

Optimal Caching of Large Multi-Dimensional Datasets

A Thesis

Submitted to the Faculty

of

Drexel University

by

Dinesh Obalappa

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

May 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190334769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

DEDICATIONS

To my mother and father,

whose courage, sacrifice, support and encouragement

have made me a better person.

 iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the ideas, knowledge

and support of my advisor, Dr. Oleh Tretiak. I would like to express my sincere

gratitude to him for being a constant source of help, guidance, advice and

encouragement. I am indebted to him for introducing me to the world of research

and making it an enjoyable and enriching experience. I would also like to thank

Dr. Harish Sethu, Dr. Ali Shokoufandeh, Dr. Jonathan Nissanov, and Dr.

Constantine Katsinis for serving on my thesis committee and I am very grateful

for their patience, suggestions and encouragement.

My thanks to Dr. Smadar Gefen, Kaushal Desai, Siamak Ardekani, Dilip

Hari, Jie Yu, CuiPing Zhang and others at the Imaging and Computer Vision

Center for their friendship. Special thanks to Renee Cohen, Stacey and Tanita

from the ECE office, for always taking care of my paper work on time. My

sincere thanks go to Vaughn Adams, Jon Hoult and Brian Kravitz for their

technical contributions towards my software project.

I owe my success to my parents who constantly believed in me and taught

me what an important asset education is. Thanks to my brothers for always being

there to talk to me. And last, but not least, I would like to thank Ms. Holly Tobias

for making the last six years of my life my most memorable ones. She was always

there to help me during my most difficult times, and I sincerely appreciate and

deeply value her altruistic friendship.

 iv

TABLE OF CONTENTS

LIST OF TABLES... vi

LIST OF FIGURES .. vii

ABSTRACT... ix

1. INTRODUCTION ...1

 1.1 Background..2

 1.2 Literature survey ..5

 1.3 Dissertation contribution..14

 1.4 Dissertation organization ...15

2. MACRO-VOXEL CACHING MODEL..16

 2.1 General caching model ..17

 2.2 Brick wall hypothesis...19

 2.3 The multidimensional dataset and the macro-voxel concept.........21

 2.4 Pareto optimality..24

 2.5 Modeling the macro-voxel caching problem25

 2.6 Conclusion ...40

3. THREE-DIMENSIONAL DATASET CACHING42

 3.1 The ALIGN software (online problem) ...43

 3.1.1 Computing platforms and problem specifics45

 3.1.2 Problem strategy and goals ...46

 3.1.3 Cube shaped macro-voxels ...50

 3.1.4 Preprocessed compressed macro-voxels.........................55

 v

 3.1.5 Effect of shape factor S ...57

 3.1.6 Effect of size factor B ...60

 3.2 ALIGN over a network (online problem)66

 3.2.1 Cube shaped macro-voxels ...67

 3.2.2 Preprocessed compressed macro-voxels.........................69

 3.2.3 Performance comparison ..72

 3.3 Effect of cache replacement...78

 3.4 SPECseis96.1.2 (batched problem)..86

 3.4.1 Seismic data generation and layout.................................87

 3.5 Conclusion ...92

4. MACRO-VOXEL BASED INPUT/OUTPUT SYSTEM INTERFACE ...94

5. SUMMARY AND FUTURE WORK ...98

 5.1 Summary ..98

 5.2 Future work..99

BIBLIOGRAPHY..102

APPENDIX A: MACROVOXEL SOFTWARE PROGRAM INTERFACE110

VITA..118

 vi

LIST OF TABLES

2.1 Pareto optimal range of block sizes (3-D) ...37

2.2 Pareto optimal range of block sizes (general case)....................................40

3.1 List of symbols and definitions..44

3.2 Computing platforms ...45

3.3 Performance measures and design parameters ..50

3.4 Cache size for cube shaped macro-voxels ...51

3.5 Timing data for cube shaped macro-voxels ...52

3.6 Timing data for cube shaped macro-voxels (network)67

3.7 Timing data for the six different problem settings.....................................73

3.8 Seismic benchmark experiments..91

 vii

LIST OF FIGURES

2.1 Macro-voxel concept illustrated for a three-dimensional voxel array23

2.2 Graphical definition of the pareto optimal...24

2.3 Maximal trade-off region...33

2.4 Partial trade-off region...34

2.5 No trade-off region ..35

3.1 Access time vs. cache size for cube shaped macro-voxels53

3.2 Linear regression of access time per macro-voxel.....................................54

3.3 Compression factor as a function of macro-voxel size B56

3.4 Shape dependence of working set size...57

3.5 Shape dependence on Sun1..58

3.6 Shape dependence on Sun2..59

3.7 Size dependence of No (experimental) ...61

3.8 Size dependence of No (from simulations)...62

3.9 Linear regression of access time per macro-voxel.....................................63

3.10 Experimental access time vs. cache size...64

3.11 Access time vs. cache size (from simulations) ...65

3.12 Access time vs. cache size (uncompressed data over network)................68

3.13 Linear regression of access time/macro-voxel (uncompressed data over
 network) ..69

3.14 Linear regression of access time/macro-voxel (compressed data over
 network) ...70

3.15 Experimental access time vs. cache size (compressed data over
 network) ..70

 viii

3.16 Simulated access time vs. cache size (compressed data over network)....71

3.17 Access time vs. cache size for different problem settings74

3.18 Access time composition for different file types of size 4x4x4................76

3.19 Access time composition for different file types of size 8x8x8................76

3.20 Access time composition for different file types of size 16x16x16..........77

3.21 Access time composition for different file types of size 32x32x32..........77

3.22 Access time composition for different file types of size 64x64x64..........78

3.23 Access time vs. cache size on Sun1 with FIFO replacement....................81

3.24 Access time vs. cache size on Sun1 with LRU replacement81

3.25 Access time vs. cache size on Sun2 with FIFO replacement....................82

3.26 Access time vs. cache size on Sun2 with LRU replacement82

3.27 Access time vs. cache size on network with FIFO replacement...............83

3.28 Access time vs. cache size on network with LRU replacement83

3.29 Access time vs. cache size on all platforms with FIFO replacement........85

3.30 Access time vs. cache size on all platforms with LRU replacement85

3.31 Shooting geometry ..88

3.32 Seismic benchmark file viewed as a three-dimensional voxel array89

3.33 Seismic benchmark file partitioned into macro-voxels90

A.1 Reading files on local disk ...114

A.2 Reading files from remote server...115

A.3 Writing files on local disk..116

A.4 Writing files on remote server ...117

 ix

ABSTRACT
Optimal Caching of Large Multi-Dimensional Datasets

Dinesh Obalappa
Oleh J. Tretiak, Ph.D.

We propose a novel organization for multi-dimensional data based on the concept

of macro-voxels. This organization improves computer performance by enhancing

spatial and temporal locality. Caching of macro-voxels not only reduces the

required storage space but also leads to an efficient organization of the dataset

resulting in faster data access. We have developed a macro-voxel caching theory

that predicts the optimal macro-voxel sizes required for minimum cache size and

access time. The model also identifies a region of trade-off between time and

storage, which can be exploited in making an efficient choice of macro-voxel size

for this scheme. Based on the macro-voxel caching model, we have implemented

a macro-voxel I/O layer in C, intended to be used as an interface between

applications and datasets. It is capable of both scattered access, typical in online

applications, and row/column access, typical in batched applications. We

integrated this I/O layer in the ALIGN program (online application) which aligns

images based on 3D distance maps; this improved access time by a factor of 3

when accessing local disks and a factor of 20 for remote disks. We also applied

the macro-voxel caching scheme on SPEC�s Seismic (batched application)

benchmark datasets which improved the read process by a factor of 8.

 1

CHAPTER 1: INTRODUCTION

Multidimensional datasets pose a challenge to current computing systems. They

are commonly encountered in many diverse fields such as image processing [1-3], High

Energy Physics (HEP) [4], climate modeling [5], Nuclear Magnetic Resonance (NMR)

processing [6], data warehousing [4, 7-10], oceanography applications [11], interactive

visualization and rendering of volume data [12-16] and biomedical imaging [3, 17, 18]

such as computer tomography (CT), magnetic resonance imaging (MRI), positron

emission tomography (PET), single photon emission computed tomography (SPECT) and

ultrasound where two or three dimensional images are collated and registered. Memory

hierarchy, present in modern computing systems, is targeted to substantially improve

system performance by taking advantage of data access locality. However, the

multidimensional nature of these datasets makes it difficult to effectively exploit the

inherent locality. Moreover, their large sizes, which are expected to grow larger, make it

impossible to store them entirely in the computer�s main memory. Owing to speed

disparity between memory and disks, applications that access large datasets face a major

bottleneck when they need to retrieve requested subsets of from disks. Thus the efficient

storage and retrieval of voluminous and complex information, which is the inherent

characteristic of such multidimensional data is getting increasingly important. We

propose to improve system performance by developing a macro-voxel based caching

scheme, in which, each macro-voxel contains points in the dataset that are close together

in their respective multidimensional space. We also provide a quantitative model to

predict the time-size performance of such a macro-voxel caching scheme. Let us first

review how current computing systems employ caching to improve system performance.

 2

1.1 Background

Cache is defined in the dictionary as a safe place for storing things. In computer

systems, it is a term applied to describe the practice of buffering commonly occurring

items for future use. Caching is expected to work owing to the principle of locality [68],

according to which, programs tend to reuse data they have used recently. In order to take

advantage of locality and improve system performance, modern computing systems

employ caching at many levels, creating a hierarchy of memory levels. Fast (~10ns) CPU

registers and primary caches exist at the highest level, are small in size (1KB � 16MB),

managed by compiler and hardware and are backed by main memory. Dynamic random

access memory (DRAM), typical for main memory, are slower (~100ns), bigger

(~10GB), managed by the operating system and are backed by the disk. At a higher level,

inexpensive but slower (~106 ns) and larger (>100GB) magnetic disks are used for

external mass storage and are managed by the operating system. These are backed by

even slower but larger-capacity devices such as tapes and optical disks and may be used

for archival storage. The CPU first accesses the on-chip cache, and, if the data is not

found, the next level of memory hierarchy, the primary cache, is accessed. This process is

repeated down the memory hierarchy until the data being sought is found. Closer to the

CPU, where fast techniques are needed, simple management policies, like direct-mapped

cache and sequential prefetching are used. More complex techniques, like [19] informed

prefetching and caching for file-systems using user defined pattern of usage, prefetching

via compression, prefetching via string matching, etc., are applied as we move away from

the CPU.

 3

The cache and main memory have the same relationship as the main memory and

disk. However, caching and paging are the terms used in these two contexts. When the

CPU does not find requested data item in the cache, a cache miss is registered. A fixed-

size collection of data containing the requested word, called a block, is retrieved from the

main memory and placed into the cache. The cache miss is handled by hardware and

causes processors following in-order execution to pause, or stall, until the data are

available. However, if the requested data is not available in the main memory either, the

disk is accessed next. If the computer has virtual memory, the address space is usually

broken into fixed-size blocks, called pages; each page resides in either main memory or

on disk. When the CPU references data within a page that is neither in cache nor main

memory, a page fault occurs, and the entire page is moved from the disk to main

memory. Page faults take long and are handled in software. During this process, the CPU

usually switches to some other task while the disk access occurs. It is the aim of caching

and paging methods to reduce these numbers of cache misses and page faults.

Let us briefly examine how the principle of locality makes caching and paging

worthwhile. According to temporal locality, recently accessed data items are likely to be

accessed again in the near future. According to spatial locality, data items whose

addresses are near one another tend to be referenced close together in time. Given that a

requested data item belongs to a block (page), it is useful to store that block (page) in

cache (main memory), since there is a high probability that the requested data and other

nearby data in that block (page) will be needed soon.

However, what does nearby data mean? Most programming languages are based

on a memory model which consists of a single one-dimensional uniform address space.

 4

Thus nearby data constitutes of data whose memory addresses are physically adjacent to

the one just referenced in this single dimensional address space. The notion of virtual

memory allows this address space to be far larger than what can fit in main memory,

making them span multiple levels of memory hierarchy. Thus nearby data in this case

consists of data that are located close together on lower levels such as disks. This is the

kind of spatial locality that is typically exploited by general purpose caching and paging

mechanisms. However, since multidimensional data are usually stored in files in the order

of their coordinates, data items that are accessed together due to their proximity in their

n-dimensional space may in fact be located far away physically. This might cause them to

be in different blocks and even different pages, resulting in frequent cache misses and

page faults, and hence, more accesses to lower levels of slow memory hierarchy.

This situation is worsened by the speed differences between memory and CPU.

Caches and lower memory hierarchy are becoming faster, yet CPU speeds are increasing

at a faster rate than those of memory, resulting in a need for an even faster memory

device to match the CPU. The existing disparity makes it difficult to effectively use the

computing power of modern microprocessors. In order to achieve good memory system

behavior and thereby improve system performance, it is imperative that applications

make effective use of cache. The goal of this thesis is to design a caching scheme

between main memory and disk which will effectively exploit the inherent spatial locality

of multidimensional datasets and thus improve system performance.

 5

1.2 Literature survey

Locality is an essential concept of caching. The subject of defining a

mathematical model of locality and its relationship to caching has been researched

extensively. A technique for quantifying and visualizing the locality characteristics of

reference streams is introduced by Grimsrud et al in [43, 44]. They derived a new locality

function based on the probability that an address at a fixed stride or offset from the

current reference occurs within a given number of references. This function unifies the

notions of temporal and spatial locality. Belady�s MIN algorithm provides the minimum

miss ratio when temporal locality is optimally exploited and does not deal with spatial

locality. In [46], Temam presents an extension of Belady�s MIN algorithm that optimally

and simultaneously exploits spatial and temporal locality. A concept of stack distance is

introduced in [47] by Brehob et al as a model for a measure of locality and cache

behavior. They show how these models of locality and caching can be used to gain

insight into reference streams, the various types of caches, and the interactions between

the two. Berg et al [48] present a sample-based method called StatCache to analyze data

locality. Based on sparse discrete samples of memory references and measurement of

their reuse distances, StatCache estimates miss ratios of fully associative caches of

arbitrary sizes and generate working set graphs. This information is useful for the study

of application data locality.

The problem of effectively exploiting and optimizing spatial locality is important

to improve caching performance. In [40], Kumar et al present a mechanism to exploit

spatial locality in data caches. On a cache miss, their mechanism, called Spatial Footprint

Predictor, predicts which portions of a cache block will get used before getting evicted.

 6

This exploits spatial locality exhibited in larger blocks of data yielding better miss ratios

without significantly impacting the memory access latencies. In [45], Kampe et al focus

on the characteristics of the spatial locality in terms of closeness in time and space, to get

the amount of accessed sequential data and the potential for cache hits. A direct approach

to the spatial locality optimization problem is presented by Kandemir et al in [27]. This

approach is based on hyperplane theory and available linear algebra framework used by

parallelizing compilers for optimizing memory layouts of arrays. In an m-dimensional

space, a hyperplane is defined as a set of tuples (a1, a2, �, am) such that g1a1 + g2a2 + �

+ gmam = c, where g1, g2, �, gm are rational numbers called hyperplane coefficients and c

is a rational number called hyperplane constant. The authors focus on the problem of

detecting the optimal layouts for each array. Sequeira et al [25] proposed two algorithms

designed for program specific code restructuring as a means of increasing spatial locality

within a program. Both algorithms effectively decrease average working set size and

hence the page fault rate. In [35], Clauss et al focus on spatial locality optimization such

that all the data that are loaded as a block in the cache will be used successively by the

program. Their method consists in providing a new array reference evaluation function to

the compiler, such that the data layout corresponds exactly to the utilization order of

these data. Johnson et al [41] introduce the spatial locality detection table that facilitates

the detection of spatial locality across adjacent cached blocks. Their scheme detects and

adapts to varying spatial locality, dynamically adjusting the amount of data fetched on a

cache miss. A mathematical model that can capture both temporal and spatial locality

characteristics is presented by Tanaka in [42]. The work extends the definition of the

working set for modeling spatial locality in program behavior and verifies the model on

 7

the basis of empirical observations. The work in [36] concentrates on trace driven

simulation for cache miss rate analysis. A technique called blocking and a variant called

blocking with temporal data are presented that compress traces by exploiting spatial

locality. In [24], the concept of locality was extended to include the presence of strided

memory accesses. A metric to quantify spatial regularity, defined as the likelihood that a

memory access will form or continue a strided sequence, was developed.

Extensive research has been done to exploit temporal locality and improve

caching performance. In [39], Jin et al focus on techniques that improve temporal locality

in scientific applications that iterate over a regular discretized domain. They present a

strategy called recursive prismatic time skewing which integrates recursive blocking with

time skewing to increase temporal reuse at all memory hierarchy levels, thus improving

the performance of scientific codes that use iterative methods. In [26], Vajracharya et al

introduced a mechanism for improving temporal locality and parallelism of scientific

applications by using vertical execution in which loop iterations of consecutive data-

parallel statements are executed in an interleaved fashion. Phalke et al [38] present a

program modeling technique for capturing the temporal locality behavior of memory

references made by a program, on a per address basis. The sequence of gaps between

consecutive accesses to the same location in memory was observed to be repetitive and

hence predictable. Consequently, a k-order Markov chain was used to model and predict

an address�s next reference in the future. Tiling is a well-known loop transformation to

improve temporal locality of nested loops. In [34], Song et al present a number of

program transformations to enable tiling for a class of nontrivial imperfectly-nested loops

such that cache locality is improved. They define a program model for such loops and

 8

develop computer algorithms for their tiling. In [37], Leopold derived matching upper

and lower bounds on the number of cache misses for the Jacobi and Seidel iterative

solvers. The result shows that the standard technique of tiling achieves a close to

optimum number of cache misses. They investigated how the gap between upper and

lower bounds can be closed and found three modifications that further reduce the number

of cache misses: increased tile size, snaking and skewing. A scalar metric for temporal

locality, based on LRU stack distance, which estimates cache hit rate, is proposed by

Alakarhu et al in [49]. Pingali et al [21] present a software approach to attack the CPU-

memory speed gap. They describe computation regrouping, a general, source-level

approach that executes computations accessing the same data closer together in time,

significantly improving temporal locality and thus performance for applications with poor

locality.

