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Abstract
Improved Performance for Network Simulation

Bryan J. Willman

Over the course of designing and implementing two discrete event simulators, the com-

mercial simulator packages CSIM and DesmoJ were leveraged to allow for rapid develop-

ment of both wired and wireless network models. However, the two resulting simulators

demonstrated poor scalability due to the use of multi-threading to maintain state for sim-

ulation elements. By using a simple single-process discrete event simulation engine, the

running-time showed a marked decrease when compared to multi-threaded simulators.

In one case study, we simulate a simple two-link MPLS network which employs two

congestion control mechanisms for inelastic traffic, namely preemption and adaptation.

Performance metrics measured include: the per-class blocking probability, customer aver-

age fraction of time streams travel on the preferred path, customer average fraction of time

at the maximum subscription rate, the customer average rate of adaptation, and the time

average rate of preemption. We compare the performance of preemption and adaptation

individually and collectively against the base case where neither congestion mechanism

is used. At the cost of increased number of rate adaptations and preemption events for a

range of regimes, we show that the combined use of preemption and adaptation improves

the quality of service and alignment of high priority traffic while increasing the effective

network capacity. As a performance enhancement to the simulator developed to conducted

these experiments, we switched to a single-process discrete event simulation engine in

place of multi-threaded simulator. We note a large improvement for the running time as the

simulation time and capacity increase.
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A second case study was conducted on a wireless simulator. In an effort to simplify the

simulator and improve performance we again moved from a commercial thread-based sim-

ulator (CSIM) to a single-process discrete event simulation engine. Results of the running-

time vs network size for the single-process simulator showed a constant-time improvement

over the thread-based simulator. To further improve performance, a complementary tech-

nique known as model abstraction is also applied. Model abstraction is a technique that

reduces execution time by removing unnecessary simulation detail. In this thesis we pro-

pose three abstractions of the IEEE 802.11 protocol. The Goodput Ratio vs Transmission

Power and End-to-end delay vs offered load performance metrics are compared against the

OPNET commercial simulator.
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1. Introduction

In recent years there has been an enormous growth in global communications services,

wireless communication, and mobile devices. The advent of new wireless applications

and technologies come at a time when demands on the global Internet are ever increasing.

Network designers face new challenges to support the growing demand for data, audio, and

video applications. As a result, new protocols and technologies are being submitted and

evaluated to meet the changing operational requirements.

We are currently entering the mobile computing revolution that is poised to change the

way people live, work, and interact. Mobile computing devices are becoming increasingly

prevalent thanks to the increased deployment of wireless area networks, advances in hard-

ware, and the introduction of new and useful mobile applications. Many forward-thinking

researchers envision a futuristic computing environment where mobile devices are as ubiq-

uitous as the telephone and seamlessly collaborate to perform services automatically [77].

Wireless networks consist of radios which communicate via a wireless channel. One form

of a wireless network uses a wired backbone, where the last hop is wireless. Another form

of wireless networking are ad hoc networks. Ad hoc networks are self-organizing wireless

nodes that operate without any preexisting infrastructure. Mobiles move around free to join

and leave the network. In addition to providing seamless next-generation communication

between heterogeneous devices, ad hoc networks are attractive for military, disaster recov-

ery, and other tactical communications. Relevant areas of wireless networking research

include sensor networks, mobile agents, and ad hoc networking routing protocols.
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Accurate analysis of proposed wireless systems require the development of efficient

modeling tools. Simulation is an invaluable tool used to model complex systems where

the desired network size is large in scale. Simulators have a large number of applications

and are the primary tool for the network engineer. They allow researchers to easily study

the effects of proposed policies and changes to existing systems that otherwise may not

be possible with mathematical analysis. Analytical models provide tractable analysis, yet

they are often inflexible for the general case. Moreover, mathematical models are often

fraught with simplifying assumptions that may not always hold or are downright false.

Therefore, simulation emerges as the ideal choice to model realistic systems. Other areas

where simulation is applied include: manufacturing, aerospace, transportation, healthcare,

communication, defense, information processing, and queuing systems in general [69].

One fundamental problem with simulation is obtaining meaningful results in a timely

fashion. Current simulators are unable to simulate large-scale wireless networks in moder-

ate detail. Memory and processing speed limitations often constrain the feasible size of the

network to a couple thousand nodes. As an example, the NS-2 simulator requires over a

week of simulation time on a 1 GHz Pentium-III PC to simulate 600 seconds of an ad hoc

network consisting of only 300 nodes [53]. In another example, the authors in [17] com-

pare the performance of DSR and AODV using the NS-2 simulator. The largest scenario

simulated was a 100 node ad hoc network on an area of 2200 x 600m2, for a duration of

500 seconds. The authors complain that they were unable to simulate larger scenarios due

to the excessive run time of the simulator.

While it is sometimes reasonable to analyze small networks, the current lack of scala-

bility found in high fidelity simulators prohibits the study of larger systems of interest. One
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method for improving scalability is to employ performance programming techniques. For

example, the NS-2 simulator suffers a performance penalty by invoking the Tcl interpreter.

Simply replacing the interpreted code with compiled functional equivalents offer an order

of magnitude improvement. Performance programming techniques improve performance

in sections of code that monopolize a large and/or unnecessary fraction of the running time.

In addition to performance programming, previous studies of network simulation sug-

gest two primary methods for improving simulation performance, parallel programming

[46, 44, 72] and model abstraction [5, 12, 30]. Parallel programming divides computation

among multiple processors either by geography or channel frequency. While parallel pro-

gramming improves scalability without sacrificing accuracy, it has the drawback of com-

plexity and relies on a multiprocessor architecture or a dedicated network of distributed

computers. Parallel programming is seen as a complementary technique to abstraction.

Model abstraction is a technique that aims to reduce execution time by removing unnec-

essary simulation detail, hopefully obtaining comparable results. Essentially, abstraction

is a trade-off between performance and accuracy which may not always be appropriate. A

common example of model abstraction is a network fluid model that represents a stream of

packets as a flow of CBR traffic.

Over the course of designing and implementing two discrete event simulators, the com-

mercial simulator packages CSIM and DesmoJ were initially leveraged to allow for rapid

development of both wired and wireless network models. However, the two resulting sim-

ulators demonstrated poor scalability, namely due to the use of multi-threading in the state

maintenance of simulation elements. Using a simple single-process discrete event simu-

lation engine, the rate of growth for the running time showed a significant decrease. In
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addition, the technique of model abstraction was applied to further improve performance.

1.1 Scope of Thesis

Network simulation is a broad subject area that encompasses many facets of research.

In this thesis we perform two case studies, using two separate simulators. In the first case

study, we investigate the combined use of two congestion control protocols applicable to

streaming media, namely preemption and adaptation, on a simple two-link network. Pre-

vious research has addressed the use of preemption and adaptation independently, whereas

we investigate the use of both as complementary methods to reduce congestion. We com-

pare performance using several metrics. The MPLS simulator developed for this study was

originally implemented using the Desmo-J [57] and JFreePlot [26] libraries.

In a second study, we investigate performance improvements for the IEEE 802.11 data

link protocol used in wireless networks. To this end, we developed three abstraction models

that attempt to remove unnecessary simulation detail for a decreased runtime. The simu-

lator for this study was originally implemented using the CSIM simulation library. We

compare the goodput ratio vs transmitting power, the end-to-end delay vs offered load,

and the runtime factor vs network size of our abstraction models to an industry accepted

standard simulator, OPNET [19].

In both case studies, we attempted to improve efficiency and reduce complexity by re-

moving the third-party libraries and replacing them with a simple single-process discrete

event scheduler. We compare the runtimes of both the single-process and commercial li-

brary implementations for the same scenarios.
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1.2 Outline of Thesis

Section 2 provides an introduction to computer simulation, including the simulation

infrastructure. An introduction to modeling of ad hoc wireless protocols is presented in

Section 3. Included is a brief analysis of the computational complexity. In Section 3.1.5,

model abstraction is used to improve scalability of 802.11 models. Section 3.1.8 presents

a problem encountered when utilizing commercial simulation packages and our proposed

solution. Section 4 describes the congestion response protocols implemented in the MPLS

simulator. Section 5 summarizes our research and suggests possible topics of future work.
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2. Simulation

Simulators today generally may be categorized as either continuous, discrete, or Monte

Carlo. Monte Carlo simulation is used to iteratively solve a deterministic model using ran-

dom inputs. These iterations turn the deterministic system into a stochastic process. The

notion of time is not required. In a continuous simulator, the simulation time is modulated

by continuous variables which are expressed as differential equations. During execution

the simulator integrates the differential equations. Solving differential equations may be

computationally expensive. Consequently, they are often used when there are a small num-

ber of continuous components in the system. The third method of simulation, discrete event

simulation, updates time at discrete instants in time when an event occurs that causes the

system state to change. Discrete components may be used in conjunction with continuous

components in what is termed combined simulation. Hybrid simulation is used to describe

simulators which use an analytical sub-model within a discrete event simulator. The focus

of this thesis will be on the efficient implementation and design of discrete event simulators

in a networking context.

Developing a simulator involves the modeling of real world systems in software. The

concept of entities are used in software to represent real-world objects. These entities may

be temporary or permanent and have relationships as dictated by logic statements. The

logical relationships define the overall behavior of the model. As an example, we could

model a telephone switching network using entities of switches, links, and calls. The links

and switches forming the network topology would be constant entities, while calls would
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travel on links for a temporary period of time before leaving the system. The notion of time

is maintained and updated by the simulation engine.

2.1 Discrete Event Simulation

The primary data structure for the discrete event simulator is the event queue that con-

tains a time ordered list of events. Events contain the time a specific action is to occur

and the logic associated with that action. It is the task of the simulation engine to order

events. The pseudocode in Algorithm 1 describes how events are scheduled in a discrete

event simulator. At it’s core, the simulation engine is a while loop that sets the current

time to the time of the first event in the event queue. The event queue in this example is

implemented as two separate queues, but in practice a single queue could just as well have

been used. One queue is used for customer arrivals while the second contains departure

events. The determination of which queue has the next event is arbitrated by taking the

minimum time as shown in line three. The simulation engine removes the first event using

a queue pop operation, and may subsequently generate one or more future events. The time

is drawn randomly with a distribution defined in the rand() function (not defined here).

When events are added to the queue, a sort operation is required to maintain time order. It

is important to note that an event may schedule an additional event for the present or future.

Figure 2.2 illustrates the role of the various components that typically make up a dis-

crete event simulator. Collection of results and providing statistical distributions are addi-

tional features provided by the simulation engine.

Memory management and list processing consume a large proportion of the simulation

time for the simulation executive. When the number of events grows large the choice
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Algorithm 1 Discrete event simulation
1: #INITIALIZE: time, sim duration, arrival mean, departure mean
2: while time≤ sim duration do
3: time = min(arrival queue.top(),depart queue.top())
4: if time = arrival queue.top() then
5: arrival queue.pop
6: #SCHEDULE ARRIVAL
7: arrival queue.add(rand(arrival mean)+ time)
8: arrival queue.sort()
9: #SCHEDULE DEPARTURE

10: depart queue.add(rand(departure mean)+ time)
11: depart queue.sort()
12: else
13: #PROCESS DEPARTURE
14: depart queue.pop()
15: end if
16: end while

of data structure used for the event queue becomes of primary importance. A min-heap

implementation of a priority queue is commonly used to order events by time. The basic

operations on the event queue are the insert and remove-min events, also referred to as

enqueue and dequeue respectively. Figure 2.1 provides an example of a min-heap where

each node is represented by it’s time value. Scheduling a new event translates into an

enqueue operation on the heap which takes O(logn) time for a n-element heap. When an

event is processed a dequeue or pop operation is used to remove and return an event from

the top of the heap in O(logn) as well. Accessing the top element of the heap is a constant

time operation.

