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Abstract 

Large-Scale Integration of Microarray Data: Investigating the Pathologies of Cancer and 

Infectious Diseases 

Noor Dawany 

Aydin Tozeren, PhD 

 

 

 

DNA microarray data provide a high-throughput technique for the genome-wide profiling of 

genes at the transcript level.  With large amounts of microarray data deposited on various types 

and aspects of malignancies, microarray technology has revolutionized the study of cancer.  Such 

experiments aid in the discovery of novel biomarkers and provide insight into disease diagnosis, 

prognosis and response to treatment.  Nonetheless, microarray data contains non-biological 

obscuring variations and systemic biases, which can distort the extraction of true aberrations in 

gene expression.  Moreover, the number of samples generated by a single experiment is typically 

less than is statistically required to support the large number of genes studied.  As a result, 

biomarker gene lists produced from independent datasets show little overlap.  Therefore, to 

understand the pathophysiology of cancers and the influence they exert on the cellular processes 

they override, methods for combining data from different sources are necessary. 

 

Meta-analysis techniques have been utilized to address this issue by conducting an individual 

statistical analysis on each of the acquired datasets, then incorporating the results to generate a 

final gene list based on aggregated p-values or ranks.  However, much of the publicly accessible 

cancer microarray datasets are unbalanced or asymmetric and therefore lack data from healthy 

samples.  Consequently, critical and considerable amounts of data are overlooked.  An integrative 

approach that combines data prior to analysis can incorporate asymmetric data.  For this reason, a 

merge approach to the previously validated technique, the significance analysis of microarrays, is 

proposed.  The merged SAM technique reproduced the known-cancer literature with higher 

coverage than meta-analysis in the five independent cancer tissues considered.  The same 
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methodology was extended to a database of approximately 6000 healthy and cancer samples 

arising from thirteen tissues.  The integrative approach has allowed for the identification of key 

genes common to the invasive paths of multiple cancers and can aid in drug discovery.  

Moreover, this integrative microarray approach was applied to viral data from HIV-1, hepatitis C 

and influenza to investigate the effect of these infections on iron-binding proteins.  Iron is crucial 

for proteins involved in metabolism, DNA synthesis and immunity, accentuating such proteins as 

direct or indirect viral targets. 

  



 

  



1 

 

Chapter 1: Introduction 

 

1.1 Motivation: 

This research is dedicated to the investigation of complex diseases through gene expression 

analysis.  A large effort has already been directed towards the study of cancer, however many 

results from these various studies are inconsistent.   The goal of this research is to provide a 

robust statistical approach that can help integrate different datasets to provide a generalized 

overview of the genetic aberrances that can be introduced during the course of carcinogenesis.  

The proposed methodology is also designed to take advantage of the current distribution of gene 

expression data, which in many cases is more inclined towards providing data on diseases and 

anomalous states as opposed to healthy control samples.  The initial application of this approach 

was directed towards the study of cancer, a multifaceted disease comprising over 200 different 

malignancies, in order to identify common genetic alterations that could serve as effective drug 

targets.  However, the scope of its application is unlimited and has been extended to understand 

the repercussions induced by persistent viruses such as HIV and hepatitis C as opposed to 

cytopathic viruses whose etiological agents are cleared quickly by the immune system. 

 

1.2 Transcription, Translation and Control of Gene Expression: 

Biological systems, whether at the level of a single cell, a multicellular tissue or a multi-tissue 

organism are complex entities.  From an engineering perspective, these entities consist of several 

physiochemical and mechanical processes, which are governed by genes and proteins [1].  The 

human genome is coded into double-stranded DNA.  A substantial fraction of the DNA can be 

transcribed to allow for the expression of the coded information in directing the synthesis of RNA 

and eventually protein molecules.  The transcription process alone is sufficient for producing the 

functional RNA molecules (Figure 1) including messenger RNA (mRNA), transfer RNA (tRNA) 
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and ribosomal RNA (rRNA) [2].  The genetic coding region, however, is not necessarily 

continuous; instead the exon coding regions are interspersed with introns or non-coding regions.  

Introns are spliced out following transcription and prior to leaving the nucleus to the cytoplasm as 

part of the post-transcriptional modifications that mRNA undergoes before being translated [3].  

While nucleic acids store and transmit the genetic information of the cell, the information itself is 

expressed in the form of proteins, therefore the protein-coding information from mRNA is 

translated into amino acid units that are connected to each other using peptide bonds to form 

polypeptides (Figure 1).  The formation of the final protein depends on the number of polypeptide 

chains it contains, as well as the final three-dimensional structure it assumes which is determined 

by internal and external interactions with the protein’s environment.  The multiplicity of protein 

functions within cells ranges from reaction catalysis, transport of molecules and ions to immune 

response [2]. 

 

 

Figure 1 - Transcription and Translation (Adapted from [4]) 
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In humans and multicellular organisms that possess more than one cell type, gene expression has 

to be controlled such that cells from distinct lineages develop differently and remain to be 

different.  While the DNA code in the cells of an organism’s pancreas and kidney are identical, 

they express different proteins at different levels.  Therefore, during development and 

differentiation, cells have to control the expression of different sets of genes by switching them 

on and off as needed [3].  As transcription and translation are localized within different areas in 

the cell, gene expression can be accordingly regulated at more than one stage and location within 

cells [3, 5].  The primary mode however occurs in the nucleus as RNA polymerase interacts with 

the DNA promoter to initiate transcription.  This binding can be sufficient for producing a few 

RNA molecules; however, the binding of transcription factors to enhancer sequences is essential 

for determining whether a gene will be transcribed.  These transcription factors therefore help in 

regulating the time during which a gene is transcribed.  This ensures that transcription occurs at 

the right developmental stage for example, and the right tissue location in which a gene is 

expressed.  Nonetheless, additional regulatory instances can occur that could alter the way by 

which the primary mRNA transcript is processed or control the level of translation in the 

cytoplasm [3].  Hence, apart from their individual roles, the interactions between DNA, RNA and 

proteins are also important.  DNA-protein interactions control gene expression, transcription, 

recombination, replication, packaging and repair.  Similarly, since RNA is involved in various 

biological functions within the cell, RNA-protein complexes are also essential for these 

processes, including post-transcriptional regulation of gene expression and protein synthesis 

during translation [6].   

 

Since the entire cell’s genetic information is encoded within its DNA, the DNA must be faithfully 

replicated during every division cycle a cell undergoes.  This ensures that the encoded genetic 

information is retained in the progeny cells.  While DNA molecules possess a very stable 
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structure and have a longer half-life than RNA molecules, changes in the DNA sequence still 

occur.  Alterations in DNA replication must be repaired and, in general, the location where the 

error exists is excised by DNA repair enzymes to readjust the base sequence.  Since DNA is 

double stranded, the enzymes are required to identify which of the two strands is in fact damaged 

[3].  Despite employing repair mechanisms to control and fix DNA damage, cells can still 

undergo mutations that result in permanent changes to their genome.  Genomic damage can arise 

from internal and external processes.  Internally, damage can occur from errors during DNA 

replication, the chemical instability of some DNA bases and from free radicals produced during 

metabolism.  On the other hand, external causes of DNA damage can be produced from 

interactions with ionizing radiation, ultraviolet radiation and certain chemicals, which can result 

in a cascade of mutations, especially if the damage is directed towards genes whose function is to 

ensure the accuracy of DNA replication [7].  Genetic variations can occur in different forms, 

ranging from deletions, insertions or single nucleotide polymorphisms, to large chromosomal 

anomalies like copy number variation, where whole sections of homologous sequences are gained 

or lost.  Such changes can affect gene expression and alter gene dosage, leading to diseases, 

disorders or increased predisposition to genetic mutations [8]. 

 

1.3 Cancer Overview 

Normal cells progressively transform into malignancies through the sequential acquisition of 

mutations that occur due to damage to the genome (Figure 2).  The main targets for the 

progression of normal cells into malignant ones are genes involved in normal homeostatic 

mechanisms.  These genes are therefore mainly involved in cell growth and death.  Namely these 

targets are the oncogenes, which are activated by mutations and hence stimulate proliferation, or 

tumor suppressor genes, which typically code for proteins that behave as checkpoints during cell 

proliferation or death and are therefore inactivated by mutations [7].  Oncogene mutations can 
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occur through gene amplifications, chromosomal translocations, or mutations in the regulatory 

machinery of the gene.  Examples of oncogenes include Jun oncogene, and myelocytomatosis 

viral oncogene homolog (MYC).  Tumor suppressor genes, like tumor protein p53 and breast 

cancer 1 and 2 (BRCA1/2) are targeted in the opposite manner with mutations resulting in 

shortened proteins due to deletions or insertions, missense mutations, or epigenetic silencing 

factors [9], like hypermethylation [10].  In some cases, inactivating mutations occur in genes that 

are involved in maintaining genomic integrity, thus facilitating the acquisition of additional 

mutations [7].  These stability genes could be involved in subtle DNA repair, including mismatch 

repair (MMR) and base-excision repair (BER) or can control processes involving larger 

chromosomal regions like segregation and recombination.  Therefore, a single mutation is not 

sufficient to infer cancerous transformation.  Instead, several mutations have to be acquired and 

while all genes can be affected by mutations in stability genes, only mutations in oncogene and 

tumor suppressor gene regulation affect the net proliferation of the cell [9]. 

 

 

Figure 2 - Carcinogenesis: Transformation of normal cells into cancer (Adapted from [11]) 

 

Cancer is often preceded by chronic inflammation, although the role of inflammation in the 

malignant transformation is not fully understood.  Examples include lung cancer following 

inflammation due to smoking and colon cancers following chronic inflammatory bowel disease.  
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As a result, several factors can induce cancer and these can be broadly categorized into events or 

agents.  Events include environmental factors such as diet, occupation and chemical agents like 

carcinogens in tobacco.  Meanwhile, several infectious viral agents can also promote cancer, 

including Helicobacter pylori causing gastric cancer, hepatitis B and C causing hepatocellular 

carcinoma and human papillomavirus leading to cervical cancer.  While the specific genes 

involved might differ, the general mechanism of such infections involves triggering an 

inflammatory response through cytokines, chemokines and free radicals.  The inflammatory 

response leads to the release of more free radicals which can contribute to the genetic mutations 

leading to the malignant transformation [12]. 

 

Regardless of cause or origin, once a cell has acquired and sustained a series of irreversible 

genetic alterations, a cancer develops through stochastic proliferation and differentiation [13].  

Upon the completion of this transformation, a cancer cell must achieve two requirements to allow 

for its continual survival; it must overcome replicative senescence and obtain sufficient amounts 

of nutrients and oxygen supplies to support its high prolific activities by promoting angiogenesis 

[7].  Some cancers then metastasize beyond the site of their initial growth by entering the 

lymphatic system or the blood stream and localizing in a new tissue [14].  Because of the large 

heterogeneity of the different malignancies and the complex interplay between the various 

affected genes and pathways, the proliferation, progression and spread of cancer are all highly 

dependent on the alteration initially experienced by the primary cell and the resultant changes the 

cancer can impose on its surroundings. 

 

1.4 Viral Infections and Hijacking Cellular Functions 

There are two strategies that viruses generally employ for their survival.  The first is a “hit and 

run” approach resulting in a quick infection, viral replication, cytolysis and transmission to a new 
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host.  Such viruses are usually highly infective and easily transmissible like influenza and 

measles.  However, other viruses are persistent, achieving long-term residence within the host.  

Either way, the virus must compete with the host cell for control of the cell’s machinery, and it 

often dominates various components of the cellular mechanisms, imposing changes to the gene 

expression and pathway regulation through viral-host protein crosstalk [15]. 

 

1.4.1 Human Immunodeficiency Virus 

The Human Immunodeficiency Virus (HIV) is the causative agent of the Acquired 

Immunodeficiency Syndrome (AIDS), perhaps the most serious viral infection to affect humans.  

HIV accounts for approximately 42 million cases worldwide, and the fatality rate is almost 100% 

[16].  There are two known types of HIV: HIV-1 and HIV-2, however the two types are not 

closely related to one another [17].  HIV-2 has a slower disease progression and limited impact 

on the survival of the majority of the infected adults compared to HIV-1 [18].  As a result, HIV-2 

is confined to specific countries and has reduced pathogenecity.  Moreover, there is better 

immune control of HIV-2 and a degree of CD4-independence.  Most infections are caused by 

HIV-1 viruses [19], therefore from hereafter, the use of HIV will refer solely to HIV-1 infections. 

 

The genome of HIV (Figure 3) is approximately 10 kilobases long and encodes 16 distinct 

proteins.  The structural proteins are encoded into three HIV genes: group specific gene (Gag), 

polymerase (Pol), and envelope (Env).  The remainder of the proteome consists of two regulatory 

proteins and four accessory proteins.  The regulatory proteins: transcriptional transactivator (Tat) 

and regulator of virion gene expression (Rev) as well as the accessory protein negative effector 

(Nef) are expressed early in the viral cycle.  Tat and Nef are necessary for inducing high levels of 

viral replication, while Rev regulates the gene expression transition from the early to late stages 

[20].  As HIV infects cells of the immune system, dendritic cells are believed to be among the 
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first cells that encounter the virus.  Therefore, they mediate the transmission of HIV to CD+ T 

cells in the lymphoid tissue [21].  Viral entry into the immune system cells depends on the 

presence of specific chemokines receptors.  HIV R5 strain binds to the CC-chemokine receptor 5 

(CCR5) which is expressed on the surface of macrophages, dendritic cells and T cells.  The X4 

strain however can only infect T cells as it depends on CXC chemokines 4.  Once inside, the virus 

is uncoated, its RNA is reverse transcribed and the resulting DNA is integrated into the cell’s 

genome with a preference for active genes.  Upon integration, the T cells become permissive 

allowing for the progression of the HIV infection.  Tat controls the production of full-length viral 

transcripts.  The mature HIV particles are then assembled and surrounded by the viral envelope in 

which the glycoproteins Gp120 and Gp41 are embedded, which are essential for viral binding to 

new cells  [20]. 

 

 

Figure 3 - Human Immunodeficiency Virus: Structure of HIV 

 

What adds to HIV’s chronicity is its ability to evade the host’s immune system.  Viruses can 

achieve that either by hiding in the microglial cells of the central nervous system since cell-

mediated responses are naturally reduced there, or otherwise they enter a state of proviral latency 

in resting T cells.  In addition, Nef decrease the expression of major histocompatibility complex 
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(MHC) class I molecules on the cell surface.  Finally, once an infected cells has produced enough 

copies of the virus, HIV promotes apoptosis through the FAS and TNF death-inducing signaling 

pathways allowing for the virus to be released in order to infect new cells [20].  Consequently, 

following infection, there is a gradual loss of T cells resulting in a progressive immune deficiency 

that ultimately leads to opportunistic infections and death [22].   

 

1.4.2 Hepatitis C 

The hepatitis C virus is characterized by its high chronicity and it presents an international public 

health problem.  It is transmitted primarily through the blood and is believed to infect 

approximately 3% of the world population.   Hepatitis C infects the host’s liver and can lead to 

acute hepatitis (20% of cases) or chronic hepatitis (up to 80% of cases).  It can also lead to liver 

cirrhosis and has been associated with hepatocellular carcinoma [23-24].  The development of 

chronic hepatitis C depends on several factors including the viral genotype, the mode of viral 

acquisition and the immune response of the host [24]. 

 

Structurally, the virus has a positive sense, single-stranded RNA genome that is contained within 

a nucleocapsid [23-24].  The RNA and nucleocapsid are then packaged into an envelope that is 

derived from the host cell membrane upon viral release from the cell, in which viral-encoded 

glycoproteins are embedded (Figure 4).  The RNA open reading frame encodes a polyprotein that 

is about 3300 amino acids long, which is cleaved inside the host cell to produce ten different 

polypeptides: the core peptide, two envelope peptides, six non-structural proteins in addition to a 

small hydrophobic protein [24-25].  The non-structural proteins comprise the RNA replicase 

complex of the virus needed for replication, while the core protein binds viral RNA to regulate its 

translation [25]. 
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Figure 4 - Hepatitic C Virus: Structure of Hepatitis C 

 

Aside from the typical role of the core protein, it possesses a wide array of functions as it 

interacts with several host proteins.  First, Core has been shown to bind heterogeneous nuclear 

ribonuclearprotein K (hnRNP K), which in turn can recruit a range of molecules involved in 

signal transduction and transcriptional regulation.  hnRNP K can also bind to DNA, RNA and 

transcriptional repressors and activators, in addition to acting as a shuttle between the nucleus and 

cytoplasm, implicating that it might be involved in RNA transport.  Core also interacts with 

Lymphotoxin β receptor (LT-βR), a member of the tumor necrosis factor receptor (TNF-R) 

superfamily, expressed on the surface of most cell types.  In addition, Core can bind to TNF-R1 

which mediates the tumor necrosis factor induction.  More specifically, the viral protein 

associates with the death domain contained within TNF-R1 that triggers the activation of 

consequent cell signaling pathways that control apoptosis.  Studies have also reported Core’s 

interaction with an RNA helicase belonging to the DEAD box protein family, which are involved 

in several cellular activities such as mRNA splicing, RNA transport, ribosome assembly and 

translation, as well as controlling growth and differentiation [26].  As a result, the Core protein 

affects cell signaling, lipid metabolism, apoptosis, and carcinogenesis [25-26], although it is 
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unclear if these events are direct results of the viral infection or outcomes of protein over-

expression within the cells [25]. 

 

Hepatitis C is also capable of avoiding the host’s immune system by perturbing the host’s ability 

to detect and destroy infected cells [26].  Over the course of an infection, Hepatitis C, like HIV, 

results in escape mutations.   The host’s immune response can be evaded by substituting the 

epitopes of nearby T cells by decreasing binding of the MHC and impairing antigen processing 

[27].  The virus can then persist and additional complications can arise that are associated with 

the autoimmune state of the host.  These include the development of other syndromes like non-

Hodgkin’s lymphoma or coinfections with other viruses such as other hepatitis strains or HIV, 

thus further interfering with the cellular machinery and compromising the host’s defense 

mechanisms [28]. 

 

1.4.3 Influenza A 

The threat of human influenza epidemics is a recurrent issue which infrequently progresses into 

major worldwide pandemic as antigenically novel viruses are introduced to immunologically 

naïve human populations [29].  Influenza viruses have a segmented, negative sense RNA genome 

that is encapsidated by a viral nucleoprotein.  Influenza is categorized into three types; A, B and 

C, based on the serological responses to their internal proteins [30-31].  However, influenza A has 

a greater impact on the human population as it is more common than type B [29], and generally 

causing the most serious respiratory illness compared to both types B [31] and C [30].  While the 

natural hosts for type A are aquatic birds, the viruses can infect a large variety of avian and 

mammalian species [29-31]. 
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Influenza A viruses are composed of eight RNA segments that code for eleven viral proteins: two 

surface antigens, a nucleoprotein, two matrix proteins, three RNA polymerase proteins, and three 

non-structural proteins (Figure 5) including PB1-F2 which plays a role in apoptosis [32].   These 

A-type viruses encompass a large variety of antigenically distinct subtypes based on the 

serological reactivities to their surface antigens, haemagglutinin (HA) and neuraminidase (NA) 

[30-31], for a total of 16 HA and 9 NA subtypes [33].  The HA glycoprotein is necessary for 

attaching to, and facilitating the entry and fusion into, the host cell. Meanwhile, NA is needed for 

breaking down cellular sialic acid to allow the virus to exit the host cell [34]. 

 

 

Figure 5 - Influenza A Virus: Structure of Influenza A 

 

Upon binding to the host cell, the influenza virus activates proteins from the protein kinase C 

superfamily, which are linked downstream to several signaling pathways  [35].  Once inside, like 

other viruses, influenza A exploits the host’s cellular proteins and pathways to promote its own 

replication.  Upon cellular entry, the viral core is disassembled and the genomic 

ribonucleoprotein (RNP) complexes are released into the cytoplasm and transported into the 

nucleus where the viral genome is transcribed.  Most of the host factors therefore aid the virus by 

facilitating its replication [36].  Moreover, influenza A viruses induce the expression of several 
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cytokines and chemokines affecting their signaling cascades, including interferons α and β, as 

well as several interleukins.  In addition three members of the mitogen-activated protein kinase 

(MAPK) family: extracellular-signal-regulated kinase, JUN N-terminal kinase, and p38, are 

believed to be activated due to influenza infections.  MAPK signaling cascades are generally 

involved in several important cellular responses including cell activation, proliferation and 

differentiation, as well as immune response [35]. 

 

In humans, the influenza virus causes an infection that can vary in severity from asymptotic to a 

serious systemic illness.  While it is unlikely that the virus replicates to a great extent outside of 

the respiratory tract, viral genes have been detected in peripheral blood mononuclear cells but 

without evidence of viral replication.  In addition the viraemia is believed to occur as a result of 

respiratory complications enabling viral entry into the blood [31].  Therefore, the complex 

interactions that occur between viral and host proteins are essential for the virulence and the 

spread of the infection [30, 37]. 

 

In summary, while the cell machinery has been designed to help maintain a homeostatic 

environment ensuring healthy growth and proliferation, external events and infectious agents can 

interfere with these control mechanisms.  Perturbations are introduced directly as mutations 

occur, or indirectly as invading pathogens usurp the cellular machinery.  These changes often 

influence several pathways that occur downstream of the affected proteins, resulting in 

disturbances in the cell’s regular function.  As a result, the severity of these induced changes 

depends on the pathways concerned.  Hence, the most deleterious infections and tumors are those 

that are capable of efficiently hijacking cellular machinery and directing nutrient supplies to meet 

their own demands, creating an environment fit for their continued proliferation and growth, and 

effectively avoiding or compromising the host’s immune system. 



