
Architectural Support for Direct Sparse LU Algorithms

A Thesis

Submitted to the Faculty

of

Drexel University

by

Timothy Chagnon

in partial fulfillment of the

requirements for the degree

of

Master of Science in Computer Science

March 2010

c© Copyright March 2010
Timothy Chagnon. All Rights Reserved.

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Jeremy Johnson, for

his continuous support and guidance throughout my career at Drexel. I would also like

to thank Professor Prawat Nagvajara and Professor Chika Nwankpa for their insight and

dedication to the work that we have done together.

I am grateful to my colleagues who have worked on the Power project and in our lab

for their friendship and help, including Petya Vachranukunkiet, Pranab Shenoy, Michael

Andrews, Doug Jones, Lingchuan Meng, Gavin Harrison, Kevin Cunningham and Anupama

Kurpad.

Dedications

To my amazing wife for her support and love.

i

Table of Contents

List of Figures . ii

List of Tables . iv

Abstract . v

1. Introduction . 1

1.1 Overview . 1

1.2 Power Systems . 2

1.3 Sparse Linear Algebra . 3

1.4 Commodity Architectures . 7

1.5 Field Programmable Gate Arrays . 10

2. Sparse Gaussian Elimination and LU Hardware . 14

2.1 Gaussian Elimination. 14

2.2 Left-looking LU Decomposition . 18

2.3 Sparse Gaussian Elimination . 19

2.4 LU Hardware . 23

3. Multifrontal Methods . 30

3.1 Elimination Tree . 30

3.2 Basic Multifrontal Technique . 32

3.3 Performance Implications of Multifrontal Methods . 34

4. Benchmark Matrices . 38

4.1 Power System Matrices . 38

4.2 Comparison Matrices . 38

5. Performance Data and Analysis . 45

5.1 Comparison of Methods . 45

5.2 Multifrontal vs. Straightforward . 48

5.3 Merge Performance . 51

5.4 Cache Performance . 54

6. Conclusion . 58

ii

Bibliography . 60

iii

List of Figures

1.1 Sparse Jacobian Matrix for a 6-bus Power System . 4

1.2 Part of a Triplet File for 6-bus Matrix. 4

1.3 Triplet Structure . 5

1.4 CSC Structure . 5

1.5 Graphical Representation of CSC Structure . 6

1.6 CSC Transpose Pseudo-code . 6

1.7 Computer Memory Hierarchy [34]. 9

1.8 Programmable Logic and Routing in an FPGA.. 11

1.9 Basic FPGA Work Flow . 12

2.1 Dense Gaussian Elimination in MATLAB.. 16

2.2 C struct for Storing A During Gaussian Elimination . 20

2.3 Gaussian Elimination Pseudo-code. 21

2.4 Top Level Sparse LU Hardware Block Diagram . 24

2.5 Pivot and Sub-matrix Update Logic . 25

2.6 Special Purpose Cache . 26

2.7 DRC Architecture [7] . 28

3.1 6-bus Matrix . 31

3.2 Elimination Tree Disjoint Paths . 32

3.3 Graph Front During Factorization, k = 2 . 33

3.4 Frontal Matrix 2 . 33

3.5 Assembly Tree for 6-bus Matrix . 35

3.6 Supernodal Assembly Tree for 6-bus Matrix . 36

iv

4.1 jac26k Non-zero Pattern . 39

4.2 c-41 Non-zero Pattern . 41

4.3 stokes64 Non-zero Pattern . 42

4.4 igbt3 Non-zero Pattern. 42

4.5 nasa4704 Non-zero Pattern . 43

4.6 mark3jac040 Non-zero Pattern . 43

4.7 cvxqp3 Non-zero Pattern . 44

5.1 LU Decomposition Performance . 48

5.2 LU Decomposition Efficiency . 49

5.3 LU Decomposition Performance on Comparison Matrices . 50

5.4 Chunk Size to Performance Relationship . 51

5.5 Primary Merge Loop . 52

5.6 Merge Operation Performance Distrubution . 53

5.7 Cache Miss Rates . 55

5.8 Cycles Per Instruction . 56

5.9 Possible Cycles Spent on Miss Penalties . 57

v

List of Tables

2.1 Sparse LU Hardware Performance Model Parameters . 27

2.2 Sparse LU Hardware Resource Utilization . 29

4.1 Power Matrix Properties . 38

4.2 Power Matrix LU Properties . 39

4.3 Comparison Matrix Properties . 40

4.4 Comparison Matrix LU Properties . 41

5.1 Sparse LU Hardware Performance Model Parameter Values . 46

vi

Abstract
Architectural Support for Direct Sparse LU Algorithms

Timothy Chagnon
Advisor: Jeremy Johnson, PhD

Sparse linear algebra algorithms typically perform poorly on superscalar, general-purpose

processors due to irregular data access patterns and indexing overhead. These algorithms

are important to a number of scientific computing domains including power system simu-

lation, which motivates this work. A variety of algorithms and techniques exist to exploit

CPU features, but it has been shown that special purpose hardware support can dramati-

cally outperform these methods. However, the development cost and scaling limitations of a

custom hardware solution limit widespread use. This work presents an analysis of hardware

and software performance during sparse LU decomposition in order to better understand

trade-offs and to suggest the most promising approach for future research. Experimental

results show that hardware support for indexing operations provides the greatest perfor-

mance improvement to these algorithms and techniques or hardware that facilitate indexing

operations should be explored.

1

1. Introduction

1.1 Overview

Sparse linear algebra algorithms typically perform poorly on superscalar, general-purpose

processors due to irregular data access patterns and indexing overhead [37]. These algo-

rithms are important to a number of scientific computing domains including power system

simulation, which motivates this work [4]. A variety of algorithms and techniques exist to

exploit CPU features [20], but it has been shown that special purpose hardware support

can dramatically outperform these methods [6]. However, the development cost and scaling

limitations of a custom hardware solution limit widespread use. This work presents an

analysis of hardware and software performance during sparse LU decomposition in order

to better understand trade-offs and to suggest the most promising approach for future re-

search. Experimental results show that hardware support for indexing operations provides

the greatest performance improvement to these algorithms and techniques or hardware that

facilitate indexing operations should be explored.

In Chapter 1, background information on power system simulation, sparse linear alge-

bra, general-purpose and reconfigurable architectures is provided. Chapter 2 is a discussion

of straightforward Gaussian Elimination, and its implementation in software and special

purpose hardware. Chapter 3 reviews advanced algorithms designed to efficiently utilize

general-purpose processors. Chapter 4 compares the characteristics of power system ma-

trices to sparse matrices from other applications. Chapter 5 presents several performance

experiments and their results which support the conclusion that indexing operation hard-

ware mechanisms can provide a significant performance boost to sparse algorithms without

the need for a complete custom processor.

2

1.2 Power Systems

Power transmission systems are regularly simulated during normal operation so that op-

erators have better insight into the behavior of equipment under their control. The power

flow (or load flow) calculation models a system as a loosely connected graph of vertices repre-

senting connection points and edges representing transmission lines. A system of equations

based on Kirchoff’s current laws can be formed which create a simple mathematical model

of the system. This model is initialized with measurements taken from the current state of

the power system and then solved for the power flowing on each of the transmission lines.

An iterated solution leads to the steady state of the power system, giving operators an

indication of whether the system is stable or not [3].

Several kinds of power system analysis use the power flow calculation as a model of

the power system. During day-to-day operation, contingency analysis is important to limit

the cascading effects of equipment failure and reduce the risk of widespread blackouts.

Contingency analysis can be performed by modifying one of the links or nodes in the power

flow model to simulate a single equipment failure. Running the power flow calculation until

the system reaches a steady state will determine what effect the single outage has on the

whole system. Even though the power flow computation takes less than a second on modern

computers, a full contingency analysis requires it to be run thousands of times for every

possible component failure [31]. Other types of analysis that use power flow include future

planning studies and real-time energy market pricing [3].

The equations used in the power flow model are sparse, complex and non-linear. The

Newton-Raphson method is commonly used to solve the system of equations by converting

to a linear approximation at each step of an iterative solution. At each step, the admittance

(Ybus) matrix which directly reflects the structure of the power system is converted to a linear

system called the Jacobian, which is solved using sparse linear methods [30]. The solution

to this system is used to update the Ybus matrix and check for convergence to a steady

state. Direct sparse LU decomposition of the Jacobian is the preferred method for solving

the linear system. Iterative decomposition methods such as Conjugate-Gradient are not

3

effective at finding a solution to the power flow computation with the same performance

as direct solvers due to convergence issues [30]. As a result, this work focuses on direct

methods for this application. Performance analysis of the power flow calculation shows

that about 85% of the total computation time is spent on LU decomposition [31, 29].

1.3 Sparse Linear Algebra

A matrix is considered sparse if it contains a large number of elements of value zero.

When computing with such matrices it can be very advantageous in terms of time and mem-

ory to skip operations involving these zero elements. Operations on sparse matrices often

take time and space proportional to some function of the number of non-zeros in the matrix,

which can be significantly smaller than their dense equivalent. As an example, dense matrix

multiplication takes O(n3) floating-point operations, but sparse matrix multiplication takes

only O(n · nz) where nz is the number of non-zeros in the matrices.

Sparse linear algebra algorithms are important for a number of applications. The Berke-

ley View report on parallel computing identifies sparse matrix algorithms as one of the 12

dwarfs of high-performance computing, key algorithm families who’s performance has a

large impact on a variety of applications [4]. Solving sparse systems of equations is com-

monly used for finite-element methods (FEM) applications such as structural analysis and

computational fluid dynamics. Sparse methods are also very useful for circuit simulation

and analysis of power transmission systems, which is the motivating application in this

work. Recent work by Kepner also suggests that sparse matrix methods can be used to

efficiently implement graph algorithms [25]. The relationship of sparse matrices and graphs

leads to the use of graph algorithms during parts of efficient sparse matrix algorithms.

To efficiently store, transmit and compute with sparse matrices, they must be stored

in formats that take advantage of their sparsity. A very common, basic format for storing

matrices on disk and transmitting them over a network is the triplet format, sometimes also

referred to as Harwell-Boeing (HB) format [15]. Triplet format stores each element with its

row number, column number and numeric value. A small 6-bus Jacobian matrix is shown

in Figure 1.1 along with part of a triplet file representing it in Figure 1.2.

