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Abstract 
Classification of Tissues and Disease Subtypes Using Whole-Genome Signatures 

Michael P. Gormley 
Aydin Tozeren, Ph. D. 

 
 
 
 

Development and application of microarray technology in biological research has led to 

compilation of expression and sequence data on a genome-wide scale.  Given the volume 

of data produced and the complexity of gene regulatory mechanisms, it can be difficult to 

extract meaningful biological information.  Classification can be used to reduce the 

complexity through the detection of genes, genetic loci or conditions that share common 

attributes and the identification of gene expression patterns or genotypes associated with 

phenotype.  In the study of cancer, supervised classification has been applied to identify 

gene expression biomarkers of different disease states.  Clinically validated biomarkers 

are valuable indicators for diagnosis and guiding therapeutic strategy.  We developed an 

iterative machine learning algorithm to compare the predictive value of biomarker sets 

chosen by supervised classification against sets selected randomly from known disease-

related genes.  Both supervised classification and feature selection based on prior 

knowledge resulted in discriminative classification of molecular phenotypes in breast 

cancer and lymphoma.  Compilation of gene expression data has led to the identification 

of genes with bimodal, or switch-like, expression patterns.  We used unsupervised, 

supervised and model-based classification methods to investigate the biological relevance 

of bimodal expression patterns and to evaluate their potential for class discovery and 

prediction.   Both model-based and supervised classification resulted in the accurate 

classification of samples by tissue phenotype or infectious disease.  Functional 
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enrichment analysis indicates switch-like genes are involved in tissue-specific or immune 

response functions.  Taken together, this evidence supports the assertion that bimodal 

expression patterns are biologically relevant.  Clinical relevance of bimodal expression 

patterns was investigated in an association study of genotypes of families affected by 

autism.  A subset of neural-specific switch-like genes was used to identify candidate gene 

regions which may contain genetic variants associated with autism risk.  A two-stage 

family-based association test detected an autism susceptibility locus in the q26 region of 

chromosome 10.   The coding region of the fibroblast growth factor receptor 2 (FGFR2) 

gene is 80 kilobases downstream from the identified locus.  Altered expression of FGFR2 

may be a contributing genetic factor in development of autism.  Identification of the 

susceptibility locus provides motivation for novel hypotheses concerning the molecular 

basis of autism.  In addition, we provide a method for integration of gene expression and 

genotype data that may lead to the identification of disease-related polymorphisms in 

other disorders.     
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Chapter 1: Introduction 
 
 

 
Gene expression is regulated by complex interactions between DNA, regulatory proteins, 

epigenetic mechanisms and microRNA molecules.  Activation and repression of gene 

expression is used to control cellular processes and can also lead to phenotypic changes 

such as tissue differentiation and disease.  Microarray technology provides the means to 

quantify expression and type genetic variation in the DNA sequence at a genome-wide 

scale.  However, the high-dimensionality of microarray datasets along with relatively 

small samples sizes hinders the effectiveness of microarray analysis.  In this work, we 

have used a variety of classification methodologies to address critical issues in the field 

of microarray analysis and extract meaningful biological information.  

 

Gene expression biomarkers are highly valued in the prediction of prognosis of 

heterogeneous disease.  Supervised classification methods, such as k-nearest neighbor, 

linear discriminant analysis and support-vector machines, have been applied to gene 

expression microarray data in order to identify biomarkers at high-throughput.  The lack 

of commonly shared genes among independent biomarker panels of the same disease 

state raises questions concerning the power and reproducibility of differential expression 

analysis.  To address these questions, we developed a machine learning algorithm to 

generate and validate populations of gene expression biomarker panels from microarray 

data.  With this approach, we identified many gene sets that are predictive of molecular 

subtype in breast cancer and lymphoma.  In addition, we observed that the accuracy of 

classification decreases and the variance in accuracy increases when evaluating 
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biomarker sets across platforms.  From this analysis, we conclude that the lack of 

agreement between independently derived biomarker panels is due in part to the number 

of relevant genes and technical variation between microarray platforms.  These results 

have important consequences in the experimental design and interpretation of microarray 

experiments.  

 

Gene expression profiling of diverse phenotypes in health and disease allow us to identify 

common modes of gene expression.  For example, housekeeping genes have been 

identified which are constitutively expressed across tissues and tend to be involved in a 

minimal set of structures and processes required for cellular viability.  In previous work, 

we identified a set of switch-like genes with bimodal expression patterns across 19 

different tissue types.  In this work, we investigated the expression profiles of these 

switch-like genes in both health and infectious disease.  Both model-based and multi-

class supervised classification accurately categorized tissue samples according to tissue 

type and infectious disease.  In addition, functional enrichment analysis indicated that 

activated switch-like genes in different phenotypes are involved in specialized tissue-

specific or immune response functions.  Through our application of advanced 

classification algorithms along with the use of gene functional information, we conclude 

that switch-like genes represent a biologically relevant subset of genes that warrant 

further study.   In addition, due to the accurate classification of phenotypes in a multi-

class setting, we contend that the identification of switch-like genes may be a useful 

dimension reduction method in future analysis of expression data.  
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Use of gene sequencing arrays for the identification of single nucleotide polymorphisms 

associated with susceptibility to disease is burdened by a large multiple testing problem.  

Thresholds for genome-wide significance must be adjusted to account for the number of 

hypotheses tested.  We used our insight on switch-like genes to reduce the number of 

hypotheses up front by identifying candidate gene regions in an association study of 

autism.  Specifically, we scanned the coding and cis-regulatory regions of neural-specific 

switch-like genes for genetic variants associated with autism susceptibility.  Using a two-

stage family-based association test, we identified an autism susceptibility locus in an 

intergenic region of chromosome 10.  The locus is approximately 80 kilobases upstream 

of the fibroblast growth factor receptor 2 (FGFR2) gene.  Fibroblast growth factor 

signaling is involved with both neurodevelopment and neural proliferation in the adult 

brain.  Our results suggest that altered expression patterns of FGFR2 due to genetic 

variation at the autism susceptibility locus may contribute to increased risk of disease.   

This study provides a novel method for the integration of gene expression and gene 

sequence data in genome-wide association study.  In addition, the identification of the 

autism susceptibility locus and the potential involvement of FGFR2 provides motivation 

for biologists to test new hypotheses regarding the molecular basis of autism.  
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Chapter 2: Background 
 

This chapter describes biological processes related to gene regulation in health and 

disease.  Microarray platforms capable of measuring gene expression and characterizing 

gene sequence are discussed.  In addition, databases that have compiled information on 

genes and gene products are reviewed.  

 
 
2.1 Molecular biology of gene regulation 

Cellular function is governed by the production, interaction, modification and 

degradation of proteins generated from genetic information stored in the nucleus.  

Genetic information is stored as DNA, a highly ordered configuration of polymer strings 

of nucleotides arranged in a double helix formation.  Association of DNA with histone 

protein complexes allows for tight packing and organization of the genetic information 

[1].   Genes and regulatory regions are identified by specific sequences of nucleotide 

bases.  Alterations in the genetic sequence caused by copying errors, environmental 

effects [2], or viral infection [3] can result in the alteration of the structure and function 

of gene products.  The central dogma of molecular biology describes the process by 

which genetic information encoded in the DNA sequence is first transcribed into RNA 

and then translated into polypeptides.  This process is strictly regulated to control which 

gene products are expressed under which conditions.   

 

Transcription is the production of RNA molecules from the coding regions of the DNA 

sequence.   Transcription is initiated by the binding of a protein complex of basal 

transcription factors and RNA polymerase to the DNA at a specific recognition site 
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upstream of the gene coding region [4].  Binding of additional transcription factors to 

upstream or downstream regulatory regions of the DNA amplifies the rate of 

transcription.  Transcription factor activity can be regulated by several processes 

including protein synthesis, subcellular localization [5], ligand binding [6], dimerization 

[7], and phosphorylation [8].  In addition, the relationship of transcription factors to the 

genes they regulate is often many to many.  These characteristics of transcriptional 

regulation allow for fine control of gene expression.  Following transcription, synthesized 

RNA is processed into messenger RNA (mRNA) by removing non-coding regions, and 

capping the 5’ and 3’ ends of the transcript.  Alternative splicing at this stage results in 

greater variation in the protein population and allows for additional regulation of gene 

expression [9].   

 

Transcribed mRNA carries genetic information from the nucleus to the cytoplasm where 

it serves as a template in the formation of amino acid peptide chains that constitute the 

primary structure of proteins.  Amino acids are represented by sets of nucleotide triplets 

in the mRNA sequence known as codons [4].  Additionally, start and stop codons signal 

for the initiation and termination of protein synthesis.  Transfer RNAs are oligonucelotide 

molecules with sites for codon recognition and amino acid binding.  Ribosomes induce 

translation by providing a site for the interaction of the mRNA transcript with transfer 

RNAs and catalyzing the formation of peptide bonds between sequential amino acids.  

Following translation, synthesized polypeptides fold into native, three-dimensional 

structures that confer protein activity.   
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Figure 1: Transcription and translation [10] 
 
 
 

Protein function can be altered by post-translational modifications.   Modifications 

include the addition and removal of functional groups (e.g. phosphorylation, acetylation), 

covalent linkage to other proteins (e.g. ubiquitinylation) and the formation and cleavage 

of additional bonds between amino acids [11].  Kinases and phosphatases are enzymes 

which add or remove phosphate groups to serine, threonine or tyrosine residues of 

proteins [4].  Phosphorylation can change the activity of a protein through the blocking or 

formation of active sites or other conformational changes.  Protein degradation is 



 

 

7 

regulated by covalent binding of ubiquitin to lysine residues of the target protein.  

Ubiquitinylation marks proteins for degradation by proteolytic protein complexes.  A 

number of proteins are synthesized in inactive forms.  Activation occurs by formation or 

cleavage of bonds between amino acid residues [12].  Modifications such as these enable 

dynamic regulation of protein function at the post-translational stage. 

 

Gene expression is also controlled by epigenetic mechanisms independent of gene 

sequence.  Methylation of cytosine CpG dinucleotide sequences maintains gene 

expression patterns across cell division cycles and plays an important role in development 

[13, 14].  Distribution of CpG dinucelotides in the genome is disproportionately biased 

towards gene coding regions and transcription start sites [15].  DNA methylation 

surpresses transcription of associated genes through direct or indirect inhibition of 

transcription factor DNA binding [14].   Additional epigenetic mechanisms include 

histone modifications and chromatin remodeling.  Phosphorylation, acetylation, and 

methylation of residues of the N-terminal histone tail alter the configuration of the DNA 

sequence to make it accessible for transcription [16].  Similarly, chromatin remodeling 

proteins use energy gained from ATP hydrolysis to dissociate DNA from histone 

complexes [16, 17].  Epigenetic mechanisms provide additional means of regulating the 

process of gene expression.  

 

Association of mRNA transcripts with microRNAs (miRNA) provides regulation of gene 

expression at the post-transcriptional level.  MicroRNAs are 21-25 nucelotide RNA 

molecules that bind with complimentary sequences in the 3’ untranslated region of 
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mRNA transcripts [18].  Precursor microRNAs are transcribed in an inactive hairpin 

form.  Production of mature microRNAs is catalyzed by two ribonuclease enzymes that 

yield the 21-25 base pair active form [19, 20].  Active microRNAs form a RNA-induced 

silencing complex (RISC) by association with proteins in the argonaute family [21].  In 

most conditions, binding of the RISC to the target mRNA represses gene expression by 

one of two mechanisms: either translational inhibition or destabilization of the target 

transcript through removal of the 3’ polyamine cap [18].  Recent work has demonstrated 

that some miRNA-protein complexes may upregulate translation in growth arrested 

conditions [22].  Regardless of the effect on translation, miRNA-mediated effects result 

in transcript-specific regulation of expression. 

 

2.2 Single-nucleotide polymorphisms 

Single-nucleotide polymorphisms (SNPs) are variations in the genetic sequence 

consisting of a single nucleotide base substitution.  Approximately four million SNPs 

distributed at an average density of one SNP per kilobase throughout the genome have 

been identified [23].  Genotyping efforts suggest that a majority of the genetic diversity 

between two individuals is captured by SNPs.  Correlation between genetic variants 

arises as a result of common genetic history.  Mutations are initially inherited together 

with alleles on the same chromosome.  Linkage between alleles degrades over time by 

recombination and mutation, but extensive genotyping of single nucleotide 

polymorphisms in four genetically diverse populations through the International HapMap 

Project has identified common haplotypes (i.e. chromosomal loci that tend to be 

transmitted together) [HapMap, 2005; HapMap, 2007] [23, 24].  These studies have also 
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located recombination hotspots where genetic variation occurs with higher frequency.  

This information can be used to genotype a large portion of the genetic sequence with a 

small number of tagSNPs that are highly associated with other SNPs in close proximity.  

 

2.3 Cellular signaling pathways  
 
Cells coordinate internal processes and respond to external stimuli through the use of 

cellular signaling pathways.  Cellular signaling consists of cascades of biochemical 

reactions that act on proteins and small molecules to propagate messages through the cell 

to the nucleus.  Many signaling pathways end in the activation of transcription factors or 

other DNA-binding proteins that then interact with the DNA to induce or repress 

expression of target genes.   

 

The mitogen-activated protein kinase (MAPK) pathway is one of the most actively 

studied signaling pathways.  MAPKs are divided into several major subgroups including 

extracellular signal-regulated kinases (ERK1, ERK2), c-Jun N-terminal kinases (JNK1, 

JNK2, JNK3) and stress-activated protein kinase-2 homologs (p38α, p38β, p38δ) [25, 

26].  Signaling through ERK1/ERK2 pathways regulates cellular proliferation and cell 

division [26].  Activation of JNK pathways is involved with the initiation of apoptosis.   

The p38 MAPK family regulates cell division and gene expression related to osmotic and 

heat shock responses.  In canonical MAPK signaling, MAPKs are activated by a 

phosphorylation cascade through a three-member protein kinase module [27].  For 

example, in ERK signaling, stimuli such as g-protein receptor (Ras) ligand binding 

induce the phosphorylation of an upstream MAP3K (a-Raf, b-Raf, c-Raf1)[28].  



 

 

10 

Activated MAPK3s phosphorylate MAP2Ks (MEK1/MEK2) at two serine residues.  

ERK1,2 is then activated through the phrosphoryaltion of tyrosine and threonine residues.  

Upon activation, ERK1 translocates to the nucleus and activates transcription factors 

including c-Fos, ATF-2, Elk-1, c-Jun, c-Myc, and Ets1.   

 

In addition to signal transduction along canonical pathways, a fair amount of crosstalk 

occurs between MAPK pathways and between MAPK and other canonical pathways.    

Activation of the p38 MAPK pathway inhibits activation of ERK signaling through the 

dephosphorylation of MEK1/2 [28].  In contrast, activation of integrin signaling through 

p21 protein-activated kinase 1 (PAK1) leads to the formation of focal adhesions and the 

phosphorylation of MEK1 [29].  PAK1-mediated phosphorylation enhances the 

association of MEK1 with Raf1 and leads to more efficient activation of ERK signaling 

[29].  Interactions along and between pathways form an elaborate signaling network by 

which cellular processes are integrated and controlled. 

 

2.4 Mendelian and chronic diseases  
 
Deregulation of cellular processes can lead to disease.  Cancer, for example, is 

characterized by uncontrolled cell growth.  Increasing chromosomal instability 

contributes to the accumulation of mutations that lead to advanced stages of disease.  

Mutation of the Ras proto-oncogene is observed in many tumors and causes constitutive 

activation of ERK signaling [26, 30].  Conversely, hypermethylation of CpG islands near 

gene promoters can cause silencing of tumor suppressor genes involved in DNA repair, 

hormone response, p53 signaling, apoptosis and cellular adhesion [31].  These findings 
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Figure 2: Crosstalk between mitogen-activated protein kinase (MAPK) signaling 
pathways.  MAPK pathways are arranged into three-unit modules of protein kinases.  
Stimuli induce activation of downstream MAPKs through a cascade of phophorylation 
reactions.  Context-specific crosstalk is indicated by dashed lines. [28] 
 
 
 
demonstrate that disease is often associated with malfunctions in the cellular regulatory 

mechanism. 

 

Diseases can be loosely grouped into two categories: mendelian and complex disorders.  

Mendelian, or monogenic, disorders are caused by the transmission of a defect at a single 

genetic locus [32, 33].  Examples of mendelian disorders include phenylketonuria, cystic 

fibrosis, Huntington disease, a subset of muscular dystrophies and genes that transmit 
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heritable susceptibility to breast cancer and retinoblastoma [33].  Approximately 1200 

mendelian disease genes have been identified through statistical analysis of the genotypes 

of families that demonstrate the disease phenotype [33].  Once a disease gene has been 

identified, hypotheses regarding the disease mechanism can be generated based on the 

function of the corresponding protein.  Mendelian diseases are relatively rare.  Complex 

disorders, such as cancer, obesity, autism and diabetes, are much more common.  The 

common variant-common disease hypothesis proposes that susceptibility to diseases such 

as heart disease and cancer may be conferred in part by SNPs observed in the majority of 

the population.   In support of this hypothesis, genome-wide association studies have 

identified disease-associated SNPs in many common diseases including rheumatoid 

arthritis, bipolar disorder, coronary artery disease, Crohn’s disease, hypertension, and 

type 1 and type 2 diabetes [34].  Complex disorders are associated with variation at many 

genetic loci as well as environmental and lifestyle factors.  The contribution of multiple 

factors to the onset and progression of complex disorders makes it more difficult to 

isolate the genetic component of etiology. 

 
 
2.5 Microarrays for gene expression and genotyping   
 
Development of microarray platforms for genotyping and measuring gene expression has 

provided a powerful tool in the study of complex disease and other biological 

phenomena.  Arrays consist of ordered arrangements of single-stranded oligonucleotides 

(probes) bound to a solid substrate such as a glass slide or plastic chip.  Current 

technology provides for the representation of over 1 million features on a single array.  
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Microarray analysis enables genotyping and the quantification of gene expression on a 

near to genome-wide scale.  

 

Gene expression microarrays can be classified into two categories: two-color 

complimentary DNA (cDNA) platforms and high-density oligonucleotide arrays.  Two-

color arrays are generally made in-house by spotting PCR-amplified cDNA probes with a 

robotic arrayer [35].  These arrays are used to quantify the relative gene expression in a 

set of samples.  Briefly, mRNA transcripts (target) from a pair of samples are reverse-

transcribed into cDNA and labeled with red and green fluorescent dyes.   

Labeled sample cDNA is hybridized to the array and the relative abundance of mRNA in

 

 

Figure 3: Two-color microarray experimental design 
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each sample can be inferred from the intensity of fluorescence in the red and green 

channels.  High-density oligonucleotide arrays, such as the Affymetrix platforms, have 

generally superseded two-color arrays.  Affymetrix arrays are single channel instruments, 

allowing for absolute quantification of expression [36].  With Affymetrix arrays, the 

abundance of target transcripts is related to intensity of fluorescent signal.  Affymetrix 

platforms use 25 mer oligonucleotide probes to quantify gene expression.  Multiple 

probes are targeted to specific sequences along the coding region of the genes represented 

on the array.  Probes are combined into probe sets consisting of between 11-20 probes in 

order to improve the sensitivity of the assay.  Mismatch probes, designed with one 

nucleotide base change from the perfect match probe, are intended to quantify the extent 

of non-specific hybridization.   