14 

 

Our understanding of the changes and influences associated with the invasion and/or progression 

of cancers and viral diseases is incomplete.  One of the approaches that can help in identifying 

these perturbations at the transcript level is gene expression microarrays.  A large effort has 

already been applied to the study of cancer [38-48], and similar analyses have been constructed to 

identify viral-induced changes [49-52], although these experiments have not been as extensive as 

those available for cancer.  Nonetheless, such data allows for the identification of important genes 

and biomarkers that could aid in not only understanding the pathogenesis of different diseases, 

but also help in identifying candidate drug targets.  Gene expression microarray analysis is further 

discussed in the next chapter.  
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Chapter 2: Gene Expression Microarrays 

 

2.1 Introduction 

Over the course of the past few years, the genomes of several organisms have been sequenced, 

however deciphering the DNA sequence does not reveal the function of genes, or the changes that 

occur in organisms due to disease, infections or even aging, for example.  Microarrays have 

emerged as a useful tool for the simultaneous analysis of the expression of thousands of genes.  

They can help identify differentially expressed genes between two states which can facilitate the 

discovery of functionally important genes.  In general terms, microarrays are affinity matrices in 

which labeled RNA or DNA is hybridized in solution to DNA molecules attached to the surface 

of the chip [53]. 

 

There are two basic types of DNA microarrays; complimentary DNA (cDNA) and 

oligonucleotide arrays.  In the former, mRNA is obtained from two samples and labeled with 

different fluorescent dyes (Cy3 for reference sample and Cy5 for test sample).  The experiment is 

then conducted as a competitive assay in which the two samples are hybridized to the same 

microarray chip and relative mRNA levels for each gene can be determined from the Cy3/Cy5 

signal; a method that is termed two-color or two-channel microarrays (Figure 6a) [54].  In 

oligonucleotide arrays, such as Affymetrix GeneChip, each gene is represented by at least one set 

of 11-20 probe pairs, where each probe pair consists of 25 base pairs-long perfect match (PM) 

oligonucleotide probe and a mismatch (MM) probe of equal length.  The MM probe matches the 

PM sequence with the exception of 1 base pair in the middle of the probe (13
th
 position) [54-55].  

The purpose of MM probes is to measure non-specific binding [55].  The information across all 

the probe sets is then integrated and a probe set signal is produced.  Oligonucleotide arrays are 

therefore one channel arrays in which only one sample is hybridized per chip (Figure 6b), and the 
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signal intensities from different chips can be analyzed and compared [54].  Single-color 

microarrays therefore require double the amount of chips needed for a two-color microarray 

experiment. 

 

 

Figure 6 - DNA Microarray: Hybridization using a) two-channel and b) single-channel 

microarray platforms 

 

While single-color arrays produce gene expression intensities for every sample used [54], two-

color cDNA chips only provide a relative difference between two biological samples and 
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therefore are not a reliable source for the evaluation of absolute gene expression levels [56].  In 

addition, most cDNA arrays are in-house made by spotting or gridding the sequences onto a glass 

chip [57-59].  Commercially produced Affymetrix chips, on the other hand, use photolithography, 

utilizing ultraviolet light to direct where the oligonucleotide synthesis occurs on a siliconized 

glass surface [58-59].  Comparing data obtained from different samples as well as from different 

labs therefore requires normalization.  As a result of the differences between the two types of 

microarray technologies, different standardization methods exist in each case.  The normalization 

of custom-made cDNA chips is a complex problem in which the standard used is often based on 

the purpose for which the array was produced [58], hence the focus from hereon will be shifted to 

Affymetrix microarray chips. 

 

2.2 Microarray Normalization: 

When examining microarray data, two types of variation exist: informative variation and 

obscuring variation.  Informative or interesting variations result from the conditions behind the 

study such as alterations accompanying a disease state, the effect of a protein or gene knockout, 

changes in environmental conditions (such as nutrients or temperature), introduction of infectious 

agents, mutations, or cellular stresses.  Obscuring variations, on the other hand, can occur during 

the process of carrying out the experiment and can interfere with the interesting biological 

variations that occur between the two conditions.  Obscuring variations can arise during the 

preparation of samples including variations during mRNA extraction, temperature fluctuations or 

reagent quality.  In addition, some variations can occur while manufacturing the arrays such as 

the hybridization efficiency of the probes and probe concentrations.  Finally, other obscuring 

variations arise from the processing of arrays, either during the hybridization of samples 

(differences in the amount of sample applied, buffer concentration and cross-hybridization 

interferences) or after array hybridization (variation in fluorescent intensity, optical 
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measurements and imaging algorithms) [60].  Thus the purpose of normalization prior to analysis 

is to deal with these obscuring variations [61] and unless the arrays are appropriately normalized, 

comparing values from different samples can lead to misleading results [62]. 

 

2.2.1 Robust Multichip Average Algorithm: 

In order to produce gene expression levels that are representative of the hybridized DNA or 

mRNA samples, the probe intensities for each probe set have to be summarized.  The robust 

multichip average (RMA) algorithm utilizes PM intensities only, as opposed to some of the other 

algorithms that use both PM and MM probes.  The rationale behind this exclusion is due to 

reports that have revealed that the typical subtraction of MM values to correct for non-specific 

binding is not necessarily appropriate since the mathematical subtraction does not directly 

correspond to biological subtraction [55].  The pre-processing of Affymetrix microarray data 

includes three main steps: background-adjustment, normalization and final summarization of 

probe expression levels.  Since all arrays are assumed to have a common mean background level, 

the PM intensities are adjusted to remove the background effect thus providing a more accurate 

absolute level of probe expression.  Following background-correction, probe values are 

normalized using quantile normalization [62].  Values are transformed using the empirical 

distribution of each array and the empirical distribution of the averaged sample quantiles [61].  

The purpose of quantile normalization is to make the distribution of probe intensities the same 

across all the arrays [61-62] and has been shown to produce favorable outcomes in terms of 

speed, variance and bias criteria when compared to other normalization algorithms[61].  Finally, 

for each probe on the array the background-corrected, normalized and log2-transformed PM 

intensities are fit into a linear additive model to remove probe-specific affinities.  Median 

polishing is used to protect against outlier probes and to estimate the model parameters, resulting 

in the robustness of RMA [62]. 
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2.2.2 Reference Robust Multichip Average 

Classic microarray normalization and summarization methods including RMA and other multiple 

array-dependent algorithms present a major limitation in that the final model is applied to all the 

test samples used.  In other words, the training samples and the test samples are the same.  This 

dependency restricts the expansion of the model to additional data due to the lack of archived 

parameters that can be applied to an updated database of microarray samples.  As a result, data 

from two studies cannot be directly compared if each has been normalized separately since each 

analysis used different data to define the normalization parameters and estimate the probe effects.  

This requires that the normalization technique be reapplied to the data as a whole to avoid pre-

processing bias, a process that can create several constraints when dealing with large amounts of 

data, including time and memory restrictions.  The reference robust multichip average (refRMA) 

algorithm, however, allows for the construction of a static normalization scheme that can be 

applied to added data on a continual basis [63].  The normalization process is termed static since 

the previously normalized data are not re-normalized with the addition of new data. 

 

In short, a large number of biologically distinct Affymetrix microarrays are used to train the 

RMA model.  Similar steps are applied to the training data as with the classical RMA, namely 

background-adjustment, quantile normalization and median polishing. The training process then 

produces two archived vectors; a probe effect vector compiled from the individual log-scale 

probe affinity effects and a normalization vector compiled based on the transformed PM 

intensities.  The resulting vectors can then be extended to new test data by using the 

predetermined group of arrays to estimate the effects and the average empirical distribution that 

should be used for the added data.  The final step differs, however, in that a full median polish 

summarization cannot be performed so the median is taken across probes from each probe set 

resulting in probe set level summaries [63]. 
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2.2.3 Custom Chip Definition Files 

Microarray data requires the use of chip definition files (CDF) in order to process the raw 

information obtained from the data files.  Affymetrix CDF files encode the physical design of the 

chip.  They also contain the sequence details that can be used to link the oligonucleotide probes 

that are present on the chip to the investigated transcripts [64].  Much attention has been directed 

towards statistical algorithms for normalizing data and detecting differentially expressed genes, 

yet problems related to probe and probe set identity can result in significant errors, especially 

when expression changes are not dramatic.  Affymetrix had initially utilized the complete 

information available during the design stage, but with the immense progress achieved in genome 

sequencing and annotation in the past years, the Affymetrix probe set designs have become 

suboptimal [65].  Therefore, a gap exists in the correspondence between the probes and probe sets 

from the Affymetrix chips with the genes and transcripts [64-65].  Probe set annotation is 

constantly updated by Affymetrix and it has deviated from the original one-to-one 

correspondence between probe set and transcription locus.  Nonetheless, the updates affect the 

qualitative attributes of the probe sets that control the effective matching between probes and 

genome sequences [64].  Analysis of chip definition files has revealed that several of the old 

probe sets do not truly reflect the expression levels of several significant genes in a given tissue 

[65]. 

 

Entrez custom CDF files are part of a collection of custom CDF files created by Dai et al. [65].  

The process includes mapping probe sequences to individual sequences found in UniGene, 

dbSNP, and the genome sequence of the species and then aligning these sequences.  Probes 

matching non-transcribed regions are excluded and only probes that have one perfect match with 

the corresponding genome sequence are retained.  The probes in all probe sets are also required to 
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be aligned in the same direction on the genome.  Finally, each probe set has to contain at least 

three probe pairs [65].  The resulting expression data is representative of an individual gene as 

opposed to the original Affymetrix CDF that produce gene intensities per probes where one gene 

can be represented by more than one probe and one probe can be mapped to multiple genes.  The 

development of custom CDF files has been shown to significantly improve the outcomes of 

differential expression microarray analysis [64-65]. 

 

2.3 Microarray Analysis and Differential Gene Expression 

Microarray technology has proved to be useful as it allows for the simultaneous quantification of 

thousands of genes in a high-throughput and cost-effect manner [66].  In many cases, the 

objective of the microarray data is to identify genes that are differentially expressed between the 

different conditions considered [67].  As a result, a large variety of methods have emerged for the 

analysis of microarray gene expression data.  One of the simplest calculations is computing the 

fold change of a gene [68].  However, this is a statistically inefficient approach due to the 

systemic and biological variations that occur in such experiments.  While some biases can be 

effectively removed through normalization, sample-to-sample variation cannot be accounted for 

in this manner.  Hence, the use of fold change as the sole statistic of significant genes can 

increase the number of false positives (type I error) or false negative (type II error) identified.  It 

is more appropriate to detect significantly altered genes by calculating a statistic based on 

replicate array data, then ranking genes and determining a cutoff value [69].  Statistical methods 

for ranking genes include the student’s t-test [70], analysis of variance (ANOVA; [71]), Mann-

Whitney test [72] or the Bayesian method [73-74]. 

 

The statistical cutoff can then be set, however it has to balance the false positives and the false 

negatives.  In addition, since a microarray chip contains thousands of genes, setting a cutoff of 
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0.05 for an experiment studying 10,000 genes results in 500 genes falsely inferred as significant, 

exaggerating type I error.  Statistical tests therefore have to deal with problems arising from 

multiple hypothesis testing.  One example is the Bonferroni correction were the significance 

cutoff is divided by the number of genes, but such a correction can be too stringent.  Hence, it is 

more practical to control the expected proportion of false positives by controlling the false 

discovery rate (FDR), as is the case with the significance analysis of microarrays (SAM; [75]) test 

[69]. 

 

2.3.1 Significance Analysis of Microarrays 

Similar to the aforementioned tests, SAM determines significantly altered genes by assigning a 

score to each gene that is based on the change of the gene’s expression relative to the standard 

deviation of the repeated measurements for that gene.  This calculation is similar to that of a t-test 

However, a value is added to the standard deviation in the denominator, minimizing the 

coefficient of variation.  Significance is associated with larger scores passing the set cutoff.  The 

FDR is then calculated to determine what percentage of the genes were identified as significant 

by chance.  FDRs are estimated by using random permutations of the gene expression 

measurements and calculating the expected relative difference for a gene from these 

permutations.  SAM’s performance has been shown to be superior to that of other conventional 

microarray analysis methods [75] 

 

Nonetheless, despite the many statistical methods designed to deal with the different issues that 

arise from determining significant genes, discrepancies in the results from similar studies still 

occur [76].  Microarray studies using different datasets can report non-reproducible findings or 

produce results that are not robust even to the slightest data perturbations.  While such problems 

can occur due to multiple reasons including improper analysis or insufficient control of false 
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positives, as previously discussed, the lab-dependency of results is exacerbated by the small 

number of samples utilized in individual studies.  These numbers are generally much smaller than 

what is statistically needed to support the thousands of genes analyzed.  Therefore, one solution 

to increase the statistical power, reliability and generalizability of microarray-based results is to 

combine information from several existing experiments [46]. 

 

2.3.2 Meta-Analysis 

The term meta-analysis is used to describe statistical approaches that combine the results of 

independent but relevant studies.  Meta-analysis techniques have been widely used for clinical 

trials and epidemiological studies [77-82], as well as for microarray analysis [46-48, 83-86].  In 

general, gene lists can be obtained from different studies and compared and a final gene list is 

produced which reflects the results of the multiple studies.  However, it is more preferable to 

obtain and re-analyze gene expression data from each experiment.  The results are then 

aggregated into a final gene list by considering the statistical enrichment of a gene across all 

studies.  There are four main methods for combining information across studies: vote counting, 

combining ranks, combining p-values and combining effect sizes [46].  In vote counting, a gene 

receives a vote each time it appears to be significant in a list.  However, the main difficulty with 

the approach is determining the minimum number of votes required to deem a gene significant.  

This can be further complicated as some genes may not even be analyzed on specific platforms.  

As a result, resampling methods [87-88] are required to estimate the significance of the different 

findings [89].  When combining ranks, the top-ranked genes are obtained from each study and the 

location of the genes within these lists is used to assess their overall significance [46].  

Approaches for aggregating ranks utilize different algorithms including Markov chains [86] and 

Monte Carlo permutations [76].  P-values can also be combined across studies; in the Fisher’s 

sum [47, 90] approach, for example, the logarithms of the different p-values for a gene are 
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accrued across all experiments.  Finally, effect size can be aggregated, where the effect size 

represents a measure of the strength of the relationship between the two gene states considered, to 

obtain significant and meaningful results.  Combining effect sizes is described in the following 

section as part of the inverse-variance methodology [46]. 

 

2.3.2.1 Inverse-Variance 

The inverse-variance model [91] is believed to be the most comprehensive meta-analysis 

approach that can be applied for the comparison of two-class gene expression microarrays [46].  

It has been used in several microarray-based meta-analysis studies [46, 83-84, 92].  For each gene 

in a study, the effect size and the variance associated with it are calculated.  The effect size can be 

computed using an adjusted value of the initial distance parameter used by Cohen [93] based on 

the typical t-test value where the difference between two independent means is standardized by 

dividing the difference by the common within-population standard deviation.  The adjusted value 

was introduced by Hedges and Olkin [94] as a correction factor for the calculation of the unbiased 

estimate of the effect size.  This adjusts the overestimation of the effect size in studies with small 

sample sizes that results from standardizing the mean difference [46, 94].  A weighted-average, 

inversely-proportional to the variance of the study-specific estimates, is then used to combine the 

effect sizes of a gene across the different studies [46]. 

 

The inverse-variance technique possesses several advantages.  First, the method takes into 

account information from all available genes.  In addition, it can combine data from different 

platform technologies including one-color Affymetrix chips and two-color cDNA microarrays.  

Given the differences in the genes included from one platform to another, whether within the 

same technology (i.e. different Affymetrix platforms), or across technologies (i.e. Affymetrix vs. 

cDNA), some genes will be studied more frequently than others.  It is therefore essential that a 
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statistical approach treats both frequently and rarely studied genes equally, and the inverse-

variance addresses this issue by calculating the weighted average of the effect sizes.  Thus, it 

weighs the contribution of a study by its precision, with more weight emphasis given to larger 

sample studies.  And finally the parameters calculated by the inverse-variance; the pooled effect 

size and the standard error, can be biologically interpreted [46]. 

 

2.4 Databases 

Several online databases are now available, providing access for biological information and data.  

Two of the biggest efforts are the National Center for Biological Information (NCBI; 

http://www.ncbi.nlm.nih.gov) and the European Bioinforamtics Institute (EBI; 

http://www.ebi.ac.uk).  These databases include nucleotide sequence and microarray data, protein 

information, gene descriptions, and disease annotations, among others.  Functional annotation 

databases for gene subsets of interest are also important for providing information on the 

connectivity of these genes and the roles they play within the cell.  These databases help 

categorize genes and proteins based on similarities in their characteristics to provide higher order 

functions. 

 

2.4.1 Microarray Databases: 

With the increasing utilization of microarray data and with raw data availability being required by 

the Microarray and Gene Expression Data Society (MGED Society; [95]), microarray databases 

have aided in simplifying the acquisition of publically accessible data.  NCBI’s Gene Expression 

Ominbus (GEO; [96-97]) and EBI’s ArrayExpress Archive [98] are two such repositories.  Both 

databases support the retrieval of microarray data for analysis from a variety of organisms.  They 

contain extensive amounts of data from different experimental settings including disease states 

and stages, genetic interventions and gene-knockouts, time series, and manipulative treatments 
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and drug therapy [96-98].  The availability of multiple microarray datasets is useful for noise 

reduction and adding sensitivity to the results extracted from the data. 

 

2.4.2 Functional Annotation Databases: 

As sequencing projects continue to provide gene catalogs, the functional annotation of these 

genes is essential yet incomplete.  Biological functions within a cell usually cannot be attributed 

to a single gene or molecule but instead to a group of genes or molecules.  The Kyoto 

Encyclopedia of Genes and Genomes (KEGG; [99-101]) is one of the databases that aim to 

combine genomic information with higher order functional information by integrating the 

available literature on cellular processes.  KEGG links gene sets within a network of interacting 

molecules to provide complexes and pathways in which these genes function.  These pathways 

cover a variety of processes such as metabolic pathways, diseases, genetic and environmental 

information processing, and signaling pathways.  Apart from the visual networks of the pathways, 

KEGG also provides information within its sub-databases including the compound database for 

chemical structures, enzyme database for enzymatic nomenclature, and the reaction database 

containing reaction formulas [99-101]. 

 

The continuous accumulation of biological data and information has also produced a need for 

unifying annotation standards.  The Gene Ontology (GO; [102]) Consortium has therefore 

established the structured vocabulary needed to facilitate communication between researchers as 

well as to provide consistent descriptions of gene products.  The main categories described within 

the consortium are molecular function, biological processes and cellular components.  Molecular 

function focuses on the activities at the molecular level rather than discussing the entities 

(molecules or complexes) that are responsible for the actions, or where and when the activity 

occurs.  Biological processes, on the other hand, describe the biological goals that are 
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accomplished by one or more molecular functions.  Finally, the cellular component term refers to 

the subcellular locations of structures and macromolecular complexes.  The main ontologies are 

divided into several subcategories at different hierarchical levels with increasing degrees of 

specificity, resulting in a dynamic, controlled vocabulary for annotating genes and proteins [102-

103]. 

 

Given a set of genes of interest that could be identified from a microarray experiment, the genes 

can be annotated using KEGG pathways and GO categories.  Over-representation of such terms 

using a hypergeometric test can indicate functional enrichment of gene sets.  These significant 

pathways and GO terms can then indicate which activities and processes are affected by the 

perturbation introduced to the system, providing an intelligible account of the cell’s state under 

the specified conditions.  
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Chapter 3: Asymmetric integration of microarray data outperforms meta-analysis 

approach 

 

3.1 Summary 

This chapter focuses on the integrative and meta-analysis approaches used in the analysis of 

microarray data.  Much of the public access cancer microarray data is asymmetric, belonging to 

datasets containing no samples from normal tissue. Asymmetric data cannot be used in standard 

meta-analysis approaches such as the inverse variance method, but are necessary for obtaining 

large sample sizes for statistical power enrichment. Noting that plenty of normal tissue 

microarray samples exist in studies not involving cancer, the viability and accuracy of an 

integrated microarray analysis approach based on significance analysis of microarrays (merged 

SAM) using a collection of data from separate diseased and normal samples was investigated.  

The research focused on five solid cancer types (colon, kidney, liver, lung, and pancreas), where 

available microarray data allowed for the comparison between meta-analysis and integrated 

approaches.  Results from the merged SAM significantly overlapped gene lists from the validated 

inverse-variance method.  In addition, both meta-analysis and merged SAM approaches 

successfully captured the aberrances in the cell cycle that commonly occur in the different cancer 

types.  However, the integrated SAM analysis replicated the known cancer literature (excluding 

microarray studies) with much more accuracy than the meta-analysis.  The merged SAM test is 

therefore a powerful, robust approach for combining data from similar platforms and for 

analyzing asymmetric datasets, including those with only normal or only cancer samples that 

cannot be utilized by meta-analysis methods. The integrated SAM approach can also be used in 

comparing global gene expression between various subtypes of cancer arising from the same 

tissue. 
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3.2 Background 

Microarray studies typically provide intensity levels for thousands of genes.  However, not only 

are the individual datasets usually small in size, but the inferences made from individual studies 

are often inconsistent with similar studies [76].  As thousands of microarray samples have 

accumulated in publicly accessible databases in the last decade [96-98], several statistical 

methods have been developed to allow for the combination and comparison of data from multiple 

sources.  Among the many methodologies that exist that deal with merging different microarray 

datasets, are the permutation tests [47-48], parametric tests and clustering [104], rank-aggregation 

procedures [86, 105], rank products [106], METRADISC [76], and inverse-variance [46, 83-84].  