4

8.17 0.06 − 4.24
−2.06 7.98 0.87

12.52 1.41 − 7.20 −5.32
− 3.36 12.47 2.19 1.17
−7.44 − 1.13 24.55 − 8.74 − 1.75

−8.56 21.32 3.27 −4.32
2.44 −6.14 21.15 0.87

−4.32 −0.13 −5.43 −0.45 −4.38 −0.57 14.13

Figure 1.1: Sparse Jacobian Matrix for a 6-bus Power System

1 0 0 8.169161
2 1 0 −2.058465
3 7 0 −4.321671
4 0 1 0.062476
5 1 1 7.98146
6 7 1 −0.134087
7 2 2 12.519152
8 3 2 −3.356573
9 4 2 −7.444455

10 7 2 −5.430451

Figure 1.2: Part of a Triplet File for 6-bus Matrix

Within a program a matrix may be stored in triplet format for reading and writing to

disk, but it is generally inefficient to compute with this format. An example structure for

storing a triplet matrix is shown in Figure 1.3, where i, j, and x are arrays of length nz and

each set of entries i[p], j[p] and x[p] denote a row, column and value entry for all integers

p in the range [0, nz − 1].

The most common sparse matrix formats for efficient computation are compressed sparse

row (CSR) and compressed sparse column (CSC). These formats are internally the same

and usage dictates whether they are used in a row-major (CSR) or column-major (CSC)

format. Figure 1.4 shows a C struct based on one used by the CSparse package [11] to hold

CSC and CSR matrices.

The arrays i and x are length nzmax store all non-zero elements minor-index (row

numbers for CSC) and values contiguously. All elements in a single row are contiguous and

5

1 struct t r i p l e t {
2 int nz ;
3 int ∗ i ;
4 int ∗ j ;
5 double ∗x ;
6 } ;

Figure 1.3: Triplet Structure

1 typedef struct spar s e
2 {
3 int nzmax ; /∗ maximum number o f e n t r i e s ∗/
4 int m ; /∗ number o f rows ∗/
5 int n ; /∗ number o f columns ∗/
6 int ∗p ; /∗ column p o i n t e r s (s i z e n+1) ∗/
7 int ∗ i ; /∗ row i n d i c e s , s i z e nzmax ∗/
8 double ∗x ; /∗ numerical va lues , s i z e nzmax ∗/
9 } cs ;

Figure 1.4: CSC Structure

the rows are in ascending order. The array p is length n+ 1 and contains the starting index

in i and x for each column. The entry p[n] contains nz, the total non-zero entries in the

matrix. Figure 1.5 shows a graphical representation of the 6-bus matrix in CSC format.

To understand how to compute with matrices in compressed form, it is useful to look

at some basic operations. Since the rows or columns are stored contiguously, it is very

expensive to insert an element into a matrix at an arbitrary location. All non-zeros in the

matrix following the insertion point would have to be moved. To avoid this, operations are

typically performed such that elements are added to the results a row or column at a time.

Sometimes it is necessary to pre-calculate row or column lengths beforehand or to scatter

intermediate results into a temporary full vector while working on a sparse computation.

Figure 1.6 shows pseudo-code for transposing a matrix based on the cs transpose function

from the CSparse package presented in [11] which operates on CSC matrices.

In the case of the transpose operation, the desired result is that C = AT , or equivalently

6

p 0 3 6 10 14 19 23 27 34

i 0 1 7 0 1 7 2 3 4 7 2 3 4 7 ...

x 8.1 -2.0 -4.3 0.0 7.9 -0.1 12.5 -3.3 -7.4 -5.4 1.4 12.4 -1.1 -0.4 ...

...

n

Figure 1.5: Graphical Representation of CSC Structure

1 t ranspose (A)
2 C = a l l o c a t e n x m CSC matrix with Ap(n) non−z e r o s
3 w = a l l o c a t e i n t e g e r array o f m z e r o e s
4 for every row index i in Ai
5 w(i)++
6 Cp = cumulative−sum(w)
7 w = copy Cp
8 for j in 0 . . n−1
9 for p in Ap(j) . . Ap(j +1) − 1

10 q = w(Ai (p))++
11 Ci (q) = j
12 Cx(q) = Ax(p)
13 return C

Figure 1.6: CSC Transpose Pseudo-code

7

Cji = Aij ∀ 0 ≤ i < m, 0 ≤ j < n. (1.1)

It can also be viewed as changing A from CSC to CSR format or vice-versa. This

operation uses the strategy of pre-computing the resulting row lengths and row pointer

array Cp in lines 4-7. The work array w first acts as a count of the number of elements in

each row. During the copy loop in lines 8-12, w acts as a list of indices into the Ci and Cx

arrays where the next element should go in each row. The for loops in lines 8-9 are a typical

iteration idiom for a CSC matrix over every column j and every index p in that column.

Lines 10-12 simply assign Cji = Aij and update the work array.

The number and variety of sparse matrix software packages available reflects the im-

portance of these algorithms and the intensity of research effort devoted to improving their

performance. Some packages such as Sparsity focus on using dense blocking for lower level

operations such as sparse matrix vector product (SpMV) and sparse triangular solve (SpTS),

which can be used by direct or iterative solvers as a base kernel operation [22]. Other pack-

ages such as UMFPACK [10], WSMP [21] and SuperLU [12] offer specific implementations

of direct LU decomposition which are optimized over the entire operation to take advantage

of parallelism and high-speed dense BLAS [1] routines. Additionally, there have been recent

efforts to create a uniform Sparse BLAS [17] interface which could be used to interface with

a number of implementations. Generally, however, all of these packages suffer from rela-

tively low floating-point efficiency due to the explicit indexing operations and unpredictable

memory accesses associated with all sparse matrix algorithms.

1.4 Commodity Architectures

The superscalar, pipelined, multi-core commodity processors that are dominantly avail-

able in desktop computers, servers, clusters and even modern supercomputers have evolved

over years to perform well on a wide variety of computing tasks. Sparse linear algebra algo-

rithms are not among the operations that these processors perform efficiently. In contrast,

dense linear algebra algorithms have a higher profile in benchmarks and perform extremely

8

well by taking advantage of architecture features that favor regular unit-stride memory

access and independent operations. The indexing operations required to maintain sparse

matrix data structures and the dependence of subsequent operator and memory access on

indexing can cause sparse algorithms to poorly utilize hardware features that are optimized

for dense algorithms.

Modern processors are heavily pipelined, containing anywhere from 4 to 31 stages, each

taking a clock cycle, that an instruction may have to pass through before finishing [23].

Processor designs with more stages can reduce the total clock cycle period required to

complete each stage and thus increase the overall clock speed. The program executing,

however, must have enough instruction level parallelism (ILP), or independent operations

to keep the pipeline full of useful instructions. Branch and memory load instructions can

stall the pipeline and reduce the utilization of chip resources while later instructions must

wait for these to finish before executing. Modern processors contain branch prediction units

and complex caches to reduce the number of pipeline stalls. When branch results or memory

accesses are unpredictable, as in the case of sparse matrix algorithms, these measures can

fail to improve performance.

Effective use of the memory hierarchy is one of the most important factors in the per-

formance of a program. As processor speeds have increased, so have memory speeds, but

at a lesser rate. This has led to an ever increasing gap in access time between on-chip and

off-chip memory. In general there is an inverse relationship between the time it takes to

access memory from the CPU and how expensive it is. This has led to the common use of a

multi-layer memory hierarchy as depicted in Figure 1.7. Small amounts of on-chip registers

and memory are at the top of the hierarchy and larger, less expensive RAM and disk paging

is lower. The access time for memory at lower levels can be one or several orders of mag-

nitude longer than the layer above it. Complex caches have been developed to effectively

utilize the upper layers of the memory hierarchy to keep data which has a high temporal or

spatial locality to previous accesses. Algorithm implementations must be carefully tuned

to take the most advantage of cache based on processor specific cache layout and behavior.

Some of the fastest implementations of important algorithms such as the Discrete Fourier

9

Registers

Cache

RAM

Flash Memory / NVRAM

Hard Disk

Tape

Figure 1.7: Computer Memory Hierarchy [34]

Transform (DFT) and dense BLAS search a large parameter space to find the fastest code

for a target processor [28, 33].

In addition to adapting to a target architecture’s cache and instruction pipeline, there

are usually several levels of parallelism available that a program must take advantage of.

Many processors are superscalar, allowing multiple instructions to be issued to the pipeline

at once. This adds to the ILP required to effectively keep the pipeline full. SIMD (Single

Instruction Multiple Data) parallelism is also common on PC-grade processors. Intel/AMD

processors contain SSE instructions and IBM Power processors contain Altivec instructions

to utilize short-vector floating point units. These instruction sets normally require explicit

programming to take advantage of the 2, 4 or 8-way operations and the memory they operate

on must be vector-aligned. To top it all off, chip speeds have plateaued and chip-makers

are steadily increasing the number of cores in multi-core chips, requiring programmers to

exploit multi-threaded, shared-memory or message passing parallelism.

Using all of the above mentioned methods for fully utilizing on-chip resources, peak

theoretical computation rates are commonly in the 10-100 GFlop/s range. On a recent

10

Intel Core i7 processor with 4 cores running at 3.2 GHz, the peak theoretical performance

is roughly 70 GFlops/s [8]. Very few applications are actually capable of coming near

this rate, however. The codes which have the highest floating-point rates are generally

dense linear algebra routines which can take advantage of much of the hardware parallelism

and cache hierarchy effectively. The GotoBLAS2 [19] library, which contains hand-written

architecture-specific assembly code, achieves greater than 90% of peak floating point effi-

ciency on a variety of architectures including Pentium 4, Opteron, Itanium2, PowerPC and

Core2 [19]. Sparse linear algebra routines achieve a small fraction of this rate.

1.5 Field Programmable Gate Arrays

To avoid the architectural choices imposed by commodity chip makers, it is possible

to design a custom co-processor for a particular application. Hardware designs that use a

similar manufacturing process to CPUs, etching circuitry into a Silicon wafer, are referred

to as Application Specific Integrated Circuits. ASICs have clock speeds and logic density

similar to that of CPUs, but the design and fabrication process is much more expensive and

time consuming than software development. As a middle-ground, Complex Programmable

Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs) offer the flexibility

of re-programmable logic at approximately 1/10th speed of CPUs and ASICs. Commonly,

FPGAs are used as testbeds for new hardware designs destined for traditional fabrication,

but the use of these devices as reconfigurable computing platforms has grown in popularity

as the technology has matured.

FPGAs work by providing a large number of very small, simple logic units, called slices,

which can be programmed to act like a variety of traditional logic gate configurations. The

logic slices are connected in a mesh topology with each other and other basic resources

such as Block RAM, high-speed multipliers, and I/O pins. Figure 1.8 shows an example

of a programmable logic slice and the programmable routing resources that connect them.