In general, the priority queue implementation can perform any operation in O(logn),

yet there are additional data structures (e.g. splay trees, binomial trees) that have been

shown by Jones in [36] to improve upon the base performance of the heap in practice. In an
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Figure 2.1: A min-heap

extension of Jones’ work, LaMarca & Ladner apply concepts of performance programming

to investigate the effects of caching on the heap and other priority queue data structures.

They show improvements up to 75% when considering cache performance in algorithm

implementation. However, the most promising data structure in the literature is the Dy-

namic Calendar Queue [2], an improvement upon the originally proposed calendar queue,

that promises a O(1) running time on average. The Calendar Queue divides time into N

buckets of width w, whereby each bucket contains a priority queue for a period of time,

(or max priority of size n
N ), where there are n events in the queue. To ensure optimal per-

formance, the size of the buckets w, (i.e. the time duration) is dynamically re-sized during

execution to maintain small priority queues.

2.2 Object Oriented Design

The implementation and design of the simulation engine play a major role in simulation

performance as well as production time. Object oriented design principles can be applied to

simulation to produce modular components called classes that can easily be modified and
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Figure 2.2: Discrete event simulator framework [39]

reused. Libraries of self contained classes can be produced to create simulation applica-

tions. These classes may represent real world objects as software entities or simply provide

simulation processes and routines. The major strengths of Object Oriented Programming

(OOP) derives from the storage and usage of data. Procedural code disperses data and rou-

tines throughout the code base, whereas OOP objects contain the data and routines in one

place. The Event class in Algorithm 2 is a class in the wireless simulator that serves as

an example of the object oriented paradigm. Instantiation and removal of an Event object

are automatically handled in the Event constructor and destructor respectively. There is no

need to copy code (e.g., memory allocation, etc.) that is needed each time a new Event is

created or destroyed. Moreover, functionality related to this part of the simulator can be

maintained in a separate Event class file.

Another benefit of using OOP is that of inheritance, which makes it easy to extend

the functionality of existing objects (base classes) by creating new classes that inherit the

functionality of a base class. For example, the Event class in Algorithm 2 is extended by
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Algorithm 2 OOP example - the event class
class Event
{

public:
Event() {}
Event(Node *n, double t, std::string e type)
{

setNode(n);
setTime(t);
setType(e type);

}
virtual Event()

{
//std::cout<<”Event Destructor”<<std::endl;

}

//Mutator Functions
void setNode(Node *n)
{

if(n) { node=n; { else { std::cout<<”Warning: Null pointer passed to Packet::setSourceNode(...)”<<std::endl; }
}
void setTime(double t) {time = t;}
void setType(std::string e type) {type = e type; }

//Accessor Functions
Node* getNode() const {return node;}
double getTime() const {return time;}
std::string getType() const return type;

//Pure virtual function to be inherited
virtual void processEvent() = 0;

//Supported Operators
bool operator<(const Event &e2) { return (getTime() < e2.getTime()); }
bool operator>(const Event &e2) { return (getTime() > e2.getTime()); }
bool operator<=(const Event &e2) { return (getTime() <= e2.getTime());}
bool operator>=(const Event &e2) { return (getTime() >= e2.getTime());}
friend std::ostream &operator<< (std::ostream &output, const Event *e); }

private:
Node *node;
double time;
std::string type;

};



11

an inherited class T XEvent which implements a more specific type of event when a node

transmits a datalink frame. Virtual functions of the base Event class can be overridden in

the T XEvent class to perform functionality specific to the datalink layer.

2.3 Random Number Generators

The Pseudo Random Number Generator (PRNG) is a central component of the stochas-

tic simulator. The choice of PRNG can have a significant effect on simulation results. The

authors in [58] found that as much as 50% of the CPU cycles for most network simula-

tions were devoted to generating random numbers. Moreover, common random number

generators have been shown by L’Ecuyer [42] to be insufficient for certain applications

and statistical tests. In [58], the authors estimate that the NS-2 PRNG has a cycle length

of only a few thousand numbers before potential non-uniformity or cycling of numbers.

This is clearly insufficient for simulations consisting of thousands of nodes and millions

of transmissions. PRNG’s are libraries developed to produce mutually independent, uni-

formly distributed random variables over the range [0,1]. Other distributions may then be

generated by applying the appropriate transformations. A desirable PRNG, as described by

L’Ecuyer, will have the following properties:

• Long Period - Every Random Number Generator is based on a state that eventually

repeats itself. In practice a period of at least 260 is sufficient.

• Theoretical Basis - Another desirable property is that the PRNG have good statistical

properties. However, if a theoretical basis does not exist it does not imply that the

PRNG is inadequate.
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• Efficient - Especially for simulation purposes, a good PRNG will produce random

numbers quickly, while consuming a small amount of memory.

• Reproducibility - It is important to be able to reproduce random streams for the pur-

poses of program verification and variance reduction. This is typically implemented

by specifying a random seed.

• Pass Statistical Tests - There are several tests that can be performed to determine

the quality of a PRNG. The most popular of these are the stringent DIEHARD tests

[48]. Not all PRNG’s pass every test, therefore better PRNG’s will only fail the most

difficult or complex of tests.

• Portability - The ability to use a PRNG on multiple hardware platforms and operat-

ing systems is necessary for practical reasons.

The Mersenne Twister presented in 1994 by Makoto Matsumoto and Takuji Nishimura

[49], has been adopted as the PRNG of choice for simulation purposes, including the simu-

lators developed in this thesis. The Mersenne Twister uses a Twisted Generalized Feedback

Shift Register, the twist guarantees equidistribution in 623-dimensions with up to 32 bits

of accuracy. Comparatively, conventional linear congruent PNRG’s show obvious patterns

for just 2-dimensional plots. The Mersenne Twister also has a huge period of 219937− 1,

while consuming only 624 words of memory. It has passed the DIEHARD [48] and other

stringent statistical tests with a speed comparable to the fastest generators. In it’s native

form it is not suitable for cryptographic random number generation, however combining a

hashing algorithm mitigates this problem at the cost of performance.
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2.4 Verification and Validation

Throughout the course of modifying and developing the simulator, the model needs to

be verified and validated before conducting experiments. Verification is a measure of how

accurate the problem or model has been transformed into software. In other words, veri-

fication deals with building the model correctly. Validation is a comparison of simulation

results with that of a known baseline, i.e. validation provides a metric for building the cor-

rect model. Verification may be performed using methods of code inspection and model

checking, while validation is ideally performed by comparing measurements and results of

real networks to the results of the developed model. However, due to the hardware costs and

complex tests required, it is often infeasible to test a proposed protocol or simulation model

against a real system. Instead, results are often compared to analytical approximations. In

addition to the protocol modules, the simulation framework and the complex interaction

between various models needs to be verified and validated as well.

After the simulator has been verified and validated, the simulator needs to be config-

ured. Each protocol has associated with it many variables that could vary between versions

or simulators. To permit repeatable results, configuration parameters should be documented

or provided. Additionally, the scenario lists several key parameters such as the network

topology, traffic rate, simulation area, etc. Because a set of benchmark scenarios have not

been standardized, researchers have selected scenario parameters arbitrarily. This can re-

sult in misleading results where inputs can be selected to produce desirable output. For this

reason it becomes necessary to sweep a range of input parameters.
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2.5 Simulation Initialization

An important step that is all too often overlooked or skipped is the simulation setup.

The first phase of the simulation setup is determining the type, and stopping criteria. The

simulation may be set to run for a predetermined fixed-time or may stop when reaching

steady state. Researchers are often interested in the long term average. However, a common

pitfall is to claim the simulation results have reached steady state without assuring the

degree of convergence.

Execution and collection of data are two subtle issues of simulation. Simulation typi-

cally begins at an initial state where there are no customers in the systems; over the course

of the simulation the system fills up. Consequently, the results are skewed by the initial

transient from the idle state to point that the long term average is achieved. This is re-

ferred to as the steady state. A warm-up period may be used to alleviate this bias, where

the collection of data does not begin until steady state is reached. This results in wasted

simulation time, moreover it is not usually apparent when to start collecting data. One for-

malized approach measures the arrival and departure rates for the system, data collection

begins once the difference becomes negligible [81]. A relatively new technique known as

Perfect Simulation [62] has been discovered where it is possible to sample from the sta-

tionary distribution at the beginning of the simulation. Le Boudec recently applied Palm

calculus to obtain the stationary distribution and perfect simulation to begin simulation of

mobility models for ad hoc wireless networks without a transient period [41].
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2.6 Simulation Stopping Criteria

Once data collection begins, a natural question is when to stop the simulation. Typi-

cally, a simulation is run until the metric of interest converges to an average, also referred

to as a point estimate. Alternatively, the simulation may be run for a preset period of time

(runtime), but this is generally a poor practice. Point estimates do not provide a guarantee

of accuracy which motivates use of a confidence interval as the stopping criterion. A confi-

dence interval is a range of values in which the true solution is believed to lie within, with

an associated confidence level. The ascribed confidence level denotes the probability that

the solution is within the confines of the confidence interval. A reasonable stopping criteria

for a simulation is to iterate until the width of the confidence interval for a performance

metric of interest is acceptably small, say v [74].

2.6.1 Confidence Interval

For an observed performance metric of an iid sequence, X ∼ X1...Xn, we would like to

compute confidence interval around the point estimate X̂ such that

P
(
µ ∈

[
X̂ −∆, X̂ +∆

])
≈ 1−α, (2.1)

where µ is the mean of the sequence X , 2∆ is the width of the confidence interval, and

α is the power of the interval. By the Central Limit Theorum, the above approximation

holds with equality as n → ∞. Typical values for α are 0.2, 0.1, and 0.05 which translate

into a confidence level of 90%, 95%, and 99% respectively. Algorithm 3 illustrates how we

compute the confidence interval for a sample that exhibits an expectation equivalent to that
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of the mean µ (e.g. Bernoulli, or Normally distributed). Utilizing the recursive form of the

mean estimator we compute the point estimate as follows

X̂n =
1
n

n

∑
i=1

Xi =
1
n

(
n−1

∑
i=1

Xi +Xn

)
=

1
n

(
(n−1)X̂n−1 +Xn

)
=

n−1
n

X̂n−1 +
1
n

Xn

where n is the number of random samples. Similarly, we can find a recursive point

estimator for the variance. First define Vn = 1
n−1 ∑

n
i=1 X2

i .