The utilization of vast amounts of microarray data provided by different groups is considered to 

increase the reliability of results and weaken the effects of lab-specific noise [107].   

 

The meta-analysis procedures cited above combine results from different studies.  Each dataset is 

analyzed separately.  Genes are associated with an effect size or a p-value.  These are then 

combined across all analyses and a top-ranked gene list is generated based on the aggregated 

effect size or p-value [108].  While some meta-analysis methods require the use of raw data [46-

48], others can depend solely on the ranking of genes from various studies [86, 105].  The meta-

analysis is robust in the sense that it allows for comparisons across different platforms and 

analytical techniques (cDNA and oligonucleotide microarrays).  However, the most important 

limitation the meta-analysis poses is that it requires datasets to include both control and test 

samples.  Previous studies showed that aggregating data prior to obtaining results is usually more 

powerful than obtaining separate statistics from each dataset and then integrating the results 

[109].  Therefore, based on the grounds of previous studies that revealed the predictive potential 

of integrated microarray [110-112], this study considers a large-scale merge approach to the 

significance analysis of microarrays (SAM; [75]) test that can utilize asymmetric datasets. 
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To test the performances of the meta-analysis and the merged SAM approach, microarray data 

was compiled from 31 laboratories, resulting in a database containing 339 healthy tissue samples 

and 1,429 cancer samples from five different tissue types using comparable Affymetrix platforms.  

The tumor tissue types considered in this study –colon, kidney, liver, lung, and pancreas – had 

multiple microarray datasets containing both normal and disease samples.  The meta-analysis 

approach has already been employed by a few cancer microarray studies either focusing on a 

single tissue type [47, 84, 113-115] or across different tissues in order to identify gene sets 

associated with common cancer mechanisms [46, 48, 116].  For the purpose of this study, the 

inverse-variance (IV) test was adopted from the work of Ramasamy et al. [46] to compare the 

quality of our results, since it is believed to be the most comprehensive meta-analysis method for 

two-class microarray gene expression analyses.  With this large-scale database, significantly 

altered gene lists were generated for each individual tissue as well as across all five tissue types, 

using both the IV and the merged SAM tests.  The results revealed that the merged SAM analysis, 

when based on large-scale data, not only significantly overlaps the results produced by the IV 

meta-analysis, but also provides gene lists that replicate the known cancer literature at least as 

well as the IV test. 

 

3.3 Materials and Methods 

3.3.1 Microarray dataset selection 

A total of 31 Affymetrix microarray datasets containing 1,768 unique samples from human 

cancer (1,429) and corresponding healthy control tissues (339) were collected from the Gene 

Expression Omnibus (GEO; [96-97] and Array Express [98] online repositories.  Samples were 

selected for five different tissue types: colon, kidney, liver, lung and pancreas, then categorized 

into cancer and control subsets to allow for intra- and inter-tissue comparisons.  The cancer 

samples were not restricted to a single type of malignancy in order to provide a generalized 
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pathogenic approach shared by cancers.  The microarray data were limited to those hybridized on 

the Affymetrix human microarray platforms HG-U133A, HG-U133A 2.0, and the HG-U133 Plus 

2.0 due to the large overlap between the three platforms.  In addition, the inclusion criteria 

restricted that each dataset was obtained from a peer-reviewed study and contained a minimum of 

20 usable microarray samples (Figure 7). 

 

 

Figure 7 - Dataset Inclusion Criteria: Selection method used for the inclusion of Affymetrix 

datasets utilized in the analyses in this study. 

 

3.3.2 Normalization and differential expression  

For Affymetrix chips, raw microarray CEL files were read using the platform-compatible custom 

ENTREZG CDF file (version 12) [117] in order to obtain Entrez gene intensities.  Where 

multiple replicates from the same source were available, the gene intensities were averaged across 

replicates.  Nineteen out of thirty-one datasets contained samples for both the normal and cancer 

tissues and therefore could be used in meta-analysis.  Individual datasets were background 

adjusted normalized with median polish using the robust multi-array analysis (RMA) in 

MATLAB [62].  For each tissue, the corresponding log-transformed data were transferred into R 
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[118] and the metaGEM package [46] was utilized to conduct the meta-analysis using inverse 

variance (IV1; Figure 8).  The false discovery rate (FDR) was set at 0.001%.  Moreover, the samr 

package [119] in R was used to conduct the significance analysis of microarrays (SAM) test [75] 

on each individual dataset.  A hundred permutations were performed and results were restricted to 

significant genes with an FDR of 0. 

 

While IV analyzes each dataset separately before combining the results, SAM can be applied to 

previously merged data.  This merger was achieved by using the refRMA algorithm [63], 

designed for large microarray datasets to compute the robust multichip averages.  Background 

adjustment was applied to each array.  Quantile normalization was performed on a 909-array 

training set composed of all HG-U133 Plus 2.0 arrays used in this study.  Median polished 

outputs of the training set was finally used to adjust the normalized gene intensities thus allowing 

for the integration of data from all three platforms together, limiting results to the 9,409 genes 

common to these platforms.  A merged SAM test was then applied to the combined data of each 

tissue using the same datasets included in the IV1 test based on the aforementioned parameters 

(100 permutations and 0 FDR). 

 

As noted above, the IV test is limited to datasets that contain both cancer and normal tissues.  The 

merged SAM method, however, allows for the inclusion of datasets containing solely normal or 

solely cancer samples.  Thus, to test the effect of adding such datasets, microarray samples from 

all datasets of the same tissue were combined together and another series of SAM analyses were 

applied using the same test parameters as above.  For the purpose of this research, the first set of 

SAM tests, based on the data from the 19 datasets containing both normal and cancer tissues, is 

referred to as SAM1 (Figure 8).  The second method in which all samples from the 31 datasets 

could be utilized is denoted as SAM2 (Figure 8). For each tissue, the lists of top 400 differentially 
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expressed genes from the IV and both SAM tests were selected.  These gene lists were used to 

identify significantly enriched KEGG pathways at a p-value ≤ 0.05 using DAVID Bioinformatics 

resources [120-121]. 

 

3.3.3 Common transcriptional profiles across all five tissue types 

To identify consistent changes that are associated with multiple cancer tissue types, an IV1 test 

was conducted on all 19 Affymetrix datasets containing both cancer and normal samples together, 

regardless of tissue type.  Similarly, a SAM test was performed on the same samples (SAM1) and 

another SAM test was applied to all 1,768 available Affymetrix samples from the five tissues 

considered (SAM2).  The same test parameters were used as previously mentioned.  After 

determining the genes that behave consistently across all the different cancer types, the top 400 

genes were selected from the gene lists produced by each of the methods.  Enriched KEGG 

pathways were identified for all lists at a p-value cutoff of 0.05. 

 

3.3.4 Expanding IV analysis to cDNA data 

An additional five datasets using cDNA microarray platforms were obtained from GEO.  The 

datasets contained cancer versus normal samples from colon, kidney and lung tissues for a total of 

292 cancer and 169 normal samples.  No publicly-accessible data could be found for the other 

two tissues.  The IV analyses for these three tissues as well as the combined tissue test were re-

run (IV2; Figure 8) to investigate the cost of excluding these datasets from the merged SAM 

approach that relies solely on Affymetrix data.  Similar test parameters were applied; restricting 

results to genes with an FDR less than 0.001% and top 400 gene lists were utilized for identifying 

enriched KEGG pathways, as described above. 
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Figure 8  - Analysis Workflow: Flowchart depicting the steps involved in each of the four 

analyses considered: IV1, IV2, SAM1 and SAM2 
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3.4 Results 

3.4.1 Datasets and approaches 

Three different clustering of microarray datasets were used to evaluate (a) the intersection of 

significant gene lists predicted by meta-analysis and merged SAM methods and (b) compare 

these predictions with research literature excluding microarray studies.  Cluster 1 is composed of 

Affymetrix microarray datasets containing both cancer and normal samples for five different 

cancer tissues (Table 1).  The gene set predictions resulting from analysis of this data with the use 

of meta-analysis and merged SAM are denoted as IV1 and SAM1, respectively.  Each dataset was 

analyzed separately for the IV1 test and a final gene list was produced based on the weighted 

results from the individual datasets.  The SAM1 test was applied to the same Affymetrix data 

from each tissue after their merger, with all samples being normalized together, regardless of 

dataset.  Cluster 2 of microarray datasets used in intersection analysis and literature comparison 

contained cDNA microarray datasets in addition to the Affymetrix data in Cluster 1.  The gene 

lists predicted by meta-analysis using these datasets were called IV2.  Cluster 2 was used to take 

full advantage of the capability of meta-analysis in integrating microarray datasets from different 

technologies.  Cluster 3 contained asymmetric Affymetrix data in addition to data in Cluster 1 

(Table 1). The gene list corresponding to Cluster 3 data predicted by merged SAM is referred to 

as SAM2.  Figure 9 shows the overall characteristics of the Affymetrix datasets used in the 

analysis.  The intersections of the predicted gene lists obtained with the two methods on the three 

different dataset clusters are summarized in Table 2. The table also presents the p-values 

corresponding to the intersections based on a hypergeometric test.  
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Table 1- Overview of Data and Results: Datasets and distribution of microarray samples from 

the 5 cancer types used.  Affyemtrix datasets containing both normal and cancer samples were 

utilized for the IV1 and SAM1 tests (sample cluster 1), IV2 contained all datasets used in IV1 in 

addition to all cDNA datasets (sample cluster 2), and all Affyemtrix datasets were merged for 

SAM2 analysis (sample cluster 3). (Platforms: A: HG-U133A, A2, HG-U133A2, P2: HG-U133 

Plus 2) 

Tissue  Accession # Normal Cancer Platform 

Colon  E-MTAB-57 22 25 A 

  GSE4107 10 12 P2 

  GSE4183 8 15 P2 

  E-MEXP-1224 0 55 A 

  E-MEXP-383 0 36 A 

  E-TABM-176 55 0 P2 

  GSE12945 0 36 A 

  GSE17538 0 232 P2 

  GSE6988 28 52 cDNA 

   Total: 123 463  

Kidney  E-TABM-282 11 16 P2 

  GSE11024† 12 60 P2 

  GSE11151 3 57 P2 

  GSE14762† 12 10 P2 

  GSE15641 23 57 A 

  GSE6344 10 10 A 

  GSE7023 12 35 P2 

  GSE10320 0 144 A 

  GSE11904 0 21 A2 

  GSE3 81 90 cDNA 

  GSE7367 24 24 cDNA 

   Total: 164 524  

Liver  GSE14323 19 47 A/A2 

  GSE6764 10 35 P2 

  E-TABM-292 0 32 A 

  E-TABM-36 0 57 A 

  GSE9843 0 69 P2 

   Total: 29 240  

Lung  E-MEXP-231 9 49 A 

  GSE10072 49 58 A 

  GSE7670 27 27 A 

  GSE10445 0 72 P2 

  GSE12667 0 75 P2 

  GSE2088 30 57 cDNA 

  GSE8596 6 69 cDNA 

   Total: 121 407  

Pancreas  E-MEXP-1121† 6 17 A 

  E-MEXP-950 11 14 A 

  GSE15471 39 39 P2 

  GSE16515 15 36 P2 

   Total: 71 106  
 

† Datasets included replicated samples 
 

1 1 

1 1 

1 1 

1 
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Figure 9 - Overview of Affymetrix Microarray Datasets Used: Distribution of all Affymetrix 

microarray data used based on the number of cancer versus normal samples in each dataset.  

Datasets used for IV1/SAM1 test are shown inside the ellipse.  Additional datasets included in 

SAM2 only are located on axes  

 

3.4.2 IV meta-analysis and merged SAM overlap significantly in results 

As in previous microarray studies of cancer [40, 122-127], the gene lists produced by the two 

approaches used in this study indicate significant alterations of the transcriptional profile as the 

tissue is transformed from the normal to the cancer state, with up to thousands of genes possibly 

undergoing statistically significant expression changes.  While the two methods applied to the 

three dataset clusters produced different lists of significant genes for each of the five tissues under 

consideration, there was a considerable overlap in the results (Table 2). The significance of the 

intersection between predicted gene lists increased consistently as the number of top-ranked 

genes used in comparison were increased from 10 to 400.  In colon tissue, the overlap with IV1 

was confined to 338 significant genes instead of 400, since that was the total number of genes 

passing the test criteria.  At the 400 gene level p-values of the IV1/SAM1 intersection ranged 

from 2.66E-26 in pancreas to 8.42E-181 in lung, while the most significant overlap in IV1/SAM2 
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was in kidney (p-value = 1.02E-134).  Comparison of the results of the two SAM methods 

produced even larger commonalities in the gene lists identified.  Apart from the colon tissue, 

there was at least 60% overlap between the top 400 gene lists generated by the two SAM 

methods, for any given comparison.  The match between the two SAM results became less 

pronounced with sharp increases in the number of samples added in SAM2.  Nevertheless, even 

with 506 colon cancer samples included in SAM2 as opposed to the 92 used in SAM1, the 

overlap between the two methods (176 genes) remained significant.  The overlap between IV1 

and IV2 varied largely among the top ranked 400 genes with a minimum overlap of 144 genes in 

lung tissue and a maximum overlap of 355 genes in kidney, resulting in vanishing p-values in the 

latter case (Table 2). 

 

To identify significantly altered genes across the five considered tissue types, the datasets from 

all tissues were pooled together.  Again, SAM2 included additional datasets with cancer or 

normal samples only.  Similarly, the significance of the overlap between the results increased as 

more top-ranked genes were considered, with p-values equal to 6.82E-97 and 2.80E-103 for the 

intersection at the top 400 genes level in IV1/SAM1 and IV1/SAM2, respectively (Table 2). 

 

3.4.3 Cell cycle pathway is commonly enriched in cancers 

The cellular pathways that were statistically enriched in the top 400 cancer-associated genes from 

the multiple tissues under consideration were identified using the DAVID Bioinformatics 

Resources’ functional annotation tool as described in the Methods section.  Enriched KEGG 

pathways common to at least two tissue types within a given test method or significantly 

associated with the combined 5-tissue comparisons are shown in Figure 10.  The cell cycle 

pathway was statistically enriched in IV1, IV2, SAM1 and SAM2 gene lists across all tissue types 

(Figure 11).  Among the key changes in the cell cycle in normal to cancer transition are the 
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differential expression of cyclins (A and B) and cyclin-dependent kinases (CDK1 and CDK4/6 

complex).  CDKs are the core of the regulatory apparatus of the cell cycle progression as changes 

in the kinases and cyclins drive the cell from one stage of the cell cycle to another [128].   

 

 

Figure 10 - Enriched KEGG Pathways: A list of KEGG pathways, shown in pink, that appear 

to be statistically enriched according to the top 400 genes from IV1, IV2, SAM1 and SAM2 at a 

p-value cutoff of 0.05.  Results are limited to pathways independently enriched in at least two of 

the or in the combined test including all tissues. 

 

In addition, the p53 signaling pathway and purine metabolism were significantly enriched in all-

tissue analyses of both IV tests and SAM2.  Pyrimidine metabolism is also enriched for the 

merged SAM2 significant genes while SAM1 genes are associated with ECM-receptor interaction 

and glycolysis/gluconeogenesis pathways.  At the tissue level, some of the metabolic pathways 

were common to both kidney and colon cancers (butanoate and nitrogen metabolism).  

Complement and coagulation cascades were enriched in four out of the five tissues under study. 

These results show that both methods of integration are capable of reproducing a significant 

portion of the research literature on cellular pathways activated in cancer. 
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Table 2 - Overlap in Top-Ranked Genes:  The overlap among n top-ranked genes between the IV1 and SAM1/SAM2 tests are shown as well as 

the corresponding p-values of the intersection.  Overlaps of top 400 genes between the similar approaches (IV1/IV2 and SAM1/SAM2) are also 

shown. 

IV1  SAM1 

n Colon Kidney Liver Lung Pancreas All 

Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value 

10 3 1.01E-07 0 0.989487 5 9.98E-14 2 4.49E-05 0 0.989487 0 0.989487 

50 11 8.67E-16 5 5.71E-06 17 7.85E-28 14 1.44E-21 8 1.49E-10 6 2.05E-07 

100 26 4.68E-30 23 3.04E-25 24 8.09E-27 34 4.21E-44 17 1.93E-16 18 7.94E-18 

200 62 1.88E-57 68 1.57E-66 53 9.78E-45 93 2.56E-109 34 8.96E-22 64 2.00E-60 

300 109 2.48E-91 106 4.38E-87 89 1.69E-64 146 5.40E-150 51 7.65E-24 103 6.46E-83 

400 132* 3.74E-98 146 1.41E-104 119 7.44E-72 198 8.42E-181 71 2.66E-26 140 6.82E-97 

 

IV1  SAM2 

n Colon Kidney Liver Lung Pancreas All       

 Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value 

10 3 1.01E-07 0 0.989487 4 1.31E-10 2 4.49E-05 0 0.989487 0 0.989487 

50 12 1.17E-17 5 5.71E-06 12 1.17E-17 8 1.49E-10 8 1.49E-10 5 5.71E-06 

100 32 1.97E-40 23 3.04E-25 24 8.09E-27 28 2.09E-33 17 1.93E-16 21 3.50E-22 

200 67 5.51E-65 66 1.88E-63 43 5.97E-32 69 4.34E-68 34 8.96E-22 65 6.22E-62 

300 111 3.32E-94 116 1.54E-101 60 4.00E-32 101 3.52E-80 51 7.65E-24 101 3.52E-80 

400 124* 9.02E-88 168 1.02E-134 86 1.19E-38 149 1.67E-108 71 2.66E-26 145 2.80E-103 

 

IV1  IV2 

n Colon Kidney Liver Lung Pancreas All       

 Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value 

400 163* 1.39E-186 355 0 No data - 144 3.97E-140 No data - 280 0 

 

SAM1  SAM2 

n Colon Kidney Liver Lung Pancreas All       

 Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value 

400 176 1.92E-146 284 0 253 6.86E-281 241 3.15E-257 No data - 262 2.34E-299 

 

* Only 338 genes are used for colon IV1
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Figure 11 - Cell Cycle Pathway: Differentially expressed genes involved in the cell cycle are shown in pink.  Genes are ranked among the top 

400 genes by at least one of the statistical approaches used (IV1, IV2, SAM1 and/or SAM2), based on analyses of all five tissues together. 
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3.4.4 Microarray results match cancer research literature with low p-values 

Next, the SAM1, SAM2, IV1, and IV2 top four hundred gene lists were tested for PubMed hits 

associated with cancer. An automated PubMed abstract search was conducted for the genes in the 

aforementioned lists, excluding those abstracts that belonged to microarray-based research.  Also 

excluded were abstracts that did not contain the word “cancer”. A gene had to have at least one 

such PubMed abstract match to be considered as a literature search hit.  The number of successful 

hits produced from the merged SAM methods and the IV tests intersected the research literature 

with significantly higher coverage than would be expected for randomly generated gene lists 

(Figure 12). The p-values shown in Figure 12 for the top 300 and 400 genes for all three methods 

were computed by using control gene lists obtained from the same Affymetrix platforms by 

randomly selecting lists of equal size (300 or 400) and averaging the number of hits over 100 

iterations.  The p-values for each tissue were then calculated using a normal distribution given the 

mean and standard deviation parameters of the randomly generated data.  The p-value for the 

colon IV1 in the top 400 gene list was adjusted to a hundred iterations of 338 randomly chosen 

genes to account for the maximum available number of genes.  The merged SAM methods 

produced gene lists that matched the research literature more accurately than the gene lists 

produced by the IV tests in four out of the five tissues under consideration.  Both SAM1 and 

SAM2 also produced more significant p-values per tissue than the average p-value obtained from 

the SAM tests performed on the individual datasets for a given tissue (data not shown).  The 

addition of single sample-type datasets resulted in fewer literature-associated gene lists than the 

SAM1 approach; however, the results improved when considering the top 400 genes as opposed 

to the top 300.  Note also that PubMed hits on gene lists presented by meta-analysis and merged 

SAM approaches fell inside and outside the intersections.  For example, the case of colon cancer 

in IV1 and SAM1 gene lists. There were 93 hits on IV1  SAM1 (p = 1.19E-07), 103 hits on IV1 

- IV1  SAM1 (p = 5.09E-02); and 205 hits on SAM1 - IV1  SAM1 (p = 2.32E-23). 
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Figure 12 - Literature Search Results: Histogram representing p-values of the number of top-

ranked genes with at least 1 PubMed abstract relating the genes to cancer research from a non-

microarray study according to each of the four test procedures: IV1 (gray), IV2 (yellow), SAM1 

(blue) and SAM2 (pink).  P-values are calculated based on expected data from a hundred random 

gene lists obtained from the platform and similarly related to non-microarray cancer literature.  .  

The horizontal line represents a p-value cutoff of 0.0001. 

* P-values adjusted to maximum number of available top genes. 
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As an additional control, the next top 400 genes (ranks 401-800) in each list, if available, were 

subjected to a similar PubMed abstract search.  The p-values representing the results revealed 

decreased literature coverage of these genes compared to the first top 400 genes in all cases 

except for SAM2 results in lung tissue.  In this test, the majority of the IV results (except for lung 

and pancreas) dropped below the 0.0001 p-value threshold marked by a horizontal black line in 

Figure 12. 