Datasets in large applications are often too massive to fit completely inside the

computer�s internal memory, and the resulting I/O communication between fast internal

memory and slower external memory can be a major performance bottleneck. In [20],

Vitter surveyed the state of the art in the design and analysis of external memory

algorithms and described several paradigms for exploiting locality and thereby reducing

I/O costs when dealing with massive data in external memory. In [55], Smith et al

consider a number of design parameters for a disk cache such as cache size, block size,

access time, bandwidth etc. and conclude that disk cache is a powerful means of

extending the performance limits of high-end computer systems. To increase the

effectiveness of the cache, knowledge of how different types of data use an I/O cache is

presented by Richardson et al in [33]. Type information allows different types to be

 9

cached in different sized blocks. Properly exploiting these properties increases the

reference hit rate in the I/O cache and reduces the number of references out of the cache

to disk. The use of caching as a means to increase system response time and improving

the data throughput of disk subsystems is examined by Karedla et al in [54]. In [51],

Hong et al propose the red-blue pebble game to model the input/output complexity of

algorithms. Using the pebble game formulation, a number of lower bound results for the

I/O requirement are proven. Analytical determination of the optimum capacity of a cache

memory with given access time is achieved in [52]. In this paper, Chow found that the

miss ratio of a finite cache almost universally obeys the function M = ACB where M is the

miss ratio, C is the cache size, and A, B are constants. Aggarwal et al [32] examine the

fundamental limits in terms of the number of I/O for external sorting and related

problems in computing environments. They provide tight upper and lower bounds for the

number of inputs and outputs between internal memory and secondary storage required

for five sorting-related problems. In [30, 31], Sen et al describe a model to analyze the

running time of an algorithm in a computer with a memory hierarchy with limited

associativity in terms of various cache parameters. Their model is an extension of

Aggarwal and Vitter�s I/O model [32] and establishes useful relationships between the

cache complexity and the I/O complexity of computations. In [50], Singh et al present a

mathematical model for the behavior of programs or workloads and extract from it the

miss ratio of a finite, fully associative cache using the LRU replacement under those

workloads. In order to lower memory latency, increase memory bandwidth and select the

best memory size and organization for an application, Patterson et al [29] proposed to

architect, design, fabricate and evaluate a single chip supercomputer combining a

 10

processor and high capacity DRAM to deliver vector supercomputer-style sustained

floating point and memory performance, at vastly reduced power.

In order to derive precise, meaningful results about paging and caching

algorithms, it was shown by Torng in [56] that one must focus on access time rather than

miss rate. Robinson et al present a frequency-based replacement algorithm for data

caches in [57]. This algorithm factors out locality from reference counts, and effectively

combines the principles of locality of reference and reference frequency. A neural

network-based cache replacement algorithm is proposed in [58], which provides

improvement in the miss ratio over the LRU algorithm for benchmark trace files from

SPEC programs. LRU algorithm is the Least-recently-Used algorithm; it is based strongly

on the principle of locality and replaces the block/page which has the longest time since

its last reference. The effectiveness of a file system that integrates caching and

compression to provide two levels of file storage on disks is discussed in [61]. In [28],

Chatterjee et al investigated the memory system performance of several algorithms for

transposing an N × N matrix in-place, where N is large. Specifically, they investigate the

relative contributions of the data cache, the translation lookaside buffer, register tiling,

and the array layout function to the overall running time of the algorithm.

The challenge of efficiently handling multidimensional data has been addressed in

numerous problem domains. Kozinska et al [3] present a methodology for alignment of

multidimensional datasets based on the Euclidean distance transform and Marquardt-

Levenberg optimization algorithm. Gustafson et al [63] propose to effectively manage

and store large datasets in three dimensional digital brain atlases by grouping voxels into

clusters called macro-voxel. They group nearby voxels into a chunk, typically 16 voxels

 11

on edge, and then arrange these chunks into a structure called a voxel map. In [6], Pons et

al implemented a cache memory system in their Gifa program designed for processing,

displaying and analyzing 1D, 2D and 3D NMR datasets. The cache memory works by

subdividing the dataset into blocks or sub matrices which tile the dataset. When accessing

a part of the dataset, only those blocks that actually contain information are loaded from

disk into the cache memory. Veklerov et al [17] designed and implemented a

management system for the multidimensional data structures arising in MRI imaging

experiments using a special syntax that allows the user to visualize the multidimensional

nature of data. In [18], Chaze et al investigated methods for selecting and calculating

arbitrary image sections for displaying multimodal 2D and 3D datasets occurring in PET

studies. An automating approach for studying spatial/temporal variability of geophysical

fields is proposed in [11]. Khiar et al [53] describe a systematic method for transposing

multidimensional data structures embedded within a one dimensional stream and used it

to simulate a complex radar processing algorithm. Visualization of data which inherently

have two- or three-dimensional semantics has also been extensively researched. In [12],

Ghavamnia et al describe a method to render compressed volume data directly to reduce

the memory requirements of the rendering process. A significant improvement in

computational performance was achieved by using a cache algorithm to temporarily

retain the reconstructed voxels. High-speed algorithmic solutions were proposed in [13]

to process three-dimensional data intended for real time visualization. Ning et al [14]

introduced a compressed volume format that exploits statistical coherence between

blocks in order to obtain both storage savings and volume rendering acceleration. It

involves precomputation on the vector quantization codebook and subsequent reuse of

 12

the results throughout the volume. Ihm et al [15] describe an effective 3D compression

scheme for interactive visualization of very large volume data that exploits the power of

wavelet theory. They mention that it would be desirable to have an efficient cache data

structure which temporarily holds decoded voxels. In [67], Keim describes a set of pixel-

oriented visualization techniques which use each pixel of the display to visualize one data

value and therefore allow the visualization of the largest amount of data possible. In [59],

Thoma et al address compression and transmission issues related to images in the

National Library of Medicine�s Visible Human Project. They discuss lossless and lossy

methods to compress the images and techniques for transmitting them over wide-area

networks.

Issues in efficient tertiary storage organization for large multidimensional datasets

have been addressed in many papers. In [62], More et al showed that efficient storage

layout can be designed by considering data items that are accessed together rather than

sorting the data items based on their coordinates. Seamons et al [69] described physical

schemas for storing multidimensional arrays on disk. Sarawagi et al [70] presented a

number of strategies for optimizing layout of large multidimensional arrays on secondary

and tertiary memory devices. Chen et al [5] address data management techniques for

efficiently retrieving requested subsets of large datasets from mass storage devices. They

developed algorithms for partitioning the original datasets into clusters based on analysis

of data access patterns and storage device characteristics. Holtman et al [4] have

developed cache filtering optimization, which improves cache efficiency by extracting

hot objects from staged files.

 13

OLAP datasets are inherently multidimensional. In [7], Deshpande et al propose

caching small regions of the multidimensional space called chunks. Chunk-based caching

allows fine granularity caching, and allows queries to partially reuse the results of

previous queries with which they overlap. In [8], Goil et al present a parallel multi-

dimensional database infrastructure for OLAP and data mining of association rules which

can handle a large number of dimensions and large datasets. Parallel techniques are

described to partition and load data into a base cube from which the data cube is

calculated. In [10], an extended multidimensional data model is proposed to support the

complex data found in real-world applications. The traditional similarity search methods

on time-series data are extended to support a multidimensional data sequence in [9]. The

authors, Lee et al, investigate the problem of retrieving similar multidimensional data

sequences from a large database. In [66], Moulton et al present theoretical results to

formally define and measure database locality and develop a technique for adapting

program locality model to temporal and spatial dimensions at all stages of database

processing.

The concept of locality is also used extensively to improve web performance. In

[23], Xu et al propose a superobject based routing algorithm to take advantage of spatial

locality of file accesses, reducing the number of routing procedures and thereby

improving routing performance. Static and temporal locality in web server workloads was

analyzed in [22] and a new measure of temporal locality, the scaled stack distance, was

introduced. In [64, 65], Jin et al show that there are two phenomena that contribute to

temporal locality in web request streams: the long-term popularity of documents and

 14

short-term temporal correlations of references, and they suggested the use of two power

laws to characterize them.

1.3 Dissertation contribution

We have recognized the widespread use of large multidimensional datasets in

many applications and the expected growth in their sizes. Moreover, the increasing speed

gap between the various memory hierarchy levels cause a major bottleneck in

multidimensional data access problems. Consequently, efficient handling and storage of

such datasets poses a challenge to current computing systems. We propose the concept of

macro-voxel and use it to partition datasets, such that each macro-voxel is a small

multidimensional subset of the dataset. The spatial and temporal locality inherent in the

data access pattern is exploited by implementing a macro-voxel based caching scheme.

We present a quantitative model to predict the performance of such a macro-voxel

caching scheme, and identify the existence of a cache size-access time tradeoff which

influences the design of a macro-voxel. Finally, we propose a novel universal

input/output system interface that incorporates the macro-voxel caching scheme targeted

to improve system performance when dealing with multidimensional files while

providing complete transparency to user applications. Towards this end, we have

developed a software in C that can be used to integrate the macro-voxel caching scheme

in current applications.

We successfully integrated the macro-voxel I/O interface into the MATLAB

based 3D image registration software called ALIGN. The ALIGN program iteratively

accesses a distance map in the process of aligning two binary objects whose contours are

 15

given as a set of voxel coordinates. We performed our experiments on two UNIX

platforms and performed data access from local disks as well as over the internet. We

experimented with different shapes and sizes of macro-voxels and accessed both

compressed and uncompressed macro-voxels. In each case we identified and explored the

resulting Pareto optimal tradeoff region for access time versus cache size requirements.

We compared our access time results with the original program in which each requested

record was individually fetched from the disk. Using the macro-voxel caching scheme

improved the access time by factors of 3 and 20 on local and remote disks respectively.

We also applied our macro-voxel caching concept on SPEC�s Seismic benchmark

datasets, in which the read process improved by a factor of 8.

1.4 Dissertation organization

In chapter 2, we present the general caching model and related terms. We

introduce the macro-voxel concept and model the macro-voxel based caching model

based on the brick wall hypothesis and the power law dependence of misses on block

size. We solve for the Pareto optimal values of block size that would achieve minimum

cache size and access time. In chapter 3, we incorporate the macro-voxel caching scheme

in an existing application and evaluate its performance dependence on various parameters

such as macro-voxel dimensions, cache size, speed of backup storage, replacement

scheme and compression. Chapter 4 proposes a multidimensional input/output system

interface, which seamlessly integrates the macro-voxel based caching scheme,

transparent to user applications. Chapter 5 presents directions towards future work.

 16

CHAPTER 2: MACRO-VOXEL CACHING MODEL

We focus on the following general problem setting: A computer program

performs multiple computations on a large remote multidimensional dataset by accessing

the dataset iteratively. The file containing the multidimensional dataset may be located on

the same computer system (secondary or tertiary storage disk devices) or could be part of

another system connected via a network (e.g. the internet). The access pattern exhibits

temporal and/or spatial locality. Our goal is to minimize I/O communications with the

entity on which this multidimensional file is located. In order to take advantage of the

inherent dimensional access locality, we propose to implement the macro-voxel caching

mechanism on the executing system and improve the system performance by minimizing

access time and cache memory usage. Our approach to exploit locality is to focus on the

multidimensional data space and transform the storage layout of these multidimensional

datasets.

We first examine the general caching mechanism and define some caching related

terms in Section 2.1. We formulate the brick wall hypothesis and the power law

assumption in section 2.2 which will be used to develop a simplified notion of the

number of cache misses. In section 2.3, we introduce the concept of a macro-voxel which

will be used to exploit the data access locality inherent in multidimensional datasets.

Section 2.4 briefly introduces the notion of Pareto optimality. Based on our assumptions

from Section 2.2, the macro-voxel concept, and Pareto optimality, we develop a macro-

voxel based caching model in Section 2.5 and solve for the optimal values of macro-

voxel size that would achieve minimum access time and cache size.

 17

2.1 General caching model

The dataset file exists on a backup storage location and is made up of many

records. The program makes multiple accesses to this file, each time reading an entire

record. A caching scheme is implemented on the executing system to store subsets (i.e.

an integral number of records) of this file for future use by the program. The size of the

cache is measured in blocks, where each block is made up of a fixed number of records.

When the program first starts execution, its cache is empty, and hence a block needs to be

fetched from the backup storage. The caching scheme registers a cache miss, and the

corresponding block is now stored in cache. The program then reads the required record

from the cache. For subsequent data accesses, either the corresponding blocks already

exist in cache, or they don�t. If the required block is present in cache, a cache hit is

registered and the requested record is read from the cache. If not, a cache miss occurs and

the corresponding block is fetched from the backup. If the cache is not full, the fetched

block is stored in one of the remaining empty locations. If the cache is full, a replacement

mechanism is utilized to evict some old block and store the new block in its place.

Let Ncache be the total number of blocks that the cache can hold at one time. Any

given program accesses a certain number of unique blocks at least once during its

execution. This total number of unique blocks is termed as compulsory misses, Ncomp and

it is a property of the executing program. In other words, Ncomp is the number of misses

registered when working with an infinite cache. For a finite sized cache, once the cache

becomes full, subsequent misses will warrant evicting old blocks from the cache to make

room for the new ones. The total number of misses that result due to the retrieval of an

earlier evicted block is called capacity misses, Ncap, and occur in addition to the

 18

compulsory misses. Compulsory misses are inevitable; however, the number of capacity

misses depends on Ncache, the cache size. There exists a certain minimum cache size in

blocks, Nmin, which results in zero capacity misses. In other words, when Ncache = Nmin,

only compulsory misses are registered. In general, depending on the problem, Nmin will

take values in the following range: Ncomp ≥ Nmin ≥ 1

Let Nmiss be the total number of cache misses registered and let Nrec be the total

number of record accesses made during the program execution. Also, let Thit and Tmiss be

the time per cache hit and time per cache miss respectively. The following relationships

hold.

capcompmiss NNN += (2.1)

)(hitmissmisshitrecaccess TTNTNT −+= (2.2)

Here Taccess is the total time to access all the Nrec records required during the program

execution.

The caching system performance depends on many parameters including cache

size, block size, backing storage speed and caching replacement algorithm. This thesis

addresses the problem of optimizing cache performance with respect to the above

parameters. Our system performance measures are the cache size requirements and the

time taken to fetch requested data from disk to cache.

The cache consists of Ncache blocks plus an index. Let each block be made up of B

records, and let βc be the size of each record in bytes. Let the size of the index be αcNcache

bytes. This assumes that the index is a hash table: The address of a table entry is

computed from the block address. The index contains the block location of all the blocks

 19

in cache and the index is therefore proportional to Ncache. Hence, the total cache size C in

bytes can be given by the following equation.

)(BNC cccache βα += (2.3)

Whenever a cache miss occurs, the requested block needs to be fetched from the backing

store, which could be a local or remote disk. For each miss, the time taken to do this is

the difference of Tmiss and Thit and we model it with a latency-transfer rate model: Let αt

be the time taken to seek a block and let βt be the time taken to transfer each record from

the backing store to the cache. Thus the time taken to fetch a block from the backing store

is)(Btt βα + seconds. Since the total number of misses encountered is Nmiss, the total

time T taken to transfer these Nmiss blocks into the cache, is given by the following

equation.

)(BNT ttmiss βα += (2.4)

From equation (2.1), we get

))((BNNT ttcapcomp βα ++= (2.5)

2.2 Brick wall hypothesis

For a fixed block size B, as cache size C is reduced, the number of blocks that can be

stored in cache, Ncache, also reduces. As long as Ncache is greater than or equal to Nmin,

each requested block is fetched only once from the backing store and no capacity misses

are encountered. In this case, compmiss NN = . However, once Ncache becomes smaller than

Nmin, capacity misses occur in addition to the compulsory misses, and some of the

requested blocks need to be fetched more than once from the backing storage, due to their

eviction. We found that the number of capacity misses is a rapidly increasing function of

 20

Ncache < Nmin. We will present data to support this in Chapter 3. We formalize this

behavior as the brick wall hypothesis.





<∞
≥

=
min

min0
NN
NN

N
cache

cache
cap (2.6)

Owing to the brick wall hypothesis, the total cache miss time from equation (2.5) reduces

to





<∞

≥+
=

min

min)(

NN

NNBN
T

cache

cachettcomp βα
 (2.7)

Let us examine the values taken by Nmin in two general kinds of problems. Let G

be the total number of records present in the entire file. Since each block has B records,

there are a total of G/B blocks. In some problems, known as the batched problems, the

entire file of records needs to be read in once for processing. In this case, Ncomp = G/B,

since every block needs to be processed. Moreover, if the blocks are generated such that

almost every block is completely processed before accessing the next block, Nmin would

be very small, i.e. Nmin << Ncomp. However, in certain other problems, called online

problems, only a small subset of the total records need to be read in and each may be

required more than once. In this case, the number of compulsory misses is almost equal

to the number of no-capacity misses, i.e. Ncomp ≈ Nmin. The common theme in both cases

is that it is optimal to make Ncache = Nmin, to avoid capacity misses in accordance with the

brick wall hypothesis. This leads to the following cache size and miss time equations.

)(min BNC cc βα += (2.8)







=+

>>+
=

minmin

min

)(

)(

NNBN

NNBN
T

comptt

compttcomp

βα
βα

 (2.9)

 21

Based on C.K. Chow�s hypothesis [52] which relates miss rate and cache size by a power

law, we propose a similar power law relationship between Nmin and the block size B.

pBKN −•=min (2.10)

K and p are positive constants that depend on the data access pattern for the specific

problem.

Let us now apply these concepts in the context of multidimensional dataset caching.

2.3 The multidimensional dataset and the macro-voxel concept

We first define a multidimensional dataset as follows: An n-dimensional data

sequence S can be defined as a series of its component records, where each single record

is uniquely indexed by some combination of its n coordinates.

S(d1, d2, �, dn) 0 ≤ d1 < D1 0 ≤ d2 < D2 � 0 ≤ dn < Dn

In general, since memory and storage media are usually based on a single dimension

model, records that are close together in n-dimensional space may not be physically

located close together resulting in loss of access locality.

In order to exploit the underlying dimensional locality, it is advantageous to

represent such spatial and/or temporal datasets in n-dimensional space by an n-

dimensional lattice. Consider an n-dimensional lattice with dimensions D1 × D2 × � ×

Dn. This lattice can be interpreted as a composition of n-dimensional hypercubes, each of

dimensions 1 × 1 × � × 1 and each representing one lattice point in the n-dimensional

space. We use the term voxel for each such hypercube. Each individual voxel in this n-

dimensional array of voxels represents a unique point in the n-dimensional space. Every

component record of the n-dimensional data sequence S can now be represented by the

 22

corresponding voxel in the n-dimensional voxel array. We thus have an abstraction of the

dataset in n-dimensional space, represented by the voxel array.

The inherent data locality can now be exploited by partitioning the voxel array

into fixed-size groups of voxels so that points that are close together in space belong to

the same group. We term each of this group of voxels as a macro-voxel. Thus a macro-

voxel is an n-dimensional array of voxels having total dimensions of M1 × M2 × � × Mn,

such that M1 << D1, M2 << D2� Mn << Dn. Since each macro-voxel represents a small

block of the lattice, a macro-voxel representation can be said to be a block representation

of the n-dimensional lattice. Each record in the n-dimensional dataset can be accessed by

locating the macro-voxel to which it belongs and seeking the appropriate voxel. The

necessary indexing scheme can be implemented as follows:

di = dimension index of the ith dimension Di

0 ≤ d1 < D1, 0 ≤ d2 < D2, � 0 ≤ di < Di, � 0 ≤ dn < Dn

Define Ai = 








i

i

M
d

, Bi = di mod Mi, 1 ≤ i ≤ n (2.11)

0 ≤ Ai < 








i

i

M
D

The index MN of the macro-voxel containing a voxel (d1, d2� di� dn) is:

































++
















+








+=

−

−

−

−

1

1

2

2

2

2

1

1

1

1

2

2
3

1

1
21

M
D

M
D

M
D

M
D

A
M
D

M
D

A
M
D

AAMN
n

n

n

n
n (2.12)

The position of this voxel in the above macro-voxel is given by an offset, VN:

1221123121 MMMMBMMBMBBVN nnn −−++++= (2.13)

Figure 2.1 illustrates the macro-voxel concept for a three-dimensional voxel array.