Sn =
1

n−1

n

∑
i=1

(Xi− X̂n)2 =
1

n−1

n

∑
i=1

(
X2

i −2XiX̂n + X̂2
n
)

=
1

n−1

(
n

∑
i=1

X2
i −2nX̂2

n +nX̂2
n

)
= Vn−

n
n−1

X̂2
n

Vn may also be computed recursively

Vn =
n−2
n−1

Vn−1 +
1

n−1
X2

n (2.2)

By replacing the unknown variance σ with it’s point estimator, we can show that ∆ in

Equation 2.1 can be defined as

∆n = |X̂n−µ| ≤ σ√
n

z α

2
=

√
Sn√
n

z α

2
(2.3)
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for random variable Z ∼ N(0,1) we obtain the following definition for z α

2

P(Z ≤ z α

2
) = FZ(Z α

2
) = 1− α

2
(2.4)

Algorithm 3 Algorithm for computing confidence intervals
procedure Con f Int(α,v,nmin)

1: Compute z α

2

2: n⇐ 0, X̂0 ⇐ 0,V0 ⇐ 0,S0 ⇐ 0,∆0 ⇐ 0
3: while ∆n > v

2 or n < nmin do
4: n⇐ n+1
5: Generate Xn
6: Update X̂n ⇐ n−1

n X̂n−1 + 1
nXn

7: Update Vn ⇐ n−2
n−1Vn−1 + 1

n−1X2
n

8: Compute ∆n ⇐
√

Sn√
n z α

2
9: end while

10: Return
[
X̂n− v

2 , X̂n + v
2

]

2.7 Common Wireless Ad Hoc Simulation Pitfalls

Recent research has sounded the alarm about a lack of credibility found in the majority

of the mobile ad hoc wireless networking literature. In a recent publication titled “The

Incredibles”, Kurkowski et al. [40] surveyed 114 peer-reviewed papers published in Mobi-

Hoc on the basis of four areas of credibility: repeatability, bias, rigor, and sound statistics.

Their findings uncovered several shocking problems that plague MANET simulation stud-

ies. Less than 15% of the simulation papers were repeatable by researchers. In 30% of the

papers, the simulator used is not even identified. 64.1% made no mention of the number

of simulation iterations used. Less than 7% addressed initialization bias that is introduced
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by starting the system from unusual system states. In 98 out of 112 papers (88.4%) a con-

fidence interval was not employed, and none of the simulation papers mention the PRNG

used. These facts lead the authors to believe less than 15% of the MobiHoc simulation

results are credible.

Todd Andel and Alec Yasinsac [3] propose several basic principles that should be fol-

lowed by researchers to improve simulation credibility. In order to permit a fellow re-

searcher to repeat experiments, the authors stress the importance of providing a detailed

parameter list for all of the models. It’s also important to specify the version for the com-

mercial simulator, or make the source code available for self-developed simulators. A large

part of the problem is that there is no agreed upon network simulator that has been fully

validated for use in most studies. Researchers often develop their own models or use dif-

ferent simulation packages. Additionally, it was found that researchers often use their own

assumptions and parameters. The lack of a universal simulator reduces the repeatability

of experiments. Therefore it is even more important to diligently report on the versions,

models, and simulation parameters used.

Andel and Yasinsac also recognized that researchers were employing overly simplistic

models. As an example, Shadowing and two-ray path loss models should be used in place of

elementary free space path loss models to add necessary realism. As more implementations

and experimental testbeds become available, the authors suggest that researchers should

tune their physical layer models and abstractions to match actual measurements. More

realistic application models should also be used where appropriate. Typically the layers

above the transport layer are compressed into a single layer that generates constant-bit-rate

(CBR) traffic with some distribution for the frame size and generation rates. Realistic traffic
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can be generated from a specific application profile or an actual trace for a given scenario.

A larger problem that damages credibility of simulation results is the lack of validation.

As Kurkowski et al. [40] suggest, a large majority of simulation research lacks reference

to the removal of bias, the PRNG used, and fail to employ a confidence interval. Andel

et al. [3] address these problems by asserting that researchers need to address issues of

randomness, and when possible validate the complete simulation against a real-world im-

plementation. When its not possible to validate against a real implementation, a less precise

comparison with analytical models and specifications may be used. Results should only be

captured after the system reaches steady state, (i.e., removing transients). The authors warn

researchers to only use simulation as proof of concept or for general performance trends.

Takai et al. [73] deem simulation unfit to compare different protocols against one another,

as they showed examples where the underlying assumptions or model parameters produced

inconsistent results when comparing several routing protocols. Comparative analysis of

protocols are only valid for the particular experiment and should not be presented as the

common trend. To better understand the effect of underlying parameters researchers should

use sensitivity analysis to a identify a chosen parameter’s significance. For example, when

comparing two routing protocols, the effect of node speed may be varied to illustrate the

effect of mobility on several performance metrics for each protocol.

2.8 Languages & Simulators

There are many well accepted simulation languages and engines that can be readily

employed to develop models. Commercial grade simulators such as NS-2 [23], CSIM [4],

SSFNET [56], and OPNET [19] have a steep learning curve and are difficult to validate.
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However, not all simulators are created equal. As evidence, Cavin et al. [14] observe a sig-

nificant difference between NS-2, OPNET, and GloMoSim for a simple flooding protocol.

The main limitation of many of the available tools are that large simulations consisting of

tens of thousands of nodes have been known to scale poorly. In [53], the authors simulate

300 mobile nodes with intensive random traffic connections using NS-2 for 10 seconds of

simulation time. The simulation ran 100 times slower than real time, finishing in about

1000 seconds on a modern PC.

An additional problem is that there is a lack of agreement between many simulation

packages. Cavin et. al [14] compared the results of a simple and well-understood flooding

protocol on Network Simulator (NS-2), OPNET, and Global Mobile Information Systems

Simulation Library (GloMoSim). Their study pointed out a significant disparity between

wireless simulation packages not only in absolute value, but also in general trends or be-

havior observed. Their results suggest that simulation alone is insufficient. Moreover, a

simulator cannot be trusted until it has been validated against a real implementation or

thorough comparison with analytical results.

Our work has led to the development of a wireless simulator coded in C++ and a MPLS

simulator implemented in Java. We initially fabricated network models using commercial

and open source simulation packages. In particular, we used CSIM for the initial wireless

simulator and the Desmo-J simulation library for the initial MPLS simulator. These frame-

works permitted rapid development, but at the cost of performance. Both simulators have

since been re-designed to improve scalability and performance.
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2.8.1 CSIM

CSIM [4] is a proprietary commercial simulator freely available for license. It is a

general purpose simulator that was originally developed for hardware and processors, but

more recently has been expanded to support network simulation. Implemented as a wrapper

on top of the C language, the CSIM package provides a basic graphical user interface, a

discrete event simulation core, and many optional packages (e.g. plotting, performance

tools). The wireless module provides a framework to simulate wireless links as opposed

to stationary links in the standard networking package. Wireless links are implemented as

synchronous threads, called syncrons. WAIT and RESUME methods permit a node (thread)

to sleep while not communicating. The state of threads abstracts away the details of the

discrete event simulator so that synchronous behavior can easily be handled without explicit

event creation or modification. The wireless networking models were used to implement

prototype wireless models. Later a C++ simulator was developed to gain access to the event

scheduler for performance reasons and make use of object oriented design (OOD).

2.8.2 Desmo-J

Desmo-J [57] is a modular, object-oriented, all-purpose discrete event simulation li-

brary written in Java. It supports common simulation entities such as stochastic distribu-

tions, queues, and data collections. A discrete event scheduler, simulation clock, and event

lists are provided as well. An extensible set of classes provides basic functionality. Build-

ing models in Desmo-J is reduced to simply adding logic and functionality to the basic

models. Desmo-J was originally used to simulate adaptation and preemption protocols.
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3. Modeling and Simulation of Mobile Ad Hoc Wireless Networks

Wireless networks are inherently more difficult and computationally expensive to sim-

ulate than fixed wired networks. The notion of a fixed link is replaced with an error-prone

broadcast channel. Bit errors in wireless networks are orders of magnitudes higher than

fixed wired networks and vary with the received SINR. Channel models are used at various

levels of complexity to model the path loss a signal experiences from the source to the des-

tination. These models may take into account the terrain, obstacles, inter-nodal interference

and other physical characteristics that affect radio wave propagation. Lastly, node mobility

produces a rapidly changing network topology.

It is computationally infeasible to model every detail, therefore wireless models exhibit

a trade off between fidelity and computational complexity. Additional features increase re-

alism at the expense of runtime and development time. The increased runtime is due in part

to the additional parameters and computations. More importantly, complex models incur

a higher variance in the results. Complex models require additional simulations to obtain

the same confidence level. Using a layered approach for the protocol stack, researchers are

permitted to select the models at each layer that best fits the goals of the simulation study.

Ad hoc wireless networking is rapidly evolving technology that has received widespread

attention from the research community. Proposal and evaluation of new wireless channel

models or network protocols requires testing usually by simulation on various topologies

and under realistic operating conditions. This includes a representative movement model,

a range of transmission powers, offered loads, and other network parameters. Lastly, there
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are several inter-protocol relationships found in wireless networks that need to be consid-

ered. As an example, Takai et al. [72] show that observed deviations in the performance

comparison of several routing protocols may attributed to settings used in other layers of

the protocol stack.

In a project between Drexel University and the U.S. Army, we set out to develop and test

the performance of ad hoc networks where nodes employ the IEEE 802.11 MAC protocol

IEEE-802.11. A packet-based discrete-event simulator (DES) was developed with several

physical and data link layer models. Of primary interest is determining the appropriate

level of model detail given imposed runtime constraints. By sweeping a range of values,

we conducted a sensitivity analysis for various model parameters. The results of these

studies provide insights into how significant a given parameter is for modeling. Finally,

removing unnecessary detail or simplifying complex models can then be applied to increase

performance.

3.1 Wireless Models

In the sections that follows, various models are considered at each layer of the protocol

stack. Implementation in software typically assigns each layer to a class or module and

follows a network layered approach. Only the protocols implemented in the C++ version

of the wireless simulator are presented.

3.1.1 Movement Models

The need to model realistic node movement has spawned the development of several

movement models. A detailed survey of movement models has been conducted by Camp
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et al. [13]. In this survey two classes of movement models, trace and synthetic models are

identified. Trace models are captures of node movement in a real network environment.

Traces provide excellent results for study when taken over long periods of time. In many

cases the network mobility pattern may not be obtainable for networks not yet in place, or

privacy concerns may prevent such data collection. For these reasons, synthetic models are

used to approximate realistic movement patterns. In following sections, several of the more

popular synthetic movement models are presented.

The computational burden of the movement models are incurred when computing the

current positions for nodes in the network. This involves computing the current x, y, and

z coordinates in Euclidean space, given the trajectory of the mobile node and the time in-

terval since the last update. For the simplest of cases, without considering obstacles and

complex surfaces for the terrain, the distance traveled is simply the Euclidean distance.

More complex models may assign intermediary points (or waypoints) in between the start-

ing and destination coordinates as specified by a path finding algorithm. Physical layer

functions make function calls to calculate the instantaneous node positions. Positions may

be updated at discrete events when either transmissions occur or a destination is reached.

By observing that transmission events occur on a much shorter timescale than significant

movement updates, even longer durations which may encompass many transmissions be-

fore re-calculating node positions may be used. These longer update intervals are consid-

ered a model abstraction that sacrifices precision for the sake of reduced running time (See

section 3.1.5).
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Random Walk

Random walk is one of the earliest movement models dating back to Einsteins work on

Brownian Motion in 1905 [21], and is a commonly used movement model mobile user in

cellular networks. In this model, mobile nodes randomly choose their speed and destination

uniformly in [speedmin,speedmax] and [0,2π] respectively. A new speed and trajectory are

chosen for a mobile node after traveling for a fixed distance d, or instead may be chosen at

a time interval t. Upon reaching the boundary of the simulation space, the mobile node is

reflected from the boundary with a new trajectory dependant upon the angle of incidence.

Random walk can be extended to 1D, 2D, or N dimensions and may be simplified by

assigning to same speed to all nodes. An important property of Random Walk is that it is a

memoryless process, as past trajectories and speeds do not influence future selections.

