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Abstract

Hysteresis Behavior Patterns in Complex Systems
Ondrej Hovorka

Gary Friedman, Ph.D.

Many complex systems such as magnets, shape memory alloys, as well as socioe-

conomic and biological systems are known to display hysteresis. This inherently

irreversible process differs from the other irreversible processes most often addressed

in literature by the memory that persists long after the external parameters stop

changing. In general, hysteresis is a consequence of multi-scale system dynamics and

the existence of many metastable states. Although hysteresis is typically illustrated

by closed minor loops, other types of hysteretic trajectories are often observed where

closed loops form gradually after several external parameter periods or not at all.

The question arises: What in the structure of a system determines these qualitatively

different behaviors of hysteretic trajectories?

This thesis models complex hysteretic systems using a network of bistable binary

elements and investigates network structure induced changes in hysteretic behav-

ior. The main focus is on studying the minor loop formation processes for a single

cyclically varying external parameter. Stable minor loops are observed to form at

different rates as a function of the number of cycles, depending on the sign of the

interactions, disorder level, and on the connectivity and topology of the interaction

networks. For certain dense interaction networks, hysteretic trajectories that do not

converge to a minor loop after an arbitrarily large number of external parameter pe-

riods are discovered. It is shown that their appearance is related to the presence of

specific topological structures in the network. Thus, the thesis demonstrates several

interesting links between hysteretic behavior and the underlying structure of complex

systems.





1

Chapter 1. Scope of the thesis

This thesis describes analysis of a class of complex systems with hysteresis, which can

be viewed as networks of interacting bistable elements. Typically, the term ‘complex

system’ refers to a system consisting of many similar components, the interactions

between which create behavior that cannot be associated with the individual com-

ponents themselves. Such behavior is often called emergent. Several different types

of emergent properties have been investigated for various types of complex systems.

Among these properties are self-similarity in geometrical patterns and patterns in dy-

namic processes, such as power law scaling in the frequency spectrum of the system’s

evolution. Hysteresis is another example of emergent behavior. It can be defined

as any relationship between the state of the system and external parameters, which

depends on the history of the external parameter variation, but not on the rate of

this variation. Hysteresis is observed in many systems such as magnets, type-II su-

perconductors, shape memory alloys, as well as socioeconomic and biological systems.

This inherently irreversible process is a consequence of existence of many metastable

states and of multi-scale system dynamics.

Several interesting and widely observed features of hysteretic processes such as

power laws in the avalanche statistics have been investigated before. This thesis

focuses on the behavior of hysteretic processes in response to periodic variations of

external conditions whenever these can be described by a single real valued variable.

In part, this work is motivated by classical studies of cyclical behavior in non-linear

dynamic systems where response to periodic variations of the external variables is

known to be closely related to the structure of the system. Although hysteretic

systems can be viewed as a particular case of non-linear dynamic systems, cyclic

hysteretic processes have not been widely studied. As a result, hysteresis is typically
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illustrated by closed loops in response to a periodic variation of an external parameter.

However, many other types of hysteretic trajectories can be observed where closed

loops form either gradually after several periods or not at all. Using a network

of interacting binary elements as a model, it is shown in this thesis that behavior

of hysteretic cycles is closely related to the sign of the interactions, their strength

relative to an inherent fixed disorder in the system, and to the network structure.

More specifically, it will be shown that positive interactions result in the return

point memory (RPM) property responsible for the recovery of system’s original in-

ternal state after every external parameter period, and leading to the formation of

closed minor loops at the end of the very first period. While such closed cycles are

also observed for some networks with negative interactions, it generally takes several

external parameter periods before a steady state with stable minor loops is reached.

It will be shown that the convergence to the steady state depends significantly on

the magnitude of interactions and on their topological structure. In addition, we

demonstrate the possibility of behavior not observed in binary networks previously,

where cycles become non-convergent and never form stable minor loops. Such non-

convergent cycles are shown to be associated with specific topological elements in the

network structure, suggesting that hysteretic trajectories can yield information about

the inherent structure of the complex systems.

The thesis is organized as follows. In Chapter 1 we introduce basic hysteresis

terminology and describe various types of hysteresis behaviors observed in systems

of different nature. In Chapter 2, most widely used models of hysteresis, such as

Preisach model and Random Field Ising model, are reviewed and their main prop-

erties are summarized. The notion of a random network is introduced and some

elements of the graph theory are subsequently summarized. In Chapter 3 and in the

following chapters, these networks are used to formulate the complex system model

called Random Coercivity Interacting Switch (RCIS), which is employed as a proto-
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type of hysteretic systems in the thesis. In Chapters 5-7 different interaction networks

are considered and types of hysteretic cycles observed in such networks are studied.

Particularly, it is shown in Chapter 5 that minor cycles are always closed if interac-

tions are positive. Two examples of negative interaction networks which also produce

only closed cycles are then discussed. These are: 1) the mean field RCIS model on

a fully connected network, where every bi-stable element interacts with every other

element in the network, and 2) the Néel’s mean field model. In the case of the Néel’s

mean field model, there exists certain interaction strength where open cycles appear

abruptly. In Chapter 6 we consider regular lattice networks with interaction between

the immediate neighbors only. It is shown, that minor loops are formed quickly in

these systems after a few external parameter periods. In Chapter 7, the interactions

are modeled using random networks. It is shown that the network connectivity and

topology play the key role in determining the rate of the minor loop formation. New

types of cyclic trajectories are discovered, which do not form minor loops after an

arbitrarily large number of external parameter periods. It is shown that they are

associated with the presence of complete subgraph structures in the network. Fi-

nally, in Chapter 8, some issues related to energy loss during hysteretic processes are

briefly addressed. The thesis is then concluded by summarizing the main results and

discussing several future research paths with some potential applications.
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Chapter 2. Introduction

Firstly, it is important to establish some terminology and a general systems back-

ground relevant to this thesis. Complex systems typically have many degrees of

freedom. In magnetic systems such degrees of freedom may be associated with elec-

tronic spins. In living cells, they can be associated with concentrations of various

proteins. In economic system, they correspond to different choices of every inde-

pendent economic agent (firm, individual, etc). Jointly, variables that describe the

system’s degrees of freedom define the state of that system.

A variational principle will be used in this thesis to formulate hysteresis models. It

is common to describe many systems in nature using variational principles, where the

system evolves towards the state which minimizes or maximizes some state function.

In economics, for example, it is the maximization of a utility function which drives

the evolution of the system. In physics, energy minimization is such a variational

principle. In this thesis, physical systems will be viewed as a prototype for complex

systems of different natures. For this reason, terminology based on the energy min-

imization will be used to describe the system evolution. Moreover, among different

physical systems, magnetic systems are chosen here as the primary example. For this

reason, the term field (magnetic field) is often used interchangeably with the term

external parameter and the term magnetization is often used to describe the average

state of the system in this thesis. Similarly, the term spin is often employed to de-

scribe binary elements of the system being modeled.

It is important to realize that variational principles do not always have indepen-

dent meaning. In many cases, they can simply be viewed as an alternative formulation

of system dynamics. In classical mechanics, for example, knowledge of forces com-

pletely describes the dynamics of a system. Forces in conservative systems can be
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formulated as being equal to negative gradients of the potential energy, and mechan-

ical equilibrium where the potential energy is minimized or maximized, corresponds

to the situation when net forces are zero. The potential energy minima correspond to

stable equilibria because small deviations away from such equilibria generate forces

that tend to bring the system back. Although systems considered in this thesis can-

not be described using mechanical forces in general, the analogy that stable equilibria

correspond to energy minima, and that local force driving the system is a variation of

the energy function with respect to the local degree of freedom, will still be adopted

here.

While some variational principles are just alternative formulations of the systems

dynamics, other variational principles often do have independent meaning, particu-

larly in situations where the state of the system is subject to statistical fluctuations.

In physical systems, such fluctuations are due to temperature. In the presence of ther-

mal fluctuations, the system tends towards the thermodynamic equilibrium, instead

of the mechanical equilibrium, which can only be described in statistical terms. In

the state of thermodynamic equilibrium a universal probability distribution, the one

which maximizes the entropy for an isolated system, describes the probability that a

particular microscopic state of the system is observed. The variational principle that

describes the tendency of a system toward such a universal statistical description is

called the second law of thermodynamics. This variational principle has not been

derived from the laws of mechanics (nobody found a way to do it yet). Instead, it is

independently postulated because it appears to provide a very accurate description

of reality.
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Figure 2.1: Linear RC circuit and the (non-hysteretic) dependence of the output
voltage V0 across the capacitor on the input voltage Vi. Elliptic loop is due to the
phase shift between the input and output and its size and orientation depends on the
frequency.

2.1 Hysteresis: History, rate independence and multiple time scales

What is hysteresis and what is not? Hysteresis can be defined simply as a relationship

between the state of the system and the external parameters where the state depends

on the history of the external parameters but not on their rate of variation. Depen-

dence of the state on past values of the external parameters is not all that remarkable.

Such dependences can be found even in linear systems. For example, the simple linear

circuit shown in Figure 2.1 which consists of a resistor and capacitor connected in

series would display dependence of the voltage across the capacitor V0 on the past

values of the voltage applied to the circuit Vi. In this case, however, the effect of the

past values depends on the rate at which the voltage applied to the circuit varies.

When the variation of the input voltage is sufficiently fast, a loop can be traced as

illustrated in Figure 2.1. For slow variations (variations that are small during the

time equal to the RC time constant), the voltage across the capacitor simply follows

the applied voltage Vi and no history dependence is observed. Thus, it is the lack of

dependence on the rate of the external parameter variation, as well as memory of the

past values that distinguish hysteretic systems from other much simpler systems.
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In what types of systems can hysteresis be observed? In the above example, the

system had a single characteristic relaxation time determined by the RC constant of

the circuit. More than a single characteristic time is required for a system to display

hysteresis. Hysteresis is typically observed in those systems where, following a distur-

bance, some parts of the system re-organize well before the system as a whole reaches

thermal equilibrium with its environment. In magnets, the parts of the system that

re-organize quickly form magnetic domains. The time required for a domain to form

or re-orient is on the order of tens of nanoseconds, while relaxation to thermal equilib-

rium, when all domains are oriented randomly, can take hundreds of years. Magnetic

recording relies on the stability of such memory of the past state. In populations

of cells, individual cells can assume some state of a protein expression quickly, well

before the cellular population as a whole had a chance to randomize.

How does this separation of time scales explain emergence of hysteresis? The first

part of the explanation involves introduction of an appropriate energy functional. The

key point here is that, on a time scale longer than the fast re-organization time, one

can treat the quickly re-organizing parts of the system as single indivisible entities,

and ignore various degrees of freedom within them. This permits the redefinition

of the system’s degrees of freedom and drastically reduces their number. Such a

process is often called coarse-graining and allows the formulation of a description of

the system via an energy functional that depends only on the reduced number of the

re-defined degrees of freedom. In physics, such a reduced free energy functional is

often called Landau free energy.

Due to various constraints and the fixed disorder present (usually in the form of

inhomogeneous properties), there are hindrances to reorganization of different parts of

the system. Overcoming these hindrances requires different amounts of energy. Con-

sequently the coarse-grained Landau free energy has a complicated structure with

multiple minima separated by large barriers. When these barriers are present, the
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Figure 2.2: Origins of hysteresis. (a) The free energy landscape as a function of state
variable M for two different values of the external parameter H. As H changes, the
energy landscape becomes distorted and transitions between different states become
possible. (b) Due to very short time scale, the transition between different states
appears as being sharp if plotted in the state vs. external parameter plane. When
the external parameter returns to the original value Ha, the state variable does not,
and hysteresis is displayed.

system whose state is initially arranged to be around one of the minima will tend

to linger there for a long time even in the presence of thermal fluctuations. The

lingering effect is exactly what makes the re-organization time much shorter than the

time of relaxation to thermal equilibrium. This would not have happened without

sufficiently high free energy barriers. Thus, separation of time scales inevitably leads

to the conclusion that the evolution of the system can be described by a free energy

function, which can on an intermediate time scale be treated like a potential energy

with multiple stable states. The system will rapidly re-arrange itself to minimize

this potential energy by loosing energy quickly through transfer to hidden (due to

coarse-graining) degrees of freedom.

The second part of the explanation of hysteresis involves understanding the effects

of external parameters on the free energy function. As external parameters vary, the

energy supplied to the system changes resulting in distortions of the energy landscape.

An illustration of this is shown in Figure 2.2. Let us suppose that system originally
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occupies a state near the energy minimum at the point M1. As the external para-

meter varies and the energy landscape changes, the system remains in the original

energy minimum as long as it exists, and any change of the state variable is reversible

(Figure 2.2(a)). At some value of the external parameter (Hb), however, the original

energy minimum may disappear (at M2) and the system is forced to make a fast

transition to another energy minimum corresponding to the state M3. If after that

the external parameter returns to its original value Ha, the system will still remain

in this new energy minimum. Therefore, for any given value of external parameter

the system may be in different states corresponding to different energy minima. The

actual state assumed by the system will depend on the history of the external para-

meter variation.

The above discussion demonstrates how the separation of time scales, for fast re-

organization of system’s parts and for relaxation to thermal equilibrium, results in

dependence of the state on the history of external parameter variation. What remains

is to explain the rate independence. Rate independence is the result of adiabatic be-

havior of the system due to the separation of time scales. Adiabatic limit simply

means that external parameters do not change appreciably during the fast transition

from one stable state to another, and one can essentially ignore the details of how the

system moves between two stable states. In fact, in many experiments, transitions

between stable states can be viewed as nearly instantaneous jumps (Figure 2.2(b)).

In magnetism, such jumps are often called Barkhausen jumps. In mechanics, they

are called the Keiser effect. One can also hear such jumps when milk is poured into

a bowl of Rice Krispies cereal as it rapidly invades the pores within the cereal grains.

In summary, hysteresis owes its existence to the separation of time scales. It can

be observed only on a certain intermediate time scale, which is much longer then

the fast system dynamics but is short enough to avoid relaxation to thermal equi-

librium. Remarkably, for many systems in nature this intermediate time scale is
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very broad. During the fast dynamics of the system energy must be dissipated into

the hidden degrees of freedom for the system to stabilize. Such energy dissipation

is called hysteresis loss. In applications outside physics, hysteresis loss may acquire

other meaning. In economic applications, for example, it will be the loss of wealth

associated with decreasing the risk or payment of commissions.

2.2 Cyclic hysteretic trajectories

The general shape of hysteresis loops depends on system constraints and symmetry

properties. Throughout most of this thesis we will consider systems with inversion

symmetries. Systems with inversion symmetry are typical in magnetism, where the

free energy is invariant with respect to changes in the sign of both the external vari-

able (magnetic field) and the state (individual spin degrees of freedom). The results

obtained for such systems can be easily extended to systems without inversion sym-

metry through the introduction of a constant bias in the external variable. However,

it is not clear to what extent are the results applicable to systems where the state

and the external variables are vector quantities.

A typical hysteresis loop for systems with inversion symmetry (magnetic systems),

is illustrated by M(H) relationship in Figure 2.3(a). H represents the external para-

meter (e.g. magnetic field), while M represents a response variable usually describing

the average state of the system (e.g. magnetization). The M(H) dependence is a

multi-valued relationship for intermediate values of the control parameter, becoming

single valued at saturation points obtained for sufficiently large magnitudes of H.

The H/M variables are often referred to also as the input/output or the field/state

variables. The loop obtained by increasing and decreasing the field H between the

saturation points is called a major hysteresis loop. The points where the field direc-

tion is reversed are called reversal points (fields). If at least one of the reversal points
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Figure 2.3: Minor cycle types. (a) Major hysteresis loop with two minor loops inside.
Minor loops 1 and 2 correspond to the same reversal fields. (b) Closed loops: C-type
cycles, (c) Tilting cycles: T -type cycles, (d) Cycles with subharmonic period: S-type
cycles, (e) Drifting cycles; Reptation: R-type cycles.

is smaller then the saturation, then the field cycles produce minor cycles (loops) in-

side the major hysteresis loop. Examples of minor loops obtained for different field

histories are illustrated in Figure 2.3(a). Minor loops 1 and 2 correspond to the same

reversal fields but different previous history of the field variation. Closed loops shown

in Figures 2.3(a-b) will be sometimes referred to as C-type cycles. Minor cycles,

however, do not always form loops immediately after the first external field period

and a number of periods might be necessary. Typical examples are illustrated in

Figures 2.3(c-e). The trajectory shown in Figure 2.3(c), where the reversal points

appear to move in the opposite directions will be sometimes referred to as T -cycles.