 

3.5 Discussion  

Meta-analysis approaches applied to microarray data aim to increase the statistical power of the 

results as well as to increase the reproducibility of individual studies [46].  Typical meta-analysis 

approaches combine results of independent datasets to produce a generalized outcome across 

these datasets. Meta-analysis approaches require both perturbed and control data within the same 

microarray datasets under consideration. However, the recent dramatic increase in publicly 

accessible microarray samples is mainly due to datasets containing no data on normal tissue. 

Noting that microarray samples on normal tissue are available in other public datasets, the idea of 

picking samples from different datasets obtained with same/similar microarray chips and 

normalizing them together before the identification of significantly altered genes in normal to 

cancer comparison was explored.  The resulting merged SAM sacrifices the use of data from 

other platforms. However, it could be potentially useful for integrated analysis of cancer 

microarray datasets for which much of the available data is highly asymmetric.  

 

One reason for asymmetry in the current public access microarray data is that the goals of global 

gene expression quantification in cancer research shifted towards identifying significant genes 

associated with cancer subtypes [39, 129-132]. The merged SAM analysis presented here is 

applicable to any microarray inquiry where there is a perturbed state (say cancer subtype 1) and 
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control state (cancer subtype 2).  The method of integration was applied to cases where there was 

plenty of data for both meta-analysis and merged data approaches.  Even when one aims to 

uncover differences in gene expression profiles between two cancer subtypes, it is often useful to 

consider such differences between subtypes and control normal tissue samples [122].  Such triple 

comparisons reveal the original basis for the subtype differences that stem from normal to cancer 

transformations. 

 

A quick study of the GEO database clearly shows that microarray data for hormone-associated 

solid cancers such as breast, prostate and ovarian cancers are highly asymmetric. The more recent 

datasets increasingly come from studies for which one cancer subtype is compared to another 

cancer subtype and as a result contain no data from normal samples. The five tissue types 

presented were chosen in this study because of the availability of data that could be used for both 

merged SAM and meta-analysis approaches. Previous studies have addressed the possible 

problems that arise from combining data across different technologies [133-134]. We have used 

the datasets obtained with similar chips to compare the performance of meta-analysis and merged 

the SAM approaches.  The direct integration of data preceding the analysis as in the case of the 

merged SAM overcomes the problems associated with small sample sizes in individual studies. 

While data merging across similar chips sacrifices the inclusion of some of the genes not 

common to all platforms, it provides additional robustness since all samples are normalized 

together as opposed to being normalized separately per dataset [135]. 

 

The meta-analysis and merged SAM approaches yielded significant gene lists with intersecting 

common gene subsets that could not be plausibly obtained by chance.  Both approaches matched 

automated PubMed abstract searches of research literature (excluding microarray studies) with 

very low p-values for random occurrence. However, the merged SAM approach replicated the 
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existing literature much more accurately than the meta-analysis approach in five of the six cases 

under study. Addition of cDNA arrays into meta-analysis resulted in reduced overlap with the 

cancer literature.  Meanwhile, the inclusion of asymmetric datasets also produced slightly less 

statistically significant results in merged SAM analyses; nevertheless, the approach still generated 

results that were at least as significant as the meta-analyses, again surpassing meta-analysis in 

five out of the six cases.  Despite the addition of hundreds of samples from asymmetric sets, the 

merged SAM continued to perform well, matching literature as well as results of symmetric 

microarray data.  Moreover, the match between microarray lists and the literature became less 

pronounced as lesser-ranked significant genes (401 – 800) were used in the comparison.  The 

gene lists obtained in all the tests were further validated by associating them with functional 

annotation through KEGG pathways.  While individually each tissue possessed a unique list of 

pathways and processes with which it was associated, overall, cell division appeared to be the 

common driving factor to all tissues, as would be expected. 

 

The automated text searches was used as an instrument for validation of the prediction value of 

the two different approaches to integrating microarray data associated with cancer.  Typical 

validation used in microarray analysis for illustrating relevance of gene list to disease state under 

consideration is usually via partitioning the dataset into learning, testing/validation subsets in a 

supervised learning approach [136-138]. However, it is relatively easy to differentiate between 

cancer and normal tissue with a variety of gene sets, but in many cases, such sets are laboratory 

specific [139]. Research literature in cancer is rich with data on genes associated with this disease 

and the bulk of such data was collected by using research tools other than microarrays, and 

therefore, automated text search constituted an independent means of validating the microarray 

results. 
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PubMed hits on gene lists produced by meta-analysis and merged SAM approaches fall on the 

intersections of such lists as well as outside the intersections, suggesting the use of both 

approaches whenever data is available.  The top ranked 400 genes in both cases are highly 

statistically enriched with PubMed hits and for which the intersection between the two 

approaches had typically the lowest p-value. When considering the role of well studied genes 

such as hub genes or genes in public access cellular pathways, projecting both gene lists onto 

known pathways to generate new hypothesis for experimental verification is a straightforward 

process.  The merged SAM technique provides a unique opportunity to obtain a candidate list for 

genes associated with a perturbed state in cases where the public microarray data is largely 

asymmetric. 

 

3.6 Conclusion  

Typical meta-analysis approaches allow for the use of various platforms at the expense of 

utilizing large amounts of data that exist in datasets containing either normal or cancer tissues 

only.  The merged SAM approaches in the study were shown to reproduce much of the known 

cancer literature while effectively being applied to asymmetrical microarray datasets.  Hence, this 

approach can be extended and applied to various other diseases.  While many of the genes in 

these lists have already been associated with cancer, the merged SAM approach sheds light on 

new genes that could play a pivotal role in cancer pathogenesis.  



48 

 

Chapter 4: Large-scale integration of microarray data reveals genes and pathways common 

to multiple cancer types 

 

4.1 Summary 

This chapter discusses the commonalities in aberrant gene expression that are shared by cancers 

arising in different tissue types through the use of microarray data.  The global gene expression 

analysis of cancer and healthy tissues typically results in large numbers of significantly altered 

SAM genes.  Such data, however, has been difficult to interpret due to the high level of variation 

of gene lists across laboratories and the small sample sizes used in individual studies.  For this 

research, the compiled microarray data was obtained from 84 laboratories using samples that 

were hybridized on the same platform family, resulting in a database containing 1043 healthy 

tissue samples and 4900 cancer samples for 13 different tissue types.  The primary cancers 

considered were adrenal gland, brain, breast, cervix, colon, kidney, liver, lung, ovary, pancreas, 

prostate and skin and stomach tissues.  The data was normalized together and analyzed in subsets 

for the discovery of genes involved in normal to cancer transformations.  This integrated 

approach produced top 400 ranked SAM gene lists for each of the thirteen cancer types.  These 

lists were highly statistically enriched with genes already associated with cancer in research 

publications excluding microarray studies (p < 1.31 E - 12).  The genes MTIM and RRM2 

appeared in nine and TOP2A in eight lists of significantly altered genes in cancer.  In total, there 

were 132 genes present in at least four gene lists, eleven of which had not been previously 

associated with cancer.  The list contains 17 metal ion and 15 adenyl ribonucleotide binding 

proteins, 6 kinases and 6 transcription factors.  These results point to the value of integrating 

microarray data in the study of combination drug therapies targeting metastasis. 
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4.2 Background 

Tens of thousands of microarray samples have accumulated in public access databases in the last 

decade [96-98].  A large portion of such data is cancer-specific and therefore holds the promise of 

cancer-associated gene discovery based on thousands of samples (not tens or hundreds).  Much of 

the cancer-associated microarray data in public domains comes without control samples.  In fact, 

the data in GEO is highly asymmetric, containing datasets with cancer microarray samples only 

and other datasets containing samples for healthy tissues but not cancer tissues.  Conventional 

meta-analysis approaches of integrating data, where laboratory results are combined after the 

datasets are independently analyzed, would not be useful in drastically increasing the sample 

sizes in microarray analysis of cancer.  Such analyses require the presence of both cancer and 

normal tissue samples in the same microarray dataset.  

 

In this study, a large-scale approach was used to integrate microarray data from multiple 

laboratories by normalizing them together and then using the Significance Analysis of Microarray 

(SAM) method [75].  This allowed for the identification of list of genes that are significantly 

altered in cancer compared to normal, specific for thirteen distinct tissues.  This methodology is 

grounded on previous studies that revealed the predictive potential of integrated microarray data. 

Large-scale meta-analysis techniques applied to cancer have already been adopted by a few 

groups [47, 84, 113-114], focusing on a single tissue type.  Other studies merged all cancer 

microarray data regardless of tissue type into one group and controls into another [48, 116] to 

identify gene sets associated with common cancer mechanisms.   The merge SAM approach is 

unusual when compared to the typical meta-analysis methods but it allows for the integration of 

asymmetric microarray data for global gene expression.  The various previously used methods 

reflect the purpose of the study undertaken, and despite the paper trail on the general 

methodology used, the question still arises as to the validity of the results from this research.  
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This study addresses the question regarding the extent to which the currently available microarray 

data has the potential to replicate the research literature on the molecular mechanisms of cancer. 

The automated text search algorithms utilized point to high-level coincidence between the 

generated gene lists and the cancer-associated genes determined from the non-microarray 

research literature.   

 

Using nearly 6,000 microarray samples, this study identifies 132 genes that are highly 

significantly associated with at least four distinct cancer types.  This research also presents a set 

of 270 genes that appear to be highly significant in comparisons of datasets consisting of cancer 

and normal tissues independent of tissue type.  These two sets have 74 genes in common and will 

potentially contribute to a more detailed annotation of the genes in the cancer bioinformatics 

databases.  This study points to the value of large-scale compilation of microarray data in cancer 

research, as the inclusion of large amounts of microarray data from different labs helps eliminate 

the effects of lab-specific noise to increase the reliability of the results [107]. 

 

4.3 Materials and Methods 

4.3.1 Microarray dataset selection and normalization 

An Affymetrix microarray database was constructed for normal and cancer samples obtained 

from 13 different solid tissues.  The tissues considered were: adrenal gland, brain, breast, cervix, 

colon, kidney, liver, lung, ovary, pancreas, prostate, skin and stomach.  The microarray data 

contained a total of 4,900 cancer and 1,043 normal tissue samples acquired from 84 labs.  All the 

data was obtained from the publically accessible Gene Expression Omnibus [96-97] and Array 

Express [98] online repositories.  The inclusion criteria restricted the use of datasets hybridized 

specifically on one of the three comparable Affymetrix platforms (HG-U133A, HG-U133A 2.0, 

and the HG-U133 Plus 2.0), where raw data CEL files were available, with at least 20 usable 
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microarray samples.  In addition, the results from the datasets should have been previously 

published in a peer-reviewed study.  No differentiation was made with respect to the different 

malignancies obtained from the same tissue. 

 

The data was normalized using the refRMA algorithm [63], utilizing the platform-compatible 

custom ENTREZG CDF files (version 12) [117] in order to obtain Entrez gene intensities.  

Background adjustment was applied and quantile normalization was performed on a 909-array 

training set that was then applied to compute the probe-level quantiles for the remaining data.  

Median polishing of the training set was finally used to adjust the normalized probe intensities of 

the remaining data.  Data was then filtered to remove the genes not shared by the three platforms.  

Finally, the gene intensities of replicate samples obtained from the same source were averaged 

across replicates.  All data pre-processing was performed in MATLAB [62]. 

 

4.3.2 Differential gene expression 

The differential expression of genes between cancer tissues and the corresponding controls was 

investigated using the Significance Analysis of Microarrays by utilizing the samr package [119] 

in R [118]. The SAM test was applied individually to the microarray datasets specific to each of 

the thirteen tissues under consideration.  For each SAM test, a hundred random iterations were 

performed and the false discovery rate (FDR) was constrained to zero. 

 

In addition, a general normal versus cancer test was conducted.  In order to avoid over-

representation and dominance of certain tissues, ten arrays were randomly chosen from both the 

normal and tumor samples of each tissue to produce two datasets (cancer, control) for SAM 

analysis.  The number ten was determined by the smallest sample size available for any tissue 
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(adrenal normal tissue).  SAM genes were then identified following the aforementioned criteria.  

Again, the random selection and differential expression process was repeated a hundred times. 

 

4.3.3 Functional annotation of top ranked and conserved genes 

The lists of top 400 SAM genes were obtained for each of the 13 tissues.  The cutoff (top 400) 

was chosen in order to optimize the match between the predicted SAM lists and lists of cancer 

associated genes obtained by via automated text search of non-microarray PubMed abstracts.  An 

enriched KEGG pathway profile was produced for each of the 13 tissues individually, at a p-value 

≤ 0.05 using DAVID Bioinformatics resources. 

 

4.3.4 Consistent differential expression across tissues 

Among the top 400 gene lists provided for each tissue, a subset of genes that were consistently 

differentially expressed was determined.  These genes were selected provided they appeared to be 

significantly altered in at least 4 of the 13 tissues. Moreover, the top 400 genes from the general 

normal-cancer comparisons were obtained for each of the 100 iterations.  The frequency of 

occurrence of each of the genes appearing in any of the lists was calculated to determine those 

genes whose changes in expression were most concordant.  The results of the two approaches 

were then compared. 

 

4.3.5 Cancer literature annotation of identified significant SAM genes 

To determine which genes from the SAM lists were known to be associated with cancer, an 

automated text search was performed.  For all the genes in the microarray platform, a search of 

the gene symbol and cancer was conducted in PubMed abstracts.  The results were limited to non-

microarray literature.  In addition, all literature papers associated with each of these genes as 

provided by the NCBI ftp site were obtained.  A list of PubMed IDs of all cancer non-microarray 
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literature were then acquired and was used to further determine which genes had been previously 

associated with cancer.  Results from the two approaches were combined to provide a 

comprehensive coverage of the known cancer literature.  The SAM lists were then annotated with 

these results, identifying those genes that were cited in relation to cancer at least once from those 

that had no cancer association.  As a control, a hundred random gene lists from the same platform 

of equal size to the SAM lists under consideration were obtained.  The number of cancer-related 

genes in each iteration was determined, and the mean and standard deviation were calculated 

from these values to obtain the parameters of a normal distribution.  The expected value and the 

standard deviation were then used to compute the p-values for the significant association of each 

of our cancer gene lists with the known non-microarray literature. 

 

4.4 Results 

4.4.1 Dataset 

Nearly six thousand microarray samples were used to identify significant gene lists involving 

normal to cancer transformations in 13 distinct human tissue types.  The distribution of samples 

across each tissue is shown in Table 3.  Overall, there were 4900 cancer samples and 1043 normal 

tissue microarray samples. The largest sample sets in the database belonged to breast, brain, 

colon, and kidney.  Sample distributions were asymmetric, with many more cancer samples than 

normal tissue samples.  Moreover, in order to increase sample sizes, datasets with only cancer or 

only normal tissue samples were added to the large-scale datasets.  This approach eliminated the 

use of microarray meta-analysis where each dataset is normalized and analyzed separately.  On 

the other hand, the merged SAM analysis used here best fits the recent trend of asymmetric 

growth in cancer samples in public-access microarray data.  Restriction of analysis to comparable 

microarray chips allowed for the normalization and analysis of samples in an integrated fashion 

without significantly reducing the number of samples that could be used in the analysis.    
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Table 3 - Data Summary: Dataset accessions and number of normal and cancer microarray 

samples used for each of the 13 tissue analyses 

Tissue Accession # Normal Cancer Total 
Adrenal Gland GSE10927 10 33 43 

 
E-TABM-311 0 34 34 

  Total: 10 67 77 

Brain GSE12907 3 21 24 

 
GSE13041 0 175 175 

 
GSE11882 173 0 173 

 
GSE4271 0 100 100 

 
GSE3790 87 0 87 

 
GSE4412 0 85 85 

 
GSE5675 0 41 41 

 
GSE2817 0 30 30 

 
GSE17612 23 0 23 

  Total: 286 452 738 

Breast GSE10780 143 42 185 

 
GSE10797 10 56 66 

 
GSE3744 7 40 47 

 
E-TABM-276 13 18 31 

 
GSE5764 20 10 30 

 
GSE16873 12 12 24 

 
E-MEXP-882 4 19 23 

 
GSE8977 15 7 22 

 
GSE4922 0 289 289 

 
GSE2034 0 286 286 

 
GSE11121 0 200 200 

 
GSE7390 0 198 198 

 
GSE1456 0 159 159 

 
GSE2603 0 99 99 

 
GSE6532 0 73 73 

 
GSE5327 0 58 58 

 
GSE5847 0 55 55 

 
GSE1561 0 49 49 

 
GSE12276 0 48 48 

 
GSE12763 0 30 30 

 
GSE6596 0 24 24 

 
GSE13787 0 23 23 

  Total: 224 1795 2019 

Cervix GSE9750 21 33 54 

 
GSE7803 10 21 31 

 
GSE6791 8 20 28 

 
GSE5787 0 33 33 

  Total: 39 107 146 

Colon E-MTAB-57 22 25 47 

 
GSE4183 8 15 23 

 
GSE4107 10 12 22 

 
GSE17538 0 232 232 

 
E-TABM-176 55 0 55 

 
E-MEXP-1224 0 55 55 

 
GSE12945 0 36 36 

 
E-MEXP-383 0 36 36 

  Total: 95 411 506 
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Table 3 (continued) 

 
Kidney GSE15641 23 57 80 

 
GSE11151 3 57 60 

 
E-TABM-282 11 16 27 

 
GSE14762 12 10 22 

 
GSE6344 10 10 20 

 
GSE10320 0 144 144 

 
GSE11024 0 60 60 

 
GSE7023 0 35 35 

 
GSE11904 0 21 21 

  Total: 59 410 469 

Liver GSE14323 19 47 66 

 
GSE6764 10 35 45 

 
GSE9843 0 69 69 

 
E-TABM-36 0 57 57 

 
E-TABM-292 0 32 32 

  Total: 29 240 269 

Lung GSE10072 49 58 107 

 
E-MEXP-231 9 49 58 

 
GSE7670 27 27 54 

 
GSE12667 0 75 75 

 
GSE10445 0 72 72 

  Total: 85 281 366 

Ovary GSE6008 4 99 103 

 
GSE18520 10 53 63 

 
GSE9891 0 189 189 

 
GSE14764 0 80 80 

 
E-MEXP-935 0 27 27 

 
GSE9455 0 20 20 

  Total: 14 468 482 

Pancreas GSE15471 39 39 78 

 
GSE16515 15 36 51 

 
E-MEXP-950 11 14 25 

 
E-MEXP-1121 6 17 23 

  Total: 71 106 177 

Prostate GSE6956 18 69 87 

 
E-TABM-26 13 44 57 

 
GSE17356 0 27 27 

 
GSE2443 0 20 20 

  Total: 31 160 191 

Skin GSE7553 5 82 87 

 
GSE13355 64 0 64 

 
GSE8401 0 31 31 

  Total: 69 113 182 

Stomach GSE13911 31 38 69 

 
GSE15460 0 229 229 

 
GSE8167 0 23 23 

  Total: 31 290 321 

Overall Total: 1043 4900 5943 
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4.4.2 SAM genes and their match with research literature 

The SAM gene lists obtained for the thirteen distinct human tissues by setting the false discovery 

rate to zero varied in length depending on the tissue.  However, the top 400 genes in each list 

matched well with the cancer-associated gene literature obtained from experiments excluding 

microarrays (Table 4).  The automated text search algorithm described in the methods section 

showed that nearly 80% of the genes in these lists were previously associated with cancer in non-

microarray studies.  P-values for the occurrence of these matches by chance were estimated by 

generating randomly chosen gene lists from the microarray chip, and varied from a low of 2.86 E-

33 for adrenal tissue to 6.99 E-12 in brain tissue.  Next, genes that occurred in multiple tissue-

specific lists were selected and their match with the literature was similarly difficult to explain by 

chance events.  These results indicate the potential of microarray studies based on large sample 

sizes to regenerate much of the known literature associated with cancer.  The choice of top 400 as 

a cut off is somehow arbitrary, however, results indicated that the match between microarray 

predictions and literature was nearly optimal at this particular cutoff value (data not shown). 

