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Abstract 
A New Spectral Framework for Crystal Plasticity Modeling of Cubic and Hexagonal 

Polycrystalline Metals 
Marko Knezevic 

Surya R. Kalidindi, PhD 
  

 
 

Crystal plasticity physics-based constitutive theories are used in understanding and 

predicting the evolution of the underlying microstructure and the concomitant anisotropic 

stress-strain response in polycrystalline metals subjected to finite plastic strains. A new 

scheme for efficient crystal plasticity computations for both cubic and hexagonal 

polycrystalline metals subjected to arbitrary deformation modes has been developed in 

this thesis. This new computational scheme involves building material databases 

comprised of spectral coefficients. These spectral coefficients are computed using 

discrete Fourier transforms (DFTs) and allow for compact representation and fast 

retrieval of crystal plasticity solutions for a crystal of any orientation subjected to any 

deformation mode. The novel approach is able to speed up the conventional crystal 

plasticity computations by two orders of magnitude. Furthermore, mathematical 

procedures for delineation of property closures that identify the complete set of 

theoretically feasible combinations of macroscale effective properties has been developed 

for a broad set of mechanical properties.  Subsequently, these constructs were used in 

microstructure design for identifying an optimal microstructure for selected performance 

criteria. And finally, hybrid processing recipes that transform a given initial 

microstructure into a member of the set of optimal microstructures that exhibit superior 

properties or performance characteristics have been described. Insights and tremendous 



 

 

xv

potential of these novel materials knowledge systems are discussed and demonstrated 

through specific case-studies.  

The anisotropic stress-strain response measured in simple compression and simple 

tension tests in different sample directions on an annealed, strongly textured, AZ31 sheet 

has been studied. New insights into the mechanical response of this material were 

obtained by correlating the changes in the measured strain-hardening rates in the different 

experiments to the corresponding changes in the microstructure evolution are provided. 

Based on the experimental observations, a hypothesis is postulated for explaining the 

different morphologies of the extension and contraction twins, and the apparent 

tension/compression asymmetry exhibited by this alloy. The main elements of the 

hypothesis are then critically evaluated using finite element simulations of stress fields in 

various matrix-twin configurations subjected to a range of loading conditions.  
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CHAPTER 1: INTRODUCTION 

Materials science and engineering is an interdisciplinary field connecting 

structure, processing, and properties of matter and using them in various applications of 

science and engineering. The development of new materials has defined the evolutionary 

stages in the progression of our society (from the Stone Age to the Bronze Age to 

metallurgy from where modern materials science has evolved). There is constant demand 

for high performance specialty materials. Often, multiple property objectives are required 

along with rigorous treatment of material anisotropy. In recent years, the discipline of 

materials science has witnessed the emergence of a new paradigm where suitable 

processing routes are identified to produce microstructures with desired target properties. 

It is expected that in this new era, extensive computer simulations of various physical 

phenomena in materials science over a vast range of time and length scales will aid 

development of new materials by reducing the number of trials in traditional trial-and-

error experimentation. The present thesis is a contribution in this direction.  

 

1.1. Crystal Plasticity 

One of the most widely used processes in manufacture of various metallic 

components is plastic deformation. The properties of a product depend significantly on 

the changes in the underlying microstructure details (e.g. distribution of grain 

orientations) in the material during deformation. These changes of the microstructure 

(e.g. rotation of grains towards preferred orientations) can be controlled. In order to 

optimize the properties of the final manufactured product, robust and reliable predictive 

simulation tools are highly desirable. Crystal plasticity theories are used extensively [2-
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11] in understanding and predicting the evolution of the underlying microstructure 

(mainly texture related aspects) and the concomitant anisotropic stress-strain response in 

polycrystalline metals subjected to finite plastic strains. Such physics-based constitutive 

theories are critical for conducting more accurate simulations of various metal 

manufacturing/fabrication processes, since they provide better understanding and 

predictions of the material behavior [12-14]. The main deterrent in the more widespread 

use of these theories (in place of the highly simplified phenomenological isotropic 

plasticity theories typically used) is the fact that the implementation of the crystal 

plasticity theories in a finite element modeling framework demands substantial 

computational resources and highly specialized expertise. 

A number of strategies are being explored currently to speed up the crystal 

plasticity calculations. The most promising of these strategies appear to be those that seek 

efficient spectral representations combined with a database approach that stores the main 

characteristics of the crystal plasticity solutions. Li et al. [15] and Kalidindi and Duvvuru 

[16] have demonstrated the viability of the Bunge-Esling approach [17,18] using 

generalized spherical harmonics (GSH) for texture evolution. In this approach, the 

important details of texture evolution were captured in a database of streamlines for a 

selected deformation process. A process plane concept, based on proper orthogonal 

decomposition in Rodrigues-Frank space [19] has been presented by Sundararaghavan 

and Zabaras [20], again for selected deformation modes. Both the streamline approach 

and the process plane approach have not yet been successfully generalized for arbitrary 

deformation modes. Moreover, these models are based on conservation principles in the 
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orientation space that do not presently resolve the differences in the strain hardening 

responses of differently oriented crystals.  

In this work, a new scheme for efficient crystal plasticity computations for 

arbitrary deformation modes is developed. This new computational scheme involves 

building material databases comprised of spectral coefficients. These spectral coefficients 

are computed using discrete Fourier transforms (DFTs) and allow for compact 

representation and fast retrieval of crystal plasticity solutions for a crystal of any 

orientation subjected to any deformation mode. The novel approach is able to speed up 

the conventional crystal plasticity computations of cubic and hexagonal polycrystals by 

two orders of magnitude. It is anticipated that the computational speed gained provides 

significant incentive for incorporating the novel approach into finite element simulation 

tools of bulk deformation processing and studying microstructure evolution during 

complex deformation processes. The details of this new approach are described in this 

thesis and validated through several case studies.  

 

1.2. Materials Design 

The concept of materials design has been an emerging research topic in materials 

science and engineering. The drive to design materials is driven by several factors: better 

materials with improved performance, better components in advanced technology, and a 

shortened development cycle from concept to implementation. The predominant design 

methodology in current engineering practice is largely focused on the optimization of 

relevant geometric parameters using robust numerical simulations tools. Material 

selection is often restricted to search of a relatively small database [e.g. 21], with no real 
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concept of microstructure as a design variable. These databases are generally compiled 

from experimentally measured values in available materials. It should be recognized that 

only a very small subset of all feasible microstructures in a given material system have 

been produced and characterized to date. Furthermore, for ease of analysis, material 

properties are often assumed to be isotropic. However, the majority of commercially 

available structural metals exhibit anisotropic mechanical properties as a natural 

consequence of anisotropy at the single crystal level, combined with complex changes in 

microstructure as a consequence of the thermo-mechanical loading histories experienced 

during their manufacturing process. Thus, the initial challenge that must be tackled is 

identification of the complete space of feasible anisotropic properties and related 

polycrystalline microstructures. The subsequent goal is to link processing routes with 

resulting material structure. Hence, a systematic approach to materials design is required 

which incorporates the full anisotropy of the underlying constituents, and provides not 

only a method for identifying microstructures that will provide optimal performance, but 

also a guide to the designer as to how  to arrive at such structures.  

In this context, a number of alternative approaches have been proposed for 

materials-by-design in recent years. The systems approach, pioneered by Olson [22,23], 

embodies the integration of processing-structure-property relations using a set of multi-

scale, hierarchical models (spanning thermodynamics, molecular dynamics, 

micromechanics, solidification). The system approach has not yet incorporated the 

anisotropy of the properties of interest in its considerations, and does not address whether 

the solutions obtained correspond to local or global optima. Some of the remarkable 

successes of this approach have included the development of high-strength, high-
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toughness, steels for advanced applications in gears and bearings [24-27]. Another 

approach, called Topology Optimization, arrives at new microstructures through clever 

spatial distribution of material phases, and aims to optimize a prescribed objective 

function formulated in terms of desired macroscale properties. This methodology has 

been successful in designing microstructures that are theoretically predicted to exhibit 

certain extremal macroscale properties [28-35], including materials with negative thermal 

expansion coefficients. Topology optimization has thus far been largely restricted to 

multi-phase material systems with either isotropic constituents and anisotropic 

macroscale properties, or anisotropic constituents and isotropic macroscale properties. 

This methodology has not yet addressed rigorously the design of processing recipes to 

produce the optimal microstructures identified to possess the extremal properties. 

Furthermore, the methodology does not fully address the issue of local vs global optimal 

solutions.  

In recent years, Adams, Kalidindi, and Garmestani  have successfully formulated 

microstructure-property-processing linkages in a spectral framework called 

Microstructure Sensitive Design (MSD) [36-39] using a statistical description of the 

microstructure. Salient features of MSD include: (i) construction of a Microstructure Hull 

that includes the complete set of theoretically feasible statistical distributions that 

quantitatively describe the relevant details of the microstructure (at different levels of 

detail, classified as ‘n-point’ statistics [40]), and (ii) delineation of Property Closures that 

identify the complete set of theoretically feasible combinations of macroscale effective 

properties of interest in a given application, for a selected homogenization theory. The 

primary advantages of the MSD approach lie in its (a) consideration of anisotropy of the 
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properties at the local length scales, (b) exploration of the complete set of relevant 

microstructures (captured in the microstructure hull and property closures) leading to 

global optima, and (c) invertibility of the microstructure-property-processing 

relationships (due to the use of spectral methods in representing these linkages). 

Successful implementation of the framework facilitates a rigorous consideration of 

microstructure as a continuous design variable in the design and optimization of multi-

functional engineering components.  

The spectral microstructure-property-processing linkages of MSD were 

represented using generalized spherical harmonics (GSH). Although the GSH 

representation can be customized to automatically reflect the various symmetries 

associated with the selection of the crystal and sample reference frames, the main 

difficulty with their usage lies in the fact that they are computationally expensive. In this 

thesis, it will be demonstrated that the use of Discrete Fourier Transforms (DFTs) in 

place of the GSH representation leads to tremendous computational efficiency. 

Furthermore, the MSD framework will be extended using rigorous mathematical 

procedures for delineating property closures for broader set of mechanical properties and 

texture evolution networks for deformation processing. Next two sections describe these 

two goals in more details. 

 

1.2.1. Property Closures 

Property closures delineate the complete set of theoretically feasible macroscale 

(homogenized) anisotropic property combinations in a given material system, and are of 

tremendous interest in optimizing the performance of engineering components. 
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Historically, this problem has been referred to as the G-closure problem by the applied 

mathematics community [41-44]. To date, G-closures have been obtained only for a 

limited set of two-dimensional microstructures comprised of isotropic phases and have 

been largely focused on properties such as effective conductivity and elastic stiffness. In 

recent years, MSD [36,37,45,46] was demonstrated to provide approximations to the G-

closures for a number of combinations of the elastic properties and yield properties of 

polycrystalline materials [47-49] and two-phase composites [50,51].  

All of the previous reports in literature on delineation of property closures of 

polycrystalline metals have focused on a class of properties that treat the microstructure 

as being static. Moreover, orthorhombic sample symmetry was always imposed on all 

textures considered in arriving at the property closures. In the present work, closures 

were obtained without any restrictions of the sample symmetry. Furthermore, in 

consideration of a broader class of plastic properties of metals, we immediately encounter 

two important features: (i) strain hardening, and (ii) concurrent evolution of 

microstructure due to plastic strain. Prime examples of such properties include the 

uniform ductility and the ultimate tensile strength. Because of their influence on the 

toughness exhibited by the material, these properties play an important role in materials 

selection for critical structural components. Since these properties directly influence the 

formability (and thereby the success of certain deformation processing operations), they 

are also of tremendous interest for deformation processing of metals. In order to 

successfully delineate a broader class of plastic property closures, the previous 

framework [47-49] needed to be extended to allow for the evolution of the associated 

local state variables. An important goal of this work is to use spectral representation of 
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microstructure-property-processing relationships to produce for the first time a new class 

of property closures that address plastic properties at finite strains (requiring explicit 

consideration of strain hardening and texture evolution). 

 

1.2.2. Process Design 

Historically, much of the development of novel processing routes for materials 

with desired combinations of properties has resulted from clever intuition, combined with 

empiricism and a healthy dose of serendipity. Examples of rigorous design of a 

processing recipe to meet a set of designer-specified properties are rare in the literature. 

The availability of a large number of manufacturing options to control and modify the 

internal material structure (i.e. microstructure) raises the exciting possibility of 

combining known manufacturing options in arbitrary sequences (i.e. hybrid processing) 

to develop new materials with as yet unrealized (but desired) combinations of macroscale 

properties. However, because of the very large number of available manufacturing 

options and the enormous space of potential microstructures, successful design of hybrid 

processing routes critically needs a computationally efficient approach.  

In this thesis, the texture evolution networks for deformation processing is 

projected into the property closure and used to identify processing paths to textures with 

optimal performances. The processing options selected for this work include deformation 

processing at low homologous temperatures under all possible deformation modes, while 

allowing for arbitrary sample rotations.  
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1.3. Material Systems for Modeling 

The primary focus in this thesis is on the crystal lattice orientation as the primary 

descriptor of the local state in polycrystalline metallic systems. OFHC copper and Al-

5754-O are examples of high stacking fault energy, face-centered cubic (fcc) metals that 

will be used in developing and evaluating the analytical framework. These metals were 

selected because the Taylor-type crystal plasticity models have been extensively 

validated on them. The interest in properties and process modeling of materials with 

hexagonal structure has increased dramatically in the last decade with the emergence of 

titanium alloys as candidates for high specific-strength and high temperature applications 

in aerospace and transportation systems. Ti will be used in some case studies involving 

materials with hexagonal structure. Hence, both cubic and hexagonal polycrystalline 

metallic systems are considered for the development of this analytical framework. 

 

1.4. Plastic Deformation Mechanisms in Mg alloy 

Magnesium alloys are being increasingly evaluated for applications in the 

automotive components due to their outstanding properties such as low density, high 

specific strength, castability, machinability at high speeds, and weldability under 

controlled atmospheres. The automobile industry is already utilizing cast magnesium 

alloys [52]. Although wrought magnesium alloys are expected to possess better 

mechanical properties, the main hurdle has been the limited room temperature formability 

exhibited by these alloys. Enhancing the formability of Mg alloys requires a better 

understanding of the prevailing mechanisms of deformation in these alloys to large 

plastic strains.  
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Pure magnesium has a hexagonal close-packed (HCP) structure with a c/a ratio of 

1.624 [53], which is close to the ideal ratio of 1.633. Consequently, basal<a> slip systems 

are the easy glide systems in Mg [54]. Although prism<a> and pyramidal<a> slip 

systems also operate in Mg, they require higher driving forces [55-57]. All of the slip 

systems mentioned above provide only a total of four independent slip systems. In 

particular, none of these are capable of accommodating any plastic strain along the c 

direction. The activation of 2nd pyramidal<c+a> slip systems is generally assumed to 

provide the needed additional degree of freedom, and has been confirmed experimentally 

[55,58-63]. Alternatively, deformation twinning can also provide the needed additional 

degree of freedom for isochoric plastic deformation. Two common twin modes have been 

observed in magnesium. These are classified as { } 11102110
 

extension twins and 

{ } 21101110  contraction twins
 

[53], because they result in the extension and the 

contraction of the crystal along the c direction, respectively. The extension twins are 

thick and are readily observed [64,65],  while the contraction twins are very thin and 

harder to detect [66]. The physical origin of the different morphologies of the extension 

and the contraction twins are not yet fully understood. Interestingly, the extension twins 

are also found within the contraction twin lamella, leading to a “double-twinning” 

phenomena [62-64,66-72]. Since deformation twinning in Mg is often easier than 

pyramidal<c+a> slip, it represents a dominant mechanism of plastic deformation in 

various magnesium alloys. The geometries of the plastic deformation mechanisms in Mg 

are illustrated in the Fig. 1. 
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insights into the mechanical response of this material by correlating the changes in the 

measured strain-hardening rates in the different experiments to the corresponding 

changes in the microstructure evolution are provided. Based on the experimental 

observations, a hypothesis is postulated for explaining the different morphologies of the 

extension and contraction twins, and the apparent tension/compression asymmetry 

exhibited by this alloy. The main elements of the hypothesis are then critically evaluated 

using finite element simulations of stress fields in various matrix-twin configurations 

subjected to a range of loading conditions.  

 

1.5. Objective 

In summary, the objective of this thesis is to develop suitable materials 

knowledge databases for studying effects of complex deformation processes on texture 

and the effects of texture on a broad set of mechanical properties. An advantage of these 

knowledge systems (spectral databases) is that they allow extremely fast explorations of 

these linkages. This feature is of paramount importance in materials modelling and 

design. The crystallographic texture is the only microstructural parameter that is 

considered. Specifically, the objectives are:  

(i) Develop an efficient crystal plasticity framework using discrete Fourier 

transforms for both cubic and hexagonal metals that will capture texture evolution and 

the concomitant anisotropic stress-strain response during any general deformation 

process.  

(ii) Develop rigorous mathematical procedures for identifying a complete set of 

theoretically feasible anisotropic property combinations for a broad set of mechanical 
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properties. Here, the focus is on building material knowledge databases of property 

closures of elastic properties and plastic properties involving combinations of yield 

strength, ultimate tensile strength, uniform ductility, and the Lankford parameter R. A 

number of examples of property closures will be presented and discussed. Subsequent 

goal is to use these developments into microstructure design and identify an optimal 

microstructure for selected performance criterions. And finally, we aim to identify hybrid 

processing recipes to transform a given initial microstructure into a member of the set of 

optimal microstructures that exhibit superior properties or performance characteristics. 

Insights and tremendous potential of this new approach will be discussed and 

demonstrated through specific case-studies.  

(iii) Establish the fundamental mechanisms of plastic deformation in AZ31 Mg 

alloy and obtain the information and understanding needed for the development of 

reliable crystal plasticity models for Mg alloys. Insights into the mechanical response of 

this material will be obtained by correlating the changes in the measured strain-hardening 

rates in the different experiments to the corresponding changes in the microstructure 

evolution. A hypothesis for explaining the different morphologies of the extension and 

contraction twins, and the apparent tension/compression asymmetry exhibited by this 

alloy will be postulated and validated. 

Chapter 2 will provide the necessary background, and clearly identifies the work 

done by previous graduate students from our research group on which the present work is 

built upon. Chapter 3 covers modeling part of the research work done in this thesis. 

Chapter 4 covers experimental part of the research work done in this thesis. Chapter 5 

will present conclusions and suggestions for future work.  
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CHAPTER 2: BACKGROUND 

2.1. Crystallographic Texture 

A crystal is characterized by repeating lattice patterns extending in all three 

spatial dimensions. The constituent crystal in a polycrystalline metal is referred to as 

grain. The orientation of the grain can be defined relative to a coordinate frame. This 

frame is usually the sample coordinate frame in which properties are to be specified. A 

distribution of all orientations with respect to the sample frame in a polycrystalline 

aggregate is referred to as crystallographic texture. Crystallographic texture is widely 

recognized as an important detail of the microstructure in polycrystalline materials that is 

known to have a strong influence on their macroscale anisotropic elastic-plastic 

properties [11,17,36,46,47,78-80]. The anisotropy of material properties is associated 

with a non-random distribution of the crystal orientations. Any non-random distribution 

of these crystal orientations is a consequence of the complex thermo-mechanical loading 

history experienced in their manufacture. There are a lot of examples of materials 

engineered to possess specific textures, for example [13,81,82].  

Any crystal orientation, g , may be described using any one of the established 

representations [19,83,84], including Euler angles, angle-axis pairs, Rodriguez vectors, 

quaternions, or orthogonal matrices. A common feature of these different, but equivalent, 

representations is that all of them require specification of three independent parameters to 

describe a given crystal orientation. Consequently, the orientation space of interest can 

always be reduced to a three-dimensional space. 

