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Abstract

Integrated Non-Planar Ferroelectric Nanostructures
Stephen S. Nonnenmann

Jonathan E. Spanier, Ph.D.

Ferroelectrics (FEs) exhibit stable spontaneous polarization states in the ab-

sence of an applied electric field, analogous to other ferroic systems such as fer-

romagnetics and ferroelastics. Incomplete screening of surface charges along the

FE-electrode interface creates a potential gradient across the FE layer. This yields

a depolarizing field which greatly suppresses polarization, particularily in systems

approaching finite sizes, where surface and interface effects exhibit far more influ-

ence than in the bulk. Identifying mechanisms for reducing the detrimental effects

of the depolarizing field and maintaining FE stability in finite dimensions remains

the largest obstacle in FEs realizing their potential as next generation devices such

as electocaloric coolers, actuators, sensors, photovoltaics, and non-volatile memory

elements.

This thesis aims to develop a reproducible, versatile synthetic approach to-

wards conductive core-ferroelectric perovskite oxide shell nanostructures. A test

structure fabrication approach will then be developed, yielding working conductive

inner nanowire core electrodes for interrogation of FE properties across the finite

(radial) dimension. Here, mapping of the normal ferroelectric polar components

within low dimensional FE, with consideration of surface chemical environment

effects will be explored. The effects of finite-curvature and its resulting stress

gradients in stabilizing ferroelectricity at the nanoscale will also be identified and

explored. The nonvolatile gating effects of the FE layer on the transport prop-

erties of a low-dimensional semiconductor channel will be investigated. Finally,

FE switching will be correlated with system leakage currents, and the effects of

oxygen partial pressure, as basis for potential resistive switching memories.

barsoum
Note
abstract is a problem.

barsoum
Text Box
question 



Chapter 1

Introduction

Ferroelectric (FE) materials exhibit a spontaneous polarization which may be

manipulated using an external applied electric field. A positively or negatively

oriented polarization can represent “1” and “0” Boolean logic states in storing

information. This is the basis for FE-based nonvolatile memory platforms such

as Ferroelectric Random Access Memory (FeRAM). These materials also offer

piezoelectric properties, which are useful in applications involving pressure sen-

sors, actuators, and microelectromechanical systems (MEMS). FEs also are used

in electro-optic applications such as modulators, holographic data storage, and

frequency converters. The fundamental physics behind the operation of these ap-

plications will be introduced in Chapter 2.

The basis for operation of any application involving FEs is the ability to

carefully control the orientation of its polar state. The total free energy within

a FE system is dominated by a balance of electrostatic and elastic contributions.

As a result, it is energetically more favorable in nanostructured FE materials

for multiple domains to evolve, which assist in lowering the energy associated

with large depolarizing fields. Through selective patterning the film or material

polarization may form either a monodomain or multidomain configuration, which

may provide optimal performance depending on the desired application.

1



Chapter 1. Introduction 2

Increasing bit density within nonvolatile memory elements necessarily involves

the miniaturization of devices, with a natural size reduction of FE materials imple-

mented within the device architecture. Size scaling of FEs introduces detrimental

effects caused by the depolarizing field, which arises from incomplete screening of

surface charges along the FE/electrode interface. These fields effectively destabi-

lize the FE polarization by forming in the opposite direction across the material

thickness. As such, understanding the underlying physics of these size-limited

phenomena requires careful experimental observation of the local response of FE

materials, specifically of the conservation of FE polar character as it deviates from

its bulk state.

The motivation for this research then has been to identify an integrated, coax-

ial system consisting of a functional (semiconducting, conductive) core and a thin,

nanoscale FE oxide shell for potential use as an individual nonvolatile memory ele-

ment. The selection of a cylindrical topology additionally serves as a test platform

to propose and provide evidence for a new design principle incorporating finite-

curvature as a stabilizing mechanism for nanoscale FE. This study has explored

nonvolatile operation mechanisms including FE field effect transistors (FeFET)

and resistive switching (RS).

Chapter 2 will review the fundamental physics of nanoscale FE systems nec-

essary to understand the experimental background and discussion of results found

throughout the study. This includes but is not limited to ferroelectricity, piezoelec-

tricity, depolarizing effects, surface environment, strain effects, and shape effects.

Developing a versatile synthetic approach robust enough to produce nanos-

tructure arrays consisting FE shells with varying core materials has a been a central

part of this study. The details of the template-assisted growth processes used are

found in Chapter 3. Here the fabrication steps necessary to create electrically

viable test structures using electron beam lithography may also be found.

Piezoresponse force microscopy (PFM) is a modified scan probe technique

utilizing a lock-in amplifier to apply a bias to a conductive cantilever tip in con-

tact with the material surface, inducing a piezoelectric deflection via the converse

piezoelectric effect. This technique can be used to image FE domain states or ma-

nipulation of the FE state in scanning mode, or collect localized FE piezoelectric
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hysteresis in a static probe setup. Chapter 4 concentrates on the experimental

setup and discussion of PFM scan mode operation in identifying the FE state of

an individual test nanostructure.

Developments in the production of high quality oxide substrates have allowed

researchers to engineer specified strain states with ultrathin FE films. The con-

cepts of nonlinear electromechanical coupling through the electrostrictive prop-

erties of dielectric FE materials will be introduced in Chapter 5. This section

will also review and discuss experimental evidence for finite-curvature, surface-

tension based stabilization of FE properties along the finite-thickness direction of

individual nanostructures. The findings presented in this section will be corrobo-

rated with numerical calculations incorporating a modified Landau stiffness into

the free energy expansion, with comparisons given between nonlinearily coupled

surface tension-induced stresses and planar, stress-free thin films.

Chapter 6 will explore the merits of these integrated test structures in terms

of nonvolatile field effect gating, as interrogated via electrical transport measure-

ments. Here the experimental design and execution for measuring individual semi-

conducting silicon-core, FE oxide-shell nanostructures will be discussed. Exper-

imental evidence for transconductance in nanowire channels is presented, with

comparison to recent literature of thin film FeFET and non-integrated semicon-

ductor nanowire, FE thin film transistor test structures.

Leakage currents present a major problem in the integration of FE and other

dielectrics within silicon-based memory architectures. As such, a major goal of

studying these nanostructures was to electrically characterize the current across

the finite, radial dimension of individual FE nanotubes. In Chapter 7 the resistive

switching character of the leakage response of fabricated test structures are shown.

The experimental scan probe technique enabling simultaneous collection of FE

hysteresis and resistive current response is presented. Additional test structures

consisting of lithography-based electrodes further clarify the resistive switching

character, with a focus on the effects of oxygen environment in mediating trans-

port. These studies provide evidence for an oxygen-vacancy transport mechanism,

which will be discussed in terms of nonstoichiometric perovskite lattice chemistry.



Chapter 2

Fundamentals of Ferroelectricity

2.1 General

Ferroic systems generally exhibit two non-zero, equilibrium spontaneous polar

states in the absence of an applied field, i.e. magnetic fields, electric fields, or

mechanical stress. As a note, more polar states may be allowed due to crystal

symmetry, as is the case for lead zirconate titanate, exhibiting six. Figure 2.1

represents a simple energy vs. polarization profile for normal ferroelectric (FE)

systems, consisting of two wells at zero energy, or a spontaneous polarization at

zero applied bias. There also exists an energetic barrier between these states which

requires an external field to overcome.

Figure 2.1: Energy vs. Polarization profile for a ferroelectric system.

4
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Ferroelectric hysteresis describes the history of the material response to the

application of an external applied electric field E. This is shown pictorially in

Figure 2.2. Hysteretic behavior takes the form of a loop, where the spontaneous

polarization is found at equal, non-zero points at zero applied bias. This is repre-

sented as the energy wells found in Figure 2.1. The materials maintains its polar

state as the field is cycled until a critical field called the coercive field EC is reached.

In terms of the energy vs. polarization profile found in Figure 1, the application

of the E field effectively tilts the energy well, until a sufficient field is applied as

to surpass the energetic barrier, and thus switch the polarization orientation.

Figure 2.2: Example of ferroelectric hysteresis. Shown around the loop are
varying tilts of the energy landscape under the application of an
external electric field E.

2.2 Piezoelectricity

The word piezoelectric originates from the Greek word piezein, meaning to

squeeze or press, and piezo, Greek for ”push”. The direct piezoelectric effect de-

scribes the phenomenon by which a material produces an electrical charge density

D under the application of stress X along specified crystallographic orientation:

Di = dijkXjk
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where dijk represents the piezoelectric tensor elements. Convention is to compact

the notation of this 3rd rank to the 2nd rank tensor, due to the symmetry with

respect to the commutability of the k and j suffixes, which lead to substitution of

the pair jk by one, resulting in an overall reduction in tensor components from 27.

The work presented in this thesis will assume summation over equal indices.

The converse piezoelectric effect describes the phenomenon by which a mate-

rial physically displays a strain x under the application of an electric field E along

a specific crystallographic orientation. The total strain of a system, including

quadratic electrostrictive terms, takes the form [1]:

xij = xsj
+ sijXj + dijEj +MijklEkEl

where xsj
is spontaneous strain, sij elastic compliance, and Mijkl the electrostric-

tive coefficient. A piezoelectric coefficient dij measured along the direction of

the applied E field is called the longitudinal coefficient; those measured along a

direction perpendicular to the E field is termed the transverse coefficient. The fer-

roelectric system used throughout this thesis is lead zirconate titanate (PZT); the

tetragonal ferroelectric phase has 4mm symmetry where there only exists a non-

zero polarization state along the <111> direction. There also exists 7 non-zero

piezoelectric coefficients. This study primarily discusses the d33 coefficient, though

reference to d31 may also be made throughout the document. The electrostrictive

effect may also be expressed as a vector of induced polarization [1]:

xij = QijklPkPl (2.1)

where Mijkl and Qijkl, the field- and polarization-related electrostrictive coeffi-

cients, are related through the dielectric susceptibility:

Mijkl = χkmχlnQijkl

Materials exhibiting piezoelectricity and spontaneous polarization are referred

to as pyroelectric. If the polarization orientation may be manipulated with an
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applied electric field it is considered a ferroelectric. This means that all ferro-

electrics are necessarily piezoelectric materials, but not all piezoelectrics can be

ferroelectrics.

2.3 Thermodynamics

In the last section ferroelectrics were described as a subset of a larger class of

materials called pyroelectrics. The ability for ferroelectrics to switch their polar

orientation under an applied electric field results from very small atomic displace-

ments within the crystal lattice that result in a non-centrosymmetric phase, and

hence a net dipole moment. Commonly a half-shift in the atom positions is cre-

ated by a temperature change which results in a centrosymmetric, non-polar phase.

This means that ferroelectrics exhibit a phase transition temperature above which

they are centrosymmetric and non-polar. Analogous to ferromagnetic theory for

susceptibility, the dielectric constant obeys the Curie-Weiss law above the transi-

tion temperature [2]:

ε =
A

T − TC
(2.2)

where TC is the Curie temperature or ferroelectric phase transition temperature.

As a note, dielectric constants for ferroelectrics range on the order of hundreds

to thousands. Thermodynamic principles may then predict that a transition from

a polar, non-centrosymmetric phase to a non-polar, centrosymmetric phase can

result in other significant changes to material properties. For example, any polar-

ization will necessarily be accompanied by a strain within the lattice.

The reversible change in internal energy U for an elastic dielectric material

under a change of strain dx, electric displacement dD, and entropy dS can be

described by the first and second laws of thermodynamics:

dU = TdS +Xijdxij + EidDi
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with T representing the temperature of the material. Considering isothermal con-

ditions, and E field and stress X as independent variables, a Legendre transfor-

mation of the U term may be used to switch the set of independent variables from

(S, x, D) to (T , X, E) by adding the terms -Ts-Xx-ED to the U term. This

results in a free energy term, or Gibbs free energy G [3, 4]:

G = U − TS −Xijxij − EiDi (2.3)

or the differential:

dG = −SdT − xijdXij −DidEi (2.4)

The Gibbs free energy may be expressed as a Taylor series expanded in terms of

the new independent variable set (T , X, E) [5]:

∆G =
∂G

∂T
∆T +

∂G

∂Di

Di +
∂G

∂Xij

Xij +
1

2

∂2G

∂T 2
∆T 2

+
1

2

∂2G

∂Di∂Dj

DiDj +
1

2

∂2G

∂Xi∂Xj

XiXj +
∂2G

∂T∂Di

∆TDi

+
∂2G

∂Di∂Xkl

DiXkl +
∂2G

∂T∂Xkl

∆TXkl + . . .

Here we see how thermodynamics describes the relationship between ther-

mal, electrical, and mechanical properties within a given material system. In this

expansion of the elastic Gibbs free energy each partial derivative represents a phys-

ical phenomenon. This includes electrocaloric, piezocaloric, pyroelectric effects, as

of heat capacity and thermal expansion, amongst others. This study concentrates

on piezoelectric effects, described as [5]:

dXij + (
∂xij
∂Ek

)T,X dEk dT + (
∂Dij

∂Xjk

)T,E

converse piezoelectricity direct piezoelectricity
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or in terms of the converse or direct piezoelectric effect, with coefficients dijk:

dT,Xijk = (
∂xij
∂Ek

)T,X = −(
∂2G

∂Ek∂Xij

) dT,Eijk = −(
∂2G

∂Xij∂Ek
) = (

∂Dk

∂Xij

)T,E

(2.5)

converse piezoelectric effect direct piezoelectric effect

The thermodynamic equivalence shown above can be shown for all other phys-

ical properties described by the partial differentials in the Gibbs free energy ex-

pansion. Taking the Legendre transformations of the internal energy using all the

other thermodynamic equivalences lead to the Maxwell relationships. In the case

of most ferroelectric oxides, the paraelectric phase is centrosymmetric, meaning

any coefficients associated with odd-rank tensors are null. For this reason one will

find the expansion of G up to either fourth-order or sixth-order terms. Considering

a system under fixed T , X, and E a stable system may be observed with G at its

minimum:

G = Go − ~E · ~D (2.6)

Taking the first derivative of 2.6 results in equations for the polarizations and

strains developed by ferroelectrics under specified electric and mechanical bound-

aries. This is the thermodynamic basis in understanding ferroelectric properties.

2.4 Ferroelectricity at the Nanoscale

The thermodynamic approach to ferroelectrics thus far has assumed a bulk-

like form. As the size or thickness of ferroelectric materials approach finite size

scales on the order of < 100 nm, there exist changes to the local spontaneous

polarization due to interactions with the free surface. Similar to surface effects in

other ferroic systems, a depolarizing field forms opposite the polarization direction

due to uncompensated surface charges [6]. It many cases metallic or metallic-like
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electrodes are placed on either side of the ferroelectric layer to assist screening

these charges. Unfortunately most often the electrodes possess structural defects

[7, 8] which lead to incomplete screening of the surface charges, and hence the

development of a destabilizing depolarizing field across the thickness, as shown

pictorially in Figure 2.3 below.

Figure 2.3: Illustration of a FE thin film between two metallic electrodes.
Shown are incomplete screening at the FE/electrode interface,
resulting in a depolarizing field Ed forming opposite the
spontaneous polarization Ps

Landau and Ginzburg first developed the boundary conditions by which to

best describe a ferromagnetic thin film 60 years ago [9]. Their mean field theory

was later adapted by Devonshire [2] using a different order parameter. Here, the

Gibbs free energy is shown as an expansion out to the sixth-order terms:

G =

∫ b

a

[
A

2
Pr (r)2 +

B

4
Pr (r)4 +

C

6
Pr (r)6 +

1

2
g (∇Pr)2 − Ed (r)Pr (r)

]
rdr

+
D

2δ

∫
S

P 2
r dS. (2.7)

where P represents polarization, A=Ao(T-TC), T is absolute temperature, TC

the Curie temperature, with Ao, B, C, and D all material parameters. Other

parameters include, g, the energetic cost associated with variation of Pr near

the surface, and δ, the extrapolation length, a correction term proportional to

the surface area. This effectively serves to help measure the strength of all the
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surface effects, respresented as the second integral term found in 5.2. For more

details about this equation or how it is derived please refer to these classic articles

[10, 11, 12]. The expansion of the Gibbs free energy will be revisted in Chapter 5

when discussing the effects of curvature on stabilizing nanoscale ferroelectricity.