FPGAs can be connected to virtually any other digital circuits, but for the purposes of

using them as co-processors, they can be connected to the CPU via a communications bus

as well as some external memory dedicated to the FPGA.

11

4-input
Look-Up

TableIn
p
u
ts

Clock

Output

D Flip-
Flop

(a) Basic Logic Block [35]

Wire
Segment

Programmable
Switch

(b) Routing Switch Box [36]

Figure 1.8: Programmable Logic and Routing in an FPGA

The largest FPGA manufacturer, Xilinx, produces chips as of this writing that contain

758,784 logic cells, 3.2 MB of on-chip Block RAM, 864 embedded DSP blocks, and are

capable of running at 600 MHz [39]. There are a wide variety of configurations designed for

different application areas, power requirements, and cost levels. Many chip manufacturers

and 3rd party vendors make demo boards with these chips, but there are only a handful

of vendors which provide FPGAs in a configuration suitable for use as a co-processor to

software running on a standard CPU.

Because of the large amount of on-chip logic and Block RAM resources available for

application logic, it is common to create streaming architecture models where data flows

through a computation pipeline. This is aided by the heavy use of FIFO buffers to connect

logic units together. Instead of operating on register memory, data can be read in from

memory or CPU and processed at multiple stages throughout logic that the data passes

through. This is effectively an alternative way to make use of instruction level parallelism,

while decoupling the data from specific memory addresses.

Designing application specific hardware for an FPGA co-processor can be an expensive,

time-consuming and error-prone task. The basic work flow for compiling and testing an

FPGA design is shown in Figure 1.9. During the Synthesis and Place and Route steps,

a hardware design must be mapped onto specific logic resources on the FPGA, and those

units connected by signal routing resources. Because of this, compiling an abstract hardware

12

Source Code

(VHDL)

Functional

Simulation
Synthesis

Place &

Route

Program

FPGA

Figure 1.9: Basic FPGA Work Flow

design from Hardware Design Language (HDL) code to an FPGA programming file is very

time consuming compared to software compilation. The electrical signals that travel over

routing lines suffer from propagation delay. It is necessary to place and route logic resources

such that no delay on the chip is longer than the clock cycle period. This place and route

problem is NP-hard and a near optimal solution must be approximated with time-consuming

algorithms to ensure that the logic works as intended [32]. Even the simplest designs can

take several hours to implement into an FPGA programming file. Designs with very large

combinatorial logic delays or difficult routing requirements may not meet timing constraints

at all and require design changes.

This long implementation cycle time breaks the fast edit-compile-test-debug cycle that

software programmers use to iteratively make progress on large projects. Software simula-

tion of HDL code makes this cycle faster, but the event driven simulations are much slower,

so can only be effective for short runs of the logic.

Another hindrance to the widespread use of FPGAs for reconfigurable computing is the

lack of standardized libraries and platforms. Because of their predominant use as hardware

test devices, FPGA boards commonly come with little or no interface logic for connecting

to off chip RAM or even the CPU. Those devices that do come with supported software

and hardware libraries use custom, proprietary ones that lack the widespread use to become

stable and mature and prevent application code from interfacing with other vendor’s plat-

forms. The HDL languages that are commonly in use, VHDL and Verilog are very low level

mechanisms for describing basic circuitry and lack advanced features such as Transaction

Level Modeling [27]. Tools that support such features are proprietary and expensive, reflect-

ing the overall investment usually applied to ASIC and other traditional hardware designs.

Some tools that exist for applications such as digital signal processing (MATLAB/Xilinx

13

System Generator for DSP [xilinx.com]) provide cores for common operations and bus

architectures for connecting cores that can induce a substantial performance overhead. All

of the above factors make FGPA co-processor designs prohibitively difficult for software

developers interested in accelerating a particular algorithm.

xilinx.com

14

2. Sparse Gaussian Elimination and LU Hardware

This chapter contains a discussion of straightforward methods for solving a sparse system

of linear equations. Basic right-looking and left-looking methods are are shown first without

considering sparse data structures in sections 2.1 and 2.2. Implementations in software and

hardware that use sparse algorithms are then discussed in 2.3 and 2.4.

2.1 Gaussian Elimination

Gaussian Elimination is a method for decomposing a matrix into lower and upper trian-

gular factors by eliminating entries below the diagonal, one column at a time. It is typically

taught in introductory linear algebra classes at the undergraduate level as a means of solv-

ing a system of equations represented by a matrix. Decomposing a matrix A into lower (L)

and upper (U) triangular factors

LU = A (2.1)

makes it possible to solve systems with multiple right-hand sides using a single LU decom-

position step. Generally the input matrix is also permuted during this process when zeros

are obtained as the pivot element.

Gaussian Elimination is considered a right-looking method because it uses matrix entries

to the right of the current column being solved. This allows us to view Gaussian Elimination

using the block recursive formula

l11

l21 L22

u11 u12

U22

 =

a11 a12

a21 A22

 , (2.2)

where L, U and A are n × n matrices, l11, u11 and a11 are scalar values, l21 and a21 are

column vectors, u12 and a12 are row vectors, and L22, U22 and A22 are (n−1)×(n−1) block

matrices. We obtain the following equations by block matrix multiplication of Equation 2.2.

15

l11u11 = a11 (2.3)

l11u12 = a12 (2.4)

l21u11 = a21 (2.5)

l21u12 + L22U22 = A22 (2.6)

By convention, the diagonal entries of L are all set to 1. Equations 2.3 to 2.6 can be

rearranged to solve for a column of L, a row of U and a (n− 1)× (n− 1) matrix which can

be solved recursively.

l11 = 1 (2.7)

u11 = a11 (2.8)

u12 = a12 (2.9)

l21 = a21/u11 (2.10)

L22U22 = A22 − l21u12 (2.11)

The trivial base case occurs when the matrices are 1×1 and can be treated simply as the

scalar values l11, u11 and a11. To form the matrix used in the recursive step, A22 must be

updated with the outer-product l21u12. This sub-matrix update is the most computationally

intensive part of each step. Consequently, it holds most of the focus for increasing the

performance of this method. Running the update takes O(n2) at each of the n steps,

resulting in a total asymptotic running time of O(n3) for this method in the case of dense

matrices.

As a simple example of this method, the dense matrix in Equation 2.12 will be used to

16

1 for k = 1 : n
2 U(k , k : n) = A(k , k : n)
3 L(k , k) = 1
4 L(k+1:n , k) = A(k+1:n , k) / U(k , k)
5 A(k+1:n , k+1:n) = A(k+1:n , k+1:n) − L(k+1:n , k) ∗ U(k , k+1:n)

Figure 2.1: Dense Gaussian Elimination in MATLAB

illustrate the algorithm.

2 3 4

4 5 6

6 7 9

 (2.12)

The code in Figure 2.1 is a simple implementation of Gaussian Elimination in MATLAB

code. The block formula from Equation 2.2 is tail-recursive and can easily be transformed

into a non-recursive form similar to this code.

This code updates A in-place after every step. The contents of A can be copied to

U and U used for submatrix-updates to keep the original matrix intact. For illustrative

purposes and to facilitate discussion of our streaming model, we choose to modify A in-

place. Equations 2.13 to 2.16 illustrate the code in Figure 2.1 on matrix 2.12 after every

loop iteration.

L, U, A (2.13)

1

2

3

 ,

2 3 4

 ,

2 3 4

4 −1 −2

6 −2 −4

 (2.14)

17

1

2 1

3 2

 ,

2 3 4

−1 −2

 ,

2 3 4

4 −1 −2

6 −2 1

 (2.15)

1

2 1

3 2 1

 ,

2 3 4

−1 −2

1

 ,

2 3 4

4 −1 −2

6 −2 1

 (2.16)

To improve numerical stability during LU decomposition, partial pivoting is typically

used. Row-partial pivoting requires adding a row-row exchange at the beginning of every

step of the decomposition. A row is selected to be swapped with row k during step k and is

called the pivot row. The row is selected by comparing the numerical values in column k,

the pivot column, in order to maximize Ukk, the pivot element. By maximizing the pivot

element at every step, partial pivoting reduces the chance of dividing the other pivot column

entries by a very small number. The row exchanges at every step lead to the decomposition

in equations 2.17 and 2.18.

LU = PA (2.17)

P−1LU = A (2.18)

Where P is an n × n permutation matrix containing a single 1 entry in every row and

column. As an example, in the first step of the previous decomposition example, row 3

would have been selected as the pivot row because A31 = 6 is the largest element below the

diagonal in the first column of A. The first row of P would then contain a 1 in P13 and be

zero elsewhere.

18

2.2 Left-looking LU Decomposition

As an alternative to right-looking Gaussian Elimination, a left-looking factorization

which relies on a sparse triangular solve can be used. Left-looking methods solve a single

column of both L and U at each step using the columns of L that have already been solved

to the left and a single column of A. The following block recursive formula 2.19 describes

this method.

L11

l21 1

L31 l32 L33

U11 u12 U13

u22 u23

U33

 =

A11 a12 A13

a21 a22 a23

A31 a32 A33

 , (2.19)

where L, U and A are n×n matrices, u22 and a22 are scalar values, l32, u12, a12 and a32 are

column vectors, l21, u23, a21 and a23 are row vectors, and the remaining entries are block

matrices. We obtain the following equations by block matrix multiplication of Equation

2.19.

L11u12 = a12 (2.20)

l21u12 + u22 = a22 (2.21)

L31u12 + l32u22 = a32 (2.22)

Equation 2.20 can be solved using a sparse triangular solve algorithm for the column

of U . Equations 2.21 and 2.22 can then be solved with Sparse matrix-vector multiplication

and vector scaling for the pivot element u22 and the column of L, l32.

The CSparse [11] package uses this method for its straightforward sparse LU algorithm,

but rearranges the computation into a single sparse triangular solve step for each column.

The most computationally intensive part of this algorithm is the sparse triangular solve,

which relies on a depth-first search of the pattern of L to determine the non-zero pattern

of the new column.

19

The SuperLU [13] package is a fully-featured supernodal implementation of left-looking

LU decomposition. This method and implementation are given a limited treatment here be-

cause other methods have been shown to have better performance on power system matrices

[31].

2.3 Sparse Gaussian Elimination

When a significant portion of the entries in the matrix A are zero, it can be very advan-

tageous to use sparse decomposition methods in terms of both memory and computation

time. Sparse methods require changes to the storage of the matrices and the algorithm

required to perform operations on only non-zero entries. Matrices are typically stored in

compressed form, with both the floating point values and an integer index for each non-zero

entry. Operations on compressed column or row vectors and matrices require comparison

of the indices in addition to floating point operations on values. Additionally, the running

time of some operations may change. For example, accessing column j of a matrix in dense

form is an O(1), constant time operation. In CSR format, accessing a column requires a

linear search of each row for entries with indices matching column j. This requires time

linear in the total number of non-zeros in the matrix, O(nz).