In the present thesis, orientation is described using a set of three Bunge-Euler 

angles [84], i.e. ( )21 ,, ϕϕ Φ=g . The main advantage of the Bunge-Euler space is that all 
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functions of interest (ODF, structure-property relationships) can be defined in such a way 

that they are inherently periodic. This is mainly because this space is defined by rotation 

angles that make their appearance in structure-property relationships of interest only in 

the form of integer powers of sines and cosines of the rotation angles. This important 

attribute of the Bunge-Euler space has been central to the successful development and 

application of spectral representations in this space. A transformation matrix that 

transforms a crystal frame to the sample frame using Bunge-Euler angles is constructed 

as: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+−+

−−−
=

cosΦsinΦcossinΦ sin
sinΦ coscosΦcos cossin sincosΦ sin coscos sin

sinΦ sincosΦ cos sinsin coscosΦ sin sincos cos

 22

1 21212121

121212121

ϕϕ
ϕϕϕϕϕϕϕϕϕ
ϕϕϕϕϕϕϕϕϕ

g .    (2. 1) 

 
 
The Bunge-Euler space should ideally be defined as 

, as all functions of interest are naturally periodic 

in this space in each of the three dimensions. However, because of crystal symmetry there 

are several redundancies within this space that can be exploited in the computations. For 

crystals of any symmetry, the definitions of the Bunge-Euler angles require that locations 

 and  correspond to the exact same crystal lattice 

orientation. The space after this reduction is depicted in the Fig. 2. Furthermore, 

consideration of eight of the lattice symmetry operations associated with a cubic crystal 

lattice (e.g. FCC, BCC) require that the locations corresponding to 

, , , 

,  , , and  
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also correspond to the exact same crystal lattice orientation defined by .  These 

equivalencies indicate that the natural periodic unit cell for all functions defined for cubic 

crystals in the Bunge-Euler space can be defined as 

.  

As a result of all of the considerations of symmetry for cubic crystals described 

above, it can be easily seen that we can focus our attention on the space defined by 

 

      .                       (2.2) 

 

The shaded area in the Fig. 2 (b) represents the FZ3. It is important to note here that if the 

values of any desired function are obtained on a uniform grid in , then it is fairly 

simple to assign values on a uniform grid over the periodic unit cell

  using the relationships mentioned earlier. The 

space defined here as  is actually three times the  defined in conventional texture 

analyses for cubic-triclinic (i.e. cubic symmetry in crystal reference frame and triclinic 

symmetry in the sample reference frame) functions. Note that only eight of the symmetry 

operators are used in defining . The FZ can be constructed if additional 3-fold 

symmetry operations belonging to the 111  axes are applied: 
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FZ represents the complete set of physically distinct orientations that can occur in the 

sample, and is depicted in the Fig. 2 (a). The main reason for the preferred use of  

instead of  is that a uniform grid in  does not map to uniform grids in the 

remainder of . At this point, it may be appropriate to reflect importance of the 

uniform grid. As it will be apparent shortly, in this thesis, discrete Fourier transforms 

(DFTs) can be used for the representation of texture and properties in place of the GSH 

(generalized spherical harmonics) being used currently. A feature of DFTs is that they 

provide the maximum computational efficiency if a function is on a uniform grid. In 

summary, the values of all desired functions established on a uniform grid in the 3FZ

space, can easily be expanded to the periodic unit cell 

 using the relationships mentioned earlier, and 

then used to compute DFTs. Similarly, symmetry operations associated with hexagonal 

crystal lattice (hcp) can reduce the Bunge-Euler space to FZ by recognizing following 

twelve equivalent orientations: ( )21 ,, φΦφ , ( )3,, 21 πφΦφ + , ( )32,, 21 πφΦφ + , 

( )πφΦφ +21 ,, , ( )34,, 21 πφΦφ + , ( )35,, 21 πφΦφ + , ( )21 3,, φπΦππφ −−+ , 

( )21 32,, φπΦππφ −−+ , ( )21 ,, φπΦππφ −−+ , ( )21 34,, φπΦππφ −−+ , 

( )21 35,, φπΦππφ −−+ , ( )21 2,, φπΦππφ −−+ . The periodic unit cell for all functions 

defined for hexagonal crystals in the Bunge-Euler space can be defined as 

[ ) [ ) [ )( )3,0,2,0,2,0 21 πφπΦπφ ∈∈∈ . Fortunately, all transactions and reflections 

associated with hexagonal crystal symmetry preserve the regular grid required by DFTs. 

The hexagonal FZ is shown as shaded area in the Fig. 2 (c) and is defined as: 
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( ) .
3
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2
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≤≤≤≤≤≤= φφφφ        (2. 4) 

 

 

Figure 2 Bunge-Euler space containing (a) fundamental zone of cubic crystals (FZ), (b) three-times 

fundamental zone for cubic crystals (FZ3), and (c) fundamental zone for hexagonal crystals (FZ). 

 
 
Furthermore, in some of the case studies cubic-orthorhombic textures will be used. The 

orthorhombic description here refers to the symmetry resulting from processing history 

(many of the typical processing operations used on metals such as rolling produce this 

symmetry). 

The crystallographic texture or the Orientation Distribution Function (ODF) is 

denoted as f(g), and reflects the normalized probability density associated with the 

occurrence of the crystallographic orientation g in the sample. ODF is formally defined as  

 

       ( )dggf
V

dVg = ,         ( ) 01.dggf
FZ

=∫ ,                   (2.5) 

 

where V denotes the total sample volume and dVg is the sum of all sub-volume elements 

in the sample that are associated with a lattice orientation that lies within an incremental 

invariant measure, dg, of the orientation of interest, g. This statistical representation of 
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the material allows the derivation of relations between the microstructure of a material 

and the bounds on the properties, as will be shown in the following chapters.  

 

2.2. Orientation Imaging Microscopy 

Among several methods, such as X-ray or neutron diffraction, the orientation is 

best revealed using electron backscatter diffraction (EBSD) in the scanning electron 

microscope (SEM). This section outlines Orientation Imaging Microscopy (OIM) as an 

experimental technique that enables an investigator to efficiently obtain a great deal of 

information about the orientation of crystals in a polycrystalline specimen. The OIM 

entails collection and automatic determination (i.e. indexing) of the orientation of the 

diffracting lattice from the EBSD patterns (also called Kikuchi diffraction patterns). OIM 

has transformed the labor intensive process of manually indexing EBSD patterns to an 

efficient systematic tool that facilitates rapid and automatic indexing. The options offered 

by the OIM tool offer tremendous help in understanding the relationships between 

processing, microstructure and properties in terms of better understanding of texture 

evolution and its influence on properties.  

The OIM systems are integrated with a SEM to utilize its electron gun, vacuum 

system, optical column, etc, as shown in Fig. 3. A stationary beam is focused on a tilted 

sample mounted in a sample holder. The sample is tilted to approximately 70o ensuring 

sufficient number of diffracted electrons to escape towards the detector. A part of the 

EBSD system in the chamber of an SEM is a phosphor screen whose purpose is to 

capture the pattern and transmit it to the CCD camera. In order to improve the diffraction 

pattern detection, the processing/camera control unit performs operations such as 
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dimensional section. An example of (001) pole of an arbitrarily oriented cube is shown in 

the Fig. 5 (b). It is easily seen that the pole figures show the orientation of selected 

crystallographic planes with respect to the sample axis. An inverse pole figure shows the 

orientation of a given sample axis with respect to the crystal coordinate frame. A standard 

inverse pole figure triangle of an arbitrary orientation is shown in the Fig. 5 (c). 

Orientations can also be shown in an orientation space. Texture is most commonly 

represented as a series of sections through Euler space, as in the Fig. 5. (d). 

 

 

Figure 5 Some common ways of visualizing crystal orientations: a) an orientation imaging map of a 

polycrystalline sample b) a pole figure c) an inverse pole figure and d) a series of sections through Euler 

space.  

 

2.3. Crystal Plasticity Theories 

The rigid-viscoplastic crystal plasticity model [2] used in this work can be 

described by the following set of equations: 

∑=
α

αPD αγ& ,             ( )ααααα 50 mnnmP ⊗+⊗= . ,                                              (2.6) 

)sgn(
/1

α
α

α
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In Eqs. (2.6) and (2.7), D  is the applied isochoric stretching tensor, αm and αn  are the 

unit vectors identifying the slip direction and the slip plane normal, respectively, for slip 

system α . For the fcc crystals studied in this thesis, the family of twelve { } 011111  slip 

systems were considered as potential slip systems. The deviatoric component of the 

Cauchy stress tensor in the crystal, denoted byσ′ , can be evaluated by solving Eqs. (2.6) 

and (2.7). ατ , αγ& , and αs  represent the resolved shear stress, the shearing rate, and the 

slip resistance, respectively, on slip system α . The reference value of the shearing rate, 

oγ& , is taken here as 0.001 sec-1 for quasi-static loading conditions. The strain rate 

sensitivity parameter denoted by m is taken to be 0.01, which is in agreement with 

measurements on most single phase fcc metals at low homologous temperatures. The 

lattice spin tensor *W  (and the related lattice rotation tensor, *R ) in the crystalline 

region is given by  

 

 
pappT** WWRRW* −== & ,   ( )∑ ⊗−⊗=

α

αγ ααααp mnnmW &5.0 ,          (2.8) 

 

where appW  is the applied spin tensor, and pW  is the plastic spin tensor. 

In this study, simplified saturation type hardening law has been adopted, which 

assumes that the slip resistances of all slip systems at any given location in a crystalline 

region exhibit the same slip resistance. They are, however, allowed to vary from one 

location to another depending on the local crystal orientation and the deformation history. 

This simplified slip hardening law is expressed as   



 

 

24

     ∑⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

β

β
α

α γ&&

a

s
o s

shs 1 ,                                                                       (2.9) 

where so sh ,  and a  denote the slip hardening parameters. The values of the slip 

hardening parameters were taken here to correspond to the values established previously 

[5] by calibrating the Taylor-type model to experimental measurements  in OFHC copper 

(see Table 1). The slip hardening parameters for annealed Al 5754-O have been 

established here by calibrating the Taylor model predictions to experimental 

measurements using procedures described in the earlier paper [5] (see Table 1). Note that 

these hardening parameters are expected to be strongly influenced by composition (e.g. 

purity levels) and the grain size distribution in the metal. 

 

Table 1 Summary of estimated hardening parameters for selected FCC metals. 

 [ ]MPaso  [ ]MPass  [ ]MPaho  a  

OFHC 16 148 180 2.25 

Al 5754-O 17 130 745 1.81 

 

α -Ti is a metal with a hexagonal structure of interest in this work. The families 

of three basal >< 1102}0001{ , three prismatic >< 1102}0110{ , and twelve pyramidal 

>< 3211}1110{  slip systems were considered. In addition to slip, six compressive 

>< 0111}2110{  and six tensile >< 3211}2211{ twin systems could be operative. 

When deformation twinning is to be included in addition to slip, the crystal plasticity 

models get substantially more complicated because of the creation of a very large number 

of new grains as a consequence of the deformation twinning. Amongst a number of 
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different approaches, a grain fragmentation model provided the best results when 

compared against experimental evidence [85]. In this model, twinning was considered as 

a pseudo-slip mechanism until the twin volume fraction in the grain reached a pre-

determined saturation value (determined from experiments to be 0.4 for α -Ti). At that 

point, the grain was fragmented into a matrix grain and several offspring grains 

corresponding to each of the dominant twin systems. The newly formed grains were 

allowed to independently undergo further slip and concomitant lattice rotation, but further 

twinning was prohibited. 

For the hexagonal α -Ti polycrystals deforming by slip and twinning, the 

hardening laws had to be modified significantly from that given in Eq. (2.9): 
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In Eqs. (2.10)-(2.12) pyr
s

bas
s

pri
s hhh ,, , pyr

so
bas
so

pri
so sss ,, , C, prs and b denote the material 

hardening parameters. The values of this hardening parameters were taken here to 

correspond to the values established previously by calibrating the Taylor-type model to 

experimental measurements [85] (see Table 2).  
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Table 2 Summary of estimated hardening parameters for α -Ti.  

pri
os  

bas
os  pyr

os  tws  baspri
soh −  pyr

soh  

30MPa 150MPa 120MPa 125MPa 15MPa 300MPa

pri
sos  pyrbas

sos −  prs  C  b   

100MPa 300MPa 100MPa 25 2  

 

Note that in Eq. (2.10) it is assumed that all the different slip systems belonging to one 

family (e.g. pyramidal, basal or prismatic) in one crystal possess the same value of slip 

resistance. Note also that in this model, the twin resistance is maintained constant up to 

saturation of twin volume fraction. These decisions were made based on the experimental 

observations in titanium [77,85]. The physical interpretations of these parameters and 

their influence on specific aspects of the stress-strain curves were established in previous 

work. ∑
β

βf denotes the total twin volume fraction in the grain. The numerical 

procedures for the integration of this constitutive model have been described in Refs. 

[5,85].  

The most widely used approach to obtain the response of a polycrystal from the 

response of the individual grains is to use the extended Taylor's assumption of iso-

deformation gradient in all of the crystals comprising the polycrystal. This model has 

enjoyed remarkable successes in predicting both the anisotropic stress-strain response and 

the evolution of the underlying texture in single-phase medium to high stacking fault 

energy cubic metals subjected to finite plastic strains in a broad range of deformation 

paths [3,4,6-9,11].  
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2.4. Property Bounds 

As explained in the previous sections, in this thesis, the microstructures of the 

polycrystalline metals are described using distributions of the lattice orientation g, which 

is an important microstructural parameter influencing the elastic and plastic properties of 

polycrystalline materials. The ODF provides information regarding only the volume 

fractions of the various crystallographic orientations present in the material. Therefore, it 

is not possible to predict the exact properties associated with a given microstructure. 

However, these distributions can be used to obtain rigorous lower and upper bounds for 

the elastic and plastic yielding properties using first-order homogenization theories. This 

section defines the lower and upper bounds for all the components of the elastic stiffness, 

which allow a complete description of the elastic behavior of FCC and HCP 

polycrystalline metals, and the models used to compute the six plastic parameters 

required to describe the Hill’s yield surface, which is generally used to define the plastic 

yielding properties of metals. 

The elementary bounds on effective elastic stiffness parameters, *
ijklC , can be 

expressed as [47,86-88] (no summation implied on repeated indices in the following set 

of equations) 

 

                           ( ) ijij
*
ijijijij

- C   C  S ≤≤1 ,                                         (2.13) 

( ) ( ) j,  i,    whenΔΔ)S,C(CΔΔ)S,C( ji iijj
-

iijj
*
iijjji iijj

-
iijj ≠+≤≤− 11 minmax        (2.14)   

       ( ) iiii-
iiiii S-C with     Δ 1= .                       (2.15) 
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In Eqs. (2.13) - (2.15), the bars on top of a field quantity denote its volume averaged 

value, and C are S are the local fourth-rank elastic stiffness and elastic compliance 

tensors, respectively.  

The effective plastic yield properties are bounded rigorously on the upper side by 

the Taylor-type model [5,11], and approximately on the lower side by the Sachs model 

[89]. Taylor model has been described in the previous section. The Sachs’s model 

assumes that the same stress state is applied in all constituent grains in a polycrystal 

[90,91]. In this model, it is assumed that a grain undergoes plastic deformation as soon as 

the resolve share stress applied on one of its slip systems reaches the critical resolved 

shear stress (CRSS); only grains that are oriented along symmetry lines would have more 

than one active system.  

 

2.5. Spectral Representation of ODF Using GSH 

Fourier or spectral analysis is one of the most valuable techniques in 

mathematical analysis in general. It essentially represents an arbitrary function as a 

combination of weighted harmonic functions. The weights are referred as Fourier 

coefficients while harmonic functions belong to a class of special functions. Fourier or 

spectral analysis is a very useful data processing technique used in various engineering 

and science fields to dramatically compress the amount of data involved. Typical 

examples include compression of a bitmap image by 95% or more by using the ‘spectral’ 

jpeg format [92]. Another example involves the commonly used MP3 format for audio 

compression [93]. The spectral approach is fundamental to the ability to efficiently store, 



 

 

29

analyze and manipulate microstructure databases (for example when developing property 

or process relations, or inverting such relations during material design).  

 The representation of the ODF as a continuous function offers tremendous 

advantages in many aspects of texture analyses (e.g. visualization, comparisons) as well 

as in the use of homogenization theories for the estimation of the overall macroscopic 

properties of the polycrystalline sample. Although there currently exist many different 

approaches to represent the ODF as a continuous function, spectral representations using 

the generalized spherical harmonics (GSH) in the Bunge-Euler space have been found to 

be particularly convenient in many applications [47,49,94,95].  

The ODF can be expressed efficiently in a Fourier series using generalized 

spherical harmonic (GSH) functions [84,94] as 

 

             ( ) ( )∑ ∑ ∑
∞

= = =

=
0

)M(

1μ

)N(

1ν
   

l

l l       
μν

l
μν

l gTFgf &&& ,                                               (2.16) 

 

where ( )gT μν
l
&&&  denote the symmetrized GSH functions and μν

lF  coefficients represent 

uniquely the ODF. The suitably symmetrized sets of GSH functions used for cubic, 

cubic-orthorhombic, hexagonal, and hexagonal-orthorhombic crystals are denoted as 

( )
      
μn

l gT&& , )(gTl
μν&&& , ( )

      
μn

l gT& , and )(gTl
μν&& , respectively [84]. Eq. (2.16) allows the 

visualization of ODF as a single point in an infinite dimensional Fourier space 

(coordinates given by μν
lF ). The set of all such points, corresponding to the complete set 

of all physically realizable ODFs, is called the texture hull in the MSD framework 
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The main difficulty with using GSH is the fact that they are computationally 

expensive. They are defined as 

 

                                       (2.17) 
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a certain generalizations of the associated Legendre function that are themselves 

computed using a classical Fourier series expansion [94]. In this thesis, it will be 

demonstrate that the use of Discrete Fourier Transforms (DFTs) in the representation of 

the ODF leads to tremendous computational efficiency.  

 

2.6. First Order Homogenization Using GSH 

The ODF described above constitutes a first-order description of the 

microstructure (also referred to as 1-point statistics). Using this microstructure 

description, only the bounds of the effective elastic and plastic properties can be 

evaluated. Higher order descriptions, called n-point spatial correlation function, are also 

possible [80,98,99].  
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The volume averages needed in the computation of the bounds described above 

can be evaluated as follows. For a macroscopic tensorial property of interest, P, its 

dependence on the local crystal orientation is denoted by P(g)  and expressed in Fourier 

series as [94] 

 

( ) ( )∑ ∑ ∑
= = =

=
l

l

M(l)

μ

N(l)

ν

      
μν

l
μν

l gT P  gP
~

0 1 1

&&& ,        (2.19) 

 

where μν
lP are referred to as the property coefficients, and it is explicitly noted that this 

Fourier representation extends to only a finite number of terms [47,94]. For example, if 

we consider cubic orthorhombic textures and elastic properties there exist only four non-

zero terms. This is an important advantage of the GSH representation. The values of the 

property coefficients relevant to the elastic-plastic properties of interest in both FCC and 

HCP metals with cubic-orthorhombic textures have been presented in a prior study [47]. 

Using the orthonormality of the Fourier bases, the volume averaged value is then 

computed as 
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M(l)

μ

N(l)

ν
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.                 (2.20) 

 

The concepts described above facilitated delineation of the first-order property 

closures. Following is an example of the mathematical formulation for identifying the 

( )*
1313

*
1111,CC  closure done in prior studies. Let *

1313
~C  denote a specific value of *

1313C  that 
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lies in between its theoretical maximum and minimum values (identified by a 

consideration of all feasible single crystal orientations). The complete set of Fourier 

coefficients, M~ , that can be associated with the selected value of *
1313

~C  can be expressed 

as 

 

          ( ) [ ]{ }101~~ 1
131313131313 ,α,SαCαCHull,FFM *μν

l
μν

l ∈−+=∈= − ,    (2.21) 

 

where Hull denotes the set of all Fourier coefficients that lie on or inside the texture hull 

representing the complete set of physically realizable textures (see Fig. 6). Note that the 

values of μν
lF  influence the values of 13131313  and SC  (see Eq. (2.20)). The maximum and 

minimum values of *
1111C are then established as   

 

( ) { }MFCMax C μν
l

* ~~
1111max1111 ∈=         (2.22) 

( ) ( ){ }MFSMin C μν
l

* ~~
1111

1
min1111 ∈= −         (2.23) 

 

It should be noted above that ( )1111
1−S in Eq. (2.23) denotes the (1,1,1,1) component of the 

inverse of the averaged fourth-rank compliance tensor. ( )( )*
1313max

*
1111

~,~ CC  and ( )( )*
1313min

*
1111

~,~ CC  

constitute two of the points on the first-order closure we seek. By letting *
1313

~C  vary 

systematically between its theoretical maximum and minimum values, we can delineate 

the complete first-order property closure. It should be clear from the above description 

that the mathematical procedures used in the prior work in delineating the first-order 
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closures are quite complex and require substantial computational effort and resources. 

