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ABSTRACT 
Discovery of Discriminative LC-MS and 1H NMR Metabolomics Markers 

Geoffrey T. Gipson 
Bahrad A. Sokhansanj, Ph.D. 

 
 
 
 

 There is a growing trend to look for novel markers of altered phenotype that are 

not associated with existing biological knowledge.  This exploratory approach has led to 

greater emphasis on generating and analyzing large amounts of data simultaneously.  

Discovery of metabolic markers through analysis of non-targeted, high-throughput data is 

a challenging, time-consuming process.  Two of the most popular analytical techniques in 

metabolic profiling are 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid 

Chromatography (LC) -Mass Spectrometry (MS).  There are many challenges associated 

with the interpretation of these complex metabolomic datasets and automated methods 

are critical for extracting biologically meaningful information from them.   

 This work describes the development and application of several novel approaches 

for the analysis and interpretation of NMR and LC-MS data.  A weighted, constrained 

least-squares algorithm which uses a linear mixture of reference standard data to model 

complex urine NMR spectra is discussed.  This method was evaluated through 

applications on simulated and experimental datasets.  The evaluation of this method 

suggests that the weighted least-squares approach is effective for identifying biochemical 

discriminators of varying physiological states.  Next, a method for clustering MS 

instrumental artifacts and a stochastic local search algorithm for the automated 

assignment of large, complex MS-based metabolomic datasets is presented.  Instrumental 
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clusters, peaks grouped together by shared peak shape in the temporal domain, serve as a 

guide for the number of assignments necessary to completely explain a given dataset.  

Mass only assignments are then refined through the intersection of peak correlation pairs 

with a database of biochemically relevant interaction pairs.  Further refinement is 

achieved through a stochastic local search optimization algorithm that selects individual 

assignments for each instrumental cluster.  The algorithm works by choosing the peak 

assignment that maximally explains the connectivity of a given cluster.  The findings 

indicate that this methodology provides a significant advantage over standard methods 

for the assignment of metabolites in an LC-MS dataset. 

 Finally, a multi-platform (NMR, LC-MS, microarray) investigation of metabolic 

disturbances associated with the leptin receptor defective (db/db) mouse model of type 2 

diabetes using the developed methodologies is described.  Several urinary metabolites 

were found to be associated with diabetes and/or diabetes progression and confirmed in 

both NMR and LC-MS datasets.  The confirmed metabolites were trimethylamine-n-

oxide (TMAO), creatine, carnitine, and phenylalanine.  Additionally, many metabolic 

markers were found by either NMR or LC-MS, but could not be found in both, due to 

instrumental limitations.  This indicates that the combined use of NMR and LC-MS 

instrumentation provides complementary information that would be otherwise 

unattainable.  Pathway analyses of urinary metabolites and liver, muscle, and adipose 

tissue transcripts from the db/db model were also performed.  Metabolite and liver 

transcript levels associated with the TCA cycle and steroid processes were altered in 

db/db mice, as was gene expression in muscle and liver associated with fatty acid 

processing.  The findings implicate a number of processes known to be associated with 
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diabetes and reveal tissue specific responses to the condition.  When studying metabolic 

disorders such as diabetes, platform integrated profiling of metabolite alterations in 

biofluids can provide important insight into the processes underlying the disease.   
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CHAPTER 1: Introduction 

 

1.1 Motivation 

 There is a growing trend to look for experimental effects (e.g. disease status, toxic 

response, etc.) that are not pre-selected based on a hypothesis derived from knowledge of 

the underlying disease state (Buetow et al., 2001; Chatterjee et al., 2006).  In the pursuit 

of this aim, more emphasis is placed on generating and interpreting large datasets of an 

unspecified mix of chemical classes and biological origins, attempting to capture the 

whole of the metabolome in only a few broadly-detecting analytical technologies.   

Metabolomics has been described as the “comprehensive and quantitative analysis of all 

metabolites” (Fiehn, 2001) and the comparison of many tissue- or biofluid- derived 

biochemical variables between test and control subjects (Lindon et al., 2004).  

Metabolomics data can be used in a number of ways, one of which is for the discovery of 

biomarkers.  This has the potential advantage of assisting in novel biomarker discovery 

for disease areas that are not well characterized or understood.  

 Biomarkers are compounds (transcripts, proteins, metabolites, etc.) that indicate a 

specific change in the physiological state of an organism.  Biomarkers can be used to 

indicate either the presence of a disease or the efficacy or toxicity of a drug (Lindon et 

al., 2004; Witkamp, 2005).  However, typically a marker is not immediately evaluated 

across a sufficient number of conditions to establish the specificity requirement of a 

biomarker.  As such, the term discriminative marker will be used here to describe a 

marker that is indicative of an experimental change, but not necessarily unique to this 

particular group change.  Discriminative markers are typically sought through 
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investigations utilizing high throughput methodologies such as transcriptomics, 

proteomics, and metabolomics.  Following biomarker discovery, independent 

applications with more simple detection assays can be utilized (Witkamp, 2005).  Since 

metabolomics provides direct biochemical information, and potentially biomarkers that 

can be easily tracked over time in human studies, it is likely that it will have a greater 

impact on drug discovery than transcriptomics or proteomics (Lindon et al., 2004). 

 Metabolomics is an area of increasing scientific interest and promise.  To date, the 

most widely utilized data generation technologies for mammalian metabolomics 

investigations have been either 1H nuclear magnetic resonance spectroscopy (NMR) or 

mass-spectrometry (MS) -based (Dunn and Ellis, 2005).  Due to the nature of 

spectroscopic techniques, both of these platforms are associated with output signal 

complexity and subsequent interpretation difficulties.  As such, metabolomics 

investigators and spectroscopists spend a great deal of time and effort extracting 

meaningful information from such datasets (Robertson, 2005). 

 There are significant challenges associated with signal processing with new 

methods needed to ensure that the metabolite information can be extracted from these 

complex datasets free of experimental confounding factors. Substantial informatics 

method development is also needed to extract biologically meaningful information from 

these complex datasets for statistical evaluation, interpretation of confounding factors, 

and chemical identification. 
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Figure 1.1.  NMR instrument from which data in these studies was collected. 
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Figure 1.2.  LC-MS instrument from which data in these studies was collected.
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1.2 Nuclear Magnetic Resonance Spectroscopy 

  NMR is an important “omics” platform because of its ability to readily and 

reproducibly assay accessible samples from blood, urine, other fluids, or tissue extracts 

and it is relatively inexpensive (Griffin and Bollard, 2004).  This makes it an amenable 

platform to identify and validate key discriminative markers of disease, drug efficacy, 

toxicity, or other physiological parameters (e.g. gender, age, metabolic status). 

Commonly, NMR datasets are analyzed by applying univariate and multivariate 

statistical approaches to discrete spectral regions in an attempt to identify regions that are 

altered by a perturbation (e.g. a group difference arising from genetic modification or 

xenobiotic treatment).  Following identification of regions of interest, metabolites with 

resonances associated with these regions are investigated more closely via manual visual 

inspection of spectra and additional analytical assays.  The chemical shift position and 

intensity of all NMR resonances for a particular metabolite, which could be termed its 

‘NMR signature,’ are essential for definitive metabolite identification.  Based on the 

NMR signature, a metabolite assignment can often be confirmed unambiguously by 

comparison with database information, using standard one and two dimensional NMR 

experiments.  However, this process can be very time consuming to do manually, even 

for known, well characterized entities.  Additionally, peak overlap can make this 

straightforward NMR identification impossible for some metabolites without partial or 

complete purification prior to NMR.  This is particularly the case for some sugars that 

contain no clear anomeric proton signal, overlapping fatty acid signals, and certain amino 

acids. 
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Direct (absolute or relative) quantification of compound levels via spectral 

analyses of NMR data would be of great value to metabolomics investigators, yet there 

are a number of challenges that must be overcome to achieve this task.  Biofluid NMR 

spectra are the integration of many individual overlapping metabolite spectral features 

(i.e. peaks).  In highly proteinaceous biofluids (e.g. blood plasma or serum), low 

molecular weight metabolites are often protein bound, rendering them less amenable to 

reliable quantification by NMR, because of line-broadening and loss of NMR visibility 

(Nicholson et al., 1995).  In urine, however, all metabolites above the detection limit with 

non-labile protons are observed, which leads to highly complex spectra (Figure 1.3).  

Additionally, there is a much larger variability in the physico-chemical parameters (i.e. 

pH, ionic strength, compound concentrations) of urine compared to more 

homeostatically-controlled biofluids such as serum, which can affect the absolute 

positioning of corresponding peaks across multiple samples (Lindon et al., 2000).  

Several techniques are commonly implemented to reduce the impact of peak shift (e.g. 

spectral region binning, spectral alignment) and continue to be developed and refined to 

deal with this inter-individual variation (Trbovic et al, 2005; Lefebvre).  As such, while 

the global quantitative analysis of NMR spectra derived from biofluids and tissue extracts 

is challenging, signal quantification in urine samples presents additional difficulties. 
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Figure 1.3.  Complex biofluid NMR spectra.
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1.3 Mass Spectrometry 

MS methods are useful data platforms for metabolomics investigators (Want et 

al., 2005) and can be used for either targeted or non-targeted analyses (Halket et al., 

2005).  A particular challenge of metabolite profiling, whether using MS or nuclear 

magnetic resonance (NMR), is assignment of spectral peaks of interest (Kell, 2004).  

Targeted MS analyses, in which a small number of predefined analytes of related 

chemical class are examined, are commonly used as a more accurate follow-up on 

putative metabolites proposed by a high-throughput method (e.g. NMR, non-targeted LC-

MS).  Non-targeted MS analyses are global investigations of compounds found within an 

analytical sample (Figure 1.4).   
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Figure 1.4.  LC-MS data from global metabolic profiling of urine from mice of 2 different genotypes. 
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Previously described informatics methods have been developed to help to reduce 

this major bottleneck, although most of the approaches have not yet been fully validated 

in the context of analytically confirmed assignments.  The proposed solutions have 

employed mass only database search methods (Smith et al., 2006), refined mass database 

search methods utilizing isotopic patterns (Kind and Fiehn, 2006), mass spectral libraries 

(Kopka et al., 2005), and ab initio mass transformation pairs (Breitling et al., 2006a; 

2006b) for the putative assignment of metabolites in high-throughput metabolomic 

datasets.   

Correlation networks of the assigned components of metabolomic datasets have 

been suggested for the construction of metabolic networks (Arkin et al., 1997, Steuer et 

al., 2003a).  Although metabolic neighbors in shared biochemical pathways have been 

observed to be significantly correlated, evaluations of modeled and experimental data 

suggest that observed correlation networks do not “necessarily” reflect underlying 

pathway structure and correlations often exist that are inexplicable given current 

biochemical knowledge (Steuer et al., 2003a; 2003b; Steuer, 2006).  Although not all 

metabolite correlations “necessarily” provide information useful for assignment within 

the context of existing biochemical pathways, however, those correlations which intersect 

with described biochemical interactions can likely be used to inform the assignment of 

MS data peaks.  In other words, while current understanding of biochemical interactions 

is incomplete and cannot fully characterize the pathway relationships underlying 

observed metabolite correlations, it is hypothesized that existing biochemical knowledge 
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provides useful information for the assignment of unknown compounds in large 

metabolomic datasets.   

In a recently described method for ab initio metabolic network prediction, 

investigators present a method for assignment of putative metabolite transformation pairs 

using ultra high mass accuracy MS methods coupled with mass searches focused on 

metabolic transformations (Breitling et al., 2006a).  The method identifies a series of 

putative ion reaction pairs by mapping peak mass differences to biochemical 

transformation reactions.  According to the authors, one of the benefits of this analysis is 

that their network links are directly associated with known chemical reactions, exceeding 

the level of descriptive connectivity of metabolite correlation networks.  Here, a method 

is presented that provides explicit biological meaning to observed data relationships 

which can provide insight into the assignment of features in MS-based datasets. The 

method is intended to be a useful assignment tool, even for lower mass accuracy 

instruments that are in common use.  However, improving the mass accuracy will likely 

improve obtained results. 

A recent review of MS-based metabolomics describes the current usage of 

biochemical databases as a means to infer biological function of previously identified 

metabolites (Dettmer et al., 2007).  Applications utilizing existing biochemical pathways 

include visualization (Mendes, 2002) and metabolic flux analysis (Forster et al., 2002).  

However, a global, systematic intersection of metabolite correlation pairs with a database 

of biochemical interaction pairs has not yet been described.     
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1.4 Metabolic Study of Murine Diabetes 

In both the United States and worldwide, the prevalence of diabetes is increasing.  

In 2003, there were approximately 194 million affected adults (5.1% global population), 

and by 2025, it is projected that the incidence of diabetes will reach 333 million adults 

(6.3% global population).   Type 2 diabetes accounts for approximately 90% of all 

diabetes cases and is projected to be the primary cause of the increasing incidence rate 

(International Diabetes Federation, 2005). 

Of all the animal models available for the investigation of type 2 diabetes, rodent 

models have been the most popular due to short generation time, heritable traits, and cost.  

The most studied spontaneously diabetic mouse model is the db/db mouse, which, due to 

an autosomal recessive defect in the leptin receptor gene, displays several phenotypic 

traits associated with type 2 diabetes (Chen and Wang, 2005) including drastically altered 

metabolic processes.  The widespread metabolic changes associated with diabetes make 

metabolic profiling a particularly important contribution to the discussion of disease 

progression and prevention. 

1.5 Cross-platform Metabolomic Analyses 

 The use of NMR and LC-MS methods in conjunction for metabolomics studies is 

relatively new, though some examples can be found in the literature (Lenz et al., 2004a; 

2004b; Williams et al., 2005a; Crockford et al., 2006).  Methods proposed for the co-

analysis of multiple types of spectroscopic metabolomics data include statistical 

heterospectroscopy (Crockford et al., 2006) and data fusion (Smilde et al., 2005).  Data 

fusion can and has been applied in many areas of scientific inquiry due to the generic 
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nature of the data integration.  Recently, it has been used in another field of high 

throughput biology, genomics (Lanckriet et al., 2004). 

 The integrated analysis of metabolomics data from multiple data platforms is an 

active area of research (Smilde et al. 2005; Crockford et al. 2005).  Data fusion attempts 

to integrate multiple datasets, each with a different “view”, into a comprehensive 

description of the test subject.  Such integrated analyses are not unique to metabolomics, 

and have been applied in many scientific fields, including genomics (Lanckriet et al. 

2004).  Data fusion can be implemented at many different levels of inquiry.  At some 

point, the fusion always consists of combining features from the various platforms into an 

individual feature vector.  The data integration can be performed: early in the analysis 

process, meaning that all measured variables from an individual are fused prior to any 

data processing; late in the process, following high level feature selection on the 

individual platforms; or anytime in between.  In the study of the leptin defective murine 

model of diabetes described here, comparisons are made at the level of data features with 

confirmed metabolite assignments. 

1.6 Approach 

1.6.1 Nuclear Magnetic Resonance Spectroscopy 

A number of attempts have been made to decompose NMR spectra into individual 

components (e.g. independent component analysis, molecular factor analysis) without 

any prior knowledge of the underlying data structure (Ladroue et al., 2003; Eads et al., 

2004; Scholz et al., 2004; Stoyanova et al., 2004a).  The primary disadvantage of these 

methods continues to be the difficulty in interpreting the results within a biochemical 
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context.  In other words, since there is no underlying metabolite data structure built into 

these methods, the components rarely match known metabolite profiles. 

Several fitting methods utilizing combinations of empirically derived or modeled 

reference spectra exist (Provencher, 1993; Crockford et al., 2005; Chenomx, Inc.).  A 

previous study examining a longitudinal NMR dataset suggested the use of weighted 

principal components analysis (PCA) to provide an alternative view of the data versus 

unweighted PCA (Jansen et al., 2004).  However, differentially weighting spectral 

regions in the process of deconvolving NMR spectra into individual metabolite levels has 

not previously been described. 

Here, a weighted, constrained least-squares algorithm is used for the estimation 

and comparison of relative metabolite levels (referenced to control values of the same 

metabolite) across groups of divergent physiological states.  The aim of this work is to 

demonstrate that deconvolving complex spectra with the incorporation of a non-uniform 

weighting scheme, will lead to the identification of metabolites of biological interest that 

would be missed otherwise.  In order to efficiently deconvolve the spectra into individual 

component spectra, it is often necessary to account for heterogeneous interference.  In 

other words, the signal of certain metabolites of interest may be deeply buried in certain 

spectral regions, but easily distinguished in others.  Additionally, incorporating statistical 

information about the signal of interest into the deconvolution algorithm can be useful.  

Previous methods of linear deconvolution (i.e. LCModel) place equal weight on all 

spectral regions when fitting additive models (Provencher, 1993; 2001).  The novelty of 

this approach for deconvolving complex NMR spectra lies in the application of a 

weighted, constrained least-squares method for identifying metabolites that may be 
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discriminative markers of biological effect based on the relative quantitative estimate in 

context of scaled, control intensities. 

1.6.2 Mass Spectrometry 

Here, a method is presented that selects likely metabolite candidates and increases 

confidence in metabolite assignment.  Specifically, the method will identify metabolites 

in an ultra performance liquid chromatography (UPLC)-MS dataset by mapping peak 

interaction pairs (significantly correlated peak pairs) onto interaction pairs from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2006) using mass 

matching.  Anticipated benefits of this methodology include robustness to varying 

instrumental mass accuracy and immediate placement of annotated metabolites into an 

explicit biological context. 

An additional challenge of MS-based metabolomics assignment is the 

differentiation between mass differences associated with in vivo transformation and those 

which are artifacts of MS instrumentation.  To address this, artifactual peaks (e.g. 

fragments, oligomers) should be identified to avoid assigning biological meaning to 

highly correlated peak pairs which are measurements of the same metabolite.  To avoid 

annotation of instrumental artifacts, peaks appearing to share the same compound source 

are grouped into “instrumental clusters.”  This has previously been performed manually 

through visual inspection of data peaks.  In this study, instrumental clustering was 

automated and integrated into the assignment algorithm.    

A previous study (Breitling et al., 2006a) attempted to minimize the assignment of 

instrumental artifacts using a refined, a priori set of biochemically meaningful mass 

differences.  Here, peaks with shared temporal peak shapes are clustered in order to 
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distinguish between instrumental and biological peak relationships.  To this end, and to 

aid the development of the automated assignment tool, both (i) an artificial biofluid 

matrix consisting of metabolite standards, and (ii) urine from diabetic and healthy mice 

were evaluated.  These findings were validated by analytical confirmation of the 

metabolite identity. 

