneuron populations with strong (mutual) 

inhibition between them. Alternating activity in flexor and extensor motoneurons results 

from alternating activity of interneurons that may also be activated by a variety of 

sensory afferents (Lundberg 1981). 

The important role that mutual inhibition plays in the functioning of the 

locomotor CPG was highlighted by an experiment where strychnine or bicuculline was 

used to block inhibitory synaptic transmissions (Kiehn 2006). It was found that once 
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inhibition was abolished, synchronized rhythmic activity of flexor and extensor 

motoneurons emerged. In addition, studies conducted in fictive locomotion setups (Burke 

et al. 2001) revealed that flexor and extensor parts of the CPG were capable of 

independent rhythmic activity. These findings suggest that each of the CPG‟s half-centers 

possess rhythmogenic intrinsic properties and can therefore independently generate 

oscillations under certain conditions and when inhibition is blocked. Furthermore, the 

synchronization of flexor and extensor activity after the blockade of inhibitory 

connections is most likely due to weak excitatory interconnections between the CPG half-

centers (Rybak et al. 2006a), these interconnections‟ effects become more pronounced 

once inhibition is eliminated.  

3.4 The Two-Level CPG Organization Concept 

3.4.1 Motoneuron Activity Inconsistent with the Half-Center CPG Concept 

The half-center architecture can only accommodate producing a strictly 

alternating pattern of flexor and extensor activity with all motoneurons having to fall 

under these two groups. During locomotion, however, all motoneurons cannot be strictly 

classified into only these two groups. Even though a group of motoneurons, responsible 

for activating either a group of flexor or extensor muscles, can generally be regarded as 

being either a pure flexor or extensor, in reality these motoneurons most likely have to be 

separated into several groups when considering the development of a model that can 

reproduce all the intricacies of the act of progression and motoneuron activity during 

fictive and/or real locomotion. For instance, the activity onset and offset of motoneurons 

belonging to either phase of locomotion do not always match; the activity of two flexor 
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or extensor motoneuron pools might be initiated and/or terminated at different instances 

relative to each other (Markin et al. 2007; Markin et al. 2008; Rossignol 1996). 

Furthermore, certain motoneuron pools, particularly those activating biarticulate muscles 

spanning two joints, exhibit variable activity where they might be active during either 

phase of locomotion, or during both phases at the same time (two bursts per cycle). Such 

motoneurons can neither be classified as extensors nor flexors, instead they are 

commonly referred to as bifunctional motoneurons.  

It has been suggested that proprioceptive afferent inputs were responsible for 

converting simple flexor-extensor activity into more complex behaviors (Engberg and 

Lundberg 1969), where motoneuron activity can be shifted or occur during both phases. 

However, the persistence of these complex activity patterns following bilateral 

deafferentation of the hind limbs in decerebrate cats (Grillner and Zangger 1975) 

suggests otherwise. Specifically, it suggests that the locomotor CPG does not generate a 

simple alternating activity pattern of flexors and extensors, rather it produces a more 

elaborate pattern that involves the sequential activation of different motoneuron pools at 

the appropriate instance; moreover, the CPG, independent of afferent inputs, produces 

complex activity patterns necessary for the activation of bifucntional motoneurons.  

3.4.2 Effects of Afferent Stimulations 

Several studies have revealed further weaknesses in the simple half-center CPG 

model hypothesis; for example, investigations of the effect of stimulation of hind limb 

sensory afferents on motoneuron activity and step cycle timing (Guertin et al. 1995; 

McCrea 2001; Perreault et al. 1995; Rybak et al. 2006b; Stecina et al. 2005). These 
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studies showed that in many cases, afferent stimulations can delay or cause premature 

phase switching within the ongoing step cycle without affecting the timing of the 

subsequent step cycles. These observations are difficult to explain within the framework 

of a simple half-center CPG and point towards a more complex organization of the 

locomotor CPG. 

3.4.3 Spontaneous Deletions 

Several studies have focused on investigating deletions occurring during fictive 

locomotion experiments. Deletions are spontaneous errors in the rhythmic activity of 

motoneurons occurring during fictive locomotion, they are characterized by brief periods 

of inactivity (missing bursts) affecting a group of agonist motoneurons (flexors or 

extensors) (Grillner and Zangger 1979; Jordan 1991; Lafreniere-Roula and McCrea 

2005). Deletions have also been observed during treadmill locomotion in cats (Duysens 

1977) and during scratch reflex in turtles (Stein and Grossman 1980; Stein 2005). During 

a deletion, motoneuron activity fails simultaneously in synergist motoneuron pools while 

antagonist motoneurons exhibit tonic, or maintain rhythmic, activity (McCrea and Rybak 

2008). The widespread effect of deletions on the activity of multiple motoneuron pools 

throughout the limb is strong evidence that they are produced by failures in the operation 

of some common spinal circuitry, such as the CPG, and are not the result of local 

perturbations affecting the excitability of particular motoneurons. 

An analysis of motoneuron activity before and following a deletion revealed that 

some deletions, called “resetting deletions”, are accompanied by a shift in the phase of 

the re-emerging rhythm relative to the rhythm preceding the deletion (Lafreniere-Roula 
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and McCrea 2005; Rybak et al. 2006a). Such rhythm resetting or phase shifting after a 

deletion can be easily explained within the framework of the classical half-center CPG 

organization (Fig. 1). For example, because of reciprocal inhibition between the half-

centers, a spontaneous temporary increase in the excitability of one half-center would 

cause an inhibition of the antagonist half-center, resulting in a deletion of the activity of 

the corresponding antagonist motoneuron pools. As the duration of the perturbation 

causing the deletion is arbitrary, the rhythm following the perturbation would generally 

be accompanied by a phase shift of the post-deletion rhythm relative to the pre-deletion 

rhythm. However, most spontaneous deletions observed during fictive locomotion in 

decerebrate cats are characterized by phase maintenance; such deletions are called “non-

resetting deletions” (Lafreniere-Roula and McCrea 2005; Rybak et al. 2006a). Thus 

bursts of motoneuron activity that re-emerge after a deletion often occur at an integer 

number of the missing locomotor periods. These observations suggest that the internal 

structure of the CPG can „remember‟ and maintain the locomotor cycle period when 

motoneuron activity falls silent. Such rhythm and phase maintenance is inconsistent with 

the classical half-center CPG organization, in which a single network is responsible for 

both rhythm generation and motoneuron activation; therefore suggesting that there should 

exist an additional circuitry responsible for rhythmic depolarization and 

hyperpolarization of motoneurons that is separate from the circuitry involved in rhythm 

generation. 

It has been proposed that the locomotor rhythm can be maintained, during a 

deletion, by CPGs of other limbs, but observations suggest otherwise. Specifically, 

during fictive locomotion, even when only one limb's motoneurons exhibit a locomotor 
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rhythm (while other limb motoneurons are either silent or exhibit non-locomotor 

activity), non-resetting deletions still occur (Rybak et al. 2006a). Hence, reinforcing the 

hypothesis that the CPG contains separate circuitries for rhythm generation and 

motoneuron activation, and that non-resetting deletions occur due to failures within the 

CPG itself and are not due to influences beyond the CPG. 

3.4.4 Control of Locomotor Rate and Motoneuron Activation 

Another characteristic of locomotion that the half-center CPG models fails to 

explain is how the frequency of stepping and the level of activation of motoneurons can 

be controlled separately. It has been suggested (McCrea and Rybak 2008; Orlovsky et al. 

1999) that the frequency of the half-center CPG can be modulated through the level of 

activation it receives, where increased excitatory drive results in higher step cycle 

frequency, and as a secondary affect leads to higher activity levels during each phase 

considering that individual neuron's spiking frequency increases. Based on the simple 

half-center model, excitatory interneurons generating the locomotor rhythm are directly 

connected to motoneurons that they activate; consequently any changes in excitability of 

the half-centers should simultaneously affect both cycle timing and motoneuron activity. 

However, this creates a problem as to how stepping frequency can be independently 

altered without affecting the activation level of motoneurons; and similarly, how 

activation level of motoneurons can be increased or decreased independent of the 

frequency of the half-center. To resolve this problem, several researchers (Burke et al. 

2001; Jordon 1991; Kriellaars 1992; McCrea and Rybak 2008; Perret et al. 1988) have 

suggested that additional neural circuitry should exist in the locomotor CPG between the 
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rhythm generating half-center and motoneuron populations. This extra circuitry would 

regulate the activation level of motoneurons independent of the half-center activity. This 

also allows for the modulation of the frequency of locomotor activity through altering the 

drive to the half-center populations without affecting motoneuron activation levels.  

3.5 Two-Level CPG 

To overcome the inconsistencies of the simple half-center model, several attempts 

have been made, some of which included proposing fundamentally different concepts and 

hypotheses on how the locomotor rhythm is generated and controlled. Several of these 

ideas have been already discussed earlier, such as the flexor burst generator, ring model, 

and unit burst generator. Other more conservative approaches to the issue have also been 

taken, such solutions focused on maintaining the half-center architecture as the central 

component of the locomotor CPG and evolving the CPG by introducing additional 

neuron populations and circuitry to explain all the different behaviors observed in 

different types of locomotion that a simple half-center architecture fails to explain. The 

main intent of the additional neuron populations is to have a layer of circuitry interposed 

between the half-center rhythm generator and motoneuron populations. The basic concept 

is to have rhythm generation and motoneuron recruitment performed by separate 

neuronal populations. 

Based on insights gained from studies of non-resetting deletions and sensory 

afferent stimulations, it can be ascertained that the CPG is capable of maintaining the 

period and phase of oscillation even during situations of external perturbations. 

Therefore, it has been suggested that a CPG with separate rhythm generation and pattern 
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formation networks can realistically reproduce many experimental phenomena including 

spontaneous deletions and the effects of afferent stimulation (Fig.3A) (Burke et al. 2001; 

Jordan 1991; Kriellaars et al. 1994; McCrea and Rybak 2008; Rybak et al. 2006a). 

Pattern formation (PF) network, refers to the extra neuron populations and circuitry 

added between the half-center oscillator, or rhythm generator (RG), and motoneuron 

pools; the PF network‟s activity, controlled by the RG, projects to flexor and extensor 

motoneuron populations. A CPG with separate RG and PF networks, or levels, is 

generally called a two-level CPG. 

In support of this concept is the ability of the two-level CPG to explain and 

reproduce situations where sensory stimulation could alter the locomotor cycle timing, 

such as speeding up or slowing down the rhythm‟s frequency, without affecting the 

amplitude of motoneuron activity (Kriellaars et al. 1994). Hence the two-level CPG 

allows sensory inputs to separately control the degree of motoneuron recruitment and 

timing of the locomotor rhythm (Orsal et al. 1990). Moreover, a two-level CPG 

organization can easily explain and reproduce the effects of afferent stimulation on phase 

switching without shifting of the post-stimulus phase (McCrea and Rybak 2008), 

however, this observation is difficult to explain within the framework of the simple half-

center organization. 

Rybak and McCrea have recently suggested a two-level organization of the 

locomotor CPG (Rybak et al. 2006a) (Fig. 3A), containing a half-center RG, performing 

a “clock” function, and an intermediate PF network that distributes and coordinates the 

activities of multiple motoneuron populations (Fig. 3A). The RG defines the locomotor 

rhythm and durations of the flexor and extensor phases, it also controls the activity of the 
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PF network interposed between the RG and motoneurons. The PF network, on the other 

hand, contains multiple interneuron populations projecting to multiple synergist 

motoneuron populations and reciprocally inhibiting other populations within the PF 

network. This organization was implemented in a computational model which describes 

the interactions populations of interneurons and motoneurons (Fig. 3B). Briefly, the 

model‟s RG consists of a homogeneous population of excitatory interneurons with 

mutual excitatory interconnections. These neurons are divided into two populations,  

RG-E and RG-F, representing the half-centers of the RG. Reciprocal inhibition between 

the RG half-centers is mediated by inhibitory interneuron populations, Inrg-E and Inrg-F. 

The PF network is similarly organized but has a lower capacity for rhythmogenesis 

(Rybak et al. 2006a), it is also composed of excitatory interneuron populations coupled 

by reciprocal inhibition (via Inpf-E and Inpf-F). The PF populations PF-E and PF-F 

operate under the control of the RG, receiving strong inhibitory inputs from Inrg-F and 

Inrg-E and weak excitation from RG-E and RG-F, respectively. PF populations project 

directly to motoneuron populations and are responsible for the phasic excitation of 

motoneurons during locomotion. Phasic inhibition of motoneurons during locomotion is 

provided by an additional set of inhibitory interneurons, Ia-E and Ia-F, driven by the PF 

network. The model also incorporates connections between and among the inhibitory Ia 

interneurons, Renshaw cells and motoneurons based on the description provided by 

Jankowska (1992). 

The model has been developed to simulate motoneuron activity recorded during 

fictive locomotion evoked by continuous electrical stimulation of the MLR. Locomotion 

in the model is therefore initiated and terminated through the application and removal of 
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excitatory tonic MLR drives to the RG and PF networks (Rybak et al. 2006a; Rybak et al. 

2006b). The RG generates a biphasic rhythm with alternating bursts of RG-E and RG-F 

populations. The rhythmogenic mechanism operating in the RG is based on a 

combination of intrinsic cellular properties (activation of the slowly inactivating 

persistent sodium current, INaP) and reciprocal inhibition between the RG-E and RG-F 

half-centers. During normal locomotor operation, the onset of activity bursts is 

determined mostly by the activation of the intrinsic INaP excitatory mechanism, on the 

other hand burst termination is determined by reciprocal inhibition. Alternating bursting 

activity in the PF network follows that in the RG and produces phasic excitation of the 

corresponding motoneuron pools. 

The two-level organization of the CPG provides the ability to differentially 

regulate locomotor speed at the RG level and the level of motoneuron activity at the PF 

level. By changing MLR drive to the RG half-centers, locomotor phase durations and 

step cycle periods can be independently regulated (McCrea and Rybak 2007; Rybak et al. 

2006a) over ranges that encompass those occurring during fictive locomotion in 

decerebrate cats (Yakovenko et al. 2005) and during treadmill locomotion in intact cats 

(Halbertsma 1983). Since the PF populations receive their own MLR input, the degree of 

motoneuron activation can be controlled independent of RG activity. Consequently, 

sensory signals or spontaneously occurring perturbations may affect CPG operation at the 

RG level, altering the locomotor rhythm (e.g. producing a phase shift or rhythm reset) or 

act at the PF level, altering the pattern of motoneuron activation without resetting the 

rhythm or shifting the phase (Rybak et al. 2006a; Rybak et al. 2006b).  
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3.6 Activity of Bifunctional Motoneurons and the Two-Level CPG 

According to the classical half-center CPG architecture, the activity of all 

motoneurons should be locked either to the extensor or flexor phase, however 

bifunctional motoneurons activating muscles spanning more than one joint, such as PBSt 

(hip extensor and knee flexor) and RF (hip flexor and knee extensor), express different 

and often more complex activity patterns which depend on the gait of the animal and/or 

locomotor conditions (Carlson-Kuhta et al. 1998). These observations are true during 

both normal and fictive locomotion, as described in section 3.2.  

The complex non-trivial profiles of activity expressed by bifunctional 

motoneurons have been considered a strong argument against the bipartite organization 

of the locomotor CPG. This was one of the factors motivating researchers to look for 

alternative concepts for the CPG organization. To overcome some of the inherent 

limitations of a simple bipartite CPG organization and provide for a variety of 

motoneuron patterns, Grillner (1981) suggested that the locomotor CPG consists of 

multiple coupled UBGs controlling motoneurons operating at each joint (see section 1.4). 

Although the UBG architecture looks potentially more flexible compared to the bipartite 

CPG organization, no attempts have been made so far to develop a computational model 

of a UBG-based CPG that could reproduce the complex patterns of bifunctional 

motoneurons and their state-dependent changes. 

At the same time, Perret and his colleagues (Orsal et al. 1986; Perret and 

Cabelguen 1980; Perret 1983; Perret et al. 1988) attempted to solve the problem within 

the framework of the bipartite locomotor CPG. They put forward a schematic for the 

pathways that may be involved in the generation of PBSt and RF patterns and their 
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variations (see Fig. 4). The principal suggestion was that PBSt and RF motoneuron pools 

receive both excitatory and inhibitory inputs from both flexor and extensor half-centers of 

the CPG oscillator. Superimposed upon excitation of PBSt and RF motoneurons are 

periods of inhibition that shape their final pattern (Orsal et al. 1986). This inhibition is 

produced by the half-center rhythm generator through activation of inhibitory reflex 

pathways, and is facilitated by afferent feedbacks. Perret and his colleagues suggested 

that the proposed inhibitory pathways are in fact an additional neural network interposed 

between the half-center rhythm generator and bifunctional motoneuron pools (Orsal et al. 

1986; Perret 1983; Perret et al. 1988) solely responsible for spontaneously, or due to 

afferent stimulation, shaping the variable PBSt and RF activity patterns. Therefore, this 

additional network receives both descending and ascending inputs that contribute to its 

function in shaping PBSt and RF activity patterns. Specifically, the effect of these 

additional interneuron populations on PBSt and RF is controlled or facilitated by tonic 

afferent feedbacks or by variations in the level of central activity. However, our 

experiments have shown that the whole variety of PBSt and RF activity patterns can be 

observed in fictive locomotion preparations of decerebrate immobilized cats, i.e. without 

the influence of sensory afferent inputs. Furthermore, the CPG organization that was 

proposed by Perret and his group cannot account for all the different types of PBSt and 

RF behaviors observed during fictive locomotion; the model lacks a mechanism for 

controlling the length and timing of a burst of PBSt or RF activity relative to the phase of 

locomotion during which the burst occurs. It is worth noting that Perret‟s group (Orsal et 

al. 1986) observed that characteristics (time course and amplitude) of PBSt motoneuron 

activity were inversely correlated with those of RF motoneurons, when both were 
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simultaneously observed together. This finding led them to suggest that the same part of 

the locomotor CPG was responsible for shaping PBSt and RF activity, such that it 

inhibits PBSt at the same time and with the same amplitude that it excites RF, and vice 

versa (Orsal et al. 1986).  

Another study (Burke et al. 2001) presented a generalized model of the circuitry 

controlling flexor digitorum longus (FDL) motoneurons, which also exhibit biphasic 

activity and innervate the FDL muscle which spans the digits and ankle joints. However, 

an exact structure or organization of the FDL CPG model was not defined in this study. 

To our knowledge, no computational model has yet been developed and tested to suggest 

a network organization responsible for the generation of complex and variable patterns of 

bifunctional motoneuron pools.  

3.7 Extended Model of the Two-Level CPG 

The study presented here is based on the recently proposed concept of a two-level 

CPG organization, suggesting that the spinal locomotor CPG contains a bipartite half-

center RG and specially organized PF networks (see Fig. 3, and section 3.5) (McCrea and 

Rybak 2007, 2008; Rybak et al. 2006a; Rybak et al. 2006b). The suggested two-level 

architecture of the CPG allows for the separate control of the locomotor rhythm (at the 

RG level) and the patterns of motoneuron activations (at the PF level). According to this 

concept, the RG defines the locomotor rhythm and durations of the flexor and extensor 

phases. Whereas the PF network interposes between the RG and motoneurons, and 

depending on the input from the RG level and the interactions within the PF network, 

each PF population is activated during a particular phase of the step cycle producing a 
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phase-specific synchronized activation of the corresponding group of synergetic 

motoneuron pools. 

A computational model of the two-level CPG architecture, controlling two 

antagonist motoneuron pools, flexor and extensor, was developed (Rybak et al. 2006a) 

(Fig. 3B). The model generated a realistic locomotor rhythm and produced alternating 

activity of the pair of flexor and extensor motoneuron pools. It was also able to reproduce 

many characteristics of fictive locomotor patterns, including spontaneous deletions of 

synergist motoneurons, occurring with and without rhythm resetting, as well as various 

effects of afferent stimulations on the locomotor phase durations and phase transitions 

(for details see, McCrea and Rybak 2007, 2008; Rybak et al. 2006a; Rybak et al. 2006b). 