Trajectories with both reversal points moving in the same direction, illustrated in

Figure 2.3(e), will be called R-type cycles. Minor cycles with a multiple of the ex-

ternal field period are called subharmonic cycles, and will be referred to as S-type

cycles (Figure 2.3(d)). In the following section we briefly review different classes of

systems with hysteresis and classify their minor cycle behaviors whenever possible.
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2.3 Examples of systems with hysteresis

1. Ferromagnetic materials. Ferromagnetic hysteresis has been well studied during the

past century partly due to its technological importance for the magnetic information

storage industry [1]. In most ferromagnets it is possible to freeze out thermal fluctua-

tions at sufficiently low temperatures, and within a large range of measurement time

scales the magnetization reversal processes can be viewed as independent of the mea-

surement time. Thus, ferromagnets are very convenient for studying hysteresis. Var-

ious types of hysteretic behaviors have been observed depending on the interactions

between the magnetic domains and the structural disorder present. Strict minor loop

closure (i.e. C-type behavior in Figure 2.3) has been investigated by studying the re-

peatability of Barkhausen noise patterns [2,3] and using x-ray speckle metrology [4–6].

Gradually stabilizing minor cycles have also been observed [7–11]. Clean ferromag-

nets often exhibit T -type cyclic behavior called ‘tilting’ or ‘bascule’, which has been

attributed to dipolar coupling between a few neighboring domains [12, 13]. Suffi-

ciently disordered materials exhibit R-type cycles, the effect called ‘reptation’, which

has been attributed to the interaction between a great number of domains [13–17].

2. Ordered magnetic nanostructures. In this case, the exchange interactions typ-

ical in ferromagnetic materials exist only within the nano-magnetic elements them-

selves. They are absent in the interactions between the elements of arrays, as the

only interactions existing between individual magnetic elements composing the struc-

ture are the dipolar interactions. The strength and the sign of these interactions

depends on the spacing and mutual orientations of individual elements. A review

of the main properties of magnetic nanostructures as well as various processes used

for their fabrication, such as lithography, self assembly, or growth methods, can be

found in [18]. Hysteresis studies focused mostly on relating the effects of interactions

to some features on the major loops. Relatively scarce minor loop measurements
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revealed closed minor loops [19,20] in some cases. It has also been demonstrated that

arrays of suitably arranged elements exhibit frustration effects (inability to satisfy

all competing interactions which can be characterized using energy functional with

many energy minima of about the same level) [21]. Frustration can be responsible

for peculiar macroscopic effects, such as presence of hysteretic cycles with multiple

periods (e.g. S-type cycles in Figure 2.3(d)) [22].

3. Exchange bias systems. Exchange bias effect results from quantum mechan-

ical coupling between ferromagnetic and antiferromagnetic materials and is mani-

fested as a shift (bias) of the hysteresis loop of the ferromagnetic material along the

magnetic field axis. Despite the extensive research performed since the discovery of

the exchange bias effect in 1956 [23], many of its aspects are still not fully under-

stood [24, 25]. Observed hysteresis loops are often asymmetric [26, 27], even around

the bias field value. In many systems, exchange bias reduces upon subsequent exter-

nal field cycling and this behavior has been referred to as a training effect [28]. The

training effect is similar to the R-type cyclic behavior illustrated in Figure 2.3(e), and

has been attributed to partial reorientation of domains in the antiferromagnet with

each reversal of the ferromagnetic layer. Training effects are absent for low symmetry

antiferromagnets, such as antiferromagnets with uniaxial magnetic anisotropy [29].

Recently, exchange bias effect has been observed also in purely ferromagnetic bi-

layers [30, 31]. These structures may also exhibit training effects [32]. In addition,

hysteretic behavior of the exchange bias itself has been discovered [33], and closed

exchange-bias-hysteretic cycles have been predicted to exist for systems with negligi-

ble training effects [34].

4. Spin Glasses. Spin glasses are ‘exotic’ magnetic materials with ferromag-

netic and antiferromagnetic interactions randomly distributed among magnetic mo-

ments [35]. Due to the mixed and highly disordered interaction structure, these mate-

rials exhibit strong frustration effects. Minor cycles typically display R-type behavior,
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which however cannot always be completely attributed to the interplay between the

interactions and disorder, and thermal effects must be included [7]. Modeling efforts

demonstrated possibility of closed minor cycles in spin-glasses with long range inter-

actions at low temperatures [36], and subharmonic S-cycles in spin glasses with short

range interactions when strong frustration effects take place [37].

5. Type-II superconductors. In type-II superconductors, hysteresis results from

the fact that as the external magnetic field changes, the flux filaments (vortices) move

and their motion is pinned by defects such as voids, normal inclusions, dislocations,

grain boundaries, compositional variations, etc. Interactions between the flux fila-

ments are of electromagnetic nature [38,39]. The resulting hysteresis behavior shows

always closed minor loops as demonstrated experimentally [40, 41].

6. Rocks. Rocks like sandstone, igneous rocks or metamorfic rocks are examples

of consolidated materials (a result of an assembly process) [42]. In these materials,

individual grains act as rigid units and the contacts between them constitute a set

of effective elastic elements (mesoscopic size cracks) that control the elastic behavior.

When external stress is applied to such a composite system, elastic elements respond

by opening or closing, depending on the magnitude of local pressure inside the rock,

and produce hysteresis effects [43]. The hysteretic length vs. pressure relationship

often displays closed minor loops [44, 45].

7. Capillary condensation. Capillary condensation of gasses adsorbed in dis-

ordered mesoporous materials refers to rapid change of a fluid inside the porous

solid from a gas-like phase to a liquid phase [46]. Hysteresis is observed in sorp-

tion isotherms that measure the amount of fluid present in the solid as the pressure

of the ambient vapor (or the chemical potential) is gradually increased and then

decreased. Capillary condensation in various porous materials reveals asymmetric

hysteretic loop shapes, where desorption (draining) occurs over a narrower range of

pressures than adsorption (filling). While smooth hysteresis loops have been observed
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in the low-porosity solids, in light aerogels the shape changed from smooth to rectan-

gular as the porosity increased. Observed minor loops, however, remained closed in

all cases [46–48]. It is interesting to point out that intersecting pores can be viewed

as interacting via ‘ferromagnetic-like’ interactions, since an empty pore increases the

probability of the intersecting pore being emptied as well. Different radii and cross-

sections of the pores introduce disorder into the system. These observations have

been used to develop unifying theoretical explanation of the capillary condensation

phenomena in porous media [49–51].

8. Other systems. There certainly exist many other physical systems displaying

hysteresis, such as irreversible processes in ferroelectrics, shape memory behavior in

alloys, work hardening process in mechanical materials, contact angle hysteresis and

so on. Over the past two decades, however, importance of hysteresis has been also

recognized in complex systems of different nature. This includes economic systems,

where a market share and the persistent states of unemployment, investment, and

trade deficit strongly depend on history [52–55]. This also includes biological systems

where the fate of a cell, tissue and, possibly, entire organism is determined not only

by the current state of its environment, but depends critically on history of its de-

velopment. The importance of such environmental effects and persistent memory of

the past has long been debated in biology and medicine. Ability to pass the biologi-

cal state of an organism to future generations through normal inheritance pathways

makes the understanding of these developmental effects critical and is the subject of

the growing field of epigenetics. Hysteresis has also been exploited in queuing sys-

tems such as modern information serving networks where significant switching costs

are present. It would be difficult task to review all research in these fields and we

refer the reader to excellent monographs dealing with this subject [56, 57].
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Chapter 3. Hysteresis and network models

Various models have been developed to describe magnetic hysteresis, such as the

Jiles-Atherton model, Stoner-Wolfharth model, and Globus model [1,58,59]. Models

widely used also outside the area of magnetism are the Preisach models [60] and the

Random Field Ising type models [57,61]. Since these two models are directly relevant

for the purposes of this thesis, we will review their main properties in some detail

below.

3.1 Preisach model and its properties

In the Preisach modeling, any hysteresis process is viewed as a superposition of switch-

ing events resulting from the flipping of independent bistable elements. Example

of such element, typically called as ‘relay’, ‘switch’, or ‘hysteron’, is shown in Fig-

ure 3.1(a). Possible states are ±1. While switching from the state −1 to state +1

takes place at the field H = α, switching from the state +1 to −1 takes place at the

field H = β < α. If H > α then the relay is certainly in the +1 state, if H < β

then the relay is certainly in the −1 state. If β < H < α, the state of the relay is

determined by the previous external field history.

From the mathematical point of view, switches can be viewed as hysteretic op-

erators acting on the input H and producing the output +1 or −1 depending on

their inherent thresholds α and β, using the rules described above. Denoting such

operators by γ̂αβ, the state of the system can be written as a superposition:

M =

∫ ∫

α≥β

φ(α, β)γ̂αβ[H(t)] dαdβ = P̂ [H], (3.1)



17

Figure 3.1: Preisach model. (a) Rectangular hysteresis loop of a relay - the basic
building block of the Preisach model. Each relay with thresholds α and β corresponds
to a point in the Preisach plane (b). The staircase interface line L separates regions
with positively and negatively flipped relays, and its shape depends on the history of
the applied field.

where φ(α, β) is a weight function, called the Preisach distribution function, and

defines a contribution of each relay to the overall magnetization. The integral in the

Equation 3.1 is calculated over the half-plane α ≥ β. The functional relationship

between M and H given by Equation 3.1 will be referred to as a Preisach operator P̂ .

To calculate hysteretic trajectories it is convenient to introduce a geometrical

representation of Equation 3.1. There exists a one to one correspondence between

the relays γ̂αβ and the points (α, β) in the coordinate system defined by axes α and β.

An illustration of such a (Preisach) plane is shown in Figure 3.1(b). We will assume

that the support of the distribution φ(α, β) is finite and bounded within a triangle

defined by the line α = β and horizontal and vertical lines. The line L (discussed in

more details below) defines interface between two regions S1 and S2 with respectively

positively and negatively switched relays, for a given history of the external field H

(see below). It is easily seen that Equation 3.1 can be written as a difference between
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the integrals over the S1 and S2 regions:

M =

∫ ∫

S1

φ(α, β) dαdβ −

∫ ∫

S2

φ(α, β) dαdβ. (3.2)

Wiping out and congruency properties. It will be discussed below that the classi-

cal Preisach model produces always closed minor loops. Consider a Preisach system

evolving under the field monotonically increasing from the negative saturation where

all relays are in the −1 state, to the point 1 on the major hysteresis loop as shown in

Figure 3.2(a). As the field H increases, relays with thresholds α < H switch to the

positive state. In the Preisach plane, the increasing field corresponds to the interface

L being a horizontal line crossing the α-axis at the value H (Figure 3.2(b)). The

areas below and above this line contain switches in the positive and negative states,

respectively. Let us suppose that at the point 1 the field is reversed and starts to

decrease. Positive switches with thresholds β < H flip to negative states. In the

Preisach plane, the decreasing field results in the addition to the interface L of the

vertical line crossing the β-axis at the value H (Figure 3.2(c)). The region to the

right contains switches which flipped back to the negative state, while the region to

the left contains switches still in the positive state. When the field is reversed again

at the point 2 and increases towards the point 1, the second horizontal part of the

interface L moves up and the relays which flipped down during the decrease from 1 to

2 are being flipped back to positive state, until the original switch-state is completely

recovered again at the point 1. This means that the minor loop generated between

the points 1 and 2 must be closed. Further field cycles between the points 1 and 2

result in flipping of the same relays (those inside the triangle in Figure 3.2(d)) back

and forth, and repeating the same loop. Similar behavior is shown in Figures 3.2(e-f)

for a minor loop obtained by different field history, after first reversing the field at

the point 3, decreasing it to the point 2, then increasing to 1 and decreasing back to
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Figure 3.2: Wiping out and congruency properties of the Preisach model. (a) Two
minor loops with the same reversal points 1 and 2 corresponding to different field
histories. (b-d) Evolution of state on the Preisach plane during generation of a minor
loop attached to the major hysteresis. (e-f) Generation of a minor loop with the same
reversal fields obtained after first reversing the field at the point 3 on the major loop.

2. The resulting Preisach diagram producing the loop closure is illustrated in Fig-

ure 3.2(f). Note, that increasing the field back to the point 3 will also generate closed

minor loop with reversal points 2 and 3. The loop closure is a general property of

a Preisach model, which has been called ‘wiping-out’ or the ‘return point memory’.

Another property of the Preisach model is the congruency property. Congruent

loops are minor loops having the same reversal fields but corresponding to different

field history, such that their geometrical shape is the same. The congruency prop-

erty is the result of the fact that the triangular areas in Figures 3.2(c) and 3.2(f)

corresponding to the same field extrema are identical. It is easily seen, by tracking

the evolution of state on the Preisach plane, that switching regions obtained for the

same reversal points will always be the same, independently of the number of pre-
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vious reversal points. Thus, any pair of minor loops with the same reversal points

will have the same shape and therefore be congruent. Congruency property is less

fundamental than the wiping-out property. The wiping-out property is a consequence

of the fact that the state of the model is the collective state of elementary operators

each represented by a closed elementary hysteresis loop. Congruency property, on the

other hand, is the result of expressing the output as a particular function of the state

as specified by Equation 3.1. For other ways of expressing the output as a function

of the state, no congruency will be observed. For example, Preisach model with a

magnetization dependent input accounts for the non-congruency of minor loops [1,62]

at least to some extend.

Preisach model is an example of a hysteretic system with interesting memory

effects which result simply from the superposition of elementary bistable hysteresis

loops. According to discussion in the previous paragraph it is clear that the coordi-

nates of corners of the interface line L (e.g. Figure 3.1(b)) correspond to the upper

and lower reversal points attained by varying external field. The staircase line L,

therefore, stores information about the history of evolution of state of the system.

Note, that due to the wiping out property, the entire information about the history

of evolution is erased as soon as the external field increases above the largest ex-

tremum reached at a previous time.

It has been shown previously, that wiping out and congruency properties consti-

tute the necessary and sufficient conditions which the system under study must satisfy

if it is to be accurately represented by the Preisach model [63]. The Preisach distribu-

tion φ(α, β) can then be uniquely identified from a set of straightforward macroscopic

measurements [63], and Equation 3.2 can be used to predict magnetization curves for

any sequence of external field extrema. Finally we note that the classical Preisach

model does not reproduce many hysteretic behaviors observed in real systems, such

as gradually stabilizing minor loops. Many modifications have been introduced to
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account for such effects. Preisach models with gradually stabilizing cycles have been

developed and discussed in detail in [10]. Rate dependent hysteresis effects have also

been modeled using modified classical Preisach models [64]. Another class of hys-

teresis models are the vector Preisach models where both the input and the output

variables are of a vector nature [65–68].

3.2 Random Field Ising model (RFIM)

The discussion in the previous section reveals phenomenological nature of the Preisach

model. Indeed, hysteretic relays - the basic building blocks of the Preisach model need

not to be associated with physical parts of the system and still reproduce macroscopic

hysteresis measurements. In fact, they often have to be viewed as abstract mathe-

matical objects. Different approach to hysteresis modeling is to divide the system

into basic components, such as magnetic domains or capillary pores, for example,

and explicitly specify interactions between them. Then, after defining the Landau

free energy for the system and the rules governing the evolution of state, dynamical

behavior under varying external conditions can be studied. A prototypical model for

studying hysteresis using this framework is the Random Field Ising model [57, 61].

