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ABSTRACT 

Semantics-based Language Models for Information Retrieval and Text Mining 

Xiaohua Zhou 

Xiaohua Hu 

 

 

 

 

The language modeling approach centers on the issue of estimating an accurate model by 

choosing appropriate language models as well as smoothing techniques. In the thesis, we 

propose a novel context-sensitive semantic smoothing method referred to as a topic 

signature language model. It extracts explicit topic signatures from a document and then 

statistically maps them into individual words in the vocabulary. In order to support the 

new language model, we developed two automated algorithms to extract multiword 

phrases and ontological concepts, respectively, and an EM-based algorithm to learn 

semantic mapping knowledge from co-occurrence data. The topic signature language 

model is applied to three applications: information retrieval, text classification, and text 

clustering. The evaluations on news collection and biomedical literature prove the 

effectiveness of the topic signature language model.  

In the experiment of information retrieval, the topic signature language model 

consistently outperforms the baseline two-stage language model as well as the 

context-insensitive semantic smoothing method in all configurations. It also beats the 

state-of-the-art Okapi models in all configurations. In the experiment of text classification, 

when the size of training documents is small, the Bayesian classifier with semantic 

smoothing not only outperforms the classifiers with background smoothing and Laplace 

smoothing, but it also beats the active learning classifiers and SVM classifiers. On the 
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task of clustering, whether or not the dataset to cluster is small, the model-based k-means 

with semantic smoothing performs significantly better than both the model-based 

k-means with background smoothing and Laplace smoothing. It is also superior to the 

spherical k-means in terms of effectiveness.  

In addition, we empirically prove that, within the framework of topic signature 

language models, the semantic knowledge learned from one collection could be 

effectively applied to other collections. In the thesis, we also compare three types of topic 

signatures (i.e., words, multiword phrases, and ontological concepts), with respect to their 

effectiveness and efficiency for semantic smoothing. In general, it is more expensive to 

extract multiword phrases and ontological concepts than individual words, but semantic 

mapping based on multiword phrases and ontological concepts are more effective in 

handling data sparsity than on individual words.
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CHAPTER 1: I�TRODUCTIO� 

 

Statistical language modeling has a solid theoretical foundation and is usually effective 

for a variety of applications such as information retrieval (Ponte and Croft, 1998), text 

classification (McCallum and Nigam, 1998), text clustering (Zhong and Ghosh, 2005), 

and topic analysis (Blei et al., 2003; Hofmann, 1999). Statistical models often require a 

large number of training data to estimate an accurate and robust model. However, many 

applications in information retrieval and text mining can not provide a large number of 

training data. For example, in text retrieval, the system has to estimate a model for each 

single document; in text classification, it is very expensive to get labeled training 

documents. The lack of training data often degrades the performance of statistical 

language models. 

 Unlike statistical language models, human knowledge works well in the case of small 

training data. For example, the statistical language modeling approach will probably 

categorize a document that does not contain the word “car” but contains word “auto” as 

irrelevant to the query “car”. However, human knowledge would find the document 

relevant to the query, because “auto” and “car” are synonyms. For this reason, we 

propose to incorporate semantic knowledge into the traditional language models in 

information retrieval and text mining. A statistical language model with the extension of 

semantic knowledge is referred to as a semantics-based language model in this thesis.  
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1.1 Statistical Language Model 

A statistical language model, or more simply a language model, is a probabilistic 

mechanism for generating text. Such a definition is general enough to include an endless 

variety of schemes. To use language modeling, we usually need to estimate a model from 

training data and then compute the generative probability of a given text according to the 

estimated model. Model estimation is based on the assumption of word distributions 

made on the data. Multinomial distribution is frequently used in text retrieval, text 

clustering, text classification, and topic detection with statistical language models 

(Lafferty and Zhai, 2001; McCallum and Nigam, 1998; Zhong and Ghosh, 2005). In 

applications such as text retrieval, text clustering, and text classification, word orders are 

often not considered; that is, all words are independently distributed. The language model 

based on independence assumption is referred to as a unigram language model. 

Conversely, if word orders are modeled in applications such as speech recognition (i.e., 

the distribution of words depends on previous n-words) the model is called n-gram 

language model. Bigram language model (in which the present word depends on the 

previous word only) is the most frequently used in the family of n-gram language models. 

The effectiveness of language modeling often depends on two factors. One is the 

choice of underlying word distributions. In general, if the model chosen reflects the 

distribution of the real data, it will work effectively. The other factor is the smoothing of 

the language model. Because of the lack of large numbers of training data, many words 

appearing in testing texts may not appear in training texts. Therefore, we should smooth 

the language model, assigning a nonzero probability to those “unseen” words, because 
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zero probability is not allowed in probabilistic framework.  

The purpose of language model smoothing, however, is much more than avoiding 

zero probability. For some applications such as text retrieval, suitable model smoothing 

can significantly improve the performance of information retrieval. For example, a 

document containing word “car” could be returned for the query “auto” if we can 

incorporate text semantics into the model smoothing. Lafferty and Zhai (2001) referred to 

such a smoothing method that incorporates context and synonym information into the 

model as semantic smoothing. A text often contains many general words, which usually 

have similar distributions over different topics. If the effect of those general words (i.e., 

noise) can be relieved, the performance of some applications such as text classification 

and clustering will definitely be improved. In short, the language model smoothing is a 

task to (1) assign reasonable probability values to those unseen words, and (2) adjust the 

probability values of those seen words. 

Language modeling was initially used in speech recognition (Bahl et al., 1983). In 

recent years it has been widely applied into information retrieval because of its solid 

mathematical foundation and empirical effectiveness. In this thesis, we will not only 

study its use in information retrieval but also explore its effectiveness in text 

classification and clustering. Moreover, we will study new semantic smoothing methods 

for further improving the effectiveness of language models in information retrieval and 

text mining. 
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1.2 Information Retrieval and Text Mining 

Information retrieval (IR) is a task of searching documents that satisfy particular user 

information needs. This task is often represented by a query. With the rapid growth of 

digital data such as web pages and scientific literature, information retrieval becomes 

more and more important. Instead of searching documents as a whole, text mining tries to 

find nontrivial and new patterns or knowledge from enormous textual data. Frequently 

used text mining applications include information extraction, text classification, text 

clustering, topic analysis, and so on.  

Information retrieval and text mining have been extensively studied, and numerous 

methods and systems have been developed for these tasks. In recent years, language 

models have received more and more attention from researchers in this community. 

Language models not only have solid theoretical foundations but also achieve very good 

empirical results. In addition, the idea of this method is extremely simple. For whatever 

application, the use of language models can be decomposed into two problems: (1) 

estimating a language model from training texts and (2) computing the probability of 

generating text. However, statistical language models can be improved in many aspects. 

The following four issues are challenging language models when applied to information 

retrieval and text mining. 

 

Handle Different Representations 

The unigram language model is the model most often used. It captures individual word 

distributions with the assumption that all words are independent of each other. This 
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assumption does not hold up very well in the real word. Moreover, it is very difficult to 

interpret the result with the unigram language model. For example, when one uses the 

unigram language model to summarize a set of biomedical articles, all multiword 

biological terms will break down into individual words, which gives final results that 

make no sense at all. To solve this problem, the language should be able to capture 

collocations (phrases) according to the context. An n-gram language model (Wang and 

McCallum, 2005) can capture the context of words. 

The n-gram language model assumes that the distribution of the current word 

depends on the previous n words. To some sense, this idea is still motivated from the 

point of view of syntax because it limits the word dependency to only adjacent words. 

More semantically, a word in a sentence could link to other words that are not 

syntactically next to the target. Gao et al. (2004) has applied this idea into the language 

modeling approach to IR, and it has significantly improved the IR performance over the 

unigram language model. I argue that such a kind of semantic-based representation can 

capture more truth of the word structure. 

 

Solve Data Sparse Problem 

Language modeling approaches often need to first train a language model according to 

the training data and then apply the trained model to testing data. Thus, when training 

data is insufficient, some testing words will not appear in the training data. Because in 

probabilistic framework one can not assign zero probability to a word, one should take 

some strategy to smooth the trained language models, that is, assign a reasonable 
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probability to unseen words. Laplace smoothing will simply assign a fixed probability to 

all unseen words. Some background smoothing methods (Zhai and Lafferty, 2001b) will 

interpolate the trained language model with a background collection (corpus) model. 

However, these smoothing approaches do not capture the semantic relationship between 

training words and testing words. For example, we have one document containing the 

word “auto” and a query for “car”. If we use Laplace smoothing or background 

smoothing, the document will not return for the query. But if the smoothing method takes 

into account the semantic relationship between the testing words and training words, the 

document will be retrieved for the query. In this sense, smoothing of language models 

does more than avoid zero probability. A suitable smoothing method can significantly 

improve the performance of the model. 

 

Incorporate Contextual and Sense Information 

Fundamentally, statistical language modeling is based on word co-occurrence. However, 

word polysemy is a wide phenomenon. If a language model assumes that the same word 

in different context has the same meaning, the model may fail or be compromised in 

some cases. Take the example of semantic smoothing discussed in preceding sections. To 

smooth the language model in a semantic fashion, one has to quantify the semantic 

relationship between words according to some training dataset. The word “mouse” may 

be mapped to both “keyboard” and “cat” with high probabilities without any contextual 

constraint because of the polysemy of “mouse”.  But if the context is considered, say 

“computer” modifies “mouse”, “mouse” may still be mapped to “keyboard” with high 
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probability, but to “cat” with low probability. The incorporation of contextual and sense 

information makes very specific semantic mapping. In general, if contextual and sense 

information is considered when developing language models, the model will be more 

accurate and effective. 

 

Eliminate Data �oise 

Word distributions in real texts are always the mixture of a series of models from the 

same family but with different parameters. For a particular application, it is always the 

case that only one or several models are of interest, and the remaining models will be 

excluded as “noise”. This idea is very useful for many applications, especially topic 

detection and summarization. For example, when one attempts to obtain a set of topical 

words from a given document set, if all words are treated as a sampling from one model, 

all stop words will be recognized as topical words, which actually do not make sense at 

all. But if an extra background is introduced, this problem could be solved. However, 

eliminating noise is not always as simple as introducing a background model. 

 

The aforementioned four issues are especially severe in some domains such as 

biomedical literature. Texts in biomedical literature present several unique characteristics 

in comparison with texts in other domains. First of all, biological and medical terms often 

use multiple words to represent a unit meaning. For example, if one breaks down the 

terminology “high blood pressure” into three common words “high”, “blood”, and 

“pressure”, it does not make sense at all. Second, word synonymy and polysemy is a 
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serious problem in biomedical literature. A biological term such as proteins and genes 

often has many synonyms. Meanwhile, the wide use of short names and abbreviations 

deteriorates the polysemy problem. Third, biomedical literature is full of various 

biological relationships. These relationships are very important to biologists. However, 

the sentence structure in biomedical articles is often quite complex and hence difficult to 

automatically extract these relationships. Fourth, this domain has a very large term space. 

For example, UMLS (Unified Medical Language System) has a collection of more than 

one million concepts in the domain of biomedicine. From the point of view of statistical 

language modeling, these characteristics violate the underlying assumptions of many 

simple language models. Thus, the direct adoption of statistical language models into 

biomedical literature may end with bad performance. 

The four issues are all related to text semantics. We believe language models with 

the augmentation of semantic knowledge will achieve better performance. The 

availability of more and more general or domain-specific online dictionaries, thesauruses, 

and ontologies makes it possible to enhance traditional language models with new power. 

However, how to adopt these resources to the traditional text mining approaches becomes 

a challenging problem. Many empirical studies reported positive results after 

incorporating human-created knowledge into information retrieval and text mining. But 

the majority of these approaches are somehow ad hoc. It is then urgent to motivate a 

formal framework to adopt various semantic resources.  
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1.3 Research Questions 

In general, the thesis will answer four research questions. First, where and how can one 

learn the semantic mapping knowledge? Semantic mapping is one of the most frequently 

used semantic knowledge. Semantic mapping in this thesis is equivalent to finding a 

weighted vector for each topic signature. The element of the vector corresponds to a word 

in a vocabulary. The weight for each element indicates the semantic association between 

the topic signature and the corresponding word. The summation of all weights is equal to 

one. We want to find a method which can learn semantic mapping knowledge efficiently 

and effectively. Moreover, the training data the method requires should be easy to collect. 

Ideally, the semantic mapping knowledge produced is reusable. 

Second, how can we effectively integrate language models with semantic mapping 

knowledge? The utilization of semantic mapping knowledge for applications such as 

information retrieval, text classification, and clustering is not trivial. There are hundreds 

of ways to integrate semantic knowledge in literature. Some of them are ad hoc, and 

some of them are theory-oriented. Some of them work well only on particular 

applications or datasets, and some of them are effective in very general sense. We want to 

find a generic approach to combine language models and semantic mapping knowledge. 

The new approach not only fits information retrieval, but also suits text clustering and 

classification. It not only works on general domains such as news stories and web pages, 

but also brings significant improvement on very specific domains such as biomedical 

literature. Besides, the new approach does not require extensive tuning when applying to 

new applications or new domains. 
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Third, does semantic mapping improve the language modeling approach to text 

retrieval and mining? This question will test if the language models with semantic 

mapping knowledge outperform the ones without semantic mapping knowledge. To 

answer this question, we will evaluate the new semantics-based language models on three 

applications: information retrieval, text classification, and text clustering. For each 

application, we test the new model on several datasets in different domains. In particular, 

we are interested in the biomedical domain and news domain. This research question also 

includes two sub-questions. Is the semantics-based language model sensitive to 

parameters? For this reason, we also monitor the performance variance of the 

semantics-based language model when its parameter changes. Do all types of semantic 

mapping knowledge improve the language model? In the experiment, we evaluate three 

types of semantic mapping knowledge. We are especially interested in the interaction 

effect between semantic mapping knowledge and data domain. 

Last, does the semantics-based language model outperform other state-of-the-art 

approaches to text retrieval and mining? In literature, there are many approaches to 

information retrieval, text classification, and text clustering. Language modeling is only 

one of the most effective approaches. For this reason, we compare semantics-based 

language models to other state-of-the-art nonlanguage model approaches. For example, in 

an information retrieval experiment, we evaluate famous Okapi models; in text 

classification, we compare with the SVM method; and in text clustering, we evaluate 

spherical k-means. 
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Figure 1.1: The research framework of the semantics-based language modeling. 

 

 

 

 In summary, our research framework for the semantics-based language models is 

shown in Figure 1.1. We first extract useful information from various domains and then 

transform that information into semantic knowledge through a machine-learning process. 

The learned semantic knowledge is then utilized by semantics-based language models 

that will be applied to various text applications. Because of time and data source 

constraints, we focus on two domains (news and biomedical literature), one knowledge 

representation (semantic mapping knowledge), and three text applications (information 

retrieval, text classification, and text clustering) in this thesis. 
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1.4 The Organization of the Thesis 

Chapter 2 reviews the related work including traditional language model smoothing 

approaches, existing semantic smoothing approaches, and other approaches to 

information retrieval, text classification, and text clustering. 

In Chapter 3, we propose the topic signature language model that incorporates 

semantic mapping knowledge into language models. This chapter first introduces the 

notion of topic signatures and the general mechanism of utilizing topic signatures for 

language model smoothing. Then three types of topic signatures (individual words, 

multiple-word phrases, and ontological concepts), as well as their extraction approaches, 

are described. After that, we present an EM-based algorithm to learn semantic mapping 

knowledge, that is, mapping topic signatures to a set of individual words. Last, we 

propose the topic signature language model. Chapter 3 answers our first and second 

research questions. 

Chapters 4, 5, and 6 present three applications of the topic signature language model. 

They are information retrieval, text classification, and text clustering, respectively. In 

these applications, we evaluate the following tasks: 

(1) Does the topic signature language model outperform baseline language models? 

