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ABSTRACT 

Poloxamer (PLX) Coatings to Modulate Chronic Inflammation and Enhance 
Biocompatibility in Multichannel Microelectrode Arrays 

Pradeep Kondaveeti 

Advisor: Karen Moxon, PhD 

 
Traumatic brain injury is responsible for the loss of neural function in millions of 

patients across the United States every year. Neural electrodes show potential in 

significantly enhancing the quality of life of these patients by restoring lost 

communication with the body. For example, a microelectrode sensor designed for 

human quadriplegic patients allows them to move a cursor on the screen using single 

neuron activity. Long term electrode implantation in the brain, however, leads to glial 

scar formation, thereby limiting the functional lifetime of an electrode in vivo. In this 

thesis, we investigated the biocompatibility of ceramic based multichannel electrodes 

coated with Poloxamer – 188 (PLX), a bifunctionalized co-polymer that may self insert 

into damaged neuronal membranes and limit cellular damage.  In order to do this, we 

first developed a method to quantify inflammatory cells around the microelectrode. 

Then, using immunohistochemical staining techniques, presence and expression of 

microglia/macrophages (ED1), astrocytes (GFAP), and intact neurons (NeuN) were 

observed at 2, 4, and 6 week intervals post implantation. Cells were characterized in 

terms of proliferation (stereological analysis) and morphology (intensity of fluorescent 

staining). Our results showed that PLX coated electrodes significantly reduced the 

presence of microglia and macrophages at 2 weeks, 4 weeks, and at 6 weeks post 
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implantation as evident by relative fluorescence of ED1 staining. Similarly, GFAP 

staining shows decreased protein expression of astrocytes at 2 week and 4 week time 

points. In contrast, NeuN staining revealed that PLX is associated with increased 

neuronal presence in the vicinity of the implant site at 2 week and 4 week time points 

but not at the 6 week time point. The demonstrated modulation of the immune 

response seen in electrodes coated with PLX coatings show promise in its future 

application as a mode of protecting and extending the functional lifetime of implanted 

neural electrodes. In the long term, we hope that implementation of a poloxamer coated 

microelectrode surface will lead to chronically implantable microelectrode devices 

capable of recording neurons for longer periods. This will enable the use of 

microelectrode dependent neuroprosthetics as viable alternatives to patients who have 

lost motor functions due to brain injury.  
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1. INTRODUCTION 

 

1.1. Statement of problem 
 
 

In recent years, a variety of brain machine interfaces (BMIs) have been proposed 

to help patients suffering from traumatic brain injury. Technologies including 

electroencephalography (EEG), intra-cranial microelectrodes, and intra-cortical 

microelectrodes have been implemented to communicate with the brain and restore 

lost ability for the CNS to communicate with the body [1-3]. Among these, intra cortical 

microelectrodes, in particular have been suggested to restore some of the voluntary 

motor control for severely paralyzed patients [1-3]. A prime example of such modality 

is the use of electrode arrays to help paralyzed patients perform computer tasks by 

thoughts alone [4]. While less invasive methods are available to restore motor control, 

they do not provide the freedom and control that recording microelectrodes provide[3]. 

Additionally, the recordings from these microelectrodes directly come from the brain 

center that used to control motor activity prior to injury, therefore increasing prosthetic 

control and eliminating the need for any additional training for the patients[3]. Even 

though the implementation of intracortical recordings hold a great promise for 

therapeutic treatments, the feasibility of these devices in clinical application has been 

hindered by poor reliability of chronic recordings from single neurons. One of the 

problems that hinder long term functionality of the probe is the failure of device itself 

[3-4]. Previous work in our lab reported that using ceramic based electrodes reduces 

the chance of device failure due to the additional insulation they  provide during in vivo 
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recordings [5]. Our ceramic devices have the added advantage of superior mechanical 

properties having  both higher strength and elastic modulus than the widely used 

silicon counterparts [5]. Even though the use of novel materials have enhanced the 

biocompatibility of neural probes, the dominant hypothesis for the long term failure of 

neural implants is  due to a glial scar which is formed around the tissue, induced by the 

implant [6-8]. Studies show that microelectrodes elicit a biological response in the area 

surrounding the implant which has been suggested to cause the loss of discriminable 

single unit action potentials on the order of weeks [7, 9-10]. Therefore, formation of 

non-conductive glial scar must be minimized in order to maintain long-term in vivo 

functionality of the electrode.  

1.2. Overall Objective 

The primary goal of this project is to improve the long term functionality of porous 

silicon nanostructured ceramic microelectrodes. To achieve this, we hypothesized that 

administration of local anti-inflammatory drugs via bioactive poloxamer coatings of the 

neural probes will minimize the cellular and tissue response around the implanted 

devices. Poloxamer - 188 (PLX) is a triblock copolymer shown to promote cell viability 

and cell recovery once added to mechanically injured cells [11]. Serbest et al. showed 

that Poloxamer seals cell membranes when added to injured PC12 cells [11].  Therefore, 

we hypothesize that poloxamer could enhance neuronal survival and minimize glial 

activation following electrode injury aiding in the repair of neurons during electrode 

insertion. Numerous studies have reported that electrode coatings successfully improve 

biocompatibility and promote tissue integration with neural probes [12-13]. Many of 

the studies that reported the use of bioactive coatings, used line intensity profile 
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analysis to quantify the brain tissue reaction to implanted devices. For example, He et al. 

successfully quantified glial scarring in laminin coated silicon probes using the 

fluorescent intensity analysis program [13]. The problem however is that the intensity 

methods misrepresent cell counts due to variations in cell size, shape and volume. Thus, 

there is a need to design a process that can be used to quantify cell proliferation as well 

as cell hypertrophy in order to accurately assess glial scarring around the implant.  

 

Therefore, the specific aims of this particular project are as follows: 

 

• To design a method to quantify the effects of microelectrode insertion on 

neuronal tissue 

 

• To quantify the effect of poloxamer coatings on biocompatibility of 

microelectrodes in vivo 
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2. BACKGROUND INFORMATION 
     
    
2.1. Application of microelectrodes in injury  

 

In traumatic brain injury patients, implantable microelectrodes have been 

shown to have the capability to connect the brain to the external world by recording 

motor commands from neurons in the primary motor cortex. These commands can then 

be decoded these commands into electrical signals that give the ability for these 

patients to control lost function in limbs [14]. With the help of chronic neural 

recordings, amputees can interact with the environment by improving their mobility via 

an artificial limb or a robotic arm[14].  For example, an implantable microelectrode can 

be successfully designed to record single neuron activity in order for human 

quadriplegic patients to control a cursor on the computer screen by thoughts alone[4].  

Therefore, the ability to indefinitely record single neurons with implantable electrodes 

holds great promise for patients with impaired motor conditions caused by stroke, 

spinal cord injuries, and neurodegenerative diseases.  

2.2. Glial Scar formation 
 

2.2.1.  Injury repair in the Nervous System  

 
When microelectrodes are implanted into the cortex, they tear through the nerve 

tissue, severing capillaries, extracellular matrix, glial and neuronal processes causing 

extensive damage at the site of electrode insertion [8]. This damage activates a series of 

foreign body responses by activating platelets, clotting factors and macrophages[15]. 

Following this inflammatory response, the body initiates a number of repair 
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mechanisms to allow for recovery from the mechanical damage[15]. In the peripheral 

nervous system, the damage to neurons is often repaired with the help of macrophages 

and Schwann cells. However, the injury to neurons in Central Nervous System (CNS) 

cannot be repaired due to the inability of the neurons to regenerate. This is primarily 

due to the continued presence of inhibitory glycoproteins in the environment. When the 

electrode is inserted into the CNS, the recruitment of phagocytic cells is much slower 

due to the presence of blood brain barrier[15]. This causes a delay in the repair 

mechanism and leads to the upregulation of cell adhesion molecules at the site of 

injury[15].  While there is significant information on the brain’s response to traumatic 

brain injury, much less is understood about the immunological and cellular response to 

insertion of microelectrode and more importantly, how this response interferes with 

single neuron recording.  

 

Figure 2.1 : Injury repair in the Nervous System. (A) In the CNS, phagocytic cells 
such as microglia and macrophages form a glial scar around the injury site.  Activate 
astrocytes create a barrier around the damaged tissue. Production of inhibitory 
molecules blocks regeneration of damaged neurons.  (B) After an injury in the PNS, 
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Schwann cells and macrophages produce ECM and growth factors and help re-
innervate damaged tissue. (Figure reproduced from [16]) © CRC Press, 2008. 

 

2.2.2.  Chronic inflammation after implantation 

 

Once a microelectrode is inserted, two types of responses are elicited in the brain 

[17]. First, an acute inflammatory response occurs once the microelectrode tears 

through the tissue during implantation and damages neuronal and glial processes [18-

19]. Secondly, a chronic foreign body response arises from the long term presence of 

electrode tracks [18, 20]. Studies have shown that if brain is subjected to a stab wound 

with an electrode device, the stab wounds could not be located within 6 months of the 

implantation attesting the formation of a glial scar [9, 20]. In these studies, a stab 

wound is initiated by inserting the device, and then withdrawn, and the dura and skull 

are replaced over the stab site.  However, in contrast to stab wounds, the long term 

presence of electrodes will result in a thicker glial scar around the device, effectively 

walling if off from healthy neural tissue[21]. Recent studies have shown that the chronic 

inflammatory response also persists in primates similar to rodents [22]. Griffith and 

Humprey observed a clear presence of chronic inflammation in monkeys with 

microelectrodes implanted at 3 month and 36 month time points [22] . Thus, it is 

important to understand the biological response to microelectrode insertion to acquire 

long term recordings of single neurons. In order to do this, we must first understand the 

different types of cells involved in the immunological response and how this response is 

regulated in vivo.  Additionally, the challenges of quantifying this cellular response will 

be discussed through the survey of recent literature.  
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 When an electrode is implanted, the triggered brain’s reaction is a complex 

process involving interplay between at least three cell types via different cell pathways. 

During the glial scar formation, the main cell types involved are microglia, blood-borne 

macrophages, and astrocytes [16-17]. Upon electrode insertion, these cells become 

activated , characterized by cell proliferation and changes in cell morphology[23]. These 

activated cells release intracellular proteins and neurotrophic factors  in to the 

environment, initiating a cascade of events that lead to glial proliferation and 

inflammation buildup [24]. This buildup of inflammatory cells pushes neurons away 

from the recording site and can be attributed to the failure of the implanted electrode 

over time [17, 24].   