This procedure has thus far only been applied on a set of properties that do not require 

consideration of the strain hardening and texture evolution. Additionally, orthorhombic 

sample symmetry was always imposed in arriving at the property closures.  
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CHAPTER 3: IMPROVED SPECTRAL METHODS FOR CRYSTAL 
PLASTICITY 

 
This chapter describes work done in this Ph.D. thesis by building on the 

background described in the previous chapter. 

 

3.1. Discrete Representation of ODF and Homogenization Using DFTs 

Traditionally the ODF has been represented in terms of generalized spherical 

harmonics, which are theoretically the most compact Fourier representations for various 

homogenization relations described in the last chapter. However, they are 

computationally expensive. An alternative to the use of GSH representations in various 

aspects of texture analyses is developed in this thesis and presented below. These new 

representations utilize discrete Fourier transforms (DFT).  

A major advantage of using Fourier transforms in place of GSH representations is 

that we can compute the transforms using the much more computationally efficient 

algorithms (such as Fast Fourier Transforms or FFTs). The cheap availability of 

computer memory in recent times makes the fact that the representations using Fourier 

transforms are not likely to be as compact as the GSH representations not a significant 

drawback.  

DFTs, or FFTs because of the algorithms used in their computation, are typically 

computed using the function values on a uniform grid [100-104]. Let the three-

dimensional Bunge-Euler space of interest be discretized uniformly into  

bins, and let  enumerate these bins. The DFT representation of the ODF is 

defined as 
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(3.1) 

 

where  denotes the value of the ODF in the bin identified by . In the 

remainder, for simplicity of notation, equations such as Eq. (3.1) will be expressed in a 

condensed notation as 

 

                        .                                                                    (3.2)  

 

 denotes the DFT for the ODF. For given values of the ODF on a uniform grid in the 

Bunge-Euler space, its DFT can be computed as 

 

                                 .                                                                (3.3) 

 

In previous section [47,49], it has been demonstrated that spectral approaches 

(based on GSH basis) can be used effectively to build volume average macroscale 

properties. Here, we show that the same can be computed much more efficiently using 

the DFT representations.   

A common feature of all the first-order homogenization theories is that they require 

computation of the volume averaged values of selected property variables in the 

polycrystalline sample. Let   denote one such variable that depends on the local 
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crystal orientation at location  in the sample. Invoking statistical homogeneity (i.e. 

volume averages are equal to ensemble averages), we can write 

 

 
                                   

(3.4) 

  

where the bar on top of a variable indicates an volume-averaged value. With the intent of 

computing the integral in Eq. (3.4) efficiently by exploiting the orthogonal properties of 

the spectral representations, we need to combine Φsin  with either ( )gf

 

or ( )gP . For 

given values of the ODF and the properties on a uniform grid in the Bunge-Euler space, 

its DFT can be computed as 

 

                                                (3.5) 

  

Using the orthogonal properties of DFTs, it is easy to show that 

 

                      
k

1B

0k
k P~F

B
1P ∑

−

=

=                                                                                           (3.6) 

 

It is also worth noting that the computations in Eq. (3.6) can be simplified a little by 

recognizing that about half of the DFT terms of real functions are complex conjugates of 

the other half (i.e.  , and ).  
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The number of non-zero DFT terms varied for the different stiffness components, 

and were in the range of 9 to 61. It should be noted that the maximum number of Fourier 

coefficients needed for the same variables in GSH representations is 9. It is therefore 

clear from this comparison that the GSH representations are indeed more efficient in 

capturing the function with a smaller number of terms in the Fourier expansions. 

However, the DFT computations are significantly faster by at least two orders of 

magnitude. Another major advantage of the DFT representations is their easy access 

(FFT algorithms are much more readily available in many software packages compared 

to the availability of the GSH functions).  

The DFT based texture representation and homogenization will be used here in 

building material knowledge databases of property closures of elastic-plastic properties. 

Numerous examples of these property closures will be presented later.  

 

3.2. Spectral Crystal Plasticity of FCC metals 

The crystal plasticity computations typically demand significant computational 

resources because of the low value of m (which makes the resulting system of algebraic 

equations numerically extremely stiff). Moreover, the same computations are likely to be 

repeated several times in simulations performed by the conventional approach, because 

the results of computations in any one time step are immediately forgotten when the 

computations advance to the next time step. 

In the spectral crystal plasticity approach [105,106], our goal is to establish 

efficient spectral representations for the essential functions capturing the solutions to the 

crystal plasticity theory described above. In other words, our interest here is in 
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establishing the functions ( )L,gijσ ′ , ( )L,* gWij , and ( )L,g∑
α

αγ& , where g  is the crystal 

lattice orientation and L is the applied velocity gradient tensor. In any given time step in 

the simulation of the deformation process, these functions can then be used to compute 

all of the needed microscale and macroscale field quantities that would be typically 

computed by the traditional crystal plasticity approach. 

It is important to recognize that the spectral representations described above are 

independent of the specific homogenization theory used in bridging the microscale 

response of the crystalline regions within individual grains to the macroscale polycrystal 

response. In the simple Taylor-type models, the applied velocity gradient tensor at the 

microscale is assumed to be the same as the one applied at the macroscale (on the 

polycrystal). The macroscopic stress for the polycrystal is then obtained by volume 

averaging the stresses inside the polycrystal. In using the spectral databases described 

here with more sophisticated homogenization theories, it will be necessary to first solve 

for the local (microscale) velocity gradient tensor to be applied and then use that as input 

to the functions described above. 

Next, a strategy for compacting the domain of the functions established earlier is 

described. Following the approach described by Van Houtte [107], the applied traceless 

velocity gradient tensor (plastic deformations in metals are isochoric), L, is additively 

decomposed into a spin component, appW , and a traceless stretching component, D, 

which can be expressed using a single angular variable in its principal frame. This 

decomposition can be mathematically expressed as  
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where { }3,2,1, =ip
ie  denotes the principal frame of  D, and the range of angular variable 

θ  that defines all possible diagonal matrices is [ )π2,0 . Consequently, the functions we 

seek can be expressed in terms of { }( )appp We ,,,εθ & , instead of L. As an example, the 

function for the deviatoric stress in the crystal can be expressed as { }( )appp
ij g We ,,,, εθσ &′ . 

Recognizing that all crystal plasticity computations can be performed in the { }pe  

reference frame and converted back to the sample reference frame when needed, we can 

transform { }( ) pp gg ⇒e, , where pg  denotes the crystal orientation with respect to the 

{ }pe  reference frame. Furthermore, the roles of variables ε&  and appW  in the functions of 

interest here can be explicitly described. These simplifications allows us to focus our 

efforts in building the spectral databases on two primary variables, pg  and θ .  In other 

words, we will be seeking spectral representations of ( )θ,pgσ′ ,  

( )θ,* pgW , and ( )θγ
α

α ,pg∑ & . For the tensorial variables listed above (stresses and lattice 

rotations), these functions will describe the components in the principal frame of the 

stretching tensor, which can then be transformed appropriately to the sample or crystal 

reference frames, as needed. Spectral representations of these functions using DFTs can 

be expressed as 
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In Eqs. (3.8)-(3.10), r and q enumerate the grid points while gN and θN represent the 

total number of grid points in the orientation space (domain of pg ) and the θ  space 

(describing the deformation mode), respectively. The sets of coefficients knB , knC , and 

knG  are referred to as the DFTs, and are completely independent of the values of the 

variables pg  and θ at grid points r and q.   

In order to compute these transforms, we first need to compute the values of the 

functions of interest on a uniform grid in the naturally periodic product space defined by 

the Bunge-Euler space and the deformation mode space. These values are computed 

using the crystal plasticity theory described earlier. In this work, this was accomplished 

using a regular three-degree grid in each of the angular variables involved. The Bunge-

Euler space of interest in computing DFTs for orientation-dependent periodic functions in 

cubic crystals can be identified as [ ) [ ) [ )( )πφπΦπφ 2,0,2,0,2,0 21 ∈∈∈  [84]. The periodic 

space of interest in defining the deformation mode is identified as [ )πθ 2,0∈ . It is further 

emphasized that the space described above has been chosen as it provides the natural 

periodicity for all the functions of interest identified earlier. All the functions of interest 
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have very efficient spectral representation in this space, which will become apparent 

later. It should be noted that there exist quite a few redundancies in the space identified 

above. In other words, a selected combination of a lattice orientation and a deformation 

mode have multiple (but equivalent) function value in this space. These equivalent 

representations have been exploited in the computations of the function values.  

For the functions studied in this work, it is typically observed that only a small 

fraction of the DFTs are numerically significant compared to the others. In other words, 

although the number of DFTs computed is as large as the discrete dataset of the function 

values that was used in computing the transform, only a relatively small fraction of the 

terms in the computed transform need to be stored; ignoring the rest of the terms in the 

transform does not have any noticeable influence on the reconstructed values. The 

numbers of numerically significant DFTs (henceforth referred to as dominant DFTs) 

varied for the different field variables. Figure 7 illustrates the variation of the magnitudes 

of the dominant DFTs (sorted by magnitude without including the zero transform which 

simply represents the average value of the function over the entire domain) for (a)

( )θσ ,g p'
11 , (b) ( )θ,gW p

12 , and (c) ( )θγ
α

,g p∑ & . A substantial compaction of the dataset is 

clearly possible for these functions. It can be seen that as few as 200 DFTs dominate the 

representations of the various functions of interest. In producing such a compact set, we 

have also taken advantage of the fact that about half of the DFTs are complex conjugates 

of the other half for all real-valued functions (e.g. *
nN,kNkn g −−=

θ
CC ).  
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Figure 7 Magnitudes of dominant transforms (not including the zero transform) for (a) ( )θσ ,g p'
11 , (b) 

( )θ,gW p
12 , and (c) ( )θγ

α

,g p∑ & . Note that the transforms were sorted by the magnitude before being 

plotted here. 

 

An inverse DFT of any of the transforms described above will recover exactly the 

function values at all of the grid points (these are the function values that were used 

originally in computing the transforms). However, it is much more computationally 

efficient to simply compute directly the function value at the desired location using Eqs. 

(3.8)-(3.10), while exploiting the fact that there are only a limited number of dominant 

DFTs (as few as 200 terms based on Fig. 7). In order to recover the function values at any 

other location of interest (i.e. not on a grid point), we used the spectral interpolation 

technique. Spectral interpolation assumes that the DFTs were computed on a grid that is 

sufficiently finely discretized to capture all of the important frequencies embedded in the 

function of interest. In other words, a finer discretization would not reveal any new 

frequencies or any significant changes in the amplitudes of the frequencies already 

identified. Consequently, the function value at any new location in the domain of the 

function can be obtained by defining a new (finer) grid such that the point of interest lies 
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on a grid point in the new grid. The DFTs for the new finer grid can be obtained simply 

by padding the DFTs of the original grid with certain number of appropriately placed 

zeros to reflect the assumption that there are no new frequencies in the function. 

The spectral interpolation scheme described above is clarified next with an 

example of a local interpolation. Let us consider the function ( )θσ ,g'
11 . For simplicity of 

the presentation of plots, we fixed the values of some of the independent variables as 

,o212 =φ ,o72=Φ  and ,30o=θ  and chose to vary only 1φ . Let ( )1
'
11

~ φσ  represent this 

reduced function. Let ( ) j1
'
11

~ φσ  denote the function values sampled at equally spaced 

points, 
N
Ljj =1φ , 1...0 −= Nj , where N represents the number of grid points and L 

denotes the domain of interest in 1φ  (assumed to be periodic). This is depicted in Figure 

8, with N = 6. This grid has been deemed adequate to capture all of the important 

frequencies embedded in ( )1
'
11

~ φσ .  Let the DFTs computed from ( ) j1
'
11

~ φσ  be denoted as 

kF . Let ∗
1φ

 
denote an interior point (not on the original grid) where it is desired to 

recover the value of the function. It is possible to design a finer uniform grid such that 

point ∗
1φ

 
lies at one of the grid points in the finer mesh. In the example shown in Fig. 8, 

the finer grid had a total of 36 grid points. The DFT corresponding to this finer grid is 

obtained simply by adding a total of 30 additional zeroes to kF  in appropriate locations. 

Let kF~  denote this expanded DFT. An inverse DFT of the kF~  provides an excellent 

interpolation of the function at all grid points in the finer mesh, including the point of 

interest, ∗
1φ .  In order to validate this concept, the value of the ( )1

'
11

~ φσ  was also computed 

directly on some of the finer grid points using the Taylor-type model and depicted in 
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while DFTf  represents the value computed using a selected set of dominant DFTs 

representing the same function. The normalization factor nf  has been selected to 

represent typical values of the function. For the results presented here, nf  was taken as 

os3  for the deviatoric stress components and as ε&3  for the spin tensor components and 

the total shearing rate. Figures 9(a) – 9(c) plot the average percentage errors in the 

spectral representations of the functions of interest for a set of 100,000 randomly selected 

orientations subjected to randomly selected deformation modes. It can be seen that by 

retaining only the 500 dominant transforms for the stress tensor, the spin tensor and the 

total shearing rate, the average error is well below 5%. 

 

 1001
1

×
−

= ∑
N

n

DFT

f
ff

N
e                                                                                   (3.11)  

 

Figure 9 Average percentage error between the spectral predictions and direct computations for 100,000 

randomly selected orientations subjected to randomly selected deformation modes as a function of the 

number of the dominant DFTs used in the spectral databases: (a) ( )θσ ,g p'
11 , (b) ( )θ,gW p

12 , and (c) 

( )θγ
α

,g p∑ & .
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For visual comparison, we present in Fig. 10 contour plots in the orientation space 

for the stress function for a prescribed deformation mode, i.e. ( )
o

p'
11 g

θθ
σ

=
. The plots 

compare function values computed using the conventional crystal plasticity computations 

and using the spectral methods described here with only the 500 dominant DFTs. It is 

seen that the DFT method described in this work reproduces faithfully the conventional 

crystal plasticity model predictions. Several other similar checks were conducted on the 

various functions of interest in this work.  

 

 

Figure 10 Contour plots of ( )
o

p'
11 g

θθ
σ

=
 
in Bunge-Euler space. (a) Computed using 500 dominant DFTs. 

(b) Computed using the conventional crystal plasticity approach. 

 

The new approach presented in this thesis has been validated by comparing the solutions 

obtained by the conventional computational approaches against those obtained from the 

spectral approach described here for few selected examples of deformation processes. 

These comparisons will be presented shortly.  
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3.3. Spectral Crystal Plasticity of HCP Metals 

The spectral approach to the conventional Taylor-type crystal plasticity 

calculations of hexagonal metals is presented in this section. The extension of the spectral 

crystal plasticity framework to hexagonal metals requires several modifications to the 

framework described in the previous section for cubic metals. Required modifications are 

due to the twinning and successive grain fragmentation and three distinct slip families 

that have different values of slip resistances (their values could be substantially different 

from each other).  

As we did for cubic metals, we explore strategies that circumvent the need to 

repeatedly solve sets of highly non-linear, extremely stiff, algebraic equations with poor 

convergence characteristics that are inherent to these calculations (i.e. Eqs. 2.6 and 2.7). 

Following the same ideas, the strategies consist of computing only once all of the needed 

variables in crystal plasticity calculations, computing discrete Fourier transforms (DFTs), 

and storing only the dominant transforms (i.e. numerically significant ones) that can be 

later recursively used in any specific simulation. The essential variables are not only the 

components of the deviatoric stress and the lattice spin tensors, but also the sums of the 

shearing rates on individual slip families (basal, prism and pyramidal) and the sum of the 

twin volume fractions predicted by the Taylor-type crystal plasticity model for individual 

grains as a function of their lattice orientation, the imposed velocity gradient, and the set 

of slip and twin resistances. Note that the domain of these functions is eight dimensional 

and is defined to be the product space of the orientation space, the deformation mode, the 

set of three slip resistances and a twin resistance. In order to reduce dimensionality of the 

effective space we chose to normalize the set of the slip resistances with the twin 
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resistance. Therefore, the field variables are cast as functions of the ratios of the slip 

resistances and the twin resistance in hcp crystals in addition to the crystal lattice 

orientation and deformation mode. We seek the spectral representation of 

( )tw
PYR

tw
PRI

tw
BASp ss,ss,ss,,g θσ′ , ( )tw

PYR
tw

PRI
tw

BASp* ss,ss,ss,,g θW , 

( )tw
PYR

tw
PRI

tw
BASp ss,ss,ss,,g θγ

α

α∑ &
 

and ( )tw
PYR

tw
PRI

tw
BASp ss,ss,ss,,gf θ

α

β∑ & . It 

can be noted that the number of dimensions went from four for the cubic crystals to seven 

for hexagonal metals requiring more computational power for computation of the DFTs. 

As an example, the spectral representation of stress using DFTs can be expressed as 
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θθθεε Cσ &&=
 

(3.12) 

 

Similar expressions can be recognized for the other field variables. In order to compute 

the transforms, the functions values need to be computed on a uniform grid in the 

respective periodic domain. The orientation periodic unit cell is defined in section 2.1; 

the periodic space for the deformation mode had been defined in the previous section. It 

remains to establish the periodic spaces for the remaining three dimensions. This has 

been addressed by expressing each of the slip resistance ratios with a single angular 

variable. An example of parameterization of the basal slip to twin resistance ratio with 

[ )πλ 2,0=  is 
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The same equation holds for the prism and pyramidal slip to twin resistance ratios. It 

remains to define boundaries of the slip-twin ratios. These ratios were established based 

on previous estimated hardening parameters and are chosen in such a way to be sufficient 

for broad range of Ti alloys: 0.11.0ss tw
PRI −= , 

 
5.275.0ss tw

BAS −=  ,  

5.25.0ss tw
PYR −= . In the periodic domain, a regular grid has been designed to capture 

most of the important frequencies. It consisted of the five degree grid in the first three 

directions defined by the orientation space and twenty degree grid in the deformation 

mode and the slip-twin ratios. Figure 11 illustrates the variation of the magnitudes of the 

dominant DFTs (sorted by magnitude without including the zero transform which simply 

represents the average value of the function over the entire domain) computed for several 

variables.  
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Figure 11 Magnitudes of dominant transforms (not including the zero transform) for the variables included 

in the plots. Note that the transforms were sorted by the magnitude before being plotted here. 

 

A substantial compaction of the dataset is clearly possible for these functions. This new 

approach is validated through an example case study on commercial purity alpha-

titanium in the next section.  

 

3.4. Selected Spectral Crystal Plasticity Case Studies  

Spectral crystal plasticity framework is validated by comparing the predicted 

anisotropic stress-strain response and texture evolution from the conventional crystal 

plasticity against those obtained by spectral approach developed here. To this end, several 

representative case studies of deformation processes are selected and discussed below for 

both fcc and hcp metals.  
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3.4.1. Plane Strain Compression in FCC Metals 

In order to demonstrate the validity of the new DFT-based spectral approach 

described in this work, we simulated plane strain compression on polycrystalline OFHC 

copper to a true strain of 0.1−=ε  along the compression axis. The polycrystal was 

assumed to possess a random initial texture that was captured by a set of 1000 discrete 

crystal orientations. We computed the deformed textures and the anisotropic stress-strain 

curves using the Taylor-type model, both by the traditional approach and the new DFT 

spectral approach based on the dominant transforms described here. In the DFT method, 

we applied Eqs. (3.8)-(3.10) recursively twenty times, each time for a true strain step of -

0.05. In each strain step, the grain orientations were updated and the new orientations 

were used as the starting orientations in the next strain step. The predicted textures from 

the traditional approach are compared against those obtained from the DFT method using 

a minimal set of dominant transforms (134 for stress, 255 for lattice spin, and 182 for 

shearing rate) in Fig. 12(a), while the corresponding predictions of the stress-strain 

responses are shown in Fig. 12(b). Another calculation was performed using more of the 

dominant DFTs (500 for stress and 3000 for lattice spin and shearing rate) and its 

comparison with predictions from the traditional approach is presented in Fig. 13 (note 

the slight improvement in the accuracy of the spectral approach between Fig. 12 and Fig. 