1.6.3 Cross-platform Metabolic Study of Murine Diabetes 

1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry- 

(MS) based technologies are the most commonly used for mammalian metabolomics 

(Dunn and Ellis, 2005).  Both approaches allow for the simultaneous measurement of a 

large number of individual metabolites, allowing investigators to identify and validate 

key discriminative markers of disease, drug efficacy, toxicity, or other physiological 

parameters.  Consistency and reproducibility are considered a distinct advantage for the 

use of NMR in metabolic profiling studies (Keun et al., 2002).  MS-based methods are 

also important data platforms and have the specific advantage of a lower detection limit 

(Want et al., 2005).  However, MS data are not as reproducible as NMR due to a non-

linear detector response and ionization.  A recent review of metabolic profiling 

techniques (Wilson et al., 2005) discussed several comparison studies of MS-based and 

NMR metabolomics and highlighted the “complementary nature” of the two 

technologies, concluding that both techniques should be used in conjunction whenever 

reasonable. 

The goal of this study was to provide biological insight into metabolic alterations 

associated with diabetes and diabetic progression.  A number of metabolic profiling 

studies of diabetes have been conducted evaluating rodent models (Williams et al., 2006), 
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humans (van Doorn et al., 2006), and cross-species comparisons (Salek et al., 2007).  In 

contrast to these studies, an evaluation of cross -experimental and -platform results for 

consistency within the context of the biological analysis were performed in this study.  

To accomplish this, standard and novel methodologies (Gipson et al., 2006; 2008) were 

applied to extract information of biological importance from NMR and LC-MS profiles 

of urine from db/db and control (db/+) mice.  These metabolite data, collected over two 

independent experiments, are put into context with a gene expression dataset that was 

collected during one of the experimental periods.  Additionally, technical issues 

concerning the use of NMR and LC-MS data in metabolomics investigations are 

discussed. 
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CHAPTER 2: Weighted least-squares deconvolution method for discovery of group 
differences between complex biofluid 1H NMR spectra 

 
2.1 Summary 

This chapter discusses a novel approach for estimating metabolite levels from 1H NMR 

metabolomics data and has been modified from an article published in the Journal of 

Magnetic Resonance (Gipson et al., 2006) with permission from Elsevier.  This work was 

done in collaboration with Dr. Kay Tatsuoka, Dr. Brian Sweatman, and Dr. Susan 

Connor.  The majority of the introductory material from this chapter is also located in 

Chapter 1, but has been reproduced here to provide the information in the original 

context.  Biomarker discovery through analysis of high-throughput NMR data is a 

challenging, time-consuming process due to the requirement of sophisticated, dataset 

specific pre-processing techniques and the inherent complexity of the data.  Here, the use 

of weighted, constrained least-squares for fitting a linear mixture of reference standard 

data to complex urine NMR spectra as an automated way of utilizing current assignment 

knowledge and the ability to deconvolve confounded spectral regions is described.  

Following the least-squares fit, univariate statistics were used to identify metabolites 

associated with group differences.  This method was evaluated through applications on 

simulated datasets and a murine diabetes dataset.  Furthermore, the differential ability of 

various weighting metrics to correctly identify discriminative markers is explored.  The 

study findings suggest that the weighted least-squares approach is effective for 

identifying biochemical discriminators of varying physiological states.  Additionally, the 

superiority of specific weighting metrics is demonstrated in particular datasets.  An 
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additional strength of this methodology is the ability for individual investigators to couple 

this analysis with laboratory specific pre-processing techniques. 

2.2 Introduction  

Metabolomics is an area of increasing scientific interest and promise.  To date, the 

most widely utilized data generation technologies for mammalian metabolomics 

investigations have been either 1H NMR- (NMR) or MS-based (Dunn and Ellis, 2005).  

NMR is an important “omics” platform because of its ability to readily and reproducibly 

assay accessible samples from blood, urine, other fluids, or tissue extracts.  This makes it 

an amenable platform to identify and validate key discriminative markers of disease, drug 

efficacy, toxicity, or other physiological parameters (e.g. gender, age, metabolic status). 

Commonly, NMR datasets are analyzed by applying univariate and multivariate 

statistical approaches to discrete spectral regions in an attempt to identify regions that are 

altered by a perturbation (e.g. a group difference arising from genetic modification or 

xenobiotic treatment).  Following identification of regions of interest, metabolites with 

resonances associated with these regions are investigated more closely via manual visual 

inspection of spectra and additional analytical assays.  The chemical shift position and 

intensity of all NMR resonances for a particular metabolite, which could be termed its 

‘NMR signature,’ are essential for definitive metabolite identification.  Based on the 

NMR signature, a metabolite assignment can often be confirmed unambiguously by 

comparison with database information, using standard one and two dimensional NMR 

experiments.  However, this process can be very time consuming to do manually, even 

for known, well characterized entities.  Additionally, peak overlap can make this 

straightforward NMR identification impossible for some metabolites without partial or 
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complete purification prior to NMR analysis.  This is particularly the case for some 

sugars that contain no clear anomeric proton signal, overlapping fatty acid signals, and 

amino acids. 

Direct (absolute or relative) quantification of compound levels via spectral 

analysis of NMR data would be of great value to metabolomics investigators, yet there 

are a number of challenges that must be overcome to achieve this task.  Biofluid NMR 

spectra are the integration of many individual overlapping metabolite spectral features 

(i.e. peaks).  In highly proteinaceous biofluids (e.g. blood plasma or serum), low 

molecular weight metabolites are often protein bound, rendering them less amenable to 

reliable quantification by NMR, because of line-broadening and loss of NMR visibility 

(Nicholson et al., 1995).  In urine, however, all metabolites above the detection limit with 

non-labile protons are observed, which leads to highly complex spectra.  Additionally, 

there is a much larger variability in the physico-chemical parameters (i.e. pH, ionic 

strength, compound concentrations) of urine compared to more homeostatically-

controlled biofluids such as serum, which can affect the absolute positioning of 

corresponding peaks across multiple samples (Lindon et al., 2000).  Several techniques 

are commonly implemented to reduce the impact of peak shift (e.g. spectral region 

binning, spectral alignment) and continue to be developed and refined to deal with this 

inter-individual variation (Trbovic et al, 2005; Lefebvre).  As such, while the global 

quantitative analysis of NMR spectra derived from biofluids and tissue extracts is 

challenging, signal quantification in urine samples presents additional difficulties. 

A number of attempts have been made to decompose NMR spectra into individual 

components (e.g. independent component analysis, molecular factor analysis) without 
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any prior knowledge of the underlying data structure (Ladroue et al., 2003; Eads et al., 

2004; Scholz et al., 2004; Stoyanova et al., 2004a).  The primary disadvantage of these 

methods continues to be the difficulty in interpreting the results within a biochemical 

context.  In other words, since there is no underlying metabolite data structure built into 

these methods, the components rarely match known metabolite profiles. 

Several fitting methods utilizing combinations of empirically derived or modeled 

reference spectra exist (Provencher, 1993; Crockford et al., 2005; Chenomx, Inc.).  A 

previous study examining a longitudinal NMR dataset suggested the use of weighted 

principal components analysis (PCA) to provide an alternative view of the data versus 

unweighted PCA (Jansen et al., 2004).  However, differentially weighting spectral 

regions in the process of deconvolving NMR spectra into individual metabolite levels has 

not previously been described. 

Here, the use of a weighted, constrained least-squares algorithm for the estimation 

and comparison of relative metabolite levels (referenced to control values of the same 

metabolite) across groups of divergent physiological states is proposed.  The aim is to 

demonstrate that deconvolving complex spectra with the incorporation of a non-uniform 

weighting scheme, will lead to the identification of metabolites of biological interest that 

would be missed otherwise.  In order to efficiently deconvolve the spectra into individual 

component spectra, it is often necessary to account for heterogeneous interference.  In 

other words, the signal of certain metabolites of interest may be deeply buried in certain 

spectral regions, but easily distinguished in others.  Additionally, incorporating statistical 

information about the signal of interest into the deconvolution algorithm can be useful.  

Previous methods of linear deconvolution (i.e. LCModel) place equal weight on all 
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spectral regions when fitting additive models (Provencher, 1993; 2001).  The novelty of 

the approach discussed here for deconvolving complex NMR spectra lies in the 

application of a weighted, constrained least-squares method for identifying metabolites 

that may be discriminative markers of biological effect based on the relative quantitative 

estimate in context of scaled, control intensities. 

2.3 Experimental 

2.3.1 Spectral Decomposition and Metabolite Detection 

The digitization of NMR spectral data is the fine-scale discretization of a 

continuous phenomenon.  Often, investigators find it useful to analyze NMR data at a 

coarser resolution due to inter-individual peak alignment issues.  The process of 

integrating a spectral region into larger discrete representations is commonly referred to 

as bucketing or binning.  Here, all discrete spectral representations will be referred to as 

“bins.”  However, it should be noted that the algorithm described here can be applied to 

discrete spectral data of any resolution, including raw digitized spectra.   

An NMR spectrum is the summation of the intensities of multiple, individual 

metabolite spectra.  Though it is unreasonable to assume that an investigator will have a 

complete (i.e. all compounds present in a given biofluid) set of reference standards, all 

available, characterized metabolites should be incorporated into the analysis.  Eq. [2.1] 

expresses the relationship between the observed intensity at bin l of subject j (djl), the 

unknown intensity of metabolite k of subject j (mjk), and the relative intensity of known 

metabolite k in bin l (ikl).      
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                                                                                   (Eq. 2.1) 

                                                           

Since many metabolites are simultaneously detected during a single NMR data 

acquisition, and the intensity level of individual bins may be a result of contributions 

from several metabolites, the identification and quantification of individual metabolites 

measured via NMR is a challenging task.  In order to attribute the NMR spectra to 

individual metabolites, a linear model (Eq. [2.2]) was used to describe the system and 

allow for the decomposition of the NMR signal into a series of metabolite signals.  An 

important inherent property of NMR that makes this a reasonable approach is the linear 

relationship between concentration and signal intensity and hence the additivity of 

spectral intensities.   

 

                                                                D = MI                                            (Eq. 2.2) 

 

Eq. [2] represents the linear relationship between the matrix of intensity vectors 

across all individuals (D), the matrix of metabolite intensities across all individuals (M), 

and the matrix of bin-specific relative intensities across all metabolites (I).  Since actual 

metabolite levels can only have non-negative values, it makes sense to solve this linear 

system subject to the constraint that all elements in matrix M are greater than or equal to 

zero.  In order to solve the linear system subject to the inequality constraints, the 

Penalized Constrained Least Squares Fitting (pcls) function within the mgcv library 
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(version 1.3-1) of R (Wood, 1994; 2000; 2004; R Development Core Team) is used.  The 

pcls algorithm finds the minimum sum of squares, subject to the non-negativity criteria 

(Eq. [2.3]) through quadratic programming.  Although this function has the capability of 

fitting non-linear, penalized regression splines, it is used here to calculate the weighted, 

constrained linear fit.  As such, the use of penalties is unnecessary.  The pcls function is 

executed iteratively to estimate the M matrix piecewise (Mcalc) by minimizing a function 

of the weighting vector (w), individual metabolite vectors (mj), and individual data 

vectors (dj), for each individual in the dataset. 

  

                                       min || w  (mjI –dj) ||2  subject to mjI > 0
v

                (Eq. 2.3) 

 

The pcls method requires that the I matrix be of full column rank.  Prior to 

implementing the pcls function, the rank of the I matrix is verified via QR decomposition, 

and all rank deficiencies are eliminated.  Since the I matrix is strictly non-negative, the 

estimated metabolite intensity levels are constrained from taking negative values.  Mcalc 

contains information regarding the relative quantities of the characterized metabolites 

across the individuals in the dataset.   

In addition to providing inter-metabolite relative quantities for an individual, Mcalc 

can also provide insight into metabolite production between individuals or groups of 

individuals.   For example, the fold change of an individual metabolite k between two 

groups or the correlation between two metabolites can be calculated using the estimated 

metabolite levels. 
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2.3.2 Constrained Least-Squares estimates   

Although there are an enormous number of possible weighting vectors to utilize in 

the least-squares analysis, the focus here is placed on two non-uniform vectors and a 

uniform weighting vector.  In order to demonstrate the utility of “clear” spectral regions, 

an examination of a relatively low intensity metabolite, found in areas of both high and 

low interference and altered between two groups, will be instructive.  Incorporation of 

information regarding the relative interference of the different spectral regions was 

achieved through using the inverse of the number of observed metabolites in a given 

spectral region as the weighting vector.  Constrained least-squares (CLS) will be used to 

estimate the underlying metabolite intensity levels both with the inverse metabolite count 

weighting vector (mCLS) and with a uniform, or non-weighted, vector (nwCLS).   

Additionally, a weighting vector was used that incorporated the binwise group 

variance to extract the underlying metabolites of interest (vCLS).  More specifically, the 

weight of each bin was calculated as the inverse of the square-root of the product of the 

variances (1/ 21σσ ) of the bin intensities of the 2 groups of interest.  The mCLS and 

vCLS weighting factors were implemented with the specific aim of algorithmically 

placing more emphasis on fitting bins that were less confounded and more consistent 

across biological replicates, respectively.   

2.3.3 Simulations 

The generated datasets were simulated in such a way as to closely approximate 

real NMR spectra, integrated to create sequential bins of width 0.02 ppm.  A typical 

range of NMR data spans about 10 ppm, which reduces to 500 bins, 60% of which are 

assumed to contain metabolite peaks.  Additionally, though there are thousands of 
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metabolites that could potentially be measured in biofluids, it is likely that much fewer 

make up the vast majority of the NMR signal.  Here, the data is simulated so that the 

majority of the signal is produced by no more than 300 metabolites and any other 

metabolites are at or below the limits of NMR detection.  While it is likely that these 

assumptions fairly represent a real dataset, the actual number of metabolites making up 

an NMR signal will be dependent on the sensitivity of the instrumentation being used 

(e.g. cryo versus non-cryo probe, field strength). 

All simulations consisted of 300 metabolites (150 of which were randomly 

assigned as known, i.e. contained information in the intensity matrix), 300 spectral bins, 

and 10 subjects (5 from each group).  An intensity matrix (I matrix) was randomly 

generated for all 300 metabolites (300 metabolites x 300 bins) with relative intensity 

values (U[0,1]) for an average of approximately 5 bins per metabolite (drawn from the 

empirical distribution of the reference standard assignment database) and distributed 

amongst the bins with probability according to a function of the geometric distribution 

(G[p = 0.2] +1), yielding an average of approximately 5 metabolites per bin.  The data 

matrix (D) was then calculated as the matrix product of the simulated underlying 

metabolite intensity level matrix (Minit) and the relative intensity matrix (I), followed by 

the addition of a baseline (shared across individuals) and simulated instrumental 

variability (specific to individuals), with intensity values ranging from 0% to 40% and 

0% to 10% of the mean metabolite intensity level, respectively.  Biological variation was 

simulated via sampling individual metabolite levels from a normal distribution when 

generating Minit.  Once the D matrix was generated (10 individuals x 300 bins), 150 of the 
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metabolites were randomly withheld from the I matrix in order to simulate the reality of 

incomplete metabolite information in metabolomics studies.     

2.3.4 Spectral regions with a single metabolite resonance (clear spectral regions) 

Non-weighted linear deconvolution methods may miss biologically important 

compounds when there is a high level of interference in spectral regions and the 

compound of interest is present in relatively low quantities.  To demonstrate this point, an 

NMR metabolomics dataset was simulated in which the concentrations of an individual 

metabolite, with peaks in areas of both high and low interference, were significantly 

different between two groups of subjects (10 individuals per group).  Minit (20 individuals 

x 300 metabolites) for this investigation contains 1 metabolite that is altered in one of the 

two groups and 299 that have no group difference.  The unaltered metabolite intensity 

levels were sampled from normal distributions with means ranging from 1 to 10 

(U[1,10]) and standard deviations equal to half the mean intensity value.  Altered group 

intensity levels were sampled from normal distributions with means deviating by a 

random factor (U[1.2,5]) from their baseline counterparts and the same standard 

deviations.  The direction of change of altered group intensity levels could be either 

positive or negative.  Since this method of metabolite level simulation does not strictly 

preclude the generation of negative values, and negative metabolite levels have no 

biological meaning in this context, all generated negative values were replaced by zeros. 

The I matrix was generated as described previously, with the exception that the 

number of randomly populated bins was restricted to 299.  Following the random 

generation of the 299 bin I matrix, an additional bin was added in which only the 

significant metabolite was present.  
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Univariate statistics (α = 0.05) were performed on the metabolite intensity levels 

estimated via nwCLS, mCLS and vCLS, and Minit values for the significantly altered 

metabolite.  Following classification of metabolites as having group differences or not, a 

receiver operating characteristics (ROC) analysis was performed to compare the 

sensitivity-specificity profiles of the various weighting methods.  The area under the 

curve (AUC) of the ROC curves was calculated via Somers’ rank correlation.    Pairwise 

comparisons (Bonferroni adjusted, paired t-test) were made on 200 simulations to 

determine if the various methods differed in their ability to successfully identify the 

simulated metabolite level difference.   

2.3.5 General simulation 

In order to evaluate the relative sensitivity/specificity, and to identify any 

discriminating features of the metabolites identified by different weighting factors, a 

number of simulations were performed and concurrently analyzed with and without 

weighting factors.  In this investigation 5% (15 of 300) of the initial metabolites in Minit 

(20 individuals x 300 metabolites) were generated to have group specific differences in 

intensity level. 

The metabolites intensity levels were generated in the same way as in the clear 

spectral region analysis.  Since 50% of the metabolite profiles were removed from the I 

matrix prior to analysis, on average 7-8 metabolites with simulated alterations were 

available for discovery.  Through the use of the CLS methods coupled with univariate 

statistics, true and false positives were identified.  These simulations were replicated 200 

times and the sensitivity and specificity of the CLS methods were then compared both to 



29 
 

 

each other as well as univariate statistics on Minit, which represents the maximum 

possible information content.   

2.3.6 Diabetes Dataset 

A large dataset of Carr-Purcell-Meiboom-Gill (CPMG) NMR spectra from urine 

samples across diabetic (db/db) and non-diabetic (db/+) mice was analyzed via CLS 

methods.  Male diabetic and control mice (8 weeks of age) were obtained from The 

Jackson Laboratory (Bar Harbor, ME).  Urine samples of 0.5% methylcellulose treated 

animals were collected over ice twice, one week apart, from mice individually housed in 

metabolism cages.  In urine samples, where there may be a wide range of ‘normal’ 

sample ionic strengths and pHs, it may be expected that differences in shift and shape 

may also occur for resonances experiencing second order coupling (e.g. lysine, 

ornithine).  This issue was addressed through the use of buffered samples, including an 

excess of phosphate buffer.  NMR spectral processing consisted of automated adjustment 

of the chemical shift of TSP to δH= 0 ppm, application of a semi-automated phase 

correction, automated baseline adjustment using an automated 0-2nd order polynomial 

and reduction to histogram representations by binning using the method by Forshed et al. 