(2) Which type of topic signature is most effective for topic signature language 

models: words, multiword phrases, or ontological concepts? 

(3) How robust is the topic signature language model for those applications? 

(4) Does the topic signature language model outperform other state-of-the-art 

approaches to text retrieval and mining? 
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To avoid dataset bias, we evaluate each application on multiple datasets. In particular, we 

test news collections and biomedical literature. 

In Chapter 7, we summarize the thesis and discuss the future work. 

 

1.5 Notations  

We would like to introduce the notations used in the thesis before we describe the details 

of our method. The frequently used notations are listed in table 1.1. 

 

 

 

Table 1.1: �otations used in the thesis. 

 

Notation Description 

C A collection of documents 

d, di A document 

c, ci A cluster or class 

Q A query 

q, qi A query term 

W A sequence of words 

w A word 

c(w,d) The count of word w in document d 

V The vocabulary 

t, tk A topic signature 

* A change is significant according to the 

paired-sample t-test at the level of p<0.05 

** A change is significant according to the 

paired-sample t-test at the level of p<0.01 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Language Models 

Language models were initially used to improve the performance of speech recognition 

systems (Bahl et al., 1983). The task of speech recognition could be framed as to predict 

a series of words given the acoustic signals. As we know, it is extremely challenging to 

build an accurate acoustic model due to accent and physical difference of individuals at 

different conditions. Even if one could develop a perfect acoustic model for each word, 

the model would still be unable to handle the problem when the pronunciations of two 

words are identical, for example, “I” and “eye”. With the help of language models, the 

search space and error can be dramatically reduced. For example, if one knows the 

previous word is “his”, the current word is more likely to be “eye” rather than “I”. 

 Formally, the task of speech recognition is to predict a series of words W which 

maximizes the joint probability of the language model P(W) and the acoustic model 

P(W|S) given the acoustic signal S. 

 (2.1)                           )|()(maxarg SWPWPW
W

=  

If one assumes the next word only depends on the preceding word, the language model 

will be a bigram model as described in the equation (2.2). 

 (2.2)                                 )|()()(
n

1i

10 ∏
=

−= ii wwPwPWP  

The model parameter )|( 1−ii wwP  can be learned from training data. 
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 Ponte and Croft (1998) first introduced the language modeling approach to 

information retrieval. In this approach, the relevance of a document to a query is defined 

as the generative probability of the query by the underling model of the document. 

 (2.3)                            )|( lRe dQp(Q,d)∝  

In the simple case, the query terms are assumed to be independent of each other. The 

likelihood of the query by the document can be decomposed into 

 (2.4)                          )|( )|( ∏=
i

i dqpdQp  

and similarly, the model parameter )|( dqp i  can be estimated from each document. 

 The language modeling approach to text classification assumes a two-step text 

generation process. First one samples a class from a mixture class model. Then one 

samples words according to the class model to generate a text (usually document). Thus, 

the task of text classification is reduced to finding a class label which maximizes the 

following joint probability: 

 (2.5)            )|()(maxarg)( ii
c

cdpcpdC
i

=  

If the multinomial distribution is assumed for the document (McCallum and Nigam, 

1998), we have: 

 (2.6)                        )|( )|(
||

1

∏
=

=
d

j

iji cwpcdp  

If the bigram language model is assumed for the document (Peng et al., 2004), we then 

have: 
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 (2.7)       ),|()( )|(
||

2

11 ∏
=

−=
d

j

ijji cwwpwpcdp  

 From the aforementioned three applications, we can see that the use of language 

models in text applications have two steps. In the first step, one inferred a language 

model from training text. In the second step, the estimated language model was utilized to 

predict the generative probability of a new text.  

 

2.2 Language Model Smoothing 

In this thesis, we apply language models to three applications: information retrieval, text 

classification, and text clustering. Multinomial distributions are often assumed for those 

three applications. With this assumption, the document language model can be simply 

estimated by a maximum likelihood estimator: 

(2.8)                        
),(

),(
 )|(
∑

=

i

i dwc

dwc
dwp  

where c(w, d) denotes the count of word w in the document d. 

 This means the probability will be zero if a word never appears in the training 

document. Such zero probability should be prevented. Otherwise, the product of all word 

probabilities will be zero, as illustrated in formula 2.4 and 2.6, no matter how important 

other words are. To prevent zero probability, the raw language model should be 

smoothed. Technically, the smoothing is the task to adjust low probabilities upward and 

high probabilities downward. We want to ultimately obtain a more accurate language 

model by smoothing. In this section, we would like to review traditional smoothing 
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methods for unigram language models. In section 2.3, 2.4, and 2.5, we will summarize 

previous work that utilizes semantic knowledge to improve information retrieval, text 

classification, and text clustering, respectively. We are especially interested in the work 

utilizing semantic knowledge for language model smoothing. 

 Additive smoothing (also called Laplace smoothing) is one of the simplest smoothing 

methods (Lidstone, 1920; Johnson, 1932; Jeffreys, 1948). It simply adds one count to all 

words in the space. 

 (2.9)                        
),(||

),(1
 )|(

∑+
+

=

i

i dwcV

dwc
dwp  

where V is the vocabulary. This method is designed mainly for the purpose of preventing 

zero probability. It is frequently used in practice for Bayesian text classification. 

 Instead of simply adding one count, the Good-Turing (Good, 1953) method adjusts 

the word counts in the following way. For a word that occurs exactly r times, its count 

will be adjusted to: 

 (2.10)                             1 1      
n

n
)(r c(w,d)

r

r* ++=  

where nr is the number of words that occur exactly r times in the training data. The final 

probability will be calculated by the formula below: 

 (2.11)                                  
),(

),(
 

*

*

∑
=

i

i dwc

dwc
p(w|d)  
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 The Jelinek-Mercer (Jelinek and Mercer, 1980) method linearly interpolates the 

maximum likelihood model with a corpus model (also referred to as background 

collection model). 

 (2.12)          )|(1  Cwp(w|d)λ)P(p(w|d) ml λ+−=  

where (w|d)Pml  and  Cwp )|( are the maximum likelihood estimator of the document 

model and corpus model, respectively; and the coefficient λ controls the influence of the 

corpus model in the mixture model. 

 Dirichlet smoothing assumes that words in the document follow Dirichlet 

distribution (MacKay and Peto, 1995). Each word has a prior count as the parameter of 

the distribution. Zhai and Lafferty (2001a) used a corpus model to set the Dirichlet 

parameters, for example, 

 (2.13)               )|(),...,|(),|(( 21 CwpCwpCwp nµµµ  

and the word probability after smoothing becomes 

 (2.14)                  
)|(

)|(),(
         

dwc

Cwpdwc
p(w|d)

i

i∑ +
+

=
µ

µ
 

 The absolute discounting method (Ney et al., 1994) namely subtracts a constant 

count from the seen word counts and then interpolates with a corpus model. The model is 

given by 

 (2.15)         )|(
)|(

)0,),(max(
Cwp

dwc

dwc
p(w|d)

i

i

σ
δ

+
−

=
∑
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where ]1,0[∈δ  is a discount constant and )(,)( dcdnδσ = . n(d) denotes the number of 

unique words in the document d. 

 

2.3 Information Retrieval 

In recent years, many methods have incorporated semantics and context information into 

the language model smoothing. Roughly, these methods were developed to expand either 

query models or document models for ad hoc information retrieval. Song and Bruza 

adopted information flow (IF) for query expansion (Song and Bruza, 2003). The context 

of a concept is represented by a HAL vector; the degree of one concept inferring another 

can then be computed through vector operators. Song and Bruza also invented a heuristic 

approach to combine multiple concepts, which enabled information inference from a 

group of concepts (premises) to one individual concept (conclusion). Thus, their query 

expansion technique was somehow context sensitive. However, it was difficult to extend 

it to document model expansions. Besides, the degree to which one individual concept 

could be inferred from another combined concept was not theoretically motivated; its 

robustness needs to be further validated. 

Similarly, Bai et al. (2005a) used significant term pairs to expand query models. The 

combination of two terms is helpful to disambiguate their context and thus can capture 

more sense of the query. The expanded query model based on significant term pairs 

looked as follows: 

(2.16)        )|( )|()|()1()|(
,

QwpQqqpqqwpQwp MLji

Qqq

jiR

ji

λλ +−= ∑
∈
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Here the second term is a unigram query model for smoothing purpose, and the first 

term (query expansion) is based on topic decomposition and mapping. The topic 

decomposition term  )|( Qqqp ji is simply assumed to be uniformly distributed. The 

topic mapping term )|( jiR qqwp  is estimated based on term co-occurrence statistics. 

The coefficient λ controls the influence of the expansion component. Like the 

information flow approach, this approach is also inappropriate for document model 

expansions because the distribution of term pairs in a document is obviously not uniform. 

Besides, the co-occurrence–based estimation algorithm tends to assign higher probability 

values to general terms than to specific terms. 

Berger and Lafferty proposed the statistical translation model for the first time in 

SIGIR’99. With this model, a term in a document is statistically mapped to query terms 

as described in the formula below: 

∑=
w

dwlwqtdqp (2.17)             )|()|()|(  

where t(q|w) is the translation probability from document term w to query term q, and 

l(w|d) is the unigram document model. The translation model achieved significant 

improvement over the simple language model on two TREC collections. However, the 

model only captures the semantic relationship between individual words and is unable to 

incorporate the contextual information into the translation procedure. In addition, the 

training of translation probability requires a large number of real query-document pairs, 

which are very difficult to obtain. For this reason, Berger and Lafferty used synthetic data 

in the experiment. Besides, a document often contains a considerable number of unique 
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terms, and thus the model expansion through document and query term mapping is 

computationally intensive. 

The cluster language model (Liu and Croft, 2001) may be the first trial of topic 

decomposition and mapping for document model expansions. Liu and Croft incorporated 

cluster information into document model estimation: 

(2.18)      )|()1( )|()|( clusterwp
u+

+
dwp

u+

+
dwp

d

d
ML

d

d

+
−+

+
=  

+d is the length of the document and µ is a parameter for smoothing. The document 

clusters are very similar to our topic signatures in the sense that both use a set of 

documents with similar context rather than a single document to estimate a more accurate 

topic model. However, in their cluster model, a document is associated with a single 

cluster, which may become problematic for especially long documents, whereas in our 

model a document can have multiple topic signatures. Furthermore, the clustering for a 

large collection is extremely inefficient. Lots of decisions need to be made empirically 

for clustering, based on the domain knowledge and the collection (e.g., the number of 

clusters, clustering algorithm, static clustering, or query-specific clustering); the topic 

signature model does not have these problems. 

Latent topic models such as pLSI (Hoffman, 1999) assume that a document is 

generated by a set of topic models with certain distribution. Each topic model is about the 

distribution of words in a given vocabulary. With topic model assumption, a document is 

modeled as follows: 

(2.19)             )|()|()|(
1

∑
=

=
k

i

ii twpdtpdwp  
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Here k is the total number of topics in the corpus. The parameter )|( itwp  is the 

probability of topic ti generating word w. The parameter )|( dtp i is the probability of 

topic ti being generated by document d. Within the framework of latent topic models, a 

document can be associated with multiple topics, and thus it overcomes the limitation of 

the cluster language models. Hoffman evaluated the pLSI model for retrieval tasks within 

the framework of vector space model (Hoffman, 1999). The pLSI model significantly 

outperformed the LSI model as well as the standard raw term matching method. But the 

size of four testing collections is far from the representative of realistic IR environments, 

and the baseline model is also far from state of the art, making the effectiveness of the 

pLSI model on retrieval unclear.  

The idea of topic signature is very similar to the latent topic. The major difference 

lies in their implementations. The number of free parameters )|( dtp i  and )|( itwp  in 

the latent topic models is mainly in proportion to the number of documents for a large 

collection, which will cause serious overfitting problems when the Expectation 

Maximum (EM) algorithm (Dempster et al., 1977) is used for model estimations. The 

estimation process also lacks scalability because all parameters should be estimated 

simultaneously. The worst problem is that when a new document is coming, there is no 

way to estimate the topic mixture )|( dtp i . In our approach, we explicitly extract topic 

signatures from documents in the corpus. Thus, we can estimate each topic signature 

model )|( itwp  separately. We can also simply use maximum likelihood estimator to 

approach )|( dtp i , whether the document is new or not. In short, the estimation of 
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parameters for topic signature language model is very efficient and scalable as well as 

applicable to new testing documents. 

Wei and Croft (2006) proposed a LDA-based document model for ad hoc retrieval. 

Unlike the pLSI model where topic mixture is conditioned on each document, the LDA 

model samples topic mixture from a conjugate Dirichlet prior that remains same for all 

documents (Blei et al., 2003). This change can solve the overfitting problem and the 

problem of generating new documents in pLSI. To make up for the possible information 

loss, the LDA model is further interpolated with a simple language model. The final 

document model is: 

(2.20)                               )|()|()-(1                
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The LDA model improved the retrieval performance of both the simple language 

model and the cluster language model on five TREC collections (Wei and Croft, 2006). 

The LDA model is estimated through Gibbs sampling, which is computationally intensive. 

Thus, compared to the topic signature language model, the LDA model suffers from the 

computing intensity as well as lack of scalability. 

 

2.4 Text Classification 

In literature, there are two lines of work that utilize semantic information to improve text 

classification performance. One used semantic features such as latent topics, ontological 

concepts, and compound terms to enhance discriminative classifiers. The other improved 
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the generative classifiers by modeling word dependency that was more meaningful 

semantically.  

Bloehdorn and Hotho (2004) and Yetisgen-Yildiz et al. (2005) extracted 

ontology-based concepts to supplement single-word features during text classification. 

Bloehdorn and Hotho (2004) used WordNet and MeSH for concept extraction and further 

employed a boosting algorithm AdaBoost (Schapire and Singer, 2000) for text 

classification. Yetisgen-Yildiz et al. (2005) extracted UMLS concepts from Medline 

abstracts and used SVM (Joachims, 1998) for classification. Both classification systems 

achieved slight improvement over the baseline, which only used single-word features. 

However, the reliance on ontologies hinders the extension of their approaches to public 

domains where there may be no ontologies available. The mapping of text sequence to 

ontology concepts is not trivial because it involves the sense disambiguation. The 

inappropriate map may seriously hurt the performance of the text classifier.  

Cai and Hofmann (2003) represented a document by a set of weighted latent 

concepts and then classified the documents by the AdaBoost algorithm. The latent 

concepts and their weights in different documents were automatically generated by the 

probabilistic latent semantic analysis model (pLSI) (Hofmann, 1999). The limitation of 

this approach is that it can not represent a new document by the latent topics learned 

previously. Theoretically, the LDA (Blei et al., 2003) model can solve this issue because 

it includes a document model and is able to compute the distribution of latent topics in 

the new document, assuming the new document is generated by the identical Dirichlet 

distribution. However, there is very little empirical work to validate the effectiveness of 
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LDA for new documents in the setting of text classification. The majority of the existing 

works simply model training documents and testing documents in the same process. 

Lewis (1990) used syntactic phrases for document representation. The syntactic 

phrases are generated from parsing trees, and no statistical constraints are imposed. So a 

large number of phrases will be generated, but most of them have a low frequency in the 

collection. In other words, the generated syntactic phrases are very sparse and not 

qualified as effective features for text classification from the point of view of feature 

selection. In addition, the syntactic phrases are very noisy and lack semantics, which 

further deteriorates the performance of text classification. 

 Bai et al. (2005b) integrated compound terms into in Bayesian text classification. 

Unlike fixed-length n-grams, their compound terms are length-variable natural phrases. 

They were motivated to relax the independence assumption of the naïve Bayesian model 

rather than to take advantage of multiword phrases’ discriminative powers. In their 

approach, when a compound term is identified, the constituent words will not be 

extracted as single-word features any more. Thus, it is very important to smooth the 

compound features in the class model. The authors used n-gram statistics to smooth the 

compound term, which made the smoothing very difficult and inefficient when the 

compound was very long, say, containing four words or more.  