13). It is seen that the DFT method described here accurately reproduced all of the 

features of the Taylor-type model predictions.  
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 Figure 12 Comparison of the predictions from the spectral method described here, using a minimal set of 

134 dominant DFTs for stress, 255 dominant DFTs for lattice spin, and 182 dominant DFTs for shearing 

rate, against the corresponding predictions from the conventional Taylor-type model for plane strain 

compression of OFHC Copper: (a) pole figures, and (b) stress-strain curves. 

 

 

 
Figure 13 Comparison of the predictions from the spectral method, using 500 dominant DFTs for stress 

components and the shearing rate and 3000 dominant DFTs for the lattice spin components, against the 

corresponding predictions from the conventional Taylor-type model for plane strain compression of OFHC 

Copper: (a) pole figures, and (b) stress-strain curves. 

 

This simulation took 108 seconds on a regular Pentium 4 desktop PC using the 

conventional crystal plasticity algorithms (solving explicitly Eqs. (2.6) and (2.7)) and 0.7 

seconds using the minimal set of the dominant DFTs, and 2.3 seconds using the larger 

number of dominant DFTs. Thus, an attractive feature of this new approach is that it 

provides the user with tremendous flexibility in making trade-offs between accuracy and 

Taylor-type model

a) b)
DFT Method
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computational speed. In other words, the new spectral database described in this paper 

will allow the user to perform a large number of very quick simulations at a lower than 

desired accuracy, identify the specific ones that appear to produce promising results, and 

redo these much more accurately (at a higher computational cost). This represents a 

tremendous savings in computational time.  

 

3.4.2. Simple Shear in FCC Metals 

As the next case study we simulated simple shear deformation, where the 

principal orientations of the imposed stretching tensor do not coincide with the sample 

reference frame. The sample was assumed to have the same random initial texture as in 

the previous case study, and was subjected to a strain of 01.=γ . The predictions from 

the new DFT spectral approach based on the 500 dominant DFTs for the stress 

components and the shearing rate, and 3000 dominant DFTs for the lattice spin 

components are compared against the corresponding predictions from the conventional 

Taylor-type model calculations in Fig. 14. It is seen once again that the DFT method 

described here provides excellent predictions at a significantly faster computational 

speed. This prediction took 107 seconds on a regular PC for the conventional Taylor-type 

calculations, but only 2.4 seconds for the DFT based spectral methods described in this 

thesis. 
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Figure 14 Comparison of the predictions from the spectral method, using 500 dominant DFTs for stress 

components and the shearing rate and 3000 dominant DFTs for the lattice spin components, against the 

corresponding predictions from the conventional Taylor-type model for simple shear of OFHC Copper: (a) 

pole figures, and (b) stress-strain curves.  
 

3.4.3. Plane Strain Compression Followed by Simple Shear in FCC Metals 

As the next case study we simulated plane strain compression followed by simple 

shear deformation.  The sample was assumed to have the same random initial texture as 

in the previous case studies, and was subjected to a strain of 50.−=ε  in plane strain 

compression followed by a 50.=γ  in simple shear. The predictions from the DFT 

method described here are also compared against the corresponding predictions from the 

conventional Taylor-type model calculations in Fig. 15. It was seen once again that the 

DFT method described here provides excellent predictions at significantly faster 

computational speeds similar to those reported in the other case studies described earlier.  
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Figure 15 Comparison of the predictions from the spectral method, using 500 dominant DFTs for the stress 

components and the shearing rate and 3000 dominant DFTs for the lattice spin components, against the 

corresponding predictions from the conventional Taylor-type model for a deformation mode involving a 

path change (plane strain compression up to strain of 0.5 followed by simple shear up to strain of 1.0) of 

OFHC Copper: (a) pole figures, and (b) stress-strain curves. The stresses and strain plotted are axial 

components during plane strain compression and shear components during simple shear. 

 

 
3.4.4. Equi-Channel Angular Extrusion in FCC Metals 
 

As another example, we present a simulation of texture evolution in a more 

complex non-monotonic deformation process. In this example, Hamad F. Al-Harbi, a 

research student in our group performed a simulation of the ECAE (Equi-Channel 

Angular Extrusion) process using a commercial finite element software package 

FORGE3 [108]. The deformation history was extracted at three different locations in the 

billet: one close to the top, one at the middle, and one close to the bottom of the billet. 

The extracted deformation histories were provided as inputs to the Taylor-type DFT-

based crystal plasticity model described above.  

The initial texture was assumed to be random and numerically approximated by a 

set of 1000 discrete crystal orientations. The (111) pole figures of the predicted textures 

using the DFT based crystal plasticity at the selected locations in the billet after one pass 

of ECAE were in reasonable agreement with the experimentally measured textures , as 

DFT MethodTaylor-type model

a) b)
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shown in Fig. 16. However, the agreement is much better for the top and the middle 

locations on the billet compared to the bottom location on the billet. It is known that grain 

interactions and the associated anisotropy in the mechanical response of the material play 

an important role in the texture gradients obtained in the ECAE process [1,109]. Since 

neither of these aspects of material behavior were incorporated in the present study, it is 

only reasonable to see some discrepancies between the predictions and the experimental 

measurements in Fig. 16. However, it is gratifying to see that the present model is able to 

capture to a reasonable extent the texture gradients obtained in the highly complex ECAE 

process.  

 

 
Figure 16 Comparison of the predicted (111) pole figures using the DFT based crystal plasticity at 

different locations in the billet after one pass with the corresponding measurements taken from [1]. (a) Top 

of the billet. (b) Middle of the billet. (c) Bottom of the billet. Contours from experiments and model: 

1/1.4/2/2.8/4/5.6/8/11.   

 

3.4.5. Plane Strain Compression in HCP Metals 

In order to demonstrate the validity of the DFT-based spectral approach for hcp 

metals, we simulated plane strain compression on polycrystalline α -Ti to a true strain of 

0.1−=ε  along the compression axis. The polycrystal was assumed to possess the same 
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random initial texture as all previous fcc case studies. We computed the deformed 

textures and the anisotropic stress-strain curves using the Taylor-type model, both by the 

traditional approach and the new DFT spectral approach based on the dominant 

transforms for hcp metals. In the DFT method, we applied the spectral linkages 

recursively twenty times, each time for a true strain step of -0.05. In each strain step, the 

grain orientations were updated and the new orientations were used as the starting 

orientations in the next strain step. In addition, the number of orientations was increasing 

due to grain fragmentation induced by twinning from last to the next strain step. This 

increase in the number of orientations was present until twinning saturated in all grains 

that undergone twining. The predicted textures from the traditional approach are 

compared against those obtained from the DFT method using a set of 1000 dominant 

transforms for each of the field variables (the stress, the lattice spin, the three sums of 

shearing rates, and the sum of twin volume fractions) in Fig. 17(a), while the 

corresponding predictions of the stress-strain responses are shown in Fig. 17(b). It is seen 

that the DFT method described here accurately reproduced all of the features of the 

Taylor-type model predictions for hcp metals, too.  

This simulation took 172 seconds on a regular Pentium 4 desktop PC using the 

conventional crystal plasticity algorithms (solving explicitly Eqs. (2.6) and (2.7)) and 5.7 

seconds using the dominant DFTs. Ones more, this represents a tremendous savings in 

computational time. 
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Figure 17 Comparison of the predictions from the spectral method described here, using a set of 1000 

dominant DFTs for each of the field variables, against the corresponding predictions from the conventional 

Taylor-type model for plane strain compression of α -Ti: (a) pole figures, and (b) stress-strain curves. 

 

3.5. Delineation of Yield Surfaces Using DFTs 
 
 The yield surface is a boundary between the elastic and the plastic deformation 

regimes for all possible stress states. While it is possible, in principle, to characterize the 

complete anisotropic yield surface of a given work-peace via experimental testing, it is 

quite cumbersome, requiring specialized test machines and fixtures. The more commonly 

used approach is to develop a mathematical tool that can predict the yield surface based 

on a limited number of simple experimental measurements. In this study, the state of 

stress is characterized by the Cauchy stress deviator predicted by Taylor-type crystal 

plasticity model, thus the yield surface is five dimensional and contains all the stress 

states that cause yielding. The shape, size and orientation of the anisotropic yield surface 

are expected to vary strongly with texture. Combining the developed database of spectral 

coefficients for predictions of the stress deviator and the DFT based homogenization, we 

present in this section a mathematical procedure for fast computation of the anisotropic 

Taylor-type model
a) b)

DFT Method
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crystal plasticity based yield surfaces. The volume average stress for a given texture and 

a specific deformation mode in the principle frame can be computed as 

 

( ) ( ) ( ) .dddsin,ggf1
21

p'
ij

3FZ

p
2

'
ij φΦφΦθσ

π
θσ ∫=

                                                
(3.14) 

 

The integral in the Eq. (3.14) can be computed using the orthogonal properties of the 

spectral representations. Since we already have DFTs for stress, it is convenient to 

combine Φsin  with ( )gf , thus we seek here a DFT representation of  
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The volume average stress can then be written as 
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Note, the star on kF~ indicates the complex conjugate quantity. It may be beneficial to 

remind ourselves that the sets of coefficients knC are independent of the values of the 

variables pg  and θ . In Eq. (3.16), q enumerates the grid points in the deformation mode 

space. Therefore, Eq. (3.16) would produce q points on the yield surface. However, this is 

not yet a complete yield surface of a given polycrystal. In order to compute an entire 

yield surface of the given polycrystal using DFT method one needs to select a certain 
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number of principle frames and transform the original texture to all of them and then for 

each transformed texture use Eq. (3.16) to compute the stress deviator components. The 

principle frames are selected from the following orthorhombic space 

( ) πβπβπββββ ≤≤≤≤<≤ 33 0,
2

0,20|,, 2121 .  

Note that the computed stress in the selected principle frames needs to be 

transformed back to the sample frame of the original texture. The collection of all these 

points is the yield surface. 

The yield surfaces for two textures were efficiently delineated using the described 

procedure. The pole figures for a random texture and an (111) fiber texture represented 

each by 1000 crystals are shown in the Fig. 18(a) and 18(d), respectively. The selected 

projections of the corresponding yield surfaces are shown in the Fig. 18b) and 18(c) for 

the random texture and Fig. 18(e) and 18(f) for the fiber texture. The different shape of 

the yield surfaces for the two different textures should be noted from the plots. The 

computational time needed for the delineation of a yield surface for a texture represented 

by 1000 crystals was 8 seconds on a regular Pentium 4 desktop PC.  
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Figure 18 a) pole figures for the random texture, b) and c) selected projections of the yield surfaces for the 

random texture, d) pole figures for the (111) fiber texture, e) and f) selected projections of the yield 

surfaces for the fiber texture. The different shape of the yield surfaces for the two different textures should 

be noted. 

 

Although the yield surface is an important and valuable construct in the design we 

will use it here only to establish the tensile yield stress in delineating the property 

closures for triclinic textures. From the yield surface the yield stress can be established 

for any stress state. Specifically, we are looking for the intersection of (1, 0.5, 0, 0, 0) 

vector and the yield surface. The intersection point is establisehed using Gram-Schmidt 

orthonormalization [39]. 

 

 

 

a) b) c)

d) e) f)
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3.6. Property Closures and Microstructure Design 

In this section, results and insights from numerous examples of atlases of property 

closures corresponding to selection of different pairs of effective elastic-plastic properties 

of interest are provided. The relevant material properties are defined in the Appendix A. 

New mathematical procedures established in this thesis for delineation of both the 

property closure that do not require and the property closures that require consideration 

of the strain hardening and texture evolution are presented in Appendix B and Appendix 

C, respectively.  

 

3.6.1. Atlases of Elastic-Plastic Property Closures 

We start with a selection of a pair of effective elastic properties, *
1313

*
1111  and CC . 

These correspond to the effective modulus in unaxial strain and the effective shear 

modulus in the sample, and play an important role in the design of components subjected 

simultaneously to axial loads and twisting moments. The values of μν
lF (or kF using 

DFTs) coefficients corresponding to the boundary points on the ( )*
1313

*
1111,CC  closure were 

obtained using the methods described in the previous sections. Using these coefficients, 

the ( )*
1313

*
1111,CC  closures have been produced for a broad range of cubic materials with 

different anisotropy ratios A, and these are depicted in Fig. 19 as an atlas of closures. The 

shaded areas inside the closures represent all of the possible combinations of the selected 

elastic stiffness components that can be obtained according to the first-order bounding 

theories for the particular material. Figure 19 reveals that the shapes of the property 

closures shown can be broadly classified into two groups. These correspond to materials 

with the A ratio being greater and smaller than one, respectively. For example, Mo and 
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LiO exhibit values of A less than one, while all of the other materials in Fig. 19 exhibit 

values of A larger than one. Note also that the relative (normalized) size of the closure 

scales with the magnitude of (A-1). For example, Tungsten with A ratio close to 1.0, 

exhibits the smallest closure, while MgAl2O3 with an A ratio of 2.43 exhibits one of the 

larger closures obtained. Obviously, with larger closures there exists a higher potential 

for improvement of performance in a given design application. 

 

 
 

           Figure 19 Atlas of C*
1111-C*

1313 closures for a broad selection of cubic materials. 

 

Figure 20 depicts the same type of the closure but for multiphase materials. 

Polycrystalline beta Ti-Nb phase, Ti alpha phase and mixtures of these two phases were 

considered examples. This multiphase closures are of particular interest for biomedical 

applications. It is desirable to design implants with stiffness values that is as close as 
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Figure 21 C1111-C1122, and C1111-C1112 closures for copper polycrystals.  

 

As the next example, we consider closures for ( )sC y1
*
1111,σ  that has an important 

role in design of compliant beam mechanisms and other similar components [36,96]. 

Once again we obtained the values of the μν
lF  or kF  coefficients corresponding to the 

boundary of the closure using the methods described earlier, and then use these 

coefficients to produce closures for different material systems. This particular closure has 

been focused on fcc metals where the operating slips systems are known to be 

( ) 011111  systems. The set of Fourier coefficients needed to plot the closure have to be 

recomputed for a different class of metals with a different set of operating slip systems 

(e.g. bcc metals). Figure 22 presents an atlas of ( )sC y1
*
1111,σ  closures for a range of fcc 

metals. Not surprisingly, the range of feasible values for the effective plastic yield is 

significantly larger than the range of feasible elastic properties in this class of materials. 
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Figure 22 Atlas of (C*

1111 , ⁄ ) closures for a range of FCC metals. 

 

As a next example, we consider the ( )sσ,R y11  closure. This closure has many 

applications in the metal sheet forming industry. A higher value of 1R  typically indicates 

better sheet workability and a lower value of y1σ  would lead to lower load requirements 

in the forming operation. Once again, we obtain the Fourier coefficients corresponding to 

the boundary points on this closure using the methods described before. In this specific 

example, the closure obtained is actually a universal closure for all fcc metals, subject to 

the assumptions that only ( ) 011111  slip systems are allowed to operate and exhibit the 

same slip resistance. This closure is presented in Fig. 23.  
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Figure 23 (C*
1111, ⁄ ) closure for all FCC metals.  

 

An example of the closures involving elastic properties of triclinic textures 

revealed more available property combinations then for the orthorhombic textures. The 

restriction on the orthorhombic textures may reflect on the size of the property closures 

involving tensile yield stress. In order to investigate if the closures for the triclinic 

textures is bigger we next consider an example of a closure for the triclinic textures (i.e. 

no sample symmetry) involving yield stress. As described in the section 3.5, in order to 

delineate the closure involving the tensile yield stress with no sample symmetry the 

tensile yield stress needs to be established using the yield surfaces.  

Figure 24(a) depicts the triclinic closure for polycrystalline copper whereas Fig. 

24(b) shows comparison between the closures for copper with the assumption of the two 

different sample symmetries. It is evident that there are indeed more property 

combinations available if there is no restriction on the sample symmetry in the material.  
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Figure 24 a) (C*

1111, ⁄ ) upper bound closure for copper polycrystals with no sample symmetry. b) 

Comparison between upper bound orthorhombic (black) and upper bound triclinic (gray) closures of 

polycrystalline copper. 

 

 
3.6.2. Performance Optimization Case Study: Compliant Mechanism  
 

At this point, we point out that the microstructure-property linkages established 

are invertible (because they are simple algebraic equations) and can be used in 

microstructure design. The optimization problem for microstructure design involving 

components with statistically homogeneous microstructures can be formulated as  

 

( ) ( ) ( ) ( )( ) 1,0 subject to ,,..,,where,Maximize 21 =≥= ∑
p

ppNPPPO ααρρ ααα ,         (3.17) 

 

where O denotes a objective function characterizing the performance of the mechanical 

component, ρ is a set of relevant macroscale material properties (denoted as ( )αiP ) 

influencing the performance, and pα  denotes volume fraction of a single crystal of 

orientation pg  in the polycrystal. The procedure will be demonstrated using an example 

case study for microstructure design of a compliant beam involving polycrystalline α -

Ti.  

a) b)
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The microstructural design variable for this study has been selected to be the ODF (or 

texture) in the beam. Since the sample is made from a hexagonal metal and the 

macroscale properties are expected to exhibit orthorhombic symmetry, the space of 

relevant ODFs for this case study is the class of hexagonal-orthorhombic ODFs.  

 Compliant mechanisms are single-component flexible structures that deliver a 

desired motion by undergoing elastic deformation [110].  In this case study, we will seek 

the texture(s) that will maximize the deflection of the beam without initiating plastic 

deformation. 

The compliant mechanism is idealized here as a long slender cantilever beam 

whose macroscale elastic-plastic properties exhibit orthorhombic symmetry (presumably 

the processing options have been restricted to accomplish this). The stress field in the 

cantilever beam, with one end fixed to a rigid surface and the other end subjected to a 

point load P is expressed as [111]  

 

   

                                 
21311 hw

12 xxP
−=σ ,                                                                     (3.18)  

   

where h and w are the beam height and width, respectively. Since the normal stresses are 

much higher than the shear stresses in a slender beam, we have ignored the shear stresses 

in this case study. 

The application of Hill’s anisotropic yield criterion requires 

 



 

 

71

 
1

1

11 ≤
yσ

σ
.                                                                      (3.19)

 

 

The maximum deflection in the cantilever beam, at the time of the initiation of plastic 

strain, is expressed as 

 

 
w
L

3
2 2

11111Syσδ = ,                                    (3.20) 

   

where L is the length of the beam. For a fixed beam geometry, the maximum deflection 

that can be attained without initiating plastic strain is therefore dependent only on the 

macroscale material properties 1111S  and 1yσ . In the case study presented here, the beam 

is assumed to have a square cross section with b = w = 18 mm, and L = 180 mm. 

By coupling the constitutive equations of material behavior with a spectral 

representation, the inverse design methodology is enabled for optimal material design. 

An optimal solution is obtained by searching the complete set of all theoretically feasible 

ODFs and associated properties. The property closure, together with the optimal property 

combination for the case study, with a corresponding texture, will be presented later.  

In the subsequent section a procedure for processing network will be developed to help 

designer realize the identified texture.  

 A closure depicting the complete set of feasible combinations of 1111S  and 1yσ for 

all theoretically feasible hexagonal-orthorhombic textures in the selected α -Ti metal was 

obtained using the procedures described earlier and plotted in Fig. 25. Performance 

contours for maximum deflection (based on Eq. (3.20)) have been superimposed on this 
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figure. The maximum deflection attainable in the compliant beam with isotropic 

properties (corresponding to a random texture) is 2.41 mm, while the expansion of the 

design space to the set of hexagonal-orthorhombic textures provides performances 

ranging from 1.01 mm to 3.31 mm. The best performance represents a 37% improvement 

over that of the isotropic solution. It is just as important to note that ignoring the inherent 

texture in the sample can result in extremely poor performance of the component (58% 

reduction in performance compared to the isotropic solution).  

The best performance in this design case study corresponded to a yield strength of 

322.6 MPa (close to the maximum yield strength possible in the selected material system, 

which was 329.23 MPa) and a compliance of 0.0086 GPa-1 (which is significantly lower 

than the maximum possible compliance of 0.0096 GPa-1). This is because the 

combination of the highest yield point and the highest compliance is not feasible in any 

one texture. The best feasible performance resulted from a trade-off between yield 

strength and compliance. It is also worth noting that the worst performance corresponded 

to the lowest yield strength, in spite of the fact that it exhibited the highest compliance. 