 23

Since the macro-voxel concept groups objects that are close together in n-

dimensional space, reorganizing and storing the data in the order of the macro-voxels

preserves the dimensional locality to a certain extent. Consequently, implementing a

macro-voxel based caching scheme can improve the performance of an application that

repeatedly accesses this dataset composed of macro-voxels. This caching mechanism

fetches the macro-voxel containing the requested voxel into cache. Future requests to that

voxel and nearby voxels can now be fulfilled from the cache. If a requested voxel is not

found in the cache, a miss is registered and the corresponding macro-voxel is fetched

from the dataset in backing storage and stored in cache.

Dataset composed of
voxels

Dataset composed of
Macro-voxels

Macro-voxel composed of voxels
Voxels

Figure 2.1 Macro-voxel concept illustrated for a three-dimensional voxel array

 24

2.4 Pareto optimality

Optimizing caching system performance involves minimizing the access time and

the required cache size. These system performance measures depend on the number of

cache misses and the size of the macro-voxel. Higher miss rates and bigger macro-voxels

both result in higher access times and greater memory utilization. The size of the macro-

voxels and the number of misses both are dependent on the dimensions of the macro-

voxel, i.e. M1 × M2 × � × Mn. Designing an optimum macro-voxel caching system

involves solving for a well-defined macro-voxel that will minimize both access time and

cache memory requirements. The optimal solution for this time-memory tradeoff problem

is obtained from a Pareto optimal set.

fj

fi

B

A

C

Feasible
Range

Figure 2.2 Graphical defin ition of the pareto optimal

 25

Consider a general design problem where we wish to find an optimal set of design

variables such that m objective functions f1, f2�, fi, �, fm are simultaneously minimized.

A set of points (Figure 2.2) is said to be Pareto optimal [71] if, in moving from point A to

another point B in the set, any improvement in one of the objective functions fi from its

current value would cause at least one of the other objective functions fj to deteriorate

from its current value. Note that based on this definition, point C is not Pareto. The

Pareto optimal set yields an infinite set of solutions, from which the designer can choose

the desired solution. In most cases, the Pareto optimal set is on the boundary of the

feasible region. We formulate the macro-voxel caching problem and solve for the optimal

design variables in the next section.

2.5 Modeling the macro-voxel caching problem

In this section, we first formulate the macro-voxel caching problem for a 3-

dimensional dataset and solve it to obtain a Pareto optimal set of design variables. We

then generalize the results for n-dimensional datasets. Consider a 3-dimensional dataset

represented by a 3-dimensional voxel array of size D1 x D2 x D3. This voxel array can be

partitioned into fixed-size groups of voxels and viewed as a collection of 3-dimensional

macro-voxels. Let the size of each macro-voxel be x × y × z, such that x << D1, y << D2, z

<< D3.

Our macro-voxel caching model is based on the assumption that the minimum

cache size required for no-capacity misses is equal to the number of compulsory misses,

i.e. Nmin = Ncomp. This implies that cache replacement is not required and the only kinds of

misses encountered are the compulsory misses. Hence a macro-voxel that has been

 26

cached once will always be able to satisfy any future requests to itself from the cache.

However, the number of compulsory misses registered for a given problem is dependent

on the dimensions of the macro-voxel. Our goal is to compute the optimal macro-voxel

dimensions, which minimizes the number of compulsory misses and the dependent

performance measures: access time and cache size.

The term xyzB = is the total number of records in each macro-voxel, i.e. the

block size. We choose the set (B, y, z) as the design variables for this problem which are

in effect the dimensions of the macro-voxel. The following design constraints can be

identified:

1

1,1,1
≥

≥≥≥
B

zyx

1≥compN

We now define the objective functions that need to be minimized, viz. Cache size and

Access Time.

From equation (2.8), Cache Size:)(BNC cccomp βα += (2.14)

αc is the size component for the index overhead per macro-voxel in bytes; it is dependent

on the underlying cache implementation.

βc is the size of each voxel in bytes; it is dependent on the dataset under consideration.

The term)(Bcc βα + represents the cache size requirements per macro-voxel.

γc =
c

c
β

α = ratio of index size to voxel size (2.15)

From equation (2.9), Access Time:)(BNT ttcomp βα += (2.16)

 27

αt is the latency component of access time; it is the delay between the time the macro-

voxel is requested from the backing store and the time the transfer actually starts.

βt is the transfer rate component of access time; it is the time taken to transfer each voxel

from the backing store to cache.

The term)(Btt βα + represents the access time per macro-voxel.

γt =
t

t
β

α = ratio of latency to transfer rate (2.17)

We can now formally define the optimal macro-voxel caching problem as follows:

From equation (2.14),)(),,(min
,,

BNzyBC cccompzyB
βα += (2.18)

From equation (2.16),)(),,(min
,,

BNzyBT ttcompzyB
βα += (2.19)

subject to the constraints:

xyzB
N
B

zyx

comp

=

≥
≥

≥≥≥

1
1

1,1,1

We minimize each objective function by taking the partial derivative with respect to each

of its dependent variables and equating it to 0.

Objective Function for Cache Size:)(),,(BNzyBC cccomp βα += (2.20)

Taking partial derivative w.r.t. B: 0)(=+
∂

∂
+=

∂
∂

ccomp
comp

cc N
B

N
B

B
C ββα (2.21)

Taking partial derivative w.r.t. y: 0)(=
∂

∂
+=

∂
∂

y
N

B
y
C comp

cc βα (2.22)

Taking partial derivative w.r.t. z: 0)(=
∂

∂
+=

∂
∂

z
N

B
z
C comp

cc βα (2.23)

 28

From (2.22)
y
C

∂
∂ = 0 iff

y
Ncomp

∂
∂

 = 0.

Similarly, from (2.23)
z
C

∂
∂ = 0 iff

z
Ncomp

∂
∂

 = 0.

Thus for any fixed B, minimum cache size Co(B) can be achieved by minimizing the

number of compulsory misses Ncomp with respect to design variables y and z:

),,(min)(
,

zyBNBN compzyo = (2.24)

)()(BNBC ccoo βα += (2.25)

Minimum Co(B) can be found by differentiating with respect to B and equating it to 0:

0)(=++= co
o

cc
o N

dB
dN

B
dB

dC ββα (2.26)

Let Bc be the corresponding optimal block size for which the minimum cache size Cmin is

achieved.

)()(min cccco BBNC βα +•= (2.27)

Similar analysis applies to T:

Objective Function for Access Time:)(),,(BNzyBT ttcomp βα += (2.28)

Taking partial derivative w.r.t. B: 0)(=+
∂

∂
+=

∂
∂

tcomp
comp

tt N
B

N
B

B
T ββα (2.29)

Taking partial derivative w.r.t. y: 0)(=
∂

∂
+=

∂
∂

y
N

B
y
T comp

tt βα (2.30)

Taking partial derivative w.r.t. z: 0)(=
∂

∂
+=

∂
∂

z
N

B
z
T comp

tt βα (2.31)

From (2.30)
y
T

∂
∂ = 0 iff

y
Ncomp

∂
∂

 = 0.

 29

Similarly, from (2.31)
z
T

∂
∂ = 0 iff

z
Ncomp

∂
∂

 = 0.

Thus for any fixed B, minimum access time To(B) can be achieved by minimizing the

number of compulsory misses Ncomp with respect to design variables y and z:

)()(BNBT ttoo βα += (2.32)

Minimum To(B) can be found by differentiating with respect to B and equating it to 0:

0)(=++= to
o

tt
o N

dB
dN

B
dB
dT ββα (2.33)

Let Bt be the corresponding optimal block size for which the minimum access time Tmin is

achieved.

)()(min tttto BBNT βα +•= (2.34)

The variation of To(B) with respect to Co(B) can be related as follows:

c
o

o

cc

t
o

o

tt

o

o

o

o

dB
dN

N
B

dB
dN

N
B

dB
dC

dB
dT

dC
dT

ββα

ββα

+
+

+
+

==
)(

)(

 (2.35)

Let
dB

BdN
BN

BL o

o

)(
)(

1)(•= (2.36)

ccc

ttt

o

o

LB
LB

dC
dT

ββα
ββα

++
++

=∴
)(
)(

 (2.37)

Hypothetically, as
cc

tt

o

o

L
L

dC
dT

B
βα
βα

+
+

→→ ,0 (2.38)

Similarly, as
c

t

o

o

dC
dT

B
β
β

→∞→ , (2.39)

For ease of notation, we denote
)(
)(

BdC
BdT

o

o as SLOPE(B).

 30

We thus have the following four points on the plot of To(B) versus Co(B), which

determine the optimal choice of B for optimal cache size and access time:

1.
cc

tt

L
L

SLOPEB
βα
βα

+
+

=⇒→
)0(
)0(

)0(0Q

2. ∞=⇒=)(cc BSLOPEBBQ , point where minimum cache size Cmin is achieved.

3. 0)(=⇒= tt BSLOPEBBQ , point where minimum access time Tmin is achieved.

4.
c

tSLOPEB
β
β

=∞⇒∞→)(Q

In general, based on the values of Bc and Bt, we may encounter two different cases. Each

case may further be divided into three sub-cases based on the constraint B ≥ 1.

1) Bc < Bt

a) 1 < Bc < Bt

In this case, we have a maximal tradeoff region between block sizes Bc and Bt.

The Pareto optimal set for block size is Bc < B < Bt.

b) Bc < 1 < Bt

In this case, we obtain a partial tradeoff region between block sizes 1 and Bt. The

Pareto optimal set for block size is 1 < B < Bt.

c) Bc < Bt < 1

In this case, we obtain a unique optimal point of operation, B = 1. There is no

tradeoff region in this case.

Case 2 is analogous.

 31

2) Bt < Bc

a) 1 < Bt < Bc

In this case, we have a maximal tradeoff region between block sizes Bt and Bc.

The Pareto optimal set for block size is Bt < B < Bc.

b) Bt < 1 < Bc

In this case, we obtain a partial tradeoff region between block sizes 1 and Bc. The

Pareto optimal set for block size is 1 < B < Bc.

c) Bt < Bc < 1

In this case, we obtain a unique optimal point of operation, B = 1. There is no

tradeoff region in this case.

We now illustrate the above cases with an example in which B and No are related by a

power law, i.e.

p
o KBN −= (2.40)

K and p are problem related constants. p > 0 since the number of misses decrease with

increasing B.

From (2.25) & (2.40),)(BKBC cc
p

o βα += − (2.41)

From (2.26) & (2.41),
p

pB cc −
=

1
γ (2.42)

Similarly,

From (2.32) & (2.40),)(BKBT tt
p

o βα += − (2.43)

From (2.33) & (2.43),
p

pB tt −
=

1
γ (2.44)

 32

Case 1 � tc γγ <

This case is encountered when the ratio of latency to transfer rate is greater than the ratio

of index size to record size. This results in Bc < Bt. Consider the plot of To vs. Co. As we

move along the curve starting from small block size to big block size, we first encounter

point X and then point Y. Point X represents the operating point with optimal block size

Bc which achieves minimum cache size Cmin, whereas point Y is the operating point with

optimal block size Bt which results in minimum access time Tmin. The region of the curve

between points X and Y is the trade-off region. Operating near point X in the region of

trade-off allows for relatively smaller cache sizes at the cost of larger access times,

whereas operating near point Y in the region of trade-off allows for relatively smaller

access times at the cost of larger cache sizes. The constraint B ≥ 1 results in the following

three sub-cases.

a) 1 < Bc < Bt

When both the optimal block sizes are computed to be greater than 1, we obtain a

maximal trade-off region of operation between points X and Y (Figure 2.3). The

operating point can be anywhere on the curve between points X and Y and it depends on

whether one wants to have smaller access time or smaller cache size.

 33

Cache Size

A
cc

es
s

Ti
m

e

Block Size --> 0

Block Size --> Infinity

Slope1 = alphaT/alphaC

Slope2 = betaT/betaC

Slope1 > Slope2
 1 < BC < BT

Operating Point for minimum Cache Size
with Block Size BC > 1

Operating Point for Minimum Access Time
with Block Size BT > 1

Maximal
Trade-off
Region between
points X and Y

X

Y

Figure 2.3 Maximal trade-off region

b) Bc < 1 < Bt

When Bc < 1, we obtain a partial trade-off region of operation between points Z

(where B = 1) and Y (Figure 2.4). The operating point can be anywhere on the curve

between points Z and Y. Point Z is the operating point for minimum cache size, and the

corresponding block size is B = 1.

 34

Cache Size

A
cc

es
s

Ti
m

e
Block Size--> 0

Block Size -->
I fi it

Slope1 =
alphaT/alphaC

Slope2 = betaT/betaC

Operating point for minimum cache size
with Block Size BC = 1

Operating point for minimum access time
with Block Size BT > 1

Partial Trade-off
Region between
points Z and Y
Region

Slope1 > Slope2
 BC = 1 < BT

Z

Y

Figure 2.4 Partial trade-off region

c) Bc < Bt < 1

In this case, we obtain a unique optimal point of operation, point Z (where B = 1).

There is no region of trade-off in this case. Point Z is the only optimal operating point for

both smallest cache size and minimum access time, and the corresponding block size is B

= 1 (Figure 2.5).

 35

Cache SIze

A
cc

es
s

Ti
m

e

Block Size --> 0

Block Size --> Infinity

Slope2 = betaT/betaC

Slope1 = alphaT/alphaC

This is the unique optimal point of operation
There is No tradeoff
Block Size = 1 for Min Cache Size and Min Access Time

Slope1 > Slope2
BC = BT = 1

Z

Figure 2.5 No trade-off region

Case 2- ct γγ <

This case is encountered when the ratio of latency to transfer rate is smaller than the ratio

of index size to record size. This results in Bt < Bc. The plots for this case are similar to

the ones above, except that they are flipped about the axis of symmetry. As we move

along the curve starting from small block size to big block size, we first encounter point

Y and then point X. Point Y represents the operating point with optimal block size Bt

which achieves minimum access time Tmin, whereas point X is the operating point with

optimal block size Bc which results in minimum cache size Cmin. The region of the curve

between points Y and X is the trade-off region. Operating near point Y in the region of

trade-off allows for relatively smaller access times at the cost of larger cache sizes,

 36

whereas operating near point X in the region of trade-off allows for relatively smaller

cache sizes at the cost of larger access times. The constraint B ≥ 1 results in the following

three sub-cases.

a) 1 < Bt < Bc

When both the optimal block sizes are computed to be greater than 1, we obtain a

maximal trade-off region of operation between points X and Y. The operating point can

be anywhere on the curve between points X and Y and it depends on whether one wants

to have smaller access time or smaller cache size.

b) Bt < 1 < Bc

When Bt < 1, we obtain a partial trade-off region of operation between points Z

(where B = 1) and X. The operating point can be anywhere on the curve between points Z

and X. Point Z is the operating point for minimum access time, and the corresponding

block size is B = 1.

c) Bt < Bc < 1

In this case, we obtain a unique optimal point of operation, point Z (where B = 1).

There is no region of trade-off in this case. Point Z is the only optimal operating point for

both smallest cache size and minimum access time, and the corresponding block size is B

= 1.

The above two cases and the respective sub cases are summarized in Table 2.1.

 37

Table 2.1 Pareto optimal range of block sizes (3-D)

Case 1: tc γγ < Case 2: ct γγ <

Maximal Tradeoff tc BBB ≤≤ ct BBB ≤≤

Partial Trade-off tBB ≤≤1 cBB ≤≤1

Unique Minimum B = 1 B = 1

We now extend the analysis for the 3-dimensional dataset and generalize the

results for an n-dimensional dataset. Consider an n-dimensional dataset represented by an

n-dimensional voxel array of size D1 x D2 x � x DN. This array of voxels can be

partitioned into fixed-size groups of voxels and the dataset can be viewed as a collection

of n-dimensional macro-voxels. Let the size of each macro-voxel be M1 x M2 x � x Mn,

such that M1 << D1, M2 << D2� Mn << Dn.

We can now define the following design variables for this n-dimensional macro-

voxel caching problem:

The size of each macro-voxel: n

n

i
i xxxxB •••== ∏

=

...21
1

 (2.45)

The macro-voxel dimensionality:],...,,...,,[121 −= ni xxxxy (2.46)

where xi = Mi (i = 1� n) and Mi is the ith dimension of the macro-voxel.

The following constraints can be identified:

1

1
1

≥
≥
≥

comp

i

N
B
x

 38

We now define the following objective functions as before.

Cache Size:)(BNC cccomp βα += (2.47)

Access Time:)(BNT ttcomp βα += (2.48)

The optimal macro-voxel caching problem can be formulated as follows:

)(),(min
,

BNyBC cccompyB
βα += (2.49)

)(),(min
,

BNyBT ttcompyB
βα += (2.50)

subject to the constraints:
1

1
1

≥
≥
≥

comp

i

N
B
x

We first minimize each objective function by taking the partial derivative with respect to

each of its dependent variables and equating it to 0.

Objective Function for Cache Size:)(),(BNyBC cccomp βα += (2.51)

Taking partial derivative w.r.t. B: 0)(=+
∂

∂
+=

∂
∂

ccomp
comp

cc N
B

N
B

B
C ββα (2.52)

Taking partial derivative w.r.t. yi: 0)(=
∂

∂
+=

∂
∂

i

comp
cc

i y
N

B
y
C βα (2.53)

where yi = xi (i = 1� n-1)

From (2.53)
iy

C
∂
∂ = 0 iff

i

comp

y
N
∂

∂
 = 0.

Thus for any given B, minimum cache size Co(B) can be obtained by minimizing the

number of compulsory misses Ncomp with respect to design variables yi:

),(min)(yBNBN compyo = (2.54)

)()(BNBC ccoo βα += (2.55)

 39

Minimum Co(B) is achieved by taking derivative with respect to B and equating it to 0.

Let Bc be the optimal block size at which the cache size achieves its minimum value Cmin.

)()(min cccco BBNC βα +•= (2.56)

Similar analysis applies to the objective function T:

Objective Function for Access Time:)(),(BNyBT ttcomp βα += (2.57)

Taking partial derivative w.r.t. B: 0)(=+
∂

∂
+=

∂
∂

tcomp
comp

tt N
B

N
B

B
T ββα (2.58)

Taking partial derivative w.r.t. yi: 0)(=
∂

∂
+=

∂
∂

i

comp
tt

i y
N

B
y
T βα (2.59)

where yi = xi (i = 1� n-1)

From (2.59)
iy

T
∂
∂ = 0 iff

i

comp

y
N
∂

∂
 = 0.

Thus for any fixed B, minimum access time To(B) can be achieved by minimizing the

number of compulsory misses Ncomp with respect to design variables yi:

)()(BNBT ttoo βα += (2.60)

Minimum To(B) can be found by differentiating with respect to B and equating it to 0. Let

Bt be the optimal block size at which the access time achieves its minimum value Tmin.

)()(min tttto BBNT βα +•= (2.61)

Based on the relative values of Bc and Bt, we can summarize the range of Pareto

optimal values for block size B, required to obtain optimal cache size and access time as

shown in Table 2.2.