However, this original CPG model is a reduced one; it has been primarily developed to 

demonstrate the advantages of the two-level CPG organization. It simulates the control of 

only two motoneuron pools and does not consider the activity and control of bifunctional 

motoneurons, such as PBSt and RF.  

Even though Perret and his colleagues (Perret et al. 1988) believed that the 

variability of PBSt and RF activity patterns is the result of interactions between the 

central locomotor drive and afferent influences, recent fictive locomotion studies of 

decerebrate cats in the absence of sensory feedback (Markin et al. 2007; Markin et al. 

2008), and research done as part of this study indicate that the full repertoire of PBSt and 

RF non-trivial behaviors can in fact be generated by the CPG alone. The concept that 

excitatory and inhibitory inputs from both extensor and flexor parts of the bipartite 

locomotor rhythm generator are involved in shaping PBSt and RF activity patterns, as 

suggested by Perret and his colleagues (Orsal et al. 1986; Perret and Cabelguen 1980; 
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Perret 1983; Perret et al. 1988), has not been implemented so far in a computational 

model. However, this CPG organization, incorporating additional neuronal networks for 

shaping PBSt and RF activities, provides only an explanation for biphasic PBSt and RF 

patterns but does not explain the complete variety of PBSt and RF profiles observed 

during fictive locomotion and their specific behaviors during spontaneous deletions.  

The major objective of this study was to demonstrate that complex patterns of 

bifunctional motoneurons, specifically the variety of PBSt and RF patterns, can be 

generated within the framework of the two-level CPG with a bipartite RG. Analyzing 

PBSt and RF activity patterns observed during fictive locomotion we proposed and 

incorporated in the model (at the PF level of the CPG) a hypothetical network of 

interneuron populations that provided for the full repertoire of the PBSt and RF activity 

profiles and explained the various behaviors they exhibit during deletions. The 

architecture of this network was explicitly evolved from the analysis of PBSt and RF 

behaviors during deletions. We systematically analyzed and classified patterns of PBSt 

and RF activities recorded during fictive locomotion in decerebrate immobilized cats. We 

also analyzed the behavior of PBSt and RF motoneurons during deletions representing 

spontaneous errors in the rhythmic activity. During deletions, the behavior of PBSt and 

RF motoneurons is fairly complex, and in most instances cannot be predicted based on 

their patterns exhibited before and after a deletion We believe that the complex behaviors 

of PBSt and RF occurring during fictive locomotion and spontaneous deletions provides 

clues to the organization of the neuronal networks in the locomotor CPG participating in 

shaping PBSt and RF activity. 
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Chapter 4: Methods 

4.1 Experimental Recordings  

The experimental data pertaining to motoneuron activity used in the present study 

was collected over several years in Drs. David McCrea‟s and Larry Jordan‟s laboratories 

at the University of Manitoba and examined PBSt and RF activity during fictive 

locomotion, in decerebrate deafferented cats, induced by midbrain stimulation. No new 

animals were used to collect data for the present study. Instead we used the existing 

experimental database available at the Spinal Cord Research Center, in the University of 

Manitoba. Surgical and experimental protocols for the above experiments were 

performed in compliance with the guidelines set out by the Canadian Council on Animal 

Care and the University of Manitoba. Anaesthetized cats were precollicular-

postmammillary decerebrated such that all cortex and rostral brainstem regions were 

removed before discontinuing the anesthetic. Fictive locomotion was evoked by 

unilateral or bilateral electrical stimulation of the MLR with 0.5ms duration current 

pulses (50-500mA, 10-20Hz) following neuromuscular blockade. During each 

experiment, the activities of several (4-9) hind limb ipsilateral nerves were 

simultaneously recorded after the nerves were dissected and mounted on conventional 

hook electrodes. ENG records were rectified and integrated before digitization at 500Hz 

(for further details see, Lafreniere-Roula and McCrea 2005). For this study, experimental 

recordings containing PBSt, RF, or both, were chosen. 

Fig. 5 provides a schematic representation of the location of all muscles 

controlled by the motoneuron pools used in this study. During fictive locomotion, both 

the total duration of the locomotor cycle and the duration of flexion and extension phases 
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exhibited substantial variability between preparations. Therefore, building a full table of 

all major motoneuron activities from many experiments required the development and 

implementation of special normalization and averaging procedures. 

The full list of motoneurons used as part of this research along with their name 

abbreviations is presented here: EDL - extensor digitorum longus (ankle flexor); LG - 

lateral gastrocnemius (ankle extensor); LGS - LG combined with soleus; MG - medial 

gastrocnemius (ankle extensor); GS - combined LGS and MG; Plant - plantaris (ankle 

extensor); PB - posterior biceps (hip flexor/knee extensor); St - semitendinosus (hip 

flexor/knee extensor); PBSt - PB combined with St (hip flexor/knee extensor); RF - 

rectus femoris (hip extensor/ knee flexor); Sart - sartorius (hip/knee flexor); SmAB - 

semimembranosus combined with anterior biceps; TA - tibialis anterior (ankle flexor); 

VA - vastus (knee extensor). 

4.2 Data Processing 

During fictive locomotion, PB (posterior biceps) and St (semitendinosus) 

motoneurons, if recorded separately, demonstrated similar activity patterns and similar 

behavior during spontaneous deletions. This is illustrated in Fig. 6 for PB and St flexor 

related (Fig. 6A), extensor related (Fig. 6B), and biphasic (Fig. 6C) activity types.  

Fig. 6C shows PB and St behavior during three successive deletions. Both PB and St are 

biphasic before and after the deletions, and become silent during extensor deletions with 

tonically active flexor (Sart) (first and third deletion episodes in Fig. 6C) and tonically 

active during flexor deletion with tonically active extensor (SmAB) (second deletion 

episode in Fig. 6C). Because of their similarity during most experiments where they were 
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simultaneously recorded, we considered the combined PB and St ENG activity (PBSt) in 

our analysis. 

During fictive locomotion, both the total duration of the step cycle and the 

duration of flexion and extension phases exhibited substantial variability between 

preparations. Therefore, to obtain averaged patterns for similar profiles of PBSt, RF and 

other motoneurons, normalization was used. Each ENG pattern was normalized for both 

amplitude and phase duration. The custom software developed at the Spinal Cord 

Research Center, in the University of Manitoba, and running under the Linux operating 

system was used to detect the onset and offset of bursts in the pre-processed recorded 

ENGs. The step cycle period in each experimental record was defined as the average time 

between two consecutive flexor or extensor bursts. The burst onset of Sart was 

considered to be the beginning of flexion and the burst onset of SmAB was considered to 

be the beginning of extension. Because the locomotion cycle and phase durations 

substantially varied between preparations, the durations of flexor and extensor phases 

were normalized separately over all experiments. The duration of the normalized step 

cycle was set to 1s, and because in fictive locomotion experiments there was no definite 

phase dominance between flexion and extension, the duration of the normalized flexor 

and extensor phases was set to 0.5s for both. The normalized timing for onset and offset 

of ENG activity for all motoneurons were presented relative to the corresponding (flexor 

or extensor) phase, and motoneuron activities, normalized and averaged within each 

phase, were then connected together in the proper sequence; for biphasic ENG patterns, 

each phase was separately processed. 
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ENG patterns for each step cycle were linearly interpolated before being 

normalized. This is illustrated in Fig. 7 for one ENG burst that is mainly located in the 

flexor phase. Normalization was performed as follows. Let jS


 be a j-th pre-processed 

ENG recording (j = 1, 2,…, N), where N is the total number of records for all 

experiments. The corresponding normalized pattern j

normS


 can be presented as vector 
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where j

Ft  is the onset time for the flexor phase, and j

Et  is the onset time for the extensor 

phase (see Fig. 7).  
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Averaged ENG patterns for all experiments were obtained using the following 

process: (1) each original pattern (extensor, flexor, PBSt and RF) was normalized for 

both its amplitude and phase duration over several consecutive step cycles (as described 

above); (2) normalized PBSt and RF patterns were classified according to their activity 

profiles; (3) all normalized patterns were averaged over several different experiments 

(different types of PBSt and RF activities were averaged separately). The normalized 

patterns of flexor and extensor motoneurons, and each type of PBSt and RF activity 

profile were averaged for all experiments, according to the following equation: 
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where N is the total number of normalized patterns through all experiments , i  and ia  

are the averaged time and amplitude of the averaged pattern ENGS
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Only stable records (with less than 20% variability in both amplitude and step 

cycle period during not less than 10 successful step cycles) containing ENGs of PBSt 

(n=67) or RF (n=23) were selected for processing of PBSt and RF patterns in this study. 

To analyze PBSt and RF behaviors during spontaneous deletions, experimental 

recordings with deletions and with recordings of PBSt and/or RF ENGs were divided into 

groups according to the following criteria: (1) the type of agonist motoneuron pools with 

activity missing during the deletion episode (flexor or extensor); (2) the type of deletion 

(resetting/non-resetting/rhythmic flexors) (see, Lafreniere-Roula and McCrea 2005; 
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Rybak et al. 2006a); (3) the type of PBSt or RF activity pre and post-deletion; (4) the 

type of PBSt or RF behavior during the deletion (silent/tonic/rhythmic). 

4.3 Modeling 

4.3.1 Basic Concept and Network Architecture 

The model of the spinal locomotor CPG proposed here is an extension of the 

previous model developed by Rybak et. al. (2006a; 2006b) (Fig. 3B). Similar to the 

preceding model, the extended model is based on a two-level CPG concept (Fig. 3A); 

therefore, the locomotor CPG includes a half-center RG (identical to that found in the 

previous model) and a PF network. The extended model maintains all neural populations 

and their interconnections that were present in the preceding model. To maintain the 

analogy with experimental data on fictive locomotion, locomotor activity in the model is 

initiated by an external tonic “MLR drive” to excitatory neural populations of the CPG. The 

locomotor rhythm generation at the RG level is based on a combination of intrinsic 

(persistent sodium current) properties of excitatory RG neurons and reciprocal inhibition 

between the two half-centers (the RG-E and RG-F populations) mediated by inhibitory 

populations Inrg-E and Inrg-F
1
 (described in detail in, Rybak et al. 2006a). The alternating 

busting activities of the RG-E and RG-F populations define the extensor and flexor phases 

of the locomotor cycle. The principal PF populations (PF-E and PF-F), in addition to the 

tonic excitatory drive from MLR, receive excitatory and inhibitory inputs from RG 

populations and inhibitory inputs from interneuron populations within the PF (Inpf-E and 

                                                
 
1 Note that for consistency with the current work we reversed the names of inhibitory interneuron 

populations Inrg-E, Inrg-F, Inpf-E and Inpf-F compared to the basic model (Rybak et al. 2006a; Rybak et 

al. 2006b). The „E‟ or „F‟ in each interneuron population‟s name now corresponds to the phase in which 

that particular population is active.  
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Inpf-F). The principal PF populations (PF-E and PF-F) finally transmit rhythmic activities 

to extensor (Mn-E) and flexor (Mn-F) motoneuron populations and to the inhibitory Ia 

interneuron populations (Ia-E and Ia-F), representing a third level of reciprocal inhibition 

in the system and rhythmically inhibiting motoneuron populations during the inactive 

phase of the step cycle (see Fig. 3B). The model also includes populations of Renshaw 

cells (R-E, and R-F) that receive collateral excitatory input from the corresponding 

motoneuron populations (Mn-E and Mn-F) and provide feedback inhibition to the 

homonymous motoneuron population, and populations of Ia inhibitory neurons (Ia-E and 

Ia-F).  

In this extended model, we incorporated additional populations of PBSt and RF 

motoneurons (Mn-PBSt and Mn-RF), corresponding populations of Renshaw cells  

(R-PBSt and R-RF), and additional circuitry at the PF level to provide the desired PBSt 

and RF motoneuron activity. Specifically, we have suggested that at the PF level of the 

CPG there are populations specifically responsible for generating the PBSt and RF 

motoneuron activity. This suggestion was based on evidence showing that both PBSt and 

RF, of all types, demonstrate variable behavior during spontaneous deletions that is 

sometimes dissimilar from motoneuron populations corresponding to the type of activity 

of the bifunctional motoneuron pool before and after a deletion (see Table 4). Therefore, 

we included in the PF network populations PF-PBSt and PF-RF which: (1) receive 

“MLR” drive, similar to PF-F and PF-E populations; (2) receive excitatory inputs from 

extensor and flexor parts of the CPG; and (3) directly project to and control the activities 

of the corresponding motoneuron pools, Mn-PBST and Mn-RF. We also incorporated 

additional inhibitory interneuron populations (In-E, In-F, In-lE, In-lF, In-eE, and In-eF) 
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which shape the activity of PF-PBSt and PF-RF populations (Fig. 10). In addition, we 

had to, (1) define inputs to PF-PBST and PF-RF from extensor and flexor parts of the 

CPG (e.g., decide whether these inputs came from the RG or PF level of the CPG);  

(2) decide if In-F and In-lF shaping PBSt activity during flexion (or In-E and In-eE 

shaping RF activity during extension) comprise one population; and (3) construct circuits 

(connections and additional neural populations if necessary) that would provide the 

appropriate activities of interneuron populations involved in shaping PF-PBSt and PF-RF 

activities under different conditions.  

It is important to note that there might be several network architectures that would 

reproduce the full repertoire of PBSt and RF activity. However, if the behavior of PBSt 

and RF during deletion experiments is taken into consideration, then this greatly limits 

the possibilities of probable network organizations. Therefore, in the construction of PF 

level networks, we took into consideration the behavior of PBSt and RF during deletions, 

in addition to their various activity types during fictive locomotion, to arrive at the most 

realistic model possible. 

4.3.2 Modeling Single Motoneurons and Interneurons 

All neurons were modeled in the Hodgkin-Huxley style. Interneurons were 

simulated as single compartment models. Motoneurons had two compartments: soma and 

dendrite and were described based on the previous model (Booth et al. 1997; Rybak et al. 

2006a). In accordance with these models, the following ionic currents (with the 

corresponding channel conductances) have been included: fast sodium (INa with maximal 

conductance Nag ); delayed rectifier potassium (IK with maximal conductance Kg ); 
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calcium-N (ICaN with maximal conductance CaNg ); calcium-L (ICaL with maximal 

conductance CaLg ), calcium-dependent potassium (IK,Ca with maximal conductance 

CaKg , ), and leakage (IL with constant conductance gL) currents. In addition, based on 

evidence of the presence of persistent (slowly inactivating) sodium current (INaP) in spinal 

cord interneurons and motoneurons (Darbon et al. 2004; Lee and Heckman 2001; Streit et 

al. 2005), this current has been also included in our neuron models (with maximal 

conductance NaPg ). Also, based on evidence for the presence of a transient (rapidly 

inactivating) potassium current in the spinal cord interneurons and motoneurons 

(Safronov and Vogel 1995) this current has been also included in our motoneuron models 

(IA with maximal conductance Ag ). The above ionic currents are described as follows: 
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where V is the membrane potential of the corresponding neuron compartment (soma, V(S), 

or dendrite, V(D)) in two-compartment models, or the neuron membrane potential V in 

one-compartment models; ENa, EK, ECa, and EL are the reversal potentials for sodium, 

potassium, calcium, and leakage currents, respectively; variables m and h with indexes 

indicating ionic currents represent, respectively, the activation and inactivation variables 
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of the corresponding ionic channels. The descriptions of activation and inactivation 

variables for each channel can be also found in Table 1. 

 The reversal potential values in the model are as follows: ENa=55mV; EK=-80mV; 

ECa=80 mV; EL=-64±0.64mV in RG neurons, EL=-65±0.325mV in Inrg interneurons and 

motoneurons, and EL=-68±0.34mV in all other neurons. 

 The dendrite-soma coupling currents (with conductance gC) for soma IC(S) and 

dendrite IC(D) are described following the Booth et al. (1997) model: 
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where p is the parameter defining the ratio of somatic surface area to total surface area 

(p=0.1); gC=0.1mS/cm
2
. 

 The synaptic excitatory (IsynE with conductance gsynE and reversal potential  

ESynE=-10mV) and inhibitory (IsynI with conductance gsynI and reversal potential  

ESynI=-70mV) were also incorporated into the model and described as follows:  
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The kinetics of intracellular Ca
2+

 concentration (Ca, described separately for each 

compartment) is modeled according to the following equation (Booth et al. 1997): 

),( CakIfCa
dt

d
CaCa    

where f defines the percentage of free to total Ca
2+

,  converts the total Ca
2+

 current, ICa , 

to Ca
2+

 concentration, and kCa represents the Ca
2+ 

removal rate.  
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 In accordance with the two compartment motoneuron model (Booth et al. 1997; 

Rybak et al. 2006a), the membrane potentials of the motoneuron soma (V(S)) and dendrite 

(V(D)) are described according to the following differential equations: 
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where C (C=1F/cm
2
) is the membrane capacitance and t is time. With the following 

maximal conductances for the soma compartment: Nag =120mS/cm
2
; Kg =100mS/cm

2
; 

Ag =200±40mS/cm
2
; CaNg =14mS/cm

2
; CaKg , =2mS/cm

2
; gL=0.51mS/cm

2
. And the 

following maximal conductances for the dendrite compartment: NaPg =0.1mS/cm
2
; 

CaNg =0.3mS/cm
2
; CaLg =0.33mS/cm

2
; CaKg , =0.8mS/cm

2
; gL=0.51mS/cm

2
. Subscripts S 

and D indicate the soma or dendrite compartments, respectively. 

 For simplicity and because of the lack of specific data, all interneurons (single 

compartment models) except RG and PF neurons contain only a minimal set of ionic 

currents:  

SynISynELKNa IIIII
dt

dV
C   

with the following maximal conductances: Nag =120mS/cm
2
; Kg =10mS/cm

2
; 

gL=0.51mS/cm
2
.  

 The excitatory neurons of the RG and PF levels and populations In-eE and In-eF 

include the persistent (slowly inactivating) sodium current, INaP, which has been 

suggested to play an important role in the intrinsic rhythmogenesis in spinal interneurons 
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(Darbon et al. 2004; Streit et al. 2005). The membrane potential of these interneurons is 

described as follows: 

SynISynELKNaPNa IIIIII
dt

dV
C   

with maximal conductances for neurons in these populations as follows: gL=0.51mS/cm
2
; 

Nag =150mS/cm
2
 in RG neurons and 120mS/cm

2
 in both PF populations and In-eE and 

In-eF populations; NaPg =1.25mS/cm
2 

in both RG populations and In-eE and In-eF 

populations and 0.1mS/cm
2 

in both PF populations; Kg =5mS/cm
2 

in RG populations and 

10mS/cm
2 

in both PF populations and In-eE and In-eF populations.  

 Activation m and inactivation h of voltage-dependent ionic channels (e.g., Na
+
, 

NaP
+
, K

+
, KA

+
, CaN

2+
, CaL

2+
) are described by the following differential equations:  
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where i identifies the name of the channel, m∞i(V) and h∞i(V) define the voltage-

dependent steady-state activation and inactivation respectively, and mi(V) and hi(V) 

define the corresponding time constants (see Table 1). Activation of sodium channels is 

considered to be instantaneous (mNa=mNaP=0) (Booth et al. 1997; Butera et al. 1999). 

 Activation of the Ca
2+

 dependent potassium channels is also considered 

instantaneous and described as follows (Booth et al. 1997): 
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where Ca is the Ca
2+

 concentration within the corresponding compartment or neuron, and 

Kd defines the half-saturation level of this conductance.  

