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ABSTRACT 
Optimal Caching of Large Multi-Dimensional Datasets 

Dinesh Obalappa 
Oleh J. Tretiak, Ph.D. 

 
 
 
 

We propose a novel organization for multi-dimensional data based on the concept 

of macro-voxels. This organization improves computer performance by enhancing 

spatial and temporal locality. Caching of macro-voxels not only reduces the 

required storage space but also leads to an efficient organization of the dataset 

resulting in faster data access. We have developed a macro-voxel caching theory 

that predicts the optimal macro-voxel sizes required for minimum cache size and 

access time. The model also identifies a region of trade-off between time and 

storage, which can be exploited in making an efficient choice of macro-voxel size 

for this scheme. Based on the macro-voxel caching model, we have implemented 

a macro-voxel I/O layer in C, intended to be used as an interface between 

applications and datasets. It is capable of both scattered access, typical in online 

applications, and row/column access, typical in batched applications. We 

integrated this I/O layer in the ALIGN program (online application) which aligns 

images based on 3D distance maps; this improved access time by a factor of 3 

when accessing local disks and a factor of 20 for remote disks. We also applied 

the macro-voxel caching scheme on SPEC�s Seismic (batched application) 

benchmark datasets which improved the read process by a factor of 8. 
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CHAPTER 1: INTRODUCTION 
 

Multidimensional datasets pose a challenge to current computing systems. They 

are commonly encountered in many diverse fields such as image processing [1-3], High 

Energy Physics (HEP) [4], climate modeling [5], Nuclear Magnetic Resonance (NMR) 

processing [6], data warehousing [4, 7-10], oceanography applications [11], interactive 

visualization and rendering of volume data [12-16] and biomedical imaging [3, 17, 18] 

such as computer tomography (CT), magnetic resonance imaging (MRI), positron 

emission tomography (PET), single photon emission computed tomography (SPECT) and 

ultrasound where two or three dimensional images are collated and registered. Memory 

hierarchy, present in modern computing systems, is targeted to substantially improve 

system performance by taking advantage of data access locality. However, the 

multidimensional nature of these datasets makes it difficult to effectively exploit the 

inherent locality. Moreover, their large sizes, which are expected to grow larger, make it 

impossible to store them entirely in the computer�s main memory. Owing to speed 

disparity between memory and disks, applications that access large datasets face a major 

bottleneck when they need to retrieve requested subsets of from disks. Thus the efficient 

storage and retrieval of voluminous and complex information, which is the inherent 

characteristic of such multidimensional data is getting increasingly important. We 

propose to improve system performance by developing a macro-voxel based caching 

scheme, in which, each macro-voxel contains points in the dataset that are close together 

in their respective multidimensional space. We also provide a quantitative model to 

predict the time-size performance of such a macro-voxel caching scheme. Let us first 

review how current computing systems employ caching to improve system performance. 
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1.1 Background 

Cache is defined in the dictionary as a safe place for storing things. In computer 

systems, it is a term applied to describe the practice of buffering commonly occurring 

items for future use. Caching is expected to work owing to the principle of locality [68], 

according to which, programs tend to reuse data they have used recently. In order to take 

advantage of locality and improve system performance, modern computing systems 

employ caching at many levels, creating a hierarchy of memory levels. Fast (~10ns) CPU 

registers and primary caches exist at the highest level, are small in size (1KB � 16MB), 

managed by compiler and hardware and are backed by main memory. Dynamic random 

access memory (DRAM), typical for main memory, are slower (~100ns), bigger 

(~10GB), managed by the operating system and are backed by the disk. At a higher level, 

inexpensive but slower (~106 ns) and larger (>100GB) magnetic disks are used for 

external mass storage and are managed by the operating system. These are backed by 

even slower but larger-capacity devices such as tapes and optical disks and may be used 

for archival storage. The CPU first accesses the on-chip cache, and, if the data is not 

found, the next level of memory hierarchy, the primary cache, is accessed. This process is 

repeated down the memory hierarchy until the data being sought is found. Closer to the 

CPU, where fast techniques are needed, simple management policies, like direct-mapped 

cache and sequential prefetching are used. More complex techniques, like [19] informed 

prefetching and caching for file-systems using user defined pattern of usage, prefetching 

via compression, prefetching via string matching, etc., are applied as we move away from 

the CPU. 
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The cache and main memory have the same relationship as the main memory and 

disk. However, caching and paging are the terms used in these two contexts. When the 

CPU does not find requested data item in the cache, a cache miss is registered. A fixed-

size collection of data containing the requested word, called a block, is retrieved from the 

main memory and placed into the cache. The cache miss is handled by hardware and 

causes processors following in-order execution to pause, or stall, until the data are 

available. However, if the requested data is not available in the main memory either, the 

disk is accessed next. If the computer has virtual memory, the address space is usually 

broken into fixed-size blocks, called pages; each page resides in either main memory or 

on disk. When the CPU references data within a page that is neither in cache nor main 

memory, a page fault occurs, and the entire page is moved from the disk to main 

memory. Page faults take long and are handled in software. During this process, the CPU 

usually switches to some other task while the disk access occurs. It is the aim of caching 

and paging methods to reduce these numbers of cache misses and page faults. 

Let us briefly examine how the principle of locality makes caching and paging 

worthwhile. According to temporal locality, recently accessed data items are likely to be 

accessed again in the near future. According to spatial locality, data items whose 

addresses are near one another tend to be referenced close together in time. Given that a 

requested data item belongs to a block (page), it is useful to store that block (page) in 

cache (main memory), since there is a high probability that the requested data and other 

nearby data in that block (page) will be needed soon. 

However, what does nearby data mean? Most programming languages are based 

on a memory model which consists of a single one-dimensional uniform address space. 
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Thus nearby data constitutes of data whose memory addresses are physically adjacent to 

the one just referenced in this single dimensional address space. The notion of virtual 

memory allows this address space to be far larger than what can fit in main memory, 

making them span multiple levels of memory hierarchy. Thus nearby data in this case 

consists of data that are located close together on lower levels such as disks. This is the 

kind of spatial locality that is typically exploited by general purpose caching and paging 

mechanisms. However, since multidimensional data are usually stored in files in the order 

of their coordinates, data items that are accessed together due to their proximity in their 

n-dimensional space may in fact be located far away physically. This might cause them to 

be in different blocks and even different pages, resulting in frequent cache misses and 

page faults, and hence, more accesses to lower levels of slow memory hierarchy. 

This situation is worsened by the speed differences between memory and CPU. 

Caches and lower memory hierarchy are becoming faster, yet CPU speeds are increasing 

at a faster rate than those of memory, resulting in a need for an even faster memory 

device to match the CPU. The existing disparity makes it difficult to effectively use the 

computing power of modern microprocessors. In order to achieve good memory system 

behavior and thereby improve system performance, it is imperative that applications 

make effective use of cache. The goal of this thesis is to design a caching scheme 

between main memory and disk which will effectively exploit the inherent spatial locality 

of multidimensional datasets and thus improve system performance. 
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1.2 Literature survey 

Locality is an essential concept of caching. The subject of defining a 

mathematical model of locality and its relationship to caching has been researched 

extensively. A technique for quantifying and visualizing the locality characteristics of 

reference streams is introduced by Grimsrud et al in [43, 44]. They derived a new locality 

function based on the probability that an address at a fixed stride or offset from the 

current reference occurs within a given number of references. This function unifies the 

notions of temporal and spatial locality. Belady�s MIN algorithm provides the minimum 

miss ratio when temporal locality is optimally exploited and does not deal with spatial 

locality. In [46], Temam presents an extension of Belady�s MIN algorithm that optimally 

and simultaneously exploits spatial and temporal locality. A concept of stack distance is 

introduced in [47] by Brehob et al as a model for a measure of locality and cache 

behavior. They show how these models of locality and caching can be used to gain 

insight into reference streams, the various types of caches, and the interactions between 

the two. Berg et al [48] present a sample-based method called StatCache to analyze data 

locality. Based on sparse discrete samples of memory references and measurement of 

their reuse distances, StatCache estimates miss ratios of fully associative caches of 

arbitrary sizes and generate working set graphs. This information is useful for the study 

of application data locality. 

The problem of effectively exploiting and optimizing spatial locality is important 

to improve caching performance. In [40], Kumar et al present a mechanism to exploit 

spatial locality in data caches. On a cache miss, their mechanism, called Spatial Footprint 

Predictor, predicts which portions of a cache block will get used before getting evicted. 
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This exploits spatial locality exhibited in larger blocks of data yielding better miss ratios 

without significantly impacting the memory access latencies. In [45], Kampe et al focus 

on the characteristics of the spatial locality in terms of closeness in time and space, to get 

the amount of accessed sequential data and the potential for cache hits. A direct approach 

to the spatial locality optimization problem is presented by Kandemir et al in [27]. This 

approach is based on hyperplane theory and available linear algebra framework used by 

parallelizing compilers for optimizing memory layouts of arrays. In an m-dimensional 

space, a hyperplane is defined as a set of tuples (a1, a2, �, am) such that g1a1 + g2a2 + � 

+ gmam = c, where g1, g2, �, gm are rational numbers called hyperplane coefficients and c 

is a rational number called hyperplane constant. The authors focus on the problem of 

detecting the optimal layouts for each array. Sequeira et al [25] proposed two algorithms 

designed for program specific code restructuring as a means of increasing spatial locality 

within a program. Both algorithms effectively decrease average working set size and 

hence the page fault rate. In [35], Clauss et al focus on spatial locality optimization such 

that all the data that are loaded as a block in the cache will be used successively by the 

program. Their method consists in providing a new array reference evaluation function to 

the compiler, such that the data layout corresponds exactly to the utilization order of 

these data. Johnson et al [41] introduce the spatial locality detection table that facilitates 

the detection of spatial locality across adjacent cached blocks. Their scheme detects and 

adapts to varying spatial locality, dynamically adjusting the amount of data fetched on a 

cache miss. A mathematical model that can capture both temporal and spatial locality 

characteristics is presented by Tanaka in [42]. The work extends the definition of the 

working set for modeling spatial locality in program behavior and verifies the model on 
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the basis of empirical observations. The work in [36] concentrates on trace driven 

simulation for cache miss rate analysis. A technique called blocking and a variant called 

blocking with temporal data are presented that compress traces by exploiting spatial 

locality. In [24], the concept of locality was extended to include the presence of strided 

memory accesses. A metric to quantify spatial regularity, defined as the likelihood that a 

memory access will form or continue a strided sequence, was developed. 

Extensive research has been done to exploit temporal locality and improve 

caching performance. In [39], Jin et al focus on techniques that improve temporal locality 

in scientific applications that iterate over a regular discretized domain. They present a 

strategy called recursive prismatic time skewing which integrates recursive blocking with 

time skewing to increase temporal reuse at all memory hierarchy levels, thus improving 

the performance of scientific codes that use iterative methods. In [26], Vajracharya et al 

introduced a mechanism for improving temporal locality and parallelism of scientific 

applications by using vertical execution in which loop iterations of consecutive data-

parallel statements are executed in an interleaved fashion. Phalke et al [38] present a 

program modeling technique for capturing the temporal locality behavior of memory 

references made by a program, on a per address basis. The sequence of gaps between 

consecutive accesses to the same location in memory was observed to be repetitive and 

hence predictable. Consequently, a k-order Markov chain was used to model and predict 

an address�s next reference in the future. Tiling is a well-known loop transformation to 

improve temporal locality of nested loops. In [34], Song et al present a number of 

program transformations to enable tiling for a class of nontrivial imperfectly-nested loops 

such that cache locality is improved. They define a program model for such loops and 
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develop computer algorithms for their tiling. In [37], Leopold derived matching upper 

and lower bounds on the number of cache misses for the Jacobi and Seidel iterative 

solvers. The result shows that the standard technique of tiling achieves a close to 

optimum number of cache misses. They investigated how the gap between upper and 

lower bounds can be closed and found three modifications that further reduce the number 

of cache misses: increased tile size, snaking and skewing. A scalar metric for temporal 

locality, based on LRU stack distance, which estimates cache hit rate, is proposed by 

Alakarhu et al in [49]. Pingali et al [21] present a software approach to attack the CPU-

memory speed gap. They describe computation regrouping, a general, source-level 

approach that executes computations accessing the same data closer together in time, 

significantly improving temporal locality and thus performance for applications with poor 

locality. 

Datasets in large applications are often too massive to fit completely inside the 

computer�s internal memory, and the resulting I/O communication between fast internal 

memory and slower external memory can be a major performance bottleneck. In [20], 

Vitter surveyed the state of the art in the design and analysis of external memory 

algorithms and described several paradigms for exploiting locality and thereby reducing 

I/O costs when dealing with massive data in external memory. In [55], Smith et al 

consider a number of design parameters for a disk cache such as cache size, block size, 

access time, bandwidth etc. and conclude that disk cache is a powerful means of 

extending the performance limits of high-end computer systems. To increase the 

effectiveness of the cache, knowledge of how different types of data use an I/O cache is 

presented by Richardson et al in [33]. Type information allows different types to be 
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cached in different sized blocks. Properly exploiting these properties increases the 

reference hit rate in the I/O cache and reduces the number of references out of the cache 

to disk. The use of caching as a means to increase system response time and improving 

the data throughput of disk subsystems is examined by Karedla et al in [54]. In [51], 

Hong et al propose the red-blue pebble game to model the input/output complexity of 

algorithms. Using the pebble game formulation, a number of lower bound results for the 

I/O requirement are proven. Analytical determination of the optimum capacity of a cache 

memory with given access time is achieved in [52]. In this paper, Chow found that the 

miss ratio of a finite cache almost universally obeys the function M = ACB where M is the 

miss ratio, C is the cache size, and A, B are constants. Aggarwal et al [32] examine the 

fundamental limits in terms of the number of I/O for external sorting and related 

problems in computing environments. They provide tight upper and lower bounds for the 

number of inputs and outputs between internal memory and secondary storage required 

for five sorting-related problems. In [30, 31], Sen et al describe a model to analyze the 

running time of an algorithm in a computer with a memory hierarchy with limited 

associativity in terms of various cache parameters. Their model is an extension of 

Aggarwal and Vitter�s I/O model [32] and establishes useful relationships between the 

cache complexity and the I/O complexity of computations. In [50], Singh et al present a 

mathematical model for the behavior of programs or workloads and extract from it the 

miss ratio of a finite, fully associative cache using the LRU replacement under those 

workloads. In order to lower memory latency, increase memory bandwidth and select the 

best memory size and organization for an application, Patterson et al [29] proposed to 

architect, design, fabricate and evaluate a single chip supercomputer combining a 
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processor and high capacity DRAM to deliver vector supercomputer-style sustained 

floating point and memory performance, at vastly reduced power. 