2.5 Strain/Stress Effects

The observation of depolarizing effects in nanoscale ferroelectric thin films and

nanostructures due to depolarizing fields placed intense interest in combating these

effects with various stabilizing mechanisms. In recent years a number of strategies,

including, e.g. strain engineering for enhancing stability and polar properties [13],

and for inducing a ferroelectric phase in an otherwise paraelectric material [14], and

the use of artificial superlattices [15, 16, 17] have been implemented to mitigate

the reduction or loss in P in the limit of finite size, and the decrease in TC ,

or to otherwise manipulate the character of the ferroelectric polarization and/or

hysteresis.

Developments in oxide growth techniques such as oxide molecular beam epi-

taxy and pulsed laser deposition have created an array of extremely high quality,

exotic oxide substrates used to generate specified, engineered strain states within

the ferroelectric perovskite oxide films grown directly on them. Ferroelectric films

have also been grown directly onto silicon using this method [18], thus avoiding

widespread usage of these expensive substrates. These systems requires the benefit

of nonlinear electrostrictive coupling described by equation 2.1. Curvature-driven

stress gradients have also been theoretically and experimentally verified to en-

hance ferroelectric stability in nanostructures such as nanowires and nanotubes.

This will be covered in detail in Chapter 5.

2.6 Surface Chemical Environment

The preceding section outlined the importance of compensation of polarization-

induced surface charges as a stabilizing factor for nanoscale ferroelectricity, where
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incomplete screening of these charges results in a depolarization field that opposes

the bulk polarization, thereby suppressing the polar state. Recent experimental ev-

idence of room-temperature ferroelectric stability in several-monolayer and single-

phase ultra-thin films [19, 20, 21] and freely-standing nanostructures [22, 23] in the

absence of metallic electrodes (an increasingly common and important experimen-

tal configuration) has opened a line of inquiry into another potential strategy for

engineering ferroelectric stability and increased functionality by harnessing the in-

fluence of molecular adsorbates on ferroelectric stability. More recently, combined

experimental and theoretical investigations involving nanoscale ferroelectricity [22]

resulted in the first demonstration of a new mechanism for the screening of surface

charge on ferroelectric nanostructures by atomic and molecular adsorbates.

What causes this mechanism? Previous studies had shown that surface hy-

droxylation is prevalent in oxides, including BaTiO3, especially when these oxides

are prepared by wet chemical methods, and that chemisorbed OH is stable in an

ultrahigh-vacuum environment at elevated temperatures (> 670 K) [24]. These

molecular adsorbates can compensate the surface polarization charges, providing

a mechanism for reducing the depolarizing field.

Molecular adsorption-mediated ferroelectricity was observed and reported in a

separate series of theoretical and experimental investigations carried out on ultra-

thin films in a controlled atmosphere involving probing of ferroelectric distortions

using X-ray reflectivity [21, 25] In a separate series of experiments and calculations

involving thin films Li et al. [26] proposed an interesting mechanism for molec-

ular adsorption along ferroelectric surfaces by which molecules remain trapped

in a physisorption energy well, under the influence of the surround ferroelectric

domain state, site-independent. While many species quickly desorb from the sur-

face, any molecule that finds an active site, most commonly an oxygen vacancy,

chemisorption and bond formation occurs. Modified scanning probe techniques,

such as scanning surface potential microscopy (SSPM) or piezoeresponse force mi-

croscopy (PFM) are sensitive to adsorbed species along a ferroelectric surface, as

they indicate finite differences in the domain response as a function of adsorbed

species. Density Functional Theory (DFT) simulation results were used in [26]

to demonstrate the remarkable effectiveness of molecular adsorbates as screening
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agents. Selection of oleate ligands left the electropositive HCO fragments prefer-

ring the anion species while the electronegative species HCOO preferred the cation

sites. Depending on the presence of electronegative or electropositive adsorbates,

bulk like ferroelectricity was demonstrated for positive (upwards, out of plane)

and negative polarizations (downwards, out of plane), respectively. These results

are in stark contrast to those found for ferroelectric films [27] sandwiched between

two metallic and oxide electrodes, which do not exhibit ferroelectric stability at

comparable length scales (< 1 nm).

2.7 Ferroelectric Domains

Figure 2.4: Schematic of a - 180◦ and b - 90◦ domains within an tetragonal
ferroelectric perovskite lattice.

A domain describes a volume of uniform polar orientation. Energetically

monodomain states are not favored, as they lead to large depolarizing fields. As

such, ferroelectric systems spontaneously split into multiple domain states (Figure

2.4a-b) separated by domain walls. The domain size is then dictated by the

energetic cost in forming domain walls, Gw [28]. Under a sufficient driving force a

domain walls will move, resulting in a change of polar orientation called switching.

Typically switching occurs under the application of an external magnetic field,

electric field, mechanical stress, or some combination thereof. As this study focuses
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on ferroelectric materials, there will no longer be any mention of magnetic fields,

ferromagnetic behavior, or ferroelastic behavior.

To emphasize the significance here, domains form as to reduce the electrostatic

energy costs of the formation of the depolarizing field. This is particularly impor-

tant in nanoscale systems, where compensation for the depolarizing field takes the

form in screening through metallic electrodes and the spontaneous formation of

ferroelectric domains. Note, domain walls are necessarily charge neutral. These

domains may be experimentally verified through surface sensitive techniques such

as piezoresponse force microscopy (PFM), a modified scanning probe microscopy

technique which implements a lock-in amplifier to induce and measure a piezoelec-

tric deflection within a ferroelectric system via the converse piezoelectric effect.

This will be covered in more detail in Chapters 4 and 5.



Chapter 3

Synthesis and Fabrication of

Ferroelectric Test Nanostructures

Developing a versatile synthetic approach robust enough to produce nanos-

tructure arrays consisting FE shells with varying core materials has a been a central

part of this study. The details of the template-assisted growth processes used are

found in Chapter 3. Here the fabrication steps necessary to create electrically

viable test structures using electron beam lithography may also be found.

3.1 Bottom Up Synthesis

The sub-micron lithographic, ion-beam and reactive ion etching procedures

used in traditional so-called ”top-down” fabrication yield well-defined nanostruc-

tures, however the poor adsorption capacity of high-κ ferroelectrics can lead to

damaged, negatively polarized surfaces [29]. Within the last decade, the high

demand for increased bit capacity in memory elements, coupled with persistent

challenges in reducing the sizes of fabricated elements via so-called ”top-down”

methods has generated expanding interest in non-planar, so-called ”bottom-up”

synthetic approaches. These latter methods-involving physical or chemical vapor

deposition or chemical solution means, producing ferroelectric nanostructures in

a range of different shapes and sizes and while utilizing both template-free [30],

15
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and alternately, template-assisted [31] approaches. Template-free heteroepitaxial

formation of ferroelectric nanostructures, using sputtering, pulsed laser deposi-

tion, and metallorganic chemical vapor deposition, have been employed to pro-

duce a range of different shapes. The shape evolution is controlled by selection of

initial growth mode conditions, namely Volmer-Weber island growth or Stranski-

Krastanov layer-to-island growth, and selection of substrate material relating to

heteroepitaxial strain and orientation.

3.2 Chemical solution methods

Chemical solution-based methods, such as hydrothermal synthesis, sol gel

processing, and solution-phase decomposition represent an attractive and cost-

effective alternative to top-down approaches producing ferroelectric nanostruc-

tures for some applications [32, 33]. Some of these routes feature outstanding

synthetic control of size and shape [34], and composition [35], particularly in the

size range < 100 nm. Hydrothermal growth of ferroelectric nanoparticles typically

requires low-temperature, high-pressure processing step of extremely basic (pH)

aqueous precursor solutions, producing high quality nanocrystalline perovskites

without the necessity for a post-anneal heat treatment. Sol-gel processes begin

with a stoichiometric-correct quantity of metal alkoxide precursors which then

undergoes a controlled hydrolysis sequence finally yielding a stable suspension of

nanoparticles. These processes, like hydrothermal growth, occur at low tempera-

tures (<200 C), which is solely dependent upon the stabilizing agent used during

hydrolysis. Unlike hydrothermal growth however, sol-gel nanoparticle powders

require calcination to induce the proper ferroelectric phase transition. A mod-

ified sol-gel technique, solution-phase decomposition, adds a moisture sensitive

single bimetallic alkoxide precursor to an acid mixture primarily consisting of a

stabilizing agent and an alcohol, avoiding premature hydrolysis, where then a

small amount of peroxide is added to slowly promote hydrolysis over an extended

time window, providing excellent control over size and stoichiometry [23, 32, 35].

The as-synthesized nanoparticles are of perovskite structure and require no post-

growth thermal treatment. These methods, coupled with dielectrophoresis or other
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methods of assembly, may enable controlled placement on and integration of FE

nano-particles with non-traditional substrates.

3.3 Anodic Aluminum Oxide - AAO

A significant barrier to application of bottom-up synthetic approaches relates

to scalability, e.g. the need to precisely locate ferroelectric nanoparticles on a wafer

scale in a manner that is compatible with CMOS and related processes, although

significant progress has been made in other inorganic nanostructures [36]. Since

its discovery in 1995 by Fukuda [37], the phenomenon self-organization of local

etching into hexagonal close-packed arrays of columnar pores during the forma-

tion of AAO has been widely applied to the formation of arrays of nanowires and

nanotubes of a variety of inorganic materials, including oxide perovskites. One

feature of template-assisted growth of oxide perovskite nanowires and nanotubes

is the selectable control of nanowire and nanotube diameter and length, achieved

via selecting AAO pore diameter and pore length via electrochemical overpoten-

tial and length of anodization time [38]. In template-assisted growth, a sol-gel

metal alkoxide precursor wets the pore via immersion, with the immersion time

dictating the desired topology, i.e. longer times resulting in nanowires, and shorter

times in nanotubes [39]. Template-assisted growth of some of the most technolog-

ically important ferroelectric perovskite materials: lead titanate, barium titanate,

lead zirconate titanate, strontium bismuth titanate, and multiferroic barium fer-

rite nanowires and nanotubes has been reported, along with their structural and

functional characterizations [23, 40, 41, 42, 43, 44]. Other template materials have

also been employed to produce nanowires and nanotubes, including nanoporous

silicon [41, 44] and nanoporous block copolymers [45]. The combined advantages

of low-temperature chemical processing and ordered templated-growth to produce

high yield arrays of perovskite oxide ferroelectric nanostructures demonstrate sig-

nificant promise for future miniaturization of nanoscale ferroelectric capacitors

[46, 47].

Anodic aluminum oxide (AAO) templates were produced from high purity

Al sheets (Alfa Aesar Puratronic 99.9995% #43777) via a two-step anodization
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Figure 3.1: a Top view SEM image of AAO prepared using oxalic acid
(scalebar = 1µm), b Higher mag top view SEM image of AAO (scalebar = 100
nm), c side view SEM image of AAO template (scalebar = 1µm).

process in oxalic acid (0.3 M, 1 ◦C, 30 V) (Figure 3.1), as shown previously by Lee

[48]. The motivation behind growing AAO templates was the obtainable size range;

mesoporous silicon typically is on a length scale of hundreds of nm [41, 44] while

AAO could be fabricated to below 10 nm. The process used in this study produced

templates ranging in pore diameters from 50 - 240 nm, with thicknesses on the

order of 30 µm. Commercially available templates (Whatman Inc. Anapore) were

also used having pore diameters of 100 nm and 200 nm. The following list will

highlight the entire process:

1. Degrease the as-is high purity aluminum sheet in acetone for 10 min

2. Electropolish the aluminum sheet in a 1:1 mixture of perchloric acid and

ethanol for 5 min

3. Place the polished sheet inside the homemade electrochemical cell, tighten

the top plates so the back surface of the aluminum is in direct contact with

the copper electrode and the top surface exposed to the acid bath. The

cell must contain a chemically neutral layer protecting the inside of the cell

(especially the copper strip electrode) from exposure to the acid bath.

4. After a 30 min exposure to the acid bath, the sample is removed from the

cell and the sacrifical oxide layer is removed in a mixture of phosphoric acid

and chromic acid, leaving a texturized surface for the second anodization

step.
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5. The third step is repeated.

6. The fourth step is repeated for 24 hours to grow a thick AAO film.

7. The sample is placed in a bath of HgCl2 to dissolve the remaining aluminum.

8. The sample is washed and rinsed repeatedly in DI water to obtain a free-

standing AAO template film

3.4 Sol-Gel Processing

By definition [49] a sol is considered to be a colloidal suspension within a

liquid, where a colloid represents a particle 1 - 100 nm in diameter. A gel is

then defined as porous, connected network comprised of polymeric changes on

the micron scale. The sol-gel process typically involves one of the following two

methodologies

1. Gelation of a colloidal solution of dissolved powders

2. Hydrolysis and polycondensation of metallic alkoxide precursors followed

by either hypercritical or ambient drying steps.

The method of choice in preparing sol-gel precursors for ferroelectric oxides is

the route utilizing metallic alkoxides. Here the precursors are mixed and heated in

multiple steps, first to assure a hydrolysis exchange between water and an alcohol

end group. To produce the oxide, a condensation step must occur by which to

hydroxyl groups form water and leave a metal-oxide-metal bonded structure. This

polycondensation step may occur between two hydroxyl end groups or alcohol

end groups. Note: most of the studies shown here used a premade commerical

polymeric precursor (Chemat 9103).

To reiterate, the combination of sol-gel chemistry and use of AAO template-

assited growth has resulted in fabrication of large arrays of one-dimensional like

nanostructures of prototypical ferroelectric oxides lead titanate, barium titanate,
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lead zirconate titanate, strontium bismuth titanate, and multiferroic barium fer-

rite [23, 40, 41, 42, 43, 44]. Here the surface energy of the alumina template

dominates the growth process, where topologies are dictated by the immersion

time; longer times results in nanowires, and shorter times in nanotubes [39, 50].

The formation of the nanostructures is based on the balance of interfacial energies;

the surface-volume energy of the oxide surface (γsv), the surface-liquid energy of

the alumina surface (γsl), and the liquid-volume (γlv) energy of the solvent (i.e.

methoxyethanol). These factors form the spreading coefficient S defined as total

interfacial energy of the system [50]

S = γsv − γsl − γlv. (3.1)

For typical oxides (γsv) is on the order of 500-1000s mJ/cm2; the surface-

liquid(alcohol) energy of alumina is 169 mJ/cm2 and the liquid-volume of methoxyethanol

42 mJ/cm2. This results in an S value well above zero, meaning that the adhesive

forces of the alumina dominate the total energy of the system. This means that

as an AAO template is immersed in a sol-gel precursor, the energetically favorable

path is along the bare alumina surface (due to adhesive forces) as opposed to filling

the pore entirely (due to sol cohesive forces).

Figure 3.2 displays SEM images of various stages in the AAO-assisted sol-gel

synthesis of ferroelectric PZT nanotube (PZTNT). The next step in the fabri-

cation process is electrodeposition of metallic nanowires and/or metallic catalyst

segments.

3.5 AAO-assisted Electrodeposition

In addition to sol-gel chemistry, AAO-assisted methods utilizing cathodic re-

duction of an electrochemical plating bath have also been widely deployed in de-

veloping arrays of one-dimensional like nanostructures [51]. This electrochemical

method has been used to produce arrays of metallic nanostructures of dozens of

noble and transition metals; the reader is referred to elsewhere for details [51, 52],
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Figure 3.2: a - a cross section of the AAO template embedded with PZT
nanotubes PZTNT, b - an array of exposed PZTNT after a partial etch of the
templates in 6 M NaOH, c - higher mag SEM image of exposed PZTNT
arrays, d - a cross section of an AAO template embedded with PZTNT, e - an
array of PZTNT (top view) after a partial etch, and f - freestanding PZTNT
dispersed on a silicon substrate after a full etch of the AAO template

as this thesis will cover the synthesis of noble metal gold nanowires and segments

thereof.