Excitatory (gSynE) and inhibitory synaptic (gSynI) conductances are equal to zero at 

rest and may be activated (opened) by the excitatory or inhibitory inputs respectively: 
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where the function S }{x =x, if x≥0, and 0 if x<0. The excitatory and inhibitory synaptic 

conductances have two terms: the first term describes the integrated effect of inputs from 

other neurons in the network (excitatory and inhibitory respectively). The second term 

describes the integrated effect of inputs from external drives or stimulations dmi (see also, 

Rybak et al. 1997; Rybak et al. 2003). Each spike arriving to neuron i from neuron j at 

time tkj increases the excitatory synaptic conductance by jiE wg   if the synaptic weight 

wji>0, or increases the inhibitory synaptic conductance by - jiI wg   if the synaptic weight 

wji<0. Eg =0.05mS/cm
2
 and Ig =0.05mS/cm

2
 are the parameters defining an increase in 

the excitatory or inhibitory synaptic conductance, respectively, produced by one arriving 

spike at |wji|=1. SynE=5ms and SynI=15ms are the decay time constants for the excitatory 

and inhibitory conductances respectively. The second terms of the equations, 

Edg = Idg =1mS/cm
2
 are the parameters defining the increase in the excitatory synaptic 

conductance, produced by external input drive dmi=1 with a synaptic weight of |wdmi|=1.  
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4.3.3 Modeling Neural Populations 

In the present model, each functional type of interneuron is represented by a 

population of 20 neurons, and each type of motoneuron by a population 40 neurons. 

Connections between populations were established such that if population A was assigned 

to receive an excitatory or inhibitory input from population B or external drive D, then 

each neuron in population A receives the corresponding excitatory or inhibitory synaptic 

input from each neuron in population B or from drive D, respectively. All connections 

were randomly distributed to provide heterogeneity of individual neuron behavior in 

populations. The mean weights of synaptic connections between the neural populations in 

our model are shown in Table 2. Standard deviations of the synaptic weights varied from 

10% to15% of mean value. 

In addition to the random distribution of inputs, the heterogeneity of neurons within 

each population was provided by a random distribution of reversal potential of leak channel, 

EL, and initial conditions for values of membrane potential, calcium concentrations and 

some channel conductances. In all simulations, initial conditions were chosen randomly 

from a uniform distribution for each variable, and a settling period of 20s was allowed 

before data was collected. Each simulation was repeated 20-30 times, and demonstrated 

qualitatively similar behavior.  

4.4 Computer Simulations 

All simulations were performed on an Intel Core i7
(tm)

 2.8GHz/4GB with a 

Windows XP operating system using a special simulation package NSM 2.1 RC2, 

developed at Drexel University by I. A. Rybak, S. N. Markin, and N. A. Shevtsova using 
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Microsoft Visual C++. Differential equations were solved using the exponential Euler 

integration method (MacGregor 1987) with a step of 0.1 ms (Rybak et al. 2006a; Rybak 

et al. 2003). 
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Chapter 5: Activity Patterns of PBSt and RF during Fictive Locomotion 

5.1 Classification of PBSt and RF Activity Patterns 

Prior to extending the previous two-level CPG model, data pertaining to PBSt and 

RF motoneuron activity during fictive locomotion was collected, classified and analyzed. 

This data of motoneuron ENGs, during MLR stimulation evoked fictive locomotion, 

were obtained from the experimental database of the Spinal Cord Research Center at the 

University of Manitoba. All motoneuron recordings were performed in fictive locomotion 

preparations, with activity evoked in decerebrate immobilized cats through electrical 

stimulation of the MLR. Recordings were carried out in several nerve fibers during each 

experiment; recordings used for this particular research project included ones that had at 

least one of PBSt or RF ENGs, or both. Analyzed data included 98 records from 48 cats 

(with 35 step cycles on average in each record). The locomotor cycle duration in different 

experiments varied from 400 to 1800ms and was 690ms on average. Averaged and 

normalized profiles of motoneuron activities during fictive locomotion are shown in Fig. 

2A. The activity of all one-joint motoneuron pools (both flexor and extensor) fully 

corresponded to their function, i.e. all flexor motoneurons were active during the flexor 

phase and silent during the extensor phase and all extensor motoneurons were active only 

during extension. In contrast, two-joint and multi-joint motoneurons (i.e. those activating 

muscles spanning more than one joint), such as PBSt and RF, demonstrated a variety of 

activity patterns depending on the preparation. 

Patterns of PBSt and/or RF were classified as either flexion or extension related, 

depending on the primary muscle group with which they were co-active, or as biphasic if 
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they were active during both phases of the locomotor cycle. Activity patterns of PBSt 

motoneurons were qualitatively classified under three distinct types:  

1. A flexor-type PBSt profile, where PBSt motoneurons were active only during the 

flexion phase (Fig. 8A, B, G and H). In the majority of recordings of flexor-type 

PBSt (more than 75 %), PBSt showed only a short burst of activity at the onset of 

flexion (less than one third of the phase's duration) (Fig. 8A, G and H); and in the 

other 25% of the recordings, PBSt exhibited a longer burst of activity starting at 

the onset of flexion and continuing up to or more than half of the phase (Fig. 8B). 

2. An extensor-type PBSt profile, where PBSt motoneurons were active during 

extension (Fig. 8C and D). In this case, PBSt was usually active for the entire 

phase. 

3. A biphasic PBSt profile, where activity occurred during both phases of the 

locomotor cycle (Fig. 8E and F). Activity during flexion occurred at the onset of 

the phase and for only a short duration; activity during extension covered the 

entire phase. The amplitude of activity varied significantly between different 

experiments (compare Fig. 8E and F).  

On the other hand, RF activity during fictive locomotion experiments was classified 

under two different types: 

1. A flexor-type, where RF was active late in flexion with activity starting within the 

first half of the phase (rather than from the beginning of the phase) and ramping 

up until the end of flexion (Fig. 8G). 

2. A biphasic profile, where RF activity was comprised of two components, a short 

burst at the end of extension and a longer burst at the end of flexion (Fig. 8H). 
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5.2 Normalized Profiles of PBSt and RF Activity 

Records classified as belonging to the same type of PBSt or RF where normalized 

and averaged within each category. Fig. 9A shows the normalized and averaged profiles 

for the three types of PBSt patterns (panel Ab) and the two types of RF patterns (panel 

Ac), corresponding to the classifications described above, and with respect to the 

normalized activity of typical flexor (Sart) and extensor (SmAB) motoneurons (panel 

Aa). The data presented in Fig. 9A was averaged over 49 recordings for flexor-type PBSt 

(type 1), 6 recordings for extensor-type PBSt (type 2); 12 recordings for biphasic PBSt 

(type 3); 13 recordings for flexor-type RF (type 1); and 10 recordings for biphasic RF 

(type 2).  

Analysis of PBSt and RF activities from experiments where they were simultaneously 

recorded revealed that they were never simultaneously active together. Fig. 9B illustrates 

the averaged and normalized RF patterns with respect to three types of PBSt behavior for 

experiments with simultaneous recording of PBSt and RF ENGs.  

1. When PBSt demonstrated flexor-type activity (i.e. type 1), RF was either biphasic 

(type 2) or flexor-type with delayed activity increasing towards the end of flexion 

(type 1) (Fig. 9Ba). 

2. When PBSt activity was extensor related (type 2) or biphasic (type 3), RF 

displayed flexor-type activity (type 1) (Fig. 9Bb and Bc). 

5.3 Discussion 

After analyzing the data available on PBSt and RF behavior, no consistent 

relationships between PBSt and RF activity patterns and the locomotor period and/or 
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phase dominance were found. For example, the locomotor rhythm is flexor dominated in 

the recordings shown in Fig. 8A and B, and PBSt demonstrates flexor-type behavior in 

both cases, however in each case PBSt demonstrates a different length of the flexor 

related burst; a short burst at flexion onset in Fig. 8A, and a longer burst in Fig. 8B that 

lasts for the majority of the phase's duration. Furthermore in Fig. 8C and D, even though 

the locomotor rhythm is extensor dominated in Fig. 8C and flexor dominated in Fig. 8D, 

in both cases PBSt is of the extensor-type. Finally, in Fig. 8E and F, even though the 

locomotor rhythm is symmetric in Fig. 8E and extensor dominated in Fig. 8F, PBSt 

demonstrates biphasic activity in both instances. Therefore, we concluded that the 

particular pattern expressed by PBSt or RF was dependent on the preparation and 

remained unchanged during the course of the absolute majority of the experiments, even 

during experiments where the locomotor period, phase durations, or burst amplitude 

spontaneously varied. Furthermore, if deletions spontaneously occurred, PBSt and RF 

activity re-emerged after the deletions unchanged and had the same profile as before the 

deletion.  

Analysis of simultaneous activity of PBSt and RF during fictive locomotion indicated 

some reciprocal relationships between these motoneuron populations. When PBSt was 

active during extension (i.e., expressed an extensor-type or biphasic profile), RF never 

exhibited any extension related activity and was only active during flexion. And vice 

versa, if RF exhibited a biphasic profile, PBSt was only active during flexion. However, 

we did not classify PBSt and RF as direct antagonists since their activity is not always 

antagonistic and both can be silent at the same time in some instances (for example, 

during extension, when both have flexor-type activity; or early in flexion, when PBSt 
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exhibits extensor-type activity and RF exhibits flexor-type activity). These findings are 

similar to, and agree with, what has been previously reported (Perret 1983) of PBSt and 

RF activity when they were simultaneously recorded in fictive locomotion preparations, 

where late flexor RF activity appeared only with extensor and biphasic PBSt activity; and 

late extensor RF activity appeared only when PBSt was active during flexion. 

The relationship between PBSt and RF during fictive locomotion appears to be 

complex or indirect, and may therefore involve interactions with circuits controlling other 

motoneuron pools. During real locomotion, more direct relationships between PBSt and 

RF motoneuron pools may be additionally established through sensory afferents (e.g., at 

the level of the reciprocal Ia interactions). A study of such possible interactions will 

require a detailed analysis of the effects of various afferent stimulations on the activity of 

PBSt and RF, as well as an analysis of intracellular motoneuron recordings.  

5.4 Activity of Bifunctional Motoneurons and Organization of the Locomotor CPG  

The study of the activity of bifunctional muscles, such as PBSt and RF, during 

fictive locomotion experiments is an approach for understanding the organization of the 

locomotor CPG. The first attempt at explaining the complex and non-trivial behavior of 

PBSt and RF motoneurons during fictive locomotion, in terms of the bipartite locomotor 

CPG organization, was made by Perret and his colleagues (Orsal et al. 1986; Perret 1983; 

Perret et al. 1988). The chief idea of their proposal was that bifunctional motoneuron pools 

of PBSt and RF receive excitatory and inhibitory inputs from both flexor and extensor 

CPG half-centers and that some additional interneural network is responsible for shaping 

the activity profiles of bifunctional motoneurons. The results presented as part of this 
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current research confirm these suggestions. First, during fictive locomotion experiments, 

we found that PBSt and RF may exhibit activity during both locomotor phases. This 

clearly suggested that both PBSt and RF receive excitatory inputs from both extensor and 

flexor parts of the locomotor CPG. Second, as mentioned earlier (see section 5.2 and Fig. 

9B), PBSt and RF can be simultaneously active during flexion, each during just a part of 

the phase; PBSt during the earlier part and RF during the latter part of flexion. This 

confirmed Perret's suggestion that the activity of both PBSt and RF is regulated by 

inhibitory influences originating from additional inhibitory interneurons. Since the basic 

half-center CPG concept does not account for any inhibitory influences that can have 

such an effect on PBSt and RF activity, Perret (1988) suggested that this additional 

neuronal network is controlled by afferent feedbacks, and demonstrated how PBSt and RF 

patterns can be altered through tonic afferent inputs from the ipsilateral hindlimb. However, 

we found that during fictive locomotion, with all afferent feedbacks abolished, PBSt and 

RF activity patterns were still being shaped by inhibitory influences.  

Available experimental data suggested that inhibitory circuitry responsible for 

shaping PBSt and RF activity during fictive locomotion can operate independent of any 

afferent feedbacks and is therefore directly controlled by the CPG. Furthermore, the 

hypothetical inhibitory interneuron populations making up this inhibitory circuitry must 

be part of the locomotor CPG for them to continue to operate in a fictive locomotion 

setup. On the other hand, afferent inputs to this additional circuitry would still be able to 

shape PBSt and RF activity during afferent stimulation, as was shown in Perret's 

experiments (Perret et al. 1988), and during real locomotion. Therefore, the interplay of 

excitatory and inhibitory influences is responsible for shaping PBSt and RF activity. 
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5.5 Shaping the Profiles of PBSt and RF Activity  

Our goal was to expand the basic two-level CPG model (McCrea and Rybak 

2007; Rybak et al. 2006a) to account for PBSt and RF behavior while maintaining the 

half-center organization of the rhythm generation level. Therefore, new inhibitory 

interneuron populations hypothesized to exist within the CPG, as discussed in the 

previous section, had to be incorporated at the pattern formation level. We previously 

suggested that both PBSt and RF receive excitatory inputs from both extensor and flexor 

parts of the CPG, as was also proposed by Perret and his colleagues for PBSt and RF 

motoneurons (Perret and Cabelguen 1980; Perret 1983); in addition we proposed that 

PBSt and RF should also receive excitatory tonic drives similar to pattern formation level 

interneuron populations controlling the activity of flexor and extensor motoneurons 

(McCrea and Rybak 2007; Rybak et al. 2006a) (Fig. 10B and D); excitatory connections 

and tonic input drives are represented by arrows. Therefore, PBSt and RF populations 

receive total excitatory inputs representing some weighted sum of the activities of the 

flexor and extensor parts of the CPG and tonic drive. The total excitatory inputs are 

shown schematically as lightly shaded areas in the third traces in Fig. 10A and C. The 

differences between the total excitatory inputs and the observed PBSt and RF profiles 

(darker profiles in the third traces in Fig. 10A and C) are shown in the bottom traces of 

Fig. 10A for PBSt and Fig. 10C for RF. We suggested that these “extra activations” 

(represented by the bottom traces in Fig. 10A and C) are eliminated by inhibition from 

hypothetical inhibitory interneuron populations, illustrated in Fig. 10B for PBSt and  

Fig. 10D for RF, which allows PBSt and RF to exhibit the different activity profiles. 
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Considering the different activity patterns of PBSt and RF during fictive 

locomotion experiments, we proposed additional interneuron populations that can shape 

these patterns at the PF level of the CPG. Specifically, we suggested that three inhibitory 

interneuron populations shape the activity of PBSt (see Fig. 10B; inhibitory connections 

are represented by lines terminating with a circle). The first (In-EPBSt), active throughout 

the extensor phase, is responsible for inhibiting or shaping the extensor component of the 

PBSt profile. The second, (In-F), is active throughout the entire flexor phase, it is 

responsible for inhibiting the flexor component of PBSt when PBSt exhibits extensor-

type activity. The third, (In-lateF, or In-lF), is active during late flexion with increasing 

activity towards the end of the phase, it is responsible for shaping the flexor component 

of the PBSt profile if PBSt is active during flexion. The strength of In-lF's activity 

determines the duration of PBSt's activity during early flexion; the weaker the activity of 

In-lF, the longer PBSt is active in flexion.  

These additional inhibitory interneuron populations function in the following way 

to shape PBSt‟s activity: (1) if the activity of In-EPBSt is strong (Fig. 10Ba), then the 

extensor component of the PBSt profile is fully inhibited, and the duration of PBSt flexor 

activity is regulated through the activity of In-lF, resulting in the expression of a flexor-

type (type 1) PBSt activity (see dark profile in the third row of Fig 10Aa). (2) And if the 

activity of In-EPBSt is moderate or weak (Fig. 10Bc), then PBSt maintains a low 

amplitude extensor component and exhibits a biphasic (type 3) pattern (dark profile in the 

third row of Fig. 10Ac). (3) Finally, if In-EPBSt is inactive and the activity of In-F is 

strong enough to completely suppress the flexor component of PBSt (Fig. 10Bb), then 
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PBSt exhibits an extensor-type (type 2) profile (dark profile in the third row of  

Fig 10Ab).  

Similarly, we suggested that three inhibitory interneuron populations shape the 

activity profile of RF (Fig. 10D). The first, In-ERF, is active throughout the extensor 

phase, it is responsible for inhibiting the extensor component of RF when RF exhibits 

flexor-type activity. The second, (In-earlyE, or In-eE), is active at the beginning of the 

extensor phase, it is responsible for shaping the extensor component of the RF profile. 

The third, (In-earlyF, or In-eF), active during early flexion with decrementing activity, is 

responsible for shaping the flexor component of the RF profile. Similar to In-lF discussed 

above, the strength of activity of In-eF and In-eE determines the duration of RF's activity 

during late flexion and late extension, respectively; the weaker the activity of In-eF or  

In-eE, the longer RF is active in flexion or extension, respectively. Therefore: (1) If the 

activity of In-ERF is strong, then the extensor component of RF is fully inhibited  

(Fig. 10Da), and RF only exhibits flexor-type (type 1) activity, shaped by In-eF (see dark 

profile in the third row of Fig 10Ca). (2) And if In-ERF is inactive, and the activity of  

In-eE is moderate (Fig. 10Db), then RF is active in both phases and it exhibits biphasic 

(type 2) activity (dark profile in third row of Fig. 10Cb). In this case In-eE shapes the 

extensor component of the activity profile of RF and determines its onset and duration. In 

addition, in both types of RF profiles, the activity of In-eF shapes and determines the 

onset and duration of the flexor component of the RF profile. 

It should be noted that In-lF, when considering PBSt, (or In-eE, when considering 

RF) may behave like In-F (or In-ERF) if strongly active. In other words, exhibit activity 

for the entire duration of flexion (or extension), therefore inhibiting PBSt (or RF) for the 
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duration of the corresponding phase. Hence one may suggest that In-lF and In-F (or In-eE 

and In-ERF) may possibly be one and the same, and therefore comprise the same 

interneuron population.  

Relying only on the analysis of activity patterns of PBSt and RF during fictive 

locomotion is not enough to propose a comprehensive organization of the connections 

within the CPG and to establish whether In-F and In-lF should be merged into one 

population (in the case of PBSt), or In-ERF and In-eE should be merged (in the case of 

RF). Hence, in the following sections we demonstrate how the behavior of PBSt and RF 

during different types of spontaneous deletions was used to gain further insights into the 

organization of the CPG circuitry and thus allowed us to propose an extended CPG model 

that would realistically reproduce all behaviors of PBSt and RF during fictive 

locomotion. 
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Chapter 6: Behavior of PBSt and RF during Spontaneous Deletions 

We analyzed the behavior of PBSt and RF during deletions, which are 

characterized by brief periods of inactivity lasting for several step cycles and occurring 

simultaneously in multiple synergist motoneuron pools (e.g., flexors or extensors), while 

the activity of antagonist motoneuron pools usually becomes tonic or remains rhythmic 

(Lafreniere-Roula and McCrea 2005; Rybak et al. 2006a). Deletions with tonic activity of 

antagonistic motoneuron pools were previously classified under two types: resetting 

deletions, which are accompanied by a shift in the phase of the post deletion rhythmic 

activity, relative to the pre-deletion rhythm; and non-resetting deletions, after which the 

rhythm reappears without a phase shift of the post-deletion activity (Lafreniere-Roula and 

McCrea 2005; Rybak et al. 2006a). It was previously suggested that resetting deletions 

result from perturbations affecting the rhythm generation level of the locomotor CPG, 

whereas non-resetting deletions as well as deletions with rhythmic activity of antagonistic 

motoneuron pools occur when spontaneous perturbation affect the CPG at lower level 

circuits (pattern formation level) without influencing the rhythm generation level (Rybak 

et al. 2006a).  

6.1 Results 

The behaviors of both PBSt and RF during deletions of flexor and extensor 

activities were variable. This is illustrated for flexor-type PBSt in Fig. 11A-C showing 

records from three different experiments. All of these deletion episodes are of extensor 

motoneurons with tonic flexors, and in each experiment PBSt demonstrates flexor-type 

activity (type 1) before and after the deletion. However, the behavior of PBSt during the 
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deletions was completely different in each of these experiments. In Fig. 11A, PBSt 

behaved like a flexor during the deletion, i.e. it was tonically active. In Fig. 11B, PBSt 

was silent during the deletion, similar to all extensors. In Fig. 11C, PBSt demonstrated 

rhythmic activity during the deletion, with an oscillation frequency that was not related to 

the locomotor frequency before and after the deletion. In all three experiments, the 

reemerging post deletion activity pattern was identical to that observed before the 

deletion; this was also the case for the absolute majority of deletion experiments. 