Random Waypoint

Random waypoint is widely used to model movement in ad hoc networks [35, 54, 55].

The random waypoint model [35] is similar to the random walk model but introduces pause

times in between trajectory/speed selection. Pause times are chosen uniformly between

pausemin and pausemax, and the trajectory is selected within the confines of the simulation

space. One movement cycle under this scheme is characterized by the selection of a random

destination, traversing to this destination with a random velocity, and then pausing for a

random period of time upon reaching the destination. The simplicity of random waypoint

and random walk lends itself to tractable performance characterization, but results in an

unrealistic movement model, producing sudden stops and sharp turns [13]. Additionally,
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the random waypoint model has been shown to skew results as it fails to achieve a steady

state when the speedmin is chosen near 0 [79]. This transient, termed speed decay, is

characterized by a gradual decrease in the average speed for the nodes in the simulator.

This problem is discussed at length in the following section. In addition, the boundary

effect produced a non-uniform node density where nodes are more likely to be found near

the center of the simulation arena. A host of variations to the random waypoint model have

been proposed to improve realism or start in the steady state distribution [67, 55, 8, 34].

City Section

While the family of random waypoint models are desirable for mathematical simplicity,

they fail to model movement of any real network. To address this issue, Markoulidakis et

al. [47] introduce a much more complex set of models based on transportation theory [1].

The authors present three models appropriate for a full range of scenarios. In particular,

the City Area Model traces user motion at an area zone level. This is the high level model,

which specifies the distribution of transfers between area zones, the distribution of each

type of node (e.g. automobile, pedestrian, etc.), and the percentage of mobile nodes that

are stationary or moving. The Area Zone Model is composed of street unit models and

emulates users moving on a street network. The Street Unit Model tracks user motion with

an accuracy of a few meters. There are three different types of street unit models: high-

way, traffic light streets, and high/low priority roads for modeling different traffic patterns.

Traffic density and speed may be specified using empirical or other distributions. The City

Area Model adds significant realism for urban wireless scenarios. The main improvements

come from detailed specification of the simulation population, and specifying a more re-
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alistic simulation arena with obstacles such as buildings, along with rules conducive to

modeling pedestrian and automobile traffic on city grids.

Speed Decay

Several researchers have identified the problem of speed decay in random movement

models [79, 55, 80]. In the majority of movement models the velocity of nodes are chosen

uniformly from (0,Vmax]. One might expect that the speed of a typical node at a typical

point in time have an average value of Vmax
2 . However, nodes following the random waypoint

models fail to reach a steady state distribution and instead the average speed decreases as

the simulation progresses. Intuitively, this phenomena is accounted by the fact that an

average trip increases in duration as more and more nodes get “stuck” traveling at lower

speeds. That is, at a typical point in time there are more nodes moving slowly then quickly.

Nodes traveling quickly reach their destination sooner and hence choose a new speed. A

side effect of boundaries is a non-uniform clustering of nodes, whereby nodes tend to be

found near the center of the simulation space.

Mobility is a primary parameter that characterizes network performance. Therefore,

it is imperative that a stable mobility model be employed [59, 79, 80]. We say a model is

stable when it has a time-stationary distribution. One common solution is to wait a duration

of time until the simulation has neared steady state before collecting data. The two primary

drawbacks to this approach include the potential for a waste of a large amount of simulation

time [10], and it is not clear how to identify when steady state has been reach. Another way

to simply reduce the duration of the speed decay is to choose a minimum speed greater

than zero, or choose speeds within a percentage of the desired average speed [13]. This
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is a particularly limiting solution as it doesn’t allow a variety of movement speeds for the

same experiment. A more ideal solution, labeled perfect simulation, has been invented to

remove the transient period and begin simulation drawing from the steady state distribution.

Models with a minimum speed greater than zero have a stationary regime. This stationary

distribution can be formulated via renewal theory [54, 55, 80, 43] or Palm calculus [41, 11].

3.1.2 Channel Models

One of the most important considerations for modeling and simulation of wireless ad

hoc networks is the determination of whether a pair of mobile radios can communicate.

A link budget is used to describe the physical relationship between the transmitter and

receiver. The maximum allowable path loss expressed below, takes into account the trans-

mitter power Pt , the transmitter and receiver’s antenna gains Gt and Gr respectively, and

lastly the receiver sensitivity (see Equation 3.2).

Lpath = Pt +Gt +Gr−Sr (3.1)

There are several channel models used at the physical layer of the OSI reference model

to characterize the performance at the receiver’s (Sr). A useful method of presenting these

models is through the three main factors that effect signal propagation: path loss attenua-

tion, slow-fading (shadowing), and fast-fading (Rayleigh fading) [71]. These factors vary

in significance according to the distance between transmitting and receiving radios and re-

strict the achievable data rates, range, and reliability of the channel. The extent to which

these factors affect the wireless signal depends upon the environment as well as mobility
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between the transmitter and receiver. For distances of more than a couple of kilometers, at-

tenuation is the most significant factor, as the received signal power tends to fall off steadily.

For distances between 1-2 kilometers, the signal is significantly affected by slow fading. If

distances are on the order of several hundred meters, the signal is noticeably affected by

fast fading. Several of the factors that influence the path loss, especially the terrain, cannot

be used to characterize all transmissions; hence several models are required to describe the

variety of transmission environments [52]. In what follows, a description of some of the

popular path loss models, preceded with an introduction to wireless effects modeling is

presented.

The performance at the receiver (Sr) in equation 3.1 is an important metric which takes

into account the effective temperature noise T0, the noise figure F , the Boltzman’s constant

k, the losses in the receiver hardware, the modulated symbol rate Rc, and the modulated

signal-to-noise ratio (SNR) Ec
N0

. We express the receiver sensitivity as

Sr = 10log10

[
LrkT0FRc

(
Ec

N0

)
min

]
(dB) (3.2)

Where the modulated signal to noise ratio is the minimum required for successful com-

munication. Various QoS metrics are commonly used to characterize the performance of

wireless networks. Of these outage probability and bit error rate (BER) are most relevant

to studies of the physical layer. The outage probability expressed as

Poutage = P
[

Ec

N0
< β

]
(3.3)

is the probability that the SNR at the receiver falls below some threshold β . In other
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words, a transmission is considered successful if the the ratio of the received signal power,

(Ec) and the noise at the receiver, (N0) are in excess of a device specific hardware specific

threshold parameter.

If we are interested in computing the area outage probability, then for a circular region

(without statistical variations) with radius R, the area outage probability is

Poutage =
1

πR2

∫ r

0
P[

Ec

N0
< β ]2πrdr (3.4)

Up until this point we have not considered the affects of interference. Co-channel in-

terference occurs when multiple devices within close proximity to one another transmit

at the same time and frequency. Interference is a major limiting factor on the perfor-

mance of wireless networks. Numerous modulation schemes and higher layer protocols

have been proposed to reduce the level of interference, including Time Division Multi-

ple Access (TDMA) [22] and Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) [29] to name a few. To account for the addition of co-channel interference the

minimum SNR in Equation 3.2 may be replaced with the Signal to Interference and Noise

Ratio (SINR)

SINR =
Pr

N0 + I
(3.5)

which is simply the ratio of the received signal power, Pr to the noise power, N0 plus

the aggregate interference, I. The Noise power adds to the distortion of the received signal

and is contributed by ambient noise present in the environment. The interference term, I

represents the accumulated received power from N other interfering transmitters.
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I =
N

∑
i=1

Pr,i(dB) (3.6)

The second limiting factor of performance is the bit error rate (BER). The BER is a

result of fast fading signals that introduce smaller but more rapid fluctuations in the signal,

that lead to single bit errors. Compared to wired networks with typical bit error rates of

10−9 [16], the BER rate is much higher for wireless networks (10−5− 10−3) [78]. Error

correction can be employed to solves bit errors of sufficiently low levels without making

the channel unusable, but this metric can provide a good measure of channel quality [27].

The BER is function of the SNR, but dependant upon the modulation scheme employed.

Equation (3.7) provides a sample BER model for a specific modulation scheme, Binary

Phase-Shift Keying (BPSK) [63]. The BER under AWGN is

BER = Q
(√

2Eb

N0

)
(3.7)

For binary modulation systems, such as BPSK, this is also the symbol error rate. The

packet error probability can be computed from the BER by taking into account any error

correction codes that are employed. For the case where error correction is not used in

hardware, this value would be 0. The number of errors N incurred during transmission is

modeled as a binomial random variable N ∼ B(n, p) with n bits and a BER of p.

Free Space Attenuation

The free space attenuation model is a simple line of sight (LOS) path loss model that

simulates a signal’s decay from the transmitter to the receiver. This model does not include
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any reflection or diffraction effects. Moreover the signal’s decay rate is assumed to remain

constant between the two radios. The path loss for free space is

Lp(d) = 10log10

[
Pt

Pr

]
=−10log10

[
GtGrλ

2

(4π)2d2

]
(dB) (3.8)

where the wavelength of the signal is denoted by λ , and d is the distance between the

transmitter and receiver. This model is accurate only where there is a LOS component

and hence is not appropriate for use in terrestrial mobile ad hoc networks. However, the

simplicity of the free space attenuation model makes it a popular choice for analytical

analysis.

Path Loss Attenuation

Building upon the simple free space attenuation model, the path loss attenuation model

includes the affects of reflection, refraction, and scattering. All of which, allow a signal to

reach the destination through multiple paths. The simulation environment is characterized

by the density of objects or scatterers which dictates selection of the path loss exponent α .

Some typical values for α are provided in table 3.1. The underlying equation driving this

model is

Lp(d) = Lp(d0)+10α log10

(
d
d0

)
(dB) (3.9)

where Lp(d0) is the free space path loss at a reference distance. This reference distance

is usually measured empirically for specific environments.

There also exists a modified attenuation model that accounts for a signal’s changing
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Figure 3.1: Path loss across multiple terrain types

decay rates. The type of environment may not be constant over the distance traversed by

the signal, leading to multiple values of the signal’s decay rate for each differing region

[51]. The modified path loss equation becomes

Lp(d0) = 10log10 Lpd−α0
N

∏
i=1

(
1+

d
di

)−(αi−αi−1)

(dB) (3.10)

where αi is the path loss exponent in the ith segment, and di is the distance from the

transmitter to the start of the ith segment, when segments are numbered 0 to N. d0 denotes

the reference distance which must be greater or equal to a unit in length. Figure 3.1 illus-

trates the assignment of di and αi when a transmission traverses three terrain types between

a source and destination radio. Implementation in the simulator requires a terrain database

to maintain the path loss exponent for each region of simulation arena. The path loss at-

tenuation model is a major improvement upon the free space model, yet the model is still

feasible for fast simulation. This makes the path loss attenuation model the most popular

channel model for wireless ad hoc networks today.
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Environment Path Loss Exponent, α

Free Space 2
Urban macro cell 3.7-4.3
Shadowed urban 3.5
In building, (same floor) 1.6-3.5
In building, (different floor) 2-6
Home 3

Table 3.1: Path loss exponents for different environments [63]

Log-normal Shadowing

Log-normal fading, also called shadowing or slow fading, denotes a random attenu-

ation caused by large objects affecting the signal. Since the size, shape, and location of

objects are not known, a statistical characterization of the environment is used. Fluctua-

tions in power due to shadowing are represented by a zero mean Gaussian random variable

Xσ , that can be added to the path loss equations for any of the attenuation models. The

standard deviation σ of the random variable produces the variability of the received power

seen about the mean. This value reflects the terrain, and is determined from various field

measurements (see Table 3.2).