The statistical phrases (e.g., bigram) were used to improve the document 

representation in (Peng et al., 2004). The statistical phrases can capture the dependency 

between words and, to some degree, relax the independence assumption of the Bayesian 

classifier. Therefore, statistical phrases can improve the performance of Bayesian text 
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classification. The experiments on seven datasets showed that the bigram language model 

with appropriate smoothing outperformed the unigram language model on the task of text 

classification. In the experiment, they tried five smoothing methods: absolute discounting, 

Laplace, Good-Turing, Jelinek-Mercer, and Witten-Bell. 

 However, the size of the vocabulary of grams in n-gram is huge due to the 

combination. A large amount of training data is needed to obtain a creditable model. The 

statistical n-multigram language model partially overcomes the limitations of the n-gram 

model (Shen et al., 2006). It never generates a huge number of word combinations, but it 

does generate a reasonable number of statistically significant multigrams. The phrases 

can be at variable length, which makes more sense; the generated multigrams are often 

meaningful. Shen et al. reported slight improvement over the baseline on a subcollection 

of RCV1 when using n-multigram model for text classification. However, this model still 

needs considerable training data. Otherwise very few multigrams will be generated. 

Although the multiword phrase used in this thesis is also a sort of statistical phrase, it is 

not required to use a large number of training data. We manage to build phrase 

dictionaries from large numbers of unlabeled texts and then extract multiword phrases 

from training data and testing data based on the built dictionaries. 

 

2.5 Text Clustering 

There are two major approaches to text (document) clustering: discriminative and 

generative (Kaufman, L. and Rousseuw, 1990). The discriminative approaches calculate 

the pair-wise document similarity (or distance) and group documents into clusters that 
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minimize the intra-cluster distance and maximize the inter-cluster distance. It usually 

suffers from the )( 2nO  complexity. The generative approaches attempt to learn 

generative models from the collection and the clustering procedure is equivalent to 

finding out the cluster model that generates each document in the collection. The 

complexity is usually linear to the number of documents, that is, )(nO . 

 Agglomerative hierarchical clustering is a typical similarity-based discriminative 

clustering approach. According to the method of computing the distance between a 

document and cluster, agglomerative hierarchical clustering can be further divided into 

single-linkage, complete linkage, and average linkage. Empirically, average linkage 

achieved the best result in document clustering. Steinbach, Karypis, and Kumar (2000) 

concluded that spherical k-means consistently outperformed agglomerative hierarchical 

clustering on many textual datasets. They attributed the poor performance of 

agglomerative hierarchical clustering to the sparsity of topic-specific “core” words and 

density of topic-free “general” words between two documents.  

 Zhong and Ghosh (2005) conducted a comparative study of generative models for 

document clustering. Three probabilistic models—multivariate Bernoulli, multinomial, 

and von Mises-Fisher—were compared within a model-based k-means framework. They 

found out that multivariate Bernoulli performed consistently worse than multinomial, 

which was consistent with the finding by McCallum and Nigam (1998) that multinomial 

was more effective than Bernoulli in text classification. The von Mises-Fisher model 

performed slightly better than multinomial on most datasets in the experiment, but was 

roughly in the same magnitude of quality. Spherical k-means was a special case of von 
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Mises-Fisher. They also compared three generative models to the CLUTO (Karypis, 

2002), a graph-partition–based clustering algorithm. The performance of multinomial and 

von Mises-Fisher was roughly comparable to that of CLUTO. But CLUTO is much more 

computationally expensive than generative models. 

 There is little work addressing the model smoothing issue for model-based k-means. 

In Zhong and Ghosh’s comparative study, the simplest Laplace smoothing was used to 

smooth both Bernoulli and multinomial models. In this thesis, we will study the impact of 

semantics-based smoothing on the effectiveness of multinomial models for text 

clustering. 
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CHAPTER 3: TOPIC SIG�ATURE LA�GUAGE MODELS 

 

3.1 Introduction 

To use language models, we usually need to estimate a model from training data and then 

compute the generative probability of a given text according to the estimated model. 

However, it is challenging to estimate an accurate model due to the sparsity of training 

data. On one hand, many words in the testing text may not appear in the training data; to 

prevent zero probability, it is required to assign reasonable nonzero probability values to 

those unseen words. On the other hand, some words in the training data such as stop 

words are very noisy; it is better to adjust their probability values downward. Thus, the 

core of the language modeling approach to information retrieval and text mining is to 

smooth the raw language models. Zhai and Lafferty (2001a and 2002) propose several 

effective background smoothing techniques that interpolate the document model with the 

background collection model.  

 A potentially more significant and effective smoothing method is semantic 

smoothing, which incorporates human knowledge or word semantics into the language 

model estimates. The topic signature language model (TSLM) is one of such semantic 

smoothing methods. Before moving to the details of topic signature language model 

smoothing, we would like to introduce the framework for semantic smoothing as follows. 

) (3.1           )|( )|( )|()-(1 )|( ∑+=
k

kkb twpdtpdwpdwp λλ  
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Without losing generalization, d refers to a document here. It can be interpreted as a 

cluster or as a class for the application of clustering and classification. The first term is a 

unigram language model smoothed usually by a corpus-based method such as 

Jelinek-Mercer, Dirichlet, absolute discount (Zhai and Lafferty, 2001a), or two-stage 

smoothing (Zhai and Lafferty, 2002). In this thesis, we simply refer to this line of 

smoothing methods as background smoothing. The second term is a semantic mapping 

model that statistically maps topics contained in the document to terms. The mapping 

coefficient (λ) indicates the importance of the semantic mapping component in the 

mixture model. It is often empirically tuned. 

The differences among semantic smoothing methods in literature mainly lie in three 

aspects: the representation of the topics, the estimation of semantic mapping for each 

topic )|( ktwp , and the estimation of topic distributions in a document  )|( dtp k . The 

topic representations appearing in literature and our previous work include word (Berger 

and Lafferty, 1999), combined concept (Song and Bruza, 2003), cluster (Liu and Croft, 

2001, multiword phrases (Zhou et al., 2007a and 2007b), ontology-based concept pairs 

(Zhou et al., 2006c), and topical themes (Wei and Croft, 2006). The estimates of topic 

distributions include uniform distribution (i.e., all topics are equally treated) (Bai et al., 

2005a; Song and Bruza, 2003), maximum likelihood estimate (Berger and Lafferty, 1999; 

Zhou et al., 2006c, 2007a, 2007b), and topic modeling (Wei and Croft, 2006). The 

estimates of semantic mapping for each topic in literature are even more diversified, such 

as document-query pair-based machine translation (Berger and Lafferty, 1999), 

information flow (Song and Bruza, 2003), co-occurrence with semantic constraint (Cao et 
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al., 2005), and co-occurrence–based mixture language model (Zhou et al., 2006c, 2007a, 

2007b). 

The topic signature language model is characterized with the following features. 

First, the topics are represented by any explicit text unit with topical information such as 

words, multiword phrases, and concepts. Second, the semantic mapping from a topic 

signature to individual words is based on co-occurrence data. Third, because topic 

signatures are explicitly extracted, the distribution of topic signatures in a document is 

estimated within the maximum likelihood estimate (MLE) principle. 

The remainder of this chapter will be organized as follows. Section 3.2 introduces 

three types of topic signatures: words, multiword phrases, and ontological concepts. 

Section 3.3 shows the method of multiword phrase extraction. Section 3.4 presents the 

method of ontological concept extraction. Section 3.5 details the semantic mapping 

estimates. 

 

3.2 Topic Signatures 

We don’t have a strict definition of topic signatures. Any text unit that carries topical 

information and appears in more than one document can be considered a topic signature. 

For example, individual words, multiword phrases, ontological concepts, and concept 

pairs are good topic signatures. In this thesis, we compare and contrast the behavior and 

performance of three types of topic signatures. They are individual words, multiword 

phrases, and ontological concepts. 
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Words are the smallest unit in English text. It is straightforward to extract individual 

words from a document. The space of individual words is relatively small, and it is more 

computationally efficient to process words than multiword phrases or ontological 

concepts. However, a single word without context is often ambiguous. For example, the 

word “mouse” can be interpreted as either computer mouse or biological mouse.  

Multiword phrases are defined as rigid noun phrases or collocations in this thesis. A 

multiword phrase contains two or more individual words which are adjacent to each other 

in sequence. It often begins with an adjective or a noun and ends with a noun. The 

semantics of a phrase usually has the following types. 

• Organization: International Business Machine Corp. 

• Person: George Bush, Ronald Regan 

• Location: United States, Los Angeles 

• Subject: space program, star wars 

Apparently, multiword phrases are usually meaningful and length-variable, which 

contrasts a multiword phrase from an n-gram (e.g., bigram and trigram). An n-gram has a 

fixed length and is not necessary meaningful. However, both n-grams and multiword 

phrases are much more specific than individual words. For example, the phrase “space 

program” has a specific meaning while individual words “space” and “program” are 

quite general. 

An ontological concept is a unique meaning in a particular domain. It represents a 

set of synonymous terms in the domain. For example, C0020538 is a concept about the 

disease of hypertension in the UMLS (Universal Medical Language System, 
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http://www.nlm.nih.gov/research/umls) Metathesaurus; it also represents a set of 

synonymous terms including high blood pressure, hypertension, and hypertensive disease. 

Therefore, the concept-based topic signature representation helps to relieve the synonymy 

and polysemy problems in information retrieval and text mining. 

According to whether the topic signature itself is context sensitive, the topic 

signature language model can be further divided into context-sensitive semantic 

smoothing (CSSS) and context-insensitive semantic smoothing (CISS). The word-based 

topic signature language model corresponds to CISS; multiword phrase and ontological 

concept-based topic signature language models belong to the category of CSSS. 

 

3.3 Multiword Phrase Extraction 

Unlike the extraction of bigram and trigram, multiword phrase extraction is not a trivial 

task. The multiword phrase of interest should be meaningful and should frequently occur 

in a collection or a domain. Thus, it is impossible to extract phrases from a single 

document without extra information. We developed a two-stage approach to the 

multiword phrase extraction. The first stage is to build a multiword phrase dictionary 

utilizing the statistics of the whole collection. The second stage is to extract multiword 

phrases from each document, based on the phrase dictionary. 

We use a slightly modified version of Xtract (Smadja, 1993) to build a multiword 

phrase dictionary from a collection of documents. Xtract is designed to extract three types 

of collocations: predicative relations, rigid noun phrases, and phrasal templates. It begins 

with extracting significant bigrams using statistical techniques. It then expands 2-Grams 
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to N-Grams, and finally it adds syntax constraint to the collocations. In Fagan’s notion of 

phrases (Croft et al., 1991; Fagan, 1987), the phrases extracted by Xtract are constrained 

by both statistical and syntactic criteria. In the original version, two words are defined as 

a bigram if and only if they co-occur within a sentence and their lexical distance is less 

than five words. Because we are only interested in rigid noun phrases, the first word is 

limited to an adjective or a noun, and the second word must be a noun. Their distance 

threshold is set to four words, in our implementation.  

Xtract uses four parameters, strength (k0), spread (U0), peak z-score (k1), and 

percentage frequency (T), to control the quantity and quality of the extracted phrases. In 

general, the bigger the value of those parameters, the higher quality and less quantity the 

phrases Xtract extracts. Smadja recommended a setting (k0, k1, U0, T) = (1, 1, 10, 0.75) 

to achieve good results. In the experiment, we set those four parameters to (1, 1, 4, 0.75). 

Xtract is an effective approach to the phrase extraction. The precision is about 80 %, 

which is good enough for our use in information retrieval and text mining—and is also 

very efficient. For example, it takes only two hours to build the dictionary from the AP89 

collection (84,678 documents) using our Java version implementation; Annie (a named 

entity recognition component of GATE (Cunningham, 2002)) takes about twelve hours to 

recognize entities from the same collection. 

After the phrase dictionary is built, we use a greedy search algorithm to extract all 

phrases that exist in the dictionary from each single document. To reduce the search 

space, we tag the part of speech of each sentence first and limit a multiword phrase 

candidate to a sequence of words that satisfies the following conditions: 
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(1) Starts with a noun, adjective, or number; 

(2) ends with a noun or number; 

(3) all words in the middle are a noun or number; and 

(4) only the longest sequence is considered. For example, if ABC is a phrase, the 

subsequences AB and BC are ignored. 

 

 

 

Example Sentence:  

How the many changes in the former Soviet Union (now the Commonwealth of 

Independent States) will affect the future of their space program remains to be seen. 

 

Word Index: change, form, soviet, union, commonwealth, independent, state, affect, 

future, space, program, remain, see 

Multiword Phrase Index: Soviet Union, independent state, space program 

 

Figure 3.1: The demonstration of multiword phrase extraction and indexing. Stop 

words are removed, and words are stemmed. 

 

 

 

3.4 Ontological Concept Extraction 

In general, the generic ontological concept extraction from free text is still in the infant 

stage. Biological concept extraction, however, has been extensively studied and has 

achieved acceptable accuracy. In this thesis, we only address the task of ontological 

concept extraction in the biomedical domain. 

Dictionary-based biological concept extraction is still the state-of-the-art approach to 

large-scale biomedical literature annotation and indexing. The exact dictionary lookup is 

a very simple approach, but it always achieves low extraction recall because a biological 
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term often has many variants, while it is impossible to collect and compile all of them 

into a dictionary. We propose a generic extraction approach—referred to as approximate 

dictionary lookup—to cope with term variations and we will implement it as an 

extraction system called MaxMatcher (Zhou et al., 2006d). The basic idea of this 

approach is to capture the significant words, instead of all words, to a particular concept. 

The new approach dramatically improves the extraction recall while maintaining the 

precision.  

 

 

 

Example Sentence: 

A recent epidemiological study (C0002783, research activity) revealed that obesity 

(C0028754, disease) is an independent risk factor for periodontal disease (C0031090, 

disease). 

 

Word Index: recent, epidemiological, study, research, activity, reveal, obesity, 

independent, risk, factor, periodontal, disease 

Concept Index: C0002783, C0028754, C0031090 

 

Figure 3.2: The demonstration of concept extraction and indexing. Stop words are 

removed, and words are stemmed. 

 

 

 

3.4.1 Approximate Dictionary Lookup 

The earlier example of a biological (and ontological) concept, C0020538 from the UMLS 

Metathesaurus, is a concept about the symptoms of hypertension. It represents a set of 

synonymous terms including high blood pressure, hypertension, and hypertensive disease. 

In comparison with individual words, a concept is more meaningful; in comparison with 
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multiword phrases, a concept well solves polysemy and synonymy problems (Zhou et al., 

2006b). Therefore, using biological concepts can improve the performance of many 

applications such as large-scale biomedical literature retrieval, clustering, and 

summarization. 

There are volumes of work addressing the issue of biological concept extraction in 

literature. However, most of them utilize the special naming conventions or patterns to 

identify a few types of biological concepts such as genes, proteins, and cells (Change et 

al., 2004; Collier et al., 2000; Fukuda et al., 1998; Song et al., 2004; Subramaniam et al., 

2003; Tanabe and Wilbur, 2002; Zhou et al., 2004). In general, those approaches are 

designed for very specific types of concepts, and they work efficiently and effectively if 

the types of biological concepts have unique naming patterns. Many large-scale 

biomedical applications such as literature retrieval, clustering, and summarization, 

however, are interested in many rather than a few types of biological concepts, most of 

which do not have unique naming patterns. For example, UMLS covers 135 semantic 

types of biological concepts; a typical genomic IR system will index all of them.  

 The dictionary-based biological concept extraction is still the state-of-the-art 

approach to large-scale biomedical literature annotation and indexing (Rindfleisch et al., 

2000; Zhou et al., 2005; Zhou et al., 2006b). Its major advantage over the pattern-based 

approach is that it not only recognizes names but also identifies unique concept identities. 

