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Introduction Empirical Feature Selection Experimental Results
» This work proposes a novel method the for music genre classification Audio Feature  Dimensionality » Data set: Genre Samples
problem(MGC [2]) into different genre labels in a public music data set. MFCCs 13 > We used the publicly available alternative 145
» The main challenges in creating an automatic music classification system spectral entroid 1 benchmark dataset for audio blues 120
are: > Table 1 illustrates the entropy 1 classification and clustering. electronic 113
> The robust representation of audio signals in terms of low-level features dimensionality of each feature. spectral irregularity 1 > The dataset contains samples folk-country 222
or high-level audio keywords. » Short-time features are brightness 1 of 1886 songs obtained from funk soul/R&B 47
> The construction of an automatic learning schema to classify these represented using a mean roll off 1 the Garageband site. jazz 319
feature vectors into music genres. feature vector across all texture spread | >~ The data set includes 9 pop 116
» In this study, we first propose an empirical feature selection method. We windows. skewness 1 different genre samples of rap/hip-hop | 300
then utilize the recently proposed ¢,-SVM [1] to perform genre » Figure 3 illustrates the Kurtosis 1 various sizes. rock 504
classification. classification accuracy rate flatness 1
’ using various feature vectors on chroma 12 » Experimental setup
Audio Feature Representation the GTZAN data set with a Table 1: Selected audio features and > Validation method: 10-fold cross validation
GMM classifier. dimensionality of the feature space is shown > Performance measure: classification accuracy rate
above. The short-time audio features are
» Overview of the MGC: represented using the mean feature vector 50 —
> An automatic genre classification system is composed of two main across all texture windows. _ i i _— |
components: feature representation and classifier. -
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Figure 1: Robust feature extraction and classifier selection are the two main Figure 3: Features performance: average classification accuracy is reported using various A - 4
challenges for automatic music genre classification. feature vectors on GTZAN data set. Each experiment is repeated independently 3 times. g Sengsper s

The last column corresponds to the concatenated feature vector which outperforms the

i single feature vectors.
» Content-based feature representation: J

> Several f.eatures have been prqposed in thg Ii’[eral’fur_e of the M'B | » MFCCs can be shown to be the most effective single feature vectors for Classification method | Average accuracy rate
community to represent short-time or long-time audio characteristics. music classification among selected features. » The (,-SVM ¢,-SVM 37.43Y%

> Performance of these features for music genre classitication vary by the » The concatenation of all features outperforms singular feature vectors for method log-regression 34.43%
choice of learning method and the feature representation of the audio genre classification. outperforms the (,-SVM 32.90%
signals. | | | | | \ J (1-regression, {1 regression 30.45%

> The selected audio features include both short-time and long-time audio logistic regression, 1., - > Average classification accuracy rate for music
features: . and SVM genre classification on the Homburg data set [3] is
» Mel frequency cepstral coefficients (MFCCs) and chroma features are : | optimization using illustrated using MFCC features only. Each experiment is

extracted using a sliding texture window.

» Spectral centroid, entropy, spectral irregularity, brightness, roll off,
spread, skewness, kurtosis and flatness are also extracted as signal
level representations of long-time audio characteristics.

only MFCCs. repeated independently 50 times and the average
accuracy rate is reported [1].

Sparsity-eager SVM

» The sparsity-eager support vector machine classifier [1], i.e., the /,-SVM

classifier combines the ideas of classical SVM with sparse approximation Future Work
techniques.
> higher generalization accuracy on new (test) samples » Incorporate other audio features

> Increased robustness against over-fitting to the training examples
| > provides scalability in terms of the classification complexity
- | » Given a set ((x1,y1), -, (xy, yu)) Of M training examples, we aim to find a
W‘M | vector o € RM such that « is sufficiently sparse and yields a classifier
e W = Zj.‘i  a;yix; Which has low empirical loss. Therefore the classfier has

> Bag of audio keywords
> Textual metadata

» Music artist identification in specific genre

(a) A sample song (b) Spectrum of a sample an adequately large separating margin. Literature
song >
C M
minimize HO‘HO i Zg, [1] Kamelia Aryafar, Sina Jafarpour, and Ali Shokoufandenh.
M 4 l Automatic musical genre classification using sparsity-eager support vector
Y =1 machines.
. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages
T
subject 1o 1 —y; ) ajyp;’xi < & 1526-1529. IEEE, 2012.
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/ [2] Kamelia Aryafar and Ali Shokoufandeh.
0<a;<—,§>0ied{l,... M} Music genre classification using explicit semantic analysis.
(c) MFCCs for a sample song (d) Chroma features histogram o o M . In Proceedings of the 1st international ACM workshop on Music information
of a sample song > the classification decision for a new sample x will be based on retrieval with user-centered and multimodal strategies, MIRUM ’11, pages 33-38,
Figure 2 A sample song is represented in the time and f.requency domain in 2(a) .and 2(b) y = Sign (Zmi#o OéiYiXiTx) [1] New York, NY, USA, 2011. ACM.
respectively . 2(c) Shows MFCCs of the sample song while the chroma features histogram \ | 3] Helge Homburg, Ingo Mierswa, Biilent Méller, Katharina Morik, and Michael Wurst.

is illustrated in 2(d). A benchmark dataset for audio classification and clustering.
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