Clearly, the value of the yield strength dominated this design.   
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Figure 25 The relevant property closure for a cantilever compliant beam made of high-purity 

polycrystalline  -Ti with hexagonal-orthorhombic textures. The texture predicted to provide the best and 

the worst performances for this case study are also shown. 

 

The RD direction in the pole figures shown in Fig. 25 corresponds to the beam 

axis. The best performance was observed to correspond to a texture with the crystal 

(0001) planes inclined at a small angle to the RD axis, while the worst performance 

corresponded to a texture with the (0001) planes inclined at about 90 degrees to the RD 

axis. This is consistent with the results described above, because the yield strength of a 

titanium single crystal is expected to decrease significantly as the (0001) plane is tilted 

away from the loading direction. 
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3.6.3. Closures of Plastic Properties Requiring Explicit Consideration of Strain    
Hardening and Crystallographic Texture Evolution 
 

The first-order closures presented in this section differ substantially from those in 

the previous sections by showing the set of theoretically feasible plastic property 

combinations while taking into account strain hardening and concurrent texture evolution 

due to plastic strain. Three specific examples of these closures for two fcc metals: 

oxygen-free high-conductivity (OFHC) copper, and Al 5754-O are provided and 

discussed.  

The first-order closure for the ultimate tensile strength ( UTSσ ) and the yield strength  

( 1yσ ) in Fig. 26 is expected to be of interest to mechanical designers as they seek 

superior combinations of these two properties in their designs. It is observed that the 

closures for the two metals selected in this study are strongly influenced by the strain 

hardening parameters. The slight vertical translation of the 5754-O Al closure with 

respect to the OFHC Copper closure can be easily explained based on the slightly higher 

value of the initial slip resistance used for 5754-O Al (17 MPa) compared to the value 

used for OFHC Copper (16 MPa). The significant horizontal translation of the 5754-O Al 

closure compared to the closure for OFHC Copper in Fig. 26 has to be attributed to the 

differences in the slip hardening parameters for these two metals. It is especially 

noteworthy that 5754-O Al exhibits higher values of UTSσ  in spite of a lower saturation 

value of slip resistance (130 MPa for 5754-O Al versus 148 MPa for OFHC Copper). 

These higher values UTSσ  are attributed to the significantly higher strain hardening rates 

in 5754-O Al compared to OFHC Copper (ho is 180 MPa for OFHC Copper while it is 

745 MPa for 5754-O Al). 
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homogenization theory (Taylor-type model) and the prescribed slip hardening 

parameters. Examples of textures corresponding to corners A and B are presented in Fig. 

26. It is seen that the main texture component providing this optimal combination of 

properties appears to be the ( )[ ]011111  in both materials, and is not a major component in 

any of the widely used deformation processing operations by the metal working industry. 

On the other hand, materials processing specialists relate the ratio of the yield strength to 

the ultimate tensile strength of the metal to its strain hardening response. Generally, a 

lower value of 1yσ / UTSσ  is correlated to higher capacity for plastic deformation. For 

example, textures corresponding to points C and D in Fig. 26, for OFHC copper and 

5754-O Al, respectively, exhibit the lowest value of 1yσ / UTSσ  in these metals. The 

dominant texture component in both textures C and D is close to the ( )[ ]011110  

orientation. The slight differences between these textures and their influence on the 

properties of interest will be discussed shortly. Textures corresponding to points E and F 

in Fig. 26 provide much lower values of both 1yσ  and UTSσ , and may be of interest to 

processing specialists because of the lower load requirements in metal shaping operations 

(provided they exhibit adequate ductility).  The dominant texture component in both 

textures E and F is close to the ( )[ ]210121  orientation, while there are again subtle 

differences between them.  

The subtle differences in the optimal textures for the two different metals studied here 

reflect the important role of strain hardening in influencing strength. To illustrate this, we 

have calculated the properties of 5754-O Al corresponding to salient textures A, C, and E 

(these were initially identified on the closure for OFHC Copper). Likewise, we have also 



 

 

co

(i

te

d

tw

re

ob

si

F

yi

te

st

omputed the

initially iden

extures A thr

ifferences be

wo metals, w

esult in signi

bservations 

ignificant ro

 

igure 27 Influe

ield strength (

extures (A, B), 

Figure 28

trength ( UTσ

e properties 

ntified on th

rough F are 

etween textu

while the diff

ificant differ

confirm ou

le on the cla

ence of the sub

1yσ ) exhibite

(C, D), and (E

8 depicts pr

TS ), both defi

of OFHC C

he closure f

shown in F

ures A and B

ferences betw

rences in the

ur expectatio

ass of plastic

btle differences

ed by the meta

E, F) are shown

roperty closu

fined along th

Copper corre

for 5754-O 

ig. 27 on clo

B have very 

ween texture

e 1yσ  and Uσ

on that the 

c closures pre

s in the texture

al. The proper

n on closures fo

 

ures for uni

he e1 directio

sponding to

Al). The pr

osures for bo

little effect 

es C and D a

UTS  exhibited

strain harde

esented in th

es on the ultima

rties correspon

or 5754-O Al  a

iform ductil

on of the sam

 salient text

roperty com

oth metals. I

on the 1yσ  

and between

d by these tw

ening param

his paper. 

ate tensile stren

nding to pairs 

and OFHC Cop

lity (eu) and

mple. These 

tures B, D, a

mbinations fo

It is seen tha

and UTSσ  of 

n textures E a

wo metals. T

meters do pl

 

ngth ( UTSσ ) a

of slightly dif

pper.  

d ultimate te

specific pro

77

and F 

or all 

at the 

these 

and F 

These 

lay a 

and the 

fferent 

ensile 

operty 



 

 

78

combinations are of interest in developing high strength high-toughness alloys for 

structural applications. Also, in metal forming operations, uniform ductility (eu) is given 

special importance because it reflects workability of the metal. The textures predicted to 

exhibit superior combinations of ultimate tensile strength and uniform ductility lie on the 

B-H and A-G boundaries of the closures shown in Fig. 31. Different points on these 

boundaries provide different trade-offs in the achievable combinations of ultimate tensile 

strength and uniform ductility in the two alloys studies. The main component in textures 

G and H is close to ( )[ ]011110  orientation, whereas the textures A and B have already 

been discussed (see Fig. 26).  Although textures G and H appear to be similar to the 

textures C and D discussed earlier (corresponding to the lowest values of 1yσ / UTSσ  in 

Fig. 26), there are indeed significant differences between these textures.  In order to 

illustrate these differences, the property combinations corresponding to texture C are also 

shown on the closure for OFHC Copper in Fig. 28. It is clearly observed that the property 

combinations exhibited by textures C and G are substantially different from each other.  
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any material for which the strain hardening characteristics are known. Figure 29, shows a 

closure for the R1-ratio and the yield strength for 5754-O Al that was presented in section 

3.6.1. This closure is of interest to the sheet metal forming industry where the goal is to 

maximize the workability of the material (high R1-ratios) while keeping the yield strength 

low. We now explore here a range of processing paths in this closure to examine if the 

desired combination of properties can be obtained using several different starting textures 

and a set of readily available deformation processing options. The mathematical 

framework presented in this paper allows us to very quickly evaluate the evolution of the 

properties of interest during any imposed deformation path. Here, we have selected three 

different initial textures and subjected them to two different deformation paths. The 

initial textures, chosen for this study, include a random texture, a ( )110  fiber texture, and 

a ( )[ ]001100  cube texture, shown as J, K, and L, respectively in the Fig. 32. These 

textures were subjected to plane-strain rolling and simple compression deformation. The 

evolution of the properties of interest during the selected deformation processes is 

depicted in Fig. 29. It is observed that none of the combinations of initial textures and 

deformation paths selected produced a substantial increase in the R1 value. The texture 

that is theoretically predicted to produce a high value of R1 is shown as texture I in Fig. 

29. This dominant component in this desired texture is ( )[ ]011221 , and is not seen as a 

major texture component in any of the deformation processing operations typically used 

by the metal working industry. 
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3.7. Texture Evolution Networks for Deformation Processing 
 
 Any change in texture caused by an imposed deformation process on a sample can 

be visualized as a “pathline” in the texture hull. The texture evolution networks are 

essentially made of these pathlines corresponding to different deformation processes. The 

spectral crystal plasticity methods described earlier are the basis for the fast computation 

of deformation process paths. The computed pathlines are stored compactly in terms of 

the Fourier coefficients of the evolving ODF. Every point in the network represents a 

physically realizable texture whose processing history is fully documented. Therefore, it 

should be possible to identify a processing recipe to move from any point in the network 

to another point in the network.  

Procedures for building a texture evolution network is an ongoing research work of 

Joshua Shaffer in our research group and details will be described in his thesis. In the next 

two sections of this thesis, we demonstrate the potential benefits of the texture evolution 

networks by considering specific case studies. In the first example, we explored the 

texture evolution networks to find processing recipes for maximization of the single R-

value. In the second example, we explored the networks to find processing recipes for 

textures that would maximize two in-plane R-values simultaneously. The later is likely to 

be more meaningful for enhancing workability of sheet metal products. 

The imposition of orthorhombic symmetry in the sample reference frame restricts 

the process design space here to include only the following processes: (i) the complete set 

of non-zero stretching tensors, D, whose principle frames are aligned with the sample 

reference frame, together with zero applied spin tensors, and (ii) 90 degree rotation of the 

sample about any of the sample reference axes, together with zero stretching tensors. It is 
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Figures 30(a) and 30(b) present a property closure for ( )11, yR σ  computed using 

the spectral database presented earlier as a gray-shaded region. It was noted earlier that a 

Goss-like texture would produce a high R-value in fcc metals. The texture evolution 

network is projected into this closure in Figure 30(a). It can be seen that the texture 

evolution network covers most, but not all, of the property network. Recognizing that 

every point in this network has a known processing history allows us to find suitable 

processing recipes for any selected property combination in this closure. A search of 

points corresponding to the high R1 values identified the processing recipe depicted in 

Figure 30(b) comprising 18 different processing steps. The final texture does indeed 

exhibit a strong two Goss-like component as shown in Figure 30(c).  

It is indeed very interesting to note that the processing recipe identified is not one 

that consistently improves the value of R1 with each processing step. It is interesting to 

note that we need several short processing steps initially (some of which actually reduce 

the values of R1), before the texture starts evolving towards the desired Goss-like 

component. In fact, if we addressed the above process design problem simply by 

searching for processes that produced the largest increase in the value of R1 in each 

processing step, we found that we needed about 171 processing steps to reach a 

comparably high value of R2 (see Fig. 30 (e)). The texture evolution networks are able to 

capture and exploit the many complex peculiarities in the texture evolution caused by 

deformation processes and identify a better processing recipe with only 18 processing 

steps (Fig. 30(b)). It should also be noted that it would be very difficult, if not impossible, 

to arrive at this processing solution purely intuitively (or using repeated trials).   
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The above example also highlights one of the main advantages of texture 

evolution networks. Since the texture evolution network is built in the texture hull, it can 

be projected into any property space of interest. However, if the texture evolution 

network was actually built directly in the property space, it would only be applicable to 

that specific property space. 

 

3.7.2. Maximizing R1 and R2 

In many sheet forming applications, it is important to achieve high values of in-

plane R-values. Therefore, as the next case study, we explore processing recipes that 

would enhance both R1 and R2. The same texture evolution network that was used earlier 

was projected into this closure and several of the points in the region of interest were 

explored. 

Figure 31 show the property closure for ( )21, RR  obtained using the methods from 

earlier chapters. It appears from the closures in Fig. 32 that it is only possible to achieve 

maximum values of about 5 simultaneously for both these parameters (based on the 

simplified Taylor-type model in this study). The processing paths shown in Fig. 36 were 

identified as the ones that achieved high values of both R1 and R2 in the minimal 7 and 9 

number of processing steps, respectively. The starting point was a random texture.  

This processing solution probably could not have been produced purely intuitively 

or by repeated trials. 
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Figure 31 Processing recipes identified using the texture evolution network for enhancing both R1 and R2 

obtained at the end of 7 and 9 processing steps, respectively. 
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CHAPTER 4: DEFORMATION TWINNING IN AZ31 Mg ALLOY 
 

This chapter describes the experiments and simulations conducted in this Ph.D. 

thesis on AZ31 to understand the deformation twinning in this alloy system. These 

insights and observations are the key to the future extension of crystal plasticity models 

to Mg alloys. 

 

4.1. Mechanical Testing and Metallography   

The composition of the commercial magnesium alloy AZ31 used in this study is  

3.1 wt.% Al, 1.05 wt.% Zn, 0.0035 wt.% Fe, 0.007 wt.% Ni, 0.008 wt.% Cu, and Mg 

balance. This alloy was reported to exhibit a Young’s modulus of 45GPa and a shear 

modulus of 17GPa. Cylindrical samples for simple compression tests were machined 

from an annealed (O-temper) 3.2mm thickness sheet. The annealed sheet showed a strong 

fiber texture with most of the basal planes aligned parallel to the RD-TD plane (see the 

pole figures in Fig. 32 (a)). The average grain size in the sheet was about 8 micrometers 

(µm). As shown in Fig. 32(b), compression samples were machined in different 

orientations and grouped into two sets based on their initial texture with respect to the 

axis of the cylindrical samples. The axis of the first set of cylindrical samples (labeled as 

the loading axis LA in Fig. 32(b)) was parallel to the sheet ND direction, which is also 

parallel to the crystallographic c-axis in most of the grains. The axis of the second set of 

cylindrical samples was perpendicular to the sheet ND, with the crystallographic c-axis in 

most grains perpendicular to the loading axis. Because of the sheet’s geometry, the two 

sets of samples had different initial dimensions: 3.2 mm diameter and 3.2 mm length for 
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the first set (i.e. ND || LA) and 3.2 mm diameter and 5 mm length for the second set (i.e. 

TD-RD || LA).  

 

 
 

Figure 32 (a) Measured pole figures showing the initial texture in the annealed AZ31 sheet. (b) Schematic 

showing the orientations of the cylinders used in simple compression tests performed in this study. (c) 

EBSD inverse pole figure (IPF) map showing orientation of the annealed sheet’s ND direction with respect 

to the local crystal frames, collected in the sheet RD-TD plane. The crystallographic c-axis in most grains is 

closely aligned with the sample ND direction.  

 

 Constant strain rate simple compression tests were performed at a strain rate of 

10-3 sec-1 at room temperature using a screw-driven INSTRON 58R1127. Teflon sheets 

were used between the sample and compression surfaces to reduce frictional effects. The 

tests were interrupted frequently to change the Teflon sheets, typically after true strain 
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increments of about -0.1. The raw data was collected in the form of load and 

displacement, and was corrected for machine compliance [112] before computing the true 

stress-true strain curves. The ND || LA samples were deformed to true strains of 0.012, 

0.065, 0.075, 0.13 and 0.26, whereas the TD-RD || LA samples were deformed to true 

strains of 0.01, 0.025, 0.04, 0.05, 0.06, 0.08, and 0.2. The highest strain levels mentioned 

for each set corresponded to the strain levels where the samples typically failed by shear. 

The later set of samples required more strain steps because of more dramatic changes in 

the microstructure.  

 All samples were prepared for orientation imaging microscopy (OIM) by 

sectioning parallel to the loading direction. The samples were mechanically polished on 

Buehler PowerPro 4000 Specimen Preparation System using a sequence of oil-based 

diamond suspensions of 9, 3, and 1 µm, respectively. This was then followed by fine-

polishing using 1 part 0.02 micron colloidal silica, 1 part ethanol, and 1 part ethylene 

glycol. A final 2-4 seconds etch using a solution of 60mL ethanol, 20mL distilled water, 

15mL acetic acid, and 5mL nitric acid was helpful in improving quality of the electron 

backscatter diffraction (EBSD) patterns. The EBSD data was collected using a 

Orientation Image Mapping (OIM) system [113] attached to a FEI XL30 ESEM at a 

voltage of 20KV. 

To complement the compression tests, a set of tensile tests were conducted by our 

collaborators at General Motors Research, Warren, MI. The tensile data were collected 

on the same material in the same condition.  
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4.2. Results 

The stress-strain curves measured on different samples in each group (at least 

three samples were tested in each group) were found to exhibit very little variance (less 

than 4 %). Figure 33(a) shows representative true stress-true strain response of annealed 

AZ31 sheet measured in simple compression in the two mutually perpendicular directions 

described earlier (see Fig. 33 (b)). A comparison of the two stress-strain curves in Fig. 

33(a) indicates significant anisotropy in the plastic response of the AZ31 sheet. It can be 

seen that the yield stress is about 150 MPa in the ND samples whereas it is about 115 

MPa in the TD-RD samples. The associated strain hardening behaviors shown in Fig. 

33(b) also indicate a major difference. The strain hardening rates plotted in Fig. 33(b) are 

computed numerically from the stress-strain curves shown in Fig. 33(a), and were 

normalized by the shear modulus to facilitate comparisons with published data on other 

hexagonal metals [76,77,114].  

The strain hardening curves for both the ND and the TD-RD samples show 

distinct regimes that are reminiscent of those seen previously in both fcc and hcp metals 

that exhibit deformation twinning [73,76,77,114-117]. In the TD-RD samples, the strain 

hardening response shows three distinct regimes. The first regime reveals a steadily 

falling strain hardening rate that can be attributed to dynamic recovery. At the end of this 

first regime, the strain hardening rate almost drops to zero. This dynamic recovery stage 

is then followed by a second regime of sharply increasing strain hardening rate. This 

second regime is then followed by the final regime of falling strain hardening rate. In the 

ND sample, although the same three strain hardening regimes are seen, the second regime 

of increasing strain hardening rate is significantly less pronounced. The presence of these 
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from -0.01 to -0.08. The inverse pole figure maps are collected on the longitudinal 

section of the compressed samples and reflect the orientation of the loading axis (LA) 

with respect to the crystal reference frame. 

 

Figure 34 Inverse pole figure (IPF) maps showing microstructure evolution of the TD-RD compressed 

AZ31 samples to true strain levels of (A) 0.01, (B) 0.025, (C) 0.04, (D) 0.05, (E) 0.06, and (F) 0.08. These 

maps indicate the orientation of the compression axis with respect to the crystal reference frame. The 

marker shown in these maps corresponds to a length of 100 microns. The color-legend is the same as in 

Fig. 32(c). 
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Figure 35 Pole figures showing texture evolution in the TD-RD compressed AZ31 samples to true strains 

of: (A) 0.01, (B) 0.025, (C) 0.04, (D) 0.05, (E) 0.06, and (F) 0.08. The compression axis lies at the center of 

all the pole figures shown here.  

 

 The microstructure at point A shown in Fig. 34, corresponding to a true strain of  

-0.01, is barely different from that shown in Fig. 32(c) for the initial microstructure. The 

inverse pole figure maps in Fig. 32(c) and Fig 34(a) show very different colors because 

the map in Fig. 32(c) shows the sample ND direction, while the map in Fig. 34 shows the 

compression direction in the TD-RD samples. However, when seen in the same 

projection there is no noticeable difference in these two microstructures. More 

importantly, at this strain level, there is no evidence of deformation twinning in the 

sample. At point B, corresponding to a true strain of -0.025, we observed the first 

evidence of deformation twins, which appeared as plate-like structures within individual 

grains as seen in Fig. 34. Since most of the grains were initially oriented with their c-axis 
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Fig. 35, where the poles on the circumference are the ones that disappear first and re-

appear at the center of the pole figure. It is important to note that the shear strain of 

0.1289 associated with extension twinning corresponds to a maximum axial strain of 

about 0.065. It is therefore quite reasonable to expect the exhaustion of extension 

twinning mechanism in the TD-RD samples after a small amount of axial plastic strain. 

Indeed, the dramatic changes in texture occurred over this very small strain range as 

shown clearly in the pole figures presented in Fig. 35. In fact the texture after a true strain 

of about -0.06 in the TD-RD plane is essentially a { }0001 -fiber texture that is remarkably 

similar to the initial texture in the as-annealed ND sample (see Fig. 32(a)). Not 

surprisingly, the stress-strain curves for these two groups of samples shown in Fig. 33 

look very similar after this small amount of strain in the TD-RD samples.  