 

 
Figure 4: Probe sets on Affymetrix gene expression microarrays:  Probe pairs are 
designed to hybridize to different segments along the coding region of the target gene.  
Pairs consist of a perfect match and mismatch probe which differ at a single base pair.  
[36]. 
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In addition to gene expression platforms, Affymetrix has developed gene mapping arrays, 

capable of genotyping SNPs distributed evenly across the genome.  Gene mapping arrays 

incorporate 25 mer oligonuclotide perfect match and mismatch probes, similar to 

expression arrays.  Perfect match probes are designed to hybridize to one of two potential 

sequence variations, represented by a single base substitution at the middle of the probe 

sequence [37].  Probes are also included to match both the sense and complimentary anti-

sense DNA strands.  Genotype calls at each SNP location result from the detection of the 

presence or absence of the two associated signals.   

 

 
 

Figure 5: Fluorescent signal scanned from a gene mapping array: Rows two and 
three contain probes designed to hybridize to the A or B allele respectively.  A 
heterozygous individual is identified when both A and B signals are present. [36] 
 
 

A set of standards has been developed to promote the sharing of microarray data.  The 

Minimal Information About a Microarray (MIAME) recommendations stipulate that 

researchers should provide open access to information regarding the experimental  

protocols and analytical methods used, sample and array annotations, and both raw 

intensity and processed expression data [38].  Open access standards ensure that the 
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results derived from microarray analysis can be properly vetted by the scientific 

community and that the maximum benefit is gained from the data. 

 
 
2.6 Biological databases  
 
The rapid accumulation of biological knowledge has prompted the compilation of 

information into biological databases.  Databases maintained by the National Center for 

Biological Information and the European Bioinformatics Institute provide useful 

resources for biological and medical research.  Relevant gene information including the 

gene name, symbol, sequence, function and chromosomal location can all be found at 

these sources [39, 40].  Similar information on proteins is compiled [41].  Databases such 

as the Gene Expression Omnibus [42] and ArrayExpress [43] provide a repository for 

microarray expression datasets.  Other databases have been developed with the goal of 

categorizing genes and proteins into logical groups.  The Gene Ontology (GO) Database 

characterizes genes on the basis of three general categories: molecular function, cellular 

component and biological process [44].  Within each category, a nested vocabulary is 

established to classify genes with increasingly specific terms.  The Kyoto Encylopedia of 

Genes and Genomes (KEGG) Database groups genes and gene products according to 

canonical signaling and metabolic pathways [45].  KEGG also maintains graphical 

representations of pathways for visualization.  Compilation and logical organization of 

biological information in this manner facilitates biological research and accelerates the 

pace at which novel insights can be gained.
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Chapter 3: Microarray Pre-Processing and Analysis  
 

This chapter discusses methodologies for pre-processing and analysis of gene expression 

and gene mapping microarray data.  Pre-processing corrects for technical variation 

through background correction, normalization and summarization of probe-level 

measurements.  Analytical methods for microarray data identify differentially expressed 

genes, groups genes and samples according to common gene expression patterns, and 

detect gene expression patterns and gene sequence variations that are associated with 

phenotype.  

 
 

3.1 Pre-Processing  
 

Microarray technologies take advantage of the specific hybridization of oligonucleotides 

to complimentary sequences in order to quantify the abundance of specific transcripts or 

to characterize genetic variation at specific loci in the genome.  Expression measures or 

genotypes are derived from the processing of fluorescent signals.  In this process, there 

are many sources of obscuring variation, including non-specific hybridization, optical 

noise, reagent batch effects, microarray chip effects, and other stochastic differences in 

laboratory conditions [46].  Obscuring variation must be corrected before analysis so that 

the biological variation between the experimental conditions can be assessed.  Pre-

processing is used to correct for obscuring variation and derive adjusted expression 

values from the observed fluorescence intensity measures.  Pre-processing generally 

consists of three steps: background correction, normalization, and summarization [47].  

Background correction adjusts raw fluorescence intensities to remove signal originated 

from non-specific hybridization and optical noise.  Normalization modifies background-
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corrected intensity values to remove obscuring variation and scale values such that they 

are comparable across arrays.  Summarization is used to generate a single expression 

value for each probeset from the background-corrected, normalized intensity values of 

the constituent probes.         

 
 

3.1.1 MAS 5.0 pre-processing algorithm  
 

Affymetrix developed an algorithm (MAS5) for pre-processing gene expression arrays 

that treats each array separately[48].  The MAS5 background correction procedure 

calculates local background estimates across 16 rectangular regions of the chip mean as 

the lowest 2% of intensity values in each region.  Probe intensities are adjusted by 

subtracting a weighted average of the local background estimates.  Weights are 

dependent on the distance between the probe and the centroid of each region used for 

background estimation.  Following this step, non-specific hybridization is accounted for 

by subtracting the mismatch (MM) probe intensity from the perfect match (PM) probe 

intensity.  A separate procedure based on the average of MM and PM intensities is used 

to avoid negative values if MM is greater than PM.  For normalization, a single array is 

chosen as a reference to which all of the remaining arrays are normalized against.  A 

scale parameter is calculated by dividing the mean intensity of the reference array by the 

mean intensity of each non-reference array.  Non-reference arrays are normalized by 

multiplying the intensity values by the corresponding scale parameter.  The one-step 

Tukey’s biweight algorithm is used to generate expression values for each probeset.  In 

this process, summarized probeset expression values are obtained by a weighted average 

of probeset intensity values in which the weights are defined on the basis of the uniform 
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distance from the median intensity value.  Analysis of benchmark datasets in which 

specific transcripts are spiked-in at certain concentration has shown that MAS5 has 

slightly lower precision than other algorithms [47].   

 

3.1.2 Robust multi-array analysis pre-processing algorithm 
 
Model-based algorithms, such as robust multi-array analysis (RMA) [47], are an 

alternative to MAS5 that use information across arrays to account for obscuring variation.  

It should be noted that RMA ignores the MM intensity values.  Robust mutli-array 

analysis assumes that the observed fluorescent intensity consists of a normally distributed 

background component and an exponentially distributed signal component.  A 

background estimate for each array is obtained by fitting the parametric model to the 

intensity values.  Background is removed by subtracting the estimate from the perfect 

match intensity values.  Background corrected intensity values are normalized using 

quantile normalization [49].  In quantile normalization, intensity values in each array are 

sorted in increasing order.  Intensity values for each probeset are replaced by the average 

intensity values obtained by calculating the mean across arrays.  At last, each array is 

restored to its original order prior to sorting.  Application of quantile normalization 

results in equalization of the empirical distributions of each array.  In order to summarize 

probe-level measures into probeset expression measures, RMA fits the background 

corrected, normalized and log base 2 transformed probe intensities to a linear model [47].  

Model parameters are estimated using median polish to decrease the vulnerability to 

outliers.  Analysis of spike-in benchmark datasets has validated that RMA produces 

expression measures with high accuracy and precision [47].  
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3.1.3 Reference robust multi-array analysis  
 
Expression measures generated from multi-array pre-processing algorithms are highly 

dependent on the data used for normalization.  This becomes a problem when adding new 

samples to an analysis.  Reference RMA (RefRMA) [50] was developed to allow 

investigators to pre-process arrays using the same parameters generated from a reference 

dataset. Initially, RMA is run on a large, biologically diverse training dataset is to define 

a normalization vector through quantile normalization and a probe effect vector based on 

the probe affinities derived from the summarization step.  These vectors can be applied in 

the pre-processing of newly collected arrays to calculate probe set expression measures 

that are comparable to the training dataset.  Reference RMA can also be used to pre-

process large datasets at a lower computational cost than RMA.  

 

3.1.4 Bayesian robust linear model with mahalanobis distance algorithm for genotype 
calling 
 
Algorithms used for pre-processing gene mapping arrays use information across chips 

and SNPs to evaluate the presence or absence of signal and make genotype calls.  One 

such algorithm is the Bayesian robust linear model with Mahalanobis distance (B-

RLMM) [51].  Similar to expression analysis, the goal of pre-processing is to convert 

measured fluorescent intensity values into an estimated genotype while correcting for 

obscuring variation.  For each SNP represented on the array, summarization of probe 

intensity values results in two values, an A and a B signal, representing the two potential 

genetic variations.   Normalization and summarization processes are similar to those used 

in the RMA algorithm.  Briefly, probe intensity measures are quantile normalized, log 
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transformed and median polish is used to estimate probe affinity effects.  No background 

correction is necessary.  Genotype calls are made on the basis of the summarized A and B 

signals.  Transformations are used to represent the summarized signals in two-

dimensional space.  The contrast and size the signals are calculated as described below,  
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where SA and SB are equal to the A and B signals respectively.  In this transformed space, 

the three potential genotypes (ie. homozygous A, heterozygous or homozygous B) are 

grouped into three clusters.  A Bayesian procedure is used to define a unique set of 

clusters for each SNP.  Briefly, a subset of SNPs is selected to generate an initial guess of 

the cluster distributions (prior).  Next, signal values from each SNP are used to generate a 

specific estimate of cluster distributions.  This specific estimate and the generic prior are 

used to generate a posterior estimate of the cluster distributions.  Genotype calls are made 

by calculating the Mahalanobis distance between the transformed SNP signal values and 

the three clusters.  The genotype corresponds to the minimum of these distances.  Use of 

the B-RLMM algorithm produces a greater than 98% accurate call rate on reference 

samples derived from the HapMap project [51].   

 

3.2 Gene expression microarray analysis 
 
3.2.1 Differential expression analysis  

 
Identification of differentially expressed genes is a common goal in microarray analysis.  

Given microarray data from samples in a number of classes, differentially expressed  
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Figure 6: Genotype calling with B-RLMM – Genotypes represented as points in 
transformed space. Green points represent homozygous B genotypes, blue points 
represent heterozygous AB genotypes and red points represent homozygous A genotypes.  

 
 

genes are expressed at a high level in condition A and a low level in condition B or vice 

versa.  Initially, differentially expressed genes were identified using fold-change [52].  

However, fold-change is less than optimal because it neglects the variance in expression 

measures.  Statistical tests such as the Students t-test [53], anaylsis of variance (ANOVA) 

[54], or the Mann-Whitney test [55] have largely replaced fold-change in differential 

expression analysis.  Parametric tests use the class-specific mean and variance to evaluate 

whether there is enough evidence to reject the null hypothesis of no differential 

expression.  The Students t-test for example calculates a t-statistic as the difference in 

condition-specific means divided by an estimate of the pooled standard deviation [53].  

T-statistics much higher or lower than zero indicate differential expression.  A p-value 

can be calculated from the t-statistic to define the probability that the result could have 
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been obtained by chance.  Typically, p-values less than 0.05 indicate that the null 

hypothesis can be rejected.  In expression analysis, the p-value must be adjusted to take 

into account the number of hypotheses tested (e.g. 5% of ~20000 genes tested is ~1000 

false positive rejections of the null hypothesis).  Multiple testing procedures such as the 

Bonferonni correction  [56] or calculation of the false discovery rate [57] are used for this 

purpose.  The Bonferonni correction simply divides the original significance level by the 

number of genes tested [56].  This correction is highly conservative and often results in 

no differentially expressed genes.  The false discovery rate estimates the proportion of 

differentially expressed genes that are false positives [57].  An approximation of the false 

discovery rate can be obtained by permuting the class of the samples, calculating the test 

statistic and finding the number of genes that pass the significance threshold based on the 

permuted data [53].  Once a set of differentially expressed genes have been identified, 

new hypotheses regarding the active biological processes in each class of samples can be 

generated.  

 
 

3.2.2 Unsupervised classification  
 
Unsupervised classification methods utilize distance metrics to identify genes or samples 

with similar expression patterns.  A gene expression profile can be defined as the vector 

of gene expression values across all samples or the vector of expression for all genes in a 

given sample.  Genes with similar expression profiles tend to be co-regulated or involved 

in common cellular mechanisms [58].  With this observation, unsupervised classification 

methods have been used to infer the function of poorly characterized genes.  In cancer 

studies, samples with similar expression profiles tend to have similar clinical 
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characteristics.  Clustering has been used to define cancer subtypes for prognostic 

purposes and selection of therapeutic strategies [59, 60].    Hierarchical clustering is an 

example of an unsupervised classification method.  In hierarchical clustering, a nested 

tree-like structure is created by grouping the two most similar expression profiles in an 

iterative fashion [61].  Model-based clustering is an adaptation of unsupervised clustering 

methods that can be used to determine the confidence in cluster membership [62].  In 

model-based clustering, clusters are defined as multivariate normal distributions.  

Classification is based on fitting cluster-specific distributions to the data using either 

expectation maximization [63-65] or Bayesian methods [62, 66, 67].  Unsupervised 

classification methods are well suited for class-discovery in which the underlying 

structure of the dataset is unknown.  

 
 

3.2.3 Supervised classification  
 
Supervised classification methods use statistical hypothesis tests to identify significant 

genes and create a function capable of predicting the class of a new set of samples.  This 

concept is similar to machine learning and consists of three steps: feature selection, 

classifier specification and evaluation of the predictor on an independent set of samples.  

Golub et al. used supervised classification to classify leukemia samples into acute 

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) [59].  Genes 

associated with the ALL versus AML class distinction were identified using differential 

expression analysis.  Specifically, the signal to noise ratio defined as the difference 

between class-specific mean expression values over the sum of the standard deviation in 

expression values from each class.  A set of n genes with signal to noise ratios farthest 
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from zero were selected as informative genes for classification.  The number of genes 

parameter n was optimized using cross-validation on the training data.  Classification of 

test samples was based on a weighted voting scheme.  For each gene, the vote is 

calculated as the average expression value of the training samples subtracted from the 

expression value of the test sample.  The class of the test sample is calculated based on 

the linear combination of the votes of each gene weighted by the associated signal to 

noise ratio.  Classifiers are evaluated on an independent set of testing samples in which 

the classification is known.  It is important to maintain the independence of the training 

and testing data to avoid biasing the classifier [68].  Supervised classification methods 

have been used to classify cancer samples on the basis of biomarker expression, lymph 

node involvement and subtype [59, 68].  

 

3.2.4 Functional enrichment analysis 
 
Once an interesting gene set has been identified through differential expression analysis 

or other means, further analysis can be used to determine which cellular processes are 

over-represented.  Functional enrichment analysis compares the interesting gene set to a 

reference set of genes (ie. all genes represented on a microarray) [69].  Information from 

the Gene Ontology [44] or Kyoto Encyclopedia of Genes and Genomes [45] can be used 

to identify genes with common function.  The hypergeometric test can be used to assess 

the significance of enrichment.  Functional enrichment analysis can be used to infer 

which biological processes are activated or repressed by upregulation or downregulation 

of the genes in the interesting gene set.   
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3.3 Genotype analysis  
 

3.3.1  Linkage mapping  
 

Linkage analysis of genomic sequence data is used to identify genetic loci that are co-

transmitted more than expected by chance under independent inheritance [70].  Both 

parametric and model-free methods have been developed to assess linkage.  Parametric 

linkage analysis depends on the estimation of the recombination fraction, or the 

probability of recombination between two genetic loci, based on the observed genotype 

of related individuals.  The genetic model of disease, including the mode of inheritance, 

frequency of the disease allele and penetrance of the genotype, must also be defined [70].  

Linkage is determined by the calculation of a logarithm of the odds (LOD) score by a 

likelihood ratio test comparing the likelihood of linkage between a putative disease locus 

and a set of mapped marker loci against the null hypothesis of independent inheritance 

[70].  An LOD score greater than 3 indicates significant linkage.  Non-parametric 

methods operate independently of genetic models by comparing the number of shared 

alleles between affected sibling pairs with the expected value [70].  Analysis of the 

linkage between genetic markers has been used to map the relative location of markers or 

disease loci in the genome.   Linkage analysis is often used as a first pass to identify 

regions of interest for follow-up studies.        

 

3.3.2 Association studies  
 
Association testing of genomic data identifies alleles that contribute to disease 

susceptibility by comparing the frequency of occurrence in subjects with disease versus 

unaffected control individuals [71].  Simple association studies analyze the distribution of 
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alleles in case and control populations with 2 x 2 contingency tables.  Significance of 

association can be determined with the chi-square distribution [71].  The case-control 

study design may give false positive results in the presence of population stratification.  

Allele frequencies vary between different sub-populations according to genetic history.  

This issue can be avoided by stratifying the subject population on the basis of ethnicity.  

Methods have also been developed to estimate the population structure and adjust the test 

statistics appropriately [72, 73].  Alternatively, family-based association tests can be 

used.  Family-based association tests (FBATs) avoid the confounding effect of population 

structure by evaluating the test statistic within families [74].  The FBAT statistic 

compares the genotype of affected and unaffected offspring to the expected value derived 

from parental genotypes under a Mendelian inheritance model.  Signficance can be 

determined by comparing the magnitude of the test statistic against the normal 

distribution.  Due to linkage disequilibrium, associated markers are considered to be in 

close proximity to the susceptibility polymorphism.  In gene coding regions, analysis of 

the sequence and structure of homologous proteins can be used to differentiate between 

disease-related and disease-causing loci [75, 76].  
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Chapter 4: Prediction potential of candidate biomarker sets 

4.1  Summary  

This chapter discusses the identification and validation of candidate biomarker sets 

associated with molecular subtype and/or prognosis in multiple cancer types by the 

analysis of gene expression microarray data.  Independently derived expression profiles 

of the same biological condition often have few genes in common.  In this study, we 

created populations of expression profiles from publicly available microarray datasets of 

cancer (breast, lymphoma and renal) samples linked to clinical information with an 

iterative machine learning algorithm.  ROC curves were used to assess the accuracy of 

each profile for classification.  We compared the accuracy of profiles correlated with 

molecular phenotype against profiles correlated with relapse-free status.  In addition, 

profiles identified with supervised univariate feature selection algorithms were compared 

to profiles selected randomly from a) all genes on the microarray platform (random 

selection) and b) a list of known disease-related genes (a priori selection).  We also 

determined the relevance of expression profiles on test arrays from independent datasets, 

measured on either the same or different microarray platforms.  Highly discriminative 

expression profiles were produced on both simulated gene expression data and expression 

data from breast cancer and lymphoma datasets on the basis of ER and BCL-6 

expression, respectively.  Use of relapse-free status to identify profiles for prognosis 

prediction resulted in poorly discriminative expression profiles.  Supervised feature 

selection resulted in more accurate classifications than random or a priori selection, 

however, the difference in prediction error decreased as the number of features 

increased.  These results held when expression profiles were applied across datasets to 
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samples profiled on the same microarray platform.  Results suggest that many gene sets 

predict molecular phenotypes accurately.  Given this, expression profiles identified using 

different training datasets should be expected to show little agreement.  In addition, we 

demonstrate the difficulty in predicting relapse directly from microarray data using 

supervised machine learning approaches.   

 

4.2  Background 

Clinically validated biomarkers are highly valued in cancer pathology for diagnostic and 

prognostic purposes.  Biomarker sets are also used in clinical trials as early indicators of 

drug efficacy and toxicity.  Molecular profiling technologies have the potential to enable 

high-throughput candidate biomarker identification.  Use of oligonucleotide or spotted 

cDNA microarrays allows for the quantification of the mRNA concentration of thousands 

of gene products simultaneously.  Although measurement of the entire proteome is not 

yet possible, advances in mass spectrometry and chromatography provide similar 

capabilities at the protein level.  Molecular profiling approaches have been applied 

towards the study of chronic diseases, including muscular dystrophy [77], diabetes [78], 

arthritis [79], cardiovascular disease [80] and cancer [59, 81-84]. Microarray studies in 

which the class or phenotype (e.g. health vs. disease, responders vs. non-responders, etc.) 

of all samples is known can be used to identify discriminative features (i.e. gene 

expression profiles) that are statistically associated with class distinction [59, 82-84].  