 40

Table 2.2 Pareto optimal range of block sizes (general case)

Case 1: tc BB < Case 2: ct BB <

Maximal Tradeoff tc BBB ≤≤ ct BBB ≤≤

Partial Trade-off tBB ≤≤1 cBB ≤≤1

Unique Minimum B = 1 B = 1

2.6 Conclusion

In this chapter, we addressed the problem of caching large multidimensional

datasets. We partitioned such datasets into small blocks called macro-voxels, where each

macro-voxel contained a multidimensional subset of the dataset and is intended to

preserve access locality. We then developed a macro-voxel based caching model,

assuming that the minimum number of blocks that a cache should hold for no capacity

misses is equal to the number of compulsory misses. Using the block size as our design

variable, we solved to obtain the Pareto optimal range of block sizes which would

minimize our objective functions, namely, cache size and access time. We came up with

formulae for block sizes that would minimize these objective functions for the case when

the number of compulsory misses is a power law function of the block size. Thus, given

the data access pattern for a problem, our theory identifies the existence of a Pareto

optimal tradeoff region between the minimum access time and cache size requirements.

 41

In the next chapter, we will experiment with this macro-voxel based caching

scheme in different settings that include data access from local disk and over a network,

and examine the validity of the model developed in this chapter.

 42

CHAPTER 3: THREE-DIMENSIONAL DATASET CACHING

In chapter 2, we introduced the concept of macro-voxel, developed a macro-voxel

based caching scheme and solved for the optimal macro-voxel sizes that would achieve

minimum cache size and access time. In this chapter, we implement the macro-voxel

caching scheme in an application which repeatedly accesses a remote three-dimensional

dataset, and examine the validity of the model developed in the previous chapter. We

partition the dataset into macro-voxels, where each macro-voxel is a small subset of the

three dimensional dataset, and we examine the effect of varying macro-voxel dimensions

on the number of compulsory misses registered, Ncomp. First, we keep the size fixed, and

vary the dimensions to determine the effect of shape on Ncomp. After determining the

shape that minimizes Ncomp, we determine the effect of size on Ncomp and verify the power

law dependence between the macro-voxel size and the number of compulsory misses.

The cache storage requirement per macro-voxel is a linear function of the macro-voxel

size. We measure the access time per macro-voxel and verify its linear dependence on

macro-voxel size. Finally we provide experimental data to validate the brick wall

hypothesis. We perform all the above experiments with the ALIGN software, which is an

example of an online problem. In general, online problems access data files in response to

a continuous series of query operations and perform some computations based on the

results. The data being queried will be static (only read operations performed) and can be

preprocessed for efficient query processing. We also experiment with SPEC�s seismic

benchmark program called SPECSeis96.1.2, an example of a batched problem, in which

no preprocessing is done and the entire file of data items is processed by streaming the

data through the internal memory in one or more passes.

 43

3.1 The ALIGN software (online problem)

The ALIGN software package is a MATLAB based registration software which

aligns two objects [3] using the Euclidean distance transform and the Marquardt-

Levenberg optimization algorithm. The object being aligned is known as the test object,

and the object being aligned to, is the reference object. They are 2D or 3D binary objects

whose contours are given as a set of pixel or voxel coordinates. The program operates in

2D/3D space and estimates the parameters of affine or rigid body space transformations

for optimal alignment. An iterative search is done in transformation parameter space to

find the best fit between the two objects. This search is based on a modified gradient

descent which is calculated using a previously computed distance map. The distance map,

which is stored on the disk, is in the form of a 2D/3D array whose entries are 2D/3D

vectors from the closest point in the reference object to the given voxel. In summary, the

program estimates the transformation parameters for optimal alignment of the test object

to the reference object by iteratively accessing Euclidean distances from the distance map

and computing the modified gradient descent. If the distance map is relatively small, the

program stores the entire map in memory; if not, the program accesses the distance map

stored on the disk and reads off entries iteratively during the alignment process. So for

large distance maps, the program spends a lot of I/O time fetching individual distance

vectors from the disk to memory. We propose to partition the distance map into macro-

voxels and investigate the effect of implementing a macro-voxel based caching scheme to

minimize run time and cache usage.

For the reader�s convenience, we provide a list of symbols from chapter 2 that are

going to be used in this chapter in Table 3.1.

 44

Table 3.1 List of symbols and definitions

Symbol Definition

Ncache Number of macro-voxels that can be stored in cache

Ncomp Number of compulsory misses, or the working set size

Ncap Number of capacity misses

Nmin
Minimum number of macro-voxels that should be stored in cache to avoid

capacity misses

Nmiss Total Number of misses = Ncomp + Ncap

B Number of records per macro-voxel

αc Index storage per macro-voxel (bytes)

βc Storage requirement per record (bytes)

γc αc / βc

αt (Latency) Seek Time per macro-voxel from backing store

βt Transfer Time per record from backing store to cache

γt αt / βt

C Cache size in bytes = Ncache � [αc + βcB]

T Access Time = Nmiss � [αt + βtB]

No Minimum number of compulsory misses that can be achieved for fixed B

Co No � [αc + βcB]

To No � [αt + βtB]

Cmin No(Bc) � [αc + βcBc], Bc achieves minimum cache size

Tmin No(Bt) � [αt + βtBt], Bt achieves minimum access time

S Shape factor, equal to ratio of smallest to largest macro-voxel dimension

 45

3.1.1 Computing platforms and problem specifics

We performed the ALIGN experiments on two Sun Microsystems computers

which will be denoted as Sun1 and Sun2. Table 3.2 gives the system information for both

machines.

Table 3.2 Computing platforms

 Sun1 Sun2

System Configuration Sun Enterprise 4000/5000 Sun Fire 880

System Clock Frequency 82 MHz 150 MHz

Memory Size 768 MB 8192 MB

CPU 248 MHz 750 MHz

We use the ALIGN program to align two 3D rat brain objects. The dimensions of

the distance map corresponding to the reference object (in voxels) are 700 x 700 x 419.

So the distance map has 700 x 700 x 419 entries, which we refer to in general as records,

each containing the vector distance of the corresponding voxel to the closest point in the

reference object. Each record consists of three readings, each stored as a short integer (2

bytes). Hence, the size of the entire distance map is (700x700x419x3x2) bytes =

1,231,860,000 bytes. This distance map is stored on the disk and is iteratively accessed

by the program during the alignment process.

On Sun1, the original program took a total of T1 = 518 seconds to complete, of

which T2 = 395 seconds were spent in accessing the distance map file. On Sun2, these

 46

numbers were T1 = 284 seconds and T2 = 245 seconds respectively. Both T1 & T2 are

recorded from within MATLAB functions (.m file) using the MATLAB built-in function

cputime. T1 is the time spent in the MATLAB function (say F1) which performs the align

routine. T2 is the time spent in the C function (say F2) which fetches the distance map

from the disk. Function F2 is iteratively called by function F1 during this align process.

Thus T2 is a time component of T1 that gives a measure of the distance map file access

time. The total number of records accessed in the align process for this particular problem

setting is 4,624,931 (approximately four and a half million records, each of six bytes), out

of which only 747,188 records are unique. Thus on an average, each unique record can be

said to be accessed roughly six times during the alignment. These repeated non-unique

disk accesses contribute to the large fraction of the execution time spent in the distance

map access.

3.1.2 Problem strategy and goals

Our overall goal is to reduce the time taken to access the distance map files by

reducing the number of disk reads. To this extent, we employ the concept of macro-voxel

based caching scheme and exploit the inherent locality in this problem. We first perform

our experiments with a cache size such that Ncache = Ncomp. This implies that only

compulsory misses occur and the cache is large enough to hold all Ncomp macro-voxels

simultaneously without a need for replacement.

We first partition the 3D dataset into fixed size macro-voxels and store them in a

new file. When the ALIGN program needs to access a record in the process of aligning

the reference and test datasets, it will now seek this new file which contains macro-

 47

voxels. We employ caching and pre-fetching techniques to exploit locality. When the

program needs to read a record, it fetches the macro-voxel containing the record from the

new file. Anticipating that this record may be needed in the near future (temporal

locality), the program stores the macro-voxel in memory. By saving the macro-voxel in

memory, the program has essentially pre-fetched other records in the spatial

neighborhood of the desired record, anticipating their future need (spatial locality). Thus

by clustering nearby voxels into a macro-voxel and implementing a macro-voxel caching

scheme, we are essentially exploiting spatial and temporal locality in these datasets.

When the program needs to access a record, it checks the internal memory to see

if the corresponding macro-voxel has already been cached. If yes, it reads the desired

record(s) from the cache. If not, the program will access the disk and fetch the

corresponding macro-voxel into memory. Since Ncache = Ncomp, the program is able to

store all the unique macro-voxels accessed during the alignment in cache, thus avoiding

capacity misses. This brings us to the question: How many unique macro-voxels are

accessed? For a given problem, this number depends on the size and shape of the macro-

voxels. In other words, it depends on the dimensions of the macro-voxel. Since these

unique macro-voxels accessed are the only ones that need to be stored in cache, they are

also known as �The working set�. Our first goal is to reduce Ncomp, the working set size,

which requires investigating its dependence on the size and shape of the macro-voxel. We

measure the macro-voxel size by B, the number of records in the macro-voxel, which is

equal to the product of the dimensions of a macro-voxel. As a measure of the macro-

voxel shape, we define the shape factor S to be the ratio of the smallest dimension to the

 48

largest dimension of a macro-voxel. S can take the maximum value of 1, when the macro-

voxel is a cube. Thus in our experiments, Ncomp depends on B and S.

Given that we need to store Ncomp macro-voxels in memory, our second goal is to

minimize this storage requirement. From equation (2.14), the storage requirement per

macro-voxel is modeled to be composed to two components. The first is the storage

(bytes) required per macro-voxel to implement the indexing scheme, αc. The second is

the storage (bytes) required per record, βc. Thus the term (αc + βc B) is the storage (bytes)

required per macro-voxel and the term C = {Ncomp � (αc + βc B)} is the total amount of

cache storage required for the problem. For the ALIGN experiments, αc = 12 bytes and βc

= 6 bytes, and so C depends on Ncomp and B only.

Next, we need to investigate the dependence of the time taken to fetch the

working set of macro-voxels from the disk to memory. From equation (2.16), we model

the time taken to access each macro-voxel to be composed of two time components,

latency, αt and transfer rate, βt. Latency is the time taken to start the macro-voxel transfer

after a request has been made whereas transfer rate is the time taken to transfer each

record. Thus the term (αt + βt B) is the time required to fetch each macro-voxel, and the

term T = {Ncomp � (αt + βt B)} is the total time required to fetch the entire working set of

macro-voxels from the disk to memory.

We introduce another dimension to this problem to address the disk storage

requirements of these large 3D datasets. As was mentioned earlier, the distance map size

in this problem is almost 1GB. The new file stores macro-voxels, and during the

alignment process, the program accesses a macro-voxel as one entire entity. In order to

make the handling of these large macro-voxel files more manageable, namely, to reduce

 49

the disk storage requirements of these new files, we take advantage of the macro-voxel

based storage layout organization by preprocessing & compressing each macro-voxel and

storing these compressed macro-voxels in the new file. This conserves disk space, at the

cost of extra computation time to access each macro-voxel. The program now has to

perform two additional steps on each fetched macro-voxel before storing it in cache in its

uncompressed form:

a) decompression &

b) post-processing

Thus introducing compression reduces the disk access time per macro-voxel but increases

the time taken to read the first record from it. We model the total time taken per macro-

voxel as specified in chapter 2, namely (αt + βt B). This term now represents the time

taken to read a compressed macro-voxel from disk, decompress and post-process it, and

store the uncompressed form in cache for future accesses. Thus, as before, the term T =

{Ncomp � (αt + βt B)} is the total time required to fetch the entire working set of macro-

voxels from the disk to memory and it depends on Ncomp, B and whether compression is

used.

In summary, our design goals are as follows:

1) Minimize the working set size, Ncomp

2) Minimize cache size C, required to store the working set

3) Minimize time taken T, to fetch the working set from disk and store it in its

uncompressed form in cache

4) Reduce disk space required to store the file containing macro-voxels

 50

Table 3.3 summarizes the system performance measures and their dependent design

parameters for a given problem.

Table 3.3 Performance measures and design parameters

Performance Measure Design Parameters

Ncomp B, S

C Ncomp, B

T Ncomp, B, Compression

Before doing a detailed analysis, let us jump in and investigate the effect of only the size

factor B on the cache size C and access time T. We do this in the next subsection.

3.1.3 Cube shaped macro-voxels

We first experiment with the ALIGN program by partitioning the distance map

into cube shaped macro-voxels, i.e. the macro-voxel dimensions are d x d x d. In this

case, size factor B = d3, and shape factor S = 1. Thus we exclude the effect of S. There is

no preprocessing or compression involved. Thus the only design parameter in this case is

the size factor B, which affects Ncomp, and hence C & T. The dimension d takes values

from the set {4, 8, 16, 32 and 64}. Table 3.4 shows the required cache size in each of the

five cases.

 51

Table 3.4 Cache size for cube shaped macro-voxels

 Macro-voxel Dimensions Working set size Record Size Overhead Size Total Cache Size

1 4 × 4 × 4 111,267 42,726,528 1,335,204 44,061,732

2 8 × 8 × 8 34,412 105,713,664 412,944 106,126,608

3 16 × 16 × 16 7,692 189,038,592 92,304 189,130,896

4 32 × 32 × 32 1,524 299,630,592 18,288 299,648,880

5 64 × 64 × 64 287 451,411,968 3,444 451,415,412

The working set size Ncomp in the third column of Table 3.4, which is the number

of macro-voxels accessed, is determined experimentally. The values in the last three

columns are in bytes. The record size is computed as the product of Ncomp, B and βc. The

overhead size is computed as the product of Ncomp and αc. The sum of the record size and

the overhead size gives the total cache size required to store the Ncomp working set of

macro-voxels in memory. It can be seen that as the size of the macro-voxels increases,

the working set size (and consequently the miss rate) decreases, but the total cache size

required increases. These size requirements are the same on both computer systems Sun1

and Sun2.

The next table, Table 3.5 shows the timing data for the experiments from Table

3.4, run on Sun1 and Sun2. The second column, working set size, is from Table 3.4. The

remaining columns are time measurements recorded in seconds. As mentioned before,

both T1 & T2 are recorded from within MATLAB functions using the MATLAB built-in

function cputime. T1 is the time spent in the MATLAB function F1 which performs the

align routine whereas T2 is the time spent in the C function F2 which fetches the distance

map from the disk. Since F2 is iteratively called by F1 during the align process, T2 is a

time component of T1 that is a measure of the distance map file access time.

 52

Table 3.5 Timing data for cube shaped macro-voxels

Sun1 Sun2 Macro-voxel Dimensions Working set size

T1 T2 T3 T1 T2 T3

1 4 × 4 × 4 111,267 233.86 112.10 20.06 118.34 79.29 10.77

2 8 × 8 × 8 34,412 224.67 101.53 10.35 113.28 74.21 5.17

3 16 × 16 × 16 7,692 222.60 98.78 7.67 109.87 71.19 3.75

4 32 × 32 × 32 1,524 222.95 100.10 10.92 112.06 72.31 5.22

5 64 × 64 × 64 287 225.57 104.06 16.06 114.28 74.66 8.14

We also measured T3, which is the time spent in doing freads in the C function

F2. It was recorded using the C built-in function clock. T3 is thus the most accurate

measure of the time spent in reading data from the disk. T3 is a time component of T2.

We will be using T3 for our analysis. T1 & T2 can be used to compare performance with

the original ALIGN program.

Comparing T1 and T2 readings from Table 3.5 with the readings for the original

ALIGN program, it can be seen that the new program runs at least twice as fast.

Interesting point to note is that, although the number of misses (and the miss rate)

decreases with increasing macro-voxel size, the minimum run time is achieved for an

intermediate size. It is this behavior that we are most interested in. In other words, we

would like investigate the effect of macro-voxel dimensions on the access time and cache

size. Figure 3.1 shows the variation of Access Time (T3) versus Cache Size for both

Sun1 and Sun2. From Figure 3.1, it can be inferred that bigger macro-voxels doesn�t

necessarily mean better performance. In spite of lower miss rates with bigger macro-

voxels, increasing the macro-voxel size beyond a particular limit increases both the

access time and the cache size. By varying the macro-voxel size within the limit, we

 53

obtain a time-size trade-off. Smaller dimensions lead to smaller cache sizes due to less

cache pollution and higher access times due to higher number of disk accesses. Larger

dimensions lead to smaller access times due to fewer number of disk accesses at the cost

of larger cache sizes which is due to increase in cache pollution. Thus there exists an

optimal range of macro-voxel sizes within which one must operate in order to achieve

good system performance with respect to access time and cache size. This can be

observed in Figure 3.1.

0

5

10

15

20

25

0.E+00 5.E+07 1.E+08 2.E+08 2.E+08 3.E+08 3.E+08 4.E+08 4.E+08 5.E+08 5.E+08

Cache Size (Bytes)

A
cc

es
s

Ti
m

e
(S

ec
on

ds
)

Sun1
Sun2

Minimum Cache Size

Minimum Access Time

Increasing
Macro-voxel Size

Figure 3.1 Access time vs. cache size for cube shaped macro-voxels

 54

In the above experiments, T3 is the recorded time spent in fetching uncompressed

macro-voxels from the disk to memory. We perform a linear regression of the access time

per macro-voxel on the size of the macro-voxel B to estimate the latency and transfer rate

components for the access time model. Figure 3.2 shows the corresponding plot, equation

and R-square values. On Sun1, the latency and transfer rate are 0.2 milliseconds and 0.2

microseconds per voxel. On Sun2 these numbers are 30 microseconds and 0.1

microseconds per voxel.

The new macro-voxel files used in the above experiments were almost the same

size of the original distance map, i.e. ~ 1GB. In order to reduce the disk space required to

store these new files, we introduced compression in addition to the above dataset

partitioning technique. This is discussed in the next subsection.

y = 2E-07x + 0.0002
R2 = 1

y = 1E-07x + 3E-05
R2 = 1

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

0 50000 100000 150000 200000 250000 300000

Macro-voxel Size

A
cc

es
s

Ti
m

e
pe

r M
ac

ro
-v

ox
el

Sun1
Sun2
Linear (Sun1)
Linear (Sun2)

Figure 3.2 Linear regression of access time per macro-voxel

 55

3.1.4 Preprocessed compressed macro-voxels

 In order to make the handling of the macro-voxel files more manageable, we pre-

process and then compress each macro-voxel and store these compressed macro-voxels in

the new file. Preprocessing involved storing the differences rather than the absolute

values of the distances. The zlib compression library was employed to compress each

macro-voxel. When the ALIGN program needs to access a record, it seeks this new file

for the corresponding compressed macro-voxel, reads it, decompresses and post-

processes it and finally stores the macro-voxel in memory as earlier. Introducing

compression reduces disk read time but increases the overall time required to store the

uncompressed macro-voxel in memory due to the post-processing and decompression

stages involved. We also experiment with different shaped macro-voxels, i.e. the macro-

voxels don�t have to be the same in all dimensions. Thus we investigate the effect of all

design parameters, namely size factor B, shape factor S, and compression.

We partitioned the original distance map (with dimensions 700 x 700 x 419) into

macro-voxels of size d1 x d2 x d3, where each of d1, d2 and d3 took values from the set {4,

8, 16, 32 and 64}. Thus we experimented with 125 different macro-voxel sizes, the

smallest being 4 x 4 x 4 and the largest being 64 x 64 x 64. As described earlier, we

performed preprocessing and compression on these macro-voxels and generated 125 files

containing the compressed macro-voxels. Defining the file compression factor to be the

ratio of the size of the new file to the size of the original file, we obtained compression

factors in the range of 3% - 14%. The ALIGN experiment was performed using each of

these compressed files.