 

Figure 2.2:  Cell types involved in response to microelectrode insertion. The above 
schematic shows tissue response at the cellular level following implantation. Microglia 
become activated characterized by amoeboid shape. Astrocytes become activated by 
becoming reactive, characterized by increase in size and GFAP expression. (Reproduced 
from [25]) © CRC Press, 2008. 
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2.2.3.  Cellular types involved in Inflammation 

  

After an injury to the brain, microglia are first to respond to the site and become 

upregulated [26]. Under healthy conditions, microglia play the role of primary defense 

against pathogens and are responsible for initial immune response in the CNS [27]. 

These cells utilize proteolytic enzymes to remove cellular debris via phagocytosis [26]. 

Within one day of electrode implantation, microglia are activated to repair the damage 

to blood brain barrier (BBB) [27]. Near the injury site, these glial cells exhibit changes in 

morphology and proliferate rapidly. It is noted that activated microglial resemble an 

‘amoeboid’ morphology [26].  Proceeding brain injury, the activated microglia have both 

beneficial and detrimental effects.  

Initially, activated microglia promote neuron survival by secreting neurotrophic 

factor and cytokines such as nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF) and neurotrophin-3 (NT-3) [28-29]. These chemicals have shown to 

enhance axonal growth and support neuron development both in vitro and in vivo [30]. 

Many studies have also reported the release of interleukin-1 (IL-1), tumor necrosis 

factor alpha (TNF-α), and interleukin-10 (IL-10) [28-29]. Furthermore, Babcock et al. 

reported that microglia also play a role in the activation of astrocytes near the injury 

site [31]. In the beginning, microglia respond positively to injury by initiating a complex 

chemical signaling cascade, which leads to secretion of various  neurotrophic factors 

that participate in injury repair.  
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Even though activated microglia are essential in injury repair, their long term 

presence can however have detrimental effects on neuronal survival due to the damage 

elicited from high concentrations of chemicals released in the environment. In response 

to injury, microglia release potent chemicals such as monocyte chemo-attractant 

protein (MCP-1)[28]. MCP-1 is known to recruit new microglia and macrophages, 

creating an inflammatory state, which walls off electrode from the healthy tissue. 

Additionally, cytokine production by microglia is accompanied by the production of 

nitric oxide (NO), which has an inhibitory effect on neuron growth [32]. Multiple studies 

report that the same mechanisms that help microglia to repair neural tissue, can also 

lead to an inflammatory state if the initial damage to the brain is severe. In the case of 

microelectrode insertion, activation of some microglia is beneficial to clear debris from 

damaged neurons and support neuronal survival by secreting neurotrophic factors. 

However, long term presence of electrode causes excessive damage to brain tissue 

leading to over proliferation of microglia and accumulation of toxic chemicals, leading 

to chronic inflammation and subsequent neuron death. Many researchers are trying to 

understand how the microglia shift from being beneficial to detrimental and working on 

multiple solutions to keep the microglia below that threshold level where they start 

creating damage to neural tissue. Thus, one of the goals of our study is to understand 

the role of microglia and eventually block its negative effects in order to aid in the long 

term success of chronically implanted microelectrodes. 

Macrophages are another cell type that makes up brain’s response to electrode 

insertion. Macrophages are not present in normal brain tissue but circulate within the 

vasculature [32].  During electrode insertion, blood vessels are severed, releasing 
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monocytes in to the neural tissue. The damage to BBB induces changes to the 

monocytes, leading to formation of macrophages. These newly formed macrophages 

morphologically resemble microglia, even though their origins are different [20, 32]. 

After injury, these cells participate in scavenging cellular debris via phagocytosis [20]. 

However, long term presence of macrophages can lead to chronic inflammation and 

leads to recruitment of new microglia and astrocytes. These cells are also known to 

form foreign body giant cells by fusing with each other and leading to cavitations near 

the injury [33]. Thus, similar to microglia, the excessive proliferation of macrophages 

must be managed and eventually down-regulated to allow microelectrode to interact 

with healthy neurons and ensure chronic recordings.  

 Finally, another important cell type that responds to brain injury is the 

astrocyte. Under normal conditions, astrocytes provide mechanical support and growth 

cues to neurons [34]. Astrocytes participate in multiple cell processes such as nutrient 

transport across the BBB, and regulation of chemicals required for neuronal function. 

Traditionally, activation of astrocytes take place one week after injury, followed by 

proliferation and migration to the injury site[35]. At this stage, the astrocytes become 

reactive and secrete nerve growth factor (NGF), which helps in repairing neural tissue 

[36]. The reactive astrocytes exhibit phenotypic changes characterized by hypertrophy 

and increase in expression of glial fibrillary acid protein (GFAP), which helps in cell 

repair [24]. However, these reactive astrocytes create a physical barrier between 

healthy tissue and the electrode, which interferes the ability microelectrodes to record 

from single neurons[37]. Thus, the accumulation of reactive astrocyte must be 

minimized in order restore tissue to its normal state following the insertion of the 
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microelectrode. As mentioned before, the exact timeline of cellular up-regulation 

following microelectrode insertion is not very well understood.  

 The overall goal of microelectrodes is to record single neurons. As reviewed in 

[38], in order to successfully record neurons, we must first understand how the density 

of neurons around the microelectrode changes over time. Secondly, we must also 

understand how does the increased glial cell production contributes to neuronal loss 

near the electrode. Tresco et al. suggest that microelectrodes lack the ability to obtain 

long-term in vivo recordings from neurons due to the death of neurons surroundings 

the electrode, and migration of neurons away from the microelectrode[8]. In another 

study, Biran et al. conclude that microglia activation leads to neuronal loss or vice versa 

[20]. They also suggest that neurons are displaced from the electrode site due to the 

recruitment of glial cells to the injury site [20]. The glial activation near the injury site 

lead to a “frustrated phagocytosis”, a phenomenon where activated microglia 

continuously produce cytokines such as TNF α, IL-1β and prostaglandins, due to their 

inability to clear the insoluble microelectrode [20]. Other studies also report that 

mechanical damage occurs to the neurons as they are stretched, moved, pulled and torn 

between the migrating astrocytes [32]. 

 The formation of the glial scar around the electrode has been studied extensively 

in number of studies. For example, Biran et al. observed the progression of glial scar 

following chronic microelectrode implantation compared to control animals which only 

received stab wound using the same type of device [20]. Using immunostaining 

techniques, they quantified the presence of macrophages, astrocytes, and neurons. After 

four weeks, the staining for neuronal nuclei (NeuN) showed ~40 % reduction in 
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number of neuronal bodies within 100 μm radius of the electrode. The primary reason 

for this reduction in neuronal density near the electrode is due to the presence of the 

glial scar, made up of astrocytes and glial cells. The authors also examined 

microglia/macrophage (ED1+), astrocyte (GFAP+) staining and found a higher amount 

of staining within 50μm radius of the device. The authors concluded that the astrocytes 

formed a sheath-like encapsulating layer surrounding the macrophage rich zone, with 

neurons being largely excluded from these zones.  

 

 

Figure 2.3: Immunostaining of macrophages, astrocytes and neurons after 
microelectrode insertion.  (A) Overlapping images of inflammatory cells and Neurons 
after implantation for four weeks. (B)  Individual images of each cell type after 
implantation (Reproduced from [20]) © Exp Neurol, vol. 195, pp. 115-26, Sep 2005. 
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2.2.4.  Strategies to Minimize Host Reaction to Microelectrode Implantation 
 

 Several research groups are working on different strategies to minimize the 

tissue reaction to microelectrode implantation. As reviewed by Zhong and Bellamkonda, 

these approaches can be divided into two categories: materials science strategies and 

the bioactive molecule strategies[24]. The first strategy involves modifying the size, 

shape, and composition of the electrodes to minimize negative effects on the tissue from 

device insertion. Szarowski et al. studied both short term and long term effects of 

electrode shape, size, texture and tip geometry and their effects on the chronic tissue 

reaction to the microelectrodes [9]. They experimented with microelectrodes of 2500 

μm2, 10,000 μm2, or 16,900 μm2 cross sectional area and trapezoidal, square, or 

ellipsoidal cross sectional geometries. Furthermore, they also compared smooth surface 

textures, micrometer rough surface textures, blade or rounded tip geometries, and slow 

and fast insertion techniques [9]. Their results indicated that there is no difference in 

glial scar between any conditions after 6 and 12 weeks post-implant. Their results 

suggested that aspects other than mechanical factors must be examined to minimize 

tissue reaction. Additionally, the lack of quantitative measures makes it hard to fully 

explore their findings. Other material science approaches include using alternative 

materials for electrodes. Rousche et al. characterized polymer based multichannel 

intracortical devices and reported no changes in inflammatory response over long 

periods of time [39]. Other material based strategies include trying novel materials such 

as ceramics; however these showed no significant reduction of glial scar [40-41].  

Recent studies have shown that modifying the surface of the microelectrodes to mimic 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rousche%20PJ%22%5BAuthor%5D�
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the extracellular matrix can enhance cell adhesion and facilitate charge transport 

between neurons and the recording sites of the electrode [17, 42]. This was shown in 

our previous work, nanostructured porous silicon microelectrodes decreased glial 

proliferation and increased neurite expression from PC12 cells in vitro. However, no 

improvement was seen in single neuron recordings or any significant reduction in the 

inflammatory tissue reaction in vivo [17, 43]. 

 The bioactive molecule strategy involves minimizing tissue reaction via  

administration of anti-inflammatory agents by: direct injections using microchannels, 

systemic injections, or electrode coatings [24]. In a recent study, Retterer et al. have 

been able to incorporate microfluidic channels in order to deliver drugs to the insertion 

site, to help attenuate the host response to the injury [44]. Similarly, other studies 

utilized microfluidics to incorporate drug delivery channels into the microelectrode tips 

[45-46]. Multiple groups have been able to successfully implement microfluidic drug 

channels in to the microelectrodes and delivered labeled compounds into the tissue for 

short time periods [45-46]. However, these groups faced problems with fabrication as it 

was hard to incorporate these channels without increasing the size of the 

microelectrode tip. Also, no long term studies have been reported on the use of 

microfluidics to deliver drugs at the insertion site, making it hard to know if these 

channels can restore the normal cellular environment near the electrode.  