In order to derive precise, meaningful results about paging and caching 

algorithms, it was shown by Torng in [56] that one must focus on access time rather than 

miss rate. Robinson et al present a frequency-based replacement algorithm for data 

caches in [57]. This algorithm factors out locality from reference counts, and effectively 

combines the principles of locality of reference and reference frequency. A neural 

network-based cache replacement algorithm is proposed in [58], which provides 

improvement in the miss ratio over the LRU algorithm for benchmark trace files from 

SPEC programs. LRU algorithm is the Least-recently-Used algorithm; it is based strongly 

on the principle of locality and replaces the block/page which has the longest time since 

its last reference. The effectiveness of a file system that integrates caching and 

compression to provide two levels of file storage on disks is discussed in [61]. In [28], 

Chatterjee et al investigated the memory system performance of several algorithms for 

transposing an N × N matrix in-place, where N is large. Specifically, they investigate the 

relative contributions of the data cache, the translation lookaside buffer, register tiling, 

and the array layout function to the overall running time of the algorithm. 

The challenge of efficiently handling multidimensional data has been addressed in 

numerous problem domains. Kozinska et al [3] present a methodology for alignment of 

multidimensional datasets based on the Euclidean distance transform and Marquardt-

Levenberg optimization algorithm. Gustafson et al [63] propose to effectively manage 

and store large datasets in three dimensional digital brain atlases by grouping voxels into 

clusters called macro-voxel. They group nearby voxels into a chunk, typically 16 voxels 
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on edge, and then arrange these chunks into a structure called a voxel map. In [6], Pons et 

al implemented a cache memory system in their Gifa program designed for processing, 

displaying and analyzing 1D, 2D and 3D NMR datasets. The cache memory works by 

subdividing the dataset into blocks or sub matrices which tile the dataset. When accessing 

a part of the dataset, only those blocks that actually contain information are loaded from 

disk into the cache memory. Veklerov et al [17] designed and implemented a 

management system for the multidimensional data structures arising in MRI imaging 

experiments using a special syntax that allows the user to visualize the multidimensional 

nature of data. In [18], Chaze et al investigated methods for selecting and calculating 

arbitrary image sections for displaying multimodal 2D and 3D datasets occurring in PET 

studies. An automating approach for studying spatial/temporal variability of geophysical 

fields is proposed in [11]. Khiar et al [53] describe a systematic method for transposing 

multidimensional data structures embedded within a one dimensional stream and used it 

to simulate a complex radar processing algorithm. Visualization of data which inherently 

have two- or three-dimensional semantics has also been extensively researched. In [12], 

Ghavamnia et al describe a method to render compressed volume data directly to reduce 

the memory requirements of the rendering process. A significant improvement in 

computational performance was achieved by using a cache algorithm to temporarily 

retain the reconstructed voxels. High-speed algorithmic solutions were proposed in [13] 

to process three-dimensional data intended for real time visualization. Ning et al [14] 

introduced a compressed volume format that exploits statistical coherence between 

blocks in order to obtain both storage savings and volume rendering acceleration. It 

involves precomputation on the vector quantization codebook and subsequent reuse of 
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the results throughout the volume. Ihm et al [15] describe an effective 3D compression 

scheme for interactive visualization of very large volume data that exploits the power of 

wavelet theory. They mention that it would be desirable to have an efficient cache data 

structure which temporarily holds decoded voxels. In [67], Keim describes a set of pixel-

oriented visualization techniques which use each pixel of the display to visualize one data 

value and therefore allow the visualization of the largest amount of data possible. In [59], 

Thoma et al address compression and transmission issues related to images in the 

National Library of Medicine�s Visible Human Project. They discuss lossless and lossy 

methods to compress the images and techniques for transmitting them over wide-area 

networks. 

Issues in efficient tertiary storage organization for large multidimensional datasets 

have been addressed in many papers. In [62], More et al showed that efficient storage 

layout can be designed by considering data items that are accessed together rather than 

sorting the data items based on their coordinates. Seamons et al [69] described physical 

schemas for storing multidimensional arrays on disk. Sarawagi et al [70] presented a 

number of strategies for optimizing layout of large multidimensional arrays on secondary 

and tertiary memory devices. Chen et al [5] address data management techniques for 

efficiently retrieving requested subsets of large datasets from mass storage devices. They 

developed algorithms for partitioning the original datasets into clusters based on analysis 

of data access patterns and storage device characteristics. Holtman et al [4] have 

developed cache filtering optimization, which improves cache efficiency by extracting 

hot objects from staged files. 



 13

OLAP datasets are inherently multidimensional. In [7], Deshpande et al propose 

caching small regions of the multidimensional space called chunks. Chunk-based caching 

allows fine granularity caching, and allows queries to partially reuse the results of 

previous queries with which they overlap. In [8], Goil et al present a parallel multi-

dimensional database infrastructure for OLAP and data mining of association rules which 

can handle a large number of dimensions and large datasets. Parallel techniques are 

described to partition and load data into a base cube from which the data cube is 

calculated. In [10], an extended multidimensional data model is proposed to support the 

complex data found in real-world applications. The traditional similarity search methods 

on time-series data are extended to support a multidimensional data sequence in [9]. The 

authors, Lee et al, investigate the problem of retrieving similar multidimensional data 

sequences from a large database. In [66], Moulton et al present theoretical results to 

formally define and measure database locality and develop a technique for adapting 

program locality model to temporal and spatial dimensions at all stages of database 

processing. 

The concept of locality is also used extensively to improve web performance. In 

[23], Xu et al propose a superobject based routing algorithm to take advantage of spatial 

locality of file accesses, reducing the number of routing procedures and thereby 

improving routing performance. Static and temporal locality in web server workloads was 

analyzed in [22] and a new measure of temporal locality, the scaled stack distance, was 

introduced. In [64, 65], Jin et al show that there are two phenomena that contribute to 

temporal locality in web request streams: the long-term popularity of documents and 
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short-term temporal correlations of references, and they suggested the use of two power 

laws to characterize them. 

 

1.3 Dissertation contribution 

We have recognized the widespread use of large multidimensional datasets in 

many applications and the expected growth in their sizes. Moreover, the increasing speed 

gap between the various memory hierarchy levels cause a major bottleneck in 

multidimensional data access problems. Consequently, efficient handling and storage of 

such datasets poses a challenge to current computing systems. We propose the concept of 

macro-voxel and use it to partition datasets, such that each macro-voxel is a small 

multidimensional subset of the dataset. The spatial and temporal locality inherent in the 

data access pattern is exploited by implementing a macro-voxel based caching scheme. 

We present a quantitative model to predict the performance of such a macro-voxel 

caching scheme, and identify the existence of a cache size-access time tradeoff which 

influences the design of a macro-voxel. Finally, we propose a novel universal 

input/output system interface that incorporates the macro-voxel caching scheme targeted 

to improve system performance when dealing with multidimensional files while 

providing complete transparency to user applications. Towards this end, we have 

developed a software in C that can be used to integrate the macro-voxel caching scheme 

in current applications. 

We successfully integrated the macro-voxel I/O interface into the MATLAB 

based 3D image registration software called ALIGN. The ALIGN program iteratively 

accesses a distance map in the process of aligning two binary objects whose contours are 
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given as a set of voxel coordinates. We performed our experiments on two UNIX 

platforms and performed data access from local disks as well as over the internet. We 

experimented with different shapes and sizes of macro-voxels and accessed both 

compressed and uncompressed macro-voxels. In each case we identified and explored the 

resulting Pareto optimal tradeoff region for access time versus cache size requirements. 

We compared our access time results with the original program in which each requested 

record was individually fetched from the disk. Using the macro-voxel caching scheme 

improved the access time by factors of 3 and 20 on local and remote disks respectively. 

We also applied our macro-voxel caching concept on SPEC�s Seismic benchmark 

datasets, in which the read process improved by a factor of 8. 

 

1.4 Dissertation organization 

In chapter 2, we present the general caching model and related terms. We 

introduce the macro-voxel concept and model the macro-voxel based caching model 

based on the brick wall hypothesis and the power law dependence of misses on block 

size. We solve for the Pareto optimal values of block size that would achieve minimum 

cache size and access time. In chapter 3, we incorporate the macro-voxel caching scheme 

in an existing application and evaluate its performance dependence on various parameters 

such as macro-voxel dimensions, cache size, speed of backup storage, replacement 

scheme and compression. Chapter 4 proposes a multidimensional input/output system 

interface, which seamlessly integrates the macro-voxel based caching scheme, 

transparent to user applications. Chapter 5 presents directions towards future work. 
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CHAPTER 2: MACRO-VOXEL CACHING MODEL 
 

We focus on the following general problem setting: A computer program 

performs multiple computations on a large remote multidimensional dataset by accessing 

the dataset iteratively. The file containing the multidimensional dataset may be located on 

the same computer system (secondary or tertiary storage disk devices) or could be part of 

another system connected via a network (e.g. the internet). The access pattern exhibits 

temporal and/or spatial locality. Our goal is to minimize I/O communications with the 

entity on which this multidimensional file is located. In order to take advantage of the 

inherent dimensional access locality, we propose to implement the macro-voxel caching 

mechanism on the executing system and improve the system performance by minimizing 

access time and cache memory usage. Our approach to exploit locality is to focus on the 

multidimensional data space and transform the storage layout of these multidimensional 

datasets. 

We first examine the general caching mechanism and define some caching related 

terms in Section 2.1. We formulate the brick wall hypothesis and the power law 

assumption in section 2.2 which will be used to develop a simplified notion of the 

number of cache misses. In section 2.3, we introduce the concept of a macro-voxel which 

will be used to exploit the data access locality inherent in multidimensional datasets. 

Section 2.4 briefly introduces the notion of Pareto optimality. Based on our assumptions 

from Section 2.2, the macro-voxel concept, and Pareto optimality, we develop a macro-

voxel based caching model in Section 2.5 and solve for the optimal values of macro-

voxel size that would achieve minimum access time and cache size. 
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2.1 General caching model 

The dataset file exists on a backup storage location and is made up of many 

records. The program makes multiple accesses to this file, each time reading an entire 

record. A caching scheme is implemented on the executing system to store subsets (i.e. 

an integral number of records) of this file for future use by the program. The size of the 

cache is measured in blocks, where each block is made up of a fixed number of records. 

When the program first starts execution, its cache is empty, and hence a block needs to be 

fetched from the backup storage. The caching scheme registers a cache miss, and the 

corresponding block is now stored in cache. The program then reads the required record 

from the cache. For subsequent data accesses, either the corresponding blocks already 

exist in cache, or they don�t. If the required block is present in cache, a cache hit is 

registered and the requested record is read from the cache. If not, a cache miss occurs and 

the corresponding block is fetched from the backup. If the cache is not full, the fetched 

block is stored in one of the remaining empty locations. If the cache is full, a replacement 

mechanism is utilized to evict some old block and store the new block in its place. 

Let Ncache be the total number of blocks that the cache can hold at one time. Any 

given program accesses a certain number of unique blocks at least once during its 

execution. This total number of unique blocks is termed as compulsory misses, Ncomp and 

it is a property of the executing program. In other words, Ncomp is the number of misses 

registered when working with an infinite cache. For a finite sized cache, once the cache 

becomes full, subsequent misses will warrant evicting old blocks from the cache to make 

room for the new ones. The total number of misses that result due to the retrieval of an 

earlier evicted block is called capacity misses, Ncap, and occur in addition to the 
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compulsory misses. Compulsory misses are inevitable; however, the number of capacity 

misses depends on Ncache, the cache size. There exists a certain minimum cache size in 

blocks, Nmin, which results in zero capacity misses. In other words, when Ncache = Nmin, 

only compulsory misses are registered. In general, depending on the problem, Nmin will 

take values in the following range: Ncomp ≥ Nmin ≥ 1 

Let Nmiss be the total number of cache misses registered and let Nrec be the total 

number of record accesses made during the program execution. Also, let Thit and Tmiss be 

the time per cache hit and time per cache miss respectively. The following relationships 

hold. 

capcompmiss NNN +=             (2.1) 

)( hitmissmisshitrecaccess TTNTNT −+=           (2.2) 

Here Taccess is the total time to access all the Nrec records required during the program 

execution. 

The caching system performance depends on many parameters including cache 

size, block size, backing storage speed and caching replacement algorithm. This thesis 

addresses the problem of optimizing cache performance with respect to the above 

parameters. Our system performance measures are the cache size requirements and the 

time taken to fetch requested data from disk to cache. 

The cache consists of Ncache blocks plus an index. Let each block be made up of B 

records, and let βc be the size of each record in bytes. Let the size of the index be αcNcache 

bytes. This assumes that the index is a hash table: The address of a table entry is 

computed from the block address. The index contains the block location of all the blocks 
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in cache and the index is therefore proportional to Ncache. Hence, the total cache size C in 

bytes can be given by the following equation. 

)( BNC cccache βα +=             (2.3) 

Whenever a cache miss occurs, the requested block needs to be fetched from the backing 

store, which could be a local or remote disk. For each miss, the time taken to do this is 

the difference of Tmiss and Thit and we model it with a latency-transfer rate model: Let αt 

be the time taken to seek a block and let βt be the time taken to transfer each record from 

the backing store to the cache. Thus the time taken to fetch a block from the backing store 

is )( Btt βα +  seconds. Since the total number of misses encountered is Nmiss, the total 

time T taken to transfer these Nmiss blocks into the cache, is given by the following 

equation. 

)( BNT ttmiss βα +=             (2.4) 

From equation (2.1), we get 

))(( BNNT ttcapcomp βα ++=            (2.5) 

 

2.2 Brick wall hypothesis 

For a fixed block size B, as cache size C is reduced, the number of blocks that can be 

stored in cache, Ncache, also reduces. As long as Ncache is greater than or equal to Nmin, 

each requested block is fetched only once from the backing store and no capacity misses 

are encountered. In this case, compmiss NN = . However, once Ncache becomes smaller than 

Nmin, capacity misses occur in addition to the compulsory misses, and some of the 

requested blocks need to be fetched more than once from the backing storage, due to their 

eviction. We found that the number of capacity misses is a rapidly increasing function of 
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Ncache < Nmin. We will present data to support this in Chapter 3. We formalize this 

behavior as the brick wall hypothesis. 





<∞
≥

=
min

min0
NN
NN

N
cache

cache
cap           (2.6) 

Owing to the brick wall hypothesis, the total cache miss time from equation (2.5) reduces 

to 





<∞

≥+
=

min

min)(

NN

NNBN
T

cache

cachettcomp βα
        (2.7) 

Let us examine the values taken by Nmin in two general kinds of problems. Let G 

be the total number of records present in the entire file. Since each block has B records, 

there are a total of G/B blocks. In some problems, known as the batched problems, the 

entire file of records needs to be read in once for processing. In this case, Ncomp = G/B, 

since every block needs to be processed. Moreover, if the blocks are generated such that 

almost every block is completely processed before accessing the next block, Nmin would 

be very small, i.e. Nmin << Ncomp. However, in certain other problems, called online 

problems, only a small subset of the total records need to be read in and each may be 

required more than once. In this case, the number of compulsory misses is almost equal 

to the number of no-capacity misses, i.e. Ncomp ≈ Nmin. The common theme in both cases 

is that it is optimal to make Ncache = Nmin, to avoid capacity misses in accordance with the 

brick wall hypothesis. This leads to the following cache size and miss time equations. 