Lp(d) = Lp(d)+Xσ (dB) (3.11)

The accuracy of log normal shadowing is dependent upon identifying the appropriate

shadowing parameter for each region of the simulated environment. When the simulation

environment contains large objects, the channel model may be improved with the addition

of a relatively inexpensive computation.
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Environment Standard Deviation, σ

Urban macro cell 5-12
Shadowed urban 6.5-8.2
In building, (same floor) 5.2-7.0
In building, (different floor) 9.6-14

Table 3.2: Standard deviation for different environments [63]

3.1.3 MAC Protocols

In wireless networks nodes communicate via a shared broadcast channel. Media access

control (MAC) protocols at the data link layer are necessary to arbitrate access to the shared

medium both fairly and efficiently. The characteristics of wireless networks are completely

different from wired medium and introduce new issues for modeling such as node mobility,

an error-prone broadcast channel, hidden and exposed terminals, and power constraints. A

new set of protocols are necessary to address these issues.

IEEE 802.11 Protocol

IEEE 802.11 is the de facto wireless LAN standard defining the specification for the

physical and media access control (MAC) layers of the protocol stack. The primary func-

tion of the MAC layer is to arbitrate transmission requests for nodes in a given area that

would otherwise interfere with one another and prevent communication. Under 802.11,

nodes can communicate in either infrastructure mode called the point coordination function

(PCF) or in distributed contention-based mode named the distributed coordination function

(DCF). DCF is the primary access method for 802.11 and is based on CSMA/CA (Carrier

Sense Multiple Access with Collision Avoidance).

Under CSMA/CA, before a radio may begin transmission of a data frame, it must sense
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the channel to assure another radio doesn’t interfere. After the channel has been sensed

idle for a time period of DIFS (DCF Inter-frame Space) the station may proceed with the

transmission. Due to the high bit error rates and the inability to detect collisions in wireless

networks, the IEEE 802.11 DCF adopts collision avoidance (CA) instead of conventional

methods that merely respond to collisions after they are detected. Collision avoidance is

implemented by sensing the channel for a “random” period of time before transmitting a

frame.

A successful transmission must be acknowledged by the receiver with an ACK frame.

This is necessary because the transmitter is unable to discern whether the frame was re-

ceived successfully or not simply by listening to the channel. A common problem in wire-

less networks termed the hidden terminal problem arises when another frame, sent from a

node not in range of the transmitter, collides with a frame at the receiver. Before sending

an ACK frame a radio must wait a time period of SIFS (Short Inter-Frame Space). If an

acknowledgement is not received within a time-out period, the frame is assumed to have

failed and re-transmission is scheduled. Each station in the network maintains what is re-

ferred to as a network allocation vector (NAV) to refrain from transmitting a frame until

this timer reaches zero.

The DCF provides an optional contention method referred to as a virtual carrier sense

mechanism where a handshaking procedure is used to reserve the medium prior to to data

transmission. Virtual carrier sensing is used to reduce contention caused by hidden ter-

minals. Figure 3.2 illustrates a data frame transfer using virtual carrier sensing. A small

request to send (RTS) frame, containing the expected duration of the transfer, is sent by the

transmitter that has a frame to send. The intended receiver then may respond with a clear to
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send (CTS) that also indicates the expected duration of the transfer. All radios in range of

the RTS and CTS update their NAV timers and refrain from transmitting until the ongoing

transfer completes.

If the medium is sensed to be busy during a time interval while waiting to transmit a

data frame or an ACK, the transmitter must defer access to the medium until the end of the

ongoing transmission. A binary exponential back-off algorithm is used to select a random

time interval. A back-off timer is random integer drawn from a uniform distribution over

the interval [0,CW − 1], where CW (Collision Window) is an integer within the range of

CWmin and CWmax. The back-off timer is the number of slots the transmitter must wait

before attempting to seize the channel. The value is decremented by one for each idle slot

detected. The timer suspends whenever the channel is sensed busy and is resumed after the

channel has been idle for a period of DIFS. When the timer reaches zero, but an attempted

transmission fails, the value of the congestion window is doubled upon each collision (i.e.

CWnew = CWold ∗2−1) until it reaches CWmax. This method is used to dynamically adjust

to the congestion level of the network and reduce collisions.

The 802.11 protocol can be thought of as a state machine and implemented as such.

Faithful implementations use three control frames per data frame or roughly three times the

number of events. Moreover, maintenance of state information consumes several variables

per station.

3.1.4 Problem Statement

Meaningful simulation of ad hoc wireless networks is a time-intensive task. Reducing

the execution time is crucial for studying networks where the desired scale can range from
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Figure 3.2: Basic access method of 802.11 MAC protocol [25]

a few hundred to thousands of radios. For simulation of large ad hoc networks, the most

computation-intensive tasks are computing interference and determining which receivers

are in range of a transmitter. Both cases scale poorly as O(N2) physical layer calculations

are required for a wireless system of N nodes. The goal of our research is to develop

abstractions for simulation of data link layer protocols in wireless ad hoc networks.

For our project, we began with a high fidelity 802.11 implementation, then looked for

techniques to reduce either the number of events or the complexity of the protocol. We set

out to develop a simulator containing several abstraction models of varying complexity for

the 802.11 model. The original simulator was built in CSIM, but was later ported to C++ for

modularity and performance gains. Modular design lends itself naturally to model selec-

tion. We model the protocol stack, whereby each layer contains several models. Depending

on the running time constraints or accuracy level required, our multi-fidelity simulator can

use the most suitable model. Our work does not consider algorithms for model selection,

but rather focuses on the relevant affect of simulation parameters on common wireless pro-

tocol performance metrics.
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3.1.5 Related Work

One of the earliest studies of protocol abstraction is the work of Bajaj, et al. on the

VINT project [5]. The authors present several abstractions they developed for the NS-2

simulator. Centralized routing is one abstraction they present that reduces the compu-

tational cost and memory usage of distributed routing algorithms. This replaces routing

messages with a centralized computation, and removes redundant state information at the

cost of slightly different routes. A second abstraction replaces hop-by-hop packet flow with

session-level packet forwarding [32]. The cost of this abstraction is the loss of queuing dy-

namics as propagation delays are precomputed. Lastly, algorithmic routing may be used in

place of shortest-path routing algorithms such as Dijkstra’s all pairs shortest path routing

or Hierarchical routing algorithms. Algorithmic routing reduces the memory requirements

from O(n2) for Dijkstra’s algorithm and O(n logn) for Hierarchical routing to just O(n).

Dijkstra’s algorithm runs in O(n3) and Hierarchical routing runs in O(n 3
√

n) while algorith-

mic routing only has an O(n) running time complexity. Huang and Heidemann [33] show

that algorithmic routing has only about a 10% difference in the set of shortest-path routes.

Simulation of wireless networks has recently drawn considerable attention in the area

of abstraction. Complex channel models and a constantly changing topology increase the

complexity dramatically over that of wired simulators. Heidemann et al. [31] and Cavin

et al. [14] discuss issues relating to the accuracy of mobile ad hoc network simulators.

Both show how some metrics can vary rather drastically with low level model detail, while

other higher layer metrics are relatively insensitive. Blum et al. [30] modify GloMoSim

to support two modes of operation. At first the simulator runs in a high fidelity mode,

and collects statistics on the RTS/CTS/ACK success rates and propagation delays for the
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MACA protocol [37]. After a confidence level is reached, the simulator switches to an ab-

straction mode, whereby the data link and physical layers are replaced by probabilistically

determining packet success and delay from the empirical distribution. The simulator may

then switch back to the high fidelity mode after a set duration. Depending on the parameter

selection it was shown that a great deal of running time could be saved with minimal de-

viance in the performance of the metric of interest. In this case, the authors were interested

in comparing the end-to-end delay performance metric. Extending upon this work Liu, et

al. [45] develop a simpler model of 802.11 MAC layer that reduces the number of events

and eliminates physical layer calculations altogether. Instead they use a queue to maintain

all frames awaiting transmission at the MAC layer, messages that arrive to a full queue will

be dropped. The end-to-end delay and the time the queue is free to send another message

are a function of the channel state. Under the channel model for this work, a packet is

considered successful if the utilization of the channel utilization is below 75% capacity.

The results showed that such a simplification had significant differences in the end-to-end

delay and throughput for smaller networks, but as the network size increased agreement

improved.

There are several proposals to improve the O(n2) running time necessary to calculate

the inter-nodal interference in wireless networks. Perrone and Nicol [60] apply the Barnes-

Hut (N-body) algorithm [7] to the problem by observing that the gravitational pull between

objects in astrophysical models is similar to signal attenuation models of wireless models

in that both decay polynomially with distance. Intuitively, nearby radios are most affected

by signal interference whereas radio’s farther away have a negligible affect on the received

signal. Their results demonstrated a marked decrease in the number of pairwise calculations
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required compared to the brute force approach. Naoumov and Gross [53] improve upon

NS-2 by introducing a 3D array of pointers to nodes which are ordered by position. The

simulation area is then divided into cells. The search space to compute the inter-nodal

interference power is effectively reduced to a geographic subset of the simulation area as

opposed to considering all nodes. This technique exploits the probability that nodes will be

spread throughout the simulation area and not all contained within the same cell.

3.1.6 Data Link Layer Protocol Abstraction for Mobile Ad Hoc Networks

Our abstraction models are closely related to the approach of Naoumov and Gross [53],

and can be seen as complementary to their solution. Their approach focuses on reducing the

number of potential interferer’s while our research looks to reduce the number of potential

receivers for Multiple Access, Collision Avoidance for Wireless (MACAW) protocols such

as IEEE 802.11. In the following sections, we present three abstractions that improve

scalability and decrease the running time of an IEEE 802.11 wireless model (described in

section [51]) while achieving comparable results to an industry standard OPNET model.

Given the running time constraints or desired granularity, a multi-fidelity simulator could

make use of an algorithm or heuristic to select from the full-fledged implementation or one

of these abstraction models. Physical carrier sensing (via beaconing) is not simulated, but

virtual carrier sensing is accomplished by the RTS/CTS mechanism.

Modeling and simulation of the full IEEE 802.11 model adds significant overhead to

the simulator. In addition to physical effects, the data link layer must schedule each data

frame reception which can spawn three or more discrete events. The first event occurs

when stations determines it has a data frame to transmit. A request-to-send frame is first
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scheduled, if this is successfully received a clear-to-send frame must be scheduled. Next

the data frame is scheduled and lastly the ACK frame is scheduled. In a discrete event

simulator this translates into three added events for each data frame assuming all frames

are received on the first attempt. Failures of one of any of those frames (RTS-CTS-Data-

ACK) result in retransmissions that increase the expected number of events per packet

above the minimum of four events. The amortized cost to sort the event-queue is O(logn).

In addition to the size of the event queue, another scalability issue is the number of physical

layer calculations also increases by a minimum factor of four.

Model #1: Event-Compression

The event-compression model is our most faithful abstraction model. In recognition

that the RTS, CTS, and ACK add three times the number of events per data packet transfer,

the event-compression model uses what we call a collapsed RTS/CTS and an implicit ac-

knowledgement. The data frames are assumed to be much larger compared to the control

frames and consume the bulk of the transmission time. The RTS and CTS are transmitted

instantaneously, and are not modeled by separate events. Acknowledgements are implied

by simply notifying the transmitter of the status of the frame. Moreover, control frames do

not interfere with data packets.