In order to quantify the extent of extension twinning, we have plotted in Fig. 37 

the volume fraction of the material with crystallographic c-axis oriented within 20 

degrees of the LA as a function of the imposed plastic strain on the TD-RD samples. The 

plot in Fig. 37 corresponds only to very small plastic strains. It should be noted that the 

small amounts of crystallographic slip that are expected to occur during these very small 

plastic strains are inadequate to re-orient grains in the TD-RD samples from their initial 

orientations (with c-axis about 90 degrees to LA) to the orientations counted in Fig. 37 

(with c-axis within 20 degrees of LA). It should also be noted that the initial texture in the 

TD-RD samples shows a very low volume fraction of grains with the c-axis within 20 

degrees of the LA (see Fig. 32(c)). It is therefore assumed here that much, if not all, of 

the material in these orientations is a consequence of re-orientation by extension 

twinning.  
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Figure 37 Volume fraction of material with crystallographic c-axis oriented within 20 degrees of the 

compression direction in the TD-RD samples. The compressed samples are labeled A to F with 

corresponding strain level indicated in the brackets.  

 

Beyond a true strain of -0.08 there were no noticeable differences either in the 

pole figures or in the IPF maps of the TD-RD compressed samples. It is however seen 

that these additional plastic strains are associated with unusually high strain hardening 

rates, as high as 0.3G (G is the shear modulus of the material). It should be noted that the 

texture in these samples at this strain level is such that plastic strain can only be 

accommodated either by contraction twins or by the 2nd pyramidal <c+a> slip. The only 

hint of the activation of contraction twins was found in the image quality maps where a 

number of dark bands (signifying low image quality) were seen cutting across grains. 

However, the confidence index on the orientation measurements inside these thin bands 

was extremely low. This is to be expected, because it has been shown that contraction 

twins in Mg alloys often lead to “double-twins” with the formation of extension twins 

inside the contraction twins [62-64,66-72]. The dislocation structure inside these double 

twins is very complex and is very likely to preclude the formation of clearly indexable 

EBSD patterns. 
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Now we turn our attention on a set of samples deformed in the ND direction. The 

ND compressed samples provided OIM maps with slightly improved confidence index 

than the TD-RD samples compressed at strains larger than -0.08. The tests performed on 

a set of ND samples were stopped at the true strains indicated by I, II, III, and IV in the 

Fig. 33. Figure 38 shows the inverse pole figure maps and an image quality map collected 

on the longitudinal section and the corresponding pole figures of the ND samples 

deformed to a true strain of -0.012 and -0.065. The dominant operative deformation 

mechanisms in this set of samples could be the pyramidal <c+a> slip or the contraction 

twinning.  Pyramidal <c+a> slip has substantially larger slip vector compared to <a> slip 

and thus, a markedly higher CRSS. It has also been argued that the pyramidal slip in 

magnesium requires thermal activation [55-57]. The dark bands seen in individual grains 

in the image quality map are believed to be contraction twins or double twins. 

 

Figure 38 Inverse pole figure (IPF) maps showing microstructure evolution of the ND compressed AZ31 

samples to true strain levels of (I) 0.012 and (II) 0.065. These maps indicate the orientation of the 

compression axis with respect to the crystal reference frame. The color-legend is the same as in Fig. 32(c). 

Image quality map at II shows high concentration of twin like bands; we believe that these bands represent 

the contraction twin bands. 
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Since the twinning shears associated with extension and contractions twins are 

such that they roughly correspond to a maximum axial strain of about 0.065 when the 

volume fraction of twinning is nearly 100%, it is clear that a significant portion of the 

plastic strain in this sample has been accommodated by other mechanisms. Given the 

texture in this sample, it is most likely that the 2nd pyramidal <c+a> slip is the other 

dominant deformation mechanism in this sample. It was seen that the texture did not alter 

noticeably from the initial texture in the sample. This once again indicates that the 

volume fraction of the material occupied by the deformation twins in the ND compressed 

samples is quite small.  

Figure 39(a) shows a comparison of the measured true stress-true strain responses 

in simple compression and simple tension tests in the TD direction. A significant 

asymmetry is noted in the measured compressive and tensile yield strengths, which are 

estimated to be 115 MPa and 160 MPa from Fig. 39(a). The difference in the strain 

hardening behavior in these two deformation modes is clearly evident from Fig. 39(b). 

We have observed earlier that compression along TD produced extension twins in the 

sample (see Figures 34 and 35). In tensile loading along TD, we expect the formation of 

contraction twins in at least some of the crystals. It has been speculated in literature that 

the tension-compression asymmetry observed in Mg alloys is due to the activation of 

different slip/twin systems (i.e. extension and contraction twins) in the two different 

modes of deformation [64,118]. However, a closer look at the yield phenomenon in the 

two tests indicates that the apparent differences in the yield points are much more a 

consequence of the different hardening responses in these two tests. Figure 39(c) shows 

an expanded view of the comparison between the measured stress-strain curves shown in 
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4.3. Discussion 

The microstructure evolution and stress-strain responses measured in TD-RD 

compressed and ND compressed AZ31 samples showed major differences only in the 

early stages of deformation (see Fig. 33). Although there was a major difference in the 

starting textures in these samples, the texture in TD-RD after a true strain of about -0.06 

was essentially identical to the starting texture in the ND samples. This abrupt change in 

the underlying texture can only be explained by profuse extension twinning in the 

sample. After the low strains in the TD-RD samples where this texture transformation 

takes place, the flow stress, the strain hardening rates, and the underlying microstructures 

in both sets of samples tested were remarkably similar.  

In previous studies on fcc and hcp metals, it was observed that deformation 

twinning produced significant strain hardening by two primary mechanisms: (i) a 

reduction of slip length due to grain refinement by production of twins, and (ii) a glissile 

to sessile transformation of the pre-existing dislocations in the twinned regions as a result 

of the twinning shear transformation. However, the extension twins observed in AZ31 

studied here did not produce the expected high strain hardening rates. This can be 

explained by recognizing that the extension twins in AZ31 often grew rapidly to 

encompass the entire grain, and therefore did not alter significantly the available slip 

length. Furthermore, the extension twins appeared very early in the deformation process 

before the accumulation of any significant dislocation density in the sample. 

Consequently, we observe that extension twinning in AZ31 produced a modest amount of 

plastic strain (about 6.5% axial strain) without appreciable strain hardening in the sample. 
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On the other hand, other deformation regimes in the tests have been associated 

with unusually high strain hardening rates that appear to correlate with the possible 

activation of both contraction twins and 2nd pyramidal <c+a> slip. These high strain 

hardening rates not only impart significant anisotropy in the mechanical response of 

AZ31, but also induce an apparent asymmetry in the tension-compression yield values. 

The normalized stress-strain curves and strain-hardening rates in AZ31 measured here are 

compared to corresponding results reported previously for α-Ti [76,77,114] in Fig. 40. It 

is important to note that the α-Ti sample was also annealed and exhibited a strong c-axis 

fiber texture at the start of the compression. The normalization in Fig. 40 was performed 

using the respective shear moduli of both materials, after subtracting the respective initial 

yield values from the flow stresses to filter out the effects of solid solution, impurities, 

and grain-size.   

 

Figure 40 A comparisons of the normalized true stress-true strain responses and normalized strain 

hardening rates during simple compression of α-Ti and AZ31 with similar initial textures. 

 

The comparison in Fig. 40 clearly demonstrates that the strain hardening rates in 

AZ31 for the most part (except for the deformation regimes involving extension twins) 

are significantly higher than in α-Ti. As a consequence of these high strain hardening 
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rates, the flow stresses increase sharply after only a small amount of plastic strain. The 

relatively high stress levels may be responsible for initiation of various damage 

mechanisms and the limited ductility exhibited by these samples. In this regard, it is also 

interesting to note that the peak stresses reached by both the ND and TD-RD compressed 

samples before final failures are quite similar.   

It is well known that the increase in flow stress corresponds approximately to 

ρbG , where b denotes the magnitude of the Burgers vector and ρ  is the dislocation 

density. Based on this relationship, we estimate the dislocation density in our samples at 

the highest flow stress levels to reach 22 x 1012 m-2 , which is consistent with 

measurements summarized in  [119] for similar samples by more reliable techniques. 

Furthermore, the plastic strain increment is expected to be proportional to Lbρ  where L 

is the corresponding average slip distance in that plastic strain increment. For the samples 

tested in this study, it is estimated that the average slip distance at the highest strain 

hardening rates measured was of the order of 1.2 μm (note that average grain size in our 

starting material was about 8 μm). This reduction in slip length could be a consequence 

of two factors: (i) formation of families of very thin contraction twins, and (ii) difficulties 

in activation of non-basal slip. Clearly, there is a critical need for high resolution OIM 

and TEM studies to establish precisely the physical origin of these unusually high 

hardening rates.  

The discussion above leads us to conclude that an important factor controlling the 

ductility of AZ31 is the production of thin contraction twins. The very thin morphology 

of these contraction twins suggests that they are unable to grow significantly, whereas the 

extension twins are able to grow quickly and encompass the entire grain in many cases. 
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In order to obtain a better understanding of the process of deformation twin formation 

and growth, let us follow carefully the sequence of changes occurring in the sample. A 

deformation twin presumably appears in a grain when the stress conditions are such that 

the formation of the twin is preferable compared to the other possible alternatives 

(including slip and other twin systems). If we assume that the driving force for the 

activation of a slip or a twin system is the resolved shear stress ( ατ ) on that specific 

system and that there is a critical value of the slip or twin resistance ( ατ c ), then it is 

reasonable to postulate that the ratio αα ττ c  controls which slip or twin system gets 

activated in a given grain subjected to a given loading condition. Let us now focus on a 

grain that is favorably oriented and stressed for the formation of a selected twin system 

(i.e. αα ττ c  is the highest in this grain for the selected twin system compared to all other 

possible deformation modes). However, as soon as a deformation twin is nucleated, it 

alters significantly the stress field inside the region now occupied by the twin as well as 

the neighboring matrix regions. As a consequence, the values of αα ττ c for the different 

possible deformation modes will change significantly both inside the twin as well as in 

the neighboring matrix regions. If the value of αα ττ c  continues to be the highest for the 

activation of the same deformation twin system in the matrix regions (as it was before the 

formation of the deformation twin), then the existing twin can grow unimpeded or other 

deformation twins of the same family can nucleate in matrix and coalesce with the 

existing ones, leading to a thickening of the deformation twin. However, if the production 

of a deformation twin alters the stress field such that other deformation modes are 

favored either inside the twinned region or in the adjacent matrix regions, it will lead to a 
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significant heterogeneity in the deformation modes inside and outside the twin. Any such 

heterogeneity will lead to a loss of coherency at the twin-matrix boundary, which in turn 

should arrest the growth of the deformation twin. 

The loss of coherency at the twin-matrix boundary was previously documented in 

transmission-electron microscopy studies in low stacking-fault energy fcc metals 

[73,115-117]. In fcc metals, where there is an abundance of potential slip and twin 

systems and the values of slip and twin resistances are relatively close to each other, the 

formation of a deformation twin is very likely to alter the local stresses adequately to 

initiate a substantial heterogeneity in the active deformation modes inside and outside the 

twin. It is therefore, quite reasonable that the deformation twins in fcc metals are very 

thin [73,115-117]. Conversely, it has been observed that the deformation twins in α-Ti 

are significantly thicker [76,77,114] and this can be reconciled with the concepts 

described above by acknowledging the availability of a limited number of slip and twin 

systems and the significant differences that exist in the values of the slip and twin 

resistances in this material. Extending these concepts to AZ31, we would have concluded 

that the deformation twins in AZ31 should be substantially thicker compared to α-Ti 

because (i) the available slip systems in AZ31 are more restricted, and (ii) the differences 

in slip and twin resistances are relatively larger. Indeed, the extension twins we observed 

in this study are very large and often encompass the entire grain in many cases, consistent 

with the hypotheses laid out above. However, the contraction twins do not seem to follow 

the same trend. 

In an effort to understand the physical origin of the observed differences in the 

morphologies of the extension and contraction twins, we studied the ensuing changes in 
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the stress fields due to the formation of a deformation twin using crystal plasticity based 

finite element models implemented in ABAQUS [5]. A total of four loading conditions 

were explored. These corresponded to tension and compression along the 

crystallographic c-axis in the matrix, and to tension and compression along a direction 

normal to the c-axis in the matrix. Our studies on these four loading conditions indicated 

that the results essentially fell into two major groups. The compression along the c-axis 

and tension along a direction normal to the c-axis produced qualitatively the same 

insights, and therefore only the former are presented and discussed here. Likewise, 

tension along the c-axis and compression along a direction normal to the c-axis also 

provided qualitatively similar insights, and once again only the former are presented and 

discussed in this thesis.  

Current implementations of crystal plasticity models in finite element models are 

not capable of accounting explicitly the crystal lattice re-orientation caused by 

deformation twinning. Therefore our strategy here is focused on simulating the elastic-

plastic stress fields in a twin-matrix composite that would result after the production of 

the twin variant of interest. This required the development of two different finite element 

meshes (one for each set of loading conditions described above) containing roughly 

12,000 3-D continuum solid elements. These meshes are shown in Fig. 41 and were 

designed to capture all of the geometric the details of the selected twin variant-matrix 

system. For the compression along the c-axis the contraction twin variant produced by the 

( ) [ ]21101110  twin system was selected as it would be one of the twin systems 

predicted to be active by the simple Schmid analyses (assuming a uniaxial compressive 

stress). Similarly, for tension along the c-axis the extension twin variant produced by 
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( ) [ ]10112110  twin system was selected here for the analyses. In both meshes, each 

element was associated with an appropriate initial crystal lattice orientation to reflect the 

expected lattice orientation dependence between the twin and the matrix. Likewise, we 

ensured that the twin-matrix boundary coincided with the expected crystallographic habit 

plane for both the twin and the matrix in each model.  

For analyses of the results obtained from the finite element simulations, two 

specific groups of elements were identified in the finite element mesh to compute the 

average stresses in the twinned region and the matrix region close to the twin. Only the 

interior elements were selected in these regions as highlighted in one of the meshes in 

Fig. 41. The exterior elements were excluded to mitigate any influence of the boundary 

conditions imposed in the simulation, which corresponded to simple compression and 

simple tension, respectively.  

 

 

Figure 41 Finite element meshes used in simulating the stress fields in the matrix-twin composite: matrix-

extension twin on the left and matrix-contraction twin on the right. The crystallographic c-axis in the matrix 

was selected to be coincident with the loading direction 3 in the FEM models. The elements used for 

computing average stresses in the twinned region and in the matrix region are highlighted in the mesh 

shown on the left. 
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The simulations were performed assuming that the critical resolved shear stresses 

for the basal, prismatic, pyramidal and twin modes were in the ratio 1:5:6:2 [67]. Note 

that the extension and contraction twins were assigned the same values of twin resistance 

and deformation twinning was considered as a pseudo-slip mode (i.e. the lattice re-

orientation due to additional deformation twining was not accounted). Work hardening 

was not considered and the simulations were only performed up to a strain of 0.004, 

which was enough to initiate a distinct regime of plastic strain in the composite. Other 

details of the elastic-viscoplastic crystal plasticity framework used in this study can be 

found in our previous publications [5,85,120].  

The results from the finite element simulation for compression along the c-axis 

are tabulated in Table 3, along with the results from a simple Schmid analysis assuming 

an unaxial compressive stress state in both the matrix and the twin. In this loading 

condition, the elastic-plastic finite element simulations indicate that αα ττ c  is highest for 

the activation of extension twins inside the already existing contraction twin, higher than 

even the value of αα ττ c  for continued production of new contraction twins in the 

matrix. It should be noted that there are numerous prior reports of the formation of 

extension twins inside contraction twins in deformation studies on Mg alloys. The finite 

element results presented here for this case are therefore in full accord with these 

experimental observations. In fact, the extension variant predicted by the finite element 

simulation is ( ) [ ]11102110 , which is also the one reported experimentally [67]. As 

soon as the extension twins are produced inside the contraction twin, the original 

boundary between the contraction twin and the matrix will lose coherency and should 

become immobile. This explains why the contraction twins remained thin in our samples 
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when compressed along the c-axis, which in turn leads to production of new contraction 

twins in the same grain. In the process, the contraction twins dramatically reduce the 

effective slip length in the sample, and are highly potent in strain hardening Mg alloys. 

Note that the finite element models described above satisfy equilibrium and 

compatibility conditions (in the weak numerical sense) and thereby aim to capture more 

accurately the stress fields in the matrix-twin composite. As shown in Table 3, a simple 

Schmid analyses assuming an uniaxial stress state in both the matrix and the twin 

indicates that αα ττ c is highest for basal slip inside the newly formed contraction twin. 

Although the activation of basal slip inside the twin would also lead to heterogeneity in 

the active deformation modes (there is not enough driving force for basal slip in the 

matrix), the reported experimental observations do not support this prediction [72]. 

 

Table 3 Comparison of predicted driving forces for various deformation mechanisms in a contraction twin-

matrix composite based on the crystal plasticity finite element models and the highly simplified (uniform 

stress) Schmid model.   
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CTW ττ
 

contraction twins 

TTW
c

TTW ττ
 

extension twins 

BAS
c

BAS ττ
 

a - slip
 

PRI
c

PRI ττ
 

a – slip
 

PYR
c

PYR ττ
 

a – slip
 

PYR
c

PYR ττ
 

(c + a) - slip 

Twin matrix twin matrix twin matrix twin matrix twin Matrix twin matrix 

FEM 
Analysis 

0.0 2.69 2.85 0.0 0.9 0.15 0.74 0.02 0.67 0.03 0.73 0.95 

Schmid 
Analysis 

0.45 1.0 0.53 0.0 1.93 0.0 0.26 0.0 0.36 0.0 0.22 0.36 

 

The finite element model predictions for the extension along the c-axis along with 

the corresponding predictions from the simple Schmid analysis are summarized in Table 

4. These results indicate that αα ττ c  continues to be highest for the activation of 
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extension twins in the matrix. More importantly, the driving force for the formation of 

compression twins inside the extension twins is significantly lower, especially when it is 

recognized that the amount of twinning scales with ( ) m
c

/1αα ττ , where m (the rate-

sensitivity parameter) takes very small values (typically of the order of 0.01). 

Consequently, we should expect extension twins to propagate unimpeded (either by 

growth of existing deformation twins and/or their coalescence). 

 

Table 4 Comparison of predicted driving force for the various deformation mechanisms in an extension 

twin-matrix composite based on the crystal plasticity finite element models and the highly simplified 

(uniform stress) Schmid model.   
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 

1. It has been demonstrated that it is possible to speed up the crystal plasticity 

calculations by two orders of magnitude for both FCC and HCP metals using a 

compact database of Discrete Fourier Transforms (DFTs). It was seen that a 

limited set of dominant transforms adequately captured the dependence of the 

stresses, the lattice spins, and the strain hardening in individual crystals as a 

function of their lattice orientation and the applied deformation mode. A 

computationally efficient spectral interpolation scheme was devised and 

implemented to recover values of these functions for any selected combination of 

crystal orientation and deformation mode using only the dominant DFTs. The 

case studies revealed tremendous savings in the computational time, and provide a 

significant incentive for incorporation into the finite element simulations of bulk 

deformation processing operations. The significantly improved computational 

speed of the DFT method provided an engine for the fast computation of the yield 

surfaces, for the delineation of the uniform ductility-ultimate tensile strength 

closures, and for the process design.  

The orientation distribution function (ODF) is an important tool to quantify the 

crystallographic texture in polycrystalline materials. Traditionally the ODF has 

been represented in terms of generalized spherical harmonics, which are 

computationally expensive.  In this thesis, a new representation of the ODF in 

terms of discrete Fourier transforms (DFT) was presented.  By exploiting the well 

know efficiency of FFT algorithms a spectral representation of texture readily 
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implemented in any programming language without the need for specialized GSH 

libraries was developed. In developing the DFT framework , a rectangular region, 

FZ3, was identified for cubic crystals that is 3 times the standard cubic-triclinic 

fundamental zone whereas a rectangular region, FZ, for hexagonal crystals in the 

Bunge-Euler space, which can easily be discretized into a regular grid.  A 

mapping from both FZ3 for cubic and FZ for hexagonal, into the periodic Bunge-

Euler space preserves a regular grid where the DFT calculations can be 

performed. These observations have been exploited in the all computations 

presented in this work. 