 

4.4.3 Cellular pathways enriched for top 400 SAM genes 

The top 400 SAM gene lists from all tissue types were projected onto KEGG [101] cellular 

pathways to evaluate their statistical enrichment using DAVID [120-121].  Results shown in 

Figure 13  indicate the statistically enriched cellular pathways previously associated with cancer 

such as the glycine, serine, and threonine metabolism, PPAR signaling pathway, DNA 

replication, and ECM-receptor interaction.  The variation in the catalog of enriched pathways 

from tissue to tissue is a reflection of the tissue-specific dimensions of cancer.  It must also be 

noted that pathways not enriched for some tissues and enriched for others still included 

considerable amounts of SAM genes even for those tissues in which the pathway p-values were 

not significant.  
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Table 4 - Overview of Results: Number of significant genes among the top 400 genes for the 13 tissues appearing at least in one (T 400), two (T2 

400) or three (T3 400) tissues.  Also shown are the number and corresponding percentages and p-values of these gene that have been associated 

with cancer in the non-microarray literature found in PubMed (PM) abstracts 

 T 400 PM 400 (%) P-Value T2 400 PM2 400 (%) P-Value T3 400 PM3 400 (%) P-Value 

Adrenal 400 343 85.8 2.86E-33 235 203 86.4 8.26E-15 132 119 90.2 4.26E-14 

Brain 400 300 75.0 6.99E-12 277 237 85.6 8.54E-19 154 135 87.7 1.63E-12 

Breast 400 344 86.0 6.53E-34 153 117 76.5 2.76E-05 56 45 80.4 3.26E-03 

Cervix 400 335 83.8 2.21E-28 234 202 86.3 6.01E-14 106 96 90.6 1.39E-10 

Colon 400 324 81.0 2.45E-22 243 208 85.6 3.91E-15 130 117 90.0 1.74E-11 

Kidney 400 333 83.3 3.18E-27 230 194 84.3 4.86E-12 126 112 88.9 1.57E-10 

Liver 400 328 82.0 1.91E-24 194 161 83.0 1.73E-11 91 83 91.2 5.21E-09 

Lung 400 325 81.3 7.44E-23 224 193 86.2 2.02E-14 119 105 88.2 2.41E-08 

Ovary 400 323 80.8 7.92E-22 231 198 85.7 3.24E-15 115 106 92.2 3.81E-15 

Pancreas 400 337 84.3 1.45E-29 229 202 88.2 6.28E-16 110 99 90.0 7.26E-11 

Prostate 400 307 76.8 1.52E-14 197 148 75.1 8.67E-06 76 60 78.9 6.77E-04 

Skin 400 324 81.0 2.45E-22 247 206 83.4 3.78E-15 127 107 84.3 1.91E-07 

Stomach 400 302 75.5 1.31E-12 184 144 78.3 4.81E-09 72 59 81.9 5.80E-05 
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Figure 13 - Pathway Profiles of Different Cancer Tissues: Heat map showing the significant 

pathway profiles for each of the thirteen cancer tissues considered.  The color-scale represents the 

–log of the p-value for the pathway enrichment using a p-value cutoff of 0.05  
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4.4.4 SAM genes in multiple gene lists 

A total of 132 genes appeared in at least four of the top 400 SAM genes out of the 13 total tissue 

types considered. All, with the exception of 11 genes were previously affiliated with cancer in the 

non-microarray based research literature. These genes are listed in Table 5a along with the 

affiliated tissue types in which they appeared among the top 400 SAM genes. The table also 

identifies the up- and downregulation of the genes in each cancer tissue and annotates approved 

and experimental drugs targeting some of these genes as obtained from DrugBank [140-141]. The 

genes MTIM and RRM2 appear in nine and TOP2A appears in eight out of the thirteen tissues. 

These genes are followed in the list by genes that appear in at least seven cancer types: ADH1B, 

CDC20, CFD, GSTM5, CLEC3B, PRC1, and MELK, ABCA8, UBE2C, KIF4A, and RACGAP1.  

Among this list, TOP2A is currently targeted by seven approved drugs (Table 5b).  The gene 

EPHX2 is targeted by tamoxifen in the treatment of breast cancer, and ESSRG by 

Diethylstilbestrol for prostate cancer.  Meanwhile, experimental drugs targeting CDC2 and 

TUBA1B are going through approval processes. 

 

Shown in Table 6a are those top 400 SAM genes found in at least four lists but have not been 

previously associated with cancer. The gene LPCAT1 appears in the lists for cervix, colon, 

kidney, pancreas and stomach.  This enzyme mediates conversion of LPC to PC, thereby playing 

a pivotal role in respiratory physiology.  Among, the genes in Table 6a are found in four SAM 

gene lists out of the thirteen tissue types under study, only BBOX1 was associated with approved 

drug targets. Further studies are needed to annotate the potential roles of these genes in the 

progression of cancer. 
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Table 5 - Annotation of Commonly Altered Genes: a) List of genes differentially expressed in 

at least 4 tissues and have been previously associated with cancer in non-microarray literature.  

The tissues in which the genes are altered are shown where regular font indicated upregulation 

and italics represents downregulation in cancer compared to normal tissue. Entrez IDs shown in 

bold represent genes that appeared to be significant in the general normal/cancer comparisons. b) 

List of approved and experimental cancer drugs targeting commonly altered genes 

a) 

Entrez ID Gene Symbol Gene Name Tissues 

4499 MT1M Metallothionein 1M Adrenal, Breast, Colon, Kidney, 

Liver, Lung, Pancreas, Prostate, 

Stomach 

6241 RRM2 Ribonucleotide reductase M2 polypeptide Adrenal, Breast, Cervix, Colon, 

Kidney, Liver, Lung, Pancreas, 

Prostate 

7153 TOP2A Topoisomerase (DNA) II alpha 170kDa Adrenal, Breast, Cervix, Kidney, 

Liver, Lung, Ovary, Pancreas 

125 ADH1B Alcohol dehydrogenase 1B (class I), beta 

polypeptide 

Adrenal, Breast, Colon, Kidney, 

Lung, Ovary, Skin 

991 CDC20 Cell division cycle 20 homolog (S. cerevisiae) Adrenal, Breast, Cervix, Liver, 

Lung, Ovary, Pancreas 

1675 CFD Complement factor D (adipsin) Adrenal, Breast, Cervix, Colon, 

Ovary, Prostate, Skin 

2949 GSTM5 Glutathione S-transferase M5 Adrenal, Breast, Cervix, Lung, 

Ovary, Prostate, Skin 

7123 CLEC3B C-type lectin domain family 3, member B Adrenal, Breast, Colon, Kidney, 

Lung, Prostate, Skin 

9055 PRC1 Protein regulator of cytokinesis 1 Adrenal, Cervix, Kidney, Liver, 

Lung, Pancreas, Prostate 

9833 MELK Maternal embryonic leucine zipper kinase Adrenal, Breast, Cervix, Colon, 

Lung, Ovary, Pancreas 

10351 ABCA8 ATP-binding cassette, sub-family A (ABC1), 

member 8 

Breast, Cervix, Colon, Kidney, 

Lung, Ovary, Skin 

11065 UBE2C Ubiquitin-conjugating enzyme E2C Adrenal, Breast, Cervix, Colon, 

Liver, Ovary, Skin 

24137 KIF4A Kinesin family member 4A Adrenal, Breast, Cervix, Colon, 

Liver, Ovary, Skin 

29127 RACGAP1 Rac GTPase activating protein 1 Adrenal, Cervix, Kidney, Liver, 

Lung, Ovary, Pancreas 

316 AOX1 Aldehyde oxidase 1 Adrenal, Kidney, Ovary, 

Pancreas, Prostate, Skin 

701 BUB1B BUB1 budding uninhibited by benzimidazoles 

1 homolog beta (yeast) 

Adrenal, Cervix, Kidney, Liver, 

Lung, Pancreas 

4306 NR3C2 Nuclear receptor subfamily 3, group C, 

member 2 

Breast, Colon, Kidney, Ovary, 

Pancreas, Skin 

4674 NAP1L2 Nucleosome assembly protein 1-like 2 Brain, Breast, Colon, Kidney, 

Ovary, Skin 

4886 NPY1R Neuropeptide Y receptor Y1 Adrenal, Colon, Kidney, Liver, 

Ovary, Skin 

6696 SPP1 Secreted phosphoprotein 1 (osteopontin, bone 

sialoprotein I, early T-lymphocyte activation 

1) 

Adrenal, Cervix, Colon, Lung, 

Skin, Stomach 

6790 AURKA Aurora kinase A Adrenal, Cervix, Colon, Kidney, 

Liver, Lung 

9133 CCNB2 Cyclin B2 Adrenal, Breast, Cervix, Liver, 

Lung, Ovary 

9232 PTTG1 Pituitary tumor-transforming 1 Adrenal, Cervix, Colon, Ovary, 

Pancreas, Skin 

9314 KLF4 Kruppel-like factor 4 (gut) Adrenal, Breast, Cervix, Colon, 

Lung, Skin 
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Table 5a (continued) 

Entrez ID Gene Symbol Gene Name Tissues 

11130 ZWINT ZW10 interactor Adrenal, Cervix, Liver, Lung, 

Pancreas, Prostate 

22974 TPX2 TPX2, microtubule-associated, homolog 

(Xenopus laevis) 

Adrenal, Breast, Cervix, Colon, 

Ovary, Skin 

51203 NUSAP1 Nucleolar and spindle associated protein 1 Breast, Cervix, Kidney, Liver, 

Lung, Pancreas 

54810 GIPC2 GIPC PDZ domain containing family, member 

2 

Adrenal, Breast, Kidney, Liver, 

Ovary, Skin 

84981 MGC14376 Hypothetical protein MGC14376 Adrenal, Breast, Colon, Kidney, 

Liver, Ovary 

38 ACAT1 Acetyl-Coenzyme A acetyltransferase 1 

(acetoacetyl Coenzyme A thiolase) 

Adrenal, Colon, Kidney, Liver, 

Pancreas 

762 CA4 Carbonic anhydrase IV Breast, Colon, Kidney, Lung, 

Pancreas 

983 CDC2 Cell division cycle 2, G1 to S and G2 to M Adrenal, Breast, Cervix, Liver, 

Ovary 

2053 EPHX2 Epoxide hydrolase 2, cytoplasmic Adrenal, Colon, Kidney, 

Pancreas, Skin 

2348 FOLR1 Folate receptor 1 (adult) Adrenal, Breast, Kidney, Ovary, 

Stomach 

3075 CFH Complement factor H Adrenal, Breast, Cervix, Ovary, 

Skin 

3248 HPGD Hydroxyprostaglandin dehydrogenase 15-

(NAD) 

Cervix, Colon, Kidney, Liver, 

Stomach 

4128 MAOA Monoamine oxidase A Breast, Colon, Kidney, Ovary, 

Skin 

4171 MCM2 Minichromosome maintenance complex 

component 2 

Cervix, Colon, Liver, Pancreas, 

Prostate 

4246 SCGB2A1 Secretoglobin, family 2A, member 1 Colon, Ovary, Prostate, Skin, 

Stomach 

4494 MT1F Metallothionein 1F Colon, Kidney, Liver, Pancreas, 

Stomach 

4495 MT1G Metallothionein 1G Colon, Kidney, Liver, Pancreas, 

Stomach 

5950 RBP4 Retinol binding protein 4, plasma Adrenal, Brain, Breast, Kidney, 

Skin 

6776 STAT5A Signal transducer and activator of transcription 

5A 

Adrenal, Breast, Ovary, 

Prostate, Stomach 

7102 TSPAN7 Tetraspanin 7 Breast, Colon, Kidney, Liver, 

Lung 

9073 CLDN8 Claudin 8 Breast, Cervix, Colon, Kidney, 

Skin 

9173 IL1RL1 Interleukin 1 receptor-like 1 Adrenal, Kidney, Liver, Lung, 

Skin 

9768 KIAA0101 KIAA0101 Adrenal, Breast, Cervix, Liver, 

Lung 

9936 CD302 CD302 molecule Adrenal, Breast, Liver, Ovary, 

Skin 

10051 SMC4 Structural maintenance of chromosomes 4 Adrenal, Brain, Cervix, Kidney, 

Pancreas 

10894 LYVE1 Lymphatic vessel endothelial hyaluronan 

receptor 1 

Breast, Liver, Lung, Ovary, Skin 

23492 CBX7 Chromobox homolog 7 Brain, Breast, Lung, Ovary, Skin 

35 ACADS Acyl-Coenzyme A dehydrogenase, C-2 to C-3 

short chain 

Colon, Liver, Pancreas, Prostate 

290 ANPEP Alanyl (membrane) aminopeptidase 

(aminopeptidase N, aminopeptidase M, 

microsomal aminopeptidase, CD13, p150) 

Breast, Colon, Kidney, Pancreas 



62 

 

Table 5a (continued) 

Entrez ID Gene Symbol Gene Name Tissues 

994 CDC25B Cell division cycle 25 homolog B (S. pombe) Cervix, Colon, Pancreas, Skin 

1012 CDH13 Cadherin 13, H-cadherin (heart) Adrenal, Liver, Lung, Stomach 

1113 CHGA Chromogranin A (parathyroid secretory 

protein 1) 

Adrenal, Brain, Colon, Stomach 

1164 CKS2 CDC28 protein kinase regulatory subunit 2 Breast, Cervix, Ovary, Pancreas 

1282 COL4A1 Collagen, type IV, alpha 1 Liver, Ovary, Pancreas, Stomach 

1410 CRYAB Crystallin, alpha B Breast, Cervix, Lung, Prostate 

1776 DNASE1L3 Deoxyribonuclease I-like 3 Adrenal, Colon, Kidney, Liver 

1805 DPT Dermatopontin Adrenal, Breast, Prostate, Skin 

1827 RCAN1 Regulator of calcineurin 1 Breast, Colon, Kidney, Liver 

2023 ENO1 Enolase 1, (alpha) Adrenal, Lung, Ovary, Stomach 

2104 ESRRG Estrogen-related receptor gamma Kidney, Pancreas, Skin, Stomach 

2146 EZH2 Enhancer of zeste homolog 2 (Drosophila) Cervix, Kidney, Lung, Prostate 

2273 FHL1 Four and a half LIM domains 1 Breast, Colon, Lung, Skin 

2305 FOXM1 Forkhead box M1 Cervix, Colon, Ovary, Skin 

2690 GHR Growth hormone receptor Breast, Liver, Ovary, Skin 

2819 GPD1 Glycerol-3-phosphate dehydrogenase 1 

(soluble) 

Breast, Kidney, Lung, Pancreas 

3131 HLF Hepatic leukemia factor Brain, Breast, Ovary, Skin 

3223 HOXC6 Homeobox C6 Cervix, Ovary, Pancreas, 

Stomach 

3479 IGF1 Insulin-like growth factor 1 (somatomedin C) Breast, Liver, Prostate, Skin 

3489 IGFBP6 Insulin-like growth factor binding protein 6 Adrenal, Breast, Ovary, Skin 

3815 KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral 

oncogene homolog 

Breast, Colon, Ovary, Prostate 

3957 LGALS2 Lectin, galactoside-binding, soluble, 2 Colon, Ovary, Pancreas, 

Prostate 

4147 MATN2 Matrilin 2 Adrenal, Breast, Prostate, Skin 

4501 MT1X Metallothionein 1X Colon, Kidney, Liver, Skin 

4692 NDN Necdin homolog (mouse) Breast, Cervix, Ovary, Prostate 

4830 NME1 Non-metastatic cells 1, protein (NM23A) 

expressed in 

Colon, Kidney, Lung, Stomach 

5050 PAFAH1B3 Platelet-activating factor acetylhydrolase, 

isoform Ib, gamma subunit 29kDa 

Adrenal, Breast, Lung, Skin 

5101 PCDH9 Protocadherin 9 Adrenal, Breast, Ovary, Prostate 

5121 PCP4 Purkinje cell protein 4 Brain, Kidney, Prostate, Skin 

5348 FXYD1 FXYD domain containing ion transport 

regulator 1 (phospholemman) 

Breast, Colon, Lung, Skin 

5577 PRKAR2B Protein kinase, cAMP-dependent, regulatory, 

type II, beta 

Colon, Liver, Ovary, Skin 

5734 PTGER4 Prostaglandin E receptor 4 (subtype EP4) Adrenal, Breast, Colon, 

Pancreas 

5984 RFC4 Replication factor C (activator 1) 4, 37kDa Adrenal, Cervix, Kidney, Lung 

6338 SCNN1B Sodium channel, nonvoltage-gated 1, beta 

(Liddle syndrome) 

Cervix, Colon, Kidney, Stomach 

6456 SH3GL2 SH3-domain GRB2-like 2 Brain, Kidney, Ovary, Stomach 

6659 SOX4 SRY (sex determining region Y)-box 4 Brain, Cervix, Liver, Lung 

7045 TGFBI Transforming growth factor, beta-induced, 

68kDa 

Cervix, Colon, Liver, Pancreas 

7049 TGFBR3 Transforming growth factor, beta receptor III Breast, Kidney, Lung, Skin 

7058 THBS2 Thrombospondin 2 Colon, Lung, Pancreas, Stomach 

7070 THY1 Thy-1 cell surface antigen Colon, Liver, Pancreas, Stomach 

7122 CLDN5 Claudin 5 (transmembrane protein deleted in 

velocardiofacial syndrome) 

Breast, Lung, Prostate, Skin 

7433 VIPR1 Vasoactive intestinal peptide receptor 1 Brain, Colon, Liver, Lung 

7704 ZBTB16 Zinc finger and BTB domain containing 16 Breast, Lung, Ovary, Skin 

9104 RGN Regucalcin (senescence marker protein-30) Breast, Kidney, Ovary, Pancreas 

9413 C9orf61 Chromosome 9 open reading frame 61 Breast, Cervix, Lung, Stomach 
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Table 5a (continued) 

Entrez ID Gene Symbol Gene Name Tissues 

8418 CMAH Cytidine monophosphate-N-acetylneuraminic 

acid hydroxylase (CMP-N-acetylneuraminate 

monooxygenase) 

Adrenal, Colon, Ovary, Skin 

8611 PPAP2A Phosphatidic acid phosphatase type 2A Breast, Colon, Ovary, Skin 

9104 RGN Regucalcin (senescence marker protein-30) Breast, Kidney, Ovary, Pancreas 

9413 C9orf61 Chromosome 9 open reading frame 61 Breast, Cervix, Lung, Stomach 

9601 PDIA4 Protein disulfide isomerase family A, member 

4 

Brain, Cervix, Lung, Ovary 

9636 ISG15 ISG15 ubiquitin-like modifier Breast, Cervix, Liver, Pancreas 

9837 GINS1 GINS complex subunit 1 (Psf1 homolog) Adrenal, Cervix, Liver, Lung 

10376 TUBA1B Tubulin, alpha 1b Cervix, Kidney, Pancreas, 

Stomach 

10417 SPON2 Spondin 2, extracellular matrix protein Adrenal, Colon, Liver, Pancreas 

10797 MTHFD2 Methylenetetrahydrofolate dehydrogenase 

(NADP+ dependent) 2, 

methenyltetrahydrofolate cyclohydrolase 

Brain, Cervix, Lung, Ovary 

11170 FAM107A Family with sequence similarity 107, member 

A 

Breast, Lung, Pancreas, 

Prostate 

11335 CBX3 Chromobox homolog 3 (HP1 gamma 

homolog, Drosophila) 

Cervix, Colon, Kidney, Lung 

23213 SULF1 Sulfatase 1 Colon, Lung, Pancreas, Stomach 

25802 LMOD1 Leiomodin 1 (smooth muscle) Adrenal, Breast, Lung, Skin 

25928 SOSTDC1 Sclerostin domain containing 1 Breast, Cervix, Lung, Stomach 

26586 CKAP2 Cytoskeleton associated protein 2 Colon, Kidney, Liver, Pancreas 

27284 SULT1B1 Sulfotransferase family, cytosolic, 1B, 

member 1 

Cervix, Colon, Skin, Stomach 

51053 GMNN Geminin, DNA replication inhibitor Adrenal, Cervix, Liver, Lung 

51659 GINS2 GINS complex subunit 2 (Psf2 homolog) Adrenal, Cervix, Kidney, Lung 

53405 CLIC5 Chloride intracellular channel 5 Breast, Colon, Kidney, Lung 

55165 CEP55 Centrosomal protein 55kDa Cervix, Colon, Lung, Pancreas 

57088 PLSCR4 Phospholipid scramblase 4 Breast, Liver, Ovary, Skin 

79728 PALB2 Partner and localizer of BRCA2 Adrenal, Lung, Pancreas, 

Stomach 

84560 MT4 Metallothionein 4 Adrenal, Kidney, Liver, 

Pancreas 

283298 OLFML1 Olfactomedin-like 1 Adrenal, Breast, Ovary, Skin 

 

 

b) 

Entrez ID Gene Symbol Status Drug Name Indication 

7153 TOP2A Approved Dexrazoxane For reducing the incidence and severity 

of cardiomyopathy associated with 

doxorubicin administration in women 

with metastatic breast cancer 

  Approved Valrubicin For the treatment of cancer of the 

bladder. 

  Approved Teniposide Treatment of refractory acute 

lymphoblastic leukaemia 

  Approved Epirubicin For use as a component of adjuvant 

therapy in patients with evidence of 

axillary node tumor involvement 

following resection of primary breast 

cancer 
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Table 5b (continued) 

Entrez ID Gene Symbol Status Drug Name Indication 

  Approved Etoposide For use in combination with other 

chemotherapeutic agents in the treatment of 

refractory testicular tumors and as first line 

treatment in patients with small cell lung 

cancer. Also used to treat other malignancies 

such as lymphoma, non-lymphocytic 

leukemia, and glioblastoma multiforme. 

  Approved Idarubicin For the treatment of acute myeloid leukemia 

(AML) in adults. This includes French-

American-British (FAB) classifications M1 

through M7. 

  Approved Lucanthone Intended for use as a radiation sensitizer in 

the treatment of brain cancer. 