These features can be used as potential biomarker sets to determine the phenotype of new 

samples and guide therapy appropriately. 
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Detection of candidate biomarkers from high-dimensional molecular datasets entails 

separation of signal from noise.  As such, techniques adapted from signal processing and 

machine learning can be applied.  The goal of machine learning is to reliably predict the 

class, or phenotype, of a new sample given only a set of measured input variables.  The 

definition of a function that equates input variables to response is called supervised 

learning. In general, supervised learning consists of three steps: feature selection, 

decision rule specification and estimation of generalization error [68].  Feature selection 

is the identification of informative features from noisy or uncorrelated features in the 

dataset.  Decision rule specification involves selection of a classification algorithm and 

definition of algorithm parameters by cross-validation [68, 85].  Feature selection and 

decision rule specification produce a classifier through the use of cross-validation on 

training data.  In this process, there is a risk of overfitting the training data, in which the 

classifier is trained to recognize noise and not class distinction.  The estimation of 

generalization error, or the misclassification rate expected when the classifier is applied 

to new samples, can be used to investigate the likelihood of overfitting.  An unbiased 

estimate of the generalization error can only be obtained from independent test data [68]. 

 

Feature selection is particularly important in gene expression profiling, in which the 

number of features (genes) is much larger than the number of observations (microarray 

data samples).  Identification of discriminative features eases the process of data 

interpretation and communication, decreases computation time for training, and, in 

biomarker identification, enables the development of reliable clinical assays.  Numerous 

feature selection algorithms can be found in the literature, most of which rank features in 
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a univariate manner, sorting them on the basis of correlation with class distinction [53, 

85, 86].  In molecular profiling studies, univariate methods are used more often than 

multivariate feature selection methods [87-89] due to their intrinsic simplicity and the 

higher computational cost of multivariate methods.   

 

Application of supervised feature selection methods in microarray analysis identifies a set 

of genes whose expression profiles are most correlated with response.  However, 

discriminative feature sets identified in multiple microarray studies of the same disease 

state or biological condition typically share few common genes [90-92], indicating 

perhaps that multiple gene subsets can be used as effective biomarker panels.  Many 

genes cluster into similar expression profiles and may have similar roles in signaling or 

metabolic pathways.  Variation between studies can also be partially attributed to 

biological variations between sample populations and technical variations, such as the 

microarray platform (cDNA vs. oligonucleotide), protocol and analytical techniques used 

[93, 94].  Moreover, selection of discriminative genes within a given dataset is dependent 

on the selection of training set arrays [90, 95-97].       

 

Given the presence of multiple, generally exclusive gene sets related to disease states 

such as metastatic breast cancer, it is appropriate to ask whether feature selection 

identifies gene expression profiles that classify better than is expected by chance, i.e. 

better than randomly selected gene sets.  It is also important to determine to what extent 

technical and biological variability between studies affects the generalization error of 

classifiers trained on expression profiles.  In this study, we analyzed a multitude of 
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publicly available microarray datasets consisting of expression data linked to clinical data 

for breast cancer, renal cancer, and lymphoma [60, 82, 98-102].  Decision rules, 

composed of features associated with response, were created using supervised, univariate 

feature selection algorithms [81, 85].  Our analysis considered multiple microarray 

technologies (Affymetrix, cDNA spotted arrays, cDNA oligonucleotide arrays), 

normalization, feature selection and classification methods.  Our results point to the 

efficiency of gene sets randomly selected from known disease-related genes in the 

accurate classification of cancer samples according to molecular phenotypes. Results also 

point to the challenges of predicting relapse directly from microarray data annotated with 

clinical outcome information.  

  

4.3  Materials and methods 

4.3.1  Microarray datasets 

Publicly available gene expression data for a multitude of cancer types (breast cancer, 

lymphoma, and renal cancer) was collected from the online repositories Gene Expression 

Omnibus (GEO) [42] and Stanford Microarray Database (SMD) [103] (Table 1). All 

datasets used in the study were linked to clinical data including outcome and were further 

restricted to exclude datasets with less than 100 samples.  Expression datasets analyzed in 

this article included data from multiple platforms (Affymetrix, cDNA, Hu25K), allowing 

us to assess the platform dependence of our results.  Typically, datasets were collected 

from population-based studies with no age/status restrictions.  Two exceptions to this rule 

are as follows: 1) dataset GSE2034 was restricted to breast cancer patients with lymph-  
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Table 1 - Description of microarray datasets used in biomarker set analysis 
Disease  

Type  Datasets Platform # of 
Arrays Restrictions Reference 

Breast 
Cancer 

GSE3494 HG-U133a 251 a Miller et al. [99] 
GSE2034 HG-U133a 286 b, c Wang et al. [101] 
NKI Hu25K 295 d, e, f Van de Vijver et al. [82] 
Sorlie cDNA 121 a Sorlie et al. [60] 

Diffuse 
large B-Cell 
Lymphoma 

Broad HG-U133a 176 a Monti et al. [100] 

GSE4475 HG-U133a 220 a Hummel et al. [98]  
Renal 

Carcinoma Zhao cDNA 177 a Zhao et al. [102]  

a. No restrictions 
b. Lymph-node negative 
c. No adjuvant therapy 
d. < 5 cm in diameter 
e. <= 52 years at diagnosis 
f. No previous history of cancer 
 
 
 

node negative disease and with no adjuvant therapy; and 2) dataset NKI  was restricted to 

patients with tumors less than 5 cm in diameter, and under age 52 at diagnosis (Table 1).   

 

Each microarray dataset was analyzed independently to evaluate the error in predicting 

relapse (or histological expression of a  surrogate biomarker of relapse) using univariate 

feature selection compared to the error from biomarker sets chosen randomly from either 

the entire set of genes represented on the microarray (random) or a smaller set of 

experimentally validated cancer-associated genes (a priori).  To this end, we used an 

iterative supervised, machine-learning approach, described below.  For completeness, we 

tested the dependence of our approach on the use of different pre-processing, feature 

selection and classification algorithms and cross-validation schemes.  The primary focus 

of our study was on breast cancer, where multiple datasets were available for analysis.  

Lymphoma and renal carcinoma datasets were used to assess the relevance of our 
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conclusions in other disease states.  All work described in this study was carried out using 

the R statistical environment [104] and was duplicated independently in Matlab unless 

otherwise noted. 

 

4.3.2  Pre-processing microarray data 

Microarray datasets were collected in raw format when available (GSE3494, GSE4475).  

Two pre-processing algorithms, Robust Multi-Array Analysis (RMA) [46] and MAS 5.0 

[48], were applied to these datasets to determine the effect of pre-processing on 

downstream analysis.  RMA was implemented with the Bioconductor package [105] in 

the R statistical environment [104].  MAS 5.0 was implemented with Array Express Lite.  

All other datasets were obtained in pre-processed form.  The methods used for pre-

processing in these cases are summarized briefly as follows.  The Broad and GSE2034 

datasets were pre-processed using MAS 5.0.  In the GSE2034 dataset, only chips with an 

average signal intensity of greater than 40 and a background signal of less than 100 were 

included and probe sets were scaled to a target intensity of 600 [101].  Sorlie and Zhao 

datasets were obtained from the Stanford Microarray Database (SMD) [103] in log base 2 

form.  Spots flagged by the scanning software were not included.  Missing values were 

imputed using a nearest neighbor algorithm [106].  Expression values in the NKI dataset 

were quantified by averaging the intensity across the Cy3 and Cy5 channels and 

subtracting a local background estimate [82].  Each channel was normalized to the mean 

intensity across genes. 
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4.3.3  Probe set annotation 

Probe sets on all platforms were annotated using gene identifiers maintained by the 

National Center for Biotechnology Information (NCBI).  Affymetrix probe sets were 

annotated using the hgu133a package in R.  Stanford clone identifiers were annotated 

using the SOURCE database [107].  Stanford cDNA datasets consisted of samples 

processed on different generations of cDNA platforms.  To obtain comparable data 

within each dataset, we limited the dataset to the clone identifiers represented on all 

generations.  This step resulted in 8404 and 39414 clone identifiers for the Sorlie and 

Zhao datasets respectively.    The NKI probe sets were annotated using Unigene cluster 

identifiers from Unigene build 158 [108].  Retired cluster identifiers were identified and 

re-annotated using records from Unigene.  These identifiers are sometimes split into 

multiple clusters.  In these cases, annotation was not possible.  These probe sets were 

excluded from the analysis.  By retaining only the probe sets that could be definitively 

annotated, we were left with 8069 probe sets in the NKI dataset for further analysis. 

 

4.3.4  Mapping between probe sets and genes  

A single probe set representing each gene was selected to correct for the varying 

redundancy of gene representation on microarray platforms.  In each platform considered 

in this study, approximately 60% of genes were represented by a single probe set.  Genes 

represented by multiple probe sets were dealt with in the following manner.  For 

Affymetrix datasets, probe set suffixes were used to remove redundant probe sets.  For 

the HG-U133a chip, probe sets are encoded with _at, _s_at and _x_at suffixes that 

describe the quality of probe design [109].  All _x_at probe sets (~10% of probe sets on 
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the array) were excluded.  For genes represented by an _at probe set and multiple _s_at 

probe sets, the _s_at probe sets were discarded.  Approximately 20% of redundant probe 

sets could be dealt with in this manner.  In cases in which a unique probe set could not be 

chosen by the suffix, the average expression value of the remaining probe sets was used.  

For the non-Affymetrix probe sets, a unique probe set was chosen by selecting the probe 

set with the highest variance across samples. 

 

4.3.5  Feature selection 

Microarray datasets were iteratively divided into learning sets (LS) and test sets (TS) to 

create a population of classifiers and determine their classification performance in a 

Monte Carlo cross-validation approach [110].  Two types of response variables were used 

to divide samples into groups of poor prognosis and good prognosis, either histological 

expression of biomarkers (ER status in breast cancer, BCL-6 status in lymphoma) or 

relapse-free survival, in which relapse is defined as disease recurrence or death from 

disease.  Learning sets and test sets were selected by first dividing datasets by response 

variable and then randomly selecting equal proportions of arrays from each class.  Two 

different partitions were used: 2/3 LS, 1/3 TS and 1/2 LS, 1/2 TS.  Learning sets were 

used to select informative features and train the decision rule.  Genes were selected from 

the LS in a supervised manner using a univariate feature selection algorithm [85].  

Briefly, each gene was ranked by the ratio of between class sum of squares to within 

class sum of squares.  High scoring genes have large between class variances and small 

within class variances and are therefore correlated with class distinction.  A second 

method was used to determine if our results were sensitive to feature selection algorithms 
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[81].   In this second method, genes are ranked by the signal to noise ratio, namely the 

ratio of the difference in class-specific  means  to  the  sum  of  the  class-specific  

standard  deviations  [81].  This is quite similar to the two-sample t-statistic.  We use the 

term signal to noise ratio to maintain consistency with previous literature in the field.  For 

comparison, genes were selected randomly from either the entire list of genes represented 

on the array (random), or a list of experimentally validated disease-related genes obtained 

from the Ingenuity Pathways Database [111] (a priori). All three feature sets (feature 

selected, a priori, and random) were used in downstream analyses. 

 

4.3.6  Classification 

Two classification algorithms, diagonal linear discriminant analysis (DLDA) and k- 

nearest neighbour (NN, k = 3), were used to generate decision rules on the basis of the LS 

data.  The NN algorithm classifies test samples according to the class of the three closest 

samples in the training set using Euclidean distance [85].  DLDA is based on the 

maximum likelihood discriminant rule [85].  These relatively simple classifiers have been 

shown to give accurate classifications in the analysis of expression data and appear to 

perform as well as or better then more sophisticated algorithms, such as support vector 

machines, and resampling methods, such as bagging or boosting [85, 86]. 

 

4.3.7  Validation 

To obtain an estimate of generalization error, decision rules were applied to 

the corresponding TS.  The confidence (δ) with which each sample was classified was 

calculated as follows:  
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in which dR and dN are distances measured between the test sample and the centroid of the 

poor and good prognosis LS, respectively.  Samples are classified as good prognosis if 

the score is greater than 0.5 and vice-versa.       

 

With this methodology, the classification performance of the decision rules could be 

visualized and compared with the use of receiver operating characteristic (ROC) curves 

[112].  ROC curves plot sensitivity, or detection rate, (β) against 1-specificity, or false 

alarm rate (α). 
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Classification performance was determined from the area under the curve (AUC).  

Accurate classifiers have high sensitivity across the range of specificity and therefore 

have a large AUC.  ROC curves were generated for each classifier using the ROC 

package in R.  The score δ was divided into thresholds and β and α were calculated at 

each cut-off point.  The AUC of each classifier was then calculated using the sum of 

trapezoids method.  The entire process of feature selection, decision rule specification 

and estimation of generalization error was repeated 100 times to determine the expected 

performance of each gene set on a randomly selected set of samples.  Average ROC 

curves were calculated from the distribution of detection rates at given false alarm rates 

[113].  Empirical confidence intervals were obtained as the 97.5% and 2.5% quantiles of 
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this distribution.  The expected classification performance was quantified using a 

prediction error metric E defined as 1-AUC.  A smaller E value corresponds to a more 

accurate classifier. 

 

4.3.8  Simulated expression data 

Simulated microarray datasets were generated to verify that the machine learning 

algorithm described above leads to accurate classification of well-separated data.  

Simulated expression data was created in the manner described by Bura and Pfeiffer 

[114].  Datasets consisted of 100 observations with 1000 variables each, corresponding to 

arrays and genes respectively.  Half of the observations were labeled as class 1 and the 

remainder were labeled class 0.  All data for class 0 samples were drawn from a 

multivariate normal distribution with mean 0 and a covariance matrix of Σ.  Five percent 

of genes were simulated to be differentially expressed.  For class 1 samples, differentially 

expressed genes were drawn from a mixture of two multivariate normal distributions with 

means 0 and 2 and covariance structure Σ.  The mixing probability was 1/2.  Non-

differentially expressed genes were generated from the same distribution as class 0 

samples.  The covariance matrix Σ = σij was generated with a block structure with σij = 

0.2 for | j-i | ≤ 5 and 0 otherwise to model gene co-regulation. 

 

4.3.9  Statistical significance of molecula profile prediction 

To determine the significance of the calculated prediction error metric E for molecular 

profile prediction in breast cancer and lymphoma, the machine learning algorithm was 

repeated 1000 times with permuted class labels.  An empirical p-value was calculated as 
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the fraction of decision rules based on permuted class labels that performed better than 

the expected classification performance, E (described above),  of decision rules based on 

true class labels.  Permutation processes give an estimate of the likelihood that the true E 

value could be obtained by chance alone and are frequently used in similar studies for 

this purpose [53, 115]. 

 

4.3.10  Independent validation 

In addition to cross-validated generalization error, we determined the classification 

accuracy across datasets.  To this end, decision rules trained on one dataset were tested in 

both the corresponding test subset and datasets obtained by other laboratories.  For across 

platform comparisons (Affymetrix vs. Hu25K, Affymetrix vs. cDNA), probe sets were 

matched by annotation to Entrez Gene identifiers. 

 

4.4  Results and Discussion  

4.4.1  Simulated datasets confirm the performance of classification algorithms 

Analysis of simulated gene expression datasets indicated the effectiveness of the feature 

selection and classification algorithms used in this study to predict binary endpoints.  

Simulated datasets consisting of 100 observations and 1000 features were designed to 

approximate a binary classification problem [114].  Expression values were drawn from a 

multivariate normal distribution with mean equal to 0.  Differentially expressed genes 

were simulated from a mixture of the original distribution with a second multivariate 

normal distribution with mean equal to 2.  Our computations, presented in Figure 7, 

produced highly discriminative decision rules on simulated expression data.  Elimination 
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of differential expression, simulated by generating all values from the same distribution, 

resulted in classifiers with poor classification performance.  This indicates that our 

algorithm accurately classifies well-separated data and avoids over-fitting the training 

data (Figure 7).  
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Figure 7 - Classification of Simulated Gene Expression Data. Receiver operating 
characteristic (ROC) curves showing classification performance of DLDA classifiers on 
simulated gene expression data.  The symbols α and β are 1-specificity and sensitivity as 
described in the Methods section.  Solid lines are average ROC curves over 100 iterations 
of training and test set selection.  Dashed lines are empirical 95% confidence intervals.  
Bar plots give the mean 1-AUC (E) with error bars showing empirical 95% CIs.   
 
 
 
4.4.2  Univariate feature selection is a poor predictor of relapse in breast, lymphoma 
and renal cancers 
 
Computations on breast cancer microarray datasets from four independent cohorts of 

patients (GSE3494, GSE2034, NKI, Sorlie; Table 1) indicate the poor potential of 

univariate feature selection in predicting relapse-free survival.  Figure 8 shows the 



 

 

42 

classification error metric E (described in the methods section) as a function of the 

number of features used for classification. Columns 1 and 2 in this figure correspond to 

classification with respect to ER-status and relapse-free survival, respectively. Dark gray  

bars indicate univariate feature selection whereas light and medium gray bars correspond, 

respectively, to random selection from either the entire gene set or from an a priori gene  

set. Error bars indicate the variance over one hundred iterations of the machine learning 

algorithm.  As the figure shows, decision rules trained on relapse-free status classify test 

samples with low accuracy. Analysis of diffuse large B-cell lymphoma (DLBCL) and 

conventional renal cell carcinoma (CRCC) datasets similarly yielded high errors in the 

prediction of relapse-free status (Figure 9).  Survival time is a multi-factorial response 

variable with many potential confounding factors (e.g. lifestyle, age, etc.) that may affect 

gene expression.  The influence of these confounding factors may result in tumor classes 

that are highly heterogeneous in regards to gene expression.  These results indicate the 

difficulty in predicting relapse-free status in several forms of cancer from microarray data 

with the use of univariate feature selection. 

 

3.4.3  Univariate feature selection as well as randomly chosen features from a priori 
knowledge set classifies microarray data according to molecular phenotype 
 
In contrast, machine learning methods classified microarray datasets according to 

molecular phenotype with high accuracy (Figure 8).  In analysis of breast cancer datasets, 

Figure 8 shows that decision rules trained on ER status classified test samples more 

accurately than decision rules trained on relapse-free status. These results agree with 

previous studies in that the expression profiles of many genes seem to be correlated with 
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Figure 8 - Prediction error of DLDA classifiers trained and validated on breast 
cancer datasets.  Column 1: Classifiers trained on ER-status.  Column 2: Classifiers 
trained on relapse-free status.  E is the mean 1-AUC of the corresponding set of ROC 
curves, calculated as described in the Methods section.  Error bars show empirical 95% 
CIs. 
 
 
 
ER status [83, 116].  Estrogen receptor is a hormone-activated transcription factor [117] 

and also participates in cellular signaling by heterodimerization with membrane-bound 

receptors such as the endothelial growth factor receptor [117].  Loss of estrogen receptor 

expression inhibits ER-responsive gene transcription and signaling in downstream 

pathways and therefore can be expected to affect the expression of downstream genes in a 

similar manner across tumors.  Consistent with the analysis of breast cancer data, 

lymphoma datasets exhibited low errors in the prediction of BCL-6 status.  BCL-6 is a 

zinc-finger protein that functions as a transcriptional repressor [118] and is expressed in 

germinal center B cells [119].  In DLBCL, BCL-6 expression, assessed by both 

immunohistochemistry and RT-PCR, has been associated with better survival in several 

studies [120, 121].  Univariate feature selection may be successful in predicting 

molecular phenotype due to the fact that expression profiles of many genes are correlated 

with changes in expression of these transcriptional modulators. 