Figure 3.3 represents the experimental setup for electroplating gold nanowire

arrays within AAO templates. After completing the necessary synthesis steps

found in sections 3.3 and 3.4 the PZTNT-embedded AAO is backcoated with a

thermally-evaporated layer of Ag to serve as the sample electrode (cathode). The

silver-coated area is covered in a passivation layer of nail polish (Sally Hansen

Hard as NailsTM) to ensure the plating takes place within the pores and not

directly on the metal surface. The sample is then placed in a beaker as the sample

electrode (cathode) opposite a noble-metal Pt mesh (anode) and filled with a

thiosulfate-sulfite based Au plating bath (Technic 25) and run under constant

current conditions (J = 1 mA/cm2) for 1 hr. For sulfate based baths, the half

reactions take the general form [53]



Chapter 3. Synthesis and Fabrication of Ferroelectric Test Nanostructures 22

Figure 3.3: Illustration of the electrochemical setup for cathodic reduction
within AAO. Shown are the backcoated AAO template serving as a cathode
with a noble metal platinum mesh serving as the anode. The enlarged image
shows the plating mechanism.

M(SO3)
3−
2 ⇔Mx+ + xSO2−

3

Mx+ + e− →M. (3.2)

For this study M = Au, Ag. Cyanide based baths produce single-crystalline

Au nanowires, however due to their high toxicity and extremely poor compatibility

with photoresists and electron beam resists they are rarely used in fabrication

[53, 54]. For these reasons the thiosulfate-sulfite based plating bath was used to

produce the nanostructures found in Figure 3.4 below.

Figure 3.4: left secondary electron SEM image of AuNW-embedded AAO
templates; right backscattered electron SEM image of the same area.
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Maintaining the same plating conditions (i.e. J ) and adjusting to a shorter

timescale allowed for synthesis of controlled arrays of Au catalyst segments within

the AAO to assist in the vapor-liquid-solid (VLS) growth of silicon nanowires

(SiNW).

Figure 3.5: a Au catalyst segments grown with a high current density J, b
Au catalyst segments grown with a proper current density, leading to higher
uniformity

3.6 AAO-assisted Silicon Nanowire Growth

The past decade has seen many advancements in the field of nanoelectron-

ics and one-dimenional and one-dimensional like transport, specifically in carbon

nanotubes [55] and silicon nanowires (SiNW) [56]. Semiconductor nanowires are

of fundamental interest due to their low dimensionality and relatively low produc-

tion costs, both of which are significant challenges facing the planar semiconductor

community [56]. Nanowires are formed by the vapor-liquid-solid mechanism (VLS)

by which a liquid metal serves as an energetically favorable adsorption and nucle-

ation site for a gaseous precursor, which in turn supersaturates the metal droplet

and precipitates out in the form of a one-dimensional structure.

Similar to the approaches used in colloidal growth of SiNW, template-assisted

growth of SiNW requires short Au segments to serve as catalyst for the VLS

mechanism [57, 58]. The general principle involves suspending the Au segment

within the template to ensure a pore-limited size (diameter) of the nanowire. This

is accomplished by performing separate electroplating steps described in section
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3.5; the first using a Ag plating bath (J = 1 mA/cm2 for 2 hrs), as a support

layer, then a second electroplating step (J = 1 mA/cm2 for 15-30 min) to plate

the Au catalyst segment. The thermally-evaporated silver electrode and nanowire

support segment were selectively etched in diluted 8M HNO3 acid, resulting in

uniform Au catalyst segments as seen in Figs. 3.5 and 3.6a.

Silicon nanowires (SiNW) were grown via CVD within PZTNT-embedded

AAO (Fig. 3.6) using the methods developed by Lew [57, 58] described earlier.

The preparation and growth parameters are as follows:

1. Using tweezers, break a small piece of the Au catalyst-embedded, PZTNT-

embedded AAO (as synthesized using parameters in sections 3.4 and 3.5)

and place onto a quartz boat

2. Load the boat into the quartz reactor tube at the predetermined distance

(this was a calibrated distance using an external thermocouple to ensure the

temperature was reading correctly within the hot zone of the furnace)

3. Ramp the furnace reactor to desired operation temperature (500 - 530◦C)

under a base pressure of 13 Torr, as controlled by a homemade pressure

controller/Barotron

4. Ensure that step 4 is completed under the direct flow of H2 [25 - 100 standard

cubic centimeters per minute (sccm)]

5. Once furnace stabilizes at a reaction temperature above the eutectic (363◦C

[59]) introduce the flow of the gaseous silane (Voltaix 10%-SiH4; balance H2)

precursor at a flow rate commensurate with desired partial pressure of silane.

Note: a silane partial pressure of 0.65 Torr produced the best results, i.e. 50

sccm SiH4:50 sccm H2

6. Stop the furnace after the reaction time (typically 1 hour, to ensure penetra-

tion of gas into the pores) and cool the reaction tube under hydrogen flow

at the base pressure (13 Torr)

7. Remove sample
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Figure 3.6: a Au catalyst segments within AAO, b SEM cross section image
of AAO template after growth in CVD, showing wires extending from
template surface, c cross section SEM image of SiNW grown in
PZTNT-embedded AAO, d SEM image of SiNW grown out of the AAO
surface, showing distinct Au-catalyst ends bright contrast, e cross section SEM
image of SiNW grown in PZTNT-embedded AAO
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Figure 3.7 shows energy dispersive spectroscopy (EDS) and SE/BSE images

of SiNW-PZT core-shell nanowires within AAO. Present are the three elements

comprising PZT (Pb, Zr, Ti), along with Si and the Al present from the AAO.

The Si present is due to the presence of nanowires, as the EDS was collected

directly from the template and not while dispersed on a substrate. Brighter areas

of contrast within the BSE images represent the Au catalyst segments.

After the wires have been grown in CVD, they are prepared for test structure

fabrication by being placed into a microcentrifuge tube and immersed in 6M NaOH

to selectively etch the AAO from the Si-PZT nanowires. Briefly, a couple key

suggestions:

1. Place only a small amount of grown template into the NaOH bath. Alu-

minum based salts can form during the selective etching and too much tem-

plate will result in these salts not dissolving completely, leaving the entire

nanowire solution very dirty.

2. Break the small AAO embedded pieces into many, many tiny pieces. Every

surface of the AAO placed into the CVD reactor has been covered in amor-

phous silicon. Breaking the piece exposes bare alumina, which etches at a

far faster rate than silicon surfaces. In fact, I probably still have unbroken

pieces still trying to etch today.

3. The dissolving process should be completed in a 12 - 24 hour timeframe.

This will require a 4x rinse and centrifuge cycle in DI water to reduce the

pH of the etch solution. After the pH is lowered the samples are swapped

from DI with either ethanol, isopropyl alcohol, or hexane, to be dispersed

onto a substrate.

After completing the steps outline above, individual Si-PZT core-shell nanowires

may be dispersed onto a substrate, as shown in Fig. 3.8. As demonstrated in Fig.

3.6, the process outline for the synthesis of SiNW-PZT, in its current form, is a

low yield process. This is evident when closely observing the freestanding species

in Figs. 3.8d and 3.8e where clearly defined hollow and filled sections of the nan-

otube are both visible (Figs. 3.8a-b). The problem most likely exists within the

half reactions [56]:
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Figure 3.7: a EDS of Si-PZT nanowires embedded in AAO, b-c SE and BSE
SEM images of partially etched Si-PZT nanowire arrays in AAO (top view),
d-e SE and BSE SEM images of partially etched Si-PZT nanowire arrays in
AAO (side view)
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SiH4 Aucatalyst←−−−−→
Si(s) + 2H2 ↑ (3.3)

SiH4 ↔ Si(s) + 2H2 ↑ (3.4)

Figure 3.8: SEM image of freestanding a hollow PZTNT and b Si-PZT
nanowires dispersed on a silicon-SiO2 substrate, d-e SEM images dispersed
Si-PZT nanowire species

Equations 3.3 and 3.4 represent the reactions for catalyzed (heterogeneous

growth) and pyrolytic (homogenous decomposition) growth, respectively. Though

outside the scope of this study, it is apparent that the gaseous SiH4 requires the
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proper kinetics (flow), partial pressure, and time to produce higher crystalline

yield. Another factor in increasing the yield involves very careful control of the

nanowire Au catalyst segment; a longer segment necessarily involves a greater

volume which must be supersaturated in order to precipitate a silicon nanowire.

3.7 Structural Characterizaztion

Structural characterizations of the coaxial nanowires were performed using X-

ray diffraction (XRD) and Raman scattering spectroscopy, as shown in Fig. 3.9.

Plotted in Fig. 3.9a is the XRD collected from PZT nanotubes embedded within

the AAO, possessing reflections from tetragonal perovskite PZT grown via sol-gel

[60]; the other observed peaks are from the AAO template [61]. It should be noted

that the perovskite phase is present despite its small grain size (≈ 5 nm). This does

not preclude the existence of a surface pyrochlore phase, previously shown as a 10%

perovskite/pyrochlore phase ratio in identically prepared sol-gel PZT nanotubes

with nanocrystalline grains [62]. A representative Raman spectrum (Fig. 3.9b)

(Renishaw 1000, 514.5-nm excitation) collected from an individual PZT nanoshell

contains peaks near 205, 275, 325, 594, and 737 cm−1; these energies correspond

to the irreps (phonon modes) E(2TO), E+B1, A1(2TO), A1(3TO), and A1(3LO)

of perovskite PZT of the specified composition [63], respectively.

Nanowire diameters and thicknesses were obtained by atomic force microscopy

(Asylum Research MFP-3D) and transmission electron microscopy (TEM, JEOL

2100), respectively. TEM (Fig. 3.10a); selected area electron diffraction (SAED)

(inset)) and scanning electron microscopy (SEM) (Fig. fig:TEMSEMNWb) images

confirm structures are ≈ 5µm long, 50 nm in diameter and 7 nm in shell thickness,

with an average grain size of ≈ 5 nm. The polycrystalline rings correspond with

the 110, 111, 210, and 211 reflections of tetragonal PZT, respectively [64]. Shown

in Fig. 3.10b is an SEM image (false color) of an electrically-contacted coaxial

nanowire, prior to proximal probe characterization. Structures ranging from 50-

240 nm in diameter, 3-10 µm long, and 7-30 nm in shell thickness (ζ) were prepared

in this manner.
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Figure 3.9: (a), X-ray diffraction of nanotubes within the AAO template.
Indexed peaks are of tetragonal perovskite; all remaining indices are assigned
to the AAO. (b), Raman spectrum of an individual 100 nm PZT nanotube in
which the observed modes of tetragonal perovskite are denoted.

3.8 Electron beam lithography

The purpose of the synthesis methods described in sections 3.5 and 3.6 was

to create an integrated nanostructure with a conductive inner electrode material.

This section will outline the fabrication steps necessary to create an electrically-

addressable test structure. Electron beam lithography (EBL) has been used since

the sixties [65] to write submicron patterns within an electron sensitive resist. The

shorter wavelengths of electrons inherently makes nanometer scale patterning eas-

ier than by optical lithographic methods. However, the semiconductor industry

has universally used optical lithography due to its speed, as single electron pat-

terning is (almost) prohibitively slow for industry purposes. As node dimensions

have decreased, various techniques have been employed to enhance lithographic

resolution down to sub-30 nm, including but not limited to phase shifting masks,

extreme ultraviolet lithography, various fluoride-based excimer light sources, and

liquid immersion [66]. The optical lithography vs. EBL debate is great for indus-

try, however in an academic experimental laboratory setting involving registration

patterning to nanowires, EBL is the clear choice.

The general approach to contacting nanowires was modified and adapted from
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Figure 3.10: (a), TEM image of two 50 nm diameter Au-PZT core-shell
nanowires, scalebar = 50 nm. Upper inset, electron diffraction of a bundle of
Au-PZT nanowires. Lower inset, empty 200 nm PZT nanotube, scalebar = 50
nm. (b), (false color) SEM image of a single nanowire, scalebar = 1 µm.

similar approaches used in fabricating electrical contacts in other one-dimensional-

like systems [55, 56, 67]. The entire contacting process follows these steps:

1. Take a blank SiO2-covered wafer and spincoat 100 K (Microchem) electron

beam resist at 5000 rpm for 30 seconds, then bake for 5 minutes; repeat
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Figure 3.11: typical alignment pattern used in the EBL patterning of
nanowires, prior to nanowire dispersion; scalebar = 10 µm.

spincoating of 950 K (Microchem) resist for 30 seconds and bake for 30

minutes

2. Using the Nano Pattern Generation System (NPGS; Nabity Inc), run array

of alignment markers over the entire wafer with a high beam current (250

pA - 1 nA)

3. Develop the patterns in a 3:1 mixture of 2-propanol:4-methyl-2-pentanone(MIBK)

for 70 seconds.

4. Evaporate metallic bilayer [10 nm Cr (adhesion) - 200 nm Au] onto patterned

wafer

5. Place wafer into acetone for at least 3 hours to remove residual resist, as

shown in Fig. 3.11

6. Take core-shell nanowire suspensions made as described in section 3.6 and

disperse onto a prepatterned substrate (step 1; Fig. 3.11)

7. Collect SEM images of the dispersed nanowire species in the areas found in

3.11

8. Repeat step 1
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9. Import SEM images from step 7 and create new CAD patterns registered

to the nanowire ends, using the original CAD patterns from step 2 as the

origin for alignment.

10. Repeat steps 2-3 (I = 50 pa; dose = 250µC/cm2), the place sample into

etchant [68] to selectively remove the FE shell from the core material, then

repeat steps 4-5 to directly contact the inner nanowire core.

11. For AFM measurements : Place chip of contacted nanostructures into a chip

carrier, then manually wirebond

Figure 3.12: a a SiNW-PZT core-shell nanowire contacted using EBL, b a
two-step EBL contact process resulting in a third (gate) electrode; both
scalebars = 1 µm.

Figure 3.12 show SEM images of contacted SiNW-PZT core-shell nanowire

test structure a and gated test structure b fabricated using the methods outlined

above 3.8. These test structures shown in 3.12a form the basis for the stud-

ies covered in Chapters 4, 5, and 7. The gated test structures shown in 3.12b

form the base for the studies covered in Chapters 6 and 7. Focused Ion Beam

(FIB), electron-assisted deposition of Pt also served as a means to directly contact

nanostructures with gate electrodes. The majority of the electrodes used during

the following chapters were performed using EBL. A detailed review of the FIB

process may be found here [69]. A description of the FIB contacting process will

be found in Chapter 7.



Chapter 4

Piezoresponse through a

Ferroelectric Nanotube Wall

Piezoresponse force microscopy (PFM) is a modified scan probe technique

utilizing a lock-in amplifier to apply a bias to a conductive cantilever tip in con-

tact with the material surface, inducing a piezoelectric deflection via the converse

piezoelectric effect. This technique can be used to image FE domain states or

manipulate the FE state in scanning mode, or collect localized FE piezoelectric

hysteresis in a static probe setup. Chapter 4 concentrates on the experimental

setup and discussion of PFM scan mode operation in identifying the FE state of

an individual nanowire test structures [70].

4.1 Scanning Probe Microscopy - Basics

Scanning probe microscopy (SPM) is a local characterization technique based

on a principle approximation to Hooke’s law. Briefly, as a atomically-sharp tip

mounted on a cantilever approaches the sample surface (Figure 4.1a) the forces

normally associated with attractive and repulsive regimes (Figure 4.1b) are ob-

served. As the cantilever begins to bend, an incident laser signal is deflected and

then read by a photodiode, which in turn creates a feedback loop by adjusting

34
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either the sample height or cantilever height to maintain a constant cantilever de-

flection setpoint. The voltages necessary to adjust the height within the feedback

loop may then be used to obtain topographic information of the sample surface.

Figure 4.1: a Illustration of the operating principle of SPM; the deflection of
the cantilever δ is read by a 4-quadrant photodiode ∆d creating a feedback
which yields topographic information, b The forces associated with the
tip-sample interactions during use of SPM.