In its original definition, Random Field Ising model (RFIM) has been viewed

as a collection of ±1 non-hysteretic elements, called spins, distributed on the D-

dimensional lattice. Spins interact with their neighbors on the lattice and with the

external field H. In addition, every spin is exposed to some quenched (fixed) field

which can be viewed as a source of disorder in the system. In the RFIM, these

quenched fields are assumed to vary from site to site on the lattice. The total en-

ergy determining the switching of each spin is given by the sum of spin-spin, spin-

external-field, and spin-quenched-field interaction energies. During the external field

H variation, spin states are updated at each time step to minimize the total energy.
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If the interactions are such that parallel alignment of spins is favored (e.g. positive

exchange interactions in ferromagnetism), then the spins flipping at a given instant of

time can trigger also neighboring spins to flip. Such events can propagate throughout

the system and result in avalanches. Due to such behavior, which is not explicitely

present1 in the Preisach model described in previous section, the RFIM has been used

as a paradigm for studying noise statistics in various out of equilibrium systems, such

as Barkhausen noise in magnets, frequency of occurrence of earthquakes, or acoustic

emission bursts generated during martensitic transformations [69]. It has been shown

that reducing the disorder relative to the spin-spin interaction strength results in the

increase of the average avalanche size. At a certain critical disorder level, infinite

avalanches spanning entire system emerge, and a steep jump appears in the originally

smooth hysteresis loop [70]. This disorder induced phase transition has been studied

in detail using the renormalization group techniques [69,71], with the main emphasis

on identifying various scaling relations, critical exponents, and determining the uni-

versality class of the RFIM. In addition, the ferromagnetic RFIM has been shown to

have a return point memory (wiping out property) and consequently produces always

closed minor cycles [70]. Unlike in the case of Preisach model, however, the congru-

ency property does not hold in general.

The RFIM model has been investigated in the contexts of many systems of dif-

fering natures, with either uniform or random interaction magnitudes between the

spins, interactions of different signs, different topological arrangements of spins, vari-

ous types of disorder, etc. This work is briefly reviewed in the following section where

we refer to this type of models jointly as ‘binary spin networks’.

1It is present implicitly through the Preisach distribution function.
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3.2.1 RFIM-type modeling of hysteresis: A brief review

Binary spin networks have been used as paradigms for studying hysteresis processes

in magnetic, ferroelectric and non-elastic materials, living organisms, social and eco-

nomic structures and many others. An example is the RFIM model with spins dis-

tributed on a regular lattice discussed in the previous section, which has been used to

model the noise statistics produced during the field-driven hysteresis processes and

revealed an existence of disorder induced non-equilibrium phase transitions [57, 61].

Employing the RFIM with spins on a Bethe lattice, and on a random network, such

phase transitions have subsequently been shown to depend on the spin coordina-

tion number, i.e. on the connectivity of the spin network [72–74]. In addition, it

was demonstrated that variations in the connectivity and the structural inhomo-

geneity of the network are responsible for avalanches and hysteresis loop criticality

also in random networks with negative (antiferromagnetic-like) interactions between

the spins [75]. Such behavior is absent for regular lattice antiferromagnetic net-

works [76,77]. Spin glass networks, where the interactions between neighboring spins

have a random sign and magnitude [35], have been shown to exhibit signatures of

frustration and of self-organized criticality (self-organized criticality refers to behav-

ior where the system rests at a critical point naturally, without the need to tune

external conditions) [36]. Among other examples of spin networks are Random Bond

Ising model, Site Diluted Ising model, Random anisotropy Ising model and others [78].

Evolution of state of the network subject to adiabatic cycles of the external in-

put has also been considered and led to discoveries of interesting memory effects.

The return point memory yielding always closed minor loops, frequently observed in

ferromagnetic spin networks, has also been observed in some antiferromagnetic net-

works [79, 80]. A ‘complementary point memory’, where two complementary points

on the major hysteresis (i.e. points related by inversion symmetry around the coordi-
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nate origin) have identical microstates, has been observed in spin glass networks with

short range interactions at non-zero temperature [81]. Studies of spin-glass networks

also led to discovery of the ‘reversal field memory’ where a certain reversal curve

inside the major hysteresis loop appears to remember the negative of its reversal

field. This memory effect has been shown to be due to the local spin-reversal sym-

metry of the associated Hamiltonian [82]. Only a few works dealing with analysis of

systems displaying a gradual convergence to minor loops and multi-cycling behavior

seem to be available [22,37,80,83,84]. Such studies typically employed regular-lattice

spin networks with antiferromagnetic and magneto-static interactions. Among many

questions remaining to be answered are: What is the effect of interactions versus the

disorder on the hysteresis cycles? How does the connectivity of the network influ-

ence the rate of a minor loop formation? Are topological features of the network

important? It is the task of this thesis to seek answers to these questions.

3.3 Random networks: Elements of the graph theory

In this section we describe some main properties of networks, which will be used

throughout this thesis. Mathematical objects convenient for describing the structure

of the interaction network, i.e. the distribution of interaction links among the spins,

are called graphs. A graph is defined as a set of N points (nodes, vertices) and n

links (lines, edges) interconnecting pairs of points. It is fully characterized by the

associated N ×N adjacency matrix A, with elements Aij = 1 if two vertices i and j

are connected or Aij = 0 if not. Excluding the parallel edges (melons) and edges from

node to itself (talons), there are total N(N − 1)/2 possible edges in the graph on N

points and, therefore, there exist Cn
N(N−1) different graphs having a total of n edges

distributed among the points. The number of edges emanating from the node i defines

a degree of that node, di, and it holds that di =
∑

j Aij. The average degree of the
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Figure 3.3: Examples of various graph structures: (a) Trees of the order k = 6. A
linear chain of spins can be represented by a tree like graphs. (b) Cycle of order
k = 6. The square lattice contains cycles of different orders starting from k = 4. (c)
Complete subgraphs of order k = 3, 4, 5.

network is d = 〈di〉 = N−1
∑

ij Aij. Any set of nodes and edges chosen from the graph

defines its subgraph. Graphs (subgraphs) can assume various topological structures.

Examples are cycles, trees or complete subgraphs. A cycle of order k is defined as a

closed loop of k edges such that every two consecutive edges, and only those two, have

a common node (Figure 3.3(b)). A tree of order k is a connected graph with k points

and k − 1 edges such that none of its subgraphs is a cycle. Examples are shown in

Figure 3.3(a). Note that a linear chain of spins can be viewed as network with a tree

like structure having d = 2, and that a two-dimensional lattice of spins with d = 4

contains also cycles (Figure 3.3(b)). A complete subgraph of order k (often referred

to as clique of size k) is a set of k points where each point is interconnected with

every other point. Example in Figure 3.3(c) contains total 15 complete subgraphs of

order three, 5 subgraphs of order four and 1 subgraph of order five.

3.3.1 Classical random graphs (Erdös-Rényi)

Complex networks with often unknown organizing principles and complex topology

frequently appear random [85]. A convenient mathematical framework for studying

such objects is the random graph theory, which deals with graphs with a randomly
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Figure 3.4: Erdös-Rényi random network having 12 nodes and 11 edges.

varying degree di (Figure 3.4). Among well understood are the classical random

graphs, also called Erdös-Rényi graphs [86], which are constructed by adding n edges,

one by one in n steps, to the randomly chosen pairs from N spins. An equivalent

process is to assign a link between every spin couple independently with probability

p. The main properties of Erdös-Rényi (ER) graphs are summarized below. Our

discussion follows [87].

In an Erdös-Rényi random graph with connection probability p, the degree di is

a random variable following binomial distribution with parameters N − 1 and p:

P (di = q) = Cq
N−1p

q(1 − p)N−1−q. (3.3)

The probability P describes a number of ways in which q edges can be drawn from

a node i. If i and j are two different nodes, then P (di = q) and P (dj = q) are close

to being independent random variables (not entirely independent because removing

the node i can affect degree of the node j if they are connected, especially when the

system size is small).

It can also be shown that the probability distribution to find Xq nodes having the



27

degree q follows a Poisson distribution [87]:

P (Xq = r) = e−λd
λrd
r!
, (3.4)

where λd denotes the expectation value of the number of nodes with degree q. Using

Equation 3.3 it follows that λq = 〈Xq〉 = NP (di = q) and λq thus depends on q, p,

and N . Since the standard deviation equals σq = λ
1/2
q , the Poisson distribution decays

rapidly for large values of r, and it is reasonable to approximate Xq ≈ 〈Xq〉 = λq (valid

if the nodes can be viewed as independent). The degree of each node is, therefore,

approximately the same and Equation 3.3 can then be rewritten as:

P (q) = Cq
N−1p

q(1 − p)N−1−q, (3.5)

which for N → ∞ reduces to a Poisson distribution:

P (q) = e−pN
(pN)q

q!
= e−〈d〉 〈d〉

q

q!
. (3.6)

The last equality has been obtained by using Equation 3.4 and the fact that for

large N the λd ≈ d. The considerations above suggest that a typical random graph

is rather homogeneous, with the majority of the nodes having the same number of

edges. Equation 3.6 shows that for a large number N of vertices in the graph, the

connection probability and the average degree are related as d ≈ pN . Since d = 2n/N ,

the probability p can be related to the number of edges n as p ≈ 2nN−2. Note that

if the system size N increases while d is held fixed, p has to necessarily decrease.

3.3.2 Emergence of subgraphs in the Erdös-Rényi network

The connectivity and the topological structure of the random network depend on the

link-probability p. As p increases, many properties of the graphs such as appearance
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Figure 3.5: Evolution of a graph structure. Different topological elements appear
suddenly at specific probabilities p.

of trees, cycles, or cliques emerge suddenly at some critical probability Pc, similarly to

phase transition behavior occurring in physical systems [88]. The values of Pc depend

on the network size N . It is convenient to express the dependence of probabilities

on the network size as a power law p ≈ N z, where z is a tunable parameter varying

between −∞ and 0, and then follow the evolution of a graph structure as z increases

(Figure 3.5). For z < −3/2 almost all graphs contain only isolated nodes and edges.

When z passes through −3/2, trees of order 3 suddenly appear. Trees of order 4

appear as soon as z exceeds −4/3. As z approaches −1, graph contains trees of larger

and larger order. However, as long as z < −1 which means that average degree of

the graph d = pN → 0 as N → ∞, the graph is composed only of disconnected trees.

When z passes through −1, the asymptotic probability of cycles of all orders jumps

from 0 to 1, even though z is changing smoothly. Note that cycles of order 3 can also

be viewed as complete subgraphs of order 3. Complete subgraphs of order 4 appear

at z = −2/3, and as z continues to increase, complete subgraphs of larger and larger

order emerge. As z → 0 almost every random graph approaches a complete graph of

size N .
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It has also been shown that there exists an abrupt change in the cluster structure of a

random graph as d→ 1. For d < 1 there are relatively few edges and all components

(subgraphs) are small, having an exponential size distribution and a finite mean size.

However, when d ≥ 1, an extensive fraction of all vertices are joined together in a

single giant component and graph becomes well connected.
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Chapter 4. Random Coercivity Interacting Switch model (RCIS)

The Preisach and the RFIM models do not reproduce certain experimental obser-

vations, such as the T and R cycles illustrated in Figure 2.3. Although there exist

modifications of the Preisach model which account for the R-type cycles [10], they

are purely phenomenological and do not yield information about the nature of the

cycle opening and its relation to the structure and the disorder in the system. On

the other hand, while the RFIM with positive interactions (ferromagnetic) has strict

return point memory property [70], and thus always closed minor loops, the RFIM

model with negative interactions displays only almost negligible hysteretic effects [76].

For these reasons we developed different physically motivated model, called Ran-

dom Interacting Switch model (RCIS), which reproduces these aspects of hysteresis

not seen in the Preisach or RFIM models, and allows studying the relationship be-

tween the types of minor cycles and the structure of interactions and disorder.

4.1 Definition

The Random Coercivity Interacting Switch model (RCIS) combines the Preisach

model and RFIM discussed in Sections 3.1 and 3.2. It is a collection of N inter-

acting spins si, with +1 or −1 being the only allowed states. Switching of each spin

is described by a rectangular hysteresis loop with symmetric thresholds ±αi, αi > 0.

The thresholds αi are viewed as random variables with probability distribution ρ(α),

and mimic structural disorder in the system. Such classical hysteretic spins are fre-

quently used as representations of single domain magnetic grains, tiny capillary pores

in absorbing materials, vortex pinning imperfections in superconductors, individual

decision making agents in socio-economic systems, etc. [57].
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Figure 4.1: (a) Rectangular hysteresis loop corresponding to the switch si with sym-
metric thresholds αi and βi = −αi, shifted from the coordinate origin due to the
interaction with the neighboring spins. (b) When the interaction is equal to zero, all
spins with symmetric thresholds lie in the Preisach plane on the line perpendicular
to β = α line. For nonzero interactions, both thresholds are shifted by an amount
∆i, which depends on the interaction strength and on the state of the neighbors of
the spin si.

The spins si and sj will be assumed to interact via pair-wise interactions described

by a matrix Jij = δJAij, where J is a positive constant representing the interaction

strength, δ equals either +1 or −1 depending on whether the system is of ferro-

magnetic or antiferromagnetic nature (i.e. if parallel or anti-parallel alignment of

neighboring spins is preferred). The matrix Aij is N × N adjacency matrix of the

associated graph, with elements Aij = 1 if the spins si and sj interact and Aij = 0 if

they do not interact, and describes topological structure of interactions.

In the absence of interactions, spins flip whenever the external field H matches

their switching thresholds. Generally, however, the flipping of any spin si will be

determined by a local field hi, dependent on the external field and also on the con-

tribution from interactions of si with other spins. We assume that hi can be written
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as a sum:

hi = H +
N

∑

j=1

Jijsj = H + ∆i (4.1)

where the symbol ∆i denotes an interaction field due to the neighbors of si. ∆i deter-

mines a shift of the originally symmetric rectangular loop with thresholds ±αi from

the coordinate origin (Figure 4.1(a)). This shift can also be depicted in the Preisach

α-β plane, as shown in Figure 4.1(b). To any spin si with symmetric thresholds, there

corresponds a point (−αi, αi) on the line α = −β in the α-β plane. When the inter-

action field ∆i is nonzero, this point is shifted to (−αi + ∆i, αi + ∆i). As the system

evolves and neighboring spins flip back and forth, the ∆i changes and the points in

the plane change their position accordingly. It is easy to see, following the rules in-

troduced in Section 3.1 and Equation 4.1, that the points in the Preisach plane move

along with the external fieldH line if the interactions are negative (antiferromagnetic),

and they move against the field if the interactions are positive (ferromagnetic). Due

to the presence of disorder and nontrivial interaction topologies, details of this mo-

tion are complicated, often resulting in a breaking of the return point memory and

the congruency properties. This demonstrates the difference between the RCIS and

Preisach models.

4.2 Adiabatic dynamics

The spin state of the system remains stable as long as the local fields of all spins

remain greater or smaller then their upper and lower thresholds, i.e. as long as

hisi > −αi holds for any spin si. As the external field H evolves, hi changes according

to Equation 4.1. Flipping occurs as soon as hisi < −αi, and the evolution of the

system towards the next stable state proceeds according to the following rules:

R1. In a pre-defined order, update the state of every relay one at a time according
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to:

sk(n + 1) =























+1 if hk(n) ≥ +αk

−1 if hk(n) ≤ −αk.

sk(n) otherwise

(4.2)

R2. If all relays end up in the stable state go to R3, otherwise repeat R1.

R3. Increment the input H by the smallest possible amount ∆H required to induce

switching of at least one relay si in the RCIS network.

In general, the steps R1 and R2 need to be repeated a number of times until the

stable state of the RCIS is reached. While the state of the RCIS varies during this

stabilization, the external field H remains fixed. Such relaxation process mimics many

behaviors known in the physical sciences, such as a Barkhausen jump (magnetism)

or an avalanche (earthquake), for example. Moreover, the relationship between the

input and the stable state of an RCIS network (or any function of it) is the same

regardless of the rate of input variation and therefore the dynamics R1−R3 produces

rate-independent hysteresis behavior. The dynamics R1 −R3 is often used to model

processes when thermal fluctuations are absent, and is often referred to as a field

driven adiabatic (zero-temperature) dynamics [70].

4.3 Convergence to the stable state

To prove that repeated iterations of steps R1 − R2 converge to a stable state, it is

convenient to define the state function based on the analogy with the RFIM:

G = −
1

2

∑

ij

Jijsisj −H
∑

i

si. (4.3)

The first term in the Equation 4.3 is the spin-spin interaction energy, while the

second term describes the interaction of individual spins with the external field. We
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now observe that:

−
∆G

∆si
= H +

N
∑

j=1

Jijsj = hi, (4.4)

where hi is the local field defined by Equation 4.1. The switching rule R1 implies:

0 < hi∆si = −
∆G

∆si
∆si = −∆G. (4.5)

Since only one relay can be switched at a time n, the state function G necessarily

decreases during any switching event. Moreover, G is always bounded from below, and

thus the switching process R1 − R2 must terminate after reaching a local minimum

of G.