)(min BNC cc βα +=                 (2.8) 


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        (2.9) 
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Based on C.K. Chow�s hypothesis [52] which relates miss rate and cache size by a power 

law, we propose a similar power law relationship between Nmin and the block size B. 

pBKN −•=min           (2.10) 

K and p are positive constants that depend on the data access pattern for the specific 

problem. 

Let us now apply these concepts in the context of multidimensional dataset caching. 

 

2.3 The multidimensional dataset and the macro-voxel concept 

We first define a multidimensional dataset as follows: An n-dimensional data 

sequence S can be defined as a series of its component records, where each single record 

is uniquely indexed by some combination of its n coordinates. 

S(d1, d2, �, dn)  0 ≤ d1 < D1 0 ≤ d2 < D2 � 0 ≤ dn < Dn 

In general, since memory and storage media are usually based on a single dimension 

model, records that are close together in n-dimensional space may not be physically 

located close together resulting in loss of access locality. 

In order to exploit the underlying dimensional locality, it is advantageous to 

represent such spatial and/or temporal datasets in n-dimensional space by an n-

dimensional lattice. Consider an n-dimensional lattice with dimensions D1 × D2 × � × 

Dn. This lattice can be interpreted as a composition of n-dimensional hypercubes, each of 

dimensions 1 × 1 × � × 1 and each representing one lattice point in the n-dimensional 

space. We use the term voxel for each such hypercube. Each individual voxel in this n-

dimensional array of voxels represents a unique point in the n-dimensional space. Every 

component record of the n-dimensional data sequence S can now be represented by the 
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corresponding voxel in the n-dimensional voxel array. We thus have an abstraction of the 

dataset in n-dimensional space, represented by the voxel array. 

The inherent data locality can now be exploited by partitioning the voxel array 

into fixed-size groups of voxels so that points that are close together in space belong to 

the same group. We term each of this group of voxels as a macro-voxel. Thus a macro-

voxel is an n-dimensional array of voxels having total dimensions of M1 × M2 × � × Mn, 

such that M1 << D1, M2 << D2� Mn << Dn. Since each macro-voxel represents a small 

block of the lattice, a macro-voxel representation can be said to be a block representation 

of the n-dimensional lattice. Each record in the n-dimensional dataset can be accessed by 

locating the macro-voxel to which it belongs and seeking the appropriate voxel. The 

necessary indexing scheme can be implemented as follows: 

di = dimension index of the ith dimension Di 

0 ≤ d1 < D1, 0 ≤ d2 < D2, � 0 ≤ di < Di, � 0 ≤ dn < Dn  

Define Ai = 








i

i

M
d

, Bi = di mod Mi, 1 ≤ i ≤ n       (2.11) 
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The position of this voxel in the above macro-voxel is given by an offset, VN: 

1221123121 ...... MMMMBMMBMBBVN nnn −−++++=       (2.13) 

Figure 2.1 illustrates the macro-voxel concept for a three-dimensional voxel array. 
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Since the macro-voxel concept groups objects that are close together in n-

dimensional space, reorganizing and storing the data in the order of the macro-voxels 

preserves the dimensional locality to a certain extent. Consequently, implementing a 

macro-voxel based caching scheme can improve the performance of an application that 

repeatedly accesses this dataset composed of macro-voxels. This caching mechanism 

fetches the macro-voxel containing the requested voxel into cache. Future requests to that 

voxel and nearby voxels can now be fulfilled from the cache. If a requested voxel is not 

found in the cache, a miss is registered and the corresponding macro-voxel is fetched 

from the dataset in backing storage and stored in cache. 

 

 

Dataset composed of 
voxels 

Dataset composed of 
Macro-voxels 

Macro-voxel composed of voxels 
Voxels 

Figure 2.1              Macro-voxel concept illustrated for a three-dimensional voxel array 

 

 



 24

2.4 Pareto optimality 

Optimizing caching system performance involves minimizing the access time and 

the required cache size. These system performance measures depend on the number of 

cache misses and the size of the macro-voxel. Higher miss rates and bigger macro-voxels 

both result in higher access times and greater memory utilization. The size of the macro-

voxels and the number of misses both are dependent on the dimensions of the macro-

voxel, i.e. M1 × M2 × � × Mn. Designing an optimum macro-voxel caching system 

involves solving for a well-defined macro-voxel that will minimize both access time and 

cache memory requirements. The optimal solution for this time-memory tradeoff problem 

is obtained from a Pareto optimal set. 

 

 

fj 

fi 

B 

A 

C 

Feasible 
Range 

Figure 2.2              Graphical defin ition of the pareto optimal 
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Consider a general design problem where we wish to find an optimal set of design 

variables such that m objective functions f1, f2�, fi, �, fm are simultaneously minimized. 

A set of points (Figure 2.2) is said to be Pareto optimal [71] if, in moving from point A to 

another point B in the set, any improvement in one of the objective functions fi from its 

current value would cause at least one of the other objective functions fj to deteriorate 

from its current value. Note that based on this definition, point C is not Pareto. The 

Pareto optimal set yields an infinite set of solutions, from which the designer can choose 

the desired solution. In most cases, the Pareto optimal set is on the boundary of the 

feasible region. We formulate the macro-voxel caching problem and solve for the optimal 

design variables in the next section. 

 

2.5 Modeling the macro-voxel caching problem 

In this section, we first formulate the macro-voxel caching problem for a 3-

dimensional dataset and solve it to obtain a Pareto optimal set of design variables. We 

then generalize the results for n-dimensional datasets. Consider a 3-dimensional dataset 

represented by a 3-dimensional voxel array of size D1 x D2 x D3. This voxel array can be 

partitioned into fixed-size groups of voxels and viewed as a collection of 3-dimensional 

macro-voxels. Let the size of each macro-voxel be x × y × z, such that x << D1, y << D2, z 

<< D3. 

Our macro-voxel caching model is based on the assumption that the minimum 

cache size required for no-capacity misses is equal to the number of compulsory misses, 

i.e. Nmin = Ncomp. This implies that cache replacement is not required and the only kinds of 

misses encountered are the compulsory misses. Hence a macro-voxel that has been 
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cached once will always be able to satisfy any future requests to itself from the cache. 

However, the number of compulsory misses registered for a given problem is dependent 

on the dimensions of the macro-voxel. Our goal is to compute the optimal macro-voxel 

dimensions, which minimizes the number of compulsory misses and the dependent 

performance measures: access time and cache size. 

The term xyzB =  is the total number of records in each macro-voxel, i.e. the 

block size. We choose the set (B, y, z) as the design variables for this problem which are 

in effect the dimensions of the macro-voxel. The following design constraints can be 

identified: 

 
1

1,1,1
≥

≥≥≥
B

zyx  

1≥compN  

We now define the objective functions that need to be minimized, viz. Cache size and 

Access Time. 

From equation (2.8), Cache Size: )( BNC cccomp βα +=       (2.14) 

αc is the size component for the index overhead per macro-voxel in bytes; it is dependent 

on the underlying cache implementation. 

βc is the size of each voxel in bytes; it is dependent on the dataset under consideration. 

The term )( Bcc βα +  represents the cache size requirements per macro-voxel. 

γc = 
c

c
β

α = ratio of index size to voxel size        (2.15) 

From equation (2.9), Access Time: )( BNT ttcomp βα +=       (2.16) 
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αt is the latency component of access time; it is the delay between the time the macro-

voxel is requested from the backing store and the time the transfer actually starts. 

βt is the transfer rate component of access time; it is the time taken to transfer each voxel 

from the backing store to cache. 

The term )( Btt βα +  represents the access time per macro-voxel. 

γt = 
t

t
β

α = ratio of latency to transfer rate        (2.17) 

 

We can now formally define the optimal macro-voxel caching problem as follows: 

From equation (2.14), )(),,(min
,,

BNzyBC cccompzyB
βα +=       (2.18) 

From equation (2.16), )(),,(min
,,

BNzyBT ttcompzyB
βα +=       (2.19) 

subject to the constraints: 
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We minimize each objective function by taking the partial derivative with respect to each 

of its dependent variables and equating it to 0. 

Objective Function for Cache Size: )(),,( BNzyBC cccomp βα +=      (2.20) 

Taking partial derivative w.r.t. B: 0)( =+
∂

∂
+=
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Taking partial derivative w.r.t. y: 0)( =
∂

∂
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∂
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y
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C comp
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Taking partial derivative w.r.t. z: 0)( =
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cc βα      (2.23) 
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From (2.22)   
y
C

∂
∂  = 0 iff 

y
Ncomp

∂
∂

 = 0. 

Similarly, from (2.23)  
z
C

∂
∂  = 0 iff 

z
Ncomp

∂
∂

 = 0. 

Thus for any fixed B, minimum cache size Co(B) can be achieved by minimizing the 

number of compulsory misses Ncomp with respect to design variables y and z: 

),,(min)(
,

zyBNBN compzyo =          (2.24) 

)()( BNBC ccoo βα +=          (2.25) 

 

Minimum Co(B) can be found by differentiating with respect to B and equating it to 0: 

0)( =++= co
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dC ββα         (2.26) 

Let Bc be the corresponding optimal block size for which the minimum cache size Cmin is 

achieved. 

 )()(min cccco BBNC βα +•=          (2.27) 

Similar analysis applies to T: 

Objective Function for Access Time: )(),,( BNzyBT ttcomp βα +=      (2.28) 

Taking partial derivative w.r.t. B: 0)( =+
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Taking partial derivative w.r.t. y: 0)( =
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Taking partial derivative w.r.t. z: 0)( =
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From (2.30)   
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Similarly, from (2.31)  
z
T

∂
∂  = 0 iff 

z
Ncomp

∂
∂

 = 0. 

Thus for any fixed B, minimum access time To(B) can be achieved by minimizing the 

number of compulsory misses Ncomp with respect to design variables y and z: 

)()( BNBT ttoo βα +=          (2.32) 

Minimum To(B) can be found by differentiating with respect to B and equating it to 0: 
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dT ββα         (2.33) 

Let Bt be the corresponding optimal block size for which the minimum access time Tmin is 

achieved. 

 )()(min tttto BBNT βα +•=          (2.34) 

The variation of To(B) with respect to Co(B) can be related as follows: 
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Hypothetically, as 
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For ease of notation, we denote 
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BdC
BdT

o

o  as SLOPE(B). 
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We thus have the following four points on the plot of To(B) versus Co(B), which 

determine the optimal choice of B for optimal cache size and access time: 

1. 
cc

tt

L
L

SLOPEB
βα
βα

+
+

=⇒→
)0(
)0(

)0(0Q  

2. ∞=⇒= )( cc BSLOPEBBQ , point where minimum cache size Cmin is achieved. 

3. 0)( =⇒= tt BSLOPEBBQ , point where minimum access time Tmin is achieved. 

4. 
c

tSLOPEB
β
β

=∞⇒∞→ )(Q  

In general, based on the values of Bc and Bt, we may encounter two different cases. Each 

case may further be divided into three sub-cases based on the constraint B ≥ 1. 

1) Bc < Bt 

a) 1 < Bc < Bt 

In this case, we have a maximal tradeoff region between block sizes Bc and Bt. 

The Pareto optimal set for block size is Bc < B < Bt. 

b) Bc < 1 < Bt 

In this case, we obtain a partial tradeoff region between block sizes 1 and Bt. The 

Pareto optimal set for block size is 1 < B < Bt. 

c) Bc < Bt < 1 

In this case, we obtain a unique optimal point of operation, B = 1. There is no 

tradeoff region in this case. 

Case 2 is analogous. 
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2) Bt < Bc 

a) 1 < Bt < Bc 

In this case, we have a maximal tradeoff region between block sizes Bt and Bc. 

The Pareto optimal set for block size is Bt < B < Bc. 

b) Bt < 1 < Bc 

In this case, we obtain a partial tradeoff region between block sizes 1 and Bc. The 

Pareto optimal set for block size is 1 < B < Bc. 

 

c) Bt < Bc < 1 

In this case, we obtain a unique optimal point of operation, B = 1. There is no 

tradeoff region in this case. 

We now illustrate the above cases with an example in which B and No are related by a 

power law, i.e. 

p
o KBN −=            (2.40) 

K and p are problem related constants. p > 0 since the number of misses decrease with 

increasing B. 

From (2.25) & (2.40),  )( BKBC cc
p

o βα += −       (2.41) 

From (2.26) & (2.41),  
p

pB cc −
=

1
γ         (2.42) 

Similarly, 

From (2.32) & (2.40),  )( BKBT tt
p

o βα += −        (2.43) 

From (2.33) & (2.43),  
p

pB tt −
=

1
γ         (2.44) 
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Case 1 � tc γγ <  

This case is encountered when the ratio of latency to transfer rate is greater than the ratio 

of index size to record size. This results in Bc < Bt. Consider the plot of To vs. Co. As we 

move along the curve starting from small block size to big block size, we first encounter 

point X and then point Y. Point X represents the operating point with optimal block size 

Bc which achieves minimum cache size Cmin, whereas point Y is the operating point with 

optimal block size Bt which results in minimum access time Tmin. The region of the curve 

between points X and Y is the trade-off region. Operating near point X in the region of 

trade-off allows for relatively smaller cache sizes at the cost of larger access times, 

whereas operating near point Y in the region of trade-off allows for relatively smaller 

access times at the cost of larger cache sizes. The constraint B ≥ 1 results in the following 

three sub-cases. 

a) 1 < Bc < Bt 

When both the optimal block sizes are computed to be greater than 1, we obtain a 

maximal trade-off region of operation between points X and Y (Figure 2.3). The 

operating point can be anywhere on the curve between points X and Y and it depends on 

whether one wants to have smaller access time or smaller cache size. 
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Figure 2.3 Maximal trade-off region 

 

b) Bc < 1 < Bt 

When Bc < 1, we obtain a partial trade-off region of operation between points Z 

(where B = 1) and Y (Figure 2.4). The operating point can be anywhere on the curve 

between points Z and Y. Point Z is the operating point for minimum cache size, and the 

corresponding block size is B = 1. 
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Figure 2.4 Partial trade-off region 

 

 

c) Bc < Bt < 1 

In this case, we obtain a unique optimal point of operation, point Z (where B = 1). 

There is no region of trade-off in this case. Point Z is the only optimal operating point for 

both smallest cache size and minimum access time, and the corresponding block size is B 

= 1 (Figure 2.5). 