When a station’s NAV indicates the medium is free, the next DATA frame is taken from

the buffer and the reach of the RTS frame is considered for all other possible radios in

the network. All stations within range update their NAV timers accordingly. Similarly, if

the intended receiver of the DATA frame is within the list of stations affected by the RTS,

then the reach of CTS is calculated. If the CTS is successfully received by the original
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transmitter the DATA frame is transmitted. Note that an event is not explicitly scheduled

for frame reception. Reception of packets are marked as successful or not in a future RTS

event after the transmission duration has past. The total savings of this model is a three

fold reduction in the number of events scheduled for each data transmission.

Model #2: Neighbor List

While reducing the number of events improves performance, its important to reduce the

computation required per event. The second abstraction modifies the method in which the

reach of control frames are calculated. Specifically, each node maintains a list of ‘reach-

able’ nodes or neighbors which are updated periodically. The set of reachable nodes are

within the threshold distance (dmax) required to successfully receive an interference-free

transmission. The ‘neighbor distance’ dmax from the receiver is determined by the free

space attenuation as expressed in equation 3.8. Pr assumes the value of the receiver sensi-

tivity to produce the threshold distance for communication.

Let

π = {−→xi } (3.12)

be the location of the mobile nodes at some point in time. Then π(B) is the set of nodes

in A that lie in area B, and

E [|π(B)|] = N
|B|
|A|

N
πd2

max
A

(3.13)

When B = b(0,dmax) then |B|= πd2
max is the average number of ‘reachable’ neighbors,
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Figure 3.3: The simulation area and the neighbor list

for a network consisting of N nodes. Figure 3.3 illustrates the simulation space (A) with a

subset of potential receivers (B) for a a given transmitter.

The update interval for the neighbor lists may be assigned as a function of node velocity

v:

tint =
1
2dmax

|v|
(seconds) (3.14)

tint is the the time it takes a node to travel half the neighbor distance. For a transmitter

centered at d in Figure 3.4, the set of receivers are all those neighboring nodes which are

enclosed by the radius dmax. The value of the update interval, tint is chosen as a heuristic

for when it is likely that the set of receivers for the transmitter has changed.

The motivation for using the neighbor list stems from two observations. First, only a

potentially small fraction of all the nodes are likely to be able to detect a transmission.

These nodes lie within a disk of radius dmax centered at the transmitter. In the worst case

which is highly unlikely, all nodes are in range of each other and there is no improvement. It

is more efficient to restrict the set of nodes to only those that could be affected. The second
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Figure 3.4: The neighbor list coverage area

observation is that the topology remains effectively constant for appropriately chosen time

intervals. In other words, the positions of nodes typically change at a much lower time

scale than frame transmissions.

Calculation of the neighbor-list and the update interval are proposed heuristics for re-

ducing the number of physical layer calculations. Under this model, a transmission of a

data frame invokes an RTS and possibly a CTS in a single event. Rather than checking

every node, physical layer calculations are only required for each neighbor in the circular

area specified in 3.13. The benefits of this abstraction are directly proportional to the up-

date interval which in turn is a function of the transmit power as well as the speed of the

nodes.

Model #3: Simplified Neighbor List

The third abstraction simplifies the transmission of control frames even further. Build-

ing upon the previous model, a neighbor list is maintained for each node in the network.

The calculation for reception of the RTS or CTS frames differs in that only the intended

receiver is considered. All other stations in the neighbor list are assumed to have received
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the control frame successfully. For one RTS or CTS frame, physical layer calculations are

only required for the sender-receiver pair. This returns an even bigger savings over the

Event-Compression abstraction. Because of the single calculation for each the RTS and

CTS control frames, there is less of a dependency on the transmission power.

3.1.7 Results

A packet based discrete event simulator was developed for the purposes of this study.

Work thus far has produced models for the physical, data link, and applications layers.

Nodes are confined by a simulation space of one square kilometer, and movement is gov-

erned by the random waypoint model without pauses. The application layer consists of a

basic source which generates packets with an inter-packet arrival time modeled as a Pois-

son process. Packet sizes are chosen from an exponential distribution with a mean of 128

bytes. Destination nodes are chosen uniformly from the set of all nodes. Transmission suc-

cess is determined using an attenuation model with a path loss constant of α = 4. The bit

error rate (BER) is evaluated for a given packet assuming a differential phase shift keying

modulation (DPSK) scheme. Error correction is not supported, therefore the probability of

successfully receiving a frame is the likelihood that there are no bit errors.

The simulator maintains a list called the packet queue that contains all outstanding

transmissions in the network. When a new transmission begins, it is added to the packet

queue, and outdated transmissions are removed. Whenever a transmission is added, the

BER is recalculated for every transmission on the list to reflect the new interference con-

ditions. The BER is then used to predict the number of errors over the length of that

transmission. If any errors are predicted, the transmission attempt corresponding to the
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frame is marked as failed. Lastly, the transmission times do not include propagation delay.

In this study, we compare the proposed 802.11 abstraction models to a faithful imple-

mentation in OPNET. OPNET’s physical layer calculations are evaluated differently than

our simple abstraction model. However, the best attempt was made to match parameters

with the default values in OPNET modeler. Two metrics were evaluated in this study,

goodput ratio and end-to-end (ETE) delay. The goodput ratio is defined as the fraction of

successful data rate transmitted over the attempted traffic rate, or offered load. Goodput,

in kbps, is the rate that bits are pushed up from the data link layer at the receiver and is

dependant upon the packet error probability. Offered load, also measured in kbps, is the

rate that bits created at the application layer. ETE delay measures the time it takes for a

single-hop transmission to travel between the source and destination node. This includes,

queuing delays, medium contention, and transmission delays.

We begin by scaling the transmission power to observe the affect it has on the goodput

ratio. With a fixed packet generation rate of 1.6 seconds per node, and a network size of 30

nodes, we scaled the transmission power from 0.125 mW to 1024 mW. Figure 3.5 illustrates

that all of the models demonstrate the same trend, including the OPNET validation model.

The concave growth in the goodput suggests that frames are more likely to reach their

intended destination as the transmission power increases. Figure 3.6 reveals negligible

effects of network size on the goodput ratio for model #1 (the Event-Compression Model).

This is representative of the other models as well. The low value for the goodput ratio is

attributed two factors. Intended receivers at the application layer were chosen uniformly

from set of all nodes which is likely to select receivers outside of the transmission radius.

Second, the lack of error correction codes inflates the probability that frame is dropped to
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Figure 3.5: Goodput ratio vs transmit power

equal the probability that a bit is received in error.

Figure 3.7 depicts the ETE delay dependency on the normalized offered load. For a

fixed transmit power of 100 mW, the offered load was scaled by modulating the inter-

arrival time for packets (packet inter-generation mean = {3.2, 1.6, 0.8, 0.4, 0.2} seconds).

In the three abstracted models, ETE delay noticeably increased with the offered load per

node. This is expected as higher offered loads increase queuing delays and contention. The

ETE delay for the abstraction models elicit a different trend than the abstraction models,

yet the results are on the same magnitude. The results suggest that the abstraction models

may not be suitable when delay is a metric of interest. The general trend for how the ETE

delay behaves as a function of the network size is shown in Figure 3.8. Only the Event-

Compression Model is shown, but it is representative of all of the models.

Lastly, Figure 3.9 displays how the runtime scaled with the network size. The transmis-
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sion power was set to 100 mW and the packet inter-generation time was set to 3.2 seconds.

The running times for the models are normalized by their respective 10-node run times to

allow relative runtime growth factor benchmarking between the OPNET and AWSIM simu-

lators which used a dissimilar runtime environment and model representation. The OPNET

model scaled better than the Event-Compression model, yet its absolute runtime was about

twice as high. A progression can be observed from the Event-Compression model with

quadratic scaling, down to the Simplified Neighbor List, which elicits linear scaling in the

network size.

In summary, the goodput ratio for the three abstraction models have been validated

using OPNET. There is however a discrepancy in the end-to-end delay measurements. Each

abstraction presented improves upon the rate at which the running time increases in the

network size. These results demonstrate a significant improvement, reducing the runtime

growth from quadratic to linear.

3.1.8 Performance Programming

To model wireless networks, initially Lockheed Martin’s CSIM [4] discrete event sim-

ulator was chosen. CSIM provides a ready framework for wireless networking, including

models for wireless radios, and is composed of a library with the basic simulation build-

ing blocks in C. One of the building blocks is an element called a synchron. Synchrons

were used to model the synchronous communication between radios which are modeled as

threads. Radios start out initially in a “sleep state”; waiting to receive a transmission. A

packet transfer is accomplished when another radio wakes up a nearby radio in a sleep state,

sending a pointer to the destination radio variable which represents the packet. Delays are
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then used to simulate the duration a station is in the send or receive state.

Initially, multiple syncrons were used at several layers of the protocol stack. However,

we were able to reduce the number of threads down to one for the movement and another

for communication. A migration from CSIM to C++ was then undertaken to gain access

to the event scheduler, in addition to taking advantage of an object oriented design. A

simple single-process discrete-event simulator was proposed to alleviate the memory and

per-node overhead of using threads to maintain state. However, additional approaches such

as worker threads and threading pools could be used to further reduce memory consumption

and improve upon baseline performance.

Figure 3.10 shows a constant time improvement for the C++ simulator. There are sev-

eral differences in the implementation of both simulators, and therefore performance results

are considered crude at best. The two scenario’s were normalized with a stopping criterion

of 20,000 transmission attempts. The CSIM version simulated the full 802.11 model, while

the closest C++ model used event compression. The relevant parameters for the simulation

trials are provided in Table 3.3.
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Parameter CSIM Version C++ Version
Simulation Area 1km2 1km2

Movement Model Random Waypoint Random Waypoint
Channel Model Rayleigh Rayleigh
Datalink Model IEEE 802.11 IEEE 802.11 Event Compression
Frame TX Attempt 4 4
802.11b Timeslot 20µs 20µs
802.11b SIFS 10µs 10µs
802.11b DIFS 50µs 50µs
802.11b CWMIN 31 31
802.11b CWMAX 1023 1023
802.11b Max Frame Size 1500 bytes 1500 bytes
Threshold Power 31.0∗10−9 Watts 31.0∗10−9 Watts
Path Loss Exponent 4.0 4.0
Shadowing Variance 8.0 8.0
Stopping Criterion 10,000 arrivals 10,000 arrivals

Table 3.3: Variables used for simulation runtime comparison between CSIM and C++ ver-
sions.
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4. Traffic Engineering for the Next Generation Internet

High bandwidth applications such as streaming media are increasing in popularity

and have the potential to dominate future Internet traffic consumption. Forester Research

[38, 28] estimate that 46 millions homes in the United States alone will have broadband

access. In another study conducted by Vision Consulting [20], there were 60 million peo-

ple watching streaming media worldwide. In addition, the Vision group found that over

6000 hours of streaming media content is being published per week. As of recent, cable

companies and telecommunications companies have begun offering streaming television

and voice over IP (voIP) services. To handle this increase in demand for real-time traffic,

bandwidth scaling protocols will be highly attractive for Internet service providers (ISPs).