 

To determine whether gene sets identified with supervised feature selection are uniquely 

correlated with response, decision rules were generated both with and without supervised 

feature selection.  In the absence of supervised feature selection, gene sets were drawn 

randomly from either the entire genechip (random selection) or a list of known disease-

related genes (a priori selection)) (Figure 8).  Random selection of subsets of n genes 
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Figure 9 - Prediction error of DLDA classifiers trained and validated on diffuse 
large B-cell lymphoma and conventional renal cell carcinoma datasets.  Column 1: 
Classifiers trained on BCL-6 status.  Column 2: Classifiers trained on relapse-free status. 
Row 1: Diffuse large B-cell lymphoma.  Row 2: Conventional renal cell carcinoma.  E is 
the mean 1-AUC of the corresponding set of ROC curves, calculated as described in the 
Methods section. Error bars show empirical 95% CIs.  
 
 
 
gives a baseline error rate expected for classification based on decision rules with n 

features.  A priori selection provides a baseline error rate based on the known pathology.  

In Figure 2, we demonstrate that decision rules that incorporate supervised feature 

selection classify test samples more accurately than decision rules using a priori selection 

or random selection.  However, in molecular phenotype prediction, the difference in 

prediction error decreases drastically as the number of features increases.  This indicates 
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that the power of univariate supervised feature selection methods lies in identifying small 

sets of discriminative features.   

 

Exclusivity of predictive genesets has been demonstrated previously by investigating the 

classification potential of feature sets found down the list of genes ranked by their 

association with response [90].  Consistent with these previous observations, we 

demonstrate that randomly selected gene subsets classify molecular phenotype much 

better than the 50% error rate expected from random classification.  In addition, limiting 

the feature space to genes that have demonstrated disease-relevance in the experimental 

setting improves classification performance of randomly selected gene sets.  These results 

suggest that the presence of multiple, mostly exclusive biomarker sets identified from 

different studies [82, 83, 99, 101] can be partially attributed to the large number of 

combinations of discriminative feature sets [96]. 

 

4.4.4  Error in predicting relapse is insensitive to normalization and classification 
algorithms  

 
Our computations indicate that classification error is only weakly dependent on 

normalization, feature selection, classification and training/testing partition.  Breast 

cancer dataset GSE3494 was used to assess the effects of these classification parameters 

on predicted error.  Results depicted in Figure 10 demonstrate that these parameters have 

little effect on the prediction of relapse-free survival, whereas pre-processing 

methodologies may have a small impact on the prediction error of ER status. 
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Figure 10 - Senstivity of classifiers to normalization and machine-learning 
parameters. Decision rules trained and validated on breast cancer dataset GSE3494 
using supervised feature selection. Row 1: Expression values obtained using different 
pre-processing algorithms.  Row 2: Different univariate feature selection methods. Row 
3: Different classification schemes. Row 4: Different mode of partition into training and 
test data.  E is the mean 1-AUC for the corresponding set of ROC curves, calculated as 
described in the Methods section.  Error bars are empirical 95% CIs. 
 
 
 
4.4.5  Leave-one-out cross-validation scheme may lead to overfitting 
 
It has been shown that decision rules based on microarray data are capable of clearly 

differentiating tumors by outcome when all data is used for feature selection in a leave- 

one-out cross-validation scheme.  Our findings validate previous results in the literature 

concerning, for example, the prediction of relapse in lymphoma [81].  In their study, 

Shipp et al. [81] used a machine learning procedure consisting of feature selection with 

the signal to noise ratio, classification by a weighted-voting scheme and leave one out 

cross-validation on a cohort of 58 lymphoma patients linked to clinical outcome.  

Importantly, the final geneset was selected from the consensus of all 58 leave-one out 

models of the data.   Using Kaplan Meier analysis [122], Shipp et al. demonstrated a 

significant difference in survival between the classes predicted by machine learning.  We 

replicated their calculations in this study using a larger microarray dataset (GSE4475, 

Table 1) and found similar results using both their and our methods of feature selection 

and classification (Figure 11, Row 1). Next, we divided the data in GSE4475 into a 

learning set (randomly selected set of 58 arrays) and test set (remaining 101 arrays) and 

computed Kaplan Meier survival curves.  Results shown in row 2 of Figure 11 

demonstrate the diminished capacity to identify groups of tumors with different survival 

rates when complete separation of training and testing sets is maintained in the    
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Figure 11 - Kaplan-Meier plots of survival rates for predicted tumor classes with 
different feature selection/cross-validation methods. Classifiers trained on the basis of 
relapse-free status on diffuse large B-cell lymphoma dataset GSE4475.  Column 1: Signal 
to noise ratio.  Column 2: Ratio of between class to within class sum of squares.  Row 1: 
Leave-one out cross-validation.  All data used for training and testing.  Row 2: Training 
and test sets selected randomly from the dataset.  Training based on leave-one out cross-
validation.    
 
 
computations.  If feature selection is included in the cross-validation procedure, such that 

features selected only from training data were applied to the test data, the difference in 

survival time between predicted classes decreases.  These results suggest the possibility 
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of overfitting in previously reported classifiers based on microarray data linked to clinical 

microarray data linked to clinical outcome. 

 

4.4.6  Molecular phenotype prediction is maintained in across dataset cross-validation 
on the same microarray platform 
 
Next, we tested whether prediction error calculated by within dataset cross-validation 

holds when decision rules trained on one dataset are applied to arrays from other datasets 

profiling similar populations. Within dataset cross-validation may be biased according to  

the degree of non-specific correlation between the training and test data.  Non-specific 

correlation can be described as technical noise that arises in sample preparation, 

hybridization and scanning and results in higher correlation between data collected from 

the same lab compared to data collected in different labs [93].  To investigate this issue 

further, we used the Affymetrix dataset GSE3494 for developing decision rules for ER 

status prediction and applied these rules  to arrays profiled on either the same (GSE2034) 

or different microarray platforms (NKI and Sorlie). There was no need to validate relapse 

prediction across datasets since our results showed poor prediction capacity even for 

within dataset cross-validation. Figure 12 illustrates the results of this analysis in the form 

of ellipses whose size and shape indicate the distribution of prediction errors. The column 

on the left (Column 1) corresponds to computations using univariate feature selection and 

the column on the right (Column 2) indicates results corresponding to random selection 

from an a priori dataset. The figure shows that the prediction error and its variance were 

much lower on test datasets profiled on the same platform (Figure 12, Row 1) in 

comparison to test datasets using different platforms (Figure 6, Rows 2 and 3).  The same 

trend held true when the decision rule was based on feature selection from a random set 
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Univariate Feature Selection A Priori Selection 

  

  

  
 
Figure 6. Prediction error of DLDA classifiers on breast cancer datasets by within-
dataset and across-dataset cross-validation. Decision rules trained on ER-status.  
Ellipses are centered on the mean 1-AUC of the associated ROC curves.  The major axis 
points in the direction of maximum variance.  Lengths of the major and minor axes are 
proportional to the standard deviation of the data in each direction.  Column 1: Prediction 
error of decision rules based on univariate ranking.  Column 2: Prediction error of 
decision rules based on random selection of features from a subset with a priori disease 
relevance.   = 5 features/set,  = 10 features/set,  = 20 features/set,  = 40 
features/set.
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chosen with a priori knowledge (Figure 6, Column 2).  These results suggest that decision 

rules obtained for classification do not accurately predict molecular phenotype in 

microarray data obtained using different platforms, possibly due to different strategies in 

probe design, or shortcomings in the matching of probes using probe set annotations 

[123]. Overall, these results demonstrate that bias resulting from non-specific correlation 

is negligible when samples are analyzed on the same platform. Results also validate the 

use of feature selection algorithms to identify small, discriminative feature sets that can 

be adapted for use in biomarker panels for identifying molecular phenotypes. 

 

4.5  Conclusions 

Biomarker sets derived from different gene expression microarray datasets for the 

purpose of predicting molecular phenotype or relapse in cancer contain very few common 

genes [91, 92]. In a typical microarray experiment, expression values of many genes are 

correlated with response [95, 96] and therefore, one could assume that multiple 

biomarker sets may accurately predict the classification of arrays into defined 

phenotypes. In this study, we used an iterative machine learning approach to determine 

the prediction potential of biomarker sets chosen using univariate feature selection from 

training sets selected randomly.  On simulated gene expression data, this approach 

generated several highly discriminative decision rules.  Similarly, multiple expression 

profiles capable of classifying tumors by molecular phenotype were identified in both 

breast cancer and DLBCL datasets.   
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We also compared the prediction error resulting from supervised feature selection vs. 

features selected randomly from either the entire set of genes represented on the 

microarray or an a priori defined subset of disease-relevant genes.  Overall, univariate 

feature selection led to more accurate classification; however, the difference in prediction 

errors decreased as the number of features increased.  Similar results were also observed 

in the application of decision rules to samples from other gene expression datasets 

profiled on the same microarray platform. From this, we conclude that the presence of 

multiple biomarker sets in the prediction of molecular phenotype arises from the large 

number of genes correlated with response.   

 

In contrast, decision rules trained on the basis of relapse-free status classified samples 

with relatively high prediction errors in breast cancer, DLBCL and CRCC datasets.  

Specifically, prediction error was approximately 40% in all cases that were studied 

regardless of the method used for feature selection.   Overall, these results indicate the 

difficulty of developing biomarker sets predictive of cancer relapse using a single 

microarray dataset. Our results do not apply to meta-analytical approaches, in which 

cancer relapse predictions are obtained by integrating data from multiple microarray 

datasets prior to machine learning [124-126]. In addition, combined use of clinical 

information and gene expression data may result in decision rules with better accuracy in 

predicting relapse [127-129].
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Chapter 5: Expression profiles of switch-like genes in classification of tissue types 
and infectious disease 

 
5.1  Summary 
 
This chapter describes classification of tissue type and infectious disease phenotypes on 

the basis of the expression of bimodal, or switch-like, genes.  Compilation of gene 

expression microarray datasets across diverse biological phenotypes has led to the 

identification and annotation of genes with bimodal expression patterns in the mouse and 

human genome.  Approximately fifteen percent of known human genes exhibit switch-

like expression profiles.  Additionally, the switch-like gene set is enriched with genes 

expressed in the extracellular space and cell membrane.  Evaluation of switch-like genes 

in large-scale microarray datasets may provide further insight into the biological 

relevance of bimodal gene expression patterns.  In addition, it is of interest to determine 

the potential of bimodal genes for class discovery and class prediction.  Use of a model-

based clustering algorithm accurately classified more than four hundred microarray 

samples into nineteen different tissue types on the basis of bimodal gene expression.  The 

algorithm demonstrated similar accuracy in the classification of microarray data 

corresponding to hepatitis C, influenza, HIV-1 and malaria infection.  Classification 

accuracy was exceptional even with class-specific sample sizes between ten and twenty 

arrays.  A supervised classification algorithm, in which feature selection was restricted to 

switch-like genes, also recognized tissue-specific and infectious disease specific 

expression profiles in independent test datasets reserved for validation.  Classification of 

simulated microarray data indicated the validity of our observations in a large number of 

circumstances.  Moreover, determination of consistent “on” and “off” states of switch-

like genes in various tissues and diseases allow for the identification of 
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activated/deactivated genes and pathways.  Functional enrichment analysis demonstrated 

that activated switch-like genes in neural, skeletal muscle and cardiac muscle tissue tend 

to have tissue-specific roles.  A majority of activated genes in infectious disease are 

involved in processes related to the immune response.  Our results indicate that switch-

like gene sets capture genome-wide signatures from microarray data in health and 

infectious disease.  Furthermore, we provide evidence that bimodal genes are involved in 

temporally and spatially active mechanisms including tissue-specific functions and 

response of the immune system to invading pathogens. 

 

5.2  Background 

Gene expression is controlled over a wide range at the transcript level through complex 

interplay between epigenetic modifications, DNA regulatory proteins, and microRNA 

molecules [14, 130, 131].  Genome-wide screening of expression profiles has provided an 

expansive perspective on gene regulation in health and disease. Identification of 

constitutively expressed housekeeping genes has aided in the inference of sets of minimal 

processes required for basic cellular function [132, 133].  Similarly, we have identified 

and annotated genes with switch-like expression profiles at the transcript level in the 

mouse and human, using large microarray datasets of healthy tissue [134].    Genes with 

switch-like expression profiles represent fifteen percent of the human gene population.  

Classification of samples on the basis of bimodal or switch-like gene expression may 

give insight into temporally and spatially active mechanisms that contribute to 

phenotypic diversity.   Given the variable expression of switch-like genes, they may also 
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provide a good candidate gene set for the identification of clinically relevant expression 

signatures. 

 

The high-dimensionality inherent in genome-wide quantification makes extracting 

meaningful biological information from gene expression datasets a difficult task.   Early 

attempts at genome-wide expression analysis used unsupervised clustering methods to 

identify groups of genes or conditions with similar expression profiles [61, 135, 136].   

Biological insight can be derived from the observation that functionally related or co-

regulated genes often cluster together.   Supervised classification methods require 

datasets in which the class of the samples is known in advance.  Statistical hypothesis 

testing [53, 92] is used to identify groups of genes that exhibit changes in expression 

associated with class distinction.  Significant genes can be used to build decision rules to 

predict the class of unseen samples [83, 84, 101].  Unsupervised classification is better 

suited for class discovery whereas supervised classification is tailored for class 

prediction.  In both of these complimentary approaches, dimension reduction can lead to 

increased classification accuracy. 

 

Many simple unsupervised learning algorithms rely on distance metrics to either partition 

profiles into distinct groups [137, 138] or build clusters from pair-wise distances in a 

nested, hierarchical fashion [61].  The optimal number of clusters must be defined 

heuristically or in advance and confidence in cluster membership is difficult to 

determine.  Model-based clustering provides the necessary statistical framework to 

address these concerns while allowing for class discovery.  In model-based clustering, it 
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is assumed that similar expression profiles are generated as draws from a set of 

multivariate Gaussian random variables.  Clusters are identified by fitting the parameters 

of the cluster-specific distributions to the data.  Expectation-maximization [63-65] or 

Bayesian methods [66, 67, 139] are used for optimization. Estimation of the number of 

clusters as well as the incorporation of confidence in cluster membership is implicit in 

this process. 

 

Methods such as unsupervised, supervised and model-based classification provide the 

means to evaluate switch-like gene expression patterns in high-dimensional datasets 

profiling diverse biological conditions.  In this study, we used these methods to identify 

tissue and disease specific expression signatures composed of switch-like genes.  For this 

purpose, we compiled two large-scale gene expression microarray datasets from publicly 

available resources.   The first dataset included samples spanning nineteen different tissue 

types from healthy donors.  The second dataset included samples from donors with one of 

a number of infectious diseases (HIV infection, hepatitis C, influenza, and malaria).   Our 

results demonstrate that bimodal gene expression profiles provide tissue-specific 

identification of samples in a dataset of healthy tissues.  In addition, classification of 

switch-like expression patterns identifies infectious disease types with high accuracy and 

further specifies the tissue from which the diseased sample was obtained. Moreover, the 

set of activated switch-like genes for various disease and tissue types provide biologically 

significant information about the molecular basis of phenotype distinction.  
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5.3  Materials and methods 

5.3.1  Microarray Datasets 
 
Microarray datasets used in this study were compiled from online public repositories, the 

Gene Expression Omnibus (GEO) [42] and the Array Express (AE) [43].  All datasets 

were profiled on the HGU133A or its recently expanded version, the HGU133plus2 

platform.  The datasets used in the study are shown in Table 2.   

 

5.3.2  Normalization 
 
Prior to normalization, datasets were filtered such that only the 22,277 probe sets 

common to both the HGU133A and HGU133plus2 platforms were retained.  Reference 

robust multi-chip averaging (refRMA) [50] was used for normalization.   RefRMA is an 

adaptation of the classic RMA approach [47] that is better suited for large datasets.  

Briefly, RMA background adjustment was applied to each array.  Arrays were 

normalized by fitting probe level intensities for each chip to an empirical distribution 

obtained by applying quantile normalization to an 800-array training set [134].  Probe 

affinity effects were estimated by median polishing on the training set and used to adjust 

the normalized probe level measures.  Following these steps, probe set expression values 

were derived from the median value of constituent probe level intensities.  

 

5.3.3  Probeset Annotation 

Probe sets were annotated using entrez gene ID, emsembl accession number, gene 

symbol, Gene Ontology terms [44] and KEGG pathways [45].  Gene identifiers and gene 

ontology terms were obtained from the HGU133plus2 annotation information on the 
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Table 2 – Microarray datasets used in the analysis of bimodal expression patterns 
Tissue Phenotype Data 

Tissue  No. of 
Samples Gene Expression Omnibus/Array Express Accn. # 

Adipose 10 GSE3526 
Adrenal 20 GSE3526, GSE8514, GSE2316 
Brain 89 GSE3526, GSE7621, GSE7307, GSE2361, E_AFMX-11, 

E-TABM-20,  
Colon 10 E-TABM-176, GSE8671, GSE9254, GSE9452 
Epidermal 25 GSE1133, GSE2361, GSE3419, GSE3526, GSE7307 
Heart 38 E_AFMX-11, E-MIMR-27, GSE1133, GSE2240, 

GSE2361, GSE3526, GSE3585, GSE7307 
Kidney 10 E_AFMX-11, GSE2004, GSE2361, GSE3526, GSE7392 
Liver 10 E_AFMX-11, GSE2004, GSE3526, GSE6764 
Lung  26 E-MEXP-231, GSE10072, GSE1133, GSE2361, 

GSE3526 
Mammary 15 E-TABM-66, GSE2361, GSE3526, GSE7307, GSE7904  
Muscle  64 GSE10760, GSE2328, GSE3526, GSE5110, GSE6798, 

GSE7307, GSE9103,  
Ovary  10 GSE2361, GSE3526, GSE6008, GSE7307 
Pancreas  6 GSE1133, GSE2361, GSE7307 
Peripheral 
blood 

12 GSE7462, GSE8608, GSE8668, GSE8762,GSE9692 

Small 
intestine 

7 GSE2361, GSE7307 

Spleen 12 GSE2004, GSE2361, GSE3526, GSE7307 
Stomach 10 GSE2361, GSE3526, GSE7307 
Testis 38 E_AFMX-11, GSE1133, GSE2361, GSE3218, GSE3526, 

GSE7307, GSE7808 
Thymus  5 GSE1133, GSE2361, GSE7307  
 
Infectious Disease  

Disease  No. of 
Samples Gene Expression Omnibus/Array Express Accn. # 

Hepititis C 147 GSE11190, GSE7123 
HIV 41 GSE6740, GSE9927 
Influenza A  28 GSE6269 
Malaria 15 GSE5418 

 
 
 
Affymetrix website in March 2008.  KEGG pathway annotations were obtained from the 

KEGG ftp site on April 28th, 2008. 

 

5.3.4  Identification of bimodal genes 

Bimodal genes were identified in expression data of healthy tissues [134] using a 

statistical method previously applied to detecting bimodality in blood glucose 
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concentrations [140, 141].  For each gene, we tested the alternative hypothesis that the 

expression distribution fits a two-component Gaussian mixture model versus the null 

hypothesis that expression follows a single normal distribution. Identification of 

bimodality can be confounded in the presence of skew normal distributions.  To correct 

for skewness, expression values were adjusted using the box-cox transformation 

[142].  Parameters of the two-component mixture model were fit using expectation 

maximization [143].  Parameters of the single normal distribution were estimated from 

gene-specific sample means and standard deviations.  The log-likelihood ratio test 

statistic -2logλ was used to reject the null hypothesis.  P-values were generated by 

evaluating the chi-square distribution with six degrees of freedom at the values of the test 

statistic.  Genes with p-values less than 0.001 were selected as candidate bimodal genes.  

This subset of genes was further reduced by restricting the standardized area of 

intersection between the distributions of the component Gaussians [144].  We evaluated 

several increasingly stringent restrictions on the standardized area of intersection (<=0.1 

and <=0.01).  These thresholds produced sets of 1265 and 293 bimodal genes, 

respectively. 