 56

Let dmin and dmax be the minimum and the maximum of {d1, d2, d3} respectively.

We define the shape factor S as the ratio of dmin and dmax and the macro-voxel size B as

the product of d1, d2 and d3, i.e. S = dmin / dmax and B = d1 * d2 * d3.

Figure 3.3 plots the compression factors of the 125 files as a function of the

macro-voxel size B. It can be observed that in general better compression factors are

achieved for larger macro-voxels.

0

2

4

6

8

10

12

14

16

1 10 100 1000 10000 100000 1000000

Macro-voxel Size

C
om

pr
es

si
on

 F
ac

to
r (

%
)

Figure 3.3 Compression factor as a function of macro-voxel size B

 57

3.1.5 Effect of shape factor S

We need to determine the effect of varying macro-voxel dimensions on the

number of macro-voxel accesses, Ncomp, i.e. the number of compulsory misses, or the

working set size. First let us investigate the effect of the shape factor S on Ncomp. In

Figure 3.4, we plot the working set size Ncomp vs. shape factor S for constant macro-voxel

sizes B. The data for this plot was obtained from 111 of the 125 ALIGN experiments

performed. S varies from 0.0625 (i.e. 4/64) to 1. B varies from 256 (e.g. 4 x 8 x 8) to

32768 (e.g. 32 x 32 x 32). It can be observed that for a given B, Ncomp decreases with

increasing S.

1000

10000

100000

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Macro-voxel Shape Factor

W
or

ki
ng

 S
et

 S
iz

e

Size=256
Size=512
Size=1024
Size=2048
Size=4096
Size=8192
Size=16384
Size=32768

Figure 3.4 Shape dependence of working set size

 58

For the given problem, it can be surmised from Figure 3.4 that for a given macro-

voxel size B, the smallest working set size Ncomp is achieved for the macro-voxel with

highest shape factor S. In other words, macro-voxels whose shape approaches closest to

that of a cube result in the smallest Ncomp.

35.0

40.0

45.0

50.0

55.0

60.0

1.5E+08 1.7E+08 1.9E+08 2.1E+08 2.3E+08 2.5E+08 2.7E+08 2.9E+08 3.1E+08

Cache Size (bytes)

A
cc

es
s

Ti
m

e
on

 S
U

N
1

(s
ec

on
ds

)

(2048, 0.0625)
(2048, 0.125)
(2048, 0.25)
(2048, 0.5)
(8192, 0.0625)
(8192, 0.125)
(8192, 0.25)
(8192, 0.5)
Size=2048
Size=8192

Figure 3.5 Shape dependence on Sun1

For the above experiments, we again recorded the time components T1, T2 and

T3. It must be noted that, in these 125 experiments, T3 is the total time taken to read the

compressed macro-voxels from the disk, post-process and decompress them and store

these uncompressed macro-voxels in memory. T1 and T2 are same as before. On Sun1,

 59

the {min, max} readings for T1, T2 and T3 were {240, 313}, {122, 192} and {34, 88}

respectively. On Sun2, these numbers were {117, 128}, {77, 88} and {9, 22}. Comparing

these T1 and T2 readings with the original program still shows run-time improvement by

a factor of two. However, owing to the post-processing and decompression stages, these

numbers are greater than those from Table 3.5 for the uncompressed macro-voxels.

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

1.6E+08 1.8E+08 2.0E+08 2.2E+08 2.4E+08 2.6E+08 2.8E+08 3.0E+08

Cache Size (Bytes)

A
cc

es
s

Ti
m

e
on

 S
U

N
2

(s
ec

on
ds

)

(2048, 0.0625)
(2048, 0.125)
(2048, 0.25)
(2048, 0.5)
(8192, 0.0625)
(8192, 0.125)
(8192, 0.25)
(8192, 0.5)
Size=2048
Size=8192

Figure 3.6 Shape dependence on Sun2

Let us now view the effect of shape factor S from the perspective of access time

vs. cache size. In Figure 3.5, we plot the T3 readings obtained on Sun1 against cache

sizes for two different macro-voxel sizes B = 2048 and B = 8192. In both cases, the shape

 60

factor S takes values in the set {0.0625, 0.125, 0.25 and 0.5}. Cache sizes are computed

as before in Table 3.4. In Figure 3.6, we do the same for T3 readings on Sun2. For both

B, it is observed that the best (i.e. minimum) access time and cache size is obtained for

the highest shape factor S = 0.5, whereas the worst (i.e. maximum) access time and cache

size is obtained for the smallest shape factor S = 0.0625. This further supports our earlier

finding that for the ALIGN problem, given a B, it is best to work with macro-voxels

having highest shape factor, since they result in (using symbols from Chapter 2)

minimum working set size No, and consequently minimum access time To and minimum

cache size Co.

3.1.6 Effect of size factor B

From the previous subsection, we have concluded that for a fixed macro-voxel

size B, we obtain the minimum working set size No for the highest shape factor S. Hence,

in this subsection we only consider the ALIGN experiments on macro-voxel files whose

shape factor S ≥ 0.5, i.e., S = 0.5 or S = 1. Out of the 125 different files, only 29 meet this

criterion. We now investigate the effect of varying B on No. Figure 3.7 plots No as a

function of B on a log-log plot. It also shows the equation and R-square value of a

regression analysis of No on B. Clearly, No has a power law dependence on B given by the

equation No = 3.16E+06 · B-0.7328

Our power law equation was based on only 29 different experiments. We can in

fact do better. The original distance map dimensions are 700 x 700 x 419. Assuming that

the macro-voxel dimensions are a power of 2, we can theoretically partition the distance

map into macro-voxels of size d1 x d2 x d3 where d1 and d2 take values from the set {1, 2,

 61

4, 8, 16, 32, 64, 128, 256, 512} and d3 takes all the values but 512. This set results in 900

different combinations, 60 of which obey the criterion that S ≥ 0.5. We generate a

footprint of the original ALIGN experiment and use this footprint to perform simulations

on the 60 different macro-voxel files. We compute No from these simulations and use this

new data to perform another regression analysis of No on B. Note that the values of No

obtained from these simulations are not estimates; they are exact values.

y = 3E+06x-0.7328

R2 = 0.9965

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1000000

Macro-voxel Size

W
or

ki
ng

 S
et

 S
iz

e

GoodShape
Power (GoodShape)

Figure 3.7 Size dependence of No (experimental)

 62

y = 2E+06x-0.678

R2 = 0.9935

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000 1000000 10000000 10000000
0

Macro-voxel Size

W
or

ki
ng

 S
et

 S
iz

e

SimulatedGoodShape
Power (SimulatedGoodShape)

Figure 3.8 Size dependence of No (from simulations)

Figure 3.8 plots No as a function of B and displays the results of a regression

analysis of No on B. It can be seen that No has a power law dependence on B given by the

equation No = 1.6E+06 · B-0.678. From equation (2.40), K = 1.6E+06 and p = 0.678.

Next we investigate the dependence of access time T3 on B. We consider all the

125 T3 readings as before (in subsection 3.1.5), where each T3 is the total time taken to

read from disk, decompress and post-process the macro-voxels and finally store it in

memory. We compute the access time per macro-voxel (i.e. T3/Ncomp) and perform a

linear regression on the macro-voxel size B to estimate the latency and transfer rate

components of the access time.

 63

y = 1E-06x + 0.0003
R2 = 1

y = 3E-07x + 0.0002
R2 = 0.9998

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

0 50000 100000 150000 200000 250000 300000

Macro-voxel Size

A
cc

es
s

Ti
m

e
pe

r M
ac

ro
-v

ox
el

Sun1
Sun2
Linear (Sun1)
Linear (Sun2)

Figure 3.9 Linear regression of access time per macro-voxel

Figure 3.9 shows the regression results for the 125 readings on Sun1 and Sun2.

On Sun1, the latency and transfer rate are αt = 0.3 milliseconds and βt = 1.2 microseconds

per voxel. On Sun2 these numbers are αt = 0.2 milliseconds and βt = 0.29 microseconds

per voxel. As mentioned before in subsection 3.1.2, the values αc = 12 bytes and βc = 6

bytes per voxel are constant for all our experiments.

We now determine how B affects the access time To and cache size requirements

Co. As before, To are the readings recorded earlier (in subsection 3.1.5) as T3, except that

we consider only 29 of the 125 experiments that meet the best shape factor criterion.

Similarly Co are the cache size recordings for the 29 experiments. Figure 3.10 shows the

variation of To vs. Co for these 29 readings on Sun1 and Sun2. Minimum To is

 64

experimentally determined to occur at Bt = 512 (i.e. 8 x 8 x 8) for Sun1 and at Bt = 1024

(i.e. 8 x 16 x 8) for Sun2. In both cases, minimum Co occurs at Bc = 64 (i.e. 4 x 4 x 4).

10

100

4.0E+07 9.0E+07 1.4E+08 1.9E+08 2.4E+08 2.9E+08 3.4E+08 3.9E+08 4.4E+08 4.9E+08

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1
Sun2

Increasing
Macro-voxel Size

Minimum
Cache Size
 4x4x4

8x8x8

8x16x8

Minimum
Access Time

Figure 3.10 Experimental access time vs. cache size

We use the formulae developed in Chapter 2 and compare the predictions with the

experimental data. We utilize the 60 readings of No generated from earlier simulations

and compute the corresponding cache sizes using equation (2.25). Similarly we use the

latency and transfer rate readings to estimate the access times from equation (2.32) and

plot corresponding access time vs. cache size graph in Figure 3.11. γc is computed to be 2

 65

and γt is computed to be 250 for Sun1 and 690 for Sun2. Using the previously computed

value of p = 0.678 and equations (2.42) & (2.44), the following predictions can be made:

Bc ≈ 4 i.e. 2 x 2 x 1

Bt (Sun1) ≈ 526, i.e. 8 x 8 x 8

Bt (Sun2) ≈ 1452 i.e. 11 x 11 x 12

These predicted values are pretty close to the numbers in Figure 3.11 given that we

considered only powers of 2 in our experiments and simulations.

10

100

1000

1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1
Sun2

Minimum
Access Time

8x8x8

16x16x8

Minimum
Cache Size
 1x1x1

Figure 3.11 Access time vs. cache size (from simulations)

 66

In conclusion, we have experimentally demonstrated the dependence of macro-voxel size

B on access time To and cache size Co which results in a maximal trade off region

between two optimal points of operation Bc which achieves minimum cache size Cmin and

Bt, which achieves minimum access time Tmin.

3.2 ALIGN over a network (online problem)

The MATLAB based ALIGN software package was originally designed and

developed for accessing distance maps from the local hard disk. Section 3.1 was devoted

to demonstrate the merit of the macro-voxel based caching scheme when accessing

distance maps located on the computer�s local disk. We incorporate networking

capabilities into the ALIGN software using the C Simple Object Access Protocol (SOAP)

library called gSOAP. This makes it possible for the ALIGN software to execute on a

client computer and align the test object and reference object by accessing the distance

map file located on a remote server. We run the same experiments as before (i.e. from

Section 3.1), except that the ALIGN program is running on Sun2, and the distance map is

located on a remote server. As a result, the data obtained from the previous section for

working set size Ncomp and the cache size C for varying size and shape factors (B and S)

will be identical to those obtained when the same experiments are performed over a

network. The only set of readings that will be different from the previous readings are

those for access times T, and this will be the topic of discussion in this section.

First we employ the network capable ALIGN program to perform alignment by

accessing the original un-partitioned distance map. We record the T1, T2 and T3 timing

data, which are the same as defined earlier in Section 3.2. These readings were T1 = 1748

 67

seconds, T2 = 1705 seconds and T3 = 1649 seconds. In this case, T3 is the time recorded

to perform 4,624,931 (approximately four and a half million) freads from the original

distance map file, each time reading in six bytes. It can be seen that a major fraction of

the execution time is spent in doing disk reads over the network. Let us see how these

numbers change when we employ the macro-voxel based caching scheme by using cube-

shaped macro-voxels.

3.2.1 Cube shaped macro-voxels

 As done in section 3.1.3, we partition the original distance map into macro-voxels

of dimensions d x d x d where d takes values from the set {4, 8, 16, 32}. The

corresponding cache sizes are the same as in Table 3.4. Table 3.6 shows the timing data

for accessing these uncompressed cube shaped macro-voxel files over a network. In these

experiments T3 is the time spent in fetching the uncompressed macro-voxels from the

remote server�s disk to the client�s memory over the network. Figure 3.12 plots the access

time (T3) vs. cache size, from which it is clear that minimum access time is obtained for

a 4 x 4 x 4 sized macro-voxel map.

Table 3.6 Timing data for cube shaped macro-voxels (network)

Network Macro-voxel Dimensions Working set size

T1 T2 T3

1 4 x 4 x 4 111,267 213.66 172.83 103.6

2 8 x 8 x 8 34,412 265.64 225.61 157.1

3 16 x 16 x 16 7,692 381.98 341.73 273.9

4 32 x 32 x 32 1,524 529.99 490.53 423.3

 68

103.6

157.1

273.9

423.3

0

50

100

150

200

250

300

350

400

450

0.00E+00 5.00E+07 1.00E+08 1.50E+08 2.00E+08 2.50E+08 3.00E+08 3.50E+08

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Net_NoComp

4x4x4

8x8x8

16x16x16

32x32x32

Figure 3.12 Access time vs. cache size (uncompressed data over network)

Let us also perform a linear regression of the access time per macro-voxel (i.e.

T/Ncomp) on the macro-voxel size B to estimate the latency and transfer rate components

of the access time model. Figure 3.13 shows the corresponding plot and equation. Thus αt

= 0.5 milliseconds, βt = 8 microseconds, and γt = 62.5. Using our prediction equations

from Chapter 2, we obtain the macro-voxel size for minimum access time Bt ≈ 132 (i.e. 5

x 5 x 5), which is close to what we determined experimentally. The advantage of using a

macro-voxel based caching system is strongly evidenced by the fact that the new access

times is 16 times smaller than when using the original distance map.

 69

y = 8E-06x + 0.0005
R2 = 1

0.E+00

5.E-02

1.E-01

2.E-01

2.E-01

3.E-01

3.E-01

0 5000 10000 15000 20000 25000 30000 35000

Macro-voxel Size

A
cc

es
s

tim
e

pe
r m

ac
ro

-v
ox

el

Net_NoComp
Linear (Net_NoComp)

Figure 3.13 Linear regression of access time/macro-voxel (uncompressed data over network)

3.2.2 Preprocessed compressed macro-voxels

We now use the same 125 preprocessed and compressed macro-voxel files from

section 3.1.4, and record the timing data to access these files from the remote server. So

T3 readings are the total time taken to fetch the compressed macro-voxels from the

server�s disk to the client computer, decompress and post-process each, and finally store

the uncompressed macro-voxels in the client computer�s internal memory. T1 and T2 are

the same as before. The {min, max} readings for T1, T2 and T3 for these 125

experiments were {123, 166}, {84, 125} and {15, 47} respectively. Important point to

note here is that, in spite of the additional decompression and post-processing stages

 70

y = 3E-07x + 0.0005
R2 = 0.9999

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

8.00E-02

9.00E-02

0 50000 100000 150000 200000 250000 300000

Macro-voxel Size

A
cc

es
s

Ti
m

e
pe

r m
ac

ro
-v

ox
el

Network
Linear (Network)

Figure 3.14 Linear regression of access time/macro-voxel (compressed data over network)

15

20

25

30

35

40

45

50

4.0E+07 9.0E+07 1.4E+08 1.9E+08 2.4E+08 2.9E+08 3.4E+08 3.9E+08 4.4E+08 4.9E+08

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Network

16x8x16

Minimum Access Time

4x4x4
Minimum cache size

Increasing macro-voxel size

Figure 3.15 Experimental access time vs. cache size (compressed data over network)

 71

involved, the access times for these files are better by a factor of more than 2, as

compared to accessing the uncompressed macro-voxel files. This has by far been the

most positive evidence of improvement in system performance by employing the macro-

voxel based caching scheme. We now perform linear regression of the access time per

macro-voxel on the macro-voxel size to estimate the latency and transfer rate components

of the time taken to access these compressed macro-voxel files.

10

100

1000

1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Network

Minimum Access Time

16x16x16

Minimum Cache Size
1x1x1

Increasing
Macro-voxel size

Figure 3.16 Simulated access time vs. cache size (compressed data over network)

Figure 3.14 shows the corresponding plot and equation which results in αt = 0.5

milliseconds, βt = 0.34 microseconds, and γt = 1470.6. Using the prediction equations, we

 72

obtain the macro-voxel size for minimum access time Bt ≈ 3096 (i.e. 15 x 15 x 15).

Figure 3.15 shows the access time vs. cache size from 29 of the 125 experiments

performed which satisfy the shape factor criterion, i.e. S ≥ 0.5. We used the latency and

transfer rate readings to estimate timing data for the 60 of the 900 simulations that

satisfied the shape factor criterion and plotted the access time vs. cache size in Figure

3.16.

3.2.3 Performance comparison

In summary, we have performed the ALIGN experiments on the following three

different platforms:

1. Program runs on Sun1 accessing macro-voxel files on local hard disk.

2. Program runs on Sun2 accessing macro-voxel files on local hard disk.

3. Program runs on Sun2 accessing macro-voxel files on remote server.

In each of the three platforms, we experimented with both compressed and

uncompressed macro-voxel files. In this section, we compare the access time versus

cache size performance for each of these cases. We use recorded data for the

uncompressed and compressed versions of the following 5 different macro-voxel files, (4

x 4 x 4), (8 x 8 x 8), (16 x 16 x 16), (32 x 32 x 32) and (64 x 64 x 64). In all these

experiments, the value of the index overhead per macro-voxel and size per voxel is the

same throughout, i.e. αc = 12 bytes per macro-voxel and βc = 6 bytes per voxel. This

results in γc = 2. In section 3.1.6, the value of p was determined to be p = 0.678. From

equation (2.42), the macro-voxel size for minimum cache size is obtained as

 73

p
pB cc −

=
1

γ = 4, which is valid for all our experiments. However, the same isn�t true

for Bt, the macro-voxel size for minimum access time. Table 3.7 shows these computed

values for the different problem settings. Values of αt and βt were obtained from the

linear regressions done in the previous sections. Bt was computed from equation (2.44). It

is interesting to note how the maximal tradeoff region varies for these six different

problem settings. The experimental data for access time vs. cache size is plotted in Figure

3.17.