The function G can be viewed as a free energy function of the RCIS network.

It is important to note, that there is also a double well free energy associated with

individual hysteretic spins. Due to the symmetry of thresholds of spins, however,

this free energy is the same in their negative and positive states, and its addition in

Equation 4.3 would only add a constant that would not affect any further results.

This argument does not hold for non-symmetric relays, which will not be considered

in this work.

4.4 Single spin flip dynamics limit

According to Section 4.2, avalanches are multiple switching events consisting of many

spins flipping at a given field. If during the step R1 more then one spin becomes

unstable, then we flip all unstable spins in a predefined sequence starting from the

spin with the largest sum hisi + αi (force). However, are the resulting stables states

independent of the actual order in which the unstable spins are updates? Or in other

words: Do different updating sequences produce the same state of the system? As it

turns out, the same final state is obtained independently of the order of updating only
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if the interactions are positive Jij > 0 [74]. If the interactions are negative Jij < 0,

different final states are obtained depending on the order of the flipping the spins [77].

The procedure for choosing the correct order of updating in this case remains unclear.

This issue can be partially resolved in the present RCIS model. In the low inter-

action limit, the dynamics R1−R3 introduced in Section 4.2 reduces to a very simple

regime with trivial avalanches consisting of single spin flips only. The argument is as

follows. While avalanches in the ferromagnetic RCIS consist of spins always flipping

along the external field direction (i.e. ∆H∆si > 0), in the antiferromagnetic case

avalanches are nontrivial and can contain spin flipping both ways, along and against

the external field direction. Due to the antiferromagnetic interactions, the local fields

on the neighbors of some spin si flipping along the field H become reduced. If the

interaction magnitude J is sufficiently large, then such a decrease of local fields may

trigger some of these neighbors to flip against the field H. As it turns out, how-

ever, there exists an interaction limit, Jt, such that back-flips must be absent as long

as J < Jt. Denoting the minimum threshold magnitude from among all spins in

the system by αmin = min(αi), the maximum degree (the degree of a node equals

to the number of links emanating from it; Section 3.3) present in the network by

dmax = max(di), and given the Equation 4.1, the backward transitions will clearly be

impossible in the RCIS if max(∆i) = max(di)J |si| < αmin. This relation defines the

limiting interaction magnitude:

Jt = αmin/dmax. (4.6)

For J < Jt the back-flips will be absent, the avalanches trivial, consisting of single

spin transitions when ∆H∆si > 0, and the state dependence will be a monotonic

function of external field H. In fact, this behavior is realistic for magnetic films with

very strong perpendicular anisotropy for example [18, 89].
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In this thesis we will often employ a Gaussian distribution of thresholds. The mean

and the variance of the distribution will be denoted respectively by µ and σ, and we

will always assume that µ >> σ. Truncating the thresholds αi below αmin = µ− 3σ,

when the probability for observing αi < αmin becomes negligible, allows specifying

the weak interaction limit using Equation 4.6 as:

Jt = (µ− 3σ)/dmin. (4.7)

Note that due to the truncation of the random thresholds below αmin, the threshold

distribution slightly differs from the Gaussian. We also considered other distributions,

including log-normal and uniform, which all yielded results qualitatively similar to

those presented in this thesis.

4.5 Summary

In this chapter we defined the RCIS model which will be used next to investigate

behavior of cyclic trajectories and their relation to the structure of interactions and

disorder. The RCIS model can be viewed as a combination of the Preisach and RFIM

models. Its main new property, when compared to previous models, is the single spin

flip dynamical limit which allows thermodynamically consistent analysis even in the

case of negative interaction networks. As will be shown in this thesis, RCIS model

reproduces many qualitative features of hysteresis observed in nature.
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Chapter 5. Mean field models: From closed to open cycles

In this chapter we use the RCIS model to investigate origins of the cycle opening.

We show that networks with positive (ferromagnetic) interactions produce always

closed minor loops. This is due to the return point memory property (RPM), which

will be shown to hold for ferromagnetic networks of an arbitrary adjacency matrix.

No such general statements can be made about networks with negative interactions

(antiferromagnetic), and in fact antiferromagnetic networks generally do not produce

closed cycles. However, there are some cases where the RPM still holds. As an

example we discuss mean field RCIS model with spins on a fully connected network.

We then show that a modification of such system obtained by dividing the interaction

network to form two interacting mean field RCIS models produces new behavior,

where open cycles emerge suddenly at some critical interaction. This result suggests

that both the RPM (Figure 5.1A(a-b)) and the cycle opening (Figure 5.1B(a-b))

could be observed in some antiferromagnetic networks, depending on their structural

parameters.

5.1 Cycle closure in the positive interaction networks: Return Point
Memory (RPM)

The fact that the RPM property holds for RCIS model with positive interactions

can be shown similarly as demonstrated previously for the ferromagnetic RFIM

model [70]. Only a few straightforward modifications need to be introduced, which

account for the hysteretic nature of spins and the fact that we consider networks with

an arbitrary adjacency matrix.

Assume a spin network with adjacency matrix Aij and the spin-spin interaction

strength J > 0. Let any two spin states of the system be denoted by the vectors
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Figure 5.1: A(a-b) Minor loop cycled 3 times showing complete closure at the end of
the first cycle for interaction weaker than the critical point. B(a-b) 3 minor cycles
showing opening for interaction stronger than the critical point.

s = {s1, s2, . . . , sN} and z = {z1, z2, . . . , zN}. The states s and z will be called par-

tially ordered if si ≥ zi for every i (or if si ≤ zi for every i). One very important

property of ferromagnetic networks is that the partial ordering of states remains pre-

served under the field driven adiabatic dynamics defined in Section 4.2. If the spin

states s and z attained respectively at fields Hs and Hz ≤ Hs are ordered at some

initial time, then their ordering will remain preserved under the field variation as long

as the condition Hz ≤ Hs holds.

The proof of this property follows by reaching the contradiction. Assume the or-

dering s ≥ z, which holds at some initial time for Hs ≥ Hz. This partial order would
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be violated as soon as some spin zi flips before si anytime during the evolution under

Hs ≥ Hz. Observe, that if the spin zi is to flip before si (i.e. if si ≤ zi is to happen) at

some instant of time, the corresponding local fields given by Equations 4.1-4.2 must

at that time satisfy the inequality:

hsi = J
∑

j

Aijsj +Hs ≤ hzi = J
∑

j

Aijzj +Hz. (5.1)

However, since 1) Hs ≥ Hz holds by requirement, 2) J
∑

j Aijsj ≥ J
∑

j Aijzj be-

cause all neighbors around the node i still remain ordered at that time instant, and

3) noting that both zi and si are at the node i and therefore have the same threshold

αi, then any event yielding si ≤ zi is impossible. Thus the partial order remains pre-

served under the dynamics at all times. The above argument holds for any adjacency

matrix Aij of the network as long as J remains positive.

The preservation of partial ordering and the adiabatic dynamics condition (Sec-

tion 4.2) guarantee that the final state of the system, which evolves under an external

field arbitrarily changing between two limits (bounds), depends only on the final

value of the external field. The final state does not dependent on the duration of

the field variation or on the history, as long as the field remains within the bounds.

As a consequence, minor cycles obtained by cycling the field between two reversal

points must recover the same spin state after each cycle, demonstrating the RPM.

The proof of this property is identical as for the RFIM and details can be found

in [70]. The RPM is a remarkable property that seems to hold in many systems in

nature. Several examples, such as e.g. ferromagnets, type-II superconductors, and

capillary condensation in porous media can be found in Section 2.3.
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5.2 Cycle closure in the negative interaction networks

The proof of the RPM for the RCIS given in the previous section applies only to

the positive interaction case. However, RPM holds also for some specific networks

with negative interactions. As an example of such an antiferromagnetic system, we

consider an RCIS model with spins on a fully connected network. Since systems with

fully connected interaction networks are typically called mean field models, we adopt

the same terminology. Minor loop behavior in the mean field RCIS model has been

studied previously in the context of the moving Preisach model [90], and the RPM

property has been shown to hold for both positive and negative interactions [62]. Here

we present alternative (informal) argument demonstrating the RPM property in the

mean field RCIS model.

For a fully connected interaction network, all off-diagonal elements of the N ×N

adjacency matrix are equal to 1, and according to Equation 4.1, the local fields hi

can be expressed as

hi = H − J ′M, (5.2)

where J ′ = NJ , M = N−1
∑

j sj is the average state of the system (magnetization)

and the ‘−’ sign is due to the antiferromagnetic nature of interactions. Note that

since hi is the same for every spin, the state of spins depends only on the variables

H and M , or more precisely, on the difference H − J ′M . The functional dependence

of the spin’s state can be expressed as si = si(H − J ′M) and the magnetization as:

M =
1

N

∑

i

si(H − J ′M) = P̂ [H − J ′M ], (5.3)

where P̂ is a Preisach operator introduced in Section 3.1. Note that the Preisach

operator in Equation 5.3 depends also on the output variable M . For this reason the

model defined by Equation 5.3 has been called moving Preisach model [90].
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The RPM can be demonstrated as follows. Consider the single spin flip dynamics

limit defined in Section 4.4. The back-flipping spins do not exist then, the difference

H−J ′M increases (decreases) whenever the external fieldH increases (decreases), and

the dependence of M on H given by Equation 5.3 must be monotonic (i.e. ∆M∆H ≥

0). Consequently, the operator relationship:

H = P̂−1[M ] + JM = Γ̂[M ] (5.4)

obtained by inverting the Equation 5.3 must also be monotonic. Since the closed

loops generated by a monotonic hysteresis relationship map into closed loops of its

inverse, the Preisach model P̂−1 also exhibits the RPM. The addition of the linear

term J ′M in Equation 5.4 does not change this fact since it only tilts the hysteresis

loops. Thus, the operator Γ̂ has the RPM and monotonicity properties, implying the

same for its inverse M = Γ̂−1(H).

Note, that if the above argument holds for any network size N , then also the

ensembles of spins forming couples, cycles of size 3, and cliques of any size will have

the RPM property, and therefore display closed cycles.

5.3 Néel’s mean field model: Transition between RPM and open cycles

Consider two groups of spins, such that the spins within each group do not interact

with each other. This situation is illustrated in Figure 5.2, where the spins on the

lattice are divided into two interpenetrating sub-lattices A and B. Magnetizations

(average states) of each sub-lattice are Ma and Mb and the total magnetization in

the system is an average M = (Ma +Mb)/2. While the spins within the sub-lattice

do not interact with each other, every spin sAi from sub-lattice A interacts with all

spins sBi from the sub-lattice B via the same mean field −J ′Mb, and every spin

sBi from sub-lattice B interacts with all spins from sub-lattice A via the mean field
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Figure 5.2: Néel’s lattice. Shown are two interpenetrating lattices A and B (white
and black dots) of spins. Magnetizations of each sub-lattice are Ma and Mb. Spins
do not interact within the sub-lattice. Interaction is only between the spins from
different lattices via the mean fields −J ′Ma and −J ′Mb, where J ′ is the interaction
magnitude. Magnetization of the entire system is an average M = (Ma +Mb)/2.

interaction −J ′Ma (J ′ > 0). This structure of interactions is analogous to the Néel’s

approximation used to describe magnetism of antiferromagnetic materials [91].

Following Equations 5.2-5.3, the effective fields ha and hb responsible for switching

within sub-lattices A and B respectively, can be defined as

ha = H − J ′Mb and hb = H − J ′Ma, (5.5)

where J ′ = JN/2. In the following we drop the prime and denote the interaction

strength simply by J . The average states Ma and Mb in Equation 5.5 can then be

expressed as:

Ma =
2

N

∑

i∈A

sAi (H − JMb) = P̂ [H − JMb] = P̂ [ha], (5.6)

Mb =
2

N

∑

i∈B

sBi (H − JMa) = P̂ [H − JMa] = P̂ [hb], (5.7)

with N/2 being the number of spins within a sub-lattice, and P̂ the Preisach hys-

teresis operator. Thus, the Néel’s type mean-field RCIS model (NMF) is one where
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two identical Preisach hysteresis operators are coupled to each other. The coupling

constant J > 0 corresponds to the strength of the antiferromagnetic interaction.

5.3.1 RPM in the Néel’s mean field model (NMF)

Consider the single spin flip dynamics limit defined in Section 4.4. Assuming that the

external field H increases starting from the negative saturation, the dependences of

the sub-lattice magnetizations Ma and Mb on H can be expressed via the following

coupled integral equations:

Ma = −1 + 2

∫ −JMb+H

−∞

ρ(α) dα, (5.8)

Mb = −1 + 2

∫ −JMa+H

−∞

ρ(α) dα, (5.9)

where ρ(α) is a spin threshold probability distribution. We assumed that the number

of spins in each sub-lattice is sufficiently large, such that ρ(α) can be viewed as a

smooth function, and hence we can replace the summations in Equations 5.6-5.7 by

an integration. Subtracting the second equation from the first and changing the

variables to M = (Ma + Mb)/2 and ψ = (Ma −Mb)/2, gives after arrangement the

relation:

ψ =

∫ +Jψ

−Jψ

ρ(α− JM +H) dα. (5.10)

After substituting α→ Jψα, the above expression reduces to:

ψ = Jψ

∫ +1

−1

ρ(Jψα− JM +H) dα, (5.11)

or equivalently:

ψ

(

1 − J

∫ +1

−1

ρ(Jψα− JM +H) dα

)

= 0. (5.12)
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Since ρ(x) is the probability distribution, and thus ρ ≥ 0 for every x, the following

inequality certainly holds:

0 ≤

∫ +1

−1

ρ(x) dx ≤

∫ +1

−1

ρmax dx = 2ρmax, (5.13)

where ρmax is the maximum of the probability distribution ρ. Therefore, if 2Jρmax ≤ 1,

Equation 5.12 will have only a trivial solution ψ = 0 (which implies Ma = Mb).

Nontrivial solutions ψ 6= 0 (Ma 6= Mb) are technically possible if 2Jρmax ≥ 1. Hence,

the critical interaction at which qualitatively new solutions appear equals to:

Jc =
1

ρmax
. (5.14)

We now show that RPM holds for J < Jc. The argument can be divided into three

steps: 1) If ψ = Ma−Mb = 0, then the local fields ha = hb = h and Equations 5.6-5.7

can be rewritten as:

Ma = Mb = P̂ [h]. (5.15)

Since the Preisach operator P̂ has the RPM property, closed cycles of h must re-

sult in closed cycles of both Ma and Mb. Moreover, the operator relation given by

Equation 5.15 is invertible because the threshold distribution ρ is smooth and non-

negative and the inverse P̂−1 is also a Preisach operator [57, 92]. As a result, the

relations h = P̂−1[Ma] and h = P̂−1[Mb] also have RPM property, i.e. closed magne-

tization cycles must produce closed h-cycles. 2) Using Equation 5.5, the relationship

between H and h can be written as

H = JP̂ [h] + h = N̂ [h], (5.16)
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where N̂ [h] is again a Preisach operator, since the first term in Equation 5.16 is a

Preisach operator and the addition of a linear term h just tilts the hysteresis loops.

Hence, the relationship given by Equation 5.16 has to have the RPM, as well as the

inverse. 3) Using the fact that relations defined by Equations 5.15-5.16 and their

inverses have the RPM, the relations Ma(H) = Mb(H) must also have RPM. This

proves the existence of closed cycles for interactions J below the critical strength Jc.

5.3.2 Cycle opening in the NMF

As shown in the previous section, nontrivial solutions of Equation 5.12 are possible if

J > Jc. To see that such solutions exist, we solve Equation 5.12 numerically assum-

ing a Gaussian distribution of thresholds ρ(α). Note that given the relation defined

by Equation 5.14, the critical interaction Jc can be related to the variance σ of the

Gaussian distribution simply as Jc = σ
√

π/2. The critical interaction is therefore

directly determined by the disorder level present in the system.

Dependence of ψ = Ma−Mb on the field point H along the increasing branch of

the hysteresis loop M(H) is plotted in Figure 5.3. Different interaction magnitudes

below and above the Jc are considered. Figure shows that the difference ψ is zero

for J < Jc, becoming nonzero for J > Jc and growing as the interaction strength

increases. In addition, as shown in the inset in Figure 5.3, the emergence of the

nonzero difference ψ is also manifested as a bending of the major loop branch around

to coercivity, i.e. by macroscopically observable changes of hysteresis behavior.