(2002).  A bin width of 0.02 ppm was chosen with a 50% tolerance either side of the bin 

boundary.  Data were scaled using median-difference scaling of the binned data.  Further 

details concerning the experimental protocol and discriminative marker validation can be 

found in Connor et al. (in preparation). 

The nwCLS and vCLS methods were each used to deconvolve the NMR spectra 

into constituent compound intensity levels and followed by univariate statistical analyses.  

Putative discriminative markers for disease were identified through a series of Student’s 
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t-tests (α = 0.05) comparing diseased and control mice.  Specifically, a metabolite was 

considered a putative discriminative marker if an estimated metabolite level was 

significant in at least 1 of the 2 days of data.  Putative discriminative markers were 

proposed based on uncorrected and Bonferroni corrected p-values in order to verify that 

differences between the CLS methods ability to accurately identify discriminative 

markers were robust to varying thresholds of discriminative marker inclusion.  The 

results of the CLS method analyses were then compared to results from a previous study 

in which univariate and multivariate binwise analyses were utilized to identify spectral 

regions of interest, with subsequent metabolite assignment and independent validation via 

partial fractionation, LC-MS, 2D NMR, and addition of standard to confirm peak 

identity.  Direct comparisons were made between the validated discriminative marker 

assignments from the traditional analysis and the putative discriminative markers 

suggested via CLS methods.   

2.4 Results 

2.4.1 Spectral regions with a single metabolite resonance (clear spectral regions) 

In order to evaluate the different linear deconvolution methods, 200 simulations 

were performed in which one metabolite was altered and clear regions were strictly 

provided for the significantly altered metabolites.  The average ROC AUC for nwCLS, 

mCLS, vCLS, and univariate analysis of Minit were 0.92, 0.95, 0.97, and 0.97, 

respectively (Figure 2.1).  Note that univariate analysis of Minit yielded an AUC that was 

less than 1.0 due to the simulated biological variability.  Pairwise paired t-tests 

(Bonferroni corrected) were performed on the AUC estimates of each of the CLS 

methods and univariate statistics on Minit.  The results of these analyses indicate that all 
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pairwise differences except for vCLS vs. Minit were significant (nwCLS vs. mCLS, 

p<0.05; all other pairs, p<0.005).  The non-significant difference between the vCLS 

method and univariate statistics on the true underlying metabolite levels indicates that the 

variance weighting factor has achieved maximal performance in this scenario. 

 

 

 

Figure 2.1.  ROC curves comparing the performance of the nwCLS, mCLS, and vCLS methods and 
univariate analysis on Minit when at least one bin associated with the altered metabolite is uniquely 
occupied.
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2.4.2 General simulation 

In order to further evaluate the capacities of the linear deconvolution methods, 

200 simulations were performed in which 5% of the total number of metabolites were 

altered and clear regions were not strictly provided for the significantly altered 

metabolites.  The average AUC for nwCLS, mCLS, vCLS, and univariate analysis of 

Minit were 0.74, 0.75, 0.80, and 0.97, respectively.  Pairwise paired t-tests (Bonferroni 

corrected) were performed on the AUC estimates of each of the CLS methods and 

univariate statistics on Minit.  The results of these analyses indicate that all pairwise 

differences were highly significant (p<0.005), with the exception of nwCLS versus 

mCLS.  These results indicate that each of the CLS methods performed well in accurately 

discovering group differences, however, the variance weighting factor performed best.   

It is not surprising that the significant difference observed in the clear spectral 

region analysis between nwCLS and mCLS was not also observed in the general 

simulation analysis.  The mCLS method is highly dependent on the quality of the 

reference spectra (i.e. I matrix).  Real spectral libraries produced by laboratories are 

likely to have prior experience implicitly incorporated through the inclusion of 

“expected” metabolites.  In the general simulation, the random nature of the metabolite 

spectral properties (peak location, intensity, coincidence with other metabolites) and the 

random population of the I matrix leads to a situation in which any concept of prior 

experience is not modeled.  The advantage of the mCLS method in the clear spectral 

region simulation was that significantly altered metabolites were exclusively associated 

with a minimum of 1 clear bin (maximum weight), thereby providing the least-squares fit 

with a priori information concerning the quality of clear bins.  In other words, the prior 
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probability distribution that significant metabolites are associated with clear bins is not 

uninformed.  However, the prior distribution of the general simulation is uninformed, and 

therefore the specific advantage of the mCLS method is lost.  Through evaluating the 

variance of the bins, the vCLS method captures information concerning the clarity of the 

individual bins, yet is independent of specific prior knowledge.  Although the two 

weights are similar in that spectral regions with fewer observed metabolites have lower 

variance, vCLS has the added value of giving additional weight to regions with fewer 

observed and unobserved metabolites.  For this reason, and the superior performance of 

vCLS compared to mCLS in both simulation analyses, the vCLS method was chosen for 

the analysis of the diabetes dataset. 

2.4.3 Diabetes Dataset 

An investigation of the ability of the nwCLS and vCLS methods to identify the 46 

previously identified and independently validated (LC-MS, 2D-NMR, etc.) 

discriminative markers [Connor et al. (in preparation)] further demonstrates the utility of 

using weighting factors when deconvolving metabolomics datasets.  Analysis of the 

diabetes dataset with nwCLS and vCLS followed by univariate statistics (α = 0.05, p-

values unadjusted) recovered 38 and 40 of the 46 metabolites, respectively (Table 2.1).  

Adjusting the p-values for multiple comparisons led to the discovery of 35 and 38 of the 

46 metabolites via nwCLS, mCLS, and vCLS, respectively.  
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Table 2.1.  Confirmed Discriminative Markers of Diabetes and Prediction via CLS Methods 
 

nwCLS vCLS 
Metabolite 

Sig. Days pa Sig. Days pa 

2-Oxoglutarate 0 0.262 2 <0.001 
2-Hydroxyisobutyrate 2 <0.001 2 <0.001 
2-Oxoadipate 1 0.017 1 0.008 
3-Ureidopropanoate 0 0.052 2 <0.001 
Alanine 2 <0.001 2 <0.001 
Allantoin 2 0.001 0 0.085 
Citrate 1 0.002 1 0.009 
Citrulline 0 0.423 2 0.001 
Creatine 2 <0.001 1 0.039 
Creatinine 2 <0.001 0 0.090 
Formate 2 0.001 2 0.001 
Fumarate 2 <0.001 2 <0.001 
Glucose 2 <0.001 1 0.007 
Glutarate 2 <0.001 2 0.001 
Glycine 2 <0.001 2 <0.001 
Glycolate 2 <0.001 2 <0.001 
Guanidinoacetate 2 <0.001 2 <0.001 
Hippurate 1 0.003 2 <0.001 
Indoxyl sulphate 1 <0.001 2 <0.001 
Isobutyrate 2 <0.001 2 <0.001 
Isocaproate 2 <0.001 1 <0.001 
Isovalerate 0 0.077 0 1.0 
Lactate 0 1.0 0 1.0 
a value reported is the minimum unadjusted p-value 
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Table 2.1. (continued) Confirmed Discriminative Markers of Diabetes and Prediction via CLS 
Methods 
 

Lysine 2 <0.001 2 <0.001 
Malate 0 1.0 2 <0.001 
Malonate 1 0.011 2 <0.001 
Methionine 2 <0.001 1 0.001 
Methylamine 1 0.002 1 0.002 
N1-Methyl-2-pyridone-5-carboxamide 0 0.22 2 <0.001 
N1-Methyl-4-pyridone-3-carboxamide 2 <0.001 0 1.0 
N1-Methylnicotinamide 2 <0.001 2 <0.001 
N1-Methylnicotinic acid 1 0.010 2 <0.001 
N-Caproylglycine 2 <0.001 2 <0.001 
N-Butyrylglycine 2 <0.001 2 <0.001 
N-Isobutyrylglycine 2 0.001 0 0.293 
N-Isovalerylglycine 1 0.040 2 <0.001 
N-Valerylglycine 2 <0.001 2 0.001 
Nicotinamide N-oxide 2 <0.001 2 <0.001 
Orotate 1 <0.001 1 <0.001 
Pantothenate 2 <0.001 1 0.010 
Phenylacetylglycine 0 0.112 2 <0.001 
Sucrose 2 <0.001 2 <0.001 
Taurine 2 <0.001 2 <0.001 
Threonine 2 0.001 2 <0.001 
Trimethylamine 1 <0.001 2 0.006 
Valine 2 <0.001 2 <0.001 
a value reported is the minimum unadjusted p-value 
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In addition to the 46 previously confirmed discriminative markers, all methods 

predicted “significant” metabolites from the reference standard database (137 

metabolites) that have not been validated (Table 2.2).  Additional putative metabolites 

beyond the validated 46 may be confirmed as discriminative markers in the future, but 

were not followed up during the original confirmation process.  Since it is not appropriate 

to designate these putative discriminative markers as false positives, it is not possible to 

conduct a formal sensitivity/specificity analysis.  Instead, an investigation of the 

performance of randomly selecting a number of “significant” metabolites, equal to the 

number of putative discriminative markers proposed by each method, from the reference 

standard database was conducted.  After calculating how many of the putative markers 

intersect with the confirmed list of 46, it was then possible to calculate the probability 

that the performance observed by the CLS methods could be matched or surpassed 

through such a random process (Table 2.2).  This analysis (α = 0.05) revealed that 

nwCLS was not significantly different from random selection, but vCLS was 

significantly different.  This evidence further supports the idea that using weighting 

factors can increase the quality of information gained through least-squares analysis of 

NMR spectra.  

 

Table 2.2.  Discriminative Marker Prediction Performance 
 

Non-adjusted threshold Adjusted threshold 
Method 

Confirmed/Predicted p Confirmed/Predicted p 

nwCLS 38/105 0.168 26/73 0.360 
vCLS 40/106 0.042* 27/59 0.007* 
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Figure 2.2 depicts the binned spectral intensities, fitted intensities (vCLS), and the 

residual intensities for a representative control (db/+) subject.  A calculation of the 

positive (under-explained) and negative (over-explained) residuals reveals that for this 

individual, 19% of the spectrum remains unexplained and the over-explained area is 7% 

of the original spectrum.  This same individual, and a representative diabetic (db/db) 

subject, were evaluated at a higher level of detail to illustrate the capacity of the CLS 

methods to identify altered metabolites in crowded spectral regions (Figure 2.3).  Note 

that both the spectral regions and the underlying metabolite levels are decreased in the 

db/db spectra.  These changes are reflected in the accurate identification of significant 

decreases in N-caproylglycine, N-butyrylglycine, and N-valerylglycine via both the 

nwCLS and vCLS methods.   
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Figure 2.2.  Binned spectra (blue), fitted vCLS intensities (red), and residual intensities (black) for a 
representative control (db/+) subject from the first time point. 
 

 

 

 

 

Figure 2.3.  Diabetic (top) and control (bottom) spectral manually fit with reference spectra.  Relative 
intensity values (y-axis) have been scaled to allow for comparisons between the two individuals.
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2.5 Discussion 

The results from the simulation analyses demonstrate the utility of incorporating 

specific domain knowledge into the biomarker discovery process.  The ability of CLS 

methods to accurately identify metabolites associated with group differences is evidenced 

by the fact that AUC values for all three CLS methods evaluated in this study were 

significantly increased above the null model.  Additionally, the significant increase in the 

AUC values attained via incorporation of weighting factors indicates that weighted 

methods can provide a significant improvement in discriminative marker discovery 

versus non-weighted least-squares. 

Weighting factors that maximize the importance of “clear” spectral regions will 

be increasingly useful as spectral alignment algorithms improve and bin sizes decrease or 

become altogether unnecessary.  While binning spectral regions is a useful tool in dealing 

with inter-individual alignment variability, it also masks spectral features that can serve 

to discriminate between metabolites in a given region (Stoyanova et al.., 2004b).  

Furthermore, since the algorithm described here is flexible and can deal with 

heterogeneous bin sizes, regions less affected by alignment problems can be evaluated at 

a high resolution, while more problematic regions can be grouped in arbitrary bin sizes, 

thereby maximizing the information gained. 

Experimentation with various parameter settings of the simulated datasets (data 

not shown) revealed the importance of the specific dataset in quantitatively evaluating the 

various weighting factors.  Therefore, an individual weighting factor will have varying 

strengths and weaknesses depending on the particular dataset in question.  Despite the 



40 
 

 

fact that no two NMR datasets are alike, an attempt was made to simulate what could be 

considered a typical NMR dataset.  It should be mentioned, however, that in the analysis 

of data from real samples different underlying biological processes will produce different 

data configurations and therefore are likely to require attention to different details in the 

data structure.  This fact further supports the concept that the use of specific weighted 

factors can help investigators to analyze their data more effectively. 

Furthermore, since there continues to be a great deal of active research in the field 

of data preprocessing, the described approach was implemented within a framework that 

accommodates such inquiries.  This model performs the least-squares fitting at a user 

defined level of spectral precision that need not be homogeneous within an individual 

subject.  Reference spectra data input is extremely flexible and can be derived from 

modeled data, spike-in analyses, or literature sources.  This can be an important 

consideration for metabolites that show strong pH dependence to peak shape and 

position. Though the model has been seen to be robust in the absence of baseline 

estimates, if desired (e.g. when estimating the protein contribution to the baseline of male 

mouse urine NMR data [Connor et al. (in preparation)], externally derived estimates of 

baseline can also easily be integrated into the reference spectra.   

In addition to the default non-negativity constraint, users can also choose to 

constrain the model to the upper limit of the data matrix (i.e. the model is prevented from 

over-explaining the data).  Typically in NMR datasets, there will be an unequal 

assignment confidence throughout the spectra, depending on prior knowledge, peak 

overlap and the degree of analytical confirmation of each component (2D homonuclear 

and heteronuclear NMR, fractionation, LC/MS confirmation, addition of standard).  The 
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described method allows users to experiment with the weighting factor used in the least-

squares fit.  Here, weighting factors that were a function of the number of compounds 

populating a particular spectral region or a function of the group variances were 

evaluated.  However, there are likely many other weighting factors that will prove useful.  

For example, it has been seen (data not shown) that a function of binwise correlations can 

also serve as an effective weighting factor.  Binwise correlations are of increasing interest 

in the field of metabolomics (Cloarec et al., 2005; Sandusky et al., 2005).  Furthermore, 

model fits can be restricted to subsets of the spectra either through manipulation of the 

input dataset or the spectral weighting. 

This work attempts to provide tools for the detection and assignment of group 

differences within a flexible, robust framework for metabolomics investigators to explore 

and analyze NMR data.  While traditional methods of NMR spectral analysis are 

extremely time-consuming, using the method described here, an investigator can perform 

a complete analysis in a matter of minutes.  Additionally, a successful analytical 

technique should provide investigators a broad scope of inference.  Since different 

datasets will have different structures, investigators are not limited to a predefined suite 

of weighting parameters.  The sole data input for LCModel is time-domain in vivo data 

and there is no user interaction in the data processing.  While there is a need for inter-

laboratory comparability, NMR data preprocessing is still an active area of research and it 

is advantageous for investigators to work within a well-defined, yet less stringent, 

framework of inquiry.  Furthermore, in agreement with the conclusions of Jansen et al. 

(2004), though in a different context, it has been demonstrated that the use of a weighting 

factor can provide an additional, more focused view of the data.  In addition, it is clear 
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that when working with some datasets, it may make the difference between successfully 

identifying a discriminative marker and missing it altogether.  The above described 

method provides a robust, flexible framework for compound level estimation.
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CHAPTER 3: Evaluation of NMR Deconvolution Algorithm for Individual Sample 
Estimates 

 

3.1 Summary 

This chapter is an extension of the work presented in Chapter 2.  This work was done in 

collaboration with Susan Connor, Jack Newton, Pascal Mercier, and David Chang. 

3.2 Introduction 

 The process of manually validating the change in a particular metabolite across 

treatment groups typically begins by investigating a region of the spectra that contains an 

isolated resonance from that metabolite.  Since the resonance is isolated, the biological 

signal is clear of obstruction and interpretation is straightforward.  The remainder of the 

metabolite signature is then investigated to provide further evidence for an accurate 

assignment.  The concept that information about metabolite levels is heterogeneously 

distributed through the spectra led to the hypothesis that weighted fitting would be of use 

(Chapter 2).  Specifically, that weighting spectral deconvolution based on metrics of how 

“crowded” spectral regions were, would improve estimated metabolite levels.   

 The work of the previous chapter describes the performance of a weighted 

deconvolution method for the discovery of differences (metabolites with different 

concentrations) between groups of complex NMR spectra.  It is also of interest to 

evaluate the ability of the algorithm to estimate metabolite levels at the individual sample 

level instead of identification of group differences.  Having metabolite estimates for 

individual samples allows investigators to evaluate the data with additional resolution and 

creates opportunities for exploration of covariation metrics (e.g. correlation coefficient). 
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3.3 Methods 

 To compare the performance of unweighted and bin-variance weighted 

deconvolution algorithms in estimating metabolite levels underlying complex NMR 

spectra, a number of simulation analyses were conducted  Using the Chenomx urine 

reference spectra library (184 metabolites) with a fixed bin width of 0.04 ppm, pseudo-

spectra were generated and individual metabolite levels were estimated.   

 Complex spectra were generated by multiplying normalized reference spectra 

(most intense peak = 1.0) from 92 of the library metabolites by a random variable drawn 

from the uniform distribution (U[0,1]).  Next, a certain proportion of metabolites were 

withheld from (0%, 5%, 10%, 15%, 20%) or added to (+100%) the reference library for 

use by the algorithm.  The metabolites in the reference library used by the algorithm, or 

the “known” metabolites, were thus 200%, 100%, 95%, 90%, 85%, and 80% of the 

underlying spectra.  The pseudo-spectra were then analyzed 10 at a time by both 

unweighted and variance weighted least-squares deconvolution and individual metabolite 

levels were estimated for individual samples (variance calculated across the 10 samples).  

This process was repeated 100 times for each percentage profile of “known” metabolites.   

