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Abstract 
 
Proteolytic processing of the β-amyloid precursor protein (APP) by α-, β-and γ-

secretase enzymes generating the amyloid-beta (Aβ) peptide and the APP intracellular 

domain (AICD) is a central event in Alzheimer’s disease (AD). Herewe show that in 

vitro CR decreases Aβ, AICD and full-length APP levels in human cell lines without 

affecting APP transcription and that some of these effects can be recapitulated by 

over-expressing the NAD+ 

  

dependent deacetylase SirT1 in our cell lines. Resveratrol, 

a SirT1 agonist, also has similar effects on APP metabolism. SirT1 and resveratrol 

however, do not affect full-length APP levels. In our cell lines, SirT1and resveratrol 

reduces secreted Aβ levels by increasing the α-secretase cleavage of APP and also 

possibly by affecting γ-secretase activity. Extending these studies to an in vivo setting, 

an AICD reporter Drosophila model of AD, shows that caloric restriction, Sir2 gain-

of-function and resveratrol treatment suppress AD-like rough-eye phenotype in the fly 

eyes. Finally to study the mechanism of CR and SirT1 mediated effects on APP 

metabolism in entire central nervous system, we created and characterized a novel 

Drosophila model of AD. We have shown that our model displays neuroanatomical 

and behavioral features that are characteristic of AD patients.  
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CHAPTER 1: INTRODUCTION 

Background and Significance: 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is considered to 

be the most common cause of dementia, especially in the elderly population. It affects a 

person’s memory, mood and behavior. It seriously affects a person’s ability to carry out 

daily activities (LaFerla and Oddo 2005). It involves parts of the brain that control 

thought, memory and language. Since age is the biggest risk factor for AD, Frequency of 

AD has increased over the past 40 years because people are living long enough to 

develop the disease (Evans, Smith et al. 1991). Taking the increases in life expectancy 

into consideration it has been predicted that by the mid century, the number of people 

living with AD will quadruple (Yaari and Corey-Bloom 2007). To date there is no cure 

for the disease. Current therapies only treat the symptoms and not the underlying causes 

of the disease. It is very important to understand the molecular events leading to the 

development of AD in order to predict who will develop AD and develop potential 

therapeutics.  

AD Pathology 

 The pathological features of AD include the presence of senile plaques, 

neurofibrillary tangles, along with a massive loss of neurons, primarily in the cerebral 

cortex and hippocampus. The senile or amyloid plaques are extracellular deposits 

composed of a small peptide (~4 kD) called β-amyloid (Aβ), surrounded by dystrophic 

neurites, reactive microglia and astrocytes(LaFerla and Oddo 2005).The neurofibrillary 

tangles are intraneuronal lesions consisting of 10nm thick paired-helical filaments. The 
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main component of these filaments is the hyperphosphorylated form of the microtubule-

binding protein Tau(Grundke-Iqbal, Iqbal et al. 1986; Goedert, Wischik et al. 1988). 

The amyloid-cascade hypothesis is the leading hypothesis for the cause of AD. 

This hypothesis proposes that Aβ accumulation is the initiating event for development of 

AD and that the tau pathology and other degenerative changes are a downstream 

consequence of the Aβ accumulation (Hardy and Selkoe 2002). Proposed approximately 

twenty years ago, considerable experimental evidence has confirmed a central role of Aβ 

in initiating the AD pathogenic cascade and argues that the neurodegenerative disease 

process, including the development of neurofibrillary tangles, is a consequence of 

imbalance between the generation and clearance of Aβ. The Aβ peptides are generated by 

proteolytic processing from a larger β-amyloid precursor protein (APP) (De Strooper and 

Annaert 2000). APP gene maps to the long arm of human chromosome 21 and codes for 

a type 1 integral membrane protein. APP can be proteolytically processed in different 

ways by specific secretase enzymes producing different fragments including the Aβ 

peptides of the amyloid plaques. 

Risk Factors of AD 

There are several risk factors for developing AD. Age, genetics and life history 

are some of the important risk factors for developing AD, of which, age is by far the most 

important. Ninety percent of AD cases are deemed late-onset AD (LOAD), when people 

develop the disease after 65 years of age.  

In addition to this age component, LOAD also has a genetic component. 

Polymorphisms in the ApoE gene have been consistently linked to LOAD. The ε4 allele 

of Apolipoprotein E is the major risk factor for a majority of late-onset AD cases (Bu 
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2009). In humans there are three different allelic forms of the APOE gene: ε2, ε3 and ε4. 

The ε4 allele frequency is 15% in general populations but is 40% in AD patients. 

Individuals with one ε4 allele are three to four times more prone to develop AD, than 

those without ε4 alleles {reviewed in (Bu 2009)}. Risk for developing AD increased 

four-fold and mean age at onset decreased from 84 to 68 years with twoε4 alleles in 

families with late onset AD. Thus APOE-ε4 gene dose is a major risk factor for LOAD 

(Corder, Saunders et al. 1993).  

Early onset Alzheimer’s disease (when people develop the disease before 65 years 

of age) depends on family history. Three genes are associated with early onset form of 

AD: APP (chromosome 21), Presenilin-1(chromosome 14) (PS-1), and Presinilin-2 (PS-

2) (chromosome 1). Mutations in these genes are inherited in an autosomal dominant 

manner. Individuals who carry these mutations are predisposed to develop AD at a 

relatively early age. Although these mutations account for ~5% of all AD cases, they all 

affect APP processing and Aβ production. Mutations in the APP gene on chromosome 21 

either increase total Aβ levels or just Aβ42 (the more neurotoxic form of the Aβ peptide) 

alone, and some mutations in the central part of the Aβ sequence lead to the formation of 

more dense aggrerates (Tanzi and Bertram 2005; Findeis 2007; Bertram and Tanzi 2008). 

Again, in Down's syndrome (DS, trisomy 21), an extra copy of chromosome 21 and of 

the APP gene results in increased APP expression as well as increase in Aβ levels, which 

lead to AD-like deposition of amyloid plaques in those DS patients (Findeis 2007).Most 

familial mutations in APP, Presenilin 1 and Presenilin 2 genes lead to over-production of 

Aβ42, a larger and more neurotoxic form of Aβ. There are several other risk factors for 

developing AD.  



  4 

Many studies have shown that vascular risk factors including diabetes, 

hypertension, dyslipidemia, and obesity are risk factors for developing dementia. In 

addition, people with depression have been shown to be at high risk for cognitive 

impairment. Population studies have reported that intake of antioxidants or 

polyunsaturated fatty acids reduce the incidence of dementia, and it has been reported 

that people who are cognitively, socially, and physically active have a reduced risk of 

cognitive impairment (Middleton and Yaffe 2009). Among other non-genetic factors 

influencing AD, recent studies strongly support the evidence that caloric intake may play 

a role in the relative risk for AD clinical dementia. Indeed, the effect of diet on AD 

pathogenesis has been an area of research that has produced promising results. Studies in 

different AD models lend support to the hypothesis that diet is a major risk factor and 

caloric restriction might help prevent the development of late onset AD. In fact it has 

been shown by several groups that caloric restriction decreases Aβ production (Wang, Ho 

et al. 2005; Qin, Chachich et al. 2006; Halagappa, Guo et al. 2007), which is produced by 

proteolytic processing of APP.  

Amyloid Precursor Protein 

 Mammalian APP has three different isoforms: APP, and APP Like Proteins 

APLP1 and APLP2 (Sprecher, Grant et al. 1993). APP gene is located on Human 

Chromosome 21 and codes for a type 1 integral membrane protein which has a large 

extracellular domain and a shorter intracellular domain and 7 membrane spanning 

transmembrane segments. APP is highly expressed in brain and in most other tissues and 

it belongs to a family of proteins found in vertebrates, Drosophila, and C. elegans.  The 

mammalian APP proteins are relatively ubiquitously expressed. The APP gene contains 
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19 exons, of which, exons 7, 8 and 15 can be alternatively spliced (De Strooper and 

Annaert, 2000) to produce different isoforms of the protein of which APP695, APP 750 

and APP771 are the most predominant. APP 750 and APP771

APLP1and APLP2 genes map to human chromosome 19 and chromosome 11 

respectively. Both APLP1 and APLP2 are also membrane-associated glycoproteins that 

can undergo Regulated-Intramembrane-Proteolysis (RIP) by γ-secretase in a manner 

similar to APP cleavage (Gu, Misonou et al. 2001). It has been shown that PS1 deficiency 

led to elevated levels of APLP1 C-terminal fragments in brains of animal models 

(Naruse, Thinakaran et al. 1998). Both APLP1 and APLP2 can be proteolytically cleaved 

by α- and γ-secretase producing the respective C-terminal fragments with can further 

undergo cleavage at the ε-site releasing the intracellular fragments (comparable to 

AICD). Studies in SH-SY5Y cells have shown that along with the intracellular fragment 

γ-secretase cleavage of APLP1 produces a p3 like fragment, where as APLP2 can 

produce an Aβ-like fragment and a p3-like fragment (Eggert, Paliga et al. 2004). Animal 

studies have shown that mice with single knock-out of APP (Zheng, Jiang et al. 1995), 

 contain an additional56 aa 

domain that is structurally and functionally related to Kunitz-type serine proteinase 

inhibitors (KPI)(Ponte, Gonzalez-DeWhitt et al. 1988). APP695 (containing 695 

aminoacid residues) is the most dominant form in neurons; whereas the other two 

isoforms are more prevalent in non-neuronal cells, especially in glial cells. APP is 

proteolytically processed in different ways to produce different fragments including the 

Aβ (Amyloid-beta) peptides of the amyloid plaques. Depending on whether Aβ peptide is 

producedor not, the proteolytic processing of APP is directed towards the non-

amyloidogenic pathway or amyloidogenic pathway.  
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APLP-1 (Heber, Herms et al. 2000), or APLP-2 (von Koch, Zheng et al. 1997) gene do 

not display any severe phenotype, suggesting that the mammalian APP gene family 

members have a redundant function. However, APLP-1(–/–)/APLP-2(–/–) and APP(–/–

)/APLP-2 (–/–) double knock-outs are lethal, but mice with APP(–/–)/APLP-1(–/–) 

double knock-outs are viable(Heber, Herms et al. 2000), suggesting that APLP-2 plays an 

important  role during embryonic development. 

Not much is known about the physiological functions of APP. Some studies have 

shown that the secreted fragments of APP that contain the KPI like domain are similar to 

the cell-secreted proteinase inhibitor known as protease nexin-2(PN2) (Van Nostrand, 

Wagner et al. 1989).APP can also inhibit some serine proteinases, like the prothrombotic 

enzymes factor XIa, factor IXa, factor Xa, and tissue factor: factor VIIa complex(Smith, 

Higuchi et al. 1990; Van Nostrand, Wagner et al. 1990; Schmaier, Dahl et al. 1993; 

Mahdi, Van Nostrand et al. 1995).These studies suggest that APP plays a regulatory role 

in the blood coagulation pathway. Recent studies have shown that over-expression of 

PN2/APP either in platelets or in brains of transgenic mice lead to inhibition of 

thrombosis and development of larger hematomas in experimental intracerebral 

hemorrhage suggesting APP plays a significant role in regulating cerebral thrombosis 

(Xu, Davis et al. 2005). Functions of other proteolytic fragments of APP have been 

described later.  

As mentioned earlier, APP (all the different isoforms) undergoes N- and O-

glycosylation within its extracellular/luminal domain. The N-glycosylated form of APP is 

localized in the endoplasmic reticulum (ER) and golgi and is referred to as the immature 

APP (ImAPP) and is not subjected to proteolysis by the secretases (Tomita, Kirino et al. 
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1998). The ImAPP is further transported through the golgi where it undergoes O-

glycosylation. This N- and O-glycsylated form is referred to as mature APP (mAPP). 

From the trans-Glogi network, mature and immature APP enter the late secretory 

pathway (Figure 1-1), where mAPP is subjected to cleavage by α− and/or β-secretases 

on the extracellular/lumenal domain and γ-secretase in the transmembrane domain (Small 

and Gandy 2006). It has been shown that APP695 is the main form of APP detected from 

whole brains indicating that Aβ is mainly generated from neuronal cells. Active β-

secretases are highly concentrated in the late secretory pathway, especially in the 

endosomal-lysosomal pathway, where Aβ is generated from mAPP (Figure 1-1). Thus 

Aβ generation is closely related to APP trafficking in the cell, especially in 

neurons(Small and Gandy 2006). The C-terminal fragment of APP contains 

phosphorylation sites and functional motifs that play an important role in the regulation 

of its metabolism, trafficking, and function.  Cleavage of mAPP by α- and β-secretases 

can potentially produce three different C-terminal fragments (C99, C89, and C83; 

numbers indicate amino acid number) in the brain.Both C99 and C89 (also referred to as 

CTFβ and CTFβ′)are products of cleavage by β -secretase cleavage of APP and can be 

producedbased on the abundance of the enzyme whereas α-secretase cleavage produces a 

slightly bigger fragment (C83 or CTFα)(Liu, Doms et al. 2002). Some APP CTFs are 

phosphorylated at Thr668

APP is also suggested to be a part of several physiological processes including in 

cell proliferation, cell survival, neuroprotection, enhancement of memory, neuronal 

 and detected as phosphopeptides pC99, pC89, and 

pC83(Buxbaum, Thinakaran et al. 1998). The phosphorylation state of APP seems to be 

important for its trafficking functions.  
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excitability and regulation of synaptic plasticity (Ma, Bagnard et al. 2008). It has been 

further shown that over-expression of sAPPα (the secreted fragment of APP released 

from α-scretase cleavage) was sufficient to recover anatomical, behavioral and 

electrophysiological abnormalities of APP-deficient mice (Ring, Weyer et al. 2007) 

suggesting that sAPPα has a neuroprotective function. sAPPα also controls neural stem 

cell division in the adult subventricular zone (Conti and Cattaneo 2005). The secreted 

fragments of APP have also been reported to stimulate neural stem cell proliferation 

(Hayashi, Kashiwagi et al. 1994).  

Regulated Intramembrane Proteolysis of APP 

Regulated Intramembrane Proteolysis (RIP) involves several proteases that cleave 

different regions of the membrane bound APP protein. The initial cleavage is referred to 

as ectodomain shedding and occurs within the ectodomain at a peptide bond close to the 

transmembrane domain (TMD). Shedding releases the ectodomain outside the cell and 

generates a membrane-bound stub, which then undergoes a second cleavage within its 

TMD, called intramembrane proteolysis. Members of the disintegrin and metalloprotease 

(ADAM) family, matrix metalloproteases and the aspartyl proteases β-site APP-cleaving 

enzymes 1 and 2 (BACE1 and BACE2) carry out the ectodomain-shedding step 

(Lichtenthaler and Steiner 2007). Depending on whether Aβ peptide is produced or not, 

the proteolytic processing of APP is directed towards the non-amyloidogenic pathway or 

amyloidogenic pathway. The principal ectodomain proteolytic cleavage of APP is 

performed by α-secretase. The α-secretase cleaves APP between Lys16 and Leu 17 

(residues 612 and 613 of APP) of the Aβ sequence itself and therefore precludes the 

generation of Aβ peptide, the non-amyloidogenic pathway.α-secretase activity is a 
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carried out by a family of zinc metalloproteinases that include several members such as 

TACE/ADAM17, ADAM9, ADAM10 and MDC-9.  

In amyloidogenic processing, APP is cleaved initially by β-secretase. The major 

neuronal β-secretase is a transmembrane aspartyl protease termed BACE1 (β-site APP-

cleaving enzyme 1)(Vassar 2004). BACE1 cleaves at the N-terminus of the Aβ sequence 

generating a soluble fragment called sAPPβ that is released outside the cell and a C-

terminal fragment called C99 or CTFβ that remains tethered to the membrane (Figure 1-

2). BACE1 can also cleave within the Aβ domain between Tyr10 and Glu11

The proteolytic products of the amyloidogenic and non-amyloidogenic processing 

pathways, CTFα and CTFβ fragments, are subsequently cleaved within the 

transmembrane domain by γ-secretase to release Aβ (4 kDa) and p3 (3 kDa) peptides, 

respectively. These fragments are also released outside of the cell. In addition to Aβ, γ-

secretase cleavage generates a cytoplasmic polypeptide termed as APP Intra Cellular 

Domain (AICD) (Thinakaran and Koo 2008) (Figure 1-2). γ-secretase activity is 

mediated by large protein complex composed of four different components: presenilin-1 

or -2, nicastrin, APH-1, and PEN-2(Iwatsubo 2004). γ-Secretase cleaves CTFβ at 

multiple sites, generating Aβ peptides ranging in length from 38 to 43 residues(Selkoe 

and Wolfe 2007). Almost 90% of secreted Aβ is in the Aβ

 (β′-cleavage 

site) (Thinakaran and Koo 2008).The high neuronal expression of BACE1 preferentially 

channels APP through the amyloidogenic processing pathway in the brain. 

40 form, whereas Aβ42 

accounts for <10% of secreted Aβ. The majority of familial AD-linked APP mutations 

are located C-terminal of the Aβ domain, close to the γ-secretase cleavage sites, increase 

Aβ42to Aβ40 ratio. Mutations in presenilin-1 and -2 also influence γ-secretase cleavage in 
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a way that variably influence the cleavage site specificity, in general favoring cleavage at 

position 42 relative to that at position 40, thus increasing the Aβ42/40 ratio(Selkoe and 

Wolfe 2007). 

Other than α-, β-, and γ-secretase cleavage, APP also undergoes cleavage at Leu-

49 residue of the Aβ sequence this is referred to as the ε-site. This site is C-terminal to 

the γ-secretase cleavage site. Cleavage at the ε-site, occurs in the late secretory pathway 

(Weidemann, Eggert et al. 2002). Expression of presenilin-1 mutants decreases the level 

of ε-cleavage and therefore Aβ production (Weidemann, Eggert et al. 2002). This 

cleavage is also sensitive to the γ-secretase inhibitors MDL28170 and L-685,458, 

suggesting that ε-cleavage is also a function of γ-secretase. 

In non-neuronal cells, APP is internalized soon after arrival at the cell surface. 

The YENPTY internalization motif near the C terminus of APP (residues 682–687 of the 

APP695 isoform) is required for internalization. Following endocytosis, APP is delivered 

to endosomes. Mutations within the YENPTY endocytosis motif selectively inhibit APP 

internalization and decrease Aβ generation(Perez, Soriano et al. 1999). The YENPTY and 

the flanking region serve as the binding site for many cytosolic adaptors that contain 

phosphotyrosine-binding domains, including Fe65, Fe65L1, Fe65L2, Mint1 (also called 

X11α), Mint2, Mint3, Dab1, and JNK (c-Jun N-terminal kinase)-interacting protein 

family members. It has been shown that over-expression of Mint1, Mint2, or Fe65 

reduces Aβ generation and deposition in the brains of transgenic mice, strongly 

suggesting that these adaptors play an important role in regulating APP processing in the 

nervous tissue(Miller, McLoughlin et al. 2006).Specifically, Fe65 stabilizes the highly 
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labile AICD, which may serve as a regulatory step in modulating the physiological 

function of AICD(Thinakaran and Koo 2008). 

AICD is produced in both amyloidogenic and non-amyloidogenic processing of 

APP. There are various AICD isoforms corresponding to different cleavage sites on APP 

(Figure 1-2). All these isoforms contain the YENPTY motif that is required for 

interaction of AICD with different adaptor proteins. Phosphorylation of AICD has been 

shown to modify its binding affinity with these adaptor proteins that contain the 

phosphotyrosine interaction domains (PID) like Fe65 family (Fe65, Fe65L1 and Fe65L2) 

(Fiore, Zambrano et al. 1995), the X11 family (X11, X11L and X11L2) (Borg, Ooi et al. 

1996)etc.The AICD sequence contains eight potential phosphorylation sites. It has been 

reported that seven of the eight sites(Y653, S655, T668, S675, Y682, T686 and Y687) 

were phosphorylated in APP from brains of AD patients (Lee, Kao et al. 2003).  

Phosphorylation of the Y682 residue has been shown to decrease the binding of Fe65 and 

X11 (Zambrano, Bruni et al. 2001). On the other hand, phosphorylation at T668 is 

required for Fe65 binding and hence for AICD transcriptional activity (Chang et al. 

2006). Fe65 seems to be essential for the nuclear translocation of AICD and variants of 

AICD mutated at the Fe65 interaction site remains largely cytosolic (Kimberly et al. 

2001, Kinoshita et al. 2002a). Fe65 also interacts with a specific histone 

acetyltransferase, TIP60, and that both these proteins co-localize with AICD in the 

nucleus and can regulate the transcription of specific genes (Cao and Sudhof 2001). This 

property of AICD has been utilized to study the production of AICD and therefore as a 

monitor of APP proteolysis and APP metabolism in a cell culture model (Zhang, 

Khandelwal et al. 2007)(Figure 1-3).  
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Expression of several genes can be regulated by AICD. Few of these include 

KAI1, the prostate cancer anti-metastasis gene; glycogen synthase kinase 3β (GSK3β), 

involved in tau phosphorylation; BACE and Neprilysin involved with Aβ degradation; 

p53involved with tumor suppression; HES1 involved with differentiation; and LRP1, 

EGFR, ACE1, and ACE2 involved with thymidylate synthase (Kim et al., 2003; 

Sapountzi et al., 2006; Ryan and Pimplikar, 2005; Hebert et al.., 2006,reviewed in 

(Muller, Meyer et al. 2008)).  

α-secretase 

Processing of APP by α-secretase involves cleavage of APP at Lys16 within the 

Aβ sequence. This cleavage can occur in the late Golgi compartment (De Strooper, 

Umans et al. 1993; Kuentzel, Ali et al. 1993) or at the plasma membrane in 

microdomains known as caveolae (Ikezu, Trapp et al. 1998). As mentioned earlier, α-

secretase cleavage of APP leads to the secretion of the soluble fragment sAPPα into the 

medium in cell culture or is released out of the cell in vivo. Studies have repeatedly 

shown that hydroxamic acid based active-site directed compounds like batimastat (BB94) 

and TAPI-2 can inhibit the α−secretase cleavage of APP {(Arribas et al., 1996; Parvathy 

et al., 1998a; Racchi et al., 1999b) reviewed in (Allinson, Parkin et al. 2003)}. In 

addition,activation of second messengers, specifically protein kinase C (PKC) with 

phorbol esters increases α-secretase activity thus upregulating sAPPα  secretion, and 

leading to a significant decrease in Aβ formation (Jacobsen, Spruyt et al. 1994). The 

different members of α-secretase are ADAM9, ADAM10 and ADAM 17. These are a 

part of adisintegrin and metalloproteinase (ADAM) domain family of proteins, which 

combines features of both cell surface adhesion molecules and proteinases. Like APP, 
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ADAMs are also type I integral membrane proteins with a multi-domain structure 

(Figure 1-4). Typically, they consist of an N-terminal signal peptide, followed by a pro-

domain containing a “cysteine switch”. At the C-terminus of the pro-domain is a cleavage 

site for the pro-hormone convertases, followed by a catalytic domain containing the 

HEXXH zinc-binding motif, a cysteine-rich/ disintegrin-/EGF-like domain. This large N-

terminal domain is followed by a hydrophobic transmembrane domain, and then a short 

cytoplasmic domain {reviewed in (Allinson, Parkin et al. 2003)}. ADAM 17 is also 

known as TNF-α-converting enzyme (TACE; ADAM-17). It is responsible for the 

release of the inflammatory cytokine tumor necrosis factor (TNF) from its membrane-

bound precursor pro-TNF(Black, Rauch et al. 1997). ADAM10 is constitutively 

expressed in astrocytes in the normal and inflamed human CNS (Kieseier, Pischel et al. 

2003), while ADAM10 and ADAM-17 are highly expressed in microglia (Nuttall, Silva 

et al. 2007). It has been shown that in primary embryonic neurons cultured from TACE 

knockout mice, there was a deficiency in the phorbol-ester induced release of sAPPα 

secretion (Buxbaum, Koo et al. 1993) indicating that TACE is indeed an α-secretase. 

Studies also strongly support the involvement of ADAM10 in the α−secretase cleavage 

of APP. Studies have shown that ADAM10 protein levels are significantly reduced in the 

platelets of sporadic AD patients. This correlates with the decrease in sAPPα levels in 

platelets and cerebrospinal fluid (CSF) of AD patients (Colciaghi, Borroni et al. 2002).  A 

recent study in human glioblastoma cells over-expressing of ADAM9, ADAM10 and 

ADAM 17 together with a RNAi knockdown of endogenous ADAM9, ADAM10 and 

ADAM 17 showed that all three enzymes are involved to the same extent in the α-

secretase cleavage of APP (Asai, Hattori et al. 2003). 
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β−secretase 

β-Secretase cleavage of APP initiates the amyloidogenic pathway. β-secretase can 

cleave APP at two sites, the β-site (Met671–Asp672) and the β'-site (Tyr681–

Glu682).Cleavage at the β-site is the rate-limiting step in Aβ production, generating a 

soluble APP fragment (sAPPβ) and two different fragments C99 and C89 (also referred 

to as CTFβ and CTFβ′) based on the abundance of the enzyme. The C -terminal fragment 

can be further subjected to the intramembranous γ-secretase cleavage around APP 

residues 711–713 to produce Aβ. Studies have shown that β-secretase is widely 

expressed in many tissues but higher level of expression has been observed in the brain 

(Haass, Schlossmacher et al. 1992; Seubert, Oltersdorf et al. 1993). It is a type-1 

transmembrane aspartyl protease, and has been shown to cleave only membrane-bound 

substrates or substrates closely associated with a membrane-bound protein (Figure-1-5). 

APP constructs lacking the transmembrane domain are not cleaved in cell culture (Citron, 

Teplow et al. 1995). The BACE family includes two highly homologous (~60% 

similarity) type 1 transmembrane aspartyl proteases BACE (β-site APP-cleaving enzyme) 

1 and 2 both of which exhibit β-secretase activity. Both BACE1 and BACE2 are 

transmembrane proteins and can cleave APP at the β-site, but BACE2 preferentially 

cleaves between amino acids Phe690 and Phe691 or Phe691 and Ala692

BACE1 contains two active motifs in its luminal domain that harbor the signature 

sequence of aspartyl proteases (Bennett, Denis et al. 2000). For maturation, nascent 

 of APP, within the Aβ 

sequence (Farzan, Schnitzler et al. 2000). A large body of literature suggests that BACE1 

is the major β-secretase responsible for Aβ generation in brain {reviewed in (Vassar 

2004)}.  
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BACE1 is transported through the secretory pathway, subjected to complex 

glycosylation, and are processed by a furin-like pro-protein convertase (Benjannet, 

Elagoz et al. 2001; Walter, Fluhrer et al. 2001).  BACE1 is found mainly in acidic 

compartments such as the trans-Golgi network and endosomes (Benjannet, Elagoz et al. 

2001). Besides APP, BACE 1can also cleave other proteins. Some of the other targets of 

BACE1 include sialyl transferase ST6Gal I, the adhesion protein P-selectin glycoprotein 

ligand-1 (PSGL-1), and APP-like proteins (APLP1 and APLP2) {reviewed in 

(Westmeyer, Willem et al. 2004)}.  

It has been shown that targeted deletion of BACE1 in APP transgenic mice 

completely abolishes the production and deposition of Aβ(Citron, Teplow et al. 1995), 

confirming the fact that BACE1 is the only β-secretase. In TG2576 mice that over-

express APP, the deletion of BACE gene rescues the Aβ-dependent hippocampal 

memory deficits (Ohno, Sametsky et al. 2004). Expression of BACE is upregulated in 

many AD cases. Τhe Swedish APP double mutation, located at -2 and -1 (Lys670

Asn/Met671

It has been shown that abolition of BACE expression did not have a drastic effect 

on model organisms. BACE knockout mice have been shown to be viable and fertile, but 

have motor neuron myelin defects (Muirhead, Meyerowitz et al. 1992). On the other 

hand, BACE depletion abolishes A

Leu) of the β-secretase site enhances the proteolytic efficiency of β-

secretase causing a strong increase in Aβ production(Citron, Teplow et al. 1995). BACE 

cleaves APP with the Swedish FAD-causing mutation (APPswe) 10- to 100-fold more 

efficiently than wild-type APP. 

β production in APP over-expressing mice (Citron, 

Teplow et al. 1995). Therefore BACE can be an excellent target for treatment of AD. 
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Over the past decade several small molecule inhibitors have been developed, that have 

the ability to cross the blood-brain barrier and also retain the potency to decrease Aβ 

generation {reviewed in (Silvestri 2009)}. However, the therapeutics are not yet available 

for routine AD treatment.  

γ-secretase 

α− and β− Secretase cleavage of APP produces the soluble fragments sAPPα and 

sAPPβ that are released into the extracellular matrix and the C-terminal fragments CTFα 

and CTFβ that remain tethered to the membrane. Both CTFα and CTFβ are subsequently 

cleaved within their transmembrane domain by γ-secretase to produce the short peptide 

p3 from CTFα, and the full-length Aβ from CTFβ, in addition to the release of the APP 

intracellular domain (AICD) from both CTFα and CTFβ

An early study showed that absence of presenilin1 led to almost complete loss of 

Aβ peptide generationin neurons (De Strooper, Saftig et al. 1998). This study provided 

the first clear evidence that presenilins constitute an important part of γ-secretase. 

Presenilins are aspartyl proteases, where the catalytic site is catalytic site deeply in their 

large hydrophobic cores (Wolfe, Xia et al. 1999).  Presenilins are transmembrane proteins 

with 8 or 9 transmembrane domains. It can be proteolytically cleaved to produce 

anamino-terminal (~27- to 30-kDa NTF) and a carboxy-terminal fragment(~16- to 18-

kDa CTF) (Spasic, Tolia et al. 2006). There are some studies suggesting that presenilin 

can form homodimers (Schroeter, Ilagan et al. 2003). Nicastrin is a 130-kDa type I 

integral membrane protein that is highly glycosylated (Yu, Nishimura et al. 2000). Aph-1 

. γ-secretase is a multimeric 

complex composed of four proteins: presenilin1 (PS1), Pen2, Aph-1 and nicastrin (NCT) 

(Figure 1-6). The presence of these four proteins is required for γ-secretase activity.  
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is a seven transmembrane domain protein with the carboxy-terminus located in the 

cytoplasm (Fortna, Crystal et al. 2004). Pen-2 has a hairpin-like structure with two 

transmembrane domains and both the amino- and carboxy- termini are located on the 

lumenal/cytoplasmic side of the domain(Crystal, Morais et al. 2003).  