While we found no analytical way to show that the RPM is not preserved for

J > Jc, numerical simulations confirm abrupt onset of the cycle opening. In these

numerical simulations we assumed only continuous threshold distribution functions

ρ(α), which is equivalent to using an infinitely large set of bistable switches. The

trade-off is that a number of iterations needed to find stable states of the mean-field
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Figure 5.3: Difference ψ = Ma −Mb versus the external field H along the increasing
major hysteresis loop branch (Hc is the coercive field where M = 0). ψ = 0 for
J < Jc and ψ 6= 0 for J > Jc. The maximum difference appears around the coercive
field. The results correspond to the Gaussian distribution of thresholds with variance
σ = 1, when Jc = (π/2)1/2. The inset shows a change of shape of major hysteresis
loop for J > Jc when ψ 6= 0.

model also becomes infinite and iterations need to be terminated when the relative

change of magnetization becomes sufficiently small. In our simulations this number

is 10−8.

To investigate the onset of the cycle opening, we considered only minor cycles

that are attached to the increasing branch of the major hysteresis loop. Starting

from the negative saturation, the field H is increases until the point Hu when it is

reversed down to Hd, then reversed again and increased back to Hu. The pair of

variables (Hd, Hu) uniquely defines each minor cycle attached to the major hystere-

sis loop. The cycle opening ∆M will be measured as a difference in magnetizations

before and after the cycle, i.e. as ∆M = M1 −M2, and depends on both upper and
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Figure 5.4: A sequence of cycle openings |∆M | numerically calculated for Néel’s mean-
field RCIS with a Gaussian distribution of thresholds (σ = 1, µ = 4). Interaction
strengths are: a) J = 1.04Jc, b) J = 1.2Jc.

lower reversal fields. We will be interested in the magnitude of the cycle opening,

|∆M | = |M1(Hu)−M2(Hu)|, obtained after the first external field period. An exam-

ple of such a cycle opening function is shown in Figure 5.4, and has been obtained

numerically by first meshing the (Hd, Hu) plane and then simulating the minor cycles

for each discrete point on this mesh. As soon as the interaction strength J exceeds

Jc, the open minor cycles appear in a small region of the reversal fields Hu > Hd

(Figure 5.4(a)). As the interaction strength increases, both the region of reversal

fields corresponding to open cycles and the magnitude of the opening increase as

well(Figure 5.4(b)).

Finally we note, that similar conclusions have been obtained also for e.g. Loren-

zian, log-normal, and triangular threshold distributions ρ(α). In all cases, the ob-

served loss of the RPM and the onset of the cycle opening was directly associated

with the transition interaction Jc.



48

5.4 Summary

In this chapter we analyzed the origins of the cycle opening in the interaction net-

works. We showed that as long as the interactions are positive, minor cycles remain

closed independently of the structure of interaction network. Similar general conclu-

sion, however, cannot be made about networks with negative interactions. We gave

two examples of antiferromagnetic networks where the loop closure holds, particu-

larly the mean field and Néel’s mean field RCIS models. In the Néel’s mean field

RCIS model, the RPM has been shown to hold for sufficiently small interactions. Cy-

cle opening appeared suddenly at some critical interaction strength which has been

shown to depend on the disorder level. Néel’s mean field RCIS model is thus an

example of a simple system, where both RPM and cycle opening can be observed,

depending on the structural parameters. Based on the analysis in this chapter, we

conclude that there are two necessary conditions for existence of open cycles: 1) neg-

ative interactions between the spins, and 2) more than one variable necessary for full

description of the state of the system.
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Chapter 6. Cycles in the RCIS with short range interactions

In Chapter 5 we demonstrated that the Néel’s mean field model displays an abrupt

appearance of open cycles at a certain transition interaction Jc. The value of Jc has

been shown to be fundamentally linked to the disorder level present in the system. In

this chapter, we depart from the mean field type modeling and investigate the behavior

of cycles in the often more realistic RCIS model with short range interactions. The

goal is to understand the origin of the cycle opening and its relation to the disorder

level.

6.1 RCIS on a 2-dimensional lattice

Consider RCIS model with spins distributed on a two-dimensional lattice and assume

interactions only between the immediately neighboring spins. Once again, we con-

sider the single spin flip dynamics introduced in Section 4.4. Assuming a Gaussian

distribution of thresholds with µ >> σ, the upper bound on the interaction strength

can be found from Equation 4.7 and equals J < Jt = (µ− 3σ)/4, where we used the

fact that each spin on the lattice has 4 neighbors and thus dmax = 4.

We performed numerical simulations to study the behavior of minor cycles. Cycle

opening functions |∆M | = |M1(Hu) −M2(Hu)|, where M1 and M2 are respectively

the magnetization values before and after the minor cycle excursion, were calculated

for different interaction strengths J . Two measures were defined to characterize the

cycle opening: 1) the extent of the opening region Ωo, equal to the area of that re-

gion in the reversal-field-plane (Hu, Hd) which corresponds to open cycles, and 2) the
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Figure 6.1: The opening region Ωo (top) and the extent of the cycle opening Λo

(bottom) as a function of normalized interaction strength for, respectively, the 2D
nearest neighbor RCIS and the Néel’s mean field RCIS models. The system size
considered was 1600 spins and the data for the nearest neighbor model was averaged
over 20 different random threshold realizations (Gaussian distribution with variance
σ = 1, mean µ = 4).

extent of cycle opening defined as an integral over the Ωo, i.e.:

Λo =

∫

Ωo

|∆M | dHddHu. (6.1)

Thus, while Ωo corresponds simply to the number of open minor cycles attached

to the ascending branch of the major hysteresis loop, the function Λo carries also

information about the average opening of those minor cycles.

Figure 6.1 shows a comparison of minor cycle behavior for the nearest neighbor

RCIS model (dashed line) and for the Néel’s mean field RCIS model (solid line),

which has been developed in Section 5.3. The top part of figure shows a dependence

of the cycle opening range Ωo on the interaction strength, while the bottom part of
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figure shows the interaction dependence of the extent of loop opening Λo. A threshold

variance σ = 1 was assumed for both models. In addition, data obtained from the

nearest neighbor model (NN) has been averaged over 20 realization of randomness.

Note the normalization of the interaction magnitude J by the critical point Jc. In the

case of the Néel’s mean field model (NMF), the value of Jc = 1.253 has been obtained

simply by using Equation 5.14. Determination of Jc is complicated in the case of

the NN model, where an abrupt onset of open cycles has not been observed. We

have therefore determined the value of Jc as an average over the number of minimum

interaction strengths, obtained for each realization of disorder randomness, at which

the open cycles could be seen first. For the data shown in Figure 6.1, we found

Jc = 0.15 ± 0.01. Note also, that for J > Jc the quantities Ωo and Λo grow very

rapidly in the case of the NMF model while their growth is slower in the case of the

NN model.

The question arises if the emergence of open loops could be associated with an out

of equilibrium phase transition occurring as the interaction and disorder parameters

are tuned. If yes, could the NMF model discussed in the previous chapter be viewed

as a mean field approximation to NN with regard to such phase transition behavior?

First of all, as we find here, the NMF model yields very different critical interaction

strength Jc than the NN model. This is, however, not entirely unexpected. In fact,

it is well known that mean field models often do not predict the critical behavior

accurately. For example, it is found in the study of the RFIM that its mean-field

approximation does not predict the critical disorder correctly [69]. Also the mean-

field models used in the equilibrium thermodynamics typically do not predict the

critical points and critical exponents accurately in many low dimensional systems [93].

Secondly, as seen from the plots in Figure 6.1, we actually do not observe abrupt onset

of the cycle opening in the case of the NN model. There could be several reasons for

the absence of a sharp transition in the NN models: 1) Finite size effects due to the
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insufficient number of spins used in the modeling. Although we considered lattices

of up to 106 spins, further increase of the system size might be, and seems to be

necessary. 2) The dimension 2 of the lattice could be smaller than the lower critical

dimension for the existence of phase transition in the model and strong fluctuations

of the order parameter destroy any long range ordering. In such case, the phase

transition cannot be observed at all. To address this issue, we have also considered

model with spins on a three dimensional lattice. However, such studies did not yield

convincing results either, and moreover, the analysis of higher dimensional systems

is more complicated due to more pronounced finite size effects. 3) It is possible, that

we do not deal with any critical phenomena in case of NN model. This possibility is

investigated in the next section.

6.2 Ensemble of spin triplets

To eliminate the effect of correlations and thus the possibility of any phase transition

behavior, we divide the lattice into independent spin triplets. Spin triplets are the

smallest networks producing open cycles (ensemble of spin couples produces always

closed minor cycles).

6.2.1 Definition

Consider a group of P 5-spin chains where the nearest neighbors interact via anti-

ferromagnetic interaction −J , J > 0. Assume that the boundary spins are fixed in

either +1 or −1 state depending on the random choice (Figure 6.2). Thus there are

only three spins in each chain which can flip as the external field changes. Let these

variable spins in any k-th triplet be denoted as s1, s2, s3, and their thresholds as

α1, α2, α3. We assume that all thresholds in the ensemble are independent random

variables given by probability distribution ρ(α). A single spin flip dynamical limit



53

Figure 6.2: Definition of an ensemble of independent spin triplets. Every fourth spin
(black) is frozen in a given state (chosen randomly to be either +1 or −1) specifying
boundary conditions for the spin triplets. Hence, possible boundary conditions are
+/+, −/−, −/+ and +/−.

will be assumed, which for a Gaussian threshold distribution with µ >> σ requires

restriction J < Jt = (µ− 3σ)/2 because the maximum number of neighbors of each

spin is 2 and thus dmax = 2 in Equation 4.7.

Since the +1 and −1 states of the boundary spins are chosen randomly, there are

4 possible combinations of boundary conditions, respectively −/−, −/+, +/−, +/+.

Assuming every combination to be equally likely, for a large ensemble there will be

P/4 spin chains with a particular set of boundary conditions. Then, since there are

6 different ways for ordering the thresholds among the spins s1, s2, s3, there will be

total 4 × 6 different spin triplets in the ensemble, such as e.g. α1 < α2 < α3 (−/−)

or α2 < α1 < α3 (−/+) and so on. For a very large ensemble, there will be P/24

triplets of a particular type.

6.2.2 Origin of the cycle opening

Although there are 24 qualitatively different types of spin triplets, an extensive search

through all possibilities reveals that only two types display open cycles. In particular,

open cycles are produced by spin triplets with

Ta : α2 < α1 < α3 (−/−), (6.2)
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Tb : α2 < α3 < α1 (−/−), (6.3)

if and only if the differences between any two thresholds are smaller then 2J , i.e.

if |αi − αj| < 2J . Since both cases are related by the reflection symmetry about

the central spin, it is sufficient to analyze one of them. We will consider the triplet

type Ta satisfying the Condition 6.2. Results for Tb can be obtained right away by

interchanging the indices 1 and 3.

Switching diagram for the triplet Ta is shown in Figure 6.3. This diagram shows

all possible inherent states of a triplet, as well as all switching transitions between

these states. For example, if the field H increases from negative to positive saturation,

the switching transitions occur at thresholds a, d and e before the positive saturation

state is reached. On the other hand, the transition at the field b is possible only after

first reversing the field at some value H > e, decreasing it to E < H < D, then

reversing again and increasing it back towards b. This history of the reversal fields,

with negative saturation as an initial state, will be denoted by the brackets b[D, e].

For example, a symbol c[B, d] means that switching at the threshold c can occur after

first switching up at d, then reversing the field and decreasing it until switching down

occurs at the threshold B, reversing the field again and increasing it back towards the

threshold c. The table on the right hand side in Figure 6.3 shows the actual values

of the switching fields, given the magnitudes of spin thresholds and the interaction.

OM opening type: Open cycles with ∆M 6= 0. Having developed the terminol-

ogy, cycle opening is now easily demonstrated following the switching diagram in

Figure 6.3. Consider the dashed line first. Assume that starting from the negative

saturation the external field H increases up until the reversal point at Hr, such that

e < Hr < f . At this field, all spins in the triplet Ta are in the positive state. When H

is reversed and decreases, the central spin is the first spin to flip down at the field A.

If the field is reversed at Hd lying somewhere in the range D < Hd < A and increased
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Figure 6.3: Complete switching diagram corresponding to the Ta-type triplet. Nega-
tive saturation is assumed as an initial state. Black (•) and white (◦) circles corre-
spond respectively to negative and positive spins and represent the state of the triplet
after the transition. Switching fields for spins flipping to positive (negative) state are
denoted by lower case (capital) letters. The symbols in the brackets denote consecu-
tive reversal fields required to obtain given switching. For example, A[f ] means that
the flipping from the state (◦ ◦ ◦) to (◦ • ◦) accruing at the threshold field A requires
previous field reversal at the point Hr > f . Dashed line shows cycle with reversal
points D < Hd < A and e < Hr < f , which does not return to the same state. Dotted
line shows cycle with reversal points D < Hd < B and d < Hr < e, which does return
to the same magnetization but not to the same microstate. The table on the right
lists the switching threshold fields given the thresholds αi and interaction strength J .

back, the initial reversal field value Hr is no longer sufficient for flipping the central

spin back to the original state. Note that such switching would only be possible if

Hr > f . This results in an open cycle since the magnetizations at Hr before and after

the cycle differ. Subsequent field cycles between reversals Hd and Hr yield no further

switching and the minor cycle remains closed. Therefore, stable minor loops appear

in this model at the second external field period. Finally we point out, that a similar

situation occurs for cycles with reversals e < Hr < f and E < Hd < D. On the other

hand, the cycle opening is not observed if Hr > f .
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OS opening type: Open cycles with ∆M = 0. As it turns out, there exists an addi-

tional mechanism leading to cycle opening which is not manifested as a magnetization

difference. Consider the dotted line shown in Figure 6.3. Assuming the negative sat-

uration as an initial state and reversal points D < Hd < B and d < Hr < e, we note

that the switching up after the cycle occurs at a different threshold c < d. Although

the same magnetization state is obtained after the field returns to Hr, the microstate

is different (before the cycle: s1, s2 = −1, s3 = +1; after the cycle s1, s3 = −1,

s2 = +1). Hence, the return point memory does not hold. Further cycles between

the reversal fields Hd and Hr yield no further changes.

Denoting the difference between the microstates before and after the cycle by ∆S,

we conclude that ∆M = ∆S 6= 0 for OM cycles, while ∆M = 0 and ∆S 6= 0 for OS

cycles. The origin of the cycle opening in both cases is due to the different switching

order of spins during the increasing and decreasing external field variations. As a

consequence, certain switching transitions existing during the increasing field are not

available when the field returns after the decrease.

6.2.3 Symmetric reversal fields

Assume ensemble of P triplets. There will be roughly P/24 triples of the type Ta.

According to previous discussion, opening at a reversal field Hr can be produced only

by those Ta triplets which have their spin-thresholds arranged to satisfy the inequality

e < Hr < f at that field. As the reversal field Hr varies, the number of Ta triplets

satisfying this condition changes depending on the threshold probability distribution

ρ(α). For example, if the support of ρ(α) is restricted to some interval (αmin, αmax)

such that αmin > 0, then for very low reversal fields most of the thresholds e will be

greater then Hr and minor cycles will be closed. Similarly, for very high reversal fields,

almost all triplets will have thresholds f below Hr and minor cycles will be closed
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Figure 6.4: Differences in behaviors of the magnetization ∆M opening and the spin
state ∆S opening for symmetric minor cycles with reversal points Hd = −Hr (Hc is
the major loop coercive field). The dashed line is the major hysteresis loop branch
and the point C denotes its coercivity. Results have been obtained for an ensemble
of 3000 triplets, Gaussian distribution of thresholds with variance σ = 0.2, and 10
realizations of randomness.

again. Thus, the magnitude of the reversal field Hr determines the relative number of

triplets participating in the opening. The lower reversal field Hd is another variable

determining the number of Ta triplets contributing to the opening at Hr. To be more

specific, assume field cycles between symmetric reversal points Hd = −Hr and +Hr.

Let P1 denote the number of triplets satisfying the condition e < Hr < f , and let

P2 denote the number of triplets satisfying the other condition d < Hr < e. Since

according to Figure 6.3 it holds that |A| < |B| < |e| < |D|, there will be a fraction

x1P1 of spin triplets from the group P1 satisfying the inequality D < −Hr < A, and a

fraction x2P2 of triplets from P2 in the range D < −Hr < B. Notice, that x1P1 equals

to the number of triplets producing OM type opening and x2P2 are triplets producing
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OS opening. The sum x1P1 + x2P2 equals to the number of spin triplets producing

total cycle opening of an ensemble at the symmetric reversal fields Hd = −Hr and

Hr.