During factorization of a sparse matrix, some updates may create non-zero entries where

there previously was no entry. These additional non-zero entries are called fill-in, and they

increase the density of the matrix, creating more computation at later steps of the decompo-

sition. To improve performance, a fill-reducing ordering algorithm is often used to permute

the matrix before factorization. Finding the reordering which results in the minimum fill-in

is an NP-hard problem, but approximation algorithms can be used to find very good order-

ings in a short amount of time relative to the rest of the factorization [11]. Fill-reducing

pre-ordering algorithms are outside the scope of this work. The Approximate Minimum

Degree (AMD) algorithm proposed by Amestoy, Davis and Duff[2] and implemented by

Timothy Davis as part of the SuiteSparse package is used uniformly prior to numerical

factorization for the matrices presented here.

Our implementation of sparse LU decomposition used for performance analysis in this

20

1 typedef struct gs matr ix {
2 int n ; /∗ number o f rows and columns ∗/
3 int ∗ r ; /∗ row counts ∗/
4 int ∗ j ; /∗ row−major i n d i c e s ∗/
5 double ∗x ; /∗ row−major v a l u e s ∗/
6 int ∗c ; /∗ column counts ∗/
7 int ∗ i ; /∗ column−major i n d i c e s ∗/
8 } gs ;

Figure 2.2: C struct for Storing A During Gaussian Elimination

work and as the basis for special purpose hardware in the LUHW design first reported

by Petya Vachranukunkiet in [30] is based on straightforward Gaussian Elimination. Like

the MATLAB code above, A is modified in-place and the factors L and U are output a

column and row at a time, respectively. Accesses to the pivot column and pivot row are

therefore linear and local to the current step being worked on. The L and U factors are

output simply in CSC and CSR form using the CSparse library’s structure for compressed

matrices. Access to A for the update portion of each step dominates the rest of data

accesses. In our implementation, A is stored primarily in CSR format with arrays for

column indices and values for each entry. Rows are padded with unused space such that

each row starts at a regular stride offset in the index and value arrays. If the row-stride is

128, then a maximum of 128 non-zero entries can exist in each row and each row i starts

at entry (i << 7). Row-strides of a power of two make calculating the start of a row fast

and convenient in hardware. Rows contain unused padding space to allow for fill-in during

sub-matrix updates. Because rows may contain fewer than the maximum number of entries,

an array containing the length of each row is also maintained. Entries within a row must

be stored contiguously starting at the row offset in ascending order of column index.

To make pivot search faster, the column-major non-zero pattern of the matrix is also

kept in the same strided format, but without numeric values and without the requirement

that entries be sorted. In the software version of Gaussian Elimination, A is stored in the

C struct described in Figure 2.2.

21

1 gaussianLU (A)
2 for k in 0 . . n−1
3 pivot row , pivot column , p i v o t v a l u e
4 = p i v o t s e a r c h (A, k)
5 U(k , k) = p i v o t v a l u e
6 U(k , k+1:n) = pivot row
7 L(k , k) = 1
8 L(k+1:n , k) = pivot column / p i v o t v a l u e
9 for l i , l x in L(k+1:n , k)

10 A(l i , :) = merge (A(l i , k+1:n) , p ivot row)

Figure 2.3: Gaussian Elimination Pseudo-code

Where n is the dimension of the matrix, r and c are arrays of length n containing the

length of rows and columns, respectively. The arrays j and x make up index and values

for the strided compressed-row form of the matrix. The array i contains row indices in the

strided compressed-column format, which we refer to as column-mapping or colmap.

Using the matrix data structures described above, we perform LU decomposition one

column and row at a time with 3 phases in each step.

1. Pivot Search

2. Output of Pivot Row and Column

3. Sub-matrix update

The main loop performing these operations is shown in pseudo-code in Figure 2.3. The

pivot search in lines 3-4 finds the row that will become the pivot row and extracts the

pivot column values from the compressed-row storage. The result output phase in lines 5-8

copies the pivot row to row k of U and divides the pivot column by the pivot value before

outputting it as column k of L. The submatrix update phase in lines 9-10 loops over every

non-zero element in the scaled pivot column. The pivot column indices indicate rows that

must be updated in the remaining sub-matrix Ak+1:n,k+1:n. Each row that must be updated

has the scaled pivot row subtracted from it in the merge operation.

The pivot search operation finds an appropriate row to use as the pivot row by looking

22

for the largest value in the pivot column. This search is facilitated by the colmap data

in A which contains non-zero entries for each column. Each entry in the pivot column is

checked against the P−1 vector to see if it’s row has already been used as a pivot row. If it

has, then that row is above the diagonal and doesn’t need to be considered. Otherwise, the

pivot value is read from the first entry of its row’s value array. The largest pivot value and

index (pivot row number) are kept and updated throughout the search. If no valid pivot

was found, then the matrix is singular and LU decomposition is unable to continue.

The merge operation is the most important step to consider when evaluating perfor-

mance because it will dominate the runtime of the rest of the straightforward Gaussian

Elimination algorithm. The merge operation is a sparse row-vector add operation that

updates the structure of A in-place. Merge is linear in the number of non-zeros in each

row and it gets run O(Lnz) times, where Lnz is the number of non-zero elements in the

factor L. To update a row of A in-place, merge first copies the row to work arrays wi and

wx. It then merges the scaled pivot row with the row in the work arrays, one element at a

time. Comparing the column-indices of w and the pivot row can result in 3 cases and their

resulting operations. If the pivot row index and sub-matrix row index are equal, the scaled

pivot-row value is subtracted from the sub-matrix value in wx and the index and new value

are output to the row’s location in A. If the sub-matrix row index is less than the pivot row

index, the operation is a simple copy, and the original sub-matrix row index and value are

copied to the output row in A. If the current pivot row index is less than the sub-matrix

index, this is a fill-in and the pivot index and value are copied into the output row of A.

Because the merge operation contains the inner-most loop of the Gaussian Elimination

algorithm, and because it contains unpredictable, data-dependent branches, this operation

can suffer from poor throughput. On modern, heavily pipelined super-scalar processors

with branch prediction, each loop iteration can cause a branch mis-prediction and stall the

pipeline for the next iteration. An analysis of this operation’s performance is covered in

Section 5.3.

23

2.4 LU Hardware

To improve the overall performance of sparse LU decomposition on power system ma-

trices, an application specific co-processor was designed and implemented on an FPGA

platform as first reported in [30]. The following description of the hardware appears in [6].

Our FPGA based sparse LU hardware implements a row-wise, right-looking method of

Gaussian elimination with row partial pivoting. To maximize performance, the design of

the sparse LU hardware focuses on maintaining regular computation and memory access

patterns that are parallel and fully pipelined wherever possible. Synchronous First-In-First-

Out buffers implemented with embedded memory blocks are used for high speed buffering of

data words throughout the pipelined design. A separate column-oriented mapping (colmap)

of the non-zero structure of the matrix reduces pivot search from O(n2) to O(n) time. The

empirical study of power system matrices in [31] provides parameters for the hardware

design such as cache line size, total cache size, and buffer depths, minimizing the need to

handle more general cases and error conditions with extra logic.

A high level diagram of the sparse LU hardware implementation and basic data flow

is depicted in Figure 2.4. The design of the hardware can be broken down into four main

partitions. A central control, implemented as a state machine, tracks the progress of the

functional units to ensure synchronized operation. The pivot logic and sub-matrix update

logic implement the necessary computations required for sparse LU decomposition. The

last partition, cache, handles sparse matrix data retrieval and storage for the pivot search

and sub-matrix update.

Not shown are the external memory interfaces to the Sparse LU Hardware, which depend

on the FPGA prototype board used for implementation. Our design assumes independent

memory banks for the units which require access to external memory such as SDRAM.

The colmap utilizes one memory interface to store a column-wise representation of the

sparse matrix structure for fast pivot search capability. The cache utilizes another memory

interface to store a row-wise representation of the sparse matrix in compressed form. Having

two separate memory banks and controllers allow concurrent operation for the colmap and

24

SWAP

PIVOT

COLMAP

FILTER

DIVIDE RESULT

MER_MEM

MERGE

CACHE

CONTROL

Pivot Logic Sub-matrix Update Logic

Figure 2.4: Top Level Sparse LU Hardware Block Diagram

cache units.

A detailed diagram of the pivot search logic and the submatrix update logic is depicted

in Figure 2.5. The logic to perform the pivot search consists of three units, referred to as

colmap, swap, and pivot. The pivot selection algorithm used in the hardware design is

row partial pivoting based solely on numerical criteria and does not perform any analysis

for potential fill-in reduction. The pivot logic performs a search, element by element, of

the current column for the LU decomposition. The highest magnitude element is selected

as the pivot element. In our hardware rows are not swapped physically, instead a record of

whether each row has been used as pivot rows is maintained.

The colmap unit first performs a burst read of the column-wise matrix representation

to form the pivot column. The swap unit maintains a record of the pivoting operations

that have occurred. This is used to reject candidate rows from the colmap which have

already been eliminated. Rows which are not rejected are sent to the cache read queue as

single word read requests. The pivot unit compares pivot column values returned from

cache, selecting the element with the highest floating point magnitude as the pivot element.

Once the exhaustive search of the pivot column is complete the swap unit updates the row

mappings and the sub-matrix update can begin.

The sub-matrix update logic has two main computations, the normalization of the pivot

25

Figure 2.5: Pivot and Sub-matrix Update Logic

column by the pivot element, followed by a reduction of the remaining sub-matrix by the

product of the pivot row and the pivot column. The filter unit feeds the pivot column

elements to the divide unit to be normalized. The mer mem unit handles cache requests

and schedules computation for row updates by the merge unit(s). The result unit records

the pivot element, pivot row, and normalized pivot column as parts of the final L and U

matrices.

The merge unit performs three tasks in parallel which make up the bulk of computation.

The first is calculating the product of the pivot row and an element of the normalized pivot

column. The second is a comparison of the pivot row indices to the sub-matrix row indices

to determine the non-zero structure of the reduced row. Finally, the scaled pivot row and

sub-matrix row are merged into the new non-zero structure as operands to the floating

point addition unit. Additional parallelism is possible by increasing the bandwidth to the

cache and instantiating multiple merge units to allow row reductions in parallel. Once the

sub-matrix update has completed the hardware signals the control unit so the pivot logic

can begin the search for the next pivot element.