It has been shown that all four γ-secretase proteins co-migrate in non-denaturing 

electrophoresis gels, and absence of any of the four proteins results in retention of the 

other components in the endoplasmic reticulumor their rapid degradation and therefore 

loss of γ-secretase activity, indicating that all the four components for γ-secretase 

function (De Strooper 2003). 

Presenilin cleaves transmembrane domains of many proteins that have a type I 

conformation of the transmembrane domain (amino terminus oriented to the extra-

cellular side of the membrane) and a short (<50 AA) cytoplasmic domain like APP and 

Notch. In case of Notch, cleavage is triggered by ligand binding, whereas, in case of 

APP, it is seems to be constitutive. There are two presenilin family members, PS1 and 

PS2. Mutations in both PS1 and PS2 are associated with familial AD (FAD) (Haass 

2004). Both these mutations affect the cleavage specificity of γ-secretase and increase the 

production of the longer and more neurotoxic form of Aβ, Aβ42. The effect of presenilin 

mutations is the same as that of the FAD mutations reported at the C-terminal fragment 

of APP (Scheuner, Eckman et al. 1996). Mutations in PS1 seem to be the predominant 

cause of FAD, as more than 150 FAD mutations have been identified in this gene 

compared to only few mutations in the PS2 gene (Scheuner, Eckman et al. 1996). 

Compared to PS1, PS2 has a lower neuronal expression and lower specific activity 

(Sherrington, Froelich et al. 1996; Bentahir, Nyabi et al. 2006). In the absence of PS1 and 
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PS2, the production of Aβ is abolished (Herreman, Serneels et al. 2000; Zhang, Nadeau et 

al. 2000). Thus, presenilins are considered to be the catalytic subunits of the complex.γ-

secretase substrates are initially recognized by NCT, which is believed to identify the free 

N-terminus of a γ-secretase substrate resulting in shedding part of the ectodomain of the 

substrate (Struhl and Adachi 2000; Shah, Lee et al. 2005). The rest of the substrate is the 

recognized and bound by PS. It has been reported that GXGD active-site motif (Leu383

As mentioned earlier, γ-secretase can cleave a variety of substrates that have a 

type-I structure. γ-secretase cleavage occurs at different positions in the membrane 

domain of its substrates, resulting in the generation of a series of small peptides (Aβ,Nβ, 

etc.), which are secreted at the extracellular side of the membrane, along with a larger 

polypeptide that is released at the intracellular side (AICD, NICD etc). These fragments 

have been shown to have transcriptional transactivation properties and can regulate the 

expression of specific genes. Some of the other functions of γ-secretase include β-catenin 

 in 

PS1) is critical for APP/Notch substrate selectivity (Kornilova, Bihel et al. 2005). PEN-2 

is required for the stabilization of the PS fragments in the complex (Hasegawa, Sanjo et 

al. 2004). Aph-1 has been shown to stabilize NCT. The four subunits of γ-secretase 

assemble into a functional complex in the early compartments of the secretory pathway. 

In the early compartments of the secretory pathway, NCT and APH-1 form an initial 

complex, which stabilizes the PS holoprotein. Finally, PEN-2 assembles into this ternary 

complex and triggers endoproteolysis of PS. When assembly is completed, the complex 

travels to its functional sites at the plasma membrane and the late compartments of the 

secretory pathway. Complex formation is tightly regulated and depends on the 

availability of the individual subunits {reviewed in (Ono, Kanatsu et al. 1989)}.  
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signaling (Kang, Soriano et al. 2002) and Ca2+ signaling etc. {reviewed in (LaFerla 

2002)}.  

Aβ Μetabolism 

A large body of literature suggests that the amyloid β-protein (Aβ) plays a central 

role in Alzheimer’s disease (AD). Aβ is derived from the β-amyloid precursor protein 

(APP) by the action of two aspartyl proteases referred to as β- and γ-secretases. 

Depending on where γ-secretase cleaves CTFβ, three different forms of Aβ, comprising 

38, 40 or 42 amino acid residues, respectively, can produced. The relative amount of 

Aβ42 formed is particularly crucial, because this longer and more neurotoxic form of Aβ 

is far more prone to oligomerize and form amyloid fibrils than is the shorter, more 

abundant Aβ40 isoform (Burdick, Soreghan et al. 1992; Jarrett, Berger et al. 1993). Aβ is 

a normally produced in the body (Shoji, Golde et al. 1992)l. 1992), but in some 

individuals, the over-production of all Aβ species, or an increased proportion of the Aβ42 

Aβ is a natural product and is present in the brains and cerebrospinal fluid (CSF) 

of normal humans throughout life (Walsh, Tseng et al. 2000). Therefore, the mere 

presence of Aβ does not cause neurodegeneration. Neurodegenration observed in AD is 

hypothesized to be a result of synaptic dysfunction caused by hydrophobic aggregates 

form due to self association of Aβ peptides (Geula, Wu et al. 1998). Within the amyloid 

plaques that characterize AD, some of the Aβ peptides are organized into 6–10 nm 

diameter insoluble fibrils, and in vitro synthetic Aβ can form amyloid fibrils similar to 

those present in human brain (Castano, Ghiso et al. 1986; Kirschner, Inouye et al. 1987). 

isoform, appears sufficient to cause early onset AD (Rovelet-Lecrux, Hannequin et al. 

2006). 
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Most studies on AD pathology suggest that aggregation of Aβ is essential for toxicity and 

neurodegeneration. But in many patients dying with AD, it has been observed that there 

is a relatively weak correlation between the severity of dementia and the density of 

fibrillar amyloid plaques and that amyloid plaque number does not correlate well with 

severity of dementia (Katzman 1986). Some studies suggest a strong correlation between 

soluble Aβ levels and synaptic plasticity and cognitive impairment (Walsh, Tseng et al. 

2000). In a non-AD mouse model, Aβ oligomers have been shown to inhibit long-term 

potentiation (LTP), enhance long-term depression (LTD) and reduce dendritic spine 

density (Shankar, Li et al. 2008). 

Over a decade the amyloid hypothesis of Alzheimer’s disease confirms a central 

role of Aβ in initiating the AD pathogenic cascade and argues that the neurodegenerative 

disease process, including the development of neurofibrillary tangles, is a consequence of 

imbalance between the generation and clearance of Aβ (Hardy and Allsop 1991). Low 

density lipoprotein receptor-related protein (LRP) mediates the efflux of Aβ from the 

brain to the periphery (Hammad, Ranganathan et al. 1997). LRP is a multifunctional 

signaling scavenger receptor that can bind a variety of ligands including apolipoprotein E 

(apoE), α2-macroglobulin (α2M), APP and Aβ (Kang, Pietrzik et al. 2000). LRP binding 

Aβ mediates the clearance of Aβ. When undergoing LRP-mediated export from the brain, 

Aβ forms a complex with LRP ligands α2M or apoE on the albuminal side of the 

endothelium. These complexes bind to LRP, are internalized into late endosomes and are 

then either delivered to lysosomes, where they are degraded, or undergo transcytosis 

across the blood brain barrier into the plasma {(Kang, Pietrzik et al. 2000), also reviewed 

in (Cam and Bu 2006)}. Alternatively, Aβ can also be exported from the brain by directly 



  21 

binding LRP, although this route of export into the plasma appears to be limited to 

soluble forms of Aβ {reviewed in (Tanzi and Bertram 2005)}.  

In addition to receptor-mediated clearance, Aβ can also be degraded directly by 

certain proteases. To date, the proteases suggested to play the most important role in 

proteolyzing Aβ in vivo are insulin-degrading enzyme (IDE) and neprilysin {reviewed in 

(Selkoe 2001)}. IDE degrades a variety of substrates that have the tendency of forming β-

pleated sheet (eg. insulin, amylin and Aβ). IDE knockout animals have shown increased 

levels of cerebral Aβ as well as features of type-2 diabetes (Farris, Mansourian et al. 

2004). On the other hand two-fold increases in endogenous IDE levels have been shown 

to profoundly diminish cerebral Aβ deposition (Leissring, Farris et al. 2003). IDE has 

also been shown to degrade the AICD, which is thought to play an important role in 

nuclear signaling and transcriptional regulation in vitro and in vivo (Edbauer, Willem et 

al. 2002).  

There are several pieces of evidence that suggest that AD pathology might result 

due to reduced Aβ clearance and not due to increased production of the Aβ peptide. For 

example the Dutch, Flemish, Italian, and Arctic mutations in the amyloid precursor 

protein (APP) gene encode changes within the sequence of the amyloid beta peptide (Aβ) 

and cause presenile cerebral amyloid angiopathy, cerebral parenchymal amyloidosis, or 

both. These disorders are caused by accumulation of Aβ, with no evidence of increased 

Aβ40 or Aβ42 production. It actually happens due to changes in catabolism of Aβ in the 

brain by neprilysin. These mutations thus extend the half-life of Aβ in the brain (Tsubuki, 

Takaki et al. 2003).  
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Aβ is degraded in microglia via a pathway sensitive to cytochalasin D and the 

scavenger receptor inhibitor, fucoidan. ApoE is known to lower the degradation of Aβ 

(Cole, Beech et al. 1999). As mentioned earlier, Aβ can also be degraded directly by IDE 

and neprilysin. Other candidate enzymes proposed to regulate Aβ catabolism include 

angiotensin-converting enzyme (ACE), some matrix metalloproteinases (MMPs), 

plasmin and, indirectly, thimet oligopeptidase endopeptidase (Carson and Turner 2002). 

There is some evidence suggesting that Aβ clearance is decreased due to reduced 

sensitivity to insulin or IGF-I in the brain, as observed in aging, obesity, and diabetes. 

Such a decrease involves the insulin receptor cascade and can also increase amyloid 

toxicity. Insulin and IGF-I may modulate brain levels of insulin degrading enzyme, which 

would also lead to an accumulation of Aβ amyloid (Messier and Teutenberg 2005). 

Caloric Restriction, Aging and Neurodegeneration 

AD is the major form of dementia with advancing age. However, the molecular 

events responsible for the development of LOAD have not been clearly defined. Aging 

can be a reflection of the progressive functional decay of not just one but a complex 

ensemble of physiological functions. Since the initial study (McCay, Crowell et al. 

1989), it has been repeatedly shown that diet strongly influences the incidence and 

outcome in major age-related diseases including diabetes, obesity and vascular disease. 

Advances in understanding aging processes and their consequences are leading to the 

development of therapies to slow down or reverse adverse changes that were initially 

considered to be “normal” aging and processes that underlie multiple age-related 

conditions. Since advanced age is the biggest risk factor for late onset AD, studies aimed 

at investigating the effects of aging therapies like caloric restriction on APP metabolism 
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has received a lot of attention over the past few years. Chronic caloric restriction (CR) 

(“under nutrition without malnutrition”), when started in early life or adult life, 

substantially extends lifespan in rodents as well as in multiple invertebrate species 

including primates (Roth, Ingram et al. 1999). The fact that this single intervention slows 

multiple age-related changes, delays the onset of cancer and multiple age related 

pathologies, and extends life span is consistent with the idea that one of few mechanisms 

modulated by caloric restriction, control the rate of multiple aging changes and may be 

potentially controllable by other interventions as well (Hadley, Lakatta et al. 2005). 

Chronic CR in nonhuman primates has been shown to produce similar physiological 

changes as those in rodents (Weindruch 1996; Higami, Yamaza et al. 2005). There is also 

evidence that periodic food deprivation in mice, produced by every other day intermittent 

feeding, may induce similar physiologic effects over a period of weeks to those of caloric 

restriction even when average daily intake is different from ad libitum intake (Anson, 

Guo et al. 2003). After a 20-year study it has been very recently reported that CR delayed 

aging-related deaths in Rhesus monkeys, and also reduced the incidence of diabetes, 

cancer, cardiovascular disease, and brain atrophy(Colman, Anderson et al. 2009). Caloric 

restriction has also been shown to improve cellular response to stress in an in vitro model 

of caloric restriction (de Cabo, Furer-Galban et al. 2003). Molecular and physiological 

mechanisms proposed to explain the effect of CR on lifespan is closely related to the ones 

that have been proposed to regulate life span by different groups of investigators. They 

include reduction of oxidative damage, increased metabolic efficiency, decreased 

apoptosis, lowered glucose levels and most importantly sirtuin activation. 
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 Diet, as mentioned earlier is also a major environmental factor in brain aging. It is 

now well established, in every species tested to date (yeast, roundworm, rodents, and 

monkeys), that dietary caloric restriction confers health beneficial effects like slowing 

down many age dependent processes and extending the lifespan. It is well established that 

when most types of cells, including neurons, are exposed to a mild stress they increase 

their ability to resist more severe stress. This" preconditioning" phenomenon involves up-

regulation of genes that encode cytoprotective proteins such as heat-shock proteins and 

growth factors. It has been reported that a similar beneficial cellular stress response can 

be induced in neurons throughout the brain by a "mealskipping" dietary restriction (DR) 

regimen in rats and mice. DR is effective in protecting neurons and improving functional 

outcome in models of stroke, Alzheimer's, Parkinson's and Huntington's diseases. DR 

induces an increase in the levels of brain-derived neurotrophic factor (BDNF) and heat-

shock proteins in neurons. DR also stimulates neurogenesis in the hippocampus, and 

BDNF plays a role in this effect of DR. Animal studies suggest that it may be possible to 

reduce the risk for age-related neurodegenerative disorders through dietary and 

behavioral modifications that act by promoting neuronal plasticity and survival (Mattson 

et al.,2004). Experimental data suggest that CR  regulates adult neuronal stem cells, 

increases adult neurogenesis in young adult rats (Lee, Seroogy et al. 2002) and reduces 

age-related declines in neurogenesis in older animals (Bondolfi, Ermini et al. 2004). 
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Caloric restriction and AD  

CR seems to slow down some of the destructive processes that take place in cells 

and tissues with aging. During the aging process, cells in the brain encounter a 

cumulative burden of oxidative, metabolic and inflammatory stress associated with 

numerous modifications of proteins, lipids and nucleic acids (Esiri 2007). All these 

modifications are exacerbated in neurodegenerative disease; such as Alzheimer's disease 

where neuronal injury involves brain regions (hippocampus and cortex) involved in 

learning and memory processes. Over the last few years, numerous studies have 

undertaken the study of CR on reducing neuronal damage and consequently offer 

protection against neurodegenerative diseases like AD. CR increases lifespan by slowing 

many aging processes, including normal aging changes in the brain. In model organisms, 

CR decelerates the apparent escalation of neuroinflamation and oxidative stress during 

aging by decreasing both glial activation and production of reactive oxygen species 

(ROS) (Chong et al., 2005). Short-term caloric restriction in early adulthood attenuated 

Aβ plaque deposits in transgenic mouse models of AD (Patel et al., 2005). CR also 

decreased Aβ peptide generation and neuritic plaque deposition in the brain of a mouse 

model of AD possibly due to promotion of anti-amyloidogenic α-secretase activity 

(Wang, Ho et al. 2005). Soon after, another group showed that CR resulted in reduced 

Aβ40 and Aβ42 peptide contents in the temporal cortex of Squirrel monkeys, compared to 

(CON) fed monkeys(Qin, Chachich et al. 2006). They also reported that this decrease 

correlated with an increase in α-secretase active in the brain, which seemed to be due to 

an increase in SirT1 levels (Qin, Chachich et al. 2006). CR and intermittent fasting (IF) 

have also been shown to be neuro-protective against the Aβ and Tau induced decrease in 
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synaptic function in a triple transgenic mouse model of AD (Halagappa, Guo et al. 2007). 

It has been recently reported that CR attenuates the accumulation of AD-type 

neuropathology in two cortical brain regions of middle-aged dtg APP/PS1 mice(Mouton, 

Chachich et al. 2009).  

Current AD therapeutics is limited to drugs that treat AD symptoms; so, it is of 

great interest to identify therapeutics that prevents Aβ-mediated neuronal loss.  CR 

treatment holds considerable potential for identifying novel therapeutic strategies for AD. 

Currently a large body of research is dedicated to understanding the CR mediated 

changes in aging, lifespan and also the beneficial effects on neurodegenerative diseases 

like AD.  

Caloric Restriction and SirT1 

In diverse organisms, caloric restriction slows the pace of aging and increases 

maximum lifespan. Caloric restriction extends life span by increasing the activity of Sir2 

(Silencing Information Regulator), a member of the conserved Sirtuin family of NAD+

Sir2 proteins are effectors of the axonal protection mediated by increased Nmnat activity. 

Neurons when treated with resveratrol (a poly-phenol compound found in grapes, that 

-

dependent protein deacetylases (Howitz, Bitterman et al. 2003; Denu 2005). SIR-2.1 

enzyme in C.elegans that regulates lifespan, and SirT1, is the human orthologue that 

promotes cell survival, belong to the same family. The Sir2 family of protein 

deacetylases is involved in NAD (Nicotinamide Adenine Dinucleotide)-dependent 

nuclear enzymatic activities. Sir2 is an NAD-dependent deacetylase of histones and other 

proteins and its activation is central to promoting increased longevity in yeast and 

C.elegans (Howitz, Bitterman et al. 2003).  
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induces the activity of Sir2, by lowering its Km), there is a substantial decrease in axonal 

degradation. The induction of Sir 2 by resveratrol also depends on the availability of 

NAD (Araki, Sasaki et al. 2004). In humans and rodents, there are seven genes that share 

the Sir2 conserved domain [sirtuin (SIRT) 1 to 7]. Out of those, only SirT1 is located in 

the nucleus and is involved in chromatin remodeling and the regulation of transcription 

factors such as p53 (Chen, Wang et al. 2005), where as other SIRT proteins are located 

within the cytoplasm and the mitochondria. SirT1 is the major effector of the increased 

NAD supply that effectively prevents axonal self-destruction.  

Resveratrol lowers the Michaelis constant of SirT1 for both the acetylated 

substrate and NAD+, and increases cell survival by stimulating SirT1-dependent 

deacetylation of p53 (Chen, Wang et al. 2005). This suggests that that the alteration of 

NAD levels by manipulation of the NAD biosynthetic pathway, sirtuin activity or other 

downstream effectors might provide new therapeutic opportunities for the treatment of 

diseases involving axonopathy and neurodegeneration. However, the molecular 

mechanism of activation of SirT1 by resveratrol is still not well understood. Resveratrol 

treatment mimics the effects of caloric restriction, which has been demonstrated by the 

fact that it helps increase the average lifespan of yeast by 70%. The ability of resveratrol 

to induce SirT1in vivo has been studied by Sinclair et al. in 2003(Howitz, Bitterman et al. 

2003). SirT1 promotes cell survival by negatively regulating the tumor suppressor p53 

(Vaziri, Dessain et al. 2001). One known target of SirT1 is Lysine 382 (K382) of p53. 

Deacetylation of this p53 residue by SirT1 decreases the activity and half-life of p53, and 

increases cell survival under a variety of DNA damaging conditions (Appella and 

Anderson 2001; Brooks and Gu 2003). Resveratrol treated cells show a substantial 
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decrease in the level of Ac-K382. This clearly indicates that resveratrol promotes cell 

survival by stimulating SirT1in vivo. In this property, resveratrol is thought to mimic 

caloric restriction. Since survival and longevity at the cellular and molecular level are 

intimately linked, the ability of polyphenols to promote cell survival by activating 

Sirtuins calls for a new line of investigation on the effects of these and related molecules 

on age-related diseases, including AD.  

Caloric restriction induces SirT1 expression in a wide array of tissues, and this 

shifts the balance away from cell death toward cell survival. A critical step in initiating 

stress-induced apoptosis is the relocalization of Bax protein from the cytoplasm to the 

outer mitochondrial membrane and the subsequent release of cytochrome c. Under 

normal conditions, Bax is rendered inactive in the cytoplasm by its tight association with 

Ku70, a DNA repair factor. In response to stress, two critical lysine residues in Ku70, 

K539 and K542 become acetylated by acetyltransferases, and the Ku70-Bax interaction is 

disrupted. This allows Bax to localize in the mitochondria and initiate apoptosis (Cohen, 

Lavu et al. 2004). In response to caloric restriction, SirT1 deactylates the DNA repair 

factor Ku70. It maintains K539 and K542 of Ku70 in a deacetylated state to keep Bax 

away from the mitochondria (Cohen, Lavu et al. 2004). In addition to the Ku70-Bax 

pathway, numerous other SirT1 targets are presumably affected by caloric restriction, 

including p53.  

Mammalian SirT1 also appears to control cellular response to stress by regulating 

FOXO transcription factors. FOXO are a family of protein that functions as sensors to the 

insulin signaling pathway and as regulators of organismal longevity. In mammalian cells, 

in response to oxidative stress, especially H2O2 and also heat shock, SirT1 deacetylase 
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forms a protein complex with the Forkhead transcription factor FOXO3 that contributes 

to deacetylation of FOXO3. SirT1 differentially affects the function of FOXO3, 

pertaining FOXO3’s effect on cell cycle arrest and DNA repair target genes, but 

attenuating FOXO3 dependent apoptosis in the presence of stress stimuli (Brunet, 

Sweeney et al. 2004). Under cellular stress, SirT1 deacetylation of p53 also leads to 

inhibition of apoptosis. Since SirT1 also reduces FOXO3 induced apoptosis in the 

presence of stress stimuli, there might exist some interaction between FOXO3 and p53, in 

terms of mediating the effects of SirT1. In another group of studies, it has been shown by 

Finkel et al. (2004) that the interaction between wild-type FOXO3 and p53 is strongly 

dependent on nutrient availability. Under normal nutrient conditions, the predominant 

effect of p53 involves repression of SirT1. In contrast, under starved conditions, the 

ability of activated FOXO3a to stimulate SirT1 expression requires p53(Nemoto, 

Fergusson et al. 2004). This suggests that in absence of p53, the basal expression level of 

SirT1 might rise but the starvation-induced increase would not be sharp.  

It has been reported that caloric restriction also extends lifespan by modulating 

glucose metabolism, which again involves SirT1. SirT1 regulates the 

gluconeogenic/glycolytic pathways in liver in response to fasting signals through the 

transcriptional co-activator PGC-1α. A nutrient signaling response that is mediated by 

pyruvate induces SirT1 protein in liver during fasting. Once SirT1 is induced, it interacts 

with and deacetylates PGC-1α at specific lysine residues in an NAD+ dependent manner 

(Rodgers, Lerin et al. 2005). So it can be concluded that SirT1 is involved in the CR 

mediated affects on lifespan in different model organisms.  
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SirT1 and AD  

AD is a neurodenerative disorder and age is the single most important risk factor 

for developing late-onset Alzheimer’s disease (AD) (Terry 2006; Turner 2006). AD 

research over the last few years have shown that numerous related mechanisms, such as 

accumulation of toxic proteins, ubiquitin-proteasome system dysfunction, excitotoxic 

insult, oxidative stress, mitochondrial injury, synaptic malfunction, altered metal 

homeostasis and disruption of axonal and dendritic transport (Bossy-Wetzel, 

Schwarzenbacher et al. 2004; Selkoe 2004), lead to neurodegeneration. Numerous studies 

in model organisms have shown that Sir2/SirT1is a critical regulator of the aging process 

(Anderson, Bitterman et al. 2003; Howitz, Bitterman et al. 2003; Cohen, Miller et al. 

2004). The beneficial effect of SirT1 on the nervous system has been shown by many 

groups. For example, knockdown of the SIRT1 gene in cultured mouse dorsal roots 

ganglion sensory neurons reverses the protective effects of increased NAD+ synthesis on 

axonal degeneration following acute axotomy (Araki, Sasaki et al. 2004). Both genetic 

and pharmacologic induction of SirT1 has also shown to be beneficial in many in vivo 

and in vitro models of AD. The SirT1 agonist resveratol has been shown to lower the 

levels of secreted and intracellular Aβ peptides produced from different cell lines by a 

mechanism that induces degradation of Aβpeptides via the proteasomal pathway 

(Marambaud, Zhao et al. 2005). It has been recently shown that SirT1 mediates the CR 

mediated effects in brains of Tg2576 mice. It has been further described that this effect of 

SirT1 is mediated by increasing the non-amyloidogenic processing of APP (Qin, Yang et 

al. 2006). In p25 transgenic mouse model of AD, resveratrol reduced neurodegeneration 
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in the hippocampus, improved learning ability, and decreased the acetylation of the 

known SIRT1 substrates PGC-1α and p53 elucidating another possible mechanism of 

SirT1 action in the nervous system(Kim, Nguyen et al. 2007). Oral administration of 

resveratrol for 45 days in transgenic mouse model of AD decreases plaque formation 

(Karuppagounder, Pinto et al. 2009).  

These studies highlight that CR via SirT1 has beneficial effect on the molecular 

and pathological features of AD.  

Summary of Dissertation Research 

Since age is the biggest risk factor for AD, I hypothesized that “the molecular 

pathways that modulate aging/lifespan, must modulate the development of AD”. As 

I discussed before CR is known to modulate lifespan in different model organisms. But, 

to specifically study the effect of CR on APP metabolism, I started off with using an in 

vitro model of CR, previously established by de Cabo et al in 2003, which has been 

shown to recapitulate some of the effects of in vivo caloric restriction, such as increased 

resistance to stressors like heat shock and H2O2 

We studied the effect of in vitro CR on APP metabolism utilizing naïve or APP-

Gal4 and/or Swedish APP

(de Cabo, Furer-Galban et al. 2003) and 

increased levels of SirT1 (Cohen, Miller et al. 2004).. This in vitro model which relies on 

cultures of human cell lines in media supplemented with 10% sera obtained from rats fed 

ad libitum (AL) or caloric restriction (CR) regimens (de Cabo, Furer-Galban et al. 2003; 

Cohen, Miller et al. 2004).  

695 over-expressing SH-SY5Y and HEK-293 cells, 

respectively. We showed that in vitro CR decreases secreted and intracellular Aβ levels, 

AICD mediated transactivation (Zhang, Khandelwal et al. 2007) and also full-length APP 
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levels. These latter effects on full-length APP were not due to changes in APP 

transcription. The previously described model of in vitro CR utilized serum from AL and 

CR fed F344 rats. We further tested the effect of CR utilizing FBN rat serum, to 

determine if the effect of in vitro CR that we observed so far were rat strain specific. We 

showed here for that first time that using serum from AL and CR fed FBN rats for this in 

vitro model also decrease AICD mediated transactivation and full-length APP levels, 

indicating that our observed effects of in vitro CR on APP metabolism were not 

dependent on the type of rat serum used.  

Next, we wanted to study the mechanism of these in vitro CR mediated changes 

on APP metabolism. AS I discussed earlier, the NAD-dependent deacetylase SirT1 has 

been most commonly associated with the CR mediated changes in longevity and aging 

process in different model organisms. So, we specifically, we wanted to determine if 

effects of in vitro CR on APP metabolism are via SirT1. Exposure of the aforementioned 

cell lines to in vitro CR conditions resulted in increased SirT1 levels. Therefore, we 

wanted to study if SirT1 over-expression is able to recapitulate the effects of in vitro CR 

on APP metabolism. So, we performed the similar line of experiments and observed that 

some of the effects of in vitro CR were recapitulated upon over-expressing SirT1 or 

inducing its activity with resveratrol. Our results demonstrate that SirT1 modulates APP 

metabolism. Specifically, SirT1-over-expression decreases AICD levels, but does not 

affect full-length APP levels. We also observed that SirT1 increases CTFα and sAPPα 

levels indicating that it induces non-amyloidogenic processing of APP in these cell lines.  

AD is a disease of the human central nervous system, so it was important to study if 

the effects of CR and SirT1 that we observed in our cell culture model can be recapitulated 
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in an in vivo setting. To determine if CR and/or SirT1 can modulate APP metabolism in 

vivo, we utilized an AICD dependent apoptosis reporter system in the Drosophilaeye (Guo, 

Hong et al. 2003; Greeve, Kretzschmar et al. 2004; Gross, Feldman et al. 2008). These flies 

were (i) raised in conditions of CR or AL, or (ii) genetically manipulated to have Sir2 

either over-expressed or inactivated. We demonstrated that CR exposure of these flies 

suppress the AD phenotype. Furthermore, we demonstrate for the first time that Sir2 over-

expression, as well as exposure to resveratrol, in these flies suppresses the AD phenotype, 

while Sir2 inactivation enhances this phenotype.  

The Drosophila model that we used for this study expresses the C-terminal fragment 

of APP (Guo, Hong et al. 2003). In fact, all previously described Drosophila models of 

AD rely either on expression the of the toxic Aβ42

To establish our model, we expressed the human forms of APP and BACE in flies 

using the Gal4/UAS system {described (Brand and Perrimon 1993)}. By expressing the 

human forms of APP and BACE, we require that the normal cleavage events must occur 

to generate toxic Aβ peptides within the fly. Further, we utilized the ELAV-Gal4 reagent 

to limit expression of these proteins to the fly nervous system only. We believe that 

 peptide in the nervous system(Iijima, 

Liu et al. 2004; Iijima, Chiang et al. 2008), or expression of the human APP and β-

secretase (BACE) ubiquitously in all tissues, or in the developing retina(Greeve, 

Kretzschmar et al. 2004) or wing(Fossgreen, Bruckner et al. 1998). Therefore, to study 

the effect of different genetic (like SirT1) and pharmacologic (e.g. resveratrol) 

modulators of APP metabolism, we felt the need of establishing a Drosophila model that 

would allow the natural processing of APP by β− and γ−secretase in the central nervous 

system.  