Figure 6.4 shows a dependence of cycle openings ∆M and ∆S on the reversal field

Hr for symmetric case with Hd = −Hr, obtained by simulating the ensemble of 3000

spin triplets with a Gaussian distribution of thresholds with σ = 0.2. The presence

of both OM and OS mechanisms results in ∆M 6= ∆S. The dashed line in figure

denotes an increasing major hysteresis loop branch showing that the effect is most

pronounced after the coercivity, and disappears at low and large external fields. Note

also, that ∆M ≥ 0 for every reversal point, which means that the magnetization after

the cycle is always smaller then the magnetization value before the reversal. Such

an effect is often observed in magnetism and has been referred to as negative tilting

effect [12, 13].

6.2.4 Non-symmetric reversal fields

The question arises: Can the OM and OS mechanisms be separated by a suitable

choice of reversal fields? The answer is yes, and as it turns out the OS mechanism

will be absent if Hd ≥ −Hr + 2J . Only the OM mechanism will be present in this

case.

The argument is as follows. Ta triplets producing the OS type opening at Hr must

satisfy the conditions d < Hr < e and D < Hd < B. According to Figure 6.3, the

magnitudes of thresholds are |d| = α1, |e| = α3 and |B| = | − α2| = α2, and by the

definition of Ta it must hold that α1 − α2 < 2J and α3 − α2 < 2J . This means that

|d| − |B| < 2J and |e| − |B| < 2J . Hence, it is also true that Hr − |B| < 2J which is

equivalent to B < −Hr + 2J . Since Hd < B is a necessary condition for the OS type

opening, it suffices to restrict Hd ≥ −Hr + 2J to guarantee absence of OS cycles. It
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Figure 6.5: The OM opening at the reversal field Hr is proportional to the volume of
the pyramid ABCDE embedded in the cube having sides of the length 2J and being
centered at the point Hr − 2J in the α-space.

remains to check the possibility of OM mechanism. Setting Hd = −Hr + 2J , it is

easy to see that |Hr − Hd| > |e − A|. Therefore, any triplet Ta switching up at the

threshold e can always switch down at the threshold A in the given range of reversals,

and the OM mechanism is possible. It can be shown, that OM disappears for lower

reversals Hd ≥ −Hr + 4J and all minor cycles then remain closed.

In the following we consider non-symmetric cycles with Hd = −Hr + 2J and

calculate the opening ∆M = ∆S as a function of Hr. Since in this case OM is

the only mechanism responsible for the cycle opening of an ensemble, the problem

reduces to calculating the number of Ta triplets (final result must be multiplied by 2 to

include the identical case for Tb) having thresholds arranged to satisfy the inequality

e < Hr < f at the reversal Hr. Using the actual threshold values given in Figure 6.3,

this inequality can be rewritten as α3 < Hr < α2 + 2J . Moreover, since according to

Equations 6.2-6.3 it holds that α2 < α1 < α3, the thresholds of all three spins in the

triplet Ta must satisfy the condition

Hr − 2J < α1, α2, α3 < Hr, (6.4)
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if that triplet is to produce the opening at Hr. Hence, to find the magnitude of the

opening it is necessary to calculate the number of triplets satisfying simultaneously

Conditions 6.2-6.3 and 6.4.

Since the thresholds are independent random variables, such calculation reduces

to evaluating the volume of the pyramid ABCDE embedded inside the cube with a

side length 2J and being centered at the point Hr−2J in the α1α2α3 parameter space

(Figure 6.5). This calculation yields:

∆M = ∆S = A

∫ Hr

Hr−2J

dt1ρ(t1)

∫ t1

Hr−2J

dt2ρ(t2)

∫ t2

Hr−2J

dt3ρ(t3), (6.5)

where the normalization constant A = 1/3 as shown below. Function ρ is the spin

threshold probability distribution. The constant A is evaluated as follows. When the

interaction J has a very large magnitude, such that the interval (Hr−2J,Hr) is much

wider then the width of the threshold distribution ρ, there will certainly exist some

reversal field value Hr at which all triplets from the groups Ta and Tb participate in

the opening, i.e. total N/36 triplets from the entire ensemble (N is the total number

of spins). Since each of these triples produces magnetization opening 2/N (spin up

minus spin down) the maximum opening ∆M of the ensemble is:

∆Mmax =
2

N

N

36
=

1

18
≈ 0.055. (6.6)

To evaluate integral in Equation 6.5, we observe that if the interaction J is sufficiently

large all thresholds will be contained within the cube shown in Figure 6.5, and the

integral will be equal to 1/3 of the volume of this cube. Since the distribution function

ρ is normalized to unity, the value of the integral for very large values of J approaches

1/3. Therefore, according to Equations 6.5-6.6, it holds that ∆Mmax = 1/18 = A/2/3

and hence A = 1/3.
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Figure 6.6: Cycle openings ∆M = ∆S versus the reversal field Hr for non-symmetric
minor cycles with reversal points Hd = −Hr + 2J (Hc is the major loop coercive
field). The dashed line is the major hysteresis loop branch and the C point denotes
its coercivity. Results have been obtained for an ensemble of 3000 triplets, Gaussian
distribution of thresholds with variance σ = 0.2, and 10 realizations of randomness.

The solid line in Figure 6.6 shows a dependence obtained from Equation 6.5, for

J ≈ σ and a Gaussian distribution ρ of thresholds with variance σ = 0.2. Simulation

data are added as points for comparison. The small deviations from the theoretical

calculation around the peak are most likely due to the finite system size considered in

simulations (P = 3000). The effect becomes significant only for reversal points around

the coercivity, and diminishes as the field approaches positive saturation. Note also,

that the simulated points for ∆M overlap with the points for ∆S, which confirms

that only the OM opening type exists for non-symmetric minor loops Hd = −Hr+2J .
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Figure 6.7: Dependence of the maximum opening ∆M = ∆S on the interaction
strength for two different disorder magnitudes. Results were obtained by using Equa-
tion 6.5, for Gaussian distribution ρ with mean µ >> σ. The cycle opening saturates
for J >> σ reaching the universal constant 1/18, and the approach to saturation is
faster (i.e. lower interactions are needed) for smaller disorder σ.

6.2.5 Cycle opening versus the interaction

Given the previous analysis and Equation 6.5 it is now clear that cycle opening at a

given interaction strength depends on the probability of finding the triplets with spe-

cific arrangements of thresholds. As the interaction magnitude decreases, the length

of the interval (Hr − 2J,Hr) shrinks and the probability to satisfy Condition 6.4 by

all three thresholds in the triplet decreases. The effect of the disorder is opposite;

decreasing the variance of the threshold distribution increases the probability to find

all thresholds in the interval (Hr − 2J,Hr). In the limit J/σ >> 1, all Ta and Tb

triplets will eventually satisfy Condition 6.4 and the effect saturates. This behavior is

shown in Figure 6.7, displaying the maximum opening at a given interaction strength



63

for two different disorder levels. As shown, the saturation value ∆Mmax = 0.055 given

by Equation 6.6 is reached in both cases. This value is a universal constant of the

model. The approach to saturation is faster for smaller disorder level.

Figure 6.7 is similar to Figure 6.1 in Section 6.1. There we considered the pos-

sibility of cycle opening taking place via the phenomena similar to phase transition.

Analysis in this section suggests, however, that the cycle opening depends on the

probability of specific threshold arrangements, and is not due to the long range cor-

relation effects.

6.3 Summary

In this chapter we studied cycle opening in the RCIS model with short range in-

teractions. As opposed to mean field models analyzed in the previous chapter, an

abrupt appearance of open cycles is not observed. Open cycles exist for any interac-

tion, and their occurrence probability, for a given disorder level, increases with the

interaction magnitude. Then, to rule out any long range correlations effects possible

for complicated interaction networks, we also considered an ensemble of independent

spin triplets which is the simplest model yielding the cycle opening. We find that

cycle opening in such a model depends only on the relative arrangement of thresholds

in a particular type of triplets, and we derive dependence of the cycle opening on

the reversal field value for a given interaction and disorder. Moreover, we pointed

out that it is necessary to distinguish between the minor cycles with symmetric and

non-symmetric reversal fields, and that to yield the complete information, the cycle

opening must be generally measured by comparing the microstate differences before

and after the cycle.
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Chapter 7. Random interaction networks

In this chapter we investigate the effects of the interaction network structure on the

behavior of hysteretic cycles. We consider the RCIS model with spins distributed

on the classical random interaction network. Properties of such networks have been

discussed in Section 3.3. Note that previously analyzed RCIS with non-interacting

spins (Preisach model) and the mean field model, both having the RPM property,

can be viewed as limiting cases of the classical random network. The RCIS with

the nearest neighbor interactions, on the other hand, is analogous to networks with

intermediate degree of connectivity, and as seen in the previous chapter, such model

produces open cycles. It is therefore expected that a gradual increase of the network

connectivity between the non-connected and the fully connected limits will result in a

nontrivial minor cycle behavior, with transitions between the RPM and cycle opening.

An example is illustrated in Figure 7.1 showing two hysteretic cycles obtained for a

network having 1% percent of all possible interaction links, while the inset in the

figure shows the RPM appearing after reducing the network connectivity to 0.1%.

As will also be shown in this chapter, the changes in the network connectivity do

not only affect the rate at which hysteretic cycles converge to minor loops but can also

result in the emergence of non-converging cycles, which do not form minor loops after

arbitrarily large number of external field periods. Such behavior will be shown to be

associated with the presence of specific topological elements in the network structure,

particularly with the fully interconnected spin groups (cliques) of size equal or greater

than 4.
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Figure 7.1: Two consecutive minor cycles with symmetric reversal fields Hd = −Hr

obtained using a random interaction network RCIS model with only 1% of all possible
interaction links. Inset: Minor cycle closure observed after reducing the network
connectivity to 0.1% of all possible interaction links.

7.1 Assumptions on the random RCIS networks

We consider classical Erdös-Rényi (ER) random network described in detail in Sec-

tion 3.3.1. Such networks are considered to be the simplest realization of complex

networks. Their connectivity and topological structure can be tuned by adjusting a

single parameter: probability p of a connection between pairs of spins or by specifying

the fraction n of the total N(N − 1)/2 edges present. As discussed in Section 3.3.1

both choices are equivalent for large networks, where the connection probability can

be related to the number of edges simply as: p = 2nN−2. In our simulations, we

generated random networks by specifying the number of edges, n, which where then

randomly distributed among the N nodes using uniform random number generator.

We consider negative (antiferromagnetic) interactions and the single spin flip dynam-
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ics defined in Section 4.4. For a Gaussian distribution of thresholds with µ >> σ,

this assumption restricts the interaction magnitude range to J < Jt = (µ− 3σ)/dmax,

where dmax is the maximum degree present in the network.

The number of interconnection links n in the network determines the interaction

energy per spin. According to Equation 4.3 the spin-spin interaction energy of the

antiferromagnetic system equals:

Gs−s = +J
∑

ij

Aijsisj, (7.1)

where J > 0. The average energy per spin, ∆, can be expresses as

∆ =

〈

−
δGs−s

δsi

〉

=

〈

J
∑

j

Aijsj

〉

≈ J ·

〈

∑

j

Aij

〉

·
〈

sj
〉

= J · d ·Mr, (7.2)

where d is the average network degree and Mr is the magnetization at the upper

reversal point corresponding to field +Hr. In the following study, we will compare

networks having different average degree d (i.e. different connectivity) for the same

average energy per spin ∆. This amounts to adjusting the interaction magnitude

J < Jt using Equation 7.2 for every set of values ∆, d and Mr. Only cycles with

symmetric reversal points Hd = −Hr will be considered. The cycle opening will be

quantified by the spin state difference ∆S, obtained by comparing the spin patterns

before and after the cycle and calculating the %-difference of a number of spins that

did not return to the original state. As discussed in the previous Chapter 6, ∆S is

more robust measure than ∆M .

7.2 The first cycle opening versus the network connectivity

First, we study dependence of the first cycle opening ∆S on the average network

degree d. We consider only symmetric minor cycles with the upper reversal Hr corre-
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Figure 7.2: Percent difference ∆S between the microstates before and after the first
minor cycle plotted for different degrees d of the interaction network. Only symmetric
reversals with Hd = −Hr are assumed, and Hr corresponding to the magnetization
Mr = 0.2, where the effect is the strongest. Results are plotted for two system sizes
N = 103 and 502 and the interaction energies ∆ = 1σ and ∆ = 10σ (σ is the variance
of the Gaussian threshold distribution). Error-bars are about 1%. Inset: ∆S versus
d for N = 100 showing that ∆S = 0 for d = N . Error bars are about 4%.

sponding to magnetization Mr = 0.2. At this magnetization value, the cycle opening

seemed to be most significant. Dependence of the cycle opening ∆S on the degree

d obtained from simulations is shown in Figure 7.2 for two network sizes N = 102

and 502. As expected, ∆S = 0 for d << 1, independently of the ∆/σ ratio, since

the majority of spins are isolated or form couples. As discussed previously such an-

tiferromagnetic systems have the RPM property (Section 5.2). The structure of the

random network changes as d increases. When trees of order 3 and higher emerge

(at d ≈ N−1/2, see Figure 3.5 in Section 3.3.2) the cycle opening becomes nonzero,

although a well pronounced increase of ∆S is observed only after the percolation

threshold of the ER network at d ≈ 1. At this percolation threshold a giant spin
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cluster appears in the network structure, and almost all nodes become connected

(Section 3.3.2). As the connectivity of the network increases further, ∆S reaches

maximum and then starts to decrease to zero as d approaches the network size N . In

the mean field (fully connected network) limit d→ N , the RPM property is recovered

and ∆S = 0 as expected. Due to the computational expense, full numerical confir-

mation of this behavior has been possible only for a smaller system size N = 100 and

is shown in the inset in Figure 7.2.

Numerical tests for different network sizes N (up to 502), different disorder σ and

different average energy per spin ∆ revealed that cycle opening ∆S depends on the

ratio ∆/σ rather than on ∆ and σ separately. We found no dependence on the mean

µ of the threshold distribution in the assumed limit µ >> σ. In addition, ∆S is

observed to be independent of the network size as long as d << N , as demonstrated

in Figure 7.2 by plotting the dependences for N = 103 or 502 in the degree range

d ≤ 100 << N . These results demonstrate that the first cycle opening ∆S does not

depend on the topological properties of the network because the probability of find-

ing various topological interconnection structures in the ER network, such as trees

and cliques (completely interconnected sub-graphs), depends both on d and N . We

note that this conclusion is supported also by other results not presented here, which

have been obtained for a RCIS model on a regular 2D lattice with ∆S calculated as a

function of the interaction range (which is, of course, proportional to the coordination

number d).

7.3 Emergence of non-converging cycles

As shown above, the cycle opening depends on the average number of bonds linking

the spins and not on the particular way the spins are interconnected, i.e. on the

topological properties of the interaction network. However, as demonstrated in the
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Figure 7.3: Dependence of the opening ∆S on the cycle number for different network
degrees. For d = 2 and for d = 12 cycles converge within 4 and 50 cycles respectively.
For d > 13 the cycle convergence becomes very slow as shown here for d = 20 and 100.
The data is for 502 spin network and averaged over 50 random graph and disorder
realizations. Error-bar level is about 1%. Data correspond to reversal magnetization
Mr = 0.2, ∆/σ = 10, and σ = 0.1.

following sections, the network topology plays a crucial role in determining the minor

cycle convergence, i.e. the rate at which open cycles form minor loops.

To investigate convergence rates, we calculated the cycle opening ∆S by compar-

ing the spin patterns before and after each consecutive cycle. As shown in Figure 7.3,

the rate at which ∆S approaches zero depends on the network degree d. For d = 2,

the network structure is dominated by trees and quickly stabilizing minor cycles are

observed. Convergence rates decrease as the network degree d increases (e.g. dash-

dotted line for d = 12). For d > 13, the behavior changes qualitatively and ∆S no

longer converges to zero (although cycles are eventually expected to repeat due to

the finite size of the networks being simulated). This is demonstrated in Figure 7.3

by dependences for d = 20 and 100.
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Figure 7.4: Contour maps showing the cycle opening ∆S for different values of the
interaction energy ∆/σ and the network degree d (note the logarithmic scale of ∆/σ
and d axes) for respectively: (a) 1-st, (b) 10-th, (c) 50-th, and (d) 100-th cycle.
The lower bounds for the ‘limiting’ region with non-converging cycles correspond to
(∆/σ)t = 2.3 and dt ≈ 13. Data are for N = 502, σ = 0.1 and averaged over 50
random graph and disorder realizations. Error bars level is about 1%.