26

Figure 2.6: Special Purpose Cache

The use of a memory hierarchy consisting of one or more levels of cache has been used

for quite some time in order to address the growing disparity between memory performance

and the performance of high speed logic. The use of a cache for our FPGA based Sparse

LU Hardware is two fold. The first is to reduce the latency of memory read operations and

therefore idle cycles where computations could occur. The second reason, and perhaps most

important, is to supply the merge unit with enough scalable read/write bandwidth for high

performance.

A detailed diagram of the special purpose cache is depicted in Figure 2.6. The cache

design is single level and utilizes the embedded FPGA memory blocks for cache data storage

and tag data arrays. The cache policy is write-back with read miss allocation and a modified

First-In-First-Out (FIFO) replacement policy. The cache is fully associative and stores

entire compressed matrix rows to allow high speed constant burst read/write operations.

The tag array logic uses content addressable memory (CAM) functionality based on [38] to

look up a cache line from a matrix row number. Additional logic guarantees that no rows

in-process will be replaced and all writes will be a cache hit.

This cache is an example of where the reconfigurable nature of the FPGA can allow

application specific design for performance enhancements tailored to a specific algorithms

27

Table 2.1: Sparse LU Hardware Performance Model Parameters

Parameter Description
CACHE ROWS Number of rows in cache
DEFAULT FREQ Default frequency
MASKED PIVOT Pivot thresholding by masking mantissa
FORCE DIAG Force diagonal pivot selection
PARTIAL PIVOT Partial pivoting
PIVOT THRESHOLD Threshold for partial pivoting
PROC SCHED Scheduling algorithm for multi-merge
NUM PROC Number of merge units
CLOCKS COLMAP Request to valid data
CLOCKS COLMAP PERWORD Rate of LLRAM read
CLOCKS SDRAM Request to valid data
CLOCKS SDRAM PERWORD Rate of DDRAM read
SDRAM WIDTH Width of transfer (index+value pairs)
HIT TO MISS Situational cache latency
HIT TO HIT Situational cache latency
MISS TO HIT Situational cache latency
MISS TO MISS Situational cache latency
FMUL TO FMUL Multiply to multiply cycles
ROW TO ROW Row to row merge cycles
CLOCKS CACHE Cache request to data out
CLOCKS FMUL FP multiply latency
CLOCKS FADD FP add latency
CLOCKS FDIV FP divide latency
CLOCKS TRANSLATE Pivot translation
CLOCKS PIVOT Latency pivot search/compare

data access requirements. Simulation results show that our cache design results in a row

read hit rate of ∼85% (word read hit rate over 90%) including compulsory misses; all row

writes are hits as previously mentioned.

A software performance model was written that simulates the exact operation of the

LUHW design. The model counts cycles, floating point operations, cache hits and misses

and other statistics during its operation on a matrix. The model is also parameterized with

key hardware parameters such as row sizes, fifo depths, and cache size. The combination of

parameterization and feedback from the performance model allow rapid design exploration

without the need for the lengthy FPGA synthesis, place and route process. A list of the

performance model parameters appears in Table 2.1

28

Figure 2.7: DRC Architecture [7]

The design has been implemented on a DRC Computer RPU110-L200 module containing

a Xilinx Virtex 4 LX200 FPGA with more than 200,000 logic cells, 756 KB on chip BRAM,

128 MB RLDRAM, 2 GB DRAM, and Hyper-transport connection to an Opteron host

processor. A high-level diagram of the DRC module’s architecture and connectivity to

CPU and DRAM is shown in Figure 2.7. The large amounts of block RAM and external

memory available to the FPGA allows the Sparse LU hardware to target a 26,828 bus

system used in industry1. The prototype has been verified up to a 10,278 bus system at

133 MHz. Table 2.2 details the Virtex4 FPGA resource usage for the Sparse LU Hardware

capable of processing the 26,828 bus system. Available memory for caching and buffering

is the principal limitation when running the hardware on larger power system matrices.

The number of clock cycles required to perform the LU decomposition for the FPGA
1provided by PJM (pjm.com)

pjm.com

29

Table 2.2: Sparse LU Hardware Resource Utilization

Logic DSP48 16kb RAM
Slices Blocks Blocks

Usage 27,927 4 293
Percent of Available 31% 4% 87%

based hardware was measured using a hardware counter that increments every clock cycle

during LU decomposition. This hardware cycle count is used to verify the accuracy of the

software performance model for the Sparse LU architecture.

To interact with the power flow software that requires the accelerated LU decomposition,

a library was written to interact with the LUHW from software running on the connected

Opteron processor. The Opteron processor runs a standard Linux operating system with

additional drivers required to interact with the DRC processor module. The LUHW library

uses lower-level DRC library routines to interact with the DRC module and LUHW on

the FPGA over the Hyper-Transport bus. Routines exist to load a matrix from standard

compressed form into the LUHW, start the LUHW, check status and retrieve results. Using

this library, a complete power flow application can be run with the assistance of the LUHW

co-processor.

The LUHW design is parameterized to meet the requirements for decomposing partic-

ular power system matrices. Because these parameters are statically assigned at hardware

implementation time, the LUHW has limitations on what matrices it can successfully de-

compose and the speed at which it operates. The current LUHW design has been optimized

to handle matrices up to n = 65,536, with a maximum of 256 non-zero elements in each

row. The cache is configured to hold 128 rows. Also, due to routing limitations within the

LUHW and interfacing with the DRC connectivity logic, the speed of the chip is currently

limited to 133 MHz.

30

3. Multifrontal Methods

This chapter contains a discussion of multifrontal methods for solving a sparse system of

linear equations [11]. The elimination tree structure is discussed first in Section 3.1 followed

by a description of multifrontal and supernodal algorithm operation in Section 3.2. The

performance implications of using multifrontal and supernodal methods are discussed in

Section 3.3.

3.1 Elimination Tree

Multifrontal and left-looking decomposition methods as well as many other sparse matrix

algorithms rely on the elimination tree of a matrix as a tool for understanding the non-zero

structure of a matrix during computation. The elimination tree is computed during a

symbolic analysis phase prior to numeric factorization of a matrix. The tree is a subgraph

of ReachA, the reachability graph of the matrix A, where the edge (i, j) ∈ ReachA if and

only if there is a path i j in the graph of A through nodes numbered less than i and

j. The reachability graph is a common component for the non-zero pattern of factorization

results, so the elimination tree is an efficiently computable and traversable representation

of this graph. The tree is defined by the statement

∀i < j ∈ GA

j = P (i)

iff @k ∈ GA s.t. i < k < j ∧ (i, k) ∈ ReachA

(3.1)

That is, j is the parent of i in the elimination tree if it is the least numbered node connected

to i in ReachA. The elimination tree for the 6-bus Jacobian matrix along with the matrices

non-zero pattern and the non-zero pattern of its factor L are shown in Figure 3.1

To calculate the elimination tree, the CSparse routine cs etree traverses the matrix A

in nearly linear time. For each non-zero entry Aik in the matrix, it follows a path in the

31

0

1

2

3

4

5

6

7

(a) Matrix Non-Zero Pattern

7

1

0

6

5

4

3

2

(b) Elimination Tree

0

1

2

3

4

5

6

7

(c) L Non-Zero Pattern

Figure 3.1: 6-bus Matrix

current tree from node i to the root of the tree, then sets the parent of the current tree’s

root to k. The algorithm uses path compression during this traversal to update an ancestor

array to point to k, the greatest known ancestor so far. Using path compression makes this

algorithm very nearly linear in |A|, the number of non-zeros in A [11].

The elimination tree is used in a variety of algorithms to compute the resulting non-zero

pattern of an operation. During sparse triangular solve, the goal is to solve for a sparse

vector x in the equation

Lx = b (3.2)

where L and b are also sparse. The non-zero pattern of x is determined by ReachL(b),

the set of vertices reachable in the graph of L starting at vertices in b. This pattern can

be discovered by a depth-first search of L starting at the non-zero entries of b. Using

the elimination tree, however, the non-zero pattern of x is determined by traversing the

path to the root of the tree from every node i in b. Using this inexpensive traversal, it

is also possible to accumulate column or row counts before computation so that a CSC

or CSR result matrix can be compiled out-of-order. During multifrontal factorization, the

elimination tree is used to determine dependence between operations.

32

7

1

0

6

5

4

3

2

Figure 3.2: Elimination Tree Disjoint Paths

The elimination tree can be broken up into disjoint paths, also referred to as chains by

the multifrontal algorithms. Each path contains a series of consecutive parent links that are

not shared with any other path. Paths end at either a node which is part of another path

or at the root of the tree. A set of disjoint paths for the 6-bus matrix is shown in Figure

3.2 with different colors for each path.

3.2 Basic Multifrontal Technique

The multifrontal method for decomposing matrices originated from Duff and Reid’s

work in [16] based on the frontal method introduced by Irons [24]. The technique was

additionally popularized by a tutorial written by Liu [26], which is a more accessible in-

troduction to the method. Davis extended the method to work on pattern-unsymmetric

matrices and implemented the well known high-performance UMFPACK implementation

[10]. The WSMP software also uses this method to parallelize sparse LU decomposition

using the independent operations represented in the elimination tree.

Frontal LU methods are right-looking like Gaussian Elimination, updating sub-matrices

with the outer-product of a pivot column and pivot row at every step. This outer-product

matrix is the frontal matrix for a particular step, named for the graph front it represents.

33

7

3

4

0 1

2 5 6

Figure 3.3: Graph Front During Factorization, k = 2

2

2

3

3

4

4

7

7

Figure 3.4: Frontal Matrix 2

The graph front is the set of nodes reachable in one step from the previously visited set of

nodes, and identifies the border between the part of the system that has been solved and

the part that has not. In Figure 3.3, the square nodes are the front reachable from the

previously visited nodes during step 2 of decomposing the 6-bus matrix. The frontal matrix

contains only the entries that are updated by the outer-product of the pivot row and pivot

column. The frontal matrix entries are gathered together into a dense matrix along with

the pivot row and column, as shown in Figure 3.4.

Multifrontal techniques use the elimination tree to order all the computation required

during LU decomposition into a series of frontal matrix operations. Each node in the

elimination tree corresponds to a frontal matrix where the node label is the diagonal pivot

entry. Figure 3.5 shows an example of frontal matrices organized around the elimination tree

for the 6-bus matrix. The lower-right block of each frontal matrix shown with open circles is

34

the contribution block for the matrix. These values are obtained by the outer product of the

pivot row and column from each matrix. Each contribution block is used by other frontal

matrices that are ancestors in the elimination tree, requiring that the contribution elements

be added to elements in the parent matrix before computing with the parent matrix.