 In Chapter 2, the relationship between bin variance and the “crowdedness” of a 

spectral bin is speculated.  In order to explore this relationship, the inverse of the bin 

variance of 10 pseudo-spectra (using the method described above, but with all 184 

metabolites) is investigated and compared to the number of metabolites with resonances 

found in that bin.
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3.4 Results/Discussion 

 The difference in performance between the weighted and unweighted method is 

visualized in a plot of the cumulative fraction of metabolites having a given absolute 

deviation of, or below, a particular value (Figure 3.1).  This figure shows that with a 

known reference library coverage of 95%, the unweighted algorithm estimated 80% of 

metabolites from 0.5 to 2.0 times the true underlying value (1.0x being exact estimation).  

Note that even with 100% and 200% reference library coverage only 10% 

(approximately) of metabolites had near exact estimates. 

 The relationship between the number of metabolites with a resonance in a 

particular bin and the inverse of the variance of that bin (Figure 3.2) suggests that there is 

a tendency for fewer metabolites in a bin to be indicative of a lower bin variance.  This 

leads to an increased weight (1/variance) for less crowded bins with no dependency on 

external databases.  This independence from external databases removes weighting 

metric bias potentially caused by the user selection (or availability) of metabolites in the 

reference spectral library.  The effect of this bias can be seen in Chapter 2 by the 

disappearance of the effectiveness of the 1/m weighting vector in the general simulation 

analysis. 
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Figure 3.1.  Cumulative fraction metabolites within absolute fold change (estimated/observed) in x-
axis. 
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Figure 3.2.  Relationship between inverse bin variance and the number of metabolite resonances in a 
given spectral region (bin).
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CHAPTER 4: Assignment of MS-based metabolomics datasets via compound 
interaction pair mapping  

 
4.1 Summary 

This chapter discusses a novel approach for assignment of MS-based metabolomics peaks 

and has been modified from an article accepted by the journal Metabolomics (Gipson et 

al., 2008) with permission from Springer Science and Business Media.  This work was 

done in collaboration with Dr. Kay Tatsuoka, Dr. Bahrad Sokhansanj, Dr. Rachel Ball, 

and Dr. Susan Connor.  The majority of the introductory material from this chapter is also 

located in Chapter 1, but has been reproduced here to provide the information in the 

original context.  Assignment of physical meaning to mass spectrometry (MS) data peaks 

is an important scientific challenge for metabolomics investigators.  Improvements in 

instrumental mass accuracy reduce the number of spurious database matches, however, 

alone this is insufficient for accurate, unique high-throughput assignment.  A method for 

clustering MS instrumental artifacts and a stochastic local search algorithm for the 

automated assignment of large, complex MS-based metabolomic datasets is presented.  

Artifact peaks and their associated source peaks are grouped into “instrumental clusters.”  

Instrumental clusters, peaks grouped together by shared peak shape in the temporal 

domain, serve as a guide for the number of assignments necessary to completely explain 

a given dataset.  Mass only assignments are refined through the intersection of peak 

correlation pairs with a database of biochemically relevant interaction pairs.  Further 

refinement is achieved through a stochastic local search optimization algorithm that 

selects individual assignments for each instrumental cluster.  The algorithm works by 

choosing the peak assignment that maximally explains the connectivity of a given cluster.  
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This methodology is demonstrated to provide a significant advantage over standard 

methods for the assignment of metabolites in a UPLC-MS diabetes dataset. 

4.2 Introduction 

Mass spectrometry (MS) methods are important data platforms for metabolomics 

investigators (Want et al., 2005).  A particular challenge of global metabolite profiling, 

whether using MS or nuclear magnetic resonance (NMR), is assignment of spectral peaks 

of interest (Kell, 2004).  Previously described informatics methods have been developed 

to help to reduce this major bottleneck, although most of the approaches have not yet 

been fully validated in the context of analytically confirmed assignments.  The proposed 

solutions have employed mass only database search methods (Smith et al., 2006), refined 

mass database search methods utilizing isotopic patterns (Kind and Fiehn, 2006), mass 

spectral libraries (Kopka et al., 2005), and ab initio mass transformation pairs (Breitling 

et al., 2006a; 2006b) for the putative assignment of metabolites in high-throughput 

metabolomic datasets.   

Correlation networks of the assigned components of metabolomic datasets have 

been suggested for the construction of metabolic networks (Arkin et al., 1997, Steuer et 

al., 2003a).  Although metabolic neighbors in shared biochemical pathways have been 

observed to be significantly correlated, evaluations of modeled and experimental data 

suggest that observed correlation networks do not “necessarily” reflect underlying 

pathway structure and correlations often exist that are inexplicable given current 

biochemical knowledge (Steuer et al., 2003a; 2003b; Steuer, 2006).  Although, it is 

recognized that not all metabolite correlations “necessarily” provide information useful 

for assignment within the context of existing biochemical pathways, those correlations 
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which intersect with described biochemical interactions can likely be used to inform the 

assignment of MS data peaks.  In other words, while current understanding of 

biochemical interactions is incomplete and cannot fully characterize the pathway 

relationships underlying observed metabolite correlations, it is hypothesized that existing 

biochemical knowledge provides useful information for the assignment of unknown 

compounds in large metabolomic datasets.   

In a recently described method for ab initio metabolic network prediction, 

investigators present a method for assignment of putative metabolite transformation pairs 

using ultra high mass accuracy MS methods coupled with mass searches focused on 

metabolic transformations (Breitling et al., 2006a).  The method identifies a series of 

putative ion reaction pairs by mapping peak mass differences to biochemical 

transformation reactions.  According to the authors, one of the benefits of this analysis is 

that their network links are directly associated with known chemical reactions, exceeding 

the level of descriptive connectivity of metabolite correlation networks.  Here, a method 

is presented that provides explicit biological meaning to observed data relationships 

which can provide insight into the assignment of features in MS-based datasets. The 

method is intended to be a useful assignment tool, even for lower mass accuracy 

instruments that are in common use.  However, improving the mass accuracy will likely 

improve obtained results. 

A recent review of MS-based metabolomics describes the current usage of 

biochemical databases as a means to infer biological function of previously identified 

metabolites (Dettmer et al., 2007).  Applications utilizing existing biochemical pathways 

include visualization (Mendes, 2002) and metabolic flux analysis (Forster et al., 2002).  
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However, a global, systematic intersection of metabolite correlation pairs with a database 

of biochemical interaction pairs has not yet been described.  Here, a method is presented 

which can select likely metabolite candidates and increase confidence in metabolite 

assignment.  Specifically, the aim is to identify metabolites in an ultra performance liquid 

chromatography (UPLC)-MS dataset by mapping peak interaction pairs (significantly 

correlated peak pairs) onto interaction pairs from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa et al., 2006) using mass matching.  Anticipated benefits of 

this methodology include robustness to varying instrumental mass accuracy and 

immediate placement of annotated metabolites into an explicit biological context. 

An additional challenge of MS-based metabolomics assignment is the 

differentiation between mass differences associated with in vivo transformation and those 

which are artifacts of MS instrumentation.  It is necessary to identify artifactual peaks 

(e.g. fragments, oligomers) to avoid assigning biological meaning to highly correlated 

peak pairs which are measurements of the same metabolite.  To avoid annotation of 

instrumental artifacts, peaks are grouped which appear to share the same compound 

source into “instrumental clusters.”  This has previously been performed manually 

through visual inspection of data peaks.  In this study, the instrumental clustering process 

is automated and integrated it into the assignment algorithm.    

A previous study (Breitling et al., 2006a) attempted to minimize the assignment of 

instrumental artifacts using a refined, a priori set of biochemically meaningful mass 

differences.  Here, peaks with shared temporal peak shapes are clustered to distinguish 

between instrumental and biological peak relationships.  To this end, and to aid the 

development of the automated assignment tool, an evaluation of both (i) an artificial 
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biofluid matrix consisting of metabolite standards, and (ii) urine from diabetic and 

healthy mice was undertaken.  Findings are validated by analytical confirmation of the 

metabolite identity. 

4.3 Materials and Methods 

4.3.1 Experimental Data 

A mixture of 21 metabolite standards with mixed adduct, oligomer, and fragment 

formation profiles was used to evaluate the automated instrumental clustering technique.  

A dilution series (1:1, 1:2, 1:10, 1:100) of the mixture was analyzed with UPLC-MS (5 

technical replicates for each dilution), and select metabolites were further profiled with 

MS/MS experiments. 

Urine samples were collected from adult, male db/db and db/+ mice from The 

Jackson Laboratory (Bar Harbor, Maine) at 8, 12 and 20 weeks of age (10 db/db and 10 

db/+ mice per collection event).  A 50 µL aliquot of urine supernatant was diluted to 200 

µL with HPLC-grade water prior to infusion in the chromatographic column.  For more 

detail about the analyzed datasets, see Section 4.6. 

4.3.2 Instrumentation 

The data used in this study were positive polarity UPLC-MS datasets.  

Chromatographic separations were achieved using an ACQUITYTM C18 (100x2.1mm 

i.d., 1.7µm particle size) column (Waters Corporation, Milford, USA) on an 

ACQUITYTM UPLC system (Waters).  Mass spectrometry was performed on a Waters 

LCT PremierTM (Waters MS Technologies, Manchester, UK) orthogonal acceleration 

time-of-flight (oa-TOF) mass spectrometer operating in W optics mode.  



53 
 

 

 To assess the ability of the algorithm to accurately assign UPLC-MS data peaks, it 

was necessary to confirm the resulting assignments using standard analytical chemistry 

procedures.  These included UPLC-MS/MS and spiking experiments of authentic 

metabolites.  These experiments were performed on diluted urine and standard solutions 

using a Waters Q-Tof PremierTM (Waters MS Technologies, Manchester, UK) 

quadrupole, orthogonal acceleration time-of-flight tandem mass spectrometer operating 

in V optics mode.  Section 4.6 contains more detail regarding the instrumentation. 

4.3.3 KEGG Database 

Here, “biochemical interactions” is defined as either primary or secondary KEGG 

reactions, enzymes, or pathways.  Primary interaction pairs are those in which both 

metabolites participate in a particular reaction, share an enzyme, or are part of the same 

pathway.  Secondary reactions are those in which both metabolites share a common 

reactant.  Secondary enzyme interactions are those in which two compounds can be 

linked by way of a third compound with which they each share associations with a 

common enzyme.  Figure 4.1 provides graphical examples of these relationships.  
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Figure 4.1.  Reaction diagrams from KEGG (Kanehisa, et al., 2006).  Primary reaction pairs are any 
two compounds in a common reaction (e.g. C00019 and C00388 in subgraph a).  Primary enzyme 
pairs are any two compounds with a common enzyme (e.g. C00388 and C00141 in subgraphs b and c, 
respectively).  Note that primary enzyme interactions often overlap with primary reactions (e.g. 
C00019 and C000388 are linked by both a primary reaction and an enzyme interaction in subgraph 
a).  Secondary reaction pairs are two compounds which share a reaction with a common third 
compound (e.g. C00019 and C00024 linked by reactions with C00388 in subgraphs a and b, 
respectively).  Secondary enzyme pairs are two compounds which share an enzyme with a common 
third compound (e.g. C00019 and C000141 linked by a shared enzyme with C00388, all subgraphs 
necessary to create link).  Primary pathway pairs are any two compounds found in an individual 
KEGG pathway (e.g. C00141 and C00024 in the Valine, Leucine and Isoleucine Degradation 
pathway – see Figure 4.5).



55 
 

 

 
 The COMPOUND section (Goto et al., 1998) of the KEGG LIGAND database 

(release 29.0) was used to define the reaction and enzymatic interaction pairs.  

Ubiquitous compounds with highly promiscuous interaction profiles (i.e.  H+, H20, O2, 

CO2, NH3, A(M,D,T)P, NAD(+,H,P,PH), FAD, UDP) were removed to limit the number 

of spurious secondary interactions.  KEGG metabolites with either coenzyme-A (CoA) 

conjugates or acyl carrier protein (acp) conjugates were modified by substitution with 

OH, glycine, and glycine+O to account for biotransformation prior to excretion in urine.  

These substitutions were made based on prior experimental findings (data not shown). 

4.3.4 Instrumental Clustering/Interaction Pair Identification 

 Following peak-picking with xcms (Smith et al., 2006) and intensity 

normalization, a series of correlation analyses were conducted with the aim of identifying 

interaction pairs.  A preliminary list of peak interaction pairs is populated through 

significance thresholding of a modified correlation analysis (Pearson’s) of the log 

transformed total peak intensity across all individuals.  Peak interaction pairs were 

defined as those peaks with significant correlation coefficients (Benjamini and Hochberg 

correction, FDR = 0.001).  To eliminate the masking effect of a large group difference, 

prior to this correlation analysis, the mean groupwise intensity value was subtracted from 

the values of individual group members.   

 In datasets in which the experimental variable leads to dramatic biological 

alterations, within-group variation is often small in comparison to group differences (e.g. 

db/db versus db/+).  A calculated correlation coefficient between two independent 

variables displaying a large group difference is essentially an indicator of shared 
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directional change and provides no information concerning more discrete co-regulatory 

relationships.   

Peaks are grouped into the same instrumental cluster if they were previously 

identified as a peak interaction pair and they have similarly shaped temporally 

overlapping peaks.  Peak shape similarity was measured with a second correlation 

analysis and restricted to peak pairs with a minimal number (5) of overlapping scans.  

The correlation coefficient (Pearson’s) is calculated for these peak pairs (across all 

individuals and time points) as a measure of peak shape similarity.  Peaks are grouped 

into the same instrumental cluster if they were previously identified as a peak interaction 

pair and they have a peak shape correlation exceeding a threshold value.  The peak shape 

correlations were calculated across all scans and all samples.  This presents the problem 

of treating auto-correlated temporal data as independent replicates.  To avoid this, a 

correlation significance threshold (Bonferroni adjusted) was employed based strictly on 

the number of true replicates.  In order to account for the possibility that a defined peak is 

actually a composite of multiple peaks, an individual peak can belong to multiple 

instrumental clusters.  Each cluster is characterized by every member meeting correlation 

significance criteria with every other member. 

Instrumental pairs are filtered from the peak interaction pair list to remove peak 

relationships caused by instrumentation to be interpreted biologically.  Finally, the 

intersection between peak interactions and biochemical interactions is delineated through 

mass mapping (assuming a mass accuracy of 25 ppm for m/z > 200 and 0.005 Da for m/z 

≤ 200).   
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4.3.5 Optimization Algorithm 

The process of identifying the intersection of peak interaction pairs and 

biochemical interaction pairs leads to a list of putative assignments in which multiple 

peaks can have the same assignment and individual peaks can have multiple assignments.  

In order to provide further refinement of the list of putative assignments, a stochastic 

local search algorithm is performed to assign unique assignments to peaks associated 

with instrumental clusters through maximizing the total strength of peak interaction pairs 

explained.  Here, the strength of an individual peak interaction is a function of the 

specific biochemical interaction(s) employed to explain it.  The strength of each 

biochemical interaction type was quantified with a weight based on the probability [-

log(P)] of occurrence in the modified (accounting for biological transformation) KEGG 

database.  In cases where given interaction has multiple biochemical interaction types, the 

strength of that interaction would be the sum of the weights for all interaction types.  

Following an extensive analysis of the –log(P) weighting method, additional 

optimizations were performed in which: 1.) All interaction types were included and 

metabolite-metabolite interactions were scored as the sum of equally weighted interaction 

types; 2.) All interaction types were included and all metabolite-metabolite interactions 

were scored equally, regardless of interaction type contribution; 3.) Only 2o interactions 

were included and all metabolite-metabolite interactions were scored equally, regardless 

of interaction type contribution; and 4.) Only 1o interactions were included and all 

metabolite-metabolite interactions were scored equally, regardless of interaction type 

contribution. 
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 The search algorithm is initialized with each instrumental cluster being randomly 

associated with either a putative assignment or no assignment.  Each cluster is then 

iteratively evaluated in a random order, and cluster assignments are made based on which 

putative identification maximizes the overall connection strength within the context of all 

other current assignments.  The algorithm is terminated following three evaluations of 

each cluster (Figures 4.6 & 4.7).   

The KEGG database is an incomplete characterization of biochemical 

interactions.  It was of interest to identify consensus assignments through successive 

perturbations of the KEGG database prior to optimization and evaluate the frequency of 

individual assignments.  This will provide investigators with a distribution of assignments 

for each cluster, and therefore provide an estimate of confidence in a particular 

assignment.  In order to achieve this, the interaction weighting matrix was sampled (80% 

of total interactions) prior to executing the search algorithm.   

Since the optimization algorithm is stochastic, it is run several times and putative 

assignments can be ranked based on occurrence frequency.  Output from the assignment 

optimization algorithm is structured as a list with the same number of elements as there 

are instrumental clusters.  Each list element is comprised of a list of putative assignments, 

for a particular instrumental cluster, ranked by frequency of occurrence.  Section 4.6 

contains more detail about the optimization algorithm.   

4.4 Results and Discussion 

4.4.1 Instrumental Clustering 

There are two types of peak relationships that are of interest in this study:  peaks 

originating from different parent compounds that are biochemically related in vivo and 
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instrumental artifacts that are related to a common parent compound.  The importance of 

characterizing the second type of peak relationship is that this knowledge can be used to 

restrict assignment to one explanatory peak per cluster and hence act as a filter for 

biologically meaningless mass-mass pair interactions. 

Comparison of instrumental clusters generated through the automated technique 

and traditional visual inspection reveals a large overlap between the two methods. The 

clustering software typically identifies additional cluster members not discovered through 

visual inspection.  To demonstrate the functionality of the clustering algorithm, the mass 

spectra of 5-hydroxytryptophan (5-HTP) and phenylacetylglutamine (PAGn) were 

extracted from the dataset and examined in closer detail.  In-source adducts, oligomers, 

and fragments were assigned using a 25 ppm mass error for all ions above 5% intensity of 

the base peak.  Fragmentation was subsequently confirmed by MS/MS.   

Visual inspection of the extracted mass spectra for 5-HTP and PAGn from the 

LC-MS dataset of the standard mix identified 3 mass peaks associated with 5-HTP (m/z= 

162.0555, 204.0661, 221.0926 [M+H] +) and 9 mass peaks associated with PAGn (m/z= 

84.0442, 130.0504, 248.0923, 265.1192 [M+H]+, 287.0999, 288.1029, 551.2028, 

567.1771, 568.1815).  The automated technique identified individual instrumental 

clusters for both the 5-HTP and PAGn peaks ([M+H]+).  The 5-HTP cluster contained 2 

of the 3 mass peaks identified by visual inspection but lacked the 162.055 m/z fragment.  