A more basic approach reported in the literature is the use of biological 

compounds to modulate inflammation after injury. Using this approach, Koyoma et al. 

investigated the effects of BQ788, an endothelin ETB receptor antagonist. Using this 

antagonist [47], Koyoma et al. were able to block the ETB receptor expressed in reactive 
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astrocytes and microglia [47]. In injured rats, the induction of BQ788 showed a 

significant decrease in the GFAP staining as compared to control. However, the 

drawback to this study is that the authors only analyzed rats two weeks post injury. The 

effects of the antagonist must be observed for longer periods to show its potential in 

microelectrode application. Another anti-inflammatory compound that was 

investigated is the tumor necrosis factor-β1 (TNF-β1). TNF-β1, a strong inhibitor of 

astrocyte proliferation was administered to astrocytes in vitro[48]. The results showed 

a reduction of ~50 % in astrocytes when compared to control. Another biological 

compound, Protein S was shown to decrease the activity of astrocytes [49]. Plasma 

protein S added to glial cells after injury reduced the proliferation of reactive astrocytes 

by 50 % [49]. Induction of these different biological compounds show an inhibitory 

effect on astrocyte proliferation and further experiments need to be done in vivo to 

explore their potential.  

Recently, many groups have reported that steroids have the potential to reduce 

inflammation after injury. Dexamethanose, a synthetic glucocorticoid has shown to have 

reduced astrocyte proliferation [12, 50].  In rats, a single dose of dexamethasone after 

implantation showed minimal amount of GFAP, CD11b and laminin staining after 6 

weeks [50]. Similarly, when dexamethasone was injected on a weekly basis, comparable 

results were seen [50]. Shain et al. were also able to show reduced glial scarring after 

systemic doses of dexamethasone [51]. These results suggest that dexamethasone has 

the potential to regulate glial proliferation; however this comes with unwanted side 

effects. Kim and Martin suggest that dexamethasone along with other neurotrophic 
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factors can be used in drug delivering systems at the microelectrode implantation sites 

to address the problem of glial scar [52].  

Finally another bioactive strategy that has been widely accepted to reduce 

inflammation near the injury site is by electrode coatings[24]. Bjornsson et al. 

conducted an in vivo study where poly (ethylene-co-vinyl) acetate (EVAc)-monocycline 

coated electrodes were examined [53]. Their results indicated that the coated devices 

elicited more severe response than uncoated devices. It was hard to conclude from their 

results what caused the failure of the coating. In another study, Wadhwa et al. coated 

the Michigan neural probes with polymer polypyrrole using dexamethasone phosphate 

as the negatively charged dopant [54]. Using electrical stimulation, the drug release was 

controlled over time. When these probes were tested in vitro, it was shown that the 

drug remained bioactive for long periods of time[54]. However, the efficacy of these 

coatings was not tested in vivo. Kim and martin reported a different coating strategy of 

DEX loaded nanoparticles embedded in alginate hydrogel as coating on the Michigan 

electrodes by dipping method [52]. In vitro studies using these coated devices have 

shown sustained drug release up to three weeks.  And when implanted in vivo, the 

coating helped keep the impedance of the electrode relatively low [52] .  In a different 

approach, He et al. tried to alleviate glial scar using laminin, a bioactive protein to 

alleviate glial scarring around the implant [13]. The authors created nano coatings of 

polyethyleneimine (PEI)-laminin and implanted into the cortex of the rats.  Initially, 

there was no difference between LN-coated and uncoated probes. However after 4 

weeks, the coated electrode had less glial activation showing that coating has reduced 

the accumulation of microglia and astrocytes. A different paper from the same group 
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reported an alternative strategy to reduce the glial scar [12].  Zhong et al. used 

dexamethasone coatings to attenuate inflammatory response and neuronal loss [12]. 

Their results indicate that initially dexamethasone shows reduced inflammation; 

however over time this difference between coated and uncoated electrodes was not 

significant. In conclusion, administration of anti-inflammatory compounds from 

microfluidic channels or electrode coatings has the potential to minimize the cellular 

and tissue response and therefore shows great promise to solve the problem of glial 

scarring of the chronically implanted microelectrodes. The research of this thesis will be 

focus on the bioactive coatings strategy using a neuroprotective agent, poloxamer- 188.  

2.3.  Poloxamer- 188 promotes cell repair 

Neuroprotective agents are another type of bioactive approach to reducing the 

glial response to microelectrode insertion. After the initial insertion, the neurons suffer 

membrane damage that causes them to either die or recruit glial cells. Thus, a strategy 

was developed in order to help in recovery of damaged cell membrane after injury. In 

this thesis, we present poloxamer -188 (PLX) electrode coatings in order to promote 

neuronal survival. Poloxamer is a water soluble non-ionic surfactant with tri-block 

copolymer (MW 8,400) containing a central block (MW 1, 750) of polypropylene (29 

PPO) moieties and two peripheral blocks (MW 3,500) of polyethylene (38 PEO) 

moieties each. This compound is not biodegradable and previously approved by Food 

and Drug Administration (FDA) as skin wound cleanser for use in human in 1978.  
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      Figure 2. 4 :  The chemical structure of poloxamer-188 (PLX) 

 
Various studies have demonstrated that exposing damaged cells to this 

surfactant can effectively seal the damaged membranes of neuronal cells and other 

types of cells [55-56]. In 2001, Marks et al. showed that PLX is effective in repairing 

both non-neuronal and neuronal cell membranes after injury [55].  In their study, they 

reported that damaged hippocampal neurons were prevented from cell death when 

incubated in PLX. However, it was not clear whether PLX interacts only with the 

disrupted parts of the membrane to seal the membrane wounds or whether their 

integration and interaction with entire bilayer alters the membrane properties in a way 

to repair itself [57]. In order to understand this, Serbest et al. developed an in vitro 

model of traumatic brain injury to test the effects of PLX on damaged neuronal cells. 

They reported that when poloxamer was added to mechanically injured cells, it has 

been found to seal plasma membranes, promoting cell viability and subsequent 

recovery [11]. Results from the in vitro study showed that PLX promoted neuronal cell 

viability in a dose dependent manner[11]. Subsequently, a different study by the same 

group showed that treatment with PLX prevents post-injury axonal bead formation and 

enhances neuroprotection [57-58].  Since it was shown that PLX specifically targets 
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plasma membrane, it may help in healing of damaged neurons after electrode insertion. 

Therefore, we hypothesize that poloxamer could enhance neuron survival following 

electrode injury, aiding in the repair of neurons damaged during electrode insertion. 

2.4. Measuring the immunological response 
 

As outlined above, the insertion of a microelectrode leads to changes in cellular 

upregulation that causes the loss of recordings months after the implantation. It is 

important to have a standard approach to measure these changes in cellular level, 

which ultimately lead to the isolation of device from the healthy tissue. In order to find 

solutions that help reduce the cellular damage and ultimately obtain neuronal 

recordings, it is important to understand the brain’s response to microelectrode at the 

cellular level. The development of various biomarkers allows for the possibility of 

assessing the changes at the cellular level. In their activated state, the cells involved in 

inflammation express certain proteins which can be labeled using 

immunohistochemistry. In order to assess the potential of our solution, 

immunohistochemistry can be used to evaluate the cellular response. In literature, 

proteins specific to microglia, macrophages, and astrocytes have been long identified 

[59].  In order to trace these proteins, a primary antibody that will bind to the protein 

will be used. Once the primary antibody has bound to the protein, a second antibody 

tagged with a detection agent is then added to bind to the primary antibody. This allows  

visualization under a microscope and further analysis [59]. Traditionally, the staining 

techniques were used to view one cell type at a given time on a tissue slice. However, 

recent advances have allowed viewing multiple cell types using antibodies that 

fluoresce under different wavelengths. For this study, primary antibodies were used to 
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stain for microglia, macrophages, astrocytes, and neurons as shown in table below. 

Using these stains, the difference in tissue response between coated electrodes and 

control ones can be useful to determine if the coatings have any effect and also in 

studying the effect on the proliferation of the immunological cells.  

 

Table 1: Standard Primary Antibodies used to Identify Cells of Interest:                
(Microglia, Macrophages, Astrocytes and Neurons) 

Cells of Interest  Primary Antibody  

Microglia  ED1 (CD68)  

Macrophages  ED1 (CD68)  

Astrocytes  GFAP  

Neuron Cell body  NeuN  
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3. Overview of Experimentation 

 

In order to assess the effects of poloxamer coatings on tissue response after 

implantation, fifteen male, Long-Evans rats were anaesthetized and implanted with 

microelectrodes into the somatosensory cortex. The devices were implanted bilaterally 

into the two hemispheres of the rat’s brain. One of the electrodes was coated by dipping 

with poloxamer and the control electrode was dipped into saline. After the 

implantation, the area was covered up with dental cement and the rat was allowed to 

recover.  At 2, 4, and 6 weeks, five animals at each time point were sacrificed (Table 2).  

The rats were euthanized at the respective sacrifice date and brains were extracted 

to prepare for perfusion.  Rats were sacrificed with an overdose of euthasol and brains 

were perfused transcardially with phosphate buffered saline (PBS) followed by 4% 

paraformaldehyde. Perfused brains were cut into 20 µm using a cryostat and tissues 

were placed on slides. Tissue slides were treated with antibodies to stain for 

macrophages, neuron cell bodies, and astrocytes. Once the tissue samples were treated 

with staining antibodies, two quantification methods were applied (see methods 

section). Macrophages, microglia, astrocytes, and neurons were analysed in each animal 

by counting cells in 4 -5 slides using the steroinvestigator software. In astrocytes, the 

hypertrophy was characterized by intensity analysis developed using MATLAB 

software. A three way ANOVA model was then used to analyze the differences between 

PLX coated and uncoated electrodes in terms of inflammatory cellular response and 

neuronal presence.  
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Table 2 :  Summary of Experimental conditions - experimental setup of microelectrode 
implantation at two, four and six weeks. 