  34 

through this specific experimental protocol, we are creating a situation that is more 

similar to that which is observed in human AD patients. We initially tested for successful 

expression of these proteins in adult fly heads through Western Blot analysis. We observe 

strong expression of APP in both APP only and APP, BACE over-expressing flies, upon 

induction with ELAV-Gal4.CTFα (C83) was mostly detected in APP over-expressing 

flies induced with ELAV-Gal4 (ELAV-Gal4/UAS APP flies). On the other hand CTFβ 

(C99) was mostly detected in APP and BACE over-expressing flies induced with ELAV-

Gal4 (ELAV-Gal4/APP; BACE flies) indicating that presence of BACE in these flies 

drives the APP proteolysis through the non-amyloidogenic pathway. To determine if the 

observed changes in Drosophila phenotypes are dependent on γ−secretase cleavage of 

APP, we raised these AD model flies on food containing L-685, 458, a potent γ−secretase 

inhibitor.  In ELAV-Gal4/APP flies, L-685, 458 exposure led to a buildup of the C83 

fragment. On the other hand in ELAV-Gal4/APP; BACE flies, L-685, 458, exposure led 

to a buildup of the C99 and C83. Our AD model flies displayed 6E10 (β-amyloid specific 

antibody) positive amyloid plaques and Thioflavin S positive puncta in the brains 

indicating that these flies can generate Aβ peptides through β- and γ-secretase processing 

of APP and develop the stereotypical AD neuropathology. We also studied the 

neuroanatomical structures of our AD model flies and showed that flies expressing both 

APP and BACE show massive neurodegenration in parts of the brain involved in learning 

and memory, similar to AD patients. As expected, these molecular and neuropathologic 

effects are rescued by treatment γ-secretase inhibitor L-685,458. Finally, we studied 

longevity and CNS function, as assessed by climbing behavior, of these flies and showed 

that the AD model flies expressing both APP and BACE had significantly decreased 
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longevity and climbing ability compared to control flies that was rescued by L-685,458. 

We also tested the effect of the Sir2 agonist resveratrol on the climbing behavior of our 

AD model flies and have shown that resveratrol improves the climbing ability in these 

flies. Therefore this model will serve as a powerful tool for future screening of genetic 

and pharmacologic modulators of APP proteolysis and Aβ production.   
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Figures 

Figure 1-1Intracellular trafficking of APP(Thinakaran and Koo 2008) 
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Figure 1-2. A schematic diagram of amyloid β precursor protein (APP) proteolytic 
processing(Wakabayashi and De Strooper 2008) 
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Figure 1-3. APP transactivation assay 
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Figure 1-4. Domain structure of α−secretase (Allinson, Parkin et al. 2003) 
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Figure 1-5. Structural organization of BACE1 (Vassar, Kovacs et al. 2009) 
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Figure 1-6. γ−Secretase components (Wakabayashi and De Strooper 2008) 
  

http://physiologyonline.physiology.org/content/vol23/issue4/images/large/Y0009-8-01.jpeg�
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Abstract 
  
Caloric Restriction (CR) “slows” aging by increasing the survival of critical cell types against a 

variety of stressors. Advanced age is the largest risk factor for developing Alzheimer’s disease 

(AD).  The molecular events that lead to AD-related neuronal loss are dependent on proteolytic 

processing of the amyloid precursor protein (APP) which generates the neurotoxic Aβ peptide. 

Utilizing an established cell culture model that recapitulates the major cellular phenotypes of 

CR, we have investigated whether in vitro CR modulates the production of Aβ. We find that in 

this in vitro CR model, Aβ levels are decreased and APP metabolism is altered. Exposure of 

human cell lines to in vitro CR conditions results in decreased full-length APP levels and 

increased sAPPα and SirT1 levels. SirT1 over-expression also recapitulates some of the effects 

of CR. To determine if CR and SirT1 modulate APP metabolism in vivo, we utilized an 

established Drosophila model of AD. We show that CR decreases the AD phenotype in these 

flies.  Sir2 gain-of-function alone recapitulates the phenotypic effect of CR, while Sir2 loss-of-

function mutations enhance the fly AD phenotype. These in vivo findings are in accord with 

our in vitro finding and add to the growing evidence that both nutritional status and SirT1 can 

regulate APP metabolism and can modulate the risk for developing AD. 

 

Key words: SH-SY5Y, HEK-293, Drosophila melanogaster, Aβ, caloric restriction
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Introduction  

Age is the single most important risk factor for developing late-onset Alzheimer’s 

disease (AD) (Terry 2006; Turner 2006). The frequency of Alzheimer’s disease has 

increased steadily with increases in life expectancy (Evans, Funkenstein et al. 1989). By 

the mid-century, the number of people living with AD is expected to 

quadruple(Brookmeyer R. 2007). However, the molecular events responsible for the 

development of late-onset Alzheimer’s disease (LOAD) have not been clearly defined. 

Advances in understanding the molecular pathways that control the aging process are 

leading to the development of therapies to slow down or reverse “normal” aging as well as 

age-related diseases, such as AD.  

Diet strongly influences the incidence and outcome of age-related diseases 

including diabetes, obesity and vascular disease (Morgan, Wong et al. 2007). Caloric 

restriction (CR) is the only known non-genetic way to extend lifespan and delay/stop 

aging-related cellular dysfunctions in mammals (Messier and Teutenberg 2005). Caloric 

restriction (a 40% decrease in total calorie intake) is an intervention shown to increase the 

average and maximum lifespan in model organisms. In rodents, age-related increases in 

neuroinflammation and oxidative stress markers are suppressed by a CR dietary regimen 

(Chong, Lin et al. 2005). In addition, CR suppresses the age-related decline in 

hippocampal-dependent cognitive function (Martin, Mattson et al. 2006; Shi, Adams et al. 

2007). It has been recently reported that CR also reduces the incidence of age-related 

diseases and mortality in Rhesus monkeys (Colman, Anderson et al. 2009). 
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In model organisms such as Saccharomyces cerevisae, Caenorhabditis elegans  

andDrosophila melanogaster the life-extension effects of CR observed are dependent on 

the activity of Sir2 (Silencing Information Regulator), a member of the conserved Sirtuin 

family of NAD-dependent protein deacetylases (Howitz, Bitterman et al. 2003; Partridge, 

Piper et al. 2005; Lee, Wilson et al. 2006).  Sir2 encodes an NAD+ (nicotinamide adenine 

dinucleotide) -dependent deacetylase of histones and other proteins. It promotes cell 

survival by deacetylating p53 and FOXO3(Vaziri, Dessain et al. 2001; Smith 2002; Brunet, 

Sweeney et al. 2004; Giannakou and Partridge 2004). In Saccharomyces cerevisae, Sir2 has 

been shown to extend replicative lifespan by reducing the formation of extrachrosomal 

rDNA circles (Denu 2005).  

In humans and rodents, there are seven genes that share the Sir2 conserved domain 

[sirtuin (SIRT) 1 to 7]. Out of those, only the SirT1 localizes to the nucleus where it is 

involved in chromatin remodeling (Chen, Wang et al. 2005). Caloric restriction induces 

SirT1 expression in a wide array of tissues and results in suppression of cell death and an 

enhancement of cell survival (Qin, Yang et al. 2006). SirT1 negatively regulates p53 

activity and decreases p53 half-life by deacetylating lysine 382 of p53. This results in a cell 

survival increase in response to a variety of DNA damaging conditions(Vaziri, Dessain et 

al. 2001; Smith 2002; Chen, Wang et al. 2005). Similarly, SIRT1 deacetylates the Fork-

head transcription factor, FOXO3, resulting in resistance to oxidative stress and reduced 

apoptosis (Giannakou and Partridge 2004).  SirT1 activity also mediates changes in 

somatotropic signaling and physical activity that are associated with caloric restriction 

(Cohen, Supinski et al. 2009) 
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Alzheimer’s disease is the major form of dementia in U.S and the symptoms of the 

disease are caused by massive loss of synapses and neurons primarily in the cerebral cortex 

and hippocampus (Kril, Patel et al. 2002). The β-amyloid peptides (Aβ) play a fundamental 

role in triggering this synaptic and neuronal loss, which eventually lead to cognitive 

decline(Selkoe 2002).   

Aβ peptides are generated by proteolytic processing of the β-amyloid precursor 

protein (APP) (Annaert and De Strooper 2002). APP is a type-I transmembrane protein 

with a relatively large extracellular domain and a small intracellular domain. Aβ peptide 

generation is initiated when APP is cleaved by the aspartyl protease BACE (β-site APP 

Cleaving Enzyme) at the N-terminus of the Aβ sequence producing a soluble N-terminal 

fragment, termed sAPPβ, and a C-terminal transmembrane fragment, termed CTF-β or 

C99(Vassar, Bennett et al. 1999). The C99 fragment is further cleaved by the γ-secretase 

protease complex at the C-terminus of the Aβ sequence to produce Aβ and the APP 

Intracellular Domain (AICD)(De Strooper and Annaert 2000). AICD has been implicated 

in nuclear signaling (Cao and Sudhof 2001). Aβ peptides can oligomerize and eventually 

form large aggregates which are the main components of cerebral amyloid plaques, the 

central pathological feature of AD (Hardy and Selkoe 2002; Tanzi and Bertram 2005). 

Small molecular weight Aβ oligomers can modulate synaptic activity (Selkoe 2002). Aβ 

also has neurotoxic properties that can lead to neuron death (Ueda, Fukui et al. 1994). 

Taken together Aβ peptide accumulation seems to be responsible for the neuronal 

dysfunction and neuronal loss that defines AD.  

An alternative mechanism of APP proteolytic processing occurs in non-neuronal 

cells, where initial APP cleavage is performed by α-secretase.α-secretases (ADAMs 9, 10, 
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and 17) cleave APP between Lys16 and Leu 17 of the Aβ sequence (residues 612 and 613 

of APP695

In our present study we have utilized an in vitro model of caloric restriction which 

relies on cultures of human cell lines in media supplemented with sera obtained from rats 

fed ad libitum (AL) or caloric restriction (CR) regimens (de Cabo, Furer-Galban et al. 

2003; Cohen, Miller et al. 2004). This established model recapitulates some of the major 

effects of CR seen in animals(de Cabo, Furer-Galban et al. 2003). One of the advantages of 

) and therefore precludes the generation of Aβ peptide. This cleavage produces a 

soluble N-terminal fragment, termed sAPPα, and a C-terminal transmembrane fragment, 

termed CTFα or C83. The C83 fragment is then cleaved by γ-secretase protease complex. 

Cleavage occurs at the C-terminus of the Aβ sequence resulting in the production of a non-

amyloidogenic peptide (P3) and AICD.  

Current AD therapeutics are limited to treating AD symptoms; so, it is of great 

interest to identify therapeutics that prevents Aβ-mediated neuronal loss.  CR treatment 

holds considerable potential for identifying novel therapeutic strategies for AD. In 

transgenic mouse models of AD, CR reduces the severity of symptoms. Specifically, the 

cerebral Aβ plaque deposition that is typical in these models is significantly decreased after 

short term CR (Patel, Gordon et al. 2005; Wang, Ho et al. 2005). Studies on AD mouse 

models suggest that SirT1 may help to mediate decreases in Aβ levels after CR treatment 

(Qin, Yang et al. 2006). There have been a number of in vitro approaches aimed at studying 

the effects of caloric restriction on pathways that regulate aging. Most of these studies have 

utilized primary cell cultures from animal models (Pignolo, Masoro et al. 1992; Li, Yan et 

al. 1997; Lambert and Merry 2000; Qin, Yang et al. 2006).  
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this approach is that it allows for simpler experimental manipulation by genetic and 

pharmacologic methods, than those compared to animal CR models (de Cabo, Furer-

Galban et al. 2003; Cohen, Miller et al. 2004).  

Here we show for the first time that in vitro caloric restriction decreases the steady 

state levels of secreted Aβ, AICD levels and AICD mediated transactivation, C83 and full-

length APP levels in SH-SY5Y (human neuroblastoma cells) and HEK-293 (human 

embryonic kidney) cell lines. We find that these in vitro CR mediated effects coincide with 

increased SirT1 levels, as observed in other CR models. We can recapitulate some of the 

effects of in vitro CR on APP metabolism by over-expressing SirT1 or by treating with the 

SirT1 agonist resveratrol, suggesting that SirT1 plays a significant role in these effects; 

while other effects can be recapitulated by over-expressing PGC-1α. To determine if CR or 

SirT1 can modulate APP metabolism in vivo, we utilize an AICD dependent reporter 

system in Drosophila(Guo, Hong et al. 2003; Greeve, Kretzschmar et al. 2004; Gross, 

Feldman et al. 2008).  Flies raised on calorically restricted diets had a suppressed AICD-

dependent phenotype compared to flies raised on ad libitum diets. When raised on normal 

diets over-expression of Sir2 or exposure to resveratrol also suppressed the AICD-

dependent phenotype. In contrast, Sir2 inactivation enhanced this phenotype.   
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Materials and Methods 

Cell Culture and treatments: HEK-293 cells (obtained from ATCC) were used 

for studying the effects of various treatments on endogenous levels of APP and its 

proteolytic fragments. HEK-293 cells were transiently transfected with pBABE puror 

empty vector, pBABE SirT1 over-expression plasmid, (generously provided by Dr. D. 

Sinclair). HEK-293 cells were cultured in Dulbecco’s modified Eagles medium 

(DMEM), supplemented with 10% fetal bovine serum, penicillin (25,000 U/ml) and 

streptomycin (25,000 µg/ml). SH-SY5Y cells (obtained from ATCC) were cultured in 

DMEM, supplemented with 10% fetal bovine serum, penicillin (25,000 U/ml) and 

streptomycin (25,000 µg/ml). SH-SY5Y cells stably expressing APP Gal4 and Gal4 UAS 

reporter construct (SY5Y-APP Gal4 cells) and HEK-293 cells stably transfected with 

Swedish APP695 plasmid (APPSwed-293 cells) were cultured in DMEM, supplemented 

with 10% fetal bovine serum, penicillin (25,000 U/ml), streptomycin (25,000 µg/ml) and 

G418 (200 µg/ml). For the caloric restriction (CR) and ad libitum treatments (AL), media 

were prepared by supplementing 1x DMEM with AL or CR serum obtained from NIA 

Rodent Tissue Bank (de Cabo, Furer-Galban et al. 2003). AL serum was collected from 

28 month/18 month old NIH Fisher 344 rats and 34 month old NIH Fisher Brown 

Norwegian (FBN) rats that were fed a NIH-31 standard diet. CR serum was collected 

from 28 month/18 month old NIH Fisher 344 rats and 34 month old NIH Fisher Brown 

Norwegian (FBN) rats that were given a vitamin and mineral fortified version of the AL 

diet. CR animals were in a 60% calorie restriction since weaning. Water was available ad 

libitum for both groups. Conditions in which the animals were maintained have been 
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described in another study (de Cabo, Furer-Galban et al. 2003). For our studies HEK-293 

and/or APP Gal4 SH-SY5Y cells were treated with 1x DMEM supplemented with either 

AL or CR rat serum, for 48 hours.  

 

Plasmids: For the APP transactivation assay, APP Gal4 fusion plasmid was 

utilized (Zhang, Khandelwal et al. 2007). For SirT1 over-expression experiments, empty 

pBABE vector with a puromycin resistant gene, pBABE  puror vector with SirT1 over-

expression and  pBABE puror vector with SirT1∆HY (dominant negative SirT1 gene) 

(Cohen, Miller et al. 2004)were used. These plasmids were a gift from Dr. D. Sinclair’s 

lab. For SirT1 over-expression experiments we used HEK-293 cells stably transfected 

with Swedish APP695

APP transactivation assay: For the transactivation assay, SH-SY5Y cells were 

stably transfected with pMSt APP (APP Gal4) construct and pG5e1B-luc (Gal4 reporter 

plasmid) and the neomycin (G418) resistant plasmid pcDNA3.1 (Invitrogen) (Zhang, 

Khandelwal et al. 2007). The cells were maintained in DMEM, supplemented with 10% 

fetal bovine serum, penicillin (25,000 U/ml), streptomycin (25,000 µg/ml) and G418 (200 

µg/ml). After CR/AL treatments in 24/96 well plates, the cells were washed twice with 

cold PBS and then lysed with GLB (Glo Lysis Buffer, Promega Inc.). Then Luciferase 

activity was measured using Steady Glo luciferase reagent, Promega Inc. The luciferase 

activity was measured using the TopCount plate reader (PerkinElmer.Inc). The luciferase 

counts per second (CPS) were normalized to cell count by Sybergreen Assay. For Syber 

green assay, 20x Syber Green (diluted with PBS from 1000x stock) was used. 

 plasmid.  
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Experiments were done in triplicates. For the Dual luciferase assay, Renilla luciferase 

plasmid pRLSV40 (Promega) is transiently transfected in SH-SY5Y cells stably 

transfected with pMSt APP (APP Gal4) construct and pG5e1B-luc (Gal4 reporter 

plasmid). Dual luciferase assay is also performed by transiently co-transfecting HEK-293 

cells with pMSt APP (APP Gal4) construct andpG5e1B-luc (Gal4 reporter plasmid) 

plasmids with one-tenth of  Renilla luciferase pRLSV40 (Promega) reporter construct. 

Both cell types are transfected with Arrestin (Open Biosystems). For the Dual Luciferase 

assay cells were washed twice with cold PBS and lysed with Dulbecco’s modified Eagles 

medium, supplemented with 10% fetal bovine serum, penicillin (25,000 

U/ml),streptomycin (25,000 µg/ml) and G418 (200 µg/ml). Measurement of firefly 

luciferase activity (dependent on APP processing) and Renilla luciferase activity 

(independent of APP processing) are done using the Dual Glo kit (Promega). In the case 

of the Dual Luciferase Assay, the firefly luciferase counts were normalized to Renilla 

luciferase counts.  

 

Western Blot Analysis: After the treatments, cells were washed twice with cold 

PBS and then lysed in RIPA Buffer containing different protease inhibitors [Antipain 

(100 µM), Aprotinin (2 µg/ml), Benzamide (15 µg/ml), Chymostatin (100 µM), 

Leupeptin (100 µM), Pepstatin A (1 µM), PMSF (1 µM), Sodium Metabisulfite(0.1 nM). 

10µl of lysates were used for protein assay with the help of BCA Protein Assay Kit 

(Pierce, Inc.). The BCA protein utilizes a standard curve generated by RIPA standards 

(different dilutions of BSA protein in RIPA buffer). According to the protein 

concentrations, samples for Western Blot were prepared using the 4x Nupage LDS 
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sample buffer (Invitrogen, Inc.) containing 0.2% BME (β-Mercaptoethanol, Sigma 

Aldrich). Equal volumes of protein were loaded on to each well of NuPAGE 4-12% Bis 

Tris Gel. From the gel the proteins were transferred on to 0.25 μm PVDF membrane 

(Millipore) using a semi-dry transfer apparatus. Blots were probed with different 

antibodies and the target protein densitometry was normalized to actin densitometry 

using a Fluorochem 8900 gel imaging system (Alpha Innotech) and/or Odyssey Infrared 

Imaging system (LI-COR Biosciences).  

 

TCA precipitation for quantification of sAPPα levels: Following transient 

transfection with SirT1, SY5Y-APP Gal4 cells were exposed to serum free media for 2 

hours after which the conditioned media was collected. SY5Y-APP Gal4 cells were also 

treated with 50 µM resveratrol or vehicle control (DMSO) diluted in serum free media 

for 4 hours. Following these treatments the conditioned media was collected. From both 

the experiments, 1 ml of conditioned media from each sample was precipitated with 338 

µl of TCA. After 15-60 minutes incubation, tubes were spun at 14,000 rpm for 15 

minutes.  Clear top layer was removed from each tube and 500 µl of Acetone was added. 

At this point samples were frozen over night. Then they were spun at 14,000 rpm for 15 

minutes in ice-cold condition. Supernatant was removed and pellet was dissolved in 20 µl 

of 1x Protein loading Dye. This entire volume was used for Western Blot.  

 

Antibodies: We utilized the following primary antibodies: a polyclonal antibody 

raised to the C-terminus of APP (A8717; Sigma Aldrich, Inc), a monoclonal anti-β-Actin 

antibody (A5441, Sigma Aldrich, Inc), a monoclonal anti-SirT1 antibody (05-707, 
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Upstate, Inc), a monoclonal antibody (6E10) to the Aβ region of APP  (ab10146, 

Abcam). For ECL based western blot detection we utilized the following secondary 

antibodies: goat anti-rabbit (NA934V, GE Healthcare UK Limited) and goat anti-mouse 

(NA931V, GE Healthcare UK Limited). For Western blot detection using the Odyssey 

Infrared Imaging system we used the following secondary antibodies: goat anti-Rabbit 

IR-Dye800 CW (926-3211) and/or Goat anti-Mouse IR Dye 680 (926-3200).  

 

Aβ ELISA: Amyloid beta (1-40) ELISA Kit (Biosource) was used for our 

experiments. After the CR or AL treatment, the samples were diluted in 1x DMEM (1:2).  

Both the conditioned media and the lysates were diluted the same way. Conditioned 

media was used for measuring secreted Aβ40 and lysates were used for measuring 

intracellular Aβ40.  

 

Pharmacologic reagents used: Resveratrol (Sigma-Aldrich) was dissolved in 

DMSO. A final concentration of 100 nM resveratrol was used for treatment of APP Gal4 

SY5Y cells for a period of 10 hours. Following the treatments, the cells were washed 

twice with cold PBS and lysed with GLB (Promega, Inc.). Lysates were used for 

luciferase assay using Steady Glo (Promega, Inc.). Luciferase counts were normalized to 

total protein concentration that was measured using the BCA protein assay kit (Pierce, 

Inc). γ-secretase transition state inhibitor, L-685,458, was purchased from Sigma Aldrich 

and dissolved in DMSO.  
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Drosophila Methods: All flies were raised on standard cornmeal/molasses/agar 

media. For flies treated with L-685,458, drug was added to standard fly medium to a final 

concentration of 100 and 250 nM. For resveratrol treatment, drug was added to standard 

fly medium to a final concentration of 100nM. Since L-685,458 and resveratrol were 

initially dissolved in DMSO a vehicle only control (0.01% DMSO) was used (Greeve, 

Kretzschmar et al. 2004). Larvae were raised on L-685,458, resveratrol or vehicle 

containing food and scored for phenotypic effects once they eclosed (described below). 

Drosophila genotypes used were Sir2KG00871(Rogina and Helfand 2004), 

Sir205327a(Spradling, Stern et al. 1999), Sir22A-7-11(Furuyama, Banerjee et al. 2004), 

Sir2EP2300(Rogina and Helfand 2004), UAS:LacZ, UAS:GFP, w1118 (Bloomington Stock 

Center, http://flybase.bio.indiana.edu/), Canton S, and GMR-App-Gal4, UAS:Grim / 

Cyo(Guo, Hong et al. 2003; Gross, Feldman et al. 2008).  All crosses were performed at 

25°C.  GMR-APP-Gal4, UAS:Grim/ Cyo flies were outcrossed to both w1118 and Canton 

S genotypes to determine the reference eye phenotype for the GMR-APP-Gal4, 

UAS:Grim adult eyes, as previously described (Guo, Hong et al. 2003; Gross, Feldman et 

al. 2008).  Adult eyes were immersed in 95% ethanol and photographed using a Canon 

PowerShot S70 digital camera mounted to a Leica Mz 125

To study the effect of caloric restriction on GMR-App-Gal4, UAS:Grim/ 

Cyo(Guo, Hong et al. 2003; Gross, Feldman et al. 2008) flies, they were outcrossed to  

w

 stereomicroscope.  

1118 flies on either high-calorie (15% yeast, 15% sucrose, and 2% agar) or low-calorie 

(5% yeast, 5% sucrose, and 2% agar) food (Rogina and Helfand 2004) and the progeny 

were scored (+ to +++) for effects on eye phenotype. “+” is a rough eye, where at least 

one-half of the eye field is wild type. “++” is a rough eye where more than one-half of the 
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eye is rough, usually affecting the whole eye, but not always. “+++” is a strong rough eye 

where the entire eye is affected, and there is a strong loss of pigment in the posterior one-

half of the eye. Fly lines expressing loss or gain of function mutations were crossed with 

AICD reporter flies (Guo, Hong et al. 2003; Gross, Feldman et al. 2008). Control flies are 

AD flies outcrossed to control for crossing to mutant lines.  

 

Statistical Analysis: Values in the text and figures are presented as means ± 

standard errors of at least three independent experiments. Equal variance or separate 

variance two-sample  student’s  t-test  were  used,  as  appropriate,  to  compare  two  

groups. “*” indicatesp< 0.05 and “**” indicates p< 0.01. For our in vivo studies, to 

determine if there is a statistically significant change in phenotype relative to wild type 

we performed a G-test of homogeneity and report the p-values. “n.s.” indicates p-values 

greater than 0.05.       
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Results:  

In vitro caloric restriction modulates APP proteolysis: To initially examine the effect of 

in vitro caloric restriction on Aβ levels we treated HEK-293 cells transiently over-

expressing APP695 

Our observation that in vitro CR decreased the levels of Aβ levels prompted us to 

determine if the AICD levels were similarly affected, since γ-secretase cleavage produces 

Aβ and AICD. To study the effect of in vitro caloric restriction on AICD production we 

used the AICD mediated transactivation assay utilizing an APP-Gal4 fusion protein and 

the Gal4-Luc reporter construct (Cao and Sudhof 2001). We utilized SH-SY5Y cells 

stably expressing the APP-Gal4 protein and carrying the Gal4-UAS driven firefly 

Luciferase reporter gene (Zhang, Khandelwal et al. 2007). The APP-Gal4 undergoes 

normal secretase-mediated processing to produce the AICD-Gal4 fragment. This 

fragment transactivates the Gal4-UAS responsive Luciferase reporter gene (Cao and 

Sudhof 2001). We have shown that changes in luciferase activity in this assay provide an 

accurate measure of changes in AICD-Gal4 levels (Zhang, Khandelwal et al. 2007).  We 

exposed SY5Y-APP-Gal4 cells to in vitro AL or CR (utilizing F344 and FBN serum) 

with DMEM supplemented with 10% serum from rats that had either 

been fed ad libitum (AL) or had been calorically restricted (CR) (de Cabo, Furer-Galban 

et al. 2003). We observed that a 48 hour in vitro CR treatment resulted in a robust and 

significant decrease in secreted Aβ levels compared to in vitro AL treatment (Figure 2-

1A). Specifically, there was an 82% decrease in secreted Aβ levels (p=0.007) in cells 

exposed to CR conditions compared to cells exposed to AL conditions. In vitro CR 

treatment also resulted in a significant, yet smaller decrease in intracellular, RIPA-soluble 

Aβ levels (15%, p=0.04) compared to the in vitro AL treatment (Figure 2-1B).  
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conditions for 48 hours. We observed that for the cells exposed to F344 CR conditions, 

there was a significant decrease (46%, p<0.001) in AICD-Gal4-mediated luciferase 

expression compared to AL conditions (Figure 2-1C). Similarly, in cells exposed to FBN 

CR conditions there was a 50% decrease in the luciferase expression compared to FBN 

AL treatment (Supplementary Figure 2-1) We also determined the steady state levels of 

AICD-Gal4 in these cells using Western blot analysis (Figure 2-1D). Consistent with the 

luciferase assay results, we observed that there was a decrease in the AICD-Gal4 protein 

levels in the cells exposed to CR (F344) conditions compared to the cells exposed to AL 

(F344) conditions. These findings suggest that in vitro CR exposure results in decreased 

levels of proteolytic products of APP by γ-secretase.  

In vitro caloric restriction modulates full-length APP levels: To determine if these 

observed effects were due to decreases in secretase activity and/or substrate availability, 

we exposed SY5Y-APP-Gal4 cells to in vitro AL or CR conditions using serum from 

both F344 and FBN rats and determined steady state full-length APP-Gal4 levels.  We 

observed a significant decrease (38%, p<0.01and 65% p<0.05 respectively) in total, full-

length APP-Gal4 levels (mature and immature forms of APP-Gal4) in the cells exposed 

to CR conditions compared to the cells exposed to AL conditions (Figure 2-2A, 2-2B). 

We also exposed naïve SH-SY5Y cells to in vitro AL or CR (F344) conditions to 

determine the effect on endogenous levels of full-length APP (Figure 2-2C). Again, we 

observed a significant decrease (33%, p<0.01) in the endogenous APP levels in the cells 

exposed to CR conditions (Figure 2-2D). Our findings indicate that in vitro CR modulates 

the levels of full-length APP and its proteolytic fragments including Aβ. These findings 

suggest that in vitro CR exposure reduces Aβ levels in part by decreasing full-length APP 
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levels. Similar treatments in SY5Y-APP-Gal4 cells with media supplemented with FBN 

CR serum also led to a robust and significant decrease in full-length APP levels when 

compared to cells exposed to AL serum (Supplementary Figure 2-2A and 2-2B). 

In vitro caloric restriction induces SirT1: In model organisms, caloric restriction extends 

life span by increasing the levels of Sir2 (Silencing Information Regulator 2) (Howitz, 

Bitterman et al. 2003; Denu 2005). In vitro CR conditions induce SIRT1 expression in 

HEK-293 cells and promotes increased resistance to apoptosis (Cohen, Miller et al. 

2004). We exposed SY5Y-APP Gal4 cells and naïve HEK-293 cells to in vitro AL or CR 

conditions. We observed a robust increase in steady state levels of SirT1 in both SY5Y-

APP Gal4 cells (Figure 2-2E, 2-2F) and HEK-293 cells (data not shown) when exposed 

to in vitro CR conditions compared to in vitro AL conditions.  

SirT1 over-expression modulates APP metabolism: Next, we set out to determine if 

SirT1 expression was sufficient to recapitulate the effects of in vitro CR on APP 

metabolism. We transiently over-expressed SirT1 or a vector control in HEK-293 cells 

transiently over-expressing the Swedish variant of APP (APP Swed-293 cells). SirT1 

over-expression led to a significant decrease (92%, p=0.003) (Figure 2-3A) in secreted 

Aβ40

To further determine if SirT1 over-expression mimics the effect of in vitro CR on 

the full-length APP steady state levels, we transiently and stably (data not shown) over-

 levels. To determine if AICD levels are also affected by SirT1 over-expression, we 

transiently over-expressed SirT1 or a vector control in SY5Y-APP-Gal4 cells along with 

a reporter plasmid Renilla Luciferase (to control for transfection efficiency). Transient 

over-expression of SirT1 led to a significant decrease (<80%, p<0.01) in AICD-Gal4-

mediated firefly luciferase activity (Figure 2-3B).  
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expressed SirT1 or an empty vector control in SY5Y-APP-Gal4 cellscells. We observed 

that SirT1 over-expression does not affect full-length APP levels, compared to cells 

transfected with an empty vector (Figure 2-3C). SirT1 transient over-expression however 

led to an increase in α-secretase cleavage of APP leading to increased levels of sAPPα 

(Figure 2-3E).  

