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Introduction

I This work proposes a novel method the for music genre classification
problem(MGC [2]) into different genre labels in a public music data set.

I The main challenges in creating an automatic music classification system
are:
. The robust representation of audio signals in terms of low-level features

or high-level audio keywords.
. The construction of an automatic learning schema to classify these

feature vectors into music genres.
I In this study, we first propose an empirical feature selection method. We

then utilize the recently proposed `1-SVM [1] to perform genre
classification.

Audio Feature Representation

I Overview of the MGC:
. An automatic genre classification system is composed of two main

components: feature representation and classifier.
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Figure 1: Robust feature extraction and classifier selection are the two main
challenges for automatic music genre classification.

I Content-based feature representation:
. Several features have been proposed in the literature of the MIR

community to represent short-time or long-time audio characteristics.
. Performance of these features for music genre classification vary by the

choice of learning method and the feature representation of the audio
signals.

. The selected audio features include both short-time and long-time audio
features:
I Mel frequency cepstral coefficients (MFCCs) and chroma features are

extracted using a sliding texture window.
I Spectral centroid, entropy, spectral irregularity, brightness, roll off,

spread, skewness, kurtosis and flatness are also extracted as signal
level representations of long-time audio characteristics.
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(a) A sample song
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(b) Spectrum of a sample
song
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(c) MFCCs for a sample song
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(d) Chroma features histogram
of a sample song

Figure 2: A sample song is represented in the time and frequency domain in 2(a) and 2(b)
respectively . 2(c) Shows MFCCs of the sample song while the chroma features histogram
is illustrated in 2(d).

Empirical Feature Selection

I Table 1 illustrates the
dimensionality of each feature.

I Short-time features are
represented using a mean
feature vector across all texture
windows.

I Figure 3 illustrates the
classification accuracy rate
using various feature vectors on
the GTZAN data set with a
GMM classifier.

Audio Feature Dimensionality
MFCCs 13

spectral entroid 1
entropy 1

spectral irregularity 1
brightness 1

roll off 1
spread 1

skewness 1
kurtosis 1
flatness 1
chroma 12

Table 1: Selected audio features and
dimensionality of the feature space is shown
above. The short-time audio features are
represented using the mean feature vector
across all texture windows.
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Figure 3: Features performance: average classification accuracy is reported using various
feature vectors on GTZAN data set. Each experiment is repeated independently 3 times.
The last column corresponds to the concatenated feature vector which outperforms the
single feature vectors.

I MFCCs can be shown to be the most effective single feature vectors for
music classification among selected features.

I The concatenation of all features outperforms singular feature vectors for
genre classification.

Sparsity-eager SVM

I The sparsity-eager support vector machine classifier [1], i.e., the `1-SVM
classifier combines the ideas of classical SVM with sparse approximation
techniques.
. higher generalization accuracy on new (test) samples
. increased robustness against over-fitting to the training examples
. provides scalability in terms of the classification complexity

I Given a set 〈(x1, y1), · · · , (xM, yM)〉 of M training examples, we aim to find a
vector α ∈ RM such that α is sufficiently sparse and yields a classifier
w .
=
∑M

i=1αiyixi which has low empirical loss. Therefore the classfier has
an adequately large separating margin.

I

minimize ‖α‖0 +
C
M

M∑
i=1

ξi

subject to 1− yi

M∑
j=1

αjyjxj
>xi ≤ ξi,

0 ≤ αi ≤
C
M
, ξi ≥ 0, i ∈ {1, . . . ,M}.

I the classification decision for a new sample x will be based on
ŷ .
= Sign

(∑
i:αi 6=0αiyixi

>x
)

[1]

Experimental Results

I Data set:
. We used the publicly available

benchmark dataset for audio
classification and clustering.

. The dataset contains samples
of 1886 songs obtained from
the Garageband site.

. The data set includes 9
different genre samples of
various sizes.

Genre Samples
alternative 145

blues 120
electronic 113

folk-country 222
funk soul/R&B 47

jazz 319
pop 116

rap/hip-hop 300
rock 504

I Experimental setup
. Validation method: 10-fold cross validation
. Performance measure: classification accuracy rate
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I The `1-SVM
method
outperforms the
`1-regression,
logistic regression,
and SVM
optimization using
only MFCCs.

Classification method Average accuracy rate
`1-SVM 37.43%

log-regression 34.43%
`2-SVM 32.90%

`1 regression 30.45%
Table 2: Average classification accuracy rate for music
genre classification on the Homburg data set [3] is
illustrated using MFCC features only. Each experiment is
repeated independently 50 times and the average
accuracy rate is reported [1].

Future Work

I Incorporate other audio features
. Bag of audio keywords
. Textual metadata

I Music artist identification in specific genre

Literature

[1] Kamelia Aryafar, Sina Jafarpour, and Ali Shokoufandeh.
Automatic musical genre classification using sparsity-eager support vector
machines.
In Pattern Recognition (ICPR), 2012 21st International Conference on, pages
1526–1529. IEEE, 2012.

[2] Kamelia Aryafar and Ali Shokoufandeh.
Music genre classification using explicit semantic analysis.
In Proceedings of the 1st international ACM workshop on Music information
retrieval with user-centered and multimodal strategies, MIRUM ’11, pages 33–38,
New York, NY, USA, 2011. ACM.

[3] Helge Homburg, Ingo Mierswa, Bülent Möller, Katharina Morik, and Michael Wurst.
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