The assembly of contribution block elements into parent matrices requires that the

indices of the matrices be maintained separately from the dense storage for the matrix itself.

Each frontal matrix may have multiple children with contribution blocks that must be added

together. If frontal matrices are computed using a post-order traversal of the elimination

tree, then a stack of frontal matrices from children can be kept until all child matrices are

finished computing and the parent’s frontal matrix can be assembled. Additionally, if the

tree is split into disjoint paths, or chains, then a single memory space can be allocated to

hold all frontal matrices in a chain. The chain’s dense storage space must be large enough

to hold the largest frontal matrix on the chain.

To exploit parallelism, multiple frontal matrices can be computed concurrently. The

elimination tree relationship between frontal matrices describes the data dependence for

computation. Matrices can be computed independently until their least common ancestor

matrix is encountered and requires data from its children. WSMP uses this technique to

distribute independent matrices to multiple processors working together to decompose a

large matrix. To utilize SIMD or ILP parallelism, supernodal techniques can be used to

process multiple pivot rows/columns with the same pattern within the same frontal matrix.

In this case the contribution block is calculated as a matrix multiplication instead of simple

vector outer-product. Figure 3.6 shows the supernodal assembly tree for the 6-bus matrix.

3.3 Performance Implications of Multifrontal Methods

The most obvious performance advantage of the multifrontal method is the ability to use

dense BLAS kernels to compute the contribution blocks in frontal matrices. Computation

is split among many small matrices, which limits the peak performance achievable by the

dense BLAS routines, but for large sparse matrices, the average frontal matrix size can be

fairly large. Indexing information is used only during the assembly of frontal matrices, so

35

7

7

1

1

7

7

0

0

1

1

7

7

6

6

7

7

5

5

6

6

7

7

4

4

5

5

6

6

7

7

3

3

4

4

7

7

2

2

3

3

4

4

7

7

Figure 3.5: Assembly Tree for 6-bus Matrix

36

4

4

5

5

6

6

7

7

0

0

1

1

7

7

2

2

3

3

4

4

7

7

Figure 3.6: Supernodal Assembly Tree for 6-bus Matrix

floating-point computation is not dependent on a recently calculated indexing operation.

The indexing operations that copy or add contribution elements to a frontal matrix are not

interdependent, so they can take advantage of ILP.

The multifrontal method also benefits from temporal and spatial locality when accessing

frontal matrices. For each frontal matrix being constructed, it obtains contribution values

from its children, one of which was the last frontal matrix worked on during post-order

traversal. The dense BLAS routines used to compute the outer-product on each matrix are

also carefully tuned to take advantage of cache locality by using blocked matrix algorithms.

The disadvantage is that more memory must be used to store the frontal matrices separately

from the input and result matrices. This extra memory usage negatively impacts cache

behavior by increasing the overall memory footprint that must be cached.

It also must be acknowledged that assembly of the independent frontal matrices requires

additional floating point operations to add contribution elements together into parent frontal

matrices. In other forms of LU decomposition, these contribution values could be added to

the existing value in the matrix at the time of computation instead of after. These assembly

steps create a significant amount of additional data movement which is not present in other

37

algorithms

The additional storage requirements for frontal matrices also require allocation and

deallocation of memory during the decomposition process. Frequent calls to malloc and

free can cause significant operating system overhead for a program. This has a significant

enough impact on performance that the author of UMFPACK suggests using an alternative

high-performance version of malloc [18].

The performance advantages gained by using high-speed dense BLAS routines have

to be balanced against the additional overhead of using frontal matrices. Because sparse

algorithm performance is highly dependent on the matrix structure being worked on, this

balance can vary from matrix to matrix. This relationship is investigated for power system

and other matrices in Section 5.2.

38

4. Benchmark Matrices

This chapter presents the benchmark matrices used for the performance experiments

in Chapter 5. Section 4.1 describes matrices from the power system analysis domain and

Section 4.2 describes matrices that were chosen from other domains for comparison.

4.1 Power System Matrices

The power system matrices used in this work were obtained from PJM Interconnection,

the regional transmission authority for Pennsylvania and surrounding states. The matrices

are Jacobian representations of the original Ybus matrices and have been pre-ordered to

reduce fill-in with the AMD [2] algorithm. Generally, power matrices are very sparse,

with moderate size and do not contain any regular patterns. Table 4.1 lists the power

matrices and some of their statistics. Table 4.2 lists some of the matrix properties after LU

decomposition. Figure 4.1 shows the non-zero pattern of one of the power matrices.

4.2 Comparison Matrices

A selection of 15 matrices from the University of Florida Sparse Matrix Collection[9]

is used for performance comparison in this work. These matrices came from a variety of

domains including structure analysis, computational fluid dynamics, and circuit simulation.

These matrices were selected to be a similar size as the power matrices (100,000 to 150,000

non-zeros) and represent a wide range of applications and patterns. Table 4.3 lists the

Table 4.1: Power Matrix Properties

Avg. nz
Matrix n nz Sparsity per row
jac2k 2,982 21,196 0.238 % 7.1
jac7k 14,508 105,522 0.050 % 7.3
jac10k 19,285 134,621 0.036 % 7.0
jac26k 50,092 351,200 0.014 % 7.0

39

Table 4.2: Power Matrix LU Properties

Fill L+U nz MFlop
Matrix Lnz Unz Ratio per row Count
jac2k 23,927 23,894 2.12 15.04 0.5
jac7k 123,109 122,955 2.19 15.96 3.5
jac10k 135,708 134,905 1.87 13.03 3.1
jac26k 430,462 403,876 2.23 15.66 21.0

Figure 4.1: jac26k Non-zero Pattern

40

Table 4.3: Comparison Matrix Properties

Avg. nz
Matrix n nz Sparsity per row Application
piston 2,025 100,015 0.024 % 49.4 model reduction
ford1 18,728 101,576 0.000 % 5.4 structural
c-41 9,769 101,635 0.001 % 10.4 optimization
mhd4800a 4,800 102,252 0.004 % 21.3 electromagnetics
shuttle eddy 10,429 103,599 0.001 % 9.9 structural
nasa4704 4,704 104,756 0.005 % 22.3 structural
crystm01 4,875 105,339 0.004 % 21.6 materials
mark3jac040 18,289 106,803 0.000 % 5.8 economic
bloweybl 3,003 109,999 0.012 % 36.6 materials
cvxqp3 17,500 114,962 0.000 % 6.6 optimization
bcsstk15 3,948 117,816 0.008 % 29.8 structural
bodyy4 17,546 121,550 0.000 % 6.9 structural
aft01 8,205 125,567 0.002 % 15.3 acoustics
igbt3 10,938 130,500 0.001 % 11.9 semiconductor
stokes64 12,546 140,034 0.001 % 11.2 fluid dynamics

comparison matrices and some of their statistics and origins. Table 4.4 lists some of the

comparison matrix properties after LU decomposition. Figures 4.2 through 4.7 show the

non-zero pattern of some of the comparison matrices.

41

Table 4.4: Comparison Matrix LU Properties

Fill L+U nz MFlop
Matrix Lnz Unz Ratio per row Count
piston 68,442 68,442 1.35 66.60 5.0
ford1 908,945 428,152 12.98 70.40 117.6
c-41 364,024 269,242 6.13 63.82 60.2
mhd4800a 153,553 210,001 3.51 74.74 15.9
shuttle eddy 91,070 119,631 1.93 19.20 2.9
nasa4704 283,225 283,225 5.36 119.42 72.3
crystm01 326,955 326,964 6.16 133.14 61.7
mark3jac040 2,212,336 3,146,694 50.01 292.02 4200.5
bloweybl 70,002 70,001 1.00 3.67 0.0
cvxqp3 5,703,962 10,977,667 144.95 952.24 20185.1
bcsstk15 614,587 614,587 10.40 310.34 292.8
bodyy4 572,607 572,607 9.28 64.27 101.5
aft01 289,180 289,180 4.54 69.49 33.1
igbt3 604,996 654,567 9.57 114.15 112.8
stokes64 804,168 1,123,022 13.67 152.61 293.7

Figure 4.2: c-41 Non-zero Pattern

42

Figure 4.3: stokes64 Non-zero Pattern

Figure 4.4: igbt3 Non-zero Pattern

43

Figure 4.5: nasa4704 Non-zero Pattern

Figure 4.6: mark3jac040 Non-zero Pattern

44

Figure 4.7: cvxqp3 Non-zero Pattern

45

5. Performance Data and Analysis

This chapter presents performance experiments and results used to understand bot-

tlenecks in sparse LU decomposition on general-purpose processors and compare to the

LUHW design. Section 5.1 compares the LUHW performance to software methods. Section

5.2 explores the performance of multifrontal and straightforward methods on power and

comparison matrices. Sections 5.3 and 5.4 explore the performance of the merge operation

and cache hierarchy during software decomposition.

5.1 Comparison of Methods

In Section 2.4, the LUHW special purpose hardware design was introduced as an alter-

native to software running on a general-purpose processor for decomposing sparse power

matrices. It was designed to perform the key operations required during sparse LU de-

composition efficiently as possible. Previous work has shown that this design is capable of

close to an order of magnitude performance improvement over general-purpose processors

when the design is scaled up in terms of operating frequency and parallel merge units are

used. However, the limitations of working with a custom architecture in terms of devel-

opment cost and limited potential for adoption lead us to investigate which parts of the

design are most critical to its success. With an understanding of what makes the LUHW

design perform well on power matrices, it may be possible to exploit advanced features of a

general-purpose processor or to implement specific hardware features that improve sparse

algorithm performance.

To get an overall understanding of performance, the first question to ask is: How does

LUHW performance compare to software methods? The working LUHW prototype was

implemented on an FGPA with a single merge unit running at 133 MHz, so we will use

this setup to compare to software. The design performance could potentially be increased

several-fold by using multiple merge units, operating at a higher frequency or implementing

the design on an ASIC. Without speculating on additional performance we can use the

46

Table 5.1: Sparse LU Hardware Performance Model Parameter Values

Parameter Description
CACHE ROWS 128
DEFAULT FREQ 133
MASKED PIVOT 1
FORCE DIAG 0
PARTIAL PIVOT 1
PIVOT THRESHOLD 0.001
PROC SCHED 0
NUM PROC 1
CLOCKS COLMAP 2
CLOCKS COLMAP PERWORD 4.78
CLOCKS SDRAM 28
CLOCKS SDRAM PERWORD 2.4
SDRAM WIDTH 1
HIT TO MISS 10
HIT TO HIT 0
MISS TO HIT 3
MISS TO MISS 8
FMUL TO FMUL 2
ROW TO ROW 10
CLOCKS CACHE 30
CLOCKS FMUL 11
CLOCKS FADD 10
CLOCKS FDIV 28
CLOCKS TRANSLATE 2
CLOCKS PIVOT 2

existing prototype and the performance model that has been tuned to match results from

the prototype, to understand the benefits of the design. The parameter values used for the

performance model are listed in Table 5.1. Cycle counts, floating-point operations, and cache

use statistics are reported by the performance model for each single run of decomposing

a matrix. As reported in [6], the performance model successfully projects performance to

within 95% of actual hardware results.