Results of the analysis of PBSt and RF behaviors during spontaneous deletions 

are summarized in Table 4. This analysis included data from 36 experiments involving 34 

different cats. In some experiments, several spontaneous deletions episodes occurred 

separated by periods of rhythmic locomotor activity. For some of the experiments used, 

the activities of PBSt and RF motoneurons were simultaneously recorded. Deletions were 

separated into two groups based on the type of deletion, non-resetting or resetting; the 

latter group also included recordings with variable locomotor cycle length, for which it 

was difficult to determine whether a phase shift occurred during a deletion. The numbers 

in parentheses, in Table 4, indicate the number of deletion episodes where the particular 

PBSt or RF behavior was observed, for a given deletion and PBSt/RF type combination. 

The following observations were made with regards to PBSt. (1) There is an 

obvious difference between the behavior of flexor-type PBSt with a short flexor burst and 

with a longer flexor burst, during deletions. This resulted in the separation of flexor-type 

PBSt into two subtypes (type 1a and type 1b) depending on the length of the flexor burst 

(see Table 4). (2) During resetting extensor deletions, the behavior of biphasic PBSt with 

a short flexor burst (not exceeding 30% of the flexor phase) compared to that with a 



72 

longer flexor burst are completely different. Biphasic PBSt with a short flexor burst is 

silent like extensors during the deletion, while biphasic PBSt with a longer flexor burst is 

tonic like flexors during the deletion. Though no data was available for the behavior of 

biphasic PBSt with a long flexor burst for other types of deletions, we separated biphasic 

type PBSt patterns into two subtypes (type 3a and 3b) depending on the length of the 

flexor burst, similar to flexor type PBSt (see Table 4).  

Even though we could not find any explicit relationships between the behavior of 

PBSt or RF during a deletion episode and their activity profile (before and after the 

deletion), analysis of the results presented in Table 4, pointed to certain tendencies which 

are summarized below, (numbers in parentheses indicate the number of deletion episodes 

in which an observation was made): 

1. Flexor-type PBSt with short flexor burst (type 1a), was silent during most 

deletions (n=11) (see, for example, Fig. 11B). However, during non-resetting 

extensor deletions with either tonic (n=1) or rhythmic flexors (n=1), PBSt 

demonstrated irregular rhythmic activity where some bursts disappeared and the 

remaining ones had reduced activity amplitude. For the bursts with reduced 

activity, the frequency was identical to the frequency of PBSt activity before and 

after the deletions. 

2. Flexor-type PBSt with long flexor burst (type 1b), often but not always, behaved 

like flexors during deletion episodes. During flexor deletions (n=4), it was silent. 

During extensor deletions with rhythmic flexor activity (n=6), it was rhythmic. 

During resetting extensor deletions, in most cases (n=4), it also behaved like 

flexors (i.e. was tonically active, see for example Fig. 11A), except for one 
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experiment (shown in Fig. 11C) in which PBSt exhibited rhythmic bursts with a 

frequency not related to the frequency of PBSt activity before and after the 

deletion. Finally, during non-resetting extensor deletions with tonic flexors (n=4), 

type 1b PBSt maintained rhythmic activity during the deletion in all available 

experiments, and therefore in this case behaved unlike flexors which were tonic 

for the duration of the deletion episode. 

3. Extensor-type PBSt (type 2), behaved like extensors during most observed 

deletions. During extensor deletions (n=13), it was silent. During resetting flexor 

deletions (n=8), it was tonic. However, during non-resetting flexor deletions, it 

was silent during one experiment and exhibited low amplitude rhythmic activity 

in another.  

4. Biphasic PBSt with short flexor burst (type 3a), like extensor type PBSt, mostly 

behaved like extensors during deletions. During extensor deletions (n=8), it was 

silent. During resetting flexor deletions (n=5), it was tonic. No experiments were 

found where type 3a biphasic PBSt was recorded during a non-resetting flexor 

deletion.  

5. Biphasic PBSt with a long flexor burst (type 3b), was tonic during resetting 

extensor deletions (n=2), but there were no experiments in our records where 

 type 3b PBSt was recorded during any other type of deletion. 

6. Flexor-type RF (type 1), was tonic during resetting extensor deletions (n=5), 

rhythmic during non-resetting extensor deletions with either tonic (n=1) or 

rhythmic (n=3) flexors, and silent during all flexor deletions (n=7). 
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7. Biphasic RF (type 2), like type 1 RF, was tonic during resetting extensor deletions 

(n=5), and rhythmic during non-resetting extensor deletions with either tonic 

(n=7) or rhythmic (n=9) flexors; but we had no experimental records with type 2 

RF during a flexor deletion. Remarkably, during all episodes of rhythmic activity 

during a deletion (n=16), biphasic RF lost its extensor component. 

6.2 Discussion 

 The behavior of PBSt and RF motoneurons during the various deletion types was 

rather complex, and in many cases could not be predicted based on their patterns 

expressed before and after the deletions (Table 4). Therefore, broad generalizations were 

not possible for the following: 

1. Short flexor-type PBSt (type 1a), was silent during most deletions, except during 

extensor deletions with either tonic or rhythmic flexors, where it remained 

rhythmic and had reduced activity amplitude.  

2. Long flexor-type PBSt (type 1b), behaved like flexors during all flexor deletions, 

during some resetting extensor deletions with tonic flexors (4 of 5 records), and 

during all extensor deletions with rhythmic flexors. However, type 1b PBSt 

maintained rhythmic activity during non-resetting extensor deletions with tonic 

flexors.  

3. Extensor-type PBSt (type 2), behaved like extensors during most deletions, except 

during non-resetting flexor deletions, where it was either silent or rhythmic. 

4. Flexor-type RF (type 1), behaved like flexors during all deletions, except during 

non-resetting extensor deletions with tonic flexors, where it was rhythmic. 
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5. Biphasic RF (type 2), behaved like flexors during all deletions, except during non-

resetting extensor deletions with tonic flexors, where it was rhythmic. (Note, we 

had no experiments where type 2 RF was recorded during any type of flexor 

deletion) 

 On the other hand, based on available experiments where PBSt and/or RF were 

recorded during deletion episodes, we were able to draw more solid conclusions for the 

following: 

1. Biphasic PBSt with short flexor burst (type 3a), behaved like extensors during all 

observed deletions. (Note, we had no experiments where type 3a PBSt was 

recorded during a non-resetting flexor deletion) 

2. Biphasic PBSt with long flexor burst (type 3b), was tonic during resetting 

extensor deletions, which was the only type of deletion, with type 3b PBSt, that 

we were able to find among our experimental records. 

Further observations that are worth noting at this point: (1) In most cases the behavior 

of both PBSt and RF was different during resetting versus non-resetting deletions.  

(2) PBSt behavior during resetting extensor deletions seems to be predominantly 

determined by the presence and duration of PBSt activity during the flexor phase. In 

particular, both flexor and biphasic type PBSt with long flexor bursts (types 1b and 3b) 

were tonic during resetting extensor deletions, while both flexor and biphasic type PBSt 

with short flexor bursts (types 1a and 3a) were silent during deletions of the same type. 

(3) The behavior of both flexor and biphasic type RF is similar during most deletion 

types. (4) In all deletion records, where RF and PBSt were simultaneously recorded 

during a deletion episode, they never exhibited concurrent activity which is indicative 
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that some reciprocal relationship exists between these motoneuron pools; but, there were 

situations where both PBSt and RF were silent during a deletion, indicating that these two 

motoneuron pools cannot be considered as direct antagonists. 
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Chapter 7: CPG Model Construction 

7.1 Circuits Controlling the Activity of PBSt and RF  

The objective of this study was to extend the basic model (Fig. 3B) originally 

presented by Rybak and McCrea (2006a) by incorporating additional circuitry necessary 

for the generation of PBSt and RF motoneuron activity. To construct such a model we 

proposed that the PF level of the CPG should include two unique populations, PF-PBSt 

and PF-RF, similar to the populations PF-F and PF-E proposed by Rybak and McCrea in 

their two-level model (Fig. 3B), which directly project to PBST and RF motoneuron 

pools, Mn-PBSt and Mn-RF respectively. Furthermore, we suggested that the PF level 

should include additional interneuron populations with a special organization of 

connections that provides the shaping of PBSt and RF activity patterns (see section 5.5). 

The extended model had to produce all patterns of PBSt and RF motoneuron activity 

expressed during fictive locomotion, and replicate the behavior of PBSt and RF observed 

during various types of deletions, as discussed in the previous section.  

Therefore, based on the previous suggestions, PF-PBSt and PF-RF populations 

had to receive excitatory inputs from both extensor and flexor parts of the CPG, in 

addition to tonic MLR drive. These inputs could potentially come either from the RG or 

PF level (i.e., from RG-E or PF-E, and from RG-F or PF-F populations). We also 

suggested that the PF network included inhibitory populations In-EPBST (active during 

extension), In-F (active during flexion), and In-lF (active during late flexion) which are 

responsible for shaping the activity patterns of PBSt. Also, the PF network included 

inhibitory populations In-ERF (active during extension), In-eE (active during early 
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extension), and In-eF (active during early flexion) which are responsible for shaping the 

activity patterns of RF (see Fig. 10). 

Complimentary activity patterns of PBSt and RF during flexion could result from 

the complimentary activities of In-eF and In-lF. This may be achieved by having the 

interneurons which make up population In-eF include adaptive intrinsic properties, in 

addition to having populations In-eF and In-lF in a mutually inhibitory relationship. 

Furthermore, in some experiments where PBSt and RF were recorded simultaneously and 

PBSt was active during extension only, the activity of flexor type RF did not start from 

the beginning of the flexor phase (see for example Fig. 8C), this indicated that 

populations In-F and In-lF, which are responsible for shaping the flexor component of 

PBSt activity, were in fact two separate populations, as we had speculated earlier. The 

reasoning here was that PBSt being active only during extension indicated that In-F was 

strongly active and inhibiting PBSt during flexion, but there must have been another 

inhibitory population, namely In-lF, active late in flexion and inhibiting In-eF activity, 

permitting RF activity in late flexion. On the other hand, no similar data was found to 

suggest that population In-ERF and In-eE, which are responsible for shaping the extensor 

component of RF activity, were two different populations. Therefore, we proposed that 

only one inhibitory population, In-eE, is responsible for shaping the extensor component 

of RF activity. When In-eE is strongly activated it inhibits RF for the entire extension 

phase and when In-eE is moderately active it inhibits RF for only the earlier part of 

extension, resulting in a flexor-type RF in the first case and biphasic RF in the second. 

Eliminating an unnecessary interneuron population, based on all available data to us at 



79 

the time, was mainly done to keep the CPG model as simple as possible while still being 

able to reproduce all desired PBSt and RF activity. 

In summary, shaping the activity patterns of PBSt is provided by three inhibitory 

interneuron populations: In-E (subscript PBSt can now be omitted), active throughout 

extension; In-F, active throughout flexion, and In-lF, active during the latter part of 

flexion. On the other hand, shaping of the activity patterns of RF is provided by two 

inhibitory interneuron populations: In-eE, active during the early part of extension, and 

In-eF, active during the early part of flexion. 

The interneuron populations proposed to be present at the PF level could 

potentially receive inputs from either the RG or PF levels of the CPG or from other 

sources. To determine the source of inputs for PF-PBSt, PF-RF, and all other interneuron 

populations involved in shaping PBSt and RF activity at the PF level of the locomotor 

CPG, we considered PBSt and RF behavior during different types of deletions (Fig. 12). 

The construction of the extended PF circuitry (shown in Fig. 13), was carried out in a 

process that took into account the behaviors of PBSt and RF during deletions, in addition 

to their activity profile before and after these deletions. At each step of the process, the 

determination of which connections needed to be added and which needed to be excluded 

was consistent with the behavior of all motoneuron records obtained from the 

experimental deletion data. The construction of the extended model included all 

interneuron and motoneuron populations that were present in the basic two-level model. 

The behaviors of essential interneuron populations retained from the basic model, during 

different types of deletions, are summarized in Table 3. Note that during non-resetting 

deletions (without phase shift of post-deletion activity) all populations at the RG level of 



80 

the CPG remain rhythmically active since the perturbation causing the deletion is acting 

at the PF level. Also note that, during all types of deletions the behavior (silent, tonic or 

rhythmic) of flexor and extensor motoneurons is identical to the behavior of their 

corresponding PF level population (PF-F and PF-E). 

7.1.1 Construction of the Circuit Controlling PBSt Activity  

In Fig. 12Aa, a fictive locomotion ENG recording, we have an extensor deletion 

episode where extensor motoneurons SmAB and GS were silent for the duration of three 

step cycles, while flexors Sart and TA, PBSt, and RF remained active. The lack of phase 

shift in the remerging locomotor activity, after the deletion, indicated that this deletion 

was non-resetting and resulted from increased excitability of population PF-F. During 

such a deletion, population RG-E and RG-F would maintain their rhythmic activity, while 

PF-E becomes silent and PF-F shows sustained (possibly modulated) tonic activity  

(Table 3) (Rybak et al. 2006a). In this example, PBSt exhibited a flexor-type profile  

(type 1) of activity before and after the deletion (see shaded bars 1 and 5 in Fig. 12Aa), 

therefore, its activity should be shaped by populations In-E, inhibiting PF-PBSt during 

extension, and In-lF inhibiting PF-PBSt during the latter part of flexion (see Fig. 10 and 

Fig. 13Aa). During this deletion episode, flexors were not tonically active; TA showed 

modulated sustained activity, whereas Sart remained rhythmic and was inactive during 

intervals where extensor activity was expected to occur had there been no deletion (see 

shaded bars 2-4 in Fig. 12Aa). PBSt exhibited rhythmic activity during the deletion, 

however it was active during intervals where extensor activity was expected and 

continued into parts of the flexor intervals. PBSt activity, occurring in the flexor intervals 



81 

during the deletion, had reduced amplitude and duration relative to its activity during 

flexion before and after the deletion (see shaded bars 2-4 in Fig. 12Aa). This is more 

clearly demonstrated in the top trace of Fig. 12Ab, which shows an enlarged overlay of 

PBSt ENG activity before the deletion (black trace) and during the deletion episode (red 

trace). Here you can clearly see how the red trace‟s (during the deletion) activity starts 

during the extensor interval and ends earlier compared to the black trace (pre-deletion), 

furthermore the amplitude of the red trace is lower than that of the black one. This 

particular behavior of PBSt during the deletion indicated that, (1) PF-PBSt continued to 

receive excitatory inputs from both extensor and flexor parts of the CPG during the 

deletion; (2) population In-E, which inhibited PF-PBSt before and after the deletion 

during extension, became silent or at the very least its activity decreased during the 

deletion episode; and (3) populations In-F and In-lF, shaping PF-PBSt behavior during 

flexion, their activity was slightly increased during the deletion, however In-lF continued 

to be rhythmically active and inhibited PF-PBSt in late flexion. Thus, the analysis of 

PBSt behavior during this deletion episode and other similar recordings allowed for the 

following suggestions (see red connections in Fig. 13Aa):  

1. Population PF-PBSt receives excitatory inputs from both RG-E and RG-F 

populations.  

2. An excitatory input from PF-E activates In-E during extension, and In-E inhibits 

PF-PBSt pre and post-deletion during extension. During the deletion, PF-E is 

silent; therefore, the activity level of In-E decreases or is completely eliminated, 

thus allowing PF-PBSt, and by extension PBSt motoneuron population Mn-PBSt, 



82 

to become active within the intervals of expected extensor activity, as was 

demonstrated in Fig. 12A and 12Ab. 

3. In-F and In-lF receive a weak excitatory input from PF-F. Therefore during the 

deletion, because PF-F activity increases, the activity of In-F and In-lF also 

increases, this causes a reduction in the amplitude (due to increased activity of  

In-F) and duration (due to increased activity of In-lF) of PBSt activity in the 

flexor interval during the deletion. The connections are weak, because otherwise 

In-F and In-lF would have completely inhibited PBSt during the flexor interval. 

4. In-lF also receives excitatory tonic drive and is inhibited by Inrg-E. This 

guarantees that it remains rhythmic during non-resetting deletions like this one. 

In Fig. 12Ba, we have another example of PBSt behavior during a non-resetting 

deletion, this time of flexor activity (Sart) with sustained tonic extensor activity (SmAB 

and GS). Such a deletion results from increased excitability of population PF-E, this 

causes it to become tonically active, while population PF-F is silent for the duration of 

the deletion. In this experiment, during the pre and post-deletion periods, PBSt had an 

extensor-type activity profile (active throughout the extension phase, type 2), hence we 

expect that population In-F was strongly active during flexion and inhibited PF-PBSt 

during that phase. On the other hand, during the deletion, PBSt was rhythmically active 

during the expected extensor intervals only (shaded bars 2-4 in Fig. 12Ba; and the 

overlay of the pre and during deletion traces of PBSt ENGs in Fig. 12Bb, top trace). This 

supports the above suggestion that PF-PBSt receives excitatory input from RG-E, but not 

from PF-E, since the latter is supposed to be tonic during the deletion (Table 3), while 

PBSt remains rhythmically active throughout the deletion. In addition, to allow for 
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rhythmic PBSt activity during this deletion, and to allow for any extensor activity of 

PBSt in general (profile types 2 and 3), there should be a mechanism to either reduce the 

activity of In-E or fully suppress it. Therefore the following changes were made to the PF 

level circuitry responsible for shaping PBSt (Fig. 13Ab): 

1. An additional interneuron population In-T was introduced to the model. In-T 

receives tonic excitatory input and provides inhibition of population In-E. In other 

words, the activity of In-T determines whether PF-PBSt can be active only during 

flexion (PBSt types 1a and 1b, when In-T is silent and In-E is active during 

extension), can express activity for the entire duration of the extensor phase (PBSt 

type 2, when In-T is strongly active and In-E is silent), or have low amplitude 

extensor activity when PBSt is biphasic (PBSt types 3a and 3b, when In-T is 

moderately active and In-E is also moderately active during extension).  

2. Population In-F should receive excitatory tonic drive, and should be inhibited 

during extension by populations Inrg-E and Inpf-E. During the deletion in  

Fig. 12Ba, PBSt was only active during the extensor intervals and remained silent 

during the flexor intervals. Based on the model's architecture, during this type of 

deletion PF-F is expected to be silent (see Table 3) and therefore cannot activate 

population In-F in order for it to inhibit PF-PBSt during the expected flexor 

intervals. Hence, to have In-F rhythmically active, in the flexor intervals during 

this deletion, we introduced tonic drive and inhibition by Inrg-E Inpf-E to it. 

Finally in Fig. 12C we have an example of a spontaneous deletion of extensor activity 

(SmAB, MG and LGS) during which flexors (Sart and TA) remained rhythmic. This is an 

example of a non-resetting deletion, and since flexors remained rhythmic during the 
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deletion, this suggested that the deletion occurred due to the cessation of activity of 

population PF-E, while population PF-F continued to be rhythmically active. In this 

experimental recording, PBSt was of a flexor-type before and after the deletion and 

exhibited a long flexor burst lasting for more than half of the flexor phase (type 1b). To 

have PBSt active during the early part of flexion, PF-PBSt should be inhibited by In-lF 

during late flexion; and during extension, PF-PBSt should be inhibited by In-E, thus 

population In-T must be silent. During the deletion episode, like flexors, PBSt remained 

rhythmically active and only during the early portion of the flexor interval (see shaded 

bars 1 and 2 in Fig. 12C). To obtain such an activity profile for PBSt with the model that 

was achieved after the last step of construction (Fig. 13Ab), further changes had to be 

made to it (Fig. 13Ac). To reproduce the activity of PBSt in early flexion during the 

deletion, In-E had to continue expressing rhythmic extensor activity and inhibit PF-PBSt; 

but, during the deletion PF-E was silent and thus no longer capable of activating In-E. 