Among dictionary-based approaches, the exact dictionary lookup is the simplest one but 

always achieves low extraction recall because a biological term often has many variants, 
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such as morphological variants, syntactic variants, and semantic variants (Chiang et al., 

2005), while it is impossible to collect all of them from a dictionary.  

To overcome the limitation of exact dictionary lookup, we introduce an approximate 

dictionary lookup technique. The basic idea of this technique is to capture significant 

words rather than all words in a concept name. For example, the word “gyrb” is 

obviously very significant to the concept “gyrb protein”; we treat it as a concept name 

even if the word protein is not present. So the problem is reduced to measuring the 

significance of any word to given concept names. In particular, we propose a relative 

significance score measure in this paper. Suppose a concept (c) has n concept names 

denoted as s1,…, sn, respectively. Let +(w) denote the number of concepts whose variant 

names contain word w, and let wji denote the i-th word in the j-th variant name of the 

concept. The significance of w to the concept is defined as follows: 
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We use the UMLS Metathesaurus 2005AA version as the dictionary to train the 

significance score of each word to biological concepts containing that word. The UMLS 

Metathesaurus has a table called normalized string index, which records all normalized 

names of each concept. We remove normalized strings containing more than ten words 

and then use the remaining 2,573,244 strings to build the significance score matrix. A 
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huge matrix, 509,170 rows (words) by 998,774 columns (concepts), is obtained. Because 

for each word, only a few concepts contain it, we use sparse matrix to make the storage 

and search more efficiently.  

 

 

 

 

Figure 3.3: The algorithm for extracting one concept name and its candidate concept 

IDs. The threshold is set to 0.95; the maximum number (skip) of skipped words is set 

to 1. 

 

 

 

During the stage of extraction, we use a set of simple rules to identify the boundary 

of a concept candidate. A biological concept name should begin with a noun, a number, 

or an adjective should end with a noun or a number; it can not contain any boundary 

words including punctuations (except hyphen, period, and single quote), verbs, and 

conjunctions and prepositions (except “of”). In other words, whenever a boundary word 

is encountered, a candidate concept name reaches its end. The detailed searching 

algorithm is shown in Figure 3.3. 
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The major advantage of approximate dictionary lookup is that even if a concept 

name changes the word ordering a little bit, or inserts or deletes a couple of insignificant 

words, it can still be recognized. According to its definition, the significance score of a 

concept name should be equal to or greater than 1.0 if no word is missing. Thus, the 

threshold of significance score should be close to 1.0. If the threshold is too small our 

approach may falsely recognize “high pressure” as the concept name “high blood 

pressure”; if the threshold is too high, our approach may fail to recognize “gyrb” as “gyrb 

protein”. We found that a threshold of 0.95 gave good results for UMLS-based biological 

concept extraction. Our approach is able to recognize concept names with a couple of 

insertions such as articles, pronouns, and even nouns. The parameter skip controls the 

maximum number of insertions. We found that skip=1 gave good results. 

The searching results are concept names and corresponding concept IDs. If two or 

more concept IDs are returned, we need to further figure out the meaning the extracted 

concept name refers to. The words surrounding the extracted concept name are often 

indicative to the meaning (Lesk, 1986). Thus, we take surrounding words (4 to the left, 

and 4 to the right) as the context and use the same algorithm as shown in Figure 3.3 to 

disambiguate the meaning of the extracted concept name if necessary.  

3.4.2 Experimental Results 

We evaluate both efficiency and effectiveness of the MaxMatcher. The effectiveness is 

evaluated on GENIA 3.02 corpus (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA), which 

consists of 2,000 human-annotated PubMed abstracts. We compare the result of 

MaxMatcher with that of two other exact dictionary lookup systems, BioAnnotator 
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(Subramaniam et al., 2003) and ExactMatcher. The machine-extracted terms are 

compared with human annotations. Because human annotation is subjective, we provide 

exact-match-based evaluation and approximate-match-based evaluation, following the 

evaluation method in Subramaniam et al. For approximate-match, the human annotation 

should be the substring of the machine annotation, or the machine annotation is the 

substring of the human annotation.  

The comparison among the three systems is presented in Table 3.1. For exact match, 

MaxMatcher performs significantly better than the other two systems in terms of both 

precision and recall. For approximate match, the precision of MaxMatcher is comparable 

to that of the other two systems, but the recall is significantly better than that of the other 

two. 

 

 

 

Table 3.1: The comparison of MaxMatcher to ExactMatcher and BioAnnotator. 

BioAnnotator actually tested several configurations. But only the configuration with 

just dictionaries (i.e., exact dictionary lookup) is compared. BioAnnotator was 

evaluated on GE�IA 1.1 (containing 670 human-annotated abstracts of research 

papers). The dictionary used for BioAnnotator also includes LocusLink and 

GeneAlias in addition to UMLS. 

 

Exact Match Eva. Approximate Match Eva. 
IE Systems 

Recall Precision F-score Recall Precision F-score 

MaxMatcher 57.73 54.97 56.32 75.18 71.60 73.35 

ExactMatcher 26.63 31.45 28.84 61.56 72.69 66.66 

BioAnnotator 20.27 44.58 27.87 39.75 87.67 54.70 
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For efficiency comparison, we downloaded the first 10,000 PubMed abstracts 

published in 2005 and counted the time for annotating these abstracts by MaxMatcher 

and ExactMatcher, respectively. It takes 510 seconds for MaxMatcher to annotate all 

10,000 PubMed abstracts; the average annotation speed is 19.6 abstracts per second. 

ExactMatcher is faster. It only costs 320 seconds to process those abstracts; the average 

annotation speed is 31.3 abstracts per second. However, ExactMatcher consumes much 

more memory (765 megabytes) than MaxMatcher (362 megabytes). 

 

3.5 Semantic Mapping Estimates 

The semantic mapping estimate is a task to map a topic signature to each single word in 

the vocabulary. Formally, denoting W as the word vocabulary and tk as the topic 

signature, the task is to estimate the parameters )|( ki twp  which satisfy∑
=

=
||

1

1)|(
W

i

ki twp . 

 

 

 

 

Figure 3.4: Illustration of document indexing. Vt, Vd, and Vw are topic signature set, 

document set, and word set, respectively. The number on each line denotes the 

frequency of corresponding topic signature or word in the document. 
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For each topic signature tk, we can obtain a set of documents (Dk) containing the 

signature (see Figure 3.4). Intuitively, we can use the document set Dk to approximate the 

semantic mapping from tk to single-word features in the vocabulary. If all words 

appearing in Dk center on the topic signature tk, we can simply use maximum likelihood 

estimate, and the problem is as simple as frequency counting. Some words, however, 

address topics corresponding to other topic signatures, and some are background words 

of the whole collection. Therefore, we employ a mixture language model (Zhai and 

Lafferty, 2001b), as described in equation 3.3, to remove noise, that is, words are 

generated either by the topic signature mapping model or by the background collection 

model.  

)3.3(              )|()|()1()|( CwptwpDwp kk αα +−=  

When this mixture model is used for text generation, it is unknown what model a 

word is exactly generated by. It is instead a hidden variable. But the chance of selecting 

either model is known. Here α is the coefficient accounting for the chance of using the 

background collection model to generate words. The log likelihood of generating the 

document set Dk is then: 

)4.3(         )|(log),()(log ∑=
w

kkk DwpDwcDp  

Here c(w, Dk) is the document frequency of term w in Dk, that is, the cooccurrence 

count of w and tk in the whole collection. The parameters 
)|( ktwp  can then be estimated 

by the EM algorithm (Dempster et al., 1977) with the following update formulas: 
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As usual, the maximum likelihood estimator initializes the EM algorithm. With 

respect to the setting of the background coefficient α, the larger α is, the more specific the 

trained parameters are. When α closes to one, the majority of terms get extremely small 

probability values. Our study shows a large α (e.g., 0.9) fits for applications such as query 

expansion, in which only a few of the most important terms are expanded, and a medium 

α (e.g., 0.5) is good for applications such as text classification and clustering. We also 

truncate terms with extremely small mapping probabilities for two purposes. First, with 

smaller mapping space, class model smoothing becomes much more efficient. Second, 

we assume terms with extremely small probability are noise (i.e., not semantically related 

to the given topic signature). In detail, we disregard all terms with mapping probability 

less than 0.0005 and renormalize the mapping probabilities of the remaining terms. 
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Space [CISS] 

space 0.245; shuttle 0.057; launch 0.053; flight 0.042; air 0.035; program 0.031; center 

0.030; administration 0.026; develop 0.025; like 0.023; look 0.022; world 0.020; 

director 0.020; plan 0.018; release 0.017; problem 0.017; work 0.016; place 0.016; mile 

0.015; base 0.014…; 

 

Program [CISS] 

program 0.193; washington 0.026; congress 0.026; administration 0.024; need 0.024; 

billion 0.023; develop 0.023; bush 0.020; plan 0.020; money 0.020; problem 0.020; 

provide 0.020; writer 0.018; d 0.018; help 0.018; work 0.017; president 0.017; 

house .017; million 0.016; increase 0.016…; 

 

Space Program [CSSS] 

space 0.101; program 0.071; NASA 0.048; shuttle 0.043; astronaut 0.041; launch 0.040; 

mission 0.038; flight 0.037; earth 0.037; moon 0.035; orbit 0.032; satellite 0.031; Mar 

0.030; explorer 0.028; station 0.028; rocket 0.027; technology 0.026; project 0.025; 

science 0.023; budget 0.023…; 

(a) Examples from news collection AP89 
 

 

Breast [CISS]: 

breast 0.312; cancer 0.195; tumor 0.056; carcinoma 0.050; woman 0.048; node 0.028; 

metastasis 0.026; estrogen 0.025; chemotherapy 0.024; lymph 0.020; invasive 0.019; 

survival 0.016; malignant 0.015;… 

 

Cancer [CISS]: 

cancer 0.329; tumor 0.080; breast 0.070; carcinoma 0.055; survival 0.034; 

chemotherapy 0.033; metastasis 0.030; prostate 0.027; lung 0.026; stage 0.024; therapy 

0.023; advance 0.022; node 0.021; risk 0.019;… 

 

Breast Cancer [CSSS]: 

breast 0.040; malignant 0.028; tumor 0.022; cancer 0.021; benign 0.011; mcf-7 0.006; 

carcinoma 0.006; mammary 0.005; neoplasm 0.004; estrogen 0.004; herceptin 0.004; 

her2 0.004; estrone 0.004; lobular 0.004;… 

(b) Examples from Medline 

Figure 3.5: The demonstration of context-sensitive and context-insensitive topic 

signature semantic mappings. 
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Our estimation of semantic mappings is significantly different from the statistical 

translation model (Berger and Lafferty, 1999) in two aspects. First, the translation model 

requires a large amount of document-query pairs, which is very difficult to obtain in 

practice. Instead, we use co-occurrence data, which are much cheaper to collect. Second, 

the translation model takes words as topic signatures and is unable to incorporate 

contextual information into the translation procedure. Our approach can use 

context-sensitive topic signatures such as multiword phrases and ontological concepts. 

Consequently, the semantic mapping is more specific. From two examples shown in 

Figure 3.5 we can see that multiword phrase mapping (e.g., space program) and 

ontological concept mapping (e.g., breast cancer) are quite coherent and specific. 

However, if we estimate semantic mappings for its constituent terms separately, both 

contain mixed topics and are fairly general. Some terms such as “NASA”, “astronaut”, 

“moon,” “satellite,” “rocket,” and “Mar,” which are highly correlated to the subject of 

“space program,” do appear in the result of phrase mappings, but in neither of the word 

mappings. Some terms such as “mcf-7,” “estrogen,” “herceptin,” and “her2,” which is 

highly correlated to the subject of “breast cancer,” do appear in the result of ontological 

concept mappings, but in neither of the word mappings. 
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CHAPTER 4: SEMA�TIC SMOOTHI�G I� I�FORMATIO� RETRIEVAL 

 

4.1 Introduction 

The language modeling approach to information retrieval (IR), initially proposed by 

Ponte and Croft (1998), has been popular with the IR community in recent years because 

of its solid theoretical foundation and promising empirical retrieval performance. In 

essence, this approach centers on the document model estimation and the query 

generative likelihood calculation according to the estimated model. However, it is 

challenging to estimate an accurate document model due to the sparsity of training data. 

On one hand, because the query terms may not appear in the document, we need to assign 

a reasonable nonzero probability to the unseen terms. On the other hand, we need to 

adjust the probability of the seen terms to remove the effect of the background collection 

model or even irrelevant noise. Thus, the core of the language modeling approach to IR is 

to smooth document models. Zhai and Lafferty (2001a and 2002) propose several 

effective background smoothing techniques that interpolate the document model with the 

background collection model.  

A potentially more significant and effective method is semantic smoothing that 

incorporates synonym and sense information into the language model (Lafferty and Zhai, 

2001a). Berger and Lafferty (1999) adopt semantic smoothing into the language model 

by statistically mapping document terms onto query terms using a translation model 

trained from synthetic document-query pairs. The translation model is context insensitive 

(i.e., it is unable to incorporate sense and contextual information into the language model); 
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the resulting translation may be mixed and fairly general. For example, the term “mouse” 

without context may be translated to both “computer” and “cat” with high probabilities. 

Jin et al. (2002) and Cao et al. (2005) present two other ways to train the translation 

probabilities between individual terms, but their approaches still suffer the same 

context-insensitivity problem as Berger and Lafferty. Thus, it is urgent that a framework 

is developed to semantically smooth document models within the language modeling 

(LM) retrieval framework. 

In this chapter, we propose a topic signature language model for context-sensitive 

document smoothing. A document is decomposed into a set of weighted topic signatures, 

and then those topic signatures are mapped into individual terms for the purpose of 

document expansions. We define a topic signature as either an ontology-based concept or 

an automated multiword phrase. Because a concept or a multiword phrase itself contains 

contextual information and its meaning is usually unambiguous, the mapping from topic 

signatures to individual terms should have higher accuracy and result in better retrieval 

performance, compared to the semantic translations between single words. For example, 

“mouse” in conjunction with “computer” could be a topic signature; the signature might 

be translated to “keyboard” with a high probability but to “cat” with a low probability, 

because of additional contextual constraints.  

The new smoothing method is tested on collections from two different domains in 

order to show its robustness. The extraction of concepts needs domain ontology. Thus we 

evaluate the effectiveness of concepts on TREC Genomics Track 2004/2005. The 

extraction of multiword phrases does not need any external human knowledge and can be 
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applied to any public domains. Therefore we test the effectiveness of multiword phrases 

on TREC Disks 1, 2, and 3, which contain news articles from several sources including 

AP, SJM, and WSJ. The experimental results show that significant improvements are 

obtained over the two-stage language model (Zhai and Lafferty, 2002) as well as the 

language model with context-insensitive semantic smoothing (CISS).  

The remainder of this chapter is organized as follows. In Section 4.2, we describe in 

details the method of context-sensitive document smoothing. Section 4.3 shows the 

experimental results on TREC 2004/2005 Genomics Track collections, where topic 

signatures are implemented as ontology-based concepts. Section 4.4 shows the 

experimental results on TREC Disks 1, 2, and 3, where multiword phrases are used as 

topic signatures. Section 4.5 concludes this chapter. 

 

4.2 Context-Sensitive Document Smoothing 

In this section, we first define two types of topic signatures and introduce the extraction 

algorithms. Second, we describe the document expansion (smoothing) using topic 

signature language models. Last, we discuss the scalability and complexity of the 

estimation of the topic signature language model. 

4.2.1 Context-Sensitive Topic Signatures 

The implementation of topic signatures plays a crucial role in our context-sensitive 

semantic smoothing approach. First, the topic signature must be context sensitive, and 

thus it should contain at least two terms, unless word sense is adopted. Second, 

constituents of a topic signature should have syntactic relation. Otherwise, we cannot 
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count their frequency in a document, and it becomes difficult to estimate their 

distributions. Third, it should be easy and efficient to extract topic signatures from texts. 