Table 3.7 Timing data for the six different problem settings

Problem setting αt βt γt Bt (example) Tradeoff region

Sun1 (uncompressed) 0.2ms 0.2µs 1000 2106 (13x13x13) 4 < B < 2106

Sun2 (uncompressed) 30µs 0.1µs 300 632 (9x9x9) 4 < B < 632

Network (uncompressed) 0.5ms 8µs 62.5 132 (5x5x5) 4 < B < 132

Sun1 (compressed) 0.3ms 1.2µs 250 526 (8x8x8) 4 < B < 526

Sun2 (compressed) 0.2ms 0.29µs 690 1452 (11x11x11) 4 < B < 1452

Network (compressed) 0.5ms 0.34µs 1470 3096 (15x15x15) 4 < B < 3096

 74

1

10

100

1000

10000000 100000000 1000000000

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1(NoCompr)
Sun2(NoCompr)
Network(NoCompr)
Sun1(Compr)
Sun2(Compr)
Network(Compr)

4x4x4 8x8x8 16x16x16 32x32x32 64x64x64

Net(NC) Bt ~ 4x4x4

Sun1(C) Bt ~ 8x8x8

Net(C) Bt ~ 16x16x16

Sun2(C) 8x8x8 < Bt < 16x16x16

Sun1(NC) Bt ~ 16x16x16

Sun2(NC) Bt ~ 16x16x16

Figure 3.17 Access time vs. cache size for different problem settings

It can be seen that the Bt predictions made in Table 3.7 are close to the

experimentally observable Bt in Figure 3.17. In all of our analysis, we used the T3

recordings to estimate the latency and transfer rate components. In case of uncompressed

macro-voxels, T3 involved the time to read from disk and store it in memory. In case of

compressed macro-voxels, T3 involved the time to read, decompress, post-process and

store the macro-voxels in memory. These different timing components were all modeled

using the same transfer rate-latency model, and hence αt and βt had different values for

different problem settings. We now investigate the contributions of the three timing

components, i.e. disk read, decompression, and post-processing, to the overall access

time T3, in each problem setting. Figure 3.18 shows a plot of the access time T3 and its

 75

component contributions in six different problem settings for files with macro-voxel size

4 x 4 x 4. Similar data is plotted in Figures 3.19, 3.20, 3.21 and 3.22 for files with macro-

voxel sizes 8 x 8 x 8, 16 x 16 x 16, 32 x 32 x 32, and 64 x 64 x 64. On all these plots, the

component Diff is the remaining time component, i.e., Diff = T3 � File Access Time �

Decompression Time � Post-processing Time. On the X-axis, the File Type �NC� means

No Compression and �C� means compression. Obvious observations are that for a given

plot, since Sun2 is faster than Sun1, the timing readings are smaller on Sun2 than on

Sun1. Also, for a given plot, the decompression and post-processing components are the

same for �Sun2C� and �NetC�, (since ALIGN runs on Sun2 in both cases), but the file

access times are larger for �NetC� compared to �Sun2C�. The most interesting and

important observation to make is the following: In all the five plots, it can be seen that,

on Sun1 and Sun2, the total time T3 taken to access compressed file is greater than the

time to access an uncompressed file. However the opposite is true when accessing files

from a server. This implies that, accessing compressed macro-voxel files takes longer

than accessing uncompressed counterparts on fast channels (in our case, the local hard

disk); we are buying disk space savings at the cost of extra processing and decompression

time. However, when working on slow channels (in our case, the remote hard disk),

utilizing compressed macro-voxel files results in disk space savings and faster access

times.

 76

4x4x4

19
11.8 9.96 6.65

102.6

36.240

33.8

0 8.40

0

8.25

0

6.0

0

1.54

0

1.39

1.06

1.6

0.81

0.83

1

0.98

0

20

40

60

80

100

120

Sun1NC4 Sun1C4 Sun2NC4 Sun2C4 NetNC4 NetC4

File Type

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Diff
PostProcessing
DeCompression
FileAccess

Figure 3.18 Access time composition for different file types of size 4x4x4

8x8x8

9.98
3.3 4.98 2.69

156.8

12.89
0 15.2

0 4.17

0

4.72
0

15.1

0
3.37

0

3.45

0.37

0.6

0.19
0.39

0.3

0.37

0

20

40

60

80

100

120

140

160

180

Sun1NC8 Sun1C8 Sun2NC8 Sun2C8 NetNC8 NetC8

File Type

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Diff
PostProcessing
DeCompression
FileAccess

Figure 3.19 Access time composition for different file types of size 8x8x8

 77

16x16x16

7.64 1.0 3.69 0.94

273.8

5.220 10.4 0 3.7

0

3.960

27.8

0 6.14

0

6.150.03

0.1

0.06
0.15

0.1

0.13

0

50

100

150

200

250

300

Sun1NC16 Sun1C16 Sun2NC16 Sun2C16 NetNC16 NetC16

FileType

A
cc

es
sT

im
e

(s
ec

on
ds

)

Diff
PostProcessing
DeCompression
FileAccess

Figure 3.20 Access time composition for different file types of size 16x16x16

32x32x32

10.89 0.5 5.22 0.45

423.2

2.66
0 15.0 0 5.63

0

5.320

44.0

0 8.99

0

9.920.03

0.0

0
0

0.1

0.02
0

50

100

150

200

250

300

350

400

450

Sun1NC32 Sun1C32 Sun2NC32 Sun2C32 NetNC32 NetC32

FileType

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Diff
PostProcessing
DeCompression
FileAccess

Figure 3.21 Access time composition for different file types of size 32x32x32

 78

64x64x64

16.05

0.4
8.14

0.27 3.09

0

21.0
0

7.19
7.61

0

66.8

0

14.57
14.83

0.01

0.0

0

0
0

0

10

20

30

40

50

60

70

80

90

100

Sun1NC64 Sun1C64 Sun2NC64 Sun2C64 NetC64

FileType

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Diff
PostProcessing
DeCompression
FileAccess

Figure 3.22 Access time composition for different file types of size 64x64x64

3.3 Effect of cache replacement

In the previous sections 3.1 and 3.2, we performed all experiments assuming that

the memory is large enough to store all the macro-voxels belonging to the working set of

the problem, i.e. Ncache = Ncomp. In other words, once a macro-voxel is accessed by the

program, it is stored in memory till the program finishes execution. The cache never runs

out of space and so there was no need to implement replacement mechanism. Thus so far

we dealt with only compulsory misses, which are the result of accessing a macro-voxel

for the first time.

In this section we relax this assumption. Now we vary the value of Ncache so it

takes values in the set {0.9No, 0.8No, 0.7No, 0.6No, 0.5No, 0.4No, 0.3No, 0.2No, 0.1No}.

 79

Working with values of Ncache < No results in the cache getting full before program

completion, and hence the need to evict one or more macro-voxels arises in order to make

room for incoming macro-voxels. In this section, we investigate the effect of varying

Ncache on the access time and cache size requirements. We experiment with preprocessed

compressed macro-voxel files of sizes 4 x 4 x 4, 8 x 8 x 8, 16 x 16 x 16, 32 x 32 x 32 and

64 x 64 x 64. The access times are composed of the time taken to read the compressed

macro-voxel from disk, decompress and post-process it, and store it in cache. The cache

size is the amount of memory required to store the Ncache macro-voxels. The number of

cache replacements depends on the replacement policy. We experiment with the FIFO

(First In First Out) and LRU (Least Recently Used) replacement schemes.

In each of the six Figures 3.23 � 3.28, we plot the access times vs. cache size as

recorded on three different platforms when experimenting with FIFO and LRU

replacement schemes. Each figure has six graphs. The first graph plots the access times

vs. cache size when Ncache = No, obtained from simulations performed in the previous

sections; this plot will be used to determine the time-size tradeoff region which is the

optimal region of operation. The remaining five graphs plot the recorded access times vs.

cache sizes for compressed files containing macro-voxels of size 43, 83, 163, 323, and 643.

In each of the five cases, we start with Ncache = No, and then reduce Ncache (0.9No, 0.8No

and so on) till the access time gradually changes and reaches a breakdown limit after

which the access time increases rapidly resulting in a knee shaped behavior. Note that,

decreasing Ncache reduces cache size requirements. It is the behavior of the access time

that we are interested in, as we reduce Ncache.

 80

Figures 3.23 and 3.24 show the access time plots as recorded on Sun1, for FIFO

and LRU replacement schemes respectively. Similarly, Figures 3.25 and 3.26 show the

plots for data recorded on Sun2, whereas Figures 3.27 and 3.28 plot the recorded timing

data when the program executed on Sun2, but accessed the compressed files from a

server over a network. We use the term TNo to denote access times achieved when Ncache =

No, and the term TNmin to denote the smallest recorded access time for a given cache size,

when Ncache < No.

First let us discuss the access time behavior inside the tradeoff region. In Figure

3.23, it can be seen that for a 43 file, TNmin is smaller than TNo whereas for an 83 file, TNmin

is almost equal to TNo. This observation implies that for a given cache size, access time

savings can be achieved by utilizing bigger macro-voxels and allowing replacements

rather than working with small macro-voxels and no replacements. Figures 3.24 and 3.25

show similar behavior: for a 43 and 83 file, TNmin is much smaller than TNo, whereas for a

163 file, TNmin is almost equal to TNo. Similar, but gradually more pronounced behavior,

can be seen in the remaining Figures 3.26 � 3.28. In each of these plots, TNmin for 43, 83,

and 163 files is much smaller than TNo. Thus, within the time-size tradeoff region, for a

given cache size, better access times are feasible by using bigger macro-voxels, and

allowing for macro-voxel replacements, rather than using small macro-voxels with zero

replacements.

From graphs in all the six figures, it is observed that outside the tradeoff region,

TNmin is almost always greater than TNo. In any case, it is not optimal to work outside the

tradeoff region, since it results in both bad access times and inefficient cache usage with

no benefits.

 81

1

10

100

1000

10000

100000

1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1
FIFO4x4x4
FIFO8x8x8
FIFO16x16x16
FIFO32x32x32
FIFO64x64x64

Trade-off Region

Figure 3.23 Access time vs. cache size on Sun1 with FIFO replacement

1

10

100

1000

10000

100000

1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1
LRU4x4x4
LRU8x8x8
LRU16x16x16
LRU32x32x32
LRU64x64x64

Trade-off Region

Figure 3.24 Access time vs. cache size on Sun1 with LRU replacement

 82

1

10

100

1000

10000

1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun2
FIFO4x4x4
FIFO8x8x8
FIFO16x16x16
FIFO32x32x32
FIFO64x64x64

Trade-off Region

Figure 3.25 Access time vs. cache size on Sun2 with FIFO replacement

1

10

100

1000

10000

1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun2
LRU4x4x4
LRU8x8x8
LRU16x16x16
LRU32x32x32
LRU64x64x64

Trade-off Region

Figure 3.26 Access time vs. cache size on Sun2 with LRU replacement

 83

1

10

100

1000

10000

1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Network
FIFO4x4x4
FIFO8x8x8
FIFO16x16x16
FIFO32x32x32
FIFO64x64x64

Trade-off Region

Figure 3.27 Access time vs. cache size on network with FIFO replacement

1

10

100

1000

10000

1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Network
LRU4x4x4
LRU8x8x8
LRU16x16x16
LRU32x32x32
LRU64x64x64

Trade-off Region

Figure 3.28 Access time vs. cache size on network with LRU replacement

 84

The access times and cache size data for Figures 3.29 and 3.30 are obtained from

the previous six figures. We would like to compare the performance of a given

replacement scheme across the three platforms, i.e. Sun1, Sun2, and program running on

Sun2 but accessing files from a server. In Figure 3.29, we plot access time vs. cache size

recordings when using FIFO replacement policy to access the five compressed files

(containing macro-voxels of size 43, 83, 163, 323, and 643). Similar data is plotted in

Figure 3.30 when using LRU replacement policy. Each plot in both figures exhibit a

general knee shaped behavior, because as we decrease Ncache, the access time first

changes gradually, reaches a limit, and then sharply increases, validating our brick wall

hypothesis. For a given macro-voxel size, the shape of the plots are the same across the

three platforms. The access times recorded on Sun1 for constant macro-voxel sizes are

higher than those recorded on Sun2, which is expected since Sun2 is a faster system than

Sun1. However, the access times for experiments over the network fall in between those

for Sun1 and Sun2. Interesting point to note is that when working with smaller macro-

voxels (43), the access times recorded for network performance are very close to the

access times recorded on Sun1. But when working with bigger macro-voxels (643), the

access times recorded for network performance are close to the access times recorded on

Sun2. In other words, as we increase the macro-voxel size from 43 to 643, the network

performance changes from behaving as a slow system (i.e. Sun1) to behaving as a fast

system (i.e. Sun2). The reason for this interesting behavior is as follows. Working with

smaller macro-voxels results in a lot more disk accesses than working with bigger ones.

This results in larger contributions to the total access time owing to the increased amount

of disk latencies.

 85

1

10

100

1000

10000

100000

1.0E+06 1.0E+07 1.0E+08 1.0E+09

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1FIFO4x4x4
Sun1FIFO8x8x8
Sun1FIFO16x16x16
Sun1FIFO32x32x32
Sun1FIFO64x64x64
Sun2FIFO4x4x4
Sun2FIFO8x8x8
Sun2FIFO16x16x16
Sun2FIFO32x32x32
Sun2FIFO64x64x64
NetFIFO4x4x4
NetFIFO8x8x8
NetFIFO16x16x16
NetFIFO32x32x32
NetFIFO64x64x64

Figure 3.29 Access time vs. cache size on all platforms with FIFO replacement

1

10

100

1000

10000

100000

1.0E+06 1.0E+07 1.0E+08 1.0E+09

Cache Size (bytes)

A
cc

es
s

Ti
m

e
(s

ec
on

ds
)

Sun1LRU4x4x4
Sun1LRU8x8x8
Sun1LRU16x16x16
Sun1LRU32x32x32
Sun1LRU64x64x64
Sun2LRU4x4x4
Sun2LRU8x8x8
Sun2LRU16x16x16
Sun2LRU32x32x32
Sun2LRU64x64x64
NetLRU4x4x4
NetLRU8x8x8
NetLRU16x16x16
NetLRU32x32x32
NetLRU64x64x64

Figure 3.30 Access time vs. cache size on all platforms with LRU replacement

 86

3.4 SPECseis96.1.2 (batched problem)

In this section, we consider a benchmark application from SPEC, which falls in

the batched problem category dealing with large three-dimensional datasets. First, a few

words on SPEC. SPEC, the Standard Performance Evaluation Corporation, is a non-profit

corporation formed to "establish, maintain and endorse a standardized set of relevant

benchmarks that can be applied to the newest generation of high-performance computers"

(quoted from SPEC's bylaws). SPEChpc96 (�hpc� stands for High Performance

Computing; �96� is the year it was released) is a benchmark suite that measures the

performance of high-end computing systems running industrial-style applications. The

SPEChpc96 suite includes three application areas: seismic processing (SPECseis96),

computational chemistry (SPECchem96), and climate modeling (SPECclimate).

For our research, we employ version 1.2 of the SPECseis96 suite which is used to

evaluate machine performance on industrially significant computer workloads as well as

for scientific study. It is a seismic processing suite developed in 1993 at Atlantic

Richfield Corp. (ARCO) by Charles Mosher and Siamak Hassanzadeh [72]. The suite

includes an industrial application named Seismic that performs time and depth migrations

used to locate gas and oil deposits. The entire code contains 15,000 lines of FORTRAN

and C code, and includes intensive disk I/O. We configured the application to run in

serial mode (It can be run in parallel mode also).

A single run of Seismic consists of four sequential �phases�, which perform the

seismic computations: �Data generation�, �Stacking of data�, �Time migration�, and

�Depth migration�. Each phase consists of a series of seismic processes which perform

 87

certain seismic processing computations or disk I/O. Initially, only input parameters are

needed (no data files). Then the seismic data is stored in a file throughout the execution

of a phase. Data stored from a previous phase is used in the current phase, i.e., Phase 2

uses the data files stored by Phase 1, whereas Phases 3 and 4 use the data files stored by

Phase 2. The total execution time of Seismic is determined by adding the elapsed times,

in seconds, for all four phases of the application.

After investigating the data input/output pattern in all four phases, we found that

there was no temporal locality exhibited in any of the file access pattern, since each file is

written and subsequently read only once in its entirety. Moreover, in every phase, except

Phase 2, the data files were read sequentially from beginning to end. However, the data

file written in Phase 1 exhibited a non-sequential read pattern in Phase 2. We intend to

apply the macro-voxel data clustering scheme to this particular data file. Let us first

examine how the data is generated for this file, and how it gets the three-dimensional

nature.

3.4.1 Seismic data generation and layout

The seismic data for this file is generated by simulating the following single-

source-explosion / multi-receiver-pickup model. The source is moved (column-wise)

along a rectilinear grid (Figure 3.31) consisting of Nshot columns and Nline rows. Nrecv

receivers are placed on a cable that is moved each time the source is moved. At each

source location, there is a shot (explosion), which is picked up by all the receivers; each

receiver records the amplitude over time, creating a series of Namp samples per receiver.

 88

Start Source Position Start Receiver
Position

Source Increment

Receiver Increment

Source Line
Increment

Cable Line Increment

Figure 3.31 Shooting geometry

This series of amplitude data picked up by a receiver for a given shot is defined as

the seismic trace. Each shot and cable-of-receivers combination is called a group or a

frame. Each row is termed as a line or a volume. In summary, each seismic trace has Namp

samples. There are Nrecv such traces per frame. There are Nshot frames per volume and a

total of Nline volumes. Each sample in a seismic trace is stored as a 4 byte floating point

number. Thus the total size of the dataset generated by this model in Phase 1 is

determined as the following product: (Nline volumes) x (Nshot frames) x (Nrecv traces) x

(Namp samples) x (4 byte floats).

Let us take a 3-dimensional view (Figure 3.32) of this dataset in order to

understand how the data is laid out during the write process of Phase 1. Consider the

trace, frame and volume to be represented by the X, Y and Z dimensions of a 3-D space

respectively. Each voxel, i.e. each {x, y, z} coordinate represents a record containing the

Namp samples and there are Nrecv x Nshot x Nline voxels. The write process in Phase 1

 89

performs a write of these voxels in the following order: {traces, frames, volumes}. In

other words, data is laid out in the normal X-Y-Z order.

Write Order in Process 1 Read order in Process 2

Figure 3.32 Seismic benchmark file viewed as a three-dimensional voxel array

Trace Trace

Volume Volume

Frame Frame

Voxels

However, when Phase 2 reads this file, the read order is changed to Y-X-Z order,

i.e. for a given volume, the process reads the 1st trace in every frame, then the 2nd trace in

every frame, then the 3rd trace in every frame� and so on. Thus, during Phase 2, the read

process involves an fseek and an fread for every single trace, causing significant time

delay due to the large number of disk latencies.

We propose to partition the dataset into macro-voxels of dimensions 1 x Nshot x 1

(Figure 3.33) and store these macro-voxels in a file which would be subsequently read in

 90

Phase 2. The number of freads that need to be performed in Phase 2 while reading this

new file has now been reduced by a factor of Nshot, thus significantly reducing the disk

latency contribution to the total access times.

Dataset composed of
Macro-voxels

Macro-voxel composed of voxels

Figure 3.33 Seismic benchmark file part itioned into macro-voxels

The Seismic application consists of five different problem sizes reflected in the

number of seismic traces that it will process, which in turn is reflected in the size of the

input/output datasets. We experimented with three problem sizes (test, small and

medium) as shown in Table 3.8. The application also has built-in verification procedures,

which validated our experiments. The timing data in Table 3.8 is obtained from output

files generated by the application. I/O times are in seconds and I/O rates are in

MB/second.