Therefore, an additional excitatory tonic drive was added to population In-E, and 

inhibition during flexion by populations Inrg-F and Inpf-F was added (Fig. 13Ac), this 

allows In-E to remain rhythmically active during the extension interval of the deletion 

and continue to inhibit PF-PBSt in that particular interval.  

The PF level circuitry for PBSt presented in Fig. 13Ac is expected to shape and 

reproduce all activity of PBSt observed during fictive locomotion and its behavior during 

all types of spontaneous deletions. These claims were tested and verified, and the results 

are presented in chapter 8 of this study. 
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7.1.2 Construction of the Circuit Controlling RF Activity 

To construct the neural circuitry that can reproduce the behavior of RF, we 

considered how RF acted during a selection of experimental ENG recordings that 

included deletion episodes. First, we considered the recording shown in Fig. 12Aa of a 

non-resetting deletion of extensor activity (SmAB and GS) while flexors (Sart and TA) 

remained active. As mentioned earlier, this type of deletion results from increased 

activity of population PF-F, which in turn suppresses the activity of population PF-E. In 

this experiment, RF exhibited a biphasic activity profile (type 2) comprised of two burst, 

a late flexor and a late extensor burst, during the pre and post-deletion period (see shaded 

bars 1 and 5 in Fig. 12Aa and the bottom black trace in Fig. 12Ab). To obtain such an 

activity profile, population PF-RF should be inhibited by populations In-eE and In-eF 

during early extension and early flexion, respectively. During the deletion episode, RF 

lost the extensor component of its activity and remained active only during the latter part 

of the flexion interval (see shaded bars 2-4 in Fig. 12Aa and the bottom red trace in  

Fig. 12Ab). This led to the following suggestions (Fig. 13Ba):  

1. During this non-resetting extensor deletion, biphasic RF lost its extensor 

component. Considering that we expect RG level populations to remain rhythmic 

and population PF-E to become silent during such a deletion, we suggested that 

PF-RF receives excitatory input from population PF-E, and not from population 

RG-E. This allows biphasic RF to lose its extensor component during the deletion, 

as PF-E and all extensors became silent. 

2. Continued rhythmic activity of RF in the latter part of the expected flexor 

intervals during the deletion indicated that PF-RF receives an excitatory input 
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from the RG level of the flexor side of the CPG, i.e. RG-F, which remains 

rhythmic during the deletion.  

3. Also considering the activity of RF during the deletion and how it still occurred 

late in the flexor interval, similar to pre and post-deletion, this suggested that  

In-eF remains rhythmic during this type of deletion. To allow for that, we added 

an excitatory tonic drive to population In-eF, and provided it with inhibition from 

Inrg-E, which is active during extension and since it is an RG level population, it 

remains rhythmic during non-resetting deletions. 

In another non-resetting deletion, shown in Fig. 12Ba, of flexor (Sart) with tonic 

extensors (SmAB and GS), RF expressed flexor-type activity (type 1) before and after the 

deletion episode, and during the deletion RF was silent similar to flexors (compare 

bottom black and red traces in Fig. 12Bb). This type of deletion occurs when population 

PF-E becomes tonically active thus causing population PF-F to become silent. To enable 

our model to replicate such behavior of RF further changes needed to be made  

(Fig. 13Bb): 

1. Since we suggested in the previous construction step (Fig. 13Ba) that PF-RF 

receives excitatory input from PF-E, then we should expect PF-RF, and by 

extension RF motoneurons, to be tonically active during this type of deletion, but 

that was not the case, RF was silent during the deletion. Therefore, in the second 

step of the construction process (Fig. 13Bb) we added an excitatory connection to 

population In-eE from PF-E. This excitatory connection allows population PF-E, 

which is tonically active during this type of deletion, to activate In-eE for the 
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duration of the deletion, which in turn inhibits PF-RF during the deletion and 

produces the RF activity profile we observed (Fig. 12Ba). 

2. RF exhibited a flexor-type activity profile before and after the deletion  

(Fig. 12Ba). To reproduce this profile type, PF-RF should be inhibited during the 

full duration of extension by In-eE, and shaped during flexion by In-eF. Since the 

presence of an extensor component for RF depends entirely on whether In-eE is 

strongly active (inhibits RF extensor component) or moderately active (allows RF 

to be active during late extension), there needs to be a way for the activity level of 

In-eE to be managed. Therefore we decided to add a tonic excitatory drive to 

population In-eE (Fig. 13Bb); RF activity during extension would be determined 

by the strength of this tonic drive. 

3. With the tonic drive added to In-eE we now had to also provide In-eE with 

inhibition during flexion, to guarantee that it is active only during extension. That 

inhibition was provided from population Inpf-F, because during the deletion 

episode shown in Fig. 12Ba, Inpf-F is expected to be silent (Table 3) and 

therefore allows In-eE to be tonically active during the deletion and inhibit PF-RF 

for its duration.  

7.2 Completing the Extended Model  

In the process of constructing the neural circuitries responsible for the generation 

of PBSt and RF activity, we incorporated into the PF level of the CPG model special 

interneuron populations, in particular two, In-lF and In-eF, which we suggested were 

responsible for shaping PF-PBSt and PF-RF activity profiles, respectively, during the 
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flexor phase (see Fig. 10 and Fig. 13A). We suggested that population In-eF (early 

flexion) has a decrementing (adapting) activity pattern, with an activity peak at the 

beginning of flexion. On the other hand, population In-lF (late flexion) has an 

incrementing activity pattern with increased activity towards the end of the phase. To 

form such activity patterns we suggested that neurons with an “early” activity pattern 

must have intrinsic properties defining neuronal adaptation, and that neurons with a 

“late” pattern must be inhibited by populations of the “early” type. Therefore, we 

designed our model with the pair of In-eF and In-lF populations mutually inhibiting each 

other, and we explicitly implemented this in our model (see Fig. 14A and B). Moreover, 

mutual inhibitory interactions between populations In-eF and In-lF provide 

complimentary shaping of the activity profiles of PF-PBSt and PF-RF during flexion. 

In Fig. 14B you can also see one further modification made to the RF circuitry, in 

particular the part of the model responsible for shaping the activity of PF-RF during 

extension. To control the activity of population In-eE, active at the beginning of 

extension, we incorporated into the PF network an additional population, In-lE, active in 

late extension. We also assumed that the interneurons making up population In-eE posses 

adaptive properties, similar to population In-eF. And we implemented mutual inhibition 

between In-eE and In-lE, just like we did for In-eF and In-lF. Furthermore, we suggested 

that population In-lE receives tonic excitatory drive and inhibition from population  

Inrg-F, which maintains the model‟s ability of reproducing all deletion types presented in 

Fig. 12. Finally, we suggested that population In-lE should be inhibited by population  

In-T, which is involved in shaping the activity of PF-PBSt during extension (see  

Fig. 13Ab and the corresponding text). This inhibition provides complimentary shaping 
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for the activity profiles of PF-PBSt and PF-RF during extension. For example, if In-T is 

active, then PF-PBSt is active during extension, and PF-RF is inhibited for the full 

duration of extension. The opposite is also true when In-T is inactive; this agrees with our 

findings in section 5.2 and Fig. 9B. 

The complete proposed schematic of the extended model appears in Fig. 15. This 

schematic includes all hypothetical populations and circuitry incorporated into the PF 

network (see Figs. 13 and 14) to provide the full repertoire of PBSt and RF activity 

profiles observed during fictive locomotion and their behavior during spontaneous 

deletions. Tonic inputs to interneuron populations In-E, In-T, In-eE, In-lE, In-F, In-eF, 

and In-lF, in the extended model, participate in shaping PBSt and RF activity patterns and 

control their behavior during deletions. Mutual inhibition between populations In-eF and 

In-lF provides complimentary shaping for the activities of PBSt and RF during flexion. 

Population In-T, which simultaneously inhibits populations In-E and In-lE, provides 

complimentary control of PBSt and RF activity during extension. If strongly activated, 

In-T inhibits In-E, thus allowing PF-PBSt to exhibit activity during extension, and at the 

same time In-T inhibits In-lE, thus allowing In-eE to become active and inhibit PF-RF 

during the whole extensor phase. Conversely, if In-T is silent, then In-E is active and it 

inhibits PF-PBSt during extension; at the same time, In-lE will also be active and inhibit 

In-eE during the latter part of extension, this allows In-eE to be active in early extension 

and inhibit PF-RF, thus PF-RF will be active during late extension. This idea of having 

the same CPG component networks shape PBSt and RF‟s activity patterns in order to 

replicate these motoneuron pools‟ complimentary activity, is similar to Perret‟s (Orsal et 

al. 1986) suggestion although not exactly identical. Perret suggested that the same part of 
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the CPG activated one of PBSt or RF and at the same time activated an inhibitory 

population that inhibited the other, of PBSt or RF (Orsal et al. 1986). Our hypothetical 

CPG organization shares the idea of a common component network being responsible for 

shaping PBSt and RF, but the complementation of their activity is provided by the mutual 

inhibition that exists between the inhibitory interneuron populations shaping PBSt and 

RF‟s activity. 

The extended model also incorporates additional motoneuron populations,  

Mn-PBSt and Mn-RF, and Renshaw cell populations, R-PBSt and R-RF, that receive 

collateral excitatory inputs from the corresponding motoneuron populations (Mn-PBSt 

and Mn-RF) and provide feedback inhibition to the homonymous motoneuron 

populations. No data is available to conclude which motoneurons could be considered as 

direct antagonists of PBSt or RF and whether reciprocal interactions exist between them 

and other motoneuron populations. Hence, in the current version of the extended model, 

the third level of reciprocal inhibition, mediated by Ia interneuron populations, is not 

included into the PBSt-RF circuitry. In Fig. 15, the additional populations and circuitry 

incorporated into the extended CPG model (and not present in the basic model in Fig 3B) 

are shown within the shaded rectangle outlined with a dashed border.  
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Chapter 8: Model performance 

8.1 Generating PBSt and RF Activity Profiles  

The extended CPG model, capable of replicating activity patterns of PBSt and RF, 

which was described in the previous sections, was tested and verified. Here we discuss 

results obtained from testing the extended model‟s components which make it possible to 

generate PBSt or RF patterns. Figs. 16 and 17 show component circuits of the extended 

model which are involved in the process of shaping PBSt and RF activity patterns, 

respectively, and illustrate how the interplay between tonic drives to interneuron 

populations added at the PF level works to shape specific patterns of PBST and RF 

activities. Figs. 16Aa, Ba, Ca and Da and 17Aa and Ba demonstrate how component 

circuitries participating in the shaping of each particular type of activity operate; dashed 

rectangles indicate whether particular interneuron populations within them participate in 

shaping the flexor or extensor component of PBSt or RF. Arrows between two 

populations are used to represent excitatory connections, and lines terminating with a 

circle represent inhibitory connections. Arrows pointing towards interneuron populations 

schematically represent excitatory input drives to these populations; the size of each 

arrow is a representation of the strength of the tonic drive, the larger the arrow size the 

stronger the input drive. Excitation level of each individual population is schematically 

represented by the size of the output connection, the greater the level of excitation, the 

larger the connection. Interneuron populations represented by an empty circle are inactive 

for that particular simulation and PBSt or RF type. Figs. 16Ab, Bb, Cb, and Db and 17Ab 

and Bb show examples of computer simulation outputs, for that particular input drive 
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distribution. For each simulation, activity of all populations is represented by histograms 

of the average activity of neurons within each population.  

Similar to the basic original model (Rybak et al. 2006a), locomotor rhythm in the 

extended model is generated by the half-center RG level. Alternating rhythmic bursts of 

RG populations, RG-F and RG-E (top two traces in Figs. 16Ab, Bb, Cb, and Db and 

17Ab and Bb) define the durations of extensor and flexor phases (indicated by dashed 

vertical lines) and hence the locomotor cycle period. At the PF level, populations PF-F 

and PF-E closely track the activity of corresponding RG populations (third and fourth 

traces in above figures). The next four traces are of histograms of interneuron populations 

involved in shaping PF-PBSt or PF-RF activity. Finally, the two bottom traces 

demonstrate resultant activity of the corresponding bifunctional PF populations (PF-PBSt 

or PF-RF) and motoneuron pools (Mn-PBSt or Mn-RF). Shaded bars highlight the time 

intervals during which Mn-PBSt or Mn-RF are active (for one locomotor cycle). 

8.1.1 Flexor-Type PBSt  

Figs. 16A and B demonstrate how flexor-type PBSt patterns (types 1a and 1b) are 

shaped by the extended model. To generate flexor-type activity patterns, PF-PBSt should 

be fully inhibited during extension by In-E, which therefore should have a high activity 

level; and PF-PBSt should be inhibited during the latter part of flexion by In-lF. 

Population In-F, in this case, should be silent or weakly active to allow PF-PBSt activity 

during flexion. In the model, excitability of In-E is controlled by the excitatory tonic 

drive it receives (DE) and inhibition from population In-T. Therefore, if In-T is silent and 

DE is strong enough (Fig. 16Aa and Ba), then In-E becomes highly active and fully 
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suppresses the activity of PF-PBSt (and hence Mn-PBSt) during extension (see traces in 

Fig. 16Ab and Bb showing the activity of In-E, PF-PBSt, and Mn-PBSt). Note that In-E 

itself is inhibited by Inrg-F (see Fig. 15) during flexion, thus it does not suppress  

PF-PBSt (and Mn-PBSt) activity during that phase. Inhibition of PF-PBSt activity during 

late flexion is provided by population In-lF, and the duration of the flexor component is 

determined by the activity level of In-lF. Relative excitability of In-lF and In-eF, 

mutually inhibiting each other during flexion, is determined by excitatory drives, DlF and 

DeF, to these populations, respectively (Fig. 16Aa and Ba). Therefore the stronger DlF 

and/or the weaker DeF is, the shorter the duration of PF-PBSt flexor burst (Fig. 16Ab), 

and vice versa (Fig. 16Bb). 

8.1.2 Extensor-Type PBSt 

Extensor-type PBSt pattern (type 2) is obtained using the method described in 

Fig. 16C. To have PF-PBSt active during extension, it should first receive minimal to no 

inhibition during extension, second, it should be completely inhibited during flexion. If 

input drive DE to population In-E is relatively weak and input drive DT to population In-T 

is strong enough to produce high activity within it, then In-T would fully inhibit In-E 

(Fig. 16Ca). Consequently, PF-PBSt would be disinhibited during extension allowing it 

(and Mn-PBSt) to be active for the duration of the phase (bottom two traces in  

Fig. 16Cb). To completely suppress PF-PBSt activity during flexion, population In-F has 

to be strongly activated by input drive DF. Note that during extension, population In-F is 

inhibited by Inrg-E (see Fig.15), therefore it can only be active during flexion. 

Populations In-eF and In-lF do not participate in shaping PBSt activity in this case, hence 



94 

the nature of their activity is inconsequential. Fig. 16Cb shows the activities of 

populations In-E, In-F, In-eF and In-lF and the resulting extensor profile of PF-PBSt and 

Mn-PBSt activity.  

8.1.3 Biphasic PBSt 

Fig. 16D illustrates the generation of biphasic PBSt pattern (type 3) using the 

extended model. For this activity profile, PBSt usually demonstrates persistent activity 

(reduced, in many cases) during extension, followed by a short burst at the beginning of 

flexion. Reduced activity during extension is provided by moderate inhibition of PF-PBSt 

by population In-E. The strength of this inhibition is determined by the relative strengths 

of excitatory drive inputs DE and DT to populations In-E and In-T, respectively  

(Fig. 16Da). Population In-F, in this case, should be silent or weakly active to allow  

PF-PBSt to be active during flexion. Generation of the short flexor burst at the beginning 

of the phase is provided by the same circuitry involved in generating flexor-type PBSt 

activity (see Fig. 16Aa). Fig. 16Db illustrates activities of populations In-E, In-F, In-eF, 

and In-lF shaping biphasic PF-PBSt activity pattern and the resulting activity of  

Mn-PBSt. 

8.1.4 Flexor-Type RF 

For flexor-type RF activity pattern (type 1), Fig. 17A shows how the model was 

used to generate this profile. RF should be inhibited during the whole extensor phase and 

at the beginning of flexion. In our model, PF-RF activity during extension is determined 

by population In-eE. The strength of In-eE activity during extension depends on the 

relative strengths of input drives DeE and DlE to population In-eE and In-lE, respectively 
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(see Fig. 17Aa and Ba). If drive DeE is strong and drive DlE is weak or absent, then In-eE 

will be active and maintain its activity throughout the duration of extension, and therefore 

completely inhibit PF-RF activity during that phase (Fig. 17A). Note that during flexion, 

In-eE is inhibited by population Inpf-F (see Fig. 15), thus allowing it to be active only 

during extension. Also, population In-T contributes to shaping RF activity; if In-T is 

strongly activated by excitatory input drive DT, then it completely inhibits In-lE which 

makes it possible for In-eE to maintain its activity for the whole extensor phase in order 

to inhibit PF-RF (Fig. 17A). On the other hand, during flexion, population PF-RF is 

inhibited by population In-eF (Fig. 17Aa) at the beginning of the phase, therefore 

producing an RF flexor burst late in the phase (Fig. 17Ab). Moreover, the stronger In-eF 

activity is, with respect to In-lF, the later RF's flexor burst starts and the shorter is its 

duration. Hence, onset of RF activity during flexion is determined by the interplay 

between input drives DeF and DlF to population In-eF and In-lF, respectively.  

Note that population In-T plays a dual role in the model, simultaneously 

prohibiting RF and allowing PBSt activity during extension, or the opposite, such that RF 

and PBSt are never simultaneously active during extension. Also note that populations 

In-eF and In-lF, in addition to shaping RF activity during flexion, participate in shaping 

PBSt activity during the same phase; therefore mutual inhibition between these 

populations determines complimentary interactions between PBSt and RF during flexion, 

such that PBSt and RF activity does not overlap during flexion, where PBSt is active 

early in flexion and RF is active late in flexion. 
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8.1.5 Biphasic RF 

Fig. 17B illustrates shaping of biphasic RF activity pattern (type 2) in the model. 

In this case of RF activity, PF-RF is inhibited at the beginning of extension and at the 

beginning of flexion, such that it is active late in both phases. Generating RF activity late 

in flexion is achieved with a similar process to that described for flexor-type RF (see 

description above). To generate the additional burst of activity of PF-RF in extension, 

input drive DT to population In-T should be weak (or absent), so that population In-lE is 

released from the inhibition of In-T. In addition, drive DlE to population In-lE should be 

strong enough for it to overcome the inhibition of population In-eE, and in turn inhibit  

In-eE in late extension. Similar to the pair In-eF and In-lF, the interplay of mutual 

inhibition between In-eE and In-lE, defined by the excitatory tonic drives to each of these 

populations, determines the duration of the extensor component of RF. If drive DlE to  

In-lE is strong relative to drive DeE to In-eE, then at some point during extension, 

population In-lE escapes the inhibition of In-eE and becomes active suppressing the 

activity of In-eE. This allows PF-RF (and hence Mn-RF) to exhibit a burst of activity at 

the end of the extensor phase. Fig. 17Bb shows activities of populations involved in the 

formation of biphasic PF-RF activity pattern and the resulting activities of PF-RF and 

Mn-RF populations. 