 

 



 35

Cache SIze

A
cc

es
s 

Ti
m

e

Block Size --> 0

Block Size --> Infinity

Slope2 = betaT/betaC

Slope1 = alphaT/alphaC

This is the unique optimal point of operation
There is No tradeoff
Block Size = 1 for Min Cache Size and Min Access Time

Slope1 > Slope2
BC = BT = 1

Z

 

Figure 2.5 No trade-off region 

 

 

Case 2- ct γγ <  

This case is encountered when the ratio of latency to transfer rate is smaller than the ratio 

of index size to record size. This results in Bt < Bc. The plots for this case are similar to 

the ones above, except that they are flipped about the axis of symmetry. As we move 

along the curve starting from small block size to big block size, we first encounter point 

Y and then point X. Point Y represents the operating point with optimal block size Bt 

which achieves minimum access time Tmin, whereas point X is the operating point with 

optimal block size Bc which results in minimum cache size Cmin. The region of the curve 

between points Y and X is the trade-off region. Operating near point Y in the region of 

trade-off allows for relatively smaller access times at the cost of larger cache sizes, 
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whereas operating near point X in the region of trade-off allows for relatively smaller 

cache sizes at the cost of larger access times. The constraint B ≥ 1 results in the following 

three sub-cases. 

a) 1 < Bt < Bc 

When both the optimal block sizes are computed to be greater than 1, we obtain a 

maximal trade-off region of operation between points X and Y. The operating point can 

be anywhere on the curve between points X and Y and it depends on whether one wants 

to have smaller access time or smaller cache size. 

b) Bt < 1 < Bc 

When Bt < 1, we obtain a partial trade-off region of operation between points Z 

(where B = 1) and X. The operating point can be anywhere on the curve between points Z 

and X. Point Z is the operating point for minimum access time, and the corresponding 

block size is B = 1. 

c) Bt < Bc < 1 

In this case, we obtain a unique optimal point of operation, point Z (where B = 1). 

There is no region of trade-off in this case. Point Z is the only optimal operating point for 

both smallest cache size and minimum access time, and the corresponding block size is B 

= 1. 

The above two cases and the respective sub cases are summarized in Table 2.1. 
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Table 2.1 Pareto optimal range of block sizes (3-D) 

  

Case 1: tc γγ <  Case 2: ct γγ <  

Maximal Tradeoff tc BBB ≤≤  ct BBB ≤≤  

Partial Trade-off tBB ≤≤1  cBB ≤≤1  

Unique Minimum B = 1 B = 1 

 

 

We now extend the analysis for the 3-dimensional dataset and generalize the 

results for an n-dimensional dataset. Consider an n-dimensional dataset represented by an 

n-dimensional voxel array of size D1 x D2 x � x DN. This array of voxels can be 

partitioned into fixed-size groups of voxels and the dataset can be viewed as a collection 

of n-dimensional macro-voxels. Let the size of each macro-voxel be M1 x M2 x � x Mn, 

such that M1 << D1, M2 << D2� Mn << Dn. 

We can now define the following design variables for this n-dimensional macro-

voxel caching problem: 

The size of each macro-voxel: n

n

i
i xxxxB •••== ∏

=

...21
1

      (2.45) 

The macro-voxel dimensionality: ],...,,...,,[ 121 −= ni xxxxy       (2.46) 

where xi = Mi (i = 1� n) and Mi is the ith dimension of the macro-voxel. 

The following constraints can be identified: 

 
1

1
1

≥
≥
≥

comp

i

N
B
x
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We now define the following objective functions as before. 

Cache Size:  )( BNC cccomp βα +=          (2.47) 

Access Time: )( BNT ttcomp βα +=          (2.48) 

The optimal macro-voxel caching problem can be formulated as follows: 

 )(),(min
,

BNyBC cccompyB
βα +=         (2.49) 

 )(),(min
,

BNyBT ttcompyB
βα +=         (2.50) 

subject to the constraints: 
1

1
1

≥
≥
≥

comp

i

N
B
x

 

We first minimize each objective function by taking the partial derivative with respect to 

each of its dependent variables and equating it to 0. 

Objective Function for Cache Size: )(),( BNyBC cccomp βα +=      (2.51) 

Taking partial derivative w.r.t. B: 0)( =+
∂

∂
+=

∂
∂

ccomp
comp

cc N
B

N
B

B
C ββα    (2.52) 

Taking partial derivative w.r.t. yi: 0)( =
∂

∂
+=

∂
∂

i

comp
cc

i y
N

B
y
C βα      (2.53) 

where yi = xi (i = 1� n-1) 

From (2.53)  
iy

C
∂
∂  = 0 iff 

i

comp

y
N
∂

∂
 = 0. 

Thus for any given B, minimum cache size Co(B) can be obtained by minimizing the 

number of compulsory misses Ncomp with respect to design variables yi: 

),(min)( yBNBN compyo =          (2.54) 

)()( BNBC ccoo βα +=          (2.55) 
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Minimum Co(B) is achieved by taking derivative with respect to B and equating it to 0. 

Let Bc be the optimal block size at which the cache size achieves its minimum value Cmin. 

)()(min cccco BBNC βα +•=          (2.56) 

Similar analysis applies to the objective function T: 

Objective Function for Access Time: )(),( BNyBT ttcomp βα +=      (2.57) 

Taking partial derivative w.r.t. B: 0)( =+
∂

∂
+=

∂
∂

tcomp
comp

tt N
B

N
B

B
T ββα    (2.58) 

Taking partial derivative w.r.t. yi: 0)( =
∂

∂
+=

∂
∂

i

comp
tt

i y
N

B
y
T βα      (2.59) 

where yi = xi (i = 1� n-1) 

From (2.59)  
iy

T
∂
∂  = 0 iff 

i

comp

y
N
∂

∂
 = 0. 

Thus for any fixed B, minimum access time To(B) can be achieved by minimizing the 

number of compulsory misses Ncomp with respect to design variables yi: 

)()( BNBT ttoo βα +=          (2.60) 

Minimum To(B) can be found by differentiating with respect to B and equating it to 0. Let 

Bt be the optimal block size at which the access time achieves its minimum value Tmin. 

 )()(min tttto BBNT βα +•=          (2.61) 

 

Based on the relative values of Bc and Bt, we can summarize the range of Pareto 

optimal values for block size B, required to obtain optimal cache size and access time as 

shown in Table 2.2. 
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Table 2.2 Pareto optimal range of block sizes (general case) 

  

Case 1: tc BB <  Case 2: ct BB <  

Maximal Tradeoff tc BBB ≤≤  ct BBB ≤≤  

Partial Trade-off tBB ≤≤1  cBB ≤≤1  

Unique Minimum B = 1 B = 1 

 

 

2.6 Conclusion 

In this chapter, we addressed the problem of caching large multidimensional 

datasets. We partitioned such datasets into small blocks called macro-voxels, where each 

macro-voxel contained a multidimensional subset of the dataset and is intended to 

preserve access locality. We then developed a macro-voxel based caching model, 

assuming that the minimum number of blocks that a cache should hold for no capacity 

misses is equal to the number of compulsory misses. Using the block size as our design 

variable, we solved to obtain the Pareto optimal range of block sizes which would 

minimize our objective functions, namely, cache size and access time. We came up with 

formulae for block sizes that would minimize these objective functions for the case when 

the number of compulsory misses is a power law function of the block size. Thus, given 

the data access pattern for a problem, our theory identifies the existence of a Pareto 

optimal tradeoff region between the minimum access time and cache size requirements. 
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In the next chapter, we will experiment with this macro-voxel based caching 

scheme in different settings that include data access from local disk and over a network, 

and examine the validity of the model developed in this chapter. 
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CHAPTER 3: THREE-DIMENSIONAL DATASET CACHING 
 

In chapter 2, we introduced the concept of macro-voxel, developed a macro-voxel 

based caching scheme and solved for the optimal macro-voxel sizes that would achieve 

minimum cache size and access time. In this chapter, we implement the macro-voxel 

caching scheme in an application which repeatedly accesses a remote three-dimensional 

dataset, and examine the validity of the model developed in the previous chapter. We 

partition the dataset into macro-voxels, where each macro-voxel is a small subset of the 

three dimensional dataset, and we examine the effect of varying macro-voxel dimensions 

on the number of compulsory misses registered, Ncomp. First, we keep the size fixed, and 

vary the dimensions to determine the effect of shape on Ncomp. After determining the 

shape that minimizes Ncomp, we determine the effect of size on Ncomp and verify the power 

law dependence between the macro-voxel size and the number of compulsory misses. 

The cache storage requirement per macro-voxel is a linear function of the macro-voxel 

size. We measure the access time per macro-voxel and verify its linear dependence on 

macro-voxel size. Finally we provide experimental data to validate the brick wall 

hypothesis. We perform all the above experiments with the ALIGN software, which is an 

example of an online problem. In general, online problems access data files in response to 

a continuous series of query operations and perform some computations based on the 

results. The data being queried will be static (only read operations performed) and can be 

preprocessed for efficient query processing. We also experiment with SPEC�s seismic 

benchmark program called SPECSeis96.1.2, an example of a batched problem, in which 

no preprocessing is done and the entire file of data items is processed by streaming the 

data through the internal memory in one or more passes. 
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3.1 The ALIGN software (online problem) 

The ALIGN software package is a MATLAB based registration software which 

aligns two objects [3] using the Euclidean distance transform and the Marquardt-

Levenberg optimization algorithm. The object being aligned is known as the test object, 

and the object being aligned to, is the reference object. They are 2D or 3D binary objects 

whose contours are given as a set of pixel or voxel coordinates. The program operates in 

2D/3D space and estimates the parameters of affine or rigid body space transformations 

for optimal alignment. An iterative search is done in transformation parameter space to 

find the best fit between the two objects. This search is based on a modified gradient 

descent which is calculated using a previously computed distance map. The distance map, 

which is stored on the disk, is in the form of a 2D/3D array whose entries are 2D/3D 

vectors from the closest point in the reference object to the given voxel. In summary, the 

program estimates the transformation parameters for optimal alignment of the test object 

to the reference object by iteratively accessing Euclidean distances from the distance map 

and computing the modified gradient descent. If the distance map is relatively small, the 

program stores the entire map in memory; if not, the program accesses the distance map 

stored on the disk and reads off entries iteratively during the alignment process. So for 

large distance maps, the program spends a lot of I/O time fetching individual distance 

vectors from the disk to memory. We propose to partition the distance map into macro-

voxels and investigate the effect of implementing a macro-voxel based caching scheme to 

minimize run time and cache usage. 

For the reader�s convenience, we provide a list of symbols from chapter 2 that are 

going to be used in this chapter in Table 3.1. 
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Table 3.1 List of symbols and definitions 

Symbol Definition 

Ncache Number of macro-voxels that can be stored in cache 

Ncomp Number of compulsory misses, or the working set size 

Ncap Number of capacity misses 

Nmin 
Minimum number of macro-voxels that should be stored in cache to avoid 

capacity misses 

Nmiss Total Number of misses = Ncomp + Ncap 

B Number of records per macro-voxel 

αc Index storage per macro-voxel (bytes) 

βc Storage requirement per record (bytes) 

γc αc / βc 

αt (Latency) Seek Time per macro-voxel from backing store 

βt Transfer Time per record from backing store to cache 

γt αt / βt 

C Cache size in bytes = Ncache � [αc + βcB] 

T Access Time = Nmiss � [αt + βtB] 

No Minimum number of compulsory misses that can be achieved for fixed B 

Co No � [αc + βcB] 

To No � [αt + βtB] 

Cmin No(Bc) � [αc + βcBc], Bc achieves minimum cache size 

Tmin No(Bt) � [αt + βtBt], Bt achieves minimum access time 

S Shape factor, equal to ratio of smallest to largest macro-voxel dimension 



 45

3.1.1 Computing platforms and problem specifics 

We performed the ALIGN experiments on two Sun Microsystems computers 

which will be denoted as Sun1 and Sun2. Table 3.2 gives the system information for both 

machines. 

 

 

Table 3.2 Computing platforms 

 Sun1 Sun2 

System Configuration Sun Enterprise 4000/5000 Sun Fire 880

System Clock Frequency 82 MHz 150 MHz 

Memory Size 768 MB 8192 MB 

CPU 248 MHz 750 MHz 

 

 

We use the ALIGN program to align two 3D rat brain objects. The dimensions of 

the distance map corresponding to the reference object (in voxels) are 700 x 700 x 419. 

So the distance map has 700 x 700 x 419 entries, which we refer to in general as records, 

each containing the vector distance of the corresponding voxel to the closest point in the 

reference object. Each record consists of three readings, each stored as a short integer (2 

bytes). Hence, the size of the entire distance map is (700x700x419x3x2) bytes = 

1,231,860,000 bytes. This distance map is stored on the disk and is iteratively accessed 

by the program during the alignment process. 

On Sun1, the original program took a total of T1 = 518 seconds to complete, of 

which T2 = 395 seconds were spent in accessing the distance map file. On Sun2, these 
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numbers were T1 = 284 seconds and T2 = 245 seconds respectively. Both T1 & T2 are 

recorded from within MATLAB functions (.m file) using the MATLAB built-in function 

cputime. T1 is the time spent in the MATLAB function (say F1) which performs the align 

routine. T2 is the time spent in the C function (say F2) which fetches the distance map 

from the disk. Function F2 is iteratively called by function F1 during this align process. 

Thus T2 is a time component of T1 that gives a measure of the distance map file access 

time. The total number of records accessed in the align process for this particular problem 

setting is 4,624,931 (approximately four and a half million records, each of six bytes), out 

of which only 747,188 records are unique. Thus on an average, each unique record can be 

said to be accessed roughly six times during the alignment. These repeated non-unique 

disk accesses contribute to the large fraction of the execution time spent in the distance 

map access. 

 

3.1.2 Problem strategy and goals 

Our overall goal is to reduce the time taken to access the distance map files by 

reducing the number of disk reads. To this extent, we employ the concept of macro-voxel 

based caching scheme and exploit the inherent locality in this problem. We first perform 

our experiments with a cache size such that Ncache = Ncomp. This implies that only 

compulsory misses occur and the cache is large enough to hold all Ncomp macro-voxels 

simultaneously without a need for replacement. 

We first partition the 3D dataset into fixed size macro-voxels and store them in a 

new file. When the ALIGN program needs to access a record in the process of aligning 

the reference and test datasets, it will now seek this new file which contains macro-
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voxels. We employ caching and pre-fetching techniques to exploit locality. When the 

program needs to read a record, it fetches the macro-voxel containing the record from the 

new file. Anticipating that this record may be needed in the near future (temporal 

locality), the program stores the macro-voxel in memory. By saving the macro-voxel in 

memory, the program has essentially pre-fetched other records in the spatial 

neighborhood of the desired record, anticipating their future need (spatial locality). Thus 

by clustering nearby voxels into a macro-voxel and implementing a macro-voxel caching 

scheme, we are essentially exploiting spatial and temporal locality in these datasets. 

When the program needs to access a record, it checks the internal memory to see 

if the corresponding macro-voxel has already been cached. If yes, it reads the desired 

record(s) from the cache. If not, the program will access the disk and fetch the 

corresponding macro-voxel into memory. Since Ncache = Ncomp, the program is able to 

store all the unique macro-voxels accessed during the alignment in cache, thus avoiding 

capacity misses. This brings us to the question: How many unique macro-voxels are 

accessed? For a given problem, this number depends on the size and shape of the macro-

voxels. In other words, it depends on the dimensions of the macro-voxel. Since these 

unique macro-voxels accessed are the only ones that need to be stored in cache, they are 

also known as �The working set�. Our first goal is to reduce Ncomp, the working set size, 

which requires investigating its dependence on the size and shape of the macro-voxel. We 

measure the macro-voxel size by B, the number of records in the macro-voxel, which is 

equal to the product of the dimensions of a macro-voxel. As a measure of the macro-

voxel shape, we define the shape factor S to be the ratio of the smallest dimension to the 
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largest dimension of a macro-voxel. S can take the maximum value of 1, when the macro-

voxel is a cube. Thus in our experiments, Ncomp depends on B and S. 