To confirm the existence of non-convergent cycles, we calculated ∆S versus the cycle

number dependences for different ∆/σ ratio, connectivity parameter d and for differ-

ent networks sizes N . An example of the ∆S(∆/σ, d) function is given by the contour

plots in Figure 7.4(a-d) for four subsequent field cycle numbers and a fixed network

size N = 502. It is illustrated that in the low (∆/σ, d)-parameter region closed

minor loops with ∆S = 0 appear already after a few initial field cycles (compare

Figures 7.4(a-b)). The behavior in this region in the parameter space is analogous

to the familiar tilting effect [12, 13]. More and more cycles seem to be required for

the minor loop formation for higher ∆/σ and d values (Figure 7.4(c)). However,
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Figure 7.5: Definition of the transient tT time and the subharmonic period tS. The
steady state cycles reached after initial transient time tT ≥ 1 can contain simple
minor loops with tS = 1 or subharmonic cycles with tS > 1. Plot has been obtained
for network with d = 20 and N = 103.

for the parameter region bounded from below by certain critical values (∆/σ)t and

dt (Figure 7.4(d)), closed minor loops often do not form even after 100 field peri-

ods. This region corresponds to non-convergent behavior shown in Figure 7.3. Quite

surprisingly, we find that the value dt is remarkably close to the theoretical value,

dt = N1/3, at which the ER network is known to undergo a topological transition

associated with the emergence of cliques of size 4 (fully interconnected groups of 4

spins; see Section 3.3.2). This issue will be discussed further in Section 7.4.

7.3.1 Two different types of non-converging cycles

Since the results shown in Figures 7.3 and 7.4 were averaged over 50 different ran-

dom network and disorder realizations, it is possible that certain information about
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the nature of non-converging cycles might have been lost during the averaging pro-

cedure. Analyzing each network realization separately indeed reveals two different

non-converging behaviors of cycles. An example is shown in Figure 7.5. After sev-

eral initial cycles, defining the transient time tT , the cyclic behavior settles to the

steady state where the microstate repeats after a certain period number tS > 1. In

other words, the same microstate is recovered with a tS multiple of the external field

period, and obviously ∆S 6= 0 after the arbitrarily large number of external field

periods. Such S-type cycles (Figure 2.3(d)) have been observed previously for some

spin glass networks and have been referred to as subharmonic cycles [37]. In addition

to subharmonic loops, there exists non-converging cyclic behavior of different nature,

particularly, cycles with a very long transient period tT > 100. Presence of such

cycles with very long transient time is a new and surprising observation and will be

subject of our investigation in the following sections. Finally we note that both types

of non-convergent cycles appear only for certain random network realizations, and

frequency of their occurrence increases with the connectivity of the network.

7.3.2 Magnetization versus the spin state opening

We studied cycle opening not only by the ∆S measure, which is based on comparing

the microstates before and after the cycle, but also by the ∆M measure based on

the magnetizations. Dependences ∆M versus the cycle number for different network

degrees are shown in Figure 7.6. Figure 7.6(a) for low connectivity network d = 2

shows genuine tilting effect. As d increases, fluctuations of ∆M emerge for both

converging and non-converging cycles (Figures 7.6(b-c)). The apparent randomness

in the ∆M variation results from the fact that, when the network degree d is large,

there exist many different spin states having similar magnetizations (i.e. average

states).
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Figure 7.6: Dependence of the magnetization opening ∆M on the external field cycle
number for different degrees. (a) Genuine tilting effect for low network connectivity
d = 2, (b-c) Magnetization fluctuations for d = 12 and d = 20.

The fact that the ∆M based measurements of minor cycles often yield fluctuating

(and thus inconclusive) results is well known from magnetism [7]. While it is in

principle possible to record and compare microscopic magnetic patterns after each

cycle rather than magnetization, such measurements are nontrivial [4–6]. Another

possibility could be to relate statistics of the ∆M noise to the interaction structure

of complex networks. Such investigations will be a subject of our future studies.

7.4 Diverging cycle length and the network structure

Two questions must be answered to confirm the existence of cyclic trajectories with

diverging transient length tT . In particular, as the network size N increases, 1) is

the rate of increase of tT faster than the rate of increase of N and 2) is the rate of
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Figure 7.7: Dependence of the transient (a) and subharmonic (b) periods on the
network degree. The vertical dashed line marks the theoretical value for the transition
degree dt at which first 4-cliques emerge. The data is plotted for a network size
N = 252, when dt = N1/3 ≈ 8.55. (a) The 〈tT 〉 versus d data for d < 8 are best fitted
by a linear function, while the exponential fit is better for d > 8. (b) Subharmonic
cycles do not exist for d < 8 (then 〈tS〉 = 1). 〈tS〉 vs. d data for d > 8 has been fitted
by an exponential function. Symbol 〈〉 indicates, that data in the figures (a) and
(b) is averages over 100 random network realizations. Data corresponds to reversal
magnetization Mr = 0.2, ∆/σ = 10, and σ = 0.1.

increase of tS slower than N? The second condition is required to guarantee that

the diverging cycles are not subharmonic cycles with very long period. The first

condition guarantees the existence of non-converging cycles in the thermodynamic

limit N → ∞. The goal, therefore, is to compare cyclic behavior of networks of

different sizes N .
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Figure 7.8: Dependence of the average number of cliques of size 4 on the network
degree obtained for two different system sizes. Theoretical values for appearances of
4-cliques are dt = 7.37 for N = 202 and dt = 10 for N = 103. As shown, for finite
size nets the 4-cliques appear at d < dt. Averages have been calculated over 100
random network realizations. Data corresponds to reversal magnetization Mr = 0.2,
∆/σ = 10, and σ = 0.1.

7.4.1 How to compare cycles for networks of different size?

Based on the results obtained in Section 7.3, we hypothesized that the appearance of

non-converging cycles could be associated with presence of the 4-th order complete

subgraphs (cliques) in the network structure. For infinite networks, such topological

elements are expected to emerge at the transition degree dt ≈ N1/3 (note that dt is

expected to be reduced for finite size networks). Indeed, as indicated in Figures 7.7(a-

b), showing dependences tT vs. d and tS vs. d obtained for the network size N = 625,

there are changes in the trends closely below the theoretical degree dt (dashed vertical

line). Since the degree is tuned smoothly and the only change in the network structure

in the plotted range of degrees d is the emergence 4-cliques, these changes in the trends



76

Figure 7.9: (a) Power law dependence of the average transient length on the density
of 4-cliques. (b) Dependence of the average subharmonic length on the density of 4-
cliques. The network sizes considered are N = 202 and 103, and the averages 〈tT 〉, 〈tS〉
and 〈C4〉 are calculated over 100 network realizations. Data corresponds to reversal
magnetization Mr = 0.2, ∆/σ = 10, and σ = 0.14.

must be associated with these topological structures. However, the value dt = N1/3 is

exact only for infinite size networks N → ∞ and can differ for finite networks. To find

the actual value of dt for our networks, we performed a search through every random

network realization and counted the number of 4-cliques present. This number of 4-

cliques for a given random network realization will be denoted as C4. The dependence

of an average 〈C4〉 (average obtained over 100 network realizations) on the network

degree d is shown in Figure 7.8. Indeed, the density 〈C4〉 becomes nonzero already

below the theoretical threshold dt, supporting the early appearing changes in the
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trends shown in Figure 7.7. As the network degree d increases, the density 〈C4〉

increases exponentially, with the rate of increase becoming slower for larger network

size N . For large N , higher network degrees d are needed to obtain the same 〈C4〉.

Since the cycle convergence seems to be associated with the 4-clique density 〈C4〉,

instead of comparing networks with different size N for the same degree d (which

also depends on N), it seems to be natural to relate networks for the same density

〈C4〉. In the following, therefore, cyclic behaviors for different N will be compared by

investigating dependences of the transient and subharmonic lengths on the 4-clique

density 〈C4〉.

7.4.2 Divergent transient length

Figure 7.9(a) shows a log-log plot of the tT vs. 〈C4〉 dependence. The transient

length increases with the number of cliques following a power law behavior, with

slope increasing with the size N . As seen from the figure, a twofold increase of N

results in roughly 10-fold increase tT . On the other hand, Figure 7.9(b) shows only

less than a twofold increase of the subharmonic period tS. Therefore, due to the slow

growth of tS, no conclusions can be made regarding the behavior of the subharmonic

cycle length in the thermodynamic limit (N → ∞). On the other hand, the transient

length tT shows more rapid growth. Dependence of tT on the network size N is

plotted in Figure 7.10 for different 4-clique densities 〈C4〉. Data have been fitted very

well by exponential law 〈tT 〉 ≈ exp(N/τ) with τ being the fitting parameter. As 〈C4〉

decreases the slope and the curvature of the exponential function decreases. This is

confirmed in the inset in Figure 7.10 showing dependence of the fitting parameter τ

on 〈C4〉, where τ → ∞ in the limit 〈C4〉 → 0. This means that for d > dt, when

4-cliques emerge and C4 becomes nonzero, the 〈tT 〉 grows faster than N , implying

that hysteretic trajectories will not converge in the limit (N → ∞).



78

Figure 7.10: Transient length 〈tT 〉 as a function of a network size N obtained for
〈C4〉 = 0.03, 0.3 and 2. Lines for different 〈C4〉 are exponential fits. Inset: dependence
of the exponential fit parameter τ on 〈C4〉. τ grows without bound as the density
of 4-cliques C4 decreases. Data corresponds to reversal magnetization Mr = 0.2,
∆/σ = 10, and σ = 0.1. Averages are obtained over 100 realizations of randomness.

7.5 Summary

We have demonstrated that the connectivity and the topology of random networks

are important factors determining the convergence rate of minor cycles. The main

observation is the existence of cycles which do not converge to minor loops after an

arbitrarily large number of external field periods. We have shown that such behav-

ior is associated with specific topological elements in the networks structure called

cliques of size 4, i.e. the fully interconnected spin groups of size equal or greater

than 4. This suggests that behavior of hysteretic cycles could prove to be a useful

characterization method for probing topology and connectivity of some systems with

complex interactions.
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Chapter 8. Hysteretic losses

Hysteresis phenomenon is associated with energy dissipation which is called hysteretic

loss [1, 57]. Irreversible thermodynamics of hysteretic systems has been previously

developed [94, 95] using an assumption that the difference of losses along upper and

lower branches of minor loops is zero. Such an assumption is natural in models

ignoring explicit interactions between the components. In this chapter we investigate

effects of interactions on the hysteresis loss behavior, using the mean field and the

short range interaction RCIS models. Only positive interactions are considered, in

order to guarantee the return point memory (RPM) and thus closed minor loops

(Figure 8.1). This allows a unique comparison of losses generated for upper and

lower minor loop branches.

8.1 Inherent and excess losses: Definition

The expressions for excess losses are derived in a standard way used in thermody-

namics [96]. First the inverse Legendre transformation is used to transform the free

energy given by Equation 4.3 to F = G+H
∑

si. The change of F due to the flipping

of a single switch si can the be expressed as

dFi = −dsiJ
∑

j

Aijsj. (8.1)

This free energy variation is related to the work performed, Hdsi, and to the internal

entropy production δSP through the well-known thermodynamics relation

dFi = Hdsi − TδSPi . (8.2)
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Figure 8.1: Closed loop for a system with return point memory (RPM). The symbols
‘ub’ and ‘lb’ denote respectively upper and lower minor loop branches. Are the
hysteretic losses corresponding to ‘ub’ and ‘lb’ the same?

The energy loss is defined here as δQT
i = TδSPi . Since each switch can flip only

between −1 and +1, dsi = ±2 in Equations 8.1-8.2 depending on the switching

direction. For the very first switch flipping in the avalanche the local field must be

equal to its switching threshold. Using this fact together with Equations 4.1-4.2,

and 8.2, leads to the following energy loss in flipping the first switch in the avalanche:

δQT
i = He

i dsi = αidsi = 2|αi| = δQI
i . (8.3)

The amount of this energy loss depends only on the threshold of the first switch. It

is completely independent of its interactions with the rest of the system. In fact, this

is exactly the loss that would have occurred if the same switch flipped in the absence

of any interactions. For this reason this loss is called the inherent loss QI
i .

After the first switch flipped in the avalanche, the local field magnitudes at the

location of its neighbors increase to match or exceed their thresholds. This difference
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between the local field and the thresholds depends on the topology, sign and strength

of interactions, and results in the additional contribution to the inherent loss that

would have occurred in the absence of any interaction. This loss will be called here

the excess loss QES
i . Thus, the total loss that occurs in flipping any switch can be

split into the inherent and excess loss according to:

δQT
i = He

i dsi = 2|αi| + δQES
i = δQI

i + δQES
i . (8.4)

It is important to stress that interactions can actually affect hysteretic losses in two

different ways. On the one hand, interactions play a significant role in determining

which switches flip during a given variation of the external field. This is related to the

fact that interactions determine the input-output relationship of the system. On the

other hand, interactions may affect the amount of loss that occurs when any given

switch flips. It is this second more subtle effect that we refer to as the excess loss.

8.2 Hysteretic losses in the mean field RCIS model

The mean field RCIS system, the one where every switch interacts equally with every

other switch, has already been discussed in Section 5.2 for negative interactions.

Here we calculate hysteretic losses for positive interactions. To keep the free energy

finite as the size of the system N increases, the interaction strength has to decrease

proportionally as J/N . Using this fact, the free energy change in Equation 8.1 can

be written as

dFi = −JdsiM, (8.5)

where M = N−1
∑

si is the magnetization. Similarly as Equation 5.3, the magneti-

zation can be written self-consistently as

M = P̂ [H + JM ], (8.6)
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where P̂ is the Preisach operator. For finite N , switching events appear as magne-

tization discontinuities in the input-output relation for this system. However, as N

increases to infinity, the relationship between M and H becomes smooth (until cer-

tain critical interaction strength is reached [70]). Assuming the existence of inverse

operator P̂−1 in this case, the equation above can be inverted to give H = P̂−1[M ].

Substituting this inverse and Equation 8.5 into Equation 8.6, and integrating over

the magnetization change from M1 to M2 leads to energy loss

∆QT
12 =

∫ M2

M1

P̂−1[M ] dM. (8.7)

This result depends only on switches flipped from state M1 to state M2. The only

effect of interactions is to determine what field variation actually leads to the given

magnetization change. Losses that occur for any given change of magnetization are

exactly the same that would have occurred in the absence of any interactions. For

this reason, it can be concluded that only inherent losses exist.

We have also performed numerical simulations on this system, details of which are

not presented here. The simulations show that excess losses are present for relatively

small system size, but approach zero rapidly as the system size increases. This can

be understood in the context of the discussion preceding Equation 8.5. When the

size of the system is finite, each switch contributes a finite amount to the local field

of other switches. Due to the discrete nature of the system, the probability that the

local field exceeds the threshold of a given switch by a finite amount at the time of

flipping is non-zero. However, as the size of the system N increases, the contribution

of each switch to this excess local field diminishes as J/N → 0. In the limit of an

infinitely large system, the analytical result in Equation 8.7 becomes valid and the

only possible losses are the inherent ones.
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8.3 Hysteretic losses in the RCIS model with short range interactions

Free energy change for RCIS with the nearest neighbor interactions is obtained from

Equation 8.1 and can be written as

dFi = −Jdsi
∑

〈ij〉

sj, (8.8)

where the sum is over the nearest neighbors. Inserting Equation 8.8 and Equa-

tions 4.1-4.2 into Equation 8.4 and summing up through all switches in an avalanche

(state change from M1 to M2), the expression for the total loss can be written as

follows:

∆QT
12 = 2

Ka
∑

k=1

∣

∣αk
∣

∣ + 2
Ka
∑

k=1

(
∣

∣

∣

∣

J
∑

〈kj〉

skj +H

∣

∣

∣

∣

−
∣

∣αk
∣

∣

)

, (8.9)

where index k denotes the state prior to the k-th switch flipping. The first sum is

the inherent loss corresponding to the Ka switches flipping in avalanche, whereas the

second sum is the excess loss (obtained by subtracting the inherent loss from the total

loss defined by Equations 8.3-8.4).