 

 

 

 

 
 
 

   

 
 
 Implant Side 

Rat Number  
Time 

points 
Electrode 

Type 
Surgery 

Date 
Perfusion 

Date (PLX, Control) 

PLX3  4 weeks PS-19 8/25/2008 9/23/2008 Left, Right 

PLX4  2 weeks PS-19 9/9/2008 9/23/2008 Left, Right 

PLX6  2 weeks PS-19 9/11/2008 9/24/2008 Left, Right 

PLX7  6 weeks PS-19 9/14/2008 10/28/2008 Left, Right 

PLX8  6 weeks PS-19 9/18/2008 10/28/2008 Right, Left 

PLX10  6 weeks PS-19 4/5/2009 5/17/2009 Left, Right 

PLX13  4 weeks PS-19 4/26/2009 5/31/2009 Left, Right 

PLX14  4 weeks PS-19 5/7/2009 6/7/2009 Left, Right 

PLX15  4 weeks PS-19 5/10/2009 6/7/2009 Right, Left 

PLX18  2 weeks PS-19 5/21/2009 6/7/2009 Left, Right 

PLX19  2 weeks PS-19 5/27/2009 6/14/2009 Right, Left 

PLX20  2 weeks PS-19 5/24/2009 6/14/2009 Right, Left 

PLX21  6 weeks PS-19 7/16/2009 8/27/2009 Right, Left 

PLX22  6 weeks PS-19 8/6/2009 9/17/2009 Right, Left 

PLX23  4 weeks PS-19 8/13/2009 9/10/2009 Right, Left 
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4. MATERIALS AND METHODS 

 
 

4.1. Microelectrodes 
 
 

Porous structure ceramic-based, multisite electrode (CBMSE) arrays were 

fabricated according to methods previously described by Moxon et al. [5]. The porous 

silicon surface is fabricated via stain etching. Silicon wafers, n-doped, single side 

polished, 0.1-10 ohm-cm resistivity, and 200 micron thick were used to create 

nanostructured porous structured electrodes. Thin film photolithography was used to 

pattern the microelectrodes (4 recording sites) and ion-beam assisted deposition of 

alumina was used to insulate the individual electrodes. Microelectrodes were diced 

according to methods in our previous study [17]. Each electrode had four recording 

sites spaced 0.2 mm apart at the tip of the electrode.  Each recording site was 22 µm x 

80 µm. The width of the electrode at the tip was 66.4 µm and width of the array at the 

opposite end near the final recording site was 113 µm. The electrodes were 7 mm in 

total length and 200 µm wide at the base. All electrodes were sterilized prior to 

implantation by exposure to isopropyl alcohol and sonication for 5 minutes first in DI 

water and then isopropyl alcohol. 

4.2. Implantation of Microelectrodes  

 
All animal procedures were performed utilizing sterile techniques approved by 

Drexel University Institutional Animal Care and Use Committee (IACUC) and adhered to 

National Institute of Health (NIH) guidelines. Adult male Long-Evans rats between 275-

299g were used in this study. Prior to surgery, animals were anesthetized using 4.5 % 
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isoflourane in oxygen at 1 L / min. The rat’s head was shaven and the area of interest 

was disinfected with an isopropyl alcohol followed by a butadiene swab. Ophthalmic 

ointment was applied to animal’s eyes to prevent drying. Each animal was placed on a 

stereotactic frame and anesthesia was maintained in oxygen in 0.2 L/min for the 

duration of the surgery. A midline incision was made in the skin and the skull was 

centered to bregma on the stereotax. The coordinates were zeroed to bregma and a 

3mm craniotomy was drilled for each of two electrodes at +1 mm bilaterally, + 2.5 and -

2.5 mm anterior to bregma. In order to support the electrode cap, a series of smaller 

anchoring points were drilled in skull for placement of four metal screws. The bone plug 

of the craniotomy was carefully removed and the dura was gently pierced with fine 

microforceps. Immediately prior to insertion, one of the electrodes was coated with 

poloxamer by dipping it twice for 5 min in a 100 µM Poloxamer 188  solution (Sigma) 

dissolved in DI water and the control electrode was dipped in saline. The 

microelectrodes were then air dried for 10 minutes between coatings and inserted 

through the pia layer at a rate of 5µm/min into the cortex at a depth of 2mm. 

Throughout the surgery, saline was applied to restrict exposure of brain while electrode 

insertion and to minimize iatrogenic damage. After insertion, the craniotomy was 

covered with dental acrylic. The skin incision was then closed with surgical staples and 

the animal was allowed to recover from anesthesia on a heat pad at 20° C.  Animals 

were monitored every 2 hours until they fully recovered from anesthesia, and then once 

per day for the remainder of the study.  
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4.3. Tissue processing for immunohistochemistry 

 
To measure the effects of surface coating, animals were euthanized at, two 

weeks, four weeks, and six weeks post implantation. The rats were sacrificed with an 

overdose of Euthasol and then perfused transcardially with 0.5 L of ice cold PBS 

followed by 0.5 L of ice cold 4% paraformadelhyde. The brains were removed such that 

the implanted neural probes remained intact. After post-fixation of the brain in 

paraformaldehyde for 48 hours, the brains were dissected and the electrodes were 

carefully retrieved from the tissue. The brains were placed into 30% sucrose in PBS 

solution (4° C) to equilibrate for three to five days. After the equilibration period, the 

tissue was frozen and cryostat sections of 20 µm thick were cut in using Leica CM3500 

cryostat the in the horizontal plane. The sections were collected using low-distortion 

tape system serially and sorted into three sets and mounted onto slides, while 

maintaining dorsal to ventral order[60].  

4.4. Immunohistochemistry 

 
Sections from cortex were stained simultaneously to observe brain tissue 

response. After cortical sections were mounted onto the slides, the slides were ringed 

with rubber cement to create wells and treated with antibodies to stain for cells of 

interest. Sections were washed in PBS and blocked in goat serum for an hour at room 

temperature. Sections were then incubated overnight with primary antibody applied at 

a 1:1000 dilution. Group one received mouse monoclonal ED1 (Serotek, 1:1000) to stain 

for reactive macrophages and microglia. The second group received mouse monoclonal 

anti-NeuN (Chemicon, 1:1000) to stain for neuron cell nuclei, and group three received 
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rabbit polyclonal anti-glial fibrillary acidic protein (GFAP, Sigma, 1:1000) to identify 

astrocytes. After the incubation, sections were washed in PBS and incubated in 

secondary antibodies coupled to FITC or TRITC (Jackson Immuno Research) for two 

hours at a 1:100 dilution. All of the sections received a nissl counter stain. The tissue 

sections were then washed again and coversliped with Vectashield to help preserve the 

tissue and prevent fluorescence degradation. 

4.5. Qualitative Analysis  
 

4.5.1. Stereological techniques 

Design-based stereology was used to characterize the cellular presence in the 

histological sections. It is a method in which a three-dimensional interpretation of 

structures can derived  from observations made in two-dimensional sections[61]. 

Unlike traditional methods, stereology does not rely on the information about the size, 

geometry, and orientation of interested cells types therefore resulting in a more 

accurate cell count[61]. In contrast to the commonly used geometry models, design 

based stereology is an assumption free method and can be used to study objects of 

different shapes. In this study, cell counts were performed using Nikon microscope 

attached to a Zeiss Axioplan, which was connected to a Dell workstation using 

Steroinvestigator Software (Microbrightfield, Inc, Williston, VT). A motorized stage was 

controlled by the software suite to allow for precise tracking along the x and y and z 

axes. Sectioned tissue samples were observed at a magnification of 2.5X. The center of 

each electrode hole was located and the coordinates of this point were marked as a 

reference. Using a contour tool a circle of 500 µm radius was traced around the 
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electrode hole. An optical fractionator probe was then assigned to each fluorescent 

antibody of astrocytes (GFAP), neurons (NeuN), and microglia (ED1) at high 

magnification of 100X (1.30 NA) oil objective. This probe denotes cells observed by 

using optical dissector and combing it with a fractionator sampling for the estimation 

of population size. A sampling grid was generated within the traced contour and an 

unbiased counting frame was determined within each sampling domain such that 

acceptance and rejection criteria guaranteed that cells would only be counted once. 

The sampling grid and counting frame dimension were chosen to create a 17.3% 

sampling percentage within the selected contour. At each sampling site, the tissue was 

scanned in the Z axes, and cell presence was acknowledged when the nucleus came into 

focus. The counting frame area was selected to be 2500 µm2 (in X, 50 µm; in Y, 50 µm) 

and the grid size of 0.0144 mm2 (in X, 120 µm; in Y, 120 µm). The optical disector 

height (thickness) was set at 12 µm with a 4 µm top and bottom guard zone. To avoid 

estimation errors, cells are not counted within the guard zone area located at the top 

and bottom sides of the counting frame. An advantage of this method is that it 

estimates the total number of objects in any three dimensional volume regardless of 

that volume’s shape and therefore is unaffected by tissue shrinkage that tends to occur 

during tissue preparation. All of desired cell types (astrocytes, microglia, and neurons) 

were counted around the treated electrode hole and the control hole for animals at 2, 4 

and 6 weeks. 
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Figure  4. 1: An illustration of a counting frame and a number of differently shaped 
cells. The check marks in green show the particles that are counted and the check marks 
in red show why some of the cells are not counted. 

 

4.5.1.1. Cell Density Profile Across Distance 

During cell counting, the coordinates of each cell were recorded with respect to 

the center of the electrode and the radial distance was determined in µm. The cells were 

binned in 5 annular domains based on distance from the center of the electrode hole: 0-

100 µm, 100-200 µm, 200-300 µm, 300-400 µm, and 400-500 µm. The total number of 

cells in each annular domain was normalized by dividing by the number of counting 

frames within each annular domain. The number of counting frames within each 

domain was determined geometrically, using a trapezoidal approximation for counting 

fames spanning more than 1 domain by developing a custom program in Matlab.  In 

order to account for tissue loss during explanation, the counting frames were not 
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included in the analysis if there was no tissue present in any part of the bin. Using the 

normalized cell count, the cell density at each bin was determined by dividing by the 

volume of each counting frame (Figure 4.2). Additionally, the overall cell density around 

the 500 µm region of the implant side was calculated. The overall cell density and 

density at each bin was analyzed for ED1, GFAP and NeuN stains and compared 

between coated and non coated electrodes using a univariate ANOVA model.  