To confirm that increased SirT1 deacetylase activity was responsible for the 

SirT1-mediated changes in APP metabolism, we exposed SY5Y-APP Gal4 cells to the 

SirT1 agonist resveratrol (100nM) or vehicle (DMSO) for 4 hours(Howitz, Bitterman et 

al. 2003). This treatment resulted in significantly decreased (60%, p<0.01) AICD-Gal4-

mediated mediated luciferase activity (Figure 2-3D) and in significantly increased sAPPα 

levels (350%, p=0.013; Figure 2-3F,). This treatment did not affect full-length APP levels 

(data not shown). Thus, in our model, resveratrol treatment resulted in the same 

modulation of APP metabolism as we observed upon SirT1 over-expression but both of 

these did not result in the diminished full-length APP levels observed uponin vitroCR 

treatment 

Caloric restriction modulates AICD-dependent rough-eye phenotype in reporter flies: 

To verify the effects of CR on APP metabolism in a model organism, we utilized the 

AICD reporter flies previously described for the developing Drosophila melanogaster 

eye (Guo, Hong et al. 2003; Gross, Feldman et al. 2008).  This assay is based on a 

transgenic fly that expresses a C99-Gal4 fusion protein in the developing retina (Guo, 

Hong et al. 2003; Gross, Feldman et al. 2008).  Endogenous secretase activity in the fly 

retina leads to the proteolytic cleavage of this fusion protein, ultimately releasing the 

AICD-Gal4 fragment from the membrane (Guo, Hong et al. 2003; Gross, Feldman et al. 
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2008) which activates the transcription of the Drosophila cell death activator Grim(Chen, 

Nordstrom et al. 1996). Expression of Grim causes apoptosis in retinal cells resulting in a 

rough eye phenotype with disrupted bristle morphology and loss of pigmentation (Figure 

2-4A). To demonstrate that cell death in fly eyes were indeed APP metabolism 

dependent, we treated the reporter flies with a transition state inhibitor of γ-secretase, L-

685,458, and/or vehicle (DMSO) and scored flies (+ to +++) for the effects on the GMR-

APP-Gal4, UAS:Grim mediated rough eye phenotype.  We observed that treatment with 

100 nM or 250 nM L-685,458 significantly suppressed (p<0.0001) the rough eye 

phenotype (Table 2-1; Figure 2-4B compared to Figure 2-4A). Thus, alteration of APP 

metabolism in the reporter flies can lead to increased or decreased cell death resulting in 

enhancement or suppression of the rough eye phenotype which is readily observable. 

This in vivo APP metabolism reporter system is directly analogous to the approach we 

have utilized to measure AICD levels in cell culture.  

To study the effect of caloric restriction on the AD phenotype, these AICD 

reporter flies (Guo, Hong et al. 2003; Gross, Feldman et al. 2008) were out-crossed to w-; 

+/+ flies on high calorie (HC) and low calorie (LC) food (Rogina and Helfand 2004) and 

the progeny were scored (+ to +++) for effects on eye phenotype. We observed that 

exposure to LC conditions significantly suppresses the rough eye phenotype of the AICD 

reporter flies (Figure 2-5 and Table 2-2). 

Sir2 modulates AICD-dependent rough-eye phenotype in reporter flies: To verify the 

effects of SirT1 on APP metabolism in a model organism, we utilized the AICD reporter 

flies (Guo, Hong et al. 2003; Gross, Feldman et al. 2008). Fly lines expressing loss or 

gain of function mutations of the Drosophila SirT1 homologue Sir2 were crossed with 
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AICD reporter flies (Guo, Hong et al. 2003; Gross, Feldman et al. 2008) and the progeny 

were scored (+ to +++) for effects on eye phenotype (Figure 2-6 and Table 2-3A). We 

tested three independently generated Sir2 loss-of-function alleles (Sir2KG00871, 

Sir205327a,and Sir22A-7-11) for genetic modification of the GMR-APP-Gal4, 

UAS:Grimrough eye phenotype (Figure 2-6, Table 2-3A). In two of the three loss-of-

function mutants, loss of Sir2 significantly enhances the rough eye phenotype (p<0.001, 

Table 2-3A). This results in decreased eye size, enhanced pigmentation loss, and severely 

disrupted eye and bristle morphology (Figures 2-6B and 2-6C).   

We then tested the effect of Sir2 gain-of-function on the rough eye phenotype. 

Sir2 gain-of-function (UAS:Sir2) resulted in a significant dominant suppression of the 

rough eyephenotype (p<0.02, Figure 2-7, Table 2-3B). This suppression is particularly 

detectable in the anterior region (Figure 2-7B), where increased eye pigmentation and 

more normal eye and bristle morphology was observed.  Given that this reporter fly 

phenotype relies on the ability of the cleaved APP-Gal4protein to bind to and activate the 

transcription of the UAS:GrimDNA sequence of retinal cells, insertion of another UAS 

DNA sequence (in this case UAS:Sir2) therefore might titrate away APP-Gal4 binding 

sites, causing a suppression of the rough eye phenotype by decreasing the amount of 

Grim protein that is expressed.  To rule out this possibility, we crossed GMR-APP-Gal4, 

UAS:Grimflies to both UAS:LacZ, and UAS:GFP chromosomes, as both proteins are 

innocuous when expressed in the developing eye (Al-Ramahi, Perez et al. 2007).  In both 

cases, the rough eye phenotype was not altered (Figure 2-7A). This indicated that the 

suppression we observe due to Sir2 gain-of-functionis specific to the expression of Sir2.  
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In our cell culture model we observed that the SirT1 agonist resveratrol recapitulated 

some of the effects of SirT1 over-expression on APP metabolism indicating the 

significance of SirT1 deacetylase activity for these changes. To test if Sir2 activity was 

important for suppressing the rough-eye phenotype in our fly model, we crossed the 

AICD reporter flies to the control (w-;+/+) flies on food containing 100 nM resveratrol 

and/or vehicle (DMSO) and scored the eyes of the F1 progeny for rough eye phenotype. 

Compared to vehicle (DMSO) we observed that resveratrol significantly suppressed the 

rough eye phenotype in the AICD reporter flies (Figure 2-4C and Table 2-1). 
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Discussion 

 
 Reducing the levels of Aβ is a major goal of AD therapeutics. Previous reports 

have demonstrated that CR diets reduced Aβ levels and neuropathology in different AD 

models (Patel, Gordon et al. 2005; Wang, Ho et al. 2005; Qin, Yang et al. 2006). In this 

study we show that in vitro CR reduces the levels of soluble and intracellular Aβ in HEK-

293 cells. We also observed that in vitro CR led to a decrease in AICD levels and AICD 

mediated luciferase levels in SY5Y-APP-Gal4 cells. The effects of in vitro CR on Aβ and 

AICD levels seems to be in part due to a decrease in full-length APP levels.  

Caloric restriction is a stressor and induces SIRT1 expression in a wide array of 

tissues and makes cells more resistant to stress (Brunet, Sweeney et al. 2004). SirT1 (or 

Sir2) expression alone has been shown to increase stress resistance and extend lifespan of 

model organisms (Kaeberlein, McVey et al. 1999; Tissenbaum and Guarente 2001; 

Rogina and Helfand 2004; Colman, Anderson et al. 2009). CR extends life-span by 

increasingthe activity of the NAD-dependent protein deacetylase SirT1(Hekimi and 

Guarente 2003). In our study, in vitro CR increases SirT1 levels as has been previously 

observed for this in vitro CR model (Cohen, Miller et al. 2004). We find that SirT1 over-

expression or treatment with the SirT1 agonist, resveratrol, recapitulates some of the 

thein vitro CR mediated effects on APP metabolism. We specifically observed that over-

expressing SirT1 led to a robust and significant decrease in secreted A 40 levels, AICD 

levels, and AICD-mediated transactivation. SirT1 over-expression mediated increases in 

sAPPα levels are consistent with an increase in α-secretase activity, as has been 

previously reported (Qin, Yang et al. 2006). Therefore, SirT1 mediated decreases in Aβ 

may be due to increased α-secretase activity.  
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We have previously observed that genetic and pharmacologic induction  ofα-

secretase activity results in increased AICD levels and increased AICD-mediated 

transactivation (Zhang, Khandelwal et al. 2007). Here, however, despite the SirT1-

mediated induction of α-secretase activity we observe decreased AICD levels and 

transactivation. This suggests that in these cells SirT1 not only regulates APP metabolism 

by inducing α-secretase activity but also by negatively regulating full-length APP 

proteolysis possibly by inhibiting γ-secretase activity.  

While the SirT1-mediated increase in α-secretase activity has been previously 

observed in primary mouse neurons (Qin, Yang et al. 2006), the in vitro CR mediated 

decreases in full-length APP levels that we observe have not been previously reported. 

This observation may be due simply to the cell types utilized here or it could be a true 

cellular response to CR. According to a very recent study, SirT1 appears to be a positive 

regulator of GH(Growth Hormone)  production and signaling, and that SirT1 activity in 

the hypothalamus might decrease during CR (Cohen, Supinski et al. 2009). This indicates 

that there might be an indirect link between SirT1 and α-secretase activity through 

somatotropic signaling in the brain that is triggered by CR. It was also recently reported 

that SirT1 directly regulates autophagy by deacetylating Atg5, Atg7 and Atg8(Lee, Cao 

et al. 2008). Autophagy is a cellular response to limited nutrients to lysosomally degrade 

non-vital proteins and organelles to produce nutrients ensuring that vital cellular response 

can continue(Yorimitsu and Klionsky 2005). Lysosomal function(s) decline(s) in older 

animals. The decline is prevented by CR (Bergamini, Cavallini et al. 2003). In certain 

organs, like the brain, the proteasomal degradation pathway is more efficiently up 

regulated during long-term fasting. The proteasome acting together with ubiquitin and 
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ubiquitin-processing enzymes is responsible for most cytosolic protein degradation under 

normal nutrient conditions and has a variety of essential functions including protein 

quality control. It has been shown that during acute nutrient depletion, proteins can be 

degraded via the proteasomal pathway for generation of amino acids needed for cell 

maintenance (Takahashi and Goto 2002; Vabulas and Hartl 2005). We intend to 

investigate the role of both the  

Finally, we wanted to determine if the effects of caloric restriction and SirT1 

induction on APP processing that we observed in our in vitromodel, are in fact 

recapitulated in an in vivo model system. In this model system, apoptosis in developing 

Drosophila eyes is dependent on AICD production as previously demonstrated using 

PS1(-/-) flies(Guo, Hong et al. 2003; Gross, Feldman et al. 2008). We further confirm this 

dependence on γ-secretase activity by treating these flies with a γ-secretase inhibitor (L-

685,458) that suppressed the rough eye phenotype.  We observed for the first time that 

caloric restriction or over-expression of Sir2 (the Drosophila homolog of SirT1) 

suppresses the rough-eye phenotype in the developing eye of AICD reporter flies. 

Alternatively, the rough eye phenotype was enhanced in reporter flies lacking a 

functional Sir2. We also observed that the Sir2 agonist resveratrol was able to mimic the 

effects of Sir2 gain-of-function by suppressing the rough eye phenotype in these flies. 

These in vivo studies strongly support our in vitro findings. In vitro SirT1 activation via 

over-expression or in vitro CR resulted in decreased Aβ and AICD levels which is 

analogous to the decreased GRIM expression and the resulting decreased rough-eye 

phenotype in vivo.  
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In summary, we have demonstrated that in vitro caloric restriction can modulate 

APP metabolism and that some of these effects seem to be mediated by SirT1. Our results 

demonstrate that in these cells SirT1 regulates APP metabolism by increasing α-secretase 

activity, decreasing APP and AICD levels, and possibly by decreasing γ-secretase 

activity.  In fact it has been recently reported that levels of PS1, a component of γ-

secretase, increases in the hippocampus of senescence-accelerated mouse model 

(SAMP8), indicating that aging indirectly leads to increased γ-secretase (Kumar, Franko 

et al. 2009). Since CR and SirT1 have both been reported to have anti-aging effect, our 

observations in this study might be due to an indirect effect on the levels of  -secretase 

components and therefore γ-sevretase activity. We are extending our studies to further 

analyze these possibilities. Importantly we have demonstrated that in AICD reporter flies, 

caloric restriction and the Drosophila homologue of SirT1, Sir2, can independently 

regulate AICD-dependent  rough-eye phenotype in a manner analogous to what we 

observe in cultured human cells.  Our findings illuminate potentially novel mechanisms 

of APP metabolism regulation in vitro and in vivo.  
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Figure Legends 

Figure 2-1:In vitro caloric restriction modulates APP proteolysis. (A) Treatment of 

HEK-293 cells with CR serum-containing media for 48 hours resulted in a decrease in 

soluble Aβ levels (measured in the conditioned media) compared to treatment with AL 

serum containing media (p=0.007). (B) Treatment of HEK-293 cells with CR serum 

containing media for 48 hours resulted in a decrease in intracellular Aβ levels (measured 

in the cell lysates with the help of NP40) compared to treatment with AL serum 

containing media (p=0.04). Samples were in triplicates and error bars represent standard 

deviation. (C) Treatment of APPGal4 stably over-expressing SH-SY5Y (SY5Y-APP 

Gal4) cells with CR serum containing media for 48 hours resulted in a decrease in AICD 

mediated Firefly Luciferase expression compared to treatment with AL serum containing 

media. There were 12 samples per treatment and error bars represent standard error of the 

means. (D) CR serum treatment of SY5Y-APP Gal4 cells for 48 hours resulted in a 

decrease in the steady state levels of AICD-Gal4 compared to treatment with AL serum 

containing media. β-Actin was used as the loading control. 

 

Figure 2-2:In vitro caloric restriction modulates full-length APP levels and induces 

SirT1. (A) CR serum treatment decreases full-length APP levels in SY5Y-APP Gal4 cells 

compared to treatment with AL serum containing media (48 hour treatment). β-Actin was 

used as the loading control. (B) Quantification of panel A blot shows a 38% decrease in 

the steady state levels of full-length APP in CR serum treated cells compared to AL 

serum treated cells. Treatments were done in triplicate and error bars represent standard 

error of the means. (C) Treatment of naive SH-SY5Y cells with CR serum containing 
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media for 48 hours resulted in a decrease in the steady state levels of full-length APP 

compared to treatment with AL serum containing media. β-Actin was used as the loading 

control. (D)Quantification of the blot shows a 33% decrease in the steady state levels of 

full-length APP in CR serum treated cells compared to AL serum treated cells. 

Treatments were done in triplicates and error bars represent standard error of the means. 

(E) Treatment with CR serum for 48 hours induces SirT1.Treatment with media 

containing CR serum increases the steady state levels of SirT1 compared to treatment 

with media containing AL serum in SY5Y-APP Gal4 cells. β-Actin was used as the 

loading control. 

 

Figure 2-3: SirT1 over-expression modulates APP proteolysis. (A) Transient over-

expression of SirT1 in APPSwed-293 cells decreased secreted Aβ40 levels in comparison 

to cells transfected with the empty vector. There was ~92% (p<0.01) decrease in Aβ 

levels as a result of SirT1 over-expression. Sample number was 3 and error bars represent 

standard error of the means. (B) Transient over-expression of SirT1 in SY5Y-APP Gal4 

cells decreased AICD mediated transactivation in comparison to cells transfected with the 

empty vector (p<0.01) where the Firefly Luciferase CPS were normalized to cell number. 

There was ~60% decrease in AICD mediated Firefly Luc expression as a result of SirT1 

over-expression. Sample number was 4 and error bars represent standard error of the 

means. (C)Transient over-expression of SirT1 in SY5Y-APP-Gal4 cellsdoes not affect 

full-length APP levels in comparison to cells transfected with the empty vector. β-Actin 

was used as the loading control. (D) Transient over-expression of SirT1 in SY5Y-APP 

Gal4 also increased the levels of sAPPα (the soluble fragment of APP that is released due 
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to the α-secretase cleavage of full-length APP) compared to the cells expressing the 

empty vector. (E) SY5Y-APP Gal4 cells treated with 100 nM resveratrol for 6hours 

resulted in a decrease in AICD-mediated Luciferase expression when compared to 

vehicle (DMSO) alone (p<0.01).Treatments were done in triplicate, error bars represent 

standard error of the means. (F) SY5Y-APP Gal4 cells treated with 50 µM resveratrol for 

4 hours results in increased levels of sAPPα compared to the cells treated with the 

vehicle (DMSO) control.  

 

Figure 2-4: AICD-dependent rough-eye phenotype. All panels show adult Drosophila 

eyes from flies maintained at 25°C, same magnification. (A) Wild type eye. Note the 

regular array of ommatidia throughout the eye field. (B) GMR-APP-Gal4, UAS:Grimeye 

shows a smaller eye than wild type, with disrupted ommatidia and bristle morphology 

throughout the eye field. (C) GMR-APP-Gal4, UAS:Grimflies treated with vehicle 

(DMSO) . (D) GMR-APP-Gal4, UAS:Grim flies treated with γ-secretase inhibitor L-

685,458 display a suppression of the rough eye phenotype.(E) GMR-APP-Gal4, 

UAS:Grim flies treated with Sir2 agonist resveratrol display a suppression of the rough 

eye phenotype.  

 

Figure 2-5: Caloric restriction modulates AICD-dependent rough-eye phenotype.  All 

panels show adult Drosophila eyes from flies maintained at 25°C, same magnification. 

(A) GMR-APP-Gal4, UAS:Grim/ w- flies maintained in high calorie foodshow no 

significant modification of the rough eye phenotype as compared to GMR-APP-Gal4, 
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UAS:Grim. (B) GMR-APP-Gal4, UAS:Grim/ w- flies maintained in low calorie 

foodshows a partial rescue of the GMR-APP-Gal4, UAS:Grim rough eye phenotype. 

 

Figure 2-6: Loss-of-function mutations in the Sir2 gene modulate AICD-dependent 

rough-eye phenotype.  All panels show adult Drosophila eyes from flies maintained at 

25°C, same magnification.  (A) GMR-APP-Gal4, UAS:Grimeye shows a smaller eye than 

wild type, with disrupted ommatidia and bristle morphology throughout the eye field.    

(B) GMR-APP-Gal4, UAS:Grim/ Sir2KG00871shows a smaller eye than GMR-APP-Gal4, 

UAS:Grim, with increased loss of pigmentation (arrow).  (C) GMR-APP-Gal4, 

UAS:Grim/ Sir205327ashows a smaller eye, with increased loss of pigmentation (arrow) 

than GMR-APP-Gal4, UAS:Grim. 

 

Figure 2-7: Gain-of-function mutations in Sir2 gene modulate AICD-dependent rough-

eye phenotype.  All panels show adult Drosophila eyes from flies maintained at 25°C, 

same magnification. (A) GMR-APP-Gal4, UAS:Grim/ UAS: LacZ shows no significant 

modification of the rough eye phenotype as compared to GMR-APP-Gal4, UAS:Grim. 

(B) GMR-APP-Gal4, UAS:Grim/ UAS:Sir2 (Sir2EP2300

Table.2-1: Quantitative analysis of γ-secretase inhibition as a result of L-685,458 

treatment. AICD reporter flies (Guo, Hong et al. 2003; Gross, Feldman et al. 2008) were 

fed L-685,458, the γ−secretase inhibitor and the progeny were scored (+ to +++) for 

allele) shows a partial rescue of the 

GMR-APP-Gal4, UAS:Grim rough eye phenotype, particularly in the anterior region 

(arrow). 
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effects on eye phenotype. “+” is a rough eye, where at least ½ of the eye field is wild 

type. “++” is a rough eye where more than ½ of the eye is rough, usually affecting the 

whole eye, but not always. “+++” is a strong rough eye where the entire eye is affected, 

and there is a strong loss of pigment in the posterior ½ of the eye. To determine if there is 

a statistically significant change in phenotype relative to vehicle (DMSO) treated flies, 

we performed a G-test and report the p-values. “n.s.” indicates p-values greater than 0.05. 

Control flies are AD flies untreated or treated with 0.01 %DMSO. 

 

Table.2-2: Quantitative analysis of pathological alteration in AD flies as a result of 

caloric restriction. AD flies(Guo, Hong et al. 2003; Gross, Feldman et al. 2008)were out-

crossed to w- flies on high and low calorie food (Rogina and Helfand 2004)and the 

progeny were scored (+ to +++) for effects on eye phenotype. To determine if there is a 

statistically significant change in phenotype relative to wild type we performed a G-test 

and report the p-values. 

 

Table.2-3: Quantitative analysis of pathological alteration in Sir2 loss-of-function and 

gain-of-function mutant flies. Fly lines expressing Sir2 loss or gain-of-function mutations 

were crossed with AD flies(Guo, Hong et al. 2003; Gross, Feldman et al. 2008) and the 

progeny were scored (+ to +++) for effects on eye phenotype. To determine if there is a 

statistically significant change in phenotype relative to wild type we performed a G-test 

and report the p-values. “n.s.” indicates p-values greater than 0.05. *Control flies are AD 

flies out-crossed to control for crossing to mutant lines. (A) Sir2 loss-of-function mutant 

flies GMR-APP-Gal4, UAS:Grim/ Sir2KG00871 and GMR-APP-Gal4, UAS:Grim / 
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Sir205327a showed a significant (<0.0001) change in eye morphology and loss of 

pigmentation compared to the wild type control flies. (B) The Sir2 gain-of-function 

mutant fly line GMR-APP-Gal4, UAS:Grim/ UAS:Sir2 (Sir2EP2300allele) shows a 

significant (p<0.02) rescue of the rough eye phenotype. 
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Figures 

Figure 2-1. In vitro CR decreases Aβ40
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Figure 2-1C. In vitro CR decreases AICD mediated luciferase activity 

 

 

 

 

 

 

 

 

 

 

Figure 2-1D. In vitro CR decreases AICD levels  
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Figure 2-2A.In vitro CR decreases full-length APP levels in SY5Y-APP-Gal4 cells 

 

 

 

 

 

 

 

 

Figure 2-2B. Quantification of above Western Blot   
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Figure 2-2C.In vitro CR decreases full-length APP levels in naïve SY5Y cells 

 

 

 

 

 

 

 

 

 

 

Figure 2-2D. Quantification of above Western Blot   



  77 

Figure 2-2E.In vitro CR decreases increases SirT1 levels in naïve SY5Y-APP-Gal4 cells 

 

 

 

 

 

 

 

 

 

Figure 2-2F. Quantification of above Western Blot  
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Figure 2-3A. SirT1 over-expression decreases Aβ40

 

 

 

 

 

 

 

 

 

 

Figure 2-3B. SirT1 over-expression decreases AICD mediated luciferase  levels 
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Figure 2-3C. SirT1 does not affect full-length APP levels 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3D. SirT1 increases sAPPα levels 
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Figure 2-3D. Resveratrol treatment decreases AICD mediated luciferase levels 

 

 

 

 

 

 

 

 

 

Figure 2-3E. Resveratrol treatment increases sAPPα levels 
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Figure 2-4. L-685,458 and Reaveratrol rescues rough-eye phenotype in AD flies 
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Figure 2-5. Caloric restriction rescues rough-eye phenotype in AD flies 
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Figure 2-6. Sir2 loss-of function enhances rough-eye phenotype in AD flies 
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Figure 2-7. Sir2 gain-of function rescues rough-eye phenotype in AD flies 
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Table.2-1. Quantitative analysis of APP metabolism inhibition as a result of L-
685,458 and resveratrol treatment  
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Table.2-2. Diet modulates APP metabolism in Drosophila model of AD  



  87 

Table.2-3. Modulation of APP Metabolism in a Drosophila model of AD 

A 

 

B 
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Supplementary Figures 

Figure 2-1A. In vitro CR using serum from FBN rats decreases AICD mediated 
luciferase activity 
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Figure 2-1B.In vitro CR using serum from FBN rats decreases full-length APP levels  

 

 

 

 

 

 

 

 

 

Figure 2-1C. Quantification ofabove Western Blot 
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 It has been widely known that excess consumption of sugar plays an important 

role in the epidemic of obesity around the world(Bray, Nielsen et al. 2004). A large body 

of epidemiological studies has suggested that type-2 diabetes mellitus is associated with 

an increased risk of AD (reviewed in (Cao, Lu et al. 2007)). It has also been shown that 

consumption of sucrose-sweetened water induced insulin resistance and exacerbated AD-

like memory impairment and cerebral amyloidosis in APP/PS1 double transgenic mouse 

model of AD (Cao, Lu et al. 2007). A direct link has been established between diabetes 

and AD (Xu, von Strauss et al. 2009). However the mechanism by which type-2 diabetes 

mellitus may affect AD, are not well understood. It has been previously shown that 

insulin significantly reduces intracellular accumulation of Aβ by accelerating it’s 

CHAPTER 3 
 

NUTRIENT AVAILABILITY MODULATES APP METABOLISM 
 
Introduction 
 

It is known that diet strongly influences the incidence and outcome in major age-

related diseases including diabetes, obesity and vascular disease (Weindruch 1996). This 

opens an avenue of exploration in understanding how the factors that can regulate aging 

related processes might also regulate APP(Amyloid Precursor Protein) processing, 

deposition of β- amyloid peptide (Aβ) and therefore formation of amyloid plaques which 

is the hallmark of AD pathology(Hardy and Selkoe 2002; Tanzi and Bertram 2005). 

Excessive accumulation of Aβ could be due to an increase in its overall 

expression/production or due to a decrease in the degradation of the peptide (Caccamo, 

Oddo et al. 2005). Recent findings have also extended the influences of caloric restriction 

on AD (Wang, Ho et al. 2005; Qin, Chachich et al. 2006; Halagappa, Guo et al. 2007). 
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trafficking from the trans-Golgi network to the plasma membrane. It has been further 

shown that insulin increases the extracellular level of Aβ by reducing its degradation via 

IDE (Insulin Degrading Enzyme) (Gasparini, Gouras et al. 2001). Thusseveral lines of 

evidence indicate that decreases in insulin levels and metabolic abnormalities pertinent to 

diabetes may affect the generation and degradation of Aβ {reviewed in (Craft and 

Watson 2004; Neumann, Rojo et al. 2008)}.In fact, study of components of serum 

(obtained from calorically restricted F344 rats), utilized in an in vitro model of caloric 

restriction showed a decrease in glucose levels and increase in insulin and IGF1 levels 

(Figure. 3-1). This model recapitulated some of the beneficial effects of CR on animal 

models like increased resistance to heat sock and oxidative shock.  

 In the present study we utilized an in vitro model and determined the effect of 

individual nutrients like glucose and pyruvate on APP metabolism. We show here that 

exposure to high glucose and pyruvate levels increases AICD mediated transactivation 

and full-length APP levels.  
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Materials and Methods 

Cell culture and Treatments: SH-SY5Y cells (obtained from ATCC) were 

cultured in Dulbecco’s modified Eagles medium, supplemented with 10% fetal bovine 

serum, penicillin (25,000 U/ml) and streptomycin (25,000 υg/ml). SH-SY5Y cells stably 

expressing APP Gal4 and Gal4 UAS reporter construct (SY5Y-APP Gal4 cells) and 

HEK-293 cells stably transfected with Swedish APP695 plasmid (APPSwed-293 cells) 

were cultured in Dulbecco’s modified Eagles medium, supplemented with 10% fetal 

bovine serum, penicillin (25,000 U/ml),streptomycin (25,000 µg/ml) and G418 (200 

µg/ml). For Glucose and Pyruvate treatments SY5Y-APP Gal4 cells were exposed for 6 

hours to different concentrations of glucose and pyruvatic acid dissolved in PBS with 

0.5% BSA.  

Plasmids: For the APP transactivation assay, we used pMSt APP (APP Gal4) 

construct and pG5e1B-luc (Gal4 reporter plasmid). Both the plasmids were a generous 

gift from Cao and Sudhof (2001). pMst is a Gal4 expression vector driven by the SV40 

promoter derived from pM (Clontech) by mutating the stop codon before the Gal4 DNA 

binding domain. pMst-APP encodes APP-Gal4. It was generated by cloning a PCR 

fragment containing the extracellular and transmembrane region of human APP695 

(APPe, residues 1 to 651) into the Nhe I site of pMst-APPct (linker sequence between 

APPe and Gal4 = MLKKPLASSRMKLLS) (Cao and Sudhof 2001). pG5E1B-luc is the 

Gal4 reporter plasmid in which luciferase mRNA is driven by five copies of Gal4 UAS. 

pcDNA3.1, (G418 resistant plasmid, (Invitrogen)) was co-transfected. Renilla luciferase 

plasmid pRLSV40 was obtained from Promega(Zhang, Khandelwal et al. 2007). 
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 APP transactivation assay: For the transactivation assay, SH-SY5Y cells were stably 

transfected with pMSt APP (APP Gal4) construct and pG5e1B-luc (Gal4 reporter 

plasmid) and the neomycin (G418) resistant plasmid pcDNA3.1 (Invitrogen). The cells 

were maintained in Dulbecco’s modified Eagles medium, supplemented with 10% fetal 

bovine serum, penicillin (25,000 U/ml), streptomycin (25,000 ug/ml) and G418 (200 

ug/ml). Following glucose and/or pyruvate treatments in 24/96 well plates, the cells were 

washed twice with cold PBS and then lysed with GLB (GloLysis Buffer, Promega Inc.). 

Then Luciferase activity was measured using Steady Glo luciferase reagent, Promega Inc. 

The luciferase activity was measured using the TopCount plate reader (PerkinElmer.Inc). 

The luciferase counts per second (CPS) were normalized to cell count by Sybergreen 

Assay. For Syber green assay, 20x Syber Green (diluted with PBS from 1000x stock) was 

used. Experiments were done in triplicates. For the Dual luciferase assay, Renilla 

luciferase plasmid pRLSV40 (Promega) is transiently transfected in SH-SY5Y cells 

stably over-expressing pMSt APP (APP Gal4) construct and pG5e1B-luc (Gal4 reporter 

plasmid)(Figure 3-1). For the Dual Luciferase assay cells were washed twice with cold 

PBS and lysed with Dulbecco’s modified Eagles medium, supplemented with 10% fetal 

bovine serum, penicillin (25,000 U/ml),streptomycin (25,000 ug/ml) and G418 (200 

ug/ml). Measurement of firefly luciferase activity (dependent on APP processing) and 

Renilla luciferase activity (independent of APP processing) are done using the Dual Glo 

kit (Promega). In the case of the Dual Luciferase Assay, the firefly luciferase counts were 

normalized to Renilla luciferase counts.  