In this section, we present two congestion response mechanisms for use in Multiproto-

col Label Switching (MPLS) networks that seek to maximize the performance of real-time

applications. MPLS network backbones combine data link and network layer information

to simplify and improve IP-packet exchange. The MPLS protocol may be leveraged by

ISP’s within the confines of their network, also referred to as an autonomous system (AS),

to re-route traffic around congestion and link failures. Edge routers assign a label to traffic

connections based on service classes. Using these labels, providers can employ a technique

known as preemption to make service class-based routing decisions. This approach aligns

high priority traffic on the shortest or least cost routes by displacing low priority traffic. The

criteria used to select which streams are moved is referred to as the preemption algorithm.

While preemption yields a degree of flexibility to service providers, it is unable to ef-
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fectively throttle congestion when the network is over-provisioned. There are two general

approaches to this problem, congestion control and admission control. An admission con-

trol algorithm rejects additional connections that would exceed the available capacity of a

link on the network. However admission control is not supported by the adopted best-effort

Internet protocol standard. An alternative we have elected to study is that of rate adapta-

tion. Adaptation addresses the fundamental problem that clients in the network need to be

sensitive to the congestion around them. For the same reason a car is not permitted to drive

at the desired speed limit during rush hour congestion, streaming media may not always

transmit at the desired bit-rate. The algorithm that determines when and who should in-

crease or decrease their stream rate is known as the adaptation algorithm. As congestion

increases, stream rates are reduced to make room for additional traffic which result in an

increase of capacity.

4.1 Rate Adaptation for Multimedia Streams

High bandwidth, streaming media applications are pervading the Internet. Rate adap-

tation is a congestion response technique well suited for inelastic traffic (e.g., streaming

media applications). Akin to the congestion response mechanism of TCP, using adaptation,

UDP streaming media clients may toggle subscriptions (i.e., instantaneous bit-rate) in or-

der to adjust to perceived congestion levels. Consider a media file encoded at two bit rates

of high and low quality. Not all clients will be able to subscribe to the high quality stream

due to bandwidth limitations or congestion. Using adaptation clients may reduce their sub-

scription to the low quality stream in times of congestion, but are also free to switch to the

high quality bit rate when traffic levels subside. An algorithm for distributed adaptation,
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Receiver Driven Layered Multicast (RLM), was originally proposed by McCanne [50].

Based on the premise that no one rate is right for all clients, RLM takes a client based ap-

proach to accommodate heterogeneity. The client and server may share information about

the transfer, but the burden of rate selection is placed on the client and not the source.

Rate adaptive receiver-driven protocols have been widely accepted, and utilized in many

streaming media software applications [66, 64, 6]. The Congestion Manager framework

(CM) is an IETF standard adopting most of the key concepts of the RML protocol. This

framework is used in several streaming media applications. The RLM algorithm proposed

by McCanne provides a prescription for selecting the client’s subscription level based on

the level of congestion experienced in the network. When a client first joins a multicast

group, it starts out receiving only the base layer of the lowest quality. After a random period

of time, the client tests the bandwidth of the connection by subscribing to the next layer

of higher quality. If the client experiences excessive packet loss it drops that layer. The

time between join experiments increases after each failure using an exponential back-off

algorithm. Clients wait an exponential period of time based on the number of failed packets

that occur while attempting to subscribe or ”up-shift” to the next subscription level. If, after

a certain period of time the client has not experienced loss, the algorithm will repeat again

until it reaches the highest subscription layer.

Figure 4.1 illustrates the exponential backoff strategy for a sample realization for an

RLM client that receives four layers of increasing quality. The first series of join ex-

periments are successful until the client reaches the maximum subscription level. Upon

subscribing to the maximum layer, the client perceives congestion (C), reduces it’s sub-

scription rate, and must wait an exponentially longer period of time before re-attempting
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Figure 4.1: An RLM “sample realization” [50]

another join experiment from layer 3 (D). In RLM, a client maintains an exponential timer

for each layer which provides a learning mechanism whereby clients converge towards the

optimal subscription level over time.

4.2 Preemption on MPLS Networks

Preemption is a congestion control mechanism for removing streams off of a congested

path to make room for higher priority arriving streams. Streams may be selected based on

application type, bandwidth, customer class, or other criteria. Streams that are removed

off of the congested route may be placed on a less desirable route, or the removed streams

may become blocked from the system if an alternative route cannot be found. Preemption

is also used to reroute traffic when link failures occur. Preemption results in a decreased

blocking probability and improved alignment on shortest paths for high priority traffic at

the expense of low priority traffic.
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4.3 Related Work

Current research has focused on the areas of optimal adaptation policies [68, 76], as

well the combined use of adaptation with admission control [15, 76, 75]. Bocheck et al.

[9] propose and evaluate a content aware utility based adaptation system for delivery of

MPEG-4 content. In [65], adaptation is used as a course grain response to congestion that

is combined with a TCP-friendly congestion control scheme for very short time scales.

Smart use of buffering at the receiver is used to absorb the differences in time scale.

The work in [68] investigates optimal policies for streams to dynamically adapt the

fraction of their available bandwidth given to base and enhancement layers. The authors in

[75] identify the asymptotic bounds of the optimal static adaptation policy using multi-class

admission control and show that the expected subscription level approaches that of the opti-

mal dynamic admission policy on large links, both mathematically and via simulation. The

major drawbacks of the optimal adaptation policy are that it requires centralized knowledge

and control of the network, and for high arrival rates, there is a large rate of adaptation for

streams near the volume threshold. In addition, it is shown in [76] that a static volume

based admission policy consisting of only two subscription rates can achieve near optimal

QoS. Under this policy, at the time of admission, streams of short duration subscribe to

the maximum rate, whereas streams of long duration subscribe to the minimum rate. For

optimal performance, this requires accurate information of the network state at the time of

admission.

Preemption is an attractive vehicle for implementing priority access policies, as well

as granting favorable paths to high priority traffic. A large proportion of the literature has
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focused on the policy used for deciding which (if any) LSP should be preempted. In 1981,

Calabrese characterized the performance of a preemptive two class telephone network with

two different preemption policies that differ only in the consideration of alternative routes.

Garay and Gopal have shown that selecting the optimal stream which least “disturbs” the

network is NP complete [24]. In response, the authors present a few simple heuristics for

use in a centralized system.

In [61], two decentralized preemption algorithms are introduced. These algorithms op-

timize three fixed criteria constrained by the order of importance: number of connections,

bandwidth, and priority. De Oliveira et al. [18] extend this work by allowing the service

provider to specify the balance between the number of connections, bandwidth, and pri-

ority in the preemption policy. An adaptive preemption policy is proposed whereby lower

priority LSP’s reduce their rate if able to make room for the arriving high priority LSP.

This allows for additional clients and minimizes the degree of re-routing. A simple and

fast heuristic is proposed for the LSP selection in both algorithms and is shown to be a

close approximation of the optimal solution. In [70], the authors consider an admission

control policy for adaptive hierarchical streams. In this scheme, enhancement layers may

be preempted in favor of new arrivals when the demand exceeds the network capacity. Two

serious drawbacks are the lack of comparison to a baseline model and no mathematical

expressions of performance.

4.4 Preemption and Adaptation Combined

In an effort to combat congestion on high bandwidth next generation networks, we

investigate the combined use of preemption and adaptation. Adaptation can be thought of
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c

Link B: secondary path

c

Link A: primary path

Figure 4.2: A two link network

as a preliminary measure to counter congestion. Adaptation has the affect of increasing

the network capacity by reducing individual stream rates, yet adaptation is unable to make

use of routing information to find free capacity along additional routes. Preemption is

seen as a secondary measure to align priority traffic and re-route flows onto under-utilized

routes. The combined use of adaptation and preemption yields an overall improvement in

the blocking probability, quality of service, and traffic alignment.

In our study, a simple two-route network is constructed to readily demonstrate the af-

fects of adaptation and preemption. The capacity of both links are fixed at 100 Mbps. One

of the links (Link A) has a lower delay and is labeled as the primary path, see Figure 4.2. We

consider streams that have two priority levels: High Priority(HP) and Low Priority (LP).

In addition, streams have two subscription levels: minimum and maximum. Admission

into the two-link network is governed by Algorithm 4. Arriving streams attempt to enter

the network at the maximum rate on the primary route. When congestion occurs, we first

consider adaptation to permit additional streams onto the primary path. When adaptation

can no longer accommodate the arriving stream we then attempt to preempt lower priority
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Parameter Symbol Value
Sim Duration T 10,000 Arrivals
Link Capacity c 100 Mb
Arrival Rate λ 1-50
Mean Stream Duration µ−1 10.0 seconds
Max. Stream Size σmax 2 Mbps
Min. Stream Size σmin 1 Mbps
Random Number Generator Mersenne Twister
Routing Protocol CSPF

Table 4.1: Variables used for two-link simulations (C++)

streams onto the secondary path (Link B). Lastly, the arriving stream is blocked if neither

mechanism can find sufficient space. When space on the congested route becomes avail-

able streams may be selected to increase their rate to make use of the available bandwidth.

All of the relevant variables for the experiments are provided in Table 4.1.

We consider two traffic engineering metrics to measure performance:

• Blocking Probability: Streams are blocked when there is not sufficient room for ad-

mission. Preemption and adaptation may be used to free up space on the congested

route. When adaptation is employed, an arriving stream is blocked after all the resid-

ing streams have been adapted, yet there still is insufficient room to fit the arriving

stream. Using preemption, streams will be blocked from the route when there are no

lower priority streams to preempt, meaning there is only high priority traffic on the

available routes.

For the two-route topology in Figure 4.2, blocking only occurs when both links are

at full capacity. Using Little’s Law we can predict the per-class arrival rate λ in

which blocking begins to occur. Let nh, nl indicate the mean number high and low
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Algorithm 4 Admission algorithm for two-link network
Admit HP arriving stream under the following conditions:
if HP arrival at full rate plus the aggregate full rate load on link A is less than the capacity

of link A
then Admit the LP stream at full rate on link A

else if Adaptation is enabled and the HP arrival at adapted rate plus the aggregate adapted load on
link A is less than the capacity of link A

then Admit HP arriving stream at adapted rate on link A
else if Preemption alone is enabled and enough LP streams can be moved from Link A to B

then Admit HP arriving stream at full rate on link A; Preempt lower priority streams
to link B

else if Adaptation and Preemption are enabled, and the aggregate adapted rate LP load on link A
exceeds the size of an adapted rate LP stream

then Admit HP arriving stream at adapted rate on link A; Preempt lower priority streams to
link B

else if The aggregate full rate load on link B plus the full rate of a HP stream is less than the link
B capacity

then Admit HP arriving stream at full rate on link B
else if The aggregate adapted rate load on link B plus the adapted rate of a HP stream is less than the

link B capacity, and adaptation is enabled
then Admit HP arriving stream at the adapted rate on link B

else if Preemption alone is enabled and the aggregate full rate LP load on link B exceeds the size of
a full rate HP stream

then Admit HP arriving stream at the full rate on link A; Preempt lower priority traffic
to link B

else if Both adaptation and Preemption are enabled, and the aggregate adapted rate LP load on link B
exceeds the size of and adapted LP stream

then Admit HP arriving stream at the adapted rate on link B; Preempt lower priority streams
out of the system

else
Block the HP stream

end if

Admit LP arriving stream under the following conditions:
if The aggregate full rate load on link A plus the full rate of a LP stream is less than the link A

capacity
then Admit the LP stream at full rate on link A

else if Adaptation is enabled and the aggregate adapted rate load on link A plus the adapted rate of
a LP stream is less than the link A capacity

then Admit the LP stream at the adapted rate on link A
else if The aggregate full rate load on link B plus the full rate of a LP stream is less than the

link B capacity
then Admit the LP stream at the adapted rate on link B

else if If adaptation is enabled and the aggregate adapted rate load on link B plus the adapted rate
of a LP stream is less than the link B capacity

then Admit the LP stream at the adapted rate on link B
else

Block the LP stream
end if
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priority streams in the system at steady state. Let λh, λl signify the high and low

priority arrival rates respectively. In the absence of blocking we obtain the following

relationship:

nh = λhµ
−1
h , nl = λlµ

−1
l (4.1)

Without adaptation or preemption for the two-route network, we calculate that the

links will begin to fill to capacity at arrival rate λ = 10 for both classes (see equation

4.2). Applying adaptation alone effectively doubles the network capacity. Using

equation 4.2 with σmin in place of σmax results in an arrival rate of λ = 20 for both

classes. Preemption will allow twice as many HP streams in the system as high

priority traffic will see only nh, while the low priority arrival rate will be affected by

nh + nl . As a result the arrival rates for the low and high priority classes are λl = 10

and λh = 20 respectively. Finally, using both adaptation and preemption permit twice

as many streams than the preemption case for both classes.

nh +nl = nmax f ull → λ = b 2c
σmax

c = b 200
2×10

c = 10 (4.2)

Figures 4.3 and 4.4 illustrate the blocking probability for the low and high prior-

ity classes as a function of the arrival rate. These figures demonstrate the improved

blocking probability for the high priority class when using either preemption or adap-

tation. When adaptation is used, the arrival rate at which congestion begins or con-
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Figure 4.3: High priority blocking probability

gestion arrival rate is doubled. The use of preemption decreases the high priority

congestion arrival rate two fold.