The software used in this comparison was benchmarked on an Intel Core i7 965 Extreme

Edition processor running at 3.2 GHz. The software used includes UMFPACK 5.4.0, a sim-

ple left-looking method from the CSparse package [11], and an implementation of Gaussian

Elimination. UMFPACK is a popular sparse solver package that performs the multifrontal

47

method described in Chapter 3. It relies on machine specific, high-performance Dense BLAS

routines to execute the frontal matrix outer-product operations and derives much of its per-

formance from these routines. For these experiments the GotoBLAS2 [19] library was used

for underlying dense BLAS routines. The CSparse package is a pedagogical sparse solver

library written by the author of UMFPACK. The LU decomposition routine in CSparse

uses a straightforward left-looking algorithm which contains a sparse triangular solve step

which dominates its running time. The software implementation of Gaussian Elimination

was written for the analysis presented in this work. It was designed to match the operation

of the LUHW as closely as possible within the limits of running as software on a general

purpose processor.

Each of the software routines were run on the benchmark power matrices and measured

using high-resolution timers and counters provided by the PAPI performance counter library

[5]. Only the numeric part of LU decomposition was timed, excluding any matrix loading

and symbolic analysis. Figure 5.1 shows the overall performance of each software routine

and the LUHW in terms of millions of floating-point operations per second of run time

(MFlop/s).

The CSparse left-looking routine clearly performed the best over the power system ma-

trices, outperforming even UMFPACK. Overall the performance in the 50-300 MFlop/s

range is far below the peak performance available on the Core i7 processor. Even not

counting SIMD or multi-core parallelism, the peak rate should be 6.4 GFlop/s (with dual-

issue multiply and add), making these results less than 10% of peak. Counting all available

resources, the i7 has a peak performance around 70 GFlops, making these results 0.5% of

peak. The LUHW prototype has the lowest performance, unable to match chip improve-

ments made in the few years since it was designed. Previous benchmarks of UMFPACK

performance on the jac26k power matrix resulted in 89 MFlop/s on a 2.6 GHz Pentium 4

and 101 MFlop/s on a 2.4 GHz Core2. This reveals nearly a 2× speedup on the Core i7

system. Based on the performance model projection, an increase in the LUHW speed to

approximately 500 MHz would result in performance that matches or beats the CSparse

left-looking algorithm on the Core i7.

48

jac2k jac7k jac10k jac26k0

50

100

150

200

250

300

350

M
Fl

op
/s

LU Decomposition Performance on Power Matrices

LUHW
UMFPACK
Gaussian
CSparse

Figure 5.1: LU Decomposition Performance

Figure 5.2 presents an alternative view of performance which takes into account the low

speed of the FPGA based LUHW. This chart shows floating-point efficiency by comparing

flops per cycle. The LUHW is capable of performing close to one floating-point operation

every cycle of its execution. This performance efficiency is what would be desirable to

duplicate on a general purpose processor.

5.2 Multifrontal vs. Straightforward

The unexpected results from the previous section prompt the next question: Why do

the straightforward Gaussian Elimination and left-looking methods perform better than

UMFPACK? UMFPACK is supposed to be one of the fastest sparse solvers available and

uses machine specific BLAS routines. To confirm UMFPACK’s overall performance it is

compared to left-looking LU on a variety of sparse matrices from different application do-

mains. Figure 5.3 shows performance measurements taken on the comparison matrices

selected from the University of Florida sparse matrix collection [9]. These results confirm

49

jac2k jac7k jac10k jac26k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fl
op

/c
yc

le

LU Decomposition Efficiency on Power Matrices

LUHW
UMFPACK
Gaussian
CSparse

Figure 5.2: LU Decomposition Efficiency

that UMFPACK performance is generally much higher than straightforward methods.

Since UMFPACK relies on Dense BLAS routines for performance, it is useful to inves-

tigate their use and performance impact. During decomposition, UMFPACK breaks up

computation into a set of frontal matrices, each of which correspond to a BLAS operation.

Dense BLAS routines have higher peak performance on larger matrices as setup and calling

costs are amortized over the computation. It is a reasonable guess then that larger frontal

matrices will result in higher performance.

To test this hypothesis, a large sampling of matrices from the UF sparse matrix collection

was factorized using UMFPACK. The time, number of flops and number of frontal matrices

was gathered for each matrix. An arbitrary measure of BLAS operation size was conceived

called “chunk size” which describes the size of the BLAS operation in terms of flops per

frontal matrix. The chunk size was found to be closely related to UMFPACK performance.

Figure 5.4 shows the results of these observations. All matrices tested are shown as red

points in the chart. The benchmark power matrices and benchmark comparison matrices

50

pi
st

on

m
hd

48
00

a

c-
41

af
t0

1

bo
dy

y4

ig
bt

3

cr
ys

tm
01

na
sa

47
04

st
ok

es
64

bc
ss

tk
15

m
ar

k3
ja

c0
40

cv
xq

p3

0

1000

2000

3000

4000

5000

6000

M
Fl

op
/s

LU Decomposition Performance on Comparison Matrices

UMFPACK
CSparse

Figure 5.3: LU Decomposition Performance on Comparison Matrices

are also highlighted. It is notable that the power matrices are clustered around smaller chunk

sizes with lower resulting performance. The set of comparison matrices mostly has large

frontal matrices and better performance. There are a couple of outliers in the comparison

set which correspond to diagonal or banded matrices.

These results mirror those found by Davis in his comparison of Cholesky decomposition

performance[9]. Their results show that matrices with small chunk sizes do not benefit from

supernodal methods due to the extra overhead required. Since power system matrices are

have small chunks and UMFPACK is both supernodal and requires additional floating-point

operations and data movement overhead for each frontal matrix, it is not effective to use this

method on power system matrices. This result also supports the case for special purpose

hardware or instructions when decomposition of these matrices cannot take advantage of

SIMD vector hardware designed for dense BLAS routines.

51

100 101 102 103 104 105 106 107

Chunk Size (flops/frontal matrix)

100

101

102

103

104

M
Fl

op
/s

Performance vs. Chunk Size

UF Matrices
Power Matrices
Comparison Matrices

Figure 5.4: Chunk Size to Performance Relationship

5.3 Merge Performance

Despite the significant differences in performance of the methods compared here, the

performance of all of them is very low in comparison to the peak theoretical performance of

general-purpose processors. In an effort to better understand the causes of this performance

gap, it is helpful to experiment on parts of the algorithms separately. The two main perfor-

mance improving features of the sparse LU hardware that are not reproducible in software

are the custom merge unit compute pipeline and the application specific cache tuned to

power matrices. The merge unit is responsible for a compressed row-add operation which

updates submatrix rows with the scaled pivot row.

In software, the main loop of the merge operation shown in Figure 5.5 has to condition-

ally increment pointers into the pivot and submatrix rows. The loop body contains a 3-way

conditional set of statements for the cases when a pivot row index and submatrix row index

are equal (update), the submatrix row index is smaller (copy), or pivot row index is smaller

52

1 for (p = 1 , s = 1 ; p < p i vo t r o w l e n && s < subm row len ;) {
2 p i = AjPiv [p] ;
3 s i = AjSub [s] ;
4 i f (s i == pi) {
5 /∗ update ∗/
6 wj [rnz] = s i ;
7 wx [rnz++] = AxSub [s] − l x ∗AxPiv [p] ;
8 p++; s++;
9 } else i f (s i < pi) {

10 /∗ copy ∗/
11 wj [rnz] = s i ;
12 wx [rnz++] = AxSub [s] ;
13 s++;
14 } else {
15 /∗ f i l l −in ∗/
16 wj [rnz] = pi ;
17 wx [rnz++] = −l x ∗AxPiv [p] ;
18 /∗ colmap f i l l ∗/
19 f i l l j [fnz] = pi ;
20 f i l l i [fnz++] = subm row ;
21 p++;
22 }
23 }

Figure 5.5: Primary Merge Loop

(fill-in). This loop is heavily data-dependent from one iteration to the next, and requires a

large number of extra operations for indexing and loop maintenance.

In hardware this merge operation is fully pipelined. A comparison at the beginning of

the pipeline determines the operation based on row indices, which is later carried out by

the floating-point add unit. The unit is able to execute up to 2 flops per cycle, one multiply

and one add.

To determine if the software merge is a significant bottleneck, its operation is bench-

marked in the Gaussian Elimination code. A random sampling of merge operations is taken

during decomposition of the jac26k matrix. For each sample, the merge operation is run

once as normal to fulfill any cache misses that may occur during merge. The merge opera-

tion is then rerun 1000 times on the same input pivot and submatrix rows to gather a large

enough run time. Row counts and the average merge operation time are output. From this

53

0 100 200 300 400 500 600 700
MFlop/s

0

100

200

300

400

500

600

700

800

M
er

ge
 O

pe
ra

tio
ns

Distribution of Merge Operation Performance

Figure 5.6: Merge Operation Performance Distrubution

information, the performance of each merge operation can be determined. Figure 5.6 shows

the distribution of merge operation performance. This experiment shows that the range of

possible performance rates for the merge operation is in the 0-600 MFlop/s range.

To understand the performance range of merge operations, additional benchmarking

was done with specific row non-zero patterns. Based on this data, the merge operation per-

formance is affected within the range above by three main factors: the number of copy oper-

ations, the number of unmatched operations at the end of rows, and branch mis-prediction.

Copy operations do not get counted as useful flops, so a large proportion of copy operations

can reduce the merge performance to near 0 MFlop/s. Unmatched operations occur when

either the pivot or submatrix still contains elements, but the other has run out. This can

occur at the end of a row and is handled by simple single-iterator loops without conditional

statements that perform the remaining fill-ins or copies. Unmatched fill-ins run about 100

MFlop/s faster than those occurring during the main merge loop. Finally, the branch pre-

diction units appear to favor either long sequences (at least 32) of the same operation, or

54

alternating every 1 or 2 operations. Alternating operations at a medium stride such as 4 or

8 negatively impacts performance by up to 85 MFlop/s.

