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Abstract
Computational Modeling and Analysis

of Multi-timbral Musical Instrument Mixtures

Jeffrey Scott

Advisor: Youngmoo E Kim

In the audio domain, the disciplines of signal processing, machine learning, psychoacoustics,

information theory and library science have merged into the field of Music Information Retrieval

(Music-IR). Music-IR researchers attempt to extract high level information from music like pitch,

meter, genre, rhythm and timbre directly from audio signals as well as semantic meta-data over a

wide variety of sources. This information is then used to organize and process data for large scale

retrieval and novel interfaces.

For creating musical content, access to hardware and software tools for producing music has

become commonplace in the digital landscape. While the means to produce music have become

widely available, significant time must be invested to attain professional results. Mixing multi-

channel audio requires techniques and training far beyond the knowledge of the average music

software user. As a result, there is significant growth and development in intelligent signal processing

for audio, an emergent field combining audio signal processing and machine learning for producing

music.

This work focuses on methods for modeling and analyzing multi-timbral musical instrument

mixtures and performing automated processing techniques to improve audio quality based on quan-

titative and qualitative measures. The main contributions of the work involve training models to

predict mixing parameters for multi-channel audio sources and developing new methods to model

the component interactions of individual timbres to an overall mixture. Linear dynamical systems

(LDS) are shown to be capable of learning the relative contributions of individual instruments to re-

create a commercial recording based on acoustic features extracted directly from audio. Variations

in the model topology are explored to make it applicable to a more diverse range of input sources

and improve performance.

An exploration of relevant features for modeling timbre and identifying instruments is performed.

Using various basis decomposition techniques, audio examples are reconstructed and analyzed in a

perceptual listening test to evaluate their ability to capture salient aspects of timbre. These tests

show that a 2-D decomposition is able to capture much more perceptually relevant information with
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regard to the temporal evolution of the frequency spectrum of a set of audio examples. The results

indicate that joint modeling of frequencies and their evolution is essential for capturing higher level

concepts in audio that we desire to leverage in automated systems.
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1. Introduction

1.1 Motivation

Technology has had a tremendous impact on the way music is created, performed and enjoyed

in the past century. The advent of recorded music allowed audiences to enjoy performances without

leaving the comfort of their home. As the methods and equipment for capturing and processing

audio advanced, the process of recording became an art-form in itself and the recording engineer

and producer became just as essential as the musician, composer or conductor. Currently, producers

and engineers are highly sought after artists in their own right and the concept of using the “recording

studio as an instrument” has become commonplace. As music production, performance, recording,

listening and distribution becomes ever more dependent on technology, researchers and professionals

are beginning to rethink the entire pipeline from idea to recording, to the listener’s ear.

Computing technology is being leveraged to process and understand the world we live in on a

high level of abstraction and the realm of music and audio is no exception [6, 23]. The turn of the

century has ushered in a surge of advancement in digital technologies, specifically in the sphere of

media processing, indexing, organization and retrieval. The vast amount of content created daily

and easily uploaded to the internet has generated a need for powerful automated tools to help

providers and consumers make sense of what is out there. Entire new modalities of interaction

with tools for content consumption and creation are now possible through the sustained efforts of

interdisciplinary researchers, entrepreneurs and professionals. In the audio world, researchers from

a wide variety of fields including signal processing, machine learning, psychoacoustics, information

theory and library science have combined their efforts to analyze the way we process music on a

physical and psychological level. Music Information Retrieval (Music-IR) researchers attempt to

extract high level information such as pitch, meter, genre, rhythm and timbre directly from audio

signals as well as semantic meta-data over a wide variety of sources. This information is then used

to organize and process data for large scale retrieval and novel interfaces.

Digital audio production tools have also significantly impacted the way we consume, produce

and interact with music on a daily basis. Consumers have the ability to create quality recordings

in a home studio with a relatively limited amount of equipment and mobile devices provide easy

to use platforms for performance, composition and remixing. In the professional audio sphere,
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although there is a wide variety of digital audio workstations (DAW) and plug-in suites available,

the level of expertise required to operate them proficiently necessarily inhibits many newcomers

from obtaining reasonable results even with a significant amount of effort. This has led to an

exploration in the audio signal processing community for methods of automatically analyzing audio

and improving the perceived quality. Several significant difficulties arise when attempting this task.

The qualitative difference between the preference of individuals, the wide range of timbre, dynamics

and instrumentation and the multitude of production techniques available present ample hurdles to

overcome.

This thesis explores methods, models and representations for working with audio from a stand-

point of music production and creation primarily involving multi-channel (separated) audio sources.

The three key areas of investigation are the following:

1. Inferring high level perceptual information from audio tracks

2. Analyzing the relationships between audio tracks

3. Developing salient feature representations of tracks

The experiments presented herein address one or more of these topics through a variety of

methods. The contributions in these areas are outlined below.

1.2 Contributions

This thesis approaches the problem of multi-track audio processing from both an analysis and

synthesis perspective. I investigate methods to automatically process audio using time varying

models, discuss acoustic feature salience for mixing models and present a framework for estimating

timbre contributions of individual instruments in a mixture. The contributions are ordered by the

authors opinion of significance to the field.

1. In Chapter 6 supervised machine learning is used to approximate mixing tasks from data.

Parameters relating to control values that mixing engineers use to process audio are extracted

from a multi-track corpus. A framework is proposed to model the relation between acoustic

features extracted directly from audio and the application of these control values [82]. It

leverages a representation of the time-varying characteristics of audio using linear dynamical

systems (LDS). That approach is improved by reducing the constraints on the model and

generalizing it to a larger number of instruments. Additionally, we explore an extended feature
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set within this framework and analyze the performance of each individual feature as well as

combinations of features. The features are chosen to contain information about the total

energy of the signal, energy within various frequency bands, spectral shape and dynamic

spectral evolution [81].

2. Having shown that the LDS approach is able to model specific characteristics of the audio,

Chapter 5 investigates its ability to synthesize notes and reproduce timbres. A corpus of in-

strument tones is represented using linear dynamical systems and then re-synthesized, showing

the capability of the model to capture and alter perceptual characteristics [78].

3. Chapter 7 discusses a set of experiments designed to evaluate different features for timbre and

instrument identification. Individual instrument examples are reconstructed from features.

The lossy nature of this reconstruction is investigated to determine whether salient aspects

of the audio signal that humans use to percieve individual timbres are retained. The results

show that 2-D representations, those that consider the temporal evolution of the spectrum are

much more perceptually relevant in a computational framework.

1.3 Organization

In Chapter 2, I discuss the relevant background information and previous work relating to the

experiments in this thesis. It encompasses a range of subjects due to the interdisciplinary nature of

the work, opening with a summary of the perception of audio including the psychoacoustic principles

of masking, loudness and timbre. Multiple approaches of timbre modeling are discussed including of

global models and dynamic timbre models. A summary of audio engineering principles and practices

are presented followed by recent work on automated mixing techniques and relationships between

audio perception and mathematical modeling.

Chapter 3 outlines the mathematical formulations and models used throughout the subsequent

chapters. The datasets used in the thesis are also discussed.

In Chapter 4, an experiment to determine the efficacy of an approach to multi-track mixing based

on information about the instrument type in a multi-track session is performed.

The material in Chapter 5 presents experiments to synthesize audio and manipulate it using linear

dynamical systems as well as represent the temporal evolution of timbre. Methods for representing

audio mixtures and analyzing the contributions of components to the mixture are discussed and an

evaluation of the models to capture salient aspects of timbre is completed using listening tests.
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Chapter 6 evaluates supervised techniques for processing multi-channel audio and Chapter 7

analyzes commonly used features in the community for representing musical instrument timbre.

Chapter 8 summarizes the findings presented herein and recommends future directions for re-

searchers based upon the results of this work. Audio examples and related materials may be found

online1

1http://music.ece.drexel.edu/research/AutoMix
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2. Background

This chapter provides an overview of research in the areas of intelligent audio processing, timbre

perception/modeling and feature design that are relevant to the developments presented in later

chapters. First, I will familiarize the reader with major concepts and practices in music production

from a technical standpoint. Those with a prior knowledge of mixing engineering and perception

of sound may want to skip ahead to Section 2.2 for an overview of research related to automatic

mixing. The subsequent section discusses the literature of timbre perception as well as computational

modeling of timbre. The final section of the chapter highlights previous research on evaluating

perceptual information in features based on listening tests.

2.1 Multi-Track Mixing

This section presents common concepts and practices employed in mixing audio. The mixing

engineer uses the tools at their disposal to modify a signal with respect to the time, frequency

and spatial domains. The time domain representation of the signal is the waveform captured by

a microphone or otherwise synthesized electronically. Common time domain processing operations

include dynamic range compression, noise gating, amplification and attenuation. Frequency domain

operations are generally accomplished using a Fourier representation and either the complex or

magnitude spectra is used depending on whether the goal is processing or analysis, respectively.

The spatial domain refers to the stereo field and depth of field. The stereo field is the perceived

direction that a sound is coming from and depth of field refers to the perceived closeness (distance)

to the listener. Nearly all tools available to a mixing engineer will modify one or more aspect of the

signal in frequency, time or space.

The mixing procedure consists of processing at multiple scales with respect to the input tracks.

The engineer will apply processing to each individual track as well as sub-groups (i.e. drums, vocals,

guitars) and to a lesser extend the mixture as a whole. This workflow is depicted in Figure 2.1.

One important aspect of mixing is defining the goals and objectives that the array of processing

techniques employed by the engineer will accomplish. On a global level, there are no concrete

qualitative measurements or features that will guarantee a good mix or even an acceptable mix.

The quality of a mix-down is dependent upon the instrumentation and arrangement of the song as
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Figure 2.1: Diagram picturing the basic process of multi-channel audio mixing.

well as the audio fidelity of the source material. A poor performance of a bad song that was not

recorded properly cannot be transformed into a hit through mixing alone. However, there do exist

general guidelines one can follow and pitfalls one should avoid to achieve a better sounding mix.

Two of the main objectives of the mix are developing a balance in the spatial, time and frequency

domains and ensuring clarity and definition of the instruments. Processing performed to reach

one goal may be complementary with another goal or could have an adverse affect on other sonic

objectives. For example, increasing the low-mid range frequency content of a piano may give it more

body and warmth but when evaluated in the context of the other instruments in the mixture can

create a muddy sound. It is often the case that processing an instrument sounds good in context

of the mixture but detracts from the quality of the recording when listening to the instrument by

itself.

While the desired spectral balance can often depend upon the genre of the music being mixed,

a general rule is to avoid significant excess or deficiency in specific frequency ranges. Too much low

frequency content below approximately 250 Hz will create a boomy or muddy sound. Conversely a

lack of energy in the low register will result in a thin or weak sound.

Clarity and definition are related to spectral balance but also apply to the spatial domain. In

order to hear individual instruments clearly when they are played simultaneously it is important for
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there to be distribution across the stereo field. If many instruments are panned to the same position,

the clarity of each instrument will be reduced. Definition is also related to depth of field which can

be manipulated primarily though applying reverb. Adding reverb effectively pushes an instrument

further away from the listener. While increasing the perceived distance of a sound from the listener

will create space in the mix, it will also decrease the clarity and definition of the source.

A good summary of the various techniques and practices employed in mixing engineering may

be found in [37, 83]. Many of the assumptions about mixing audio and methods for applying

processing are discussed in [64]. In this work, Pestana explores various commonly used techniques

and uses listening evaluation and self-report from professional engineers in an attempt to quantify

the decisions of engineers.

Before delving into some of the common techniques and tools for mixing we must first discuss

how humans perceive audio and music. Several aspects of psychoacoustics are essential to the mix-

ing engineer’s decision making process and as a result, determine their choice of signal processing

techniques to use. In addition, there is significant literature about modeling the auditory process

computationally which can be leveraged in developing automation techniques for multi-channel mix-

ing.

2.1.1 Psychoacoustics

The methodical study of human perception of sound is known as psychoacoustics. Psychoacoustic

principals result from the physical constraints of sound propagation, the conversion of the sound

to electrical potential in the human auditory system and the cognitive processing of sound in the

brain. Many sub-topics exist within psychoacoustics including sound source localization, binaural

processing, pitch perception, timbre, masking and loudness. Here we focus on masking, loudness

and timbre as they relate to monophonic and polyphonic audio.

Masking

Auditory masking refers to the phenomenon of certain sounds being imperceptible in the presence

of other sounds. This occurs due to the physical mechanism for translating the mechanical energy

absorbed in the middle ear into electrical signals to be passed through the auditory nerve [16]. If two

sinusoids occur within the critical bandwidth then masking will occur. Consider the 1000Hz sinusoid

played at 70 dBSPL in Figure 2.2. To be perceived, another sinusoid would have to be played with

amplitude larger than that of the masking threshold depicted. A low amplitude sinusoid will not be
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Figure 2.2: An illustration of frequency masking.

perceived if there exists a higher amplitude sinusoid of similar frequency at the same time. As the

sinusoids become separated in frequency, the masking effect is reduced and the masked sound will

become audible. Alternatively, the amplitude of the quieter sinusoid could be increased above the

masking threshold, allowing a listener to perceive both sinusoids.

Frequency masking is a significant consideration in multi-track mixtures. As the instrumenta-

tion of a song becomes denser (i.e. more instruments), masking plays an ever increasing role and

instruments that share the same frequency range will fight for intelligibility in the mix. Frequency

masking can be either complete, where one sound is rendered inaudible by the presence of another,

or partial where the perceived loudness of one sound is affected by the concurrent sound.

The engineer has two tools to deal with problems created by masking: equalization (EQ) and

panning. To reduce the effects of masking and increase clarity and definition in both instruments,

a filter is applied to ‘carve out’ a frequency range in one instrument to make room for the other.

Often, one instrument is chosen as the desired instrument to be heard and a target frequency range

of overlap is determined. In Figure 2.3, a vibraphone has significant energy in the 400-1000 Hz range

that overlaps with the guitar track. The guitar is filtered with a band-stop filter and the resultant

spectrum is shown. This has the effect of making the vibraphone more prominent in the mixture.

In addition, filtering the signal also makes the guitar more defined since there is greater frequency

separation between the two instruments.
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Figure 2.3: Original spectra and modified spectrum of a guitar track after equalization to reduce
masking effects.

Methods for modeling masking generally rely on heuristic models derived from the critical band-

width mentioned above [7]. The critical bandwidth of an auditory filter roughly defines the range

in which another sound will cause masking and effect the perception of the other sound. The band-

width is defined in terms of the center frequency of the filter and increases as the center frequency

increases. This relationship approximates the observation that humans have more ability to differen-

tiate frequencies that are close together at the lower end of the frequency spectrum. The Equivalent

Rectangular Bandwidth (ERB) is often used to specify the relationship between the center frequency

and the critical bandwidth,

ERB = 24.7(4.37f + 1), (2.1)

where f is the center frequency in kHz [52].

A critical band filterbank is shown in Figure 2.4. Each filter channel has approximately equal

energy and the channels are spaced logarithmically over the range of human hearing. One common

method of implementing a critical band filterbank is to use a gammatone filterbank with the center

frequencies distributed though the frequency domain in proportion to their bandwidth [56]. A com-

parison of the spectrogram (513 dimensions) and the output from a 10-band critical band filterbank

is shown in Figure 2.5.
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Loudness

There are many tools and methods to monitor level and amplitude of a signal but loudness is an

inherently perceptual measure. Two important concepts central to a discussion about loudness are

frequency dependence and the just noticeable difference (JND). Frequency dependence forms the core

of all loudness models. As the frequency of a sound is modulated but kept at constant amplitude,

our perception of the loudness of the sound will change. Therefore, what we commonly refer to

as volume or loudness is an inherently perceptual quantity and cannot be analytically defined as a

relation to amplitude or some other physical measure such as RMS energy. Experiments have shown

that human sensitivity to loudness and frequency change is greatest in the mid-range frequencies

and is reduced in both the very low and high audible ranges [16].

Figure 2.6 shows the equal loudness contours originally developed by Fletcher and Munson

through a series of perceptual experiments and modified in the figure by the International Stan-

dards Organization [24, 35]. Each point along one of the curves represents equal perceptual loudness

(phons) for a pure tone (sinusoid). At quiet volumes, low frequencies require significantly greater

amplitude than frequencies in the middle register to be perceived at all. The low frequencies (below

100Hz) exhibit much less susceptibility to changes in sound pressure level (SPL) with regard to

perceived loudness. A 50 Hz sinusoid needs to be almost 55 dB SPL to sound as loud as a 1kHz

sinusoid at 10 dB SPL, a tremendous increase. It is also worth noting that the equal-loudness con-

tours change shape as overall volume increases. The curve for 90 phons is much flatter than the

curve at 10 phons specifically in the low frequencies.
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Figure 2.5: Log frequency spectrogram and critical band filterbank outputs of the song No Phone
by Cake.

There are several standards for modeling perceptual loudness as opposed to simple amplitude

or intensity monitoring as is done in volume unit (VU) meters. The International Standards Or-

ganization (ISO) Normal equal-loudness-level contours specify sound pressure levels for pure tones

(sinusoids) similar to the Fletcher-Munson curves. The International Telecommunication Union de-

veloped specifications for measuring loudness in [36]. This standard implements a four stage process

to model loudness consisting of frequency weighting using a two-stage filtering process, mean square

calculation, channel weighted summation and multi-threshold gating. This specification is designed

for use in broadcast and monitoring complex sounds and does not apply to pure tones as is the case

of the ISO standard. Figure 2.7 shows the signal flow involved in computing the loudness measure-

ment. The K-weighting filter specifies a two-stage filtering operation. The first stage accounts for

the acoustic effects of then head and is based upon a rigid body spherical approximation. This is a

second order IIR filter with frequency response shown in Figure 2.8. The result is a 4 dB hi-shelving

filter with a transition band starting around 1 kHz. Stage two of the K-weighting filter is also a

second order IIR filter. In this case, it is a high pass filter with the passband starting around 200Hz.