 

Figure  4.2 : Random systematic sampling is applied to estimate the total number of 
cells (N) near the electrode. Images courtesy of Dr. Nissanov, Drexel College of Medicine 
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4.5.2. Intensity analysis 

When astrocytes are upregulated they not only increase in number, but also 

increase in size. Using cell count based methods would not provide information 

regarding the hypertrophied nature of these reactive astrocytes. Therefore, an intensity 

based method was developed to assess the hypertrophied character of GFAP expressing 

cells. Using the microscope setup described above, the fluorescent images were 

acquired for GFAP marker at 10X magnification around the electrode. Image analysis 

was then performed using a custom program developed in MATLAB to assess images of 

the tissue surrounding the implant. In this program, a grid of ten equidistant lines was 

superimposed on the image and the position and orientation with respect to the hole 

was random. Using a consistent intensity scale, the intensity of staining was quantified 

across the ten lines to determine the intensity profile across the distance. For all of the 

images, the edge of the hole was estimated using a graphical representation of the 

intensity. From this edge, average fluorescent intensity across a distance of 200 µm was 

calculated with four intervals at 50 µm, 100 µm, 150 µm and 200 µm. To account for 

variations in staining intensity between subjects, the background staining was removed 

by calculating the intensity of staining in tissue away from injury and subtracting this 

level of intensity.  

4.5.3. Hole Size Analysis 

Since some tissue was lost during electrode extraction, the tissue loss was 

calculated in  both coated and uncoated conditions. Fluorescent images were taken at 
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2.5x magnification around the implant site and then converted into grayscale. ImageJ 

software (National Institutes of Health) was used to analyze the relative hole sizes on 

the images and a student’s t-test was used to compare the differences between coated 

and uncoated electrode holes.  

4.5.4.  Statistical Analysis 

Data are represented as the average value ± the standard error of the mean 

(S.E.M). A three way ANOVA model was used to compare the mean values of different 

conditions using p < 0.05 for significance. The first factor was condition with two levels: 

PLX coated or non coated.  The second factor was time post-implant with 3 levels: 2, 4 

or 6 weeks.  The third factor was distance from the microelectrode with 5 levels: 0-100 

µm, 100-200 µm, 200-300 µm, 300-400 µm, 400-500 µm. Post-hoc, pair wise 

comparisons were conducted using Students t-test analysis (2-tailed). A Bonferroni 

correction method was to used to assess multiple comparisons, up to 5 as described in 

the results, and the p-value was reduced to p< 0.01 (0.05/ n, where n = number of 

comparisons) was used to indicate statistical significance. 
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5. DESIGN COMPONENT 
 
 

5.1. Problem Statement 

 
Most of the earlier studies that examined the up-regulation of inflammatory cells 

around the microelectrode were primarily qualitative.  However, in order to understand 

tissue response after microelectrode insertion, quantifying the astroglial upregulation is 

crucial. Although cell counting and intensity based methodologies have been utilized in 

the past, very few studies have incorporated both. It is important to utilize both as 

upregulated cells not only increase in number but also exhibit hypertrophy. Recent 

studies in literature have solely used intensity methods to quantify the glial scarring 

around the implant. The problem however is that the intensity methods misrepresent 

cell counts due to variations in cell size, shape and volume. Thus, there is a need to 

apply a true stereology approach and design a new method to assess glial scarring.  

Additionally there still needs be a combination method to quantify astrocytic cell 

response. The counting of astrocytes cells is difficult because the GFAP stain labels the 

processes of the astrocyte as well as the cell body, making it hard to discriminate one 

cell from another.  Therefore, a method is required which incorporates quantification of 

cell count as well as their hypertrophied nature.  
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5.2. Design Criteria 

• The aim of the design method is to quantify the cellular response around (500 

µm) the implant hole. Thus, the method must be able to quantify microglia / 

macrophages, astrocytes, and neurons around the implant site.    

• The design method must be able to quantify cellular response in terms of both 

cell proliferation (number of stained cell) and cell hypertrophy (intensity of the 

staining).  

• The design method must account for tissue loss during tissue processing and 

avoid any artifacts due to tissue shrinkage over time. 

• The design must be able to quantify inflammatory response and neuronal 

presence near the electrode (0 – 100 µm) and also far from electrode (400 – 500 

µm). 

• Reproducibility of the quantification protocol will be important and variability 

must be at a minimum, if any.  

  

5.3. Proposed Solution 

 
5.3.1. Design based Stereology protocol 

 
 
Design-based stereology is a method of interpreting three-dimensional 

structures based on observations made in two-dimensional sections [14]. Unlike 

traditional methods, design based methods eliminate the need for information about 

the geometry of interested cells types therefore resulting in a more accurate cell count 

[14]. A protocol was developed using design based stereology, where cell counting is 
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unbiased and random resulting in more robust data. Once the 20 µm brain tissues are 

sectioned using a cryostat, they are put on a cover slide and observed under a 

fluorescence microscope. The center of the electrode hole was located and the 

coordinates of this point were set as zero. Using a contour tool, a circle (500 µm radius) 

was traced around the electrode hole. The objective was to count the number cells in 

the traced region of interest. Using Stereoinvestigator 7 software, an optical 

fractionators probe was designed to quantify cell types. This probe estimates the total 

number of objects in any three dimensional volume regardless of that volume’s shape. 

The program allows us to select a series of randomly sampled sections and then 

sampling each section in X, Y, Z axis. The counting frame in each site is defined with 

acceptance and rejection regions to guarantee that each cell is only counted once 

(Figure 5.2). A pilot study was performed to determine the optimal grid size, counting 

frame, and a guard zone of the dissector. The counting frame area was selected to be 

2500 µm2 (in X, 50 µm; in Y, 50 µm) and the grid size of 0.0144 mm2 (in X, 120 µm; in Y, 

120 µm) giving a 17.3 sampling percentage. The optical dissector height (thickness) was 

12 µm with a 4 µm top and bottom guard zone 

In each sampling site, once a cell is observed the coordinates of the cell are 

marked, and using Pythagorean Theorem the distance of each cell from the center point 

will be calculated. The distances from the center of the hole were then binned into 5 

domains: 1-100 µm, 100 - 200µm, 200 – 300 µm, 300-400µm, and 400- 500µm. Next, 

using Microsoft excel the total number of cells in each bin were then calculated. One of 

the problems using this approach is that the data needs to be normalized. This is due to 

the placement of sampling grid, as there are more sampling boxes far away from the 
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center. Thus, we decided to normalize the counts in each bin by dividing with number of 

sampling boxes in order to give us an average cell count per sampling box. In order to 

do this, we needed to exactly figure out how many sampling boxes were in domain. To 

determine this, we used a custom build program in Matlab. On the stereoinvestigator 

software, the coordinates of each square sampling box were marked and recorded.  

These coordinates were then used to build a Matlab program, in which the total number 

of counting boxes in each domain was determined geometrically, using a trapezoidal 

approximation for counting fames spanning more than 1 domain. The program was able 

to calculate the exact number of bins in each domain (Table 2).  Once the normalized 

cell count in each bin is calculated, the cell density is determined by dividing it by the 

volume of the counting frame (50 µm * 50 µm * 12 µm). 

An advantage of using the stereology method is that we can quantify the total 

density within the 500 µm region of interest.  Generally, quantifying the number of cells 

within a region is complicated, as it usually not possible to isolate cells. Thus, it is 

necessary to cut the tissue into section, to find the number of cells within that section 

and estimate based on that. Design based stereology allows us do this via the optical 

fractionator method. The estimate of the total cell density in the region was obtained by 

dividing the total number of cells counted in the region by (total counting frames * 

volume of the counting frame). The volume of the counting frame is defined by the 

volume of rectangular solid (50µm (height) * 50 µm (width) * 12 µm (depth)). In order 

to account for tissue loss during immunostaining, the counting frame was not included 

in the analysis, if tissue was not present in the frame. Once the tissue slides for 

poloxamer coated electrodes and control electrodes are analyzed, a t-test and 
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multivariate ANOVA was performed to observe any significant difference between 

the two. 

 

 

Figure 5. 1 :  An illustration of a sampling grid placed around the electrode hole 
.Each gird contains a series of sampling domains with a counting frame. Within 
the counting frame, sampling was enabled in X, Y, Z axis. Each counting frame 
had an acceptance region (green) and a rejection region (red).  
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Table 3: The number of counting frames was determined in each domain using a 
custom build Matlab program  

 

  

 

 

 

 

 

 

 

5.3.2. Intensity Analysis Protocol  
 

Our method for quantifying astrocyte hypertrophy was primarily based on work 

done by Biran et al. and other studies reported in literature [12-13, 20]. Using a 

horizontal line intensity analysis, the image of the tissue surrounding the implant was 

quantified. The reason for applying an intensity based analysis is due to fact that GFAP 

staining in astrocytes is proportional to the level of hypertrophy.  Cell counting can also 

be utilized to quantify these cells; however it is difficult in identifying GFAP+ cells 

leading to miscounts. Thus, we chose to have both cell counts and line intensity 

spectrum of magnitude of staining along a horizontal line across the image. The 

intensity from these lines can be average and statistically analyzed to determine the 

differences between coated and uncoated electrodes   

 
Domain 

 
Number  of counting  

frames 
 

0 – 100 µm 1.5305 

100 – 200 µm 7.178 

200 – 300 µm 11.7292 

300 – 400 µm 15.3939 

400 – 500 µm 18.6331 
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 In order to quantify the intensity, images of GFAP stained tissue at 10X 

magnification were taken to the right and left of the electrode hole.  The program was 

developed in a way that the user must specify whether the image was to the right or left 

side of the tissue. Once this image is specified, ten random lines are placed across the 

image and the intensity of the staining is calculated based on an intensity scale 

predefined by user (Figure 5.2). This intensity is calculated for each pixel and an 

intensity profile is generated across the image.  Using the graphical representation of 

the intensity, the user will determine the edge of the hole and zero the data at this edge.  

Establishing a zero point is important because it allows for calculating intensity at a 

given distances from the edge of the microelectrodes.  Additionally zeroing all of the 

data at this point negates the lack of intensity in the hole, as there is no tissue.  An 

advantage of calculating intensity from the edge of hole eliminates intensity artifacts or 

loose tissue in the space of the hole. Once the intensity profile is obtained and zeroed, 

the data from these ten lines is averaged and statistically analyzed to determine the 

effects of the PLX coatings. A three-way ANOVA model was used to assess the effect of 

poloxamer coatings as a function of distance from the hole. At two, four and six weeks 

post implantation, the difference between coated and uncoated electrodes was assessed 

using a paired t-test because each animal had both types of electrodes. 
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5.4. Design Constraints 

 

• Since the design was based on fluorescent staining, there could be variations of 

intensity between different days of staining and image capture. Therefore, with 

different background intensity on different days, cross comparison of the 

different groups of images may be hindered. 