8.2 Modeling PBSt and RF Activity during Fictive Locomotion 

Fig. 18A-D shows results of simulations of different types of PBSt and RF 

activity during fictive locomotion in comparison with ENG records obtained in a fictive 

locomotion experimental setup. Upper panels in Fig. 18 (Aa, Ba, Ca, and Da) are of 
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flexor, extensor, PBSt and RF motoneuron pools' activities generated using our extended 

CPG model, and lower panels are of corresponding experimental recordings (Ab, Bb, Cb, 

and Db) exhibiting similar types of activity patterns of PBSt and RF. Traces in the 

simulation panels show averaged spiking frequency of neurons within analogous 

motoneuron populations. The first two traces are of activities of flexor (Mn-F) and 

extensor (Mn-E) motoneuron populations, respectively; the third and fourth traces are of 

activities of bifunctional motoneuron populations, Mn-PBSt and Mn-RF, respectively. 

In Fig. 18Aa we have the simulation result of the case in which Mn-PBSt exhibits 

only a short burst at the beginning of flexion (type 1a) and Mn-RF expresses a biphasic 

pattern with one burst during late flexion and another short burst at the end of extension 

(type 2). The corresponding experimental recordings obtained during fictive locomotion, 

in which PBSt and RF exhibited similar patterns, are shown in Fig. 18Ab.  

In Fig. 18Ba, the simulation shown is of Mn-PBSt exhibiting a longer flexor burst 

at the beginning of flexion (type 1b), and Mn-RF showing flexor type activity (type 1) 

with a single burst of activity at the end of flexion. The corresponding experimental 

recording is shown in Fig. 18Bb, however this recording did not include RF activity (we 

had no experiments in our database where PBSt and RF were simultaneously recorded 

while exhibiting long flexor-type and flexor-type activity, respectively).  

Fig. 18Ca shows the result of a simulation in which extensor-type Mn-PBSt  

(type 2) is active for the full duration of extension, while flexor-type Mn-RF exhibits a 

flexor burst in late flexion (type 1). The corresponding experimental records show similar 

patterns for both PBSt and RF motoneurons (Fig. 18Cb).  
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In Fig. 18Da, the simulation is of biphasic Mn-PBSt (type 3) with low amplitude 

activity throughout extension and a short burst of activity at the beginning of flexion. 

Mn-RF, in this simulation, exhibits flexor-type activity (type 1). The experimental 

recording (Fig. 18Db) shows the same activity patterns for both PBSt and RF. 

In summary, the extended model that was constructed in this study was able to 

reproduce all types of PBSt and RF activities and their combinations, observed during 

fictive locomotion in decerebrate immobilized cats (Fig. 9). Based on our simulations, we 

propose that the variety of activity patterns of PBSt and RF motoneurons, exhibited 

during fictive locomotion, is the result of variable activation levels of special interneuron 

populations involved in shaping PBST and RF profiles at the pattern formation level. 

8.3 Modeling Deletions  

8.3.1 Behavior of Flexor-Type PBSt during Resetting Extensor Deletions 

In the process of developing the extended model, the challenge was not only to 

reproduce the full repertoire of PBSt and RF activity patterns but also to reproduce and 

explain their complex behavior during different types of deletions (Table 4). Specifically, 

the interesting problem was the behavior of flexor-type PBSt (types 1a and 1b) during 

resetting extensor deletions (Fig. 19C), where it can demonstrate either tonic, silent, or 

rhythmic activity during the deletion. To generate flexor-type activity patterns (type 1a or 

1b), PF-PBSt should be inhibited during extension by In-E and in the latter part of flexion 

by population In-lF (see Fig. 16A and B). Activity onset of In-lF, and hence termination 

of PF-PBSt activity, in late flexion is determined by the relative strength of excitatory 
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input drives to populations In-eF and In-lF, which mutually inhibit each other (see  

Figs. 16A and B and 19A). 

In all three cases presented in Fig. 19C, extensor deletions are of the resetting 

type, due to obvious phase shifts in post-deletion locomotor rhythms compared to pre-

deletion rhythms. Shaded bars in Fig. 19C highlight behaviors of different motoneurons 

recorded during the deletions. Based on the organization of the two-level locomotor CPG 

model, resetting extensor deletions can be generated through a temporary spontaneous 

decrease of excitability of the extensor half-center of the RG level, i.e. population RG-E. 

In the model, this deletion type was reproduced by applying a temporary inhibitory tonic 

drive to population RG-E (designated by the horizontal bars at the top of Fig. 19Ba-c). 

Component circuitries shown in Fig. 19Aa-c demonstrate how the behavior of PF-PBSt, 

during a resetting extensor deletion, depends on the interplay between input drives DeF 

and DlF to populations In-eF and In-lF, respectively (left filled arrows), and tonic 

excitatory inputs that In-lF and PF-PBSt receive from PF-F and RG-F, respectively (right 

unfilled arrows) (see Figs. 14A and 5). Excitatory inputs to In-lF and PF-PBSt are tonic 

since populations PF-F and RG-F are tonically active during the deletion. Behavior of 

interneuron populations shown in Fig. 19Aa-c, during the deletions, is indicated by the 

filling of the circles representing these populations; empty for silent, black for strongly 

active, gray for weakly active, and half white half black for rhythmic. Fig. 19B shows 

simulation results demonstrating the different behaviors of PBSt during resetting extensor 

deletions; durations of the deletions are designated by shaded areas. 

In the first case that we considered, population In-lF receives a weak excitatory 

input drive DlF compared to drive DeF to population In-eF (Fig. 19Aa), in order to 
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produce a long flexor-type PBSt (type 1b) (Fig. 16B). However, during the deletion,  

In-eF and In-lF are no longer rhythmically inhibited by Inrg-E, and In-lF now receives 

tonic drive from PF-F, similarly PF-PBSt receives tonic drive from RG-F. This leads to a 

loss of rhythmic activity in In-eF, In-lF and PF-PBSt; furthermore In-eF, which receives 

a stronger tonic drive (DeF) relative to In-lF (DlF), suppresses the activity of In-lF for the 

duration of the deletion. Therefore, PF-PBSt is no longer inhibited by In-lF and thus 

exhibits sustained activity, along with Mn-PBSt, during this deletion (Fig. 19Ba), thereby 

emulating and explaining the tonic activity of PBSt in the experimental record shown in 

Fig. 19Ca. 

In the alternate situation, population In-lF receives a stronger input drive DlF 

compared to drive DeF to population In-eF (Fig. 19Ab), to generate a short flexor-type 

PBSt profile (type 1a) (Fig. 16A). During the deletion, after rhythmic inhibition is lost, 

In-lF becomes tonically active and inhibits In-eF, due to the stronger tonic drive (DlF) to 

In-lF. Thus population In-lF completely inhibits PF-PBSt during the deletion, which 

results in a silent Mn-PBSt (Fig. 19Bb), and thus reproduces the corresponding behavior 

seen in the experimental records in Fig 19Cb. 

Finally, in rare occasions, the interplay between tonic drives DeF and DlF creates a 

balance in mutual inhibition between populations In-eF and In-lF. This results in In-eF 

and In-lF acting like an independent oscillator during the deletion (Fig. 19Ac) with a 

period determined by the excitatory inputs to these populations and the weights of 

inhibitory connections between them (note, this oscillation period is not related to the 

locomotor period pre and post-deletion). Finally, this causes PF-PBSt, and by extension 

Mn-PBSt, to exhibit rhythmic activity during the deletion (Fig. 19Bc), therefore offering 
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an explanation for the rhythmic activity of PBSt displayed during the experimental 

recordings shown in Fig. 19Cc. 

8.3.2 Behavior of Other Types of PBSt and RF during Resetting Deletions 

The model was also able to reproduce all types of PBSt and RF behaviors during 

all types of deletions presented in Table 4. A selection of interesting examples is shown 

in Fig. 20. All deletions presented in Fig. 20 were resetting type deletions, due to a 

phase shift of post-deletion rhythms relative to pre-deletion rhythms. Deletions were 

simulated in the extended CPG model by applying an additional inhibitory drive to the 

rhythm generator half-center which is expected to be silent during the deletion (RG-F in 

Fig. 20A and C; RG-E in Fig. 20B and D), as indicated by horizontal bars above the 

activity traces. In Fig. 20A and B, Mn-PBSt had an extensor-type activity profile (type 

2) before and after the deletion and Mn-RF (in Fig. 20A) demonstrated flexor-type 

activity (type 1). During the resetting flexor deletion simulated in Fig. 20Aa, Mn-PBSt 

became tonically active, whereas Mn-RF was silent. The behavior of both motoneuron 

populations corresponded to experimental data (Table 4). An example of an 

experimental recording for this situation is presented in Fig 20Ab, where PBSt was 

tonically active similar to extensor SmAB, and RF along with flexors Sart and TA were 

silent during the deletion. In Fig. 20Ba, of an extensor resetting deletion, extensor-type 

Mn-PBSt was silent during the deletion, which corresponded to the experimental data 

(Table 4). A corresponding example of such PBSt behavior during fictive locomotion is 

shown in Fig. 20Bb, in which flexors Sart and TA expressed sustained activity during 

the deletion, whereas extensors SmAB and GS, and PBSt were silent.  



102 

In Fig. 20C and D, Mn-PBSt had a biphasic activity profile (type 3) before and 

after the deletion. During a resetting flexor deletion (Fig. 20Ca), Mn-PBSt was 

tonically active, and thus corresponded to the available experimental data (Table 4). An 

example of such a deletion is shown in Fig. 20Cb, where biphasic PBSt was tonically 

active together with extensors SmAB and GS during the deletion, whereas flexors Sart 

and TA were silent. Interesting to note that in Fig. 20Cb the amplitude of PBSt activity 

during extension is reduced relative to flexion, and PBSt maintains such a low level of 

activity during the deletion. This supports our suggestion that the excitability of In-E 

(which determines the level of PBSt activity in the extensor phase; Fig. 16D) is 

determined by tonic drive DT to population In-T, and therefore the activity level of In-E 

is not affected by this type of deletion (note that during this type of deletion, PF-PBSt 

receives inhibition only from In-E). These observations were explicitly reproduced by 

our model (Fig. 20Ca). In Fig. 20Da, during a resetting extensor deletion PBSt, which 

exhibited biphasic activity pre and post-deletion, became silent during the deletion. 

This behavior matched the experimental data (Table 4) and the corresponding example 

in Fig. 20Db, where flexor Sart had sustained activity during the deletion, whereas 

extensors SmAB and GS as well as biphasic PBSt were silent. 

8.3.3 Behavior of PBSt and RF during Non-Resetting Deletions 

During non-resetting deletions of either flexor or extensor activity, PF-PBSt 

continues to receive rhythmic inputs from both sides of the CPG, particularly from the 

RG level. Interneuron populations In-E, In-F, and In-lF responsible for shaping the 

activity of PF-PBSt also continue to receive rhythmic inputs during non-resetting 
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deletions. Moreover, during non-resetting extensor deletions, populations In-F and In-lF, 

which inhibit PF-PBSt during flexion, receive sustained excitatory input from population 

PF-F; during non-resetting flexor deletions, population In-E, which inhibits PF-PBSt 

during extension, receives sustained excitatory input from PF-E. In both cases, PBSt‟s 

behavior during the deletion is complex and may be dissimilar from the behavior of 

motoneuron pools that where co-active with PBSt pre-deletion. This is demonstrated for 

flexor-type PBSt (type 1b) (Fig. 21Aa and Ba), and extensor-type PBSt (type 2) (Fig. 

21Ab and Bb) during non-resetting extensor and flexor deletions, respectively. Fig. 21B 

shows simulation results of PBSt behavior, shaded bars highlight the deletion episodes. 

Component circuitries (Fig. 21A) demonstrate how PBSt‟s behavior during each 

particular deletion depends on the interplay of continued rhythmic inputs to PF-PBSt and 

the interneuron populations from the RG level, and sustained inputs to the interneuron 

populations from the active side of the PF level.  

Flexor-type PBSt activity (type 1b) is produced by inhibiting PF-PBSt during 

extension by population In-E and in late flexion by In-lF. In the model, a non-resetting 

extensor deletion is produced by temporarily applying an additional excitatory tonic drive 

to population PF-F (horizontal bar at the top of Fig. 21Ba). During the deletion, 

population In-E receives increased inhibition from Inpf-F and loses its excitatory input 

from PF-E, this decreases its ability to inhibit PF-PBSt, thus allowing PF-PBSt to be 

active in extensor intervals during the deletion. On the other hand, increased excitatory 

inputs to populations In-lF and In-F from PF-F, during the deletion, allows them to 

partially suppress PF-PBSt‟s activity in flexor intervals. A simulation (Fig. 21Ba) of this 

situation demonstrates how flexor-type PBSt can be expected to behave during this type 
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of deletion. This prediction was verified by an experimental recording (Fig. 21Ca) where 

PBSt exhibited a similar behavior and was partially rhythmic during the deletion, with 

higher activity levels occurring during anticipated extensor intervals.  

Extensor-type PBSt activity (type 2) is produced by inhibiting PF-PBSt during 

flexion by population In-F and having In-E silent or weakly active. In the model, a non-

resetting flexor deletion is produced by temporarily applying an additional excitatory 

tonic drive to population PF-E (horizontal bar at the top of Fig. 21Bb). During the 

deletion, population In-E receives increased excitatory input from PF-E which allows it 

to partially suppress PF-PBSt‟s activity in extensor intervals. Population In-F loses its 

excitatory input from PF-F, however, due to a strong input drive continues to be active 

and inhibits PF-PBSt in flexor intervals during the deletion. A simulation (Fig. 21Bb) of 

the corresponding situation reveals that extensor-type PBSt can be expected to remain 

rhythmically active in extensor intervals during this type of deletion, but with reduced 

activity levels. This prediction was again verified by an experimental recording of an 

identical situation (Fig. 21Cb) where PBSt had a similar activity profile to what the 

model has predicted.  

In Fig. 22 we show an example of reproducing RF behavior during a non-

resetting extensor deletion. In the model simulation (Fig. 22A), Mn-RF exhibited a 

biphasic activity profile (type 2) consisting of a flexor and an extensor burst, before and 

after the deletion. A non-resetting extensor deletion with sustained rhythmic activity of 

flexors was reproduced in the model by temporarily applying an additional inhibitory 

drive to population PF-E. During the deletion, biphasic Mn-RF lost its extensor burst and 

exhibited rhythmic flexion related activity. Mn-RF activity coincided with Mn-F 
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rhythmic activity during the deletion, only it started late relative to Mn-F but terminated 

at the same time. In the experimental recording shown in Fig. 22B, RF exhibited a 

biphasic activity pattern before and after the deletion, and during the non-resetting 

deletion of extensors SmAB and GS, along with rhythmic bursting of flexors Sart and 

TA, RF lost its extensor bursts and maintained rhythmic flexor activity. Towards the end 

of the deletion episode, a low amplitude extensor burst appeared which was observed in 

both extensors SmAB and GS as well as RF records (Fig 22B). To reproduce such a 

behavior in our model (Fig. 22A), the temporarily applied additional inhibitory drive to 

population PF-E was reduced towards the end of the deletion by 70%; in the figure, this 

is represented by a shading level change at the instance when this change was applied. 

This allowed the model to reproduce a similar behavior to that observed in the 

experimental recording including the low amplitude extensor and RF bursts at the end of 

deletion.  
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Chapter 9: Conc1uding Remarks 

9.1 Candidate CPG Interneurons  

Up until this point in time, no group of interneurons in the mammalian spinal cord 

has been discovered to be responsible or necessary for the generation of rhythmic 

locomotor activity. However, recently several research groups, using new genetic and 

electrophysiological techniques, have identified CPG interneuron candidates that might 

be involved in the locomotor rhythm generation and control. Several populations were 

found to be rhythmically active during locomotor activity and were genetically and 

electrophysiologically characterized such as V0-V3, EphA4 and HB9 interneurons 

(Guertin 2009). V0 interneurons include several types of neurons, of most interest are 

commissural interneurons (CIN) which can form excitatory and inhibitory reciprocal 

connections between the two sides of the spinal cord (Butt et al. 2002; Kiehn and Butt 

2003; Lanuza et al. 2004). V1 interneurons may include inhibitory Ia and Renshaw cells 

(Gosgnach et al. 2006), and V2 interneurons were found to be associated with frequency 

and activity amplitude control in addition to bilateral coordination (Lundfald et al. 2007). 

V3 and EphA4 interneurons were linked to balanced, robust and coordinated locomotor 

rhythms (Butt et al. 2005; Zhang et al. 2008). Finally, HB9 excitatory interneurons are 

believed to form part of the rhythm generation or pattern formation networks of the 

locomotor CPG (Brownstone and Wilson 2008; Hinckley et al. 2005). 

9.1.1 Commissural Interneurons 

The axons of CINs cross the spinal cord midline, therefore they are easily 

identified anatomically and physiologically. Studies have shown that CINs function in 
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coordinating motoneuron activity on the two sides of the spinal cord, enabling alternating 

activity of the two hind-limbs during stepping (Kiehn and Butt 2003). Based on their 

axonal projections, CINs have been divided into short and long range groups. Short range 

CINs are segmental, projecting their axons within one spinal cord segment between the 

left and right sides of the spinal cord. Long range CINs are intrasegmental, they also 

project contralaterally but over one and up to six segments away from segment of origin. 

They are further subdivided into three groups: (1) ascending (aCINs); (2) descending 

(dCINs); and (3) having both ascending and descending axons (adCINs). 

In rodents, where L2 spinal cord segment motoneuron activity is mostly flexor 

related and L4/L5 segment motoneuron activity is mostly extensor related, studies have 

shown that rostral dCINs, located in L2 and rhythmically active with flexor L2 

motoneurons, bind or synchronize ipsilateral flexor activity with contralateral L4/L5 

extensor activity (Butt et al. 2002; Butt and Kiehn 2003). Furthermore, segment L2 

contains fewer motoneurons active during extension and L4/L5 contain fewer 

motoneurons active during flexion. Hence, L2 dCINs rhythmically active with extensor 

L2 motoneurons, are also suggested to bind ipsilateral L2 extensor activity with 

contralateral L4/L5 flexor activity. Considering that CINs can be either excitatory or 

inhibitory, in this suggested organization, dCINs would provide both excitatory and 

inhibitory drives serving an essential role in the creation of diagonal synergies across the 

spinal cord. Such that, when L2 exhibits flexor motoneuron activity, co-active ipsilateral 

dCINs projecting from L2 to contralateral L4/L5 not only excite extensor motoneurons in 

these segments, they also inhibit flexor motoneuron activity. Segmental CINs were also 
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found to play a role in left-right coordination, through both excitatory and inhibitory CIN 

types, guaranteeing contralateral flexor-extensor synchronization at each segment level. 

These studies reveal the effects of CINs upon motoneurons in the contralateral 

side of the spinal cord, but expose nothing about any possible effects that they may have 

on contralateral CPG interneurons (Kiehn and Butt 2003). Moreover, as discussed in the 

introduction to this study, it is believed that each hind-limb is separately controlled by an 

independent CPG located in the ipsilateral side of the spinal cord. Therefore CINs, if they 

were found to affect contralateral CPG interneurons, will most likely be associated with 

the coordination of the two hind-limb CPGs, whether synchronizing them during 

galloping or ensuring that they are out of phase during walking or trotting. All available 

data regarding CINs thus far indicates that they do not form an integral part of the 

locomotor CPG and are neither involved in the rhythm generation process nor in pattern 

formation of motoneuron activity. Hence, studies that have looked into the function and 

activity of CINs neither offer supporting evidence for the CPG organization proposed in 

this study, nor do they reveal any contradictory findings that would challenge the work 

presented here.  

9.1.2 Ipsilateral Projecting Excitatory Interneurons 

Intracellular recordings in spinal cord regions where the locomotor CPG is 

believed to exist uncovered a group of excitatory interneurons identified by EphA4 

genetic marker (Butt et al. 2005; Kiehn and Butt 2003). EphA4 positive interneurons 

have been shown to directly or indirectly excite ipsilateral motoneurons, moreover 

EphA4 interneurons were found to be rhythmically active with ipsilateral motoneurons 
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during locomotor activity (Butt et al. 2005). However, no experiments were conducted to 

determine whether EphA4 interneurons are in fact involved in the rhythm generation 

process or are merely expressing rhythmic activity due to rhythmic excitatory and or 

inhibitory inputs that they receive.  