The omission of the 162.055 m/z fragment from the 5-HTP cluster was due to non-

optimal peak picking conditions for this peak.  Since it was absent from the peak-picked 

dataset, this peak will not be found in the 5-HTP cluster.  There was also an additional 

peak in the 5-HTP cluster that was not observed initially in the visual analysis. The PAGn 
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cluster contained all 9 mass peaks identified by visual inspection, plus 12 additional 

peaks.  Follow-up evaluations of the 5-HTP and PAGn clusters revealed that all peaks 

clustered together by the automated method did indeed share a common parent 

metabolite. 

Revisiting the visual inspection revealed that each of the additional peaks which 

clustered with 5-HTP (m/z= 243.0748) and PAGn (m/z= 83.0611, 129.0657, 136.0760, 

247.1076, 266.1254, 552.2057, 553.1923, 554.1958, 569.1833, 583.1511, 591.1582, 

592.1619) were real adducts, oligomers, or fragments.  However, they were either outside 

of the 25 ppm mass window or below 5% base peak intensity.  A graphical representation 

of the time evolution of the peaks associated with the PAGn cluster (Figure 4.2) 

demonstrates the ability of the method to identify overlapping peaks with similar 

temporal profiles. 
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Figure 4.2.  Plot of the temporal profile of peaks (from an individual subject) assigned to the 
instrumental cluster associated with PAGn.  Peaks identified through visual inspection are labeled 
(m/z values). 
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This method is completely independent of assumptions regarding acceptable and 

non-acceptable transformations, whether biochemical or instrumental.  This is important 

given that within the mass domain, biochemical and instrumental changes can appear 

identical.  The fact that the alteration of physiochemical properties due to biological 

rather than instrumental transformations will typically lead to alterations in column 

retention characteristics is helpful.  As such, any transformations existing prior to entry 

into the ion source and MS would be expected to have different temporal profiles. 

4.4.2 Interaction Pair Identification 

The KEGG database yields 8,438 primary reactions, 28,104 primary enzyme 

interactions, 73,182 primary pathway interactions, 393,325 secondary reactions, and 

697,338 secondary enzyme interactions describing the relationships between 4,016 

metabolites.  Following preliminary assignment of the data with the KEGG database, the 

output is organized into 6 data files with linked identifiers.  These data files can be 

imported into a database and easily queried for either mass only assignment predictions, 

or for peak/biochemical interaction intersection assignment predictions.  Additionally, 

these data files serve as the input for the stochastic local search optimization algorithm. 

 The data analysis resulted in the extraction of 2,767 data peaks, 1,262 

instrumental clusters, 218,895 peak interaction pairs (212,573 excluding pairs in same 

instrumental cluster), 3,164 putative mass only assignments, and 17,349 putative 

peak/biochemical interaction intersection assignments (11,649 unique intersection 

assignments).  
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 Through various stages of this methodology, the KEGG database is either 

modified or filtered to meet specific needs.  Each time the KEGG database is altered, the 

possibility exists that the distribution of the various interaction types will change.  The 

characteristics of the initial KEGG database, compared to the first (substitution of 

biotransformation products) and second (filtration via mass matching) alterations the 

database vary little (1o Reaction=0.69-0.71%, 1o Enzyme=2.3-2.9%, 1o Pathway=5.5-

6.1%, 2o Reaction =31.9-32.8%, 2o Enzyme=57.8-58.9%).  This indicates that the 

database alterations have not affected the underlying database characteristics.  However, 

the third alteration (filtration via correlation pair intersection) leads values of 1.7% (1o 

Reaction), 5.4% (1o Enzyme), 7.5% (1o Pathway), 29.3% (2o Reaction), and 56.1% (2o 

Enzyme).  The increase of the primary interactions (1.34-2.40 fold) and decrease of 

secondary interactions (0.92-0.95 fold) indicates that the primary interactions have an 

increased prevalence in the correlation filtered database and therefore, primary 

interactions are likely more predictive of significant correlations. 

4.4.3 Optimization Algorithm 

Network connection strength, based on the biochemical interaction types acting as 

network edges, is calculated using the modified (including transformations) KEGG 

database.  Shared pathways were more common (5.8%) than shared enzymes (2.9%), 

which in turn, were more common than shared reactions (0.7%), and secondary 

interactions (reaction chain 32.8%; enzyme chain, 57.8%) were far more common than 

primary interactions.  Assignment alterations performed by the algorithm strictly increase 

the overall connection strength of the network (Figure 4.7), and the impact that this has 

on the interaction sub-network associated with Trimethylamine N-oxide can be seen in 
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Figure 4.3.  The edges in this figure represent the existence of a significant correlation 

between members of different clusters concurrent with assignments within a shared 

biochemical interaction pair.  Prior to unique assignment, the sub-network is highly 

connected due to the inclusion of all putative assignments per cluster.  Once unique 

assignments are made for each cluster, edges associated with discounted assignments will 

be lost.  The goal of the stochastic local search algorithm is to maximize not just the 

number of connections in the global network, but the strength of the connections as well.  
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Figure 4.3.  Connectivity plot of sub-network associated with Trimethylamine-N-oxide (cluster 9).  left. Multiple assignments per cluster allow for 
maximal connectivity. middle. Random initialization with unique assignments does a poor job of explaining peak interactions. right. Assignment with 
cluster specific, top-ranked metabolites yields a highly connected sub-network.
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The ability of the algorithm (denoted “alternative model”) to outperform a mass 

only search of the KEGG database (“null model”), and an interaction intersection search 

of the KEGG database (“filtered model”) was assessed.  To do so, lift curves (Witten and 

Frank, 2000) were constructed representing the expected number of correctly assigned 

validation peaks versus the total number of assignments examined (Figure 4.4).  Putative 

assignments from the algorithm, employing –log(P) weighted scoring, were first sorted in 

descending order with respect to the number of times an assignment was proposed (over 

100 iterations of the search algorithm) irrespective of cluster representation.  For this 

reason an individual assignment may occur more than 100 times.  Following the sorting 

procedure, the assignments were iteratively checked for accuracy and a cumulative total 

of correct hits was enumerated.  The performance of both the filtered and null models 

was computed with a random selection model of the correct hits from the pool of putative 

assignments.  The non-linearity of the performance of the filtered and null models (Figure 

4.4) occurs because there are multiple (3) KEGG entries (glutamate, L-glutamate, or D-

glutamate) that can explain the glutamate clusters.
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Figure 4.4.  Lift curve comparison of validated peak assignment with unfiltered KEGG mass search 
(null), KEGG mass search following interaction intersection (filtered), ranked assignments through 
stochastic local search algorithm (alternative). 
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The lift curve (Figure 4.4) demonstrates both the utility of restricting mass only 

searches to highly validated biochemical interaction pairs (filtered model), as well as the 

improved performance achieved through ranking filtered assignments with the stochastic 

local search algorithm.  The comparison reveals that, to identify the correct assignment 

for the clusters associated with the 9 validation compounds, an investigator would need to 

evaluate 195, 101, and 41 putative assignments using a mass only search, an interaction 

filtered search, and an optimized search, respectively.  Thus, using this approach provides 

a nearly 2- and 5-fold reduction in the number of putative assignments necessary to 

evaluate using an interaction filtered search and an optimized search, respectively.  Table 

4.1 summarizes the assignment results from the optimization algorithm, as well as the 

number of putative hits (filtered and null model), for the clusters associated with 9 

validated metabolites.  A comparison to alternative scoring procedures indicates that the 

–log(P) weighted scoring performs favorably well (Table 4.2).
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Table 4.1.  Assignments produced for the instrumental clusters associated with the 9 validation 
metabolites    
 

1st Ranked 2nd Ranked 
Instrumental 

Cluster Correct Assignment 
Putative Annotation  

(KEGG ID) %Hits Putative Annotation 
(KEGG ID) %Hits 

Filtered 
Assignments 

Null 
Assignments 

965 
5-Hydroxy-L-

tryptophan 
 

5-Hydroxy-L-tryptophan 
(C00643) 100 NA NA 1 3 

68 Adenosine 
 

Adenine 
(C00147) 94 Adenosine 

(C00212) 5 5 11 

64 Creatine 
 

Creatine 
(C00300) 94 3-Guanidinopropanoate 

(C03065) 6 2 5 

470 Hippurate 
 

(R)-4'-Phosphopantothenoyl-
L-cysteine 
(C04352) 

71 Phenylacetic acid 
(C07086) 14 40 80 

138 Hippurate 
 

D-Fructose 
(C00095) 38 Hippurate 

(C01586) 33 26 60 

20 Hippurate 
 

Benzoate 
(C00180) 37 D-Fructose 

(C00095) 22 33 74 

72 Hippurate 
 

Phenylacetic acid 
(C00582_-CoA:+OH) 36 Phenylacetic acid 

(C07086) 34 39 78 

501 Hippurate 
 

Benzoate 
(C00180) 35 Phenylacetic acid 

(C00582_-CoA:+OH) 27 52 101 

521 Hippurate 
 

D-Glucose 
(C00031) 31 Hippurate 

(C01586) 26 26 61 

502 Hippurate 
 

Phenylacetic acid 
(C07086) 29 Benzoate 

(C00180) 28 46 92 

107 L-Carnitine 
 

L-Carnitine 
(C00318) 100 NA NA 1 5 

89 L-Glutamate 
 

L-Glutamate 
(C00025) 97 Hydroxypropanoylglycine 

(C00100_-CoA:+glycine+O) 3 11 14 

227 Pantothenate 
 

Pseudoecgonylglycine 
(C12450_-CoA:+glycine) 83 Pantothenate 

(C00864) 17 3 10 

217 Phenylacetylglycine Phenylacetylglycine 
(C05598) 28 Phenylacetylglycine 

(C00582_-CoA:+glycine) 20 20 37 

508 Phenylacetylglycine 
 

Phenylacetylglycine 
(C00582_-CoA:+glycine) 28 Phenylacetylglycine 

(C05598) 18 20 38 

7 Phenylacetylglycine 
 

Phenylacetylglycine 
(C00582_-CoA:+glycine) 26 

5-
Hydroxyindoleacetaldehyde 

(C05634) 
23 22 40 

161 Phenylacetylglycine Phenylacetylglycine 
(C05598) 23 Phenylacetylglycine 

(C00582_-CoA:+glycine) 20 18 34 

9 
Trimethylamine N-

oxide 
 

Trimethylamine N-oxide 
(C01104) 99 1-Aminopropan-2-ol 

(C05771) 1 3 3 
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Table 4.2.  Performance of the search algorithm using different weighting schemes.  Metabolite-
metabolite interaction pairs are scored by the sum of the weights of each type of interaction found.  
 

Weighting Performance 

1o Reaction 1o Enzyme 1o Pathway 2o Reaction 2o Enzyme Fraction 
Correct 

# Putative 
assignments 

1 1 1 1 1 8/9  46  
1* 8/9  51  

0 0 0 1* 8/9  48 
1* 0 0 9/9 69 

4.96 3.54 2.85 1.11 0.55 9/9 41 
*an individual weight is attributed if any of the interaction types are found
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 It should be noted that there are various features within the framework presented 

here that an individual investigator may want to explore.  For instance, the association of 

peaks into interaction pairs can be manipulated through various means, including: 

changes in data normalization techniques; significance thresholding; or other significance 

criteria.  As an example, an analysis was performed in which peak correlations were 

calculated in a group-specific manner (i.e. a coefficient for db/db and a separate 

coefficient for db/+), and interaction pairs were defined by a significant relationship in 

either group.  By altering the definition of interaction pairs in this way, the number of 

significant peak correlations is reduced from 218,895 to 155,760, with 115,972 common 

pairs.  Furthermore, for this dataset, it was found that the group-specific interaction pair 

criteria improved the performance of the method.  To identify the correct assignment for 

the clusters associated with the 9 validation compounds, an investigator would need to 

evaluate 184, 87, and 24 putative assignments using a mass only search, an interaction 

filtered search, and an optimized search, respectively.  Investigators using this assignment 

method should be aware that there is a trade-off between statistical power (allowing for 

biologically altered metabolic relationships via independent correlation calculation will 

reduce the degrees of freedom) and inferential scope (requiring different biological states 

to retain a particular relationship will necessarily narrow the data interpretation).  

A recent study evaluated content differences between several popular chemical 

databases (Kind and Fiehn, 2006) and came to two conclusions with respect to KEGG:  

(1) restricting automated mass spectra assignments to KEGG database searches is 

insufficient due to representation of only a limited number of potentially measured 

metabolites and (2) KEGG assignments may be more informative (when available), 
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specifically because of the focus on common biochemical pathways.  Given these 

findings, the use of the interaction pair mapping assignment is suggested only within the 

context of the quality of existing biochemical interaction databases.  Since current 

pathway databases are far from comprehensive, the proposed method should not be 

considered in isolation.  Rather, this method provides high quality assignments for a 

subset of the whole metabolome.  Additionally, by implementing a separation technique 

(LC) prior to MS analysis the capacity for the identification of instrumental fragments, 

adducts, and oligomers has been improved.  As biochemical interaction databases 

increase in size and quality, the integration of empirical peak relationships (e.g. data 

correlates), database mass searches, and validated biochemical interactions, will play a 

greater role in the assignment and interpretation of high-throughput MS-based 

metabolomic studies.        

4.5 Concluding Remarks 

 The need for techniques to complement mass only database assignment is driven 

by both the limited mass accuracy of instruments currently in use as well as the analytical 

constraint that mass alone is insufficient for assignment verification.  Here, the utility of 

accurately clustering instrumental artifacts and using a priori biochemical interaction 

data is demonstrated.  The ability to quantitatively segregate the quality of assignments 

(within the context of available biochemical pathway data) allows for the successful 

interpretation of large scale metabolomic datasets, and it is a valuable, time-saving tool 

for guided analytical verification of metabolite assignments.   

There is currently no standard instrumental setup used in MS-based 

metabolomics.  Since there are a wide variety of instruments and hyphenated techniques 
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used in MS-based metabolomics, the characteristics of the output should be taken into 

consideration when evaluating the utility of the described methods.  For example, 

investigators not using a separation technique prior to MS analysis will be unable to use 

the clustering algorithm described here, since it is dependent upon temporally resolved 

data and a well defined peak shape.  Nevertheless, assignment of all MS-based 

metabolomics datasets should be aided by the incorporation of interaction pair mapping.    

The integration of dataset independent biochemical information increases the 

accuracy of metabolite assignment, even at low mass accuracy (25 ppm).  Furthermore, 

biochemical pathway information will increase in value as biochemical databases grow 

and the quantity of validation data increases.  Additionally, an investigator can combine 

this automated assignment method with other data types (e.g. NMR metabolic profiling 

data, microarray) to improve and expand the current capabilities.  Although presented in 

isolation, this method can easily be integrated with other methods (e.g. isotopic pattern 

matching, mass spectral library queries, ab initio mass transformation pair matching) 

within a comprehensive assignment framework. 

4.6 Supplementary Material 

4.6.1 Diabetes Dataset 

All in-life experiments were conducted using adult, male db/db and db/+ mice 

from The Jackson Laboratory (Bar Harbor, Maine). All animals arrived at 4 weeks of age 

and were quarantined for 1 week. They were housed in groups of five on a 12:12-hour 

light-dark cycle and at 23 ± 2°C and had access to standard chow pelleted diet (Purina 

5001; TestDiet, Richmond, IN) and water ad libitum.  Urine was collected at 8, 12 and 20 

weeks of age from 10 db/db and 10 db/+ mice. For the 6 hour period of sample 
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collection, animals were transferred to metabolism cages (designed specifically for the 

separate collection of urine and feces) and given free access to water.  

Urine samples were collected over ice into collection pots that contained 1% 

azide.  The frozen mouse urine samples were allowed to thaw at room temperature prior 

to analysis. A 50 µL aliquot of urine supernatant was diluted to 200 µL with HPLC-grade 

water.  

4.6.2 UPLC -MS and -MS/MS 

HPLC-grade water and acetonitrile was purchased from Fisher Scientific 

(Loughborough, UK). Spectroscopic-grade formic acid and leucine enkephalin was 

purchased from Sigma–Aldrich (Poole, UK), and analytical-grade formic acid was 

purchased from BDH (Poole, UK).  

The ACQUITYTM C18 column was maintained at 40°C and eluted using a 10 min 

gradient (A=0.1% aqueous formic acid and B=acetonitrile 0.1% formic acid) at a flow 

rate of 500 µL/min. The gradient steps were:  0.0–0.5 min = 99.5% A; 0.5–7.5 min = 

99.5–80.0% A; 7.5-8.5 min = 80.0–0.5% A; 8.5–8.8 min = 0.5% A; 8.8–9.0 min = 0.5-

99.5% A; 9.0–10.0 min = 99.5% A.  A 20 µL aliquot of sample (i.e. diluted mouse urine, 

standard mixture) was injected directly on to the column and the column eluent was 

introduced directly in to the MS source.  

The LCT PremierTM (MS) desolvation gas was set to 800 L/h at a temperature of 

400°C, the cone gas set to 50 L/h, and the source temperature set to 120°C. The capillary 

voltage and cone voltage were set to 3000 and 50V respectively. The data acquisition rate 

was set to 150 ms, with a 50 ms inter-scan delay using dynamic range enhancement 

(DRE). All analyses were acquired using lock spray.  Leucine enkephalin was used as the 
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lock mass (m/z 556.2771) at a concentration of 50 ng/mL and flow rate of 50 µL/min. 

Data were collected in centroid mode from m/z 50–1000 with a lock spray measurements 

every 5 s, and data averaging over 10 scans. 

 The Q-Tof PremierTM (MS/MS) desolvation gas was set to 800 L/h at a 

temperature of 400°C, the cone gas set to 50 L/h, and the source temperature set to 

150°C. The capillary voltage and cone voltage were set to 3500 and 25V respectively. 

The data acquisition rate was set to 250 ms, with a 100 ms inter-scan delay using 

dynamic range enhancement (DRE). Where appropriate, MS/MS data were generated 

using collision induced dissociation (CID), with argon as the collision gas (0.35 mL/min) 

using a collision energy ramp of 10-30eV. A lock mass of leucine enkephalin at a 

concentration of 250 ng/mL, in 50:50 methanol:water, was employed with an infusion 

rate of 50 µL/min via the lock spray interface. Data were collected in centroid mode from 

m/z 50-1000 with a lock spray as above. All UPLC conditions were as described above. 

4.6.3 Peak Picking and Preprocessing 

Peaks were extracted from the UPLC-MS data using xcms (Smith et al., 2006).  