• The cell counting protocol was used to quantify cell around the hole, however 

the size and geometry of the electrode hole is different. Even though this was 

accounted by not including counting frames where there was no tissue, there 

could be some missing data. 

• The sampling grid used in the cell counting method is not uniform as there are 

more sampling sites far away than near the electrode. This is due to the circular 

geometry of the region of interest.  

• The use of horizontal lines in the intensity analysis program do not yield the true 

radial distance as the electrode tracks are roughly circular. A better way to 

approach this would be to implement the use of radial lines in an automated 

fashion. This radial line method was not feasible for this work due to lack of 

appropriate software.  
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Figure 5.2 : A schematic of the intensity based analysis of GFAP staining using 
MATLAB: (A) Images of tissue around microelectrode are taken on the microscope at 
10X magnification.  (B)The image is converted to grayscale and the program randomly 
places ten lines (shown in red) on the image. (C) Across each pixel, the intensity profile 
across the horizontal lines is displayed as a graphical representation. In order to 
account for tissue loss during histology, the user must pick the edge of the hole, which is 
characterized by a very low intensity followed by large peak.  (D) The intensity is then 
averaged and plotted onto a bar graph.  
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6. RESULTS 

 
6.1.  Characterization of tissue loss  

 
 

Since we were analyzing the inflammatory response around a defined area near 

the electrode, the tissue loss was examined around the electrodes. The fluorescent 

images were analyzed using ImageJ software and area of the tissue loss was measured. 

The percentage of tissue loss as compared to control was measured in all of the brain 

sections (Figure 1). At two weeks, the tissue loss was slightly higher in coated 

electrodes. In contrast, the four week electrodes showed higher amount of tissue loss in 

the control devices.  Finally six weeks post implantation, there was no difference in 

tissue loss between the coated the uncoated electrodes. Statistical analysis showed no 

difference in tissue loss between the two conditions (p < 0 .05) at any time point, 

suggesting that coating has no influence on tissue loss. 

 

Figure 6. 1 : The percentage of tissue loss of coated compared to uncoated was plotted. 
No significant difference was observed between conditions at the 2 week, 4 week, and 6 
week time points. 
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6.2. ED1 immunoreactivity 

 
Activated microglia and macrophages were quantified around the electrode 

using ED1 staining. The amount of ED1 staining adjacent to poloxamer coated surface 

was significantly greater than the staining around the uncoated surface (p < 0.001, F = 

42.435, N= 490). The ANOVA shows that as the distance away from electrode increased, 

there was a significant difference in the cell density (p < 0.001, F = 65.681 N= 490), 

suggesting cell accumulation near the electrode. Also, the analysis of variance 

demonstrated that as the distance from electrode increased, macrophage response was 

different in the PLX coated, when compared to uncoated electrodes (p < 0.001, F = 

9.901, N= 490). That is to say that as the distance increased, coated sample elicited less 

response than the uncoated one. Finally, a significant interaction was found between 

duration of implant and type of electrode (coated vs. uncoated) (p< .001, F = 6.757, N= 

490), suggesting that microglia response varied near the electrode as duration of the 

implant progressed in vivo.  

Two weeks after implantation, the area around the coated electrode was 

characterized by faint diffuse staining with few ED-1 positive cells (Figure 6.2). In 

contrast, the staining around the uncoated electrode showed a significant increase in 

the number of ED-1 positive cells. Using Stereoinvestigator software, overall density of 

the tissue around electrode was quantified. After two weeks of implantation, the total 

density of ED-1 cells around the uncoated electrode was significantly higher (p < 0.01) 

than the poloxamer coated device (Figure 6.2-C). In order to further assess the cell 

response, the microglial cell density (ED1+) was binned in 5 annular domains, 0 - 500 
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µm in 100 µm increments, based on distance from the center of electrode hole. 

Normalized ED1 cell density was significantly higher near the uncoated electrodes from 

0- 400 µm, as compared to coated electrodes (p< 0.01) (Figure 6.2-D). Additionally, the 

difference in ED1 response within 0-100 µm between the two conditions was much 

higher than in the other bins. For both coated and uncoated devices, the cell counts 

peaked at 0-100 µm and rapidly decreased thereafter. This result is similar to other 

studies that reported an increase in glial activation near the microelectrode.  

Four weeks post-implantation, the responses between coated and uncoated 

were similar to that of two week period. The majority of the ED1+ cells were still located 

near the electrode and had the appearance of large, round blood borne macrophages 

(Figure 6.3). At this time, significantly higher numbers of ED1+ cells were present 

around the control electrode in all of the bins except 100 – 200 µm (Figure 6.3-D). 

Likewise, the difference in overall cell density between the uncoated electrodes and PLX 

coated electrodes was statistically significant (p<0.01) (Figure 6.3-C). Overall, at four 

weeks, the same trend of relative difference between coated and uncoated response 

persisted as seen earlier. However, at this time point the microglial inflammation 

around the PLX coated device increased, when compared to earlier time point. 

At six weeks post-implantation, the difference in cell density between the 

uncoated and PLX coated devices was no longer statistically significant (Figure 6.4). 

After six weeks, microglial cell density reduced near the electrode when compared to 2 

weeks for both poloxamer and control conditions. Immunostaining of ED-1 shows more 

compact cells at this time, as opposed to amoeboid microglia/macrophage shaped cells 

seen at 2 and 4 weeks, implying macrophage senescence and stabilization. The cell 
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density distribution profile across the distance continued to be more uniform than 

earlier time points, but the overall cell density near the coated electrode rose to be even 

with the control. This suggests that effect of poloxamer diminished over time and is not 

sufficient to alter the in vivo up-regulation of glial cells after 6 weeks.  

 

Figure 6.  2 : Quantitative cell density analysis of ED1 staining. (A) – (B)  Representative 
images of ED1 staining for reactive microglia/ macrophages in the brain section 2 
weeks post implantation for both coated and uncoated microelectrodes. Scale bar = 100 
µm. (C)  Estimation of overall ED1 cell density at 2 weeks post implantation(D) ED1+ 
cell density profile as a function of distance at 2 weeks post implantation. Statistical 
differences between uncoated and coated probes at the same time point are indicated 
by * (p < 0.01 comparing uncoated to the coated electrode) 
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Figure 6.  3 : Quantitative cell density analysis of ED1 staining. (A) – (B)  Representative 
images of ED1 staining for reactive microglia/ macrophages in the brain section 4 
weeks post implantation for both coated and uncoated microelectrodes. Scale bar = 100 
µm. (C) Estimation of overall ED1 cell density at 4 weeks post implantation. (D) ED1+ 
cell density profile as a function of distance at 4 weeks post implantation. Statistical 
differences between uncoated and coated probes at the same time point are indicated 
by * (p < 0.01 comparing uncoated to the coated electrode) 
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Figure 6.  4 : Quantitative cell density analysis of ED1 staining. (A) – (B)  Representative 
images of ED1 staining for reactive microglia/ macrophages in the brain section 4 
weeks post implantation for both coated and uncoated microelectrodes. Scale bar = 100 
µm. (C) Estimation of overall ED1 cell density at 4 weeks post implantation. (D) ED1+ 
cell density profile as a function of distance at 4 weeks post implantation. Statistical 
differences between uncoated and coated probes at the same time point are indicated 
by * (p < 0.01 comparing uncoated to the coated electrode) 
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6.3. GFAP immunoreactivity  

 
6.3.1. Astrocyte Cell Density 

 
 

The amount of astrocytic upregulation around the implant was characterized by 

GFAP staining. Stereologic analysis showed that there was an elevated astrocytic 

response near the uncoated electrode (p < 0.001, F = 37.529, N = 500). Additionally, the 

astrocytic response significantly varied at different distances away from electrode (p < 

0.001, F = 122.589, N= 500). The overall data also illustrated that at different time 

points, there was a change in cell density (p< 0.001, F = 17.883, N= 500). Furthermore, 

the ANOVA showed an interaction between duration of implant and distance away 

electrode on overall cell density (p < 0.001, F = 18.428 N= 500), showing that cell 

density profile across distance changed over time.  

At two weeks post implantation, the overall cell density around the coated implant 

was significantly lower than uncoated device (Figure 6.5-C). Both coated and control 

electrode sites had more GFAP positive cells near the electrode (0-100 µm) (Figure 6.5). 

At this time point, the difference in cell densities between coated and uncoated probes 

was significant up to 400 µm away from the injury site (Figure 6.5- D). GFAP staining 

revealed that astrocytes near the uncoated electrode became more proliferative, and 

elongated with thicker cellular processes. In both coated and uncoated devices, the cell 

distribution over the distance showed a similar pattern: heavy GFAP+ cell density 

around the probe (1- 100 μm), and a drop of cell density after 100 μm region.  
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Four weeks after implantation, the coated electrode sites showed significantly lower 

overall cellular density, but the significance observed in the 0–100 µm domain at 2 

weeks has been lost. The bulk of the disparity in coated vs. uncoated densities came 

from the 100-300 µm regions, where the coated electrode elicited less astrocytic 

response (Figure 6.6-D). Most astrocytes in this intensive area were proliferated 

compared with normal tissue away from the electrode. Also, the astrocyte processes 

were interwoven to form a dense meshwork. At 6 weeks after implantation, there was 

little difference in terms of GFAP+ cell count between coated and uncoated electrode 

(Figure 6.7 – C). The overall immunostaining is lighter near the electrode for both 

coated and uncoated electrodes when compared to 2 and 4 week time points (Figure 6.7 

– D).  
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Figure 6. 5: Quantitative cell density analysis of GFAP staining. (A) – (B)  Representative 
images of GFAP staining for reactive microglia/ macrophages in the brain section 2 weeks 
post implantation for both coated and uncoated microelectrodes. Scale bar = 100 µm. (C) 
Estimation of overall GFAP cell density at 2 weeks post implantation. (D) GFAP+ cell density 
profile as a function of distance at 2 weeks post implantation. Statistical differences 
between uncoated and coated probes at the same time point are indicated by * (p < 0.01 
comparing uncoated to the coated electrode) 
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Figure 6.6 :Quantitative cell density analysis of GFAP staining. (A) – (B)  Representative 
images of GFAP staining for reactive microglia/ macrophages in the brain section 4 
weeks post implantation for both coated and uncoated microelectrodes. Scale bar = 100 
µm. (C)  Estimation of overall GFAP cell density at 4 weeks post implantation (D) GFAP+ 
cell density profile as a function of distance at 2 weeks post implantation. Statistical 
differences between uncoated and coated probes at the same time point are indicated 
by * (p < 0.01 comparing uncoated to the coated electrode) 
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Figure 6.7: Quantitative cell density analysis of GFAP staining. (A) – (B)  Representative 
images of GFAP staining for reactive microglia/ macrophages in the brain section 4 
weeks post implantation for both coated and uncoated microelectrodes. Scale bar = 100 
µm. (C)  Estimation of overall GFAP cell density at 4 weeks post implantation (D) GFAP+ 
cell density profile as a function of distance at 2 weeks post implantation. Statistical 
differences between uncoated and coated probes at the same time point are indicated 
by * (P < 0.01 comparing uncoated to the coated electrode) 
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6.3.2. GFAP intensity 

 

In addition to GFAP+ cell counts, a line intensity profile was implemented to 

assess the cellular hypertrophy near the electrode site. The GFAP staining intensity for 

the tissue adjacent to poloxamer coated device was consistently lower than staining 

adjacent to the uncoated device (p < 0.001, F= 13.443, N = 384). The ANOVA also 

showed a significant effect of: distance from electrode (p < 0.001, F = 17.843 N= 384), 

and duration of the implant (p < 0.001, F = 119.858 N= 384) on the GFAP intensity. For 

both coated and uncoated probes there was significantly higher intensity from the 0- 50 

μm and declined thereafter.  