4.2 Piezoresponse Force Microscopy

Since its initial discovery by Binnig and Gerber in 1986 [71] atomic force mi-

croscopy has played a pivotal role in the growth and understanding of nanoscale

systems and their rich physics. Since then, many modified techniques have been

developed [72, 73] to study localized physical, chemical, and biological phenom-

ena. This thesis focused on a single modified AFM or SPM technique called

Piezoresponse Force Microscopy (PFM). This section will cover the basic operat-

ing principles of the technique as context for the remaining chapters; more detailed

coverage of its operation and use can be found in a terrific review by Sergei Kalinin

[74].

PFM is a contact-based, modified scan probe technique implementing a lock-

in amplifier to collect an electrically-induced deflection of the sample surface. Here

an alternating current (AC) voltage is applied directly from a conductive cantilever

tip in direct contact with the sample surface, thus creating a piezoelectric defor-

mation of the sample due to the converse piezoelectric effect. The deflection of
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the cantilever is then read by the photodiode, similar to topographic operation de-

scribed in the previous section. The difference here is that the lock-in is now part

of the feedback loop, and can read the piezoelectric deflection amplitude and phase

signals, each of which represents the magnitude and orientation of the collected

signal, respectively.

Figure 4.2: Schematics of the converse piezoelectric effect on FE particles on
a surface, with a and b representing positively and negatively poled normal
FE polarizations and c and d postively and negatively poled lateral
polarizations, respectively. legend shows a typical experimental configuration.

PFM has become the standard by which phenomena in nanoscale ferroelectrics

are measured locally, with numerous published results of thin films [7, 8, 20, 27,

75, 76, 77, 78] and ferroelectric nanostructures [41, 42, 46, 47, 62, 63, 79, 80,

81, 82, 83, 84] alike. There are generally two modes of operating PFM to collect

ferroelectric piezoelectric-based information:

1. PFM scan mode: As described in the paragraph above Fig. 4.2

2. PFM static hysteresis mode: A static, promixal probe technique apply-

ing a slowly-varying triangle wave to the substrate electrode (which during
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scan mode is grounded) while a higher frequency AC signal is applied to

the conductive cantilever tip. The resulting hysteresis is collected either a

measure of ferroelectric piezoelectric d33 coefficient, in the loop shape shown

in Fig. 2.2, or in the form of piezoelectric deflection amplitude as a butterfly

shape loop

In the case of non-planar ferroelectric nanostructures, both PFM scanning

and hysteresis has been performed of solid ferroelectric nanowires [83, 84] and

nanoislands [46, 81], however of hollow ferroelectric nanotubes [41, 42, 62, 79, 80]

only static ferroelectric have been collected to date. Due to the detail synthesis

and fabrication approaches outline in Chapter 3 this study offers the first structure

to allow for interrogation of ferroelectric piezoelectric properties in both scanning

and static proximal hysteresis PFM modes.

Nanoscale ferroelectrics (FE) exhibit size-dependent phenomena [6, 21, 22,

77, 81, 84, 85, 86, 87, 88] not observed in bulk, generating interest in their physics

and applications. Among recent studies are theoretical and proximal probe ex-

perimental investigations in which unusual dipole ordering [81, 85], size and/or

shape-driven ferroelectric phase transitions and transition temperatures [22, 86],

and enhanced axial polarizations [86, 87] were reported. The stabilizing effect of

molecular adsorbates [22] and of surface-induced strains [84] in reinforcing out-of-

plane polarizations against depolarizing fields have been observed in films and in

high aspect ratio, large surface-to-volume nanostructures alike [21, 22, 77, 88].

Template-assisted fabrication techniques using materials such as anodic alu-

minum oxide (AAO) have expanded synthetic options for experimental realization

of low-dimensional FE in arrays of nanotubes [40, 41], nanowires [22, 63], nanois-

lands [46] and nanodots [32], thereby permitting study of finite-size and shape ef-

fects, significant for application in higher-density non-volatile memories. Investig-

tions of size effects in FE thin films have employed piezoresponse force microscopy

(PFM) to observe the local FE response as induced via a conductive tip. Here,

Au-Pb(Zr0.52Ti0.48)O3 (PZT) coaxial cylindrical nanowires (Fig.3.10) are used to

investigate the stability and switching of ferroelectric domains oriented along the

finite, shell-normal direction.
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Proximal probe measurements were collected by scanning the topography of

the nanowire (Fig. 4.3(a)), after which the tip was repositioned onto the nanowire

surface and held in constant deflection feedback, where a slowly varying bias was

applied to the nanowire core (±18 Vpp, .05 Hz) while an ac bias was simultaneously

applied (3 Vpp, 4 kHz) to the cantilever tip (Fig. 4.3(b)), thus enabling the collec-

tion of ferroelectric hysteresis loops (Fig. 4.3(c)). The observed positive vertical

offsets, commonly attributed to the imprint behavior of a non-switchable dead

layer [89], result from surface tension-induced strain gradients in the nanoshells,

similar to graded ferroics [90, 91, 92]. Larger radius nanoshells hysteresis exhibited

a negligible shift, while those of more extreme curvature displayed large offsets.

Figure 4.3: (a) (false color) height map of a 100 nm Au-PZT coaxial
nanowire. (b) experimental scheme for collecting (c) ferroelectric piezoelectric
hysteresis and (d-f) plane-normal piezoresponse phase contrast maps. (d)
represents the “as found” state with (e) and (f) revealing written negative and
positive ferroelectric domains, respectively (dashed circles).

The local FE response across the smallest (radial) dimension of PZT nanoshells

was collected by PFM (Asylum Research MFP-3D). Images were obtained using
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a Ti-Pt coated tip (Olympus Electrilever, k ≈ 2 N/m, tip radius ≈ 15 nm) biased

at 2 V while driven at 280 kHz, away from the cantilever resonance (77 kHz), as to

minimize topographic contributions. During PFM imaging, the Au nanowire core

was held at ground. The height map of a representative 100 nm diameter nanowire

is shown in Fig. 4.3(a). The nanowire diameter appears larger due to tip-nanowire

convolution effect, similar to other PFM studies of FE nanowires [83, 93]. Succes-

sive PFM phase contrast maps (range +150 ◦ - −50 ◦) of the nanoshell polarization

as-found (Fig. 4.3(d)), and following application of -10 V (Fig. 4.3(e)) and +10 V

(Fig. 4.3(f)) while the tip was scanned over a region denoted by the dashed circles

indicate a shell-outward normal polarization component in this region initially,

with demonstrable reversible switching, respectively. Switching events were pro-

duced in deflection feedback point mode for a duration of 10-12 seconds. Following

a writing event, the local phase signal associated with each written and switched

domain was observed to be stable for the timescale investigated. No detectable

change in contrast could be discerned among five successive scans following a writ-

ing event ( 70 min.). A study of the long-term stability of written and switched

domains, however, merits further study.

The image data in Figs. 4.3(d)-(f) raise interesting questions regarding the

origin and stability of polarizations oriented along the finite-thickness dimension

in ultrathin films and nanostructures. Remarkably, an outward shell-normal (as

opposed to in-plane) polarization is seen over some portions of the nanoshells

in their as-found state, consistent with the orientation observed within ultrathin

ferroelectrics possessing chemisorbed M (M = transition metal)-OH [21]. The

effective screening length of such adsorbates can be even shorter than those for

metallic electrodes [88], thus mitigating the effect of the depolarizing fields that

typically suppress the response in ultrathin films situated between two electrodes

[6]. Density function theory calculations have been previously reported [22] to

preserve tetragonality in BTO lattice within nanowires downwards of 3 nm in

diameter. Fourier transform infrared (FTIR) absorption spectra (Fig. 4.4) were

collected (Varian Excalibur FTS-3000) using a diamond single reflection attenu-

ated total reflectance prism. Nanowire suspensions were dried (150 ◦C) and ex-

changed repeatedly in chloroform (BDH1109) to ensure the absence of free hy-

droxyl species. The suspension was evaporated onto the prism surface before
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Figure 4.4: FTIR spectrum of 100 nm PZT nanotubes. Inset shows an
enlarged view of the 3650 cm−1 peak, resulting from surface terminated
hydroxyl species. The large peak at 2925 cm−1 corresponds to C-H stretching
modes.

accumulating spectra (128 scans, 2 cm−1 resolution). The estimated peak at ≈
3650 cm−1 is assigned to M-OH (M = Zr,Ti) stretching modes [94], indicative of

surface-terminated chemisorbed hydroxyl species along the ferroelectric nanoshell,

not surprising given the alochol-based sol-gel preparation outlined in section 3.4.

We note that no discernable stretching modes for either Pb-O or surface O-H were

observed, consistent with their reduced thermodynamic stability [21]. The large

feature estimated at ≈ 2925 cm−1 results from C-H stretching modes of residual

organics from the dried nanowire suspension. These adsorbates have been pre-

viously predicted to produce upwards and downwards polarization states within

ultrathin ferroelectric thin films, respectively.

Note that the absorbed species can play a role in the observed component

of outward normal polarization and the vertical offset in the observed hysteresis

in the as-found shell. The precise mechanism(s) influencing the domain stability

after switching events (Figs. 4.3(e)-(f)), however, are not clear. The multitude of

domain states observed throughout the length of the nanowire result from compet-

ing elastic and depolarizing effects within polycrystalline grains [95] (Fig.3.10(a)

inset), creating mixed 90 ◦ (gray or no contrast) and 180 ◦ (white/black contrast)

domains. The values of ∆G (the reaction energy per adsorbate) for species relevent

to the present experiments are in the range of -0.2 < ∆G < 1.95 eV at 300 K [21].
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While several possible adsorbate and adatom species, and/or oxygen vacancies

may participate in screening, we propose that the locally intense electric field un-

der the tip, produced by the application of the switching voltage (±3 Vpp), is

sufficiently large for these and other adsorbates to overcome the energetic bar-

riers necessary for desorption and migration, and also for migration of vacancies

toward or away from the surface of the written domain. Attempts to image the lat-

eral piezoresponse (along the fast scan direction; minimal loading force) damaged

the PZT nanoshell surface, making a full domain map of the nanoshell infeasi-

ble. The switching observed in Figs. 4.3(e)-(f), however, unambiguously show a

shell-normal (or out-of-plane) component of polarization.

In conclusion, the ferroelectric response of template-fabricated Au-PZT cylin-

drical nanowires has been measured using PFM across the finite, radial dimension.

Stable, switchable shell-normal oriented polar components are observed, as demon-

strated by hysteresis and imaging of a switched domain state. The outward shell-

normal components in the as-found nanoshell can be explained by the presence

of M-OH adsorbates, consistent with previous work of domain stability in thin

films [20, 21] and nanowires [22]. These principles and methods should stimulate

interest and develop new applications in low-dimensional systems of ferrelectrics

and multiferroics.



Chapter 5

Finite Curvature-Mediated

Ferroelectricity

This section will review and discuss experimental evidence for finite-curvature,

surface-tension based stabilization of FE properties along the finite-thickness di-

rection of individual nanostructures. The findings presented in this section will be

corroborated with numerical calculations incorporating a modified Landau stiff-

ness into the free energy expansion, with comparisons given between nonlinearily

coupled surface tension-induced stresses and planar, stress-free thin films [96].

Ferroelectric (FE) thin films and nanostructures continue to attract intense in-

terest [13, 16, 18, 21, 25] for their enormous potential as highly versatile nonvolatile

memory elements [18, 22, 77, 78], for THz emission and thermocaloric cooling [97],

and for their finite size-dependent physical phenomena [16, 21, 22, 25, 85, 98].

The stability of the FE phase in ultra-thin films and nanostructures is limited by

the relative contribution of the depolarizing field to the free energy, arising from

incomplete screening of surface polarization charge. Extreme reduction in film

thicknesses is typically accompanied by a concomitant decrease in FE polarization

P and phase transition temperature TC , reflecting a critical size for ferroelectric-

ity. In recent years efforts to develop strategies to stabilize switchable FE states

in few-monolayer films via heteroepitaxial strain [13, 18, 77], surface chemical en-

vironment [21, 22] and selection of FE-metal interfaces [99] hold great promise
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for addressing finite-size limitations, further demonstrating the significance of the

surface and interfacial boundary conditions.

The deleterious effect of the depolarizing field is equally severe for FE nanopar-

ticles, but FE nanoparticles can exhibit unexpected and new physical phenomena

not found in bulk. For example, toroidal FE ordering [81, 85] and enhancements in

axially-oriented polarization Pz and in TC in FE nanotubes and nanowires owing

to electrostrictive coupling of azimuthal stresses [87, 98] have been reported, sug-

gesting new possibilities for high-density encoding of information. Experimental

evidence indicates that polarizations oriented either parallel [83] or perpendicular

[22, 23, 83] to the FE oxide nanowire axes are stable and switchable.

Here, evidence for suppression of the finite-size reduction of FE polariza-

tions in ultra-thin and extremely curved nano-shells with polarizations oriented

along shell inward and outward normals is presented. Significantly it is demon-

strated that such curvature can alter the evolution of TC , providing a new means

of circumventing finite-size limitations. Local FE switching and piezoelectric re-

sponses within individual, coaxial cylindrical oxide perovskite (PbZr0.52Ti0.48O3,

PZT) nano-shells each encasing a noble-metal (Au) core [70] were probed using

piezoelectric force microscopy (PFM) [75] collected in atmosphere at room tem-

perature (Fig. 5.1(a)). Measurements collected from a range of thicknesses and

radii indicate remarkably large responses compared to their planar counterparts

of identical composition. Significantly, no systematic decrease in the FE response

is seen for decreasing shell thickness.

Shown in Figs. 5.1(b)-(e) are traces of the real part of the radial component of

the displacement, i.e. local FE piezoelectric hysteresis loops for PZT nano-shells

possessing selected values of inner radius a and shell thickness ζ. Figure 5.1(b)

(inset) shows the collected variation of cantilever phase during collection of ferro-

electric piezoelectric hysteresis loops of an a = 18 nm, ζ = 7 nm nano-shell. Fig.

5.2(a) summarizes the d33 responses in each nano-shell, comparing to measured

responses in planar thin films (dotted grey) and calculated radially-oriented po-

larizations (dotted blue). Locally-measured effective d33 values in the switching in

thin film and nanostructured FEs are related to the local FE polarization through

the product of the electrostriction coefficient and dielectric susceptibility [2, 75],
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Figure 5.1: a Illustration of the electrically interfaced nanoshell and
measurement, along with an the electron micrograph of a representative
nanowire (inset scale bar = 1 µm). b-e Measured FE piezoelectric hysteresis
loops collected from the oxide perovskite nanoshells, for shell thicknesses ζ and
corresponding inner radii a as denoted in the legend. The inset in the upper
left of a is a plot of the measured phase response of a shell as a function of
voltage bias applied across its wall, indicating ferroelectric switching of the
shell polarization.
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i.e. d33 ≈ 2Q11χ33P . Calibrated d33 values were referenced to measured cantilever

stiffnesses obtained from force-distance responses. Significantly, the remanent po-

larizations observed here do not exhibit a systematic decrease for decreasing values

of ζ or outer radius b, in stark contrast to previous reports of a linear reduction

for logarithmically decreasing values of film thicknesses [7]. Although our estimate

of d33 can be expected to be influenced by the non-uniform local electric field in

the proximity of the cantilever tip, the measured response for the ζ = 7 nm, a =

18 nm shell is nevertheless ∼300% that of an epitaxially-grown planar thin film

of identical composition that is ∼60% thicker (Fig. 5.2(a)) as reported in Ref. [7]

and measured using the same method.

The present results are noteworthy in light of the expected linear decrease in

piezoelectric response in planar thin films with increasing electric field intensity[100].