• Traffic Alignment: We measure the affect of preemption by computing the fraction

of time a stream is on the primary path. The primary path is the path a stream would

be placed on by the routing protocol in a non-congested regime. Figure 4.5 shows

the fraction of time HP streams reside on the primary path. Considering the system

begins to fill at λ ≈ 10 with no adaptation or preemption, we expect HP traffic to

start traveling along the secondary route at λ ≈ 5. In Figure 4.6 it is shown that the

LP fraction of time on Link A is the same. When either adaptation or preemption are

used, we see that the HP traffic is able to stay on the primary route until λ ≈ 10. The

low priority fraction of time on the shortest route is significantly reduced when using

preemption. In Figures 4.5 and 4.6 we see that the combined use of adaptation and
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Figure 4.4: Low priority blocking probability

preemption yields a four fold increase in the number of high priority streams on the

primary path.

The costs associated with preemption and adaptation can be expressed in three metrics.

Adaptation decreases the quality of the stream and incurs some visual distortions with

each rate change. While not measured here, each preemption in practice results in a non-

negligible delay for the affected streams. Therefore, it is natural to consider each adaptation

and preemption as a unit cost.

• Rate of Adaptation (RoA): Each rate change incurs a non-negligible decrease in

stream quality. To capture this cost, the rate of adaptation is defined as the number of

times a stream changes its bit-rate over the streams duration. The rate of adaptation

is reported as a client average over all of the streams. Figure 4.7 depicts the rate of

adaptation for the two-route network. For λ small, the RoA is zero as no adaptation
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is necessary. Low priority traffic approaches zero as λ gets large because LP stream

rates are the first to be reduced and last to be increased. When the network is in steady

state HP departures are immediately followed by an adaptation. Then when the next

arrival follows immediately after, an additional adaptation is required. This results

in an average of two adaptation events for each HP stream for the adaptation and

preemption case. Adaptation alone permits a mix of LP and HP traffic, and each HP

stream is equally likely to adapt following a departure and arrival. The set of streams

is effectively reduced in half with an adaptivity of a half, therefore the probability of

being selected for adaptation is doubled. This results in an average of four adaptation

events for each HP stream.

• Quality of Service (QoS): While quantifying the quality of streaming media is dif-

ficult to enumerate mathematically, it is reasonable to express the QoS for a stream



69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45  50

C
us

to
m

er
 a

ve
. f

ra
ct

io
n 

of
 ti

m
e 

at
 fu

ll 
ra

te

Aggregate arrival rate

Customer ave. fraction of time at full rate

HP, Preemption NO, Adaptation YES
HP, Preemption YES, Adaptation YES

LP, Preemption NO, Adaptation YES
LP, Preemption YES, Adaptation YES

Figure 4.8: Customer average fraction of time spent at full rate

as the fraction of time the stream is at the maximum rate. Results for this metric are

expressed as a client average for all streams in the network. In Figure 4.8 we plot

the customer average fraction of time a stream is subscribed to the maximum stream

rate. As the primary path begins to fill up from λ ≈ 5 to λ ≈ 10 streams begin to

adapt to make room for additional traffic. From λ ≈ 10 to λ ≈ 15, adaptation briefly

is able to reclaim unused bandwidth after streams depart. After λ ≈ 20, the second

path has saturated and no streams are ever at their max rate.

• Rate of Preemption: In practice, preemption stops transmission of the preempted

stream, and transfers it to a new route. This delay is substantial, therefore we consider

the rate of preemption as a cost metric. The rate of preemption is reported as the time

average number of preemptions throughout the simulation duration. Figure 4.9 shows

the time average rate of preemption for low priority traffic. The rate of preemption
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for the preemption only case increases until the network is saturated at λ ≈ 20. The

adaptation and preemption case have twice as high asymptotic rate of preemption.

This is attributed to adaptation increasing the number of streams on the links so that

twice as many preemption events occur.

In Figure 4.10 we analyze the runtime of each regime and find that the execution

time increases with the arrival rate until the network begins to saturate. After λ ≈

20, a gradual decrease occurs as there are fewer adaptations and preemption events.

Adaptation has the affect of greatly extending the runtime as the effective capacity is

doubled. Figure 4.10 was generated using the same parameters of Table 4.1 with the

exception of the stopping criterion which was increased to 100,000 arrivals for each

data point.
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4.5 Performance Improvements

At first glance, implementation of these algorithms might appear relatively straight-

forward, however a simulator that takes an arbitrary network graph as an input is fairly

complex. Classes were used to represent the objects of the simulator such as nodes, links,

routes, streams, and algorithms. All of these objects interact to form the network. How-

ever, the object oriented world was not entirely suitable for the implementation of certain

routing algorithms. The representation of the network was converted from pointer based

objects to linear arrays. Several tables were maintained, updated, and used by the rout-

ing and preemption algorithms. Ensuring proper maintenance of the tables for all of the

algorithms and special cases proved to be the most time intensive and error-prone tasks

during development. There are several problems that arise in the routing and re-routing of

paths on the network. Consider a stream traversing multiple links, that is preempted onto a

secondary link, however there is insufficient room on the new route unless another stream

is adapted. Adapting this stream might trigger another stream on another route to increase

it’s stream rate as room is now available. Complex network interactions such as these are

difficult to validate.

A simple lightweight discrete event simulator package called Desmo-J [57] was utilized

to abstract away the scheduling of events and allowed for rapid development of the MPLS

simulator. In addition, JFreePlot [26] was incorporated for data capture and plotting ca-

pabilities. Both tools for Java have been used in various other projects, and at first glance

appeared to be suitable for the needs of the project. Other commercial simulators were

not considered due to concerns of scalability, unnecessary complexity, and the high learn-
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ing curve often accompanying these tools. For the purposes of studying adaptation and

preemption, a stream-based abstraction was used in place of a high fidelity packet-based

simulator. After the simulator was built, it was found that it did not scale well at all in the

number of streams. Initial profiling of the simulator showed that memory usage exceeded

system capacity causing a tremendous slowdown. The culprit for a large part of memory

usage was JFreePlot, which was storing large amounts of data for each stream. After dis-

abling the capture of data, memory was still being exceeded. Desmo-J used a producer and

consumer paradigm for modeling of arrivals and departures in queuing systems. The prob-

lem was each customer was modeled with a thread that was put to sleep for its duration in

the system, and then killed on departure. At or around 1,000 customers the system would

come to a stand still, most likely caused by thrashing. Each thread uses a minimum amount

of memory and so this presented a scalability problem as well.

In order to determine the performance difference between switching from a thread-

based simulator to a single process discrete-event simulator, we measure the simulation

running time versus the simulation duration and link capacity. The capacity can be cal-

culated as the link capacity is fixed and the maximum size of each stream is 2 Mbps and

adapts down to 1 Mbps. In the figures below, a huge decrease can be observed in the run-

ning time for a simple single link experiment by using the single-process simulator. Each

data point represents the average execution time for 4 scenario cases: adaptation alone,

preemption alone, no adaptation or preemption, and both adaptation and preemption. For

each of these case the offered load to the link was scaled from 1 to 50 in increments of 1 for

the simulation duration. These two metrics illustrate how the running time is effected by

the number of streams in the network, and the simulation duration. The rate at which the
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Figure 4.11: Running time vs system capacity on a single link

running time scales with the simulation time is much greater for the thread-based simulator

compared with the single process simulator (see Figure 4.12). In Figure 4.11, we see as

the effect of increasing the capacity of the link or maximum number of streams aggregated

on the link. The thread-based simulator was found to be a memory hog as the number of

threads grew short of the 1,000 mark and in part was also due to holding plot information

in memory with JFreePlot. There is a clear improvement in the running time and the slope

is higher for the thread-based simulator.

The main benefit for using a thread-based model is the simple implementation of finite

state machines allowing for rapid development. Compared with an event-based model, state

transitions are easily defined. An example illustrates this point best, consider two wireless

radios who are transmitting a packet for a duration of 5 ms, if a third radio interferes with



75

Figure 4.12: Running time vs simulation time on a single link

the ongoing transmission 1 ms into the first transmission, stations may need to change

state perhaps by ending the transmission early, or higher level protocol states may need

to modified as well. In a discrete-event simulator this event, would require removal of

future events(packet reception in this example) planned for the future in place of an event

that should occur at the present. In a thread-based based simulator, it’s much easier to

handle these synchronous issues where an interrupt is simply used to wake threads that are

sleeping. The main problem with thread-based simulation models is the scalability in the

number of threads. The two problems are the memory usage per thread and the thrashing

which occurs when the number of threads becomes large.
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Many architectures are unable to efficiently support more than a few thousand threads

concurrently. The solution calls for a single process simulation engine, which does away

with thrashing and memory usage issues associated with the thread-based implementation.
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5. Future Work and Conclusions

A large part of our work has been focused on improving the efficiency of network

simulation. We presented a protocol abstraction which can be applied to MACA based data

link protocols on wireless ad hoc networks. It would be interesting to apply our approach

in conjunction with the work of Naoumov and Gross [53]. Using a two dimensional data

structure, the authors reduce the set of receivers considered for interference calculations.

Applying this approach, we could thereby reduce the number of nodes considered at each

updated interval. An additional avenue to take is to compare the performance of protocol

abstractions in relation to different metrics. Our research suggested that some abstractions

may be better suited for different metrics.

Future work on the combined study of adaptation and preemption might include an

implementation of both algorithms in OPNET for validation purposes. Now that we have a

simulator of scale, a plan is currently underway to experiment on larger topologies than the

two link scenario. Our assumption that all streams are CBR does not hold in reality; instead

UDP traffic must compete with variable bit-rate TCP traffic. We are interested in studying

the extent to which the combined use of adaptation and preemption will help congestion on

realistic backbone networks where these dynamics are at work.
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