 

At two weeks post insertion, there uncoated electrode was eliciting significantly 

more intense GFAP production than its PLX coated counterpart from 0-200um except 

for a small deviation from 50-100um, where p = 0.015 (Figure 6.7–A). Reactive 

astrocytes in the GFAP intensive area were hypertrophied and formed a dense network 

around the electrode. After 4 weeks, both control and uncoated electrodes exhibited 

increase in GFAP reactivity near the electrode (0- 50 μm). Even though the staining was 

consistently higher in the uncoated electrodes, the difference was not statistically 

significant at different domains (Figure 6.7-B). When compared to two weeks, the 

staining at 4 weeks was lower for both coated and uncoated probes, suggesting a 

decrease in astrocytic hypertrophy. Similar results were seen for GFAP intensity at 6 

weeks, as there was an overall decrease in intensity level compared to two weeks. 

Additionally, there is no difference in the intensity profiles between coated and the 
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uncoated electrodes after six weeks (Figure 6.7-C). The lack of difference in staining 

around the coated electrode compared to the uncoated electrode suggests that the 

positive effect of poloxamer on altering up-regulation in vivo declined over time. This 

correlates with the cell count data, as astrocyte presence around the electrode were 

same after six weeks.  

 

Figure 6.8: Quantitative fluorescent intensity analysis of GFAP staining. (A) GFAP 
fluorescent intensity profiles as a function of distance 2 weeks post implantation. (B) 
GFAP fluorescent intensity profiles as a function of distance 4 weeks post implantation. 
(C) GFAP+ cell density profile as a function of distance at 2 weeks post implantation. (D) 
Estimation of overall GFAP cell density at 4 weeks post implantation. Statistical 
differences between uncoated and coated probes at the same time point are indicated 
by * (p < 0.01 comparing uncoated to the coated electrode) ** represents a p value 
approaching statistical significance (p = 0.015) 
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6.4.   Presence of neurons around the electrode 

Neuronal presence around the implanted electrode was characterized by 

counting NeuN+ stained cells. NeuN staining is a standard marker for detecting neuronal 

nuclei. Our results indicate that, similar to ED-1 and GFAP staining, there was an effect 

of poloxamer on neuronal presence near the implant site (p < 0.001, N = 530, F = 

14.097). The statistical model also showed a significant effect of: distance from 

electrode (p < 0.001, F = 4.808 N= 530) and duration of the implant (p < 0.001, F = 

6.270 N= 530) on the neuronal density, suggesting that long term presence of the 

electrode causes a change in neuronal density near the electrode. At two weeks post 

implantation, pale NeuN staining was observed around in the area surrounding the 

electrode sites as compared to far field controls for both control and coated devices. The 

reduction in cell presence was most notable from 0-200um, beyond which the measures 

stabilized. Significantly higher numbers of neurons were counted near the coated 

electrode in all of bins, except in the region of 300–400 µm where the difference is 

approaching significance (Figure 6.8-A). Also, at the four week time point, the overall 

neuron density near the electrode was significantly higher, but surprisingly the 

difference between coated and uncoated at individual domains was not statistically 

significant (Figure 6.8–B). Similar results were seen after six weeks, as no statistical 

difference was seen between the two conditions (Figure 6.8-C). In summary, the overall 

neuronal cell density was significantly increased in PLX during the 2 week time point, 

but that significance was lost at 4 and 6 weeks. This suggests that in order for the 
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poloxamer to work over long period, we need to include a pharmacological agent such 

as nerve growth factor to support neuron growth beyond the glial scar.  

 

 

Figure 6. 9 : Quantitative Cell density of NeuN+ staining. (A)NeuN cell density profile as a 
function of distance 2 weeks post implantation. (B) NeuN+ cell density profiles as a function 
of distance 4 weeks post implantation. (C) NeuN+ cell density profile as a function of 
distance at 6 weeks post implantation (D) Estimation of overall NeuN cell density at 2, 4, 
and 6 weeks post implantation. Statistical differences between uncoated and coated probes 
at the same time point are indicated by * (p < 0.01 comparing uncoated to the coated 
electrode) ** represents a p value approaching statistical significance (p = 0.0130) 
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7. DISCUSSION 

The goal of this study was to assess the impact of the poloxamer coatings on in vivo 

brain tissue after implanting porous silicon structured ceramic microelectrodes. 

Previous studies have investigated the CNS response of poloxamer in vitro including 

neurons, and astrocytes [11, 57-58]. To the best of our knowledge, the effect of 

poloxamer on microglia/macrophage and astrocyte function in vivo has not been 

explored. This study uses the presence of neurons, macrophages /microglia, and 

reactive astrocytes to quantify the difference in vivo of coated and uncoated devices at 

2, 4, and 6 weeks. In order to maintain long term single neuron recordings using 

ceramic microelectrodes, the environment around the recording area must promote 

neuronal survival and reduce inflammatory mediators that can confound 

measurements. This current study demonstrates that local release of poloxamer, a tri- 

block copolymer, via microelectrode coatings can modulate the acute inflammatory 

responses to implanted devices, especially by suppressing the expression of astrocytes 

and microglia while promoting neuronal survival.  

The ability to record single neurons with implantable electrodes holds great 

promise for patients with impaired motor conditions caused by stroke, cervical spine 

injuries, and neurodegenerative diseases [14, 24, 62]. Among the various brain-

computer interface (BCI) modalities, intracortical electrodes have several advantages 

for restoring voluntary motor control[3]. Using cortical microelectrodes, the sum of 

electrical activity around the electrode can be obtained by recording the electric 

potential in specific regions of the motor cortex. Near the electrode, the electric 
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potential is recorded by assessing the electrical fluctuations due to changes in 

membrane potential of neurons[63]. Thus, it is important to have neurons near the 

electrode (within 100 µm) in order for the electrode to record these signals. However, 

the insertion of a microelectrode reduces the neuron population near the device and 

causes a decrease in the amplitude of the action potential making it hard to discriminate 

the signal from background activity[63].  Additionally, the electrode insertion induces 

an astroglial scar which keeps neurons away from the recording device. Currently, 

multiple approaches are being investigated in order to reduce tissue response and 

improving long-term device utilization.  

Following an implantation induced injury, host neurons in CNS cannot be repaired 

due to the inability of the neurons to regenerate [14]. This is primarily due to the 

presence of inhibitory glycoproteins in the environment, which eventually lead to 

reactive gliosis. The primary cell types involved in this glial scar formation are 

microglia/ macrophages and astrocytes[24]. The surgical insertion of the 

microelectrode will inevitably damage neurons, tearing dendritic and axonal processes 

and potentially inducing some neuronal cell death [17]. As a result of the vascular 

damage and release of chemotatic factors caused by electrode, circulating monocytes 

and microglia from brain tissue migrate to the injury site and become activated [53]. 

One typical indication of an activated microglial cells is their transformation into 

macrophage like amoeboid cell structures [64-65]. In our study, in vivo microglial/ 

macrophage cell density was assessed next to the insertion site at various time points. 

The ED1+ cell density decreases significantly as a function of distance away from the 

electrode, suggestive of a microglial upregulation, which moves to wall off the foreign 
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implanted electrode. This decrease in microglia/ macrophage response was 

significantly attenuated in PLX coated probes when compared and uncoated ones after 

2 weeks, and 4 weeks post implantation. Although, no statistical difference was 

observed after six weeks, the uncoated electrode induced a considerably higher glial 

activation at this time point. Our results of microglial modulation by poloxamer coatings 

are similar to observations made by Zhong et al [12]. In their study, dexamethasone 

(DEX) coatings significantly reduced microglial activation initially, however no 

significant difference in ED1 staining was observed between the uncoated and coated 

after four weeks of implantation. Previously, studies have shown that initially microglia 

release various cytokines which attract adjacent microglia and astrocytes to the injury 

site, via autocrine and paracrine pathways leading to recruitment of glial cells [66]. Our 

results indicate that poloxamer has an initial inhibitory effect on microglial response 

supported by lower ED-1 response for coated devices at 2 and 4 weeks. One possible 

explanation for the modulation of this response at earlier time points is that poloxamer 

self inserts into the damaged cell membranes and reduces the amount of debris, thus 

limiting the buildup of phagocytic microglia and macrophages. However, at after 6 

weeks, the lack of significant difference between the coated and uncoated conditions 

could be due to depletion of the polymer, or the stabilization of the microglial response. 