2053 EPHX2 Approved Tamoxifen For the treatment of breast cancer 

2104 ESRRG Approved Diethylstilbestrol Used in the treatment of prostate cancer 

983 CDC2 Experimental Flavopiridol n/a 

10376 TUBA1B Experimental Epothilone B n/a 

  Experimental Epothilone D n/a 

 

Table 6 - Annotation of New Cancer Genes: a) List of genes that are differentially expressed in 

at least 4 tissues and have not been previously associated with cancer in non-microarray 

literature.  The tissues in which the genes are altered are shown where regular font indicated 

upregulation and italics represents downregulation in cancer compared to normal tissue. Entrez 

IDs shown in bold represent genes that appeared to be significant in the general normal/cancer 

comparisons.  b) List of approved cancer drugs targeting commonly altered genes that have not 

been previously associated with cancer 

a) 

Entrez ID Gene Symbol Gene Name Tissues 

79888 LPCAT1 Lysophosphatidylcholine acyltransferase 1 Cervix, Colon, Kidney, 

Pancreas, Stomach 

33 ACADL Acyl-Coenzyme A dehydrogenase, long chain Lung, Ovary, Pancreas, Skin 

2824 GPM6B Glycoprotein M6B Adrenal, Breast, Lung, Prostate 

8424 BBOX1 Butyrobetaine (gamma), 2-oxoglutarate 

dioxygenase (gamma-butyrobetaine 

hydroxylase) 1 

Breast, Cervix, Kidney, Skin 

9452 ITM2A Integral membrane protein 2A Breast, Colon, Ovary, Skin 

9631 NUP155 Nucleoporin 155kDa Adrenal, Cervix, Lung, Stomach 

10391 CORO2B Coronin, actin binding protein, 2B Adrenal, Breast, Lung, Ovary 

27147 DENND2A DENN/MADD domain containing 2A Breast, Colon, Lung, Prostate 

51660 BRP44L Brain protein 44-like Kidney, Liver, Skin, Stomach 

51751 HIGD1B HIG1 domain family, member 1B Adrenal, Liver, Lung, Prostate 

65983 GRAMD3 GRAM domain containing 3 Adrenal, Breast, Colon, Skin 

 

 

b) 

Entrez ID Gene Symbol Status Drug Name Indication 

8424 BBOX1 Approved Vitamin C Used to treat vitamin C deficiency, scurvy, delayed 

wound and bone healing, urine acidification, and in 

general as an antioxidant. It has also been 

suggested to be an effective antiviral agent. 

8424 BBOX1 Approved Succinic acid For nutritional supplementation, also for treating 

dietary shortage or imbalance 
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A second, alternative method was used to identify those genes that are common in the general 

pathway of cancer. A cancer microarray database and a control database were generated 

randomly selecting ten samples from each tissue type, resulting in a set of 130 cancer and 130 

control samples.  SAM analysis was then used to identify the top 400 significant genes, repeating 

this operation a hundred times.  The union of these hundred gene lists each containing 400 genes 

produced 1,411 genes of which 44 are in the KEGG’s pathways in cancer.  The union of genes 

from the first 50 iterations produces a list of 1,235 genes indicating that additional iterations 

produce few new SAM genes.  The p-value associated with the intersection with the pathways in 

cancer using the hypergeometric test using the platform genes as the background is 0.0196.  Of 

the 1411, 271 genes are found in at least 70% of the iterations, of which 12 are found in the 

pathways of cancer with corresponding p-values of 0.0208.  Moreover, 74 genes out of the 271 

appeared among the 132 genes listed in Table 5 and Table 6.  The p-value for this overlap 

is 9.0763E-082.  The list of 271 genes is provided as Additional File 2. Taken together with genes 

in Table 5 and Table 6, they can be used to extend and further annotate the general pathways of 

cancer. 

 

4.5 Discussion 

In this study, nearly six thousand microarray samples were obtained from comparable Affymetrix 

platforms to investigate the commonalities as well as the tissue specific components of normal to 

cancer transformation in thirteen distinct tissue types.  It was possible to obtain such a large 

sample size through the addition of highly asymmetric datasets into the microarray sample pool. 

Mainly, those datasets with large numbers of cancer samples and small numbers (including zero) 

of control samples and vice versa, were considered. Otherwise, out of the thirteen tissue types 

under study, only the breast, colon, kidney, and pancreas tissues had three or more different 

datasets that included at least ten cancer and ten control samples.  
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This approach is unusual in the sense that it does not fit typical meta-scale analyses [46-48, 86, 

105-106] where each dataset needs to have both disease and control samples in sufficient 

numbers and datasets are normalized and analyzed separately for significant genes.  Using the 

meta-analysis approach, Ramasamy et al. [46] analyzed 21 distinct microarray datasets from 14 

different cancer types comprising 419 control and 973 samples.  The minimum sample size for 

cancer and control in their study was seven and some of the tissue types such as renal tissue 

appeared only in one dataset in their collection.  The advantage of this method is the flexibility 

concerning the multiple platforms that can be incorporated and thereby increasing sample size 

through acceptance of several platforms.  Because this research focuses on a set of comparable 

platforms, the results are not directly comparable.  Nevertheless, Ramasamy et al. [46] published 

five upregulated and five downregulated genes as most significantly associated with cancer. 

Among this list of ten, four genes (TMEM136, RBM15, FGD4 and KIAA1881) are not part of the 

minimal platform considered in this study, suggesting that as the data in public-access microarray 

repositories grow, datasets used in the proposed approach will be restricted to the latest version of 

platforms containing many more probes.  Of the remaining six genes, the top 400 lists from this 

research confirmed the downregulation of PRKAR2B and GPM6B in four different tissues. Genes 

MYOM2 and RBCK1 in their ten gene list were SAM genes in multiple lists in this study but were 

in the top 400 only in the liver gene list.  Similarly, ALG3 did not appear in any of the top 400 

gene lists but was significantly upregulated in six of the thirteen tissues in the complete SAM 

lists.  The last gene in their list, IRAK1 was a top ten ranking gene in the pancreas SAM gene list, 

however, this gene was downregulated in pancreas as well as five more tissues in this study, as 

opposed to the upregulated notation presented to the gene by Ramasamy et al. [46].  Note that this 

research contained 106 cancer and 71 normal pancreatic tissue microarray samples as opposed to 

the 12 tumor and 7 normal microarray samples in [46].  It is not feasible to summarize the 

comparison with a p-value because the gene list presented in [46] contains only ten genes 

whereas the various gene lists produce by this research contain hundreds of genes.  Nevertheless, 
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it is clear that the two approaches could potentially produce gene lists whose intersection is 

unlikely to be a random event.  

 

The proposed approach takes advantage of the rapid increase of asymmetric data in public-access 

microarray repositories.  Moreover, gene lists predicted using this large asymmetric data 

reproduces much of the research literature on cancer-associated genes obtained by experimental 

methods other than microarray.  This analysis predicts 132 genes as significantly altered in 

normal to cancer transformation in at least four tissue types and out of this list, 121 were 

previously annotated in the literature as cancer-related.  The remaining eleven genes comprise 

potential targets for further studies in cancer research.  Note also that 74 out of the 132 genes in 

the list also appear in 70% of the SAM gene lists generated by comparing normal and cancer 

datasets comprising of randomly chosen ten samples from each tissue type.  The two gene lists 

presented in this study for cancer-associated genes with multiple tissue specificity will further 

contribute to the annotation of pathways of cancer.  Recently emerging annotation-based 

microarray data tools such as A-MADMAN [142] will help in the compilation process of large-

scale microarray data for studying complex diseases, and for biomarker and drug development. 

 

4.6 Conclusion 

In this study, almost 6,000 microarray samples were obtained and a total of 329 genes were 

identified that appeared as highly significant in normal to cancer transformation with regards to 

multiple cancer types.  The gene list consists largely of genes that have already been associated 

with cancer in research literature excluding microarray studies.  The list can be used in the 

detailed annotation of cancer pathways.  In addition due to the inclusion of numerous subtypes 

and cancer grades, the genes in this list can serve as potential targets for new drug development.  
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Chapter 5: Virus and host iron binding protein interactions 

 

5.1 Summary 

The intricate relationships that evolve between viruses, host iron binding proteins, cellular iron 

supplies and the immune response are the core of this chapter.  The regulation and utilization of 

iron in humans has evolved to a high degree of complexity.  Many of the basal pathways and 

cellular functions depend on iron as a component of iron binding proteins.  These proteins are 

therefore involved in a wide range of functions varying from energy metabolism to DNA 

synthesis to oxygen transport.  More importantly, iron binding proteins are also part of the human 

immune system.  Iron redox properties render it crucial yet potentially toxic.  As a result, iron 

homeostasis is necessary since iron is needed for maintaining a healthy system as well as a 

diseased one.  In general, viruses rely on host cellular machinery for their own replication.  

Consequently, sufficient iron quantities are essential to allow for efficient viral propagation.  Iron 

overloads have been observed in viral infections including HIV and hepatitis C and are generally 

associated with poor prognosis.  By using publicly accessible databases, human iron binding 

proteins were identified.  Microarray data on three viral infections: HIV, hepatitis C and influenza 

A were collected and analyzed to identify direct and indirect targets of these viral infections that 

are dependent on iron and therefore important for iron homeostasis.  Results revealed significant 

changes in the transcript levels of 101, 122, and 107 iron binding proteins in HIV, hepatitis C and 

influenza A, respectively.  These proteins appeared to be involved in biological processes related 

to cellular metabolism, oxidative stress response and immune system processes.  Moreover, the 

microarray results captured some of the known imperative changes induced by HIV-1 viruses that 

have been documented in the literature.  These outcomes emphasize the vitality of iron for 

sustaining viral demands as well as the critical role that iron recruited by the virus could 

potentially play in helping the virus escape the host’s immunes system. 
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5.2 Background 

Several fundamental cellular operations in living systems require the presence of iron ion binding 

proteins [143] and rely on the redox abilities of ferrous (Fe
2+

) and ferric (Fe
3+

) iron [144].  Iron 

ions act as a cofactor for enzymes involved in energy metabolism, DNA synthesis, replication and 

repair, transcription, and mRNA translation, rendering it essential for cells.  In addition, iron in 

hemoglobin and myoglobin binds oxygen allowing for its transport [143, 145].  The primary 

function of iron in living systems is therefore greatly dependent on its role in shuttling electrons 

between proteins and its flexibility for binding ligands in diverse orientations [143]. 

 

Iron also has a crucial role in immunity and immunosurveillance.  This is achieved through iron’s 

involvement in cell-mediated immune effector pathways and cytokine activities as well as its role 

in promoting immune cells’ growth [145-147], which can then affect the cells’ response to an 

invading pathogen.  In return, cytokines and radicals produced and released by the immune cells 

can control and regulate iron homeostasis, through transcriptional and post-transcriptional 

methods [145].  Hence, iron metabolism and the immune system possess a delicate relationship 

through which they can regulate one another. 

 

The link between the immune defense and iron metabolism is often targeted by infectious agents 

including the human immunodeficiency virus and hepatitis C [145, 148-149].  Viruses depend on 

host cells for their survival, and viral replication requires enhanced cellular metabolism for 

transcribing and translating viral genomes and proteins.  Since these processes depend on and 

require iron, the host cells have to contain a sufficient supply of iron to meet the demands [143].  

Iron accumulation can accompany the more advanced stages of HIV infection [148, 150], while 

increased iron storage in bone marrow macrophages could be associated with shorter survival 

times [151-152].  After an HIV infection, the virus reverse-transcribes its RNA into double-

stranded DNA which is then integrated into the host’s genome.  HIV kills target cells and alters 
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gene expression through the involvement of viral regulatory proteins (Tat, Rev, Nef), and many of 

the activities targeted by HIV are iron-dependent [148]. 

 

A number of recent studies focused on the role of iron in clinical progression of HIV infection. 

Elevated iron stores have been detected in HIV patients including those in brain, liver and 

muscles [148].  The effects of iron supplementation on HIV infection have also been studied 

[153], with research on pregnant women from Zimbabwe revealed that receiving iron 

supplementation was an independent predictor of higher viral load [154].  In a study on 

thalassemic HIV patients, the rate of progression of the disease was associated with 

desferroxamine and higher serum ferritin concentrations [155].  Meanwhile research on Belgian 

HIV cohort reported that haptoglobin 2-2 was related to increased iron storage, higher rates of 

viral replication and shortened survival [156].  Another study in Kenya found that iron 

supplementation reduced the rates of post-treatment reinfection, and that viral load was higher in 

patients receiving iron compared to the placebo group [157], while several other studies have 

agreed that iron overload resulted in decreased survival of HIV patients [158-160].   

 

Similar iron overload has been observed in hepatitis C patients.  Hepatitis C is known to cause 

liver injury and cancer, and while the process is not fully understood, the pathology seems to be 

driven by chronic inflammation.  Increased morbidity and mortality in hepatitis C patients has 

been associated with elevated levels of cellular iron, which behaves as a pro-inflammatory agent.  

Haemochromatosis can also result in chronic iron deposition in the liver, and has been associated 

with cirrhosis and injury that could lead to hepatocellular carcinoma.  While iron deposition can 

be the result of inherited defects in host genes involved in iron metabolism, the virus itself can 

also induce similar iron overloads.  Elevated levels of hydroxyl radicals are generated in the 

presence of excess iron.  Such radicals are highly reactive and can therefore cause damage to 

proteins, DNA and lipids within the cell [143, 149], thereby inflicting damage to the cell 
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membranes and the genome [149].  The oxidative stress can also result in mitochondrial 

dysfunction and cause liver satellite cells to produce collagen, contributing to the development of 

fibrosis.  Therefore, excess iron in hepatitis C patients can trigger an inflammatory environment 

that disturbs the liver’s normal function [143]. 

 

This research uses bioinformatics methods and publicly accessible molecular and functional 

genomics databases to identify the components of virus-host crosstalk involving host iron binding 

proteins.  The National Institute of Allergy & Infectious Diseases’ (NIAID) HIV-1, Human 

Protein Interaction Database [161-163] and molecular function annotation have provided 

knowledge for the identification of nodes in pathways leading to HIV viral replication associated 

with iron binding.  Results from HIV microarray analysis have confirmed viral effects on several 

key proteins including NADPH oxidase complex, ABCE1, IDO1 and ALOX5.  Differential gene 

expression analysis conducted on hepatitis C microarray data has also revealed significant overlap 

with HIV induced alterations to iron binding proteins.  Data obtained on influenza A virus was 

also tested, providing a control non-persistent infection to facilitate the understanding of how 

persistent viral infections influence iron homeostasis and evade the host’s immune system. 

 

5.3 Methods 

5.3.1 Identification of iron-associated proteins 

To determine the human proteins that are associated with iron binding a list of proteins annotated 

with the GO [102-103] molecular functions “iron ion binding” and “iron-sulfur cluster binding” 

were retrieved from the GO Consortium and DAVID Bioinformatics [120-121] databases. The 

summation list was checked against the literature and UniProtKB [164-165] database to confirm 

the functional association of these proteins with iron.  Only genes with RefSeq status of 

“REVIEWED” or “VALIDATED” were retained.  Moreover, 6 proteins were added as iron 
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binding based on a recent review on the role of iron-ion binding proteins in viral infections [143].  

The final list contained 299 iron binding proteins. 

 

5.3.2 Identifying direct HIV-1 iron binding protein targets 

To understand the interplay between HIV proteins and host proteins mediated by the function of 

iron within the cell, a list of proteins that are known to interact with HIV-1 proteins, either 

directly or indirectly, was obtained from the NIAID HIV-1, Human Protein Interaction Database 

[161-163] (Version: December 2009).  The list contained a total of 1433 human proteins 

corresponding to 68 types of different interactions with the viral proteome.  Proteins that were 

annotated as iron binding were identified within this list, to determine the iron-dependent proteins 

that are targeted by HIV-1. 

 

5.3.3 Microarray dataset selection on viral infections 

Changes in gene expression levels induced by HIV-1 infection were then investigated.  

Microarray datasets for healthy and HIV-1 infected CD4+ T-cells were collected from the Gene 

Expression Omnibus [96-97].  The details of the datasets used are shown in Table 7.  In summary, 

130 healthy and 21 HIV-1 infected CD4+ T-cell samples were collected.  In order to identify 

commonalities in interactions with iron ion binding host proteins, similar data were obtained for 

hepatitis C and influenza A infected PBMC cells as well as healthy controls.  The summary list of 

the datasets and the sample distribution is also presented in Table 7.  The microarray data was 

confined to datasets hybridized on the Affymetrix human microarray platforms HG-U133A, HG-

U133A2 and HG-U133 Plus 2.0, to allow for data merger due to the large overlap between these 

platforms.   

 

 



73 

 

Table 7 - Microarray Datasets: Microarray samples utilized in analysis of changes induced by 

viral infections. 

GEO Accession # Platform Healthy Samples Infected Samples 

HIV Infection: 

GSE6740 HG-U133A 5 10 

GSE9927 HG-U133 Plus 2.0 9 11 

GSE6338 HG-U133 Plus 2.0 5 0 

GSE7497 HG-U133A 16 0 

GSE8835 HG-U133A 12 0 

GSE10586 HG-U133 Plus 2.0 15 0 

GSE12079 HG-U133 Plus 2.0 4 0 

GSE13732 HG-U133 Plus 2.0 40 0 

GSE14879 HG-U133 Plus 2.0 10 0 

GSE14924 HG-U133 Plus 2.0 10 0 

GSE17354 HG-U133A 4 0 

Total  130 21 

Hepatitis C Infection: 

GSE7123 HG-U133A 0 59 

GSE11190 HG-U133 Plus 2.0 0 19 

GSE11342 HG-U133A 0 20 

Total  0 98 

Influenza A Infection: 

GSE6269 HG-U133A & Plus 2.0 6 25 

GSE17156 HG-U133A2 17 17 

Total  23 42 

Healthy PBMC: 

GSE8507 HG-U133 Plus 2.0 34 0 

GSE8650 HG-U133A 21 0 

GSE12839 HG-U133A 7 0 

GSE14895 HG-U133A2 11 0 

GSE15072 HG-U133A 8 0 

GSE16728 HG-U133 Plus 2.0 5 0 

Total  86 0 

 

 

5.3.4 Microarray data normalization and differential gene expression 

Raw .CEL files for all the samples were obtained and normalized using the refRMA [63] 

conducted in MATLAB .  A total of 909 diverse microarray samples from the HG-U133 Plus 2.0 

chip were used to train the data.  The normalization process included background adjustment, 

quantile normalization, and median polishing.  In addition, the custom ENTREZ CDF files 

(version 12) [117] were used in the normalization process in order to obtain Entrez gene 

intensities.  The outputs from the training set were then used to adjust the normalized gene 

intensities of the data utilized in this analysis.  The data from the common genes between the 
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three platforms were filtered and used for differential gene analysis.  Finally, where multiple 

samples were obtained from the same individual, average intensities were calculated from these 

samples prior to differential gene expression analysis. 

 

To identify the genes that exhibited changes in expression due to viral infection, the data was 

imported into R [118] and the Significance Analysis of Microarrays (SAM; [75]) test was applied 

using the samr package [119].  The test parameters were set to a hundred permutations of the 

analysis and the false discovery rate (FDR) was not allowed to exceed 6%.  Each viral infection 

data was compared to the corresponding healthy control data separately.  Among the significant 

genes satisfying these conditions, iron binding host proteins that appeared to be affected, directly 

or indirectly, by each of the viral infections at the transcriptional level were determined. 

 

5.3.5 Distribution of gene expression levels of iron binding proteins 

The inherent range of expression values for iron binding proteins at the transcript level was 

determined to understand their behavior within the normal state.  Intersecting the three microarray 

platforms results in fewer iron binding genes that can be studied.  Therefore, to obtain a full 

representation of the levels of gene expression in healthy tissues, only data hybridized on the HG-

U133 Plus 2 chip for uninfected CD4+ T-cells were utilized, as it is the largest of the three 

platforms used in this study.  Average intensity values were computed for each of the 17,726 

genes on the chip.  The data from the entire platform were clustered using the K-means clustering 

algorithm [166] into four groups depicting the genes’ level of expression: low, medium-low, 

medium-high and high.  The iron binding proteins were then mapped to their location within 

these clusters (Figure 14). 
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Figure 14 - Gene Expression Histogram: Distribution of Iron binding proteins (yellow) and 

HIV-interacting iron binding proteins (pink) with respect to all genes represented on the HG-

U133 Plus 2.0 microarray platform based on gene intenisties in normal CD4+ T-cells. 

 

5.4 Results 

5.4.1 Iron binding proteins are statistically enriched among HIV targeted host proteins. 

A total of 299 host proteins were identified as iron binding and among them 40 were previously 

annotated as HIV-1 interacting proteins (Figure 15a).  A hypergeometric test based on all proteins 

from NCBI as the background resulted in a p-value of 1.80E-12 for this overlap.  Iron-ion binding 

proteins are therefore statistically enriched among known HIV-1 interacting proteins, indicating 

the important role iron ions play in viral replication [143].  A list of those 40 proteins is provided 

in Table 9 depicting the HIV-1 proteins that target them and the types of interactions that occur 

between them. 
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Figure 15 - HIV-1/Iron Binding Proteins and Differential Gene Expression: a) Venn diagram 

representing the overlap between the iron-binding proteins used in this study and proteins in the 

HIV-1 Human PPI Database, and b) Fold change values for the 15 genes whose expression is 

altered in HIV-1 infection 

 

5.4.2 Gene expression analysis confirms the effect of HIV-1 infection on CD4+ T cells 

Among the 40 iron-associated HIV-interacting proteins identified, 15 appeared to be significantly 

enriched according to SAM analysis conducted on CD4+ T cells from HIV patients compared 

with healthy T cells.  Among those differentially expressed were 9 downregulated and 6 

upregulated genes as shown in Figure 15b.  The absolute fold change is shown after deducting 1.0 

from all values.  The behavior of these genes in the other viral conditions was also considered 

(Table 9).  Eight of the 15 differentially expressed genes in HIV-1 infections exhibited similar 

significant alterations in hepatitis C, compared to only three concurrent alterations in gene 

expression inflicted by influenza A infection. 