 

5.3.5  Identification of "on" genes in brain, skeletal muscle, cardiac muscle, lung 
and infectious disease phenotypes 
 
Bimodal gene expression values were binarized by defining a gene-specific threshold at 

the intersection of the probability density functions of the two-component mixture 

models [144]. Expression values above this threshold are described as "high" or "on". 

Bimodal genes in the "on" state were identified using the Bernoulli process  [144]. 

Briefly, each observation or sample was modeled as an independent trial.  Success was 
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defined as expression in the "on" mode.  P-values were calculated from the binomial 

distribution with an equal probability of success and failure.  A value of p<=0.01 

indicates a significant association between bimodal gene expression and phenotype.   

 

5.3.6  Functional Enrichment 
 
Gene sets characterized by KEGG pathways and GO terms were analyzed to identify 

functional categories enriched with sets of bimodal genes biased to the "on" or "off" 

mode in healthy and disease phenotypes.  We assessed the enrichment of functional gene 

sets by comparing the number of “on” or “off” genes observed in a particular functional 

group to the number expected by chance [69].  The hypergeometric test was used to 

assign significance to the enriched functional gene sets.  P-values less than 0.001 were 

considered significant.   

 

5.3.7  Distance-based clustering 
 
Distance-based clustering algorithms implemented in the R statistical environment were 

used to classify tissue samples into groups with similar expression of bimodal genes.  For 

completeness, we used both Kmeans and hierarchical clustering algorithms with 

Euclidean distance as a distance metric.  Given a set of n observations defined in p-

dimensional space (p = number of genes), the Kmeans algorithm partitions observations 

into K clusters by iteratively minimizing an objective function associated with cluster 

membership [145].  In our implementation, we ran Kmeans for ten iterations with ten 

different initial cluster centroid locations and retained the cluster partition associated with 

the minimal within-cluster sum of squares. Hierarchical clustering builds a dendrogram 
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from the pair-wise distance between observations.  We used complete linkage to define 

the distance between clusters and observations.  A single cluster solution was obtained 

from the dendrogram by cutting the tree at a level which produced the desired number of 

clusters.   In both of these algorithms, the data-driven optimal number of clusters was 

determined using the gap statistic, as described below.   

 

5.3.8  Definition of the number of clusters in distance-based clustering 
 
With the use of distance-based clustering in class-discovery problems, the optimal 

number of clusters K̂ must be estimated from the data.  We used the gap statistic [146] to 

test the null hypothesis that K̂  = 1 i.e. no clusters.  The optimal number of clusters was 

determined by comparing the within-cluster sum of squares to its expected value under a 

reference null distribution.  The reference distribution was generated from a uniform 

distribution aligned with the principal components of the data as described by Tibshirani 

et al.  Expression data was clustered into k groups (k = 1,2,...25) using either Kmeans or 

hierarchical clustering as described above.  A set of B reference datasets were generated 

by drawing samples from the reference distribution and clustered in the same manner.  

The gap statistic was calculated as: 

( ) ( ) ( )∑ −=
b

kkbk WWBGap loglog1 *                                   

 
in which Wkb

*, (b=1,2,...B and k = 1,2,...25) and Wk are within-cluster sums of squares of 

the reference and observed datasets respectively.  The estimated number of clusters K̂  is 

the smallest value k at which: 

                                                       11 ++ −≥ kkk sGapGap                                              
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                                                         ( )Bsds kk 11+=                                               
 

and sdk is the standard deviation of log(Wkb*). 

 

5.3.9  Model-based subspace clustering 
 
A model-based clustering algorithm [147], developed for the analysis of comparative 

genomic hybridization data, was used to cluster tissue samples on the basis of bimodal 

gene expression.  In this approach, clusters are identified by finding an optimal partition 

of samples into K groups defined by cluster-specific multivariate Gaussian distributions.  

It is assumed that clusters can be differentiated by shifts in the mean expression values 

for a subset of genes.  In the Hoff study, each sample is modeled as follows: 

 
                                                      iiii ry εδµ +×+=                                                 
 
in which μ is a vector of mean expression values over all samples, ri ϵ (0,1)m and 

indicates the relevant genes, δi is a vector of mean shifts and εi is a vector of the variance 

in expression values.  Cluster-specific parameters ϴ = (ri,δi) are sampled from a baseline 

distribution f0 in a Polya urn scheme or chinese restaurant process as described by Hoff:  

 
 

          sample ϴ1 ~ f0 
 

                                  sample ϴn ~ α/(α+n-1)f0 + (n-1)/(α+n-1)fn-1                                  
 

where fn-1 is the empirical distribution of ϴ1, ... , ϴn and a is a constant.  This process 

potentially results in less than n unique draws from the baseline distribution and therefore 

naturally leads to clustering.  Parameters of the model are fit from the data using a Gibbs 

sampling algorithm.  We ran the model-based clustering algorithm [147] in the R 
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statistical environment on 25 parallel Markov chains with 250 iterations each.  We found 

that each chain quickly converged to equally likely, unique solutions, indicating a multi-

modal posterior distribution.  To obtain an approximation of the true posterior 

distribution, we took the average of the cluster partition with the highest log-likelihood 

from each chain as reported elsewhere [67, 139]. 

 

5.3.10  Pairwise posterior probabilities  

Given a set of clusters obtained from Gibbs sampling, the probability that two 

observations belong to the same class is approximated by the proportion of clusters in 

which they are grouped together [139].  For each pair of samples, the pairwise posterior 

probability matrix was calculated as: 

                                     
clustersoftotal

ccwhichinclustersof
P ji

ij #
# =

=                                        

in which ci (i = 1,…, n samples) is a vector indicating which cluster sample i is assigned 

to.  Although the pairwise posterior probability is a useful measure in itself, it does not 

provide a single cluster partition.  For this purpose, a distance metric was defined from 

the pairwise posterior probabilities equal to Dij = 1 - Pij [139].  A unique cluster partition 

can then be found using the complete linkage method, such that objects are grouped 

together when the pairwise distance between them is less than one.  

 

5.3.11  Quantifying the agreement between observed clusters and known phenotype 
 
In this study, clustering algorithms were applied to data in which the true class 

membership of all samples was known a priori.  The Adjusted Rand Index (ARI) was 
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used to measure the amount of agreement between the known and estimated class 

membership [62, 67].  Given two partitions of n observations U = (u1,...,uR) and V = 

(v1,...,vC), where U indicates the cluster partition and V indicates the true class, the 

Adjusted Rand Index can be calculated from the contingency table of the two partitions 

(Table 3).  An element nij of the contingency table equals the number of observations in 

cluster i that are of class j.  Row sums of the contingency table are equal to ni. and 

column sums are equal to n.j. 

 
Table 3: Contingency table comparing two partitions 

  v1 v2 … vC   
U1 N11 N12 … N1C n1. 
U2 N21 N22 … N2C n2. 
… … …   … … 
uR nR1 nR2 … nRC nR. 

 n.1 n.2 … n.C n.. = n 
 
 
 
With this notation, the Adjusted Rand Index is calculated by the formula below and takes 

a value of 1 when the two partitions agree completely and a value of 0 when the index 

equals its expected value (i.e. the partitions are no better than random).                               
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5.3.12  Supervised Classification  

A multi-class supervised learning scheme was used to classify tissue samples on the basis 

of bimodal gene expression.   To extend the supervised learning scheme to multiple class 
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problems, we trained separate classifiers to identify tissue samples of each class vs. all 

others [148].  Results are based on 100 independent iterations of the following training 

and testing procedure.  Prior to classification, datasets were divided into training and 

testing sets in a class-proportional manner such that two-thirds of the samples in each 

class were used for training and one-third for testing.  For the jth classifier (j = 1,... , 

number of classes), training samples in class j were assigned to class 1.  All other samples 

were assigned to class 0.  Discriminative bimodal genes were identified from the training 

data according to the ratio of within class to between class sum of squares [85].  Diagonal 

linear discriminant analysis was used to define the distances between test sample i and 

samples in class 0 (dco) and class 1 (dc1), respectively [85].  A confidence measure, 

defined from 0 to 1, was calculated as dco/(dco+dc1).  Values close to 0/1 indicate low/high 

confidence that test sample i belongs to class j.  Confidence measures are compared from 

each classifier and test sample i is assigned to the class associated with the highest 

confidence.     

 

5.3.13  Simulated Data  
 
Synthetic data was used to determine the effect of sample size, effect size and the number 

of informative genes on prediction accuracy in binary classification.  In silico expression 

datasets consisted of 10, 20, 30, 50, or 100 observations/arrays and 1000 features/genes.  

Initially, a binary vector indicating the class membership of each observation was drawn 

from a binomial distribution B(n,0.5).  A number of 5, 10, 20, 50, or 100 informative 

gene expression profiles were drawn from a pair of multivariate normal distributions 

N1(μ1, Σ) and N2(μ2, Σ) representing each class of observations.  Non-informative 
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expression values representing noise genes were drawn from a mixture of N1 and N2 with 

mixing probabilities of ½ from each distribution.  A diagonal covariance matrix (Σ) was 

used to simulate independent expression values.  Effect size was measured by a 

separation parameter defined for each gene, specifically the distance in class-specific 

means divided by the pooled variance.  Three effect sizes (6, 2, 1) were investigated.  We 

used logistic regression to generate the response variable that indicates class membership 

from the expression data.  Regression coefficients associated with the informative genes 

were drawn from a uniform distribution U(0.1,1).  By logistic regression, the probability 

that the ith observation is class 1 is given by πi: 

 

                                           ( )iMMi
i xx ,,11exp1

1
ββ

π
+++

=


                                    (7) 

 
in which β1 … βM  are the defined regression coefficients and x1,i … xM,i are the expression 

values of the informative genes in the ith observation.  The simulated dataset was 

completed by drawing the response variable yi on the basis of πi (yi = 1 iff πi > 0.5).  In 

specified exactly (i.e. the value of β), independent of the sample distribution of gene j.   

 

5.4  Results 

5.4.1  Model-based clustering accurately classifies tissue phenotypes on the basis of 
bimodal gene expression 
 
A model-based classification algorithm [147] partitioned a set of 407 microarray data 

samples into bins specific to 19 different tissue types (Figure 13). Classification was 

based on expression of 1265 switch-like genes with bimodal gene expression patterns 

identified in human microarray data [134].  In model-based clustering, the number of 

clusters is optimized as part of the model-fitting process.  Each instance of model-based 
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clustering leads to slightly different results, with some tissue samples appearing in 

different clusters from run to run.  The posterior distribution of model-based cluster 

solutions captures the uncertainty in clustering and is approximated by summarization of 

the most likely partitions visited by the algorithm [66, 139].  To avoid the label-switching 

problem in summarization, in which the number and label of clusters differs between 

runs, we calculated the posterior pairwise probability that each pair of samples clusters 

together [62].  Heat maps shown in Figure 13 depict the posterior pairwise probability 

matrix for each pair of samples.  The color of element xij of the heat map indicates the 

number of partitions in which sample i and sample j are assigned to the same cluster, with 

yellow being the maximum and blue the minimum. Rows and columns of the heat map 

are organized to group samples of the same tissue type together.  The overlaid grid shows 

the boundary between different phenotypes. The figure shows that model-based 

classification correctly grouped microarray samples into tissue-specific clusters, even for 

tissues with as few as five microarray samples. 

 

Two distance-based clustering algorithms, Kmeans and hierarchical clustering, were also 

used to classify tissue phenotype for comparison.  We determined the optimal number of 

groups prior to distance-based clustering using the gap statistic [146].   Both distance- 

based clustering algorithms identified brain-specific and muscle-specific clusters but 

failed to differentiate between tissues with smaller number of samples (Figure 13). 

Partitions generated by model-based clustering reflect tissue phenotype more closely, as 

indicated by the yellow regions along the diagonal of the heat map (Figure 13).  
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Figure 13 - Model-based clustering of bimodal gene expression identifies cohesive 
clusters in 19 tissue types.  Heat map representation of posterior pairwise probabilities 
for classification of tissue phenotype.  Left column: classification with 1265 bimodal 
genes. Right column: classification with 300 bimodal genes translated into extracellular 
matrix or plasma membrane proteins.  Top row: Model-based clustering identifies all 
tissues distinctly. Middle and bottom rows: Kmeans and hierarchical clustering classify 
samples into three/four tissue types: brain, cardiac and skeletal muscle and remaining 
tissues.  Blue, green, yellow, orange and red regions of color bar indicate ovary, stomach, 
small intestine, pancreas and thymus tissue samples respectively. Tissues in the heat map 
were ordered according to decreasing sample size from left to right.  
 
 
 
To further quantify our results, we used the Adjusted Rand Index (ARI) to evaluate how 

well the clustering algorithms extracted the class structure present in the tissue phenotype 

dataset. The Adjusted Rand Index measures the amount of agreement between the true 

class membership and the observed cluster partitions [62, 67].  ARI is equal to one at 

perfect agreement whereas it is equal to zero when the agreement is no better than 

expected by chance.  Distance-based algorithms generate single partitions of the data that  

Table 4 – Adjusted Rand Index compares observed partitions with true 
classification of samples in tissue phenotype data 

 Kmeans Hierarchical Model-based 

All bimodal genes 0.291 0.463 0.683 

ECM/MEM genes 0.456 0.304 0.881 

 
 
 
are suitable for analysis with the ARI.  Prior to analysis of the model-based clusters, the 

posterior pairwise probability matrix was converted to a distance metric and a single 

partition was obtained via the complete linkage method [62].  As shown in Table 4, 

model-based clustering has significantly higher ARI values compared to distance-based 

clustering, especially for classification using a subset of bimodal genes in extracellular 

matrix and cell membrane GO categories.  Consistent with the heat maps shown in Figure 
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1, Table 2 shows that model-based clustering outperformed distance-based algorithms in 

unsupervised classification of tissue phenotypes.    

 

5.4.2  Bimodal genes specific to extracellular matrix and membrane cell compartments 
improve model-based clustering of tissue phenotypes  
 
Microarray samples profiling different tissue types were classified with a subset of 

bimodal genes whose products are expressed in the extracellular matrix (ECM) or on the 

plasma membrane (MEM). ECM and MEM genes are statistically enriched in the 

bimodal gene sets for the human [134]and the mouse[144].  Cell-cell or cell-ECM 

interactions, mediated through cell surface receptors, activate downstream transcriptional 

programs that regulate a diverse set of processes including growth, proliferation, 

apoptosis, and cell motility [149, 150].  A subset of ECM and membrane bound proteins 

are known to be tissue-specific and play crucial roles in the development and 

maintenance of tissue differentiation [151, 152].  Moreover, altered expression of ECM 

and MEM proteins has been linked to pathogenesis in muscular dystrophy, multiple 

sclerosis, and various cancers [153-155].   Using information obtained from the Gene 

Ontology database [44], 300 bimodal genes annotated with ECM or MEM terms were 

identified.  Model-based clustering based on expression of ECM and MEM bimodal 

genes led to more accurate classification.  Entirely separate clusters of skeletal and 

cardiac muscle were resolved.  Other tissue phenotypes were also identified with higher 

accuracy as indicated by the color of off-diagonal elements in the heat map and the ARI 

(Figure 13, Table 4).   Noting that the tissue-specific sample size in the microarray data 

ranged from 5 to 89 (Table 2), results with model-based classification indicate the 

strength of tissue-specific signatures in global gene expression and the ability of bimodal 
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genes to capture such signatures. Results also indicate that a subset of bimodal genes 

whose products are positioned either on extracellular matrix or the cell membrane is 

sufficient to identify tissue-specificity in microarray data.  Given the importance of ECM 

and MEM proteins in the regulation of cellular function, products of these genes may 

serve as candidate biomarkers or therapeutic targets in tissue-specific diseases.     

 

5.4.3  Bimodal genes classify more accurately than randomly selected genes  
 
Next, we clustered the tissue phenotype microarray datasets with randomly selected gene 

expression values.  In previous work, we had demonstrated the power of randomly 

selected genes in supervised classification of molecular phenotypes in gene expression 

data of various cancers [156]. Random datasets consisted of expression values from 300 

probe sets sampled without replacement from the total 22,277 probe sets analyzed.  A 

total of ten random datasets were clustered and the posterior pairwise probability was 

calculated as described above.  Both distance-based algorithms revealed a strong brain 

tissue expression signature, indicated by the observation that brain samples cluster 

together more often than with samples of other tissue types in random datasets (Figure 

14).  Kmeans clustering of random datasets also identified a strong muscle tissue 

signature (Figure 14).  For comparison, we clustered the tissue phenotype data using a 

similar number of bimodal genes (293), identified by increasing the stringency of the 

signature (Figure 14).  For comparison, we clustered the tissue phenotype data using a 

similar number of bimodal genes (293), identified by increasing the stringency of the 

tests used to detect bimodality.  Classification of brain and muscle tissue was more 

accurate with the use of these bimodal genes than the randomly selected gene sets (Figure 
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Figure 14 - Bimodal gene expression classifies tissue types more accurately than 
expression of randomly selected genes.  Heat map representation of posterior pairwise 
probabilities for classification by bimodal and randomly selected genes.  Top row: 
Kmeans clustering.  Bottom row: hierarchical clustering. Left column: classification with 
300 randomly selected genes on the microarray chip. Right column: classification with 
293 bimodal genes (p-value<=0.001 and area of intersection <= 0.01).  Blue, green, 
yellow, orange and red regions of the color bar indicate ovary, stomach, small intestine, 
pancreas and thymus tissue samples respectively.
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14).  Although there are strong brain and muscle tissue expression signatures in the data, 

bimodal genes appear to be enriched with more tissue-specific genes than expected by 

chance. 

 

5.4.4  Enrichment analysis reveals tissue-specific functions of "on" genes in brain, 
skeletal muscle, cardiac muscle, and lung tissue 
 
Functional enrichment identified gene sets related to tissue-specific function in sets of 

bimodal genes biased toward the "on" mode in a majority of samples of brain, skeletal 

muscle, cardiac muscle and lung tissue.   Bimodal gene expression values were binarized 

into "on" and "off" modes prior to analysis as described in Ertel & Tozeren [144].  A 

gene by sample heat map (Figure 15) shows the mode of expression for all 1265 bimodal 

genes in 217 samples of brain, skeletal muscle, cardiac muscle and lung tissue.   

 

 

Figure 15 – Binarized expression of bimodal genes in brain, lung, skeletal muscle 
and cardiac muscle.  Top figure: heat map of 1265 bimodal gene expression in 217 
tissue samples.  A black/white point at i,j indicates gene i is "on"/ "off" in sample j.  
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A black/white element xij of the heat map indicates gene i is expressed in the "on"/"off" 

mode in sample j.  Distinct clusters of "on" and "off" genes are observed in each tissue  

type.  In total, we identified 542, 429, 322, and 278 genes over-represented in the "on" 

mode and 645, 778, 830 and 896 genes over-represented in the "off" mode in brain, 

skeletal muscle, cardiac muscle and lung tissue respectively.  Functional enrichment 

analysis with gene sets defined by GO terms and KEGG pathways (Tables 5 and 6) 

provided a biological context to these sets of bimodal genes. Notably, neural tissue-  

specific processes including neural migration, adhesion, recognition and differention, 

nervous system development, and synaptic transmission populate the list of GO terms   

associated with genes that are "on" in brain tissue.  Similarly, terms related to muscle  

 
 
Table 5 – GO categories significantly enriched with “on” genes in brain tissue 
P-values <= 0.001 indicates significance. 
 