After a long period in vivo, depletion of the poloxamer is highly likely because the 

coating was applied via dipping method. The initial loading and diffusion of poloxamer 

in vivo must be examined in detail to establish this as a causative factor for the loss of its 

effect by 6 weeks.  
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In addition to microglia and macrophages, astrocytes also participate in the glial 

scar formation following an electrode implantation.  After injury, astrocytes near the 

injury site become reactive and secrete neural growth factor (NGF), which helps in 

repairing neural tissue [36]. The reactive astrocytes exhibit phenotypic changes 

characterized by hypertrophy and increase in expression of glial fibrillary acidic protein 

(GFAP), which is critical to astrocyte function and their ability to support neighboring 

damaged neurons.[24].  In our approach, we assessed the degree of recruitment (cell 

count) and degree of cellular activity (GFAP stain intensity). Stereological analysis has 

shown that there was a relative buildup of reactive astrocytes within 100 µm of both 

coated and uncoated electrode sites as compared to far field controls. These reactive 

astrocytes are characterized by higher GFAP expression and formation of dense 

processes near the injury site. The formation of an astrocytic barrier, separating the 

injury site from healthy tissue was previously shown in multiple studies [9, 13]. In PLX 

coated electrodes, the decrease in astrocytic response was similar to that of the 

microglia/macrophage response. This response shows the crosstalk between microglia 

and astrocytes during glial scar formation [67-68]. Both microglia and astrocytes have 

the capability of releasing neurotoxic cytokines, which can activate more astrocytes or 

microglia via paracrine and autocrine signaling [65-66]. At 2 and 4 weeks, poloxamer 

helped minimize astrocyte buildup, attesting the capability of this surfactant to limit 

damage and enable fast repair of the brain tissue.  

 In our efforts to quantify cellular hypertrophy, we implanted a line intensity 

analysis as described in previous studies [13, 20]. Our results showed a similar pattern 

to cell density. The ANOVA model showed significant effect of distance and duration of 
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implant on staining intensity.  Similar to other studies reported in past, higher levels of 

GFAP expression were seen closest to the insertion sites (0-50 µm) of both coated and 

uncoated devices [12]. As with our other measures, the PLX showed a significant 

decrease in GFAP intensity at both 2 and 4 weeks.  

After 6 weeks post-implantation, the astrocyte sheath around both uncoated and 

coated probes had lower intensity and yielded no significant difference between the 

two conditions. The significant reduction of reactive astrocytes suggests that the 

inflammatory response starts to stabilize at 6 week in our animal model. These results 

are consistent with other studies, where it was reported that the astrocytic sheath 

around the injury site grows in size for several weeks, after which the encapsulation 

layer becomes thinner, denser and stabilizes after approximately six weeks [9]. Given 

the loss of significance by 6 weeks, two distinct possibilities emerge as to why. First, the 

loading of poloxamer may have been insufficient and the loading dose had 

diffused/decayed to sub-therapeutic levels. Second, the approach may be more suited to 

reducing initial injury related inflammation than the more prolonged foreign body 

response 

Lastly, neuronal presence around the electrodes was quantified near the implant 

site. There was a negative correlation between glial cell types and neurons, suggesting 

that increase in glia pushes the neurons away from the microelectrode. This may be 

attributed to the fact that in the in activated state, microglia and astrocytes secrete toxic 

materials including cytokines, nitric oxide (NO), and free radical species which 

contribute to neuronal loss [32, 66]. At two weeks, the neuron cell population was 

markedly lower near the electrode and stabilized in the far field, however at 4 and 6 
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weeks there was no variation in cell density as a function of distance from the implant. 

NeuN staining revealed that PLX coating has reduced the neuronal loss at 2 and 4 weeks 

after implantation.  

This attests the nature of poloxamer, which was shown to act as a 

neuroprotective agent. When neurons are exposed to injury, damage to membranes can 

lead to either necrosis or apoptosis [11, 57]. In an in vitro cell model, it was shown that 

PLX has the ability to prevent acute necrosis by promoting membrane resealing and 

additionally PLX treatment inhibits signaling pathways leading to apoptosis [11, 57]. By 

6 weeks, there was no difference between PLX coated and uncoated probes in terms of 

neuronal loss. Interestingly, at 6 weeks the neuronal loss increased as compared to 4 

weeks. This was consistent with lower microglia/ macrophage activation and astrocyte 

expression at 6 weeks. Similar results were shown in studies conducted by Zhong et al 

[12]. One possible explanation is that over time, the stabilized immune response 

induces a buildup of secreted neurotoxic molecules which leads to progressive neuronal 

loss. Thus, inhibiting the glial activation via poloxamer coatings can enhance neuronal 

survival and ultimately support long term recordings.  

Long term implantation of microelectrodes in the brain induces two major 

responses. First, insertion of electrode through the cortex causes mechanical damage to 

neuronal and glial processes, exposing the extracellular environment to intracellular 

proteins and damaging the blood-brain barrier [17]. Secondly, continued presence of 

the electrode induces the release of toxic molecules and leads to a glial scar which walls 

off the microelectrode from recording single neurons [17].  The initial mechanical 

damage and long term foreign body interact in a complex manner to cause the loss of 
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neuronal recordings. Processes initiated during the early phase of the glial scar persist 

and contribute to eventual encapsulation of the electrode [17]. Our previous study has 

reported that one way to ameliorate damage to neurons is by mimicking the surface of 

the electrode to that of the brain [17, 41]. Nanostructured porous silicon surface 

coatings for ceramic-based microelectrodes showed less glial activation and more 

neurons adjacent to porous silicon surfaces than smooth silicon surfaces [17]. In this 

current study, we use a local drug delivery approach to further improve the 

nanostructured porous silicon devices by coating with poloxamer – 188, a neuro-

protective agent, in order to reduce cellular and molecular inflammatory responses to 

the implanted microelectrodes. While positive results were found in response at 2 and 4 

weeks, after 6 weeks, poloxamer had no positive effect due to possible drug depletion 

and stabilization of inflammatory cells around the implantation site. Thus, in order to 

obtain long-term stable neural recordings we must discover the release profile of 

poloxamer in vivo. Further improvements can be made to release profile by 

encapsulating in a biodegradable polymer. An alternative strategy could be to develop a 

drug delivery system that facilitates continuous, local delivery of the poloxamer for the 

long periods of time. A recent study conducted by Abidian et al. described a similar 

approach [69]. In this study, controlled release was achieved in silicon electrodes in 

vitro using a coating of polymer matrix loaded with the dexamethasone, a synthetic 

glucocorticoid [69]. Even though these devices have not yet been tested in vivo, the 

promising results highlight the potential of electrode coatings in improving chronic 

neuroprosthetic performance.  
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In conclusion, the surface modification of nanostructured porous silicon ceramic 

electrodes with poloxamer coating is able to reduce the tissue response near the 

implants. The local delivery of PLX might be a promising strategy to improve the long 

term recording stability of multichannel ceramic microelectrodes.  

 

  



64 
 

 
8. CONCLUSION 

 

This study assessed the neuroprotective effects of poloxamer coatings in vivo.  

Ceramic electrodes with and without PLX coatings were implanted  into  rats,  and the 

tissue response was evaluated 2 weeks, 4 weeks, and 6 weeks post implantation.  Our 

results indicate that PLX coatings significantly reduced microglia/ macrophage 

expression at two weeks and four weeks implantation.  Similarly, glial fibrillary acidic 

protein (GFAP) staining for reactive astrocytes revealed that local PLX treatment 

significantly modulated astroglial cell density and cell hypertrophy near the 

electrode at 2 and 4 weeks. A reciprocal relationship was seen with neuronal 

presence around the implant site. The PLX coating decreased neuronal loss at 2, and 

4 weeks after implantation. However weak ED1, GFAP, and NEUN positive signal 

was detected after 6 weeks post implantation for the coated devices, suggesting that 

coating is not enough to modulate chronic inflammatory response. However, lower 

microglial presence was seen at 6 weeks even though this difference was significant. 

Thus, it is important to do future long term studies to determine if delivery of PLX in 

early stage is sufficient for mitigating the tissue response. Another strategy will be 

to implement a continuous drug system that will release PLX throughout the 

lifetime of the electrode. In summary, this study demonstrated that PLX coatings can 

effectively modulate the inflammatory cell response to the implanted 

microelectrodes, and also reduce neuronal loss in the vicinity of the coated devices 

after four weeks. This strategy represents a promoting way to reduce astroglial scar 
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and prevent neuronal loss after microelectrode implantation, ultimately leading to 

long term neuron recordings.  
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9. FUTURE WORK 

 

Release profile of PLX in vivo 

 
Previous work in our lab studied the release of PLX in vitro; however the in 

vivo release profile must also be understood. This could be done using a radiolabel 

PLX, which can used to quantify the in vivo release over time. A study can be 

developed where radio labeled PLX coated electrodes will be implanted at different 

time points and the distribution of the PLX will be observed using autoradiography. 

For quantification of radio labeled PLX, horizontal sections will cut using cryostat 

and used for autoradiography. These results can be correlated with results from 

histological analysis and a model can be developed to optimize initial loading of the 

poloxamer. 

Chronic Neural Recordings 

 
The long term goal of this research is to achieve chronic single neuron 

recordings from ceramic electrodes. In order to do this, the inflammatory response 

around the devices must be minimized. This study showed significant decrease of 

inflammatory responses and neuronal loss around the PLX coated electrodes. 

However, it is important to correlate this improvement in tissue response to the 

long-term recording performance of the ceramic microelectrodes. The loss of 

recordings in vivo can be attributed to two factors: the migration of neurons away 

from the electrode and increase of the electrode impedance. The impedance change 
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will result to too much noise and lead to inconsistent recordings whereas the 

isolation of neurons leads to low signal-to-noise ratio (SNR) or unresolvable action 

potentials (noise). In order to examine the potential of PLX coatings, a study can 

developed to test parameters such as single unit stability, signal-to-noise ratio, 

recording longevity, and electrode impedance. The histology results then can be 

correlated with these parameters to evaluate the effect of coatings on electrode 

performance.  

Neurotrophic Factor delivery for neuronal survival 

 
One of the main reasons for the failure of chronic recordings is due to the 

migration of neurons away from the electrode. This study demonstrated that PLX 

decreased neuronal loss around the electrode. However it is not known whether this 

improved is sufficient to ensure chronic recordings. If PLX is not able to keep 

neurons close to the electrode sites after long periods, one strategy to attract 

neurons near the electrode is by delivering Brain derived neurotrophic factor 

(BDNF). BDNF is shown to promote neuronal survival in the CNS. Studies have 

reported that after spinal cord injury, BDNF stimulated neurite growth and allowed 

functional recovery [70-71]. Therefore applying BDNF to the PLX coated electrodes 

is an excellent way to promote neuronal survival and migration to the electrode site. 

Previous work in the lab has used BDNF coatings to ceramic electrodes, however 

their effect is not observed along with PLX.  
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