 

5.4.3 Significant commonalities in alteration induced by persistent viral infections on iron 

binding proteins 

The microarray platform used for analysis of differential gene expression contained information 

on transcript levels of 191 out of the 299 iron binding proteins.  Of these, 172 (90%) genes were 
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significantly altered in at least one type of viral infection, and a total of 43 genes appeared in all 

three SAM lists (Figure 16).  Moreover, the overlap between the different infections was as 

follows: 73 genes in HIV  Hepatitis C, 60 genes in HIV  Influenza A, and 68 genes in 

Hepatitis C  Influenza A.  Using a hypergeometric test with a 0.05 threshold, only the 

intersection between HIV and hepatitis C was significant with a p-value of 4.6E-03.  This 

highlights the similarities in HIV and hepatitis C as persistent infections, which is suggestive of 

their subsequent influences on the cellular machinery and immune system. 

 

 

Figure 16 – Differential Expression of Iron Binding Proteins Induced by Viral Infections: 
Venn diagram depicting the distribution of the 191 iron binding proteins present on the 

microarray platform according to differential expression in HIV, Hepatitis C, and Influenza A. 

 

To further investigate the roles of these proteins, all iron binding genes that were differentially 

expressed in at least one of the infection types considered were merged together.  Enriched 

KEGG pathways were identified using a p-value cutoff of 0.05.  Many of the common iron 

binding genes belong to the cytochrome P450 family.  Therefore, as the results in Table 8 reflect, 

several metabolic pathways are affected by these infections.  Retinol metabolism (Figure 17) 

contains the largest number of significantly altered genes, most of which are P450 enzymes.  Iron 
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is known to interact with several dietary components including retinol (vitamin A).  Retinol is 

essential for normal haematopoiesis and deficiencies have been associated with mild anaemia, 

poor immune response and delayed repair of damaged epithelial cells.  Such deficiencies can also 

affect the severity of some infectious diseases.  In addition, iron is necessary for retinol 

mobilization, and thus retinol and iron metabolism are closely interrelated [167]. 

 

Table 8 – Pathways Affected by Iron Binding Proteins: Enriched KEGG pathways associated 

with iron binding genes that were differentially expressed due to viral infection by HIV, Hepatitis 

C and/or Influenza A 

KEGG Metabolic Pathway Genes P-Value 

Retinol metabolism 17 3.80E-16 

Drug metabolism – Cytochrome P450 15 7.67E-12 

Linoleic acid metabolism 12 1.45E-11 

Arachidonic acid metabolism 14 4.81E-11 

Metabolism of xenobiotics by cytochrome P450 13 8.12E-10 

Steroid hormone biosynthesis 12 1.85E-09 

Drug metabolism 8 1.09E-05 

Tryptophan metabolism 7 1.52E-04 

Caffeine metabolism 4 4.62E-04 

Primary bile acid biosynthesis 5 5.60E-04 

Alzheimer's disease 12 7.47E-04 

Parkinson's disease 9 2.28E-03 

Porphyrin and chlorophyll metabolism 5 3.41E-03 

Steroid biosynthesis 4 8.66E-03 

Tyrosine metabolism 5 2.01E-02 

Citrate cycle (TCA cycle) 4 2.85E-02 

Arginine and proline metabolism 5 2.85E-02 

Oxidative phosphorylation 7 3.37E-02 

Biosynthesis of unsaturated fatty acids 3 4.66E-02 

 

 

Cytochrome P450 proteins are also the major enzymes involved in drug metabolism contributing 

to the metabolism of approximately 75% of drugs [168], including tamoxifen, cyclophosphamide, 

ifosfamide and methadone (Figure 18).  Drug doses are adjusted such that they can be cleared by 

the body at a reasonable rate.  Hence, alterations in the availability of P450 enzymes, directly 

affect the body’s ability to metabolize and clear drugs.  While inhibition of P450 proteins can 

result in drug accumulation, drug-drug interactions and drug toxicity, induction of cytochromes 

can result in faster drug clearance, interfering with the drug’s role and efficiency [168]. 
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Table 9 - Regulation of HIV-Interacting/Iron Binding Proteins: A list of 40 iron binding proteins that are known to directly interact with HIV 

proteins, the types of interactions and proteins they associate with.  The differential expression at the transcript level in HIV, Hepatitis C and 

Influenza A is shown: downregulated (), upregulated () and non-differentially expressed (●).  Expression level clusters, according to expression 

in healthy CD4+ T cells are also indicated: low (L), middle-low (ML), high-low (HL) and high (H). 

Gene Symbol Entrez ID Cluster HIV Hepatitis C Influenza A Interaction HIV Protein 

NOX4 50507 L ● ●  activated by Gp120 

NOX3 50508 L ● ●  activated by Gp120 

PTGS2 5743 L ● ● ● upregulated by 

upregulated by 

Gp120 

Tat 

TH 7054 L    downregulated by Tat 

NOX5 79400 L ● ● ● activated by Gp120 

NOS3 4846 ML ●  ● inhibited by 

upregulated by 

Tat 

Gp41 

LTF 4057 ML ● ● ● inhibits Gp120 

HFE 3077 ML ● ● ● downregulated by Nef 

NOX1 27035 ML ●   activated by Gp120 

IDO1 3620 ML   ● release induced by Gp120 

CYP27B1 1594 ML    activated by Matrix 

NOS1 4842 ML ● ●  inhibited by 

upregulated by 

Tat 

Gp41 

CYBB 1536 ML   ● inhibited by Capsid 

PTGS1 5742 ML ● ● ● upregulated by 

upregulated by 

Gp120 

Tat 

NOS2 4843 ML  ● ● inhibited by 

upregulated by 

upregulated by 

Tat 

Gp120 

Gp41 

ALOX5 240 ML   ● upregulated by Gp120 

PPP2CB 5516 ML    inhibits Tat 

ERCC2 2068 ML   ● binds Tat 

APP 351 MH   ● activated by 

inhibited by 

inhibits 

inhibits 

upregulated by 

Retropepsin 

Gp41 

Gp120 

Tat 

Tat 

CYCS 54205 MH ● ● ● released by Vpr 
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Table 9 (continued) 

Gene Symbol Entrez ID Cluster HIV Influenza A Hepatitis C Interaction HIV Protein 

CYP51A1 1595 MH    upregulated by Nef 

IKKE 9641 MH ● ● ● binds 

phosphorylated by 

Gp120 

Nef 

IKK1 1147 MH ● ● ● binds 

phosphorylated by 

Gp120 

Nef 

SDHB 6390 MH ● ●  binds Tat 

ABCE1 6059 MH  ●  associates with 

associates with 

Pr55 

Vif 

TFRC 7037 MH ● ● ● downregulated by 

downregulated by 

Gp120 

Nef 

HMOX2 3163 MH  ●  upregulated by Gp120 

IKK2 3551 MH ● ● ● binds 

phosphorylated by 

Gp120 

Nef 

GLRX2 51022 MH ● ●  activates Retropepsin 

CAT 847 MH ● ● ● inhibits Gp160 

PPP3CA 5530 MH  ●  activated by Tat 

PPP1CB 5500 MH ● ●  stimulates 

upregulated by 

Tat 

Gp120 

PPP3CC 5533 MH ● ● ● activated by Tat 

PPP1CA 5499 H  ●  downregulated by 

stimulates 

Gp120 

Tat 

CYC1 1537 H  ●  release induced by Vpr 

DOCK2 1794 H ●   associates with Nef 

PPP2CA 5515 H ● ●  inhibits Tat 

PPP3CB 5532 H ● ●  activated by Tat 

GLRX5 51218 H ●  ● activates Retropepsin 

PPP1CC 5501 H ● ● ● stimulates Tat 
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Figure 17 - Retinol Metabolism in Animals: Iron binding genes in KEGG's retinol metabolism pathway that are significantly altered by HIV 

(pink), Influenza A (blue) and Hepatitis C (purple) infections 
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Figure 18 - Drug Metabolism Cytochrome P450: Iron binding genes in KEGG's drug metabolism (Cytochrome P450) that are significantly 

altered by HIV (pink), Influenza (blue) and Hepatitis C (purple) infection 
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Figure 18 (continued)  
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Figure 18 (continued) 
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More information on the biological processes revealed the enrichment of oxidative stress 

response.  In addition, 12, 11 and 9 of the proteins in the HIV, hepatitis C, and influenza A lists, 

respectively, were involved in immune system response. This emphasizes the dual role viruses 

provoke on host cells in terms of metabolic demands and immune response.  Nonetheless, the 

behavior of these genes within the different infections sheds some meaningful insight on the 

differences between HIV/hepatitis C and influenza A.  For example, cytochrome B (CYBB) is 

downregulated in both HIV and hepatitis C, but no changes are observed in influenza.  CYBB is 

one of the down-stream proteins in the interferon-gamma (IFN-) mediated immune response, 

and its downregulation impairs the oxidative burst response and phagocytosis that are needed to 

fight infections [169].  ALOX5 and ABCE1 are also known to be direct HIV-1 target proteins, and 

similar changes were perceived in hepatitis C microarray results but not influenza A. 

 

5.5 Discussion 

Iron is a vital nutrient for most organisms.  It is universally present in the active site of iron 

binding proteins involved in oxygen transport, energy metabolism and respiratory pathways, 

DNA synthesis, and metabolite synthesis [143, 145, 170].  However, the reactive properties that 

typically make iron useful to these proteins also result in free iron being toxic [171].  Due to the 

high involvement of iron throughout the body’s cellular processes, cells commit complex systems 

to control the availability, reactivity and flux of iron in order to maintain a healthy cellular 

environment [144].   

 

The initial step for achieving homeostasis is through the regulation of iron absorption from the 

gut.  However the process of transporting iron to usage and storage sites is equally important, in 

addition to the roles of enterocytes and macrophages [144].  Monocytes and macrophages utilize 

different pathways to acquire iron.  These methods include transferrin-mediated uptake, 

transmembrane uptake of ferrous and ferric iron, obtaining iron through lactoferrin or ferritin 
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receptors, as well as through erythrophagocytosis.  As a result, the proliferation and 

differentiation of these cells are not affected by limiting the iron supply through one of these 

sources [145].   While iron is important and deficiencies result in aberrant cell growth and 

immune function, iron overload is similarly deleterious [144-145], affecting the proliferation and 

activation of T-cells, B-cells and natural killer cells [145, 172-173].  One mechanism through 

which iron loading can affect cells is by inhibiting IFN-  mediated pathways in macrophages, 

which causes them to lose their ability to kill intracellular pathogens [145].  Moreover, the lack of 

an iron excretory pathway highlights the importance of homeostatic mechanisms adopted by cells 

in order to balance out iron needs as opposed to iron overload as well as redox utility as opposed 

to resulting toxicity. 

 

Microarray data was retrieved to identify the alterations that the three viral infections considered, 

namely HIV, hepatitis C and influenza A induce, focusing interest on the differentially expressed 

iron binding proteins.  HIV and hepatitis C are persistent diseases that reside in the host and 

cannot be cured.  While influenza A infections can at times be fatal, the majority of people 

display uncomplicated, acute febrile respiratory symptoms that last around three to five days or 

exhibit no symptoms at all [174].  Hence, influenza was chosen as a control by comparing the 

changes this infection instigates to those brought about by HIV and/or hepatitis C.  This allows 

for a direct investigation of the role of iron in supporting general viral mechanisms.  Results 

revealed the significant changes at the transcriptional level of 101, 122 and 107 iron binding 

proteins in HIV, hepatitis C and influenza A, respectively.  Comparisons among these lists 

indicated over 50% overlap.  However, statistically only the overlap between HIV and hepatitis C 

was significant.  Further investigation of these three lists revealed the inclusion of several 

cytochrome P450 proteins, which were enriched in several metabolic pathways (Table 8).  This 

indicates the commonalities in the changes these viruses inflict on the cell to exploit the host’s 

machinery.   
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However, as noted above, some of the main known HIV-1 host protein targets that bind iron 

displayed similar changes in expression level in hepatitis C but not in influenza infected cells.  

This implicates that hepatitis C possibly utilizes similar mechanisms to evade the host’s immune 

response.  Among those proteins was CYBB which is part of the NADPH oxidase enzymatic 

complex.  NADPH oxidase is the main producer of superoxide anion (O2
-
) through the reduction 

of oxygen.  In the cell, superoxide dismutase then acts as an antioxidant by utilizing electrons 

from copper or zinc for the conversion of superoxide into hydrogen peroxide (H2O2).  In resting 

cells, the NADPH oxidase complex is typically dormant.  Monocytes and macrophages usually 

release increased levels of reactive oxygen species (ROS) as a response to certain stimuli.  The 

generation of high levels of ROS, referred to as respiratory burst, plays an important role in the 

host defense mechanism against pathogens [169, 175].  These reactive species are therefore 

involved in inflammatory processes, apoptosis, aging and carcinogenesis [176].  Iron is essential 

for the function of the NADPH oxidase complex with a heme-b acting as the prosthetic redox 

group in cytochrome b.  Iron deficiencies therefore result in reduced enzyme activity [177]. 

 

HIV-1 targets NADPH oxidase through various proteins.  First, Gp120 binds to CXC chemokine 

receptor 4 (CXCR4) which in turn activates the NAPDH oxidase complex resulting in increased 

expression of superoxide radicals and subsequent activation of neutral sphingomyelinase, 

inducing apoptosis and cell death [178].  On the other hand, Nef plays a time-dependent role in 

this process.  In the early stages, Nef is responsible for the induction of phosphorylation and cell-

membrane translocation of NCF1 and NCF2, hence activating NADPH oxidase, which results in 

the production of superoxide [169, 175]. Meanwhile, Gp160 also enhances the respiratory burst 

and oxidative stress through the production of H2O2 [176].  Within 10 hours, Nef inhibits NADPH 

oxidase resulting in a dysregulation in the production of ROS, impairing specific immune 

functions including the oxidative burst response and phagocytosis.  This in turn allows for the 

development of HIV-1 pathogenesis [169, 175].  In addition, the viral capsid has been shown to 
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inhibit the IFN-  induced accumulation of the cytochrome B heavy chain mRNA [179], and this 

inhibition is evident from the observed downregulation of CYBB in the microarray analysis. 

 

On the other hand, arachidonate 5-lipoxygenase (ALOX5) is a nonheme iron-containing 

dioxygenase that plays an important role in the biosynthesis of leukotrienes, namely the catalysis 

of the production of leukotriene LTA4 from arachidonic acid, which can then be converted to 

LTB4 [180].  Leukotrienes are important inflammatory mediators and LTB4 can then induce the 

adhesion and activation of leukocytes, ALOX5 is therefore mainly expressed in the different 

leukocytes [181].  In addition, ALOX5 might be capable of inducing cell cytotoxicity by oxidizing 

cellular membranes [182-183].  Leukotriene synthesis is reduced in the macrophages and 

peripheral mononuclear cells of HIV patients [184-186], as is supported by similar observation 

from the microarray analysis results on CD4+ T cells. 

 

Microarray data also revealed the significant elevation in ATP-binding cassette protein (ABCE1) 

levels in CD4+ T cells of HIV-1 infected patients as compared to normal.  Typically, ABCE1 is 

required for cellular survival, mRNA translation, and ribosome biogenesis.  It is the only ATP-

binding cassette enzyme that has an amino-terminal iron-sulfur cluster domain, thus necessitating 

the availability of iron for its functioning [143, 187].  During HIV-1 infection, cellular ABCE1 

interacts with viral Pr55 (Gag) and Vif to assist in capsid assembly.  While Vif is excluded from 

the mature viral particles, it is essential for viral infectivity.  It is therefore a late HIV-1 product, 

acting in the latter stages of the virus life cycle during viral assembly and/or maturation to 

enhance the infectivity of the progeny virions [188-189].   ABCE1 is known to function as an 

RNAse L inhibitor, suggesting that the viral association with ABCE1 is possibly to protect the 

viral RNA from degradation during viral assembly [188].  HIV-1 Gag polypeptides are 

synthesized in the cytoplasm of infected cells and then are trafficked to the plasma membrane.  

ABCE1 is then recruited to sites of assembling Gag at the membrane and the association 
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continues throughout capsid formation until the onset of viral maturation and its subsequent 

release [190]. 

 

More literature has been curated for HIV’s interactions with host proteins; however, similarities 

in microarray expression can insinuate comparable mechanisms utilized by hepatitis C.  However, 

the consequences associated with iron overload have been confirmed by much research in both 

HIV [143, 152-160] and hepatitis C [143, 149, 191-193].  In the latter,  not only does this 

overload correlate with progression of liver disease, fibrosis and carcinoma, it also results in a 

decreased response to antiviral therapy [149].  Nonetheless, despite all the efforts aimed at 

understanding the full role of iron in facilitating such viral infections, the mechanism and 

molecular explanation for the involvement of iron in these viral infection remains to be 

incomplete [143, 149]. 

 

5.6 Conclusion 

When HIV and hepatitis C infections hijack the host’s machinery, a complex interplay occurs 

between viral proteins and the host’s immune system and iron homeostasis.  Infecting viruses 

have to also posses the ability to enhance cellular metabolism in order to replicate their genome 

and proteins.  As these processes require iron, the virus has to ensure that the iron supply meets 

its proliferative demands.  Microarray analysis of the influence of HIV, hepatitis C and influenza 

A on iron binding proteins revealed that such proteins are major targets, whether direct or 

indirect, of viral infections.  In addition, while these iron binding proteins could comprise a 

general theme for viral infections, differences are observed between some of the major genes and 

proteins affected by persistent and non-persistent infections.  Some of these variations, in turn, 

are crucial for persistent viral survival and their abilities to avert the host’s immune system 

response enabling them to continue to reside within the host.
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Chapter 6: Concluding Remarks 

 

Complex diseases and infections are characterized by the multiplicity of genes and pathways that 

are altered within the patient or host to ensure disease or pathogenic persistence.  The advances in 

microarray technology has provided for a fast assay of the changes in gene regulation 

accompanied by the introduction of a multitude of perturbations including diseases, pathogens, 

drugs, gene knockouts and environmental modifications.  Such data can provide a quantitative 

profile of the expression of thousands of genes in a single experiment.  Biological significance 

can then be extended to genes of interest to identify the processes and pathways that succumb to 

the influence of these perturbations. 

 

DNA gene expression analysis has been widely used in the study of cancer [36-40], but has 

generated many inconsistencies across studies.  Apart from the lab-specific noise in the data that 

could interfere with the results, these disparities can arise because the number of samples used in 

studies does not meet the statistical requirements that support the thousands of genes that are 

assessed within the experiment.  However, as more data is deposited into publically accessible 

databases, researchers can acquire large amounts of data across hundreds of labs to analyze and to 

add statistical significance and confidence to their results.  Consequently, this research focused on 

an integrative method that could utilize data from different but similar platforms.  The research 

allows for data merger prior to analysis, contradictory to the common meta-analysis methods that 

combine results after datasets are analyzed separately.  Not only does the proposed method have 

the advantage of reducing experimental noise, it also takes advantage of the changes in sample 

distributions that have emerged in recent studies.  Therefore, this methodology is not restricted to 

datasets containing both control and test data, but can select for data from any experiment and 



91 

 

utilize the samples that are of interest, provided the experiment has been hybridized on one of the 

sister Affymetrix platforms; the HG-U133A, HG-U133A2, and HG-U133 Plus 2.0. 

 

The integrated method was based on the previously verified SAM statistical analysis approach as 

its performance is superior to that of other statistical methods, like the t-test and fold change [75].  

In addition, SAM allows for controlling the different parameters including p-values and fold 

change.  Testing the merged SAM approach on five cancer tissues: colon, kidney, liver, lung and 

pancreas, revealed its ability to capture large amounts of the experimental literature available on 

cancer that is independent of microarray usage.  Moreover, it has surpassed the capabilities of the 

inverse-variance meta-analysis technique applied to the same data.  This is supported by Nadon & 

Shoemaker [135] who noted that normalizing samples together adds robustness when compared 

to samples from datasets that have been normalized independently.  To understand the 

significance of the gene lists obtained from the independent tissue analyses, pathways enriched 

with these genes were identified.  The compliment and coagulation cascades and the ECM-

receptor interactions were among the common pathways associated with these cancers.  

Moreover, a combined normal/cancer analysis revealed the important aberrations that occur 

within the cell cycle, including the differential expression of cyclins A and B and cyclin-

dependent kinases (CDK1 and CDK4/6 complex), which are necessary for cell cycle progression.  

The merged SAM approach application in cancer was expanded to include an additional eight 

types of tissues to investigate the similarities in gene expression changes that occur across these 

tissues.  The cancer samples included for each tissue were not restricted to a specific grade or 

type, this allows for the identification of cancer type-independent features.  These common genes 

can prove to be essential drug targets for general cancer therapy and a few are already targeted by 

existing drugs while others are in the experimental phase. 
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The scope and utility of this research, however, is not limited to cancer investigations.  Therefore, 

its application was directed to the study of persistent and non-persistent viral infections.  In order 

for an infectious disease to replicate within the host’s cells, it must establish a connection with the 

host.  This crosstalk is essential for the different stages of the infection starting with the virus’ 

ability to bind to and fuse into a cell and ending with its escape from the cell to spread to other 

cells and hosts.  However, in between these two points the virus has to employ the cell’s 

machinery through further viral-host protein-protein interactions.  These interactions then allow 

the virus to replicate its genome, but it also triggers other pathways such as immune response and 

apoptosis, especially for non-persistent infections.  Persistent viruses, on the other hand, have 

developed ways to escape the immune system and ensure their continued existence within the 

host. 