Following these criteria, we recommend two types of topic signatures. One is the 

ontological concept, and the other is the multiword phrase. In this subsection, we 

formally define these two types of topic signatures and briefly introduce the 

corresponding extraction algorithms. 

In our previous work (Zhou et al., 2006c), we implemented topic signatures as 

concept pairs inspired by Harabagiu and Lacatusu’s (2005) topic representations. 

Formally, a topic signature is defined with two order-free components as in t(wi, wj), 

where wi and wj are two concepts related to each other syntactically and semantically. 

Because two concepts in a pair help to determine the context for each other, the meaning 

of a concept pair is often unambiguous, and its semantic mapping to individual concepts 

is very specific and accurate. The combination of two concepts, however, causes a large 

vocabulary space that makes it inefficient to index large collections. The distribution of 

concept pairs is also quite sparse, and thus it is difficult to obtain sufficient data for many 

concept pairs in order to estimate their mapping probabilities to individual concepts. 

Aware of the unambiguousness of a single concept in ontology, we simply use 

ontological concepts as topic signatures. 

In general, the extraction of concepts from texts is still a challenging problem. 

Fortunately, in the domain of biology and medicine, a large ontology called UMLS was 

developed, which makes the task of concept extractions possible. The extraction of 

biological concepts is a hot topic in bioinformatics, and a survey of those methods can be 



51 

 

 

found in “Mining Knowledge from Text Using Information Extraction” (Mooney and 

Bunescu, 2005). Most approaches segment a sequence of words into phrases but do not 

further map the identified phrases into concepts. For this reason, we adopt MaxMatcher 

(Zhou et al., 2006d), a dictionary-based biological concept extraction tool, for UMLS 

concept extractions.  

In order to increase the extraction recall while maintaining the precision, 

MaxMatcher uses approximate matches between the word sequences in text and the 

concepts defined in a dictionary or ontology, such as the UMLS Metathesaurus. It outputs 

concept names as well as unique IDs representing a set of synonymous concepts. The 

unique concept IDs are used as an index in our experiments. In the example shown in 

Figure 3.2, the underlined phrases are extracted concept names followed by the 

corresponding concept ID and semantic type. The details of the algorithm for 

MaxMatcher can be found in our previous work (Zhou et al., 2006d). MaxMatcher has 

been evaluated on the GENIA corpus. The precision and recall reached 71.60% and 

75.18%, respectively, using approximate match criterion.  

The use of phrases has a long history in information retrieval. A typical method for 

utilizing phrases will identify phrases within queries (e.g., “star wars”, “space program”), 

scan documents to identify query phrases, and score the document if it contains query 

phrases (Pickens and Croft, 2000). The recognition of query phrases within documents 

can be done in one of the following three manners (Pickens and Croft, 2000).  

� Boolean: it is also called conjunctive phrases (Croft et al., 1991). All subterms 

of a query phrase co-occur in a document. 
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� Adjacent: Exact same form as the query phrase. 

� Proximity: All subterms of a query phrase occur in close proximity in a 

document. 

In this thesis, we utilize multiword phrases in a different manner. We treat phrases 

frequently occurring in a given collection as topic signatures and try to find a set of 

individual words to represent the topic signature (the multiword phrase). Then we can 

expand a document language model by statistically mapping topic signatures into query 

terms (individual words). For this purpose, we only identify multiword phrases within 

documents. The definition of phrase in this paper is roughly equivalent to the definition 

of query phrases in traditional phrase models. It is a sort of rigid noun phrase or 

collocation. It contains two or more individual words that are adjacent to each other in 

sequence. It often begins with an adjective or a noun and ends with a noun. We use a 

slightly modified version of Xtract (Smadja, 1993) to extract phrases in documents.  

In the experiment, we also tried two other types of multiword phrases in order to 

increase phrase coverage. One is named entities (person, location, and organization) 

identified by GATE (Cunningham, 2002). The other is WordNet noun phrases (Miller, 

1995). However, the extra phrases did not bring further improvement of IR performance. 

A possible explanation is that both GATE entities and WordNet noun phrases are purely 

“syntactic” phrases, and those extra phrases (not extracted by Xtract) are often infrequent 

in our testing collections. In our language model, the infrequent phrases (topic signature) 

result in little effect on document expansions.  
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Table 4.1: Examples of context-sensitive topic signature mappings. The three 

multiword phrases are automatically extracted from the collection of AP89 by Xtract. 

We only list the top twenty topical words for each phrase. It is worth noting that the 

word “third” is removed from indexing as a stop word, and thus it does not appear in 

the mapping result of the third phrase. 

 

space program star wars third world debt 

Term Prob. Term Prob. Term Prob. 

space 0.101 star 0.088 debt 0.072 

program 0.071 war 0.066 Brady 0.039 

NASA 0.048 missile 0.06 loan 0.038 

shuttle 0.043 strategy 0.051 world 0.038 

astronaut 0.041 defense 0.051 treasury 0.037 

launch 0.040 nuclear 0.043 bank 0.035 

mission 0.038 space 0.034 Nicholas 0.034 

flight 0.037 initialize 0.033 debtor 0.030 

earth 0.037 Pentagon 0.032 trillion 0.027 

moon 0.035 weapon 0.031 reduction 0.027 

orbit 0.032 bomber 0.031 forgive 0.025 

satellite 0.031 budget 0.028 monetary 0.025 

Mar 0.030 stealthy 0.025 Mexico 0.025 

explorer 0.028 program 0.025 economy 0.023 

station 0.028 spend 0.024 billion 0.023 

rocket 0.027 armed 0.023 reduce 0.022 

technology 0.026 fiscal 0.022 burden 0.022 

project 0.025 Reagan 0.021 lend 0.021 

science 0.023 cut 0.021 creditor 0.021 

budget 0.023 Bush 0.019 secretary 0.020 

 

 

 

 

4.2.2 Document Model Smoothing 

Suppose we have indexed all documents in a given collection C with both individual 

words and topic signatures. The probability of mapping a topic signature tk to any 

individual term w, denoted as p(w|tk), is also given. Then we can easily obtain a 

document model below: 
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The likelihood of a given document generating the topic signature tk can be estimated 

with  
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where ),( dtc i is the frequency of the topic signature ti in a given document d.  

We refer to the above model as a semantic mapping model. As we discussed in the 

previous subsection, the semantic mapping from context-sensitive topic signatures to 

individual terms would be very specific. Thus, the smoothed (expanded) document 

models will be more accurate. However, not all topics in a document can be expressed by 

topic signatures (e.g., multiword phrases). Take the example of AP88-90. A document in 

this collection contains 179 unique words but only contains 32 multiword phrases on 

average (see Table 4.2). If only the semantic mapping model is used, there will be serious 

information loss. A natural extension is to interpolate the semantic mapping model with a 

unigram language model. We use the two-stage method (Zhai and Lafferty, 2002) to 

smooth the unigram language model:  
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where p(q|C) is the collection background model. γ and µ are two coefficients for tuning. 

We also refer to this smoothed unigram model as simple language model (SLM) or 

baseline language model (BLM). 
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The final document model for retrieval use is described in equation 4.4. It is a 

mixture model with two components: a simple language model and a semantic mapping 

model. 

).44(       )|( )|()-(1 )|( dwpdwpdwp tbbt λλ +=  

The mapping coefficient (λ) is to control the influence of two components in the mixture 

model. With training data, the mapping coefficient can be trained by optimizing a 

retrieval performance measure such as average precision. In the experiments in this thesis, 

we train the optimal mapping coefficient on one collection and then apply the learned 

mapping coefficient to other collections. 

4.2.3 Scalability and Complexity 

In comparison to the simple language models (Zhai and Lafferty, 2002) and traditional 

probabilistic language models, such as Okapi (Robertson, 1995), the topic signature 

language model needs the following extra computational costs: (1) the extraction of topic 

signatures from documents in offline mode, (2) the estimation of topic models for each 

topic signature in offline mode, and (3) document model expansions based on topic 

signature mappings in online mode. Fortunately, the additional computation is scalable 

and, its complexity is acceptable in practice. Furthermore, the issue of scalability and 

complexity is significantly improved over the statistical translation model (Berger and 

Lafferty, 1999) and the LDA-based document model (Wei and Croft, 2006).  

The extraction of topic signatures is time consuming compared with individual term 

extraction. However, it does not cause a serious problem because it can be executed in 
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the offline and incremental mode. In the experiment, the dragon toolkit (Zhou et al., 

2007c) is used for document indexing. The dragon toolkit implements a Java version of 

Xtract (Smadja, 1993) for multiword phrase extraction. Take the example of indexing the 

AP collection in Disk 1, 2, and 3 (about 240,000 news articles) on a Linux server. It takes 

about fifteen minutes to index individual terms and three hours to index topic signatures 

(multiword phrases). From this example, we can see that the indexing time for topic 

signatures is acceptable as an offline task. 

 

 

 

Table 4.2: Average numbers of unique words and unique topic signatures per 

document in six collections. 

 

Collection 
avg. # of unique words 

per doc 

avg. # of unique  

topic signatures per doc 

Genomics 2004 71.3 39.2 

Genomics 2005 75.2 37.6 

AP89 180.1 31.8 

AP88-89 178.6 31.7 

WSJ90-92 196.6 35.6 

SJMN91 164.2 25.3 

 

 

 

 

The estimation of topic models is highly computation-intensive. In general, the 

parameter space is in proportion to the number of documents in the corpus, the size of 

vocabulary, and the number of topics; the computational complexity is in proportion to 

the number of documents, the number of topics, and the number of iterations for 

convergence. Therefore, the estimation algorithms proposed in “Information Retrieval as 

Statistical Translation” (Berger and Lafferty, 1999) and “LDA-based document models 
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for ad-hoc retrieval” (Wei and Croft, 2006) are not very scalable and are time-consuming 

for large collections. For example, the estimation of the LDA model for the AP collection 

using Gibbs sampling (please refer to Wei and Croft, 2006, for detailed settings) costs 

about seventy-two hours, whereas our approach uses only forty-five minutes to estimate 

topic models for all topic signatures. Our approach estimates topic models for each topic 

signature separately, which dramatically reduces the parameter space and makes the 

model converge with fewer iteration steps. Thus, our estimation approach increases the 

scalability and reduces the complexity.  

The online document model expansion based on topic models is computationally 

intensive because it involves the summation of translation probabilities as shown in 

equation 4.1. The complexity is in proportion to the number of topics for a document. 

The number of topics is equal to the number of unique terms in the statistical translation 

model (Berger and Lafferty, 1999), the number of latent topics in LDA-based models 

(Wei and Croft, 2006), and the number of unique topic signatures in the topic signature 

language model, respectively. As shown in Table 4.2, the number of topic signatures is 

significantly less than the document length as well as the number of latent topics in the 

LDA model (e.g., the optimal number of topics is 800 in Wei and Croft, 2006) in typical 

testing collections, and thus our approach has the lowest complexity during the stage of 

online document model expansions. 
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4.3 Experiments with Ontological Concepts 

4.3.1 Evaluation Metrics and Baseline Models 

Following the convention of TREC, we use the mean average precision (MAP) as the 

major performance metric and the overall recall at 1000 documents as a supplemental 

metric. The noninterpolated average precision is defined as:  
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where r(D) is the rank of document d, and Rel is the set of relevant documents for a query 

Q. By averaging the noninterpolated average precision across all queries of a collection, 

we obtain the MAP for the collection. 

In the experiment, we use the two-stage language model (SLM) (Zhai and Lafferty, 

2002) as the first baseline. The exact formula for the two-stage model is described in 

equation 4.3. To show how strong the baseline is, we also compare the baseline to the 

famous Okapi model (Robertson, 1993). The exact formula for the Okapi model is shown 

below: 
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Where: 

tf(q, D) is the term frequency of q in document D. 

df(q) is the document frequency for q. 

avg_dl is the average document length in the collection. 
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The major difference between the statistical translation model (Berger and Lafferty, 

1999) and the proposed topic signature language model is that the latter incorporates the 

contextual information into the document model expansions (smoothing). Thus, it is very 

natural to further compare the context-sensitive semantic smoothing (CSSS) to the 

context-insensitive semantic smoothing (CISS). Because it is difficult to obtain a large 

number of real query-document pairs, we use word-word co-occurrence data to train a 

context-insensitive version of mapping probabilities in the experiment. The parameter 

estimation algorithm is the same as that for the context-sensitive version (i.e., the 

semantic mapping from topic signature to individual words). The retrieval model is still 

the mixture of a two-stage language model and a semantic mapping model as described in 

equation 4.4. But the mapping component is formulated slightly differently: 

4.7)(             )|()|()|( ∑=
k

kmlkt dwpwwpdwp  

It statistically maps each individual word, instead of context-sensitive topic signature, in 

a document onto query terms.  

4.3.2 Testing Collections 

Our current implementation of concept-based topic signature extraction needs domain 

ontology. For this reason, we validate our context-sensitive semantic smoothing method 

on genomic collections, because UMLS can be used as the domain ontology for this area. 

The testing collections are TREC Genomic Track 2004 (Hersh et al., 2004) and 2005 

(Hersh et al., 2005). The original collection is a ten-year subset of Medline abstracts and 

contains about 4.6 million abstracts. We only used the subcollection (i.e., the human 
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relevance-judged document pool, with 42,251 documents for 2004 and 35,474 documents 

for 2005) for our experiment. The ad hoc retrieval tasks of the two tracks include fifty 

topics (queries). The statistics of the testing collections are shown in Table 4.3. 

 

 

 

 

Table 4.3: The descriptive statistics of genomics track 2004 and 2005 collections 

 

Collections Word Concept Rel./Doc Q.Len/Q.# 

 Genomics 2004 92,362 65,257 8,268/42,251 6.4/50 

 Genomics 2005 80,168 57,879 4,584/35,474 6.0/49 

 

 

 

 

4.3.3 Document Indexing and Query Processing 

We index all documents with UMLS-based concepts and individual words. For each 

document, we record the frequency count of each topic signature (i.e., UMLS concept) 

and individual words, as well as the basic statistics. For each topic signature and 

individual words, we record their frequency count in each document and the basic 

statistics. For word indexing, stop words are removed, and each word is stemmed. For 

topic signatures appearing in ten or more documents, we estimate their topic models (i.e., 

semantic mapping probabilities) using the EM algorithms. 

The query formulation is fully automated. The extraction of query terms (individual 

words) from topic descriptions is the same as the process of document indexing. In TREC 

2004 Genomics Track, a topic was described in three sections: title, information need, 

and context. The information provided by section of context is a little noisy. Our pilot 



61 

 

 

study showed that the baseline (both Okapi and the two-stage language model) using 

context section performed much worse than the one without context. For this reason, we 

only use the title section and information-need section in the experiment. In TREC 2005 

Genomics Track, query #135 was removed because it contained no relevant document. 

As stated in “A Hidden Markov Model Information Retrieval System” (Miller et al., 

1999), the query terms in the title section are clearly more important than those in the 

remaining sections. For this reason, we weight query terms according to the sections from 

which they are extracted. Following the method proposed by Miller et al., we optimize 

the weight of different sections by maximizing the MAP of the baseline retrieval model. 

The optimal weights for the title section and the information-need section are 1.0 and 0.2, 

respectively. In Table 4.4, 4.5, and 4.6, the sign † indicates the initial query is weighted. 

4.3.4 Effect of Document Smoothing 

We set parameters γ and µ in the two-stage language model to 0.05 and 200, respectively, 

because the language model achieves the best performance with this configuration. To 

give readers the sense of how good the baseline language model is, we also report the 

performance of the Okapi retrieval model in Table 4.4. The Okapi model is slightly better 

than the two-stage model, but roughly these two models are comparable to each other. 