 91

Table 3.8 Seismic benchmark experiments

Phase I

(WRITE)

Phase II

(READ) Dataset

(Size)

Namp Nrecv Nshot Nline Version
I/O

Time

I/O

Rate

I/O

Time

I/O

Rate

Original 0.440 39.025 3.290 5.219TEST

(16MB)

256 16 32 32
New 0.970 17.702 2.390 7.184

Original 2.549 40.412 22.840 4.511SMALL

(96MB)

256 48 64 32
New 6.180 16.671 17.120 6.018

Original 39.988 40.750 2704.020 0.603MEDIUM

(1.5GB)

512 48 128 128
New 142.874 11.405 331.774 4.911

As we go from the test dataset, to the medium dataset, the amount of data I/O

increases, as can be seen by the first five columns. The last two columns indicate the I/O

Time and the I/O rate for the Phase 2 read process. It can be seen that this number has

improved by a factor of 8 (2704.02 seconds vs. 331.774 seconds) for the medium file, at a

small cost in creating the macro-voxel file (39.988 seconds vs. 142.874 seconds).

 92

3.5 Conclusion

In this chapter, we applied the macro-voxel concept in a real software application

that iteratively accesses a large three-dimensional dataset and examined the validity of

the macro-voxel based caching model developed in chapter 2. Section 3.1 described

several experiments that were performed to evaluate the merits of employing the macro-

voxel based caching scheme on the ALIGN software package, which repeatedly accesses

a three-dimensional distance map in the process of aligning a test dataset to a reference

dataset, when the dataset was located on local disk. Our experiments were based on the

assumption that the cache can hold all the blocks that are accessed due to compulsory

misses, i.e. Ncache = Ncomp and we investigated the effects of varying macro-voxel

dimensions on Ncomp, also known as the working set size.

In section 3.1.5, we experimented with macro-voxels of varying shape factor S,

but constant block size B. In the limited range of macro-voxel shapes that we worked

with, we found that Ncomp is not strongly dependent on S; however macro-voxels with

higher shape factors did result in smaller working set size. We expect this behavior to be

more pronounced when working with a large range of block shapes. We concluded that

for a given size B, the smallest working set size No can be achieved by using cube shaped

macro-voxels. In section 3.1.6, we examined the effect of varying B on No and concluded

that No has a power law dependence on the macro-voxel size B. The recorded timing data

to fetch each macro-voxel from the backing store exhibited a linear dependence on the

size B. The cache size requirement per macro-voxel was also linearly dependent on B.

We experimentally determined the macro-voxel sizes that achieved minimum access time

 93

and minimum cache size. These numbers were comparable to the predictions by the

caching model, within experimental limitations and verified the existence of a maximal

trade-off region of operation between Bc and Bt. In Section 3.2, we performed the ALIGN

experiments in a setting where the distance map file was located on a remote server.

Employing the macro-voxel caching scheme improved the overall execution time by

more than ten times. In this case also, the access time per macro-voxel was found to be

linearly dependent on the size B and the experimentally determined Bt was close to model

prediction.

The existence of a Pareto optimal range of macro-voxel sizes predicted by the

caching model in chapter 2 was validated in all our experiments. Choosing B = Bc,

resulted in small cache sizes at the cost of large access times, whereas B = Bt resulted in

smallest access times at the cost of larger cache sizes. We observed that both optimal

points were broad optimum; small changes in B resulted in small changes in access time

and cache size. Access channels with higher γt, i.e. higher latency to transfer rate ratio,

resulted in larger values for Bt. In spite of additional processing times, using compressed

macro-voxels on slower access channels would be faster than using uncompressed ones.

The opposite would be true on fast access channels. In section 3.3, we found that working

with cache sizes such that Ncache < No resulted in the access time increasing rapidly after

reaching a certain limit, due to capacity misses. This behavior validates the brick wall

hypothesis and in general should be avoided. We conclude that the idea of macro-voxel

based caching scheme holds merit and is very effective when accessing multidimensional

datasets over slow access channels such as the internet. In the next chapter, we describe a

multidimensional input/output system interface based on our idea of the macro-voxel.

 94

CHAPTER 4: MACRO-VOXEL BASED INPUT/OUTPUT SYSTEM INTERFACE

In this chapter, we propose a generalization of the macro-voxel concept in the

form of a multidimensional input/output system interface, which seamlessly integrates

the macro-voxel based caching scheme, transparent to user applications.

Input/output system interfaces in current operating systems, e.g. UNIX, consist of

�read� and �write� system calls, which are usually sequential in nature. Files on the local

system are first opened via certain file descriptors, and a number of bytes are read or

written in a sequential order, irrespective of the dimensionality of the file. If the file in

question is multidimensional in nature, this single dimensional read/write process

destroys the underlying dimensionality. By using �seek� system calls, file dimensionality

may be preserved. The system interface provides this mechanism to move around in a file

in an arbitrary order, but since it is oblivious of the file dimensionality, the necessary

read/write order must be decided and implemented by the user�s application. Buffering

schemes employed in I/O system interfaces read and write a block of bytes per system

call. Besides the fact that the block contains sequential data, another issue of concern is

that the block size is independent of file size. Similarly, caching and paging mechanisms

are general in nature and do not take into consideration the dimensionality or the size of a

multidimensional file being processed. Lastly, applications use I/O system interfaces to

access local files; however, if they need to access multidimensional files located on a

network such as the internet, users need to implement the necessary functionality in their

applications, either by hard-coding the necessary socket programming themselves, or by

using third party networking products.

 95

In chapter 3, we demonstrated the merits of employing a macro-voxel based

caching scheme to improve system performance when accessing large multidimensional

datasets. In the previous paragraph, we discussed the problems encountered by current

I/O system interfaces when dealing with large multidimensional files. Putting these facts

together, we propose to incorporate the macro-voxel concept into current I/O system

interfaces, and thereby extend their utility in terms of dealing with files containing large

multidimensional datasets. The overall goal of this proposal is to optimize performance

of the I/O system interfaces and at the same time, maintaining transparency with user

applications.

When �write� system calls are made to this new macro-voxel based I/O system

interface, the user application provides data to be written as before. However, the file

generated as a result of this write process will contain macro-voxels. Each macro-voxel is

designed to contain small multidimensional subsets of the dataset, which results in the

new file preserving the underlying dimensionality. As a consequence, using macro-voxels

of appropriate shape and size will result in fewer number of write accesses to the file

location. Similarly, when the user application performs data reads as before, the new

system interface will access the macro-voxel file, and will need to perform fewer read

accesses to the file location, since each read will fetch a macro-voxel containing localized

data. Employing a system level caching scheme that stores macro-voxels in its cache will

significantly reduce the number of accesses to the file location. In our new I/O system

interface, since the unit of system level read/write is a macro-voxel, storing compressed

macro-voxels will conserve disk space in the file location, and will also improve access

time over slow channels. Finally, integrating networking functionality into the system

 96

interface will result in complete transparency with the user application, making this

macro-voxel based I/O system interface a universal autonomous solution to handle multi-

dimensional data files efficiently.

As a prelude to this proposal of creating a transparent macro-voxel caching

solution, we have developed software targeted to integrate this caching scheme in

existing applications. The software was developed in C language and is intended to be

used as an interface between an application and the dataset, which could be located either

on local disk or on the internet. It incorporates both read and write functionality.

The current software version consists of function definitions (in source files) and

declarations (in header files). At present, the source files need to be compiled with the

user�s program to generate the final executable. Future work involves building a C library

containing all our functions and making a header file containing the function prototypes

for all the functions in our library so that it can be easily included in the user�s program

by the #include preprocessor directive. The user�s program may be written in C or

another language that is capable of working with C files (e.g. MATLAB). We used zlib, a

compression library (version 1.1.3), to implement compression and decompression

routines and gSOAP, a C/C++ web services development kit (version 2.2.3), to facilitate

data access over a network.

Following is a list of features built in our software, which make its utility fairly

general purpose:

1. Can create and read original dataset files (backward compatible)

2. Can create and read uncompressed macro-voxel files

 97

3. Can create and read compressed (varying degree) macro-voxel files with

or without preprocessing

4. Can transform original dataset files into (un)compressed macro-voxel files

and vice-versa

5. Data files may be located either on local hard disk or on a remote server

6. Dataset dimensionality is a user parameter (not software restricted)

7. Each record (voxel) in the original dataset may be a fixed size collection

of any of the C native data types (chars, shorts, ints, longs, floats, doubles)

8. Time keeping is performed to report timing statistics

9. User can select from random, FIFO or LRU cache replacement policies

10. Cache size can be specified in number of macro-voxels or bytes

11. Cache size may be set to zero to simulate fetching each record (voxel)

individually

12. The records that need to be accessed at a time can be specified either as a

set of voxel co-ordinates (for online problems) or as an interval (for

batched problems)

This software interface was successfully integrated into the 3-D image alignment

software package, ALIGN, described in chapter 3, which not only improved its overall

execution time, but also facilitated image alignment over the internet. The new ALIGN

program completed execution 2.5 times faster for local disk accesses, and 14 times faster

for remote disk accesses. We conclude that the macro-voxel based caching concept holds

a promising value in system level multidimensional input/output implementations.

 98

CHAPTER 5: SUMMARY AND FUTURE WORK

5.1 Summary

Large multidimensional data sets have widespread use in many application

domains and their sizes are expected to grow continuously. The problem of efficiently

storing and retrieving such datasets often arises in large software projects. Recognizing

the growing widening speed gap between processors and storage devices, it is imperative

to devise a scheme to efficiently handle large multidimensional datasets.

We propose to use a macro-voxel based caching solution to exploit spatial and

temporal locality in the access pattern of these datasets. We partition the dataset into

fixed size macro-voxels and implement a caching scheme to reduce the dataset access

time. In Chapter 2, we modeled this problem and arrived at formulae for minimum cache

size and minimum access time and the corresponding macro-voxel sizes. We also

identified the existence of a time-size tradeoff, which can be used to decide the choice of

the macro-voxel size for optimal operation. Given the data access pattern for a problem,

the macro-voxel caching theory can predict the optimal design variables that will

minimize access time and cache size, and identify the tradeoff behavior, if any, between

the access time and cache size.

In Chapter 3, we applied the macro-voxel caching concept to the ALIGN

software, which falls under the online problems category. In this case, a 1GB three

dimensional distance map was iteratively accessed in the process of aligning two

datasets. Effects of varying macro-voxel shapes and sizes on cache size and access time

were demonstrated. We compared the performances of running these experiments on two

 99

systems and also over a network. It was shown that appropriate selection of macro-voxel

size and shape can result in significant reduction in access time. The program executed

more than two times faster for local disk accesses and fourteen times faster for remote

disk accesses, proving remarkable improvement in slow channels. We also experimented

with a batched problem from SPEC�s benchmarks that dealt with accessing three

dimensional seismic traces. Our scheme reduced the read time for a 1.5GB file by a

factor of 8 at a small cost in creating the macro-voxel file. In both cases, we observed that

the two optimal macro-voxel sizes were broad optimum, in the sense that, small changes

to the macro-voxel sizes resulted in small changes to both, the access time and cache size

requirements.

In Chapter 4, we proposed the promising concept of a macro-voxel based

input/output interface implemented at the system level, which would be completely

transparent to the user application and capable of reading, writing and caching macro-

voxel files, irrespective of whether they are located on local or remote disks. We also

described the general features of a software interface developed by us to incorporate the

macro-voxel caching scheme into existing applications.

5.2 Future work

The main theme of our work is the exploitation of access pattern locality of large

multidimensional datasets by partitioning them into fixed size macro-voxels and

examining the times-size tradeoff in a macro-voxel based caching scheme. In this section,

we provide some directions towards further work that can be carried out in this area.

 100

In chapter 2, we introduced the brick wall hypothesis, according to which there

exists a minimum cache size, Nmin, which results in zero capacity misses. Reducing cache

size below Nmin would cause capacity misses, and in general should be avoided. For the

sake of simplicity, the macro-voxel caching model that we developed in chapter 2 was

based on the assumption that the number of compulsory misses, Ncomp, is equal to Nmin,

which implied that cache replacements were unnecessary. Firstly, it would be instructive

to come up with a more general caching model in which the cache size, Ncache is equal to

Nmin, however, Nmin ≠ Ncomp. Secondly, the intrinsic dependence of Nmin on the cache

replacement policy needs to be investigated.

We implemented our caching scheme as a C program in which the user has to

provide the appropriate macro-voxel dimensions as parameters to transform the dataset

into a macro-voxel file. As a matter of user convenience, it will be advantageous to come

up with a model that automatically determines the appropriate macro-voxel dimensions

for a given problem without the user having to experiment with different sizes or

providing system related input. In other words, the caching scheme should be adaptive in

the sense that it can formulate the optimal shapes and sizes for any problem on any

platform.

Considering a three dimensional example, our scheme partitions the dataset into

macro-voxels, where each macro-voxel is a hexahedron, each of whose six faces is a

rectangle. As a first step in generalizing this partitioning idea, it will be very instructive

to come up with a scheme where each of the six faces is a parallelogram. This generality

can be further extended by working with macro-voxels shaped as a polyhedron (each face

is a polygon).

 101

The data layout order in our macro-voxel scheme is simple. In a two dimensional

case, the voxels in each macro-voxel are laid out in a row-by-row order or column-by-

column order. This layout organization can be generalized by using sophisticated space

filling curves such as Peano-Hilbert and Morton curves.

The last, and in our opinion, the most complicated generalization is suggested as

follows. Our scheme partitioned the dataset into macro-voxels on only one level, i.e.,

each macro-voxel consisted of many voxels. However, we can extend this concept to

some n levels in general such that the 1st (lowest) level will be constituted of voxels

whereas the nth (highest) level will be constituted of the largest macro-voxels. Each level

in between will have different sized macro-voxels, such that a lower level macro-voxel

will be smaller in size than a higher level macro-voxel and will be contained by the

corresponding higher level macro-voxel. In effect, this would mean dealing with a

hierarchy of macro-voxels. The advantage of macro-voxel hierarchy is that it allows the

macro-voxel framework to be integrated into the operating system. Caching and paging

mechanisms are employed in operating systems at various levels of memory hierarchy;

creating a hierarchy of macro-voxels would enable each memory level to use an

appropriately sized macro-voxel and thus allow the benefits of macro-voxel caching at

every level.

 102

BIBLIOGRAPHY

[1] Q.-Z. Ye, �The signed euclidean distance transform and its applications,�

presented at 9th International conference on pattern recognition, 1988.

[2] I. Ragnemalm, �The Euclidean distance transform in arbitrary dimensions,�

presented at International Conference on Image Processing and its applications,
1992.

[3] D. Kozinska, O. J. Tretiak, J. Nissanov, and C. Ozturk, �Multidimensional

alignment using the Euclidean distance transform,� Graphical models and image
processing, vol. 59, pp. 373-387, 1997.

[4] K. Holtman, P. v. d. Stok, and I. Willers, �A cache filtering optimisation for

queries to massive datasets on tertiary storage,� presented at Proceedings of the
2nd ACM international workshop on data warehousing and OLAP, Kansas City,
Missouri, United States, 1999.

[5] L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani,

�Efficient organization and access of multi-dimensional datasets on tertiary
storage systems,� Information Systems, vol. 20, pp. 155-183, 1995.

[6] J.-L. Pons, T. E. Malliavin, and M. A. Delsuc, �Gifa V. 4: A complete package

for NMR data set processing,� Journal of Biomolecular NMR, vol. 8, pp. 445-452,
1996.

[7] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton, �Caching

multidimensional queries using chunks,� presented at Proceedings of the 1998
ACM SIGMOD international conference on management of data, Seattle,
Washington, United States, 1998.

[8] S. Goil and A. Choudhary, �High performance multidimensional analysis of large

datasets,� presented at Proceedings of the 1st ACM international workshop on
data warehousing and OLAP, Washington, D.C., United States, 1998.

 103

[9] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung, �Similarity search
for multidimensional data sequences,� presented at Proceedings of the 16th
international conference on data engineering, 2000.

[10] T. B. Pederson and C. S. Jensen, �Multidimensional data modeling for complex

data,� presented at Proceedings of the 15th international conference on data
engineering, 1999.

[11] S. T. Trousenkov, �Multidimensional data processing techniques in oceanography

applications,� presented at Proceedings on mastering the oceans through
technology, 1992.

[12] M. H. Ghavamnia and X. D. Yang, �Direct Rendering of Laplacian Pyramid

Compressed Volume data,� presented at Proceedings of the IEEE Conference on
Visualization, 1995.

[13] S. I. Vyatkin, B. S. Dolgovesov, A. V. Yesin, R. A. Scherbakov, and S. E.

Chizhik, �Voxel volumes volume-oriented visualization system,� presented at
Proceedings of the International conference on shape modeling and applications,
1999.

[14] P. Ning and L. Hesselink, �Fast volume rendering of compressed data,� presented

at Proceedings of the IEEE conference on visualization, 1993.

[15] I. Ihm and S. Park, �Wavelet-based 3D compression scheme for interactive

visualization of very large volume data,� Computer graphics forum, vol. 18, pp.
3-15, 1999.

[16] M. R. Parry, B. Hannigan, W. Ribarsky, C. D. Shaw, and N. Faust, �Hierarchical

Storage and Visualization of Real-Time 3D Data,� SPIE Aerosense, vol. 4368A,
2001.

[17] E. Veklerov, M. S. Roos, and R. A. Mushlin, �Management of multidimensional

data structures in MRI imaging,� in IEEE Engineering in Medicine and Biology
Magazine, vol. 12, 1993, pp. 60-63.

 104

[18] M. Chaze, I. Fillere, C. Martin, R. Prandini, F. Lavenne, and F. Mauguiere,
�Graphical image correlation and processing system for the evaluation of
multidimensional positon emission tomographic images. Pseudo-3d
representation and correlation of structural/neurofunctional data sets,� presented
at Proceedings of the annual international conference of the IEEE engineering in
medicine and biology society, 1992.

[19] V. Phalke and B. Gopinath, �Compression-based program characterization for

improving cache memory performance,� IEEE Transactions on Computers, vol.
46, pp. 1174-1186, 1997.

[20] J. S. Vitter, �External memory algorithms and data structures: Dealing with

massive data,� ACM Computing surveys, vol. 33, pp. 209-271, 2001.

[21] V. K. Pingali, S. A. McKee, W. C. Hseih, and J. B. Carter, �Computation

Regrouping: Restructuring Programs for Temporal Data Cache Locality,�
presented at Proceedings of the 16th international conference on supercomputing,
New York, New York, USA, 2002.

[22] L. Cherkasova and G. Ciardo, �Characterizing temporal locality and its impact on

web server performance,� presented at Proceedings of the 9th International
conference on computer communications and networks, 2000.

[23] Z. Xu and Y. Hu, �Exploiting spatial locality to improve peer-to-peer system

performance,� presented at Proceedings of the 3rd IEEE Workshop on Internet
Applications, 2003.

[24] T. Mohan, �Detecting and exploiting spatial regularity in data memory

references,� in School of Computing: The University of Utah, 2003, pp. 92.

[25] K. Sequeira, M. Zaki, B. Szymanski, and C. Carothers, �Improving spatial

locality of programs via data minimg,� presented at Proceedings of the 9th ACM
SIGKDD international conference on knowledge discovery and data mining,
Washington, D.C., 2003.