2. It has been observed that the Fourier coefficients for cubic materials 

corresponding to the boundary points on first-order elastic-plastic closures that do 

not require consideration of texture evolution are independent of the single crystal 

properties. This key observation enabled development of a new strategy for 

computing quickly the elastic-plastic closures of interest for a broad range of 

cubic materials. The new strategy involves computing and storing the set of 

Fourier coefficients corresponding to the boundary points on the closures of 

interest, and using this set of coefficients repeatedly with different material 

systems to quickly produce an atlas of property closures. This strategy has been 

successfully demonstrated with a few different combinations of pairs of effective 

elastic and plastic properties.  

3. The delineation of property closures based on both the DFT and the GSH 

representation of the dependence of elastic and plastic properties on the local 

lattice orientation have been demonstrated. Both of these spectral approaches 



 

 

112

provided identical answers. The maximum number of Fourier coefficients needed 

for the same variables in GSH representations was less than in the DFT 

representation, which means that the GSH representations are indeed more 

efficient in capturing the function with a smaller number of terms in the Fourier 

expansions. However, the DFT computations are significantly faster by at least 

two orders of magnitude because of the FFT algorithms. 

4. Examples of closures with both orthorhombic and triclinic assumptions of the 

sample symmetry were presented. The delineation of the property closures for the 

triclinic textures required construction of the yield surfaces. The yield surfaces 

provided solutions for the tensile yield stress. From the presented examples, it was 

evident that there are indeed more property combinations available if triclinic 

sample symmetry in the material is assumed.  

5. It was demonstrated that the underlying spectral framework of the MSD 

methodology facilitates an efficient consideration of the complete set of 

crystallographic textures in the design optimization. The benefits of the approach 

were successfully demonstrated with a specific design case study. It was seen that 

the overall performance is strongly influenced by the crystallographic texture in 

the sample.  

6. Extensions to the MSD framework that facilitate delineation of a new class of 

property closures were presented. This new class of closures deals with properties 

associated with finite plastic strains (e.g. ultimate tensile strength and uniform 

ductility) and requires an explicit consideration of strain hardening and the 

concomitant evolution of the crystallographic texture. A new mathematical 
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procedure for successful delineation of these closures has been described and 

demonstrated.   

7. Several examples of closures for selected combinations of plastic properties were 

obtained for two specific metal alloys. It was seen that the closures obtained were 

sensitive to the slip hardening characteristics exhibited by the alloys. Furthermore, 

it was also observed that the best textures that correspond to the optimized 

combinations of macroscale plastic properties were somewhat different for the 

two metals studied. This implies that different processing routes would be needed 

in the different metals to achieve the best possible performance. All of the 

examples presented in this study highlight the clear need and potential for the 

development of novel processing routes resulting in superior combinations of 

plastic properties in metallic alloys.  

8. The MSD methodology has also been extended to address process design 

solutions where the goal is to identify a processing recipe to transform a given 

initial texture into an element of a desired set of textures, using an arbitrary 

combination of available manufacturing options. The advantages of this new 

approach were demonstrated using two case studies. In both cases, the texture 

network approach described here produced solutions that could not be arrived at 

by pure intuition or by brute-force methods (constant performance maximization 

or repeated trials).  

9. It was observed that deformation twinning played a dominant role in the 

anisotropic stress-strain response and the concomitant microstructure evolution in 

the room temperature plastic deformation of AZ31 alloy. In particular, it was 
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observed that the extension twins in AZ31 appear to thicken relatively fast and 

encompass the entire grain in many instances, whereas the contraction twins 

remained fairly thin. Finite element simulations of twin-matrix composites 

revealed that there exists a relatively large driving force for the immediate 

formation of an extension twin inside the contraction twin, which in turn impedes 

the growth of the parent contraction twin. As a consequence, the contraction twins 

remain thin. Consequently, they are much more effective than extension twins in 

reducing the available slip length and enhancing strain hardening rates. 

Furthermore, the inability of the propagation of contraction twins indirectly 

promotes the alternative mechanisms of plastic deformation in the sample. In the 

samples tested in this study, this alternative mechanism is expected to be the 2nd 

pyramidal <c+a> slip. The forced activation of this non-basal slip mechanism 

may be responsible for the high strain hardening rates observed in our tests. In 

summary, the striking differences in the morphologies of the extension and the 

contraction deformation twins play a critical role in the strong anisotropy, the 

unusually high strain hardening rates, the apparent tension-compression 

asymmetry, and the damage initiation and the final failures exhibited by AZ31. 

  

5.2. Suggestions for Future Work 

1. Implementation of spectral crystal plasticity material subroutine into the FEM 

environment allowing for fully coupled simulations of the anisotropic stress-strain 

behavior and the texture evolution. An important consequence of this 

accomplishment would be avoiding the Taylor iso-strain simplification.  
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2. Development of second-order crystal plasticity theories to account for grain 

interactions and strain localization. 

3. Development of the physics-based crystal plasticity models for Mg alloys.  

4. Delineation of the elastic-plastic property closures using higher order statistics to 

improve the prediction.  

5. Continuation of the building of process networks by exploring alternative 

algorithms, different initial textures, different prioritizing factors in building the 

network such as restrictions to subset of readily available deformation processing 

operations and a consideration of the cost associated with each specific 

deformation operation.  
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APPENDIX A: DEFINITIONS OF SELECTED MACROSCALE MATERIAL 
PROPERTIES USED IN THIS WORK 

 
 

 
The effective elastic behavior of polycrystalline metals of interest in this study 

can be expressed through a generalization of the Hooke’s law. The components of the 

local elastic stiffness tensor for both FCC and HCP metals can be written as a function of 

the local crystal orientation and the fundamental elastic crystal constants [86-88]. As an 

example, the components of the local elastic stiffness tensor for cubic metals can be 

written as a function of the local crystal orientation as 

  

(A.1) 

where  are the components of an orthogonal coordinate transformation matrix relating 

the crystal reference frame to the sample reference frame, and , , , are the 

fundamental elastic constants of a cubic crystal. 

A common formalism for describing anisotropic yield surfaces is the 

orthorhombic Hill’s yield surface description [121]. The anisotropic material yield 

parameters can be estimated for a polycrystalline material using an extended version of 

the Taylor’s model and the Sachs model [89]. These models constitute upper bound and 

lower bound predictions for the macroscopic yield strengths, respectively.  

In evaluating tensile yield strength 1yσ  for orthorhombic textures using the 

Taylor-type model, the macroscopic velocity gradient imposed on each crystal (see Eq. 

3.7) can take any value in the range ⎟
⎠
⎞

⎢⎣
⎡∈

2
,

6
ππθ . The local stresses computed by the rigid-
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body Taylor model are deviatoric. The hydrostatic component can be computed by 

establishing the value of θ  (denoted as *θ ) for which the averaged lateral stresses over 

the polycrystal are equal to each other, i.e. ( ) ( )θθ '' σ σ 2233 =  . The tensile yield strength of 

the polycrystal in the e1-direction is then computed as 

 

                                          ( ) ( )*'*'
y σσσ θθ 22111 −= .                                           (A.2) 

 

Note the tensile yield stress for textures not possessing the orthorhombic sample 

symmetry cannot be computed using the above methodology. In the samples with no 

orthorhombic sample symmetry the shear stress components do not cancel each other. 

One way to compute the tensile yield stress for the triclinic textures is using the yield 

surface, which was the method adopted in this work.  

 The R-ratio (also called the Lankford parameter) represents the ratio of the true 

width strain to the true thickness strain in a tensile test. The R-ratio is a prime example of 

a macroscale plastic property of the metal that is of significant interest in sheet metal 

forming operations. It is generally acknowledged that higher values of R enhance the 

workability of sheet metal products. It always applies to the samples with orthorhombic 

sample symmetry, so the value of 1R (value of R when loaded in tension in the e1-

direction) is then defined as 

 

   ( )*

*

1 cos
3

cos

θ

θ
R

⎟
⎠
⎞

⎜
⎝
⎛ +

−=

π

.                                                     (A.3) 
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The method described above can be similarly extended to computation of 2R  and 3R .  

Uniform ductility ( ue ) and the ultimate tensile strength ( UTSσ ) are defined using the 

Considere’s criterion [122].  To facilitate the computation of these variables from Taylor-

type models, the evolution of the true stress-true strain curve in tension is analyzed to 

establish the point of necking as 

 

n
n

d
d σ
ε
σ

εε

=
=

,                    (A.4) 

 

where nσ and nε  denote the true stress and true strain at the point of necking. The 

uniform ductility,  ue , and the ultimate tensile strength, UTSσ , are then easily computed as 

  

( )
n

n
UTSnu e

e
+

=−=
1

,1exp
σ

σε .                  (A.5) 
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APPENDIX B: PROCEDURES FOR DELINEATION OF CLOSURES FOR 
PROPERTIES THAT DO NOT REQUIRE CONSIDERATION OF STRAIN 

HARDENING AND CRYSTALLOGRAPHIC TEXTURE EVOLUTION 
 
 

 
 Delineation of a first-order closure requires evaluation of volume averaged 

quantities. As an example, consider the expression for 1111C   using both GSH 

representation [47] and DFT representation developed here: 

 

    ( ) ⎥⎦
⎤

⎢⎣
⎡ +−−++= ∑

=

3
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⎢⎣
⎡−−++= ∑

=                             
(B.2) 

 

 In Eqs. (B.1 and B.2), C11, C12, and C44 denote the three independent elastic stiffness 

parameters for cubic crystals (these represent the elastic stiffness of the single crystal in 

Voigt notation and define the elastic anisotropy for cubic crystals as 

( )1211442 CCCA −= ) and μν
lA1111  and k1111 P~  denote the property coefficients (see Eq. 

2.19 for the GSH or 3.5 for the DFT representation) for the selected stiffness component. 

Equations (B.1 and B.2) indicate that the complete set of textures corresponding to a 

prescribed value of 1111C would lie on a plane in the Fourier space described earlier. If this 

plane intersects the hull shown in Fig. 6, it implies that the prescribed value of 1111C  is 

actually feasible in the material system being studied. More importantly, we recognized 

the geometry (i.e. orientation) of these iso-property planes in the Fourier space is 

completely independent of the values of C11, C12, and C44. A similar conclusion holds 



 

 

130

when volume averaged plastic stresses are considered in the evaluation of the bounds for 

effective yield properties or the effective R-values. In the case of plastic properties, the 

geometry of the iso-property planes can be shown to be independent of the value of the 

slip resistance, s (which has been assumed here to be the same for all crystals in the case 

of cubic polycrystalline metals). 

 Only some of the bounds for the effective elastic-plastic properties of interest are 

given directly by the volume averaged values. Clearly, several of the bounds are complex 

nonlinear functions of the volume averaged values (see Eqs. 2.13 – 2.15). In such cases, 

the complete set of textures corresponding to a prescribed value of the bound corresponds 

to an iso-property surface in the Fourier space [46].  It is discovered in this work that the 

geometry of the iso-property surfaces for all of the elastic-plastic bounds associated with 

cubic-orthorhombic textures is completely independent of the values of the fundamental 

single crystal elastic and plastic properties (i.e. independent of C11, C12, and C44 and s). In 

other words, a given iso-property surface for one cubic material system would also be an 

iso-property surface for another cubic material system, except that the given surface 

would correspond to different values of the effective property in the two different 

material systems. 

Consider two iso-property surfaces corresponding to the bounds of two different 

effective elastic-plastic properties of interest. In identifying the first-order closures, we 

are now only interested in the intersections of these iso-property surfaces on the surface 

of the texture hull, as these would correspond to the points on the boundary of the first-

order property closure we seek. Because the geometry of the iso-property surfaces for 

elastic-plastic properties of interest are independent of the single crystal properties, we 
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can conclude that the Fourier coefficients corresponding to the boundary points on the 

first-order property closures should also be independent of the single crystal properties 

for the class of cubic-orthorhombic materials being considered here. 

 An important consequence of the above observation is that it provides a new 

strategy for quick computation of first-order property closures for a broad range of cubic 

materials. This is because one needs to do the complicated searches described in the 

previous section for the boundary points on the desired closure only once, and document 

all of the corresponding Fourier coefficients. Once these Fourier coefficients are stored 

appropriately, computation of the same property closure for a different material can be 

accomplished with minimal computational effort because it only involves evaluation of 

the effective properties for the catalogued list of Fourier coefficients. We have verified 

this observation extensively, and found it to hold true in all of the case studies we 

conducted on the properties that do not require consideration of the texture evolution. It 

should be noted that this procedure holds true for both GSH and FFT descriptions.  
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APPENDIX C: PROCEDURE FOR DELINEATION OF CLOSURES FOR 
PLASTIC PROPERTIES REQUIRING EXPLICIT CONSIDERATION OF 

STRAIN HARDENING AND CRYSTALLOGRAPHIC TEXTURE EVOLUTION 
 
 

 

Procedure for the delineation of property closures addressed in the prior section 

was only for the properties associated with a static microstructure (i.e. the evolution of 

texture with imposed deformation and concomitant strain hardening were not 

considered). This approach could not be extended in simple ways for properties that need 

to explicitly account for microstructure evolution. A novel scheme to delineate the 

property closures of the properties associated with finite strains is described here.  

The methodology explored here for building first-order closures starts with a 

consideration of a set of points in the texture hull that correspond to “eigen textures” [38]. 

Because of the orthorhombic sample symmetry used in this study, each eigen texture 

corresponds to the texture produced by a set of four equi-volume single crystals that are 

selected to satisfy the orthorhombic symmetry at the sample scale. The set of eigen 

textures is selected while ensuring an adequate coverage of the fundamental zone (FZ). 

The property combinations for these eigen textures are first evaluated using the spectral 

linkages described in the previous sections.  A finite number of textures corresponding to 

the boundary of this closure were then selected. The macroscale property combinations 

for the weighted combinations of these textures, taking one pair of textures at a time, 

were evaluated systematically (considering all possible combinations of pairs of the 

selected textures). As expected, these computations revealed that some of the property 

combinations outside the eigen-texture closure were indeed possible, i.e. the results 

expanded the closure. Once again a new set of textures corresponding to the new 
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boundary of the expanded closure were selected (this time these were a mixture of eigen 

textures and non-eigen textures) and the property combinations corresponding to the 

weighted combinations of these (for all possible pairs of selected textures) were evaluated 

to see if they further expanded the closure. This process was repeated until the closure did 

not expand in any discernable way. The method described above to produce a closure 

essentially follows the main ideas underlying genetic algorithms, where good solutions 

are pre-selected (as we have done here by selecting the textures producing property 

combinations on the boundary of the closure) and “mutations” or “cross-overs” (weighted 

combinations of textures in our approach) are explored.  
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APPENDIX D: SPECTRAL CRYSTAL PLASTICITY CODE FOR FCC METALS  
 
 
 

The following code computes the texture evolution and the anisotropic stress-strain 
response in any deformation process defined by the velocity gradient tensor. 

 

load Fo_ns_11.mat 
load Fo_ns_22.mat 
load Fo_ss_12.mat 
load Fo_ss_13.mat 
load Fo_ss_23.mat 
load Fo_ws_12.mat 
load Fo_ws_13.mat 
load Fo_ws_23.mat 
load Fo_GD.mat 
load Super_set.mat 
% return 
  
load Initial_1000_random.txt 
  
Total_Time = 1000; % User enters 
L = [ 0 0.001 0; 0 0 0; 0 0 0];  
So = 16.0; 
ho = 180.0; 
Ss = 148.0; 
exp_a = 2.25; 
  
Strain_Increment = .05; 
mo = 0.01; % The rate sensitivity parameter 
DGo = 0.001; % Reff. slip rate 
s_ref = 100.0; % Reff. slip resistance 
  
D_app_sa = 1/2.*(L+L'); 
W_app_sa = 1/2.*(L-L'); 
  
[V_eig,D_eig] = eigs(D_app_sa, 3, 'lm'); 
  
  
V_eig(:,3) = cross(V_eig(:,1),V_eig(:,2)); 
  
eps_dot = norm(D_eig, 'fro'); 
  
if D_eig(1,1) < 0 
    eps_dot = -eps_dot; 
end 
  
Total_Strain = eps_dot*Total_Time; 
DT = Strain_Increment/eps_dot; 
n_steps = round(Total_Time/DT); 
  
D_unit = D_eig./eps_dot; 
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DT = Total_Time/n_steps; 
  
theta = atan2((-2*D_unit(1,1)-D_unit(3,3)), sqrt(3)*D_unit(3,3)); 
% keyboard 
if theta<0 
    theta = theta+pi; 
end 
  
Q_p_sam = reshape(V_eig, 1, 9); 
  
W_app_pr = V_eig'*W_app_sa*V_eig; 
  
 
[eul] = RotateIntoFZ(Initial_1000_random, 0, 0, 0, Q_p_sam, 0, 
n_steps); 
  
sizeF = [120, 120, 120, 120]; 
m_fine = 3; 
  
sizeF = sizeF.*m_fine; 
  
termsdim4 = m_fine.*ones(1,size(eul,1)).*round(rad2deg(theta))/3; 
% termsdim4 = 15.*ones(1,size(eul,1)); 
No = numel(Initial_1000_random(:,1)); 
s_dot = So*ones(No,1); 
tic 
  
strain = ([0:Strain_Increment:Total_Strain])'; 
STRESS_VEC = zeros(1,6); EQ_STRESS = 0; 
for jj = 1:n_steps 
    jj 
    Super_mat = 2*exp(2*pi*i/sizeF(1).*((Super_set(:,1)-1)*(eul(:,3))' 
+ (Super_set(:,2)-1)* ... 
        (eul(:,2))' + (Super_set(:,3)-1)*(eul(:,1))' + (Super_set(:,4)-
1)*(termsdim4))); 
  
    sum_gamma_dot = real(Fo_GD.'*Super_mat./prod(sizeF./m_fine)); 
  
    stress_11 = real(Fo_ns_11(:,1).'*Super_mat./prod(sizeF./m_fine)); 
    stress_22 = real(Fo_ns_22(:,1).'*Super_mat./prod(sizeF./m_fine)); 
    stress_12 = real(Fo_ss_12(:,1).'*Super_mat./prod(sizeF./m_fine)); 
    stress_13 = real(Fo_ss_13(:,1).'*Super_mat./prod(sizeF./m_fine)); 
    stress_23 = real(Fo_ss_23(:,1).'*Super_mat./prod(sizeF./m_fine)); 
  
    w_12 = real(Fo_ws_12(:,1).'*Super_mat./prod(sizeF./m_fine)); 
    w_13 = real(Fo_ws_13(:,1).'*Super_mat./prod(sizeF./m_fine)); 
    w_23 = real(Fo_ws_23(:,1).'*Super_mat./prod(sizeF./m_fine)); 
  
    s_dot = s_dot + ho.*(1-
(s_dot./Ss)).^exp_a.*(eps_dot/DGo).*sum_gamma_dot'.*DT; 
  
    
[eul]=RotateIntoFZ(deg2rad(eul),(eps_dot/DGo).*w_12'.*DT+W_app_pr(2,1).
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*DT, (eps_dot/DGo).*w_13'.*DT+W_app_pr(3,1).*DT, 
(eps_dot/DGo).*w_23'.*DT+W_app_pr(3,2).*DT, Q_p_sam, jj, n_steps); 
  
    S11(jj) = mean(s_dot.*stress_11'./100); 
    S22(jj) = mean(s_dot.*stress_22'./100); 
    S12(jj) = mean(s_dot.*stress_12'./100); 
    S13(jj) = mean(s_dot.*stress_13'./100); 
    S23(jj) = mean(s_dot.*stress_23'./100); 
  
     
    STRESS_Mat = ((eps_dot/DGo).^mo).*sign(eps_dot/DGo).*[S11(jj), 
S12(jj), S13(jj); S12(jj), S22(jj), S23(jj); S13(jj), S23(jj), -
(S11(jj)+S22(jj))]; 
    STRESS_TENSOR = [V_eig*STRESS_Mat*V_eig']; 
   
    EQ_STRESS = [EQ_STRESS; sqrt(1/2.*((STRESS_TENSOR(1,1)-
STRESS_TENSOR(2,2)).^2+(STRESS_TENSOR(1,1)... 
  -STRESS_TENSOR(3,3)).^2+(STRESS_TENSOR(2,2)-
STRESS_TENSOR(3,3)).^2)+... 
  