Given that we need to store Ncomp macro-voxels in memory, our second goal is to 

minimize this storage requirement. From equation (2.14), the storage requirement per 

macro-voxel is modeled to be composed to two components. The first is the storage 

(bytes) required per macro-voxel to implement the indexing scheme, αc. The second is 

the storage (bytes) required per record, βc. Thus the term (αc + βc B) is the storage (bytes) 

required per macro-voxel and the term C = {Ncomp � (αc + βc B)} is the total amount of 

cache storage required for the problem. For the ALIGN experiments, αc = 12 bytes and βc 

= 6 bytes, and so C depends on Ncomp and B only. 

Next, we need to investigate the dependence of the time taken to fetch the 

working set of macro-voxels from the disk to memory. From equation (2.16), we model 

the time taken to access each macro-voxel to be composed of two time components, 

latency, αt and transfer rate, βt. Latency is the time taken to start the macro-voxel transfer 

after a request has been made whereas transfer rate is the time taken to transfer each 

record. Thus the term (αt + βt B) is the time required to fetch each macro-voxel, and the 

term T = {Ncomp � (αt + βt B)} is the total time required to fetch the entire working set of 

macro-voxels from the disk to memory. 

We introduce another dimension to this problem to address the disk storage 

requirements of these large 3D datasets. As was mentioned earlier, the distance map size 

in this problem is almost 1GB. The new file stores macro-voxels, and during the 

alignment process, the program accesses a macro-voxel as one entire entity. In order to 

make the handling of these large macro-voxel files more manageable, namely, to reduce 
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the disk storage requirements of these new files, we take advantage of the macro-voxel 

based storage layout organization by preprocessing & compressing each macro-voxel and 

storing these compressed macro-voxels in the new file. This conserves disk space, at the 

cost of extra computation time to access each macro-voxel. The program now has to 

perform two additional steps on each fetched macro-voxel before storing it in cache in its 

uncompressed form: 

a) decompression & 

b) post-processing 

Thus introducing compression reduces the disk access time per macro-voxel but increases 

the time taken to read the first record from it. We model the total time taken per macro-

voxel as specified in chapter 2, namely (αt + βt B). This term now represents the time 

taken to read a compressed macro-voxel from disk, decompress and post-process it, and 

store the uncompressed form in cache for future accesses. Thus, as before, the term T = 

{Ncomp � (αt + βt B)} is the total time required to fetch the entire working set of macro-

voxels from the disk to memory and it depends on Ncomp, B and whether compression is 

used. 

In summary, our design goals are as follows: 

1) Minimize the working set size, Ncomp 

2) Minimize cache size C, required to store the working set 

3) Minimize time taken T, to fetch the working set from disk and store it in its 

uncompressed form in cache 

4) Reduce disk space required to store the file containing macro-voxels 
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Table 3.3 summarizes the system performance measures and their dependent design 

parameters for a given problem. 

 

 

Table 3.3 Performance measures and design parameters 

Performance Measure Design Parameters 

Ncomp B, S 

C Ncomp, B 

T Ncomp, B, Compression 

 

 

 

Before doing a detailed analysis, let us jump in and investigate the effect of only the size 

factor B on the cache size C and access time T. We do this in the next subsection. 

 

3.1.3 Cube shaped macro-voxels 

We first experiment with the ALIGN program by partitioning the distance map 

into cube shaped macro-voxels, i.e. the macro-voxel dimensions are d x d x d. In this 

case, size factor B = d3, and shape factor S = 1. Thus we exclude the effect of S. There is 

no preprocessing or compression involved. Thus the only design parameter in this case is 

the size factor B, which affects Ncomp, and hence C & T. The dimension d takes values 

from the set {4, 8, 16, 32 and 64}. Table 3.4 shows the required cache size in each of the 

five cases. 
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Table 3.4 Cache size for cube shaped macro-voxels 

 Macro-voxel Dimensions Working set size Record Size Overhead Size Total Cache Size 

1 4 × 4 × 4 111,267 42,726,528 1,335,204 44,061,732 

2 8 × 8 × 8 34,412 105,713,664 412,944 106,126,608 

3 16 × 16 × 16 7,692 189,038,592 92,304 189,130,896 

4 32 × 32 × 32 1,524 299,630,592 18,288 299,648,880 

5 64 × 64 × 64 287 451,411,968 3,444 451,415,412 

 

 

The working set size Ncomp in the third column of Table 3.4, which is the number 

of macro-voxels accessed, is determined experimentally. The values in the last three 

columns are in bytes. The record size is computed as the product of Ncomp, B and βc. The 

overhead size is computed as the product of Ncomp and αc. The sum of the record size and 

the overhead size gives the total cache size required to store the Ncomp working set of 

macro-voxels in memory. It can be seen that as the size of the macro-voxels increases, 

the working set size (and consequently the miss rate) decreases, but the total cache size 

required increases. These size requirements are the same on both computer systems Sun1 

and Sun2. 

The next table, Table 3.5 shows the timing data for the experiments from Table 

3.4, run on Sun1 and Sun2. The second column, working set size, is from Table 3.4. The 

remaining columns are time measurements recorded in seconds. As mentioned before, 

both T1 & T2 are recorded from within MATLAB functions using the MATLAB built-in 

function cputime. T1 is the time spent in the MATLAB function F1 which performs the 

align routine whereas T2 is the time spent in the C function F2 which fetches the distance 

map from the disk. Since F2 is iteratively called by F1 during the align process, T2 is a 

time component of T1 that is a measure of the distance map file access time. 
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Table 3.5 Timing data for cube shaped macro-voxels 

Sun1 Sun2  Macro-voxel Dimensions Working set size 

T1 T2 T3 T1 T2 T3 

1 4 × 4 × 4 111,267 233.86 112.10 20.06 118.34 79.29 10.77 

2 8 × 8 × 8 34,412 224.67 101.53 10.35 113.28 74.21 5.17 

3 16 × 16 × 16 7,692 222.60 98.78 7.67 109.87 71.19 3.75 

4 32 × 32 × 32 1,524 222.95 100.10 10.92 112.06 72.31 5.22 

5 64 × 64 × 64 287 225.57 104.06 16.06 114.28 74.66 8.14 

 

 

We also measured T3, which is the time spent in doing freads in the C function 

F2. It was recorded using the C built-in function clock. T3 is thus the most accurate 

measure of the time spent in reading data from the disk. T3 is a time component of T2. 

We will be using T3 for our analysis. T1 & T2 can be used to compare performance with 

the original ALIGN program. 

Comparing T1 and T2 readings from Table 3.5 with the readings for the original 

ALIGN program, it can be seen that the new program runs at least twice as fast. 

Interesting point to note is that, although the number of misses (and the miss rate) 

decreases with increasing macro-voxel size, the minimum run time is achieved for an 

intermediate size. It is this behavior that we are most interested in. In other words, we 

would like investigate the effect of macro-voxel dimensions on the access time and cache 

size. Figure 3.1 shows the variation of Access Time (T3) versus Cache Size for both 

Sun1 and Sun2. From Figure 3.1, it can be inferred that bigger macro-voxels doesn�t 

necessarily mean better performance. In spite of lower miss rates with bigger macro-

voxels, increasing the macro-voxel size beyond a particular limit increases both the 

access time and the cache size. By varying the macro-voxel size within the limit, we 
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obtain a time-size trade-off. Smaller dimensions lead to smaller cache sizes due to less 

cache pollution and higher access times due to higher number of disk accesses. Larger 

dimensions lead to smaller access times due to fewer number of disk accesses at the cost 

of larger cache sizes which is due to increase in cache pollution. Thus there exists an 

optimal range of macro-voxel sizes within which one must operate in order to achieve 

good system performance with respect to access time and cache size. This can be 

observed in Figure 3.1. 
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In the above experiments, T3 is the recorded time spent in fetching uncompressed 

macro-voxels from the disk to memory. We perform a linear regression of the access time 

per macro-voxel on the size of the macro-voxel B to estimate the latency and transfer rate 

components for the access time model. Figure 3.2 shows the corresponding plot, equation 

and R-square values. On Sun1, the latency and transfer rate are 0.2 milliseconds and 0.2 

microseconds per voxel. On Sun2 these numbers are 30 microseconds and 0.1 

microseconds per voxel. 

The new macro-voxel files used in the above experiments were almost the same 

size of the original distance map, i.e. ~ 1GB. In order to reduce the disk space required to 

store these new files, we introduced compression in addition to the above dataset 

partitioning technique. This is discussed in the next subsection. 
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3.1.4 Preprocessed compressed macro-voxels 

 In order to make the handling of the macro-voxel files more manageable, we pre-

process and then compress each macro-voxel and store these compressed macro-voxels in 

the new file. Preprocessing involved storing the differences rather than the absolute 

values of the distances. The zlib compression library was employed to compress each 

macro-voxel. When the ALIGN program needs to access a record, it seeks this new file 

for the corresponding compressed macro-voxel, reads it, decompresses and post-

processes it and finally stores the macro-voxel in memory as earlier. Introducing 

compression reduces disk read time but increases the overall time required to store the 

uncompressed macro-voxel in memory due to the post-processing and decompression 

stages involved. We also experiment with different shaped macro-voxels, i.e. the macro-

voxels don�t have to be the same in all dimensions. Thus we investigate the effect of all 

design parameters, namely size factor B, shape factor S, and compression. 

We partitioned the original distance map (with dimensions 700 x 700 x 419) into 

macro-voxels of size d1 x d2 x d3, where each of d1, d2 and d3 took values from the set {4, 

8, 16, 32 and 64}. Thus we experimented with 125 different macro-voxel sizes, the 

smallest being 4 x 4 x 4 and the largest being 64 x 64 x 64. As described earlier, we 

performed preprocessing and compression on these macro-voxels and generated 125 files 

containing the compressed macro-voxels. Defining the file compression factor to be the 

ratio of the size of the new file to the size of the original file, we obtained compression 

factors in the range of 3% - 14%. The ALIGN experiment was performed using each of 

these compressed files. 
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Let dmin and dmax be the minimum and the maximum of {d1, d2, d3} respectively. 

We define the shape factor S as the ratio of dmin and dmax and the macro-voxel size B as 

the product of d1, d2 and d3, i.e. S = dmin / dmax and B = d1 * d2 * d3. 

Figure 3.3 plots the compression factors of the 125 files as a function of the 

macro-voxel size B. It can be observed that in general better compression factors are 

achieved for larger macro-voxels. 
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3.1.5 Effect of shape factor S 

We need to determine the effect of varying macro-voxel dimensions on the 

number of macro-voxel accesses, Ncomp, i.e. the number of compulsory misses, or the 

working set size. First let us investigate the effect of the shape factor S on Ncomp. In 

Figure 3.4, we plot the working set size Ncomp vs. shape factor S for constant macro-voxel 

sizes B. The data for this plot was obtained from 111 of the 125 ALIGN experiments 

performed. S varies from 0.0625 (i.e. 4/64) to 1. B varies from 256 (e.g. 4 x 8 x 8) to 

32768 (e.g. 32 x 32 x 32). It can be observed that for a given B, Ncomp decreases with 

increasing S. 
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For the given problem, it can be surmised from Figure 3.4 that for a given macro-

voxel size B, the smallest working set size Ncomp is achieved for the macro-voxel with 

highest shape factor S. In other words, macro-voxels whose shape approaches closest to 

that of a cube result in the smallest Ncomp. 
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Figure 3.5 Shape dependence on Sun1 

 

 

For the above experiments, we again recorded the time components T1, T2 and 

T3. It must be noted that, in these 125 experiments, T3 is the total time taken to read the 

compressed macro-voxels from the disk, post-process and decompress them and store 

these uncompressed macro-voxels in memory. T1 and T2 are same as before. On Sun1, 
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the {min, max} readings for T1, T2 and T3 were {240, 313}, {122, 192} and {34, 88} 

respectively. On Sun2, these numbers were {117, 128}, {77, 88} and {9, 22}. Comparing 

these T1 and T2 readings with the original program still shows run-time improvement by 

a factor of two. However, owing to the post-processing and decompression stages, these 

numbers are greater than those from Table 3.5 for the uncompressed macro-voxels. 
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Let us now view the effect of shape factor S from the perspective of access time 

vs. cache size. In Figure 3.5, we plot the T3 readings obtained on Sun1 against cache 

sizes for two different macro-voxel sizes B = 2048 and B = 8192. In both cases, the shape 
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factor S takes values in the set {0.0625, 0.125, 0.25 and 0.5}. Cache sizes are computed 

as before in Table 3.4. In Figure 3.6, we do the same for T3 readings on Sun2. For both 

B, it is observed that the best (i.e. minimum) access time and cache size is obtained for 

the highest shape factor S = 0.5, whereas the worst (i.e. maximum) access time and cache 

size is obtained for the smallest shape factor S = 0.0625. This further supports our earlier 

finding that for the ALIGN problem, given a B, it is best to work with macro-voxels 

having highest shape factor, since they result in (using symbols from Chapter 2) 

minimum working set size No, and consequently minimum access time To and minimum 

cache size Co. 

 

3.1.6 Effect of size factor B 

From the previous subsection, we have concluded that for a fixed macro-voxel 

size B, we obtain the minimum working set size No for the highest shape factor S. Hence, 

in this subsection we only consider the ALIGN experiments on macro-voxel files whose 

shape factor S ≥ 0.5, i.e., S = 0.5 or S = 1. Out of the 125 different files, only 29 meet this 

criterion. We now investigate the effect of varying B on No. Figure 3.7 plots No as a 

function of B on a log-log plot. It also shows the equation and R-square value of a 

regression analysis of No on B. Clearly, No has a power law dependence on B given by the 

equation No = 3.16E+06 · B-0.7328 

Our power law equation was based on only 29 different experiments. We can in 

fact do better. The original distance map dimensions are 700 x 700 x 419. Assuming that 

the macro-voxel dimensions are a power of 2, we can theoretically partition the distance 

map into macro-voxels of size d1 x d2 x d3 where d1 and d2 take values from the set {1, 2, 
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4, 8, 16, 32, 64, 128, 256, 512} and d3 takes all the values but 512. This set results in 900 

different combinations, 60 of which obey the criterion that S ≥ 0.5. We generate a 

footprint of the original ALIGN experiment and use this footprint to perform simulations 

on the 60 different macro-voxel files. We compute No from these simulations and use this 

new data to perform another regression analysis of No on B. Note that the values of No 

obtained from these simulations are not estimates; they are exact values. 
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Figure 3.8 Size dependence of No (from simulations) 

 

 

Figure 3.8 plots No as a function of B and displays the results of a regression 

analysis of No on B. It can be seen that No has a power law dependence on B given by the 

equation No = 1.6E+06 · B-0.678. From equation (2.40), K = 1.6E+06 and p = 0.678. 