Based on estimates of FE domain sizes induced and switched in films by a proximal

probe, and noting the geometric confinement of the domain provided by the shell

diameter and thickness, we estimate that the smallest volume for which we observe

switchable FE domains in these nanoshells to be ∼6000 nm3. An extrapolation

of these experimental results to thinner shells possessing comparable values of ζ/b

suggests that switchable and stable radial FE polarizations may be retained in

thinner shells, and significantly, those situated within real metal electrodes with

finite screening lengths. Reduction in film thickness is typically accompanied by

an increase in the coercive field EC ; this effect in films as thin as ∼100 nm has been

attributed to charge injection through a non-FE layer at the film/electrode inter-

face [101]. Absent a priori knowledge of the extent of coverage and the character

of molecular adsorbates between the probe tip and the shell surface, we estimate

EC ≈ 3800 kV/cm for ζ = 7 nm and b = 25 nm. While this value is much larger

than that for a planar film of identical composition and comparable thickness,

(EC,film ≈ 1200 kV/cm for 8-nm thick film) and the value of the intrinsic thermo-

dynamic limit (EC,thermo ≈ 1200 kV/cm) [100], both the experimental data and

the results of our model calculations exhibit a EC ∼ ζ−1 scaling (Fig. 5.2(b)).

The data also show curvature- and shell thickness-dependence of the horizontal

and vertical offsets of the hysteresis loops. Plotted in Fig. 5.2(c) and (d) are

the center-of-switching (COS) offsets along the piezoresponse and voltage axes,

respectively, for selected values of b.
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Figure 5.2: a Measured variation of the FE piezoelectric response with
curvature, compared with those for planar thin films of identical composition
(NagyAPLcompare), and a scatter plot of the calculated volume-averaged
polarization (right axis). b Coercive electric field EC plotted as a function of
shell thickness ζ = b - a. c Measured vertical center-of-switching (COS) offset
values of the FE hysteresis for each nanoshell. d Horizontal (voltage) COS
offsets (solid squares connected by solid lines), plotted as a function of
nanoshell outer radius b. Also shown in c and d, respectively, are the
corresponding calculated polarization and voltage offsets.

What is the origin of the unexpectedly large FE response in these ultra-thin

nano-shells along their smallest dimension, and of the offsets of the FE hystere-

sis loops? Our theoretical analyses of their radially-oriented polarization profiles

Pr indicate thermodynamic stability with finite diameter- and shell thickness-

dependent enhancements in Pr and TC . In thin film FE capacitors, an in-plane

compressive strain near one or both interfaces, or a strain gradient normal to the

plane of the film (e.g. from composition, thermal stresses or bending curvature)

couple to P , altering its magnitude, TC , dielectric tunability, and pyroelectric

response [90]. Our model description (Fig. 5.3(b), inset) is that of a coaxial

barsoum
Highlight

barsoum
Note
??? fix ref. 

barsoum
Text Box
question:why normalized?



Chapter 5 47

cylindrical FE capacitor that is comprised of a noble-metal (Au core surrounded

by a FE oxide perovskite (PZT) shell of inner and outer radii a and b, respec-

tively, where ρ is defined as the radial position within the shell. With surface

tension of µ = 5 N/m [98], the calculation of the radial dependence of the radial

and azimuthal stresses and within the shell subject to these surface tensions is of

the form of a Lamé problem. Specifically, application of surface boundary con-

ditions σrr (b) = pbρ, −σrr (a) = paρ, and application of mechanical equilibrium

∂σij/∂xj = 0 leads to

σrr, ϕϕ (r) =
a2

b2 − a2

(
1∓ b2

r2

)
paρ −

b2

b2 − a2

(
1∓ a2

r2

)
pbρ (5.1)

To calculate the radial polarization Pr (r, a, b) and evolution of TC (a, b) we modify

the Landau-Ginzburg formalism, writing the volumetric and surface portions of

the Gibbs free energy per unit length, assuming axisymmetric radial polarization

Pr (r):

G =

∫ b

a

[
A

2
Pr (r)2 +

B

4
Pr (r)4 +

C

6
Pr (r)6 +

1

2
g (∇Pr)2 − Ed (r)Pr (r)

]
rdr

+
D

2δ

∫
S

P 2
r dS. (5.2)

where Â (r) = A − 2Q11σrr (r) − 2Q12σϕϕ (r) is the renormalized Landau stiff-

ness, A = A0 (T − TC) , A0, B, and C are defined for PbZr0.52Ti0.48O3 [102], g is

the energetic cost associated with variation of Pr near the surface (1 nm) [98],

and Ed (r)Pr (r) is the depolarizing field contribution. Q11 and Q12 are the elec-

trostrictive coefficients for this composition of PZT [102, 103], and σrr (r) and

σϕϕ (r) denote radial and azimuthal stresses, respectively, within the shell. We

approximate the depolarizing field, self-consistently, using the form [10] Ed (r) =

4π
[
Pr (r)− P r

]
i.e. where P r represents the volume averaged polarization across

the nano-shell thickness. Sets of Pr (ρ) were obtained by numerical integration of

the resulting Euler-Lagrange equation g∇2Pr (r) = ÂPr (r) +BP 3
r (r) +CP 5

r (r)−
Ed (r) via a nonlinear finite-difference method, subject to the electrostatic bound-

ary conditions (dPr/dr − g−1Pr) |r=a =(dPr/dr + g−1Pr) |r=b = 0. (See Appendix

A for additional details pertaining to the model calculations).
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Figure 5.3: a Calculated (300 K) radial polarization profile for selected
values of shell inner and outer radii a and b, respectively (solid lines), and for
planar, stress-free thin films of corresponding thicknesses (dashed lines). b
Calculated volume-averaged Pr as a function of temperature for the nanoshells
of selected diameters and thicknesses (solid lines), and for planar, stress-free
thin films of corresponding thicknesses (dashed lines) plotted in a; the inset
illustrates the model geometry. In a and b the bulk polarization value is
denoted by horizontal dashed black lines, and in b the bulk TC value is
denoted by a vertical dashed line.

Plots of calculated Pr (ρ) at 300 K for selected pairs of values of a and b are

shown in Fig. 5.3(a) along with the calculated Pr versus position for planar, stress-

free films of corresponding thicknesses. The polarization profiles for the shells

possess distinct curvature- and shell thickness-dependent asymmetric variation,

with higher peak polarizations than their planar counterparts. Plotted in Fig.

5.3(b) is a series of calculated results showing the variation of volume-averaged Pr

with temperature for these radius and thickness combinations, including those for

planar stress-free films of corresponding thicknesses. Remarkably, the expected

finite thickness-dependent reduction in Pr, and evolution in TC are completely

suppressed; compared with the planar films of identical thickness, a calculated ∼
500 K increase for the highest-curvature and thinnest shell nanowire is observed.

The observed differences in TC between shell and planar cases increased with

decreasing thickness ζ. The results of these model calculations are consistent with

our experimental observations of an enhanced FE piezoelectric response shown in

Fig. 5.1 and Fig. 5.2(a).
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The observed shifts in the hysteresis loops (Fig. 5.2(c) and (d)) results may be

compared with those in which engineered strain, composition or temperature gra-

dients in planar single- and multi-layer FE thin films result in polarization gradi-

ents, variations in polarization charge offset and TC , and temperature-dependence

of the dielectric permittivity [90]. Electrostatic potential profiles V (ρ) associated

with polarization gradients resulting in a bound charge density were obtained us-

ing the calculated polarization profiles by numerically solving Poisson’s equation

assuming open-circuit boundary conditions. The measured vertical shift in the

FE piezoelectric hysteresis loops and the results of model calculation of offsets

in polarization exhibit an increase for progressively smaller diameter and thinner

shell (Fig. 5.3(c)). The variation in the values of the measured voltage and model-

calculated potential offsets are in reasonable agreement (Fig. 5.2(d)). A small,

fixed portion of the observed offset can be attributed to the Au core and Pt probe

tip metal work-function difference, offset by possible contributions from molecular

adsorbates between the Pt tip and nano-shell [22], from nano-shell curvature-

dependent variation in the effective contact area of the proximal probe tip with

the nano-shell surface [104], and from asymmetric leakage currents [105].

An additional finite diameter-dependent source of offset in polarization (and

voltage) owing to the finite-size scaling of radial stress and resulting orthogonal

strain gradient may contribute to the observed polarization. In piezoelectric mate-

rials, in addition to the coupling of a mechanical stress, an additional, but normally

small contribution to dielectric or ferroelectric polarization results from a strain

gradient [106], i.e. Pi = dijkσjk + µijkl(∂εjk/∂xl) where µijkl is the flexoelectric

tensor. Considering the values of µijkl for PZT (≈ 0.5 µ C/m - 2.0 µ C/m) [106]

an estimate of the magnitude of this effect based on our model calculations re-

sults in much larger offsets than those observed experimentally; we propose that

defects partially relieve the high radial stress (and strain gradient), thereby pro-

viding offset values that are in better agreement with our experimental results.

Finally, a surface chemical mechanism [21, 22, 25] relevant to both the FE stabil-

ity and offsets in the FE hysteresis response that are observed should be noted;

molecular adsorbates can be expected to be present on the outer surface of the

nanoshells. Adsorbates have been shown to both stabilize ferroelectricity and to

introduce asymmetry to the polarization-energy landscape [22]. These effects are
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not included in the model calculations.

To conclude, these findings suggest significantly enhanced FE piezoelectric

responses and the absence of a systematic decrease for decreasing shell thickness

for polarizations oriented along the finite dimension in extremely curved ultra-thin

shells are explained by stress-renormalized and polarization gradient contributions

to the free energy. These gradients, manifested in the form of geometrically-

driven preferred polarization direction and electrostatic potential offsets, produce

significant finite curvature-dependent increases in TC .
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Chapter 6

Integrated Nanowire Ferroelectric

Field Effect Transistor (FeFET)

Here the experimental design and execution for measuring individual semicon-

ducting silicon-core, FE oxide-shell nanostructures will be discussed. Experimental

evidence for transconductance in nanowire channels is presented, with compari-

son to recent literature of thin film FeFET and non-integrated semiconductor

nanowire, FE thin film transistor test structures.

In order to best understand the potential impact of a ferroelectric field ef-

fect transistor (FeFET), its foundation, the metal-oxide-semiconductor field effect

transistor (MOSFET), must be considered. A typical MOSFET consists of an

oxide layer and deposited metal gate on a doped semiconductor (e.g. silicon) sub-

strate. In common platforms, the substrate body is one dopant type while two

oppositely doped regions form the source and drain. Depicted in Fig. 6.1 is the

NMOS type platform, where the blue regions show the oxide layer, the red the

metallic electrodes, the green the n+ source and drain regions, and the gold the

gate electrode.

The principle of operation of the MOSFET involves the application of positive

voltage between the gate electrode and the source, VGS. This depletes the region

directly under the gate oxide layer of holes, thus forming a channel by which

current can pass. Current, however, will not traverse the channel until a positive

51
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Figure 6.1: Schematic of the nMOS architecture

voltage is applied between the source and drain, VSD. Current flow will cease if

the VSD applied is either negative or zero.

FeFETs possess identical structure to MOSFETs, with the exception being

that a ferroelectric oxide replaces the conventional gate oxide. The feature of fer-

roelectric oxides that their polarization state (direction) can be switched with an

applied electric fieldmakes them an important alternative gate material, as their

remnant fields can be used to gate the channel after removal of the applied field

VGS. Mathews, et al. [107] reported on the effects of the FE within a planar

FeFET on channel resistance, while the prospects of a planar ferroelectric gate en-

hanced nanowire transistor using In2O3 [108] and ZnO [109] as the semiconducting

channel have also been demonstrated more recently. Stolichnov et al. [110] demon-

strated the nonvolatile gate effect within 15-nm CdTe ferroelectric-semiconductor

quantum wells. The authors reported that the gate effect results from a conductiv-

ity change within the two-dimensional electron gas (2DEG). By using polarization

domain engineering, nanometer resolution may be achieved without integrating

the ferroelectric layer with the semiconductor base.

Figure 6.2 show the energy band diagrams of nMOS (left) and FeFET (right

[111]) memory platforms. As described earlier if zero gate voltage is applied there

exists no channel (i.e. flatband) and hence no possible current is available within

the channel. As a gate voltage is applied, the conduction band bends toward the

fermi energy level, resulting from charge inversion at the gate-substrate interface.

At this point a channel is formed and upon application of a source-drain voltage
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Figure 6.2: Band diagrams of a-b nMOS and c-f FeFET memory platforms

(Vsd) a current will be observed. The operation of a FeFET is quite similar in

that electrons may either be depleted or accumulated at the surface due to the

polarization orientation. The significant difference is that the VG is not constantly

applied, but rather the FET in this case relies on the remnant field formed by the

FE polarization to effectively gate the channel at the interface [111].

Figure 6.3: Electrically contacted SiNW core, PZT-shell nanowires using
combined FIB ion milling and EBAD Pt deposition

Silicon nanowire-core, PZT-shell nanowires were fabricated using the methods

outlined in Chapter 3. Figures 6.3a and b show examples of contacted Si-PZT core-

shell nanowires. The source and drain contacts were fabricated with a combination

of ion beam assisted milling [low beam current (10 - 30 pA) conditions] and electron
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beam assisted deposition (EBAD) of platinum. A secondary step was necessary to

fabricate the third gate electrode within the middle section of the nanostructure,

consisting solely of EBAD deposition directly on the oxide shell surface. The oxide

surface provided the largest obstacle in this process, as its milling rate far exceeds

that of the standard parameters for silicon. Scalebar in 6.3a is 1 µm; in 6.3b it is

500 nm. Other Si-PZT core-shell nanowires were fabricated using EBL using the

methods described in section 3.8; Figure 3.12.

Figure 6.4: Illustration of the experimental setup used for gated
measurements of I-V through the nanowire core. A sourcemeter is attached to
the gate while a picoammeter is attached to the source-drain of the nanowire
channel. A gate voltage (VG) is applied directly to the wrap gate electrode,
then removed to collect current, as shown in Figure 6.6
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The experimental configuration used to collect current-voltage (I-V) traces of

the semiconducting nanowire channel are shown in Figure 6.4. Here, contacted

and gated core-shell nanowires are placed into a probe station (Lake Shore Cry-

otronics TTP4) and interrogated using a sourcemeter (Keithley 2400; gate) and

picoammeter (Keithley 6487; source-drain). The following list will outline the

process in measuring the nanowire cores and subsequent gating effects:

1. Contacted nanowires 6.3 are first interrogated using the picoammeter to test

conductance and assure the nanowire core is electrically addressable 6.5

2. Wires exhibiting a stable I-V trace undergo FIB 6.3 or EBL 3.12 gate fabri-

cation steps

3. Gated core-shell nanowires are placed back into the probe station, with the

sourcemeter connected to the gate and the picoammeter to the source-drain

4. Step 1 is repeated to assure the nanowire survived step 2

5. The gate probe is placed in contact with the gate electrode and held at

ground, without bias, and step 4 is repeated to see any stray effects of the

gate

6. The gate is removed to check if step 4 is reproduced, with no residual effects

7. Step 5 is repeated, only applying a gate voltage (VG) while an ISD-V is

collected instead; the time the gate voltage is applied is ≈ 2 min

8. The gate probe is then lifted off the electrode, and the ISD-V is collected

again, to observe any remnant effects

9. Steps 7 and 8 are repeated for varying gate voltages

The steps outline above are the base experimental procedure for the results

presented in this chapter. Figure 6.5 represents an I-V collected of a SiNW-PZT

core-shell nanowire prior to FIB gate fabrication. The relatively low currents

observed (≈ 150 pA) are typical for intrinsic silicon, as expected here considering

there was no doping incorporated into the process shown in section 3.6.
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Figure 6.5: Collected Isd-V traces of an individual Si-PZT NW FeFET

The so-called continuity check shown in Figure 6.5 allowed the necessary gate

fabrication steps to proceed. The gated core-shell nanostructures (Fig. 6.3) were

then interrogated with a combination of a sourcemeter on the gate electrode and

picoammeter on the source-drain electrodes, as outlined above (6; Fig. 6.4). Figure

6.6a and b show representative Isd-V traces collected after a gate voltage had been

applied and subsequently removed to the PZT shell from the wrap gate electrode.

Further, the probe tip was removed from the surface of the gate electrode as to

avoid any stray electrostatic interactions.

The traces shown in Figures 6.6a and b show a very distinct nonvolatile

gating effect with increasing gate (poling) voltage. These effects are similar to the

effects of gate voltage on the ferroelectric poling and subsequent change in channel

resistance in planar FeFET [107]. The maximum observed current in the original

nanowire channel was (≈ 150 pA), while after 5VG the maximum current jumped

to (> 20 nA), resulting in a current ratio of ≈ 1000 (see 6.6b).