Another group of excitatory interneurons, expressing HB9 transcription factors, 

and exhibiting rhythmic activity during neurotransmitter induced locomotor activity, have 

been identified in the spinal cord of rodents (Brownstone and Wilson 2008; Hinckley et 

al. 2005; Kiehn et al. 2008). Morphological experiments have raised the possibility that 

HB9 interneurons are premotor and form part of the CPG network (Hinckley et al. 2005), 

but others (Brownstone and Wilson 2008) were unable to substantiate these claims and 

found no HB9 synaptic terminals on nearby motoneurons, instead they have suggested 

that HB9 neurons were not last order neurons. Nonetheless, HB9 rhythmic activity has 

been found to be in-phase with activity recorded at the ventral root of the corresponding 

spinal cord region.  

No strong experimental evidence is available to determine with certainty the 

identity of neurons forming synaptic connections with HB9 neurons, which makes it 

difficult to establish the role of these neurons. Contradictory evidence has been presented 

concerning HB9 neurons forming synaptic connections with each other (Hinckley et al. 

2005); or if HB9 neurons are not electronically coupled to each other, but rather to other 

non-HB9 neurons (Wilson et al. 2007). Furthermore, there is no solid evidence to suggest 

that HB9 interneurons are responsible for the generation of rhythmic activity. In fact it is 

possible that HB9 neurons receive rhythmic inputs from the locomotor CPG, thus co-

activating them along with the corresponding segmental motoneurons (Hinckley et al. 
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2005). Yet others were able to observe rhythmic activity in synaptically isolated HB9 

neurons in a spinal cord slice, suggesting that HB9 neurons are intrinsically rhythmic and 

capable of generating the locomotor rhythm on their own (Jiang et al. 1999). Based on 

the latter, Brownstone and Wilson (2008) have proposed that HB9 interneurons are part 

of an asymmetric flexor burst rhythm generator network, which projects onto a pattern 

formation network controlling the activity of flexor and extensor motoneurons. 

It is difficult to argue for an asymmetric organization of the rhythm generator 

level considering the inconclusive evidence in favor of such an organization. Even 

though some available evidence points in the direction of an asymmetric organization, 

other evidence suggests otherwise. In particular an asymmetric organization of the RG 

fails to explain how blocking inhibition in the spinal cord leads to synchronized 

ipsilateral extensor-flexor activity (Beato and Nistri 1999; Bracci et al. 1996; Cowley and 

Schmidt 1995), an observation which is easily explained and reproduced by the half-

center RG organization (Rybak et al. 2006a). 

None of the rhythmically active interneurons uncovered thus far have 

demonstrated activity relating to bifunctional motoneurons or any of the proposed 

interneuron populations involved in shaping bifunctional motoneuron activity. While this 

offers no support for the CPG architecture proposed in this study, it also presents no 

evidence against it. 

9.2 Summary and Future Directions 

We have performed a comprehensive analysis of activity profiles of bifunctional 

motoneurons PBSt and RF during fictive locomotion experiments and their behavior 
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during spontaneous deletions. Such comprehensive analysis has not been performed prior 

to this study. Our results confirmed the suggestion previously proposed by Perret‟s group 

(Orsal et al. 1986; Perret 1983; Perret et al. 1988) that the different activity patterns of 

PBSt and RF observed during fictive locomotion are solely produced by the locomotor 

CPG and reflect the organization of neural circuitry within the CPG. This analysis 

allowed us to hypothesize the existence of inhibitory interneuron populations 

participating in shaping PBSt and RF activity patterns and propose an extended CPG 

model that is able to realistically reproduce the behavior of PBSt and RF during fictive 

locomotion and their behaviors during spontaneous deletions. 

We demonstrated that a two-level locomotor CPG with a bipartite half-center 

rhythm generator and a special organization of neural circuits at the pattern formation 

level (between the rhythm generator and motoneuron pools) can account for and 

reproduce the complex patterns of bifunctional motoneurons, particularly PBSt and RF. 

The proposed CPG model was able to reproduce the full repertoire of PBSt and RF 

activity patterns observed during fictive locomotion. And, even though only a limited 

number of spontaneous deletion experimental recordings were used in the construction 

process of the CPG network, the model was in fact able to reproduce all activities of 

PBSt and RF during all deletion types presented in Table 4, which validates the CPG 

organization proposed in the current model.  

The key elements of the proposed network are the principal neuron populations 

PF-PBSt and PF-RF that directly control the activation of PBSt and RF motoneuron 

pools, and additional interneuron populations In-F, In-eF, In-lF, In-E, In-eE, In-lE and  

In-T that shape the activity profiles of PF-PBSt and PF-RF during flexion and extension. 
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In the model, the excitability of these interneurons, or the drives they receive from the 

MLR, explicitly defines the activity profiles expressed by PBSt and RF motoneurons 

during a particular fictive locomotion experiment (from the repertoire of possible 

profiles). We suggest that these interneuron populations, during normal locomotion, 

receive excitatory inputs from sensory afferents and/or descending signals, which 

determine and shape the appropriate activity profiles of PBSt and RF that are required for 

a particular gait, speed of locomotion, or set of environmental conditions. Hence, we 

propose that the mechanism, by which the activity of PBSt and/or RF is varied from one 

type to another, is through varying the amount of excitatory drive that these inhibitory 

interneuron populations receive, thus providing a way for proprioceptive control of the 

activity of bifunctional motoneurons during real locomotion.  

The proposed model cannot be fully verified due to the scarcity of data on the 

activity of various spinal interneurons including those that are expected to play a role in 

mediating inputs of sensory afferents to PBSt and RF motoneurons (e.g., Ia type 

interneurons). Interneuron populations forming the PF network and the organization of 

connections within this network cannot be confirmed at this point. Data from intracellular 

recordings of PBSt and RF motoneurons has not been widely used in this study due to the 

limited amount of this data and lack of experiments that would allow for well founded 

conclusions. Moreover, we are aware that the proposed network architecture may not 

represent the only possible solution, other possible architectures may be found that can 

produce similar outputs, therefore the proposed model remains hypothetical. Further 

experimental and modeling studies are necessary to refine the model and confirm or 

modify assumptions used in its construction. The behavior of PBSt and RF motoneurons 
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in addition to particular interneurons can be predicted using this CPG model under 

different conditions, thus offering testable predictions which can then be experimentally 

verified in fictive locomotion preparations to validate the model‟s accuracy. Furthermore, 

the model will have to be reevaluated, and if necessary modified, as more experimental 

data on CPG interneurons becomes available with time. 

 



 

Chapter 10: Tables 

Table 1. Steady state activation and inactivation variables and time constants for voltage-dependent ionic channels  

Ionic 

channels 

m∞(V),   V is in mV 

h∞(V),   V is in mV 

τm(V), ms 

τh(V),  ms 

Na 

1))8.7/)35(exp(1( 

  Vm Na  

1))7/)55exp((1( 

  Vh Na  

0mNa  
 

50)/16))exp(-(50)/15)(exp((/30  VVhNa  

NaP 

1))1.3/)1.47(exp(1( 

  Vm NaP

1))8/)59exp((1( 

  Vh NaP  

0mNaP  

800 59)/16),(cosh(/ maxmax  hNaPhNaPhNaP V   

K 

1))15/)28(exp(1( 

  Vm K  

                  1Kh  

40)/50))exp(-(40)/40)(exp((/7  VVmK  

KA 

1))5.8/)60(exp(1( 

  Vm A1  
1

1 ))6/)78exp((1( 

  Vh A  
1

2 ))20/)36(exp(1( 

  Vm A  
1

2 ))6/)78exp((1( 

  Vh A  

0.37)7)79.69)/12.exp(-(69)35.82)/19.(exp((/1  VVmA1

45))238.4)/37.exp(-(46.05)/5)exp(((1/1  VVhA1  

 if V<-63, else τhA1=19.0 

0.37)7)79.69)/12.exp(-(69)35.82)/19.(exp((/12  VVmA

45))238.4)/37.exp(-(46.05)/5)exp(((1/12  VVhA  

 if V<-73, else τhA2=60.0 

CaN 

1))5/)30(exp(1( 

  Vm CaN  
1))5/)45exp((1( 

  Vh CaN  

4mCaN  
 

40hCaN  

CaL 

1))7/)40(exp(1( 

  Vm CaL  

                  1CaLh  

40mCaL  

All expressions and parameters, except those for the NaP and KA channels, are taken from Booth et al. (1997). The expressions for the 

NaP channel are from Rybak et al. (2003). The expressions for KA channels are from Huguenard & McCormick (1991, 1992). 
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Table 2. Weights of synaptic connections in the network 

 
 

Target 

population 

Source population (weight of synaptic input to one neuron) 

RG-E RG-E (0.025); RG-F (0.025); Inrg-E (-0.225) 

RG-F RG-E (0.025); RG-F (0.025); Inrg-F (-0.225) 

Inrg-E RG-F (0.6) 

Inrg-F RG-E (0.6) 

PF-E RG-E (0.1); Inrg-E (-0.07); Inpf-E (-0.8) 

PF-F RG-F (0.1); Inrg-F (-0.07); Inpf-F (-0.8) 

Inpf-E PF-F (0.5) 

Inpf-F PF-E (0.5) 

PF-PBSt RG-E (0.1); RG-F (0.1); In-E (-0.4); In-F (-0.4); In-lF (-0.4) 

PF-RF PF-E (0.4); RG-F (0.15); In-eE (-1.0); In-eF (-0.8) 

In-E PF-E (0.1); Inrg-F (-0.1); Inpf-F (-0.15); In-T (-0.25) 

In-F PF-F (0.05); Inrg-E (-0.07); Inpf-E (-0.2) 

In-eF Inrg-E (-0.4); In-lF (-0.25) 

In-lF PF-F (0.1); Inrg-E (-0.2); In-eF (-0.25) 

In-eE PF-E (0.1); Inpf-F (-0.4); In-lE (-0.25); In-T (-0.25) 

In-lE Inrg-F (-0.25); In-eE (-0.25) 

Ia-E PF-E (0.55); Ia-F (-0.4); R-E (-0.4) 

Ia-F PF-F (0.55); Ia-E (-0.4); R-F (-0.4) 

R-E Mn-E (0.6); R-F (-0.3) 

R-F Mn-F (0.6); R-E (-0.3) 

R-PBSt Mn-PBSt (0.3) 

R-RF Mn-RF (0.3) 

Mn-E PF-E (1); Ia-F (-0.8); R-E (-0.05) 

Mn-F PF-F (1); Ia-E (-0.8); R-F (-0.05) 

Mn-PBSt PF-PBSt (1); R-PBSt (-0.05) 

Mn-RF PF-RF (1); R-RF (-0.05) 

 

Values in brackets represent relative weights of synaptic inputs from the 

corresponding source populations. Negative value weights indicate inhibitory 

connections. Values of MLR drives to PF-E, PF-F, PF-PBSt, and PF-RF are  

DPF-E = DPF-F = DPF-PBSt = 0.1, DPF-RF = 0.05; for MLR drives to RG-E (DRG-E),  

RG-F (DRG-F), In-eE (DeE), In-lE (DlE ), In-T (DT), In-E (DE), In-eF (DeF), In-lF (DlF), 

see figure legends.  
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Table 3. Activity of CPG populations in the basic model during spontaneous 

deletions 

 

Population 

name 

Deletion type 

Extensor deletions Flexor deletions 

Tonic flexors 

Rhythmic flexors 

Tonic extensors 

resetting non-resetting resetting 
non-

resetting 

RG-E/Inrg-E silent rhythmic-E rhythmic-E tonic rhythmic-E 

RG-F/ Inrg-F tonic rhythmic-F rhythmic-F silent rhythmic-F 

PF-E/ Inpf-F silent silent silent tonic tonic 

PF-F/ Inpf-F tonic tonic rhythmic-F silent silent 
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Table 4. Behavior of PBSt and RF during spontaneous deletions 
 

     

Deletion type 

Extensor deletions Flexor deletions 

Tonic flexors Rhythmic  
flexors 

Tonic extensors 

resetting non-resetting  resetting non-resetting 

       PBSt 

Flexor short 
(type 1a) 

silent (7)    rhythmic
a
 (1) rhythmic

a
 (1) silent (4) 

Flexor long 

(type 1b) 
tonic (4) or 

rhythmic
b
 (1) 

rhythmic (4) rhythmic (6) silent (4) 

Extensor 

(type 2) 
silent (9) silent (4) tonic (8) 

silent (1) or 

 rhythmic
a
 (1) 

Biphasic, short flexor 
burst (type 3a) 

silent (7)  silent (1) tonic (5) not found 

Biphasic, long flexor 
burst (type 3b) 

tonic(2) not found 

        RF 

Flexor 

(type 1) 
tonic (5) rhythmic (1) rhythmic (3) silent (7) 

Biphasic 

(type 2) 
tonic (5) rhythmic

 c
 (7) rhythmic

 c
 (9) not found 

 
a
 - The amplitude of rhythmic activity is markedly reduced 

b
 - During this deletion, the frequency of PBSt oscillations differs from the frequency 

before/after deletion.  
c
 - RF loses its extensor component.  
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Chapter 11: Figures 

 

 
 

Figure 1. Classical half-center CPG model 

Populations of interneurons are represented by spheres; motoneuron populations are 

represented by diamonds. Excitatory connections are shown as arrows; inhibitory 

connections are represented by lines with circles on the end. 
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Figure 2. Normalized and averaged locomotor activity 

A comparison of normalized and averaged motoneuron (A) and muscle (B) activity 

during fictive (A) and unrestrained (B) locomotion. Motoneurons and muscles are 

grouped based on the activity of which joint they control. Flexor motoneurons and 

muscles are in blue; extensor motoneurons and muscles are in green; PBSt and RF 

motoneurons and muscles are in brown and orange, respectively. A: Motoneuron ENG 

activity normalized and averaged over all experimental recordings available during 

fictive locomotion. Vertical dashed lines define the flexor and extensor phases, which 

were determined based on the onset of Sart activity, for flexion onset, and the onset of 

SmAB activity, for extension onset. Insert shows types of PBSt and RF activity patterns 

observed during fictive locomotion and their possible combinations. B: Muscle EMG 

activity normalized and averaged over all experimental recordings available during 

unrestrained locomotion. Vertical dotted lines indicate onsets of swing and stance phases; 

vertical dashed lines indicate onsets of flexor and extensor phases. (Markin et al. 2008) 
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Figure 3. Two-level CPG concept and model 

A: Schematic illustration of the two-level CPG concept. The locomotor CPG consists of a 

half-center rhythm generator (RG) and a pattern formation (PF) network. The RG defines 

the locomotor rhythm and the durations of flexor and extensor phases and controls the 

activity of the PF network. The PF network contains interneuron populations (grey 

spheres), which interact with each other and provide excitation to synergist or bifunctional 

motoneuron pools (diamonds) acting at different limb joints. The PF network mediates 

rhythmic input from the RG and distributes it to the motoneuron pools. B: Schematic of 

the basic two-level model of the locomotor CPG (Rybak et al. 2006a). 
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Figure 4. Perret CPG model 

Schematic of the CPG model proposed by Perret and his colleagues (Perret 1983) to 

explain complex biphasic activity patterns of PBSt and RF. 

 

 

 

 

 
 

Figure 5. Major muscles controlling the cat hind limb 

EDL - extensor digitorum longus; FDL - flexor digitorum longus; FHL - flexor hallucis 

longus; LG - lateral gastrocnemius; MG - medial gastrocnemius; PBSt - posterior biceps 

and posterior semitendinosus; Plant - plantaris; Plong - peroneus longus; IP - iliopsoas; 

Sart - sartorius; RF - rectus femoris; ABSm - anterior biceps and anterior 

semimembranosus; Sol - soleus; TA - tibialis anterior; VA - vastus. 
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Figure 6. PB and St behavior during fictive locomotion experiments 

PB and St ENGs were recorded separately in the same experiment. A: Both PB and St are 

simultaneously active in flexion. B: Both PB and St are simultaneously active in 

extension. C: Both PB and St are biphasic and demonstrate remarkably similar behaviors 

before, after, and during two extensor deletions (shaded areas 1 and 3) with tonically 

active flexor (Sart), and one flexor deletion (shaded area 2) with tonically active extensor 

(SmAB). 

 

 

 

 
 

Figure 7. ENG signal interpolation 

An example of an interpolation of an ENG pattern (dashed line) occurring mainly during 

the flexor phase. The interpolated signal (solid line) is formed through linear 

interpolation based on crossing points (filled circles) of original pattern and several 

amplitude levels. The interpolated signal in this case is made up of eleven crossing points 

)}, Α) ... (t, Α), (t, Α), (t, Α{(t
1111332211  between the original signal and six amplitude levels 

(A1, A2 … Amax), where A1 = 0; Ai+1 = Ai+, Amax/5, i = 1, 2 ... 5. All intermediate 

points (open circles) are ignored. 
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Figure 8. Profiles of PBSt and RF activity during fictive locomotion 

The traces are rectified-integrated simultaneous ENG recordings from several flexors (top 

traces, Sart, TA), extensors (middle traces, SmAB, MG, GS, LGS, Plant) and 

bifunctionals (bottom traces, PBSt, RF) obtained in fictive locomotion experiments.  

A: PBSt demonstrates a short burst at the beginning of the flexor phase. B: PBSt is active 

during most of flexion. C: PBSt is active in extension during extensor dominated fictive 

locomotion, RF is active late in flexion. D: PBSt is active in extension during flexor 

dominated fictive locomotion. E and F: PBSt is active during both phases, exhibiting 

either a low (E) or high (F) level of activity during extension and a short burst of activity 

at the beginning of flexion. G: PBSt and RF are active in flexion; PBSt demonstrates a 

short activity burst at the beginning of flexion and RF becomes active shortly after the 

phase onset and demonstrates increased activity up to the end of flexion. H: PBSt is 

active at the beginning of flexion, and RF exhibits two activity bursts, one short burst at 

the end of extension and another one late in flexion. 
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Figure 9. Normalized and averaged PBSt and RF activity during fictive locomotion 

Normalized and averaged profiles of PBSt and RF activity with respect to the activity of 

typical flexor (Sart) and extensor (SmAB) motoneurons during fictive locomotion.  

Aa: Averaged and normalized activity of flexor (Sart) and extensor (SmAB). Ab: Three 

distinct patterns of PBSt activity: flexor-type (1), extensor-type (2), and biphasic (3).  

Ac: Two distinct patterns of RF activity: flexor-type (1) and biphasic (2). Ba-c: Averaged 

and normalized activity of PBSt and RF from experiments in which they were 

simultaneously recorded for flexor-type (Ba), extensor-type (Bb), and biphasic (Bc) PBSt 

profiles. In Ba, both flexor-type and biphasic RF activity patterns were observed when 

PBSt exhibited flexor-type activity. 
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Figure 10. Shaping activity profiles of PBSt and RF 

A and C: hypothetical activities of flexor and extensor parts of the CPG (first and second 

trace), sum of proposed excitatory inputs to PBSt and RF from flexor and extensor sides 

of the CPG in addition to tonic drive (third trace, lightly shaded area), desired PBSt and 

RF activity patterns (third trace, heavily shaded area), and sculpting inhibitory signals 

necessary to shape PBSt and RF activity for each activity type (last trace).  

B and D: neuron populations participating in shaping PBSt and RF activity are shown as 

shaded spheres; empty circles represent inactive neuron populations. Spheres marked 

with „E‟ and „F‟ schematically represent the flexor and extensor parts of the CPG. 