For this analysis, no retention time correction was employed, and the default initialization 

parameters were used with the exception of the full width at half maximum (fwhm), 

bandwidth (bw), and signal to noise threshold (snthresh).  Based on empirical 

observations, both fwhm and bw were changed to 5 scans.  The snthresh parameter was 

left as default (10) for the diabetes dataset analysis, but changed to 80 for the standard 

mixture analysis.  The resultant output from xcms was 2 data matrices (intensities x 

samples), describing the total peak intensities (1 intensity value per peak-sample) and the 

peak shape (1 intensity value per scan-peak-sample). 
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In order to normalize the data, first, the peaks were ranked with respect to the 

total intensity level (all individuals summed).  Next, the normalization factor was 

calculated as the inverse of the sums of the individual sample intensities of the middle 

80% of the ranked peaks.  The intensity levels for each sample were normalized through 

multiplication with the individual normalization factor. 

4.6.4 Peak Assignment 

The local search algorithm is initialized with each instrumental cluster being 

assigned either a random assignment or no assignment, with probability equal to the 

inverse of the number possible assignments plus 1.  Assignment is strictly performed for 

one peak per cluster.  During optimization, if a particular instrumental cluster has no 

assignments which can contribute to an increased score, the same random selection used 

for initialization will be employed. Commonly, assignments are encountered which can 

increase the score, but have been previously assigned to another peak.  In these instances, 

the score will be recalculated after the previously assigned peak is randomly reassigned.  

If the score remains improved, the reassignment holds and the current instrumental 

cluster is permitted to take the assignment.  If the score is not improved, the previous 

assignment holds and the assignment is disallowed for the current instrumental cluster.  

The search algorithm completed 100 iterations of 3-fold cluster optimizations for >500 

clusters in approximately 8 hours on a PC running Windows XP with a 2.80 GHz 

Pentium 4 processor and 1 GB of RAM.   
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Figure 4.5.  KEGG Valine, Leucine and Isoleucine Degradation pathway chart (Kanehisa, et al., 
2006).  Any two metabolites found in this pathway (or other pathway) are designated as having a 
primary pathway biochemical interaction.  
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Figure 4.6.  Flow diagram representation of the stochastic local search network optimization 
algorithm.  Initialization – All peak clusters are randomly attributed unique metabolite assignments, 
creating a network of assignments (nodes) and interactions (edges).  Cluster optimization – each 
cluster is individually evaluated (random order) and the assignment that maximizes the network 
score is selected.  An individual network optimization ends once each cluster has been evaluated 3 
times.  Network optimization is repeated 100 times.
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Figure 4.7.  Average score (100 runs) +/- 2 standard deviations of interaction networks as the local 
search algorithm progresses.  Arrows indicates the regions on the curve at which point all 521 
clusters have been evaluated (random order).  The algorithm was terminated after 3 post-
initialization evaluations due to reduced improvements in score.
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CHAPTER 5: Metabolomics of a Murine Model of Type 2 Diabetes  

 
5.1 Summary 

 This chapter discusses the technical and biological findings from a series of 

metabolomics datasets collected from a diabetic mouse model and has been modified 

from an article in preparation (Gipson et al., in preparation).  This work was done in 

collaboration with Dr. Kay Tatsuoka, Dr. Rachel Ball, Dr. Bahrad Sokhansanj, Dr. 

Michael Hansen, Dr. Terrence Ryan, Mark Hodson, Dr. Brian Sweatman, and Dr. Susan 

Connor.  The majority of the introductory material from this chapter is also located in 

Chapter 1, but has been reproduced here to provide the information in the original 

context.  Here, a multi-platform (1H NMR, LC-MS, microarray) investigation of 

metabolic disturbances associated with the leptin receptor defective (db/db) mouse model 

of type 2 diabetes using novel assignment methodologies is described.  For the first time, 

several urinary metabolites were found to be associated with diabetes and/or diabetes 

progression and confirmed in both NMR and LC-MS datasets.  The confirmed 

metabolites were trimethylamine-n-oxide (TMAO), creatine, carnitine, and 

phenylalanine.  TMAO and phenylalanine were both elevated in db/db mice and 

decreased in these mice with age.  Levels of both creatine and carnitine increase in 

diabetic mice with age and creatine was also significantly decreased in db/db mice. 

Additionally, many metabolic markers were found by either NMR or LC-MS, but could 

not be found in both, due to instrumental limitations.  This indicates that the combined 

use of NMR and LC-MS instrumentation provides complementary information that 

would be otherwise unattainable.  Pathway analyses of urinary metabolites and liver, 

muscle, and adipose tissue transcripts from the db/db model were also performed to 
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identify altered biochemical processes in the diabetic mice.  Metabolite and liver 

transcript levels associated with the TCA cycle and steroid processes were altered in 

db/db mice.  In addition, gene expression in muscle and liver associated with fatty acid 

processing was altered in the diabetic mice and similar evidence was observed in the LC-

MS data.  The findings highlight the importance of a number of processes known to be 

associated with diabetes and reveal tissue specific responses to the condition.  When 

studying metabolic disorders such as diabetes, platform integrated profiling of metabolite 

alterations in biofluids can provide important insight into the processes underlying the 

disease.    

 5.2 Introduction 

In both the United States and worldwide, the prevalence of diabetes is increasing.  

In 2003, there were approximately 194 million affected adults (5.1% global population), 

and by 2025, it is projected that the incidence of diabetes will reach 333 million adults 

(6.3% global population).   Type 2 diabetes accounts for approximately 90% of all 

diabetes cases and is projected to be the primary cause of the increasing incidence rate 

(International Diabetes Federation, 2005). 

Of all the animal models available for the investigation of type 2 diabetes, rodent 

models have been the most popular due to short generation time, heritable traits, and cost.  

The most studied spontaneously diabetic mouse model is the db/db mouse, which, due to 

an autosomal recessive defect in the leptin receptor gene, displays several phenotypic 

traits associated with type 2 diabetes (Chen and Wang, 2005) including drastically altered 

metabolic processes.  The widespread metabolic changes associated with diabetes make 

metabolic profiling a particularly important contribution to the discussion of disease 
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progression and prevention.  Although the metabolome is considered to be more closely 

related to phenotype than the transcriptome (Hollywood et al., 2006), any attempt at a 

systems biology approach requires multiple data modalities (e.g. metabolomics, 

transcriptomics) and metabolomics platforms (van der Greef et al., 2007).  

1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry- 

(MS) based technologies are the most commonly used for mammalian metabolomics 

(Dunn and Ellis, 2005).  Both approaches allow for the simultaneous measurement of a 

large number of individual metabolites, allowing investigators to identify and validate 

key discriminative markers of disease, drug efficacy, toxicity, or other physiological 

parameters.  Consistency and reproducibility are considered a distinct advantage for the 

use of NMR in metabolic profiling studies (Keun et al., 2002).  MS-based methods are 

also important data platforms and have the specific advantage of a lower detection limit 

(Want et al., 2005).   However, MS data are not as reproducible as NMR due to a non-

linear detector response and ionization. 

The goal of this study was to provide biological insight into metabolic alterations 

associated with diabetes and diabetic progression.  A number of metabolic profiling 

studies of diabetes have been conducted evaluating rodent models (Williams et al., 2006), 

humans (van Doorn et al., 2006), and cross-species comparisons (Salek et al., 2007).  In 

contrast to these studies, this study is an evaluation of cross -experimental and -platform 

results for consistency within the context of biological analysis.  To accomplish this, 

standard and novel methodologies (Gipson et al., 2006; 2008) were used to extract 

information of biological importance from NMR and LC-MS profiles of urine from db/db 

and control (db/+) mice.  This metabolite data, collected over two independent 
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experiments, is put into context with a gene expression dataset that was collected during 

one of the experimental periods.  Additionally, technical issues concerning the use of 

NMR and LC-MS data in metabolomics investigations are discussed.   

5.3 Methods 

5.3.1 Experimental Data 

 Two independent experiments investigating db/db versus db/+ mice were 

evaluated in this study.  In Experiment 1, urine was collected from 8 week old, male mice 

from The Jackson Laboratory (Bar Harbor, Maine) [30 db/+, 31 db/db] and adipose 

tissue, liver, and muscle were collected from the animals 2 weeks later.  Urine samples 

were analyzed by NMR and adipose tissue, liver, and muscle were used for microarray 

analysis (Affymetrix MOE430a).  In Experiment 2, urine samples were collected from 

male db/db and db/+ mice at 8, 12, and 20 weeks of age (10 db/db and 10 db/+ mice per 

collection event).  One of the week 12 control animals was removed from the analysis 

due to fecal contamination of the sample.  The urine samples from the second experiment 

were analyzed both by NMR and LC-MS. 

5.3.2 NMR data 

 Datasets from 2 experiments of Carr-Purcell-Meiboom-Gill (CPMG) NMR 

spectra from urine samples across db/db and db/+ mice were collected on a 700 MHz 

Bruker DRX700 (Bruker BioSpin, GmbH) .  Urine samples were stored at -80°C prior to 

analysis.  Thawed samples were aliquoted into phosphate buffer in D2O (deuterium 

oxide, heavy water) and a solution containing internal NMR reference standard, 3-

trimethylsilyl-(2,2,3,3-2H4)-1-propionate, sodium salt (TSP) δH= 0 ppm, with sodium 

azide was added.  Urine volumes were 400µl where possible, or the total sample volume 
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if less.  Buffered samples were used to minimize differences in shift and shape due to 

second order coupling.  NMR data was preprocessed beginning with automated 

adjustment of the chemical shift of TSP to δH = 0 ppm, application of a semi-automated 

phase correction, and automated baseline adjustment using an automated 0-2nd order 

polynomial and reduction to histogram representations by binning using the method by 

Forshed et al. (2002).   

A bin width of 0.02 ppm was chosen with a 50% tolerance either side of the bin 

boundary.  NMR spectral regions associated with water (4.7-5.0 ppm), urea (5.5-6.1 

ppm), TSP (-0.6-0.6 ppm), and baseline (9.3-10.0 ppm) were removed prior to data 

processing.  To normalize the data, bins were first ranked with respect to the total 

intensity level (summation across individuals) and a normalization factor was calculated 

(1 / ∑ central 50% sample intensities).  The normalized intensity levels for each sample 

were calculated through the multiplication of raw intensity values and normalization 

factors.  Bins associated with glucose (3.20-3.30, 3.37-3.57, 3.69-3.92, 4.63-4.7, 5.20-

5.30 ppm) were removed from the normalization factor calculation, but reintroduced for 

statistical analysis. 

5.3.3 LC-MS data 

The data used in this study were positive polarity UPLC-MS datasets.  

Chromatographic separations were achieved using an ACQUITYTM C18 (100x2.1mm 

i.d., 1.7µm particle size) column (Waters Corporation, Milford, USA) on an 

ACQUITYTM UPLC system (Waters).  Mass spectrometry was performed on a Waters 

LCT PremierTM (Waters MS Technologies, Manchester, UK) orthogonal acceleration 

time-of-flight (oa-TOF) mass spectrometer operating in W optics mode.  Peaks were 
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extracted from the LC-MS data using xcms (Smith et al., 2006).  For this analysis, no 

retention time correction was employed, and the default initialization parameters were 

used with the exception of the full width at half maximum (fwhm) and bandwidth (bw), 

which were each set to 5 scans.  LC-MS peaks were normalized using the same technique 

implemented for the NMR bins with the central 80% of peaks used to calculate the 

normalization factor.   

 To confirm the putative assignments based on the method proposed by Gipson et 

al. (2008), UPLC-MS/MS and spiking experiments of authentic metabolites were 

performed.  These experiments were performed on diluted urine and standard solutions 

using a Waters Q-Tof PremierTM (Waters MS Technologies, Manchester, UK) 

quadrupole, orthogonal acceleration time-of-flight tandem mass spectrometer operating 

in V optics mode.  See Chapter 4 or Gipson et al. (2008) for more details regarding MS 

and MS/MS methods.   

5.3.4 Microarray Data 

 Liver, adipose tissue, and gastrocnemius muscle were collected in 10-wk old 

db/db and db/+ mice in Experiment 1 of this study.  At the time of dissection, liver (100 

to 200 mg), subcutaneous adipose tissue (100 to 350 mg) and gastrocnemius muscle (100 

to 200 mg) were harvested, minced finely (1 to 3 mm) and placed into 5 to 10 volumes of 

RNAlater™ (Ambion, Inc., Austin, TX). RNAlater™, an ammonium sulfate solution, 

was used to prevent degradation of RNA during the experimental procedures. Samples 

were stored on dry ice and transferred to a -80°C freezer until further processing. 

 Tissue from RNAlater™ stocks was weighed, transferred to Trizol reagent 

(Invitrogen, Carlsbad, CA), and homogenized using the MixAMil system (Retsch, Haan, 
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Germany). RNAse-free water, chloroform, and the Trizol-tissue homogenate was spun in 

a Phase Lock Gel (PLG) tube (VWR International, West Chester, PA). Clear aqueous 

supernatant was recovered from the top layer of the PLG, transferred to RNAeasy Mini 

columns (Qiagen Inc., Valencia, CA) and processed according to manufacturer’s 

instructions. RNA samples were DNAse I treated as recommended. RNA integrity was 

assessed by Optical Density (OD) ratios (Spectramax, Molecular Devices Corp., 

Sunnyvale, CA) and ribosomal quality as measured by the Agilent BioAnalyzer RNA 

chips and software (Agilent Technologies Inc., Palo Alto, CA). 

 Five micrograms of mRNA was used for each sample. cDNA synthesis 

(Invitrogen Carlsbad, CA) and in vitro transcription incorporating biotinylated 

nucleotides (Enzo Biochem Inc. Farmingdale, NY) was carried out according to standard 

operating procedures recommended by Affymetrix. Labeling quality was assessed by 

cRNA yields and integrity as monitored by Agilent BioAnalyzer RNA chips and 

software. 

 Hybridization cocktails containing 10 µg of representative sample cRNA were 

loaded onto GeneChip® Mouse Genome 430A Array and hybridized overnight. 

Genechips® were washed and scanned using Affymetrix fluidic stations and scanners. 

Intensity data were captured by Genechip Computer Operating System (GCOS) using the 

algorithm, MAS 5.0.  An initial visual inspection of each chip was completed that 

checked for uniform color, unexpected spots or scratches, and proper grid alignment. 

Technical quality control (QC) of all microarray data was performed using the MAS 5.0 

analysis software. 
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5.3.5 Statistical Analyses 

 All multiplicity correction in this study was performed by controlling for the false 

discovery rate (FDR) as described by Benjamini and Hochberg (1995).  Comparable 

NMR data (8 week old mice) from Experiments 1 and 2 were evaluated for experimental 

consistency.  A Student’s t-test was used to identify significantly altered NMR bins for 

each experiment independently and an ANOVA was performed using both disease status 

and experiment date as independent variables.   

 Univariate and multivariate statistical methods were employed to compare data 

across the metabolomic platforms.  Principal components analysis (PCA) was used to 

visualize the primary separations between individuals based on both the NMR bins and 

LC-MS peaks.  To determine the effect of disease, age, and their interaction on bins and 

peaks, an ANOVA was performed with an FDR of 0.01. 

5.3.6 Enrichment Analysis 

 Data from the Affymetrix MOE430a chip (22,690 gene probes) were normalized 

using the MAS5 procedure prior to use in analyses.  Genes with significantly altered 

expression between db/db and db/+ mice were determined with univariate statistics (t-

test) followed by multiplicity correction.  A FDR of 0.00002 was used that should result 

in less than one false positive.  An enrichment analysis of significantly altered genes was 

performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) databases (The Gene Ontology Consortium, 2000; Kanehisa et al., 

2006).  Enrichment significance was calculated using the hypergeometric distribution 

followed by multiple test correction with an FDR of 0.01.  
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LC-MS derived metabolite enrichment was performed based on a previous 

finding that correlation supported assignments are of higher quality than mass only peak 

assignments (Gipson et al., 2008).  Pathway enrichment was calculated for each of the 27 

(independent variableobserved change = 33) possible significance profiles from the ANOVA 

(independent variable = disease, age, interaction; observed change = up, down, 

unchanged) performed on the metabolomics data.  Here, an enriched pathway is defined 

as one with a statistically significant proportion of high quality assignments in a given 

significance profile.    

5.4 Results 

5.4.1 NMR/LC-MS Platform Comparison 

 The datasets used in this analysis contain a large number of variables, making 

multiple testing correction necessary for statistical interpretation.  The binned NMR 

datasets consisted of 169 discrete spectral regions of which 129 and 91 were significantly 

altered (FDR = 0.001) in experiment 1 and 2, respectively.  Of 70 bins that were 

significantly altered in both experiments, 67 of the bins were statistically significant with 

the same direction of change in both experiments.  The ratio of bins with conflicting 

directional change to significant bins for both experiments decreases with increasing 

stringency of the significance threshold (Figure 5.1).  An evaluation of the data at the 

significance threshold (Figure 5.1) at which no discrepancies between significant bins 

was seen (p = 10E-11) yields 55 bins altered in the same direction when the experiments 

are analyzed independently. An ANOVA (FDR = 0.001), using both experiment and 

disease status as independent variables, found that 50 bins were significantly influenced 

by the experiment and 133 were significantly different based on receptor status. 
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Figure 5.1.  Fraction of NMR bins significant in both experiments, yet with opposite directional 
changes. 
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 Results from the NMR data and the LC-MS data collected during Experiment 2 

were compared for platform consistency.  Prior to inclusion in the analysis, technical 

replicates of the LC-MS peaks were compared and peaks were used in the analysis only if 

the difference between the 2 replicates was less than 10% of the higher intensity peak for 

all samples.  These inclusion criteria led to the retention of 1045 of 2723 peaks, 

indicating that on average, over 98% of the peak technical replicates had a quantitative 

error less than 10%.   

PCA of the NMR and LC-MS datasets reveals that both platforms achieve 

separation between db/db and db/+ mice in the first 2 components (Figure 5.2).  

However, there are differences between the two platforms that lead to differential 

separation of the db/db mice with respect to age.  Specifically, while the LC-MS data 

shows no separation at all in the first 2 principal components with respect to age, the 

NMR data indicates a clear difference between the week 8 and older db/db mice.  

Additionally, there appears to be a separation of week 20 db/db mice into two subgroups. 
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Figure 5.2.   First principal components of the NMR and LC-MS datasets following standard normal 
transformation.   
black: db/db mice; grey: db/+ mice; square: 8 week old mice; circle: 12 week old mice; triangle: 20 
week old mice.
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The ANOVA results, using disease, age, and an interaction term as independent 

variables and individual NMR bins or LC-MS peaks as dependent variables, indicates 

that the two data platforms provide markedly different information (Table 5.1).  This 

analysis reveals that, while 38.4% of the data from the NMR platform and 32.6% of the 

data from the LC-MS platform have a significant disease alteration, 56.1% of the NMR 

bins and 13.2% of the LC-MS peaks have either a significant age or interaction term 

component.     