Further nonvolatile gating effects were explored on gated Si-PZT integrated

nanostructures using a HfO2 dielectric buffer layer between the gate metal and

PZT shell, as to reduce possible leakage at the metal/FE interface. The source

drain contacts were fabricated using the same methods outlined in section 3.8.

Then the sample containing source-drain contacted nanowires were again cov-

ered in electron-sensitive 950 K PMMA resist, where lithography was then used
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Figure 6.6: a Collected Isd-V traces of an individual Si-PZT NW FeFET,
measured after gate voltages VG were applied and withdrawn. b Log-scale
plot of the traces shown in a.

to pattern a large square pad over the area between the contacted nanowire

ends. Next, a thin layer (< 20 nm) of HfO2 was deposited via atomic layer

deposition (Cambridge Nanotech; Savannah 100) using a precursor consisting of

tetrakis(dimethylamido)hafnium and DI water. The precursors were injected into

the reactor and held at 200◦C separately, with each injection followed by a 10 sec

pulse of UHP nitrogen purge gas flowing at 20sccm. The process consisted of 200

precursor/oxidant cycles at a film growth rate of 1Å/cycle, leading to the final

film thickness of ≈ 20nm.

Figure 6.7a shows an SEM image of a gated Si-PZT integrated nanowire test

structure with a HfO2 dielectric buffer layer. Figure 6.7b shows a trace of source-

drain current (@ 2VSD) versus sweeping gate voltage (± 10 V) for an individual test

structure. The hysteretic nature of the gate voltage sweep is shown in Figure 6.7

where it can be seen that the ISD saturates with increasing gate voltage and returns

to cross the zero axis for applied field with an increased current, as compared to

the original current. Upon application of a negative gate bias saturation is again

observed, after which the loop is complete to zero. This behavior is identical

to those seen in planar FETs [107], as of nanowire channel/planar gated FETs

[108, 109]. The ultrathin nanoshell thickness (≈ 10 nm) and integrated nature of
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the test structures account for the orders of magnitude difference in the observed

gating effects on currents, as compared to previous studies.

Figure 6.7: a SEM image of a gated Si-PZT integrated FeFET nanowire
with HfO2 buffer layer. b Drain-source current (@ 2VSD) versus gate voltage
taken of the contacted nanostructure shown in a.

These results are noteworthy in light of the latest report issued by the In-

ternational Technology Roadmap for Semiconductors (ITRS), the silicon memory

industry authority that mandates all necessary fabrication processes needed to re-

duce node width for semiconductor based memory platforms. In its latest update

[112], a new paradigm for FE-based memory architectures was presented, shift-

ing from the 2D stack geometry most commonly associated with memory devices

to a 3D hemispherical geometry. Three dimensional hemispherical FE capacitors

have been studied for over a decade [113], with more recent studies showing en-

hancements in the saturation polarization as compared to 2D stacks of the same

composition due to increased contributions of the electrode sidewalls [114].

The ITRS update calls for the “integration of scaling of FeRAM ferroelectric

materials”. Due to high leakage currents and subsequent loss of polarization with

decreasing thickness, integration of ferroelectrics into memory architectures has

proven rather difficult. The Si-PZT core-shell nanowires presented in Fig. 3.12
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and 6.3 represent nanoscale integration of silicon in direct contact with the fer-

roelectric oxide PZT. Moreover, these individual elements may be manipulated

into arrays on arbitrary substrates, create more a more flexible design platform

for next generation elements.

Additionally, the ITRS calls for industry processes to continue the application

of strain engineering techniques (shown in section 2.5) in order to circumvent the

inherent problems associated with leakage and polarization loss in nanoscale fer-

roelectrics. Again, the Si-PZT core-shell nanowires shown here exhibit enhanced

ferroelectric stability (see Fig. 5.2; Chapter 5) due to nonlinear coupled surface-

tension induced stress to charge via electrostriction. The integration of a semi-

conductor nanowire channel with a ferroelectric oxide sheath, combined with the

stability provided by nonlinear electromechanical coupling suggest the Si-PZT

nanowires presented here provide strong evidence for a nascent design platform

for 3D, non-planar memory elements. (Note: an additional study of the resis-

tance switching character of the leakage properties between the Si-PZT interface

are found in Appendix X )
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Chapter 7

Redox-Based Resistive Switching

of Ferroelectric Nanotubes

Here, the resistive switching character of the leakage response of fabricated

test structures are shown. The experimental scan probe technique enabling si-

multaneous collection of FE hysteresis and resistive current response is presented.

Additional test structures consisting of lithography-based electrodes further clarify

the resistive switching character, with a focus on the effects of oxygen environment

in mediating transport. These studies provide evidence for an oxygen-vacancy

transport mechanism, which will be discussed in terms of nonstoichiometric per-

ovskite lattice chemistry.

Developments in the synthesis of low-dimensional ferroelectric (FE) nanos-

tructures such as nanoparticles [32], nanowires [22, 63] and nanotubes [40, 41, 70]

have renewed interest in the miniaturization of ferroic systems for use as next

generation memory elements. Recently remarkable experimental and theoretical

findings have shown unique topologically-driven features such as finite curvature-

mediated FE stability [86, 96] and toroidal domain ordering [81, 85] effectively

conserve polar properties, which is critical to typical non-volatile FE applications

involving careful manipulation of spontaneous polarization to produce an “on” or

“off” memory state. Nanoscale FE systems have also garnered interest as current-

based switching elements due to their large resistance ratios and non-destructive

readout states [77, 78]. Resistive switching has been observed in a number of oxide
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materials, including thin-film binary oxides TiO2 [115, 116], ZrO2 [117], and MnO2

[118], and thin-film ABO3 oxide perovskites [119, 120, 121, 122], adding greater

functionality to known ferroic properties in developing memory applications.

Observed resistive behavior in FE materials has been explained thus far by

either tunneling or defect-mediated mechanisms. In recent work a charge trap

conduction model has been proposed, whereby charges are injected via Fowler-

Nordheim tunneling [78] and trapped within defects, a mechanism strongly de-

pendent upon polarization orientation, particularly at the metal/FE interface

[76, 123, 124, 125]. Others have proposed a filamentary conduction mechanism

[126] via electroformation and electromigration of extended defects such as oxy-

gen vacancies [127] and dislocations [122, 128] within materials possessing mixed

valence character, thus attributing conduction to anion transport. To date, stud-

ies of resistive switching in FE and non-FE oxides have involved exclusively thin

films. Here the resistive switching in selected areas within individual ferroelec-

tric oxide perovskite nanotubes possessing conductive Au-nanowire cores is re-

ported. Simultaneous occurrence of the resistive and ferroelectric switching in

these nanostructures is observed, and experimental evidence for an oxygen va-

cancy concentration-mediated electroresistance is provided.

Details of the synthesis method, test structure, and structural characteriza-

tions of Au-filled PZT nanotubes employed for this study have been presented

elsewhere [70] (see Ch. 3).

The local probe setup allowing simultaneous collection of FE piezoelectric

phase hysteresis and resistive current-voltage response of an individual Au-PZT

core-shell nanowire (50 nm diameter, 7 nm shell thickness) is depicted in Fig. 7.1a.

Here a cantilever holder containing a built-in transimpedance amplifier (ORCATM,

Asylum Research) enables the required current sensitivity to measure the FE and

resistive switching simultaneously [76, 121]. An electrically-grounded cantilever tip

(Olympus AC240TM) was placed in contact with the bare PZT nanotube surface

(Fig. 7.1b), employing constant-deflection feedback. In a typical experiment a

waveform consisting of a low-frequency zero-offset triangular component (3 Hz,

±16 Vpp) and a higher frequency component (10 kHz, 2 VAC) was applied to the

nanowire core (inner electrode) during a deflection-triggered force-pull sequence in
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Figure 7.1: a - schematic of simultaneous IV-hysteresis collection where an
arbitrary waveform consisting of two frequency components is applied directly
to the Au-core inner electrode, as described in the main text. b Topographic
AFM height image of a contacted 50 nm core-shell nanostructure (scan size 5
x 5 µm). c - ferroelectric piezoelectric hysteresis (grey markers, left axis) and
resistive current-voltage (black line, right axis) simultaneously collected by a
grounded conductive cantilever connected to a transimpedance amplifier. The
bias Vcore−tip is applied from the nanowire core through the FE nanotube wall
and collected at the tip, hence the reverse x-axis.
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which the cantilever was in continuous contact and constant deflection feedback,

thus allowing collection of the ferroelectric piezoelectric deflection phase signal

(Fig. 7.1c; left axis) and resistive current (Fig. 7.1c; right axis) through the

nanotube wall.

The ferroelectric phase signal exhibits a distinct offset along the voltage axis

(Fig. 7.1c). This offset can be attributed to an electrostatic potential gradient

arising from the finite curvature of the shell [96], from different surface chemical

environments of the inner and outer surfaces of the nanotube [70], and differences

in metal work function between the inner electrode (Au) and the cantilever tip

coating (Pt). Observed vertical shifts indicate a preferred polarization orientation

[76], previously shown for FE nanoshells as a result of curvature-driven polarization

gradients [96]. The observed electroresistance in the nanotube wall (Fig. 7.1c, right

axis) can be described by an equivalent circuit consisting of a diode set in parallel

with a single resistor that is split by a switch [116]. In a voltage sweep cycle (from

0 V) the resulting resistive switching character is highly blocking (diode-like) in

the first quarter, then substantially less blocking (nearly Ohmic) during the second

and third quarters, then it returns to highly blocking in the final quarter, as seen

in the collected I-V trace (Fig. 7.1c).

Notably, the observed critical voltage Vcr is nearly identical to the FE coercive

voltage VC ≈ 2 V. The on/off current ratios approach 103, with a measured on-

current value of 20 nA. This current value, however, is orders of magnitude lower

than those for typical resistive memory elements (µA-mA) [127]. The observed

reduction in the scale of currents reported implies a current limit exists due to

Fowler-Nordheim tunneling between the probe tip and nanotube surface, similar

to current response shown in FE thin films [78]. This is not surprising given the

scale of the AFM probe tip (˜30 nm diameter) in relation to the size of electrical

contacts used in other electroresistance switching experiments involving thin films

[121].

From the data observed in Fig. 7.2 it is proposed these nanostructures could

potentially be used as novel electroresistive and FE memory elements in which

each nanowire contains one or more distinct switching elements within the shell

portion of these core-shell nanowires using fixed electrodes. Electrical contacts to
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Figure 7.2: a - (false color) SEM image of top-electroded core-shell
nanostructure, showing measurement path between Pt-top electrode (shell;
red) and left nanowire-core electrode (core; blue) (scalebar = 1 µm). b -
representative resistive current-voltage character of a shell-electroded Au-core,
PZT-shell nanostructure. c - log-based plot of current-voltage showing an
order of magnitude difference in current across the finite-thickness direction of
the core-shell nanostructure.

the Au nanowire cores (Fig. 7.2a; false color: blue) were made using electron

beam lithography, wet etching, resistive thermal evaporation (10 nm Cr and 150

nm Au). Electron beam-induced deposition of Pt using a dual-beam FIB-SEM

(FEI DB235) was carried out, producing a 500 x 100 nm electrode of 250 nm in

height on the outer surface of the nanowire (Fig. 7.2a; false color: red).

The structures were then mounted in a probe station (Lake Shore Cryotronics

TTP4) and interrogated using a source meter (Keithley 2400) and picoammeter

(Keithley 6487). Measurements were collected through the nanotube wall between

the top electrode (shell) and left nanowire-core electrode (core). Shown in Fig.

7.2b is the collected resistive current-voltage response of a segment of the core-

shell test structure; the measured current values are denoted by the sequence i -

vi. The observed on-current value greatly increased (30 µA) with respect to the

proximal probe measurements (20 nA). The average on/off current ratios in the

shell-electrode nanostructures were approximately one order of magnitude (Fig.

7.2c).

To understand the underlying mechanism driving the observed electroresis-

tances, the fixed-electroded test structures were subjected to an annealing cycle

consisting of O2-rich/O2-deficient/O2-rich steps, with collection of the I-V response
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following each step. Following collection of the initial I-V response of the as-

prepared shell-electroded test structures (Fig. 7.2b), the structures were annealed

for 1 hour at 450◦C under a constant flow of 100 sccm O2 (Airgas UHP) at a base

pressure of 2 Torr (“O2-rich”). After the first O2-rich step the I-V character of

the shell-electroded test structures was seen to exhibit a ˜103- fold decrease in

current (Fig. 7.3a). The nanostructures were then subjected to a forming gas

anneal (FGA) for 1 hour 450◦C under a constant flow of 100 sccm 95%N2-5%H2

(Airgas HINY200) at a base pressure of 2 Torr (“O2-deficient”). The collected

O2-deficient I-V response (Fig. 7.3b) possessed a ˜105 increase in current (I > 150

µA) manifested by the onset of resistive switching, with a on/off ratio of ˜104. A

final O2-rich anneal step (450◦C, 5 hours, 2 Torr) was perfomed to confirm the

reversibility of the oxygen mechanism for conduction within the PZT nanoshell

(Fig. 7.3c). The increased anneal time was selected to promote the filling of the

O2 vacancies created during the O2-deficient anneal with oxygen atoms.

Figure 7.3: Current - voltage sweeps of a Au-PZT core-shell nanowires after
a a - O2-rich/b - O2-deficient/c - O2-rich annealing cycle.

These results indicate an oxygen defect-mediated conduction process. The

higher conduction state observed in Fig. 7.3b is attributed to formation of oxygen

vacancies in an O2-deficient or low pO2 environment. From the general form for

a nonstoichiometric perovskite, the defect reaction for a B-site rich titanate, such

as PZT, becomes [129]

TiO2 Pb(Zr, T i)O3−−−−−−−−−→
TiXTi + 2OX

O + V
′′

Pb + V ∗∗O
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where oxygen vacancies assist the conduction process by yielding electrons:

OX
O → V ∗∗O +

1

2
O2(g) + 2e

′
.

Considering the strong dependence of oxygen vacancy concentration on oxy-

gen partial pressure, we propose that the large differences observed in current be-

tween the O2-rich and O2-deficient anneal steps are explained through vacancy for-

mation, as previously shown in TiO2-based nanotubes via resonance spectroscopy

[130]. The results shown in Fig. 3b also support a filamentary conduction mech-

anism, by which oxygen vacancies migrate from the anode toward the cathode.

The onset of resistive switching after an O2-deficient anneal suggests that a critical

oxygen vacancy concentration is necessary for a switching event. Additional mech-

anisms may also be present, included the proposed formation of transition metal

anion nanofilaments along grain boundaries of polycrystalline grains [126, 131] due

to oxygen migration.