These results indicate that the merge operation is a major bottleneck during LU de-

composition. Profiling results show that calls to the merge operation take a majority of

the time of the LU decomposition. In the CSparse LU routine, profiling indicates that the

depth-first search during sparse triangular solve takes the most time. This DFS determines

the non-zero pattern of the result column, requiring a large amount of data dependent

indexing operations. In both cases, hardware support for indexing would greatly benefit

performance.

5.4 Cache Performance

The custom cache on the LUHW is the other major performance enhancing design

feature. The cache supports storing entire rows and streaming them to the computation

units and maintains intricate logic to select which rows are cached or evicted at any given

point in the operation. To determine if this special cache is an important performance

enhancement, it is necessary to find out if cache misses in the LU software are a significant

bottleneck. Measuring cache effects can be difficult and error prone due to the complex

design of modern caches and pipelined processors, but some measurements can be indicative

of whether an application is memory bound.

First it is useful to compare the miss rates of the LUHW to software as seen in Figure

5.7. The miss rates shown are averaged word-miss rates across all words read from a row.

The miss rates for both software and hardware are reasonably low. The LUHW misses

and the software L2 misses would incur similar penalties since they both use off-chip DDR-

type memory as a next-level memory. Since the LUHW cache is organized per-row, the

miss penalty can be amortized over the entire row and it may be possible to prefetch rows

to reduce the miss rate. The general purpose cache makes much more efficient use of its

available space since the LUHW must pad rows that it stores in their entirety.

Cycles per instruction is shown to be an indicator of memory bound applications in [14].

Most modern processors are dual issue, able to dispatch two instructions every cycle. For

55

jac2k jac7k jac10k jac26k0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
is

s
Ra

te
 (%

)

Cache Miss Rates on Power Matrices

LUHW
Gaussian L1
Gaussian L2
CSparse L1
CSparse L2

Figure 5.7: Cache Miss Rates

compute bound programs, the CPI rate will approach 1/2. For memory bound programs,

if the working set does not fit into L1, cache miss penalties cause the CPI to jump up to

around 3. Applications with a large number of L2 misses have a CPI of around 15-20.

Figure 5.8 shows the CPI for LU algorithms running on power matrices to be about 0.5 to

0.6, indicating that cache misses are not a significant bottleneck.

To further support this claim, measurements of total L1 and L2 cache misses was used

to estimate the maximum possible time used by miss penalties for the LU decomposition

software. The Intel Architectures Optimization Reference Manual indicates that the L1

miss penalty is 10 cycles and L2 penalty is about 40 cycles [23]. Figure 5.9 shows the

maximum miss penalty cycles based on these penalties and the number of L1 and L2 misses

measured relative to the total cycles during LU decomposition. It is important to note

that these penalties would only be fully realized if all cache misses completely stalled all

computation. Even considering these maximum penalties, eliminating all misses would

increase the performance of at most a factor of 2x. This does not account for the full factor

56

jac2k jac7k jac10k jac26k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cy
cl

es
 P

er
 In

st
ru

ct
io

n

Cycles Per Instruction on Power Matrices

Gaussian
CSparse

Figure 5.8: Cycles Per Instruction

of 10-200x gap between theoretical peak performance and actual sparse LU performance.

Based on these results, cache misses may have some impact on performance, but not

as significant as the indexing operations required by the merge operation. Some mem-

ory performance improvements might be made by exploring additional software prefetch

instructions to reduce cache misses.

57

jac2k jac7k jac10k jac26k0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
Pe

na
lty

 C
yc

le
s

/ T
ot

al
 C

yc
le

s

Possible Miss Penalty Cycles

Gaussian
CSparse

Figure 5.9: Possible Cycles Spent on Miss Penalties

58

6. Conclusion

Direct methods for sparse LU decomposition are an important set of algorithms used

in a variety of applications including power flow computation. There is significant room

for improving their performance on general-purpose processors. This work shows that a

promising direction for research in this area is the addition of indexing support via a specific

merge operation unit or other instruction support. To a lesser extent, some performance

improvement may be gained from a customizable cache that is capable of streaming or

prefetching rows based on the sparse data access pattern.

60

Bibliography

[1] An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on
Mathematical Software (TOMS), 28(2), 2002.

[2] Patrick R. Amestoy, Enseeiht-Irit, Timothy A. Davis, and Iain S. Duff. Algorithm
837:AMD, an approximate minimum degree ordering algorithm. ACM Transactions
on Mathematical Software (TOMS), 30(3), 2004.

[3] Vijay Vittal Arthur R. Bergen. Power Systems Analysis. Prentice Hall, 1999.

[4] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David
Wessel, and Katherine Yelick. A view of the parallel computing landscape. Communi-
cations of the ACM, 52(10):11, 2009.

[5] S. Browne. A Portable Programming Interface for Performance Evaluation on Mod-
ern Processors. International Journal of High Performance Computing Applications,
14(3):189–204, August 2000.

[6] Timothy Chagnon, Jeremy Johnson, Petya Vachranukunkiet, Prawat Nagvajara, and
Chika Nwankpa. Sparse lu decomposition using fpga. In PARA’08: 9th International
Workshop on State-of-the-Art in Scientific and Parallel Computing, May 2008.

[7] DRC Computer Corporation. DRC Coprocessor System User’s Guide, July 2007.

[8] Intel Corporation. Intel core i7 processor extreme edition i7-965 processor specification.
http://processorfinder.intel.com/details.aspx?sSpec=SLBCJ.

[9] Timothy A. Davis. The university of florida sparse matrix collection. Technical report.

[10] Timothy A. Davis. Algorithm 832:UMFPACK V4.3—an unsymmetric-pattern multi-
frontal method. ACM Transactions on Mathematical Software (TOMS), 30(2), 2004.

[11] Timothy A. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.

[12] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph
W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis
and Applications, 20(3):720–755, 1999.

[13] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, and J.W.H. Liu. SuperLU: A
supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and
Applications, 20(3):720755, 1999.

[14] Ulrich Drepper. What every programmer should know about memory. Technical report,
2007.

[15] I. S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems. ACM
Transactions on Mathematical Software (TOMS), 15(1), 1989.

http://processorfinder.intel.com/details.aspx?sSpec=SLBCJ

61

[16] I. S. Duff and J. K. Reid. The Multifrontal Solution of Indefinite Sparse Symmetric
Linear. ACM Transactions on Mathematical Software (TOMS), 9(3), 1983.

[17] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An overview of the sparse basic
linear algebra subprograms:The new standard from the BLAS technical forum. ACM
Transactions on Mathematical Software (TOMS), 28(2), 2002.

[18] Sanjay Ghemawat and Paul Menage. Tcmalloc : Thread-caching malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html.

[19] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix
multiplication. ACM Transactions on Mathematical Software (TOMS), 34(3), 2008.

[20] Anshul Gupta and Yorktown Heights. Recent Advances in Direct Methods for Solving
Unsymmetric Sparse Systems of Linear Equations. ACM Transactions on Mathematical
Software (TOMS), 28(3), 2002.

[21] Anshul Gupta, Mahesh Joshi, and Vipin Kumar. WSMP: A High-Performance Shared-
and Distributed-Memory Parallel Sparse Linear Equation Solver. IBM Research Report,
2001.

[22] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization Framework
for Sparse Matrix Kernels. International Journal of High Performance Computing
Applications, 18(1):135–158, February 2004.

[23] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual,
October 2009.

[24] B.M. Irons. A frontal solution scheme for finite element analysis. Journal of Numerical
Methods Engineering, 2:5–32, 1970.

[25] Jeremey Kepner and John Gilbert. Graph Algorithms in the Language of Linear Alge-
bra. SIAM, 2008.

[26] Joseph W. H. Liu. The Multifrontal Method for Sparse Matrix Solution: Theory and
Practice. SIAM Review, 34(1):82 – 109, 1992.

[27] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Extending the transaction
level modeling approach for fast communication architecture exploration. Annual ACM
IEEE Design Automation Conference, 2004.

[28] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang
Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program Generation, Optimiza-
tion, and Adaptation”, 93(2):232– 275, 2005.

[29] Feng Tu and A J Flueck. A message-passing distributed-memory parallel power flow
algorithm. In Power Engineering Society Winter Meeting, pages 211–216. IEEE, 2002.

[30] Petya Vachranukunkiet. Power flow computation using field programmable gate arrays.
PhD thesis, Drexel University, 2007.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

62

[31] Petya Vachranukunkiet, Jeremy Johnson, Prawat Nagvajara, S Tiwari, and Chika
Nwankpa. Performance analysis of load flow computation using fpga. In 15th Power
Systems Computational Conference, August 2005.

[32] R. Venkateswaran and Pinaki Mazumder. A survey of da techniques for pld and fpga
based systems. Integration, the VLSI Journal, 17:191–240, 1994.

[33] R. Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimiza-
tion of software and the atlas project. Parallel Computing, 27(1-2):3–35, 2001.

[34] Wikipedia. File:computermemoryhierarchy.svg. http://en.wikipedia.org/wiki/
File:ComputerMemoryHierarchy.svg.

[35] Wikipedia. File:logic block2.svg. http://en.wikipedia.org/wiki/File:Logic_
block2.svg.

[36] Wikipedia. File:switch box.svg. http://en.wikipedia.org/wiki/File:Switch_box.
svg.

[37] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms. Conference on High Performance Networking and Computing, 2007.

[38] Xilinx, Inc. Designing Flexible, Fast CAMs with Virtex Family FPGAs, September
1999. xapp203.

[39] Xilinx, Inc. Xilinx Virtex-6 Family Overview, January 2010.

http://en.wikipedia.org/wiki/File:ComputerMemoryHierarchy.svg
http://en.wikipedia.org/wiki/File:ComputerMemoryHierarchy.svg
http://en.wikipedia.org/wiki/File:Logic_block2.svg
http://en.wikipedia.org/wiki/File:Logic_block2.svg
http://en.wikipedia.org/wiki/File:Switch_box.svg
http://en.wikipedia.org/wiki/File:Switch_box.svg

	List of Figures
	List of Tables
	Abstract
	Introduction
	Overview
	Power Systems
	Sparse Linear Algebra
	Commodity Architectures
	Field Programmable Gate Arrays

	Sparse Gaussian Elimination and LU Hardware
	Gaussian Elimination
	Left-looking LU Decomposition
	Sparse Gaussian Elimination
	LU Hardware

	Multifrontal Methods
	Elimination Tree
	Basic Multifrontal Technique
	Performance Implications of Multifrontal Methods

	Benchmark Matrices
	Power System Matrices
	Comparison Matrices

	Performance Data and Analysis
	Comparison of Methods
	Multifrontal vs. Straightforward
	Merge Performance
	Cache Performance

	Conclusion
	Bibliography