3*STRESS_TENSOR(1,2).^2+3*STRESS_TENSOR(1,3).^2+3*STRESS_TENSOR(2,3).^2
)]; 
  
    EQ_STRESS_1 = [ sqrt(1/2)*sqrt((STRESS_TENSOR(1,1)-
STRESS_TENSOR(2,2)).^2+(STRESS_TENSOR(1,1)... 
  -STRESS_TENSOR(3,3)).^2+(STRESS_TENSOR(2,2)-
STRESS_TENSOR(3,3)).^2+... 
  
6*STRESS_TENSOR(1,2).^2+6*STRESS_TENSOR(1,3).^2+6*STRESS_TENSOR(2,3).^2
)]; 
     
STRESS_VEC = [STRESS_VEC; [STRESS_TENSOR(1,1), STRESS_TENSOR(2,2), 
STRESS_TENSOR(3,3), STRESS_TENSOR(1,2), STRESS_TENSOR(1,3), 
STRESS_TENSOR(2,3)]]; 
    toc 
end 

 
 

function [angles_temp ] = RotateIntoFZ(euler, w21_rec, w31_rec, 
w32_rec, Q_p_sam, flag, n_steps) 
  
GRmatmult = @GRmatmult; 
  
gmat = @(phi1,Phi,phi2) [cos(phi1).*cos(phi2)-
sin(phi1).*cos(Phi).*sin(phi2), -cos(phi1).*sin(phi2)-
sin(phi1).*cos(Phi).*cos(phi2), sin(phi1).*sin(Phi), ... 
    sin(phi1).*cos(phi2)+cos(phi1).*cos(Phi).*sin(phi2), -
sin(phi1).*sin(phi2)+cos(phi1).*cos(Phi).*cos(phi2), -
cos(phi1).*sin(Phi) , ... 
    sin(Phi).*sin(phi2), sin(Phi).*cos(phi2), cos(Phi)]; 
  
R = @(axis,ang)[(1-axis(:,1).^2).*cos(ang)+axis(:,1).^2, ... 
                axis(:,1).*axis(:,2).*(1-cos(ang))+axis(:,3).*sin(ang), 
...     
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                axis(:,1).*axis(:,3).*(1-cos(ang))-
axis(:,2).*sin(ang),...     
                axis(:,1).*axis(:,2).*(1-cos(ang))-axis(:,3).*sin(ang), 
... 
               (1-axis(:,2).^2).*cos(ang)+axis(:,2).^2, ...     
                axis(:,2).*axis(:,3).*(1-
cos(ang))+axis(:,1).*sin(ang),...     
                axis(:,1).*axis(:,3).*(1-
cos(ang))+axis(:,2).*sin(ang),... 
                axis(:,2).*axis(:,3).*(1-cos(ang))-axis(:,1).*sin(ang), 
... 
               (1-axis(:,3).^2).*cos(ang)+axis(:,3).^2]; 
  
ang = sqrt(w21_rec.^2 + w31_rec.^2 + w32_rec.^2); 
cond = find(ang == 0); 
axis_1(cond) = 1.0; axis_2(cond) = 0.0; axis_3(cond) = 0.0; 
cond = setdiff(1:numel(ang),cond); 
axis_1(cond) = w32_rec(cond)./ang(cond); 
axis_2(cond) = -w31_rec(cond)./ang(cond); 
axis_3(cond) = w21_rec(cond)./ang(cond); 
  
Vect_Rot = R([axis_1(:),axis_2(:),axis_3(:)],ang); 
  
angles = gmat(euler(:,1),euler(:,2),euler(:,3)); 
ind = reshape(1:9,3,3); 
Q_p_sam = repmat(Q_p_sam,size(euler,1),1); 
  
% Texture in principle frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
if (flag == 0) 
    % Q_p_sam needs to be transposed in order to move texture in 
principle frame " Q_p_sam'*angles "; 
    % Morover Q_pr has to be in a sutible order to extract the euler 
angles 
    Q_pr(:,1) = sum(Q_p_sam(:,ind(:,1)).*angles(:,ind(1,:)),2); 
    Q_pr(:,2) = sum(Q_p_sam(:,ind(:,2)).*angles(:,ind(1,:)),2); 
    Q_pr(:,3) = sum(Q_p_sam(:,ind(:,3)).*angles(:,ind(1,:)),2); 
    Q_pr(:,4) = sum(Q_p_sam(:,ind(:,1)).*angles(:,ind(2,:)),2); 
    Q_pr(:,5) = sum(Q_p_sam(:,ind(:,2)).*angles(:,ind(2,:)),2); 
    Q_pr(:,6) = sum(Q_p_sam(:,ind(:,3)).*angles(:,ind(2,:)),2); 
    Q_pr(:,7) = sum(Q_p_sam(:,ind(:,1)).*angles(:,ind(3,:)),2); 
    Q_pr(:,8) = sum(Q_p_sam(:,ind(:,2)).*angles(:,ind(3,:)),2); 
    Q_pr(:,9) = sum(Q_p_sam(:,ind(:,3)).*angles(:,ind(3,:)),2); 
  
        angles_temp = GRmatmult(Q_pr); 
        angles_temp = round(rad2deg(angles_temp)); 
  
    return 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
G(:,1) = sum(Vect_Rot(:,ind(1,:)).*angles(:,ind(1,:)),2); % ind(1,:) is 
the first column of "g"; Vect_Rot is transpose so that is why they have 
the same indices. This is realy rotation 
G(:,2) = sum(Vect_Rot(:,ind(2,:)).*angles(:,ind(1,:)),2); 
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G(:,3) = sum(Vect_Rot(:,ind(3,:)).*angles(:,ind(1,:)),2); 
G(:,4) = sum(Vect_Rot(:,ind(1,:)).*angles(:,ind(2,:)),2); 
G(:,5) = sum(Vect_Rot(:,ind(2,:)).*angles(:,ind(2,:)),2); 
G(:,6) = sum(Vect_Rot(:,ind(3,:)).*angles(:,ind(2,:)),2); 
G(:,7) = sum(Vect_Rot(:,ind(1,:)).*angles(:,ind(3,:)),2); 
G(:,8) = sum(Vect_Rot(:,ind(2,:)).*angles(:,ind(3,:)),2); 
G(:,9) = sum(Vect_Rot(:,ind(3,:)).*angles(:,ind(3,:)),2); 
  
% In the last time increment transform the texture in the sample frame 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
  
if (flag == n_steps) 
  
    GG(:,1) = sum(Q_p_sam(:,ind(1,:)).*G(:,ind(:,1)),2); 
    GG(:,2) = sum(Q_p_sam(:,ind(2,:)).*G(:,ind(:,1)),2); 
    GG(:,3) = sum(Q_p_sam(:,ind(3,:)).*G(:,ind(:,1)),2); 
    GG(:,4) = sum(Q_p_sam(:,ind(1,:)).*G(:,ind(:,2)),2);     
    GG(:,5) = sum(Q_p_sam(:,ind(2,:)).*G(:,ind(:,2)),2);     
    GG(:,6) = sum(Q_p_sam(:,ind(3,:)).*G(:,ind(:,2)),2); 
    GG(:,7) = sum(Q_p_sam(:,ind(1,:)).*G(:,ind(:,3)),2); 
    GG(:,8) = sum(Q_p_sam(:,ind(2,:)).*G(:,ind(:,3)),2); 
    GG(:,9) = sum(Q_p_sam(:,ind(3,:)).*G(:,ind(:,3)),2); 
    G = GG;     
     
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%  
    angles_temp = GRmatmult(G); 
    angles_temp = round(rad2deg(angles_temp)); 
  
function angf = GRmatmult(newpos) 
  
angf = zeros(size(newpos,1),3); 
angf(:,1:3) = [atan2(newpos(:,7),-
1*newpos(:,8)),acos(newpos(:,9)),atan2(newpos(:,3),newpos(:,6))]; 
cond = find(abs(newpos(:,9)) == 1); 
  
if not(isempty(cond)) angf(cond,[1,3]) = 
[acos(newpos(cond,1)),zeros(size(cond))]; 
    cond2 = find(newpos(cond,2) < 0 ); angf(cond(cond2),1) = 2*pi - 
angf(cond(cond2),1); 
end; 
  
% Make sure angles are positive 
cond = find(angf(:,1) <0 ); 
if not(isempty(cond)) angf(cond,1) = angf(cond,1)+ 2*pi; end; 
cond = find(angf(:,2) <0 ); 
if not(isempty(cond)) angf(cond,2) = angf(cond,2)+ 2*pi; end; 
cond = find(angf(:,3) <0 ); 
if not(isempty(cond)) angf(cond,3) = angf(cond,3)+ 2*pi; end; 
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APPENDIX E: ELASTIC PROPERTY CLOSURE CALCULATOR FOR FCC 
CRYSTALS WITH TRICLINIC SAMPLE SYMMETRY USING FFT 

METHODS 
 
 
 

inputC11 = 168.4; 
inputC12 = 121.4; 
inputC44 = 75.4; 
inputS11 = 0.0149950327014; 
inputS12 = -0.0062815630433; 
inputS44 = 0.0132625994695; 
  
load Super_set; 
 
load euler.txt 
 
 
function [Upper_bound_11, Lower_bound_11, Upper_bound_13, 
Lower_bound_13] = ... 
    genBounds(inputEulerAngles,  inputC11, inputC12, inputC44, 
inputS11, inputS12, inputS44, Super_set) 
  
if nargin ~= 8 
    error('Check Arguments'); 
end 
  
  
[outputAngles,cTensors,sTensors] = FFTElasticityCalc(inputEulerAngles, 
inputC11, inputC12, inputC44, inputS11, inputS12, inputS44, Super_set); 
  
      
 
s_inv = inv(sTensors); 
DELTA_one = abs(cTensors(1,1) - s_inv(1,1)); 
DELTA_two = abs(cTensors(6,6) - s_inv(6,6)); 
  
% Upper bounds 
Upper_bound_11 = cTensors(1,1); 
Upper_bound_13 = min(cTensors(1,6), s_inv(1,6)) + 
sqrt(DELTA_one*DELTA_two); 
% Upper_bound_13 = cTensors(1,2); 
  
% Lower bounds 
Lower_bound_11 = s_inv(1,1); 
Lower_bound_13 = max(cTensors(1,6), s_inv(1,6)) - 
sqrt(DELTA_one*DELTA_two); 

 
 

function [outputCountedAngles outputCTensor outputSTensor] = ... 
    FFTElasticityCalc(inputEulerAngles, inputC11, inputC12, inputC44, 
inputS11, inputS12, inputS44, Super_set) 
global g_gPropertyCoefficents 
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global g_cFiles 
global g_propertyTensorIndices 
  
  
% Get Frequency Count... 
countedAngles =  genFrequencyCount(inputEulerAngles); 
cUniqueAngles = size(countedAngles,1); 
cTotalAngles = size(inputEulerAngles,1); 
  
  
% Load Files... 
prefix = 'Fo_C'; 
lenPrefix = size(prefix,2); %=4 
if(isempty(g_gPropertyCoefficents)) 
    fFiles = ls([prefix,'*']); % ls - list 
    cFiles = size(fFiles,1); 
    g_cFiles = cFiles; 
     
    szNames = zeros(cFiles,8); 
    propertyTensorIndices = zeros(cFiles,4); 
    for idxFile=1:cFiles 
        curName = fFiles(idxFile,:); 
        idxMat = strfind(curName, '.mat'); 
        if(isempty(idxMat)) 
            error('Illegal File: %s', curName); 
        end 
        curName = curName(1:(idxMat-1)); 
  
        % Load file and Dereference Data... 
        tmpValues = load(curName); 
        fieldNames = fieldnames(tmpValues); 
        if(numel(fieldNames) ~= 1)  
            error('Only one variable per mat file. (%s)', curName); 
        end 
        tmpValues = getfield(tmpValues, fieldNames{1}); 
         
        if(isempty(g_gPropertyCoefficents))  
            g_gPropertyCoefficents = zeros(cFiles, numel(tmpValues)); 
        end 
        g_gPropertyCoefficents(idxFile,:) = tmpValues; 
  
        % Break into indicies F_abcd 
        szComponent = char(curName(lenPrefix+1:end)); 
        if(numel(szComponent) ~= 4) 
            error('Illegal Tensor Component. Check Filename'); 
        end 
        idxA = round(str2num(szComponent(1))); 
        idxB = round(str2num(szComponent(2))); 
        idxC = round(str2num(szComponent(3))); 
        idxD = round(str2num(szComponent(4))); 
        if idxA > 3 || idxB > 3 || idxC > 3 || idxD > 3 || idxA < 1 || 
idxB < 1 || idxC < 1 
            error('Illegal Tensor Component. Check Filename'); 
        end 
        propertyTensorIndices(idxFile, :) = [idxA,idxB,idxC,idxD]; 
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    end 
     
    g_propertyTensorIndices = propertyTensorIndices; 
end 
  
  
% For each Unique Crystal... 
retProperties = zeros(3,3,3,3); 
outputCTensor = zeros(6,6); 
outputSTensor = zeros(6,6); 
cSuperSet = size(Super_set,1); 
FTerm = zeros(cSuperSet,1); 
for idxCrystal=1:cUniqueAngles 
  
    % Twiddle-Factor... 
    tempSuper = ( (Super_set(:,3)-
1.0).*(double(countedAngles(idxCrystal,1))) + ... 
                (Super_set(:,2)-
1.0).*(double(countedAngles(idxCrystal,2))) + ... 
                (Super_set(:,1)-
1.0).*(double(countedAngles(idxCrystal,3)))); 
  
    % Frequency Count... 
    FTerm = FTerm + double(countedAngles(idxCrystal,4)).*exp(-
(2.0*pi*i/360).*tempSuper); 
end 
FTerm = (1.0/cTotalAngles)*FTerm; 
  
  
% For each property... 
for idxProperty = 1:g_cFiles 
  
    % From paper: (1/G)*sum(A_k*F_k) 
    retProperties(g_propertyTensorIndices(idxProperty,1), ... 
        g_propertyTensorIndices(idxProperty,2), ... 
        g_propertyTensorIndices(idxProperty,3), ... 
        g_propertyTensorIndices(idxProperty,4)) ... 
        =  ... 
            
((1.0/(360^3.0))^1.0)*real(g_gPropertyCoefficents(idxProperty,:)*FTerm)
;  
  
end 
    
outputSTensor(:,:) = 
flattenTensor(genComplianceTensor(inputS11,inputS12, inputS44, 
retProperties)); 
outputCTensor(:,:) = 
flattenTensor(genStiffnessTensor(inputC11,inputC12, inputC44, 
retProperties)); 
  
  
% Actual angles processed... 
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outputCountedAngles = deg2rad(double(countedAngles(:,1:end-1))); 
 

 
 

function retCompliance = genComplianceTensor(inputS11, inputS12, 
inputS44, inputGTensor) 
  
  
retCompliance = zeros(3,3,3,3); 
for idxA=1:3 
    for idxB=idxA:3 
        for idxC=1:3 
            for idxD=idxC:3 
                % From Page 138 of MSD Book. 
%                 if(idxA == 1 && idxB == 2 && idxC == 1 && idxD == 2) 
%                     keyboard; 
%                 end 
                retCompliance(idxA,idxB,idxC,idxD) = 
inputS12*(idxA==idxB)*(idxC==idxD) + ... 
                                    
(inputS44/4.0)*((idxA==idxC)*(idxB==idxD)+(idxA==idxD)*(idxB==idxC))+ 
...  
                                    (inputS11-inputS12-
(inputS44/2.0))*(inputGTensor(idxA,idxB,idxC,idxD)); 
            end 
        end 
    end 
end 

 
 

function retStiffness = genStiffnessTensor(inputC11, inputC12, 
inputC44, inputGTensor) 
  
% This check takes more time than the actual calculation. 
%if(~isequal(size(inputGTensor),[3,3,3,3]))  
%   error('inputGTensor is of incorrect rank'); 
%end 
  
% Compute tensor from definition... 
retStiffness = zeros(3,3,3,3); 
for idxA=1:3 
    for idxB=idxA:3 
        for idxC=1:3 
            for idxD=idxC:3 
                % From Page 138 of MSD Book. 
                retStiffness(idxA,idxB,idxC,idxD) = 
inputC12*(idxA==idxB)*(idxC==idxD) + ... 
                                    
(inputC44)*((idxA==idxC)*(idxB==idxD)+(idxA==idxD)*(idxB==idxC))+ ...  
                                    (inputC11-inputC12-
(2.0*inputC44))*(inputGTensor(idxA,idxB,idxC,idxD)); 
            end 
        end 
    end 
end 
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function retOutputAngleFreq = genFrequencyCount(inputEulerAngles) 
  
cAngles = size(inputEulerAngles,1); 
inputEulerAngles = 
sortrows(uint16(mod(round(rad2deg(inputEulerAngles)),359)));  
retOutputAngleFreq = unique(inputEulerAngles,'rows'); 
  
% Add Frequency Count to the end... 
retOutputAngleFreq(:,4) = uint16(zeros(size(retOutputAngleFreq,1),1)); 
  
% Count Frequencies. 
idxBin = 1; 
for idxAngle=1:cAngles 
  
    % Increment until we get the correct bin. Valid since both 
sequences are sorted. 
    
while(~isequal(inputEulerAngles(idxAngle,:),retOutputAngleFreq(idxBin,1
:3)))  
        idxBin = idxBin + 1; 
    end 
  
    % Increment bin count... 
    retOutputAngleFreq(idxBin,4) = retOutputAngleFreq(idxBin,4) + 1; 
end 
  
if idxBin ~= size(retOutputAngleFreq,1) 
    error('Loop Invariant Violated, idxBin=%d and expected %d.', 
idxBin, retOutputAngleFreq); 
end 
 

 
 

function retFilteredFTerms = 
genFilteredFTerms(inputEulerAngles,inputSuperSet) 
global g_mfpFilteredFTerms;  
  
if(size(inputSuperSet,2) ~= 3)  
    error('inputSuperSet must have three columns'); 
end 
  
% Bin Euler Angles into degree frequency bins... 
frequencys = zeros(360,360,360); 
inputEulerAngles =1+mod(round(rad2deg(inputEulerAngles)),359);  
for idxAngle=1:size(inputEulerAngles, 1) 
    frequencys(inputEulerAngles(idxAngle,1), ... 
            inputEulerAngles(idxAngle,2), ... 
            inputEulerAngles(idxAngle,3)) = ... 
            frequencys(inputEulerAngles(idxAngle,1), ... 
                    inputEulerAngles(idxAngle,2), ...  
                inputEulerAngles(idxAngle,3)) + 1; 
end 
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% Transform... 
tempTransform = fftn(frequencys); 
  
  
  
% Construct ATerms that corrispond to Filtered Angle Set. 
retFilteredFTerms = zeros(size(inputSuperSet,1),1); 
for idxAterm=1:size(inputSuperSet,1) 
    retFilteredFTerms(idxAterm) = 
tempTransform(inputSuperSet(idxAterm,1), ... 
                    inputSuperSet(idxAterm,2), ... 
                    inputSuperSet(idxAterm,3)); 
end 
 

 
 

function retMat = flattenTensor(inputTensor) 
  
% This check takes more time than the actual calculation. 
%if(~isequal(size(inputTensor),[3,3,3,3]))  
%   error('inputGTensor is of incorrect rank'); 
%end 
  
  
% Page 79 of MSD Book. 
indexMapping = [1 1; 2 2; 3 3; 2 3; 1 3; 1 2]; 
indexMapping = round(indexMapping); 
  
%  
retMat = zeros(6,6); 
cMaps = size(indexMapping,1); 
for idxRow=1:6 
    for idxCol=idxRow:6 
        % Page 78 of MSD Book. 
        retMat(idxRow,idxCol) = 
inputTensor(indexMapping(idxRow,1),indexMapping(idxRow,2),indexMapping(
idxCol,1),indexMapping(idxCol,2)); 
        retMat(idxCol,idxRow) = 
inputTensor(indexMapping(idxRow,1),indexMapping(idxRow,2),indexMapping(
idxCol,1),indexMapping(idxCol,2)); 
    end 
end 
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