 Western Blot Analysis: After the treatments, cells were washed twice with cold PBS 

and then lysed in RIPA Buffer containing different protease inhibitors [Antipain(100uM), 
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Aprotinin (2 ug/ml), Benzamide (15 ug/ml), Chymostatin (100 uM), Leupeptin (100 uM), 

Pepstatin A (1uM), PMSF (1uM), Sodium Metabisulfite(0.1 nM). 10ul of lysates were 

used for protein assay with the help of BCA Protein Assay Kit (Pierce, Inc.). The BCA 

protein utilizes a standard curve generated by RIPA standards (different dilutions of BSA 

protein in RIPA buffer). According to the protein concentrations, samples for Western 

Blot were prepared using the 4x Nupage LDS sample buffer (Invitrogen, Inc.) containing 

0.2% BME (β-Merkaptoethanol, Sigma Aldrich). Equal volumes of protein were loaded 

on to each well of NuPAGE 4-12% BisTris Gel. From the gel the proteins were 

transferred on to 0.25 μ PVDF membrane (Millipore) using a semi-dry transfer apparatus. 

Blots were probed with different antibodies and the target protein densitometry was 

normalized to actin densitometry using a Flurochem 8900 gel imaging system (Alpha 

Innotech). 

 Antibodies used: APP C-terminal antibody (A8717; Sigma Aldrich, Inc), monoclonal 

anti β-Actin (A5441, Sigma Aldrich, Inc), monoclonal anti SirT1 (05-707, Upstate, Inc), 

APP 6E10 (ab10146, Abcam), goat anti-rabbit (NA934V, GE Healthcare UK Limited) 

and goat anti-mouse (NA931V, GE Healthcare UK Limited). 

 Statistical Analysis: Values in the text and figures are presented as means ± standard 

deviation of at least three independent experiments. Equal variance or separate variance 

two-sample  student’s  t-test  were  used,  as  appropriate,  to  compare  two  groups. “*” 

indicatesp< 0.05 and “**” indicates p< 0.01. 
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Results 

Glucose and Pyruvate modulate APP proteolysis: To determine the effect of glucose on 

AICD production we used the AICD mediated transactivation assay utilizing an APP-

Gal4 fusion protein and the Gal4-Luc reporter construct (Cao and Sudhof 2001). We 

utilized SH-SY5Y cells stably expressing the APP-Gal4 protein and carrying the Gal4-

UAS driven firefly Luciferase reporter gene (Zhang, Khandelwal et al. 2007). The APP-

Gal4 undergoes normal secretase-mediated processing to produce the AICD-Gal4 

fragment. This fragment transactivates the Gal4-UAS responsive Luciferase reporter gene 

(Cao and Sudhof 2001). We have shown that changes in luciferase activity in this assay 

provide an accurate measure of changes in AICD-Gal4 levels (Zhang, Khandelwal et al. 

2007).  We exposed SY5Y-APP-Gal4 cells to different concentration of glucose and/or 

pyruvatedissolved in PBS with 0.5% BSA (Bovine Serum Albumin). We observed that 

there was a decrease in AICD-Gal4 mediated luciferase expression in these cells with 

decreasing glucose (Figure 3-2A)and/ or Pyruvate(Figure 3-2B)concentrations. We 

wanted to determine if the effect of decreasing levels of glucose and pyruvate on AICD 

mediated transactivation was due to general transcriptional repression. So we exposed 

SY5Y-APP-Gal4 cells transiently expressing pRLSV40 (Renilla Luciferase plasmid, 

whose expression was independent of APP processing) to different concentrations of 

glucose and pyruvate. We observed that there was still a significant decrease in AICD 

mediated transactivation in decreased level of glucose or pyruvate(Figure 3-2C), 

suggesting that APP proteolysis is specifically affected in these conditions. 

Glucose and Pyruvatemodulate full-length APP levels: To determine if these observed 

effects were due to decreases in secretase activity and/or substrate availability, we 
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exposed SY5Y-APP-Gal4 cells to different concentrations of glucose and determined 

steady state full-length APP-Gal4 levels.  We observed a decrease in total, full-length 

APP-Gal4 levels (mature and immature forms of APP-Gal4) in the cells with decreasing 

concentrations of glucose (Figure 3-2Aand 2B). We also exposed naïve SH-SY5Y cells 

to differentconcentrationsofglucoseto determine the effect on endogenous levels of full-

length APP.Again, we observed a decrease in the endogenous APP levels with decreasing 

concentrations of glucose(Figure 3-2C and 2D). These findings suggest glucose effects 

full-length APP levels. Similarly we also observed in SY5Y-APP-Gal4 cells that 

decreasing concentrations of pyruvatedecrease full-length APP levels (Figure 3-2E and 

3F).  
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Discussion 

Current therapeutics available for AD treats the symptoms, but do not affect the 

underlying causes of the disease. Development of possible therapy that would target APP 

proteolysis and thereby Aβ generation would be extremely beneficial. A number of 

studies have shown that caloric restriction reduced Aβ levels and neuropathology in a 

variety ofAD models (Patel, Gordon et al. 2005; Wang, Ho et al. 2005; Qin, Yang et al. 

2006). It has been shown that glucose and insulin levels specifically affect AD pathology 

(Gasparini, Gouras et al. 2001; Craft and Watson 2004; Cao, Lu et al. 2007). It was also 

reported in an in vitro model that there is a decrease in glucose levels with caloric 

restriction (de Cabo, Furer-Galban et al. 2003). Here we show that both glucose and 

pyruvate modulate APP metabolism. 

 We specifically observed that decreasing concentrations of glucose and pyruvate 

decrease AICD mediated luciferase levels in APP-Gal4 over-expressing SH-SY5Y cells. 

However,we wanted to determine if the effect of decreasing glucose and pyruvate levels 

that we observed was due to a general transcriptional repression. We observed that in 

SY5Y-APP-Gal4 cells AICD mediated transactivation was specifically affected due to 

changes in glucose and pyruvate levels. We also observed that decreased glucose levels 

also decreased C99-Gal4 levels in SY5Y-APP-Gal4 cells. This suggests that glucose 

levels might also affect β-secretase cleavage of APP and therefore decreases the amount 

of substrate available for γ-secreatse cleavage, leading to a decrease in AICD levels. We 

further observed that decreasing levels of glucose and Pyruvate decreased steady-state 

full-length APP levels. Therefore the effect of availability of these nutrients on AICD 

mediated transactivation, seem to be in part due to reduced levels of full-length APP. In 
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future we would determine the effect of availability of these specific nutrients affect α−, 

β− and γ−secetase activities and their products specifically Aβ levels. We would also 

extend out studies to determine if the effects observed on full-length APP are 

transcriptional or due to increased turnover.  

  In certain organs, like the brain, the proteasomal degradation pathway is more 

efficiently upregulated during long-term fasting. The proteasome acting together with 

ubiquitin and ubiquitin-processing enzymes is responsible for most cytosolic protein 

degradation under normal nutrient conditions and has a variety of essential functions 

including protein quality control. It has been shown that during acute nutrient depletion, 

proteins can be degraded via the proteasomal pathway for generation of amino acids 

needed for cell maintenance (Takahashi and Goto 2002; Vabulas and Hartl 2005). 

Reduction of glucose levels is similar to fasting in his in vitro model. We want to extend 

our studies to determine if the effect of nutrient availability on APP metabolism in our 

model is dependent on proteasomal and lysosomal activity. We would also monitor the 

levels of Notch, another typeI transmembrane protein similar to APP to determine if the 

effects of glucose and pyruvate are general and not specifically on APP.  
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Figure 3-1. Model for dual luciferase assay  
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Figure3-2.Glucose and pyruvate modulate AICD levels. SY5Y-APP-Gal4 cells were 

treated with different concentrations of glucose and Pyruvate dissolved in PBS+0.05% 

BSA. Lysates were used for luciferase assay. Luciferase CPS were normalized to total 

protein concentration (µg/µl) 

(A) Glucose modulates AICD mediated transactivation 

 

 

 

 

 

 

 

 

(B)  Pyruate modulates AICD mediated transactivation 
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(C) Glucose and pyruvate specifically decrease AICD mediated transactivation. 

SY5Y-APP-Gal4 cells were treated with different concentrations of glucose and 

Pyruvate dissolved in PBS+0.05% BSA. Renilla luciferase plasmid was transienly 

transfected in cells. Renilla luciferase gene expression is independent of APP 

processing. Lysates were used for dual-luciferase assay. Firefly-Luciferase CPS 

were normalized to Renilla luciferase CPS. 

  

Glucose Pyruvate 
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Figure 3-3.Glucose and pyruvate modulate full-length APP levels  

(A) Reduced glucose availability decreases full-length APP levels in SY5Y-APP-Gal4 

cells. SY5Y-APP-Gal4 cells were treated with different concentrations of glucose 

dissolved in PBS+0.5%BSA for 6 hours. Lysates were used for Western Blot. Equal 

amount of protein (45 µg) was loaded on gel. β-Actin was used as loading control 

 

 

 

 

 

 

 

 

(B) Quantification 
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(C) Reduced glucose availability decreases full-length APP levels in Naïve SH-SY5Y 

cells. . Naïve SH-SY5Y cells were treated with different concentrations of glucose 

dissolved in PBS+0.5%BSA for 6 hours. Lysates were used for Western Blot. Equal 

amount of protein (48 mg) was loaded on gel. β-Actin was used as loading control 

 

 
 
 
 
 
 
 
 
 

(D) Quantification 
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(E) Reduced pyruvate availability decreases full-length APP levels in SY5Y-APP-Gal4 

cells. SY5Y-APP-Gal4 cells were treated with different concentrations of 

pyruvatedissolved in PBS+0.5%BSA for 6 hours. Lysates were used for Western 

Blot. Equal amount of protein (55 µg) was loaded on gel. β-Actin was used as loading 

control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(F) Quantification 
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Ranjita Chakraborty1,^, Vidya Vepuri1, 2, ^, Sarah J. Michelson1, Marianna Vinokur1, Sean 
Miller1,Radha Delvadia1, Arkit Desai1, Siddhita Mhatre1, David Melicharek1, Aleister J. 
Saunders1, 3, 4*, and Daniel R. Marenda1, 4* 
 

 

Addresses:  
 
1Department of Biology, Drexel University, Philadelphia, PA  
 
2Department of Biological Sciences, University of the Sciences in Philadelphia, 
 Philadelphia, PA 
 

3Department of Biochemistry, Drexel University College of Medicine, Philadelphia, PA 
 
4Department of Neurobiology and Anatomy, Drexel University College of Medicine, 
Philadelphia, PA 
 
^ These authors contributed equally to this work 
 

*Correspondence: Aleister J. Saunders, Department of Biology, Drexel University, 

3141 Chestnut St., Philadelphia, PA 19104. 

e-mail: Aleister.Saunders@drexel.edu 

 

*Correspondence: Daniel R. Marenda, Department of Biology, Drexel University, 3141 

Chestnut St., Philadelphia, PA 19104. 

e-mail: Daniel.Marenda@drexel.edu 

  



  106 

Summary  

A central event in Alzheimer’s disease (AD) is the sequential cleavage of the β-

amyloid precursor protein (APP) by β-and γ-secretase enzymes generating the amyloid-

beta (Aβ) peptide. Aggregation of Aβ is a major pathological hallmark of AD. It is 

important to identify regulators of APP processing and Aβ production for developing any 

therapeutic intervention.  Here we have developed and characterized a Drosophila model 

of AD that allows the natural processing of APP by β- and γ-secretase in the central 

nervous system (CNS) to produce Aβ peptides. We show here that our AD model flies 

are defective for normal reflexive CNS behavior represented by significantly reduced 

climbing ability and also display significantly reduced longevity, consistent with the 

effects of the neurodegeneration we observe in these flies’ brains. Further, both of these 

behavioral defects can be significantly improved by using L-685, 458, consistent with the 

idea that these phenotypes also require the presence of Aβ peptides and AICD generated 

through β- and then γ-secretase cleavage of APP. We also show that the Sir2/SirT1 

agonist resveratrol, significantly rescued the climbing behavior in our AD flies further 

confirming that this would be a good model to screen genetic and pharmacologic 

regulators of APP metabolism. 
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Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is 

considered to be the most common cause of dementia. The pathological features of AD 

include the presence of senile plaques, neurofibrilary tangles, and massive loss of 

neurons, primarily in the cerebral cortex and hippocampus. The senile or amyloid plaques 

are extracellular deposits composed of a small peptide (~4KD) called β-amyloid (Aβ), 

surrounded by dystrophic neurites, reactive microglia and astrocytes(LaFerla and Oddo 

2005). Several lines of evidences lend support to the amyloid hypothesis of AD, 

according to which Aβ plays the central role in initiating the AD pathogenic 

cascade(Hardy and Selkoe 2002). Aβ peptides are generated by proteolytic processing 

from a larger β-amyloid precursor protein (APP) through sequential proteolysis by β- and 

γ-secretases in amyloidogenic processing pathways(De Strooper and Annaert 2000). In 

the non-amyloidogenic pathway, APP is cleaved within the Aβ domain by α-secretase, 

thereby precluding generation of the Aβ peptides(De Strooper and Annaert 2000). APP is 

cleaved by α-secretase or at a different site by β-secretase, generating the soluble APP 

ectodomain (sAPPα or sAPPβ) and the two membrane associated C-terminal fragments 

(CTFα or C83 and CTFβ or C99)(De Strooper and Annaert 2000).These C-terminal 

fragments then become substrates for the γ-secretase enzyme that cleaves the 

transmembrane domains, releasing the P3 peptide from the C83 and the Aβ peptide from 

the C99 along with the APP intracellular domain (AICD) at the cytoplasmic side(De 

Strooper and Annaert 2000). APP proteolysis is an important step towards development 

of AD. Therefore, it is important to identify and characterize genes and pharmaceuticals 

that modulate APP metabolism and Aβ production.  
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 An in vivo model is crucial to the study of many disease mechanisms, including 

AD, asin vitrostudiesdon’t always represent the natural physiology of human cells.  As a 

result, attempts to understand the complex etiology of most diseases have 

beensignificantly improved through the study of model organisms that serve as surrogates 

for human patients. The fruit fly, Drosophila melanogaster, has been tremendously 

important and influential in furthering our understanding of the mechanisms of many 

forms of neurodegenerative diseases, including AD (Fossgreen, Bruckner et al. 1998; 

Greeve, Kretzschmar et al. 2004; Iijima, Liu et al. 2004; Jeibmann and Paulus 2009; 

Sarantseva, Timoshenko et al. 2009).  

 Drosophila model is particularly useful for AD research, as they possess an APP 

homologue that does not contain the neuropathological Aβ region. As a result, APP 

expression and processing can be tightly regulated and monitored in a transgenic fly 

model where human APP is inserted.  Additionally, Drosophila endogenously produces 

α-secretase andγ-secretase, but not BACE.  As a result, we have employed a transgenic 

line of flies where we can control the expression of BACE activity. When human APP is 

expressed in flies, they undergo the same γ-secretase cleavages as in humans (Fossgreen, 

Bruckner et al. 1998).   Since this critical proteolytic cleavage is conserved, and the 

BACE cleavage can be modulated, Drosophila are a strong candidate for the study of AD 

(Sang and Jackson 2005; Marsh and Thompson 2006). 

Many Drosophila models of AD utilize transgenic flies that express the toxic 

form of Aβ, to study its effects on a molecular and behavioral level (Finelli, Kelkar et al. 

2004; Iijima, Liu et al. 2004; Crowther, Kinghorn et al. 2005).  These models have been 

useful in highlighting human disease phenotypes, such as amyloid deposits, learning and 
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memory deficiences, disorientation, and premature death. Though this method of 

expressing toxic Aβ is useful for modulating the disease phenotype after disease 

progression has begun, few models have allowed for the natural processing of APP to 

occur.  

Targeted expression of the human genes involved in AD has been used in 

Drosophila models previously, with a focus on both the retina and the nervous 

system(Greeve, Kretzschmar et al. 2004; Sarantseva, Timoshenko et al. 2009). We report 

here the characterization of a Drosophila model of AD that is both rapid, and sensitive to 

pharmacological phenotypic modification. Importantly, this model displays very similar 

pathology to human Alzheimer’s patients, including accumulation of Aβ containing 

plaques in their brains, decreased synaptic brain structures, and memory deficits. 

However, a significant advantage of our model is that this model develops pathology in 

roughly 4 weeks, and this pathology can be significantly suppressed by pharmacological 

intervention. 
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Results and Discussion 

 We initially expressed the human forms of the Amyloid Precursor Protein (APP) 

and β-secretase (BACE) exclusively in the developing fly nervous system using the 

Gal4/UAS system (Brand and Perrimon 1993). By expressing both APP and BACE 

together, we are requiring that the natural APP cleavage events mediated by the 

endogenous α and γ secretases in the fly, and the exogenous human β-secretase provided 

in our model, must occur in order to generate toxic Aβ42 oligomers normally associated 

with AD pathology. Further, we hypothesized that this should be sensitive to 

pharmacological intervetion that affected these enzymes. We utilized the ELAV-Gal4 

reagent to limit the expression of these proteins to the fly nervous system only. We 

believe that through this specific experimental protocol, we are creating a situation that is 

more similar to the events that normally lead to the pathology observed in human AD 

patients. 

 We initially tested for successful expression of these proteins in adult fly heads 

through Western Blot analysis (Figure 4-1). To determine that any observed changes in 

protein expression or migration are due to γ secretase cleavage, we cultured these AD 

model flies on food containing 100 nM L-685, 458, a strong γ secretase inhibitor. We 

observe strong expression of APP upon induction with ELAV-Gal4 in both DMSO and L-

685, 458 flies (Figure 4-1A). Further, we observe succesful α-secretase cleavage 

fragments (C83) in these fly heads (Figure 4-1A, red arrowhead lane 2), a result of the 

endogenous α-secretase found in flies. In flies cultured in L-685, 458, we observe a build 

up of the C83 fragment (Figure 4-1A, red arrowhead lane 5), consistent with a blockage 

of subsequent γ secretase cleavage on the C83 fragment. When we co-express BACE 
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with APP, we observe a shift in APP processing such that these flies now also produce 

the C99 fragment (Figure 4-1A, red arrowhead lane 3) indicitive of BACE cleavage of 

APP. Again, C83 fragments build up in theses flies along withh C99, when cultured in γ 

secretase inhibitor (Figure 4-1A, bottom arrowhead lane 6). Taken together, these data 

suggest that we are successfully expressing the human APP and BACE proteins in these 

fly heads, and that that normal proteolytic cleavage of these proteins succesfully takes 

place in this model leading to the production of appropriate C-terminal fragments. 

As mentioned earlier, Aβ is the major component of the senile plaques found in 

the brains of AD patients. Therefore it is important to determine if Aβ is generated in our 

AD model flies through β- and γ-secretase cleavage of APP. We detected Aβ40 in 

APP;BACE flies cultured in DMSO (Figure 4-1B, lane 1). However, the levels of Aβ40 

were negligible in APP;BACE flies cultured in L-685,458 (Figure 4-1B, lane 2), 

indicating that γ-secretase activity is inhibited successfully in these flies, as is the 

production of Aβ. There was an 80% decrease in Aβ40 levels in the L-685,458 treated 

flies, compared to the DMSO treated flies (Figure 4-1C). C99 is the substate for γ-

secretase cleavage in the amyloidogenic pathway of APP processing. An inhibition of γ-

secretase activity should lead to a build up of C99, along with a decrease in Aβ levels. 

We next quantified the levels of C99 in these APP;BACE fly heads and observed that 

there was a 30% increase of C99 in the flies culutured in L-685,458 (Figure 4-1B, lane 2; 

Figure 4-1C) compared to those cultured in DMSO (Figure 4-1B, lane 1; Figure 4-1C). 

Taken together, these results suggest that we have sucessfully recapitulated the 

amyloidogenic pathway of APP processing in the APP; BACE flies.  



  112 

 We expressed APP and BACE continuously during development to determine if 

this genotype could produce viable flies with prominent phenotypes that were consistent 

with nervous system degeneration. Upon eclosion, we initially observed two distinct 

morphological abnormalities in these flies: crumpled wings (Figure 4-2B), and the 

presence of melanotic masses on both the abdomen and proboscis of the fly (arrows in 

Figure 4-2B). Abnormal wing development was previously observed in flies expressing 

human APP in fly wings (Fossgreen, Bruckner et al. 1998), though melanotic tissue mass 

has not been previously described, and is due to localized buildup of pigment in the 

presence of tissue damage and/or necrotic tissue in the area. These phenotypes are 

observed in flies expressing human APP alone, but are greatly enhanced by flies that 

express both the human APP and BACE proteins (Figure 4-2C), consistent with the idea 

that the phenotypes are dependent upon the expression of BACE, and may be due to 

increased accumulation of Aβ42 oligomers. Both of these phenotypes are strongly 

suppressed when these flies are cultured on L-685, 458 (Figure 4-2C), strongly 

suggesting that proper γ secretase activity is also required for these phenotypes. 

 We next analyzed adult brains from our model flies. Gross anatomical comparison 

between wild type brains (Figure 4-3A) and brains from flies expressing the APP and 

BACE proteins (Figure 4-3B) showed severe degeneration in a number of brain 

structures, including the mushroom body, the antennal lobes, and the optic lobes. To 

determine the effects on synaptic structures of neurons involved in learning and memory 

in the fly, we analyzed the soma, dendrites, and axons of the Kenyon cell neurons 

(Heisenberg, Borst et al. 1985). We co-expressed a membrane tagged form of GFP (CD8-

GFP) in our AD fly background in order to visualize whole brain anatomy fluorescently. 
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We found a significant reduction in the size of the Calyx (the dendritic field) and the 

mushroom body lobes (the axonal bundles) in flies that express both APP and BACE as 

compared to control flies, or flies that express APP alone (Figures 4-3C, D). Though 

there is no significant difference in the size of the Kenyon Cell neuronal clusters, there is 

a trend that shows that these structures are also reduced compared to both control flies 

and flies that express APP alone (Figure 4-3D). Because these fly brains were dissected 

at day 6 after eclosion, it may be that we are observing those structures most sensitive to 

initial degeneration (dendrites and axons), and that we would observe a signficant 

difference in Kenyon cell neuronal cluster size if we were to analyze these flies at a later 

age. When flies expressiong both APP and BACE are cultured on media containing L-

685, 458, we observe a significant increase in the size of synaptic structures measured 

compared to control flies cultured on DMSO (Figure 4-3E). There is an increase in the 

overall neuronal population of Kenyon cells (as measured by the increase in surface area 

of Kenyon cell soma) as well as a significant increase in the Kenyon cell dendritic fields 

of these flies (Figure 4-3E). Again, though there is no significant increase in axonal fields 

between AD flies cultured on DMSO compared to L-685, 458, there is a strong trend 

towards a larger axonal field. Taken together, these data suggest that those structures 

involved in synaptic function (dendrites and axons) in Kenyon neurons are smaller in 

overall size in flies expressing APP and BACE compared to controls. Further, this 

reduction in size is dependant upon both the expression of human BACE, and the proper 

function of the γ secretase complex, consistent with the idea that these phenotypes require 

the presence of Aβ peptides.  
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 In order to validate that the reduction in dendritic and axonal structures observed 

in our AD model correlates with the presence of amyloid plaques, we stained these brains 

with Thioflavin S as has been previously described by Iijima et al (Iijima, Liu et al. 

2004). We detected a significant number of Thioflavin S positive puncta in brains that 

express APP and BACE compared to controls (Figure 4-4A compared to 4-4B). We 

further observed that there was a decrease in the number of Thioflavin S positive puncta 

in the brains of flies expressing APP and BACE when cultured on L-685,458 media as 

compared to flies expressing APP and BACE when cultured on DMSO (Figure 4-4C 

compared to 4-4D). Taken together, these data indicate that reduction in the size of the 

neuroanatomical structures measured in fly brains correlates well with the presence of 

amyloid. 

 To further confirm the presence of amyloid plaques in the brains of the AD model 

flies, we stained the brains of flies expressing APP and BACE with antibodies (6E10) 

that specifically recognize amyloid-beta, as previously described by Chaing et al (Chiang, 

Iijima et al. 2009). We observed a significantly larger number of 6E10 positive plaques in 

the brains of flies cultured on DMSO (Figures 4-4E, 4-4G) as compared to flies cultured 

on L-685, 458 (Figures 4-4F, 4-4G). These results further confirm the presence of 

amyloid-beta positive plaques in the brains of our AD model flies, and show that these 

plaques are sensitive to pharmacological inhibition of γ secretase.  

 As an initial test of central nervous system function in our model, we utilized a 

simple, yet powerful behavioral assay, the climbing assay (Le Bourg and Lints 1992). 

This assay has been previously used to successfully test for nervous system function in 

fly models of multiple diseases, including Alzheimer’s Disease (Iijima, Liu et al. 2004). 
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Briefly, flies display a negative geotaxis response when given a mechanical stimulus. 

When tapped to the bottom of a vial, flies normally can orient themselves rapidly, and 

will begin climbing to the top of the vial. By assaying the fly’s ability to perform this 

response, we are able to compare broad nervous system function of reflex behavior 

within flies of different genotypes. When cultured on normal food, flies that express both 

APP and BACE show a significant decrease in their climbing ability compared to 

bothcontrol flies, and flies that express APP alone (Figure 4-5A). This behavior also 

decreases with age, but is apparent within the first 10 days of the assay (Figure 4-5A). 

Further, on normal food, the longevity of flies that express APP alone, and APP with 

BACE is significantly decreased compared to control flies (Figure 5B). When cultured on 

food that contains L-685, 458, the decrease in both climbing behavior and longevity is 

significantly rescued and is comparable to control flies (Figures 5C, D). Taken together, 

these data suggest that our AD model flies are defective for normal reflexive CNS 

behavior and also display significantly reduced longevity, consistent with the effects of 

the neurodegeneration we observe in these flies’ brains. Further, both of these phenotypes 

can be significantly improved by using L-685, 458, consistent with the idea that these 

phenotypes also require the presence of Aβ42 oligomers. 

 One of the earliest symptoms of Alzheimer’s disease is memory loss. To test for 

deficits in learning and memory in our AD model, we performed the conditioned 

courtship suppression assay (Siegel and Hall 1979). This assay is an associative 

conditioning procedure that is ethologically based and capable of measuring both 

learning and memory in individual flies(Broughton, Tully et al. 2003). Briefly, courting 

behavior by males in Drosophila follows a linear, stereotyped, and well documented set 
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of behaviors, and this behavior is modified by previous sexual experience (Siegel and 

Hall 1979; Hall 1994). Courtship conditioning is a form of associative learning in 

Drosophila, where male courtship behavior is modified by exposure to a previously 

mated female that is unreceptive to courting (Siegel and Hall 1979; Siwicki, Riccio et al. 

2005).Thus, after 1 hour of courting a mated female, males suppress their courtship 

behavior even towards subsequent receptive virgin females for 1-3 hours by 40% or 

more(Siegel and Hall 1979; Joiner Ml and Griffith 1997; Kane, Robichon et al. 1997; 

Kamyshev, Iliadi et al. 1999).   

 To determine effects on learning in AD flies,male flies were placed in a courtship 

chamber with a previously mated (unreceptive) wild type female for 60 minutes. The 

amount of time the male spent performing courtship behavior was assessed during the 

first 10 minutes of this training and compared to the last 10 minutes of the training 

period. Wild type control flies showed a significant drop in courtship behavior in the last 

10 minutes of training as compared to the first 10 minutes of training (Figure 4-6A), 

indicative of an appropriate learning response. Flies that express APP and BACE also 

showed an appropriate learning response regardless of whether these flies were cultured 

on DMSO or L-685, 458 (Figure 4-6A). Importantly, this indicates that our AD model 

flies are able to successfully perceive and interpret the sensory stimuli in this assay 

normally, and that they are able to alter their behavior appropriately (learn) in response to 

training.  There have been five phases of memory defined in Drosophila, immediate 

recall (0-2 minutes post-training), short term memory (out to 1 hour post-training), 

medium term memory (out to six hours), anesthesia-resistant memory (out to two days), 

and long term memory (out to 9 days) (Greenspan 1995; McBride, Choi et al. 2005). We 
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assayed our model flies for immediate recall memory by transferring trained male flies to 

clean mating chambers with a receptive virgin female within 2 minutes of training. We 

then assayed their courtship behavior. Trained wild type males showed a clear decrease in 

courtship activity as compared to parallel sham trained flies (Figure 4-6B), indicating a 

change in behavior consistent with normal immediate recall memory of training. 

However, AD flies cultured on DMSO showed no significant decrease in courtship 

behavior within 2 minutes of prior training compared to sham trained AD flies cultured 

on this media (Figure 4-6B), indicating that though these flies are capable of learning, 

they are deficient in their immediate recall memory of this learning. However, culturing 

AD flies on L-685, 458, showed a clear decrease in courtship activity as compared to 

parallel sham trained AD flies cultured on this media (Figure 4-6B), indicating that the 

drug L-685, 458 can suppress the immediate recall memory defect normally associated 

with AD flies cultured on DMSO. This is interesting to note, particularly as culturing 

flies on L-685, 458 does not fully rescue the decreased Kenyon neuron morphology in 

our AD flies.  

Alzheimer’s disease is a disease of aging. Numerous studies in model organisms 

have shown that Sir2/SirT1the NAD+-dependent deacetylase, is a critical regulator of the 

aging process (Anderson, Bitterman et al. 2003; Howitz, Bitterman et al. 2003; Cohen, 

Miller et al. 2004; Rogina and Helfand 2004). Both genetic and pharmacologic induction 

of SirT1 has also shown to be beneficial in many in vivo and in vitro models of AD. The 

SirT1 agonist resveratol has been shown to lower the levels of secreted and intracellular 

Aβ peptides produced from different cell lines (Marambaud, Zhao et al. 2005). Based on 

these studies, we wanted to determine if our model was sensitive to test the efficacy of 
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the Sir2/SirT1 agonist resveratrol using the climbing behavior assay in our AD model 

flies. We found that flies cultured on media containing 100 nM resveratrol significantly 

rescued the climbing behavior in our AD flies (Figure 4-7), further confirming that this 

model was sensitive to pharmacological intervention beyond L-685, 458.  