In conclusion simultaneous collection of FE switching and electroresistance

in an individual PZT nanoshell across the finite, shell-normal direction, and the

electroresistance switching within a segment of the nanoshell possessing a fixed

electrode has been demonstrated. The large on/off current ratios (101 - 104) are

consistent with an oxygen vacancy-mediated transport mechanism which allows

for anion transport along grain boundaries of polycrystalline films. Nanostruc-

tures subjected to controlled oxygen environments consisting of a O2-rich/O2-

deficient/O2-rich anneal cycle exhibited O2-deficient/O2-rich current ratios of ~

105. We believe demonstration of simultaneous electroresistive and FE switching

along the finite dimension within ABO3 oxide perovskite nanowires as shown here

will encourage further interest in investigating these features within high functional

density oxide nanostructures and their potential application.
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Appendix A

Matlab Coding for Numerical

Calculations

A.1 ODE Solver

function sol = AlpayODE(solver, a, b, pts, scalefactor)

if nargin ¡ 1 solver = ’bvp4c’; end bvpsolver = fcnchk(solver);

if nargin ¡ 4 a = 20; b = 30; pts = 10; scalefactor = 1e-8; end alpha = -4.887e-7;

beta = 4.764e7; gamma = 9.66e7; D = 1e-19; D = 1;

Q11 = 9.66e-2; Q12 = -4.6e-2;

C33 = 115e9;

%%% following alpay %%alpha = -118 *

%%% following spanman’s code % D =1.8e-9; % alpha = 6.66e5*(-1.); % beta =

3.56e9; % gamma = 2.7e11;

solinit = bvpinit(linspace(a, b, pts), @ssnSolInit);

sol = bvpsolver(@ssnODE, @ssnBC, solinit);

xint = linspace(a,b); Sxint = deval(sol, xint);
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figure; plot(xint,Sxint(1,:)); title( [’solved with ’ solver ’, pts = ’ num2str(pts) ’,

sf = ’ num2str(scalefactor)]);

% exes = linspace(a, b, pts); % figure; % foobar = 1;scalefactor = 1; % for aa=1:pts

% yint(aa,1:2)=ssnSolInit(exes(aa)); % end % % plot(exes, yint); % yint % foo =

ssnSolInit((b - a)/3 + a) * 1/scalefactor; % foo(1)

%% nested functions % function delP = ssnODE(r, P) [sigmac, dersig] = Sig2(r,a,b);

AAA = alpha;delP = [P(2) (1/D)*(AAA*P(1) + beta*(P(1)3)+gamma∗(P (1)5))−
P (2)/r]; end

function res = ssnBC(ya, yb) res = [ya(2) + 1/D * ya(1) yb(2) + 1/D * yb(1)];

end

function yinit = ssnSolInit(x) % yinit = [-cos( (x-a)/(b - a) * pi) * scalefactor %

sin( (x-a)/(b - a) * pi) * scalefactor]; yinit = [((b - x)/(b - a)) * scalefactor ((b -

x)/(b - a)) * scalefactor]; %% (-1/(b - a)) * scalefactor ]; end

end

%F(R,P,PP)=(-1./R)*PP+(1/1.8e-9)*(6.66e5*(-1.)*P-3.56e9*P**3+2.7e11*P**5)

%F(R,P,PP)=(-1./R)*y2+(1/1.8e-9)*(6.66e5*(-1.)*P-3.56e9*P**3+2.7e11*P**5)

A.2 SSNODE Solver

function sol = ssnPDE(solver, a, b, pts, scalefactor,lambda)

writen by OL, following mat4bvp tutorial July 9, 2008

if nargin ¡ 1 solver = ’bvp4c’; end bvpsolver = fcnchk(solver);

if nargin ¡ 4 a = 20; b = 30; pts = 10; scalefactor = 1e-8; end alpha = -4.887e7;

beta = 4.764e7; gamma = 9.66e7; D = 1e-19; D = 1; alpha = -6.36e7; beta =

1.28e9; gamma = 1.356e8; D = 1e-19; screen = .1 * (b - a);

alpha = -4.887e7*2; beta = 4.764e7*4; gamma = 1.336e8*6; D = sqrt(1e-19);

SSNscreen = 1e9; screen = 1*lambda;
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Q11 = 9.66e-2; Q12 = -4.6e-2;

C33 = 115e9;

D =1.8e-9; alpha = 6.66e5*(-1.); beta = 3.56e9; gamma = 2.7e11;

solinit = bvpinit(linspace(a, b, pts), @ssnSolInit);

sol = bvpsolver(@ssnODE, @ssnBC, solinit);

xint = linspace(a,b); Sxint = deval(sol, xint);

figure; plot(xint,Sxint(1,:)); title( [’solved with ’ solver ’, pts = ’ num2str(pts) ’,

sf = ’ num2str(scalefactor)]);

exes = linspace(a, b, pts); figure; foobar = 1;scalefactor = 1; for aa=1:pts yint(aa,1:2)=ssnSolInit(exes(aa));

end

plot(exes, yint); yint foo = ssnSolInit((b - a)/3 + a) * 1/scalefactor; foo(1)

nested functions

function delP = ssnODE(r, P) [sigmac, dersig] = Sig2(r,a,b); AAA = alpha; delP

= [P(2) (1/D)*(AAA*P(1) + beta*(P(1)3) + gamma ∗ (P (1)5))− P (2)/r]; end

function res = ssnBC(ya, yb) res = yb(1) + yb(2)*screen];

res = [ya(1) yb(1)]; end

function yinit = ssnSolInit(x) yinit = [scalefactor scalefactor]; [-cos( (x-a)/(b - a)

* pi) * scalefactor sin( (x-a)/(b - a) * pi) * scalefactor]; yinit = [((b - x)/(b - a))

* scalefactor ((b - x)/(b - a)) * scalefactor]; end

end

F(R,P,PP)=(-1./R)*PP+(1/1.8e-9)*(6.66e5*(-1.)*P-3.56e9*P**3+2.7e11*P**5) F(R,P,PP)=(-

1./R)*y2+(1/1.8e-9)*(6.66e5*(-1.)*P-3.56e9*P**3+2.7e11*P**5)
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A.3 SSN Script

t1 = rem(now,1);

ts=linspace(0,800,500);

tscrvflat = ts; mns = zeros(length(ts),1); bigssn = zeros(5000,length(ts));

pts = 5000; init = 1; maxtry = 200; tol = 1e-7; lambda1 = 1e-9; lambda2 =

.05e-9; mnstol = 1e-5; curved a = 18e-9; b = 25e-9; curved = 1; stressed = 1;

[bigssn1825crv2,mns1825crv2] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

a = 29e-9; b = 40e-9; curved = 1; stressed = 1;

[bigssn2940crv,mns2940crv] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

a = 40e-9; b = 55e-9; curved = 1; stressed = 1;

[bigssn4055crv,mns4055crv] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

a = 90e-9; b = 120e-9; curved = 1; stressed = 1;

[bigssn90120crv,mns90120crv] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

flat a = 18e-9; b = 25e-9; curved = 0; stressed = 0;

[bigssn1825flat,mns1825flat] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

a = 29e-9; b = 40e-9; curved = 0; stressed = 0;

[bigssn2940flat,mns2940flat] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

a = 40e-9; b = 55e-9; curved = 0; stressed = 0;
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[bigssn4055flat,mns4055flat] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

a = 90e-9; b = 120e-9; curved = 0; stressed = 0;

[bigssn90120flat,mns90120flat] = NALGwrapper(a,b,pts,init,maxtry,tol,... lambda1,lambda2,ts,...

mnstol,curved,stressed);

t2 = rem(now,1);

fprintf(’took

for x = 1:length(ts) if x==1 bigssn(:,x)=NEWALG114(a,b,5000,1,100,1e-7,1e-9,.05e-

9,ts(x)); else bigssn(:,x)=NEWALG114(a,b,5000,bigssn(:,x-1),100,1e-7,1e-9,.05e-9,ts(x));

end mns(x)= dot(r,bigssn(1:5000,x))/sum(r);fprintf(’if(abs(mns(x)) ¡ 1e-5) break;

end end tic lambda = 1e-9; betterssn2518lmb1 = ALG114bb(18e-9,25e-9,2000,.5,0,1e-

6,3000,lambda);toc; betterssn4029lmb1 = ALG114bb(29e-9,40e-9,2000,.5,0,1e-6,3000,lambda);

betterssn5540lmb1 = ALG114bb(40e-9,55e-9,2000,.5,0,1e-6,3000,lambda); betterssn12090lmb1

= ALG114bb(90e-9,120e-9,2000,.5,0,1e-6,3000,lambda); toc;tic; lambda = 3e-9;

betterssn2518lmb3 = ALG114bb(18e-9,25e-9,2000,.5,0,1e-6,3000,lambda); betterssn4029lmb3

= ALG114bb(29e-9,40e-9,2000,.5,0,1e-6,3000,lambda); betterssn5540lmb3 = ALG114bb(40e-

9,55e-9,2000,.5,0,1e-6,3000,lambda); betterssn12090lmb3 = ALG114bb(90e-9,120e-

9,2000,.5,0,1e-6,3000,lambda); toc;tic

lambda = 5e-9; betterssn2518lmb5 = ALG114bb(18e-9,25e-9,2000,.5,0,1e-6,3000,lambda);

betterssn4029lmb5 = ALG114bb(29e-9,40e-9,2000,.5,0,1e-6,3000,lambda); betterssn5540lmb5

= ALG114bb(40e-9,55e-9,2000,.5,0,1e-6,3000,lambda); betterssn12090lmb5 = ALG114bb(90e-

9,120e-9,2000,.5,0,1e-6,3000,lambda); toc;tic; lambda = 5e-10; betterssn2518lmb50=

ALG114bb(18e-9,25e-9,2000,.5,0,1e-6,3000,lambda); betterssn4029lmb50 = ALG114bb(29e-

9,40e-9,2000,.5,0,1e-6,3000,lambda); betterssn5540lmb50 = ALG114bb(40e-9,55e-

9,2000,.5,0,1e-6,3000,lambda); betterssn12090lmb50 = ALG114bb(90e-9,120e-9,2000,.5,0,1e-

6,3000,lambda); toc;tic;

betterssn7nmGiant50 = ALG114bb(10 + 18e-9,10 + 25e-9,2000,.5,0,1e-6,3000,lambda);

betterssn7nmGiant1 = ALG114bb(10 + 18e-9,10 + 25e-9,2000,.5,0,1e-6,3000,1e-

9); toc; betterssn2518b = ALG114bb(18e-9,25e-9,3000,.5,0,1e-6,3000); betterssn4029b
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= ALG114bb(29e-9,40e-9,3000,.5,0,1e-6,3000); betterssn5540b = ALG114bb(40e-

9,55e-9,3000,.5,0,1e-6,3000); betterssn12090b = ALG114bb(90e-9,120e-9,3000,.5,0,1e-

6,3000);

A.4 LK solver

function pm = LKsolve(a, b, N, init,maxIter, TOL,lambda,... lambdaScreen,T,curved,stressed,Eterm)

pl = NEWALG114(a, b, N, init,maxIter, TOL,lambda,... lambdaScreen,T,curved,stressed,Eterm);

mn = NEWALG114(a, b, N, -init,maxIter, TOL,lambda,... lambdaScreen,T,curved,stressed,Eterm);

pm = [pl mn]; end

A.5 Simple Solver

function W = simpsolve(AA,BB,N,ALPHA,BETA,TOL,NN)

SSNalpha = -6.36e7; SSNbeta = 1.28e9; SSNgamma = 1.356e8; SSND = 1e-19;

SSNscreen = 1e-9;SSNscreen = SSND; Q12 = -4.6e-2;

C33 = 115e9;

H = (BB - AA) / (N + 1); N1 = N-1; W = zeros(N,1); A = zeros(N,1); B =

zeros(N,1); C = zeros(N,1);

W = 1:N;

K = 0; while K ¡ NN X = AA; T = -(W(1)-2*H*W(2)/SSNscreen - W(1))/(2*H);

T = -(W(1) * SSNscreen);

A(1) = 2+H*H*FY(X,W(1),T); B(1) = -1+H*FYP(X,W(1),T)/2; D(1) = -(2*W(1)-

W(2)-ALPHA+H*H*F(X,W(1),T)); D(1) = -(2*W(1)-W(2)-W(2)+H*H*F(X,W(1),T));

STEP 6 for I = 2 : N1 X = AA+I*H; T = (W(I+1)-W(I-1))/(2*H); A(I) =

2+H*H*FY(X,W(I),T); B(I) = -1+H*FYP(X,W(I),T)/2; C(I) = -1-H*FYP(X,W(I),T)/2;
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D(I) = -(2*W(I)-W(I+1)-W(I-1)+H*H*F(X,W(I),T)); D(I) = -(2*W(I)-W(I+1)-

W(I-1)+H*H*F(X,W(I),T));

end; STEP 7 X = BB - H;

T = (BETA-W(N-1))/(2*H); T = (W(N-1)-2*H*W(N)/SSND - W(N-1))/(2*H);

T = (W(N-1)-2*H*W(N)/SSNscreen - W(N-1))/(2*H); T = -(W(N) * SSNscreen);

A(N) = 2+H*H*FY(X,W(N),T); C(N) = -1-H*FYP(X,W(N),T)/2; D(N) = -

(2*W(N)-W(N-1)-BETA+H*H*F(X,W(N),T)); D(N)= -(2*W(N)-W(N-1)-(W(N-

1)-2*H*W(N)/SSND)+H*H*F(X,W(N),T)); this (above) was spanman’s version

D(N)= -(2*W(N)-W(N-1)-(W(N-1)-2*H*W(N)/SSNscreen)+H*H*F(X,W(N),T));

Jac = sparse(1:N,1:N,A(1:N),N,N) + sparse(2:N,1:N-1,B(1:N-1),N,N) + sparse(1:N-

1,2:N,C(2:N),N,N); Jinv = inv(Jac); end

function F1 = F(r,p,pp) F1 = 1/SSND * (SSNA(r) * p + SSNbeta * p3 +

SSNgamma ∗ p5)− pp/r; end

function F2 = FY(r,p,pp) F2 = 1/SSND*(SSNA(r) + 3 * SSNbeta * p2 + 5 ∗
SSNgamma ∗ p4); end

function F3 = FYP(r,p,pp) F3 = -1/r; end

function Aval = SSNA(r) [sigmac, dersig] = Sig2(r,AA,BB); Aval = SSNalpha

- 2 * Q12 * C33 * sigmac * BETA;Aval = (SSNalpha * 2) - 2 * Q12 * C33 *

sigmac*(AA * (1 + (BB-AA)/AA) *1e5) ; * BETA;Aval = SSNalpha; end

end

A.6 SigmaC

function Rsigmac = Sigmac(are) a = (20:1.4:90); b = (25:1.9:120); rho = are./a; al-

pha = 1.21; beta=-.34; delta=.65; iota=2.83; eta=b/a; omega1 = sqrt((((beta2))+

(alpha ∗ iota))/(1 + iota)); omega2 = −omega1;m1 = [(((beta ∗ (omega1)2) +

(delta ∗ beta ∗ omega1)− (delta ∗ (omega1)2)− (alpha ∗ omega1))/(((omega1)2)−
alpha)); (eta(omega1−1))∗(((beta∗(omega1)2)+(delta∗beta∗omega1)−(delta∗
(omega1)2)− (alpha ∗ omega1))/(((omega1)2)− alpha)); 1; (eta(omega1))];m2 =
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[(((beta ∗ (omega2)2) + (delta ∗ beta ∗ omega2) − (delta ∗ (omega2)2) − (alpha ∗
omega2))/(((omega2)2)−alpha)); (eta(omega2−1))∗(((beta∗(omega2)2)+(delta∗
beta∗omega2)−(delta∗(omega2)2)−(alpha∗omega2))/(((omega2)2)−alpha)); 1; (eta(omega2))];m3 =

[1−((delta∗beta)/alpha); (eta(−1))∗(1−((delta∗beta)/alpha)); 0; log(eta)];m4 =

[0; 0; 1; 1];M = [m1m2m3m4]; b3 = [−1; 0; 1; 0];M13 = [b3m2m3m4];M23 =

[m1b3m3m4];M33 = [m1m2b3m4];M43 = [m1m2m3b3];A3 = det(M13)/det(M);B3 =

det(M23)/det(M);C3 = det(M33)/det(M);D3 = det(M43)/det(M); sigmac =

(A3. ∗ ((a. ∗ are).(omega1− 1)) ∗ (((beta ∗ (omega1)2) + (delta ∗ beta ∗ omega1)−
(delta∗ (omega1)2)− (alpha∗ omega1))/(((omega1)2)−alpha)).∗ (1./a)) + (B3.∗
((a. ∗ are).(omega2− 1)) ∗ (((beta ∗ (omega2)2) + (delta ∗ beta ∗ omega2)− (delta ∗
(omega2)2)− (alpha ∗ omega2))/(((omega2)2)− alpha)). ∗ (1./a)) + (C3. ∗ ((a. ∗
are).( − 1) ∗ (1− ((delta ∗ beta)/alpha)). ∗ (1./a))); plot(rho, sigmac); [A,ARE] =

meshgrid(a, are); [A,B] = meshgrid(a, b);SIGMAC = (A3.∗((A.∗ARE).(omega1−
1))∗ (((beta∗ (omega1)2) + (delta∗ beta∗ omega1)− (delta∗ (omega1)2)− (alpha∗
omega1))/(((omega1)2)− alpha)). ∗ (1./A)) + (B3. ∗ ((A. ∗ARE).(omega2− 1)) ∗
(((beta ∗ (omega2)2) + (delta ∗ beta ∗ omega2) − (delta ∗ (omega2)2) − (alpha ∗
omega2))/(((omega2)2) − alpha)). ∗ (1./A)) + (C3. ∗ ((A. ∗ ARE).( − 1) ∗ (1 −
((delta ∗ beta)/alpha)). ∗ (1./A)));x = 50; y = 50; forx = 1 : 50, fory = 1 :