Investigation of the NMR PCA loadings reveals that the bins most responsible for 

the separation of 20 week old db/db mice are associated with hippurate and m- 

hydroxyphenylpropionic acid (m-HPPA).  A plot of the intensity of hippurate as 

quantified by the confirmed LC-MS peak and the NMR spectra (Figure 5.3) provides a 

visual representation of the subpopulations present in the week 20, db/db mice.  
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Table 5.1.  Enumeration of significant NMR bins and LC-MS peaks.  Results from ANOVA with 
disease, age, and interaction term as independent variables. 
 
Disease / Age / Interaction % (Bins) % (Peaks) 

-  /  -  /  - 30.8% (52) 62.5% (653) 
-  /  -  /  ↑ 15.4% (26) 1.3% (14) 
-  /  -  /  ↓ 14.8% (25) 1.1% (12) 
-  /  ↑  /  - 0.0% (0) 0.8% (8) 
-  /  ↑  /  ↓ 0.0% (0) 0.3% (3) 
-  /  ↓  /  - 0.6% (1) 1.2% (13) 
-  /  ↓  /  ↑ 0.0% (0) 0.2% (2) 
↑  /  -  /  - 10.7% (18) 13.3% (139) 
↑  /  -  /  ↑ 3.6% (6) 0.1% (1) 
↑  /  -  /  ↓ 3.6% (6) 2.2% (23) 
↑  /  ↑  /  - 0.0% (0) 0.7% (7) 
↑  /  ↑  /  ↓ 0.0% (0) 0.2% (2) 
↑  /  ↓  /  - 0.0% (0) 0.3% (3) 
↑  /  ↓  /  ↑ 0.0% (0) 0.2% (2) 
↓  /  -  /  - 2.4% (4) 11.0% (115) 
↓  /  -  /  ↑ 14.2% (24) 3.5% (37) 
↓  /  -  /  ↓ 3.6% (6) 0.3% (3) 
↓  /  ↑  /  - 0.0% (0) 0.1% (1) 
↓  /  ↓  /  - 0.6% (1) 0.3% (3) 
↓  /  ↓  /  ↑ 0.0% (0) 0.4% (4) 
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Figure 5.3.  Mean centered, standard deviation normalized profile of hippurate stratified by disease 
status and age.  
black: db/db mice; grey: db/+ mice; square: 8 week old mice; circle: 12 week old mice; triangle: 20 
week old mice; solid: LC-MS peak; open: deconvoluted NMR spectra (Gipson et al., 2006).
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5.4.2 Validated LC-MS Peaks 

Targeted analytical follow-up of the LC-MS peaks lead to the validation of 11 

peak assignments exhibiting a variety of responses to the experimental conditions (Table 

5.2).  Of the validated peak assignments, glutamate is the only peak that did not meet the 

technical reproducibility criteria.  Visual inspection of the NMR resonances associated 

with validated LC-MS peaks showed that the metabolite profiles were shared by both 

platforms for trimethylamine-n-oxide (TMAO), creatine, carnitine, phenylalanine, and 

phenylacetylglycine (PAG).  The NMR profile of the other metabolites could not be 

assessed due to resonance locations in an overly crowded spectral region (pantothenate) 

or intensity levels below the limit of detection (pipecolate, glutamate, tryptophan, 5-

hydroxytryptophan (5HTP), adenosine, and cortisol).  

5.4.3 Enrichment Analysis 

The transcriptomics data indicates a tissue-specific impact of disease effects.  

Muscle was least impacted with 1378 disease affected probes.  Liver had twice as many 

disease affected (2963) gene probes than muscle.  Adipose tissue was the most 

dramatically impacted, with respect to the number of altered gene probes, with 3700 

disease affected probes.  The GO process enrichment analysis of genes found with 

significant differences between db/+ and db/db mice revealed 13 processes enriched in 

liver, 9 processes enriched in adipose tissue, and 8 processes enriched in muscle (Table 

5.3).  
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Table 5.2.  Validated LC-MS peaks and results from ANOVA 
 

m/z rt (min) Findings Validated ID 
76.07629 0.59 db/db ↑, db/db ↓ with age  TMAO 
130.0859 0.77 ns Pipecolate 
132.0773 0.62 db/db ↓, db/db ↑ with age Creatine 
148.0611 0.87 db/db ↑ Glutamate 
162.1127 0.60 db/db ↑ with age Carnitine 
166.082 2.43 db/db ↑, db/db ↓ with age Phenylalanine 
180.0662 4.38 complex Hippurate 
194.0822 5.16 ns PAG 
205.0981 3.49 db/db ↑ Tryptophan 
220.1185 2.93 ns Pantothenate 
221.093 1.87 db/db ↑, db/+ ↑ with age 5HTP 
268.1065 1.86 db/db ↓ Adenosine 
363.2163 8.55 db/db ↑ Cortisol 
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Table 5.3.  GO processes enriched with gene transcripts significantly altered by disease 
 
Tissue Category Hits Genes OnChip p 
Liver GO:0006412:translation 132 2963 331 9.88E-15 
Liver GO:0008152:metabolic process 181 2963 508 4.30E-14 

Liver GO:0042254:ribosome biogenesis and 
assembly 45 2963 76 8.29E-13 

Liver GO:0006629:lipid metabolic process 73 2963 167 6.76E-11 
Liver GO:0006118:electron transport 119 2963 341 4.37E-09 
Liver GO:0006631:fatty acid metabolic process 31 2963 59 1.38E-07 
Liver GO:0006869:lipid transport 24 2963 44 1.47E-06 
Liver GO:0006099:tricarboxylic acid cycle 15 2963 23 7.29E-06 
Liver GO:0006956:complement activation 15 2963 25 3.12E-05 
Liver GO:0006694:steroid biosynthetic process 23 2963 48 3.99E-05 
Liver GO:0008610:lipid biosynthetic process 31 2963 75 7.44E-05 

Liver GO:0006957:complement activation, 
alternative pathway 8 2963 10 0.000129 

Liver GO:0008203:cholesterol metabolic process 18 2963 36 0.000137 
Adipose GO:0006412:translation 159 3700 331 <1.0E-15 

Adipose GO:0042254:ribosome biogenesis and 
assembly 45 3700 76 2.38E-09 

Adipose GO:0006888:ER to Golgi vesicle-mediated 
transport 42 3700 73 2.63E-08 

Adipose GO:0015031:protein transport 149 3700 387 1.96E-07 

Adipose GO:0019882:antigen processing and 
presentation 31 3700 52 5.93E-07 

Adipose GO:0016192:vesicle-mediated transport 42 3700 86 9.26E-06 
Adipose GO:0006464:protein modification process 67 3700 160 2.15E-05 
Adipose GO:0006886:intracellular protein transport 82 3700 205 2.15E-05 
Adipose GO:0006397:mRNA processing 81 3700 204 3.29E-05 
Muscle GO:0007155:cell adhesion 72 1378 367 1.18E-08 
Muscle GO:0006817:phosphate transport 22 1378 69 4.51E-07 
Muscle GO:0005977:glycogen metabolic process 10 1378 20 6.69E-06 
Muscle GO:0006941:striated muscle contraction 9 1378 21 9.03E-05 

Muscle GO:0042759:long-chain fatty acid 
biosynthetic process 4 1378 4 9.77E-05 

Muscle GO:0055009:atrial cardiac muscle 
morphogenesis 4 1378 4 9.77E-05 

Muscle GO:0006937:regulation of muscle 
contraction 8 1378 17 0.000101 

Muscle GO:0007160:cell-matrix adhesion 14 1378 47 0.000127 
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There were 18 KEGG pathways with a minimum of 5 genes (MOE430a chip) 

associated with metabolites in the pathway.  Since none of these KEGG pathways were 

enriched at the proposed significance criteria, the data was evaluated at the less restrictive 

FDRs of 0.001 and 0.05 for gene significance and enrichment significance, respectively. 

The analysis revealed 2 significantly enriched pathways in liver, 1 significantly enriched 

pathway in muscle, and no enriched pathways in fat (Table 5.4).  Several KEGG 

pathways were significantly (FDR = 0.01) enriched with improved quality LC-MS 

metabolite assignments (Table 5.4).  NMR markers of diabetic status that were 

discovered (Connor et al., in preparation) and presented (Gipson et al., 2006) previously 

were also explored.  An examination of KEGG pathways revealed that there were 2 that 

contained at least 4 confirmed NMR markers (Table 5.4).  
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Table 5.4.  KEGG pathways highlighted through sample type specific analyses 
 
Sample Type Pathway KEGG ID 

TA Liver TCA cycle map00020 
TA Liver Fatty acid metabolism map00071 

TA Muscle Glycolysis/Gluconeogenesis map00010 
LC-MS Urine Fructose & Mannose metabolism map00051 
LC-MS Urine Galactose metabolism map00052 
LC-MS Urine Fatty acid elongation in mitochondria map00062 
LC-MS Urine Fatty acid metabolism map00071 
LC-MS Urine C21-steroid hormone metabolism map00140 
LC-MS Urine Limonene & Pinene degradation map00903 
NMR Urine TCA cycle map00020 
NMR Urine Nicotinate & Nicotinamide metabolism map00760 
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5.5 Discussion 

Further progress in metabolome studies are limited by technical challenges such 

as reproducibility, platform selection, and statistical inference.  This work addresses some 

of these challenges by evaluating experimental reproducibility across independent NMR 

studies, comparing NMR and LC-MS results within the context of validated data peaks, 

and by integrating metabolite data with gene expression data.  The results from the 

experimental comparison further confirm the reproducibility of the NMR data platform. 

However, the results also indicate the possibility for over interpretation of data from an 

individual experiment. The comparison of statistical analyses on the individual 

experiments showed that in the absence of multiplicity correction, an investigator could 

expect to make contradictory direction-of-change calls on over 20% of the spectral 

regions at an significance threshold of 0.01 (Figure 5.1).  However, this is not meant to 

imply that only data that is consistent across experiments is reliable or meaningful.  

Instead, it is likely that there are experimental variables that are not controlled for across 

individual experiments, which leads to much of the conflicting information.  As such, 

conflicting directional changes may be indicative of alternative biological states resulting 

from varying experimental conditions.  Nevertheless, increasing the stringency of 

significance thresholding was found to lead to greater agreement between the two 

experiments, suggesting that the strongest biological signals are shared across 

experiments.  As such, these results indicate the need for care when contextualizing data 

from an individual study. 

A particular challenge of global metabolite profiling, whether using MS or NMR, 

is assignment of spectral peaks of interest (Kell, 2004) and as the above findings suggest, 
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care must be taken when attributing physical meaning to a spectral signal.  Here, a 

previously described method was employed that uses biological information to guide the 

LC-MS peak assignment process (Gipson et al., 2008).  For any given MS peak, there 

will be a variety of compounds that can explain the observed mass.  As an example, the 

peak that was confirmed to be cortisol (mz = 363.2163, rt = 8.55 min) through analytical 

validation matches a number of other compounds in the KEGG database through mass 

matching.  In fact, there are 8 compounds with the same chemical formula as cortisol 

(C21H30O5), of which, 5 have biochemical interactions described in KEGG.  While 

assignment of this peak as cortisol putatively explains 36 data interaction pairs, the other 

assignments explain fewer pairs (between 3 and 18).  Interestingly, all 5 of these 

compounds are closely related to cortisol (Figure 5.4).  Along with the assignment 

improvement gained through interaction pair mapping (Gipson et al., 2008), this 

biochemical proximity of similar compounds makes the LC-MS peak enrichment process 

described here an informative approach for evaluating the data.  However, interpretation 

of the data at the individual metabolite level requires analytical follow-up and biological 

interpretation requires cross-platform, multi-experiment verification.  
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Figure 5.4.  Putative KEGG assignments associated with an LC-MS peak interaction pair which fit biochemical interaction criteria.  This peak pair was 
algorithmically identified as belonging to a common instrumental cluster.  Follow-up analytical chemistry validated the cortisol assignment of the 
C21H30O5 peak and confirmed that the C21H28O5 peak was a fragment of cortisol.
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It is generally accepted that no one analytical technique provides a comprehensive 

metabolic profile (Lenz and Wilson, 2006).  Inspection of peak-bin correlation pairs for 

the LC-MS peaks with validated assignments (data not shown) revealed that, with the 

exception of hippurate, the highest correlation coefficients are not associated with bins 

containing resonances from the metabolite of interest.  This finding could be due to MS 

detector response peculiarities (e.g. linear over a limited dynamic range) or the non-

specificity (i.e. contribution of resonances from multiple metabolites) of NMR bins with 

a fixed width of 0.02 ppm.  The fact that hippurate, which has a very strong signal in the 

NMR data, showed a strong correlation between the validated peak and associated NMR 

bins suggests that the non-specificity of the NMR bins is likely more culpable.  This is 

further supported by the fact that, when not precluded by the detection limit or crowded 

spectral regions, visual inspection of the metabolite signals in NMR coincided well with 

the LC-MS findings.  The use of more exhaustive methods of spectral alignment and 

intelligent binning would likely have led to a better correlation between NMR bins and 

LC-MS peaks associated with common metabolites.  However, manual data 

preprocessing is prohibitively time consuming and even sophisticated automated methods 

(Zhao et al., 2006) require some amount of spectral binning.   

While cross-platform verification is a powerful approach for confirmation that the 

interpretation of metabolomics data is accurate, as expected, it was found that the NMR 

profile of several metabolites could not be assessed due to crowded spectral regions or 

detection limit constraints.  In highly proteinaceous biofluids (e.g. blood plasma or 

serum), low molecular weight metabolites are often bound to protein, creating an NMR 

analysis problem due to line-broadening and loss of visibility (Nicholson et al., 1995).  In 
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urine, however, all metabolites with non-labile protons that are above the detection limit 

are observed, producing complex spectra.  Increased variability in the physico-chemical 

parameters (i.e. pH, ionic strength, compound concentrations) of urine, compared to more 

homeostatically-controlled biofluids such as serum, can also affect the absolute 

positioning of data peaks across multiple samples (Lindon et al., 2000).   

The data presented here clearly shows that disease status dramatically alters the 

metabolic profile of affected mice.  Findings from carnitine, creatine, TMAO, and 

phenylalanine LC-MS peaks were confirmed in NMR data.  Previous studies have shown 

that urinary excretion of carnitine is increased in week 20 Zucker (diabetic) rats and 

increases with age in Wistar (non-diabetic) rats (Williams et al., 2005b; 2006).  The 

multi-platform findings suggest that while carnitine levels in control mice are stable with 

age, levels in db/db mice increase with age.  Additionally, although carnitine levels were 

not significantly different (FDR = 0.01, ANOVA) between db/db and control mice, upon 

visual inspection of the data, a marked difference between levels in week 20 mice based 

on disease status was seen (Figure 5.5).  It was found, in both data platforms, that creatine 

is significantly decreased in diabetic mice, but increases, approaching control levels, with 

age.  A previous NMR metabolomics study showed that the decreased creatine urine 

excretion was common in diabetic mice, rats, and humans (Salek et al., 2007).  TMAO 

and phenylalanine were found, in both LC-MS and NMR, to be increased in db/db mice 

with decreasing levels in these animals with age. TMAO has been previously found to 

have higher concentrations in plasma of high fat diet fed mice (Toye et al., 2007).  

Additionally, increased TMAO urine excretion has been seen to be a common trait of 

diabetic mice, rats, and humans (Salek et al., 2007).  In previous studies, transcriptional 
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changes in high fat diet fed mice indicated that a significant change in phenylalanine 

biosynthesis had occurred (Toye et al., 2007) and phenylalanine urine excretion was 

found to be increased in diabetic humans (van Doorn et al., 2006).       

 The remaining metabolites with a significant disease effect could not be 

confirmed in NMR due to technical limitations.  Contrary to a previous study in rats 

suggesting that diabetes increases the capacity of the kidneys to produce or release 

adenosine (Angielski et al., 1989), it was found here that the intensity of the validated 

adenosine LC-MS peak was significantly lower in db/db mice.  In a previous study of 

transcriptional changes in high fat diet fed mice, it was found that a significant change in 

tryptophan metabolism and glutamate metabolism had occurred (Toye et al., 2007).  In 

this study, it was found that the intensity of both the validated tryptophan and glutamate 

LC-MS peaks to be significantly higher in db/db mice.  These findings conflict with 

previous NMR metabolomics studies which showed that tryptophan urine excretion was 

lower in diabetic mice, rats, and humans (Salek et al., 2007) and glutamate urine 

excretion was lower in diabetic humans (van Doorn et al., 2006).  Tryptophan and 

glutamate resonances in these NMR datasets were below the detection limit, and thus, 

cross-platform or experimental confirmation was impossible.  LC-MS data show that 

urinary cortisol excretion is increased in the diabetic mice.  A previous study found that 

streptozotocin induced diabetic rats had significantly increased plasma cortisol levels 

when compared to controls (Radahmadi et al., 2006).  
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Figure 5.5.  NMR and LC-MS peaks of representative samples (2 closest to median value) associated with Carnitine at a.) 8 weeks of age and b.) 20 
weeks of age.
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 Hippurate was shown in this study to have complex behavior based on disease 

status, age, and gut microflora.  The impact that gut microflora can have on hippurate has 

been previously demonstrated (Phipps et al., 1998; Williams et al., 2002) and may 

explain the differences in metabolite excretion of the db/db mice at 20 weeks of age.  

Hippurate urine excretion has been previously found to be both increased (van Doorn et 

al., 2006) and decreased (Salek et al., 2007) in diabetic humans.    

 The current study examined urine metabolite profiles of diabetic db/db and 

control db/+ mice over time.  It is important to note that young db/db mice are 

characterized by high levels of glucose and insulin, whereas older db/db mice have low 

insulin levels likely due to β-cell exhaustion, and also eventually develop renal failure 

(Sharma et al., 2003).  These changes over time in the diabetes phenotype, as well as 

changes in renal function, likely contribute significantly to the metabolite profiles 

observed in the current study.  For example, although not specifically assessed in the 

current study, changes in renal function could account for the differences in metabolite 

profiles within the db/db mice at 20 weeks of age.  In addition, this difference in disease 

phenotype with age in db/db mice may also account for various discrepancies in 

individual metabolites between different studies. 