To summarize, our results show that we have successfully created an AD model 

in Drosophila that is both rapid, and sensitive to pharmacological intervention. Our 

results specifically show that these AD model flies can recapitulate amyloidogenic 

proteolytic processing of APP by β- and γ-secretase respectively, leading to the 

production of Aβ. We have shown that presence of Aβ in the central nervous system of 

these flies can recapitulate some of the pathological, neuroanatomical and behavioral 

changes seen in AD patients. We have further shown that some of these changes can be 

rescued by the γ-secretase inhibitor L-685,458 and the Sir2/SirT1 agonist resveratrol. We 

suggest that this model will serve as a powerful tool for future screening of genetic and 

pharmacologic modulators of APP proteolysis and Aβ production. 
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Materials and Methods 

Western Blot Analysis: For Western blot analysis, 5-10 fly heads were collected 

from respective genotype and lysed in RIPA Buffer containing different protease 

inhibitors [Antipain(100µM), Aprotinin (2 µg/ml), Benzamide (15 µg/ml), Chymostatin 

(100 µM), Leupeptin (100 µM), Pepstatin A (1µM), PMSF (1µM), Sodium 

Metabisulfite(0.1 nM). 1 µl of lysates were used for protein assay with the help of BCA 

Protein Assay Kit (Pierce, Inc.). The BCA protein utilizes a standard curve generated by 

RIPA standards (different dilutions of BSA protein in RIPA buffer). According to the 

protein concentrations, samples for Western Blot were prepared using the 4x Nupage 

LDS sample buffer (Invitrogen, Inc.) containing 0.2% BME (β-Merkaptoethanol, Sigma 

Aldrich). Equal amounts of protein were loaded on to each well of NuPAGE 4-12% Bis 

Tris Gel. From the gel the proteins were transferred on to 0.25 μ PVDF (Immobilon FL) 

membrane (Millipore) using a semi-dry transfer apparatus. Blots were probed with 

different antibodies and the target protein densitometry was normalized to b-actin 

densitometry using Odyssey Infrared Imaging system (LI-COR Biosciences).  

Immunohistochemistry and Antibodies: APP C-terminal antibody (A8717; 

Sigma Aldrich, Inc), monoclonal anti β-Actin (A5441, Sigma Aldrich, Inc), APP 6E10 

(ab10146, Abcam), goat anti-Rabbit IR-Dye800 CW (926-3211) and/or Goat anti-Mouse 

IR Dye 680 (926-3200) were used as secondary antibodies. 

Adult and larval brains were dissected, fixed and prepared essentially as 

described(Tio and Moses 1997). Adult and larval brains were dissected directly in fix. 

Brains were mounted in vectashield (Vector Labs, H-1000). All fluorescent imaging was 

done using an Olympus FluoView FV1000 laser scanning confocal microscope. 
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Secondary antibodies for immunohistochemisrty used were goat anti-mouse TRITC (# 

115-116-072, 1:150), goat anti-rabbit TRITC (# 111-116-144, 1:250), goat anti-rabbit 

Cy5 (#111-176-144, 1:1000), goat anti-mouse Cy5 (# 115-176-072, 1:500). All 

secondary antibodies were from Jackson ImmunoResearch. 

Thioflavin S staining was performed as described (Iijima, Chiang et al. 2008). 

Pharmacologic reagents used: Resveratrol (Sigma Aldrich) was used for some 

experiments. Resveratrol was dissolved in DMSO. 100 nM resveratrol was used for 

preparing food vials for AD model flies. γ-secretase transition state inhibitor, L-685,458, 

was purchased from Sigma Aldrich. 100 nM L-685,458 was used for preparing food vials 

for AD model flies. 

 Drosophila Stocks and Genetics: All crosses were carried out at 25°C. Normal 

food consisted ofa standard cornmeal, yeast, molasses recipe as follows: 120g cornmeal 

(LabScientific FLY-8009-10), 48g yeast (LabScientific 8030-5), 9g agar, 120ml molasses 

(LabScientific FLY-8008-4), 24ml Tegosept (10% w/v methyl p-hydroxybenzoate in 

95% ethanol), and 9.5 ml Propionic Acid) with 840 ml of water. Drug food was prepared 

adding drug to 17 ml of water and mixing thoroughly.  Cornmeal, yeast, agar, molasses, 

tegosept, and propionic acid were then added to a final volume of 30 ml, and food was 

prepared as normal. Flies were cultured on drug food for their entire lifespan from 

embryogenesis to death. 

 The Gal4/UAS system was used for the overexpression of UAS transgenes in 

Drosophila as described (Brand and Perrimon 1993). BL# refers to Bloomington Stock 

Center stock number.  Stocks used are described: UAS:APP; UAS:BACE (Greeve, 

Kretzschmar et al. 2004), P{GawB}elavC155(ELAV-Gal4, BL#458), P{GawB}elavC155, 
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P{UAS-mCD8::GFP.L}LL4, P{hsFLP}1, w-(BL#5146), w1118

 Virgin female wild type (Canton S) flies were collected and kept in normal food 

vials in groups of 10. Male flies were aged for 3 days before behavioral training and 

testing. All tests were performed during the relative light phase. Mated Cantons S 

females used for training were 5 days old, and observed to have mated with a Canton S 

(BL#3605). Wild type flies 

used were Canton S. 

 Behavioral testing and training: For climbing assays, a modified version of Le 

Bourg and Lints was used (Le Bourg and Lints 1992).Flies were collected between 0-8 

hours after eclosion and assayed every two days. Groups of 10 or fewer flies were 

transferred to a clean, empty vial and given 18 seconds to climb 5 cm. The number of 

flies that successfully reach the 5 cm line are recorded. 

 For courtship behavioral training, virgin male flies of the appropriate genotype 

were collected between 0 and 6 hours after eclosion and transferred to individual food 

vials (with or without drug as appropriate). All flies were maintained at 25°C in a 12:12 

light:dark cycle at 60% humidity. All behavioral tests were performed in a separate room 

maintained at 25°C and 60% humidity and illuminated under a constant 130 V white light 

Kodak Adjustable Safelight Lamp mounted above the courtship chambers. All behavior 

was digitally recorded using a Sony DCR-SR47 Handycam with Carl Zeiss optics. 

Subsequent digital video analysis of time spent performing courtship behavior was 

quantified using iMovies software (Apple). The total time that a male performed 

courtship activity was measured and scored. The Courtship Index (CI) was calculated as 

the total time observed performing courting behavior divided by the total time assayed, as 

described (Siegel and Hall 1979). 
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male the evening prior to training. Virgin female Canton S targets used were 4 days old. 

Male flies were assigned to random groups the day of training, and assays were set up 

and scored blind. Male flies were transferred without anesthesia to one half of a 

partitioned mating chambers from Aktogen (http://www.aktogen.com) that contained a 

previously mated Canton S female in the other partitioned half. Males were allowed to 

acclimate for 1 minute, then the partition between the male and female was removed. 

Male flies were then trained for 60 minutes. After 60 minutes, male flies were transferred 

within 2 minutes without anesthesia to one half of a partitioned mating chamber that 

contained a virgin Canton S female in the other partitioned half. The partition was 

removed and the flies were recorded for 10 minutes.   
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Figure legends 

Figure 4-1. (A) Western Blot Analysis detecting full-length APP and C-terminal 

fragments of APP in AD model flies exposed to DMSO (vehicle control) and L-685,458. 

Control flies (Elav out-crossed to w-) and AD model flies were collected from respective 

crosses on DMSO (vehicle control) and L-685,458. These flies were maintained in 

appropriate drug food for 6 days. At 6 days age, 6-7 fly heads were collected from 

respective vials. After protein assay, equal amounts of protein (~ 45 µg) were loaded on 

the gels. Fly β-Actin was used as the loading control. (B) Western Blot analysis for 

detecting Aβ40 and APP-CTFβ (C99) in AD model flies expressing both APP and BACE 

exposed to DMSO (vehicle control) and L-685,458. AD model flies expressing both AP 

and BACE were collected from respective crosses on DMSO (vehicle control) and L-

685,458. These flies were maintained in appropriate drug food for 6 days. At 6 days age, 

6-7 fly heads were collected from respective vials. After protein assay, equal amounts of 

protein (~ 45 µg) were loaded on the gels. Fly β-Actin was used as the loading control. 

(C) Quantification of panel B blot shows an80% decrease in Aβ40

Figure 4-2. External morphology of AD model flies (A) Control fly (Elav out-crossed to 

w-) shows normal external phenotype and (B) AD model fly expressing both APP and 

BACE shows necrosis, marked by the presence of melanotic masses on both the abdomen 

and proboscis, and crumpled wings. (C) Quantification of the occurrence of necrosis and 

crumpled wings in AD model flies shows that the g-secretase inhibitor L-685,458 

 levels and a 35% 

increase in C99 levelsin APP and BACE expressing fly heads exposed to L-685,458 

compared to those exposed to DMSO.  
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decreases the occurrence of necrosis and crumpled wings in AD model flies. Error bars 

represent standard deviation and p-value was <0.05. 

Figure 4-3. Gross anatomical comparison of AD model fly brains(A) wild type brains 

and  (B) brains from flies expressing the APP and BACE proteins were dissected out at 6 

days age. (C) Atrophy of Kenyon cells (soma), Calyxes (dendrites) and Lobes (axons) in 

AD model fliesexpressing both APP and BACE (third panel) compared to WT (first 

panel) and APP expressing (second panel) fly brains. (D) Areas of Kenyon cells, Calyxes 

and Lobes were measured as indicated in (C) and presented as averages± standard 

deviation (n = 3 hemispheres). Asterisks indicate significant differences from control 

(ELAV) and Elav;APP (p<0.05, Student's t-test). (E) Areas of Kenyon cells, Calyxes and 

Lobes of AD model flies expressing both APP and BACE (Elav; APP; BACE) raised on 

vehicle control (DMSO) and L-685,458were measured as indicated in (C) and presented 

as averages±Standard deviation (n = 3 hemispheres). 

Figure 4-4. Immunostaining of AD model fly brains at Day 6 age(A,B,C.D) Thioflavin S 

(TS) staining of brains of 6 days old flies. No signal was detected in the control (A). (B) 

Arrowheads and arrows indicate TS-positive deposits in Elav; APP; BACE fly brains. (C) 

TS positive deposits abundant in Elav; APP; BACE fly brains (at day 6) raised in DMSO. 

(D) TS positive deposits less abundant in Elav; APP; BACE fly brains (at day 6) raised in 

L-685,458. (E-F) 6E10 staining of brains of 6 days old Elav; APP; BACE flies (E) 6E10 

positive plaques abundant in  Elav; APP; BACE fly brains (at day 6) raised in DMSO. (F) 

6E10 positive plaques much less abundant in Elav; APP; BACE fly brains (at day 6) 

raised in L-685,458. (G) Numbers of 6E10 positive plaques were presented as 
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averages±SD (n = 4 hemispheres). Asterisks indicate significant differences DMSO 

(p<0.05, Student's t-test). 

Figure 4-5. Climbing ability and Longevity of AD model flies (A) Climbing ability of 

AD model flies raised in normal food. Climbing assay was performed on AD model flies 

every other day after eclosing till 30 days age. Bars represent the percentage of flies that 

climbed to the top of the vial at 18 seconds after knocking flies to the bottom are shown 

(average± Standard deviation (n = 50-100 for each genotype)). Elav; APP; BACE flies 

showed a decrease (p<0.05) in climbing ability (B) Longevity of AD model flies raised in 

normal food.  The percentage of flies surviving was plotted against the age in days. Elav; 

APP; BACE flies showed a strong decrease (p<0.05) in longevity. (C) Climbing ability of 

Elav;APP;BACE flies raised in DMSO (vehicle control) and L-685,458. Climbing assay 

was performed on these flies every other day after eclosing till 30 days age. Bars 

represent the percentage of flies that climbed to the top of the vial at 18 seconds after 

knocking flies to the bottom are shown (average ± Standard deviation (n = 50-100 for 

each drug type)). Elav; APP; BACE flies raised in L-685,458showed anincrease (p<0.05) 

in climbing ability compared to the flies raised in DMSO (D) Longevity of AD model 

flies raised in normal food.  The percentage of flies surviving was plotted against the age 

in days. Elav; APP; BACE flies showed raised in L-685,458showed anincrease 

(p<0.05)in longevity.  

Figure 4-6.  Learning and memory behavior of AD model flies (A) Courtship learning 

assessment on AD model flies.The amount of time the male spent performing courtship 

behavior was assessed during the first 10 minutes of this training and compared to the last 

10 minutes of the training period. Wild type control flies, Elav;APP;BACE flies raised in 
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DMSO and Elav;APP;BACE flies showed a significant drop in courtship behavior in the 

last 10 minutes of training as compared to the first 10 minutes of training. (B) Immediate 

recall memory assessment in AD model flies. Elav; APP; BACE flies raised in DMSO 

showed decrease in immediate recall memory compared to Elav; APP; BACE flies raised 

in L-685,458 or control flies. 

Figure 4-7. Climbing ability of Elav;APP;BACE flies raised in DMSO (vehicle control) 

and resveratrol. Climbing assay was performed on these flies every other day after 

eclosing till 30 days age. Bars represent the percentage of flies that climbed to the top of 

the vial at 18 seconds after knocking flies to the bottom are shown (average ± Standard 

deviation (n = 50-100 for each drug type)). Elav; APP; BACE flies raised in resveratrol 

showed anincrease (p<0.05) in climbing ability compared to the flies raised in DMSO 
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Figures 
 
 
Figure 4-1A. Western Blot Analysis detecting full-length APP and C-terminal fragments 
of APP in AD model flies exposed to DMSO (vehicle control) and L-685,458. 
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Figure 4-1 B. Western Blot analysis for detecting Aβ40

 

 and APP-CTFβ (C99) in AD 
model flies expressing both APP and BACE exposed to DMSO (vehicle control) and L-
685,458. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1 C. Quantification of Aβ40 

 

and C99 levels in Elav/APP;BACE flies exposed to 
vehicle control (DMSO) and L-685,458.  
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Figure 4-2. External morphology of AD model flies.  
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Figure 4-3. Expression of APP and BACE in the fly brains affect the neuroanatomical 
structures 
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Figure 4-4. Thioflavin S and 6E10 staining of AD model fly brains expressing both APP 
and BACE 

  



  133 

Figure 4-5A and 5B. Climbing ability and Longevity of AD model flies 
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Figure 4-5C and 5D. Climbing ability and longevity of AD model flies expressing APP 
and BACE exposed to drug food. 
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Figure 4-6.  Learning and memory test on AD model flies 
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Figure 4-7. Resveratrol rescues climbing ability of AD model flies expressing both APP 
and BACE
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Results from a variety of AD models lend support to the idea that diet is a major 

risk factor for developing AD and caloric restriction might help prevent the development 

of late onset AD (Wang, Ho et al. 2005; Qin, Chachich et al. 2006; Halagappa, Guo et al. 

2007). Caloric restriction has been shown to decrease amyloid plaque deposition in 

transgenic mouse models of AD (Wang, Ho et al. 2005). Soon after, another group 

showed that CR resulted in reduced Aβ

CHAPTER 5: DISCUSSION 
 
Alzheimer’s disease (AD) is a major form of dementia in the US, almost exclusively 

occurring in the population over 65 years old. Age is the most important risk factor for 

AD. Approximately 90% of all AD cases are referred to as late-onset AD (LOAD), when 

people develop the disease after 65 years of age. Besides age, many studies have shown 

that vascular risk factors including diabetes, hypertension, dyslipidemia, and obesity are 

risk factors for developing AD. Diet plays a strong role these vascular risk factors and on 

its own is a major environmental factor in organismal aging. In every species tested to 

date, yeast, roundworm, rodents, and monkeys, dietary caloric restriction confers 

considerable beneficial health effects. These include extending lifespan and slowing of 

many age-dependent processes and age-related diseases. Caloric restriction increases 

lifespan by slowing many aging processes, including normal aging-related changes in the 

brain.  Indeed, the effect of diet in AD has been an area of research that has produced 

promising results.  

40 and Aβ42 peptide levels in the temporal cortex 

of Squirrel monkeys, compared to (CON/ad libitum) fed monkeys. They also reported 

that this Aβ decrease correlated with an increase in α-secretase active in the brain, which 

seemed to be due to an increase in SirT1 levels (Qin, Chachich et al. 2006). CR and 
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intermittent fasting (IF) have also been shown to be neuro-protective against the Aβ and 

Tau induced decrease in synaptic function in a triple transgenic mouse model of AD 

(Halagappa, Guo et al. 2007). It has been recently reported that CR attenuates the 

accumulation of AD-type neuropathology in two cortical brain regions of middle-aged 

dtg APP/PS1 mice (Mouton, Chachich et al. 2009).  

Current AD therapeutics are limited to drugs that treat AD symptoms; so, it is of 

great interest to identify therapeutics that prevent Aβ-mediated neuronal loss.  CR 

treatment holds considerable potential as a therapeutic strategy for AD. Currently a large 

body of research is dedicated to understanding the CR mediated changes in aging, 

lifespan and also the beneficial effects on neurodegenerative diseases like AD. CR results 

in metabolic changes that induces SIRT1 expression in a wide array of tissues and makes 

cells more resistant to stress (Brunet, Sweeney et al. 2004). SirT1 has been most 

commonly associated with the CR mediated changes in organismal longevity in different 

model organisms (Kaeberlein, McVey et al. 1999; Tissenbaum and Guarente 2001; 

Hekimi and Guarente 2003; Howitz, Bitterman et al. 2003; Rogina and Helfand 2004; 

Denu 2005). 

I started my work studying the effect of CR on APP metabolism utilizing a 

previously described in vitro model which relies on culturing  human cell lines in media 

supplemented with sera obtained from rats fed ad libitum (AL) or caloric restriction (CR) 

regimens(de Cabo, Furer-Galban et al. 2003; Cohen, Miller et al. 2004). We studied the 

effect of in vitro caloric restriction on APP metabolism utilizing naïve or APP-Gal4 

and/or Swedish APP695 over-expressing SH-SY5Y and HEK-293 cells, respectively. We 

observed that in vitro CR decreases secreted and intracellular Aβ levels in Swedish 
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APP695

In the future we should investigate γ-secretase activity as a result of in vitro CR. 

The previously described model of in vitro CR that we used for our study, utilized serum 

from AL and CR fed F344 (Fisher 344) rats (de Cabo, Furer-Galban et al. 2003). Our 

results also led us to further study if the effects that we observed on APP metabolism 

using this model were specific to F344 rat serum. To address that issue, we repeated 

some of the previous experiments, utilizing a FBN (Fisher Brown Norwegian) AL and 

CR rat serum keeping all other conditions same. We showed here for that first time that 

using serum from AL and CR fed FBN rats for this in vitro model also decrease AICD 

mediated transactivation and full-length APP levels. This effect of in vitro CR on steady 

state levels of full-length APP has not been previously reported. This observation may be 

due simply to the cell types utilized here or it could be a true cellular response to CR. It 

may be due to CR induced autophagy. Alternatively, this effect on full-length APP could 

be through a pathway involving genes (like PGC1α) that are induced by metabolic 

changes as a result of CR. To study the mechanism of the effect of in vitro CR 

 over-expressing HEK-293 cells. We also observed that in vitro CR decreases 

AICD mediated transactivation, but increases sAPPα levels in SY5Y-APP-Gal4 cells. 

This effect of in vitro CR on Aβ and AICD levels could be in part, due to decreased full-

length APP levels. Increases in sAPPα levels indicates however, that in vitro CR is 

increasing α-secretase activity in our cell lines, which is in accordance with another study 

which in a mouse model of AD which has shown that CR also induces the non-

amyloidogenic processing of APP (Wang, Ho et al. 2005). So, here we have shown that 

in vitro CR increases sAPPα levels, but decreases AICD levels, indicating that it 

potentially decreases γ-secretase activity.  
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particularly on full-length APP levels, we would conduct different lines of experiments as 

described later.  

Autophagy is a cellular response to limited nutrients to lysosomally degrade non-

vital proteins and organelles to produce nutrients ensuring that vital cellular response can 

continue(Yorimitsu and Klionsky 2005). Lysosomal function(s) decline(s) in older 

animals. The decline is prevented by CR (Bergamini, Cavallini et al. 2003). In certain 

organs, like the brain, the proteasomal degradation pathway is more efficiently up 

regulated during long-term fasting. The proteasome acting together with Ubiquitin and 

ubiquitin-processing enzymes is responsible for most cytosolic protein degradation under 

normal nutrient conditions and has a variety of essential functions including protein 

quality control. It has been shown that during acute nutrient depletion, proteins can be 

degraded via the proteasomal pathway for generation of amino acids needed for cell 

maintenance (Takahashi and Goto 2002; Vabulas and Hartl 2005). We intend to 

investigate the role of both the lysosome and proteosome in the in vitro CR mediated 

decrease in full-length APP levels (Figure 5-1). We would further study if in vitro CR 

also affects APP turnover using pulse-chase experiments. These studies would help us 

come to a better conclusion about the specific effects of in vitro CR on APP metabolism.   

As mentioned earlier, caloric restriction extends life span in model organisms, by 

increasing the levels and activity of Sir2 (Silencing Information Regulator), a member of 

the conserved Sirtuin family of NAD+-dependent protein deacetylases (Howitz, 

Bitterman et al. 2003; Denu 2005). Caloric restriction nutritionally stresses organisms 

which respond by inducing SIRT1 expression in a wide array of tissues and makes cells 

more resistant to this and other stressors (Brunet, Sweeney et al. 2004). SirT1 (or Sir2) 
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expression alone increases stress resistance and extends lifespan of model organisms 

(Kaeberlein, McVey et al. 1999; Tissenbaum and Guarente 2001; Rogina and Helfand 

2004).  

In our in vitro CR study, induction of SirT1 levels as has been previously 

observed for this in vitro CR experimental paradigm (Cohen, Miller et al. 2004). To 

determine if the in vitro CR mediated effects on APP metabolism are via SirT1, we 

performed the same line of experiments upon over-expressing SirT1. We specifically 

wanted to determine if SirT1 over-expression can recapitulate the effects of in vitro CR 

on APP metabolism in our cell culture model. We have shown that SirT1 over-expression 

recapitulates some, but not all, of the effects of in vitro CR on APP metabolism. We 

specifically observed that over-expressing SirT1 led to a robust and significant decrease 

in secreted Aβ40 levels and AICD levels as observed in case of in vitro CR. We also 

observed that SirT1 over-expression or resveratrol treatment led to an increase in the 

levels of sAPPα in SY5Y-APP-Gal4 cells, also observed during in vitro CR. We also 

observed that SirT1 over-expression increased C-83 levels in APP Swed293 cells. C83 is 

co-produced with sAPPα during α-secretase cleavage of APP (Figure 5-2). Both of these 

observations indicate that SirT1 over-expression, like in vitro CR also increases α-

secretase activity, which would be further confirmed with future experiments aimed at 

studying α-secretase activity specifically.  This finding is consistent with the increase in 

α-secretase cleavage of APP observed in transgenic AD models undergoing CR (Qin, 

Yang et al. 2006) (Wang, Ho et al. 2005). We have previously observed that genetic and 

pharmacologic induction of α-secretase activity results in increased AICD levels and 

increased AICD-mediated transactivation (Zhang, Khandelwal et al. 2007). Here, 
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however, despite the SirT1-mediated induction of α-secretase activity we observe 

decreased AICD levels and transactivation. This suggests that in these cells SirT1 not 

only regulates APP metabolism by inducing α-secretase activity but also by negatively 

regulating AICD production possibly by inhibiting γ-secretase activity. In fact, according 

to a recent study, there was an increase in the expression of PS1 with age in the 

hippocampal tissue of SAMP8 (in senescence-accelerated mouse) model of AD (Kumar, 

Franko et al. 2009). We further intend to study the effect of SirT1 over-expression on α− 

and γ−secretase activities. In fact, to confirm our finding on the effect of SirT1 on APP 

metabolism, we would inhibit SirT1, genetically (using dominant negative SirT1 plasmid 

or knocking down SirT1 using shRNA constructs) and pharmacologically (using 

inhibitors like Nicotinamide), in our cell lines and monitor the effects on different aspects 

of APP metabolism. In fact, in an initial experiment we observed that inhibiting SirT1 

using a dominant negative plasmid (SirH335Y) increases AICD mediated transactivation 

compared to the vector only control (Figure 5-3). 

SirT1 over-expression, unlike in vitro CR, did not affect full-length APP levels in 

our cell lines, similar to the findings of other groups in different AD models (Qin, Yang 

et al. 2006). Therefore, SirT1 mediated decreases in Aβ that we observed may be due to 

increased α-secretase activity. So far, our results indicate that in vitro CR modulates the 

levels of AICD, Aβ, and α- and possibly γ-secretase activity and that these effects could 

be mediated through SirT1 which would be validated by future experiments as mentioned 

above. But the effect of in vitro CR on full-length APP levels are not mediated by SirT1. 

This effect could be through a different pathway that involves genes like PGC1α 

(PPARγco-activator 1alpha) that are induced during metabolic changes induced by CR. 



  143 

In fact, the composition of F344 AL and CR serum described by de Cabo et al indicated 

that the CR serum has decreased levels of glucose, insulin and IGF (Insulin-like Growth 

Factor)-1 (Figure 5-4) (de Cabo, Furer-Galban et al. 2003) which can directly and 

indirectly induce PGC1α (Rodgers, Lerin et al. 2005).  

PGC1α is also a substrate for SirT1. Nemoto et al first showed that SirT1 directly 

interacts with and deacetylates PGC1α , both in vitro and in vivo (Nemoto, Fergusson et 

al. 2005). PGC1α is a transcriptional co-activator that senses nutrient availability. It is 

strongly activated by cAMP and cytokine pathways, important cellular signal that control 

energy and nutrient homeostasis (Puigserver and Spiegelman 2003).  In response to 

fasting, SIRT1 modulates gluconeogenic/glycolytic pathways in the liver via PGC-1α. It 

has been reported that once SIRT1 is induced during fasting, it interacts with and 

deacetylates PGC-1α at specific lysine residues in an NAD+-dependent manner (Rodgers, 

Lerin et al. 2005). The decrease in expression levels of PGC1α regulated genes can be 

reversed by caloric restriction (Corton and Brown-Borg 2005). PGC1α is an important 

regulator of reactive-oxygen-species (ROS) metabolism.  However, RNAi mediated 

knockdown of PGC1α prevents it from inducing the ROS detoxifying enzymes GPx1 and 

SOD2 under oxidative stress in the substantia nigra and hippocampal cells of mice (St-

Pierre, Drori et al. 2006). In fact it has been shown that resvreatrol rescues AD-like 

pathological and behavioral changes, and decreases the acetylation levels of PGC1α in 

p25 transgenic mouse model of AD (Kim, Nguyen et al. 2007). As mentioned earlier, in 

our cell lines, we have seen that in vitro CR decreases secreted Aβ, AICD and full-length 

APP levels. Again SirT1 and resveratrol decrease secreted Aβ and AICD levels, but 

increase sAPPα levels. So, we want to extend our studies to further study if the 
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transcriptional co-activator of PPARγ, PGC1α is associated with these effects. Our 

experimental approach is illustrated in Figure 5-5. I have done some initial experiments 

where we over-expressed PGC1α along with wild-type SirT1 or a dominant negative 

SirT1 (SirH335Y) plasmid in SY5Y-APP-Gal4 cells and monitored the effect on AICD 

mediated transactivation. We found that both PGC1α alone and PGC1α co-expressed 

with SirT1 resulted in decreased AICD mediated transactivation. This finding was 

interesting because it indicates that PGC1α might independently modulate APP 

metabolism. We also observed that in absence of SirT1 (over-expressing dominant 

negative SirT1), the effect of PGC1α on AICD mediated transactivation is reversed 

(Figure 5-6). This indicates that PGC1α modulates APP metabolism in association with 

SirT1. Very interestingly, we also observed that PGC1α decreases full-length APP levels 

independently and in presence of SirT1 (Figure 5-7). However, we have previously 

shown that in vitro CR decreases full-length APP levels but SirT1 does not. Therefore, 

the effect of in vitro metabolism on APP metabolism could be mediated by PGC1α 

through a pathway independent of SirT1. Based on our preliminary data we think that in 

vitro CR and SirT1 might modulate some of its effects either directly (being deacetylated 

by SirT1) or indirectly through PGC1α. We intend to study PGC1α as a modulator of 

APP metabolism in presence or absence of in vitro CR conditions. These studies have the 

potential for identifying and characterizing PGC1α as a novel target for AD therapeutics. 

There are a variety of substrates deacetylated by SirT1. Studies suggest that SirT1 

controls cellular stress response by regulating FOXO transcription factors. FOXO genes 

encode family of proteins that function as sensors to the insulin-signaling pathway and as 

regulators of organismal longevity. In mammalian cells, in response to oxidative stress, 
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especially H2O2 and heat shock, SirT1 deacetylates FOXO3 (Motta, Divecha et al. 2004). 

SirT1 differentially affects the function of FOXO3 and allows it to transcribe DNA repair 

target genes and attenuates apoptosis in the presence of stress stimuli (Brunet, Sweeney et 

al. 2004). In the presence of growth factors and absence of stress, SIRT1 is located in the 

nucleus and FOXO3 is located in the cytoplasm. In cells subjected to various stressors, 

including oxidative stress, FOXO3 relocates to the nucleus (Brunet, Sweeney et al. 2004). 

Brunet et al. identified eight phosphorylation sites and five acetylation sites on FOXO3 

that are modified by stress stimuli, and these modifications of FOXO3 might be the 

trigger for the SIRT1 and FOXO3 interaction(Brunet, Sweeney et al. 2004). Gene knock-

out studies showed that FOXO3 was more acetylated in mouse embryonic fibroblasts 

(MEFs) from SirT1 −/− knockout mice compared with wild-type MEFs, suggesting that 

SIRT1 influences FOXO3 acetylation in vivo (Brunet, Sweeney et al. 2004). SirT1−/− 

embryonic stem cells (ES) transfected with a FOXO DNA binding sites–luciferase 

construct and FOXO3, showed higher FOXO3 activity compared with wild-type ES cells, 

suggesting that SIRT1 represses FOXO3 activity in ES cells(Motta, Divecha et al. 2004). 