50, dersigmac(x, y) = (SIGMAC(x, y)− SIGMAC(x+ 1, y + 1))/(RHO(x, y)−
RHO(x + 1, y + 1)); end, end;B(51, :) = [];A(51, :) = [];A(:, 51) = [];B(:, 51) =

[];mesh(B,A, dersigmac)

A.7 Solve for V

function W = SolveForV(P,R,lambda,init,maxIter,TOL) tic;

if(length(P) = length(R)) fprintf(’Oh noes!’); W = -1; return; end

N = length(P); W = linspace(0,1,N)’;

N1 = N - 1;

A = zeros(N,1); B = zeros(N,1); C = zeros(N,1); FF = zeros(N,1);
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PP = zeros(N,1); PPP = zeros(N,1); for I = 2:N1 PP(I) = (P(I+1) - P(I-1))/(R(I+1)

- R(I-1)); PPP(I) = (P(I+1) - 2*P(I) + P(I-1))/((R(I+1) - R(I-1))/2)2; end

PP(1) = P(2) - (R(2)-R(1))* (PP(3)-PP(2))/(R(3)-R(2)); PPP(1) = P(2) - (R(2)-

R(1))* (PPP(3)-PPP(2))/(R(3)-R(2));

PP(N) = P(N1) + (R(N)-R(N1))* (PP(N1)-PP(N1-1))/(R(N1)-R(N1-1)); PPP(N)

= P(N) + (R(N)-R(N1))* (PPP(N1)-PPP(N1-1))/(R(N1)-R(N1-1));

K = 1; while (K ¡= maxIter)

H = R(2) - R(1); % A(1) = -1;% C(1) = 1;% FF(1) = -(W(2) - W(1));% % A(1)

= 1 + lambda/H; % C(1) = -lambda/H; % FF(1) = -(W(1) - lambda * (W(2) -

W(1))/H); %

A(1) = 1 - R(1)/H; C(1) = +R(1)/H; FF(1) = -(W(1) + R(1) * (W(2) - W(1))/H);

% A(1) = -1000000;% C(1) = 0;% FF(1) = -(W(2) - W(1));

% % A(1) = 1 - lambda/H; % C(1) = +lambda/H; % FF(1) = -(W(1) + lambda

* (W(2) - W(1))/H);

for I = 2:N1 H = (R(I+1)-R(I-1))/2;

X = R(I);

A(I) = 2 ;fyp = Fvp(X);B(I) = -1 + .5 * H * fyp; C(I) = -1 - .5 * H * fyp;

FF(I) = -(-(W(I-1) - 2*W(I) + W(I+1))... + H*H*Vrr(X,(W(I+1)-W(I-1))/(2*H),P(I),PP(I)));

end

H = R(N) - R(N1); % A(N) = 1;% B(N) = -1;% FF(N) = -(W(N) - W(N-1));

% A(N) = 1 + lambda/H; % B(N) = -lambda/H; % FF(N) = -(W(N) + lambda

* (W(N) - W(N-1))/H); A(N) = 1 + R(N)/H; B(N) = -R(N)/H; FF(N) = -(W(N)

+ R(N) * (W(N) - W(N-1))/H);

J = sparse(1:N,1:N,A(1:N),N,N) + sparse(1:N-1,2:N,C(1:N-1),N,N) + sparse(2:N,1:N-

1,B(2:N),N,N);

v = J;
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W = W + v;

fprintf(’K=if(max(abs(v)) ¡ TOL)fprintf(’completed after if max(abs(v)) ¿ TOL

fprintf(’Exited on ”condition 2”’); end toc; return; end

K = K + 1; end

fprintf(’algorithm failed to converge’); toc;

function vrr = Vrr(r, Vp, p, Pp) vrr = -(p/r + Pp + Vp/r); end

function fr = Fr(r, Vp, p, Pp, Ppp) fr = -(-p/r2 + Ppp − V p/r + −(p/r + Pp +

V p/r)); end

function fv = Fv() fv = 0; end

function fvp = Fvp(r) fvp = -1/r; end end

A.8 cylinder stress

function s = CylStress(r,a,b,mu) b = -b; pb = +mu / b; pa = -mu / a; pave =

(p1 + p2)/2; ab = a/b; ab2 = ab2; ar = a/r; ar2 = ar2; br = b/r; br2 = br2;

left = pb*(1-ar2); right = ab2*(1-br2)*pa; s = (1 / (1 - ab2)) * ( left + right); s

= (-1 / (1 - (a/b)2)) ∗ (pb ∗ (1− (a/r)2) + (a/b)2 ∗ (1− (b/r)2) ∗ pa); end

A.9 Temperature profile P

function [ps,ms,mnsp,mnsm,rv] = ThermalPofE(a,b,N,ef,T)

% T = 300; % N = 1000; % a = 90e-9; % b = 120e-9;

ps = zeros(1000,N); ms = zeros(1000,N); mnsp = zeros(N,1); mnsm = zeros(N,1);

rv = linspace(a,b,1000);

%ef = 1e14; t1 = rem(now,1);
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eees = zeros(N,1); for x = 1:N eees(x) = -(x-1)*ef;end

last = -ones(1000,1);

for x = 1:N ms(:,x) = NEWALG114(a,b, 1000,last,500,1e-9,1e-9,.05e-9,T,0,0,eees(x));

last = ms(:,x); fprintf(’end

last = ones(1000,1); for x = 1:N

ps(:,x) = NEWALG114(a,b,1000,last,500,1e-9,1e-9,.05e-9,T,0,0,eees(x));

last = ps(:,x);

fprintf(’end

t2 = rem(now,1);

sm = sum(rv); for x = 1:N mnsp(x) = dot(ps(:,x),rv)/sm; mnsm(x) = dot(ms(:,x),rv)/sm;

end

fprintf(’took:

% % eeesbig90a = eees; % msbig90a = ms; % psbig90a = ps; % r90a = rv; %

mnsp90a = mnsp; % mnsm90a = mnsm; end

A.10 plots

% [ps18b,ms18b,mnsp18b,mnsm18b,rv18b] = ThermalPofE(18e-9,25e-9,1000,1e14,300);

% [ps29b,ms29b,mnsp29b,mnsm29b,rv29b] = ThermalPofE(29e-9,40e-9,1000,1e14,300);

% [ps40b,ms40b,mnsp40b,mnsm40b,rv40b] = ThermalPofE(40e-9,55e-9,1000,1e14,300);

% [ps90b,ms90b,mnsp90b,mnsm90b,rv90b] = ThermalPofE(90e-9,120e-9,1000,1e14,300);

[psbiga,msbiga,mnspbiga,mnsmbiga,rvbiga] = ThermalPofE(119,120,1000,1e14,300);

% %plots % % figure; % plot(r185− 18e− 9, p18, r295− 29e− 9, p29, r405− 40e−
9, p40, r905−90e−9, p90)%%figure; %plot(tsng2, abs(mns1825ng2), tsng2, abs(mns2940ng2), tsng2, abs(mns4055ng2), tsng2, abs(mns90120ng2))%

% T = 300; % p18 = NEWALG114(18e-9,25e-9, 5000,1,200,1e-9,1e-9,.05e-9,T,1,1);

% p29 = NEWALG114(29e-9,40e-9, 5000,1,200,1e-9,1e-9,.05e-9,T,1,1); % p40 =
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NEWALG114(40e-9,55e-9, 5000,1,200,1e-9,1e-9,.05e-9,T,1,1); % p90 = NEWALG114(90e-

9,120e-9,5000,1,200,1e-9,1e-9,.05e-9,T,1,1); % % % r18=linspace(18,25,5000)*1e-9;

% r29=linspace(29,40,5000)*1e-9; % r40=linspace(40,55,5000)*1e-9; % r90=linspace(90,120,5000)*1e-

9; % % v18 = SolveForV(p18,r18,0e0,1e10,1000,1e-12); % v29 = SolveForV(p29,r29,0e0,1e10,1000,1e-

12); % v40 = SolveForV(p40,r40,0e0,1e10,1000,1e-12); % v90 = SolveForV(p90,r90,0e0,1e10,1000,1e-

12);

% v18big = zeros(5000, length(tscrvflat)/10); % % for x=1:length(tscrvflat)/10 %

v18big(:,x)=SolveForV(bigssn1825crv(1:5000,x*10),r18,0,1e-5,1000,1e-12); % end

% % v29big = zeros(5000, length(tscrvflat)/10); % % for x=1:length(tscrvflat)/10

% v29big(:,x)=SolveForV(bigssn2940crv(1:5000,x*10),r18,0,1e-5,1000,1e-12); % end

% % v40big = zeros(5000, length(tscrvflat)/10); % % for x=1:length(tscrvflat)/10

% v40big(:,x)=SolveForV(bigssn4055crv(1:5000,x*10),r18,0,1e-5,1000,1e-12); % end

% % v90big = zeros(5000, length(tscrvflat)/10); % % for x=1:length(tscrvflat)/10

% v90big(:,x)=SolveForV(bigssn90120crv(1:5000,x*10),r18,0,1e-5,1000,1e-12); %

end

% T=712; % Tc = 714; % dt = T - Tc; % % at0 = -4.887e7*2/-366; % beta

= 4.764e7*4; % gamma = 1.336e8*6; % alpha = dt*at0; % % N = 3001; % rts

= zeros(5,N); % Eps = zeros(N,1); % % for x = 1:N % E = (x-(N-1)/2)*5e1; %

dp = (2*.05/(7*8.854e-12)); % Ep = E; % rt = roots([gamma 0 beta 0 (alpha)

-Ep]); % rts(:,x) = rt; % Eps(x) = Ep; % end % % maxr = zeros(N,1); % minr

= zeros(N,1); % for x = 1:N % maxr(x) = -inf; % minr(x) = +inf; % for y =

1:5 % if(isreal(rts(y,x))) % if(rts(y,x) ¿ maxr(x)) % maxr(x) = rts(y,x); % end %

if(rts(y,x) ¡ minr(x)) % minr(x) = rts(y,x); % end % end % end % end %

% % ind = 0; % exes = linspace(-1,1,5001)*.5; % vals = zeros(length(exes),1);

% for x=exes % ind = ind + 1; % pp = x; % pv = [pp5pp4pp3pp2pp1pp0]; %cv =

[gamma0beta0alpha−E∗0]; %vals(ind) = dot(cv, pv); %%end%%%T = 300; %N =

1000; %a = 90e−9; %b = 120e−9; %%ps = zeros(1000, N); %ms = zeros(1000, N); %mnsp =

zeros(N, 1); %mnsm = zeros(N, 1); %%rv = linspace(a, b, 1000); %%%ef = 1e14; %t1 =

rem(now, 1); %%eees = zeros(N, 1); %forx = 1 : N%eees(x) = −(x − 1) ∗
ef ; %end%%%last = ones(1000, 1); %forx = 1 : N%%ps(:, x) = NEWALG114(a, b, 1000, last, 500, 1e−
9, 1e−9, .05e−9, T, 1, 1, eees(x)); %%last = ps(:, x); %%fprintf(′%end%%%last =

−ones(1000, 1); %%forx = 1 : N%ms(:, x) = NEWALG114(a, b, 1000, last, 500, 1e−
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9, 1e−9, .05e−9, T, 1, 1, eees(x)); %%last = ms(:, x); %fprintf(′%end%t2 = rem(now, 1); %%sm =

sum(rv); %forx = 1 : N%mnsp(x) = dot(ps(:, x), rv)/sm; %mnsm(x) = dot(ms(:

, x), rv)/sm; %end%%%%fprintf(′took : %%%%%%eeesbig90a = eees; %msbig90a =

ms; %psbig90a = ps; %r90a = rv; %mnsp90a = mnsp; %mnsm90a = mnsm;

A.11 P oft

function [pmat,Eoft,tlist,mnslist] = Poft(p0, AVALS, beta, gamma,D, E0, dt,

omega,GAMMA, H, maxsteps,a,b) %[dpdt,left, right] = Poft(p0, AVALS, beta,

gamma,D, E0, dt, omega,GAMMA, H) tic;

N = length(p0); N1 = N-1;

dpdt = zeros(N,1); pmat = zeros(N,maxsteps); tlist = ((1:maxsteps)-1)*dt; Eoft

= zeros(maxsteps,1); mnslist = zeros(maxsteps,1); % left = zeros(N,1); % right =

zeros(N,1); %t = 0; p = p0;

%%%%%%%%%%%%%%%%%% Find ad-hoc coeffs k1, kN

k1 = abs( (AVALS(1)*p(1) + beta*p(1)3 + gamma ∗ p(1)5)/((p(2) − p(1))/(H ∗
H)∗D)); kN = abs((AV ALS(N)∗p(N)+beta∗p(N)3+gamma∗p(N)5)/((p(N)−
p(N1))/(H ∗H) ∗D));

for ts = 1:maxsteps t = tlist(ts); Eterm = - E0*sin(omega*t); Eoft(ts) = Eterm;

k1=1; s1 = 2*pi*p(1)*a/1e-9; dpdt(1) = AVALS(1)*p(1) + beta*p(1)3 +gamma∗
p(1)5 + (p(2)− p(1))/(H ∗H) ∗D ∗ k1− Eterm;

% left(1) = AVALS(1)*p(1) + beta*p(1)3 + gamma ∗ p(1)5; %right(1) = +(p(2)−
p(1))/(H ∗H) ∗D;

for n=2:N1 % left(n) = AVALS(n)*p(n) + beta*p(n)3+gamma∗p(n)5; %right(n) =

−(p(n + 1) − 2 ∗ p(n) + p(n − 1))/(H ∗ H) ∗ D; dpdt(n) = AV ALS(n) ∗ p(n) +

beta ∗ p(n)3 + gamma ∗ p(n)5 − (p(n + 1) − 2 ∗ p(n) + p(n − 1))/(H ∗ H) ∗ D −
Eterm; enddpdt(N) = AV ALS(N) ∗ p(N) + beta ∗ p(N)3 + gamma ∗ p(N)5 +

(p(N) − p(N1))/(H ∗ H) ∗ D ∗ kN − Eterm; %left(N) = AV ALS(N) ∗ p(N) +

beta ∗ p(N)3 + gamma ∗ p(N)5; %right(N) = +(p(N)− p(N1))/(H ∗H) ∗D; %
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p = p + dpdt*dt/GAMMA; pmat(:,ts) = p; if(any(isnan(p))) fprintf(’nans away!

break; end mnslist(ts) = mean(p); end toc; end % tic; % tmax = 1/(omega/(2*pi));

% % N = ceil(tmax/dt); % % len = 1000; % pt = zeros(len,1); % ts = ze-

ros(len,1);% % p = p0; % k = 0; % period = ceil(N/len); % for n=1:N % dpdt = al-

pha*p + beta*p3+gamma∗p5+depol+E0∗sin(omega∗dt∗n); %if(isnan(dpdt))%fprintf(′ohnoes%break; %end%%p =

p + dt ∗ dpdt/GAMMA; %%%if(mod(n, period) == 0)%k = k + 1; %if(k >

len)%break; %end%pt(k) = p; %ts(k) = n∗dt; %ifmod(k, 10) == 0%fprintf(′%end%end%%end%%toc; %end

A.12 P int

function s = PolInt(P,r) s = 0;

if length(P) = length(r) fprintf(’size mismatch’); return; end

N = length(P);

dr = r(2) - r(1);

for n = 2:N-1 left = (P(n+1) - P(n-1))/(2*dr) * r(n); right = (P(n) + P(n+1))/2;

s = s + (left + right)*dr; end

end
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