Inhibitory interneuron populations participating in shaping the activity of PBSt (In-E,  

In-F and In-lF) and RF (In-E, In-eE and In-eF) are shown in each diagram. Excitatory 

and inhibitory inputs to PBSt and RF populations are indicated by lines with arrows and 

small circles, respectively. Thicker lines with larger circles represent stronger inhibitory 

influences; thinner lines with smaller circles represent weaker/moderate inhibitory 

influences. 
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Figure 11. Flexor-type PBSt behavior during extensor activity deletion 

Deletions of extensor activity (SmAB, MG, Plant, LGS) accompanied with sustained 

activity of flexors (Sart, TA, EDL). Shaded rectangles highlight deletion episodes. In all 

three recordings PBSt is of the flexor-type before and after the deletion. However during 

the deletions, PBSt demonstrates tonic activity similar to flexors in A; is silent similar to 

extensors in B; and expresses rhythmic activity in C. Note that the frequency of PBSt 

oscillations in C differs from the locomotor frequency before and after the deletion. 
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Figure 12. PBSt and RF behavior during deletions 

Fictive locomotion recordings with episodes of deletions used to build PBSt and RF 

circuitry in the extended model (panels Aa, Ba, and C)). In Aa and Ba vertical dashed 

lines are plotted at intervals representing an average locomotor period calculated based 

on five step cycle periods preceding the deletions. During the deletions, these lines 

indicate approximately where the onsets of the flexor bursts would have occurred had 

there been no deletion. Aa: An example of the behavior of flexor type PBSt (type 1b) and 

biphasic RF (type 2) during non-resetting extensor deletions with sustained tonic activity 

of flexors. Note that TA demonstrates modulated tonic activity during the deletion while 

another flexor (Sart) maintains rhythmic activity. The extensors (SmAB and GS) are 

silent. During the deletion, PBSt and RF remain rhythmic. Shaded bars show the extensor 

phases before and after the deletion (bars 1 and 5) and the anticipated extensor intervals 

during the deletion (bars 2-4). Ab: Enlarged and overlapped traces of PBSt and RF ENGs 

for two locomotor cycles outlined in Aa by rectangles. The black traces correspond to a 

pre-deletion locomotor cycle; the red ones correspond to a supposed locomotor cycle 

during the deletion. In Aa and Ab, you can observe that: (1) during the deletion PBSt 
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becomes active in the anticipated extensor phases; (2) PBSt activity in the anticipated 

flexor phases is reduced; and (3) RF loses its extensor component during the deletion. 

Ba: An example of extensor-type PBST (type 2) and flexor-type RF (type 1) behavior 

during a non-resetting flexor deletion (Sart). The extensors (SmAB and GS) during the 

deletion become tonically active. The shaded bars indicate the extensor phases before and 

after the deletion and the assumed extensor phases during the deletion. Bb: Enlarged and 

overlapped traces of PBSt and RF ENGs for two locomotor periods before and during the 

deletion, outlined in Ba by rectangles. In Ba and Bb, it can be seen that RF becomes 

silent during the deletion while PBSt continues its activity during the anticipated extensor 

phases. C: An example of flexor-type PBSt (type 1b) behavior during spontaneous 

deletion of extensor activity (SmAB, LGS, and MG) with rhythmic flexors (Sart and TA). 

The shaded bars 1 and 2 illustrate the flexor phases before and during the deletion, 

respectively. During the deletion PBSt remains rhythmic and exhibits bursts of activity 

simultaneous with the flexors. No activity appears in the anticipated extensor intervals. 
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Figure 13. Construction of PF level networks controlling PBSt and RF activities 

Construction is based on the analysis of fictive locomotion experiments with episodes of 

deletion shown in Fig. 12. The left column (panels Aa, Ab, and Ac) illustrates the 

sequential building of PBSt circuitry. The right column (panels Ba and Bb) shows the 

construction of RF circuitry. At each step of the circuitry construction, newly introduced 

network elements (populations and connections) are highlighted in red. See text for 

details. 
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Figure 14. Extension of PF level networks controlling populations PF-PBSt and  

PF-RF 

Additional proposed modifications of the PF level networks controlling PF-PBSt (A) and 

PF-RF (B) behavior in the extended model. Modifications made over the circuitries 

presented in Fig. 13 appear in red. See text for details. 
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Figure 15. Schematic of the extended locomotor CPG model 

The extended model includes all populations of the basic CPG model (see Fig. 3B) and 

hypothetical populations and connections incorporated into the PF network to control 

PBSt and RF activity (see Figs. 13 and 14). The extended model also includes two 

bifunctional motoneuron populations (Mn-PBSt and Mn-RF) and two populations of 

Renshaw cells, R-PBSt and R-RF, which receive collateral excitatory input from the 

corresponding motoneuron populations (Mn-PBSt and Mn-RF) and provide feedback 

inhibition to the homonymous motoneuron populations. 
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Figure 16. Shaping of PBSt activity patterns 

Diagrams in the left column illustrate circuits that shape particular patterns of PBSt 

activity: short flexor profile, type 1a (Aa); long flexor profile, type 1b (Ba), extensor, 

type 2 (Ca); and biphasic, type 3 (Da). The dashed rectangle outlines designate 

populations participating in the shaping of PBSt activity during the extensor or flexor 

phase. The arrows of different sizes schematically show excitatory input drives of 

different strengths received by the interneuron populations, the larger the arrow size the 

stronger the input drive. Excitation level of each population is schematically represented 

by thickness of output connection, the greater the level of excitation, the thicker the 

connection. Ab, Bb, Cb, and Db show examples of corresponding computer simulations 

performed using the extended model. In these figures, the activity of each population is 

represented by a histogram of the average neuron activity in it. The alternating rhythmic 

bursts of the RG populations, RG-F and RG-E (the first two traces) define the duration of 

the extensor and flexor phases and the locomotor cycle period (indicated by dashed 

lines). The third and fourth trace represent activities of the PF-F and PF-E populations, 

closely following the activity of the corresponding RG populations. The next four traces 

represent the activity of the interneuron populations (In-E, In-F, In-eF and In-lF) shaping 

PF-PBSt‟s activity, and the last two traces show the activity of population PF-PBSt and 

the resulting activity of population Mn-PBSt. Shaded rectangles highlight the time 

intervals during which Mn-PBSt is active (for one locomotor cycle). In all four 

simulations drives to RG populations were: DRG-E = 0.17 and DRG-F = 0.18. Drives to 

interneuron populations shaping PBSt activity were: DT = 0, DE = 0.25, DF = 0,  

DeF =  0.18, DlF = 0.16 in Ab; DT = 0, DE = 0.25, DF = 0, DeF = 0.23, DlF = 0.16 in Bb;  

DT = 0.25, DE = 0, DF = 0.26, DeF = 0.18, DlF = 0.16 in Cb; and DT = 0.05, DE = 0.07,  

DF = 0, DeF = 0.18, DlF = 0.16 in Db. 
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Figure 17. Shaping of RF activity patterns 

Diagrams in the left column illustrate circuits that shape particular patterns of RF 

activity: flexor-type, type 1 (Aa); and biphasic, type 2 (Ba). Ab and Bb show examples 

of corresponding computer simulations performed using the extended model. The 

alternating rhythmic bursts of the RG populations, RG-F and RG-E are shown in the top 

two traces. The third and fourth trace represent activities of the PF-F and PF-E 

populations. The next four traces represent the activity of the interneuron populations  

(In-eF, In-lF, In-eE and In-lE) shaping PF-RF activity, and the last two traces show the 

activity of population PF-RF and resulting activity of population Mn-RF. Shaded 

rectangles highlight the time intervals during which Mn-RF is active (for one locomotor 

cycle). In both simulations, drives to RG populations were: DRG-E = 0.17 and  

DRG-F = 0.18. Drives to interneuron populations shaping RF activity were: DT = 0,  

DeE = 0.25, DlE = 0, DeF = 0.18, DlF = 0.16 in Ab; DT = 0, DeE = 0.135, DlE = 0.18,  

DeF = 0.18, DlF = 0.16 in Bb. 
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Figure 18. Extended CPG model reproducing PBSt and RF activity 

Examples of simulations reproducing different types of PBSt and RF activity profiles 

using the extended CPG model, compared with the corresponding experimental 

recordings. In all simulations (Aa, Ba, Ca and Da), the first and second trace show the 

activity of the flexor and extensor motoneuron populations, respectively. The third and 

fourth trace show the activity of of bifunctional motoneuron populations Mn-PBSt and 

Mn-RF, respectively. Panel Aa shows the result of a simulation exhibiting short flexor-

type PBSt (type 1a) and biphasic RF (type 2). For this simulation, DRG-E = 0.18,  

DRG-F  = 0.205, DT = 0, DE = 0.25, DeE = 0.08, DlE = 0.2, DF = 0, DeF = 0.2, DlF = 0.16. 

Panel Ab shows a corresponding experimental recording obtained during fictive 
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locomotion, in which PBSt and RF were recorded simultaneously. PBSt starts its activity 

together with flexors (Sart and TA) and is active during about 25% of the flexor phase 

(short flexor-type pattern of activity, type 1a). RF in this recording is biphasic (type 2) 

and demonstrates a short burst late in extension and a long bust in flexion starting 

immediately after PBSt activity terminates. Panel Ba shows the results of a simulation 

exhibiting long flexor-type PBSt (type 1b) and flexor-type RF (type 1). For this 

simulation, DRG-E = 0.165, DRG-F = 0.15, DT = 0, DE = 0.25, DeE = 0.16, DlE = 0, DF = 0, 

DeF = 0.2, DlF = 0.18. Panel Bb shows a corresponding experimental recording in which 

long flexor-type PBSt (type 1b) starts its activity simultaneously with flexors (Sart and 

TA) and is active during most of flexion. Panel Ca shows the results of a simulation with 

extensor-type PBSt (type 2) and flexor-type RF (type 1) activity patterns. In this 

simulation, DRG-E = 0.165, DRG-F = 0.15, DT = 0.25, DE = 0, DeE = 0.16, DlE = 0, DF = 0.25, 

DeF = 0.17, DlF = 0.22. Panel Cb presents a similar experimental case where PBSt is 

simultaneously active with extensors (SmAB and GS), while RF starts its activity delayed 

compared to flexors (Sart and TA) and is active up to the end of the flexor phase (type 1). 

Panel Da shows the results of a simulation of biphasic PBSt (type 3) and flexor-type RF 

(type 1). In this simulation, DRG-E = 0.175, DRG-F = 0.17, DT = 0, DE = 0.08, DeE = 0.16, 

DlE= 0, DF = 0, DeF = 0.17, DlF = 0.22. Panel Db shows a corresponding experimental 

record in which PBSt is active in both phases (type 3). In the extensor phase, PBSt is 

active for the entire duration of the phase at a low amplitude activity level, 

simultaneously with extensors (SmAB and GS). In the flexor phase, PBSt exhibits a short 

burst that starts simultaneously with flexors (Sart and TA), and the RF flexor burst starts 

immediately after PBSt activity terminates. 



136 

 
 

Figure 19. Simulations of flexor-type PBSt behavior during resetting extensor 

deletions 

In the model, all deletions were produced by temporarily applying an inhibitory input 

drive to the extensor side of the CPG at the RG level (RG-E). A: Circuits shaping PBSt 

activity during deletions for: PBSt with long flexor burst before and after the deletion 

(Aa), short flexor burst before and after the deletion (Ab), and a flexor burst lasting about 

50% of the phase, before and after the deletion (Ac). The solid arrows of different sizes 

schematically show excitatory input drives of different strengths received by the 

interneuron populations, the larger the arrow size the stronger the input drive. Excitation 

level of each population is schematically represented by the thickness of the output 

connection, the greater the level of excitation, the thicker the connection. Unfilled arrows 
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illustrate additional activation of neuron populations during deletions. Black circles 

represent populations highly activated during deletions; grey circles illustrate low level of 

activity in the particular populations; unfilled circles designate inactive populations. 

Circles that are half black half white represent populations that are rhythmically active 

during the deletions. B: The results of simulations of PBSt behavior during deletions. In 

the model, all deletions were produced by temporarily applying an inhibitory input drive 

(Dadd = 0.4) to population RG-E, as indicated by the horizontal black bars at the top of 

traces. Shaded rectangles highlight the behaviors of neuron populations during the 

deletions. The first eight traces are of different CPG populations at the RG and PF levels. 

The last three traces illustrate the activities of flexor and extensor motoneuron 

populations and Mn-PBSt, respectively. In all three simulations, DRG-F = 0.17,  

DRG-E = 0.16, DF = 0, DE  = 0.25, DT= 0. DeF = 0.18, DlF = 0.145 in Ba; DeF = 0.14,  

DlF = 0.18 in Bb; and DeF = 0.18, DlF = 0.155 in Bc. Ca-c: Experimental recordings 

corresponding to PBSt behavior shown in Ba-c. The vertical dashed lines are plotted at 

intervals representing an average locomotor period. An obvious phase shift of the post-

deletion rhythm with respect to the pre-deletion rhythm (see arrows at the bottom) 

indicates that all deletions are of the resetting type. 
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Figure 20. Simulations of PBSt and RF behavior during resetting deletions 

Examples of simulations and experimental records with extensor-type (A and B) and 

biphasic (C and D) PBSt profiles during flexor (A and C) and extensor (B and D) 

resetting deletions with sustained activity of antagonist motoneuron pools. In the model, 

all deletions were produced by temporarily applying an inhibitory input drive (Dadd = 0.3) 

to the flexor (A and C) or extensor (B and D) side of the CPG‟s RG level, as indicated by 

the horizontal black bars above the traces. Shaded rectangles highlight behaviors of 

neuron populations during deletions. All deletions presented in this figure exhibited an 

obvious phase shift of the post-deletion rhythm (see arrows at the bottom of all panels) 
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indicating that all these deletion are of the resetting type. Aa: The results of a simulation 

of extensor-type PBSt and flexor-type RF during a resetting flexor deletion. In this 

simulation, DRG-F = 0.15, DRG-E = 0.165, DF = 0.25, DE = 0, DT = 0.25, DeF = 0.16,  

DlF = 0.23, DeE = 0.15, DlE = 0. During the deletion, Mn-PBSt exhibited tonic activity, 

whereas Mn-RF was silent. Ab: The corresponding experimental records during fictive 

locomotion. Before, after, and during the deletion PBSt was simultaneously active with 

extensor (SmAB) demonstrating sustained activity during the deletion. RF showed a 

delayed flexor burst before and after the deletion and was silent during the deletion 

similar to flexors (see Sart and TA). Ba: The results of a simulation of extensor-type 

PBSt during a resetting extensor deletion. In this simulation, DRG-F = 0.15, DRG-E = 0.15, 

DF = 0.25, DE = 0, DT = 0.25, DeE = 0.18, DlE = 0.22. During this deletion, Mn-PBSt was 

silent. Bb: The corresponding experimental recordings. Before and after the deletion 

PBSt was simultaneously active with extensors (SmAB and GS). During the deletion, 

flexors (Sart and TA) were tonic, and extensors as well as PBSt were silent. Ca: The 

results of a simulation of biphasic PBSt behavior during a resetting flexor deletion. In this 

simulation, DRG-F = 0.19, DRG-E = 0.18, DF = 0, DE = 0.07, DT = 0, DeE = 0.18, DlE = 0.2. 

During the deletion, Mn-PBSt exhibited tonic activity. Cb: The corresponding 

experimental records during fictive locomotion. Before and after the deletion PBSt was 

active during both phases, exhibiting a low amplitude activity during the whole extensor 

phase and a short burst at the beginning of flexion. During the deletion, extensors (SmAB 

and GS) were tonically active, flexors (Sart and TA) were silent, and PBSt demonstrated 

tonic activity. Note the low amplitude of this activity. Da: The results of a simulation of 

biphasic PBSt behavior during a non-resetting extensor deletion. In this simulation,  

DRG-F = 0.21, DRG-E = 0.19, DF = 0, DE = 0.09, DT = 0, DeE = 0.18, DE = 0.17. During the 

deletion, Mn-PBSt was silent. Db: The corresponding experimental recordings. Before 

and after the deletion PBSt was biphasic, exhibiting a low amplitude activity during the 

whole extensor phase and a short burst at the beginning of flexion. During the deletion, 

flexors (Sart and TA) had sustained activity, and PBSt was silent along with extensors 

(SmAB and GS). 



140 

 
 

Figure 21. Simulations of PBSt behavior during non-resetting deletions 

Simulations of the behavior of flexor and extensor-types PBSt during non-resetting 

extensor (Aa and Ba) and flexor (Ab and Bb) deletions. In the model, these deletions 

were produced by temporarily increasing the excitability of populations PF-F (Aa and 

Ba) and PF-E (Ab and Bb). Vertical dashed lines in B and C are plotted at intervals 

representing an average locomotor period calculated over five step cycles preceding the 

deletions. During the deletions, these lines indicate approximately where the onset of 

flexor bursts would have occurred had there been no deletion. A lack of phase shift 

indicates that these deletions are non-resetting. Dark rectangles highlight suggested 

extensor intervals during the deletion. A: Circuits shaping PBSt activity, flexor-type (Aa) 
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and extensor-type (Ab) PBSt. Arrows of different sizes schematically represent 

excitatory input drives of different strengths received by the interneuron populations, the 

larger the arrow size the stronger the input drive. Excitation level of each population is 

schematically represented by thickness of the output connection, the greater the level of 

excitation, the thicker the connection. Unfilled arrows illustrate additional activation of 

neuron populations during the deletions. Half-filled circles represent populations 

continuing rhythmic activity during the deletion. The left side of the circles corresponds 

to the suggested extensor intervals, the right side corresponds to the flexor interval, 

during the deletion. Black color indicates strong activity during the corresponding phase; 

grey, low or moderate activity level; and white, no activity. B: The results of the 

simulations of PBSt‟s behavior during the deletions. The black horizontal bar indicates 

when the additional drive was applied to produce the deletion. The top eleven traces are 

of various CPG interneuron populations, and the last three traces illustrate the activity of 

flexor, extensor, and PBSt motoneuron populations, respectively. In Ba, the deletion of 

extensor activity was produced by applying additional excitatory drive Dadd = 0.2 to 

population PF-F. Other drives were set at, DRG-F = 0.15, DRG-E = 0.19, DF = 0.07,  

DE = 0.25, DT = 0, DeF = 0.18, DlF = 0.15, DeE = 0.22, DlF = 0. In Ba, the deletion of flexor 

activity was produced by applying additional excitatory drive Dadd = 0.1 to population 

PF-E. Other drives were set at, DRG-F = 0.15, DRG-E = 0.165, DF = 0.25, DE = 0.1, DT = 0.1, 

DeF = 0.12, DlF = 0.18, DeE = 0.15, DlF = 0. Ca and Cb: Experimental recordings 

corresponding to PBSt behavior simulated in Ba and Bb, respectively. 



142 

 
 

Figure 22. Simulation of biphasic RF behavior during a non-resetting extensor 

deletion 
A: Simulation of biphasic RF (type 2) behavior during a non-resetting extensor deletion 

with rhythmically active flexors. In this simulation, DRG-F = 0.16, DRG-E = 0.175, DF = 0, 

DE = 0.25, DT = 0, DeF = 0.2, DlF = 0.2, DeE = 0.12, DlF = 0.25. The deletion of extensor 

activity was produced by applying a temporary inhibitory drive to population PF-E 

(initially, Dadd = 0.7) indicated by the black bar at the top of traces. During the deletion, 

Mn-RF maintained rhythmic activity but lost the extensor component it its activity 

profile. Shaded rectangles highlight the behavior of motoneuron populations during the 

deletion. The change in the shading level schematically shows a reduction of the 

additional inhibitory drive to the PF-E population by 70%. See text for details. B: The 

corresponding experimental recording during fictive locomotion. Before and after the 

deletion RF was active during both phases, exhibiting a short burst at the end of the 

extensor phase and a long flexor burst starting late in flexion. During the deletion 

extensors (SmAB and GS) were silent, flexors (Sart and TA) continued to be rhythmic, 

and RF also demonstrated rhythmic activity, however it lost its extensor component. Note 

the weak bursts of activity in extensors (SmAB and GS) and the weak extensor burst of 

RF at the end of the deletion. Vertical dashed lines show how no phase shift occurred 

during this deletion and therefore is non-resetting. 
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