Biological Process Cellular Component Molecular Function 
 Neuron migration 
 Transport 
 Ion transport 
 Negative regulation of 

microtubule 
depolymerization 

 Cell adhesion 
 Neuron adhesion  
 Transmembrane receptor 

protein tyrosine 
phosphatase signaling 
pathway 

 Synaptic transmission 
 Neuromuscular synaptic 

transmission 
 Nervous system 

development  
 Synaptogenesis 
 Central nervous system 

development  
 Neuron recognition 
 Anterograde axon cargo 

transport 
 Neuron differentiation 

  Cytoskeleton  
  Microtubule 
  Microtubule associated   
complex 
  Neurofilament 
  Membrane 
  Integral to membrane 
  Synaptosome 
  Cell junction  
  Axon 
  Growth cone 
  Synapse 
  Postsynaptic membrane  

 Actin binding 
 GTPase activity  
 Transmembrane receptor 

protein tyrosine 
 Structural molecule activity 
 Strucutural constituent of 

cytoskeleton  
 Ion channel activity  
 Structural constituent of 

myelin sheath  
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Biological Process Cellular Component Molecular Function 
 Regulation of the force of 

heart contractionSM,CM 
 GlycolysisSM,CM  
 Tricarboxylic acid 

cycleSM,CM  
 Phosphate cycleSM,CM  
 Muscle contractionSM,CM  
 Striated muscle 

contractionSM,CM  
 Cytoskeleton organization 

and biogenesisSM,CM  
 Muscle developmentSM,CM  
 Regulation of heart 

contractionSM,CM 
 Muscle thin filament 

assemblySM,CM  
 Actomyosin structure 

organization and 
biogenesisSM,CM  

 Negative regulation of 
heart contractionSM,CM  

 Atrial cardiac muscle 
morphogenesisSM,CM 

 Carbohydrate metabolic 
processSM 

 Glycogen metabolic 
processSM 

 Glycogen biosynthetic 
processSM 

 GluconeogenesisSM 
 Protein amino acid 

dephosphorylationSM 
 Regulation of muscle 

contractionSM 
 Regulation of striated 

muscle contractionSM 
 Somatic muscle 

developmentSM 
 Blood circulationSM 
 DephosphorylationSM 
 Maintainance of epithelial 

cell polaritySM 
 Glycerol-3-phosphate 

catabolic processSM 
 Response to unfolded 

proteinCM 
 Cell adhesionCM 
 Cell-matrix adhesionCM 
 Heart developmentCM 
 Adult heart developmentCM 
 ATP transportCM 
 Focal adhesion 

formationCM 

 CytoplasmSM,CM 
 Smooth endoplasmic 

reticulumSM,CM 
 CytoskeletonSM,CM 
 Striated muscle thick 

filamentSM,CM  
 Actin cytoskeletonSM,CM 
 Sarcoglycan complexSM,CM 
 Sarcoplasmic 

reticulumSM,CM 
 MyofibrilSM,CM 
 SarcomereSM,CM 
 Z discSM,CM 
 MitochondrionSM 
 Mitochondrial inner 

membraneSM 
 Mitochondrial matrixSM 
 Muscle myosin complexSM 
 Troponin complexSM 
 Actin filamentSM 
 Myosin complexSM 
 Sarcoplasmic reticulum 

membraneSM 
 Sarcoplasmic reticulum 

lumenSM 
 Proteinaceous 

extracellular matrixCM 
 
 

 Actin bindingSM,CM  
 Citrate (Si)-synthase 

activitySM,CM  
 Electron-transferring-

flavoprotein 

dehydrogenase 
activitySM,CM 

 Extracellular matrix 
structural constituentSM,CM 

 Calcium ion bindingSM,CM 
 Structural constituent of 

muscleSM,CM  
 SSM00 alpha bindingSM,CM 
 Microfilament motor 

activitySM 
 Motor activitySM 
 Catalytic activitySM 
 NADH dehydrogenase 

activitySM 
 Glycerol-3-phosphate 

dehydrogenase (NAD+) 
activitySM 

 Calmodulin bindingSM 
 Tropomyosin bindingSM 
 Electron carrier activitySM 
 Oxidoreductase activity, 

acting on CH-OH group of 
donorsSM 

 Oxidoreductase activity, 
acting on the CH-OH 
group of donors, NAD or 
NADP as acceptorSM 

 Hydrolase activity, acting 
on acid anhydrides, 
catalyzing transmembrane 
movement of 
substancesSM 

 Spectrin bindingSM 
 NAD bindingSM 
 Structural molecule 

activityCM 
 Structural constituent of 

cytoskeletonCM  
 Protein bindingCM 
 Adenine transmembrane 

transporter activityCM 
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Table 6 – GO categories significantly enriched with “on” genes in skeletal and/or 
cardiac muscle  
P-values <= 0.001 indicate significance. SMskeletal muscle, CMcardiac muscle 
 
 
 
development and organization, muscle contraction, calcium ion binding, cellular 

metabolism and muscle-specific structures such as the sarcoplasmic reticulum, myofibril, 

sarcomere and z disc are found in the list of enriched GO terms associated with skeletal 

and cardiac muscle.  A number of KEGG pathways are also enriched (Table 7).  The 

KEGG diagram summarizing cell adhesion molecules is enriched with genes turned "on" 

in brain tissue and genes turned "off" in muscle tissue (Figure 16).  Several of these cell 

adhesion molecules, such as CDH2, NCAM, NRXN, and NLGN, are expressed at  

 

Table 5 – KEGG pathways enriched with “on” genes in brain, skeletal muscle, 
cardiac muscle and lung tissue  
P-values <= 0.001 indicate significance.  Bbrain, SMskeletal muscle, CMcardiac muscle, 
Llung 
 

KEGG Pathways 
 Cell adhesion molecules (CAMs)B 
 Long-term depressionB 
 Neurodegenerative diseasesB 
 Tight junctionB,SM 
 Calcium signaling pathwaySM 
 Carbon fixationSM 
 Citrate cycle (TCA cycle)SM 
 ECM-receptor interactionSM,CM,L 
 Focal adhesionSM,CM,L 
 Glycolysis / GluconeogenesisSM,CM 
 PPAR signaling pathwaySM,CM 
 Reductive carboxylate cycle (CO2 

fixation)SM,CM 
 Cell CommunicationCM,L 
 Pyruvate metabolismCM 
 Adherens junctionL 
 Complement and coagulation cascadesL 
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Figure 16: Bimodal gene expression in KEGG cell adhesion molecules diagram.  
Genes marked with red are "on" in brain tissue and "off" in muscle tissue.  Genes marked 
with yellow are "off" in muscle tissue.  
 
 

synaptic junctions [157].  Another subset, including NFASC and CNTNAP2, is integral 

to the formation of myelinated neurons [158].  Statistical enrichment of GO terms and 

KEGG pathways associated with tissue-specific structure and function provides further 

evidence that our bimodal gene set exhibits tissue-specific expression patterns. 
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5.4.5  Model-based classification of infectious disease and immune response signature 
 
Model-based clustering of bimodal gene expression led to accurate classification of 

disease phenotypes in 221 microarray tissue samples profiling infectious 

disease.Peripheral blood mononuclear cells (PBMC) present in the circulation and 

lymphatic system recognize pathogen-specific molecules and initiate the immune 

response [159].  Pathogen recognition induces transcriptional activation of several host 

defense signaling pathways [160].  The posterior pairwise probability matrix derived 

from model-based clustering partitioned expression profiles of PBMCs into disease-

specific clusters for HIV-1 infection, hepatitis C, influenza, and malaria (Figure 17). 

Moreover, model-based clustering differentiated between samples of hepatitis C infection 

in PBMCs and liver biopsies (Figure 17). These results suggest that model-based 

clustering captures infectious disease signatures in microarray data in a tissue-specific 

manner.  In addition, a different set of bimodal genes may be selectively expressed in 

PBMCs in infectious disease states induced by different pathogens.      

 

Enriched functional gene sets related to the immune response were detected in sets of 

active switch genes in infectious disease samples.  Of the 1295 bimodal genes analyzed, 

192, 160, 148 and 117 genes were expressed in the “on” mode in the majority of samples 

from PBMCs in hepatitis C, influenza A, malaria, and HIV   respectively.  In liver 

biopsies from hepatitis C infected individuals, 301 bimodal genes are over-represented in 

the “on” mode.  Table 6 lists the GO terms that are statistically enriched in Hepatitis C, 

influenza, and malaria infection. Biological processes commonly enriched in the set of 

bimodal genes expressed in the “on” mode in these diseases include B cell receptor 
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Figure 17 – Model-based clustering of bimodal gene expression classifies infectious 
disease states separately and identifies tissue-specificity in hepatitis C infection.  
Heat map representation of pairwise posterior probabilities derived from model-based 
clustering of infectious disease expression data.  Left column: Classification of hepatitis 
C, HIV, influenza A, and malaria profiled in peripheral blood mononuclear cells 
(PBMCs).  Right column: Classification of hepatitis C infection profiled in peripheral 
blood mononuclear cells and liver biopsies. 
 
 
 
 signaling [161, 162] and humoral immune response involving circulating 

immunoglobulins [163].  These processes are central in the activation of the antigen-

mediated, adaptive immune system.  Bimodal genes upregulated in hepatitis C infection 

in PBMCs are associated with inflammatory response, respiratory burst and altered 

response to calcium ions (Table 8) [164].  Both inflammation and the production and 

release of oxidative species are important components of the innate immune response 

[165].  Enrichment of gene sets associated with function of the immune system and 

leukocyte-specific receptor signaling pathways suggests that a subset of genes with 

bimodal expression patterns are relevant in the host-response to pathogens. 
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Table 8 – GO categories significantly enriched with “on” genes in infectious disease   
P-values <= 0.001 indicate significance in malaria, influenza A, hepatitis C-PBMCs and 
hepatitis C-Liver.  P-values <= 0.01 indicate significance in HIV.  1malaria, 2influenza A, 
3HIV, 4hepatitis C-PBMC, 5hepatitis C-liver   
 

Biological Process Cellular Component Molecular Function 
 Immune response1,2,3,4,5  
 Humoral immune response 

by circulating 
immunoglobin1,2,4,5  

 Positive regulation of B cell 
proliferation1,2,4,5 

 Early endosome to late 
endosome transport1,2,4,5 

 Positive regulation of 
peptidyl-tyrosine 
phosphorylation1,2,4,5 

 B cell receptor signaling 
pathway1,2,4,5 

 Activation of MAPK 
activity1,2,4 

 tRNA aminoacylation for 
protein translation1,4  

 Antigen processing and 
presentation1,4  

 DNA methylation3 
 Translational initiation3 
 Negative regulation of 

protein kinase activity3 
 Defense response3 
 Inflammatory response4 
 Hemocyte development4  
 Cell-cell adhesion4  
 Pyridine nucleotide 

biosynthetic process4  
 Respiratory burst4  
 Response to calcium ion3,4  
 Tricarboxylic acid cycle5 
 Cell adhesion5 
 Blood coagulation5 
 Sensory perception of 

sound3,5 
 

  B cell receptor 
complex1,2,4,5  
  Immunoglobulin complex, 
circulating1,2,4,5  
  Perinuclear region of 
cytoplasm1,2,4,5  
  External side of plasma 
membrane1,4  
  Membrane fraction4,5  
  Cytoplasm3,5  
  Cytoskeleton3  
  Actin cytoskeleton3  
  Extracellular region5   
  Proteinaceous extracellular 
matrix5   
  Collagen5  
 

 Antigen binding1,2,4,5  
 Succinate dehydrogenase 

activity2,3,4  
 RNA binding3 
 Structural constituent of 

cytoskeleton3 
 Protein binding3 
 Electron-transferring-

flavoprotein 
dehydrogenase activity5 

 Endopeptidase inhibitor 
activity5 

 Structural molecule 
activity5 

 Extracellular matrix 
structural constituent5  

 
 

 
 
 
Gene Ontology enrichment analysis for switch-like genes turned “on” in HIV1 infection 

indicated the biological processes of DNA methylation, translational initiation, negative  

regulation of protein kinase activity, and response to calcium (Table 8).  Statistically 

enriched KEGG pathways for HIV-1 infection included focal adhesion and adherens 
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junction, leukocyte migration, natural killer cell mediated cytotoxity, B-cell and T-cell 

receptor signaling pathways. Bimodal genes that are observed to be expressed in the “on” 

mode in the T-cell signaling pathway include membrane protein CD45 [166], kinase 

activator SLP-76 [167], RAS proteins RASGRP1 and Rho Cdc42, calcium are  involved 

in binding protein CaN, and the transcription factor AP1 [168] (Figure 18). These 

proteins multiple pathways and processes including ubiquitin mediated proteolysis, 

regulation of actin cytoskeleton, and proliferation and differentiation of the immune 

response.  Many of these processes/genes are involved in the hijacking of normal T-cell 

function by HIV for the production, modification and release of viral proteins.  

 

5.4.6  Supervised classification with bimodal genes capture tissue-specificand 
infectious disease specific signatures in microarray data 
 
We implemented a multi-class supervised classification scheme to estimate whether 

tissue/infectious disease-specific bimodal gene expression signatures were conserved in 

independent data.  Each dataset was split into training and test sets in a class-proportional 

manner.  Training data was used to select the 5 most discriminative switch-like genes and 

generate multiple binary decision rules.  Each decision rule was trained to recognize one 

class versus all others [148].  Test samples were classified with the decision rules trained 

on independent data to provide an unbiased evaluation of the association of bimodal gene 

expression with class distinction.  As a control, we also trained classifiers on the basis of 

genes selected randomly from the entire gene chip.  Results over 100 independent 

iterations of training and testing are shown in Tables 9 and 10.  Prediction of tissue-  
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Figure 18 – Bimodal genes that were switched “on” as a result of HIV infection in KEGG T-cell receptor signalling pathways.  
Bimodal genes marked with red are “on” in the KEGG T-cell receptor signaling pathway in HIV infection. 



 

 

84 

specificity was accurate in 85 % of test samples for all tissues except colon (10 samples), 

mammary (15 samples), small intestine (7 samples) and testis (38 samples).    

Misclassified tissue samples were often classified as similar tissue types.  For example, 

microarray samples from small intestine tissue were predicted to be either muscle tissue 

or pancreatic tissue in 30% and 24% of test samples respectively.  These results indicate 

the persistence of cell-type-specific expression signatures in heterogeneous tissue 

samples.  Notably, 14% of testis samples were misclassified as ovary, indicating a subset 

of bimodal genes may be similarly expressed in reproductive organs of the male and 

female.  Supervised classification of infectious diseases based on switch-like genes 

showed similar accuracy (Table 10).  Multi-class supervised classification separated 

microarray samples from HIV-1 infection, hepatitis C and malaria well but it has 

allocated 22% of the influenza microarray samples to the bin for hepatitis C. This is not 

surprising in the light of our findings showing common immune signaling responses for 

these two viral infections (Table 8).  In both the classification of tissue phenotypes and 

infectious disease, feature selection was more accurate than random selection. These 

results indicate that tissue-specific and disease-specific bimodal gene expression profile 

signatures are conserved in independent data. 

 

5.4.7 Effect of sample size, effect size and number of informative genes on 
classification accuracy 
 
Supervised classification of simulated gene expression profiles illustrated the strong 

dependence of prediction accuracy on sample size, effect size and the number of 

informative genes (Figure 19).  In this minimal model, simulated datasets were designed 

to approximate binary classification.  A response variable indicative of class membership 



 

 

85 

Table 9 – Classification accuracy in supervised clustering of tissue phenotypes 

Values equal the proportion of true class versus predicted class membership over 100 
iterations of training and testing.  Values representing correct classification are outlined 
in bold.  
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Table 10 – Classification accuracy in supervised clustering of infectious disease  
Values equal the proportion of true class versus predicted class membership over 100 
iterations of training and testing.   
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was generated from expression profiles of informative genes via logistic regression.  

Informative gene expression profiles were drawn from a pair of multivariate normal 

distributions.  Expression profiles representing noise genes were generated from a 

mixture of these distributions.  Separation between the two distributions was defined in 

terms of the difference in class-specific means and the pooled variance.  Bimodal gene 

expression was assumed to hold when setting the separation equal to the median  

separation between “on” and “off” modes of switch-like expression profiles (μ1-μ2 = 6σ2).   

Smaller separation values (μ1-μ2 = 2σ2, μ1-μ2 = σ2) simulate expression profiles that are 

less bimodal and more normally distributed (Figure 19).  Supervised classification was 

applied as described above and classification accuracy was assessed using the area under 

the receiver-operating characteristic curve (AUC) (Figure 19).  Results are based on the 

average AUC generated from 100 simulated datasets for each condition.  Classification 

accuracy generally improved as expression profiles became more bimodal (Figure 19).  

Increased sample size and decreased number of informative genes also resulted in more 

accurate classification as well (Figure 19).   

 

5.5  Discussion  

Development and subsequent commercialization of microarray platforms has led to 

extensive investigation of global gene expression profiles in health and disease. 

Expression profiling of diverse healthy tissues provides a comprehensive perspective of 

the range of transcriptional regulation under physiologic conditions [169-171].  Similarly, 

identification of gene expression signatures indicative of disease subtypes improves our 

understanding of the molecular basis of pathology [135, 136].  Small sample size and the
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Parameters 
- Effect size (μ1-μ2/σ2) 
- Regression coefficients (β) 
- Number of samples (n)  
- Number of genes (p) 
- Number of significant genes (M)  
- Number of selected features (N) 

 
 

Figure 19 – Effect of sample size, separation and number of informative genes on 
classification of simulated expression data. Classification accuracy is measured with 
the area under the receiver operating characteristic curve.  
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large number of measurements for each sample are among the limiting factors that hinder 

the effectiveness of gene expression profiling and drive the development of new 

analytical methods. 

 

Unsupervised clustering of microarray data classifies samples in an unbiased manner 

according to similarity in gene expression profiles.  Adaptation of model-based clustering 

to low sample size, high dimensional datasets [66] and formalization of statistical 

approaches for selecting the optimum number of clusters [146] represent significant 

advances.  In this study, we used these advanced methods to cluster and classify 

infectious disease and tissue phenotypes in large scale microarray data using a reduced 

set of 1265 genes, the so-called switch-like genes [134].  Switch-like genes are identified 

through the detection of bimodal gene expression patterns across diverse biological 

conditions.  Switch-like genes are likely to be under strict transcriptional regulation and 

are statistically enriched for cell membrane and extracellular proteins [144]. 

 

We demonstrated that model-based clustering of switch-like gene expression patterns 

differentiates between tissue phenotypes in a microarray dataset with tissue-specific 

sample sizes ranging from 5 to nearly 100.  Model-based clustering operates on the 

assumption that samples are drawn from multivariate Gaussian distributions.  Clusters are 

defined by identifying shifts in the mean expression value for a subset of genes.  Based 

on this description, model-based clustering is particularly well-suited for the analysis of 

bimodal gene expression profiles.  Annotation of genes with cellular localization 

information allowed us to identify a subset of 300 bimodal genes expressed on the 
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extracellular matrix or the plasma membrane.  This set includes membrane-bound 

integrin proteins and ECM proteins belonging to collagen, laminin, and fibronectin 

families.  Accurate classification of tissue type with this subset of bimodal genes supports 

the hypothesis that interaction with the cellular micro-environment has a significant role 

in tissue differentiation [151, 152].  Distance-based unsupervised classification methods 

such as Kmeans and hierarchical clustering also identified brain-specific and muscle-

specific clusters with sample sizes above 40 but they tended to group tissues with few 

microarray samples together.  Classification accuracy will likely improve with increasing 

sample size.   