 

Much of these biological processes and pathways, varying from DNA replication to immune 

response, involve proteins that bind iron.  DNA microarray data was therefore used to identify 

those iron binding proteins that exhibited altered expression at the transcript level due to viral 

infections.  This is especially important since iron overload occurring in patients with persistent 

viral infections is believed to correlate with disease progression and decreased survival in 

hepatitis C and HIV, respectively.  Merged microarray results confirmed some of the known 

effects HIV exerts on the host’s proteins it directly interacts with and similar results were 

observed under hepatitis C infection, suggesting comparable hijacking approaches.  However, 

comparison of results with influenza A, a non-persistent infection chosen as a control, revealed 

that iron-dependent proteins are the target of viruses in general, as these proteins are mainly 

involved in metabolic processes.  Nonetheless, some of the genes altered exclusively in persistent 

viruses could be related to viral lengthened survival and escaping the host’s immune response. 
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The shortcomings however arise from the disparities in focus on the diseases studied.  The 

majority of the currently available gene expression experiments are dedicated towards the study 

of cancer as opposed to infectious diseases and other pathologies.  For example, thousands of 

microarray samples exist containing data on a wide range of malignancies, however, only tens of 

samples exist for HIV infections.  Even within cancer itself, a great effort has been devoted to 

certain malignancies such as breast cancer, where thousands of data points are available for each 

gene, compared to adrenal, pancreatic and cervical cancers that have far fewer samples.  Another 

limitation is also imposed by the platform restrictions required by the merged SAM.  However, 

Affymetrix has been shown to result in better accuracy than other platforms [194].  Moreover, 

integrating data from different technologies (Affymetrix/cDNA) is unreliable [133-134]. 

 

The molecular pathways affected by cancer also involve noncoding genes; these include the 

noncoding class of small RNAs referred to as microRNA (miRNA).  While these miRNAs are not 

translated into proteins, they are instead involved in the regulation of mRNA translation [195-

196].  Functionally, these miRNAs can reduce the amount of proteins produced by their target 

transcripts, and thus they are essential for several biological pathways including cell proliferation 

[195].  Cancer can affect the expression of miRNA through mutations, polymorphisms, 

chromosomal abnormalities and epigenetic changes.  These in turn result in defects in the miRNA 

biogenesis machinery.  Such changes in turn can promote oncogenesis by altering the gene 

expression of oncogenes and tumor suppressor genes [196].  Future work will add to the obtained 

cancer knowledge by exploiting changes at the miRNA level associated with the different 

malignancies.  Not only are these abnormal miRNA profiles essential for cancer diagnosis, they 

can also play a dual role in cancer therapy.  Since the miRNA profiles are conserved from the 

primary tumor to the metastatic cancer, cancer therapy can utilize miRNA as therapeutics and 

also target them through anti-miRNA therapy [196].   
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Appendix A: General cancer SAM genes 

 

 

Table A1  - Annotation of General Cancer SAM Genes: List of genes that appeared to be 

differentially expressed in at least 70% of the iterations when selecting 10 random samples from 

each tissue for general normal to cancer tissue comparisons 

Entrez ID Frequency (%) Gene Symbol Gene Name 

125 100 ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide 

699 100 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog 

(yeast) 

701 100 BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog 

beta (yeast) 

705 100 BYSL bystin-like 

983 100 CDC2 cell division cycle 2, G1 to S and G2 to M 

990 100 CDC6 cell division cycle 6 homolog (S. cerevisiae) 

991 100 CDC20 cell division cycle 20 homolog (S. cerevisiae) 

1019 100 CDK4 cyclin-dependent kinase 4 

1058 100 CENPA centromere protein A 

1063 100 CENPF centromere protein F, 350/400ka (mitosin) 

1111 100 CHEK1 CHK1 checkpoint homolog (S. pombe) 

1164 100 CKS2 CDC28 protein kinase regulatory subunit 2 

1282 100 COL4A1 collagen, type IV, alpha 1 

1300 100 COL10A1 collagen, type X, alpha 1(Schmid metaphyseal 

chondrodysplasia) 

1736 100 DKC1 dyskeratosis congenita 1, dyskerin 

1786 100 DNMT1 DNA (cytosine-5-)-methyltransferase 1 

2146 100 EZH2 enhancer of zeste homolog 2 (Drosophila) 

2237 100 FEN1 flap structure-specific endonuclease 1 

2305 100 FOXM1 forkhead box M1 

2537 100 IFI6 interferon, alpha-inducible protein 6 

3161 100 HMMR hyaluronan-mediated motility receptor (RHAMM) 

4171 100 MCM2 minichromosome maintenance complex component 2 

4172 100 MCM3 minichromosome maintenance complex component 3 

4174 100 MCM5 minichromosome maintenance complex component 5 

4176 100 MCM7 minichromosome maintenance complex component 7 

4192 100 MDK midkine (neurite growth-promoting factor 2) 

4306 100 NR3C2 nuclear receptor subfamily 3, group C, member 2 

4495 100 MT1G metallothionein 1G 

4499 100 MT1M metallothionein 1M 

4830 100 NME1 non-metastatic cells 1, protein (NM23A) expressed in 

5050 100 PAFAH1B3 platelet-activating factor acetylhydrolase, isoform Ib, 

gamma subunit 29kDa 

5111 100 PCNA proliferating cell nuclear antigen 

5984 100 RFC4 replication factor C (activator 1) 4, 37kDa 

6241 100 RRM2 ribonucleotide reductase M2 polypeptide 

6491 100 STIL SCL/TAL1 interrupting locus 

6696 100 SPP1 secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, 

early T-lymphocyte activation 1) 

6790 100 AURKA aurora kinase A 

7123 100 CLEC3B C-type lectin domain family 3, member B 

7153 100 TOP2A topoisomerase (DNA) II alpha 170kDa 

7203 100 CCT3 chaperonin containing TCP1, subunit 3 (gamma) 

7272 100 TTK TTK protein kinase 

8317 100 CDC7 cell division cycle 7 homolog (S. cerevisiae) 

8318 100 CDC45L CDC45 cell division cycle 45-like (S. cerevisiae) 

8480 100 RAE1 RAE1 RNA export 1 homolog (S. pombe) 
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Table A1 (continued) 

Entrez ID Frequency (%) Gene Symbol Gene Name 

8607 100 RUVBL1 RuvB-like 1 (E. coli) 

8914 100 TIMELESS timeless homolog (Drosophila) 

8985 100 PLOD3 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 

9055 100 PRC1 protein regulator of cytokinesis 1 

9133 100 CCNB2 cyclin B2 

9212 100 AURKB aurora kinase B 

9232 100 PTTG1 pituitary tumor-transforming 1 

9319 100 TRIP13 thyroid hormone receptor interactor 13 

9636 100 ISG15 ISG15 ubiquitin-like modifier 

9735 100 KNTC1 kinetochore associated 1 

9768 100 KIAA0101 KIAA0101 

9787 100 DLG7 discs, large homolog 7 (Drosophila) 

9833 100 MELK maternal embryonic leucine zipper kinase 

9837 100 GINS1 GINS complex subunit 1 (Psf1 homolog) 

9918 100 NCAPD2 non-SMC condensin I complex, subunit D2 

9928 100 KIF14 kinesin family member 14 

10051 100 SMC4 structural maintenance of chromosomes 4 

10112 100 KIF20A kinesin family member 20A 

10351 100 ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8 

10460 100 TACC3 transforming, acidic coiled-coil containing protein 3 

10535 100 RNASEH2A ribonuclease H2, subunit A 

10635 100 RAD51AP1 RAD51 associated protein 1 

10643 100 IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3 

11004 100 KIF2C kinesin family member 2C 

11065 100 UBE2C ubiquitin-conjugating enzyme E2C 

11130 100 ZWINT ZW10 interactor 

22827 100 PUF60 poly-U binding splicing factor 60KDa 

22974 100 TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis) 

23636 100 NUP62 nucleoporin 62kDa 

24137 100 KIF4A kinesin family member 4A 

25788 100 RAD54B RAD54 homolog B (S. cerevisiae) 

25928 100 SOSTDC1 sclerostin domain containing 1 

26586 100 CKAP2 cytoskeleton associated protein 2 

29127 100 RACGAP1 Rac GTPase activating protein 1 

51203 100 NUSAP1 nucleolar and spindle associated protein 1 

51659 100 GINS2 GINS complex subunit 2 (Psf2 homolog) 

54478 100 FAM64A family with sequence similarity 64, member A 

54892 100 NCAPG2 non-SMC condensin II complex, subunit G2 

55165 100 CEP55 centrosomal protein 55kDa 

55257 100 C20orf20 chromosome 20 open reading frame 20 

55732 100 C1orf112 chromosome 1 open reading frame 112 

55872 100 PBK PDZ binding kinase 

56992 100 KIF15 kinesin family member 15 

57405 100 SPC25 SPC25, NDC80 kinetochore complex component, homolog 

(S. cerevisiae) 

64151 100 NCAPG non-SMC condensin I complex, subunit G 

79005 100 SCNM1 sodium channel modifier 1 

79019 100 CENPM centromere protein M 

79581 100 GPR172A G protein-coupled receptor 172A 

79762 100 C1orf115 chromosome 1 open reading frame 115 

79801 100 SHCBP1 SHC SH2-domain binding protein 1 

84823 100 LMNB2 lamin B2 

142 99 PARP1 poly (ADP-ribose) polymerase family, member 1 

332 99 BIRC5 baculoviral IAP repeat-containing 5 (survivin) 

443 99 ASPA aspartoacylase (Canavan disease) 

471 99 ATIC 5-aminoimidazole-4-carboxamide ribonucleotide 

formyltransferase/IMP cyclohydrolase 

890 99 CCNA2 cyclin A2 
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Table A1 (continued) 

Entrez ID Frequency (%) Gene Symbol Gene Name 

790 99 CAD carbamoyl-phosphate synthetase 2, aspartate 

transcarbamylase, and dihydroorotase 

871 99 SERPINH1 serpin peptidase inhibitor, clade H (heat shock protein 47), 

member 1, (collagen binding protein 1) 

994 99 CDC25B cell division cycle 25 homolog B (S. pombe) 

1062 99 CENPE centromere protein E, 312kDa 

2949 99 GSTM5 glutathione S-transferase M5 

4288 99 MKI67 antigen identified by monoclonal antibody Ki-67 

4886 99 NPY1R neuropeptide Y receptor Y1 

9493 99 KIF23 kinesin family member 23 

9569 99 GTF2IRD1 GTF2I repeat domain containing 1 

9631 99 NUP155 nucleoporin 155kDa 

10894 99 LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 

11339 99 OIP5 Opa interacting protein 5 

25840 99 METTL7A methyltransferase like 7A 

29107 99 NXT1 NTF2-like export factor 1 

79888 99 AYTL2 acyltransferase like 2 

84981 99 MGC14376 hypothetical protein MGC14376 

898 98 CCNE1 cyclin E1 

1503 98 CTPS CTP synthase 

3627 98 CXCL10 chemokine (C-X-C motif) ligand 10 

4128 98 MAOA monoamine oxidase A 

4318 98 MMP9 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 

92kDa type IV collagenase) 

4940 98 OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa 

6659 98 SOX4 SRY (sex determining region Y)-box 4 

6772 98 STAT1 signal transducer and activator of transcription 1, 91kDa 

9123 98 SLC16A3 solute carrier family 16, member 3 (monocarboxylic acid 

transporter 4) 

10212 98 DDX39 DEAD (Asp-Glu-Ala-Asp) box polypeptide 39 

23492 98 CBX7 chromobox homolog 7 

55355 98 URLC9 up-regulated in lung cancer 9 

1434 97 CSE1L CSE1 chromosome segregation 1-like (yeast) 

5708 97 PSMD2 proteasome (prosome, macropain) 26S subunit, non-

ATPase, 2 

22880 97 MORC2 MORC family CW-type zinc finger 2 

23594 97 ORC6L origin recognition complex, subunit 6 like (yeast) 

51373 97 MRPS17 mitochondrial ribosomal protein S17 

1776 96 DNASE1L3 deoxyribonuclease I-like 3 

4320 96 MMP11 matrix metallopeptidase 11 (stromelysin 3) 

8662 96 EIF3B eukaryotic translation initiation factor 3, subunit B 

10095 96 ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa 

10403 96 NDC80 NDC80 homolog, kinetochore complex component (S. 

cerevisiae) 

10797 96 MTHFD2 methylenetetrahydrofolate dehydrogenase (NADP+ 

dependent) 2, methenyltetrahydrofolate cyclohydrolase 

51660 96 BRP44L brain protein 44-like 

57122 96 NUP107 nucleoporin 107kDa 

80308 96 FLAD1 FAD1 flavin adenine dinucleotide synthetase homolog (S. 

cerevisiae) 

1469 95 CST1 cystatin SN 

2335 95 FN1 fibronectin 1 

3624 95 INHBA inhibin, beta A 

5433 95 POLR2D polymerase (RNA) II (DNA directed) polypeptide D 

23213 95 SULF1 sulfatase 1 

79075 95 DCC1 defective in sister chromatid cohesion homolog 1 (S. 

cerevisiae) 

103 94 ADAR adenosine deaminase, RNA-specific 
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Table A1 (continued) 

Entrez ID Frequency (%) Gene Symbol Gene Name 

2191 94 FAP fibroblast activation protein, alpha 

5436 94 POLR2G polymerase (RNA) II (DNA directed) polypeptide G 

7004 94 TEAD4 TEA domain family member 4 

9688 94 NUP93 nucleoporin 93kDa 

54512 94 EXOSC4 exosome component 4 

81930 94 KIF18A kinesin family member 18A 

3832 93 KIF11 kinesin family member 11 

5202 93 PFDN2 prefoldin subunit 2 

6472 93 SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 

6944 93 VPS72 vacuolar protein sorting 72 homolog (S. cerevisiae) 

7371 93 UCK2 uridine-cytidine kinase 2 

9314 93 KLF4 Kruppel-like factor 4 (gut) 

10606 93 PAICS phosphoribosylaminoimidazole carboxylase, 

phosphoribosylaminoimidazole succinocarboxamide 

synthetase 

54517 93 PUS7 pseudouridylate synthase 7 homolog (S. cerevisiae) 

79980 93 DSN1 DSN1, MIND kinetochore complex component, homolog 

(S. cerevisiae) 

4237 92 MFAP2 microfibrillar-associated protein 2 

6626 92 SNRPA small nuclear ribonucleoprotein polypeptide A 

29901 92 SAC3D1 SAC3 domain containing 1 

762 91 CA4 carbonic anhydrase IV 

5348 91 FXYD1 FXYD domain containing ion transport regulator 1 

(phospholemman) 

23306 91 TMEM194 transmembrane protein 194 

54981 91 C9orf95 chromosome 9 open reading frame 95 

1890 90 ECGF1 endothelial cell growth factor 1 (platelet-derived) 

4017 90 LOXL2 lysyl oxidase-like 2 

4173 90 MCM4 minichromosome maintenance complex component 4 

4521 90 NUDT1 nudix (nucleoside diphosphate linked moiety X)-type motif 

1 

4751 90 NEK2 NIMA (never in mitosis gene a)-related kinase 2 

7704 90 ZBTB16 zinc finger and BTB domain containing 16 

9238 90 TBRG4 transforming growth factor beta regulator 4 

7102 89 TSPAN7 tetraspanin 7 

7965 89 JTV1 JTV1 gene 

23397 89 NCAPH non-SMC condensin I complex, subunit H 

5690 88 PSMB2 proteasome (prosome, macropain) subunit, beta type, 2 

11335 88 CBX3 chromobox homolog 3 (HP1 gamma homolog, Drosophila) 

4794 87 NFKBIE nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor, epsilon 

10248 87 POP7 processing of precursor 7, ribonuclease P/MRP subunit (S. 

cerevisiae) 

10376 87 TUBA1B tubulin, alpha 1b 

51512 87 GTSE1 G-2 and S-phase expressed 1 

84722 87 PSRC1 proline/serine-rich coiled-coil 1 

5993 86 RFX5 regulatory factor X, 5 (influences HLA class II expression) 

10974 86 C10orf116 chromosome 10 open reading frame 116 

54908 86 CCDC99 coiled-coil domain containing 99 

55226 86 NAT10 N-acetyltransferase 10 

2104 85 ESRRG estrogen-related receptor gamma 

2535 85 FZD2 frizzled homolog 2 (Drosophila) 

4001 85 LMNB1 lamin B1 

5138 85 PDE2A phosphodiesterase 2A, cGMP-stimulated 

6358 85 CCL14 chemokine (C-C motif) ligand 14 

6628 85 SNRPB small nuclear ribonucleoprotein polypeptides B and B1 

7045 85 TGFBI transforming growth factor, beta-induced, 68kDa 

7049 85 TGFBR3 transforming growth factor, beta receptor III 
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Table A1 (continued) 

Entrez ID Frequency (%) Gene Symbol Gene Name 

25903 85 OLFML2B olfactomedin-like 2B 

79866 85 C13orf34 chromosome 13 open reading frame 34 

5427 84 POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) 

5531 84 PPP4C protein phosphatase 4 (formerly X), catalytic subunit 

5725 84 PTBP1 polypyrimidine tract binding protein 1 

6185 84 RPN2 ribophorin II 

8228 84 PNPLA4 patatin-like phospholipase domain containing 4 

55131 84 RBM28 RNA binding motif protein 28 

1408 83 CRY2 cryptochrome 2 (photolyase-like) 

1462 83 VCAN versican 

3925 83 STMN1 stathmin 1/oncoprotein 18 

5033 83 P4HA1 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 

4-hydroxylase), alpha polypeptide I 

9134 83 CCNE2 cyclin E2 

9413 83 C9orf61 chromosome 9 open reading frame 61 

10926 83 DBF4 DBF4 homolog (S. cerevisiae) 

51092 83 SIDT2 SID1 transmembrane family, member 2 

55143 83 CDCA8 cell division cycle associated 8 

687 82 KLF9 Kruppel-like factor 9 

79134 82 TMEM185B transmembrane protein 185B 

3978 81 LIG1 ligase I, DNA, ATP-dependent 

64754 81 SMYD3 SET and MYND domain containing 3 

7852 80 CXCR4 chemokine (C-X-C motif) receptor 4 

80157 80 FLJ21511 hypothetical protein FLJ21511 

3014 79 H2AFX H2A histone family, member X 

55038 79 CDCA4 cell division cycle associated 4 

217 78 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) 

1675 78 CFD complement factor D (adipsin) 

4494 78 MT1F metallothionein 1F 

7329 78 UBE2I ubiquitin-conjugating enzyme E2I (UBC9 homolog, yeast) 

10537 78 UBD ubiquitin D 

25896 78 INTS7 integrator complex subunit 7 

1875 77 E2F5 E2F transcription factor 5, p130-binding 

3576 77 IL8 interleukin 8 

5412 77 UBL3 ubiquitin-like 3 

7076 77 TIMP1 TIMP metallopeptidase inhibitor 1 

55723 77 ASF1B ASF1 anti-silencing function 1 homolog B (S. cerevisiae) 

64943 77 NT5DC2 5'-nucleotidase domain containing 2 

1017 76 CDK2 cyclin-dependent kinase 2 

2819 76 GPD1 glycerol-3-phosphate dehydrogenase 1 (soluble) 

3248 76 HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 

9452 76 ITM2A integral membrane protein 2A 

288 75 ANK3 ankyrin 3, node of Ranvier (ankyrin G) 

813 75 CALU calumenin 

2189 75 FANCG Fanconi anemia, complementation group G 

5328 75 PLAU plasminogen activator, urokinase 

5351 75 PLOD1 procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 

5982 75 RFC2 replication factor C (activator 1) 2, 40kDa 

6338 75 SCNN1B sodium channel, nonvoltage-gated 1, beta (Liddle syndrome) 

7433 75 VIPR1 vasoactive intestinal peptide receptor 1 

9079 75 LDB2 LIM domain binding 2 

865 74 CBFB core-binding factor, beta subunit 

2960 74 GTF2E1 general transcription factor IIE, polypeptide 1, alpha 56kDa 

4501 74 MT1X metallothionein 1X 

6895 74 TARBP2 TAR (HIV-1) RNA binding protein 2 

27286 74 SRPX2 sushi-repeat-containing protein, X-linked 2 

56920 74 SEMA3G sema domain, immunoglobulin domain (Ig), short basic 

domain, secreted, (semaphorin) 3G 
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Table A1 (continued) 

Entrez ID Frequency (%) Gene Symbol Gene Name 

6414 73 SEPP1 selenoprotein P, plasma, 1 

2690 72 GHR growth hormone receptor 

3068 72 HDGF hepatoma-derived growth factor (high-mobility group 

protein 1-like) 

5987 72 TRIM27 tripartite motif-containing 27 

9603 72 NFE2L3 nuclear factor (erythroid-derived 2)-like 3 

29980 72 DONSON downstream neighbor of SON 

79833 72 GEMIN6 gem (nuclear organelle) associated protein 6 

7754 71 ZNF204 zinc finger protein 204 

633 70 BGN biglycan 

3131 70 HLF hepatic leukemia factor 

5437 70 POLR2H polymerase (RNA) II (DNA directed) polypeptide H 

9168 70 TMSB10 thymosin, beta 10 

10964 70 IFI44L interferon-induced protein 44-like 

63924 70 CIDEC cell death-inducing DFFA-like effector c 

93594 70 WDR67 WD repeat domain 67 
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