Notice that these resemble the inverse of the basic shape of the Fletcher-Munson curves in Figure

2.6. Let us consider a signal y the result of passing an original signal, x through the K-weighting
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Figure 2.7: Block diagram showing the processing involved in computing the loudness measurement
in the International Telecommunication Union BS.1770-3 standard.

filter. Then the power, p of the signal is computed as

p =
T

∑
n=0

y[n]2, (2.2)

and the loudness is given by

Lk = −0.691 + 10log10(p). (2.3)

Loudness models are often applied prior to extracting features from audio. They have been used as

part of front end feature extraction models for a variety of Music-IR tasks. They are particularly

relevant for tasks where we are trying to emulate what a listener hears rather than perform brute

force computation to find patterns. The next section relates these psychoacoustic principles to

techniques and practices used to mix audio sources.
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Figure 2.8: Stage 1 filter of the K-weighting filter for loudness estimation. This section approximates
the acoustic absorption of the head.
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Figure 2.9: Stage 2 filter of the K-weighting filter for loudness estimation.

2.1.2 Common Mixing Techniques and Practices

Multi-track production often involves a constant evaluation and re-evaluation of the mix. Changes

made to one instrument or group of instruments will necessarily impact the perception of the other

instruments in the mix. A coarse to fine approach is often employed where large changes are made

first and then smaller and smaller changes are applied with each iteration. A basic grouping of the

processing categories is as follows:

• Levels - The gain (boost/attenuation) applied to each track

• Panning - The perceived position of the source in the stereo field

• Equalization - Filtering applied to boost or cut specific frequency ranges for desired effect

• Dynamics - Non-linear processing to control/normalize the changes in the energy of a track
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• Effects - Modulation, delay, reverb, etc.

Since each change made will affect the objectives of spatial and frequency balance as well as

instrument definition and clarity, it is common to return to balancing the levels after making other

processing decisions. For example, panning a synthesizer to the left in order to create space and

prevent overlap with the vocals may cause the synthesizer or vocals to be too loud compared to the

rest of the accompaniment and need to be attenuated. Compressing the vocal line to normalize the

volume may cause it to become too soft in the mix and require a compensating level boost. This

process is summarized in Figure 2.10.

Levels

EQPanning

DynamicsEffects

Figure 2.10: Iterative process of mixing. (Courtesy of Cyrille Tallandier)

There are different approaches to the order in which the instruments are mixed in addition to

the order processing is applied. Two main approaches are the serial and parallel orders. The serial

approach involves focusing on more important layers first such as the lead vocals or drums while

there is more space in the mix and adding layers in order of importance. One caveat of this method

is the potential lack of space for the instruments added in at the end of the process.

The parallel approach starts with all instruments audible and adjusts levels to get a rough mix.

Once this is attained, the engineer will follow a process similar to that outlined in Figure 2.10. An

advantage to this method is that the mix as a whole is constantly being evaluated. One difficulty that

may arise (especially in sessions with many tracks) is an inability to focus on individual elements in

the mix. These two different approaches may inform decisions about how to computationally model

the mixing process. One of the causes for recent interest in this area of research is the difficult
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and time-consuming nature of using the existing audio tools available on the market. The following

section outlines some of those difficulties and shows how there is increasing demand for automated

tools to assist in music production.

2.1.3 Current Software Audio Mixing Tools

There are a plethora of tools for multi-track audio production on the market, far too many to

make a comprehensive list of any use. However, these can be divided into two main classes, digital

audio workstations (DAWs) and audio effect plug-ins. DAWs are standalone programs for full-service

editing and manipulation of multi-track audio and symbolic data (MIDI/OSC/etc.). They provide

the capability to sum tracks, perform processing and route audio both internally and externally.

Most DAWs come with a standard set of basic audio effect plug-ins and allow for third party plug-

ins to be easily integrated into the processing framework. A brief overview of available tools is shown

in Table 2.1.

DAWs Plugins

Logic Equalizer Phaser
ProTools Compressor Flanger
Cubase Limiter Delay
Studio One Gate Chorus
Digital Performer Stereo Spread Distortion
Reaper
Live

Table 2.1: Common digital audio workstations and effect plug-ins.

One of the primary reasons for developing intelligent software for music analysis and processing

for multi-channel audio is the inherent complexity of the task. The tools for producing quality audio

possess a vast amount of options and are rather daunting for a new user to familiarize themselves

with. Screenshots of four major DAWs are shown in Figure 2.11. Each has a similar facade where

the audio tracks are presented in a horizontal display with controls for each track on a sidebar. Some

of the functionality can be hidden or obscured for improved workflow and some desired functionality

may be buried within several sub-menus of a confusing hierarchy.
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(a) (b)

(c) (d)

Figure 2.11: The often complex interfaces in four major DAWs – (a) Steinberg Cubase (b) Apple
Logic (c) Ableton Live (d) Avid ProTools.

Intelligent Plugins

Whereas most plug-ins provide increased audio fidelity or a more intuitive interface or emulation

of a ‘legendary’ piece of audio hardware, there is a recent trend to produce software that can

listen to the signal and make decisions based on a higher level construct rather than amplitude or

thresholding.

Melodyne, released by Celemony in 2000, is one of the first such tools. While the original

version provided tools to alter pitch, manipulate formants and alter vibrato, the more recent release

is able to separate individual pitches in polyphonic audio and manipulate them separately with

minimal effect on the remaining signal.

The Vocal/Bass Rider plug-ins from Waves allow a user to set a target loudness for a track

in relation to the other tracks in the instrument mixture. This effect is similar to a dynamic

range compressor except that is does not just normalize the loudness with respect to the track it is

modifying, it considers the loudness of the overall mixture.

Trackspacer by Waves attempts to create space in a mix for a target track. The tool analyzes
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the frequency content in on track and automatically filters out similar frequency content in another

track. The user still must identify the tracks that overlap in frequency but the tool simplifies the

process of correcting this issue.

Unfilter is a plug-in by Zynaptiq that attempts to remove unwanted filtering due to a recording

environment or processing chain. The software attempts to learn a filter that will compensate for

the change in the spectral envelope of the original audio.

Ozone from Izotope takes spectral ‘snapshots’ of a reference recording. This spectral profile is

used to create an equalization filter that tries to match the envelope of the source material to the

reference recording.

2.2 Automated Mixing

Intelligent automated combination of multi-channel audio is a relatively new endeavor in the

research community. Adaptive digital audio effects describes an architecture that analyzes input

tracks to appropriately determine the parameters used to control the signal processing chain of a

mixture. At the core level, the concept is not new, evidenced by the implementation of common

effects such as compressors and limiters. A compressor applies a non-linear gain based on the

RMS energy in a signal. The parameters allow a user to decide the degree of compression as well

as the response time and threshold for activation. Determining the proper amount and type of

compression to use is a fairly advanced skill for a mixing engineer and is often misunderstood and

misapplied by novice engineers. One goal of intelligent music processing systems is to develop models

to automatically make estimates of effect parameters based on a set of input tracks, psychoacoustic

modeling, audio engineering best practices and machine learning.

Early work dealt with live situations primarily focused on speaking engagements with multiple

microphones [20]. The goal in this scenario was to selectively deactivate microphones when they

were receiving no input, thereby reducing feedback as well as comb filtering effects due to the multi-

microphone setup.

More recent work in the live setting focuses on creating a more balanced and artifact free mixture.

Determining and correcting comb filtering effects when there are multiple sources present with

multiple microphones is explored in [15]. Methods for adjusting the gains for both the performer

monitor mixes as well as the front of house (audience) mix are explored in [62, 90]. These methods

rely on an equal loudness assumption that attempts to normalize the perceptual loudness of the
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sources in the mixture to ensure that all layers can be heard by the listener. A detailed explanation of

several methods for automatically modifying panning, equalization, levels and time offset correction

can be found in [60].

2.2.1 Evaluating Mixing Assumptions

Recent work has focused on exploring and validating the generalization of techniques that mixing

engineers use in the context of producing a track for release [64, 65]. In [64], Pestana generates a

series of 88 assumptions of how mixing decisions are made and explores and validates them using a

variety of strategies. This is the most thorough execution of exploring mixing assumptions to date.

The assumptions span the space of possible signal processing operations and their subsequent effect

on spatial and frequency balance. Many of the assumptions have to do with the relative levels of

instruments and their role in the mix, the effect of panning, equalization and compression. A few

example assumptions are stated below:

• All signals should be presented with equal loudness.

• No element should be able to mask any of the frequency content of the vocals.

• The main track is always panned centrally

• Low-end frequencies should be centrally panned

• Hard panning should be avoided

• Equalization use should always be minimized

• There is an optimal amount of compression in terms of dB and it depends on sound source

features

The assumptions are separated into categories (loudness, panning, equalization, temporal pro-

cessing, dynamic range control) and evaluated based on the quantitative and qualitative measures

below

1. Measuring parameters from mixing sessions of successful songs

2. Having successful sound engineers perform specifically tailored mixing exercises

3. Measuring features from completed successful mixes
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4. Performing subjective listening tests on experienced subjects

5. Analyzing through quantitative surveys the habits of successful mixing engineers

6. Performing exploratory interviews with successful mixing engineers

7. Using literature review

The primary conclusion for loudness is that all instruments should not be equally loud. There is

an order of importance, with the vocals always being the primary element in the mix. Additionally,

no other element should mask the frequency range of the vocal tracks. It was also found that the

order of precedence changes over time as the arrangement of a song progresses [64].

Pestana found that panning processes exhibited the strongest conclusions. Low-frequency content

should be centered as well as the main element in the mix (vocal/melody). In sessions with high

track counts, most of the other elements will be panned off-center to some degree. Exceptions occur

for sparse arrangements, but this general rule was shown quantitatively through comparing RMS

energy of left and right channels. Two key assumptions that were disproved are that wide panning

(full left/right) should be avoided and that the degree of panning should be proportional to the

amount of high frequency content in the signal.

Some of the most interesting results arise from the equalization assumptions. The common

assumption of applying a high-pass filter when there is no low frequency content was shown to

be infrequently performed. Assumptions about using subtractive equalization more than additive

equalization as well as generalizations about engineers making minimal use of equalization were also

shown to be false. Engineers stated that there is no target spectral profile (envelope) however it was

found that there is significant similarity especially when grouping songs by decade and genre [66].

This was shown by comparing relative spectral shape independent of absolute magnitude across a

corpus of popular tracks from 1950-2010.

Temporal processing involves a higher number of parameters than panning loudness and becomes

more difficult to analyze as it is difficult to control for all parameters. Pestana found that there

is little correlation between tempo and reverberation time yet delay time is frequently quantized

with the tempo. The level of the reverb signal was found to be preferred around 9 Loudness Units

(LU) relative to the level of the dry signal. Other components of reverberation application were

inconclusive, specifically the use of pre/post high- and low-pass filters.

Finally, the assumptions about dynamic range compression sought to determine what situa-

tions warranted use of compression as well as the desired settings of the parameters (primarily
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attack/threshold/release). Control of low-frequency content and erratic changes in loudness were

the two main technical reasons for applying compression. Surprisingly, the control of low-frequency

content was more prominent in both the mixing exercises and subjective listening tests. Stronger

correlations were found between instrument type rather than acoustic features in the signal.

The work presented in [64] provides a great base for implementation of systems that can apply

the above concepts in an automated fashion. This signals a significant shift as intelligent tools for

the creation of and manipulation of audio for production purposes is slated to become a reality.

2.2.2 Cross-Adaptive Methods

The most essential concept of modern approaches to automating multi-channel instrument mixing

is to consider the signal characteristics in terms of how they relate to the other tracks in the ensemble.

The simplest form of this concept is side-chain processing. In side-chain processing, features from one

track (energy/loudness) are used to control the processing applied to that same track or a different

target track. One very common use of side-chaining is to duck the bass to the kick drum in a rock or

dance mix. Section 2.1.1 will show that the low frequency content in the kick drum and bass causes

masking and results in reduced clarity of each instrument. Due to the transient nature of the kick

drum, the bass signal is lowered in volume when the kick drum is played. A compressor is applied

to the bass signal, using the analysis of the kick drum to control the effect. The end result is that

the bass volume is reduced during the attack of the kick drum then rises back to its initial level.

This reduces the masking affect the bass has on the kick drum and allows it to cut through and be

more prevalent in the mixture.

Cross-adaptive processing of multi-track mixtures extrapolates the side-chain concept to the

mixture as a whole. In this architecture, features such as energy, loudness and spectral content are

computed on each input source and compared to both other individual sources and the mixture as a

whole. This is very similar to the process the mixing engineer employs as described in Section 2.1.2.

The basic architecture of a cross-adaptive mixing system is depicted in Figure 2.12. Each track is

analyzed individually, producing a desired feature set that is informative for a target goal. If the goal

is to determine gain levels for each track, features such as RMS energy (multiple time scales) and the

frequency spectrum will be passed to the cross adaptive analysis block. Here, the features will be

compared across tracks using psychoacoustic principles of loudness and masking as well as encoded

information about general audio engineering practices. A system for live mixing is constrained by

real-time computation concerns but there is no reason an offline system cannot perform multiple
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Figure 2.12: Signal flow and architecture of a cross-adaptive mixing model.

passes using the mixing model, hoping to converge on a resulting mixture that no longer requires

processing based on the constraints of the model.

Reiss et al. have done extensive work in developing real-time mixing systems for levels, equaliza-

tion, dynamic range compression and panning [3, 46, 48, 49, 58, 59, 61, 62, 63, 72, 95]. In addition

to developing the cross-adaptive approach in Figure 2.12 they have conducted structured listening

tests to evaluate the performance of their systems. In comparisons between unmixed audio, man-

ually mixed audio and automatically mixed audio, their methods reliably outperform the unmixed

audio and consistently approach or even surpass the mixes created by trained engineers.
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The general formulation for applying effects in a multi-channel audio scenario is as follows

mixl[n] =
M−1

∑
m=0

K−1

∑
k=0

ck,m,l[n] ∗ xm[n], (2.4)

where xm are individual audio channels and a set of control vectors denoted by ck,m,l represent

various processing operations depending upon how c is defined. If the control vectors are scalars,

this is an application of a gain coefficient, for delay, the control vector becomes a delay operator. For

filtering and equalization, c becomes an impulse response that is convolved with the time domain

signal.

In [48], the authors present a system that seeks to normalize the perceived loudness of each

element in a multi-track mixture. The loudness is determined according to the ITU 1770 method

in the EBU R-128 recommendation discussed in Section 2.1.1. Loudness levels are computed on a

per track basis and a noise gate is used to determine whether there is activity on each track or if

the noise floor is the primary signal. The loudness values are smoothed (low pass filtered) over time

to prevent transients from having a pronounced and prolonged effect on the system parameters.

The output fader parameters are also filtered to prevent artifacts. If the fader values change too

rapidly, the system resembles a dynamic range compressor rather than a gain control system. A

listening test was conducted that had participants rate the equality of the perceptual loudness of

each individual instrument in the mix on a scale of 0-100 as well as the overall quality of the mix.

The system performed well with the automatically generated mix significantly outperforming the

unmixed audio.

This approach is extended in [95] by Ward et. al where a partial loudness model is incorporated

to account for the frequency masking phenomenon when there are multiple sources present. Most

experiments on perceptual loudness involve measurements of individuals responses to isolated pure

tones or complex sources. In [53], Moore et. al explore the affect of having multiple audio sources

on the perceived loudness of a target source. Ward incorporated this method of modeling partial

loudness into a previous automated fader control algorithm. Masked and unmasked loudness levels

are computed on both short-term and long-term scales and a correcting gain coefficient is computed.

This is an iterative process, where the normalized tracks are then used as input to the system.

The system will converge to a state where the corrective gains are below a given threshold and the

loudness normalization process is complete.

An automated stereo pan positioning system is described in [49]. The objectives of the system
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are to achieve spatial and spectral balance by analyzing the loudness and frequency content of an

instrument signal and applying appropriate panning rules based on the analyses. The system applies

constraints that low frequency sources should be centered and signals should be panned further from

center proportional to the amount of high frequency content they contain. To accomplish this, a

user defined panning width which determines the maximum stereo spread and the spectral centroid

are used and mapped using either a linear, logarithmic or custom mapping function. A perceptual

listening test to evaluate the effectiveness of the system was performed. The mixes generated by

professional audio engineers fared better in user ratings for overall preference, and appropriate use

of stereo mixing. However the automatic system performed consistently across multiple genres and

would occasionally outperform one of the less experienced engineers.

In addition to the cross-adaptive mixing methods presented above, another new direction of

research involves evaluating the perceptual differences of DSP effects in regard to semantic labels

used in the audio engineering field.

2.2.3 Relating Perceptual Terms to Audio Effects

Mixing engineers and musicians use a wide variety of terms to describe sound and timbre [76].

In the context of a recording or mixing session, the conversation between musicians and the record-

ing/mixing engineer will often use such terms in an attempt to hone in on a desired tone or timbre.

Several works attempt to link high level descriptive terms like bright, muddy, metallic and warm

with parameters of audio effects that manipulate the sound [74, 55, 71, 75, 69].

User
Ratings

Audio
Processing

Generate
Mapping

Figure 2.13: Modeling procedure to relate words that describe sound and timbre to audio signal
processing parameters.
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The general framework for developing these systems relies on gathering perceptual ratings of

modifications to audio and recording the parameters used for modification. In [75], Sabin et. al

attempt to find a personalized method for applying equalization curves to input audio. Not only is

there disagreement as to the degree to which an individual describes a sound with a given semantic

descriptor (bright/warm/tinny), but the same operation performed on different audio sources can

induce perceptual responses. If a boost to midrange frequencies brightens one in instrument, it could

make another sound tinny or boxy.

Through applying a variety of equalization curves to audio examples and recording user ratings

of semantic audio descriptors in response to the processing they were able to learn which frequency

bands effected which terms using regression techniques. From this a personalized equalizer was

developed that allowed a user to increase the brightness based upon the learned preference of the

user. This was verified by listening tests that found the automatically generated curves closely

correlated with manually generated curves by the user. This method was extended to use transfer

learning and active learning in [55] to require significantly less examples of user input to associate a

characteristic curve with the audio descriptors.

A similar experiment was performed to map words like bright, clear, and boomy to different

reverberation settings applied to audio samples. Whereas filters can be intuitively described by

magnitude response curves, the same intuition is lacking in the impulse response of a reverb. They

specify several metrics that characterize reverberation to semantic descriptors and find that although

the audio measures differ significantly between users, their agreement with the perceptual ratings is

high. This indicates that the system learns a perceptually relevant model on a per user basis.

These experiments rely on individual determination of how a specific sound or instruments

‘sounds’. The next section discusses the concept of timbre, what makes a specific instrument or

sound the way it does and how humans process and organize audio using the concept of timbre.

Additionally, methods for modeling timbre computationally are presented.

2.3 Perception and Modeling of Timbre

The American Standards Association [1] defines timbre as “that attribute of auditory sensation in

terms of which a listener can judge that two sounds similarly presented and having the same loudness

of pitch are dissimilar.” This definition is rather vague, problematic and controversial insofar as it

does not actually say anything about what timbre actually is. From this, all we know is that timbre
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is not pitch and timbre is not loudness. Finding a definition for timbre and the dimensions that

define it is an active field of research and no agreed upon definition has yet been coined. This creates

complications in accurately describing what timbre is, let alone modeling timbre computationally.

Timbre is often associated with a single sound source or instrument. Humans are very adept

at identifying the source instrument when presented with a sound they have heard before. Not

many individuals would confuse a trumpet with a piano, however, timbre is not simply defined by

the source of a signal. The sound of rapping on the exterior of a piano may sound very similar

to knocking on a wooden table. Many other examples can be imagined where instruments played

in non-traditional manners would be difficult to identify. Perceptual phenomena such as pitch

and loudness are understood to result in part from underlying physical phenomenal of the human

auditory system. Timbre is a multidimensional property whose very dimensions are still debated

in the research community. There is, however, general agreement that the temporal and spectral

envelopes play a significant role in determining if two audio signals ‘sound similar’. What follows is

a summary of previous research in timbre, the role it plays in perceiving sound sources and what

methods of modeling timbre have been explored.

2.3.1 Timbre Perception

In multi-timbral mixtures, each instrument contributes to the mixture in the dimensions of space,

time and frequency. Two important elements that are often cited as being essential to the perception

of timbre are the spectral envelope and temporal envelope. The temporal envelope represents the

overall energy of the signal over time. The curve is generally divided into four sections that describe

the components of the envelope. The attack, decay, sustain and release (ADSR) portions of a sonic

event can exhibit significantly different characteristics depending on the source that produced the

sound. The temporal envelope and its sections are detailed in Figure 2.14.

The attack portion of the temporal envelope describes the rise time of the amplitude of the signal.

In general, the attack can be either sharp (fast) or soft (slow) with quick attacks typically being

associated with percussive instruments or tonal instruments that are excited by an impulsive event

(e.g. guitar, piano). Soft attacks usually occur when a sound is produced via a sustained excitation

(e.g. bowed strings, woodwinds, brass). Decay refers to the transition from the attack portion to

the sustained, or steady-state, section of the note where the amplitude remains relatively consistent.

The release denotes the rate at which the event progresses from steady-state to silence. Although

instruments often have particular ADSR envelope characteristics that are associated with them,
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Figure 2.14: Attack, decay, sustain and release segments of the ADSR envelope.

sounds created using synthesizers or software commonly allow the ADSR envelope to be explicitly

described and modified. Equally as important (if not more important) is the spectral envelope of

a sound source. For harmonic sounds this is often described as the dB per octave rolloff of the

harmonic amplitudes. For non-harmonic sounds, the spectral envelope is simply the general contour

or shape of the magnitude frequency spectrum. For harmonic sounds produced by instruments, this

spectral shape remains fairly stable through the range of the instruments. One interpretation is

that an instrument has a spectral envelope that is sampled by the fundamental frequency and its

associated harmonics, with the general contour remaining steady as the frequency content changes.

Figure 2.15 shows temporal and spectral envelopes for a bass guitar, cello, kick drum and snare

drum. Comparing these plots reveals significant information about the characteristics of each in-

strument. The bass and cello have similar fundamental frequencies but differ significantly in both

their temporal and spectral envelopes. The bass in (a) has a sharp attack followed by a slow release

and an unclear sustain portion. The release portion rolls off fairly quickly as the finger is released

from the string. The cello (c) has a much longer attack which is proportional to the release. The

sustain is also not well defined in the cello and the decay is much more extended than the bass

guitar. Note the difference in time scale between (a) and (c). The spectral envelopes in Figure 2.15

(b) and (d) exhibit similarities since both instruments possess a significant amount of low frequency

content. Note that the high frequency rolloff in the bass is more pronounced than in the cello due

to the higher harmonic content present in the cello signal.

The kick drum (f) envelope is comprised mostly of low frequency, experiencing over 40 dB of

rolloff before it reaches 500Hz. The snare drum lacks very low frequencies and exhibits a quick rolloff

up to 500 Hz and then a slow decline in energy to around 2000Hz before it flattens out. Although
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Figure 2.15: Temporal and spectral envelopes for bass guitar (a-b), cello (c-d), kick drum (e-f) and
snare drum (g-h) .

the kick drum (e) and snare drum (g) posses many more similarities in their temporal envelopes

than the bass and cello, the decay between the drums differs significantly. The energy of the kick

drum dissipates much more quickly than the snare drum.
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Experiments exploring the role of timbre in identifying sounds show disagreement between results

from different researchers [29]. In several early experiments, identification of sounds was more

difficult for subjects when the attack segment of a tone was removed versus when the decay segment

was removed [5, 14, 21]. Investigating the role of melodic context, Campbell used a set of two-note

legato phrases on six instruments [10, 11]. The transitional period between the two notes was varied

between 20ms and 110ms. Subjects found the longer ‘legato transients’ to be more informative

than the attack, steady state or shorter transient segments. In an experiment comparing the role

of the steady state and transient across single note and legato musical phrases, Kendall found that

the attack and legato transients were not as significant as in previous research [41]. Much of this

disagreement can be attributed to the definitions of attack, decay, steady state and transient. At the

time, these terms were not defined in a quantifiable manner and led to unfair comparisons between

experimental results.

More recently, Hajda attempted to provide more formal definitions for the ADSR envelope seg-

ments using characteristics of the overall energy and average spectral content. This method, the

Amplitude/Centroid Trajectory (ACT) bases the segments on the first derivative and global and

local maxima/minima of the RMS amplitude and spectral centroid values. Results showed that the

salience of the attack and transients versus the steady state depended upon whether a tone was

impulsive (e.g. plucked strings, piano, marimba) or continuant (e.g. bowed strings, flute, clarinet).

It was also found that when continuant instruments were played in a staccato manner, the attack

and transient was more salient than the steady state due to the extremely short duration and rapid

decay resulting from the staccato performance.

Work on obtaining semantic descriptors for decomposing the multidimensional aspects of timbre

into its component parts has yielded fairly consistent results. Common methods for achieving this

goal are semantic differential analysis and variation verbal attribute magnitude estimation (VAME).

The former involves subjects rating where a sound lies on a scale whose extremes are polar opposites,

such as ‘brightness’ and ‘dullness’. VAME uses semantic descriptors and their negation (bright/not

bright) as the labels for the ends of the scale. A dimensionality reduction technique such as Factor

Analysis (FA) or Principal Components Analysis (PCA) is often applied to determine the most

salient descriptors for timbre. Complications arise in this method due to the subjective nature of

the descriptions and overlap in subjects’ association with the terms. Nevertheless, many of these

studies find similar descriptors as the most salient dimensions over a variety of data sets. Common

perceptual axes are brightness, luminance, texture and fullness, relating to the following semantic
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descriptors: bright, dull, sharp, full, warm, harsh, thin and nasal.

Multidimensional Scaling and Dimensionality Reduction

Brightness

Fullness

Texture

Figure 2.16: An example timbre space resulting from multidimensional scaling.

A significant portion of research in the perception of timbre has focused on multidimensional

scaling. The basic framework for these experiments relies on collecting perceptual data about the

sounds and performing some transformation to arrange the sounds in a geometric space. The goal is

that sonic events that are perceived as similar will be closely grouped and sounds that are perceived

as dissimilar will be farther apart in the space. The perceptual data collected is a pairwise similarity

comparison between two sounds. Once every possible pair has been rated, the data is transformed to

span the space so that the distances are preserved in the lower dimensional representation (usually
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two or three dimensions). One significant difference between finding salient descriptors using VAME

with dimensionality reduction and MDS is that the dimensions in MDS must be intuitively extracted

by the researcher. If two dimensions are chosen for the representation, qualitative analysis of the

groupings in the space is the only way to reveal what the individual component are. An example

of a result obtained from MDS is shown in Figure 2.16. In this result, the y-axis is related to the

spectral energy distribution, the x-axis corresponds to the onset-offset patterns of tones and the

azimuth relates to the temporal evolution of the attack portion of the tone’s envelope.

Other experiments have found very similar results both repeating the semantic MDS task as well

as using other methods of dimensionality reduction to produce a timbre space with perceptually

relevant axes [98, 42, 89, 30, 9, 97, 50].

Modeling Timbre

In addition to the music perception work on describing timbre using semantic descriptors and

MDS, much of the timbre perception research has focused on analysis by synthesis. In these ex-

periments, tones are synthesized digitally based on characteristics of the spectral and temporal

envelopes. This method allows for much more tightly controlled experiments but suffers from a lack

of realism in the audio presented to the subjects. Some authors even describe that the participants

had trouble differentiating between their opinion of the sound they were listening to versus their

memory of the instrument that the synthesized tone is approximating.

Further research tries to show correlations between the space derived from multidimensional

scaling and features computed directly from the audio or spectrum [32]. Multivariate-regression

techniques and self-organizing maps (SOM) are employed to determine features that have high

correlation with the organization of the timbre space. From these experiments, features such as

spectral centroid, spectral flux and spectral irregularity in addition to others were shown to be

correlated with salient dimensions of timbre. A list of features commonly used in timbre analysis

and synthesis are detailed in Table 2.2.

Beyond the simple spectral features used for sound synthesis, much of the work on modeling

timbre computationally revolves around the Music Information Retrieval (Music-IR) community and

specifically the instrument recognition and song similarity tasks. Instrument recognition systems

leverage machine learning methods to represent the underlying structure in the data given a set of

features and instrument labels. Building upon the significance of the spectral envelope from the

music perception literature, many instrument recognition systems rely upon some type of spectral
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Feature Name Description

Mean Coefficient of Variation Average variation of spectral components
MFCCs Approximation of the spectral envelope
Spectral Contrast Estimation of the harmonicity of the signal
Bandwidth The frequency range present in the signal
Centroid Center of mass of the spectrum (brightness)
Flux The change in energy from the previous frame
Rolloff Frequency below which X% of energy lies
Zero-Crossing Rate Number of zero-crossings in time domain signal
Band Energy Ratio Ratio of energy between two filterbank channels
Sub-Band Features Features computed on filterbank channels

Table 2.2: Common features extracted for timbre analysis.

envelope feature.

Two main approaches involve models that capture the dynamic information of each example and

models that represent the global statistics of the sounds. Methods that account for the global

statistics include K-Nearest Neighbors (K-NN) as well as kernelized K-NN, Naive Bayes (NB),

Decision Trees (DT), Neural Networks (NN), Support Vector Machines (SVM) and Gaussian Mixture

Models (GMM) [22, 32]. Work that models the temporal evolution of the features uses Hidden

Markov Models (HMM), and Gaussian Processes (GP)[57, 85]. The next sections detain examples

of such systems.

2.3.2 Modeling Global Timbre

Aucouturier et al. seek to develop a quantitative model of polyphonic timbre and complex

instrument textures. Their approach is to describe the timbre of a song as a whole rather than

attempt to decompose the signal into its separate sources and model the timbre of the resulting

individual instruments. Rather than describe the timbre of a song as acoustic, crisp or muddy, the

goal of this procedure is to determine the similarity of two songs based on timbre. The overall

system of the proposed method is outlined below:

• Divide the signal into overlapping frames and multiply by a window function

• Compute a feature vector for each frame

• Use the feature vectors across all frames to develop a statistical model of timbre

• Compare timbre models to determine whether two songs sound similar
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Feature Extraction

Many instrument recognition systems use the spectral envelope as a means to classify a given

audio sample. The authors suggest that the spectral envelope maintains a relatively steady shape

over a short time for a mixture of instruments. Figure 2.17 shows the spectral shape for five seconds

of the song Eleanor Rigby by The Beatles. The plot shows the spectrum of the audio at different time

instances and the basic spectral shape for the whole clip is depicted as the thick red line. The lighter

lines indicate the beginning of the audio clip and as time increases the lines become darker. A feature

that provides an approximation of the spectral envelope is the widely used mel frequency cepstral

coefficients (MFCC). MFCCs provide a good, compact approximation of the spectral envelope and

are frequently used throughout the literature for speech/speaker recognition and music information

retrieval (Music-IR). The procedure for calculating MFCCs is outlined in Appendix A.
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Figure 2.17: The change in the spectrum and overall shape of the spectrum (red line) for 5 seconds
of audio.

Statistical Modeling

Since the goal is to recognize a statistically emergent shape, a mixture of Gaussians is used

to model the feature data extracted from the audio. A Gaussian mixture model (GMM) models
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the probability density associated with a data set as a wighted combination of individual Gaussian

distributions as

p(Ft) =
M

∑
m=1

πmN (Ft,µm,Σm) (2.5)

where πm are the mixture coefficients and Ft is the feature vector observed at time t. The parameters

involved in the modeling process include the mean and covariance of each individual Gaussian

component and the number of Gaussians used to model the data.
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Figure 2.18: Unlabeled data set (a), one Gaussian (b) and two Gaussians (c).

Consider the data set shown in Figure 2.18(a). To represent this data with a multivariate

Gaussian distribution, it suffices to find the empirical mean and covariance as shown in (b) where
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the ellipse represents one standard deviation, σ, from the mean. This does not seem to fit the data

very well as there are a significant number of outliers present. Modeling the data with two Gaussians,

as in (c), there seems to be a better characterization of the data set. Using three Gaussians may

also yield a satisfactory model, but as the number of Gaussians, m, increases, the possibility of

over-fitting the data becomes significant.

In an unsupervised learning problem there is no information about what data points are related

or how many classes are present. In order to model this data using a Gaussian mixture model,

assumptions must first be made about the number of Gaussians present and the initial parameters

associated with each Gaussian. The parameter estimates are calculated using the k-means algorithm

where k is equal to the number of Gaussians to train, and the variance is assumed to be the distance

to the closest estimated mean value. Using the same simple data set in Figure 2.18, and assuming

two Gaussians, Figure 2.19 represents the k-means algorithm for parameter initialization.

The k-means algorithm needs a starting seed for the mean values, µk (k clusters), from which

to iterate and converge on an answer. This seed value can be chosen from a uniformly distributed

random variable over the range of all possible values, a subset of random sample points from the

data or a variety of other schema. Once the seed values are chosen, the distortion measure, J , is

minimized first with respect to rnk then with respect to µk [6],

J =
N

∑
n=1

K

∑
k=1

rnk ∣∣xn −µk ∣∣
2 (2.6)

where

rnk =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if k = arg min
j

∣∣xn −µj ∣∣

0 otherwise.

(2.7)

This equates to labeling each observed data point with the label associated with the closest

mean value, then once all data points have been labeled, calculate the means of the clusters. The

calculated means will be different from the initial guesses and each data point is again labeled with

its closest mean value. The process iterates until convergence. Once the initial parameter estimates

for each Gaussian of the GMM have been determined, the model is trained using the Expectation

Maximization (EM) algorithm. Appendix B describes this process in detail.
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Figure 2.19: Unlabeled data set (a) and iterative k-means process (b)-(f).

Model Evaluation

A corpus of songs consisting of 350 titles from 37 artists of various genres was used for training

and evaluation of the model. Aucouturier et al. state that the “’songs were chosen in order to have
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clusters that are timbrally consistent (all songs in each cluster sound the same)”[2]. They accomplish

this by choosing songs by the same artist and same album then perform slight modifications to the

grouping through subjective tests. In order to evaluate the distance measure in Equation 2.9, the

number of songs in the same cluster closest to the test song is determined and compared to the total

number of songs in the cluster. That is, for a cluster of size Ni, calculate the ratio of the number

of songs closest to the song Si from the same cluster as Si, divided by the total number of songs in

the cluster. This measure is known as R-precision.

p(Si) =
card(Sk ∣CSk = CS)

Ni
(2.8)

The R-precision measure was used to find the optimal number of both MFCC coefficients and

Gaussian distributions to model timbre. Iterating through the number of MFCCs and Gaussians in

increments of ten from [10, 50] and [10,100] respectively, the authors found that M = 50 Gaussians

and N = 20 MFCCs gave the best R-precision.

A sampling method is employed to compare the timbre models for two songs and evaluate their

similarity. Given two songs, A and B, a large number of sample points, SA, is taken from song A

and the likelihood that they came from the model of song B is computed. The same is done for a

sample of song B and the result is normalized. A value of NS = 1500 was found to be a large enough

sample size for evaluation.

D(A,B) =
NS

∏
i=1

P (SAi ∣A)P (SBi ∣B)

P (SAi ∣B)P (SBi ∣A)
(2.9)

This distance provides a quantitative measure of how similar the songs are within the context of the

model, but to evaluate whether they sound the same a person must listen to them and make a value

judgment based on their perception.

The authors give the example of a model query where a song title is entered and the n closest

songs are located based on their timbre models. For the song “Linstant de Vèritè”, a jazz piano solo,

many piano songs are returned from various genres including classical, jazz and musicals. Notably,

the song “Singin’ in the Rain” was returned for this query which may seem like an unlikely candidate,

however in music discovery and exploration systems the unexpected can be desirable since the goal

of the listener is to locate new music based on the input song.
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Continued Investigation

The selection of ground truth data for modeling timbre is difficult due to the subjective nature of

the task. Aucouturier et al. employ the “same artist - same album” approach as was stated above.

In post production of an album, global processing is often applied to the entire album in the mixing

and mastering stages. Effects such as equalization and compression are applied to all the songs on

the album using the same parameters for each song. In effect this is modifying the spectral envelope

of every song in the same fashion. This phenomenon is known as the album-effect and has been

shown to induce better than expected results in many Music-IR systems. Appendix C provides an

investigation of this effect in relation to the timbre model presented in this section.

2.3.3 Dynamic Timbre Modeling

The previous section presents a model of the long term spectral statistics of a song to infer

information about timbre. Music however, is a dynamic process and by nature changes over time.

Burred et al. include temporal information in their model of timbre citing that not only does

the spectral envelope have a significant impact on timbre perception, but the temporal envelope

also considerably contributes to the sonic texture perceived by a listener [8]. They seek to model

the timbre of individual instruments which would lend to instrument detection/recognition, source

separation and sound synthesis. To this end they model the change in the spectral envelope over

time as a Gaussian process.

Feature Extraction

As discussed previously, the spectral envelope is an informative feature to model timbre. To ob-

tain an accurate representation of a specific instrument, a data set of many notes in the instrument’s

range is necessary as well as various articulations and dynamics since the features may differ over

the range of the instrument. In order to achieve this, the authors concatenate many note examples

in time to develop their feature vectors. The prominent peaks (harmonic partials) of the spectrum

are selected and tracked from frame to frame.

Given that the notes of the training examples are known, a fixed number of partials (p = 20)

is extracted for each note. Since different notes are concatenated to form the feature vectors, this

introduces the problem of properly representing them in matrix form. One device employed, Partial
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Indexing (PI), simply places the amplitude of each partial in a row of a data matrix, X

A4 C5 E5

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ar1(1760) .. ArN1
(1760)∣ Ar1(2092) .. ArN2

(2092) ∣ Ar1(2636) .. ArN3
(2636)

Ar1(1320) .. ArN1
(1320)∣ Ar1(1569) .. ArN2

(1569) ∣ Ar1(1977) .. ArN3
(1977)

Ar1(880) .. ArN1
(880) ∣ Ar1(1046) .. ArN2

(1046) ∣ Ar1(1318) .. ArN3
(1318)

Ar1(440) .. ArN1
(440) ∣ Ar1(523) .. ArN2

(523) ∣ Ar1(659) .. ArN3
(659)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Arn(Fp) indicates the amplitude of the frequency of the pth harmonic in the rth frame and

N1,N2 and N3 indicate last frame of each note. In other words, the bottom row is the fundamental

frequency, f0, of each note (A4, C5, E5) for a given frame of audio and each row above represents

a harmonic (multiple of f0). The problem inherent in the partial indexing method is that each row

contains amplitudes of harmonic partials that are located at different frequencies as indicated above,

in effect misaligning fundamental frequency-invariant features in the data, that is features that occur

at the same frequency regardless of the note being played.

STFT
SPECTRO-
TEMPORAL 
ENVELOPE

PEAK 
TRACKING

PEAK 
PICKING

INTERPOLATION 
AND SAMPLING

Figure 2.20: System diagram of the spectro-temporal envelope extraction process.

A modified method involves performing Envelope Interpolation (EI) to align the frequencies in

the data matrix. In this method, the partials are extracted and tracked over time as in the previous

method, then the spectral envelope is approximated by interpolating between each partial. The

interpolated function is then sampled at G regular intervals across a given frequency range. This

process is depicted in Figure 2.21. In matrix form this means that the columns of X all contain

amplitude values that span the same frequency range as opposed to the PI method where each

column spans a different frequency range.

Once the matrix containing the spectro-temporal envelope has been computed, Principal Com-

ponents Analysis (PCA) is performed to reduce the dimensionality of the data. After mean centering

and variance normalization, the resultant projection is
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Figure 2.21: System overview for spectro-temporal envelope extraction.

Yρ = Λ−1/2
ρ PT

ρ (X −E{X}) (2.10)
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where Λρ = diag(λ1, ..., λD) is a diagonal matrix consisting of the D largest eigenvalues of the

covariance matrix Σx, and Pρ contains the corresponding eigenvectors (ρ indicates reduced dimen-

sionality).

Statistical Modeling

In order to preserve the essential time information in the data the authors choose to model

the frequency vectors as the result of an underlying random process. Therefore, each instrument

is modeled as a trajectory of the feature vectors. The resulting trajectories for each sample of an

instrument are combined to represent a single instrument prototype curve. The trajectories must be

of the same length to do this, which requires interpolating the length of each individual trajectory

to be the same as the length of the longest sample trajectory. If Rmax is the length in frames of the

longest trajectory, then all other trajectories are interpolated to have length Rmax. Every point in

the prototype curve treated as a Gaussian random variable, pir ∼ N (µir,Σir) with empirical mean

and covariance matrix given by

µir =
1

Si

Si

∑
s=1

ỹsir

Σir = diag(σ2
i1,σ

2
i2, ...,σ

2
iRmax), σ2

ir =
1

Si − 1

Si

∑
s=1

(ỹsir −µir)
2 (2.11)

Hence each Ci = (pi1,pi2, ...,piRmax) prototype curve represents a D-dimensional non-stationary

Gaussian random process whose mean and covariance changes over time

Ci ∼ GP (µi(r),Σi(r)) (2.12)

where Ci is the curve of the ith instrument and r indexes time. The database used to generate the

curves consisted of 423 total song files for the five instruments. Two or three instruments of each

instrument type were played at three dynamic levels - piano (soft), mezzo-forte (moderately loud),

forte (loud) - covering a range of one octave from C4 to B4.

The first dimension in the PCA space corresponds to the overall spectral shape and energy which

agrees with the assumption that the spectral envelope is a determining factor in human perception of

timbre. The trace along the second dimension illustrates a trade-off between high frequency energy

and low frequency energy, creating a point about which the ratio of high to low frequency content
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pivots.

Model Evaluation

To evaluate the efficacy of the model, an instrument classification task is performed to assess the

model’s ability to differentiate between various timbres. A total of 1098 instrument samples over all

five classes (trumpet, piano, clarinet, violin and oboe) and encompassing the same dynamic range

as used in the model development comprised the data corpus for this task. In order to compare

the curve extracted from the test sample to the prototype curve, the test sample must also be

interpolated to be the same length as Rmax. The test sample is classified according to the average

Euclidean distance between its mean points and the mean points of the i instrument prototype

curves, Ci,

d(Ũ ,Ci) =
1

Rmax

Rmax

∑
r=1

¿
Á
ÁÀ

D

∑
k=1

(µ̃rk −µirk)2 (2.13)

where µ̃rk is the interpolated mean vector for the rth frame of the test sample. The averaged results

of the ten-fold cross validation classification task are shown in Table 2.3(b). This shows that the

partial indexing approach, which does not align frequency in the data matrix is outperformed by

the envelope interpolation process indicating that fundamental frequency variant features are more

important in describing timbre than f0-invariant features.

A polyphonic instrument recognition experiment was also performed to evaluate the effectiveness

of the model to capture elements of timbre. This experiment again used 1098 samples, using 66% of

them as the training data and the remaining 33% were used to develop 100 mixtures of instruments.

Mixtures involving only one pitch from each instrument class are denoted as simple mixtures and

test samples with more than one note per instrument are complex mixtures.

An onset detection phase was introduced in which new partial tracks that occurred signified the

beginning of a note. This is necessary to ensure that the test trajectory corresponds to a single note

and does not overlap multiple notes. In addition to the Euclidean distance measure, a likelihood

approach was used where the maximum probability that a note came from a particular instrument

was found. The results of the polyphonic instrument recognition test are shown in Table 2.3(a).

From the research presented in Sections 2.3.2 and 2.3.3 we see that the spectral envelope and

the manner in which it evolves over time are central to similarity in the perceptual realm as well

as computational tasks such as instrument recognition. This knowledge and results presented next
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(a) Polyphonic classification results

Simple Mixtures Complex Mixtures
Number of Instruments 2 3 4 2 3
Euclidean Distance 68.48 52.25 41.28 64.66 50.64
Likelihood 73.15 55.56 54.18 63.68 56.40

(b) Monophonic classification results

Method Accuracy STD
PI 74.9% 2.8%
EI 94.9% 2.1%

Table 2.3: Instrument recognition results for polyphonic and monophonic audio samples. [8].

from previous research serve as motivation for the experiments presented in later chapters.

2.4 Perceptual Feature Evaluation

The work presented here was originally published in [77] and later turned into a book chapter

[79]. It serves as a basis for experiments presented in Chapter 7 that seek to find representations for

timbre that correlate with human perception not just statistics of labeled data (genre/mood/tags).

The work that follows is oriented specifically toward the domain of music emotion recognition (MER)

but the same basic concepts and experimental design can be applied across various topics.

A musical piece is made up of a combination of different attributes such as key, mode, tempo,

instrumentation, etc. While not one of these attributes fully describes a piece of music, each one

contributes to the listener’s perception of the piece. These experiments hope to establish which

compositional attributes significantly determine emotion and which parameters are less relevant.

These parameters are not the sole contributors to the emotion of the music, but are within our

ability to measure from the symbolic dataset we use in our experiments, and therefore are the focus

of this study [39]. Specifically, we want to determine whether these compositional building blocks

induce changes in the acoustic feature domain.

We motivate our experiments from findings that have been verified by several independent ex-

periments in psychology [33, 73, 96]. When discussing emotion, we refer to happy versus sad tem-

perament as valence and higher and lower intensity of that temperament as arousal [91]. Mode and

tempo have been shown to consistently elicit a change in perceived emotion in user studies. Mode

is the selection of notes (scale) that form the basic tonal substance of a composition and tempo is

the speed of a composition [70]. Research shows that major modes tend to elicit happier emotional
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responses, while the inverse is true for minor modes [17, 27, 28, 96]. Tempo also determines a user’s

perception of music, with higher tempi generally inducing stronger positive valence and arousal

responses [17, 27, 26, 73, 96].

2.4.1 Data Collection

In previous studies (such as [96]), several controlled variations of musical phrases are provided

to each participant. Since we are studying the changes in the acoustic feature domain, we require

samples that we can easily manipulate in terms of mode and tempo and that provide a wide enough

range to ensure we are accurately representing all possible variations in the feature space. To this

end, we put together a dataset of 50 Beatles MIDI files, attained online1, spanning 5 albums (Sgt.

Peppers, Revolver, Let It Be, Rubber Soul, Magical Mystery Tour). In order to remove the effect of

instrumentation, each song was synthesized as a piano reduction and a random twenty second clip

of each song was used for our labeling task.

Mechanical Turk Annotation Task

In order to annotate our clip pairs, we use the Mechanical Turk online crowd-sourcing engine

to gain input from a wide variety of subjects [88]. In our Human Intelligence Task (HIT), we ask

participants to label four uniformly selected song pairs from each of the three categories: original

MIDI rendering, MFCC reconstructions, and chromagram reconstructions. For each pair of clips

participants are asked to label which one exhibits more positive emotion and which clip is more in-

tense. The three categories of audio sources are presented on three separate pages. The participants

are always comparing chroma reconstructions to chroma reconstructions, MFCC reconstructions to

MFCC reconstructions or MIDI renderings to MIDI renderings. Subjects never compare a recon-

struction to the original audio. For each round, we randomly select a clip to repeat as a means of

verification. If a user labels the duplicated verification clip differently during the round with the

original audio, their data is removed from the dataset.

2.4.2 Experiments and Results

Our first set of experiments investigates the emotional information retained in some of the most

common acoustic features used in Music-IR, MFCCs and chromagrams. As described above, users

listen to a pair of clips that was reconstructed from features (MFCC or chroma) and rate which is

1http://earlybeatles.com/
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more positive and which has more emotional intensity. We seek to quantify how much information

about musical emotion is retained in these acoustic features by how strongly emotion ratings of the

reconstructions correlate with that of the originals. We first relate the user ratings to musical tempo

and mode, and then we explore which features exhibit high variance with changes in tempo and

mode or are invariant to altering these musical qualities.

Running the task for three days, we collected a total of 3661 completed HITs, and accepted 1426

for an approval rating of 39%, which is similar to previous work annotating music data with MTurk

[45, 47, 88]. The final dataset contains 17112 individual song pair annotations, distributed among

457 unique Turkers, with each Turker completing on average ∼ 2.5 HITs. With a total of 160 pairs,

this equates to ∼ 35.65 ratings per pair.

For each pair and for each audio type, we compute the percentage of subjects that rated clip A

as more positive (valence) and the percentage that labeled clip A as more intense (arousal)

pv =
1

N

N

∑
n=1

1{An = HigherValence}, pa =
1

N

N

∑
n=1

1{An = HigherArousal} (2.14)

where N is the total number of annotations for a given clip, pv is the percentage of annotators

that labeled clip A as higher valence, and pa is the percentage of annotators that labeled clip A as

higher arousal. For each song pair, we then compare the percentage of Turkers who rated song A as

more positive in the original audio to those who rated song A more positive in the reconstructions,

yielding the normalized difference error for all songs.

Audio Normalized Difference Error
Source Valence Arousal

MFCC Reconstructions 0.133 ± 0.094 0.104 ± 0.080
Chroma Reconstructions 0.120 ± 0.095 0.121 ± 0.082

Table 2.4: Normalized difference error between the valence/arousal ratings for the reconstructions
versus the originals.

In Table 2.4, we show the error statistics for the deviation between the two groups. The paired

ratings of each type are also verified with a paired Student’s t-test to verify that they do not fall

under the alternative hypothesis that there is a significant change, but as we are looking for proof
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that there is no change, average error remains the best indicator.

Relationships Between Muiscal Attributes and Emotional Affect

The general trend of major tonality being associated with positive emotional affect and higher

tempo corresponding to an increase in arousal or valence was shown in previous research above.

What follows is an analysis of the data for trends relating major/minor modes and tempo to valence

and arousal.

The entire dataset S is divided into a subset M ⊂ S that consists of pairs that contain one major

mode song and one minor mode song, as well as a subset T ⊂ S in which pairs differ in tempo

by more than 10 beats per minute (bpm). For subset M , the percentage of users who labeled the

major song as more positive and the percentage of users who label the major song as more intense

is calculated. Similarly, for subset T , the tempo and intensity data are compared to the user ratings

for valence and arousal. Looking at Table 2.5, the results are commensurate with the findings from

the various psychology studies referenced in Section 2.4, namely that major songs are happier and

faster songs are more intense.

Null Hypothesis Agreement Ratio

Major Key Labeled as More Positive Valence 0.667
Faster Tempo Labeled More Positive Valence 0.570
Major Key Labeled as More Positive Arousal 0.528
Faster Tempo Labeled as More Positive Arousal 0.498

Table 2.5: Percentage of paired comparisons that yielded the desired perceptual result for mode and
tempo.

One area where we expected larger agreement is the relationship between tempo and intensity.

We only have the beats per minute for each song, and we label the faster song as the one with a

higher bpm. The note lengths and emphasis in relation to the tempo are disregarded in this analysis

and may be a source of uncertainty in the result. Depending upon the predominant note value

(quarter/eighth/sixteenth), a slower tempo can sound faster than a song with a higher number of

beats per minute. These are two different compositions, not the same clip at two different tempos.

This section provided a perceptual evaluation of emotional content in audio reconstructions from

acoustic features. In addition, the findings agree with those of previous work showing correlation
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between major keys and increased positive emotion as well as increased tempo and increased positive

emotion and activity. For tempo, mode and key we have provided a variational analysis for a large

number of acoustic features. This style of analysis is used later in Chapter 7 to show salience of

feature representations for timbre and instrument recognition.
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3. Methods, Models and Features

This chapter introduces the mathematical models and methods used in the experiments presented

in later chapters. Methods for regression, dimensionality reduction, basis decomposition and state

space modeling will be discussed.

3.1 Multiple Linear Regression

Linear regression models the relationship between some scalar dependent variable α and a de-

pendent variable y through a projection given by β. We assume that each value in α is a linear

combination of (in this case) features {y1, . . . , ym},

α = Yβ (3.1)

where Y is an N ×M matrix, M is the number of features and N is the number of examples. The

projection matrix for mapping from Y to α is determined in the least squares sense through the

following minimization

β̂ = min
β

∣∣Yβ −α∣∣
2
2. (3.2)

3.2 Linear Dynamical Systems

Linear dynamical systems models the statistical properties of real-valued multivariate observa-

tions. A latent state variable models the evolution of the sequence, capturing the dynamic nature

of the data. Figure 3.1 shows a depiction of an inputless linear dynamical system, the variables in

Equations 3.3–3.6 are shown in the diagram.

We formulate the linear dynamical system as follows

αt = Aαt−1 +wt (3.3)

yt = Cαt + vt + ȳt. (3.4)
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Figure 3.1: Diagram of a linear dynamical system modeling a noisy process.

Here, wt and vt are sampled from zero mean Gaussian noise sources

w ∼ N (0,Q) (3.5)

vt ∼ N (0,R). (3.6)

The dynamics matrix A models the evolution of the data as a linear transformation in each time

step and C translates the α values from the latent state space to the observation space, y ∈ Y R.

To train the model A and C are estimated through constraint generation and least squares,

respectively. A constraint generation approach is used to estimate A since a stable solution is

guaranteed [84]. The covariances Q and R are computed from the residuals of A and C. Prior to

training, the data is mean centered due to the model assumpation that the variables are Gaussian

and zero mean. The feature ȳ and weight ᾱ means are retained for the testing phase.

3.3 Dynamic Texture Mixtures

Linear dynamical systems are often referred to as dynamic textures. Dynamic textures were de-

veloped in the computer vision community to model sequences that exhibit stationary characteristics

in space and time [12, 19]. They were shown to successfully represent the varying statistical proper-

ties of audio based on timbre features in [4]. A similar mathematical formulation used in Equations

3.3-3.6. It is instructive to consider the graphical model associated with the dynamic texture and
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Figure 3.2: Graphical model for (a) dynamic texture (b) dynamic texture mixture model.

the dynamic texture mixture. Figure 3.2(a) shows the graphical depiction of the dynamic texture

where yt are our observations and xt are our hidden states. Note that this bears much resemblance

to a Hidden Markov Model (HMM). The LDS and HMM models bear deep resemblance both in

terms of their structure and general methods of inference. The graphical model in Figure 3.2(a)

is the same for an HMM, the key difference being that an HMM has discrete states for the latent

variable whereas the LDS contains a continuous distribution over the latent variables.

Figure 3.2(b) shows the graphical model for a mixture of dynamic textures. If (a) is a dynamic

texture with parameters Θ = {A,C,Q,R, ȳ} then (b) represents the addition of the mixture com-

ponent priors z = {z1, z2, . . . , zk} such that the individual LDS component parameters are now given

by Θk = {Ak,Ck,Qk,Rk, ȳk}. The system of equations defining the dynamic texture mixture are

xt = Azxt−1 +wt (3.7)

yt = Czxt + vt + ȳz (3.8)

w ∼ N (0,Q) (3.9)

v ∼ N (0,R). (3.10)

Here we have introduced the mixture component variable

z ∼ multinomial(p1,⋯, pK), with
K

∑
k=1

pk = 1. (3.11)

To learn a DTM, a signal is separated into N segments {y(i)}Ni=1 with y(i) = {y
(i)
1 , . . . y

(i)
τ } where τ is

the segment length. The parameters Θ that best fit the data are learned in the maximum-likelihood
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sense,

Θ∗
= argmax

Θ

N

∑
i=1

log p(y(i);Θ). (3.12)

The log likelihood of the data is maximized with respect to the parameters. This is accomplished

using the Expectation-Maximization (EM) algorithm.

3.4 Principal Component Analysis

A common technique used for dimensionality reduction, data visualization and feature extraction

is Principal Component Analysis (PCA). This method is defined as an orthogonal projection of data

into a principal subspace such that the variance of each dimension of the projected data is maximized.

For a set of vector observations xn of dimensionality D we project the data into a space of dimension

K, where K <D. For simplicity consider the case K = 1 and let us define a vector p as a unit vector

such that pTp = 1. The projection of the data into this single dimension is then y = pTxn. The

variance of the projected data is then given by

1

N

N

∑
n=1

(pTxn − pTx̄) = pTSp (3.13)

where S is the covariance matrix of the data and x̄ is the sample mean

x̄ =
1

N

N

∑
n=1

xn. (3.14)

We want to maximize the projected variance pTSp with respect to p. To do this, we introduce a

Lagrange multiplier λ,

pTSp + λ(1 − pTp). (3.15)

Differentiating the above equation with respect to p and setting it equal to zero we arrive at the

following

Sp = λp, (3.16)

which requires that p is an eigenvector of S. Multiplying both sides of Equation 3.16 by pT results

in the variance in the projected domain

pTSp = λ. (3.17)
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Hence, the projected variance is at a maximum when p is the eigenvector corresponding to the largest

eigenvalue. In matrix form, generalized for an M -dimensional projection we have

Y = Λ−1/2PT
(X −E{X}) (3.18)

3.5 Non-Negative Matrix Factorization

Given a non-negative matrix V, the problem of finding a matrix decomposition such that

V ≈ WH (3.19)

where both V and H are non-negative matrix factors of V is known as Non-Negative Matrix Factor-

ization (NMF). This decomposition technique has been shown to be useful for a variety of problems

in signal processing for images and audio data. The basic formulation is as follows. For a n ×m

matrix V with m examples and n features, the data is approximated factorized into an n×k matrix

W and k ×m matrix H. The value chosen for k determines the number of components used to

reconstruct the data and therefore W and H are a reduced dimensional representation of V. Each

vector in V is approximated as a linear combination of the basis vectors in W as

vk ≈ Whk (3.20)

To find an approximation WH for V we define a cost, or distance to minimize between the original

data and the component reconstruction. The square of the Euclidian distance between two matrices

A and B is given by

∣∣A −B∣∣
2
=∑
ij

(Aij −Bij)
2. (3.21)

A measure of divergence is defined as

D(A∣∣B) =∑
ij

(Aij log
Aij

Bij
−Aij +Bij) , (3.22)

and reduces to the Kullback Leibler divergence when ∑ij Aij = ∑ij Bij = 1 such that A and B are

specified as probability distributions. Equations 3.21 and 3.22 are convex in W and H respectively.

Convexity is not guaranteed across both variables simultaneously, therefore we alternate between

minimizing Equation 3.21 which is convex in W and Equation 3.22 which is convex in H. Minimizing
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∣∣V − WH∣∣ with respect to W and H and enforcing the constraint W,H ≥ 0, the multiplicative

update rules are

Hkm ←Hkm
(WTV )km

(WTWH)km
, Wnk ←Wnk

(V HT )nk

(WHHT )nk
. (3.23)

Minimizing D(V∣∣WH) with respect to W and H and enforcing the constraint W,H ≥ 0, the

multiplicative update rules are

Hkm ←Hkm
∑nWnkVnm/(WH)nm

∑nWnk
, Wnk ←Wnk

∑mHkmVnm/(WHnm)

∑mHkm
. (3.24)

The matrices W and H are computed by alternating between Equations 3.23 and 3.24 for a spec-

ified number of iterations or until the change in the cost function per iteration goes below a given

threshold.

3.6 Probabilistic Latent Component Analysis

Probabilistic Latent Components Analysis (PLCA) has seen an increase in use in the audio

domain due to its flexibility to learn convolutive bases, impose sparsity constraints and enforce shift

invariance in a two dimensional basis [86]. The basic formulation of PLCA is very similar to that of

NMF in that it is non-negative in both the components and activations. In fact in certain limiting

cases, it has been shown to be numerically equivalent to NMF [87]. It is instructive to think of it

as a probabilistic interpretation of NMF with a latent prior z which allows for imposing constraints

on the learned representation though prior probabilities.

PLCA models a distribution over N dimensional data x = {x1, x2,⋯xN} as a sum of latent

distributions

P (x) =∑
z

P (z)
N

∏
j=1

P (xj ∣z). (3.25)

P (xj ∣z) is a latent marginal distribution across the dimension of variable xj , conditioned on the

latent variable z, and P (z) is the prior probability of the latent component. Therefore, P (x) is a

distribution composed of a weighted sum of marginal distribution products. Both P (xj ∣z and P (z)

are estimated from the observation density P (x). The marginal distributions P (xj ∣z) are estimated

using an EM variant where the contribution of the latent variable z is computed in the expectation
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step as

R(x, z) =
P (z)∏

N
j=1 P (xj ∣z)

∑z′ P (z′)∏
N
j=1 P (xj ∣z′)

(3.26)

Here we note that R(x, z) is the contribution of the latent variable since the normalization is over all

latent states except the current state being estimated, hence this is not a probability and does not

sum to one. In the maximization step, we use the latent contributions to estimate the new marginal

densities

P (z) = ∑j∑xj P (x)R(x, z) (3.27)

P (xj ∣z) =
∑i∶i≠j ∑xi P (x)R(x,z)

P (z) (3.28)

3.6.1 Convolutive Formulation

The model in Equation 3.25 can be extended to produce shift-invariance by defining the decom-

position as a set of kernel distributions and impulse distributions. The kernel distributions are small

two dimensional patches that are convolved with a sparse impulse distribution and weighted by the

latent probabilities to produce the original distribution P (x). Our model now becomes

P (x, y) =∑
z

P (z) ∑
τx,τy

P (τx, τy ∣z)P (x − τx, y − τy ∣z). (3.29)

Here P (τx, τy)∣z) is a two dimensional kernel distribution and is restricted such that P (τx, τy)∣z) =

0∀(τx, τy) ∉ Rτx,τy where Rτx,τy is a region chosen such that it is smaller than the impulse distri-

bution. When the kernel distribution is convolved with the two dimensional impulse distribution

P (x − τx, y − τy ∣z) and weighted by the latent variables, it generates an estimate of the data distri-

bution P (x, y). The expectation step for this convolutive two dimensional case becomes

R(x, y, τx, τy, z) =
P (z)P (τx, τy ∣z)P (x − τx, y − τy ∣z)

∑
′
z P (z′)∑τ ′x,τ ′y P (τ ′x, τ

′
y ∣z

′)P (x − τ ′x, y − τ
′
y ∣z

′)
, (3.30)

and the subsequent maximization steps are

P (z) = ∑
x,y,τx,τy

P (x, y)R(x, y, τxτy, z) (3.31)

P (τx, τy ∣z) =
∑x,y P (x, y)R(x, y, τx, τy, z)

P (z)
(3.32)
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P (x, y∣z) =
∑τx,τy P (x + τx, y + τy)R(x + τx, y + τy, τx, τy, z)

∑x′,y′,τx,τy P (x′ + τx, y′ + τy)R(x′ + τx, y′ + τy, τx, τy, z)
. (3.33)

A graphical depiction of the convolutive PLCA model is shown in Figure 3.3. The kernel distribu-

∗

∗

∗

�

Kernel Impulse

Reconstruction

z1•

z2•

zk•

P(x,y)

P(τx,τy) P(x - τx,y - τy)

Figure 3.3: A depiction of basis decomposition using convolutive PLCA. Two-dimensional kernel
distributions are learned with corresponding activations (impulse distributions). These two compo-
nents are convolved and multiplied by the latent weights (z) to produce the reconstruction of the
original distribution.

tions are convolved with the impulse distributions and weighted by the latent component probabili-

ties z. These marginal distributions are then summed to produce an estimate of the true distribution

P (x, y). There is no implicit formulation in the model that determines which distribution is the

impulse and which is the kernel. To alleviate this concern, a sparsity constraint is introduced. An

entropic a-priori distribution is imposed on the component distributions to minimize their entropy

[86]. Let us define θ as the distribution we would like to enforce the entropic prior on. We then

specify the a priori distribution of θ as P (θ) = e−βH(θ) where H(θ) is the entropy of θ. The sparsity
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constraint adds two additional steps to the parameter estimation process,

ω

θi
+ β + β log(θi) + λ = 0 (3.34)

θ =
−ω/β

W(−ωe(1+λ/β)/β)
, (3.35)

with W(⋅) being Lambert’s function. If for instance θ = P (xj ∣z) then ω is

ω =∑
xk

P (x)R(x, z) ∀k ≠ j (3.36)

It is important to note that θ could be any distribution in the model (kernel/impulse/prior).

3.7 Datasets

In the Music Information Retrieval (Music-IR) community, large datasets for training and evalu-

ating models are notoriously hard to obtain and share due to the commercial nature of the content.

This difficulty is compounded in multi-track sources for several reasons. Music production using

DAWs was not commonplace until the recent past and a significant amount of multi-track source

audio older than 15 years is archived on analog tape or digital audio tape (DAT). Second, record

labels had little incentive to release source audio since the home studio was still rather expensive

to own. In the past decade, as technology advanced and home music production became common,

bands have released multi-track sources for fans to remix and create derivative work. This section

describes two datasets used in the subsequent experiments. The first is a set of stems from the

RockBand® video game and the second is a collection of multi-track audio from a variety of sources

that are publicly available.

3.7.1 Rockband Dataset

There are 48 artists in the RockBand® dataset and one song was selected randomly from each

of the artists resulting in a total of 48 songs. Only one song was chosen from each artist due to time

constraints encountered in generating the data and to prevent over-representation in the dataset.

The ‘final mix’ experienced during gameplay was acquired by recording the optical audio output

of the game console onto a computer and aligning it to the source tracks. The game console mix

was used, as opposed to the radio/album release, due to synchronization issues between the source
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files and the commercial version. It was evident that time stretching/compression was performed

on many of the RockBand® releases since the song from the commercial release was often not the

same length as the version from the game console. Most likely this was done to align the beats so

that they occur on regular exact intervals to facilitate gameplay.

Preprocessing and Normalization

There were several inconsistencies in the dataset which we had to account for in order to make

comparisons between songs more accurate and to facilitate modeling in the system described in

Section 3.2. The number and type of sources varied between each song, with a minimum track count

of eight and maximum of 14. For example, many songs had individual stereo (L and R) waveforms

for each instrument, whereas other songs only had mono tracks for some instruments and stereo

tracks for others. Additionally, not all songs had individual tracks for the kick drum, snare drum or

overhead drum microphones.

To deal with this discrepancy, we opted to form five mono tracks for each song: bass, drums,

guitar, vocals and backup. The instruments in the backup track vary from song to song and may

contain vocal harmonies, synthesizers, percussion, guitar or a variety of other instruments, however

the content of the backup track within a song is fairly consistent. Given the variance in the dataset,

this method created more uniformity between the content of each song.

To create a single mono track for each instrument class, we mixed all audio that belonged to

the given instrument class according to the track weights computed using the method described in

Section 6.1. A diagram of the preprocessing step is shown in Figure 3.4.

3.7.2 Multiple Genre Dataset

The second dataset consists of 135 songs across a variety of genres. The genres include Acoustic,

Alternative, Country, Dance, Electronic, Hip-Hop, Indie, Jazz, Rock and Metal. The songs were

obtained from three primary sources: Weathervane Music1, Sound on Sound2 and a multi-track

dataset used for song structure segmentation [31]. Each track is converted to a monaural source at

44.1kHz sampling rate and labeled with the instrument present in the track.

The tracks in every song are labeled by three individuals and the majority label for each track

was retained as ground truth. The labelers are students in the music industry program at Drexel

1http://weathervanemusic.org/
2http://www.soundonsound.com/
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Figure 3.4: Diagram of dataset preprocessing for each song in the RockBand dataset.

University and the author. The filenames for each audio track are used when possible and normalized

to a standard label for a single instrument class. Instrument classes are differentiated on a fine level

(clean/distorted electric guitar) and may be combined into superclasses (electric guitar) if desired.

The electric guitar is a specific example where fine level labels are desired since the distorted and

clean versions are treated very differently by engineers and have much different roles in the mix.

The dataset is publicly available online3.

There is much more variation in this dataset than in the one compiled in Section 3.7.1. All of the

material in the RockBand dataset possesses similar instrumentation and was commercially released.

In addition to spanning multiple genres, the open dataset is not all commercially available material

and varies in terms of the quality of the signal capture (i.e. experience of the recording engineer) as

many of the songs come from novice home studio users.

3http://music.ece.drexel.edu/research/AutoMix
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4. Instrument Based Processing

The experiments in this chapter are designed to explore the efficacy of an approach to mixing

audio that uses information about the instrument present in a track to make processing decisions.

In this approach we attempt to codify some common practices and apply them to multi-track

drum audio. Several professional and student mixing engineers were interviewed about the process

of mixing audio and it was unsurprising to find that all of them specified that their approach is

dependent upon the source material (i.e. genre, instrumentation). It is quite difficult to define a

set of hard and fast rules for mixing audio yet there do exist some commonalities that many agree

upon. We apply some basic techniques to improve the balance and quality of the drums via stereo

panning, filtering and level adjustment. The motivation for the processing techniques employed in

the following subsections are derived from the engineer interviews as well as authoritative sources

on mixing [83, 37].

There are several concerns when combining the signals from multiple drum microphones to

produce a mixture. Problems with phase coherence between the different microphones can often

occur and result in a comb filtering effect applied to the instruments [83]. This is the case with bleed

(leakage) between microphones on different instruments as well as multiple microphones on a single

instrument (as in the top/bottom heads of a snare drum). In properly recorded material this effect

is usually anticipated for and dealt with during signal capture and therefore not considered in this

paper.

We consider three processing areas: level balancing, stereo panning and equalization. Two basic

approaches for level adjustment are serial (faders down) and parallel (faders up) [37, 83]. The serial

approach involves adding in layers one at a time and the parallel approach starts with all layers active

and adjusts levels accordingly. We opt for the parallel approach where the level of each instrument

track is evaluated individually against the rest of the mix. There are also two main approaches to

using the ambient (overhead/room) mics. One primarily uses the overheads as the main drum signal

and uses the individual instrument mics as reinforcement when needed. The alternate approach is

to use the close microphones as the primary signal source and use the overhead microphones to

increase the amount of cymbals and add ‘air’ to the mix. We opt to use the latter approach in this

work.

For panning, one may start with a stereo spread of the overhead mics and pan the close mi-
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crophones according to their position in that signal. Another common approach is to pan the kick

and snare dead center since they are the driving force of the rhythm section. This is the option we

choose in our model.

The equalization applied is minimal and was obtained from the interviews of engineers. The

interviewees expressed reservation about making generalizations without hearing the source material

and knowing what other instruments are in the mixture, yet these are the same issues they expressed

with nearly all aspects of mixing, namely that each session is different and must be approached

individually. Nevertheless, a filtering scheme was developed to boost frequency ranges that often

need boosting and cut frequency ranges that often need attenuating. Ideally, this would be done

adaptively through comparing bandwise energy ratios and making adjustments accordingly.

Full Wave 
Rectify

Low Pass
Filter   M Moving

Average Threshold

Figure 4.1: Processing chain to calculate the active areas of an instrument track.

Before processing, each track is analyzed to determine where the instrument is playing on each

track. We only want to compare signal characteristics where there is an active instrument in a

track, not where there is just the noise floor. Figure 4.1 depicts the computation of the active

regions in each track. The first four steps, full-wave rectification, low pass filtering, downsampling

and smoothing with a moving average filter produce the temporal envelope of the signal and the

threshold determines active regions. After thresholding, any segments less than 150ms long are

discarded.

4.1 Stereo Panning

In [49, 63] a dynamic cross-adaptive model is used to actively pan tracks as they come in and

out of the instrument mixture based on several constraints related to spectral and spatial balance

and masking. Here we attempt to leverage common practices in drum kit panning and apply them

to the individual tracks of a drum kit. This results in a static value being applied to the entire

track for the duration of the song regardless of the presence or absence of instrument playing at any
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Instrument Class Panning Gain Values
Value (θ) {α,β, λ}

Kick Drum 0 (center) {0.9, 1.2, 2}
Snare Drum 0 (center) {0.9, 1.2, 2}
Toms Spaced {-25, 25} {0.8, 1.3, 4}
Overhead/Room {-35, 35} {0.8, 1.3, 4}

Table 4.1: Mixing parameter values for individual drum tracks.

given time. Panning a drum kit is one aspect of mixing that is fairly consistent between engineers.

Qualitatively, the stereo balance of the drum mix is as follows:

1. Kick drum panned center

2. Snare drum panned center

3. Toms panned from left to right

4. Overhead microphones panned left and right

Panning is accomplished by applying the sine-cosine panning law

Lpan = cos(45○ − θ) (4.1)

Rpan = sin(45○ − θ). (4.2)

Here θ ∈ [−45○,45○] and represents the angle offset from the center of the stereo field with −45○

being panned fully to the left and +45○ panned fully right. This method of panning maintains the

perceived loudness of the signal as it is varied from left to right. Table 4.1 shows the parameter

values used to pan the tracks.

The kick and snare drums are panned in the center of the stereo field. The toms are spaced

linearly from left to right with 25○ being the maximum offset from the center position. The overhead

tracks are panned alternating left and right at the specified value in Table 4.1.

4.2 Relative Levels

After panning, the loudness of each track is computed and compared against the loudness of the

rest of the tracks to determine any boost or attenuation that is desired for each track. The loudness
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of each track is calculated by filtering the signal using the inverse of the ISO 226 normal equal-

loudness-level contours (at 75 phons) and then computing the RMS energy over a 23ms window [35].

The level of 75 phons was chosen based on preferred listening levels shown in [34]. The loudness of

the target track (xloud) is compared to the loudness of the sum of the remaining tracks (yloud) and

a loudness ratio is computed,

rloud =
1

T

T

∑
τ

x
(τ)
loud

y
(τ)
loud

, (4.3)

where x and y are in dB and T is the total number of short time frames in the current song being

analyzed. The loudness ratio is then used to attenuate or boost the level of the track in question.

The gain of the track is determined using the following equation

g = 10(−
1
λ log(rloud)). (4.4)

Equation 4.4 offers control over the amount of level correction that is applied to each instrument

through the parameter λ. As λ increases, the amount of level correction is reduced as shown in

Figure 4.2.

Loudness is computed on each channel (L/R) after panning and the average of the loudness

ratios is used to determine the gain of the instrument. There are three parameters {α,β, λ} for each

instrument type that determine how the loudness ratio affects the gain, g, applied to the track. The

α and β parameters define thresholds for the loudness ratio necessary to apply loudness correction.

For example, if we require rloud < α or rloud > β where α = 0.8 and β = 1.2 before applying gain

g, then the track will have no level correction if rloud ∈ [0.8,1.2] and will have loudness correction

specified in Equation 4.4 otherwise. The parameters in Table 4.1 are specified to err on the side of

more kick and snare drum than overhead and tom microphones since the kick and snare instruments

are generally more prominent in rock music.

4.3 Equalization

The desired frequency content for a specific instrument is very genre dependent. For example

in an electronic track the kick drum generally contains more low frequency content and may be

prominent even into the sub-bass range. In heavy metal, the sound of the beater striking the kick

drum is often desirable and the signal may need to be boosted in the high-mid frequency range.
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Figure 4.2: Contours of gain attenuation for various γ.

For these reasons we chose to apply only subtle equalization based on some common operations.

The kick drum has a 2dB boost from 1kHz-6kHz, a 2dB cut from 400Hz-900Hz and a 2dB boost

of 100Hz with a quality factor of 4.5. The snare drum has a 3dB high shelving boost starting at

10kHz. These modifications are designed to give the kick drum slightly more punch and the snare

drum more brilliance.

4.4 Drum Type Classification

For an unknown set of tracks, the drums would need to be identified to apply the common

practices outlined above. Here we explore a preliminary experiment to classify a track in terms of

the drum content it contains. The approach is fairly standard for supervised learning and is meant

to serve as a benchmark of the difficulty of this particular dataset.

Features Features (cont.)

MFCC RMS
Centroid Bandwidth
Flux Zero-Crossing Rate
Number of Segments Inter Onset Interval
Segment Length

Table 4.2: Features used in drum type classification.

A support vector machine (SVM) classifier with radial basis function (RBF) kernel is trained and
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evaluated via 5-fold cross validation using LIBSVM [13] . This is a four class problem (C ∈ {1,2,3,4})

with the four classes being kick drum, snare drum, tom-tom and overhead. The features used in

the experiment are listed in Table 4.2 and include mel-frequency cepstral coefficients (MFCC) (20

dimensions), spectral features and time domain features as well as information about the amount

of time active audio is present in the track. The first and second derivatives of each feature (non-

singleton) is also included in the dataset. This results in 138 total feature dimensions which is then

reduced through principle components analysis (PCA). The classifier achieved an average accuracy

across all folds of 0.504.

For a four class problem, this result is not particularly promising, but the model and features

used are not as advanced as those in [80, 92, 25, 22]. Although the data is in multi-track format,

there are still several instruments present via the bleed of the microphones. For the tom-tom drums,

the majority of the track resembles an overhead microphone signal of low amplitude until the drum

is (with relative infrequency) struck. This type of real-world situation increases the difficulty of

performing classification.

4.5 Listening Evaluation

To evaluate the ability of the model to appropriately mix the drum tracks together, a listening test

is performed where participants noted their preference for the individual monaural tracks summed

versus the mix generated with the model. The ground truth instrument labels are used for generating

the mixes using the model. Ten songs were selected at random from the dataset and a 15 second

clip for each song was selected so that as many of the individual drum tracks were active as possible.

Most songs in the dataset do not have drum stems associated with them, only the raw unmixed

multi-track session and the final professional mix. The majority of songs that do have mixed drum

stems are from the same studio and use very similar processing chains. Therefore to avoid over-

representing that subset we only included the summed mix and the automatic mix across a larger

number of sources.

The clip pairs were presented with the summed version and the automatically mixed version

appearing in random order. Each participant was presented clip pairs one at a time and asked which

clip sounds more balanced. They could choose Clip A, Clip B or No Preference. The participants

were asked to provide their level of experience with audio mixing and production, the distribution

is shown in Table 4.3. Subjects are graduate and undergraduate students at Drexel in the music
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Production Familiarity Participants

None 4
Novice 4
Intermediate 6
Expert 1

Table 4.3: Listening test participant familiarity with audio mixing and production.
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Figure 4.3: Listening test results showing the number of ratings for each clip pair.

industry and engineering programs. Most subjects are male, with only two participants being female.

There were 15 total participants in the study with about half having little experience working with

audio production and the other half having significant experience.

Figure 4.3 shows the results of the listening test. For six of the ten songs, the model is preferred

over the summed mix and listeners prefer two of the ten monaural summed mixes. Songs 7, 8 and 10

contain some drum loops from a library and do not adhere to the ‘standard‘ recording technique of

having kick, snare, tom and overhead microphones. The dataset represents a variety of material from

various sources and varying quality. Some material is recorded professionally and sounds reasonably

balanced through just summing the tracks.

The method obtains fair performance on a certain class of song in the dataset but is not able to

gracefully handle inconsistencies in recording quality present the dataset. One caveat of working with

multi-track audio is the lack of standardization for recording sessions. This makes obtaining well

labeled consistent datasets to train models a difficult task in itself. The work here demonstrates the
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possible potential of a hierarchical system that combines both best practices and common techniques

of mixing engineers with more sophisticated models of instrument identification, however there is

significant room for improvement.

For the classification task, there exist more advanced methods in the literature, yet most apply

to individual instrument samples and not full recorded tracks. Including more information about

the temporal evolution of a signal as well as taking advantage of the audio in multiple drum tracks

while classifying each track could improve results significantly.

Genre information plays a significant role in the desired drum sound for a given song. A jazz

kit requires much different treatment than a dance or house drum beat, however genre recognition

is not a solved problem and the definitions of genres are constantly evolving. This is an aspect of

automatic mixing where it would make sense to expose a parameter to the user and offer ‘presets’

similar to most audio plugins.

More adaptive methods can be used on the track level processing that computes the active

segments and loudness as in [95]. Perhaps the most important aspect is further user evaluation and

iteration based on listening test results. The ultimate goal of automated mixing systems is to make

the mix sound better to the user. Mixing audio often demands an iterative coarse-to-fine approach

where the engineer is constantly making changes and then evaluating those decisions in the context

of the mix [37, 83].

This is an introductory work that explores the potential of a hierarchical approach to multi-

track mixing using instrument class as a guide to processing techniques. While the classification

and listening evaluation results have room for improvement, a system basing mixing decisions on

the instruments in the mixture warrants further investigation.
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5. Representing Dynamic Timbre

In the experiments outlined in Chapter 4, the instrument classification task was based on the

assumption that the engineer can use instrument type to define processing decisions. This may serve

as a reasonable assumption in many cases but it would be more intuitive to view different tracks in

terms of their spectro-temporal profile, that is the time and frequency evolution characteristics of

sounds rather than restricting analysis to the physical (or synthesized) sound source.

As an example consider the following situation: a snare sound is captured and recorded in the

context of a drum kit. The musician or producer desires a different sound and instead uses a white

noise source modified to have a temporal envelope that represents a sharp attack. They then apply

an equalizer to remove extreme low frequencies and provide significant rolloff in the higher frequency

ranges. This makes the noise burst sound less wideband and more like a snare drum. The spectral

and temporal envelopes of a real snare and a modified noise source are shown in Figure 5.1. The

temporal envelopes for the real and synthetic snare are very similar. The actual snare envelope

appears more natural as it is a result of a damped physical system settling to a resting state. In the

case of the synthesized snare-like sound, the envelope exhibits a more linear taper at the tail of the

sound. The spectral envelope in (b) shows a resonance at approximately 200 Hz. The synthesized

example in (d) also shares this same basic characteristic but has much more mid-range frequency

content. Using a more surgical approach to equalization, a closer approximation to the envelope in

(b) could be attained, however in practice it is often desirable to have a synthetic sound in order

for it to sound different yet still maintain the basic properties that make it fill the role of the snare

drum. In the context of a supervised classification experiment, these two sources would exhibit very

similar acoustic features yet have different labels. Two options would be to either develop a labeling

system that favors this type of similarity or to learn unsupervised groupings based on these trends.

This chapter explores representations of the spectro-temporal characteristics of instrument sounds.

Similar to the work presented in Section 2.3.3 is an attempt to capture the spectral shape and timbre

of sound and how it evolves over time. To achieve this goal, dynamic textures and dynamic texture

mixtures model latent structure evolution in the data to capture the most prominent characteristics

that define the audio source spectrally and temporally.

Section 3.2 described how a linear dynamical system (LDS) could be used in the framework of a

supervised machine learning task. The time varying mixing coefficients of the multi-channel mixture
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Figure 5.1: Spectral and temporal envelopes for snare drum (a-b) and a white noise burst with
modified temporal and spectral envelope (c-d).

were modeled as the hidden state vector of an LDS. The observation space was a set of acoustic

features from each track present in the system. To predict the fader values for an unknown mixture,

audio features were computed and Kalman filtering was performed to obtain the hidden state vector

at time t. To illustrate the efficacy of a LDS to capture timbral dynamics in audio the model is used

to encode the time-frequency evolution of tones in a system and then reconstruct the audio from

the LDS.

5.1 Modeling Instruments as Dynamic Textures

In order to obtain a representation of the evolving spectro-temporal characteristics of the audio

spectrograms of instrument tones are modeled as a dynamic texture (DT) [4]. Dynamic textures

were developed in the computer vision community to model sequences that exhibit stationary char-

acteristics in space and time [12, 19]. The characterization of musical instrument sounds (e.g.

depressed piano keys and plucked-guitars) as dynamic textures is based on the assumption that

tones can be viewed as short-time stationary signals. The following experiments were presented in

full in [78], what follows is a summary of that work. To capture the temporal evolution between

successive Short-Time Fourier Transform (STFT) frames, each frame is considered the output of a
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linear dynamical system at time step t.
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Figure 5.2: Average SNR and standard deviation computed for 21 piano tones against the model
dimension n.

5.1.1 Parameter Estimation

The LDS parameters are estimated by computing the STFT of the signal using a 23 msec Hann

window with 50% overlap. This decomposition yields the spectrogram Y = [y1y2 . . .yτ ] where each

y represents the stacked real and imaginary N Discrete Fourier Transform (DFT) coefficients for the

underlying segment of the signal. The STFT is factored using singular value decomposition (SVD)

[54] such that Y ≈ UΣV H . C and X are estimated as,

C = U X = ΣV H , (5.1)

where U ∈ RN×N , Σ ∈ RN×τ and V H ∈ Rτ×τ . Note that X = [x1x2 . . .xτ ] ∈ RN×τ is the matrix of

hidden state variables and the LDS is driven by the initial state vector x1.

The system’s dynamics matrix A is determined by predicting the transitions between the hidden

state variables in X such that,

AX0∶τ−1 =X1∶τ . (5.2)

A can be determined using least squares estimation, though this approach does not guarantee sta-

bility, which is problematic when modeling and synthesizing audio signals. Instead, a constraint
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generation approach is employed for estimating A, proposed by Siddiqi et al [84]. This technique

determines A from a set of stable matrices that best satisfies (5.2). Once C and A are estimated, the

covariances Q and R are estimated from the model residuals using the minimum variance unbiased

estimator of a Gaussian covariance.

While the LDS models the temporal evolution of the signal, the actual estimation of the param-

eters is only performed on a single time step. An alternative to the above approach is to structure

Y as a block Hankel matrix where each column incorporates future observations of the STFT [54].

This has the effect of estimating state variables that account for the present and future outputs.
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Figure 5.3: Average SNR and standard deviation computed for for 21 piano tones by varying the
number of Hankel observations with n = 40

5.1.2 Model Reduction and Synthesis

After estimating the LDS for a particular tone, it is desirable to reduce the model dimensionality

while still being able to accurately represent the signal’s STFT. The symmetric coefficients for each

frame of the signal’s FFT are eliminated as redundant information. Secondly, additional reduction

is achieved by choosing a model order n ≪ N . The reduced-order model parameters are obtained

by truncation, taking C and X in (5.1) such that U ∈ RN×n, Σ ∈ Rn×n and V H ∈ Rn×τ .

The tones are re-synthesized by taking the output of the LDS as each frame in the STFT. The

redundant magnitude and phase information is used to reconstruct the full FFT frame and the

inverse FFT is applied to yield the windowed audio signal. This procedure is repeated for each

output frame and the signal is reconstructed using overlap-add (OLA) corresponding to the analysis

rate used to derive the model [67].
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Figure 5.2 illustrates the average Signal-to-Noise-Ratio (SNR) computed between 21 analyzed

piano tones and their reconstructions using LDS models with increasing model order. As expected,

the SNR improves as additional dimensions are used to model the tones. The benefit of incorporating

future frames of the STFT in parameter estimation in terms of SNR are also investigated. Figure

5.3 demonstrates that including the Hankel observations provides additional SNR improvement in

the reconstructed tones.

Through informal listening tests, using n ≥ 20 yields reconstructed tones that closely approximate

the original signal perceptually. However, tones exhibiting high frequency components in the initial

transient were not properly suppressed. This artifact can be corrected by increasing the model order,

or by including future observations in the LDS estimation. All of the audio examples discussed are

available online.1

5.1.3 Modeling Timbre Variation

While the approach presented in Section 5.1 is capable of modeling the acoustic characteristics of

a particular instrument sample, a model that is generalizable in terms of accounting for instrument-

and timbre-specific characteristics is desirable.

5.1.4 Joint Analysis

This analysis is restricted to piano tones produced by varying the key-stroke velocity to produce

“hard”, “medium” and “soft” tones. Pianists use the key-stroke velocity to convey desired musical

expressions by producing different timbres. These timbre differences are observable in the STFT

matrix since each tone will have unique time-frequency characteristics corresponding to the velocity

used to depress the key and in turn, excite the string. Thus, the aim is to learn the LDS parameters

for a piano note played with different velocities where C accounts for the associated timbre of each

articulation and A is jointly learned to describe the temporal structure of all the tones.

For a particular note played with the described key-stroke velocities, the STFT matrix for each

tone is concatenated into a joint observation matrix YJ = [Ys Ym Yh] where s, m, and h indicate

the soft, medium and hard velocities, respectively. As described in Section 5.1.1 the SVD of YJ

is computed to yield the hidden state variables XJ = [Xs Xm Xh]. Note that the hidden state

variable matrix has transition regions between each note velocity s, m and h that are undesirable.

1http://music.ece.drexel.edu/research/InstrumentLDS
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These regions are ignored by solving for a joint dynamics matrix AJ which satisfies

AJ [xs,0 . . .xs,τ−1 xm,0 . . .xm,τ−1 xh,0 . . .xh,τ−1] =

[xs,1 . . .xs,τ xm,1 . . .xm,τ xh,1 . . .xh,τ] .

As in the individually learned models, constraint generation is used to obtain stable system dynamics.
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Figure 5.4: Top: Log-magnitude spectrogram for a piano tone produced with a “hard” articulation.
Bottom: Re-synthesized piano tone generated from the output of the estimated LDS model.

For each velocity, its observation matrix is determined by solving

Ca = YaX
−1
a , (5.3)



72

where a indicates the velocity of the note. The STFT matrix for each velocity is reconstructed using

the initial hidden state vector, xo from the corresponding hidden state variable matrix Xa and the

tone is synthesized using OLA on the frames. For joint modeling, the state and observation noise

sources are not included since that they add unwanted noise from the residual computation. An

example of an original and reconstructed tone are shown in Figure 5.4.

The joint modeling approach presented in this section also has the benefit of reducing the number

of parameters required to synthesize a variety of tones. Using the approach presented in Section 5.1,

each tone is modeled with individual A,C and x0 parameters. Joint modeling can represent several

tones with a single dynamics matrix, while describing the tone’s timbral characteristics through a

unique observation matrix.

5.1.5 Altering Timbre

In the previous section, it was demonstrated that various velocities for a particular tone of a

musical instrument could be characterized by a common dynamics matrix and separate observation

matrices that encode the spectro-temporal characteristics of a tone. Here, parameterized synthesis is

explored by modifying a single observation matrix to create tones of varying velocity. By weighting

the observation matrix of a given note, a higher velocity note into transformed into a softer velocity.

Figure 5.5: C and C̃ for hard velocity and re-weighted to be a lower velocity.

Define the re-weighting as C̃ = WC where W is a diagonal matrix of weighting coefficients.
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Scaling each row vector cn by a constant wn ensures that the resulting C̃ remains a set of orthogonal

basis vectors to project the hidden states into the observation space.

Figure 5.6: Top: Spectrogram of piano note B3 played with hard velocity. Middle: The same
note with a re-weighted observation matrix to change the velocity. Bottom: The original sample
of piano note B3 played with soft velocity.

5.1.6 Results

Figure 5.5 shows observation matrices for the note B3. The weighting coefficients used to generate

C̃ from C-Hard are unity gain from DC up to the fundamental frequency, then linearly taper off

to zero from the fundamental frequency to the fourth harmonic. This method essentially filters

out frequencies that are present in the higher velocity note but not present in the lower velocity

notes. Furthermore, this reduces the data required to represent different notes since only n weighting

coefficients are required to transform the velocity of the note.

The spectrogram of the tones associated with each observation matrix shown in Figure 5.5 are

shown in Figure 5.6. The general differences between the hard velocity (top) and soft velocity

(bottom) are captured in the tone (middle) produced by re-weighting the observation matrix. There
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are many mid range frequencies (∼ 4000 Hz) that do not exhibit the decay characteristics that are

observable in the original hard and soft velocity tones. This suggests that the evolution of the hidden

states contributes to the decay characteristics of the frequencies and must be modified as well to

more accurately produce a velocity transformation. The LDS is effective in capturing the evolution

of a note on small time scales. To attempt to capture the dynamics and timbral characteristics on a

larger time scale dynamic texture mixtures (DTM) which are probabilistic mixture models of linear

dynamical systems are discussed.



75

6. Supervised Learning of Instrument Mixtures

This chapter discusses several approaches to combine multi-track sources using gain coefficients

learned directly from data.

6.1 Weight Estimation

Using the dataset of RockBand stems and the mixed output audio described in Section 3.7.1,

we do not have access to the exact fader values used to create the final output mix, therefore we

must estimate these parameters in order to train a supervised machine learning model. The weight

estimation process is subject to several unknowns including additional compression and equalization

of the stem tracks on the game console in producing the final mix. We use our estimated weights as

ground truth in a supervised machine learning task and estimate a series of weighting coefficients

for each track from a set of acoustic features extracted from the audio.

The process of mixing multi-track source files down to a single track is a linear combination of

the audio sources in the time domain

α1tu1t + α2tu2t +⋯ + αktukt = vt, (6.1)

where {α1t, . . . αkt} are the mixing coefficients of the k tracks at time t and {u1t, . . . ukt} are the

time domain waveforms of each track.

Since the Fourier transform is a linear operator, we assume that the spectrum of the final mix at

frame n is a linear combination of the spectra of the source tracks at frame n. Considering a single

frame in time, we have
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Uα ≈ V, (6.2)

where each column in U is the magnitude spectrum of the kth track and V is the spectrum of the

final mix with a total of N frames in the song. We are careful here to note that Equation 6.2 is a
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Figure 6.1: Extracted weights for bass guitar using NNLS, Kalman smoothing and normalization.

course estimation of the actual combination of tracks. Using magnitude spectra, the combination of

tracks becomes

α1F{u1} + α2F{u2} +⋯ + αkF{uk} = F{v} (6.3)

α1U1(e
jω

) + α2U2(e
jω

) +⋯ + αkUk(e
jω

) = V (ejω) (6.4)

∣α1U1(e
jω

) + α2U2(e
jω

) +⋯ + αkUk(e
jω

)∣ ≈ ∣V (ejω)∣, (6.5)

As the number of tracks increases, the estimate of the weights becomes less accurate due to the

interdependence of the α values.

Given a set of multi-track stems and the resulting audio produced by mixing the individual

tracks, we can estimate the mixing coefficients, αk, using non-negative least squares (NNLS) [44].

α̂ = min
α

∣∣Uα −V∣∣
2
2 α ≥ 0 (6.6)

We select NNLS to estimate the weights since the mixing process is additive by definition. Using un-

constrained least squares, we experience both very large values for some weights since the algorithm

can increase the weight of tracks that contain very little energy to reduce the overall error.

We perform this analysis on a frame-by-frame basis using a 1 second rectangular window and



77

overlap the frames by 0.75 seconds. In each frame, we compute the spectrogram of each individual

track using a 1024 sample window with a 512 sample overlap. We vectorize and concatenate the

spectrograms to attain the form given in Equation 6.2 then compute the weights. A resolution of

0.25 seconds for changing fader values is sufficient to capture the dynamic changes in each track.

To improve the initial estimate of the weights, we only include tracks that contain audio in the

given frame. Assuming we have k tracks, if RMS(ukt) < 0.01, then we negate the track in the

estimate of the weight vector for the current frame and use k − p tracks, where p is the number of

inactive tracks. Removing these tracks prevents very large weight coefficients from being calculated

for tracks that have very little energy, in addition to using NNLS as opposed to unconstrained least

squares. The value of 0.01 was empirically determined to provide good peak suppression in the

weight estimates.

We then process the weight vector using Kalman smoothing to reduce the noise that still remains

in the signal [40]. The initial weight estimates as well as the smoothed weights are depicted in Figure

6.1. In the following section, we assume that the mixing coefficients are Gaussian when modeling

the data. A histogram showing the distributions of mixing coefficients for multiple instruments is

shown in Figure 6.2. It is significant to note that while these coefficients produce a mix that is

perceptually very similar to the original track, they are not the actual ground truth weights. We

provide online audio examples of the original song and the mix using the estimated weights.
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Figure 6.2: Histogram of linear mixing coefficients.
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6.2 Modeling

We train two different models using acoustic features to predict the time-varying mixing co-

efficients for an unknown input song. We first use multiple linear regression (MLR) to find the

projection from features to weights that minimizes error in the least squares sense. To model time

dependence between the mixing coefficients of a given track, we use a linear dynamical system (LDS)

and compute the latent states using Kalman filtering.

We extract a set of simple time domain and spectral domain features to train the models:

• Spectral Centroid

• Root Mean Square (RMS) Energy

• Slope/Intercept from fitting a line to the spectrum

A depiction of the overall system architecture showing the multiple modeling methods is shown in

Figure 6.3.

Unknown 
Song

Test  
Corpus

Features Features

Linear Dynamical
System

Multiple Linear 
Regression

Kalman
Filter

Linear
Projection

Predicted
Weights

Mixed
Song

Figure 6.3: Supervised machine learning of gain coefficients using LDS and MLR.
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6.2.1 Multiple Linear Regression

We assume that each weight vector α is a linear combination of our features {y1, . . . , ym}

α = Yβ (6.7)

where Y is an N ×M matrix, M is the number of features we have per frame, N is the number of

frames and k indexes the track. We compute the projection matrix as in Equation 3.2 and use it to

compute the weighting coefficients of an unkown song,

α̂ = Yβ̂. (6.8)

This model assumes that the mixing coefficients are independent with respect to time. In the next

section we describe a model that considers the time dependence of the data.

6.2.2 Linear Dynamical System

We treat the time-varying mixing coefficients α as the latent states resulting from some noisy

process and our features, y as noisy observations of the output of a linear dynamical system as

described in Section 3.2.

For an unknown set of stems, we compute our acoustic features for each track and remove the

training feature bias, ȳ. We then perform the forward Kalman recursions using the A, C, Q and

R parameters learned during training to get an estimate of the weighting coefficients. Adding the

weight bias ᾱ to this result yields our final estimate of the mixing coefficients.

6.2.3 Results

Training and testing is performed in a typical manner for a supervised machine learning task.

Given the relatively small size (N = 48) of the dataset we opt to use leave-one-out cross-validation,

training on N − 1 songs and testing on the remaining song. This process is repeated for all N songs

such that each is a test song only once.

We define Ytrain as a matrix formed by concatenating the features of all songs, and αtrain as

the matrix formed by concatenating all weighting coefficients for all songs. These quantities are

then used to train the parameters of an LDS. We perform Kalman filtering on the remaining test

song using the parameters learned in the training phase to estimate the time-varying weights for the
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Track LDS MLR

backup 0.0126 ± 0.0076 0.0091 ± 0.0075
bass 0.0191 ± 0.0183 0.0086 ± 0.0102
drums 0.1452 ± 0.1237 0.0590 ± 0.0444
guitar 0.0158 ± 0.0169 0.0075 ± 0.0077
vocal 0.0188 ± 0.0107 0.0149 ± 0.0124

Table 6.1: Average mean squared error across all songs between ground truth weights and predicted
weights for MLR and LDS.

song.

Figures 6.4 and 6.5 show the predicted and actual weights plotted on the same axis for each

instrument in the song “Constant Motion” by Dream Theater. The resulting weights from MLR

fit the data better and result in a lower error and the weights computed through Kalman filtering

are much smoother yet sometimes exhibit bias or offset from the actual values. Table 6.1 shows the

average mean squared error for all songs in the database for both algorithms.

Using a low dimensional feature set, we are able to generate a mix that is comparable to the

desired result. Audio examples of the original mix, the drum sub-mixes and the reconstructed mix

using the predicted weights can be found online at the previously specified link. A listening analysis

performed by the authors finds that the LDS and MLR models yield very similar perceptual results.

For comparison, we generated audio mixes using a simple averaging of all tracks. The result of

this oversimplified model is hardly comparable to the results from the automatic mixing system.

Although these results are good, we note that the weights estimated in Section 6.1 are not the true

parameters. Additionally, the architecture is restricted by the definition of the state vector α. In

our case, the states represent the weights associated with specific stems. In a real-world scenario,

the number and types of instruments and tracks will vary for each song. This system would be

incapable of handling an input of more or less than five tracks or from songs that do not contain the

typical rock instrumentation. This limitation is addressed in the next section where the modeling

topology is altered to accommodate a variety of inputs.
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Figure 6.4: Results for weighting coefficient prediction using multiple linear regression (MLR). The
estimated ground truth weights are shown in gray and the predicted coefficients are depicted in red.
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Figure 6.5: Results for weighting coefficient prediction using a linear dynamical system (LDS). The
estimated ground truth weights are shown in gray and the predicted coefficients are depicted in red.
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6.3 Improved Architecture

We again use the weights estimated in Section 6.1 as labels in a supervised machine learning

task. Recall that our state vector is the weights of each instrument at time step t

αt = [α1α2 . . . αk]
T , (6.9)

and is the limiting factor in our model. The structure of the output vector is

yt = [F
(1)
1 . . . F

(1)
m F

(2)
1 . . . F

(2)
m F

(k)
1 . . . F

(k)
m ]

T

(6.10)

where we have m features, F , for each of the k instruments in the mixture.

In this framework, we are constrained in terms of the number and type of instruments we can use

the automatic mixing system for. Since each αk is associated with a specific instrument, omitting or

adding tracks changes the dimension of the hidden state vector and in turn makes predicting weights

for a set of tracks that are not explicitly in the form described in (6.9) and (6.10) intractable.

Test 
Corpus

Training  
Corpus

One

Predicted
Weights

OneAll All

Mixed Song

Model 1

Model 2

Model k

Kalman Filter 1

Kalman Filter 2

Kalman Filter k

Features Features

Figure 6.6: System diagram detailing the ‘One Vs. All’ method for mixing coefficient prediction.

Instead of modeling the time varying mixing coefficients of all tracks as the hidden states of the
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Track All Tracks One Vs. All Best Features

backup 0.0126 0.0110 0.0087
bass 0.0191 0.0163 0.0088
drums 0.1452 0.1283 0.0489
guitar 0.0158 0.0151 0.0115
vocal 0.0188 0.0160 0.0108

Table 6.2: Results for LOOCV on the database. The MSE for each track across all songs is shown
for the All Tracks method and the One Versus All approach.The Best Features column is the result
from sequential feature selection.

LDS, we consider only one instrument at a time. Our new state vector consists of the weight for the

jth track and its first and second derivatives

αt = [αj α̇j α̈j]
T

(6.11)

The derivatives of the weight vector are used to provide the model with more information about

the dynamic evolution of the mixing coefficients. Note that only the weights for one instrument

are included in the state vector. By eliminating the weight values of the other instruments, we are

training the model to consider only how well the current instrument ‘sits’ in the mix, not how the

weights of all instruments evolve together.

The output vector yt is comprised of the feature set for the instrument we are trying to predict

stacked with the average of the features from all other instruments

yt = [F
(j)
1 ... F

(j)
m

1
K−1 ∑

K
k≠j F

(k)
1 ... 1

K−1 ∑
K
k≠j F

(k)
m ]

T

(6.12)

If j = 1, then we are using m features associated with the first track and averaging the features

associated with the tracks k ≠ j, reducing the dimensionality of the feature vector from km to 2m.

Comparing (6.10) to (6.12), we observe that in (6.12) there is no dependency on which position

(k) the features for a given instrument are located. The only prior knowledge the model requires

is the type of the jth instrument for which we are predicting time-varying weights. As a result, in

this framework there is no limitation on the number or type of instruments that can be mixed using

the system, provided that there exists training data for the target instrument j. A system diagram

showing the new modeling method is shown in Figure 6.6.

To evaluate the efficacy of this modified estimation approach, we perform the same experiment
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Feature Description

RMS energy Root mean square energy

Spectral flux Change in spectral energy

Spectral bandwidth Range of frequencies where most energy lies

Octave-based sub-bands Energy in octave spaced frequency bands

MFCC Mel-Frequency Cepstral Coefficients

Spectral centroid Mean or center of gravity of the spectrum

Spectral peaks Energy around a local sub-band maxima

Spectral valleys Energy around a local sub-band minima

Slope/Intercept Parameters of a line fit to the spectrum of a frame

Table 6.3: Spectral and time domain features used in mixing coefficient prediction task.

outlined in Section 6.2 and compare the results of the two methods. Using the 48 songs in our

dataset, we perform leave-one-out cross-validation (LOOCV), training an LDS on 47 tracks and

predicting the weights for the remaining track. We repeat the process using each track as a test

song only once and average the mean squared error (MSE) between our estimated ground truth

values and our predictions from the LDS. The results are shown in Table 6.2. We refer to the

method described in Section 6.2 as All Tracks (AT) and the modified approach in this section as

One Versus All (OVA). The OVA results are are computed using the same feature set {centroid,

RMS, slope, intercept} that was used in the previous experiment.

The table shows an average improvement of 11.66% in terms of MSE for all instrument types in

the dataset. The OVA method provides increased performance in terms of the MSE of the weight

predictions as well as increased flexibility. The new topology enables the system to mix songs that

do not have the same number of tracks as the normalized RockBand dataset we compiled.

6.3.1 Feature Analysis

Having shown that the OVA method outperforms the AT method, we proceed to investigate

which features are the most informative. We explore an extended feature set within the framework

described in the previous section and analyze the performance of each individual feature as well as

combinations of features. Table 6.3 lists the array of spectral and time domain features we selected

for our experiment [38, 18, 93]. The features are chosen to contain information about the total

energy of the signal, energy within various frequency bands, spectral shape and dynamic spectral
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evolution.

All experiments are performed using LOOCV on the entire dataset. In the first experiment, we

test the performance of each individual feature using the average MSE over all songs as our error

metric. Table 6.4 shows the results for each feature for each track type in the dataset. There is no

single feature that appears to be dominant for mixing coefficient prediction.

Backup Bass Drums Guitar Vocal

Feature Error Feature Error Feature Error Feature Error Feature Error

Bandwidth 0.0511 Flux 0.0590 Centroid 0.7322 Bandwidth 0.0756 Flux 0.1183
Flux 0.0526 Bandwidth 0.0590 RMS 0.8415 Valley 0.0878 Centroid 0.1240
Sub-Bands 0.0580 Slope 0.0618 Slope 0.8713 Intercept 0.0908 Bandwidth 0.1251
Intercept 0.0587 Intercept 0.0622 Bandwidth 0.8861 Slope 0.0920 Valley 0.1262
Slope 0.0589 RMS 0.0716 Intercept 0.8932 Flux 0.0936 Peak 0.1302
Peak 0.0607 Valley 0.0741 Peak 0.9260 Sub-Bands 0.0974 Intercept 0.1316
RMS 0.0629 Sub-Bands 0.0743 Valley 0.9381 RMS 0.0987 Sub-Bands 0.1317
Centroid 0.0636 Peak 0.0752 Sub-Bands 0.9649 Peak 0.1019 Slope 0.1318
MFCC 0.0659 Centroid 0.0801 MFCC 1.1785 Centroid 0.1095 RMS 0.1320
Valley 0.0680 MFCC 0.0821 Flux 3.5767 MFCC 0.1127 MFCC 0.1373

Table 6.4: Mean squared error for all features and individual instruments. Features for each instru-
ment are listed in order of best performance to worst performance. The best combination of features
for each instrument is in boldface.

Using these results, we employ sequential feature selection to increase the performance of our

system [51]. The best performing feature for each instrument in Table 6.4 is stacked with each

remaining feature, and the MSE for LOOCV is computed for each combination. The best feature

from this result is retained and the process is repeated until all features have been used. The

results of this analysis are depicted in Figure 6.7. The best performing number of features for each

instrument is indicated with a diamond. Since some of our features may contain similar information,

adding additional features eventually becomes redundant and the increase in the size of the feature

space outweighs the gain in information.

6.3.2 Results

The overall results for using the best performing feature ensemble are detailed in Table 6.2 under

the column Best Results. The table shows that the OVA approach more accurately models the

mixing coefficients and the addition of more features improves the results. Mean squared error does

not provide any intuition about where each model fails or performs well. Figures 6.8 and 6.9 show

comparisons between the AT and OVA models. Both models were trained with the feature set used



87

0.89

0.93

Backup

M
S

E

x10−3

0.96

1.20

Bass

M
S

E

4.99

5.29

Drums

M
S

E

1.21

1.40

Guitar

M
S

E

Error Performance for Stacked Features

1 2 3 4 5 6 7 8

1.08

1.11

Vocal

M
S

E

Number of Features

Figure 6.7: MSE versus the number of stacked features used in training an LDS for each track. Note
that the scale of each sub-plot varies. The minimum is indicated for each track.

in Section 3.2. There is relatively small deviation in the bass and guitar predictions for each method

on both songs. The most significant difference is in the ability of the OVA model to track the vocal

weights as evidenced by the relatively flat predictions from the AT model contrasted with the OVA

model predictions that follow the contour of the ground truth weights.

In Figures 6.10 and 6.11 we observe the effect of increasing the number of features used to train

the model. The predictions using the best feature for each instrument from Table 6.4 are shown in

gray and the highest performing ensemble of features is depicted in orange. Adding features creates

the most improvement in the drum track where the contour and bias of the predictions closely

follows the ground truth for both songs. Although this is only a small sample of the dataset, this

representation informs us of improvements that can be made to the system.
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Figure 6.8: Comparison of ground truth (black) values with AT (gray) and OVA (orange) models
for ‘More Than A Feeling’ by Boston.
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Figure 6.9: Comparison of ground truth (black) values with AT (gray) and OVA (orange) models
for ‘Hammerhead’ by The Offspring.
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Figure 6.10: Comparison of ground truth (black) values with OVA model using the single best
feature (gray) and using the best combination of features (orange) for ‘More Than A Feeling’ by
Boston.
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Figure 6.11: Comparison of ground truth (black) values with OVA model using the single best feature
(gray) and using the best combination of features (orange) for ‘Hammerhead’ by The Offspring.
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7. Perceptual Evaluation of Features

In Section 2.4, a set of experiments performed for evaluating features based on perceptual mea-

sures was shown. This work was the first of its kind to attempt to quantify how well the features that

researchers use in perceptually motivated experiments in Music-IR actually equate to the human

observation. In this case, music emotion recognition was the specific domain. This chapter presents

a set of experiments in a similar vein with instrument (timbre) recognition as the goal and basis of

evaluation.

7.1 Feature Extraction

The feature extraction process outlined here is developed to reduce computational load, provide

a more compact representation and approximate some of the known effects of the auditory system.

We first downsample our monaural audio files to 22,050 Hz and compute the Short Time Fourier

Transform (STFT) of the signal using a hanning window with a frame size of 46.4 ms (1024 frames).

We compute a 1024 point Discrete Fourier Transform on each frame and employ a hop length of

23.2 ms (512 samples) between frames. This provides us with a frequency resolution of 21.49 Hz in

our STFT.

7.1.1 Auditory Model

Computational auditory models are derived from the physical characteristics of the human au-

ditory system. One key aspect of auditory processing is the logarithmic organization of hearing

induced by the basilar membrane [52]. As explained in Section 2.1.1, different sections of the basilar

membrane respond differently to various frequencies, leading to dynamic frequency sensitivity over

the range of human hearing. The critical band is the bandwidth of an auditory filter that roughly

defines the range in which another sound will cause masking and effect the perceived loudness of

the sounds. The bandwidth is defined in terms of the center frequency of the filter since sensitivity

to frequency changes decreases with increase in frequency. The filter channels have approximately

equal energy and are spaced logarithmically over the range of human hearing. Not only does the

critical band filterbank provide a rough approximation of the way the auditory system works, it also

reduces the dimensionality of the input data to the system. A comparison of the spectrogram (513
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dimensions) and the output from a 108-band critical band filterbank is shown in Figure 7.1.

Figure 7.1: Log frequency spectrogram and critical band filterbank outputs of the song No Phone
by Cake.

More commonly used throughout the signal processing and Music-IR literature is the mel scale.

The mel scale is based on experiments that attempt to measure the perceptual nature of pitch [16].

In experiments, listeners were asked to adjust the frequency of tones so that each tone was twice

as high in pitch as another. The results derived from the data form the relationship between the

Hertz and mel scales. The transformation between the two values is similar to a log scale which is

intuitive due to the logarithmic organization of pitch in the human auditory system. A mel scale

filterbank for converting a linear frequency spectrum to the mel scale is shown in Figure 7.2. There

are 128 mel spaced filters used between 20Hz and 11025Hz. The x axis is logarithmic in frequency

and shows that the mel filters are not truly logarithmically spaced. There is an inflection point

around 1kHz where the spacing below is much wider than the spacing above this point showing the

inconsistencies between a true logarithmic scale and mel scale.

7.2 Basis Decomposition of Spectral Representations

We explore several methods of representing our frequency domain transformations of the data

that are commonly used throughout the Music-IR literature. Principal Component Analysis (PCA),

Non-Negative Matrix Factorization (NMF) and Probabilistic Latent Component Analysis (PLCA)



94

0

0.01

0.02

0.03

0.04

A
m

p
lit

u
d
e

Mel Filterbank

50 100 250 1000 2500 5000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d
e

CQT Filterbank

Figure 7.2: Mel and constant-Q filterbanks depicted in log frequency scale

decompose a matrix into a set of basis vectors or components and activations that are then used to

reconstruct the data. Often, a reduced set of components (fewer than the dimensionality of the data)

are used to capture relevant statistical information in the data or perform dimensionality reduction.

Our goal in applying these methods is to generate a set of representative functions that can capture

aspects of timbre.

The general experimental framework is depicted in Figure 7.3. We compute the STFT for the

produced mix of a song in the dataset and then apply the perceptual weighting filterbank to produce

a mel scaled spectrogram or constant-Q transform. Then the matrix is decomposed into a set of

components and activations (top). We detail the algorithms used for this decomposition in the

following sections. Once a decomposition is attained, the bases is used to reconstruct the individual

tracks that form the mixture. The perceptually weighted STFT of each individual track is computed

and then represented in terms of the bases trained on the full mixture. A track is transformed into

the space with reduced dimensionality defined by the basis decomposition and then projected back

into the original perceptually filtered time-frequency domain. We use the same number of latent

components for each model and then measure their ability to capture aspects of timbre through

perceptual listening tests.
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Figure 7.3: The spectrogram of an instrument mixture is perceptually filtered and a set of bases
functions are computed using PCA, NMF and PLCA. The resulting bases from the mixture are used
to reconstruct the individual instrument files.

7.3 Listening Evaluation of Timbre Reconstructions

The goal of the experiment is to determine which of the basis decomposition methods presented

in the Section 7.2 is able to capture the most relevant spectro-temporal characteristics across various

instrument sources. For each song in the dataset we compute a 128 bin mel spectrogram from 20 to
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11025 Hz. Next, following the diagram in Figure 7.3, for each of the methods (PCA, NMF, PLCA)

we reconstruct the audio of the individual tracks in the mixture from the bases computed on the

mixture. For example if a song contains bass, drums, guitar, vocals and piano. We would compute

the bases from the final produced mixture (converted to monaural) and use those to individually

reconstruct the bass, drums, guitar, vocals and piano tracks. The bases computed on the mixture

will capture the most relevant qualities based on the statistical formulation of each method.

Number of
Instrument Type Examples

Acoustic Guitar 3
Bass 5
Electric Guitar 3
Kick Drum 3
Piano 1
Violin 1
Vocals 4

Table 7.1: Number and type of instruments used in the reconstruction listening experiment.

Reconstructing the individual tracks will show whether the information captured in the repre-

sentation is relevant for the perception of timbre. We design a randomized listening test where

participants are asked to identify the instrument in the mixture. We select five songs from the

dataset and use four from each song as our query examples. Each track has a reconstruction for

PCA, NMF and PLCA resulting in a total of 60 questions for each participant. The instruments

represented in the dataset are shown in Table 7.1.

The participants are asked the following question “One of the following instruments is present

in this audio clip. Which one is it?”. Then they are presented with the 7 instrument choices found

in the subset of the data used for this evaluation. A screenshot of the survey question is shown

in Figure 7.4, notice the addition of the ‘Not Sure’ category in the instrument choices. After an

informal listening analysis, it was evident that some of the reconstructions were inconclusive in terms

of which type of instrument belonged to the audio source present in the clip. This option is included

to gain insight into what qualities are being captured (or not) by the basis decompositions. Given

the inclusion of this option, the participants were instructed “Each clip only has one instrument.

Make your best guess as to which instrument is contained in the audio example. If the clip bears no
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Figure 7.4: An example question from the perceptual survey asking participants to identify the
instrument present in the audio reconstruction.

Decomposition Accuracy

Original Audio 0.97
Mel Spectrogram 0.84
PLCA 0.73
PCA 0.40
NMF 0.32

Table 7.2: Number and type of instruments used in the reconstruction listening experiment.

resemblance to any instrument then select Not Sure”.

7.3.1 Results

There were a total of N=27 participants between the ages of 18-34 with 5 females and 22 males.

Of the participants, 12 reported more than five years of musical training, six reported 1-5 years of

training and nine reported less than one year. Eight people reported that they use a DAW often,

four reported sometimes and the rest had no experience.

The overall accuracy for each decomposition type is displayed in Table 7.2. It is interesting to

note that there is not a 100% recognition rate for the examples that were presented in their original

CD quality audio format. The mel spectrogram result is the accuracy for the reconstruction from the

unprocessed mel spectrogram. At 0.84 this number represents the upper bound of the recognition
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rate for the participants to identify the instruments. PLCA performed significantly better than

both PCA and NMF in terms of mean accuracy across all examples and participants in the dataset,

nearly double that of the next closest algorithm, PCA.
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Figure 7.5: Listening test results showing the number of correctly identified instruments based on
reconstruction type.

In the bar graph in Figure 7.5, we see the breakdown in accuracy given by instrument type. The

PLCA model performs much better than NMF or PCA on vocal tracks. Listening to the examples

reveals that the high frequency and ‘breathy’ content in the vocal reconstructions is not discarded

as in the NMF and PCA reconstructions.

The bar graph of respondents selecting ‘Not Sure’ in Figure 7.6 indicates the difficulty that indi-

viduals have in ascribing a label to some of the reconstructions, in particular the vocals, which have

complex frequency content and are often dynamic in terms of pitch whereas the other instruments

less frequently utilize glissando.

For each example in the dataset a value {0,1} is assigned based on the correct (1) or incorrect (0)

labeling of the instrument in the audio clip. The null hypothesis that the two samples come from the

same distribution is performed to test for statistical significance in the findings. Since we are dealing

with dichotomous data from matched pairs we apply McNemar’s test. Using α
2
= 1

2
0.05 = 0.025 to

test for significance, we found a value of pplca,pca = 6.7x10−20 for comparing the PLCA to PCA results

and pplca,nmf = 2.1x10−15 for the PLCA and NMF results. The McNemar’s statistic the NMF and

PCA decompositions did not refute the null hypothesis with p = 0.028. Although this test has a
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Figure 7.6: Listening test results showing the number of respondents expressing inability to deter-
mine instrument class for each reconstruction type.

relatively small sample size, the results strongly show the increased ability of a two-dimensional basis

to capture aspects of the audio that are relevant to perception of timbre. When designing features

for systems that are supposed to model the way humans process and analyze audio, it is important

to ensure that what the system is ‘listening’ to contains information relevant to the problem at hand.
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8. Conclusions and Future Directions

Several different research areas have come together in this work, precipitating a cogent exploration

of multi-track instrument processing and modeling. The research presented here explored several

different facets of instrument mixtures, with the following main contributions:

• Methods were developed for learning mappings from acoustic features to instrument mixture

parameters. Regression techniques and state space models (LDS) were shown to be efficacious

for producing good mixture results for unknown tracks. Although the LDS proved to be

effective at modeling the mixing parameters learned from the data, the topology hindered

modeling a variety of data. A one versus all architecture was employed that both improved

overall accuracy and provided the benefit of being more forgiving to instrumentation.

• A corpus of instrument tones was represented using linear dynamical systems and then re-

synthesized, showing the capability of the model to capture and alter perceptual characteristics.

• Individual instrument examples were reconstructed from features commonly used in Music

Information Retrieval. It was shown that the salient aspects of the audio signal that humans

use to perceive individual timbres are lost in many commonly used approaches, namely PCA

and NMF. The results show that 2-D representations (convolutive PLCA) are much more

perceptually relevant in a computational framework.

I introduced a supervised machine learning approach for automatically mixing a set of unknown

source tracks into a coherent, well-balanced instrument mixture using a small number of acoustic

features. The mixing coefficients were modeled as the hidden states of a linear dynamical system

and used acoustic features extracted from the audio as the output of the model. After estimating

the parameters of the model on the training data, the time-varying weights of each instrument for

an unknown song were predicted using Kalman filtering.

That approach was extended to reduce the constraints on the model and generalizing it to a

larger number of instruments. One modification to the system includes modeling the weights of an

individual instrument and their first and second derivatives instead of jointly estimating the weights

for all of the instrument tracks at once. This removes the restriction that the test song must contain

all instrument types that the model was trained on.



101

Additionally, an extended feature set within this framework and evaluation of the performance

of each individual feature as well as combinations of features was executed. The features are chosen

to contain information about the total energy of the signal, energy within various frequency bands,

spectral shape and dynamic spectral evolution.

Individual instrument tones were shown to be well modeled and re-synthesized using linear dy-

namical systems. The reconstructions produced good numerical error results and informal listening

yielded quality audio examples. The ability to alter the timbre using a single model led to an

exploration for salient features that are desirable for identifying timbres.

The ability to represent timbre in a set of reduced dimensionality components was evaluated

through basis decomposition reconstructions. Three methods, Principal Component Analysis, Non-

Negative Matrix Factorization and convolutive Probabilistic Latent Component Analysis were com-

pared though a listening evaluation. Model components were trained on fully produced mixes and

used to reconstruct the individual tracks to investigate whether interactions between various sources

would be represented in the bases functions. The two dimensional kernel distributions and sparse

impulse distributions were able to capture much more of the spectral evolution of the instrument

sources.

Listening tests showed not only better accuracy per instrument but also more confidence in the

participants’ ability to discern whether or not the source was derived from an instrument at all.

The frequency selectivity of the PCA and NMF decompositions prevented them from capturing

the spectral contour of the signal mixture and resulted in emphasizing frequency content that was

present in the mix but not in the separate source tracks.

8.0.2 Future Research

There are many directions to follow from the work presented in this thesis as the interdisciplinary

nature of the work relies on several domains.

Supervised Models for Mixing

As is often the case in machine learning, more data is better but more clean data is best. More

multi-track data is becoming available and the popularity of digital tools for creating and producing

music as well as the collective nature of internet collaboration will surely provide more sources of

data for training mixing models.

As many mixes are dynamic in nature with parameters varying over time, models that take
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time dependence into account will be necessary. Hidden Markov Models (HMM), Linear Dynamical

Systems (LDS), Dynamic Bayesian Networks (DBN) and Recurrent Neural Nets (RNN) are worth

investigating for use in training models directly from data.

The evaluation of models will be much easier to accomplish if there is a concrete target model

based on parameters from actual mixing sessions rather than having to rely on expensive and/or

time consuming perceptual evaluations of resulting mixtures. This will also allow for more rapid

iteration and improvement.

Timbre Modeling

Music is inherently time dependent. The majority of the efforts in the Music-IR community

thus far have used the bag-of-frames approach assuming independence between frames or computing

statistics over large amounts of time. This made sense due to the fledgling nature of the field and

the complexity of the tasks involved. As the field has grown we have witnessed a focus on developing

models that capture dynamics in a much more powerful way.

Time-frequency basis representations contain much more information that is perceptually rele-

vant as was shown in this work. Hopefully these experiments will lead to a better understanding

of how to model the interaction of different sources. The training and reconstruction framework

here could easily be inverted where individual instrument bases are used to form a mixture and

component activations could be informative about the contributions of separate instruments in the

mixture. Similar perceptual analysis of the information that the model selects can help the field

develop features that allow us to represent higher levels of abstraction leading to increased ability

to model and perform more complex tasks in a more automated fashion.
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Appendix A. Calculation of Mel Frequency Cepstral Coeffiecients

To compute MFCCs the frequency spectrum is first warped to the Mel scale which is a non linear

scale that models human auditory perception [94]. This transformation, depicted in Figure A.1(a),

is calculated as

Fmel = 2620 log10(1 +
f

657.6
) (A.1)
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Figure A.1: The mel frequency scale (a) and mel filterbank (b).

The energy in the mel-scaled spectrum is then computed for a number of sub-bands as

Emel(n, l) =
1

Al

Ul

∑
k=Ll

∣Vl(ωk)X(n,ωk)∣
2 (A.2)

where Vl(ω) is the lth mel scale filter and X(n,ωk) is the spectrum where n indicates the audio

frame in time. The discrete cosine transform (DCT) of the log of the filter-bank outputs is calculated
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yielding the MFCCs [68].

Cmel[n,m] =
1

R

R−1

∑
l=0

log{Emel(n, l)}cos(
2π

R
lm) (A.3)

A diagram of this procedure is illustrated in Figure A.2.
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Audio
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Figure A.2: MFCC calculation.
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Appendix B. EM Algorithm

The mixture density for a weighted linear combination of Gaussians is given as

p(x) =
K

∑
k=1

πkN (x∣µk,Σk) (B.1)

and the corresponding log likelihood function is given by

lnp(x) =
N

∑
n=1

ln{
M

∑
k=1

πkN (x∣µk,Σk)} (B.2)

Taking the derivative with respect to µk and equating it to zero gives

0 =
N

∑
n=1

πkN (xn∣µk,Σk)

∑j πjN (xn∣µj ,Σj)
Σ−1
k (xn −µk) (B.3)

where

γ(znk) =
πkN (xn∣µk,Σk)

∑j πjN (xn∣µj ,Σj)
(B.4)

are the responsibilities (posterior probabilities) of the mixture model. Multiplying both sides by Σk

and solving for the mean yields

µk =
1

Nk

N

∑
n=1

γ(znk)xn, Nk =
N

∑
n=1

γ(znk) (B.5)

Similarly differentiating the log likelihood function with respect to Σk and following a similar

line of reasoning yields

Σk =
1

Nk

N

∑
n=1

γ(znk)(xn −µk)(xn −µk)
T (B.6)

The algorithm alternates between expectation and maximization steps until convergence. Initial

parameters are often obtained through the k-means algorithm described in Section II. The E step

maximizes the responsibilities, or posterior probabilities γ(znk). These values are used in the M

step where the means, covariance matrices and mixture coefficients are calculated using the new

posteriors.
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Appendix C. Album Effect on Feature Data

Section II explained that the ground truth data used to develop the timbre models was derived

based on a “same artist - same album” approach to similarity. An adverse effect of this approach has

been observed in artist identification systems. When songs from the same album are used for testing

and training data, the performance of these systems increases [43]. When the testing and training

sets are mutually exclusive with respect to a given album, a significant performance degradation

occurs.

The effect is attributed to post processing and mastering applied across all songs on an album.

When equalization is applied to all songs, the frequency domain characteristics (i.e. the spectral

envelope) are modified in the same manner resulting in a global change in spectral shape. Recalling

that MFCCs are an approximation of the spectral envelope, it follows logically that a global change

to the spectrum of the audio would have a normalizing effect and cause songs to be easily classified

by a system trained on data from the same album.

To investigate the consequences this may have on the timbre model outlined in Section II, a brief

experiment was performed. Note that some of the same problems of subjectivity in conducting this

experiment could be alleviated by the type of study outlined in Section V. The steps performed are

outlined below:

• Select albums that have a consistent timbre excepting at least one song that is drastically

different.

• Select five tracks from the albums - four that are consistent in timbre and one that is markedly

dissimilar.

• Take a 30 second clip from each song and compute MFCCs on a frame-by-frame basis.

• Generate a plot showing a projection of the data into a 3D space.

• Find a song that sounds similar to the consistent timbre of the album and plot it in the same

feature space.

The albums used in this experiment were Pork Soda by Primus, Pressure Chief by Cake and The

War on Errorism by NOFX. In each plot in Figure C.1, the dark blue is the song that was selected
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(a) 3D projection of MFCCS for NOFX (b) 3D projection of MFCCS for Primus

(c) 3D projection of MFCCS for Cake

Figure C.1: MFCCs for 30 seconds of audio for several songs per album.

because it is significantly different in timbre compared to the other songs on the album. The black

song is the test song that was selected from another artist and album deemed to have similar timbre.

In the three plots, the song that is a different timbre from the same album is not separated very far

from the remaining songs on the album. This may indicate that the post production does shift a

dissimilar timbre towards the remainder of the tracks on the album. The tracks selected from the

test album do not show much separation from the training samples as would be expected from a

song selected to sound the same.

This short experiment would benefit greatly from data gathered from many individuals regarding

the similarity of timbre in the ground truth data. It is possible that in selecting the songs for the

experiment the researchers bias is heavily influenced by musical taste and other factors. A much
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more convincing model can be developed if a majority of participants in a study rank the songs by

similarity. This is a much more acceptable measure of ground truth compared to the opinion of one

or several individuals working on the project.
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