 

Model-based clustering of the set of 1295 bimodal genes correctly placed microarray 

samples into bins identified for HIV-1 infection, hepatitis C, influenza and malaria.  In 

this classification, each disease type might have multiple bins depending on tissue type 

and/or laboratory from which microarray data came from. The method classifies hepatitis 

C microarray samples from liver biopsies into a separate bin rather than mixing it with 

microarray data on peripheral blood cells from hepatitis C patients. Similarly, microarray 

data on HIV-1 infection turned out to be classified into laboratory-specific bins. This 

differentiation may be due to distinctly different patient pools in different laboratories as 

well as the small sample size in disease microarray sets. Nonetheless, these results 

indicate the promise of model-based classification in the identification of infectious 

disease subtypes from microarray data.    
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Identification of on-off states of switch-like genes in microarray data allowed us to assess 

the biological relevance of the alternate switch states of these genes in various infectious 

diseases and tissue phenotypes. Comparison of activated switch-like gene sets between 

tissue and disease phenotypes provide a measure of distance between different 

phenotypes.  We observed that genes expressed in the “on” mode in brain tissue and the 

“off” mode in muscle tissue code for neural-specific cell adhesion molecules.  In 

addition, bimodal genes switched “on” in brain, skeletal muscle and cardiac tissue are 

related to tissue-specific structure and function.  In the infectious disease states 

investigated here, bimodal genes expressed in the “on” mode are related to both innate 

and antigen-mediated immune responses.  Additionally, in HIV samples, “on” genes are 

expressed in pathways related to the hijacking of infected T-cells for viral production.  

The large body of evidence presented in the results section points to the success of 

switch-like gene sets in capturing biologically-relevant global gene expression signatures 

from microarray data.  

 

Given the demonstrated biological relevance of bimodal expression patterns, it would be 

worthwhile to determine the clinical relevance of switch-like gene annotation.  

Identification of bimodal genes expressed in the on state in complex diseases such as 

autism, diabetes and cancer may provide a method for dimension reduction in the 

identification of disease-related single nucleotide polymorphisms (SNPs) [34, 172-175] 

and expression quantitative trait loci (eQTL) [176, 177] in genome-wide association 

studies. Both gene sequences and promoter regions of on switch genes as determined 

from large scale microarray data could be searched for SNPs and eQTL linked to the 
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onset of disease or disease progression. Further studies are needed to investigate the full 

potential of clinically relevant classification using switch-like gene annotation from 

microarray data. 

 

We also addressed the question of whether tissue-specific or infectious disease bimodal 

expression signatures are conserved in independent data.  Unsupervised clustering 

algorithms use all of the data to identify similar expression profiles: these algorithms may 

reveal patterns associated with random noise.  Supervised classification algorithms test 

for random associations by separating the data into independent training and testing sets.  

A multi-class supervised classification scheme was implemented.  In both tissue 

phenotype and infectious disease datasets, a majority of test samples were correctly 

classified using as few as five genes.  Classification on the basis of discriminative 

bimodal genes was more accurate than classification by control sets of genes selected 

randomly from the entire microarray chip.  Moreover, our simulation results presented in 

Figure 19 indicate that tissue and infectious disease specific bimodal expression 

signatures are likely to be conserved in independent data at large sample sizes. 

 

5.6  Conclusion 

In this study, we used advanced clustering and classification algorithms to investigate 

expression profiles of switch-like genes in multiple tissue and infectious disease 

phenotypes.  Switch-like genes are defined as those genes with bimodal expression 

patterns in large-scale microarray data containing hundreds of samples across different 

tissue types.  Use of a model-based clustering algorithm accurately classified more than 
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400 microarray samples into 19 different tissue types on the basis of bimodal gene 

expression.  The algorithm demonstrated similar accuracy in the classification of 

microarray data corresponding to hepatitis C, influenza, HIV-1 infection and malaria.  

Classification accuracy was exceptional even with class-specific sample sizes between 

ten and twenty arrays.  Supervised classification with feature selection restricted to 

switch-like genes also recognized tissue-specific and infectious disease specific 

signatures in independent test datasets reserved for validation. Moreover, our 

computational simulations with a minimal model of microarray data indicated the validity 

of our observations in a large number of circumstances.  A set of 300 genes out of the 

1295 genes annotated in the human as switch-like coded for either extracellular matrix or 

cell membrane proteins.  This subset was equally good in differentiating distinct tissue 

types, indicating a potential role for them as biomarkers provided that expression is 

altered in the onset of disease.  Determination of “on” and “off” states of switch-like 

genes in various tissues and diseases allowed for prediction of activated/deactivated 

genes/pathways that are consistent with existing research data.  Future work is needed to 

address the question of whether switch-like gene expression has clinical implications in 

disease subtype classification.
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Chapter 6: Identification of autism risk loci around neural-specific bimodal genes 
 
6.1 Summary  
 
This chapter discusses an association study of high-density genomic data obtained from a 

multiplex cohort of 189 families affected by autism compiled by the Autism Genetic 

Resource Exchange (AGRE).  Autism is a heterogeneous neurodevelopmental disorder 

that is characterized by impaired social interaction and communication and repetitive 

behavioral patterns.  Epidemiological evidence suggests a strong heritable component 

transmitted by multiple genetic loci.  Candidate gene regions likely to contain genetic 

variants associated with autism risk were identified using gene expression analysis of a 

microarray dataset profiling 19 different tissue types.  We defined a set of genes with 

bimodal expression patterns across all tissues and high levels of expression in a majority 

of brain samples as neural-specific switch-like genes.  The coding and cis-regulatory 

regions of these genes were used as candidate gene regions.  Cis-regulatory regions were 

conservatively identified using a 1 Megabase window centered at the midpoint of the 

gene coding region.  Autistic individuals in this study were identified by positive 

diagnosis from the Autistic Diagnostic Interview-Revised (ADIR) and the Autism 

Diagnostic Observation Schedule (ADOS).  A two-stage family-based association test 

(FBAT) strategy was used to test for association and correct for multiple testing.  With 

this procedure, we identified a single nucleotide polymorphism (refSNP identifier: 

rs17101921) associated with autism with genome-wide significance in the q26 region of 

chromosome 10.  Subjects with the A allele at this locus are more likely to be diagnosed 

with autism (odds ratio = 1.31, 95% confidence interval (0.81 – 2.11).  Although none of 

the other screened SNPs in the region demonstrated association with autism, linkage 
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disequilibrium analysis identified a 13 Kilobase haplotype block containing the 

rs17101921 SNP.  The rs17101921 single nucleotide polymorphism (SNP) is located 

approximately 80 Kilobases upstream of the fibroblast growth factor 2 gene (FGFR2).  

FGFR2 is highly expressed in glial cells of the central nervous system and is involved in 

nervous system development and repair after injury.  Our study presents a novel method 

for integrating information obtained from gene expression and genotype analysis.  

Results of our study suggest new experiments regarding the investigation of the 

molecular basis of autism.   

 
6.2 Background  
 
Autism is one of a spectrum of neurological disorders that present with a combination of 

impaired social interaction, difficulties with communication, and repetitive behavior 

patterns.  Autism has been linked to several environmental and genetic risk factors.  .  

Approximately 10-15% of autism cases can be linked to chromosomal abnormalities such 

as fragile X syndrome, tuberous sclerosis or rare single gene disorders [178].  

Epidemiological studies of disease concordance in familial and twin studies indicate a 

heritable genetic component of disease.  Prevalence in males is four times higher than in 

females [179], suggesting that autism risk may be partially transmitted by loci on the X 

chromosome.  Sibling recurrence risk (5-10%) is significantly greater than prevalence in 

the general population (0.15-0.2%) [180].  In addition, identical twins show much higher 

concordance (60%-92%) than fraternal twins (0-10%) [181].  Taken together, these 

findings suggest that autism susceptibility is partially conferred by variation at multiple 

genetic loci.   
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Several independent genetic linkage and association studies have been conducted to 

identify genetic variants associated with autism susceptibility.  In linkage analysis, a set 

of genetic markers spaced widely throughout the genome are sequenced to detect regions 

of co-transmitted loci at low resolution.  Studies of extensive pedigrees of autism affected 

families have identified linkage regions in the short arms of chromosomes 2, 3, 6, 7, 10 

and 17 [182-185].  Association studies identify alleles at specific loci that are observed in 

affected individuals more than expected by chance.  Fine-mapping of candidate genes in 

chromosomal regions identified from linkage analysis has identified a number of putative 

autism susceptibility loci.  Genetic variants in the transcript region of the glutamate 

receptor 6 (GluR6) gene have been associated with increased autism risk [186].  The 

glutamate receptor functions in the excitation of neural signaling at post-synaptic 

junctions [187].  Similarly, variants in the laminin beta-1 (LAMB1) and engrailed 2 

(EN2) genes, have been associated with autism.  Products of both of these genes 

participate in the regulation of neurodevelopment [188, 189].  Additionally, autism-

associated polymorphisms have been detected in the upstream regulatory and intronic 

regions of the serotonin-transporter gene (SLC6A4).  SLC6A4 regulates the effect of 

serotonin by re-absorbing the neurotransmitter from the synaptic cleft [187].  Significant 

associations have been reported at several more genetic loci but these results have not 

been replicated in follow-up studies.   

 

Recent technological developments and the identification of common genetic variants, or 

single nucleotide polymorphisms (SNPs), make it possible to survey genetic variation at 

relatively high resolution.  Single nucleotide polymorphisms (SNPs) are individual 
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nucleotide bases in the genetic code that vary from person to person.  Extensive genetic 

mapping has identified a set of common SNPs expressed in at least 5% of the population 

[23, 24].  With this knowledge, gene mapping microarray platforms capable of evaluating 

association at a genome-wide scale have been developed.  SNP profiling technologies 

such as these can be used to provide a more detailed evaluation of the common genetic 

variants involved with autism risk. 

 

Genome-wide association studies are burdened with an exceedingly large multiple testing 

problem.  Procedures which control the type I error rate are applied to adjust p-values for 

the number of hypotheses tested and maintain genome-wide significance.  Conservative 

multiple testing corrections such as the Bonferonni correction are likely to eliminate a 

high number of true positive associations [56, 57].  The severity of multiple testing 

corrections can be reduced by decreasing the number of SNPs prior to association testing.  

A priori biological knowledge can be used to identify genes that are suspected to be 

involved with disease processes.  Association tests are then limited to the coding and 

regulatory regions of these candidate genes.  In family-based studies, statistical methods 

have been developed to screen for SNPs on the basis of conditional power estimates 

[190].  Only the most promising SNPs are tested for association.  By reducing the number 

of hypotheses tested, genome-wide significance can be assessed at less stringent 

thresholds.   

 

In this study, we have detected putative autism susceptibility loci in the coding and cis-

regulatory regions of candidate genes identified from gene expression analysis.  In 
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previous work, we identified 1265 genes with bimodal or switch-like expression patterns 

in diverse human tissues.  A subset of these bimodal genes are over-expressed in brain 

tissue and are known to be involved with neural development and function.  Using 

genotype and phenotype data of individuals in 189 autism-affected families compiled by 

the Autism Genetic Resource Exchange (AGRE) [191], we scanned the coding and 

regulatory regions of these genes for genetic loci associated with autism susceptibility.  A 

two-stage family-based association test was applied to screen for promising SNPs on the 

basis of conditional power estimates and test for association.  Our scan of the candidate 

gene regions identified a SNP upstream of the fibroblast growth factor receptor 2 

(FGFR2) gene associated with autism risk.  FGFR2 is known to have important roles in 

neurodevelopment [192] but has not previously been associated with autism through 

genomic study.  The autism susceptibility locus identified in this study provides evidence 

supporting novel hypotheses regarding the molecular origins of autism. 

 
6.3 Methods and materials  
  
6.3.1  Gene expression, genotype and phenotype data  
 
Gene expression data of approximately 400 samples from 19 different tissue phenotypes 

was compiled (Table 2).  Expression profiles were generated using the HGU133A and 

HGU133Plus2 Affymetrix platforms.   Only probesets common to both arrays were 

retained, leaving 22277 probesets for downstream analysis.  

 

Genotypic and phenotypic data compiled from family-based studies of autism were 

obtained from the Autism Genetic Resource Exchange (AGRE) [191].  Approval was 

obtained from the institutional review board of Drexel University prior to requesting the 
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data.  Genotypes were generated using the Affymetrix Genome-Wide Human SNP Array 

5.0 platform which contains probesets representing approximately 400,000 SNPs.  The 

subject population consists of 721 simplex and multiplex pedigrees with approximately 

1385 affected individuals.  Subjects were screened for common chromosomal aberrations 

associated with autism, such as Fragile X syndrome.  Subjects with chromosomal 

abnormalities or other non-idiopathic conditions were excluded to reduce phenotypic 

heterogeneity.  Additionally, families were excluded on the basis of incomplete 

genotyping.  Only families in which both parents and one or more affected children were 

genotyped were included.  To account for population stratification, only self-identified 

Caucasian subjects were included.  Filtering by chromosomal abnormalities, incomplete 

pedigree, and race resulted in the exclusion of 250 families.  

 

Diagnosis of autism is based largely on the Autism Diagnostic Interview-Revised (ADI-

R) algorithm [193].  In addition, the Autism Diagnostic Observation Schedule (ADOS) 

can be used to distinguish between autism and other pervasive developmental disorders 

such as Asperger’s and PDD-NOS [194].  In our analysis, affected individuals were 

identified by autism diagnoses by both the ADI-R and ADOS.  Furthermore, only 

families with two or more affected individuals were included.  Use of the multiplex 

diagnostic specifications described above resulted in the inclusion of 189 affected 

families, with 808 subjects and 392 autistic subjects.   

 
6.3.2  Pre-processing and quality control  
 
Reference robust multi-chip averaging (refRMA) [50] was used for normalization of 

microarray data, as described in the analysis of switch-like expression patterns.  Briefly, 
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RMA background adjustment was applied to each array, arrays are normalized with 

quantile normalization on the basis of a reference empirical distribution derived from a 

biologically diverse training set of arrays, and normalized probe intensities are adjusted 

to account for probe affinity effects derived from the training data.  Following 

background correction and normalization, summarized probe set expression values are 

obtained from the median value of constituent probe level intensities.  

 

Raw data derived from gene mapping arrays was pre-processed by the AGRE using the 

Birdseed algorithm.  Birdseed is used for normalization and summarization of probe-level 

data and genotype calling [51, 195].  Briefly, quantile normalization is used to correct for 

chip-specific effects.  A log transformation is used to obtain corrected log-scale probe-

level intensity measures.  Median polish is used to adjust for probe-specific effects and 

derive summarized allele-specific signal values (A and B alleles).  A model-based 

clustering approach is used to estimate the genotype of each sample at each SNP location.  

Clusters of genetic loci are generated by plotting the fluorescent signal derived from A 

allele probes versus the signal from B allele probes. Gentoypes are called by fitting SNP-

specific Gaussian mixture models to the signal values in this two-dimensional space 

using expectation maximization.  Following normalization and genotype calling, a 

number of quality control measures were implemented with the PLINK program [196] to 

screen for potential genotyping errors.  Mendelian inconsistencies in family pedigrees 

were identified and eliminated by setting the corresponding alleles to missing.  Exact 

tests of Hardy-Weinberg equilibrium (HWE) were evaluated for each SNP based on the 

genotype of the founders in each pedigree.  Loci with > 10% missing values, HWE p-
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values < 0.001 or minor allele frequencies < 0.05% were discarded prior to linkage 

analysis.  Implementation of quality control measures resulted in the removal of 

approximately 15% of the genotyped SNPs.  

 
6.3.3 Identification of candidate autism susceptibility loci  
 
Candidate genes with a priori relevance in neural development and function were 

identified using a statistical method to detect bimodality [140, 141, 144] in gene 

expression patterns in diverse human tissue.  Bimodal genes were identified using a log-

likelihood ratio test to test the alternative hypothesis that expression distributions fit a 

two-component Gaussian mixture model (GMM) versus a null normal distribution.  P-

values were obtained from evaluating the chi-square distribution at the values of the test 

statistic with six degrees of freedom.  Genes with p-values < 0.001 and a standardized 

area of intersection between the distributions of the component Gaussians less than or 

equal to 0.01 were considered bimodal [144].  Genes with brain-specific expression 

patterns were identified by binarizing expression values with thresholds defined at the 

intersection of the probability density functions of the GMM for each gene [144]. 

Expression values above this threshold are described as "high" or "on". For each gene, 

each observation or sample was modeled as an independent trial in which success was 

defined as expression in the "on" mode.  P-values were calculated from the binomial 

distribution with an equal probability of success and failure.  P-values less than or equal 

to 0.01 indicates a significant association between bimodal gene expression and 

phenotype.  Approximately 542 genes were expressed in the “on” mode in a majority of 

neural tissue samples.   

  



 

 

101 

Single nucleotide polymorphisms in the coding and regulatory regions of candidate genes 

were identified using annotation information obtained from the NetAffx database 

maintained by Affymetrix.  Probesets on the HGU133A and HGU133plus2 platforms 

mapping to multiple chromosomal regions were excluded from analysis.  This filtering 

step resulted in the exclusion of 35 genes.  Chromosomal regions containing coding and 

cis regulatory regions of candidate genes were conservatively identified using a 1 Mb 

window centered at the midpoint of the sequence at which each probeset aligns [177].  In 

this manner, 55,214 SNPs in candidate gene regions were identified.   

 
6.3.4  Two-stage family-based association test  
 
Family-based association tests (FBATs) use genotypes of parents and affected offspring 

to evaluate the composite null hypothesis of no linkage between disease loci and tested 

loci and no association between genotype and disease phenotype.  The test statistic is a 

generalization of the transmission disequilibrium test (TDT) that compares the frequency 

at which alleles are passed to affected offspring with its expected value derived from 

parental genotypes [197].  Only families with heterozygous parental genotypes are 

informative in the calculation of the test statistic [198].  Given a genetic locus with two 

alternate alleles A and B, the FBAT statistic is calculated as follows:  
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where Tij represents the phenotype  (ie. Tij = 1 if affected, 0 otherwise) and Xij represents 

the genotype of the ith offspring in the jth family [190].  The value of Xij is dependent on 

the genetic model being evaluated.  For example, under an additive model Xij is equal to 
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the number of A alleles (i.e. 0, 1, or 2) in the genotype of the ijth individual [74].  

Simulations have demonstrated that the additive genetic model is robust even in cases of 

dominant or recessive inheritance [74, 199].  With this in mind, we assume that all loci fit 

the additive model.  The expected value of S is calculated conditional on the parental 

genotypes under the assumption of Mendelian inheritance [74].  Under the null 

hypothesis, the FBAT statistic has an approximate standard normal distribution which 

can be used to calculate the significance of the observed test statistic. 

 

A two-stage FBAT strategy was applied to correct for multiple testing in genome-wide 

and candidate gene association studies.  Promising genetic loci are screened by ranking 

the power of the associated FBAT test statistics [198].  Significant associations are more 

likely to be identified at high powered loci in the downstream testing stage.  To maintain 

independence between screening and testing, offspring genotypes in informative families 

(i.e. families in which at least one parent is heterozygous) are replaced by their expected 

value derived from parental genotypes.  In this manner, parental genotypes and offspring 

phenotypes are used to estimate the genetic effect size, and subsequently the power, of 

the FBATs associated with each locus [198].  The second-stage uses the FBAT to 

evaluate observed offspring genotypes and identify loci with significant association with 

phenotype.  Information obtained in the screening stage can be used to select significance 

thresholds and account for multiple testing.  For example, testing the top n loci ranked in 

the screening stage greatly reduces the number of tests and increases the threshold at 

which genome-wide significance is implied (e.g. the top 10 loci can be tested with a 

significance threshold of 0.05/10) [174, 190].  A second strategy partitions the ranked 
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loci into subsets of exponentially increasing size [200].  A significance threshold is 

defined for each subset by multiplying the genome-wide significance level (e.g. 0.05) 

with exponentially decreasing weights (Table 11).  In this manner, all genetic loci can be 

tested for association without neglecting the information gained in the screening stage.  In 

our analysis, we have adopted the latter method.  