Next we investigate the dependence of access time T3 on B. We consider all the 

125 T3 readings as before (in subsection 3.1.5), where each T3 is the total time taken to 

read from disk, decompress and post-process the macro-voxels and finally store it in 

memory. We compute the access time per macro-voxel (i.e. T3/Ncomp) and perform a 

linear regression on the macro-voxel size B to estimate the latency and transfer rate 

components of the access time. 
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Figure 3.9 Linear regression of access time per macro-voxel 

 

 

Figure 3.9 shows the regression results for the 125 readings on Sun1 and Sun2. 

On Sun1, the latency and transfer rate are αt = 0.3 milliseconds and βt = 1.2 microseconds 

per voxel. On Sun2 these numbers are αt = 0.2 milliseconds and βt = 0.29 microseconds 

per voxel. As mentioned before in subsection 3.1.2, the values αc = 12 bytes and βc = 6 

bytes per voxel are constant for all our experiments. 

We now determine how B affects the access time To and cache size requirements 

Co. As before, To are the readings recorded earlier (in subsection 3.1.5) as T3, except that 

we consider only 29 of the 125 experiments that meet the best shape factor criterion. 

Similarly Co are the cache size recordings for the 29 experiments. Figure 3.10 shows the 

variation of To vs. Co for these 29 readings on Sun1 and Sun2. Minimum To is 
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experimentally determined to occur at Bt = 512 (i.e. 8 x 8 x 8) for Sun1 and at Bt = 1024 

(i.e. 8 x 16 x 8) for Sun2. In both cases, minimum Co occurs at Bc = 64 (i.e. 4 x 4 x 4). 
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We use the formulae developed in Chapter 2 and compare the predictions with the 

experimental data. We utilize the 60 readings of No generated from earlier simulations 

and compute the corresponding cache sizes using equation (2.25). Similarly we use the 

latency and transfer rate readings to estimate the access times from equation (2.32) and 

plot corresponding access time vs. cache size graph in Figure 3.11. γc is computed to be 2 
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and γt is computed to be 250 for Sun1 and 690 for Sun2. Using the previously computed 

value of p = 0.678 and equations (2.42) & (2.44), the following predictions can be made: 

Bc ≈ 4 i.e. 2 x 2 x 1 

Bt (Sun1) ≈ 526, i.e. 8 x 8 x 8 

Bt (Sun2) ≈ 1452 i.e. 11 x 11 x 12 

These predicted values are pretty close to the numbers in Figure 3.11 given that we 

considered only powers of 2 in our experiments and simulations. 
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In conclusion, we have experimentally demonstrated the dependence of macro-voxel size 

B on access time To and cache size Co which results in a maximal trade off region 

between two optimal points of operation Bc which achieves minimum cache size Cmin and 

Bt, which achieves minimum access time Tmin. 

 

3.2 ALIGN over a network (online problem) 

The MATLAB based ALIGN software package was originally designed and 

developed for accessing distance maps from the local hard disk. Section 3.1 was devoted 

to demonstrate the merit of the macro-voxel based caching scheme when accessing 

distance maps located on the computer�s local disk. We incorporate networking 

capabilities into the ALIGN software using the C Simple Object Access Protocol (SOAP) 

library called gSOAP. This makes it possible for the ALIGN software to execute on a 

client computer and align the test object and reference object by accessing the distance 

map file located on a remote server. We run the same experiments as before (i.e. from 

Section 3.1), except that the ALIGN program is running on Sun2, and the distance map is 

located on a remote server. As a result, the data obtained from the previous section for 

working set size Ncomp and the cache size C for varying size and shape factors (B and S) 

will be identical to those obtained when the same experiments are performed over a 

network. The only set of readings that will be different from the previous readings are 

those for access times T, and this will be the topic of discussion in this section. 

First we employ the network capable ALIGN program to perform alignment by 

accessing the original un-partitioned distance map. We record the T1, T2 and T3 timing 

data, which are the same as defined earlier in Section 3.2. These readings were T1 = 1748 
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seconds, T2 = 1705 seconds and T3 = 1649 seconds. In this case, T3 is the time recorded 

to perform 4,624,931 (approximately four and a half million) freads from the original 

distance map file, each time reading in six bytes. It can be seen that a major fraction of 

the execution time is spent in doing disk reads over the network. Let us see how these 

numbers change when we employ the macro-voxel based caching scheme by using cube-

shaped macro-voxels. 

 

3.2.1 Cube shaped macro-voxels 

 As done in section 3.1.3, we partition the original distance map into macro-voxels 

of dimensions d x d x d where d takes values from the set {4, 8, 16, 32}. The 

corresponding cache sizes are the same as in Table 3.4. Table 3.6 shows the timing data 

for accessing these uncompressed cube shaped macro-voxel files over a network. In these 

experiments T3 is the time spent in fetching the uncompressed macro-voxels from the 

remote server�s disk to the client�s memory over the network. Figure 3.12 plots the access 

time (T3) vs. cache size, from which it is clear that minimum access time is obtained for 

a 4 x 4 x 4 sized macro-voxel map. 

 

 

Table 3.6 Timing data for cube shaped macro-voxels (network) 

Network  Macro-voxel Dimensions Working set size 

T1 T2 T3 

1 4 x 4 x 4 111,267 213.66 172.83 103.6 

2 8 x 8 x 8 34,412 265.64 225.61 157.1 

3 16 x 16 x 16 7,692 381.98 341.73 273.9 

4 32 x 32 x 32 1,524 529.99 490.53 423.3 
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Figure 3.12 Access time vs. cache size (uncompressed data over network) 

 

 

Let us also perform a linear regression of the access time per macro-voxel (i.e. 

T/Ncomp) on the macro-voxel size B to estimate the latency and transfer rate components 

of the access time model. Figure 3.13 shows the corresponding plot and equation. Thus αt 

= 0.5 milliseconds, βt = 8 microseconds, and γt = 62.5. Using our prediction equations 

from Chapter 2, we obtain the macro-voxel size for minimum access time Bt ≈ 132 (i.e. 5 

x 5 x 5), which is close to what we determined experimentally. The advantage of using a 

macro-voxel based caching system is strongly evidenced by the fact that the new access 

times is 16 times smaller than when using the original distance map. 
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Figure 3.13 Linear regression of access time/macro-voxel (uncompressed data over network) 

 

 

3.2.2 Preprocessed compressed macro-voxels 

We now use the same 125 preprocessed and compressed macro-voxel files from 

section 3.1.4, and record the timing data to access these files from the remote server. So 

T3 readings are the total time taken to fetch the compressed macro-voxels from the 

server�s disk to the client computer, decompress and post-process each, and finally store 

the uncompressed macro-voxels in the client computer�s internal memory. T1 and T2 are 

the same as before. The {min, max} readings for T1, T2 and T3 for these 125 

experiments were {123, 166}, {84, 125} and {15, 47} respectively. Important point to 

note here is that, in spite of the additional decompression and post-processing stages  
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Figure 3.14 Linear regression of access time/macro-voxel (compressed data over network) 
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involved, the access times for these files are better by a factor of more than 2, as 

compared to accessing the uncompressed macro-voxel files. This has by far been the 

most positive evidence of improvement in system performance by employing the macro-

voxel based caching scheme. We now perform linear regression of the access time per 

macro-voxel on the macro-voxel size to estimate the latency and transfer rate components 

of the time taken to access these compressed macro-voxel files. 
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Figure 3.14 shows the corresponding plot and equation which results in αt = 0.5 

milliseconds, βt = 0.34 microseconds, and γt = 1470.6. Using the prediction equations, we 
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obtain the macro-voxel size for minimum access time Bt ≈ 3096 (i.e. 15 x 15 x 15). 

Figure 3.15 shows the access time vs. cache size from 29 of the 125 experiments 

performed which satisfy the shape factor criterion, i.e. S ≥ 0.5. We used the latency and 

transfer rate readings to estimate timing data for the 60 of the 900 simulations that 

satisfied the shape factor criterion and plotted the access time vs. cache size in Figure 

3.16. 

 

3.2.3 Performance comparison 

In summary, we have performed the ALIGN experiments on the following three 

different platforms: 

1. Program runs on Sun1 accessing macro-voxel files on local hard disk. 

2. Program runs on Sun2 accessing macro-voxel files on local hard disk. 

3. Program runs on Sun2 accessing macro-voxel files on remote server. 

 

In each of the three platforms, we experimented with both compressed and 

uncompressed macro-voxel files. In this section, we compare the access time versus 

cache size performance for each of these cases. We use recorded data for the 

uncompressed and compressed versions of the following 5 different macro-voxel files, (4 

x 4 x 4), (8 x 8 x 8), (16 x 16 x 16), (32 x 32 x 32) and (64 x 64 x 64). In all these 

experiments, the value of the index overhead per macro-voxel and size per voxel is the 

same throughout, i.e. αc = 12 bytes per macro-voxel and βc = 6 bytes per voxel. This 

results in γc = 2. In section 3.1.6, the value of p was determined to be p = 0.678. From 

equation (2.42), the macro-voxel size for minimum cache size is obtained as 
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p
pB cc −

=
1

γ  = 4, which is valid for all our experiments. However, the same isn�t true 

for Bt, the macro-voxel size for minimum access time. Table 3.7 shows these computed 

values for the different problem settings. Values of αt and βt were obtained from the 

linear regressions done in the previous sections. Bt was computed from equation (2.44). It 

is interesting to note how the maximal tradeoff region varies for these six different 

problem settings. The experimental data for access time vs. cache size is plotted in Figure 

3.17. 

 

 

Table 3.7 Timing data for the six different problem settings 

Problem setting αt βt γt Bt (example) Tradeoff region

Sun1 (uncompressed) 0.2ms 0.2µs 1000 2106 (13x13x13) 4 < B < 2106 

Sun2 (uncompressed) 30µs 0.1µs 300 632 (9x9x9) 4 < B < 632 

Network (uncompressed) 0.5ms 8µs 62.5 132 (5x5x5) 4 < B < 132 

Sun1 (compressed) 0.3ms 1.2µs 250 526 (8x8x8) 4 < B < 526 

Sun2 (compressed) 0.2ms 0.29µs 690 1452 (11x11x11) 4 < B < 1452 

Network (compressed) 0.5ms 0.34µs 1470 3096 (15x15x15) 4 < B < 3096 

 

 

 

 

 

 



 74

1

10

100

1000

10000000 100000000 1000000000

Cache Size (bytes)

A
cc

es
s 

Ti
m

e 
(s

ec
on

ds
)

Sun1(NoCompr)
Sun2(NoCompr)
Network(NoCompr)
Sun1(Compr)
Sun2(Compr)
Network(Compr)

4x4x4 8x8x8 16x16x16 32x32x32 64x64x64

Net(NC) Bt ~ 4x4x4

Sun1(C) Bt ~ 8x8x8

Net(C) Bt ~ 16x16x16

Sun2(C) 8x8x8 < Bt < 16x16x16

Sun1(NC) Bt ~ 16x16x16

Sun2(NC) Bt ~ 16x16x16

Figure 3.17 Access time vs. cache size for different problem settings 

 

 

It can be seen that the Bt predictions made in Table 3.7 are close to the 

experimentally observable Bt in Figure 3.17. In all of our analysis, we used the T3 

recordings to estimate the latency and transfer rate components. In case of uncompressed 

macro-voxels, T3 involved the time to read from disk and store it in memory. In case of 

compressed macro-voxels, T3 involved the time to read, decompress, post-process and 

store the macro-voxels in memory. These different timing components were all modeled 

using the same transfer rate-latency model, and hence αt and βt had different values for 

different problem settings. We now investigate the contributions of the three timing 

components, i.e. disk read, decompression, and post-processing, to the overall access 

time T3, in each problem setting. Figure 3.18 shows a plot of the access time T3 and its 
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component contributions in six different problem settings for files with macro-voxel size 

4 x 4 x 4. Similar data is plotted in Figures 3.19, 3.20, 3.21 and 3.22 for files with macro-

voxel sizes 8 x 8 x 8, 16 x 16 x 16, 32 x 32 x 32, and 64 x 64 x 64. On all these plots, the 

component Diff is the remaining time component, i.e., Diff = T3 � File Access Time � 

Decompression Time � Post-processing Time. On the X-axis, the File Type �NC� means 

No Compression and �C� means compression. Obvious observations are that for a given 

plot, since Sun2 is faster than Sun1, the timing readings are smaller on Sun2 than on 

Sun1. Also, for a given plot, the decompression and post-processing components are the 

same for �Sun2C� and �NetC�, (since ALIGN runs on Sun2 in both cases), but the file 

access times are larger for �NetC� compared to �Sun2C�. The most interesting and 

important observation to make is the following: In all the five plots, it can be seen that, 

on Sun1 and Sun2, the total time T3 taken to access compressed file is greater than the 

time to access an uncompressed file. However the opposite is true when accessing files 

from a server. This implies that, accessing compressed macro-voxel files takes longer 

than accessing uncompressed counterparts on fast channels (in our case, the local hard 

disk); we are buying disk space savings at the cost of extra processing and decompression 

time. However, when working on slow channels (in our case, the remote hard disk), 

utilizing compressed macro-voxel files results in disk space savings and faster access 

times. 
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Figure 3.18 Access time composition for different file types of size 4x4x4 
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Figure 3.19 Access time composition for different file types of size 8x8x8 
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Figure 3.20 Access time composition for different file types of size 16x16x16 
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Figure 3.21 Access time composition for different file types of size 32x32x32 
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Figure 3.22 Access time composition for different file types of size 64x64x64 

 

 

3.3 Effect of cache replacement 

In the previous sections 3.1 and 3.2, we performed all experiments assuming that 

the memory is large enough to store all the macro-voxels belonging to the working set of 

the problem, i.e. Ncache = Ncomp. In other words, once a macro-voxel is accessed by the 

program, it is stored in memory till the program finishes execution. The cache never runs 

out of space and so there was no need to implement replacement mechanism. Thus so far 

we dealt with only compulsory misses, which are the result of accessing a macro-voxel 

for the first time. 

In this section we relax this assumption. Now we vary the value of Ncache so it 

takes values in the set {0.9No, 0.8No, 0.7No, 0.6No, 0.5No, 0.4No, 0.3No, 0.2No, 0.1No}. 
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Working with values of Ncache < No results in the cache getting full before program 

completion, and hence the need to evict one or more macro-voxels arises in order to make 

room for incoming macro-voxels. In this section, we investigate the effect of varying 

Ncache on the access time and cache size requirements. We experiment with preprocessed 

compressed macro-voxel files of sizes 4 x 4 x 4, 8 x 8 x 8, 16 x 16 x 16, 32 x 32 x 32 and 

64 x 64 x 64. The access times are composed of the time taken to read the compressed 

macro-voxel from disk, decompress and post-process it, and store it in cache. The cache 

size is the amount of memory required to store the Ncache macro-voxels. The number of 

cache replacements depends on the replacement policy. We experiment with the FIFO 

(First In First Out) and LRU (Least Recently Used) replacement schemes. 