Both inherent and excess energy losses have been calculated numerically using

Equation 8.9. Two dimensional rectangular lattice RCIS model where each switch

interacts with its 4 nearest neighbors, was simulated for system sizes varying from

N = 103 to N = 104, threshold variance σ = 1 and mean µ = 4 and 6 (we assume

µ > 3σ in order to preserve Gaussian profile of a threshold distribution). Distribution

functions for avalanche sizes D(∆M), inherent D(∆QI) and excess D(∆QES) losses

occurring during the avalanches have been obtained along the increasing branch of

the major hysteresis loop for different interaction strengths (Figure 8.2. shows two

examples). Avalanche sizes ∆M span several decades and increase with ratio J/σ

yielding increase of the amount of both inherent and excess loss. Moreover, inherent

losses increase with µ, whereas excess losses are not dependent on the average thresh-
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Figure 8.2: Distribution functions D for avalanches ∆M , inherent losses ∆QI , and
excess losses QES generated for 2 dimensional 40 × 40 spin RCIS with σ = 1 and
σ = 4 and 6 (Gaussian distribution of thresholds) and 100 realizations of disorder.
(a) J = 0.5, (b) J = 1.0.

old µ. Numerical simulations confirm that energy losses depend on the ratio J/σ.

Thus, increasing the interaction strength is equivalent to decreasing the disorder and

vice versa. All distribution functions begin to follow the same power law behavior at

an interaction exceeding about J/σ = 1. Previously, using RFIM, power law scaling

of avalanche sizes has been shown to be a manifestation of a nearby critical point with

disorder and external field as tuning parameters [69]. In this respect, RCIS system

probably belongs to the same universality class as the RFIM. Although we did not

attempt to carry out precise observations, the critical interaction strength seems to

occur around (J/σ)crit.
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Figure 8.3: Difference between hysteretic losses generated during the upper and lower
minor loop branches for different reversal points Mr(Hr) on the major hysteresis loop.
Only minor loops with symmetric reversal points Hd = −Hr are assumed. The data
was averaged over 20 realizations of randomness. The dashed line denotes a zero loss
difference obtained for the mean field RCIS model.

8.4 Hysteretic losses produced during minor cycles

Due to RPM property, the same spins flipping down during the decreasing minor loop

branch must flip up during the lower minor loop branch. As a result, the inherent

losses for the upper and lower branches are the same, and any existing differences be-

tween the hysteretic losses generated for upper and lower minor loop branches must

be attributed to the presence of excess losses. Note, that since excess losses do not

exist in the case of the mean field RCIS model, the loss differences are zero (dashed

line in Figure 8.3). For a RCIS model with the nearest neighbor interactions, we

studied the loss differences for a set of minor loops with symmetric reversal points
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Figure 8.4: Difference between hysteretic losses for upper and lower minor loop
branches vs. the interaction strength. Data was averaged over 20 realizations of
randomness. Dashed line denotes a zero loss difference obtained for the mean field
RCIS model.

Hd = −Hr attached to major hysteresis. As shown in Figure 8.3 for two different

interaction magnitudes, the loss difference increases with the reversal magnetization

Mr(Hr), reaching the peak after the major loop coercive point and starts to decrease

to zero. Note, that doubling the interaction magnitude increases the loss difference

by a factor of about 7.

The dependence on the interaction strength for a fixed disorder is shown in Fig-

ure 8.4 for a minor loop with reversal magnetization Mr = 0.2. The difference between

the excess losses for ‘ub’ and ‘lb’ increases rapidly with the interaction strength, until

the critical point is reached. After the critical interaction, the entire system switches

in one large avalanche that occurs along the major loop. Minor loops inside the major

loop either do not exist or are hard to reach [97]. Consequently, the losses obtained
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for interaction strengths above the critical point Jcrit are equal along the lower and

upper branches of the major loop.

8.5 Summary

Switching events in many systems are normally associated with hysteretic losses even

when no interactions within the system exist. In this chapter, we demonstrated that

interactions can contribute additional losses during the switching events. Such excess

losses can play important role in systems with local interactions, and as shown here

behave asymmetrically for upper and lower minor loop branches, which contradicts

traditional thermodynamic models of hysteresis. In case of the mean field interactions,

excess losses do not exist and losses generated during the minor loop branches are

equal. Understanding the origins of the loss asymmetry in short interaction range

models will be a subject of future research.
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Chapter 9. Concluding remarks

9.1 Summary and conclusions

In this thesis we investigated the hysteretic processes (rate independent irreversible

processes) generated by a cyclically varying scalar parameter. The main goal was to

understand how the qualitative behavior of hysteresis cycles depends on the structure

of interactions between the basic elements of the system.

Motivated by available experimental results and by standard models, we devel-

oped the Random Coercivity Interacting Switch model (RCIS) which we then used

as a paradigm for complex systems with scalar hysteresis. The basic building blocks

of the model are the bistable spins with elementary rectangular hysteresis loops. Dis-

order in the system is modeled by assuming random widths of the hysteresis loops

of individual spins. In addition, we assumed that the spins interact via a network of

pair-wise interactions. When compared to traditional models of hysteresis, such as

RFIM for example, the main new property of the RCIS model is the existence of a

simple dynamical regime for weak negative interactions. The main characteristic of

this regime is trivial avalanches generated by spins flipping one by one along the field

direction, similarly to magnetic domains in media with very strong anisotropies. In

this ‘single spin flip’ dynamical limit, convergence to a unique state is guaranteed for

any interaction range and topology. This permits to overcome problems with mathe-

matical consistency often appearing in models of hysteresis with negative interactions.

As shown in this thesis, even this simple single spin flip dynamics produces nontrivial

behavior of minor cycles, ranging from closed minor loops to never stabilizing cycles.

The starting point was the investigation of origins of the cycle opening in the

RCIS model. It was shown in Chapter 5 that as long as the interactions are positive
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(i.e. favoring parallel alignment of neighboring spins), minor cycles produce closed

hysteresis loops at the end of the very first cycle independently of the structure of

interaction network. Although this is generally not the case if interactions are neg-

ative (favoring anti-parallel alignment of neighboring spins), still there exist some

negative interaction networks where closure of the minor cycles occurs at the end of

the first cycle. We gave two examples: 1) the mean field RCIS model, where every

spin interacts equally with every other spin, and 2) the Néel’s type mean field RCIS

model, where spins were divided into two groups with interactions between these two

groups only. While in the first case the minor cycles remain closed independently of

the interaction strength, in the second case there exists a certain interaction strength

at which open cycles suddenly emerge. Then, as the interaction strength increases,

minor cycles remain open and several external field cycles are required for the minor

loop formation. We found that the value of the critical interaction depends on the

variance of the spin-threshold distribution and therefore is fundamentally associated

with the presence of the disorder. The main difference between the fully connected

and the Néel’s type mean field models is in the number of variables required for

full characterization of the state. In the first case, it is sufficient to specify a single

variable corresponding to the average spin state (magnetization). In the second case

two state variables are necessary, each corresponding to the average spin state of the

particular spin group. Cycle opening appears at a critical interaction as soon as one

state variable begins to lag after the other. Based on this analysis we conclude that

there are two necessary conditions for existence of open cycles: 1) negative interac-

tions between the spins, and 2) the state of the system is described by at least two

independent variables (although some very simple two-state-variable systems, such as

a spin couple, still display only closed cycles).

As an opposite limit of the mean field (fully connected network) models, we con-

sidered a class of models with short range interactions, where each spin interacts with
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only a few neighbors (Chapter 6). One example is the RCIS model with spins distrib-

uted on a two-dimensional lattice and negative interactions extending only between

the nearest neighbors. Note that in this case, the state is completely characterized

only after specifying the state of each individual spin. The main difference here

seems to be the absence of sharp appearance of the cycle opening at any interactions

strength. Instead, we observed that for a given interaction strength and disorder

level, there always exists a particular realization of the randomness for which an open

cycle can be found. The number of open cycles for a given number of realizations of

randomness depends on the interaction strength relative to variance of the disorder.

Openings are rarely observed if interactions are weak.

Analysis of the origins of cycle opening in the short range lattice models can be

simplified by considering an approximation that divides the lattice into independent

spin-triplets. Such an ensemble of independent triplets is the simplest system produc-

ing open cycles (independent spin-couples produce closed minor loops). Additionally,

since any long range correlations are impossible, the opening must be due to the

inherent properties of individual triplets. Indeed, as it turns out, only triples with

specific arrangement of thresholds contribute to cycle opening of the entire ensemble.

Detailed analysis revealed that there are two mechanisms yielding the cycle opening.

The first mechanism produces open cycles where the magnetization difference after

the cycle equals to the spin state difference. The second mechanism produces open

cycles, where the magnetization difference after the cycle equals zero, but the spin

state difference is nonzero. We find that, while both mechanisms are coupled if ex-

ternal field cycles between symmetric reversal points, only the first mechanism exists

for cycles with the lower reversal magnitude sufficiently smaller than the magnitude

of the upper reversal. This shows the fundamental difference between the symmetric

and non-symmetric minor cycles. We then derived the dependence of the cycle open-

ing on the interaction and variance, which proves that the loop opening decreases
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continuously to zero as the interaction strength reduces to zero at a given variance

of the disorder. This conclusion is consistent with the short interaction range lattice

model. The possibility of the correlation effects in the lattice models, if any, will be

a subject of future investigations.

Based on the analysis of the mean field and short interaction range RCIS models,

as two opposite limits of the network connectivity, it became clear that the network

connectivity plays a crucial role in determining the behavior of cycles. In Chapter

7 we investigated the effects of interaction structure on the cycle opening assuming

RCIS model on a random network. Random networks are convenient since their con-

nectivity and topology can be tuned between the sparse and fully connected limits

via a single parameter; hence they are often employed as a paradigm for studying

complex systems. We considered cycles with symmetric reversal points and given the

conclusions from the analysis of the ensemble of triplet model, measured the cycle

opening by comparing the microstates before and after the cycle. As demonstrated,

when the network connectivity is sparse, minor cycles converge quickly to stable mi-

nor loops. As the network connectivity increases, the convergence rate decreases. At

a certain connectivity degree, non-convergent minor cycles appear which do not form

closed minor loops after an arbitrarily large number of external field periods. As we

find, the emergence of the non-convergent loops is associated with the presence of spe-

cific topological elements in the network structure, particularly the cliques (complete

subgraphs) of size 4. This conclusion suggests that behavior of hysteretic cycles could

prove to be a useful characterization method for probing topology and connectivity

of some systems with complex interactions. We note that the average state (magne-

tization) in our simulations did not show the same behavior as the microscopic state.

Finally, we examined effects of the interaction structure on certain thermodynamic

aspects of hysteresis, particularly behavior of hysteretic losses. First we showed that

for any interaction network it is convenient to separate total loss into two parts:



92

1) the inherent loss, associated only with the elements composing the system and

present even in the absence of interactions and 2) excess losses being solely due to

the interactions. Excess losses are absent for negative interactions in the single spin

flip dynamics limit. For this reason, we analyzed only the RCIS model with positive

interactions. We then considered mean field and the nearest neighbor RCIS models

with positive interactions, as two opposite limits of the network connectivity. It was

shown that while the inherent losses are present in both models, the excess losses exist

only for the RCIS model with the nearest neighbor interactions. In addition, excess

hysteresis losses due to the interactions introduce additional effects which have been

ignored in traditional models describing thermodynamics of hysteretic processes. Ex-

ample of such an effect is the different amount of losses generated during increasing

and decreasing branches of non-symmetric minor loops. These results support the

fact, that a proper thermodynamic description of hysteresis phenomena is still an

open problem.

9.2 Future outlook

In the future, this work will be extended into several different directions in both basic

and applied science. Several works already in progress are listed below.

1. Why we do not observe drifting R-type cycles? The models studied in this the-

sis consisting of bistable spins with either positive or negative interactions did not

reproduce the creeping R-type cycles (Figure 9.1), which are frequently observed for

example in magnetism and referred to as reptation effects. This suggests that in order

to observe the R-type cycles, the present models have to be generalized either to 1)

spin networks with both positive and negative interactions, or 2) spin networks with

multi-stable components and components of a vector nature. Such models are also

more realistic descriptions of many material systems. Another interesting question
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Figure 9.1: R-type cycle. Reversal points move in the same direction after every
external field period (see also Figure 2.3).

is how to properly quantify cyclic behaviors using macroscopic measurements. In

Section 7.3.2, we saw that cycle opening measured as a difference between magne-

tizations before and after the cycle often yields noisy results. Our future goal is to

analyze the statistical properties of fluctuations of the various macroscopic measures,

and identify their relations with the structure of the system.

2. Identification of structures of realistic complex networks. The observation

that hysteretic trajectories depend on the topological elements present in the network

structure stimulates search for universal relationships between the rich variety of qual-

itative hysteretic behaviors, and properties of underlying interaction networks [98].

In this thesis we focused on systems where spins are distributed on regular networks

(lattices) and then on networks modeled by classical random graphs, which are the

simplest and most straightforward realizations of complex networks. Future research

will concentrate on realistic networks with less trivial organizing principles, such as

the scale free and small world networks [87]. Scale free networks are characterized by

degree distributions with power law tails and we expect dependence of hysteretic be-

havior, such as e.g. the rate of the minor loop formation, on the associated power law

exponent. Another class of systems of interest is the small world network which allows

interpolating between the lattices and classical random networks and thus tuning the

average path length and the clustering coefficient. These properties are also expected

to influence hysteresis. We also want to investigate effects of the presence of various
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topological elements in the network such as trees, cycles, or complete sub-graphs.

The main motivation behind these studies is to develop a universal framework for

relating qualitative features of processes and the structure of networks for a broad

class of complex systems.

3. Patterned magnetic nanostructures. The modeling approach used in this the-

sis is very convenient for modeling hysteresis behaviors of various types of magnetic

nanostructures. Patterned magnetic nanostructures are important for technological

applications such as magnetic recording technology, sensors, MRAM, and magneto-

electronics. Developing these applications, however, relies on understanding and con-

trol of interactions in these structures, such as the local exchange interactions, for

instance. Interaction effects become particularly pronounced as the distance between

different features of the nanostructures decreases. These effects are typically mani-

fested by changes of macroscopic magnetic characteristics such as coercivity, switching

field dispersion, presence of induced anisotropies, etc. Our future goal is to analyze

links between the magnetic properties and the structure of patterned media including

the topological distribution and properties of individual elements, disorder and size

effects.

It is also of practical interest to understand the various dynamical and memory

aspects of hysteresis in patterned nanostructures, particularly the ability or inability

to recover their state for cyclically varying external fields. It becomes clear, based on

the results presented in this thesis that depending on the ‘design’ of the structure, it

is possible to observe either exact state recovery after every field period or a gradual

cycle closure extending over several periods. Since the state-pattern changes during

each cycle, the state of the patterned media could in principle be programmed by only

very simple external field histories such as a periodically varying external field. After

understanding the fundamental principles, e.g. the state vs. cycle number depen-

dence on interactions and disorder, it would be possible to fabricate programmable
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sensors suitable for biological and medical applications and to develop assembly tech-

niques directed by only uniform external fields. Ability to control information stored

using relatively uniform fields may have profound consequences for information stor-

age industry.

4. Applications to Spintronics. We also started to apply the computational mod-

eling approach developed in this thesis to understanding the physics of coupled ferro-

magnetic bilayers [34, 99–101]. Such structures can be viewed as a model system for

wider class of materials with exchange bias (Section 2.3). The goal is to understand

1) the origin of exchange bias, which is typically manifested by shifted and deformed

hysteresis loops, and 2) the origin of training effects where the loop shift changes with

external field periods. The training effects are analogous to R-type cyclic behavior

shown in Figure 9.1. Our modeling efforts will permit design of novel exchange bias

characterization techniques. Magnetic multilayers are interesting from a fundamental

as well as technological viewpoint. Ferromagnetic multilayers have been utilized as

disk recording media for the past five years due their superior stability and perfor-

mance characteristics. They are also used in Spintronic applications such as spin

valves, for example, and considered as candidates for developing MRAM technology.
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