 
 
Table 11: Adjusted significance level determined by rank in screening step 
 

Rank of Loci in 
Screening 

Adjusted 
Significance Level 

5 0.005 

15 1.25E-03 

35 3.12E-04 
75 7.81E-05 
155 1.95E-05 
315 4.88E-06 
635 1.22E-06 

1,275 3.05E-07 
2,555 7.63E-08 
5,115 1.90E-08 
10,235 4.77E-09 
20,475 1.19E-09 
40,955 2.98E-10 

 
 
 
6.3.5 Assessment of linkage disequilibrium patterns 
 
Linkage disequilibrium (LD) patterns in the multiplex cohort were analyzed to identify 

potential autism risk loci correlated with significant screened SNPs.  Linkage 

disequilibrium is defined as the statistical association between two or more genetic loci 

and is calculated in a pairwise manner [201].  Consider two biallelic SNPs, in which two 

genetic variations are present at each locus, there are four potential haplotypes (i.e. snp1= 

A1/B1, snp2 = A2/B2, haplotypes = A1A2, A1B2, B1A2, B1B2).  In the absence of LD, the 
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expected frequency of the four haplotypes converges to the product of the constituent 

allele frequencies.  Disequilibrium between the two loci can be calculated as:  

( ) )()( 2121 APAPAAPD −=  
 

in which P(.) is the frequency of the corresponding haplotypes and alleles [202].  The D 

statistic is dependent on the allele frequencies in the population.  A normalized measure 

of LD (D’) can be obtained by dividing D by its maximum value where  

( ) ( ) ( ) ( )( )2121max ,min APBPBPAPD =  
 

The value of D’ ranges from zero to one.  Higher values correspond to higher 

disequilibrium.  Pairs of genetic loci are said to be in strong LD if the one-sided upper 

95% confidence bound of D’ is greater than 0.98 and the lower bound is greater than 0.7 

[201].  Conversely, loci with strong evidence of recombination can be identified by an 

upper confidence bound less than 0.7 [201].  A disequilibrium block is defined as a 

region over which less than 5% of pairwise comparisons show strong evidence of 

recombination [201].  The Haploview software package [203] was used to identify LD 

blocks in genotype data in the proximity of SNPs significantly associated with autism.   

 
 
6.4 Results  
 
6.4.1 Chromosomal location of candidate gene regions and SNPs tested for 

association 
 
Candidate genes for autism-susceptibility loci were identified using gene expression 

analysis of an expression microarray dataset composed of 400 tissue samples and 19 

different phenotypes.  Neural-specific switch-like genes were identified with the 

following properties: the expression profile across all samples fits a bimodal distribution 

and expression is measured in the “high” mode in a majority of 89 samples of brain 
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tissue.  A set of 542 neural-specific switch-like genes were identified that meet these 

specifications.  Figure 20 maps the chromosomal location of the coding and putative cis-

regulatory regions of these genes as red bars to the left of the chromosome ideograms.  

Regulatory regions were conservatively identified using a 1 M base pair window centered 

at the midpoint of the gene coding region, as described  

 
 
 

 
Figure 20: Karyogram depicting the chromosomal location of 542 neural-specific 
switch-like genes and 55,214 SNPs – Red bars to the left of the ideograms indicate the 
coding and putative regulatory regions of the identified neural-specific bimodal genes. 
Black arrows indicate the location of SNPs within these chromosomal regions.  
 
 
 
[177].  Approximately 55,200 SNPs on the Affymetrix Genome-Wide Human SNP Array 

5.0 platform are located in these chromosomal regions.  Chromosomal locations of these 

SNPs are indicated in Figure 1 by black arrows.  Candidate genes and associated SNPs 

are well-distributed throughout the autosomal and X chromosomes.  Approximately 86% 

of the SNPs on the array were excluded through the use of the candidate gene approach.  



 

 

106 

6.4.2 SNP rs17101921 is an autism susceptibility locus 
  
Association tests of SNPs in candidate gene regions identified an autism-susceptibility 

locus in the q26 region of chromosome 10.  A two-stage FBAT strategy was used to test 

all of the loci in the candidate gene regions for association under an additive genetic 

model and correct for multiple testing.  In the initial screening stage, loci were ranked 

according to estimates of statistical power of the corresponding association test.  In the 

downstream testing stage, loci are tested for association with the FBAT statistic.  The 

threshold for genome-wide significance for a genetic locus is determined by its rank in 

the screening stage (Table 11).  Following this methodology, rs17101921 reached 

genome-wide significance (p-value = 0.0038; Table 12).  Table 12 gives the rank in the 

screening stage, reference SNP identifier, minor allele frequency, FBAT p-value, 

genome-wide significance threshold and odds ratio for rs17101921 and adjacent SNPs on 

chromosome 10 represented on the Affymetrix chip.  Individuals with the rs17101921 A 

allele are more likely to be autistic [odds ratio (OR) = 1.31, 95% confidence interval (CI) 

(0.81-2.11)].  In addition, none of the adjacent SNPs on the Affymetrix chip 

demonstrated significant association with autism susceptibility (Table 12).  Association 

tests indicate that rs17101921 is a marker for autism risk.  

 

6.4.3 Linkage disequilibrium analysis identifies a small haplotype block containing 
SNP rs17101921 

 
We assessed linkage disequilibrium (LD) patterns around SNP rs17101921 to identify 

genetic variants that tend to be inherited with rs17101921 in haplotype blocks.  Figure 21 

shows a LD plot of SNPs on the Affymetrix chip in a ~125 kB region centered on the 

rs17101921 locus.  The low LD between many pairs of loci indicates the rate of
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Table 12: SNP rs17101921 associated with autism susceptibility- 47625 SNPs were 
tested for association with autism using a two-stage FBAT strategy.  SNP rs17101921 in 
bold below passed the FBAT with genome-wide significance.  Tested SNPs adjacent to 
rs17101921 were not significant.  MAF = minor allele frequency, OR = odds ratio.  
 

Rank in 
Screen SNP MAF FBAT 

Pvalue 
Significance 

Level OR 

6392 rs1896404 0.418 0.283 4.77E-09 0.9 (0.6-1.34) 
470 rs2420929 0.131 0.2998 1.22E-06 2.51 (0.64-9.79) 

5 rs17101921 0.05 0.0038 0.005 1.31 (0.81-2.11) 
18895 rs9421422 0.485 0.4642 1.19E-09 0.84 (0.56-1.25) 
9733 rs4457689 0.092 0.1514 4.77E-09 0.66 (0.21-2.02) 

 
 
 
Table 13: Chromosomal location of rs17101921 and adjacent SNPs 
  

SNP Allele Chromosome Base Pair Location 
rs1896404 T/A 10 123131120 INTERGENIC 
rs2420929 T/C 10 123143166 INTERGENIC 

rs17101921 G/A 10 123143285 INTERGENIC 
rs4457689 G/A 10 123166119 INTERGENIC 
rs9421422 C/G 10 123144178 INTERGENIC 

 
 
 
recombination in the region is high.  SNP rs17101921 is located on a small LD block 

spanning ~13 kB consisting of four tested SNPs on the Affymetrix array, including 

rs9420328, rs1896404, rs2420929, and rs9421422.  Although none of these SNPs 

demonstrated individual association with autism, testing the inheritance of the haplotype 

block as a whole may produce significant results.  It should also be noted that rs17101921 

may be in LD with SNPs that are not represented on the Affymetrix array.  The dbSNP 

database identifies 97 SNPs in the same 13 kB region.  Genotyping the chromosomal 

region at higher resolution will reveal a more detailed picture of linkage disequilibrium 

structure.
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Figure 21: Linkage disequilibrium plot of the chromosomal region around 
rs17101921 – Pair-wise linkage disequilibrium between two SNPs is indicated by the 
color of the associated square along the diagonal.  The red asterisk in the linkage 
disequilibrium plots identifies SNP rs17101921.  Top figure: An ideogram of 
chromosome 10.  The region mapped for linkage disequilibrium is indicated by the red 
bar.  Bottom figure: A linkage disequilibrium plot of a ~125 kB region around SNP 
rs17101921.  Linkage disequilibrium is quantified by D’. 
 
 
 
6.4.4 Genes located within the q26 region of chromosome 10 
  
To investigate potential functional implications of genetic variation at SNP rs17101921, 

we identified genes with coding regions located within the 1MB window around the 

genetic locus.  The rs17101921 SNP is found in an intergenic region in the short arm of 

chromosome 10 (Table 13).  Seven genes lie within this chromosomal region (Table 14).  

Table 14 lists the Entrez Gene identifiers, gene symbols, base pair locations of the start 
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and end of the coding regions, and the identifier of the genes in the Online Mendelian 

Inheritance in Man (OMIM) database for these genes.   Of the genes in the proximity of 

rs17101921, fibroblast growth factor receptor 2 (FGFR2) is the closest (~80 Kb 

downstream).  The FGFR2 gene is also among the neural-specific switch-like genes used 

to identify candidate gene regions.  These results suggest that autism susceptibility may 

be related to altered expression or function of FGFR2 as a result of genetic variation at 

rs17101921.

 
 
Table 14: Genes within 1Mb of rs17101921- Coding regions of seven genes are located 
within 1Mb of rs17101921.  Fibroblast growth factor receptor 2 (FGFR2) in bold below 
is the closest to rs17101921 (~80Kb downstream) and is also a neural-specific bimodal 
gene.   
 

Entrez Gene ID Gene Symbol Start End OMIM ID 
196051 PPAPDC1A 122206456 122339357  
55717 BRWD2 122600860 122659025 606417 
2263 FGFR2 123223889 123347962 176943 

11101 ATE1 123492616 123677936 607103 
54780 NSMCE4A 123706601 123724722  
10579 TACC2 123738699 124004049 605302 
118663 BTBD16 124020811 124087666  

 
 
 
6.5 Discussion 
 
In this study, we have found a significant association between autism and genetic 

variation at a single genetic locus in an intergenic region of chromosome 10 in a cohort of 

189 multiplex autism-affected families.  Several measures were adopted to reduce the 

severity of multiple testing corrections applied to family-based association tests.  In 

previous work, we identified a set of neural-specific switch-like genes with bimodal 

expression patterns and known involvement in nervous system development and 
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function.  Using the coding and cis-regulatory regions of these genes as candidate 

association loci resulted in the reduction of the SNP feature space by 86%.  A two-stage 

family-based association test was used for association testing [200].   In this procedure, 

SNPs are first ranked according to the probability that a significant association will be 

found and then tested for association with the significance threshold dependent on the 

rank in the screening stage.  With this method, SNP rs17101921 was identified as an 

autism-susceptibility locus with genome-wide significance (p-value = 0.0038; threshold = 

0.005).     Individuals with the A allele at this locus were found to be at greater risk for 

developing autism [OR = 1.31, CI (0.81-2.11)].  Linkage disequilibrium analysis 

localizes rs17101921 to a small haplotype block consisting of four other SNPs on the 

Affymetrix array (rs9420328, rs1896404, rs2420929, and rs9421422).  In addition, 

rs17101921 is located approximately 80 kB upstream from FGFR2, a growth factor 

receptor involved in neurodevelopment and neural function.   

 

Linkage between genomic regions on chromosome 10 and neurological disorders has 

been observed in a number of previously published studies.  A significant (p-value < 

0.01) quantitative trait locus linked to social responsiveness scores was identified in a 

genomic screen of 62 families with male autistic children [204].  Similarly, a quantitative 

trait locus linked to a measure of language development, age at first phrase, was detected 

(p-value = 0.018) in a study of 152 multiplex families [205].  A third study identified 

autism-linked genetic loci at two locations along chromosome 10 (10p14; 10q23.31; p-

values not given) in an analysis of affected families showing elevated obsessive-

compulsive traits [206].  A meta-analysis of data from five independent genome scans 
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identified several loci (10p12-q11.1, p-value = 0.0022; 10q11.2-q23, p-value = 0.0299; 

10q22-q23, p-value = 0.0432) linked with nominal significance to risk for autism-

spectrum disorders [184].  In addition, linkage has been reported between the 10q26 

region and a number of other neurological disorders, including schizophrenia [207, 208], 

bipolar disorder [208] and Alzheimer’s disease [209].  These studies, along with our 

findings, provide evidence of the involvement of genetic loci on chromosome 10 in 

conferring autism susceptibility and suggest the possibility of common molecular 

mechanisms in autism, schizophrenia, bipolar disorder and Alzheimer’s disease.    

 

Genetic variation at rs17101921 may influence the expression of fibroblast growth factor 

receptor 2 (FGFR2) located approximately 80 kB downstream.  Genomic screens for 

expression quantitative trait loci (eQTL), have established that genetic variants up to 100 

kB from the coding region can influence gene expression [176, 177].  Fibroblast growth 

factor receptors are transmembrane proteins with an intracellular tyrosine kinase domain.  

Ligand binding induces dimerization and receptor activation by phosphorylation of the 

intracellular domain [192].  Signaling through fibroblast growth factor receptors activates 

a number of downstream processes including proliferation, cell-cycle progression and 

cytoskeletal remodeling[192].  Fibroblast growth factor receptor 2 (FGFR2) is highly 

expressed in glial cells in the brain [210].  In both the developing and adult brain, 

expression of fibroblast growth factor-2 (FGF2) increases the proliferation of neurons 

and neural stem cells, stimulates axon branching, and has a neuroprotective function in 

brain injury and ischemia [192].  Larger brain size at age 2-4, increased glial cell 

activation and excessive neural degeneration later in life are all characteristics of autism 
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[211, 212].  Altered regulation of FGFR2 expression could be a contributing factor in all 

of these conditions.  In addition, mutation of the FGFR2 gene has been associated with a 

number of developmental disorders including craniosyntosis and Crouzon syndrome 

which presents with mental disabilities [213].  These findings suggest that increased 

autism risk transmitted by variation at the rs17101921 locus is potentially related to 

expression of the FGFR2 gene.  

 
6.6 Conclusion  
 
We detected an autism susceptibility locus, SNP rs17101921, through family-based 

association testing of genomic data obtained from a cohort of 189 mulitplex families in 

the AGRE database.  Candidate gene regions were identified using neural-specific 

bimodal expression patterns identified from gene expression analysis of a large, 

phenotypically diverse compilation of microarray data.  The positive results of this 

approach validate future study of genetic variation in candidate gene regions identified 

from microarray analysis.  Functional characterization of the genetic variant is frustrated 

by localization to an intergenic chromosomal region; however, a potential link is 

established through the FGFR2 gene.  Analysis of gene expression data linked to 

genotype information could be used to verify this connection.  Results justify further 

analysis of the 10q26 chromosomal region with genotyping at higher resolution.   In 

addition, a screen for quantitative trait loci associated with traits such as social 

responsiveness, language development or repetitive behaviors may result in a genomic 

screen with greater statistical power.   
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Chapter 7: Conclusion  

Technological advances in the post-genomic era of biological study have provided a 

higher resolution picture of gene regulation and the perturbations that characterize 

complex phenomena such as development, differentiation and chronic disease.  High-

throughput sequencing platforms and gene expression microarrays provide the means to 

profile biological systems from the genomic and transcriptomic perspectives.  In addition, 

shared public databases catalog the sequence, structure and function of genes and 

proteins and organize them into coherent ontologies and interaction models.  The 

abundance of data available allows for an unbiased, holistic approach to investigation.  

Significant results can be used to gain new insight and generate original testable 

hypotheses.  Conversely, the high dimensionality of genome-scale datasets makes it 

difficult to identify relevant information from noise.  In this work, we integrated prior 

knowledge, gene functional information, and genome-scale microarray data across two 

modalities with classification methodologies to extract meaningful biological information 

from high dimensional microarray datasets. 

 

In the study of cancer, gene expression microarray analysis has been used to identify 

expression biomarkers that either classify samples into clinically homogenous subtypes 

or predict the course of disease.  With extensive use of this methodology, it was observed 

that multiple biomarker sets generated from independent studies of the same disease state 

share few common genes.  We developed an iterative supervised classification approach 

to generate populations of biomarker sets that could be evaluated for predictive potential.  

Results indicate that many biomarker sets accurately classify cancer samples.  A possible 
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biological explanation for the lack of agreement between biomarker panels is the 

redundancy observed in cellular signaling pathways.  This explanation is supported by 

analyses that demonstrate more consistent results when comparing independent datasets 

by the expression of functional sets of genes rather than individual genes [92].  Technical 

variability between microarray platforms may also play a role.  To investigate this 

possibility, we assessed the classification accuracy of expression biomarker panels on 

independent datasets both within and across microarray platforms.  Predictive accuracy 

decreased and was more variable when panels were tested across platforms, indicating 

that technical variability is a significant issue.  Studies analyzing the reproducibility of 

microarray expression values in multi-center trials have indicated that technical 

variability can be adequately controlled by proper experimental design [214].  

 

Large-scale compilation of gene expression datasets in public repositories provides the 

opportunity to investigate patterns of gene expression across diverse biological 

phenotypes.  A number of studies have used gene expression analysis to identify house-

keeping genes ubiquitously expressed across different tissue types and presumably 

required for normal cellular function [132, 133].  Similarly, switch-like genes with 

bimodal expression profiles have been identified [134, 144].  We used a number of 

classification methods to investigate the expression of switch-like genes in datasets of 

diverse phenotypes in health and disease.  Use of a model-based classification method 

resulted in accurate classification of tissues into groups corresponding to 19 different 

tissue types.  Similar accuracy was obtained with a multi-class supervised classification 

method.  These results suggest that identification of switch-like genes may be an effective 
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method to reduce the size of the feature space in gene expression analysis.  Model-based 

and supervised methods also produced accurate classification of samples in a dataset 

profiling blood cells from subjects with one of four infectious diseases.  A number of 

studies have observed unique expression changes in peripheral blood cells of the immune 

system in response to different pathogens [215, 216].   The biological relevance of 

bimodal expression patterns is implied by functional enrichment analysis of the activated 

switch-like genes in different phenotypes.  In tissues including the brain, and skeletal and 

cardiac muscle, activated switch-like genes are enriched for tissue-specific functions.  

Similarly, in infectious disease activated genes are enriched with functions related to the 

immune response.  In light of these results, switch-like genes appear to be involved in 

specialized or temporally active biological processes.  Identification and characterization 

of switch-like genes as well as the phenotypes in which they are activated will have 

important implications in fields such as stem cell research, tissue engineering and gene 

therapy.   

 

Genetic variation at the gene sequence level can result in differences in the expression 

and function of gene products that contribute to increased risk of disease.  Single 

nucleotide polymorphisms have been associated with a number of common pathological 

conditions including obesity [174], diabetes [34, 175], inflammatory bowel disease [34, 

173], and cardiovascular disease [34, 172].  Using information gained from analysis of 

switch-like expression patterns, we detected a single nucleotide polymorphism in an 

intergenic region of chromosome 10 associated with increased susceptibility to autism.  

Notably, the same chromosomal region has been linked to other neurological diseases 
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including bipolar disorder [208], schizophrenia [207, 208] and Alzheimier’s disease 

[209].   The functional implications of genetic variation in gene coding regions are 

assessed by examining sequence, structure and evolutionary conservation of homologous 

proteins [75, 76].  Less is known about the effects of variation in non-coding regions; 

however the increased autism risk transmitted by the genetic variant identified in our 

analysis may be related to altered expression of the fibroblast growth factor receptor 2 

gene.   Analysis of genomic and transcriptomic data from a set of autistic individuals to 

validate this hypothesis is warranted.  In addition, identification of the autism 

susceptibility locus in this analysis motivates the development of more direct methods for 

the integration of gene expression and gene mapping microarray datasets.
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