It has been shown in a cell-based model that serum deprivation and resvreatrol treatment 

led to the nuclear translocation of FOXO3 (Stefani, Markus et al. 2007). Interestingly, a 

recent study has reported that there is a close association between SirT1 mediated effects 

of CR on non-amyloidogenic APP processing and FOXO transcription factors (Qin, Zhao 

et al. 2008). According to this study, SirT1 deacetylates and therefore negatively 

regulates FOXO3a activity in response to CR in Tg2576 mouse model of AD. This 

results in repression of Rho-associated protein kinase-1 (ROCK1) gene expression, and 

activates non-amyloidogenic α-secretase processing of APP and lowers Aβ 
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production(Qin, Zhao et al. 2008) (Figure 5-8). Based on these studies it would be 

interesting to study if the effects of in vitro CR and SirT1 over-expresion on APP 

metabolism we observe are mediated by FOXO3a. A potential experimental approach to 

address this question is illustrated in Figure 5-9. 

As I mentioned earlier, it is also possible the in vitro CR decreases full-length 

APP levels through some other mechanism that does not involve any of the above 

mentioned genes (PGC1α, FOXO3 or SirT1). I have previously described that the F344 

CR serum has severely reduced glucose levels. So another possibility is that CR leads to 

degradation of APP due to low nutrient availability. We studied the effect of glucose and 

pyruvate availability on APP metabolism in SH-SY5Y cells (described in Chapter 3). We 

observed that decreasing concentrations of both glucose and pyruvate decrease AICD 

mediated transactivation and full-length APP levels. However we did not observe any 

effect of insulin and IGF-1 levels on AICD mediated transactivation in our cell culture 

model (data not shown). On the other hand, we observed that there was a decrease in 

AICD mediated transactivation with decreasing levels of fetal bovine serum (FBS) in the 

media in SY5Y-APP-Gal4 cells (Figure 5-10). We think that these effects are due to an 

increased APP turnover simply as a result of nutrient deprivation, specifically glucose 

and pyruvate.  

Based on all our in vitro studies we have developed a working model (Figure 5-

11) for describing the effects of in vitro CR on APP metabolism. This model will be 

validated once we finish all our future experiments as described before.  

It was important to us to determine if the effects of caloric restriction and SirT1 

induction on APP processing that we observed in our in vitro model, are in fact 
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recapitulated in an in vivo model system. For this study, we used an established 

Drosophila model, where apoptosis in developing Drosophila eyes is dependent on 

AICD production as previously described using PS1(-/-)

The Drosophila model that we used for the above study expresses the C-terminal 

fragment of APP produced by BACE cleavage, C99 (Guo, Hong et al. 2003) and 

therefore does the initial step in regulated intramembraneous proteolysis of APP by β− or 

α− secretase is not required for AICD production. So our results from experiments 

utilizing the above mentioned model of Drosophila suggest that CR and Sir2 inhibit γ-

secretase activity, which is again in accordance with our in vitro findings. Another 

possible explanation of our findings in these in vivo experiments is that the rough eye 

phenotype is caused by general apoptosis in the fly eyes induced by Grim gene 

expression. L-685,658 mediated rescue of the phenotype does address that issue, but to 

 flies (Guo, Hong et al. 2003; 

Gross, Feldman et al. 2008). We further confirm this dependence on γ-secretase activity 

by treating these flies with a γ-secretase inhibitor (L-685,458) that suppressed the rough 

eye phenotype. We report for the first time that caloric restriction and/or over-expression 

of Sir2 (the Drosophila homolog of SirT1) suppresses the rough-eye phenotype in the 

developing eye of AICD reporter flies. Alternatively, the rough eye phenotype was 

enhanced in reporter flies lacking a functional Sir2. We also observed that the Sir2 

agonist resveratrol was able to mimic the effects of Sir2 gain-of-function and caloric 

restriction, by suppressing the rough eye phenotype in these flies. These in vivo studies 

strongly support our in vitro findings. In vitro SirT1 activation via over-expression or in 

vitro CR resulted in decreased Aβ and AICD levels which is analogous to the decreased 

GRIM expression and the resulting decreased rough-eye phenotype in vivo.  
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further confirm that our observed effects of rough eye phenotype are specifically due to 

AICD production and not due to general apoptosis, we intend to conduct control 

experiments in the future.  

Other previously described Drosophila models of AD rely either on expression 

the of the toxic Aβ42 peptide in the nervous system (Iijima, Liu et al. 2004; Iijima, 

Chiang et al. 2008), or expression of the human APP and β-secretase (BACE) 

ubiquitously in all tissues, or in the developing retina (Greeve, Kretzschmar et al. 2004) . 

Regulated intramembrane proteolysis of APP is a very important aspect that needs to be 

studied for the development of AD therapeutics. Earlier in vitro studies in our laboratory 

(Zhang, Khandelwal et al. 2007) and other laboratories have identified numerous genes 

that can modulate APP metabolism. Hence we felt the need to develop a Drosophila 

model of AD that would allow the natural processing of APP by β− and γ−secretase in 

the central nervous system. To create a more realistic AD model in Drosophila, we 

expressed the human forms of APP and β-secretase (BACE) exclusively in the 

developing fly nervous system using the Gal4/UAS system (Brand and Perrimon 1993). 

Expression of full-length APP and BACE in the fly nervous system would allow the 

amyloidogenic processing of APP by human BACE and fly γ-secretase leading to the 

production of Aβ peptides. We utilized the ELAV-Gal4 reagent to limit the expression of 

these proteins to the fly nervous system only, since the ELAV promoter is specific to the 

CNS. We have shown that in flies expressing APP only, full-length APP undergoes non-

amyloidogenic processing and leads to the production of C83 or CTFα, the α-secretase 

cleavage product of APP. C99 or CTFβ was observed in flies that express both APP and 

BACE indicating that amyloidogenic processing of APP by β-secretase is the 
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predominant processing pathway in these flies. We also show that there is a buiId up of 

C83 in APP flies and both C83 and C99 in APP;BACE flies treated with the γ-secretase 

inhibitor L-685,458. We also detected in Aβ peptide in APP;BACE flies and as expected 

Aβ levels decrease significantly when flies are treated with  L-685,458. Interestingly, we 

also observed that there is a decrease in the levels of full-length APP in APP;BACE flies 

compared to APP flies, possibly because the abundance BACE in the system is driving 

APP towards proteolysis. Our findings suggest that we have successfully expressed APP 

and BACE in our AD model flies and that APP predominantly undergoes amyloidogenic 

processing in these flies. 

APP and BACE were expressed continuously during development to determine if 

this genotype could produce viable flies with prominent phenotypes that were consistent 

with nervous system degeneration. We made quite a few interesting observations. First of 

all, we observed that the number of adult APP and BACE co-expressing flies that eclosed 

from the crosses were far less compared to the number of APP expressing flies or 

wildtype out-crossed flies that eclosed from respective crosses. Although we did not 

quantify this observation, it was definitely a trend that we observed. This led us to think 

that the expression of APP and BACE are causing a developmental defect that is leading 

to lethality in the larval and/or pupal stages; hence the smaller number of adult flies 

emerging from the crosses. In the future we intend to quantify and analyze this 

observation. Secondly, upon eclosion, we observed two distinct morphological 

abnormalities in these flies: crumpled wings, consistent with a previous study where only 

APP was expressed in the flies (Fossgreen, Bruckner et al. 1998) and the presence of 

melanotic masses on both the abdomen and proboscis of the fly. This feature however has 
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not been previously described. Formation of these pigmented mass seems to be due to 

localized buildup of pigment in the presence of tissue damage and/or necrotic tissue in 

the area. These phenotypes are observed in flies expressing human APP alone, but are 

greatly enhanced by flies that express both the human APP and BACE proteins, 

consistent with the idea that the phenotypes are dependent upon the expression of BACE, 

and may be due to increased accumulation of Aβ toxicity. Both of these phenotypes are 

strongly suppressed when these flies are treated with L-685,458 strongly suggesting that 

γ-secretase cleavage of APP and therefore Aβ peptides is somehow responsible for these 

damages.  

Consistent with AD brains, brains from APP;BACE flies showed significant size 

reductions in a number of brain structures, including the mushroom body, the antennal 

lobes, and the optic lobes. Structures involved in synaptic function (dendrites and axons) 

are smaller in overall size in APP;BACE flies compared to controls. Further, this 

reduction in size is dependent upon both the expression of human BACE, and a 

functional γ-secretase complex, consistent with the idea that these phenotypes are due to 

the generation of AICD and Aβ peptides through γ-secretase cleavage of C99.  

Our observation of Thioflavin S positive and 6E10 postive puncta in the brains of 

APP;BACE flies, suggests that the reduction in dendritic and axonal structures observed 

in these flies may be due to Aβ generation. We further observed that there was a rescue in 

size of the brain structures in APP;BACE flies that correlated with a significant decrease 

in Thioflavin S positive puncta and 6E10 positive amyloid plaque distribution in these fly 

brains on being treated with L-685,458. This further suggests that Aβ peptides or AICD 

generated through γ-secretase activity are involved in the changes observed in the brains 
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of these flies. We also observed that APP and BACE over-expressing fly brains were 

larger in volume when compared to brains of those maintained on vehicle control 

(DMSO) food (Figure 5-12), consistent with the fact that there is decreased  brain size in 

AD patients due to massive loss of neurons compared to normal individuals. 

While these results are consistent with neurodegeneration, our experiments cannot 

rule out the possibility of developmental defects. To test for deficits in learning and 

memory in our AD model, we performed the conditioned courtship suppression assay 

(Siegel and Hall 1979). Interestingly, we observed that our AD model flies expressing 

APP and BACE are able to successfully perceive and interpret the sensory stimuli in this 

assay normally, and that they are able to alter their behavior appropriately (learn) in 

response to training.  

Assaying our model flies for immediate recall memorydefects, we observed 

deficiency in immediate recall memory of this training in APP;BACE flies. However, 

exposure to L-685,458, showed a clear rescue of this recall defect as compared to parallel 

sham trained AD flies cultured on this media, indicating that the drug L-685, 458 can 

suppress the immediate recall memory defect normally associated with AD flies on 

DMSO. 

The AD model flies display defective for normal reflexive CNS behavior 

represented by significantly reduced climbing ability, consistent with the effects of the 

neurodegeneration we observe in these flies’ brains. Further, both of these behavioral 

defects can be significantly improved by using L-685, 458, consistent with the idea that 

these phenotypes also require the presence of Aβ peptides and AICD generated through 

β- and then γ-secretase cleavage of APP. Therefore we would be able to identify and 
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characterize regulators of APP proteolysis utilizing this model of AD. In fact, we have 

further shown that the Sir2/SirT1 agonist Resveratrol, significantly rescued the climbing 

defects observed in our AD flies further confirming that this would be a good model to 

screen genetic and pharmacologic regulators of APP metabolism. 

Our Drosophila AD model is a good model that would be appropriate for 

studying the effects caloric restriction on APP metabolism. It could extend our 

understanding of the mechanisms by which CR modulates APP metabolism in vivo. We 

would maintain our control and AD flies that express APP and BACE, in high and low 

calorie diets as has been done in my previous study on the AICD reporter fly model. We 

could then conduct all of the above studies on these flies to determine if, and how, CR 

modulates APP metabolism in our AD model flies. It would also be of great interest to 

study the effects of Sir2 on our AD model flies. Since we have already shown that 

resveratrol, the Sir2 agonist rescues climbing behavior in our AD model flies, it would 

interesting to study different behavioral and neuroanatomical aspects of these flies in 

conjunction with Sir2 gain and loss-of function. Based on some preliminary results, we 

would also want to study the effects of PGC1α and FOXO3 on our AD model flies. As 

mentioned earlier our lab has identified several regulators of APP metabolism utilizing an 

AICD-based in vitro screening (Zhang, Khandelwal et al. 2007). We can validate our in 

vitro findings by studying the effects of these regulators on APP metabolism utilizing our 

AD model flies.  

To summarize, we studied the effects of in vitro caloric restriction on APP 

metabolism in SH-SY5Y and HEK 293 cells. We have shown that in vitro CR decreases 

Aβ, AICD and full-length APP levels in these cell lines without affecting APP 
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transcription. We have further shown that SirT1 over-expression and resveratrol 

treatment recapitulates some of the effects of in vitro CR on APP metabolism. SirT1 and 

resveratrol however, do not affect full-length APP levels. In our cell lines, SirT1 and 

resveratrol reduces secreted Aβ levels by inducing the α-secretase cleavage of APP and 

also possibly by affecting γ-secretase activity, which need further investigation. Our 

initial in vivo studies utilizing the AICD reporter Drosophila model of AD have shown 

that caloric restriction, Sir2 gain-of-function and resveratrol treatment suppress AD-like 

rough-eye phenotype in the fly eyes. Finally to study the mechanism of CR, SirT1 

mediated effects on APP metabolism in vivo, we created a novel Drosophila model of 

AD. We have shown that our model displays neuroanatomical and behavioral features 

that are characteristic of AD patients.  
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Figures 

Figure 5-1.Experimental design to study the effect of in vitro CR on APP metabolism in 
presence of Proteasomal and Lysosomal inhibitors 
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Figure 5-2. SirT1 over-expression increases C83 levels. HEK 293 cells stably expressing 

Swedish APP695

 

 were transiently transfected with SirT1 over-expression plasmid and 

empty vector control. Lysates were used for Western Blot. Equal amount of protein was 

loaded on gel. β-Actin was used as loading control.  
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Figure 5-3.SirT1 and dominant negative SirT1 (SirH355Y) modulate AICD mediated 

luciferase levels. SY5Y APP-Gal4 cells were transiently transfected with Empty vector, 

SirT1 over-expression and dominant negative SirT1 (SirH355Y) and 1/10th

 

 of Renilla 

luciferase (pRLSV40) plasmids. Lysates were used for Dual luciferase assay. Firefly 

luciferase counts were normalized to Renilla luciferase counts. Error bars represent 

standard deviation (n=6). Asterix indicates p-value <0.05.  
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Figure 5-4. Composition of F344 AL and CR Rat serum 
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Figure 5-5. Experimental approach to study the involvement of PGC1α in in vitro CR 
and SirT1 mediated effects on APP metabolism 
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Figure 5-6. PGC1α affects AICD mediated luciferase levels in presence and absence of 

SirT1.SY5Y APP-Gal4 cells were transiently transfected with Empty vector, 

PGC1α over-expression, SirT1 over-expression and dominant negative SirT1 

(SirH355Y) and 1/10th

 

 of Renilla luciferase (pRLSV40) plasmids. Lysates were used for 

Dual luciferase assay. Firefly luciferase counts were normalized to Renilla luciferase 

counts. Error bars represent standard deviation (n=6). Asterix indicates p-value <0.05.  
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Figure 5-7. PGC1α affects full-length APP levels in presence and absence of SirT1. 

SY5Y APP-Gal4 cells were transiently transfected with Empty vector, PGC1a over-

expression and SirT1 over-expression. Lysates were used for Western Blot. Equal 

amount of protein was loaded on gel. β-Actin was used as loading control.  
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Figure 5-8.Proposed model for FOXO3 involvement in CR mediated effects on APP 
metabolism 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Qin, Zhao et al. 2008)  
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Figure 5-9.Experimental approach to study the involvement of FOXO3 in in vitro CR 
and SirT1 mediated effects on APP metabolism 
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Figure 5-10. Proposed model in vitro CR mediated changes on APP metabolism 
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Figure 5-11.Availability of Fetal Bovine Serum (FBS) in media affect AICD mediated 

luciferase activity.SY5Y APP-gal4 cells were treated with DMEM supplemented with 

different concentrations of Fetal Bovine serum for 6 hours. Lysates were utilized for 

Luciferase assay and luciferase counts per second were normalized to total protein 

concentration (µg/µl). Error bars represent standard deviation (n=3). Asterix indicates p-

value <0.05.  
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Figure 5-12. Comparison of brain volume of APP and BACE expressing AD model flies 
maintained in DMSO (vehicle control) and L-685,458 
 
 
 
 
 
 
 
 
  



  166 

BIBLIOGRAPHY 

Al-Ramahi, I., A. M. Perez, et al. (2007). "dAtaxin-2 mediates expanded Ataxin-1-
induced neurodegeneration in a Drosophila model of SCA1." PLoS Genet 3(12): 
e234. 

Allinson, T. M., E. T. Parkin, et al. (2003). "ADAMs family members as amyloid 
precursor protein alpha-secretases." J Neurosci Res 74(3): 342-352. 

Anderson, R. M., K. J. Bitterman, et al. (2003). "Nicotinamide and PNC1 govern lifespan 
extension by calorie restriction in Saccharomyces cerevisiae." Nature 423(6936): 
181-185. 

Annaert, W. and B. De Strooper (2002). "A cell biological perspective on Alzheimer's 
disease." Annu Rev Cell Dev Biol 18: 25-51. 

Anson, R. M., Z. Guo, et al. (2003). "Intermittent fasting dissociates beneficial effects of 
dietary restriction on glucose metabolism and neuronal resistance to injury from 
calorie intake." Proc Natl Acad Sci U S A 100(10): 6216-6220. 

Appella, E. and C. W. Anderson (2001). "Post-translational modifications and activation 
of p53 by genotoxic stresses." Eur J Biochem 268(10): 2764-2772. 

Araki, T., Y. Sasaki, et al. (2004). "Increased nuclear NAD biosynthesis and SIRT1 
activation prevent axonal degeneration." Science 305(5686): 1010-1013. 

Asai, M., C. Hattori, et al. (2003). "Putative function of ADAM9, ADAM10, and 
ADAM17 as APP alpha-secretase." Biochem Biophys Res Commun 301(1): 231-
235. 

Benjannet, S., A. Elagoz, et al. (2001). "Post-translational processing of beta-secretase 
(beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- and 
transmembrane/cytosolic domains affect its cellular activity and amyloid-beta 
production." J Biol Chem 276(14): 10879-10887. 

Bennett, B. D., P. Denis, et al. (2000). "A furin-like convertase mediates propeptide 
cleavage of BACE, the Alzheimer's beta -secretase." J Biol Chem 275(48): 
37712-37717. 

Bentahir, M., O. Nyabi, et al. (2006). "Presenilin clinical mutations can affect gamma-
secretase activity by different mechanisms." J Neurochem 96(3): 732-742. 

Bergamini, E., G. Cavallini, et al. (2003). "The anti-ageing effects of caloric restriction 
may involve stimulation of macroautophagy and lysosomal degradation, and can 
be intensified pharmacologically." Biomed Pharmacother

Bertram, L. and R. E. Tanzi (2008). "Thirty years of Alzheimer's disease genetics: the 
implications of systematic meta-analyses." 

 57(5-6): 203-208. 

Nat Rev Neurosci 9(10): 768-778. 



  167 

Black, R. A., C. T. Rauch, et al. (1997). "A metalloproteinase disintegrin that releases 
tumour-necrosis factor-alpha from cells." Nature 385(6618): 729-733. 

Bondolfi, L., F. Ermini, et al. (2004). "Impact of age and caloric restriction on 
neurogenesis in the dentate gyrus of C57BL/6 mice." Neurobiol Aging 25(3): 
333-340. 

Borg, J. P., J. Ooi, et al. (1996). "The phosphotyrosine interaction domains of X11 and 
FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein." 
Mol Cell Biol 16(11): 6229-6241. 

Bossy-Wetzel, E., R. Schwarzenbacher, et al. (2004). "Molecular pathways to 
neurodegeneration." Nat Med 10 Suppl: S2-9. 

Brand, A. H. and N. Perrimon (1993). "Targeted gene expression as a means of altering 
cell fates and generating dominant phenotypes." Development 118(2): 401-415. 

Brand, A. H. and N. Perrimon (1993). "Targeted gene expression as a means of altering 
cell fates and generating dominant phenotypes." Development 118: 401-415. 

Bray, G. A., S. J. Nielsen, et al. (2004). "Consumption of high-fructose corn syrup in 
beverages may play a role in the epidemic of obesity." Am J Clin Nutr 79(4): 537-
543. 

Brookmeyer R., J. E., Ziegler-Graham K., Arrighi H.M. (2007). "Forecasting the global 
burden of Alzheimer's disease." Alzheimer's and Dementia 3(3): 186-191. 

Brooks, C. L. and W. Gu (2003). "Ubiquitination, phosphorylation and acetylation: the 
molecular basis for p53 regulation." Curr Opin Cell Biol 15(2): 164-171. 

Broughton, S. J., T. Tully, et al. (2003). "Conditioning deficits of CaM-kinase transgenic 
Drosophila melanogaster in a new excitatory courtship assay." J Neurogenet 
17(1): 91-102. 

Brunet, A., L. B. Sweeney, et al. (2004). "Stress-dependent regulation of FOXO 
transcription factors by the SIRT1 deacetylase." Science 303(5666): 2011-2015. 

Bu, G. (2009). "Apolipoprotein E and its receptors in Alzheimer's disease: pathways, 
pathogenesis and therapy." Nat Rev Neurosci 10(5): 333-344. 

Burdick, D., B. Soreghan, et al. (1992). "Assembly and aggregation properties of 
synthetic Alzheimer's A4/beta amyloid peptide analogs." J Biol Chem 267(1): 
546-554. 

Buxbaum, J. D., E. H. Koo, et al. (1993). "Protein phosphorylation inhibits production of 
Alzheimer amyloid beta/A4 peptide." Proc Natl Acad Sci U S A 90(19): 9195-
9198. 



  168 

Buxbaum, J. D., G. Thinakaran, et al. (1998). "Alzheimer amyloid protein precursor in 
the rat hippocampus: transport and processing through the perforant path." J 
Neurosci 18(23): 9629-9637. 

Caccamo, A., S. Oddo, et al. (2005). "Age- and region-dependent alterations in Abeta-
degrading enzymes: implications for Abeta-induced disorders." Neurobiol Aging 
26(5): 645-654. 

Cam, J. A. and G. Bu (2006). "Modulation of beta-amyloid precursor protein trafficking 
and processing by the low density lipoprotein receptor family." Mol 
Neurodegener 1: 8. 

Cao, D., H. Lu, et al. (2007). "Intake of sucrose-sweetened water induces insulin 
resistance and exacerbates memory deficits and amyloidosis in a transgenic 
mouse model of Alzheimer disease." J Biol Chem 282(50): 36275-36282. 

Cao, X. and T. C. Sudhof (2001). "A transcriptionally [correction of transcriptively] 
active complex of APP with Fe65 and histone acetyltransferase Tip60." Science 
293(5527): 115-120. 

Carson, J. A. and A. J. Turner (2002). "Beta-amyloid catabolism: roles for neprilysin 
(NEP) and other metallopeptidases?" J Neurochem 81(1): 1-8. 

Castano, E. M., J. Ghiso, et al. (1986). "In vitro formation of amyloid fibrils from two 
synthetic peptides of different lengths homologous to Alzheimer's disease beta-
protein." Biochem Biophys Res Commun 141(2): 782-789. 

Chen, P., W. Nordstrom, et al. (1996). "grim, a novel cell death gene in Drosophila." 
Genes Dev 10(14): 1773-1782. 

Chen, W. Y., D. H. Wang, et al. (2005). "Tumor suppressor HIC1 directly regulates 
SIRT1 to modulate p53-dependent DNA-damage responses." Cell 123(3): 437-
448. 

Chiang, H. C., K. Iijima, et al. (2009). "Distinctive roles of different beta-amyloid 42 
aggregates in modulation of synaptic functions." FASEB J 23(6): 1969-1977. 

Chong, Z. Z., S. H. Lin, et al. (2005). "The sirtuin inhibitor nicotinamide enhances 
neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and 
mitochondrial associated "anti-apoptotic" pathways." Curr Neurovasc Res 2(4): 
271-285. 

Citron, M., D. B. Teplow, et al. (1995). "Generation of amyloid beta protein from its 
precursor is sequence specific." Neuron 14(3): 661-670. 

Cohen, D. E., A. M. Supinski, et al. (2009). "Neuronal SIRT1 regulates endocrine and 
behavioral responses to calorie restriction." Genes Dev 23(24): 2812-2817. 



  169 

Cohen, H. Y., S. Lavu, et al. (2004). "Acetylation of the C terminus of Ku70 by CBP and 
PCAF controls Bax-mediated apoptosis." Mol Cell 13(5): 627-638. 

Cohen, H. Y., C. Miller, et al. (2004). "Calorie restriction promotes mammalian cell 
survival by inducing the SIRT1 deacetylase." Science 305(5682): 390-392. 

Colciaghi, F., B. Borroni, et al. (2002). "[alpha]-Secretase ADAM10 as well as 
[alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients." Mol 
Med 8(2): 67-74. 

Cole, G. M., W. Beech, et al. (1999). "Lipoprotein effects on Abeta accumulation and 
degradation by microglia in vitro." J Neurosci Res 57(4): 504-520. 

Colman, R. J., R. M. Anderson, et al. (2009). "Caloric restriction delays disease onset and 
mortality in rhesus monkeys." Science 325(5937): 201-204. 

Conti, L. and E. Cattaneo (2005). "Controlling neural stem cell division within the adult 
subventricular zone: an APPealing job." Trends Neurosci 28(2): 57-59. 

Corder, E. H., A. M. Saunders, et al. (1993). "Gene dose of apolipoprotein E type 4 allele 
and the risk of Alzheimer's disease in late onset families." Science 261(5123): 
921-923. 

Corton, J. C. and H. M. Brown-Borg (2005). "Peroxisome proliferator-activated receptor 
gamma coactivator 1 in caloric restriction and other models of longevity." J 
Gerontol A Biol Sci Med Sci 60(12): 1494-1509. 

Craft, S. and G. S. Watson (2004). "Insulin and neurodegenerative disease: shared and 
specific mechanisms." Lancet Neurol 3(3): 169-178. 

Crowther, D. C., K. J. Kinghorn, et al. (2005). "Intraneuronal Abeta, non-amyloid 
aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease." 
Neuroscience 132(1): 123-135. 

Crystal, A. S., V. A. Morais, et al. (2003). "Membrane topology of gamma-secretase 
component PEN-2." J Biol Chem 278(22): 20117-20123. 

de Cabo, R., S. Furer-Galban, et al. (2003). "An in vitro model of caloric restriction." Exp 
Gerontol 38(6): 631-639. 

De Strooper, B. (2003). "Aph-1, Pen-2, and Nicastrin with Presenilin generate an active 
gamma-Secretase complex." Neuron 38(1): 9-12. 

De Strooper, B. and W. Annaert (2000). "Proteolytic processing and cell biological 
functions of the amyloid precursor protein." J Cell Sci

De Strooper, B., P. Saftig, et al. (1998). "Deficiency of presenilin-1 inhibits the normal 
cleavage of amyloid precursor protein." 

 113 ( Pt 11): 1857-1870. 

Nature 391(6665): 387-390. 



  170 

De Strooper, B., L. Umans, et al. (1993). "Study of the synthesis and secretion of normal 
and artificial mutants of murine amyloid precursor protein (APP): cleavage of 
APP occurs in a late compartment of the default secretion pathway." J Cell Biol 
121(2): 295-304. 

Denu, J. M. (2005). "The Sir 2 family of protein deacetylases." Curr Opin Chem Biol 
9(5): 431-440. 

Edbauer, D., M. Willem, et al. (2002). "Insulin-degrading enzyme rapidly removes the 
beta-amyloid precursor protein intracellular domain (AICD)." J Biol Chem 
277(16): 13389-13393. 

Eggert, S., K. Paliga, et al. (2004). "The proteolytic processing of the amyloid precursor 
protein gene family members APLP-1 and APLP-2 involves alpha-, beta-, 
gamma-, and epsilon-like cleavages: modulation of APLP-1 processing by n-
glycosylation." J Biol Chem 279(18): 18146-18156. 

Esiri, M. M. (2007). "Ageing and the brain." J Pathol 211(2): 181-187. 

Evans, D. A., H. H. Funkenstein, et al. (1989). "Prevalence of Alzheimer's disease in a 
community population of older persons. Higher than previously reported." Jama 
262(18): 2551-2556. 

Evans, D. A., L. A. Smith, et al. (1991). "Risk of death from Alzheimer's disease in a 
community population of older persons." Am J Epidemiol 134(4): 403-412. 

Farris, W., S. Mansourian, et al. (2004). "Partial loss-of-function mutations in insulin-
degrading enzyme that induce diabetes also impair degradation of amyloid beta-
protein." Am J Pathol 164(4): 1425-1434. 

Farzan, M., C. E. Schnitzler, et al. (2000). "BACE2, a beta -secretase homolog, cleaves at 
the beta site and within the amyloid-beta region of the amyloid-beta precursor 
protein." Proc Natl Acad Sci U S A 97(17): 9712-9717. 

Findeis, M. A. (2007). "The role of amyloid beta peptide 42 in Alzheimer's disease." 
Pharmacol Ther 116(2): 266-286. 

Finelli, A., A. Kelkar, et al. (2004). "A model for studying Alzheimer's Abeta42-induced 
toxicity in Drosophila melanogaster." Mol Cell Neurosci 26(3): 365-375. 

Fiore, F., N. Zambrano, et al. (1995). "The regions of the Fe65 protein homologous to the 
phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the 
intracellular domain of the Alzheimer's amyloid precursor protein." J Biol Chem

Fortna, R. R., A. S. Crystal, et al. (2004). "Membrane topology and nicastrin-enhanced 
endoproteolysis of APH-1, a component of the gamma-secretase complex." 

 
270(52): 30853-30856. 

J Biol 
Chem 279(5): 3685-3693. 



  171 

Fossgreen, A., B. Bruckner, et al. (1998). "Transgenic Drosophila expressing human 
amyloid precursor protein show gamma-secretase activity and a blistered-wing 
phenotype." Proc Natl Acad Sci U S A 95(23): 13703-13708. 

Furuyama, T., R. Banerjee, et al. (2004). "SIR2 is required for polycomb silencing and is 
associated with an E(Z) histone methyltransferase complex." Curr Biol 14(20): 
1812-1821. 

Gasparini, L., G. K. Gouras, et al. (2001). "Stimulation of beta-amyloid precursor protein 
trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-
activated protein kinase signaling." J Neurosci 21(8): 2561-2570. 

Geula, C., C. K. Wu, et al. (1998). "Aging renders the brain vulnerable to amyloid beta-
protein neurotoxicity." Nat Med 4(7): 827-831. 

Giannakou, M. E. and L. Partridge (2004). "The interaction between FOXO and SIRT1: 
tipping the balance towards survival." Trends Cell Biol 14(8): 408-412. 

Goedert, M., C. M. Wischik, et al. (1988). "Cloning and sequencing of the cDNA 
encoding a core protein of the paired helical filament of Alzheimer disease: 
identification as the microtubule-associated protein tau." Proc Natl Acad Sci U S 
A 85(11): 4051-4055. 