In each of the six Figures 3.23 � 3.28, we plot the access times vs. cache size as 

recorded on three different platforms when experimenting with FIFO and LRU 

replacement schemes. Each figure has six graphs. The first graph plots the access times 

vs. cache size when Ncache = No, obtained from simulations performed in the previous 

sections; this plot will be used to determine the time-size tradeoff region which is the 

optimal region of operation. The remaining five graphs plot the recorded access times vs. 

cache sizes for compressed files containing macro-voxels of size 43, 83, 163, 323, and 643. 

In each of the five cases, we start with Ncache = No, and then reduce Ncache (0.9No, 0.8No 

and so on) till the access time gradually changes and reaches a breakdown limit after 

which the access time increases rapidly resulting in a knee shaped behavior. Note that, 

decreasing Ncache reduces cache size requirements. It is the behavior of the access time 

that we are interested in, as we reduce Ncache. 
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Figures 3.23 and 3.24 show the access time plots as recorded on Sun1, for FIFO 

and LRU replacement schemes respectively. Similarly, Figures 3.25 and 3.26 show the 

plots for data recorded on Sun2, whereas Figures 3.27 and 3.28 plot the recorded timing 

data when the program executed on Sun2, but accessed the compressed files from a 

server over a network. We use the term TNo to denote access times achieved when Ncache = 

No, and the term TNmin to denote the smallest recorded access time for a given cache size, 

when Ncache < No. 

First let us discuss the access time behavior inside the tradeoff region. In Figure 

3.23, it can be seen that for a 43 file, TNmin is smaller than TNo whereas for an 83 file, TNmin 

is almost equal to TNo. This observation implies that for a given cache size, access time 

savings can be achieved by utilizing bigger macro-voxels and allowing replacements 

rather than working with small macro-voxels and no replacements. Figures 3.24 and 3.25 

show similar behavior: for a 43 and 83 file, TNmin is much smaller than TNo, whereas for a 

163 file, TNmin is almost equal to TNo. Similar, but gradually more pronounced behavior, 

can be seen in the remaining Figures 3.26 � 3.28. In each of these plots, TNmin for 43, 83, 

and 163 files is much smaller than TNo. Thus, within the time-size tradeoff region, for a 

given cache size, better access times are feasible by using bigger macro-voxels, and 

allowing for macro-voxel replacements, rather than using small macro-voxels with zero 

replacements. 

From graphs in all the six figures, it is observed that outside the tradeoff region, 

TNmin is almost always greater than TNo. In any case, it is not optimal to work outside the 

tradeoff region, since it results in both bad access times and inefficient cache usage with 

no benefits. 
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Figure 3.23 Access time vs. cache size on Sun1 with FIFO replacement 
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Figure 3.24 Access time vs. cache size on Sun1 with LRU replacement 
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Figure 3.25 Access time vs. cache size on Sun2 with FIFO replacement 
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Figure 3.26 Access time vs. cache size on Sun2 with LRU replacement 
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Figure 3.27 Access time vs. cache size on network with FIFO replacement 
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Figure 3.28 Access time vs. cache size on network with LRU replacement 
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The access times and cache size data for Figures 3.29 and 3.30 are obtained from 

the previous six figures. We would like to compare the performance of a given 

replacement scheme across the three platforms, i.e. Sun1, Sun2, and program running on 

Sun2 but accessing files from a server. In Figure 3.29, we plot access time vs. cache size 

recordings when using FIFO replacement policy to access the five compressed files 

(containing macro-voxels of size 43, 83, 163, 323, and 643). Similar data is plotted in 

Figure 3.30 when using LRU replacement policy. Each plot in both figures exhibit a 

general knee shaped behavior, because as we decrease Ncache, the access time first 

changes gradually, reaches a limit, and then sharply increases, validating our brick wall 

hypothesis. For a given macro-voxel size, the shape of the plots are the same across the 

three platforms. The access times recorded on Sun1 for constant macro-voxel sizes are 

higher than those recorded on Sun2, which is expected since Sun2 is a faster system than 

Sun1. However, the access times for experiments over the network fall in between those 

for Sun1 and Sun2. Interesting point to note is that when working with smaller macro-

voxels (43), the access times recorded for network performance are very close to the 

access times recorded on Sun1. But when working with bigger macro-voxels (643), the 

access times recorded for network performance are close to the access times recorded on 

Sun2. In other words, as we increase the macro-voxel size from 43 to 643, the network 

performance changes from behaving as a slow system (i.e. Sun1) to behaving as a fast 

system (i.e. Sun2). The reason for this interesting behavior is as follows. Working with 

smaller macro-voxels results in a lot more disk accesses than working with bigger ones. 

This results in larger contributions to the total access time owing to the increased amount 

of disk latencies. 
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Figure 3.29 Access time vs. cache size on all platforms with FIFO replacement 

 

1

10

100

1000

10000

100000

1.0E+06 1.0E+07 1.0E+08 1.0E+09

Cache Size (bytes)

A
cc

es
s 

Ti
m

e 
(s

ec
on

ds
)

Sun1LRU4x4x4
Sun1LRU8x8x8
Sun1LRU16x16x16
Sun1LRU32x32x32
Sun1LRU64x64x64
Sun2LRU4x4x4
Sun2LRU8x8x8
Sun2LRU16x16x16
Sun2LRU32x32x32
Sun2LRU64x64x64
NetLRU4x4x4
NetLRU8x8x8
NetLRU16x16x16
NetLRU32x32x32
NetLRU64x64x64

Figure 3.30 Access time vs. cache size on all platforms with LRU replacement 
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3.4 SPECseis96.1.2 (batched problem) 

In this section, we consider a benchmark application from SPEC, which falls in 

the batched problem category dealing with large three-dimensional datasets. First, a few 

words on SPEC. SPEC, the Standard Performance Evaluation Corporation, is a non-profit 

corporation formed to "establish, maintain and endorse a standardized set of relevant 

benchmarks that can be applied to the newest generation of high-performance computers" 

(quoted from SPEC's bylaws). SPEChpc96 (�hpc� stands for High Performance 

Computing; �96� is the year it was released) is a benchmark suite that measures the 

performance of high-end computing systems running industrial-style applications. The 

SPEChpc96 suite includes three application areas: seismic processing (SPECseis96), 

computational chemistry (SPECchem96), and climate modeling (SPECclimate). 

For our research, we employ version 1.2 of the SPECseis96 suite which is used to 

evaluate machine performance on industrially significant computer workloads as well as 

for scientific study. It is a seismic processing suite developed in 1993 at Atlantic 

Richfield Corp. (ARCO) by Charles Mosher and Siamak Hassanzadeh [72]. The suite 

includes an industrial application named Seismic that performs time and depth migrations 

used to locate gas and oil deposits. The entire code contains 15,000 lines of FORTRAN 

and C code, and includes intensive disk I/O. We configured the application to run in 

serial mode (It can be run in parallel mode also). 

A single run of Seismic consists of four sequential �phases�, which perform the 

seismic computations: �Data generation�, �Stacking of data�, �Time migration�, and 

�Depth migration�. Each phase consists of a series of seismic processes which perform 
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certain seismic processing computations or disk I/O. Initially, only input parameters are 

needed (no data files). Then the seismic data is stored in a file throughout the execution 

of a phase. Data stored from a previous phase is used in the current phase, i.e., Phase 2 

uses the data files stored by Phase 1, whereas Phases 3 and 4 use the data files stored by 

Phase 2. The total execution time of Seismic is determined by adding the elapsed times, 

in seconds, for all four phases of the application. 

After investigating the data input/output pattern in all four phases, we found that 

there was no temporal locality exhibited in any of the file access pattern, since each file is 

written and subsequently read only once in its entirety. Moreover, in every phase, except 

Phase 2, the data files were read sequentially from beginning to end. However, the data 

file written in Phase 1 exhibited a non-sequential read pattern in Phase 2. We intend to 

apply the macro-voxel data clustering scheme to this particular data file. Let us first 

examine how the data is generated for this file, and how it gets the three-dimensional 

nature. 

 

3.4.1 Seismic data generation and layout 

The seismic data for this file is generated by simulating the following single-

source-explosion / multi-receiver-pickup model. The source is moved (column-wise) 

along a rectilinear grid (Figure 3.31) consisting of Nshot columns and Nline rows. Nrecv 

receivers are placed on a cable that is moved each time the source is moved. At each 

source location, there is a shot (explosion), which is picked up by all the receivers; each 

receiver records the amplitude over time, creating a series of Namp samples per receiver. 
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Figure 3.31            Shooting geometry 
 

This series of amplitude data picked up by a receiver for a given shot is defined as 

the seismic trace. Each shot and cable-of-receivers combination is called a group or a 

frame. Each row is termed as a line or a volume. In summary, each seismic trace has Namp 

samples. There are Nrecv such traces per frame. There are Nshot frames per volume and a 

total of Nline volumes. Each sample in a seismic trace is stored as a 4 byte floating point 

number. Thus the total size of the dataset generated by this model in Phase 1 is 

determined as the following product: (Nline volumes) x (Nshot frames) x (Nrecv traces) x 

(Namp samples) x (4 byte floats). 

Let us take a 3-dimensional view (Figure 3.32) of this dataset in order to 

understand how the data is laid out during the write process of Phase 1. Consider the 

trace, frame and volume to be represented by the X, Y and Z dimensions of a 3-D space 

respectively. Each voxel, i.e. each {x, y, z} coordinate represents a record containing the 

Namp samples and there are Nrecv x Nshot x Nline voxels. The write process in Phase 1 
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performs a write of these voxels in the following order: {traces, frames, volumes}. In 

other words, data is laid out in the normal X-Y-Z order. 

 

Write Order in Process 1 Read order in Process 2 

Figure 3.32            Seismic benchmark file viewed as a three-dimensional voxel array 

Trace Trace 

Volume Volume 

Frame Frame 

Voxels 

 

However, when Phase 2 reads this file, the read order is changed to Y-X-Z order, 

i.e. for a given volume, the process reads the 1st trace in every frame, then the 2nd trace in 

every frame, then the 3rd trace in every frame� and so on. Thus, during Phase 2, the read 

process involves an fseek and an fread for every single trace, causing significant time 

delay due to the large number of disk latencies. 

We propose to partition the dataset into macro-voxels of dimensions 1 x Nshot x 1 

(Figure 3.33) and store these macro-voxels in a file which would be subsequently read in 
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Phase 2. The number of freads that need to be performed in Phase 2 while reading this 

new file has now been reduced by a factor of Nshot, thus significantly reducing the disk 

latency contribution to the total access times. 

 

Dataset composed of 
Macro-voxels 

Macro-voxel composed of voxels 

Figure 3.33            Seismic benchmark file part itioned into macro-voxels 

 

The Seismic application consists of five different problem sizes reflected in the 

number of seismic traces that it will process, which in turn is reflected in the size of the 

input/output datasets. We experimented with three problem sizes (test, small and 

medium) as shown in Table 3.8. The application also has built-in verification procedures, 

which validated our experiments. The timing data in Table 3.8 is obtained from output 

files generated by the application. I/O times are in seconds and I/O rates are in 

MB/second. 
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Table 3.8 Seismic benchmark experiments 

Phase I 

(WRITE) 

Phase II 

(READ) Dataset 

(Size) 

Namp Nrecv Nshot Nline Version
I/O 

Time 

I/O 

Rate 

I/O 

Time 

I/O 

Rate 

Original 0.440 39.025 3.290 5.219TEST 

(16MB) 

256 16 32 32 
New 0.970 17.702 2.390 7.184

Original 2.549 40.412 22.840 4.511SMALL 

(96MB) 

256 48 64 32 
New 6.180 16.671 17.120 6.018

Original 39.988 40.750 2704.020 0.603MEDIUM 

(1.5GB) 

512 48 128 128 
New 142.874 11.405 331.774 4.911

 

As we go from the test dataset, to the medium dataset, the amount of data I/O 

increases, as can be seen by the first five columns. The last two columns indicate the I/O 

Time and the I/O rate for the Phase 2 read process. It can be seen that this number has 

improved by a factor of 8 (2704.02 seconds vs. 331.774 seconds) for the medium file, at a 

small cost in creating the macro-voxel file (39.988 seconds vs. 142.874 seconds). 
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3.5 Conclusion 

In this chapter, we applied the macro-voxel concept in a real software application 

that iteratively accesses a large three-dimensional dataset and examined the validity of 

the macro-voxel based caching model developed in chapter 2. Section 3.1 described 

several experiments that were performed to evaluate the merits of employing the macro-

voxel based caching scheme on the ALIGN software package, which repeatedly accesses 

a three-dimensional distance map in the process of aligning a test dataset to a reference 

dataset, when the dataset was located on local disk. Our experiments were based on the 

assumption that the cache can hold all the blocks that are accessed due to compulsory 

misses, i.e. Ncache = Ncomp and we investigated the effects of varying macro-voxel 

dimensions on Ncomp, also known as the working set size. 

In section 3.1.5, we experimented with macro-voxels of varying shape factor S, 

but constant block size B. In the limited range of macro-voxel shapes that we worked 

with, we found that Ncomp is not strongly dependent on S; however macro-voxels with 

higher shape factors did result in smaller working set size. We expect this behavior to be 

more pronounced when working with a large range of block shapes. We concluded that 

for a given size B, the smallest working set size No can be achieved by using cube shaped 

macro-voxels. In section 3.1.6, we examined the effect of varying B on No and concluded 

that No has a power law dependence on the macro-voxel size B. The recorded timing data 

to fetch each macro-voxel from the backing store exhibited a linear dependence on the 

size B. The cache size requirement per macro-voxel was also linearly dependent on B. 

We experimentally determined the macro-voxel sizes that achieved minimum access time 
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and minimum cache size. These numbers were comparable to the predictions by the 

caching model, within experimental limitations and verified the existence of a maximal 

trade-off region of operation between Bc and Bt. In Section 3.2, we performed the ALIGN 

experiments in a setting where the distance map file was located on a remote server. 

Employing the macro-voxel caching scheme improved the overall execution time by 

more than ten times. In this case also, the access time per macro-voxel was found to be 

linearly dependent on the size B and the experimentally determined Bt was close to model 

prediction. 

The existence of a Pareto optimal range of macro-voxel sizes predicted by the 

caching model in chapter 2 was validated in all our experiments. Choosing B = Bc, 

resulted in small cache sizes at the cost of large access times, whereas B = Bt resulted in 

smallest access times at the cost of larger cache sizes. We observed that both optimal 

points were broad optimum; small changes in B resulted in small changes in access time 

and cache size. Access channels with higher γt, i.e. higher latency to transfer rate ratio, 

resulted in larger values for Bt. In spite of additional processing times, using compressed 

macro-voxels on slower access channels would be faster than using uncompressed ones. 

The opposite would be true on fast access channels. In section 3.3, we found that working 

with cache sizes such that Ncache < No resulted in the access time increasing rapidly after 

reaching a certain limit, due to capacity misses. This behavior validates the brick wall 

hypothesis and in general should be avoided. We conclude that the idea of macro-voxel 

based caching scheme holds merit and is very effective when accessing multidimensional 

datasets over slow access channels such as the internet. In the next chapter, we describe a 

multidimensional input/output system interface based on our idea of the macro-voxel.
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CHAPTER 4: MACRO-VOXEL BASED INPUT/OUTPUT SYSTEM INTERFACE 

 

In this chapter, we propose a generalization of the macro-voxel concept in the 

form of a multidimensional input/output system interface, which seamlessly integrates 

the macro-voxel based caching scheme, transparent to user applications. 

Input/output system interfaces in current operating systems, e.g. UNIX, consist of 

�read� and �write� system calls, which are usually sequential in nature. Files on the local 

system are first opened via certain file descriptors, and a number of bytes are read or 

written in a sequential order, irrespective of the dimensionality of the file. If the file in 

question is multidimensional in nature, this single dimensional read/write process 

destroys the underlying dimensionality. By using �seek� system calls, file dimensionality 

may be preserved. The system interface provides this mechanism to move around in a file 

in an arbitrary order, but since it is oblivious of the file dimensionality, the necessary 

read/write order must be decided and implemented by the user�s application. Buffering 

schemes employed in I/O system interfaces read and write a block of bytes per system 

call. Besides the fact that the block contains sequential data, another issue of concern is 

that the block size is independent of file size. Similarly, caching and paging mechanisms 

are general in nature and do not take into consideration the dimensionality or the size of a 

multidimensional file being processed. Lastly, applications use I/O system interfaces to 

access local files; however, if they need to access multidimensional files located on a 

network such as the internet, users need to implement the necessary functionality in their 

applications, either by hard-coding the necessary socket programming themselves, or by 

using third party networking products. 
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In chapter 3, we demonstrated the merits of employing a macro-voxel based 

caching scheme to improve system performance when accessing large multidimensional 

datasets. In the previous paragraph, we discussed the problems encountered by current 

I/O system interfaces when dealing with large multidimensional files. Putting these facts 

together, we propose to incorporate the macro-voxel concept into current I/O system 

interfaces, and thereby extend their utility in terms of dealing with files containing large 

multidimensional datasets. The overall goal of this proposal is to optimize performance 

of the I/O system interfaces and at the same time, maintaining transparency with user 

applications. 

When �write� system calls are made to this new macro-voxel based I/O system 

interface, the user application provides data to be written as before. However, the file 

generated as a result of this write process will contain macro-voxels. Each macro-voxel is 

designed to contain small multidimensional subsets of the dataset, which results in the 

new file preserving the underlying dimensionality. As a consequence, using macro-voxels 

of appropriate shape and size will result in fewer number of write accesses to the file 

location. Similarly, when the user application performs data reads as before, the new 

system interface will access the macro-voxel file, and will need to perform fewer read 

accesses to the file location, since each read will fetch a macro-voxel containing localized 

data. Employing a system level caching scheme that stores macro-voxels in its cache will 

significantly reduce the number of accesses to the file location. In our new I/O system 

interface, since the unit of system level read/write is a macro-voxel, storing compressed 

macro-voxels will conserve disk space in the file location, and will also improve access 

time over slow channels. Finally, integrating networking functionality into the system 
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interface will result in complete transparency with the user application, making this 

macro-voxel based I/O system interface a universal autonomous solution to handle multi-

dimensional data files efficiently. 

As a prelude to this proposal of creating a transparent macro-voxel caching 

solution, we have developed software targeted to integrate this caching scheme in 

existing applications. The software was developed in C language and is intended to be 

used as an interface between an application and the dataset, which could be located either 

on local disk or on the internet. It incorporates both read and write functionality. 

The current software version consists of function definitions (in source files) and 

declarations (in header files). At present, the source files need to be compiled with the 

user�s program to generate the final executable. Future work involves building a C library 

containing all our functions and making a header file containing the function prototypes 

for all the functions in our library so that it can be easily included in the user�s program 

by the #include preprocessor directive. The user�s program may be written in C or 

another language that is capable of working with C files (e.g. MATLAB). We used zlib, a 

compression library (version 1.1.3), to implement compression and decompression 

routines and gSOAP, a C/C++ web services development kit (version 2.2.3), to facilitate 

data access over a network. 

Following is a list of features built in our software, which make its utility fairly 

general purpose: 

1. Can create and read original dataset files (backward compatible) 

2. Can create and read uncompressed macro-voxel files 
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3. Can create and read compressed (varying degree) macro-voxel files with 

or without preprocessing 

4. Can transform original dataset files into (un)compressed macro-voxel files 

and vice-versa 

5. Data files may be located either on local hard disk or on a remote server 

6. Dataset dimensionality is a user parameter (not software restricted) 

7. Each record (voxel) in the original dataset may be a fixed size collection 

of any of the C native data types (chars, shorts, ints, longs, floats, doubles) 

8. Time keeping is performed to report timing statistics 

9. User can select from random, FIFO or LRU cache replacement policies 

10. Cache size can be specified in number of macro-voxels or bytes 

11. Cache size may be set to zero to simulate fetching each record (voxel) 

individually 

12. The records that need to be accessed at a time can be specified either as a 

set of voxel co-ordinates (for online problems) or as an interval (for 

batched problems) 

 

This software interface was successfully integrated into the 3-D image alignment 

software package, ALIGN, described in chapter 3, which not only improved its overall 

execution time, but also facilitated image alignment over the internet. The new ALIGN 

program completed execution 2.5 times faster for local disk accesses, and 14 times faster 

for remote disk accesses. We conclude that the macro-voxel based caching concept holds 

a promising value in system level multidimensional input/output implementations. 
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CHAPTER 5: SUMMARY AND FUTURE WORK 

 

5.1 Summary 

Large multidimensional data sets have widespread use in many application 

domains and their sizes are expected to grow continuously. The problem of efficiently 

storing and retrieving such datasets often arises in large software projects. Recognizing 

the growing widening speed gap between processors and storage devices, it is imperative 

to devise a scheme to efficiently handle large multidimensional datasets. 

We propose to use a macro-voxel based caching solution to exploit spatial and 

temporal locality in the access pattern of these datasets. We partition the dataset into 

fixed size macro-voxels and implement a caching scheme to reduce the dataset access 

time. In Chapter 2, we modeled this problem and arrived at formulae for minimum cache 

size and minimum access time and the corresponding macro-voxel sizes. We also 

identified the existence of a time-size tradeoff, which can be used to decide the choice of 

the macro-voxel size for optimal operation. Given the data access pattern for a problem, 

the macro-voxel caching theory can predict the optimal design variables that will 

minimize access time and cache size, and identify the tradeoff behavior, if any, between 

the access time and cache size. 

In Chapter 3, we applied the macro-voxel caching concept to the ALIGN 

software, which falls under the online problems category. In this case, a 1GB three 

dimensional distance map was iteratively accessed in the process of aligning two 

datasets. Effects of varying macro-voxel shapes and sizes on cache size and access time 

were demonstrated. We compared the performances of running these experiments on two 
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systems and also over a network. It was shown that appropriate selection of macro-voxel 

size and shape can result in significant reduction in access time. The program executed 

more than two times faster for local disk accesses and fourteen times faster for remote 

disk accesses, proving remarkable improvement in slow channels. We also experimented 

with a batched problem from SPEC�s benchmarks that dealt with accessing three 

dimensional seismic traces. Our scheme reduced the read time for a 1.5GB file by a 

factor of 8 at a small cost in creating the macro-voxel file. In both cases, we observed that 

the two optimal macro-voxel sizes were broad optimum, in the sense that, small changes 

to the macro-voxel sizes resulted in small changes to both, the access time and cache size 

requirements. 

In Chapter 4, we proposed the promising concept of a macro-voxel based 

input/output interface implemented at the system level, which would be completely 

transparent to the user application and capable of reading, writing and caching macro-

voxel files, irrespective of whether they are located on local or remote disks. We also 

described the general features of a software interface developed by us to incorporate the 

macro-voxel caching scheme into existing applications. 

 

5.2 Future work 

The main theme of our work is the exploitation of access pattern locality of large 

multidimensional datasets by partitioning them into fixed size macro-voxels and 

examining the times-size tradeoff in a macro-voxel based caching scheme. In this section, 

we provide some directions towards further work that can be carried out in this area. 
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In chapter 2, we introduced the brick wall hypothesis, according to which there 

exists a minimum cache size, Nmin, which results in zero capacity misses. Reducing cache 

size below Nmin would cause capacity misses, and in general should be avoided. For the 

sake of simplicity, the macro-voxel caching model that we developed in chapter 2 was 

based on the assumption that the number of compulsory misses, Ncomp, is equal to Nmin, 

which implied that cache replacements were unnecessary. Firstly, it would be instructive 

to come up with a more general caching model in which the cache size, Ncache is equal to 

Nmin, however, Nmin ≠ Ncomp. Secondly, the intrinsic dependence of Nmin on the cache 

replacement policy needs to be investigated. 

We implemented our caching scheme as a C program in which the user has to 

provide the appropriate macro-voxel dimensions as parameters to transform the dataset 

into a macro-voxel file. As a matter of user convenience, it will be advantageous to come 

up with a model that automatically determines the appropriate macro-voxel dimensions 

for a given problem without the user having to experiment with different sizes or 

providing system related input. In other words, the caching scheme should be adaptive in 

the sense that it can formulate the optimal shapes and sizes for any problem on any 

platform. 

Considering a three dimensional example, our scheme partitions the dataset into 

macro-voxels, where each macro-voxel is a hexahedron, each of whose six faces is a 

rectangle. As a first step in generalizing this partitioning idea, it will be very instructive 

to come up with a scheme where each of the six faces is a parallelogram. This generality 

can be further extended by working with macro-voxels shaped as a polyhedron (each face 

is a polygon). 
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The data layout order in our macro-voxel scheme is simple. In a two dimensional 

case, the voxels in each macro-voxel are laid out in a row-by-row order or column-by-

column order. This layout organization can be generalized by using sophisticated space 

filling curves such as Peano-Hilbert and Morton curves. 

The last, and in our opinion, the most complicated generalization is suggested as 

follows. Our scheme partitioned the dataset into macro-voxels on only one level, i.e., 

each macro-voxel consisted of many voxels. However, we can extend this concept to 

some n levels in general such that the 1st (lowest) level will be constituted of voxels 

whereas the nth (highest) level will be constituted of the largest macro-voxels. Each level 

in between will have different sized macro-voxels, such that a lower level macro-voxel 

will be smaller in size than a higher level macro-voxel and will be contained by the 

corresponding higher level macro-voxel. In effect, this would mean dealing with a 

hierarchy of macro-voxels. The advantage of macro-voxel hierarchy is that it allows the 

macro-voxel framework to be integrated into the operating system. Caching and paging 

mechanisms are employed in operating systems at various levels of memory hierarchy; 

creating a hierarchy of macro-voxels would enable each memory level to use an 

appropriately sized macro-voxel and thus allow the benefits of macro-voxel caching at 

every level. 
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APPENDIX A: MACROVOXEL SOFTWARE PROGRAM INTERFACE 
 
 
 
 

As mentioned in chapter 4, we have developed a multidimensional dataset 

caching software in C based on our idea of macro-voxels. This appendix presents the 

programming interface declarations and a flowchart description of the software design. 

The software consists of function definitions (in source files) and declarations (in 

header files). The user accessible functions are declared in the header file md_io.h. This 

is the main header file which contains declarations for all functions involved in 

implementing the macro-voxel caching scheme. User programs that need to access 

multidimensional datasets via our software require calling these functions as an interface 

to their program. Following are the function declarations (with brief descriptions) from 

md_io.h. 
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void mdOpen (    /* Used to open the dataset file */ 

 FILE **mdFilePointer,  /* Pointer for the file being opened */ 

 const char *mdFileName,  /* Name of the file being opened */ 

 const char *mdAccessMode, /* Can be one of rb, r+b, wb or w+b */ 

 const int *mdDim,   /* Dataset dimensions */ 

 const int *mdBlockDim,  /* Macro-voxel dimensions */ 

 const int mdNoOfDim,  /* Number of dimensions */ 

 const int mdNoOfItemsPerRecord,/* Number of data objects per record */ 

 const char *mdRecordType, /* Native type of the data object */ 

 const int mdFileType,  /* 0=original file, 1=macro-voxel file */ 

 const char mdCorR,   /* C=compressed, R=uncompressed */ 

 const int mdComprLevel,  /*0 (NO) � 9 (MAX) compression */ 

 const int mdProcessData,  /* 0 (NO) or 1 (YES) preprocess */ 

 const char *mdServerInfo /* NULL or http://ServerName:PortNumber */ 

 ); 

 

void mdCacheInit (  /* Used to initialize cache (defaults setting exists) */ 

 const int mdHowMany, /* Cache size number ≥ 0 */ 

 const int mdBlksOrBytes, /* 0 = bytes, 1 = macro-voxels */ 

 const int mdReplaceScheme /* 0 = random, 1 = FIFO, 2 = LRU */ 

 ); 
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void mdRead (    /* Used to read records from data file */ 

 void *mdRecords,   /* Pointer to store records */ 

 const char *mdRecordsType, /* Native type of above pointer */ 

 const void *mdPoints,  /* Pointer to voxel coordinates */ 

 const char *mdPointsType,  /* Native type of above pointer */ 

 const int mdNoOfPoints,  /* Number of voxels */ 

 const int mdIsInterval,  /* 0 (NO) or 1 (YES) interval */  

 const int *mdLayout,  /* order of coordinate layout in interval*/ 

 const int mdDirection,  /* Interval direction */ 

 FILE *mdFileStream  /* Dataset file to be read */ 

 ); 

 

void mdWrite (    /* Used to write records to a data file */ 

 const void *mdRecords,  /* Pointer to records to be written */ 

 const char *mdRecordsType, /* Native type of above pointer */ 

 const void *mdPoints,  /* Pointer to voxel coordinates */ 

 const char *mdPointsType,  /* Native type of above pointer */ 

 const int mdNoOfPoints,  /* Number of voxels */ 

 const int mdIsInterval,  /* 0 (NO) or 1 (YES) interval */ 

 const int *mdLayout,  /* order of coordinate layout in interval*/ 

 const int mdDirection,  /* Interval direction */ 

 FILE *mdFileStream  /* Dataset file to be written */ 

 ); 
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int mdClose (     /* Used to close dataset file */ 

 FILE *mdFileStream  /* Dataset file to be closed */ 

 ); 

 

void mdCompressFile (   /* Used to compress original file */ 

 const char *mdOriginalFileName, /* Name of Original file */ 

 FILE *mdComprFile   /* Pointer to the new compressed file */ 

 ); 

 

void mdReOrganizeFile (  /* Used to create the uncompressed macro-voxel file */ 

 const char *mdOriginalFileName, /* Name of Original File */ 

 FILE *mdReOrgFile   /* Pointer to new macro-voxel file */ 

 ); 

 

We have provided four flowcharts for the reader�s convenience, intended to 

demonstrate the high level workings of our multidimensional input/output software. 

Figures A.1 and A.2 are flowcharts for reading from a multidimensional data file located 

on a local disk and a remote server respectively. Figures A.3 and A.4 are similar 

flowcharts for writing to a multidimensional file. 
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