 105

[26] S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende, R.
Oldehoeft, and S. Smith, �SMARTS: Exploiting temporal locality and parallelism
through vertical execution,� presented at Proceedings of the 13th international
conference on supercomputing, Rhodes, Greece, 1999.

[27] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam, �A

hyperplane based approach for optimizing spatial locality in loop nests,�
presented at Proceedings of the 12th international conference on supercomputing,
Melbourne, Australia, 1998.

[28] S. Chatterjee and S. Sen, �Cache-efficient matrix transposition,� presented at

Proceedings of the 6th International Symposium on High-Performance computer
architecture, 2000.

[29] D. Patterson, K. Yelick, and T. Anderson, �Bridging the Processor-memory gap,�

University of California, Berkeley, Final Report 96_108, 1996.

[30] S. Sen, S. Chatterjee, and N. Dumir, �Towards a theory of cache-efficient

algorithms,� Journal of the ACM, vol. 49, pp. 828-858, 2002.

[31] S. Sen and S. Chatterjee, �Towards a theory of cache-efficient algorithms,�

presented at Proceedings of the 11th annual ACM-SIAM symposium on discrete
algorithms, San Francisco, California, United States, 2000.

[32] A. Aggarwal and J. S. Vitter, �The input/output complexity of sorting and related

problems,� Communications of the ACM, vol. 31, pp. 1116-1127, 1988.

[33] K. J. Richardson and M. J. Flynn, �Strategies to improve I/O cache performance,�

presented at Proceedings of the 26th Hawaii international conference on system
sciences, 1993.

[34] Y. Song and Z. Li, �New tiling techniques to improve cache temporal locality,�

presented at Proceedings of the ACM SIGPLAN 1999 conference on
programming language design and implementation, Atlanta, Georgia, United
States, 1999.

 106

[35] P. Clauss and B. Meister, �Automatic memory layout transformations to optimize
spatial locality in parametrized loop nests,� ACM SIGARCH computer
architecture news, vol. 28, pp. 11-19, 2000.

[36] A. Agarwal and M. Huffman, �Blocking: Exploiting spatial locality for trace

compaction,� presented at Proceedings of the 1990 ACM SIGMETRICS
conference on measurement and modeling of computer systems, University of
Colorado, Boulder, Colorado, United States, 1990.

[37] C. Leopold, �On optimal temporal locality of stencil codes,� presented at

Proceedings of the 2002 ACM symposium on applied computing, Madrid, Spain,
2002.

[38] V. Phalke and B. Gopinath, �An inter-reference gap model for temporal locality

in program behavior,� presented at Proceedings of the 1995 ACM SIGMETRICS
joint international conference on measurement and modeling of computer
systems, Ottawa, Ontario, Canada, 1995.

[39] G. Jin, J. Mellor-Crummey, and R. Fowler, �Increasing temporal locality with

skewing and recursive blocking,� presented at Proceedings of the 2001
ACM/IEEE conference on supercomputing, Denver, Colorado, 2001.

[40] S. Kumar and C. Wilkerson, �Exploiting spatial locality in data caches using

spatial footprints,� presented at Proceedings of the 25th annual international
symposium on computer architecture, 1998.

[41] T. L. Johnson, M. C. Merten, and W.-m. W. Hwu, �Run-time spatial locality

detection and optimization,� presented at Proceedings of the 30th Annual
IEEE/ACM International symposium on microarchitecture, 1997.

[42] A. Tanaka, �Extension of the working set for modeling spatial locality in program

behavior,� presented at Proceedings of the 6th International symposium on
modeling, analysis and simulation of computer and telecommunication systems,
1998.

[43] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, �On the accuracy of memory

reference models,� presented at Proceedings of the 7th International conference
on modelling techniques and tools for computer performance evaluation, 1994.

 107

[44] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, �Locality as a visualization
tool,� IEEE transactions on computers, vol. 45, pp. 1319-1326, 1996.

[45] M. Kampe and F. Dahlgren, �Exploration of the spatial locality on emerging

applications and the consequences for cache performance,� presented at
Proceedings of the 14th International Parallel and Distributed Processing
Symposium, 2000.

[46] O. Temam, �An algorithm for optimally exploiting spatial and temporal locality

in upper memory levels,� IEEE transactions on computers, vol. 48, pp. 150-158,
1999.

[47] M. Brehob and R. Enbody, �An analytical model of locality and caching,�

Michigan State University, Department of Computer Science and Engineering
MSU-CSE-99-31, August 1999 1999.

[48] E. Berg and E. Hagersten, �StatCache: A probabilistic approach to efficient and

accurate data locality analysis,� presented at Proceedings of the 2004 IEEE
International Symposium on Performance Analysis of Systems & Software
(ISPASS-2004), Austin, Texas, USA, 2004.

[49] J. Alakarhu and J. Niittylahti, �Scalar metric for Temporal Locality and

Estimation of Cache Performance,� presented at Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, 2004.

[50] J. P. Singh, H. S. Stone, and D. F. Thiebaut, �A model of workloads and its use in

miss-rate prediction for fully associative caches,� IEEE transactions on
computers, vol. 41, pp. 811-825, 1992.

[51] J.-W. Hong and H. T. Kung, �I/O Complexity: The red-blue pebble game,�

presented at Proceedings of the 13th Annual ACM Symposium on Theory of
Computing, Milwaukee, Wisconsin, United States, 1981.

[52] C. K. Chow, �Determination of cache's capacity and its matching storage

hierarchy,� IEEE Transactions on Computers, vol. C-25, pp. 157-164, 1976.

 108

[53] K. P. Khiar and E. A. Lee, �Modeling radar systems using hierarchical dataflow,�
presented at International conference on acoustics, speech, and signal processing,
1995.

[54] R. Karedla, J. S. Love, and B. G. Wherry, �Caching strategies to improve disk

system performance,� Computer, vol. 27, pp. 38-46, 1994.

[55] A. J. Smith, �Disk Cache - Miss Ratio Analysis and Design considerations,� ACM

Transactions on Computer Systems, vol. 3, pp. 161-203, 1985.

[56] E. Torng, �A unified analysis of paging and caching,� Algorithmica, vol. 20, pp.

175-200, 1998.

[57] J. T. Robinson and M. V. Devarakonda, �Data cache management using

frequency-based replacement,� presented at Proceedings of the 1990 ACM
SIGMETRICS conference on measurement and modeling of computer systems,
University of Colorado, Boulder, Colorado, United States, 1990.

[58] H. Khalid and M. S. Obaidat, �KORA-2: A new cache replacement policy and its

performance,� presented at Proceedings of the 6th IEEE international conference
on electronics, circuits and systems, 1999.

[59] G. R. Thoma and L. R. Long, �Compressing and transmitting visible human

images,� IEEE Multimedia, vol. 4, pp. 36-45, 1997.

[60] J. Ziv and A. Lempel, �A universal algorithm for sequential data compression,�

IEEE transactions on Information Theory, vol. 23, pp. 337-343, 1977.

[61] V. Cate and T. Gross, �Combining the concepts of compression and caching for a

two-level filesystem,� presented at Proceedings of the 4th international
conference on architectural support for programming languages and operating
systems, Santa Clara, California, United States, 1991.

[62] S. More and A. Choudhary, �Tertiary storage organization for large

multidimensional datasets,� presented at In 8th NASA Goddard Space Flight
Center Conference on Mass Storage Systems and Technologies and 17th IEEE
Symposium on Mass Storage Systems, 2000.

 109

[63] C. Gustafson, O. Tretiak, L. Bertrand, and J. Nissanov, �Design and
implementation of software for assembly and browsing of 3D brain atlases,�
Computer methods and programs in biomedicine, vol. 74, pp. 53-61, 2004.

[64] S. Jin and A. Bestavros, �Temporal locality in web request streams: Sources,

characteristics, and caching implications,� presented at Proceedings of the 2000
ACM SIGMETRICS international conference on measurement and modeling of
computer systems, Santa Clara, California, United States, 2000.

[65] S. Jin and A. Bestavros, �Sources and Characteristics of web temporal locality,�

presented at Proceedings of the 8th international symposium on modeling,
analysis and simulation of computer and telecommunication systems, 2000.

[66] A. Moulton and S. E. Madnick, �A temporal and spatial locality theory for

characterizing very large data bases,� presented at Proceedings of the 22nd annual
Hawaii international conference on system sciences, 1989.

[67] D. A. Keim, �Pixel-oriented Visualization Techniques for Exploring Very Large

Databases,� Journal of Computational and Graphical Statistics, March 1996

[68] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, San Mateo, CA, 1990

[69] K. E. Seamons and M. Winslett, �Physical Schemas for Large Multidimensional

Arrays in Scientific Computing Applications,� presented at Proceedings of the 7th
International Working Conference on Scientific and Statistical Database
Management, 1994

[70] S. Sarawagi and M. Stonebraker, �Efficient Organization of Large

Multidimensional Arrays,� presented at Proceedings of the 10th International
Conference on Data Engineering, IEEE Press, 1994, pp. 328-336

[71] H. A. Eschenauer, J. Koski and A. Osyczka, Multicriteria Design Optimization:

Procedures and Applications. Springer-Verlag, New York, 1986

[72] C. C. Mosher and S. Hassanzadeh, ARCO Parallel Seismic Environment Seis 1.2

User�s Guide, www.spec.org

 110

APPENDIX A: MACROVOXEL SOFTWARE PROGRAM INTERFACE

As mentioned in chapter 4, we have developed a multidimensional dataset

caching software in C based on our idea of macro-voxels. This appendix presents the

programming interface declarations and a flowchart description of the software design.

The software consists of function definitions (in source files) and declarations (in

header files). The user accessible functions are declared in the header file md_io.h. This

is the main header file which contains declarations for all functions involved in

implementing the macro-voxel caching scheme. User programs that need to access

multidimensional datasets via our software require calling these functions as an interface

to their program. Following are the function declarations (with brief descriptions) from

md_io.h.

 111

void mdOpen (/* Used to open the dataset file */

 FILE **mdFilePointer, /* Pointer for the file being opened */

 const char *mdFileName, /* Name of the file being opened */

 const char *mdAccessMode, /* Can be one of rb, r+b, wb or w+b */

 const int *mdDim, /* Dataset dimensions */

 const int *mdBlockDim, /* Macro-voxel dimensions */

 const int mdNoOfDim, /* Number of dimensions */

 const int mdNoOfItemsPerRecord,/* Number of data objects per record */

 const char *mdRecordType, /* Native type of the data object */

 const int mdFileType, /* 0=original file, 1=macro-voxel file */

 const char mdCorR, /* C=compressed, R=uncompressed */

 const int mdComprLevel, /*0 (NO) � 9 (MAX) compression */

 const int mdProcessData, /* 0 (NO) or 1 (YES) preprocess */

 const char *mdServerInfo /* NULL or http://ServerName:PortNumber */

);

void mdCacheInit (/* Used to initialize cache (defaults setting exists) */

 const int mdHowMany, /* Cache size number ≥ 0 */

 const int mdBlksOrBytes, /* 0 = bytes, 1 = macro-voxels */

 const int mdReplaceScheme /* 0 = random, 1 = FIFO, 2 = LRU */

);

 112

void mdRead (/* Used to read records from data file */

 void *mdRecords, /* Pointer to store records */

 const char *mdRecordsType, /* Native type of above pointer */

 const void *mdPoints, /* Pointer to voxel coordinates */

 const char *mdPointsType, /* Native type of above pointer */

 const int mdNoOfPoints, /* Number of voxels */

 const int mdIsInterval, /* 0 (NO) or 1 (YES) interval */

 const int *mdLayout, /* order of coordinate layout in interval*/

 const int mdDirection, /* Interval direction */

 FILE *mdFileStream /* Dataset file to be read */

);

void mdWrite (/* Used to write records to a data file */

 const void *mdRecords, /* Pointer to records to be written */

 const char *mdRecordsType, /* Native type of above pointer */

 const void *mdPoints, /* Pointer to voxel coordinates */

 const char *mdPointsType, /* Native type of above pointer */

 const int mdNoOfPoints, /* Number of voxels */

 const int mdIsInterval, /* 0 (NO) or 1 (YES) interval */

 const int *mdLayout, /* order of coordinate layout in interval*/

 const int mdDirection, /* Interval direction */

 FILE *mdFileStream /* Dataset file to be written */

);

 113

int mdClose (/* Used to close dataset file */

 FILE *mdFileStream /* Dataset file to be closed */

);

void mdCompressFile (/* Used to compress original file */

 const char *mdOriginalFileName, /* Name of Original file */

 FILE *mdComprFile /* Pointer to the new compressed file */

);

void mdReOrganizeFile (/* Used to create the uncompressed macro-voxel file */

 const char *mdOriginalFileName, /* Name of Original File */

 FILE *mdReOrgFile /* Pointer to new macro-voxel file */

);

We have provided four flowcharts for the reader�s convenience, intended to

demonstrate the high level workings of our multidimensional input/output software.

Figures A.1 and A.2 are flowcharts for reading from a multidimensional data file located

on a local disk and a remote server respectively. Figures A.3 and A.4 are similar

flowcharts for writing to a multidimensional file.

 114

Start

Network/Local
WriteRead

Get File Name &
Read Parameters

Seek & Read
Data

Open File &
Check File Type

Finish

Blocked

DeCompress Block

Compressed?

End?

Start

No

No

Caching?

UnBlocked

No
Caching?

Start

Seek & Read
Block

Read Data from
DeCompressed Block

No

Finish

No

Start

Read Data from
Cached Block

Store Block in Cache

Cache Full?

Evict a Block
from Cache

Block in
Cache?

NoYes

Yes

Close File

Finish

No

Compute Block No.

No

Yes

Start

Read Data from
Cached Block

Store Block in Cache

Cache Full?

Evict a Block
from Cache

Block in
Cache?

Yes

Yes

No

Compute Block No.

DeCompress Block

Finish

No

Yes

No

Yes

Close FileClose File Close File

Yes Yes Yes

RN

Network

End? End? End?

Network/Local Dataset
Read/Write

WL WN

Local

Network

Local

Yes

Seek & Read
Block

Seek & Read
Block

Figure A.1 Reading files on local disk

 115

Get File Name &
Read Parameters

Seek & Read &
Fetch Data

Open File &
Check File Type

Finish

Blocked

DeCompress Block
at Client

Compressed?

End?

Start

No

No

Caching?

UnBlocked

No
Caching?

Start

Seek & Read
& Fetch Block

Read Data from
DeCompressed Block

No

Finish

No

Start

Read Data from
Cached Block

Store Block in Cache

Cache Full?

Evict a Block
from Cache

Block in
Cache?

NoYes

Yes

Finish

No

Compute Block No.

No

Yes

Start

Read Data from
Cached Block

Store Block in Cache

Cache Full?

Evict a Block
from Cache

Block in
Cache?

Yes

Yes

No

Compute Block No.

DeCompress Block

Finish

No

Yes

No

Yes

Yes Yes Yes

RN

End? End? End?

Seek & Read &
Fetch Block

Seek & Read &
Fetch Block

Close File
Close Server Connection

Close File
Close Server Connection

Close File
Close Server Connection

Close File
Close Server Connection

Yes

Get Server Parameters

Make Server Connection
KEEP ALIVE

Figure A.2 Reading files from remote server

 116

Seek & Write
Data

Open File &
Check File Type

Finish

Blocked

Compressed?

End?

Start

No

No

Caching?

UnBlocked

No

Start

Write Data to
Block in Cache

Store Block in Cache

Cache Full?

Find Block
to Evict

Block in
Cache?

NoYes

Yes

Close File

Finish

No

No

Yes

Close File

Yes

Seek & Read
Block

Compute Block No.

Set Dirty Flag

New? No

Dirty?

Seek & Write
Back Block

End?

Seek & Write Back All
Dirty Cached Blocks

WL

Caching?

Start

Seek & Write Data
to Temporary File

No

Finish

No

Yes

Start

Write Data to
Block in Cache

Store Block in Cache

Cache Full?

Evict the Block

Block in
Cache?

Yes

Yes

No

Compute Block No.

Finish

No

No

Yes

Close/Delete Files Close/Delete Files

Yes
Yes

End? End?

Seek & Read
Block

Perform Block Compression
on Temporary File

Create Block
Compressed File

New?

Find Block
to Evict

Dirty?

Seek & Write
Back Block

Set Dirty Flag

Seek & Write Back All
Dirty Cached Blocks

Perform Block Compression
on Temporary File

Create Block
Compressed File

Get File Name &
Write Parameters

No

Yes

Yes

No

Yes

Evict the Block

Yes

Yes

No

Figure A.3 Writing files on local disk

 117

Send & Seek
 & Write Data

Open File &
Check File Type

Finish

Blocked

Compressed?

End?

Start

No

No

Caching?

UnBlocked

No

Start

Write Data to
Block in Cache

Store Block in Cache

Cache Full?

Find Block
to Evict

Block in
Cache?

NoYes

Yes

Close File
Close Server Connection

Finish

No

No

Yes

Close File
Close Server Connection

Yes

Seek & Read
& Fetch Block

Compute Block No.

Set Dirty Flag

New? No

Dirty?

Send & Seek &
Write Back Block

End?

Send & Seek & Write Back
All Dirty Cached Blocks

WN

Caching?

Start

Seek & Write
Data to Temporary File

No

Finish

No

Yes

Start

Write Data to
Block in Cache

Store Block in Cache

Cache Full?

Evict the Block

Block in
Cache?

Yes

Yes

No

Compute Block No.

Finish

No

No

Close/Delete Files
Close Server Connection

Close/Delete Files
Close Server Connection

Yes
Yes

End? End?

Perform Block Compression
 at Client

Send Compressed
Blocks to Server

New?

Find Block
to Evict

Dirty?

Set Dirty Flag

Seek & Write Back
All Dirty Cached Blocks

Perform Block Compression
at Client

Send Compressed
Blocks to Server

Get File Name &
Write Parameters

No

Yes

Yes

No

Yes

Evict the Block

Yes

Yes

No

Get Server ParametersMake Server Connection
KEEP ALIVE

Yes

Seek &
Write Back Block

Read
& Fetch Block

Figure A.4 Writing files on remote server

 118

VITA

Dinesh Obalappa was born in Tumkur, Karnataka, India on August 18, 1976, and

is a citizen of India. He spent most of his childhood years in Vashi, New Bombay,

where he attended Father Agnel Multipurpose School and Junior College from

1984-1993. He graduated from the Indian Institute of Technology (IIT), Bombay,

in 1998 with a Bachelors of Technology degree in Electrical Engineering.

Subsequently, he joined the Electrical and Computer Engineering (ECE)

Department at Drexel University as a Post-Baccalaureate PhD student, and

became a member of the research team at the Imaging and Computer Vision

Center (ICVC) in 1999. He was also awarded the Dean�s Fellowship by the

College of Engineering in 1998. His PhD dissertation deals with optimal caching

of large multidimensional datasets. As a part of his research, he has designed and

developed a network capable multidimensional data storage and access solution

(~3700 lines of C code) using chunking, caching and compression techniques

which can be used for organizing, accessing and archiving multidimensional data

files locally and on remote locations. He used this software to enhance the

performance of the ALIGN software and to facilitate its functionality over the

internet. While at Drexel University, he also served as an Adjunct Instructor in the

Goodwin College of Professional Studies and as a Teaching Assistant in the ECE

Department. He was nominated twice as the Best Teaching Assistant of the Year.