Greenspan, R. J. (1995). "Flies, genes, learning, and memory." Neuron 15(4): 747-750. 

Greeve, I., D. Kretzschmar, et al. (2004). "Age-dependent neurodegeneration and 
Alzheimer-amyloid plaque formation in transgenic Drosophila." J Neurosci 
24(16): 3899-3906. 

Gross, G. G., R. M. Feldman, et al. (2008). "Role of X11 and ubiquilin as in vivo 
regulators of the amyloid precursor protein in Drosophila." PLoS ONE 3(6): 
e2495. 

Grundke-Iqbal, I., K. Iqbal, et al. (1986). "Microtubule-associated protein tau. A 
component of Alzheimer paired helical filaments." J Biol Chem 261(13): 6084-
6089. 

Gu, Y., H. Misonou, et al. (2001). "Distinct intramembrane cleavage of the beta-amyloid 
precursor protein family resembling gamma-secretase-like cleavage of Notch." J 
Biol Chem 276(38): 35235-35238. 

Guo, M., E. J. Hong, et al. (2003). "A reporter for amyloid precursor protein gamma-
secretase activity in Drosophila." Hum Mol Genet 12(20): 2669-2678. 

Haass, C. (2004). "Take five--BACE and the gamma-secretase quartet conduct 
Alzheimer's amyloid beta-peptide generation." EMBO J 23(3): 483-488. 



  172 

Haass, C., M. G. Schlossmacher, et al. (1992). "Amyloid beta-peptide is produced by 
cultured cells during normal metabolism." Nature 359(6393): 322-325. 

Hadley, E. C., E. G. Lakatta, et al. (2005). "The future of aging therapies." Cell 120(4): 
557-567. 

Halagappa, V. K., Z. Guo, et al. (2007). "Intermittent fasting and caloric restriction 
ameliorate age-related behavioral deficits in the triple-transgenic mouse model of 
Alzheimer's disease." Neurobiol Dis 26(1): 212-220. 

Hall, J. C. (1994). "The mating of a fly." Science 264: 1702-1714. 

Hammad, S. M., S. Ranganathan, et al. (1997). "Interaction of apolipoprotein J-amyloid 
beta-peptide complex with low density lipoprotein receptor-related protein-
2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-
peptide." J Biol Chem 272(30): 18644-18649. 

Hardy, J. and D. Allsop (1991). "Amyloid deposition as the central event in the aetiology 
of Alzheimer's disease." Trends Pharmacol Sci 12(10): 383-388. 

Hardy, J. and D. J. Selkoe (2002). "The amyloid hypothesis of Alzheimer's disease: 
progress and problems on the road to therapeutics." Science 297(5580): 353-356. 

Hasegawa, H., N. Sanjo, et al. (2004). "Both the sequence and length of the C terminus of 
PEN-2 are critical for intermolecular interactions and function of presenilin 
complexes." J Biol Chem 279(45): 46455-46463. 

Hayashi, Y., K. Kashiwagi, et al. (1994). "Alzheimer amyloid protein precursor enhances 
proliferation of neural stem cells from fetal rat brain." Biochem Biophys Res 
Commun 205(1): 936-943. 

Heber, S., J. Herms, et al. (2000). "Mice with combined gene knock-outs reveal essential 
and partially redundant functions of amyloid precursor protein family members." 
J Neurosci 20(21): 7951-7963. 

Heisenberg, M., A. Borst, et al. (1985). "Drosophila mushroom body mutants are 
deficient in olfactory learning." J Neurogenet 2(1): 1-30. 

Hekimi, S. and L. Guarente (2003). "Genetics and the specificity of the aging process." 
Science 299(5611): 1351-1354. 

Herreman, A., L. Serneels, et al. (2000). "Total inactivation of gamma-secretase activity 
in presenilin-deficient embryonic stem cells." Nat Cell Biol 2(7): 461-462. 

Higami, Y., H. Yamaza, et al. (2005). "Laboratory findings of caloric restriction in 
rodents and primates." Adv Clin Chem 39: 211-237. 



  173 

Howitz, K. T., K. J. Bitterman, et al. (2003). "Small molecule activators of sirtuins extend 
Saccharomyces cerevisiae lifespan." Nature 425(6954): 191-196. 

Iijima, K., H. C. Chiang, et al. (2008). "Abeta42 mutants with different aggregation 
profiles induce distinct pathologies in Drosophila." PLoS One 3(2): e1703. 

Iijima, K., H. P. Liu, et al. (2004). "Dissecting the pathological effects of human Abeta40 
and Abeta42 in Drosophila: a potential model for Alzheimer's disease." Proc Natl 
Acad Sci U S A 101(17): 6623-6628. 

Ikezu, T., B. D. Trapp, et al. (1998). "Caveolae, plasma membrane microdomains for 
alpha-secretase-mediated processing of the amyloid precursor protein." J Biol 
Chem 273(17): 10485-10495. 

Iwatsubo, T. (2004). "The gamma-secretase complex: machinery for intramembrane 
proteolysis." Curr Opin Neurobiol 14(3): 379-383. 

Jacobsen, J. S., M. A. Spruyt, et al. (1994). "The release of Alzheimer's disease beta 
amyloid peptide is reduced by phorbol treatment." J Biol Chem 269(11): 8376-
8382. 

Jarrett, J. T., E. P. Berger, et al. (1993). "The carboxy terminus of the beta amyloid 
protein is critical for the seeding of amyloid formation: implications for the 
pathogenesis of Alzheimer's disease." Biochemistry 32(18): 4693-4697. 

Jeibmann, A. and W. Paulus (2009). "Drosophila melanogaster as a Model Organism of 
Brain Diseases." Int J Mol Sci 10(2): 407-440. 

Joiner Ml, A. and L. C. Griffith (1997). "CaM kinase II and visual input modulate 
memory formation in the neuronal circuit controlling courtship conditioning." J 
Neurosci 17(23): 9384-9391. 

Kaeberlein, M., M. McVey, et al. (1999). "The SIR2/3/4 complex and SIR2 alone 
promote longevity in Saccharomyces cerevisiae by two different mechanisms." 
Genes Dev 13(19): 2570-2580. 

Kamyshev, N. G., K. G. Iliadi, et al. (1999). "Drosophila conditioned courtship: two 
ways of testing memory." Learn Mem 6(1): 1-20. 

Kane, N. S., A. Robichon, et al. (1997). "Learning without performance in PKC-deficient 
Drosophila." Neuron 18(2): 307-314. 

Kang, D. E., C. U. Pietrzik, et al. (2000). "Modulation of amyloid beta-protein clearance 
and Alzheimer's disease susceptibility by the LDL receptor-related protein 
pathway." J Clin Invest 106(9): 1159-1166. 



  174 

Kang, D. E., S. Soriano, et al. (2002). "Presenilin couples the paired phosphorylation of 
beta-catenin independent of axin: implications for beta-catenin activation in 
tumorigenesis." Cell 110(6): 751-762. 

Karuppagounder, S. S., J. T. Pinto, et al. (2009). "Dietary supplementation with 
resveratrol reduces plaque pathology in a transgenic model of Alzheimer's 
disease." Neurochem Int 54(2): 111-118. 

Katzman, R. (1986). "Alzheimer's disease." N Engl J Med 314(15): 964-973. 

Kieseier, B. C., H. Pischel, et al. (2003). "ADAM-10 and ADAM-17 in the inflamed 
human CNS." Glia 42(4): 398-405. 

Kim, D., M. D. Nguyen, et al. (2007). "SIRT1 deacetylase protects against 
neurodegeneration in models for Alzheimer's disease and amyotrophic lateral 
sclerosis." EMBO J 26(13): 3169-3179. 

Kirschner, D. A., H. Inouye, et al. (1987). "Synthetic peptide homologous to beta protein 
from Alzheimer disease forms amyloid-like fibrils in vitro." Proc Natl Acad Sci U 
S A 84(19): 6953-6957. 

Kornilova, A. Y., F. Bihel, et al. (2005). "The initial substrate-binding site of gamma-
secretase is located on presenilin near the active site." Proc Natl Acad Sci U S A 
102(9): 3230-3235. 

Kril, J. J., S. Patel, et al. (2002). "Neuron loss from the hippocampus of Alzheimer's 
disease exceeds extracellular neurofibrillary tangle formation." Acta Neuropathol 
(Berl) 103(4): 370-376. 

Kuentzel, S. L., S. M. Ali, et al. (1993). "The Alzheimer beta-amyloid protein 
precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory 
compartment in human neuroglioma cells." Biochem J 295 ( Pt 2): 367-378. 

Kumar, V. B., M. Franko, et al. (2009). "Increase in presenilin 1 (PS1) levels in 
senescence-accelerated mice (SAMP8) may indirectly impair memory by 
affecting amyloid precursor protein (APP) processing." J Exp Biol 212(Pt 4): 494-
498. 

LaFerla, F. M. (2002). "Calcium dyshomeostasis and intracellular signalling in 
Alzheimer's disease." Nat Rev Neurosci 3(11): 862-872. 

LaFerla, F. M. and S. Oddo (2005). "Alzheimer's disease: Abeta, tau and synaptic 
dysfunction." Trends Mol Med 11(4): 170-176. 

Lambert, A. J. and B. J. Merry (2000). "Use of primary cultures of rat hepatocytes for the 
study of ageing and caloric restriction." Exp Gerontol 35(5): 583-594. 



  175 

Le Bourg, E. and F. A. Lints (1992). "Hypergravity and aging in Drosophila 
melanogaster. 6. Spontaneous locomotor activity." Gerontology 38(1-2): 71-79. 

Lee, G. D., M. A. Wilson, et al. (2006). "Dietary deprivation extends lifespan in 
Caenorhabditis elegans." Aging Cell 5(6): 515-524. 

Lee, I. H., L. Cao, et al. (2008). "A role for the NAD-dependent deacetylase Sirt1 in the 
regulation of autophagy." Proc Natl Acad Sci U S A 105(9): 3374-3379. 

Lee, J., K. B. Seroogy, et al. (2002). "Dietary restriction enhances neurotrophin 
expression and neurogenesis in the hippocampus of adult mice." J Neurochem 
80(3): 539-547. 

Lee, M. S., S. C. Kao, et al. (2003). "APP processing is regulated by cytoplasmic 
phosphorylation." J Cell Biol 163(1): 83-95. 

Leissring, M. A., W. Farris, et al. (2003). "Enhanced proteolysis of beta-amyloid in APP 
transgenic mice prevents plaque formation, secondary pathology, and premature 
death." Neuron 40(6): 1087-1093. 

Li, Y., Q. Yan, et al. (1997). "Long-term caloric restriction delays age-related decline in 
proliferation capacity of murine lens epithelial cells in vitro and in vivo." Invest 
Ophthalmol Vis Sci 38(1): 100-107. 

Lichtenthaler, S. F. and H. Steiner (2007). "Sheddases and intramembrane-cleaving 
proteases: RIPpers of the membrane. Symposium on regulated intramembrane 
proteolysis." EMBO Rep 8(6): 537-541. 

Liu, K., R. W. Doms, et al. (2002). "Glu11 site cleavage and N-terminally truncated A 
beta production upon BACE overexpression." Biochemistry 41(9): 3128-3136. 

Ma, Q. H., D. Bagnard, et al. (2008). "A TAG on to the neurogenic functions of APP." 
Cell Adh Migr 2(1): 2-8. 

Mahdi, F., W. E. Van Nostrand, et al. (1995). "Protease nexin-2/amyloid beta-protein 
precursor inhibits factor Xa in the prothrombinase complex." J Biol Chem 
270(40): 23468-23474. 

Marambaud, P., H. Zhao, et al. (2005). "Resveratrol promotes clearance of Alzheimer's 
disease amyloid-beta peptides." J Biol Chem 280(45): 37377-37382. 

Marsh, J. L. and L. M. Thompson (2006). "Drosophila in the study of neurodegenerative 
disease." Neuron 52(1): 169-178. 

Martin, B., M. P. Mattson, et al. (2006). "Caloric restriction and intermittent fasting: two 
potential diets for successful brain aging." Ageing Res Rev 5(3): 332-353. 



  176 

McBride, S. M., C. H. Choi, et al. (2005). "Pharmacological rescue of synaptic plasticity, 
courtship behavior, and mushroom body defects in a Drosophila model of fragile 
X syndrome." Neuron 45(5): 753-764. 

McCay, C. M., M. F. Crowell, et al. (1989). "The effect of retarded growth upon the 
length of life span and upon the ultimate body size. 1935." Nutrition 5(3): 155-
171; discussion 172. 

Messier, C. and K. Teutenberg (2005). "The role of insulin, insulin growth factor, and 
insulin-degrading enzyme in brain aging and Alzheimer's disease." Neural Plast 
12(4): 311-328. 

Middleton, L. E. and K. Yaffe (2009). "Promising strategies for the prevention of 
dementia." Arch Neurol 66(10): 1210-1215. 

Miller, C. C., D. M. McLoughlin, et al. (2006). "The X11 proteins, Abeta production and 
Alzheimer's disease." Trends Neurosci 29(5): 280-285. 

Morgan, T. E., A. M. Wong, et al. (2007). "Anti-inflammatory mechanisms of dietary 
restriction in slowing aging processes." Interdiscip Top Gerontol 35: 83-97. 

Motta, M. C., N. Divecha, et al. (2004). "Mammalian SIRT1 represses forkhead 
transcription factors." Cell 116(4): 551-563. 

Mouton, P. R., M. E. Chachich, et al. (2009). "Caloric restriction attenuates amyloid 
deposition in middle-aged dtg APP/PS1 mice." Neurosci Lett 464(3): 184-187. 

Muirhead, J., B. E. Meyerowitz, et al. (1992). "Quality of life and coping in patients 
awaiting heart transplantation." J Heart Lung Transplant 11(2 Pt 1): 265-271; 
discussion 271-262. 

Muller, T., H. E. Meyer, et al. (2008). "The amyloid precursor protein intracellular 
domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal 
dynamics-Relevance for Alzheimer's disease." Prog Neurobiol. 

Naruse, S., G. Thinakaran, et al. (1998). "Effects of PS1 deficiency on membrane protein 
trafficking in neurons." Neuron 21(5): 1213-1221. 

Nemoto, S., M. M. Fergusson, et al. (2004). "Nutrient availability regulates SIRT1 
through a forkhead-dependent pathway." Science 306(5704): 2105-2108. 

Nemoto, S., M. M. Fergusson, et al. (2005). "SIRT1 functionally interacts with the 
metabolic regulator and transcriptional coactivator PGC-1{alpha}." J Biol Chem 
280(16): 16456-16460. 

Neumann, K. F., L. Rojo, et al. (2008). "Insulin resistance and Alzheimer's disease: 
molecular links & clinical implications." Curr Alzheimer Res 5(5): 438-447. 



  177 

Nuttall, R. K., C. Silva, et al. (2007). "Metalloproteinases are enriched in microglia 
compared with leukocytes and they regulate cytokine levels in activated 
microglia." Glia 55(5): 516-526. 

Ohno, M., E. A. Sametsky, et al. (2004). "BACE1 deficiency rescues memory deficits 
and cholinergic dysfunction in a mouse model of Alzheimer's disease." Neuron 
41(1): 27-33. 

Ono, T., K. Kanatsu, et al. (1989). "Immunoelectron microscopic localization of fibrin-
related antigen in human glomerular diseases." Nephron 52(3): 238-243. 

Partridge, L., M. D. Piper, et al. (2005). "Dietary restriction in Drosophila." Mech Ageing 
Dev 126(9): 938-950. 

Patel, N. V., M. N. Gordon, et al. (2005). "Caloric restriction attenuates Abeta-deposition 
in Alzheimer transgenic models." Neurobiol Aging 26(7): 995-1000. 

Perez, R. G., S. Soriano, et al. (1999). "Mutagenesis identifies new signals for beta-
amyloid precursor protein endocytosis, turnover, and the generation of secreted 
fragments, including Abeta42." J Biol Chem 274(27): 18851-18856. 

Pignolo, R. J., E. J. Masoro, et al. (1992). "Skin fibroblasts from aged Fischer 344 rats 
undergo similar changes in replicative life span but not immortalization with 
caloric restriction of donors." Exp Cell Res 201(1): 16-22. 

Ponte, P., P. Gonzalez-DeWhitt, et al. (1988). "A new A4 amyloid mRNA contains a 
domain homologous to serine proteinase inhibitors." Nature 331(6156): 525-527. 

Puigserver, P. and B. M. Spiegelman (2003). "Peroxisome proliferator-activated receptor-
gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and 
metabolic regulator." Endocr Rev 24(1): 78-90. 

Qin, W., M. Chachich, et al. (2006). "Calorie restriction attenuates Alzheimer's disease 
type brain amyloidosis in Squirrel monkeys (Saimiri sciureus)." J Alzheimers Dis 
10(4): 417-422. 

Qin, W., T. Yang, et al. (2006). "Neuronal SIRT1 activation as a novel mechanism 
underlying the prevention of Alzheimer disease amyloid neuropathology by 
calorie restriction." J Biol Chem 281(31): 21745-21754. 

Qin, W., W. Zhao, et al. (2008). "Regulation of forkhead transcription factor FoxO3a 
contributes to calorie restriction-induced prevention of Alzheimer's disease-type 
amyloid neuropathology and spatial memory deterioration." Ann N Y Acad Sci

Ring, S., S. W. Weyer, et al. (2007). "The secreted beta-amyloid precursor protein 
ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and 

 
1147: 335-347. 



  178 

electrophysiological abnormalities of APP-deficient mice." J Neurosci 27(29): 
7817-7826. 

Rodgers, J. T., C. Lerin, et al. (2005). "Nutrient control of glucose homeostasis through a 
complex of PGC-1alpha and SIRT1." Nature 434(7029): 113-118. 

Rogina, B. and S. L. Helfand (2004). "Sir2 mediates longevity in the fly through a 
pathway related to calorie restriction." Proc Natl Acad Sci U S A 101(45): 15998-
16003. 

Roth, G. S., D. K. Ingram, et al. (1999). "Calorie restriction in primates: will it work and 
how will we know?" J Am Geriatr Soc 47(7): 896-903. 

Rovelet-Lecrux, A., D. Hannequin, et al. (2006). "APP locus duplication causes 
autosomal dominant early-onset Alzheimer disease with cerebral amyloid 
angiopathy." Nat Genet 38(1): 24-26. 

Sang, T. K. and G. R. Jackson (2005). "Drosophila models of neurodegenerative 
disease." NeuroRx 2(3): 438-446. 

Sarantseva, S., S. Timoshenko, et al. (2009). "Apolipoprotein E-mimetics inhibit 
neurodegeneration and restore cognitive functions in a transgenic Drosophila 
model of Alzheimer's disease." PLoS One 4(12): e8191. 

Scheuner, D., C. Eckman, et al. (1996). "Secreted amyloid beta-protein similar to that in 
the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 
and 2 and APP mutations linked to familial Alzheimer's disease." Nat Med 2(8): 
864-870. 

Schmaier, A. H., L. D. Dahl, et al. (1993). "Protease nexin-2/amyloid beta protein 
precursor. A tight-binding inhibitor of coagulation factor IXa." J Clin Invest 
92(5): 2540-2545. 

Schroeter, E. H., M. X. Ilagan, et al. (2003). "A presenilin dimer at the core of the 
gamma-secretase enzyme: insights from parallel analysis of Notch 1 and APP 
proteolysis." Proc Natl Acad Sci U S A 100(22): 13075-13080. 

Selkoe, D. J. (2001). "Clearing the brain's amyloid cobwebs." Neuron 32(2): 177-180. 

Selkoe, D. J. (2002). "Alzheimer's disease is a synaptic failure." Science 298(5594): 789-
791. 

Selkoe, D. J. (2004). "Cell biology of protein misfolding: the examples of Alzheimer's 
and Parkinson's diseases." Nat Cell Biol 6(11): 1054-1061. 

Selkoe, D. J. and M. S. Wolfe (2007). "Presenilin: running with scissors in the 
membrane." Cell 131(2): 215-221. 



  179 

Seubert, P., T. Oltersdorf, et al. (1993). "Secretion of beta-amyloid precursor protein 
cleaved at the amino terminus of the beta-amyloid peptide." Nature 361(6409): 
260-263. 

Shah, S., S. F. Lee, et al. (2005). "Nicastrin functions as a gamma-secretase-substrate 
receptor." Cell 122(3): 435-447. 

Shankar, G. M., S. Li, et al. (2008). "Amyloid-beta protein dimers isolated directly from 
Alzheimer's brains impair synaptic plasticity and memory." Nat Med 14(8): 837-
842. 

Sherrington, R., S. Froelich, et al. (1996). "Alzheimer's disease associated with mutations 
in presenilin 2 is rare and variably penetrant." Hum Mol Genet 5(7): 985-988. 

Shi, L., M. M. Adams, et al. (2007). "Caloric restriction eliminates the aging-related 
decline in NMDA and AMPA receptor subunits in the rat hippocampus and 
induces homeostasis." Exp Neurol 206(1): 70-79. 

Shoji, M., T. E. Golde, et al. (1992). "Production of the Alzheimer amyloid beta protein 
by normal proteolytic processing." Science 258(5079): 126-129. 

Siegel, R. W. and J. C. Hall (1979). "Conditioned responses in courtship behavior of 
normal and mutant Drosophila." Proc Natl Acad Sci U S A 76(7): 3430-3434. 

Silvestri, R. (2009). "Boom in the development of non-peptidic beta-secretase (BACE1) 
inhibitors for the treatment of Alzheimer's disease." Med Res Rev 29(2): 295-338. 

Siwicki, K. K., P. Riccio, et al. (2005). "The role of cuticular pheromones in courtship 
conditioning of Drosophila males." Learn Mem 12(6): 636-645. 

Small, S. A. and S. Gandy (2006). "Sorting through the cell biology of Alzheimer's 
disease: intracellular pathways to pathogenesis." Neuron 52(1): 15-31. 

Smith, J. (2002). "Human Sir2 and the 'silencing' of p53 activity." Trends Cell Biol 12(9): 
404-406. 

Smith, R. P., D. A. Higuchi, et al. (1990). "Platelet coagulation factor XIa-inhibitor, a 
form of Alzheimer amyloid precursor protein." Science 248(4959): 1126-1128. 

Spasic, D., A. Tolia, et al. (2006). "Presenilin-1 maintains a nine-transmembrane 
topology throughout the secretory pathway." J Biol Chem 281(36): 26569-26577. 

Spradling, A. C., D. Stern, et al. (1999). "The Berkeley Drosophila Genome Project gene 
disruption project: Single P-element insertions mutating 25% of vital Drosophila 
genes." Genetics 153(1): 135-177. 



  180 

Sprecher, C. A., F. J. Grant, et al. (1993). "Molecular cloning of the cDNA for a human 
amyloid precursor protein homolog: evidence for a multigene family." 
Biochemistry 32(17): 4481-4486. 

St-Pierre, J., S. Drori, et al. (2006). "Suppression of reactive oxygen species and 
neurodegeneration by the PGC-1 transcriptional coactivators." Cell 127(2): 397-
408. 

Stefani, M., M. A. Markus, et al. (2007). "The effect of resveratrol on a cell model of 
human aging." Ann N Y Acad Sci 1114: 407-418. 

Struhl, G. and A. Adachi (2000). "Requirements for presenilin-dependent cleavage of 
notch and other transmembrane proteins." Mol Cell 6(3): 625-636. 

Takahashi, R. and S. Goto (2002). "Effect of dietary restriction beyond middle age: 
accumulation of altered proteins and protein degradation." Microsc Res Tech 
59(4): 278-281. 

Tanzi, R. E. and L. Bertram (2005). "Twenty years of the Alzheimer's disease amyloid 
hypothesis: a genetic perspective." Cell 120(4): 545-555. 

Terry, R. D. (2006). "Alzheimer's disease and the aging brain." J Geriatr Psychiatry 
Neurol 19(3): 125-128. 

Thinakaran, G. and E. H. Koo (2008). "Amyloid precursor protein trafficking, 
processing, and function." J Biol Chem 283(44): 29615-29619. 

Tio, M. and K. Moses (1997). "The Drosophila TGF alpha homolog Spitz acts in 
photoreceptor recruitment in the developing retina." Development 124(2): 343-
351. 

Tissenbaum, H. A. and L. Guarente (2001). "Increased dosage of a sir-2 gene extends 
lifespan in Caenorhabditis elegans." Nature 410(6825): 227-230. 

Tomita, S., Y. Kirino, et al. (1998). "Cleavage of Alzheimer's amyloid precursor protein 
(APP) by secretases occurs after O-glycosylation of APP in the protein secretory 
pathway. Identification of intracellular compartments in which APP cleavage 
occurs without using toxic agents that interfere with protein metabolism." J Biol 
Chem 273(11): 6277-6284. 

Tsubuki, S., Y. Takaki, et al. (2003). "Dutch, Flemish, Italian, and Arctic mutations of 
APP and resistance of Abeta to physiologically relevant proteolytic degradation." 
Lancet 361(9373): 1957-1958. 

Turner, R. S. (2006). "Alzheimer's disease." Semin Neurol 26(5): 499-506. 



  181 

Ueda, K., Y. Fukui, et al. (1994). "Amyloid beta protein-induced neuronal cell death: 
neurotoxic properties of aggregated amyloid beta protein." Brain Res 639(2): 240-
244. 

Vabulas, R. M. and F. U. Hartl (2005). "Protein synthesis upon acute nutrient restriction 
relies on proteasome function." Science 310(5756): 1960-1963. 

Van Nostrand, W. E., S. L. Wagner, et al. (1990). "Immunopurification and protease 
inhibitory properties of protease nexin-2/amyloid beta-protein precursor." J Biol 
Chem 265(17): 9591-9594. 

Van Nostrand, W. E., S. L. Wagner, et al. (1989). "Protease nexin-II, a potent 
antichymotrypsin, shows identity to amyloid beta-protein precursor." Nature 
341(6242): 546-549. 

Vassar, R. (2004). "BACE1: the beta-secretase enzyme in Alzheimer's disease." J Mol 
Neurosci 23(1-2): 105-114. 

Vassar, R., B. D. Bennett, et al. (1999). "Beta-secretase cleavage of Alzheimer's amyloid 
precursor protein by the transmembrane aspartic protease BACE." Science 
286(5440): 735-741. 

Vassar, R., D. M. Kovacs, et al. (2009). "The beta-secretase enzyme BACE in health and 
Alzheimer's disease: regulation, cell biology, function, and therapeutic potential." 
J Neurosci 29(41): 12787-12794. 

Vaziri, H., S. K. Dessain, et al. (2001). "hSIR2(SIRT1) functions as an NAD-dependent 
p53 deacetylase." Cell 107(2): 149-159. 

von Koch, C. S., H. Zheng, et al. (1997). "Generation of APLP2 KO mice and early 
postnatal lethality in APLP2/APP double KO mice." Neurobiol Aging 18(6): 661-
669. 

Wakabayashi, T. and B. De Strooper (2008). "Presenilins: members of the gamma-
secretase quartets, but part-time soloists too." Physiology (Bethesda) 23: 194-204. 

Walsh, D. M., B. P. Tseng, et al. (2000). "The oligomerization of amyloid beta-protein 
begins intracellularly in cells derived from human brain." Biochemistry 39(35): 
10831-10839. 

Walter, J., R. Fluhrer, et al. (2001). "Phosphorylation regulates intracellular trafficking of 
beta-secretase." J Biol Chem 276(18): 14634-14641. 

Wang, J., L. Ho, et al. (2005). "Caloric restriction attenuates beta-amyloid 
neuropathology in a mouse model of Alzheimer's disease." Faseb J 19(6): 659-
661. 



  182 

Weidemann, A., S. Eggert, et al. (2002). "A novel epsilon-cleavage within the 
transmembrane domain of the Alzheimer amyloid precursor protein demonstrates 
homology with Notch processing." Biochemistry 41(8): 2825-2835. 

Weindruch, R. (1996). "The retardation of aging by caloric restriction: studies in rodents 
and primates." Toxicol Pathol 24(6): 742-745. 

Westmeyer, G. G., M. Willem, et al. (2004). "Dimerization of beta-site beta-amyloid 
precursor protein-cleaving enzyme." J Biol Chem 279(51): 53205-53212. 

Wolfe, M. S., W. Xia, et al. (1999). "Two transmembrane aspartates in presenilin-1 
required for presenilin endoproteolysis and gamma-secretase activity." Nature 
398(6727): 513-517. 

Xu, F., J. Davis, et al. (2005). "Protease nexin-2/amyloid beta-protein precursor limits 
cerebral thrombosis." Proc Natl Acad Sci U S A 102(50): 18135-18140. 

Xu, W. L., E. von Strauss, et al. (2009). "Uncontrolled diabetes increases the risk of 
Alzheimer's disease: a population-based cohort study." Diabetologia 52(6): 1031-
1039. 

Yaari, R. and J. Corey-Bloom (2007). "Alzheimer's disease." Semin Neurol 27(1): 32-41. 

Yorimitsu, T. and D. J. Klionsky (2005). "Autophagy: molecular machinery for self-
eating." Cell Death Differ 12 Suppl 2: 1542-1552. 

Yu, G., M. Nishimura, et al. (2000). "Nicastrin modulates presenilin-mediated notch/glp-
1 signal transduction and betaAPP processing." Nature 407(6800): 48-54. 

Zambrano, N., P. Bruni, et al. (2001). "The beta-amyloid precursor protein APP is 
tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl 
protoncogene." J Biol Chem 276(23): 19787-19792. 

Zhang, C., P. J. Khandelwal, et al. (2007). "An AICD-based functional screen to identify 
APP metabolism regulators." Mol Neurodegener 2: 15. 

Zhang, C., P. J. Khandelwal, et al. (2007). "An AICD-based Functional Screen to Identify 
APP Metabolism Regulators." Mol Neurodegener 2(1): 15. 

Zhang, Z., P. Nadeau, et al. (2000). "Presenilins are required for gamma-secretase 
cleavage of beta-APP and transmembrane cleavage of Notch-1." Nat Cell Biol 
2(7): 463-465. 

Zheng, H., M. Jiang, et al. (1995). "beta-Amyloid precursor protein-deficient mice show 
reactive gliosis and decreased locomotor activity." Cell 81(4): 525-531. 

 
 



  183 

 


	Abstract
	UCHAPTER 1: INTRODUCTION
	Background and Significance:


