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ABSTRACT 

 

This thesis presents a work in progress related to the use of Health and Usage Monitoring Systems 

(HUMS) data to actuate an adaptive control system on an autonomous vehicle operating in an 

Intelligent Transportation Systems (ITS). The autonomous passenger vehicle has rapidly matured 

from a speculative concept to a reality that is quickly appearing within our sightlines. Autonomous 

(also called self-driving, driverless, or robotic) vehicles have long been predicted in science fiction 

and discussed in popular science media. Recently, major corporations have announced plans to 

begin selling such vehicles in the near future, and some jurisdictions have passed legislation to 

allow such vehicles to operate legally on public roads. 

 

Autonomous vehicles will be performing intelligent functions (navigation, maneuver, behavior, or 

task) by perceiving the environment and implementing a responsive action based on HUMS input. 

Once these vehicles begin to operate on public roads as a norm, safety and reliability becomes a 

major factor. The implementation or expanded use of HUMS can perceivably render these systems 

reliable and safe to operate in any environment or mode. This thesis also depicts a notational 

framework for HUMS in autonomous vehicles operating on ITS networks and future research 

needed to make this a reality. 

 

 

Keywords: Health and Usage Monitoring System (HUMS), Reliability, Adaptive Systems, 

Prognostics, Autonomous Vehicle, Intelligent Transportation System
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CHAPTER 1.  INTRODUCTION 

Today advanced Personal Transportation Systems (PTS) such as autonomous vehicle are currently in 

the applied research arena; Advanced vehicle health monitoring and maintenance technologies need to 

be advanced at same pace as the vehicles. This thesis is focused on the Intelligent Transportation 

Systems (ITS) and the implementation of HUMS, prognostics approach to deduce meaningful 

information and to predict the health of the system.  

 

Autonomous vehicles have arrived in ITS’s across the world but safety factors and applications related 

with the technology is still a concern for numerous countries. If developed accurately, HUMS can serve 

as a potential solution to recent safety concerns with autonomous vehicles. The primary goal of this 

research is to attain that level of accuracy to implement in real world scenarios. 

 

The PTS research is interested in concentrating its research and development efforts in the following 

area: 

 

• Study advanced diagnostics and prognostic systems to include HUMS and autonomous 

vehicles in ITS 

 

• Develop and conduct data analysis for HUMS and ITS data (big data analysis for vehicles and 

fleet) 

 

• Develop a framework for vehicle censored data analysis and reporting. 

 

• Provide a research environment for the study and development of learning and performance 

support system for technical workers that will aid in support and maintenance of semi and fully 

autonomous vehicles, resulting in the enhancement of their skills, knowledge and abilities.  

 

This will provide a world-class vehicle technology research and development effort that can 

leverage the best of government, industry and academia. This research will leverage existing 

research and development activities to transfer their findings into new products and services.  
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The autonomous car industry is on the rise the last few years. Various commercial and 

experimental autonomous vehicles are being continuously developed, and some of them have 

already qualified level 3, the second highest level of automated vehicle, of the ranking of National 

Highway Traffic Safety Administration (NHTSA)1. Despite the recent leaps in automated vehicle 

technology, accomplishing the full automation of cars, or level 4 of the NHTSA’s classification, 

is still a significant challenge, as this level would require the automated vehicle to be so reliable 

and safe in all working conditions that human intervention is not needed. This level means the 

autonomous program must be able to make all decisions regarding the driving conditions, and to 

accomplish that, it is important and helpful to set up a monitoring and analyzing system that can 

accurately capture and supply the data of the conditions of the many components within an 

autonomous vehicle. The output of such system would be beneficial in not only the decision-

making process of the automated driver, but also in the maintenance and performance evaluation 

of the vehicle. Such a system has already been developed and utilized in different helicopters, and 

is commonly known as Health and Usage Monitoring System (HUMS). 

 

 

 

 

 

 

 

 

 

                                                 
1 NHTSA ranks the technology of automated vehicle into 5 levels based on the vehicle’s 

capabilities and technology. Level 3 means Limited Self-Driving Automation, while 

Level 4 can be interpreted as Full Self-Driving Automation. Details regarding the 

classification are available on NHTSA’s website at 

http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportati

on+Releases+Policy+on+Automated+Vehicle+Development 
 

http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+Automated+Vehicle+Development
http://www.nhtsa.gov/About+NHTSA/Press+Releases/U.S.+Department+of+Transportation+Releases+Policy+on+Automated+Vehicle+Development
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CHAPTER 2.  BACKGROUND 

 

Over the past decade, autonomous vehicles have been studied and developed for real world 

application. ITS, which was a concept during the same time frame is now becoming a reality, with 

capability to deploy models based on current research and developments. This form of technology 

has been growing interest in various sectors (academia, industry and government) since 2004. In 

order to bridge the gap between our current capabilities and framework models, the development 

of HUMS will enhance the logistics support capabilities. Studies have shown that maintenance 

and logistics personnel are motivated to support advanced vehicle technologies but lack the tools 

such as advanced diagnostic systems, performance support systems, and onboard vehicle health 

monitoring systems to meet the needs thus rendering this workforce ineffective when it counts.   

 

Since 1993, members of the Intelligent Maintenance Systems (IMS) lab have been involved in 

developing systems that enhance the capabilities of maintenance technicians by developing 

onboard and appended diagnostic systems such as SmartDART (Smart Diagnostics and Repair 

Tool) and SmartMentor, as well as Electronic Performance Support Systems, such as LockTel 

[36].  These systems coupled with an active condition-based maintenance capability that includes 

HUMS and IMS applications could serve as a game changing enabler for maintaining complex 

systems (manned and unmanned vehicles) at an elevated operational availability while lowering 

life-cycle support cost.   

 

With the arrival of the latest versions of on-board computer processors, sensors, and control 

systems vehicles, on-board processors and data collection can now be considered intelligent 

systems.  These can be leveraged to perform multiple tasks and serve as the platform for the 

deployment of emerging vehicle health monitoring, diagnostic, and prognostics technologies and 

processes.   Technologists, scientists and engineers around the globe are at the forefront of many 

emerging technologies, and at the heart of these advances are some innovative practices. It is also 

important to note that government laboratories and sponsored research activities can be leveraged 

to accelerate the development of these systems.  There are many opportunities for transfer of 



 

 

4 

technology from government labs and universities to accelerate the maturity of these technologies 

and processes through small business innovation. 

 

HUMS was introduced and developed in the late 80s, early 90s as a solution to the low 

airworthiness of helicopter during these times. It originated from offshore oil and gas industry, 

but soon gained attention from the military and other commercial sectors with its benefits. 

HUMS is capable of monitoring the conditions and performances of mechanical components of 

an aircraft, including gearboxes, bearings, shafts, engines, etc. through the vibration data of these 

mechanical parts. Additionally, it can also interact directly with the control bus of the aircraft, 

and record parametric data from it for data-mining and analysis. Valuable insights and 

information could be obtained from this information. Benefits of HUMS have been obvious and 

consistent, for a wide range of areas like improving reliability and safety of aircraft, optimizing 

maintenance processes, cutting operating costs and developing knowledge bank for design 

purposes [2].  

 

An aircraft’s HUMS usually features an extensive and multifarious collection of sensors that 

capture and convert the conditions of the components and operating environments. Since HUMS 

was originally created to work with mechanical parts, the majority of the sensors in an aircraft 

HUMS system deals with vibration health monitoring (VHM). The process as flow in generic 

form can be described as, first, information from the sensors would be stored and filtered by an 

acquisition unit on board, which will also transfer the data to a dedicated remote station. Second, 

data will be analyzed onboard and on the ground to derive and predict important information 

regarding the health of the components of the aircraft, and its overall performance. Figure 1 

demonstrates a basic summary of HUMS process [2].  
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Figure 2 Basic HUMS process [2] 
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CHAPTER 3. Health and Usage Monitoring Systems (HUMS) 

 

3.1 The Theory 
 

The concept of HUMS is comparatively new. Since the industrial revolution, the perception of 

monitoring the health of structural and mechanical components has gained high significance. On 

the other hand, the notion of usage monitoring has been around for about half a century. The term 

system has been the latest addition to the fault identification process along with development of 

new algorithms for those processes. Data science plays as a backbone for this process. Since 

1980’s, the conception of data collection, data verification, health trending and sometimes usage 

calculation of various critical components came into play and the process is still maturing rapidly. 

 

HUMS is a sensor-based monitoring system that enables Condition-Based Maintenance by 

measuring the health and performance of components. By continuously monitoring vibration at 

numerous points throughout the drivetrain, and pinpointing mechanical faults before they become 

catastrophic failures, HUMS provides actionable information that allows informed maintenance 

decisions [3].  

 

Ever since they have been introduced in the aviation world, health and usage monitoring systems 

(HUMS) have gained traction and expanded from the offshore oil and gas industry to the military, 

unmanned aerial systems, and commercial and business operations. Previously they were called as 

‘North Sea HUMS’ as they originated on helicopters servicing the North Sea oil platforms [1]. 

HUMS is designed to automatically monitor the health of mechanical components in various 

transportation systems. HUMS enable these systems to record structural and transmission usage, 

transmission vibrations, rotor track and balance information, and engine power assurance data. 

These devices can monitor the health of rotating components like gearboxes, engines, shafts, and 

bearings for different types of analysis (vibrations, usage and event). The intelligence gained from 

the use of HUMS allows maintainers and fleet operators to make informed decisions about 

driving/flying/sailing and maintain their systems [2].  

In summary, HUMS capabilities can be listed as follows: 

• Enhance safety 

• Decrease maintenance burden 
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• Increase availability and readiness 

• Reduce operating and support costs 

 

 

3.2 Reliability Centered Maintenance (RCM): Maintenance Tactics 
 

RCM is defined as the process of maintaining a complex system in a cost-effective manner. This 

analysis provides a structured framework for analyzing the functions and potential failures for a 

physical asset (such as an airplane, a manufacturing production line, etc.) with a focus on 

preserving system functions, rather than preserving equipment. RCM is used to develop scheduled 

maintenance plans that will provide an acceptable level of operability and risk in a cost-effective 

manner. 

 

 

The terms reliability is the probability that a system will perform its intended function for a given 

period of time under the stated conditions. RCM focuses on this probability and gives a 

maintenance schema that will increase the reliability of the system. With increased reliability 

comes more uptime and less cost for maintenance. Nowlan and Heap [4] published a report titled 

Figure 3.1 Elements of RCM Analysis 
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“Reliability-centered maintenance” after years of work and research on the topic and concluded 

that RCM is the way to achieve inherent safety and reliability capabilities at minimum cost.  

 

The RCM analysis will be of minimal help when implemented in poor design with unreliable 

components. Thus, it is important that we apply this schema right from the early stages of 

development of a system to cash out all the available life form the components. According to the 

SAE JA1011 standard [5], the following are the seven questions that a maintenance schema should 

answer to be qualified as RCM, 

 

1. What are the functions and associated desired standards of performance of the asset in its 

present operating context? 

2. In what ways can it fail to function? 

3. What causes each functional failure? 

4. What happens when each failure occurs? 

5. In what way does each failure matter?  

6. What should be done to predict or prevent each failure? 

7. What should be done if a suitable proactive task cannot be found? 

The goals are to identify the most cost-effective and applicable maintenance techniques to 

minimize the risk and impact of failure in facility and utility equipment and systems. This allows 

systems and equipment functionality to be maintained in the most economical manner. Specific 

RCM objectives as stated by Nowlan and Heap [4] are:  

• To ensure realization of the inherent safety and reliability levels of the equipment.  

• To restore the equipment to these inherent levels when deterioration occurs.  

• To obtain the information necessary for design improvement of those items whose inherent 

reliability proves to be inadequate.  

• To accomplish these goals at a minimum total cost, including maintenance costs, support 

costs, and economic consequences of operational failures [6].  

There are four outcomes from the RCM process are described below as seen in figure 3.1.  
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3.2.1 Preventive maintenance (PM) 
 

PM is a fundamental, planned maintenance activity designed to improve equipment life and avoid 

any unplanned maintenance activity. This maintenance includes: systematic inspection, detection, 

correction, prevention of incipient failures, PM is the foundation of the entire maintenance 

strategy. Unless the PM program is effective, all subsequent maintenance strategies take longer to 

implement, incur higher costs, and have a higher probability of failure. 

 

PM involves looking at the asset failure history, and instigating maintenance to fix it before there 

is a high probability of its failing. As defined in literature [7], actions performed on a time- or 

machine-run-based schedule that detect, preclude, or mitigate degradation of a component or 

system with the aim of sustaining or extending its useful life through controlling degradation to an 

acceptable level. As seen in table 3.1, it can be broken down into its pros and cons.  

 

Advantages Disadvantages 

• Useful in many capital-intensive 

processes 

• Ensures high asset availability 

• Minimizes unplanned downtime 

• Increased component life cycle 

• For critical components, PM 

eliminates the severe consequences of 

failures 

• Catastrophic failures still likely to occur 

• Labor Intensive 

• Includes performance of unneeded 

maintenance 

• Increases the cost of downtime 

 

Table 3.1 PM Evaluations 

 

For instance, in the case of changing the lubricant in a passenger car, typically, on an average 

people change their engine oil in their vehicles every 3,000 to 7,000 miles with no specific concern 

given to the actual condition and performance capability of the oil. If the owner of the car 

discounted the vehicle run time, and had the oil analyzed at some interval to determine its actual 

condition and lubrication properties, they might be able to extend the oil change until the vehicle 

had traveled to approximately 9,000 miles [9].  
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As seen in report [9], a detailed review of preventive maintenance approaches along with some 

characteristics can be described as follows:  

• Failure rate limit policies, initiate maintenance when the system reaches a predetermined 

failure rate. State variables such as wear, stress, or damage are monitored to update the 

failure rate function. When the failure rate reaches the predetermined maintenance failure 

rate, the preventive maintenance activities are commenced.  

• Sequential maintenance policies initiate maintenance according to unequal preventive 

maintenance time intervals. As the age of the component increases, the time between 

maintenance activities is reduced.  

• Repair limit polices utilize a cost basis to determine the action taken when a component 

fails. When the component fails, the cost of repair is compared to the cost of replacement. 

The component will be repaired if the cost of repair is less than the cost to replace, 

otherwise the component is replaced.  

• Repair number counting polices allow for a component to fail number of times before the 

component is replaced. The failures up to and including n-1 failure are mitigated with 

minimal repair.  

• Repair number counting and reference polices are an enhancement to the process by adding 

an additional variable T that represents a positive operating time. Under the reference 

policy, the component is allowed to fail n times but is replaced at the nth failure if the 

operational time has not reached the predetermined T value. If T has not been reached, the 

component is minimally repaired and replaced on the n+1 failure.  

• Opportunistic maintenance policies address dependencies that occur in large systems. 

Failure of a component within a large system of components may require the removal of 

intact components to access the failed component. Given this situation, there is opportunity 

to replace or repair non-failed components according to criterion such a hazard rate or cost.  

• Optimization of preventive maintenance policies is conducted by analyzing cost and 

system reliability measurements. The optimization approach generates preventive 

maintenance intervals by minimizing costs or ensuring that a desired system reliability is 

achieved. 
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3.2.2 Condition based maintenance (CBM) 

 
CBM is a maintenance program that recommends actions based on the information collected 

through condition monitoring. For instance, it can intake maintenance techniques from real-time 

assessment of platform obtained from embedded sensors and measurements using in-built 

diagnostics systems [10].  CBM attempts to avoid unnecessary tasks by taking maintenance actions 

only when there is evidence of abnormal behaviors of a physical asset. A CBM program, if 

properly established and effectively implemented, can significantly reduce maintenance cost by 

reducing the number of unnecessary scheduled preventive maintenance operations.  

3.2.2.1 Predictive maintenance (PdM) 
 

Predictive maintenance can be described as: Measurements that detects the onset of system 

degradation (lower functional state), thereby allowing regular failure modes to be eliminated or 

controlled prior to any significant deterioration in the component physical state. The end result 

from a PdM technique is based on actual condition of the machine rather than preset maintenance 

schedule in the case of PM.  

The aim of PdM can be stated as:  

1. Predict when equipment failure might occur.  

2. Prevent occurrence of the failure by performing maintenance. 

Monitoring for future failure allows maintenance to be planned before the failure occurs. Ideally, 

PdM allows the maintenance frequency to be as low as possible to prevent unplanned reactive 

maintenance, without incurring costs associated with doing too much PM. As seen in table 3.2, 

PdM can be distinguished by its advantages and disadvantages [7].  

 

 

Advantages Disadvantages 

• Increased component operational 

life/availability.  

• Allows for preemptive corrective 

actions.  

• Decrease in equipment or process 

downtime.  

• Increased investment in diagnostic 

equipment.  

• Increased investment in staff training.  

• Savings potential not readily seen by 

management.  
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Table 3.2 PdM Evaluations  

 

 

On the other hand, maintenance decision support is a vital category considering various option 

available for maintenance. Selection of a sufficient and efficient decision support tool would be 

crucial to maintenance personnel’s decisions on taking appropriate actions. Techniques for 

maintenance decision support in a CBM program can be divided into two main categories:  

1. Diagnostics: fault diagnostics focuses on detection, isolation and identification of faults 

when they occur. 

2. Prognostics: attempts to predict faults or failures before they occur. 

Prognostics from its characteristics is superior among the two as it can prevent faults or failures, 

and in unavoidable circumstances help save extra unplanned maintenance cost. Nevertheless, both 

these techniques are complementary to each other as one fails and other provides meaningful 

conclusions. In addition, diagnostic is also helpful to improving prognostics in the way that 

diagnostic information can be useful for preparing more accurate event data and hence building 

better CBM model for prognostics [7].  

3.2.2.2 Real-time monitoring maintenance (RTMM) 

 
A smart maintenance technique can be created by integrating data from existing sensor 

technologies for cost control, logistics, purchasing, scheduling, and labor equipment maintenance. 

This maintenance schema can be regarded as RTMM. Over the years, industries have added digital 

communication networks, it became efficient to incorporate sensors not only for machine control 

but also data acquisition. Now, as industrial plants become more sophisticated with their data 

collection and as networking costs decrease there is a growing need to network an entire fleet. It 

is used in conjunction with CBM to continuously monitor the operating condition of machines in 

a plant. Communication networks have opened the door for CBM (PdM). By continuously 

monitoring a machine’s condition, unforeseen problems can be identified and addressed [11].  

• Decrease in costs for parts and labor.  

• Better product quality. 

• Improved worker and environmental 

safety.  
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3.2.3 Run to failure (also known as Corrective(planned) /Reactive (unplanned) 

maintenance) (RTF)  
 

Maintenance tasks are initiated as a result of the observed or measured condition of an asset or 

system, before or after functional failure, to correct the problem. Reactive maintenance 

(Unplanned maintenance technique) is the ‘run it till it breaks’ maintenance mode. Usually the 

cost incurred from it are a lot higher. Corrective maintenance (planned maintenance technique) is 

implemented by the operator based on the designer’s recommendation. No actions or efforts are 

taken to maintain the equipment as the designer originally intended, to ensure design life is 

reached. As seen in table 3.2, RTF can be distinguished by its advantages and disadvantages [7]. 

Advantages Disadvantages 

• Low cost  

• Less staff 

• Increased cost due to unplanned 

downtime of equipment 

• Increased labor cost  

• Cost involved with repair or 

replacement of equipment 

• Possible secondary equipment or 

process damage from equipment 

failure 

Table 3.3 RTF Evaluations  

 

 

3.3 Prognostics 
 

Prognostics is the process in which the occurrence of some system event is predicted. It is 

conducted at a component/sub-component level. It is used to predict the time progression of a 

failure from its commencement to complete failure of a component. Prognostics and diagnostics 

are not the same but are related to each other. A journal article [12] proposes a simple delineation: 

diagnostics involves identifying and quantifying the damage that has occurred (and is thus 

retrospective in nature), while prognostics is concerned with trying to predict the damage that is 

yet to occur. Although diagnostics may provide useful business outputs on its own, prognostics 

relies on diagnostic outputs (for instance, fault indicators, degradation rates etc.) and therefore 

cannot be done in isolation.  
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A prognostic output has two components:  

(i) An ETTF, which is also referred to as remnant life or RUL 

(ii) An associated confidence limit [13,14] 

This confidence value is necessary, firstly, for the inbuilt uncertainty associated with the 

deterioration process. Secondly, due to the ambiguity regarding future operation of the machine. 

Finally, all the errors associated with both the diagnostic and prognostic methods being applied to 

gain meaningful deductions about the system. Business decisions based on prognostic information 

should therefore be based on the bounds of the RUL confidence interval rather than a specific 

value of expected life [13].  

In summary, Prognostics enables adopting CBM strategies, instead of PM strategies.  It is used to 

optimally schedule maintenance and planning for spare components. It can be used to reconfigure 

the system to avoid using the component before it fails by prolonging component life.  This in 

return modifies how the component is utilized and can be generally classified into two types as 

show in figure 3.2,  

 

 

 

 

Prognostics

Model-Based
Approach

Data-Driven
Approach

    Figure 3.2  Prognostics Delineation 
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3.3.1 Model-Based Prognostic 

 

Model-based approaches to prognostic require specific failure mechanism knowledge and theory 

relevant to the monitored machine. It generally refers to approaches using models derived from 

first principles (e.g., physics-based). This implies that a thorough understanding is required of the 

system behavior in response to stress. This behavior can be described accurately and analytically. 

Physical models estimate an output for the remaining useful life of a system by solving a 

deterministic equation or set of equations derived from extensive empirical data. Some of this data 

will be converted into meaningful engineering knowledge, while the other data needs to be 

acquired through specific laboratory or field experimentation. Deriving physical models for a 

particular system will involve identifying numerous parameters like exact physical properties, 

corrosion rates and equation constants specific to that system. They can also be described without 

using any differential equations (state-space models) and solved accordingly [12]. 

 

Behavioral models are usually described using a series of dynamic, ordinary or partial differential 

equations that can then be solved with Lagrangian or Hamiltonian dynamics, approximation 

methods applied to partial differential equations or distributed models and other techniques [15].  

Once a physical model is available, sensor measurements from the actual process are compared 

against outputs of the model. Differences between reality and the model are called residuals; large 

residuals are assumed to indicate a fault while small residuals occur under normal conditions like 

noise and modelling errors [16]. Thresholds can be defined to identify the presence and condition 

of faults or residuals used as inputs to other models. Residuals are calculated using parameter 

estimation, state-space methods or parity equations; the benefits of each are discussed in [18]. A 

general follow of process can be seen in figure 3.3,  

 

 

 

 

 

 

 



 

 

16 

 

Figure 3.3   Model-Based Prognostics process, adapted from [18] 

 

 

 

3.3.2 Data-Driven Prognostic 

 

Data-driven approaches use real data derived from sensors or operator measures to approximate 

and track features revealing the degradation of components and to forecast the global behavior of 

a system. In many applications, measured input-output data is the major source for a deeper 

understanding of the system degradation. Data-driven technique can be divided into three 

categories: 

i. Knowledge-based models: These assess the similarity between an observed situation and a 

databank of previously defined failures and deduce the life expectancy from previous 

events. Sub-categories include the following:  

a). Expert systems  

b). Fuzzy systems  

ii. Life expectancy models: These determine the life expectancy of individual machine 

Identify System Model

Simulation under Random Loads

Prognostics Modelling
from Simulaion Data

Feature Estimation

Track the Degradation Measure

Predict Remaining Useful Life 
(RUL)
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components with respect to the expected risk of deterioration under known operating 

conditions. Sub-categories are separated into statistical and stochastic models and include 

the following: 

 Stochastic models: 

 a).  Aggregate reliability functions 

  b).  Conditional probability methods  

• Static Bayesian Networks:  

• Dynamic Bayesian Networks:  

 Statistical models:   

a). Trend extrapolation 

b). Auto-regressive Moving Average (ARMA) models and variants   

c).  Proportional Hazards Modelling (PHM)  

 
iii. Artificial Neural Networks: These compute an estimated output for the remaining useful 

life of a component/machine,  directly or indirectly, from a mathematical representation 

of the component/system that has been derived from observation data rather than a physical 

understanding of the failure processes. They are further grouped into models used for:   

a. Direct RUL forecasting  

b. Parametric estimation for other models 

Following figure 3.4, will aptly discretize both the models and in its sub-components.  
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Overview: 

 

Figure 3.4  RUL Predictor Models 

 

As seen in the figure above, there are numerous ways to achieve the goal. Hence, selection of a 

model becomes a vital process. There is not a single model with one size that fits all capability. 

Experienced data scientists are still reluctant on picking a specific model and guaranteeing its 

success. In order to do so, we need to apply the trial and error method. The following tables (3.4(a) 

– 3.4(c), adapted from [12]) will help ease the process, as it will provide useful information 

regarding when to consider and ignore a model according to its application.  

RUL Predictor 
Models

Data-Driven
Technique

Knowledge 
Based Model

Expert Systems

Fuzzy System

Life-Exceptancy 
Model

Stochastic 
Approach

Aggregate 
reliability 
functions

Conditional 
probability 
methods

Static Bayesian 
Networks

Dynamic 
Bayesian 
Networks

Markov Models

Hidden Markov 
Models

Kalman Filters

Particle Filters

Statistical 
Approach

Trend 
Exploration

ARMA Variants

PHM

Other Time 
Estimation 

Models

Aritifial Nueral 
Network Model

RUL Forecasting

Parameter 
Estimation 

(Hybrid)

Model-Based
Technique

Physical Models

Application 
Specific
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Models  Consider Ignore 

• Expert System 

 

 

 

 

 

 

• Fuzzy Systems 

 

o Well understood, stable, 

narrow problem area; 

human experts available to 

develop the knowledge 

base; operating conditions 

are stable and predictable; 

simple precise queries to 

define potential faults is 

possible; only an 

approximate RUL estimate 

is required 
 

 One or more variables are 

continuous; and a 

mathematical model is not 

available or not feasible to 

implement; and data 

contains high levels of noise 

or uncertainty; and difficult 

to define exact queries that 

identify specific faults  

o No human experts available 

to define comprehensive set 

of rules; fault mechanisms 

are not well understood; 

operating conditions are 

highly variable; highly 

accurate or precise RUL 

estimates are required  

 

 No human experts are 

available to define fuzzy 

rules; or input data is 

discrete and limited to a 

small number of options  

 

 

Table 3.4(a)  Knowledge Based Models General Application Criteria 

 

Models Consider Ignore 

❖ Aggregate Reliability 

Functions 

 

 

 

 

 

 

❖ Conditional Probability 

Models 

 Static Bayesian Networks 

 

 

 Dynamic Bayesian 

Network 

o Sample size is statistically 

significant; Small set of 

dominant failure modes; 

PDF is not exponential; 

and Reliability growth is 

not occurring; Condition 

monitoring data is not 

available; RUL prediction is 

predominantly used for 

overall maintenance 

management rather than 

tracking of a specific asset. 

so gradual escalation of 

warning levels is not 

required  

 

o Incomplete, multivariate 

data available; and root 

causes of failure known; 

and process and plant 

configuration is relatively 

static or network is 

confirmed up to date; 

and modelling experts are 

available  
 

 

o Only a small number of 

failures can be attributed to 

individual failure modes; or 

significant number of 

possible failure modes that 

cannot be easily 

differentiated; Past 

operating conditions are not 

representative of current 

environment or usage; the 

specific asset is critical to 

plant safety or operations 

and warning is required 

prior to failure 
 

 

o Root causes of failure 

unknown; or expert plant 

and modelling knowledge 

unavailable; or training data 

unavailable  
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• Markov Model 

 

 

 

 

 

• Hidden Markov 

Model 

 

 

 

  

 

• Karman Filters 

 

 

 

 

• Particle Filters 

 

 

Statistical Methods 

• Trend Extrapolation 

 

 

 

 

 
o Simple to develop and 

implement; incomplete, 

multivariate data available; 

and root causes of failure 

known; and process and 

plant configuration is 

relatively static or network 

is confirmed up to date; 

and relatively accurate and 

precise RUL estimate 

required  
 

 

 
o Repairable systems; and root 

causes of failure known; 

failure being modelled has 

more than one discrete 

stage; temporal data to be 

used as model 

inputs relatively accurate 

and precise RUL required  

 

o Multivariate posterior 

distribution; additive noise; 

condition monitoring data is 

available; relatively accurate 

and precise RUL estimate 

required  

 

 

o Multivariate/non-standard 

posterior distribution; non-

linear, non-Gaussian noise; 

Relatively accurate and 

precise RUL estimate 

required  

 

 

o Single defined failure mode 

associated with a single 

monitored parameter that 

can be described with a 

monotonic trend; and 

operating conditions are 

stable or do not affect 

monitored parameter; 

measurements are 

repeatable, reliable and not 

highly sensitive to 

 

o Repairable system; 

temporal measurement data 

as model inputs; sufficient 

data related to failure mode 

is not available for training; 

failure being modelled has 

more than one discrete 

stage  

 

 

o Sufficient data related to 

failure mode is not 

available for training; 

suitable hardware for 

computation is not 

available  

 

 

 

o Multiplicative noise; single 

variable posterior 

distribution; covariate data 

is not available for the 

failures of interest.  

 

 

o Typical deterministic 

posterior distribution; or 

linear, Gaussian noise; 

or multiplicative noise; 

or single variable posterior 

distribution; or covariate 

data is not available for the 

failures of interest  
 

 
o Incipient failure cannot be 

related to a simple 

measurable input; varying 

operating conditions that 

affect the measured 

parameter but are not 

related to failure; trend is 

not monotonic; data highly 

dependent on measurement 

process; data is subject to 

high levels of process or 

measurement noise; reliable 

confidence limits are 
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• ARMA Variants 

 

 

 

 

• PHM  

measurement processes  

 

 

o Hazard rate is a linear 

relationship of covariates 

and noise; short-term 

predictions required; hazard 

rate is independent of age; 

measurement data is 

available for modelling and 

application but historical 

failure data is not  

 

o Times to failure are 

independent and identically 

distributed; covariates have 

a multiplicative effect on the 

baseline hazard rate; a 

number of covariates are 

available and required to 

describe change in risk; 

process represented by the 

covariates is stationary; 

associated covariate data is 

available for the failure 

modes being modelled; only 

the final RUL estimate and 

confidence limit is required. 

required on the extrapolated 

RUL estimate  

 

o Hazard rate is not a linear 

relationship of covariates 

and noise; when historical 

or expert data is available 

in addition to measurement 

data; long term predictions 

are required; sufficiently 

large volume of data is not 

available for model 

construction and validation  

 

o Failures have not occurred 

previously or have no 

associated covariate data; 
hazard rate is not 

multiplicative; failures 

cannot be segregated into 

individual failure modes; 

covariates related to the 

failure modes being 

modelled cannot be 

measured; process 

represented by the 

covariates is non-stationary.  

Table 3.4(b)  Life-Expectancy Models General Application Criteria 

 

Models Consider Ignore 

• RUL Forecasting 

 

 

 

 

 

• Parameter Estimation 

o Large amount of noisy, 

numerical, temporal data; 

and physical, statistical, 

deterministic model is not 

known, impractical to 

apply; an exact optimal 

answer for RUL is required  

 

o An RUL model (typically a 

physical model) is available 

but contains unknown 

parameters; large amount of 

noisy, numerical, temporal 

data; an exact optimal 

answer for RUL is required  

o Data is complex and 

symbolic; Justification or 

physical extrapolation not 

required; Temporal inputs 

are not available; Minimal 

data is available for training  

 

 

o Data is complex or 

symbolic; or minimal data is 

available for training  

 

Table 3.4(c)  Artificial Neural Network Models General Application Criteria 
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Models  Consider Ignore 

• Physical Based Model o Failure modes are well 

understood and defined; a 

physical model for each 

failure mode is available; 

operating conditions can be 

monitored and statistically 

represented; 

process/condition data is 

available; high accuracy and 

precision required in RUL 

prediction  

o A physical model is not 

available  

 

Table 3.4(d)  Physical Based Models General Application Criteria 

 

 

In conclusion, the maintenance techniques stated above prove to be useful for a specific 

application. For the application HUMS in Autonomous Vehicles (AV), CBM (PdM) techniques 

proves to be of a higher value in comparison with the rest on the basis of their pros and cons (stated 

above). CBM itself as described above is broken down in to Diagnostics and Prognostics. The 

latter being of prime interest, there will be more focus on its vivid models and their applications. 

AV, in current times, has multiple sensors and programmed to various controls laws (especially, 

adaptive controls as a safety feature). Chapter 4, will discuss the same in detail.  

 

3.4 Follow on 
 

Engineers live in a world of measured data. The challenge is converting raw data into valuable 

information. Large data files are difficult to analyze because of long file length and high channel 

count. Further, analysis techniques vary with application – from diagnostics and prognostics 

analysis to durability analysis.  

Prognostics is about forecasting failure based on actual product usage. A traditional maintenance 

approach based on hours or miles neglects one key variable: how the product is actually used. 

Measuring field data allows engineers to quantify the severity of the service life, and then compare 

this severity with design targets. This forms the basis of a Health and Usage Maintenance System 

(HUMS) service approach by which maintenance schedules can be optimized based on real use. 
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There are various software that have developed a range of prognostic techniques that allows 

operators and fleet managers to really understand how their vehicles and assets are used. This 

includes analytical methods to measure the severity of field use with measured data, signal 

processing, and durability analysis techniques. These analyses can be further advanced in the field 

of automation to achieve safety and reliability of various owners and sensors.  
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CHAPTER 4. Autonomous Vehicles (AV) 

 

4.1 Current State 

 
An autonomous car is a vehicle that has the capability to guide itself without human support. This 

form of technology has been growing interest in various sectors (academia, industry and 

government) since 2004. Defense Advanced Research Projects Agency held a grand challenge to 

demonstrate the technical feasibility of AV navigating a 142 mile course in 2004. None of the 

vehicles at this challenge were able to achieve that goal. This led to boom in the research and 

development field for creating AV for human support. The tech giant, Google Inc., established 

itself as a loggerhead in the competition after successful attempts of applying autonomous 

technology to Toyota and Audi cars back in 2010. This kind of vehicle has become a concrete 

reality and may pave the way for future systems where computers take over the art of driving.  

Generally, there are four primary categories upon which an AV technology is categorized 

a. Perception: Vehicles use radar to detect obstacles, a laser ranging system to 

map the surroundings in three dimensions, and video cameras to identify 

objects such as traffic lights, construction signs, pedestrians and other 

vehicles.  

b. Communication: Vehicle-to-vehicle (V2V) radios send signals between 

cars, trucks and infrastructure items such as traffic lights. 

c. Location: Mapping software uses Global Positioning System (GPS) data to 

tell the car where it is in relation to roads, traffic signals, and other 

landmarks. 

d. Route Planning: An on-board computer uses sensor data to plot a route that 

gets the car where it needs to go, while avoiding people, potholes and other 

vehicles. 

The potential economic upside for taking driverless concept and moving it into reality is enormous. 

According to article [19], the potential of annual economic benefit from AV can be estimated to 

be roughly $211 billion, out of which $37 billion is derived form a 224-million-gallon reduction 

in petroleum-based fuels. All this may sound promising but the vital component of safety plays 
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the driving force in ongoing research. Google cars on road driving test success has led to four 

states approving the legislature to have AV in operation in their states. On the other hand, 

seventeen states have failed to make decision on their legislature for the same because there is no 

clear indication of difficulties dealing with complex technical, legal, social and political issues 

surrounding vehicle automation. The figure 4.1 gives an estimate time line of advancement in the 

field of Autonomous vehicles and its related technology.  

 
Figure 4.1  Historic Timeline Autonomous Vehicles [adapted from 28] 

 

 

4.2 Safety Implementation 

 
Preliminary data released today by the U.S. Department of Transportation’s National Highway 

Traffic Safety Administration show a 7.7 percent increase in motor vehicle traffic deaths in 2015. 

An estimated 35,200 people died in 2015, rising from the 32,675 reported fatalities in 2014. “Every 

American should be able to drive, ride or walk to their destination safely, every time,” said U.S. 

Transportation Secretary Anthony Foxx. “We are analyzing the data to determine what factors 

contributed to the increase in fatalities and at the same time, we are aggressively testing new safety 
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technologies, new ways to improve driver behavior, and new ways to analyze the data we have, as 

we work with the entire road safety community to take this challenge head-on.” The seatbelt 

reminder technology had been introduced approximately sixty years ago. The technology added 

safety and convenience at that point of time but did not stop the rate of accidents from that time. 

Most of these accidents have been due to human error but these roadway collisions can be avoided 

with half a second’s warning, according to a recent study from intel.  But autonomous technology 

is set to be so disruptive that it will take the driver out of the equation and redefine mobility and 

safety. The safety features available in current automobiles can be seen in figure 4.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

The features, part of improved safety systems (ImSS) have included functions that provide 

meaningful information to assist drivers.  

Figure 4.2  Vehicle Safety Application 
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1. Forward collision warning 

2. Video capability  

3. Autopilot features 

4. Lane-keep assistance 

5. Blind-spot detection  

These technological developments occurred at a much faster pace than the safety features brought 

about from 1950-2000, a period where seatbelts, airbags, antilock braking, and electronic stability 

control started becoming a part of the automotive world.  

As discussed in the section earlier, advancement in safety features have been of great importance 

in AVs and their applications. National Highway Traffic Safety Administration (NHTSA) has been 

leading the research and development of this technology and making it operational reality. 

According to the article [20], Safety Model Deployment was conducted in Ann Harbor, MI where 

approximately 2,800 cars, trucks and transit buses took part in the deployment. There were 

approximately 300 cars which were full integrated of systems containing electronic devices 

(integrated safety systems, ISS) installed during vehicle production. Integrated safety systems are 

connected to proprietary data buses and provide highly accurate information using in-vehicle 

sensors. The ISS both broadcasts and receives Basic Safety Message (BSM) and can process the 

content through visual, sound, and/or haptic warning of received messages to alert the vehicle 

driver.  

These BSMs are received through aftermarket safety devices which runs Vehcile-2-Vehicle (V2V) 

or Vechile-2-Interface (V2I) safety applications. All the systems were complemented with 

following safety features (as seen in table 4.2),  

 

 

Safety Applications Description 

1. Forward Collision Warning (FCW) Warns the driver if he/she fails to brake when a 

vehicle in the driver’s path is stopped or traveling 
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slower and there is a potential risk of collision.   

2. Lane Change Warning/Blind Spot 

Warning (LCW/BSW) 

Warns the driver when he/ she tries to change lanes 

if there is a car in the blind spot or an overtaking 

vehicle. 

3. Electric Brake Light Warning (EEBL) Notifies the driver about the vehicle ahead of it 

breaks for some reason.  

4. Emergency Electric Brake Light 

Warning (EEBL)- Intersection 

Movement Assist (IMA) 

Warns the driver when it is not safe to enter an 

intersection like instances where something is 

blocking the driver’s view of opposing or crossing 

traffic.  

Table 4.2 Safety Feature Applications, adapted from [20] 

As seen from the table above, these are the current safety features applied to AV models during 

test. There is always room for improvement in the field of safety and its applications. While the 

above mentioned features sound promising, the future of safety features has a lot of value as 

well. Adaptive cruise control, lane centering, and pedestrian avoidance are some of them. We 

will focus on cruise control (Adaptive cruise control) and its current developments to provide aid 

to AV. 

4.3 Controls Application in AV 

 
Controls is considered to be the back bone of AV and their applications. There are various types 

of control techniques being implemented in the current models. Adaptive Cruise Control (ACC) 

is being considered the future of safety implication in model deployments created by NHTSA. 

ACC was first implement as by Mitsubishi Diamante in 1995 and followed by Toyota in 1996.  It 

was used primarily to employ automotive LIDAR or radar sensors to measure the distance, 

velocity, and heading angle of preceding vehicles. This information is used to improve on the 

longitudinal control of conventional cruise control systems. When a free roadway is detected, the 

system behaves just like a conventional cruise control. When a slower preceding vehicle is detected 

the ACC systems follows at a safe driving distance until the situation changes [21]. The system 

works well on highways or in similar operation conditions. 
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The basis of ACC relies on the fundamentals of feedback controls. There are three important 

categories which drive the feedback system: speed control and force input, stopping and swerving. 

Table 4.3 provides more information about each of those types and its mathematical form used to 

formulate the output. Note: All these calculations are based from point mass consideration; this 

does make the evaluation process easier to understand with a tradeoff in precision.  

 

Speed Control and Force 

Input 

Stopping Swerving 

𝑚�̈� + 𝑎�̇� =  𝑓𝑑 − 𝑓𝑏 

 

where,  

m = Mass of the object 

�̈� = Acceleration/deceleration 

as a second-order time 

derivative of the displacement 

𝑎 = Viscous friction 

coefficient of road 

�̇� = Velocity as a first-order 

time derivative of the 

displacement 

 𝑓𝑑 = Driving Force 

𝑓𝑏 = brake force 

 

Let us consider the case of  

steady state, i.e., �̈�=0 & 𝑓𝑏 =
0, this concludes that 𝑎�̇� =

 𝑓𝑑 or �̇� =  
𝑓𝑑

𝑎
 . This shows 

that velocity is directly 

proportional to the driving 

force divided by viscous 

friction and with the 

application of brake force, we 

will get the option of slowing 

down quicker.  

Time to collision is an integral part of 

the stopping mechanism and is 

formally given in the text [22] as a 

quadratic form such as,  

 

𝑥(𝑡) = 𝑥 (𝑡𝑜) + (𝑡 − 𝑡𝑜)�̇�(𝑡𝑜)  
+ (𝑡 − 𝑡𝑜)�̈�(𝑡𝑜) 

 

since we are considering the TTC, the 

distance travelled will be 𝑥(𝑡)= 0. 

Applying the formula, we can easily 

derive, TTC. I.e.,  

 

𝑇𝑇𝐶

=  
− �̇�(𝑡𝑜)√�̇�(𝑡𝑜)2 − 4𝑥 (𝑡𝑜)�̈�(𝑡𝑜)

2�̈�(𝑡𝑜)
 

 

Minimum stop time can now be 

calculated with time delay factor Td 

where Amax and Jrmax denote maximum 

deceleration and jerk force. According 

to the standards defined text [23], the 

Tminimum can be written in the form of,  

𝑇𝑏 =  
𝐴𝑚𝑎𝑥

𝐽𝑚𝑎𝑥
+ 𝑇𝑑 

eventually resulting in the following 

form,  

 

𝑇𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =

 
�̇�(𝑇𝑑)−0.5𝐽𝑚𝑎𝑥(𝑇𝑏−𝑇𝑑)2

𝐴𝑚𝑎𝑥
+  𝑇𝑑  

 

 

This technique is essential 

in terms of avoiding an 

obstacle in front of it and 

maneuvering itself from 

around it to safely pass the 

object. In recent studies 

conducted, AVs currently 

are tackling with a similar 

issue due to various form 

and nature of the obstacles. 

As stated in [24],  

 

LAD = 

√𝑅2 − (𝑅 − 𝑌)2 +
�̇�𝑇𝑅𝑒𝑎𝑐𝑡 + 𝑐 

 

Equation above defines the 

Look Ahead Distance 

(LAD). 

𝑅𝑟𝑜𝑙𝑙 =  
2ℎ�̇�2

𝑤𝑔
 

𝑅𝑠𝑙𝑖𝑑𝑒 =  
�̇�2

𝑖𝑔
 

where,  

R = radius  

Y = distance to travel in 

lateral direction to achieve 

clearance and go ahead 

signal 

�̇� = velocity in longitudinal 

direction 

c = buffer region between 

the AV and obstacle 

Treact = Time required for the 

vehicle to react to an 

obstacle in the sensor range 
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h = height of center of 

gravity 

w = width of obstacle 

i = friction between road 

and tire patches 

Table 4.3 Feedback control laws and mathematical forms 

 
ACC has its own algorithm and mathematical model, which is represented in report [22], where 

the author has compared three human driven models. Linear Car-follow Model, Linear Optimal 

Control Model, and Look-ahead Model. These can be presented as follows: 

 

ACC algorithm applied:  
𝑑

𝑑𝑡
𝑝𝑛(𝑡) =  𝑣𝑛(𝑡) 

𝑑

𝑑𝑡
�̇�𝑛(𝑡) =  𝑎𝑛(𝑡) 

 
𝑑

𝑑𝑡
�̈�𝑛(𝑡) =  𝑏(�̇�𝑛, �̈�𝑛) + 𝑎(�̇�𝑛)𝑔𝑛(𝑡) 

where, 

𝑎(�̇�𝑛) =  
1

𝑚(�̇�𝑛)
 

 𝑏(�̇�𝑛, �̈�𝑛) =  −2
𝑘𝑑𝑛

𝑚𝑛
�̇�𝑛�̈�𝑛 − 

1

𝑛(�̇�𝑛)
 [�̈�𝑛 + 

𝑘𝑑𝑛

𝑚𝑛
�̇�𝑛

2 + 
𝑑𝑚𝑛

(�̇�𝑛)

𝑚𝑛
] 

pn = position of the nth vehicle 

vn = velocity of the nth vehicle 

an = acceleration of the nth vehicle 

mn = mass of the nth vehicle 

τn = nth vehicle’s engine time constant  

gn = nth vehicle’s engine input 

kdn = nth aerodynamic drag coefficient  

dmn = mechanical drag of the nth vehicle 
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Control laws applied are as follows:  

𝑔𝑛 =  
1

𝑎(�̇�𝑛)
 [𝑐𝑛(𝑡) – 𝑏(�̇�𝑛, �̈�𝑛)] 

where,  

𝑐𝑛 =  𝑐𝑝𝛿𝑛(𝑡) + 𝑐𝑣𝛿�̇�(𝑡) + 𝐾𝑣𝑣𝑛(𝑡) + 𝐾𝑎𝑎𝑛(𝑡) 

𝛿𝑛(𝑡) =  𝑦𝑛−1(𝑡) − 𝑦𝑛 − (𝐿𝑛 + 𝑆𝑜𝑛
+ 𝜆2𝑣𝑛(𝑡)) 

𝛿�̇�(𝑡) =  𝑣𝑛−1(𝑡) −  𝑣𝑛 − 𝜆2𝑎𝑛(𝑡)  
𝐿𝑛= length of the nth vehicle 

𝑆𝑜𝑛
= initial headway 

𝛿𝑛(𝑡)= deviation from desired headway 

Cp, Cv, Kv, Ka = design constant 

 

According to the authors context, there are a few criteria for stability of the system (explained in 

detail in the reference). This can be considered as one of the founding theories in the ACC. 

Currently, various car manufacturers have been implementing this as a safety technology to 

improve human driving experience.  

 

4.4 Sensor and Hardware Application: 

 
Complex systems such as an AV entirely depends on sensors for processing and making decision 

for its desired route. The sensor technology has evolved at a lighting fast pace to make these 

concepts a reality. Google Driverless Car, uses five core sensors to drive on a desired path.  

1. Radar technology: 

It is primarily used for adaptive cruise control. The microwaves reflected from backside of 

the vehicles to the front side of the car behind it is used to adjust the speed. This type of 

technology does not use any satellite based information to set its control laws, it mainly 

uses on-board systems for processing the data. Co-operative adaptive cruise control 

(CACC) on the other hand uses satellite and roadside infrastructure to make a decision 

about its speed and avoid the obstacle. Figure 4.4(a) shows the radar technology in use.  

 

 

                    

 

 

 
 

Figure 4.4(a) Radar technology in AV [adapted from 29] 
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2. Ultrasound technology: 

 

Ultrasound has several characteristics which make it so useful and that have led to its use 

in many electronics applications. Firstly, it is inaudible to humans and therefore 

undetectable by the user. Secondly, ultrasound waves can be produced with high 

directivity. Thirdly, they are a compressional vibration of matter (usually air). Finally, they 

have a lower propagation speed than light or radio waves. The fact that ultrasound sensors 

are not audible to humans it is used for assisted parking as seen in figure 4.4(b). Reflected 

sound waves detect distance nearby objects. 

 

 

 

 
 

 
 

 

 
Figure 4.4(b) Ultrasound technology in AV [adapted from 29] 

 

 

3. Cameras: 

 

This technology is mainly used for lane-keeping and back up assistance. Image 

processing software can detect lane-stripes, signs, stop lights, road signs, and other 

objects. Figure 4.4(c) shows where and how camera technology is implemented. 

 

 

 

 

 

 

 

 

 
                                         Figure 4.4(c) Camera technology in AV [adapted from 29] 

 

4. Navigational Aid: 

 

An autonomous car navigation system based on Global Positioning System (GPS) is a new 

and promising technology, which uses real time geographical data received from several 
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GPS satellites to calculate longitude, latitude, speed and course to help navigate a car. 

Accelerometers and wheel sensors help with navigation when satellite signals are blocked. 

Instruments and techniques such as the compass, sextant, LORAN radiolocation, dead 

reckoning are among those which have been used, with varying degrees of accuracy, 

consistency, and availability. Figure 4.4 (d) shows the GPS technology in use.  

         

 

 

 

 

 

 

Figure 4.4 (d) GPS technology in AV [adapted from 29] 

 

             

5. LIDAR: 

 
One of the most integral, expensive, and noticeable pieces of equipment found in an 

autonomous vehicle is the roof-mounted device called LIDAR, which stands for Light 

Detection and Ranging, is a remote-sensing technology that measures and maps the 

distance to targets, as well as other property characteristics of objects in its path. LIDAR 

essentially maps its surroundings by illuminating its targets with laser light and then 

analyzing that light to create a high resolution digital image. 

Google’s autonomous vehicle research project uses a spinning range-finding unit as seen 

in figure 4.4(e). It has 64 lasers and receivers. The device creates detailed map of the car’s 

surrounding as it moves. Software adds information from other sensors and compares the 

map with existing maps and notifies any differences.  
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Figure 4.4(e) LIDAR technology in AV [adapted from 29] 

 

 

 

 

 

4.5 Follow on 

 

Autonomous cars will provide greater fuel efficiency from lighter vehicles and increased 

electrification of the car fleet, but many of the most important benefits to society will be in terms 

of safety. Vehicles will eventually have control modules and sensors to allow them to communicate 

with each other and infrastructure to avoid hazards and accidents. How quickly the U.S. and other 

countries reach deep penetration of autonomy depends a lot on how the incumbents the auto 

industry adopt and how successful new companies such as Google are at dispensing their 

technology. The car itself is extremely innovative, technical, and advanced. In order to properly 

design the software behind the car and the appropriate measures to take in any given situation, the 

Google engineers mined data from different cars; in total, they monitored over 200,000 miles of 

driving. After analyzing their findings, the engineers came to the conclusion that people do not, in 

reality, follow the rules of the road. And thus, Google thought it would be best to have the cars 

respond to many of the unwritten laws of the road that people are more unlikely to follow. The 

next decade provides a lot of promise in this area. 

 

HUMS is a type of Vibration Health Monitoring (VHM) technique. To successfully implement 

HUMS system in automotive vehicles, a comprehensive understanding of the failure modes of the 

car components is required. Based on this information, a system should consist of data processing 

and collecting unit, and application specific sensors would be developed. However, current car’s 
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ECU lack the data analyzing and processing functions of aircraft HUMS controller; therefore, 

either an accessory unit will be added to the existing control systems of auto vehicles, or the data 

from ECU will be transmitted to a different location capable of doing the analyses. Additionally, 

to increase the performance of automobile HUMS system, it is a good idea to divide the car 

components into modularized categories, which ease the data analyses processes, and isolate the 

monitoring aspect of the system while still maintaining a comprehensive evaluation of the vehicles 

[35] 
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CHAPTER 5.  Intelligent Transportation System 

 

5.1 The Concept 

 
The term Intelligent Transportation Systems (ITS) refers to information and communication 

technology, applied to transport infrastructure and vehicles, that improve transport outcomes such 

as: Transport Safety, Transport Productivity, Travel Reliability, Informed Travel Choices, Social 

Equity, Environmental Performance and Network Operation Resilience. 

                 

Figure 5.1(a) Types of ITS 

 

Figure 5.1(a), shows a proposed category for ITS system. As stated in the figure above, these three 

types are clearly dependent on the safety application of ITS. These applications can vary depending 

on the conditions it is applied in. Consider a grid/network of the AV operating through the 

application of ACC and various other control laws. In order to admit the vehicle in this grid, it 

would have to pass through a similar toll both system where instead of toll it would consider the 

health of various components in the car. This information would help the subject to either pass or 

fail its admission into the grid. Based on the information gained from these sensor, the Health toll 

systems would make its decision based on the guidelines embedded in it.  
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The following figure 5.1(b), shows an example of the ITS HUMS application layout as a concept 

toll both health prediction system before advancing in the automated highway grid. It consists of 

an HUMS detector, which gains its information from through sensor beams from the on-board 

HUMS reporter (this reporter is a real-time monitoring device which has capabilities of conducting 

diagnostics and prognostics of the components). These are complex cyber physical systems which 

require a deeper understanding of the subject matter and will be covered in section 5.2 

 
 

Figure 5.1(b)  HUMS Toll-Booth Concept 
 

 

 

5.2 Cyber Physical Systems (CPS) 

 
In order to have a better understanding of the term CPS, let us categorize it in three sections as 

seen in [40]:  

i) What they are? 

 

CPS can be considered as feedback systems, possibly with human in the loop. These 

feedback systems comprise of networked and/or distributed, adaptive and predictive, 

intelligent and real-time systems. Furthermore, networked and/or distributed systems 

consists of wireless sensing and actuation.  
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ii) What do they need? 

 

CPS requires cyber-security, improved design tools that enable design methodology. 

Cyber Security can be broken down further into resilience, privacy, malicious attacks 

and lastly into intrusion detection. These topics are of high interests to the researchers 

in the field of Socio-Technical impact (which is covered in following section)  

 

Design Methodology supports three things. First, specification, modeling and analysis 

of hybrid and heterogeneous models (models of computations, continuous and 

discrete), networking, interoperability, time synchronization. Second, scalability and 

complexity management through modularity and composability, synthesis and 

interfacing with legacy system. Finally, validation and verification on the basis of 

assurance, certification, simulation and stochastic models.  

 

iii) Where can they be applied? 

 

CPS has a wide variety of application in some of the sectors such as communication, 

consumer, energy, infrastructure, health care, manufacturing, military, robotics and 

transportation.  

ITS concept falls under the Transport sector would be heavily relying on cyber-physical systems 

and its outcome. It is currently implemented as a model for test purposes in various cities by the 

NHTSA. It has been capitalizing on the emergence of information and communication 

technologies to efficiently manage the complex transportation network. ITS involves the 

application of these technologies to improve the performance of transportation systems and to 

increase the contribution of these systems to economic and social well-being. The three aspects as 

described in figure 5.2, can also be referred to as physical, cyber, and social, respectively. Thus, 

transportation-related research is inherently multi- and interdisciplinary in nature. A contemporary 

challenge to the ITS community is to integrate human knowledge and expertise with technical 

resources. ITS stakeholders are known to be working in isolated storage towers. 
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5.3 Socio-technical impacts of AV’s: 

Systems that include technical systems, operational processes and also the people who use and 

interact with the technical system, can be known as socio-technical systems. It is in fact, a much 

more complex mixture. Figure 5.3 below shows the breakdown of socio-technical systems and its 

description.  

Technical (sensing,communication, automated vehicle technology)

Methodological (Control systems theory, Operations research, 
traffic flow theory, Artificial intelligence, Simulation methods, 
Image processing)

Behavioral (driver–vehicle interactions, user decision making, travel 
demand management)

Figure 5.2 ITS Research focus area 
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Figure 5.3 Socio-technical system classification 

 

These seven factors stated above have been explained in detail in [37]. Autonomous driving has 

recently gained a lot of public interest with important implications for the scientific debate. Firstly, 

user-orientated perspectives play a crucial role in processes of sociotechnical change. Secondly, 

technology should be regarded in relation to the society where it is embedded [38] to create a more 

holistic picture of the possible impacts. Lastly, acceptance of autonomous driving is becoming a 

relevant topic on the research agenda [39]. Autonomous vehicles should not be understood as tools 

because they will be perceived as actors in a sociotechnical system. They are moving embodied 

agents that appear to behave intelligently. Humans have no experience regarding how to relate to 

AVs and how the AVs should relate to them. Hence, the understanding and applying the socio-

technical models for day-to-day intelligently moving objects in essential.  
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5.4 History, Current State and Application: 

 
The concept of intelligent transportation methodologies had been presented at the GM Pavilion of 

the 1939 World Fair in New York, which aroused a good deal of interest. In 1990’s Automated 

Highway Systems (AHS) started receiving worldwide attention as a future transportation system. 

In the United States, the National AHS Consortium (NAHSC) was formed in 1994 to pursue the 

design and development of the AHS, aiming an AHS demonstration in San Diego in August 1997 

and an AHS operational test in 2002. The primary purpose was to conduct research on 

transportation systems to find solutions for California transportation problems such as congestion, 

mobility and productivity of system, safety, air quality and environment, energy consumption, cost 

effectiveness and regional and statewide economic health [26].  

According to the research conducted in [26], the architecture was divided into three important 

layers. The link layer: broadcast layer, it would share and access information from vehicles in the 

link for 1 or 2km stretch of highway. It would suggest changing the course of vehicles in a link 

based on accidents reported from downstream links, the coordination layer: as the name suggests 

it coordinated various movements performed by the vehicle in a link. For instance, platoon merge, 

platoon split and lane change, and the regulation layer: it consisted of control laws stated in a 

closed loop system for the vehicles to follow in longitudinal and lateral direction. Even though the 

framework presented itself as with viable option there were various technical challenges faced by 

the system. Communication, sensors and controls were some of the primary concerns for the 

process.  

 

There has been significant increase in maturing ITS. There have been various model deployments 

conducted by the government. ITS has been the focal point of NHTSA and enough research has 

been conducted under their guidance and supervision by academia. Currently, there are test models 

deployed in Ann Harbor, MI., which according to NHTSA will soon be known as ‘ITS hub city’.  
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5.5 Follow on 

 
The HUMS application would be effective in a closed system as seen in figure 5.1(a) in comparison 

to quasi-closed/open system. In a closed system, V2V and V2I are being operated in a short range 

and small parameter (NHTSA Safety Pilot model). Failure of one component recorded by HUMS 

system would certainly help them gain the health of their system, but the prognostics delivered at 

the same time would not be as useful. Whereas in the case of quasi-closed and open system, these 

HUMS application would provide them with meaningful prognostics data for large parameter 

limits.  

For instance, in an automated highway case, the vehicle would be operating in a full autonomous 

mode without or with minimal interference from the driver in unavoidable circumstances. There 

are two forms of HUMS that can be applied to gain meaning deductions about the systems health. 

First as seen in figure 5.1 (b), having a HUMS installed on the toll both to allow or reject the 

vehicle on the autonomous highway based on its health. Second, having a HUMS application 

running in the on-board systems of the vehicles while on the highway to create a V2V and V2I for 

safe operations.  

Let us create a scenario in which a vehicle experiences loss of air in the tire and how the above 

mentioned two forms would perform in this situation. In the first form, at the HUMS toll-booth 

concept, the on-board HUMS would interact with the external HUMS device to process the health 

information and prognostics of that tire. This in return would either accept or reject the vehicle 

based on the prognostics received on the tire (i.e. prognostic would determine whether the tire 

would be safe to operate on the specified route by the driver without creating any disruption in the 

fully autonomous highway) from the booth. In the second form, if the tire is faced with loss of air 

after passing the toll both, the V2I would come into play where the central network would guide 

the vehicle out from the autonomous mode.  
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Chapter 6. Conclusion 

 
In conclusion, there are few significant criteria’s and requirements for autonomous vehicle  that 

should be implemented for these vehicles to operate safely in ITS according to my analysis. The 

following are listed as follows: Electric power steering system, Adaptive cruise control or System 

which allows electronic control to brake and gas pedal.  

Autonomous vehicle is not only limited to electric vehicle, but also is applicable to modern petrol-

powered car as well, as long as the cars feature the mentioned technology. Since electric cars 

already contain those features in an easy to integrate form, which makes them ideal candidate for 

autonomous vehicle for ease of use and cost. 

Due to the mentioned requirements, the components in charge of those systems are actually the 

new critical components. Sure, for a petrol/combustion engine car, the engine, transmission and 

brake system (all mechanical) are still crucial, but in the essence of autonomous vehicle, they are 

not.  

HUMS system must be able to monitor and analyze the data of these components, along with 

sensors monitoring the performance of these systems.  

The fundamental technology behind autonomous vehicle can be roughly broken down into two 

main ones: an effective Adaptive Cruise Control system (ACC), and a responsive Electric Power 

Steering system (EPS). Without these two systems, a car cannot be controlled electronically, 

hence, it would never be an autonomous vehicle. Therefore, it is reasonable to categorize these 

two systems and their parts as critical components of an autonomous vehicle. Undoubtedly, there 

are various other factors to be considered in the development of a complete autonomous vehicle, 

such as, its sensors systems that provide information of the operating environment, or car-to-car 

communication, or machine learning and computer vision.  

 

Theoretically speaking, it is reasonable to say that as long as good ACC and EPS systems are 

available, any car, electric, hybrid or purely combustion-based, could be made autonomous by 

pairing those systems with a computerized control center and a systems of sensors. Therefore, the 

electro-mechanical ACC and EPS systems could be considered critical components in an 

autonomous vehicle, and they are targets to implement the Health and Usage Monitoring System 
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on. Interestingly, at the moment, the leading semi-autonomous or autonomous vehicles run on 

electric motor instead of the conventional engine. This trend suggests a future in which electric 

cars will dominate the market and completely overshadow combustion engine cars. Nevertheless, 

the rise of electric car is still in its infantile stage; therefore, the implementation of HUMS to 

autonomous vehicle still has to consider both electric and combustion vehicle.  

 

Originally, HUMS was created to actively monitor and analyze the condition of mechanical parts 

in aircraft, specifically helicopter [30]. The core principles of HUMS allow us to monitor the 

condition of the engine, transmission and suspension of the combustion-engine autonomous 

vehicles, just like how HUMS can be applied to a conventional automobile. Data from HUMS in 

general depends on the component it is monitoring. For shaft, HUMS would collect rotational 

speed and angle; for the engine, HUMS utilizes engine sensors to monitor air/fuel ratio, spark fire 

timing, internal pressure, output, etc. [30]. The monitored parameters might be different, but the 

form of data in HUMS is quite consistent. Information from sensors are recorded dynamically in 

real time in various frequencies, depending on component parameters and design, and are stored 

onboard or transmitted to a database. The data usually contains the values of the parameters 

collected by the sensors, and their specific time. HUMS data is then investigated onboard or at the 

database, either by computer or a trained operator [30]. Core analyses would be data trend fitting 

and finding, and comparison between the interested vehicle and other similar ones. Results from 

the analyses would help identify problems within the autonomous vehicle, setting up its 

maintenance schedule and evaluating the performance which also would help improving the 

design.  

 

Regarding electric autonomous vehicles: they often are consisted of much less components 

compared to the combustion-engine vehicle. Similar to most current electric cars, electric 

autonomous vehicles power come from sets of Lithium Ion batteries mounted in the floor of the 

vehicle, or in the back. The DC electric power is transferred to a control unit, which is capable of 

several things: converting DC to AC to drive the electric motor, taking in data from 

environmental/safety sensors to send out command to ACC and EPS systems, managing the active 

suspension system, and much more. The other important part of an electric vehicle would be the 

electric motor(s). Typically, electric motors can have a higher power-to-weight ratio (Nissan GTR 
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R-35 3.6L V6 Turbo Power-to-Weight = 228W/kg; Tesla Model S Electric Motor = 362hp/70lb ~ 

8500 W/kg) than traditional combustion-engine [31] [32]. This allows autonomous electric vehicle 

to mount multiple electric motors to accomplish a truly differential power train without being too 

dependent on a transmission system. For electric vehicles, the types of electric motor and their 

configurations determine the necessity and the function of mechanical transmission system. Most 

of the time, only single-speed gear boxes are installed on autonomous electric vehicle, and usually 

only for efficiency purposes. The total omission, or lesser complexity of transmission in 

autonomous electric vehicle actually boost the reliability of the vehicle as less mechanical parts 

are involved in the operation of the car.  

The graduation from mechanically-centered structure of autonomous electric vehicle diminish the 

importance and effectiveness of the original HUMS, which primarily is a monitoring system and 

principle for mechanical parts (gears, shafts, springs, etc.) of air craft. Nevertheless, the approaches 

of HUMS are still useful, and personally, I think that it could still be applied to autonomous electric 

vehicle with slight alteration.  

 

So how HUMS integrate electronic components and electrical systems (especially the EPS and 

ACC systems)? First and foremost, autonomous vehicles systems rely on input from environmental 

sensors and pre-determined rules and parameters. Additionally, besides providing information 

about the surrounding of the vehicles, sensors also play a huge role in optimizing and ensuring the 

performance of the vehicle. Therefore, given the importance of sensor in autonomous and 

automotive technologies, the health of sensors used in autonomous vehicles must be reflected in 

HUMS. Even though most control systems in autonomous vehicle contain functions to verify the 

integrity of specific sensors, sometimes, the report might lag, be lost in noise filtering, or be too 

generic. The dynamic and robust characteristics of HUMS help address these problems and 

augment the user and operator knowledge regarding the performance and health of the many 

sensors in an autonomous vehicle. Dedicated instrumentation amplifier (INA) could be installed 

onboard, or at the database to effectively extract even the smallest deviation in the sensor 

performance without having to directly alter the control scheme of the autonomous vehicle [33]. 

The data flow from the sensors could also be used to validate the condition of the sensors by 

following NASA’s Bayesian Network method in validating aerospace vehicle’s sensor from their 

data [34]. Furthermore, a consequence of HUMS would be the formulation of a network of similar 
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vehicles. The network could then be extended into a network of sensors, and their performance 

could potentially be linked and compared to each other using extensive software and algorithm 

[35]. By setting up references and candidates for comparison, the health of the sensors of a specific 

vehicle can be easily estimated and analyzed at any given time.   

 

Besides caring for the health of the sensors in autonomous vehicle, HUMS could potentially be 

extended to accommodate the monitoring and analyzing of electric signal input and output of the 

autonomous vehicle controller/ECU/Mainboard. Modern controllers, including those used in the 

various systems of autonomous vehicles, nowadays are built on PCB. Usually, to assist in 

debugging and analyzing the highly complicated PCB system, test probes are introduced in 

strategic points. Perhaps, the HUMS could interact and extract information from these test probes 

as well, and analyze the electric signal in and out of the PCB. With enough modelling and 

information from manufacturer, user could easily analyze the electric signals to gauge the 

performance of the autonomous vehicles and seeing which parts are not operating as intended, 

without having to disassemble the vehicle. Additionally, HUMS’s ability to transmit raw data to 

be analyzed in a remote location also allows to utilize and setup intensive and powerful analytic 

equipment to successfully evaluate the data without burdening the vehicle too much.  

 
There are two major approaches to the integration of HUMS into autonomous vehicle. Figure 6.1 

illustrates the series approach, in which HUMS processor extract information from the various 

dedicated ECUs of the autonomous vehicles. In other words, the output of the ECUs serves as 

inputs for HUMS. Figure 6.2 demonstrates another potential approach in integrating HUMS into 

autonomous vehicle. In this approach, HUMS directly interact and communicate with the various 

sensors within the vehicle (probably via CAN communication bus). Implementation of the first 

approach, the series block diagram, is generally simpler. In this approach, since HUMS extract 

information through the ECUs instead of the sensors, changes to the infrastructure of the vehicle 

would be minimum. This also means that by following this approach, even current conventional 

automobile and semi-autonomous car could implement HUMS with relatively few adjustments 

and accessories, and with ease. The major drawback of this approach is the same as with any 

other series system: the function and reliability of HUMS depend on the performance and 

reliability of the prior elements (the ECUs, the sensors, etc.) – if something else fails, HUMS 
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would probably not work at all. Additionally, if data is throttled, heavily or incorrectly filtered in 

the previous processes, then HUMS would receive data that does not necessarily reflect the true 

conditions of the component. The second approach – the parallel connection, alleviates the 

dependence of HUMS onto the other systems in the autonomous vehicle. It also allows HUMS to 

directly collect raw information from sensors without unnecessary filtering from the other 

process. However, this approach requires additional time and resource, and perhaps, a complete 

overhaul of the autonomous vehicle design, to fully integrate HUMS with critical systems’ 

elements in the autonomous vehicle. Regardless of the approaches, it is important to try to make 

HUMS as modularized as possible to ease the data analyses processes, and to isolate the 

monitoring aspect of the system while still maintaining a comprehensive evaluation of the 

vehicles.  

 

 Figure 6.1 Series flowchart for framework for HUMS and sensors 
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Figure 6.2 Parallel flowchart for framework for HUMS and sensors 

 

HUMS’s ability to transmit raw data to be analyzed in a remote location provide the opportunity 

to setup intensive, dedicated and powerful analytic equipment to successfully evaluate the data 

without burdening onboard computer. Data from autonomous vehicles would most likely be 

analogous to the data from existing HUMS that is used on aircraft. This means that the data 

acquisition and analyzing techniques of aircraft HUMS could be more or less directly transfer 

and applied to autonomous vehicle. Reliability analyses, descriptive and predictive statistical 

analyses could be carried out to predict the remain-useful-life of the autonomous vehicle’s 

components, and its entire system as a whole. The results of the analyses will stimulate and help 

formulate condition-based maintenance for the autonomous vehicle. Furthermore, integrating 

HUMS into autonomous vehicle – an entirely new platform, opens the opportunity to test and 

include the latest HUMS findings that require major changes to HUMS. 

 

Hypotheses: 

H1: A HUMS application for autonomous systems would prove improved safety as reliability 

over existing methods. 

H2: Initial screening of an AV prior to entrance on to an ITS would improve the performance of 

the ITS.   
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Future Steps: 

To successfully create a functioning HUMS system of an autonomous vehicle, much more 

work is needed. As mentioned earlier, FMEA, FMECA and FTA will need to be carried out for 

each autonomous vehicle model, and for the generic automated automobile as well, in order to pin-

point the components and elements in a vehicle that require HUMS application. Following that, 

descriptive and precise mathematical models are capable of representing the founded failure mode 

and mechanism will need to be developed to accurately interpret inputs from the systems of sensors 

in the autonomous vehicles. Even more mathematical models will need to be developed and tested 

for analyzing the data from HUMS and deriving practical insights to help predict the behavior of 

the components and set up maintenance plans. Intensive testing of prototype would also need to 

be performed to verify the practicality and benefits of autonomous vehicle HUMS. Furthermore, 

infrastructure supporting HUMS would need to be designed and built, and professional personnel 

specialized in working with autonomous vehicles HUMS would need to be trained and practiced. 

There is still much work to be done to integrate HUMS into autonomous vehicle. Yet, the great 

benefits of HUMS in aircraft have been observed and proved over time; and there is no reason why 

the autonomous vehicle industry could not inherit those benefits. Implementing a HUMS into an 

autonomous vehicle would greatly improve the vehicle reliability, safety, availability and 

performance, and streamline the vehicle’s maintenance processes, hence, greatly saving time and 

cost in ensuring the car is in working condition 
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21. Özgüner, Ü, Tankut Acarman, and Keith A. Redmill. Autonomous Ground Vehicles. 

N.p., 2011. Print. 

22. Ioannou, Peteros, and Chien C. C. Autonomous Intelligent Cruise Control. IEEE, 1993. 

Web. 30 June 2016. 

23. Perreault, David. Compendium of Executive Summaries from the Maglev System 

Concept Definition Final Reports. Washington: U.S. Federal Railroad Administration, 

1993. Web. 

24. Robotic Systems Technology, “Demo III Experimental Unmanned Vehicle (XUV) 

Program; Autonomous Mobility Requirements Analysis,” Revision I, 1998.    

25. Qu,F., Wang, F., and Yang, L., Intelligent transportation spaces: Vehicles, traffic, 

communications, and beyond, IEEE Communications Magazine, 48(11), 136–142, 2010. 

doi:10.1109/mcom.2010.5621980.    

26. Tomizuka, M. "Automated highway systems - an intelligent transportation system for the 

next century." Proceedings of IEEE/ASME International Conference on Advanced 

Intelligent Mechatronics (n.d.): n. pag. Print. 

27. Tongji University. Electronic Toll Collection System. N.d. Google Web Images. Web. 

26 July 2016. 

28. Shanker, Ravi, Adams Jonas, Paresh Jain, and Yejay Ying. "Autonomous Cars Self-

Driving the New Auto Industry Paradigm." Operations Research and Financial 

Engineering. Morgan Stanley Research, 6 Nov. 2013. Web. 28 July 2016. 

29. "Technology and Costs." Google's Autonomous Vehicle. N.p., n.d. Web. 4 Aug. 2016. 

30. International Helicopter Safety Team. “Health and Usage Monitoring Systems 

Toolkit”.2013. 

31. "News | Is Nissan GTR Beating Hellcat Charger a Big Deal?" Allpar News. N.p., n.d. 

Web. 9 Aug. 2016 

32. "Charged EVs | Elon Musk: Cooling, Not Power-to-weight Ratio, is the Challenge with 

AC Induction Motors." Charged EVs | Electric Vehicles Magazine. N.p., n.d. Web. 

9 Aug. 2016 

33. Intersil Corporation. “How to Monitor Sensor Health with Instrumentation Amplifiers 

33. Mengshoel,J.O., Darwiche, A., and Uckun, S., “Sensor Validation using Bayesian 

Networks”. NASA. 2014 
34. Preethichandra, D.M.G., . “Wireless Sensor Network for Monitoring the Health of Healthcare 

Facility Environments”. 2015 Ninth International Conference on Sensing Technology. 2015. 

35. Kleinschmidt, Peters and Schmidt, Frank. “How many sensors does a car need?”. 

Siemens AG.  Corporate Research and Development (1992). PDF. 

36. Swart, W., Kaufman, R., Tricamo, S., and Lacontora, J., “Operation SMARTFORCE: An 

approach to Training the Workforce of Tomorrow,” IEEE Conference on Man, Systems, 

and Cybernetics, Conference Proceedings December 1997 

37. "Socio-Technical System Main Page." Welcome to ComputingCases.org, 

computingcases.org/general_tools/sia/socio_tech_system.html. 



 

 

52 

38. Heiskanen, E. et al. (2008). Factors influencing the societal acceptance of new energy 

technologies: Meta-analysis of recent European projects. ECN. 

39. Fraedrich, Eva, and Barbara Lenz. "Autonomous Driving: Aspects of Acceptance in a 

Sociotechnical Transformation Process." 

40. Lee, UC Berkley, E., Asare, University of Virgnia, P., Broman, UC Berkley, D., 

Trongren, KTH, M., & Sunder, NIST, S. (2102).Cyber-Physical Systems- A Concept 

Map [photograph]. Retrieved from http://cyberphysicalsystems.org/ 

 

 

 

 

 

 

 

 


	CHAPTER 1.  INTRODUCTION
	33. Mengshoel,J.O., Darwiche, A., and Uckun, S., “Sensor Validation using Bayesian Networks”. NASA. 2014