In this study, PAG and pantothenate LC-MS peaks were found to be unaltered 

over age and disease status.  This finding was confirmed for PAG in NMR, but the 

location of pantothenate resonances in crowded regions of spectra made confirmation 

impossible.  Both of these metabolites have been previously found to be decreased in the 

urine of diabetic rats (Reibel et al., 1981; Salek et al., 2007).   
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 Results from the analysis of biological processes from both the KEGG and GO 

databases are consistent with prior information concerning diabetes and the db/db mouse 

model.  The pathways highlighted in this analysis via evaluation of significant genes, 

improved assignment of LC-MS peaks or NMR derived markers exhibited both the 

complementary and supportive nature of the different methods of inquiry.  Similar to 

previous findings in streptozotocin-induced diabetic rats (Lecker et al., 2004), glycolysis 

was implicated in muscle through querying the KEGG database for significantly altered 

transcripts.  The nicotinate and nicotinamide metabolism KEGG pathway was found to 

contain many confirmed NMR markers.  Findings of increased or decreased metabolite 

levels in this pathway appear to vary in the literature.  The results of this study suggesting 

the increase of urinary NMA are in disagreement with a recent cross-species NMR study 

(Salek et al., 2007), yet the findings of increased 2PY and NMN are supported in this 

same study.  Elsewhere, NMN renal clearance (Thomas et al., 2003) and urinary 

excretion (Sanada and Miyazaki, 1980) have been shown to be decreased in diabetic rat 

models.  Metabolite and liver enzyme levels associated with the TCA cycle and steroid 

processes were found to be altered in db/db mice.  The TCA cycle (Garland et al., 1968; 

Harano et al., 1969; Large and Beylot, 1999) and steroid pathways (Djursing et al., 1982; 

Semple et al., 1988; Atanasov and Odermatt, 2007) association with diabetes are well 

known. Enzyme transcription in muscle and liver associated with fatty acid processing 

was found to be altered in the diabetic mice, and the signal was also seen in the urinary 

LC-MS peaks.  The dysregulation of fatty acid metabolism is known to be influenced by 

leptin and has been implicated with the development of insulin resistance in both the liver 

and skeletal muscle (Shimabukuro et al., 1997; Delarue and Magnan, 2007). 
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5.6 Conclusions 

 In this study, both consistency and complementarity were found across multiple 

experiments and analytical platforms in the pursuit of a better understanding of the 

metabolic changes associated with the db/db mouse model of diabetes.  At the data 

feature level, agreement between 2 separate experiments increased with increasing 

statistical stringency.  At the individual metabolite level, carnitine, creatine, TMAO, 

phenylalanine, and PAG were found to have temporal and disease status profiles in 

agreement across the 2 metabolomic platforms.  At the pathway level, it was found that 

the TCA cycle, fatty acid metabolism, and steroidal processes to be highlighted by 

multiple lines of evidence.  Specifically, each of these pathways was implicated through 

liver transcriptomics and either NMR or LC-MS metabolomics.  Additionally, it was 

found that at each level of investigation, there were findings specific to each experiment 

and data platform.  As such, multiple lines of evidence provide both a confirmatory and 

complementary role in metabolic investigations. 
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CHAPTER 6: Summary & Conclusions 
 
6.1 Summary 

LC-MS and NMR are two of the most used data generation technologies for 

mammalian metabolomics investigations (Dunn and Ellis, 2005).  Both are associated 

with signal complexity and interpretation difficulties, leading to a time consuming data 

analysis process (Robertson, 2005).  This work presents several novel approaches to 

automated metabolomics data analyses, as well as a metabolic marker discovery study 

aided by the described methods.  The experiments conducted to find metabolites and 

metabolic pathways altered in the db/db mouse are the first in which cross-platform 

validation of exploratory biomarkers in this diabetic model are described.  This work 

contains a number of novel contributions to the field of metabolomics and diabetes 

research.  

Chapters 2 & 3 describe the novel approach and validation of using weighted 

spectral features to improve the automated quantification and prediction of exploratory 

biomarkers in NMR data from biofluid samples.  To accomplish this goal, I created a 

flexible interface in R for an existing R function that performs constrained, least-squares 

fitting (Wood, 1994; 2000; 2004).  The interface simplifies the import/export of NMR 

metabolomics data for analysis with the pcls function.  I then evaluated the performance 

of the weighted approach against the unweighted approach using both simulated and 

experimental datasets.  I created the simulated datasets to approximate real biological 

data output from NMR with input from an NMR expert from GlaxoSmithKline.  The 

experimental data was collected and validated by scientists at GlaxoSmithKline.  I re-

analyzed the data using the described automated approach and compared the results to the 
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original validated results.  The automated approach presented in this work, although 

improved through the use of weighting, is not ideal for a number of reasons.  The method 

provides point estimates for individual metabolite level estimates.  It would be useful if, 

instead, a distribution of likely metabolite level estimates were provided.  Additionally, 

the absence of metabolites from the reference spectra database makes accurate estimation 

extremely challenging.  These shortcomings of the described approach could be 

addressed through a Bayesian approach as more a priori information is made available. 

Chapter 4 describes a novel approach for the assignment of MS-based 

metabolomics data peaks.  I developed the entire assignment algorithm.  The current 

implementation uses peak-picked output from the xcms R library as input, but the 

algorithm can handle formatted peak data from any source.  Validation of the method 

required knowledge of the true identity of a number of data peaks.  In order to 

accomplish this, additional analytical chemistry (e.g. spiking experiments) was performed 

to determine the identity of several data peaks.  An LC-MS expert from GlaxoSmithKline 

performed both the LC-MS data generation and the follow-up analytical chemistry 

studies.  The major drawbacks of this assignment approach are the incompleteness of 

existing biochemical interaction databases and the scarcity of disease specific 

experimental datasets.  Together, these limitations prevent investigators from assigning 

physical meaning to a large fraction of MS-based datasets and providing statistical 

estimates of assignment reliability.  With the improvement of biochemical interaction 

databases and increased availability of metabolomics datasets, Bayesian methods can 

provide the framework for addressing these challenges. 
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Chapter 5 describes the first metabolomics study on the db/db mouse model of 

diabetes to provide cross-platform validated markers of disease and disease progression 

for which few metabolomics studies are currently published.  Additionally, the 

experimental design of this study provided the opportunity for an important cross -

experiment and –platform coherence analysis, which is lacking in the literature.  

Experimental protocol, animal handling, and data collection were performed by scientists 

at GlaxoSmithKline.  My contribution to this work, as first author on a manuscript in 

preparation, was primarily in the design of statistical comparisons, data analysis, and 

interpretation of biological relevancy.  Chapter 5 describes multiple lines of evidence 

converging to implicate alterations in the metabolic profile of the db/db mouse.  

Specifically, cross-platform alterations at the pathway level were observed in the TCA 

cycle, fatty acid metabolism, and steroidal processes.  Each of these pathways were 

implicated through liver transcriptomics and either NMR or LC-MS metabolomics. 

6.2 Biological relevance of multi-platform metabolic markers 

The strong signal of dysregulation in these pathways in the db/db diabetic mouse 

model, as evidenced by multi-platform discovery, is not surprising.  The TCA cycle 

(Garland et al., 1968; Harano et al., 1969; Large and Beylot, 1999), fatty acid metabolism 

(Delarue and Magnan, 2007), and steroid pathways (Djursing et al., 1982; Semple et al., 

1988; Atanasov and Odermatt, 2007) are widely known to be associated with diabetes.  

Furthermore, the dysregulation of the TCA cycle (Wlodek and Gonzalez, 2003), fatty 

acid metabolism (Shimabukuro et al., 1997), and glucocorticoid metabolism (Liu et al., 

2003; Masuzaki and Flier, 2003) are known to be influenced by leptin.  The db/db mouse 

model exhibits phenotypic traits associated with type 2 diabetes due to an autosomal 
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recessive defect in the leptin receptor gene (Chen and Wang, 2005).  An examination of 

the data at the molecular level reveals evidence of the interplay between metabolites and 

the enzymes that mediate their reactions. In this section, I describe the biological 

relevance of metabolic biomarkers discovered in the db/db dataset using the methods I 

developed for LC-MS and NMR analysis. The biological relevance of these markers 

supports their validity as indicators of diabetes and diabetes progression. 

6.2.1 Fatty acid metabolism 

As presented in Chapter 5 (Table 5.3), fatty acid metabolism was found to be 

enriched with liver gene transcripts that were statistically altered (in either direction).  

Additionally, fatty acid metabolism was enriched with high-quality putative assignments 

of LC-MS peaks which were statistically significantly increased in db/db mice (Table 

5.4).  Examining the individual genes responsible for the pathway enrichment revealed a 

statistically significant increase in the transcript levels of fatty acid metabolism 

associated carnitine palmitoyltransferase (Cpt) in the liver of db/db mice.  Cpt 

enzymatically controls the reaction containing palmitoylcarnitine and carnitine (Kanehisa 

et al., 2006).  As described in Chapter 4 (Table 4.1), the assignment of the LC-MS data 

peak associated with carnitine was analytically validated (Gipson et al., 2008) and it was 

identified as a marker of disease progression in db/db mice (Table 5.2).  Carnitine was 

found to be lower than control levels at 8 weeks of age and above control levels at 20 

weeks of age (Figure 5.5).  Carnitine is responsible for the transport of long-chain fatty 

acids from the cytosol into mitochondria and their subsequent oxidation and has been 

previously associated with diabetes in humans (De Palo et al. 1981).  
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6.2.2 TCA cycle 

As presented in Chapter 5 (Table 5.3), the TCA cycle was found to be enriched 

with liver gene transcripts that were statistically altered (either direction).  Additionally, 

the TCA cycle was one of two pathways (Table 5.4) with 4 or more metabolite markers 

validated from the investigated NMR dataset (Connor et al., in preparation; Gipson et al., 

2006).  One of the enzymes in the TCA cycle (Kanehisa et al., 2006) which was 

statistically significantly increased in db/db mice and contributed to the pathway 

enrichment was fumarate hydratase (Fh1).  Fh1 is the enzyme that controls the 

conversion between malate and fumarate (Kanehisa et al., 2006).  Malate and fumarate 

are two of the four TCA cycle associated NMR validated metabolic markers and were 

both found to be statistically significantly increased in db/db mice.   

6.2.3 Steroid metabolism 

As presented in Chapter 5 (Table 5.3), steroid and cholesterol processes were 

found to be enriched with liver gene transcripts that were statistically altered (either 

direction).  Additionally, steroid metabolism was enriched with high-quality putative 

assignments of LC-MS peaks which were statistically significantly decreased in db/db 

mice (Table 5.4).  Hydroxysteriod dehydrogenase 3B (HSD3B) transcript levels were 

statistically significantly decreased in the liver of the db/db mice.  HSD3B was associated 

with the significant enrichment of the steroid biosynthetic process described in Chapter 5 

and is the enzyme responsible for the conversion of 11β, 17α, 21-Trihydroxy-

pregnenolone to cortisol (Kanehisa et al., 2006).  As described in Chapter 5 (Table 5.2), 
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the validated LC-MS peak associated with cortisol was found to be significantly 

increased in db/db mice.   

6.2.4 Pathway connectivity 

 A description of a series of reactions found in the glucose-stimulated insulin 

secretion (GSIS) process provides a good starting point for conceptually linking all of the 

metabolic, enzymatic, and pathway information presented above.  Cpt activity leads to an 

increase in fatty acid β-oxidation and the production of acetyl-CoA.  Next, a portion of 

the produced acetyl-CoA is converted into citrate and follows the TCA cycle, including 

the conversion of fumarate to malate (with the help of Fh1) (Muoio and Newgard, 2006).  

Another portion of the produced acetyl-CoA follows a different path to produce 

cholesterol and then cortisol (Marks et al., 1996).  A recent study describing a 

thiazolidinedione (TZD) drug used for treatment of type 2 diabetes indicates that 

enzymes in all three of the pathways highlighted here are affected by the peroxisome 

proliferator-activated receptor-γ agonist (Wang et al., 2007) which is further evidence 

that the pathway and metabolic markers we found are likely of diagnostic and/or 

therapeutic importance.  The authors also report that the observed down-regulation of 

hydroxysteriod 11-β dehydrogenase has been previously reported as a treatment benefit 

insofar as it leads to a subsequent decrease in cortisol (Berger et al., 2001).    

6.3 Conclusions 

 Metabolomics is an important field of scientific inquiry which allows 

investigators to characterize the metabolic profile of alternative phenotypic states in a 

high-throughput manner.  It is important, however, to understand that follow-up 

analytical chemistry experiments are always required for the validation of the findings of 
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these studies.  Furthermore, although metabolomics datasets can readily provide 

discriminative markers, care must be taken to restrict the interpretation of the results 

within the context of the experimental design.  In order to prove the utility of a given 

metabolite as a biomarker, the specificity of the marker to a particular phenotypic state 

must be demonstrated through examination of data from many alternative phenotypes and 

temporal profiles.  Additionally, in order to extend our understanding of the biological 

mechanisms leading to a particular metabolic profile, a series of focused, hypothesis 

driven studies would be required.  As such, the importance of metabolomics is that it 

provides us with high-quality information to guide metabolic inquiries.  This work has 

outlined the development of informatics methods to explore and analyze NMR and LC-

MS metabolomics data and presented the results from a cross-platform study of the 

metabolic changes associated with diabetes.   

 Each of the studies described here demonstrate that metabolic profiling datasets 

only makes sense when interpreted alongside external, a priori information.  This is due 

to both the complexity of the biological processes under investigation and the open 

profiling technologies used for data generation.  Automated methods of interpretation are 

critical for the systematic and efficient quantification and assignment of metabolite levels 

in complex samples measured by both NMR and MS-based technologies.  Both 

automated methods described here are an example of the utilization of data specific 

information (NMR – bin variance, LC-MS – peak correlations) within the context of 

external information (NMR – reference spectra, LC-MS – biochemical interaction 

database).  Further, the integrated diabetes study indicates the need to contextualize 

biological findings with findings from prior studies.   
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 Due to the interplay between prior information and data specific information in 

the field of metabolic profiling, there is a strong case to be made for the formalization of 

external data inclusion into metabolomics data analysis procedures through Bayesian 

statistics.  In this way, external information can be standardized and treated as a priori 

data which is to be conditioned by the experimental dataset under examination.   

6.4 Future Directions 

6.4.1 Estimation of NMR Metabolite Level Confidence Intervals 

 The preceding study in which differential weighting of NMR spectral regions 

provided an improvement in point estimates of underlying metabolites is valuable as 

more than just an incremental improvement upon previous approaches.  It is also a 

quantitative affirmation of the fact that information content is not uniformly distributed 

throughout the frequency domain of the NMR spectra.  This knowledge, as well as the 

understanding that point estimates are insufficient descriptors of inferred metabolite 

estimates, leads one to believe that a Bayesian framework is the appropriate means for 

exploring NMR metabolomics data.  A Bayesian model of metabolite levels responsible 

for complex NMR spectra would allow for the incorporation of prior distributions of 

metabolite levels and spectral location of signal contributing resonances.  Due to the 

complexity of the biological processes under investigation and the technical and physico-

chemical influences on NMR resonance location, at the present time, both of the prior 

distributions would be speculative.  However, as empirical evidence accumulates and 

predictive models of biological and technical behavior improve, a priori knowledge will 

also improve.  Within this context, methodologies can be developed which will provide 
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quantitative information about the accuracy of the estimates of metabolite levels while 

incorporating and explicitly tracking prior assumptions. 

6.4.2 Bayesian Formalization of MS-based Metabolomics Assignment 

 Likewise, MS-based metabolomics would benefit through the application of 

Bayesian methods.  The work presented here demonstrates the improved assignment of 

MS-based metabolomics peaks using information that is both internal (correlation 

analyses) and external (previously described biochemical relationships) to a given 

collected dataset.  This work could be extended into a formal Bayesian statistical 

framework that would make use of an ever growing knowledgebase of information, as 

well as provide probabilistic information about assignment quality.  An example of the 

ability of a Bayesian framework to organize and incorporate prior information for the 

assignment of MS-based metabolomics can be seen through examining the weights used 

to score the various types of biochemical interactions. 

 Taking a Bayesian view of the use of a function of the probability of occurrence 

for the biochemical interaction weights, as was done in Chapter 3, reveals that the 

weighting scheme is both sensible and extensible upon gathering further information.  

From this perspective, the goal is to know the probability of observing a significant 

correlation (COR), given a particular biochemical relationship (LINKi).  This conditional 

probability can be represented mathematically with its Bayesian equivalent in the 

following Equation: 

p(COR | LINKi) = p(LINKi | COR) x p(COR) / p(LINKi)    (Eq. 6.1) 

In Chapter 3, significance thresholding of the correlation coefficients means that p(COR) 

is reduced to an indicator variable of value 0 or 1.  However, it should be noted that this 
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need not be the case within a Bayesian context.  If p(COR)=0, then the both sides of Eq. 

[6.1] reduce to 0.  If p(COR)=1 then one is left with: 

 p(COR | LINKi) = p(LINKi | COR) / p(LINKi)    (Eq. 6.2)   

Next, if we take an uninformed view of p(LINKi | COR) and assume a uniform 

distribution, then our conditional probability is a function of 1/ p(LINKi), where 

p(LINKi) is equal to the probability of a particular biochemical relationship in the KEGG 

database.  By looking at the information in this way, we see that the sum of the negative 

log(p) across all interaction types (assumes that multiple lines of evidence are 

independent) and uniquely assigned nodes within the network (shown to be the best 

performing weighting scheme in Chapter 3) is equivalent to calculating the probability 

that the correlation matrix is generated by a particular biochemical network.   

 Additionally, validated assignments of MS-based metabolomics peaks provide a 

priori knowledge that is an extremely strong basis to incorporate into metabolite 

assignment software.  Not only will these validated peaks provide strong assignments for 

peaks in subsequent studies occupying the same spectral region, but they will also lead to 

properly informed Bayesian priors for the p(LINKi | COR) term in Eq. [6.2]. 

6.4.3 Knowledgebase Development 

 It can be inferred from both the technical need for external information to guide 

the assignment of metabolomics data and the cross -experimental and -platform analyses 

presented in Chapter 4, that investigations utilizing metabolomics data cannot exist in 

isolation from other studies.  As such, the creation of databases for the storage and 

handling of metabolomics data, such as the Human Metabolome Database (Wishart et al., 

2007), is a critical endeavor for the metabolomics community.  In addition to providing 
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important information for the assignment, and therefore physical interpretation, of the 

data, these databases will also provide the means to compare experimentally induced 

metabolic reconfigurations across diseases and xenobiotic stressors.  
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