 The mapping coefficient (λ) in the topic signature language model is optimized by 

maximizing the MAP on TREC Genomics Track 04 using an unweighted query. The 

learned optimal value is 0.3; we apply this learned value to the other two collections. The 

result is shown in Table 4.5. In order to validate the significance of the improvement, we 

also run a paired-sample t-test. As expected, the topic signature language model 
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outperforms the two-stage language model in terms of average precision and overall 

recall at the significance level of 0.01 on both TREC04 and TREC05. 

 

 

 

Table 4.4: Comparison of the simple language model (SLM) to the Okapi model on 

genomics collections. The sign† indicates the initial query is weighted.  

 

Recall MAP 
Collection 

2SLM Okapi Change 2SLM Okapi Change 

TREC04 6544 6847 +4.6% 0.352 0.369 +4.8% 

TREC04† 6680 6869 +2.8% 0.384 0.370 -3.7% 

TREC05 4093 4193 +2.4% 0.265 0.270 1.9% 

 

 

 

Table 4.5: The comparison of simple language model (SLM) to the topic signature 

language model (i.e., context-sensitive semantic smoothing, CSSS). The signs ** and * 

indicate the improvement is statistically significant according to the paired-sample 

t-test at the level of p<0.01 and p<0.05, respectively. The sign† indicates the initial 

query is weighted. 

 

Collections SLM CSSS Change 

MAP 0.352 0.422 +19.9%** 
TREC04 

Recall 6544 7279 +11.2%** 

MAP 0.384 0.446 +16.2%** 
TREC04† 

Recall 6680 7395 +10.7%** 

MAP 0.265 0.322 +21.5%** 
TREC05 

Recall 4093 4291 +4.8%** 

 

 

 

To see the robustness of the topic signature language model, we change the settings 

of the mapping coefficient. The variance of the mean average precision (MAP) with the 

mapping coefficient λ is shown in Figure 4.1. When the mapping coefficient ranges from 

0 to 0.9, the topic signature language model always performs better than the baseline on 

the three collections. This shows the robustness of the new model. More interestingly, the 
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best performance is achieved when the mapping coefficient is around 0.3 for all three 

curves; after that point, the performance is downward. A possible explanation is that the 

extracted topic signatures do not capture all points of the document, but the baseline 

language model captures those missing points. For this reason, when the influence of the 

semantic mapping model is too high in the mixture model, the performance is downward 

and even worse than that of the baseline. Therefore, if we can find a better topic signature 

representation for documents and queries, or we can refine the extraction of topic 

signatures, the IR performance might be further improved. 

 

 

 

Table 4.6: The variance of MAP with the change of the mapping coefficient (λ), which 

controls the influence of the mapping component in the mixture model. 

 

Mapping 

Coefficient 

Genomics_04 

weighted 

Genomics_04 

unweighted 
Genomics_05 

0 38.41 35.17 26.51 

0.1 43.22 40.32 29.68 

0.2 44.24 41.66 31.54 

0.3 44.60 42.18 32.24 

0.4 44.22 42.20 32.05 

0.5 43.59 41.48 32.1 

0.6 42.76 40.52 31.82 

0.7 41.77 39.62 31.34 

0.8 40.58 38.33 30.66 

0.9 39.27 36.41 29.68 

1 28.45 27.60 25.57 
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Figure 4.1: The variance of MAP with the change of the mapping coefficient (λ), 

which controls the influence of the topic signature language model. 

 

 

 

4.3.5 Context Sensitive vs. Context Insensitive 

Basically, the context-insensitive semantic smoothing (CISS) is based on the word-word 

mapping as did in (Berger and Lafferty, 1999; Gao et al., 2005; Jin et al., 2002; Lafferty 

and Zhai, 2001). The comparison of CISS to CSSS is presented in Table 4.7. For each 

collection, we tune the mapping coefficient (λ) to maximize the MAP. The optimal λ is 

about 0.3 for all three collections. Firstly, we can see that CISS significantly outperforms 

the two-stage language model on all three collections. The gain of the CISS model over 

the baseline language model is consistent with the conclusions of previous work, such as 

(Berger and Lafferty, 1999; Gao et al., 2005; Jin et al., 2002; Lafferty and Zhai, 2001). 

However, CISS is slightly less effective than CSSS, as expected.  

Secondly, the improvement of CSSS over CISS seems not much on genomics track. 

On genomics track 2005, there is almost no improvement. A possible explanation is that 
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most document terms are biological terms such as protein, gene and cell names. 

Compared to general terms such as words in news articles, the meaning of biological and 

medical terms (e.g., p53, brca1 and orc1) is more consistent even if without additional 

contextual constraints. Thus, the word-word mapping itself was very specific and 

accurate in Genomics collections.  

 

 

 

Table 4.7: Comparison of the context-sensitive semantic smoothing (CSSS) to the 

context-insensitive semantic smoothing (CISS) on MAP. The rightmost column is the 

change of CSSS over CISS.  

 

Collections SLM CISS vs. SLM CSSS vs. CISS 

MAP 0.352 0.408 +15.9%** 0.422  +3.4%* Genomics 

2004 Recall 6544 7176 +9.7%** 7279  +1.4%* 

MAP 0.384 0.432 +12.5%** 0.446  +3.2%* Genomics 

2004† Recall 6680 7359 +10.2%** 7395  +0.5% 

MAP 0.265 0.322 +21.5%** 0.322  +0.0% Genomics 

2005 Recall 4093 4283 +4.6%** 4291  +0.2% 
 

 

 

4.4 Experiments with Multiword Phrases 

4.4.1 Testing Collections  

In this section, we evaluate the effectiveness of automated multiword phrases as topics 

signatures. Compared to ontological concepts, the extraction of multiword phrases does 

not need any external human knowledge and can be applied to any public domain. The 

model is validated on six TREC ad hoc collections from disk 1, disk 2, and disk 3. We 

select these collections for three reasons. First, these collections are well studied and 

many published results are available to compare. Second, the content of these collections 
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is all about general news stories on which the Xtract is supposed to work very well on the 

automated phrase extraction. Third, compared to the vocabulary in genomic collections, 

the vocabulary of news stories is more ambiguous and thus the context-sensitive semantic 

smoothing is supposed to take the advantage over the context-insensitive semantic 

smoothing. The descriptive statistics of these testing collections are shown in Table 4.8. 

 

 

 

Table 4.8: The descriptive statistics of six news collections from TREC disk 1, disk 2, 

and disk 3. 

 

Collections Word Phrase Rel./Doc Q.Len/Q.# 

 AP89/1-50 145,349 114,096 3,301/84,678 3.4/47 

 AP88&89/51-100 204,970 127,736 6,101/164,597 3.4/49 

 AP88&89/101-150 204,970 127,736 4,822/164,597 4.0/50 

 WSJ90-92/101-150 135,864 75,687 2,049/74,520 3.8/48 

 WSJ90-92/151-200 135,864 75,687 2,041/74,520 4.6/49 

 SJMN91/51-100 173,727 95,986 2,322/90,257 3.4/48 

 

 

 

4.4.2 Document Indexing and Query Processing 

We build two separate indices, word index and phrase index, for each collection. For 

word indexing, each document is processed in a standard way. Words are stemmed (using 

porter-stemmer) and stop words are removed. We use a 319-word stop list compiled by 

van Rijsbergen. Xtract (Smadja, 1993) is employed to extract multiword phrases from 

documents. For phrases appearing in ten or more documents, we estimate their mapping 

probabilities to single-word terms. 

The query formulation is fully automated. For each collection, we remove all queries 

(topics) which contain no relevant documents. Early TREC topics are often described in 



67 

 

 

multiple sections including title, description, narrative, and concept. As many other 

studies did (Bai et al., 2006; Lafferty and Zhai, 2001; Liu and Croft, 2001; Wei and Croft, 

2006; Zhai and Lafferty, 2001b), we use only the section of title. The extraction of query 

terms from topic descriptions is the same as the process of word indexing. That is, each 

topic is tokenized and stemmed and stop words are removed. The average length of 

queries and total number of queries for each collection is listed in Table 4.8. 

4.4.3 Effect of Document Smoothing 

We set the parameters γ and µ in the two-stage language model to 0.5 and 750, 

respectively in the experiment because almost all collections achieve the optimal MAP at 

this configuration. Interestingly, the Okapi model and the two-stage language model have 

similar retrieval performance in the experiment as shown in Table 4.9. This is also a kind 

of indication that both baseline models are well tuned. 

 

 

 

Table 4.9: The comparison of the simple language model to the Okapi model on six 

news collections.  

 

Recall MAP 
Collection/Topics 

SLM Okapi Change SLM Okapi Change 

 AP89/1-50 1621 1618 -0.2% 0.187 0.187 0.0% 

 AP88-89/51-100 3428 3346 -2.4% 0.252 0.239 -5.2% 

 AP88&89/101-150 3055 3087 +1.0% 0.219 0.220 +0.5% 

 WSJ90-92/101-150 1510 1488 -1.5% 0.239 0.249 +4.2% 

 WSJ90-92/151-200 1612 1624  +0.7% 0.314 0.304 -3.2% 

 SJMN91/51-100 1350 1348 -0.1% 0.190 0.184 -3.2% 
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Table 4.10: The effect of document expansions based on phrase-word semantic 

mapping (i.e., context-sensitive semantic smoothing, CSSS).  

 

Collection/Topics SLM CSSS Change 

MAP 0.187 0.206 +10.2%** AP89 

1-50 Recall 1621 1748 +7.8%** 

MAP 0.252 0.288 +14.3%** AP88-89 

51-100 Recall 3428 3771 +100%* 

MAP 0.219 0.246 +12.3%** AP88-89 

101-150 Recall 3055 3445 +12.8%** 

MAP 0.239 0.256 +7.1%** WSJ90-92 

101-150 Recall 1510 1572 +4.1%* 

MAP 0.314 0.334 +6.5%** WSJ90-92 

151-200 Recall 1612 1620 +0.5% 

MAP 0.190 0.208 +9.5%** SJMN91 

51-100 Recall 1350 1472 +9.0%** 

 

 

 

The mapping coefficient (λ) in the topic signature language model is optimized by 

maximizing the MAP on the collection of AP89 Topic 1-50. The optimal value is 0.3 and 

we then apply this learned coefficient to other five collections. Interestingly, all 

collections achieve the best performance when the mapping coefficient is around 0.3. We 

then compare the result of the topic signature language model to the two-stage language 

model. The comparison is shown in Table 4.10. In order to validate the significance of 

the improvement, we also run paired-sample t-test. The incorporation of phrase-word 

mapping improves both MAP and overall recall over the baseline model on all six 

collections. Except the recall on the collection of WSJ 90-92 Topic 151-200, the 

improvements over the two-stage language model are all statistically significant at the 

level of p<0.05 or even p<0.01. Considering the baseline model is already very strong, 

we think the topic signature language model is promising to improve IR performance. 
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To see the robustness of the topic signature language model, we also change the 

settings of the mapping coefficient. The variance of MAP with the mapping coefficient λ 

is plotted in Figure 4.2. In a wide range from 0 to 0.6, the topic signature language model 

always performs better than the baseline on all six collections. This shows the robustness 

of the model. For all six curves in Figure 4.2, the best performance is achieved when the 

mapping coefficient is 0.3; after that point, the performance is downward. A possible 

explanation is that the extracted topic signatures (multiword phrases) do not capture all 

points of the document, but the two-stage language model captures those missing points. 

For this reason, when the influence of the mapping model is too high in the mixture 

model, the performance is downward and even worse than that of the baseline.  

 

 

 

Table 4.11: The variance of MAP with the change of the mapping coefficient (λ), 

which controls the influence of the mapping component in the mixture model. 

 

Mapping 

Coefficient 

AP89 

1-50 

AP88-89 

51-100 

AP88-89 

101-150 

WSJ90-92 

101-150 

WSJ90-92 

151-200 

SJMN91 

51-100 

0 18.7 25.2 21.9 23.9 31.4 19.0 

0.1 19.6 27.7 23.8 25.0 32.8 20.4 

0.2 20.2 28.5 24.5 25.5 33.3 20.9 

0.3 20.6 28.8 24.6 25.6 33.4 20.8 

0.4 20.5 28.4 24.2 25.3 33.3 20.5 

0.5 20.2 27.7 23.3 24.7 32.9 20.0 

0.6 19.6 26.5 22.1 23.7 32.4 19.2 

0.7 19.2 25.0 21.1 22.5 30.6 18.5 

0.8 17.8 23.5 19.8 21.2 28.7 17.6 

0.9 16.3 21.5 18.2 19.4 26.6 16.3 

1 7.7 15.9 11.2 9.9 12.50 10.8 
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Figure 4.2: The variance of MAP with the mapping coefficient (λ), which controls the 

influence of the context-sensitive mapping component in the mixture language model.  

 

 

 

4.4.4 Context Sensitive vs. Context Insensitive 

In news articles, many terms are ambiguous; a term may have a different meaning in 

different context. Thus, the word-word mapping may be fairly general and contain mixed 

topics. The phrase-word mapping solves this problem since multiword phrases have very 

specific meaning and are mostly unambiguous.  
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Table 4.12: Comparison of the context-sensitive semantic smoothing (CSSS) to the 

context-insensitive semantic smoothing (CISS) on MAP of six news collections. The 

rightmost column is the change of CSSS over CISS.  

 

Collections TSLM CISS vs. TSLM CSSS vs. CISS 

MAP 0.187 0.195 +4.3%* 0.206 +5.6% AP89 

1-50 Recall 1621 1730 +6.7%* 1748 +1.0% 

MAP 0.252 0.272 +7.9% 0.288 +5.9%* AP88-89 

51-100 Recall 3428 3735 +9.0%* 3771 +1.0% 

MAP 0.219 0.235 +7.3%** 0.246 +4.7% AP88-89 

101-150 Recall 3055 3237 +6.0%* 3445 +6.4%* 

MAP 0.239 0.244 +2.1% 0.256 +4.9%* WSJ90-92 

101-150 Recall 1510 1568 +3.8%** 1572 +0.3% 

MAP 0.314 0.324 +3.2% 0.334 +3.1% WSJ90-92 

151-200 Recall 1612 1646 +2.1%* 1620 -1.6% 

MAP 0.190 0.199 +4.7%* 0.208 +4.5% SJMN91 

51-100 Recall 1350 1427 +5.7%** 1472 +3.2% 

 

 

 

The comparison of the context-sensitive semantic smoothing (CSSS) to the 

context-insensitive semantic smoothing (CISS) is shown in Table 4.12. For each 

collection, we tune the mapping coefficient (λ) to maximize the MAP of CISS. The 

optimal λ is about 0.1 for all six collections, which is smaller than the optimal value for 

CSSS (λ=0.3). It is also a kind of indication that the word-word mapping is much noisier 

than the phrase-word mapping. From the experimental results, we can first see that CISS 

greatly outperforms the two-stage language model, and most of the improvements are 

statistically significant. Second, the CSSS has considerable gain over the CISS especially 

on the measure of MAP. 
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In addition, the CSSS is computationally more efficient than the CISS. The CSSS is 

based on the phrase-word mapping; the CISS is based on the word-word mapping. As 

shown in Table 4.2, an average document in testing collections contains about 180 unique 

words but only about 30 unique multiword phrases. In other words, the CSSS is six times 

faster than the CISS for the construction of co-occurrence data as well as the document 

model expansions (smoothing). 

4.4.5 Other Types of Phrases 

The different types of phrases may have different impact on retrieval performance. Fagan 

reported significant improvement on some collections using statistical phrases, but none 

with syntactic phrases, in his thesis (1987). In this thesis, we used phrases with both 

syntactic and statistical constraints extracted by Xtract and obtained very positive results. 

An interesting question is then raised: Can other types of phrases (e.g., WordNet phrases 

and Named Entities) still get positive results with the topic signature language model? 

To test this idea, we add WordNet noun phrases and named entities including person, 

organization, and location to the document index and see if the IR performance is further 

improved or even decreased. WordNet noun phrases are manually selected phrases. The 

named entities are automatically extracted by GATE (Cunningham, 2002) according to 

purely syntactic rules. Thus, neither of them is constrained by statistical criteria. Take the 

example of the AP89 collection. Before adding extra phrases, the collection has 114,096 

phrases. After adding WordNet noun phrases and named entities, the number of phrases 

is increased by about 50,000. However, the increase of phrase coverage does not make 

any improvement on IR performance. The other five collections are in a similar case. 
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Examining the extra noun phrases more closely, we find that most of those phrases are 

infrequent in the testing collections. The majority of phrases frequently occurring in the 

collection are already extracted by Xtract. Those infrequent phrases will have little effect 

on the document model expansions and thus have no effect on retrieval performance. 

Therefore, in order to make the topic signature (phrase) language model effective, we 

should use phrases that frequently occur in the collection or that are constrained by 

statistical criteria. 

 

4.5 Conclusions and Future Work 

In this chapter, we proposed a topic signature language model for ad hoc text 

retrieval. This new model decomposed a document into a set of weighted 

context-sensitive topic signatures and then mapped those topic signatures into individual 

query terms. Because the topic signature itself contained contextual information, the 

document model expansion based on topic signatures would be more accurate, compared 

to the document model expansion based on context-insensitive term mapping proposed in 

previous work (e.g., Berger and Lafferty, 1999; Gao et al., 2004; Jin et al., 2002), and 

thus improved the retrieval performance.  

We implemented two types of topic signatures in this paper. When domain-specific 

ontology is available, ontological concepts can be used as topic signatures. Otherwise, 

automated multiword phrases are an alternative. We evaluated the effectiveness of 

ontological concepts on TREC Genomics Track 2004 and 2005 and the effectiveness of 

multiword phrases on TREC Ad hoc Track Disk 1, Disk 2, and Disk 3. The topic 
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signature language model significantly outperformed the two-stage language model on all 

collections. We further implemented a context-insensitive version of semantic smoothing. 

It has the same framework as the topic signature language model, but the document 

model expansion (smoothing) is based on the context-insensitive word-word mapping 

rather than the context-sensitive signature-word mapping. As expected, it is less effective 

than the context-sensitive semantic smoothing, though it does achieve significant 

improvement over the simple language model.  

The topic signature language is the linear interpolation of the simple language model 

and the semantic mapping model. It is required to set the mapping efficient that controls 

the influence of the semantic mapping component in the mixture model. It is somewhat 

ad hoc in nature. Fortunately, the experiments showed the robustness of the model. When 

the mapping coefficient took different values in a wide range (0-0.9 for ontological 

concepts and 0-0.6 for multiword phrases), the topic signature language model always 

performed better than the baseline. More interestingly, all collections achieved the best 

MAP at the same setting (the mapping coefficient is 0.3). This means it is feasible to train 

the optimal mapping coefficient on one collection and then apply the learned coefficient 

to other collections in practice. 

We also found two factors that would affect the effectiveness of the topic signature 

language model. One is the degree of the ambiguity of terms in the collection. If terms 

(e.g., in news collections) are very ambiguous, the topic signature model (i.e., 

context-sensitive semantic smoothing) can gain much more advantage over the 

context-insensitive semantic smoothing. The other factor is the occurrence frequency of 
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the topic signatures in the collection. If the topic signatures infrequently occur in the 

collection, the model has little effect on improving the IR performance. 

 This chapter made the following contributions. First, we presented a new document 

representation (i.e., representing a document as a set of weighted topic signatures and 

terms). The new representation could be applied to other retrieval, summarization, and 

text classification tasks. Second, we proposed an EM-based method to estimate the 

semantic relationships between context-sensitive topic signatures and single-word terms 

by simply using co-occurrence data, and then we formalized the approach to document 

expansions based on topic signature mapping. Third, we empirically proved the 

superiority of the context-sensitive semantic smoothing over the context-insensitive 

semantic smoothing and the simple background smoothing. 

Probabilistic topical models such as pLSI (Hoffman, 1999) and LDA (Blei et al., 

2003) also take the context into account and, thus, can handle the word polysemy 

problem. In this chapter, we analyzed their computing complexity in the setting of IR and 

concluded that these two models were computationally less efficient than the topic 

signature language model in the stage of offline topic model estimation, as well as the 

stage of online document model smoothing. However, the comparison of the 

effectiveness of the three models on retrieval tasks is still unclear. It should be interesting 

to have a comprehensive comparative study on these three models in future with respect 

to their efficiency and effectiveness for ad hoc text retrieval. 

How to optimize the mixture weights of the topic signature language model remains 

an open issue. In this chapter, we empirically tuned a fixed mapping coefficient on a 
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training data set and achieved good results. Ideally, the mapping coefficient should be 

conditioned on each document because the relative information provided by topic 

signatures varied with documents.  
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CHAPTER 5: SEMA�TIC SMOOTHI�G I� TEXT CLASSIFICATIO� 

 

5.1 Introduction 

The task of text classification is to assign one or multiple predefined class labels to a text. 

It has been a hot research topic with the rapid increase of text in digital form, such as web 

pages, newswires, and scientific literature. In past decades, a large number of algorithms, 

including naïve Bayes (McCallum and Nigam, 1998), k-nearest neighbor (Yang and 

Pedersen, 1997), support vector machines (Joachims, 1998), boosting, decision trees 

(Quinlan, 1986) and neural network (Wiener et al., 1995), have been developed for text 

classifications. Although some previous studies have shown that SVM outperformed 

other approaches in many categorization applications, naïve Bayes is still widely used in 

practice, mostly likely because of its efficient model training and good empirical results.  

Naïve Bayesian classifiers face a common issue called data sparsity problem, 

especially when the size of training data is too small. Because of data sparseness, some 

terms appearing in testing documents may not appear in training documents of some 

classes. To prevent zero probability, one has to use smoothing techniques that assign a 

reasonable nonzero probability to those unseen terms. Laplace smoothing, which simply 

adds one count to all terms in the vocabulary, is frequently used for Bayesian model 

smoothing. But it proves to be not effective in many applications (Jelinek, 1990).  

The study of language model smoothing has been a hot topic in the community of 

information retrieval (IR), with the increasing popularity of the language modeling 

approach to IR. Zhai and Lafferty have proposed several effective smoothing methods 
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including Jelinek-Mercer, Dirichlet, absolute discount (Zhai and Lafferty, 2001a) and 

two-stage smoothing (Zhai and Lafferty, 2002) to smooth unigram language models. 

Because all of these approaches are based on a background collection model, we refer to 

all of them as background smoothing in this thesis. However, a potentially more effective 

smoothing method is what may be referred to as semantic smoothing, which incorporates 

context and sense information into the language model. A motivating example for 

semantic smoothing is that the document containing the term “auto” should return for the 

query “car” because both terms are semantically related. Following this intuitive idea, 

several semantic smoothing approaches (Berger and Lafferty, 1999; Wei and Croft, 2006; 

Zhou et al., 2006c) have been proposed for language modeling IR. 

The success of semantic smoothing in text retrieval inspires us to apply it into 

Bayesian text classification. We propose in this chapter a topic-signature–based semantic 

smoothing method to address the aforementioned data sparsity problem. The idea of our 

semantic smoothing method is to extract explicit topic signatures (e.g., words, multiword 

phrases, and ontological concepts) from training documents and then statistically map 

them into single-word features. For example, considering the semantics (background 

knowledge) of the phrase “space program”, we may correctly assign a testing document 

about rocket launch to a given category whose training documents never explicitly 

present the topic of rocket launch, but which contain many instances of “space program”. 

The definition of topic signatures will be given later in the chapter. 

The idea of using multiword phrases or n-grams for text classification is not new. 

However, to the best of our knowledge, this is the first time it has been used for 
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smoothing purposes in the setting of text classification. The majority of those works (Bai 

et al., 2005b; Bloehdorn and Hotho, 2004; Lewis 1990; Yetisgen-Yildiz and Pratt, 1997) 

utilized its distinguishing power for classification, with the philosophy that a match of a 

multiword phrase or n-grams between testing documents and training documents gives 

more confidence regarding testing documents’ membership than a single-word match. 

Peng et al. (2004) and Shen et al. (2006) built n-gram and n-multigram language models 

to get more accurate text classifiers. Neither of them used multiword phrases or n-grams 

to relieve the data sparsity problem. Actually, the distribution of multiword phrases and 

n-grams is always much sparser than unigrams. When the training document set is 

extremely small, multiword phrases or n-gram features are too sparse to serve as good 

features for classification. 

Feature (word) clustering is also a common technique for text classification 

(Al-Mubaid and Umair, 2006; Baker and McCallum, 1998). It groups similar words 

together and uses word clusters as document features. Such representation accounts for 

semantic relationships between words and brings higher classification accuracy. 

Meanwhile, it reduces the high dimensionality. However, its notion and implementation 

are different from the proposed semantic smoothing approach. The former focuses on 

document representation, whereas the latter aims at smoothing the language models for 

different classes. 

We implement our semantic smoothing method using the dragon toolkit (Zhou et al., 

2007c) and conduct comprehensive experiments on three collections, OHSUMED, the 

Los Angeles Times (LATimes), and 20-Newsgroups (20NG). The experiments show that 
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when the size of training documents is small, the Bayesian classifier with semantic 

smoothing not only outperforms the Bayesian classifiers with background smoothing and 

Laplace smoothing, but also beats the state-of-the-art active learning classifiers (Nigam et 

al., 2000) and SVM classifiers (Joachims, 1998).  

In summary, we make four main contributions in this chapter. First, we propose two 

new types of topic signature (i.e., multiword phrases and ontology-based concepts), both 

of which include contextual information, making the semantic mapping more specific and 

accurate. Second, aware of the existence of large amounts of co-occurrence data, we use 

a co-occurrence–based algorithm to estimate semantic mappings, which dramatically 

reduces the cost of obtaining semantic knowledge. Third, we empirically prove that 

semantic smoothing is more effective than background smoothing and Laplace smoothing 

for Bayesian text classifiers. Last, we compare the behaviors of three types of topic 

signatures (i.e., word, multiword phrases, and ontology-based concepts) when they are 

used as intermediates for semantic smoothing during the task of text classification. 

The rest of the chapter is organized as follows: Section 5.2 describes the details of 

the semantic smoothing method for Bayesian text classifiers. Section 5.3 introduces the 

datasets and protocols for evaluation. Section 5.4 presents the experimental results. 

Section 5.5 shows the result of parameter tuning. Section 5.6 concludes the chapter. 

 

5.2 Naïve Bayes with Semantic Smoothing 

The naïve Bayesian classifier is widely used for text classification because of its efficient 

model training and good empirical results. Naïve Bayes (NB) is a maximum a posterior 
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(MAP) classifier. The assignment of class label to a given document can be formulated 

as: 

(5.1)                   )|()(maxarg)( ii
c

cdpcpdC
i

=  

The first term is the class prior. Two commonly used prior distributions are uniform 

distribution and empirical distribution. In this paper, we use empirical distributions, 

which can be estimated by the formula below: 
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where +(ci, D) denotes the number of documents with class label ci in collection D. The 

second term in equation 5.1 is the conditional probability of the document given the 

category. Because NB classifiers assume all words are independent of each other, the 

conditional probability can be further decomposed into the product of individual feature 

probabilities: 
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Now the problem is reduced to estimating the class model, that is, the distribution 

over features for a given class. There are several variants of naïve Bayesian classifiers 

such as multivariate Bernoulli model and multinomial mixture model, with respect to 

class models. Previous studies have shown that multinomial mixture model achieves the 

best accuracy on text classification (Nigam et al., 2000). For this reason, all experiments 

in this chapter are based on multinomial mixture mode. 
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The simplest implementation of a multinomial class model is the maximum 

likelihood estimate with Laplace smoothing (Lidstone, 1920; Johnson, 1932; Jeffreys, 

1948). That is, 
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where +(w, ci) is the occurrence frequency of word w in all training documents of class ci, 

and V is the vocabulary of words. Obviously, Laplace smoothing assigns an equal prior 

probability to all unseen words, which does not make much sense for real textual data. To 

solve this problem, we introduce two other more effective smoothing approaches, 

background smoothing and semantic smoothing. 

Language modeling has been a hot research topic in the community of IR in recent 

years. Several smoothing methods based on the statistics from the whole collection have 

been empirically proven to be effective for IR (Zhai and Lafferty, 2001a; Zhai and 

Lafferty, 2002). We refer to this line of smoothing methods as background smoothing in 

this thesis. The Jelinek-Mercer (Jelinek, 1990; Zhai and Lafferty, 2001a) is such a 

smoothing method. In the setting of NB classifiers, it interpolates a unigram class model 

with the collection background model, controlled by the parameter β as shown in 

equation 5.5:  

)5.5(               )|()|()1()|( Dwpcwpcwp jmljb ββ +−=  
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where )|( jml cwp is the unigram class model with maximum likelihood estimate and 

)|( jb cwp  denotes the unigram class model with background smoothing. In this chapter, 

β is empirically set to 0.5.  

The semantic smoothing approach statistically maps topic signatures in all training 

documents of a class into single-word features. However, as pointed out in previous 

studies (Wei and Croft, 2006; Zhou et al., 2006c), the mere use of topic signature 

semantic mapping may lead to information loss. After all, much information is 

represented by the unigram model. Thus, we linearly interpolate the semantic mapping 

component with a simple language model as described in equation 5.5, and the class 

model ends with the following formula:  

) (5.6    )|()|( )|()-(1 )|( ∑+=
k

ikkibis ctptwpcwpcwp λλ  

where )|( is cwp  stands for the unigram class model with semantic smoothing, tk denotes 

the k-th topic signature, and )|( ik ctp  is the distribution of topic signatures in training 

documents of a given class, which can be computed via maximum likelihood estimates. 

The mapping coefficient λ is to control the influence of the semantic mapping component 

in the mixture model. If the mapping coefficient is set to zero, the class model becomes a 

simple language model. If it is set to one, the class model becomes a semantic mapping 

model. Please refer to Section 5.5 regarding the optimization of the mapping coefficient. 

The remaining problem is how to compute the probability of semantic mappings from 

topic signatures tk to single-word feature w, which has been addressed in Chapter 3.  
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The training of Bayesian classifiers with semantic smoothing takes some extra 

computational cost over the traditional approaches. First, it needs to extract multiword 

phrases or ontological concepts from testing or training documents. The complexity of 

extraction is in proportion to the length of the document. Second, it maps topic signatures 

(e.g., phrases and concepts) to words. In practice, we map each topic signature to around 

two hundred significant words, instead of all words in the vocabulary. Thus, the overall 

complexity would be O(200n), where n is the number of extracted topic signatures from 

the training documents.  

 

5.3 Datasets and Protocols 

5.3.1 Evaluation Methodology 

The evaluation metrics are precision (P), recall (R), and F1-measure. F1 is the harmonic 

average of precision and recall. The formula to compute F1 is )/(2 RPRP +× . F1 score 

can be computed by individual category first and then be averaged over categories, or 

globally computed over all categories. The former is called macro-F1; the latter is called 

micro-F1 (Yang and Liu, 1999). If data are evenly distributed over different categories, 

micro-F1 and macro-F1 are usually similar. However, for highly skewed data, the 

micro-F1 is often dominated by a few large categories, while the macro-F1 is the better 

metric to reflect the classification performance on rare categories. 

In the experiment, we compare the classification performance upon the change of 

training data size on each collection. For a given percentage of training data (e.g., 1%), 

we conduct ten random runs and then average the performance of all runs. Each run has a 
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random partition of training data and testing data controlled by a random seed. For fair 

comparisons, the partition of training data and testing data is the same to different 

configurations on all runs in the comparative study. 

Feature selection is one of the frequently used techniques for text classification. The 

appropriate selection of subfeature space can dramatically improve the performance for 

many classifiers, including the NB classifier using Laplace smoothing. In all experiments, 

we choose CHI feature selector (Yang and Pedersen, 1997) for NB and manually tune it 

to the best result. However, the feature selection has no effect on background smoothing 

and semantic smoothing. Therefore, we do not apply feature selection for these two 

smoothing methods in the experiments. 

 

 

 

Table 5.1: The descriptive statistics of three text classification collections, 20�G, 

LATimes, and OHSUMED 

 

Dataset Name 20NG LATimes OHSUMED 

# of categories for classification 20 10 14 

# of indexed docs 19,997 21,623 7,400 

# of topic signatures 10,902 10,414 28,857 

# of signatures per doc 9 8 61 

# of unique signatures per doc 7 7 33 

# of words in corpus 133,277 63,510 27,676 

# of words per doc 157 99 116 

# of unique words per doc 91 75 69 
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5.3.2 Datasets 

We evaluate the NB classifier with semantic smoothing on three collections: 

20-Newsgroups (20NG), Los Angeles Times (LATimes), and OHSUMED. 20NG is 

collected from twenty different Usenet newsgroups, and the data are relatively noisy. 

LATimes contains news articles. OHSUMED consists of scientific abstracts collected 

from Medline, an on-line medical information database. We selected these three 

collections because of their diverse sources. 

20NG has twenty classes, each of which contains about one thousand articles. A 

total of 19,997 articles are indexed. LATimes of TREC Disk 5 represents a sampling of 

approximately 40% of the articles published by the Los Angeles Times in the two year 

period from January 1, 1989, to December 31, 1990. There are total of 111,084 articles 

distributed in twenty-two sections, for example, Financial, Entertainment, Sports, et 

cetera. We consider the section an article sits in to be the ground truth of memberships. 

The articles in the top fifteen sections are selected for indexing. If a section contains more 

than 2,000 articles, only the first 2,000 are selected. The articles with a length of less than 

200 bytes are excluded. The remaining 21,623 articles were finally indexed. The top ten 

sections are Metro, Sports, Financial, Late Final, Entertainment, Foreign, National, View, 

Letters, and Calendar. The OHSUMED corpus contains 13,929 Medline abstracts of the 

year 1991, each of which was assigned with one or multiple labels out of twenty-three 

cardiovascular diseases categories. Excluding abstracts with multiple labels, we indexed 

the remaining 7,400 abstracts. 
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Table 5.2: The distributions of documents over categories in three text classification 

collections. The number in the parenthesis following the class label is the number of 

selected documents for this class. 

 

Collections 
Selected 

Class/Doc 
Details 

20NG 20/19,660 

Atheism (995), guns (994), crypt (993), space (991), 

religion misc (991), motorcycles (989), politics misc (989), 

hockey (985), pc hardware (983), ms-windows (982), 

baseball (982), mideast (982), windows.x (981), electronics 

(979), autos (978), christian (978), mac hardware (976), 

med (976), for sale (970), graphics (966) 

LATimes 10/17,916 

Letters (2001), National (1995), Financial (1991), Foreign 

(1975), Entertainment (1947), Sports (1923), Metro (1848), 

Late Final (1776), Calendar (1392), View (1068) 

OHSUMED 14/6,657 

Cardiovascular Diseases (1175), Neoplasms (1030), 

Pathological Conditions, Signs and Symptoms (796), 

Nervous System Diseases (557), Disorders of 

Environmental Origin (553), Immunologic Diseases (410), 

Digestive System Diseases (354), Urologic and Male 

Genital Diseases (342), Nutritional and Metabolic Diseases 

(323), Respiratory Tract Diseases (250), Skin and 

Connective Tissue Diseases (233), Musculoskeletal 

Diseases (223), Bacterial Infections and Mycoses (216), 

Female Genital Diseases and Pregnancy Complications 

(195) 

 

 

 

5.3.3 Text Processing 

For each document, we first identify single-word features from its title and body. The 

other sections of a document including metadata are ignored. Stop words are removed, 

and all words are stemmed. Second, we extract context-sensitive topic signatures. Third, 

we estimate semantic mappings (i.e., the probability of mapping a topic signature to 
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single-word features) for all topic signatures appearing in five or more documents, we use 

the algorithm proposed in Chapter 3. The parameter α is set to 0.5. 

Multiword phrases are extracted from 20NG and LATimes by a modified version of 

Xtract (Smadja, 1993). Xtract uses four parameters, strength (k0), spread (U0), peak 

z-score (k1), and percentage frequency (T), to control the quantity and quality of the 

extracted phrases. In general, the bigger those parameters, the higher quality and less 

number of phrases Xtract produces. In the experiment, we set those four parameters to 1, 

1, 4, and 0.75. The detail of the implementation is available in "Semantic Smoothing for 

Model-based Document Clustering" (Zhang et al., 2006a). 

 UMLS concepts are extracted from OHSUMED by MaxMatcher (Zhou et al., 

2006d). MaxMatcher is a dictionary-based biological concept extraction tool. In order to 

increase the extraction recall while maintaining the precision, MaxMatcher uses 

approximate matches between the word sequences in text and the concepts defined in a 

dictionary or ontology, such as the UMLS Metathesaurus. It outputs concept names as 

well as unique IDs representing a set of synonymous concepts. MaxMatcher has been 

evaluated on the GENIA corpus. The precision and recall reached 71.60% and 75.18%, 

respectively, using approximate match criterion. 

  

5.4 Experiment Results 

5.4.1 Semantic Smoothing vs. Lap and Bkg 

We first evaluate the context-sensitive semantic smoothing (CSSS) with 1% data for 

training. For 20NG corpus, 1% training data means each class has about 10 of 1,000 
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documents for training. The class distribution is highly skewed on the other two 

collections. For OHSUMED corpus, the largest class and the smallest class use about 12 

of 1175 documents and 2 of 195 for training, respectively. The corpus of LATimes is 

more balanced; the training documents are 20 and 10 for the largest class and the smallest, 

respectively. The performance (Micro-F1 and Macro-F1) is shown in Table 5.3. CSSS 

significantly outperformed Laplace smoothing and background smoothing in terms of 

both Micro-F1 and Macro-F1 on all three collections at the significance level of p<0.01, 

according to the paired-sample t-test with freedom of nine (i.e., ten runs for each 

collection). This verifies our hypothesis that semantic smoothing is more effective than 

Laplace smoothing and background smoothing for Bayesian text classifiers when the 

number of training documents is small and the data are sparse. 

 

 

 

Table 5.3: Comparisons of context-sensitive semantic smoothing (CSSS) to Laplace 

smoothing (Lap) and background smoothing (Bkg). 1% of documents are used for 

training and the remaining 99% for testing. The parameter λ for CSSS is 0.4. The 

symbols ** and * indicate the change is significant according to the paired-sample 

t-test at the level of p<0.01 and p<0.05, respectively. 

 

(a) The result of micro-F1 

Collection Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.352 0.372 0.413 **17.3%         **10.9% 

20NG 0.427 0.526 0.613 **43.7%  **16.6% 

LATimes 0.525 0.538 0.581 **10.7%  **7.9% 

 

(b) The result of macro-F1 

Collection Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.205 0.280 0.351 **71.0% **25.2% 

20NG 0.421 0.523 0.609 **44.6% **16.4% 

LATimes 0.492 0.513 0.554 **12.5% **7.8% 
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Taking a closer look at the results, we have two interesting findings. One is the 

different improvement pattern on Micro-F1 and Macro-F1. The 20NG corpus achieved 

similar improvements over Lap and Bkg in terms of Micro-F1 and Macro-F1, whereas 

Macro-F1 was improved much more than Mciro-F1 on the other two collections. The 

classes in 20NG corpus are almost in equal size, and thus it has similar effect on 

Micro-F1 and Macro-F1. The class labels in the other two collections are highly skewed, 

and as we pointed out earlier, the result of Micro-F1 is dominated by the performance of 

large categories. However, for the metric of Macro-F1, the performance of each category 

is treated equally regardless the size of the category. This means, from the fact that 

Macro-F1 obtained much more improvement than Micro-F1, we can conclude that 

semantic smoothing is especially effective for small classes. It is reasonable because 

small classes contain too few training examples, and data sparsity is a serious problem. 

The second finding is that the magnitude of improvement of semantic smoothing 

over two other smoothing methods depends on the dataset. Take the example of the 

improvement of Micro-F1 (Semantic smoothing vs. Laplace smoothing). On the corpus 

of 20NG, CSSS achieved the biggest improvement of 43.7%, but it only achieved 10.7% 

and 17.3% on LATimes and OHSUMED. The 20NG corpus has a large vocabulary space 

of 133 thousand words, whereas the average number of unique words per document in 

the three collections is similar. In other words, 20NG corpus is sparser; many words in 

the testing document do not appear in the training documents. The semantic smoothing is 

very effective in solving such a sparse data problem by statistically mapping topic 
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signatures to single word features. This explains why semantic smoothing obtained as 

much as 43.7% on 20NG. 

 

 

 

Table 5.4: Comparisons of CSSS to Lap and Bkg. 33% of documents are used for 

training. The parameter λ for CSSS is tuned to the best. 

(a) The result of micro-F1 

Collection Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.660 0.667 0.665 0.8%    -0.2% 

20NG 0.771 0.802 0.820 *6.3%   *2.2% 

LATimes 0.728 0.726 0.729 0.2%   *0.4% 

 

(b) The result of macro-F1 

Collection Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.626 0.639 0.640 *2.2% 0.2% 

20NG 0.756 0.787 0.816 *7.9% *3.6% 

LATimes 0.708 0.696 0.700 **-1.2% **0.5% 

 

 

 

To further validate the finding that the more sparse the data, the more effective the 

semantic smoothing, we conduct another experiment with as many as 33% data for 

training. With so many training documents, sparsity will not be a serious problem for 

most categories in the three testing collections. The results are shown in Table 5.4. As 

expected, the semantic smoothing in the case of 33% training data is much less effective 

than in the case of 1% training data. In terms of Micro-F1, the semantic smoothing 

achieved significant improvement over the other two smoothing approaches on 20NG 

because, as we mentioned earlier, data on 20NG corpus is very sparse. However, the 

Macro-F1 metric was still significantly improved on majority of testing collections, 

though the magnitude of improvement was less than in the case of 1% training data. It is 
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because some small classes still have serious data sparse problems even though one-third 

of the documents are selected for training. For example, the smallest four classes in 

OHSUMED have only about seventy documents for training. This fact is consistent with 

the finding from the previous experiment that the more sparse the data, the more effective 

the semantic smoothing for Bayesian text classifiers. 

 

 

 

Table 5.5: The comparisons of Bayesian text classifiers with three smoothing 

techniques (CSSS, Lap, and Bkg) on 20�G with the number of training documents 

ranging from one to five hundred.  

 

(a) The result of micro-F1 

Micro-F1 Training 

Data Size Lap Bkg CSSS vs. Lap vs. Bkg 

1 docs 0.121 0.222 0.324 **167.9% **45.9% 

2 docs 0.155 0.298 0.422 **171.9% **41.8% 

5 docs 0.322 0.426 0.539 **67.5% **26.5% 

10 docs 0.427 0.526 0.613 **43.7% **16.6% 

25 docs 0.558 0.628 0.688 **23.3% **9.6% 

50 docs 0.643 0.694 0.736 **14.4% **6.0% 

100 docs 0.698 0.744 0.773 **10.8% **4.0% 

250 docs 0.756 0.791 0.812 **7.3% **2.6% 

500 docs 0.787 0.814 0.828 **5.3% **1.8% 

 

(b) The result of macro-F1 

Macro-F1 Training 

Data Size Lap Bkg CSSS vs. Lap vs. Bkg 

1 docs 0.096 0.203 0.294 **205.5% **44.6% 

2 docs 0.142 0.290 0.404 **184.0% **39.4% 

5 docs 0.312 0.420 0.531 **70.3% **26.5% 

10 docs 0.421 0.523 0.609 **44.5% **16.4% 

25 docs 0.557 0.623 0.684 **22.8% **9.8% 

50 docs 0.642 0.684 0.732 **14.1% **7.0% 

100 docs 0.692 0.732 0.769 **11.2% **5.1% 

250 docs 0.741 0.776 0.807 **8.9% **4.0% 

500 docs 0.771 0.799 0.824 **6.9% **3.1% 
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Figure 5.1: The performance of Bayesian text classifiers with semantic smoothing, 

Laplace smoothing, and background smoothing on the corpus of 20�G with different 

number of training documents. 

 

 

 

To see more clearly the variance of the effectiveness of semantic smoothing with the 

change of the training data size, we evaluate the 20NG corpus with a number of training 

documents ranging from one to five hundred. We select 20NG for demonstration because 

the class labels have a uniform distribution in this corpus and thus it’s easy to control the 

size of training data for each class. The results are shown in Figure 5.1. Clearly, we can 

see that the effectiveness of semantic smoothing is in inverse proportion to the size of the 

training documents. In the case of one-document training, semantic smoothing has the 

biggest gain of 167.9% and 45.9% in terms of Micro-F1 over Laplace smoothing and 

background smoothing, respectively. With the increase of training documents, data 
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become less sparse, and consequently, semantic smoothing becomes less effective and 

ends with slight gains (5.3% and 1.8%) over the two baseline smoothing methods.  

5.4.2 Context Sensitive vs. Context Insensitive 

Our semantic smoothing method provides a framework which can incorporate various 

topic signatures. If the topic signature itself is context sensitive (e.g., multiword phrases 

and ontology-based concepts), we refer to it as context-sensitive semantic smoothing 

(CSSS); otherwise we refer to it as context-insensitive semantic smoothing (CISS) (i.e., 

using words as topic signatures). It is worth noting that CISS is different from the 

translation model (Berger and Lafferty, 1999) in that the former uses co-occurrence data, 

whereas the latter uses document-query pairs, even though both of them use words as 

topic signatures. Zhou et al. (2006c) has shown that CSSS performs slightly better than 

CISS in the setting of text retrieval because CSSS can take the advantage of contexts and 

make more specific and accurate mapping, but their effectiveness remains unclear for text 

classification. 

The comparison of CSSS to CISS is shown in Table 5.6. Overall, CSSS gains slight 

improvement over CISS, though the semantic mapping result of CSSS looks much better 

than CISS. More surprisingly, CSSS achieves the largest gain over CISS on the corpus of 

OHSUMED, in which single-word meanings are supposed to be more consistent than in 

other collections, and thus CSSS should take less advantage. OHSUMED is a 

biomedicine corpus, and many single-word terms are gene, protein, and cell names such 

as p53, brca1, and orc1. These domain-specific terms are much less ambiguous than 

general conversional terms. However, another important fact is that we extract much 
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more topic signatures in OHSUMED than in the other two collections (see Table 1). In 

OHSUMED, the number of extracted unique topic signatures is about half of the number 

of unique single-word terms, but the rate is only one-tenth in the other two collections. In 

other words, extracted topic signatures in OHSUMED are more representative than in 

other collections. We think this is an influential factor that affects the effectiveness of 

semantic smoothing. 

 

 

 

Table 5.6: The comparison of context-sensitive semantic smoothing (CSSS) to 

context-insensitive semantic smoothing (CISS) on Bayesian text classification. 

 

(a) 1% of documents for training 

Micro-F1 Macro-F1 
Collection 

CISS CSSS Change CISS CSSS Change 

OHSUMED 0.401 0.413 **2.8% 0.344 0.351 *2.2% 

20NG 0.623 0.613 *-1.6% 0.616 0.609 -1.2% 

LATimes 0.577 0.581 0.8% 0.549 0.554 0.9% 

LATimes† 0.558 0.559 0.2% 0.529 0.530 0.3% 

 

(b) 33% of documents for training 

Micro-F1 Macro-F1 
Collection 

CISS CSSS Change CISS CSSS Change 

OHSUMED 0.663 0.665 **0.4% 0.636 0.640 **0.7% 

20NG 0.801 0.820 **2.4% 0.786 0.816 **3.8% 

LATimes 0.724 0.729 **0.8% 0.693 0.700 **1.0% 

 

 

 

 

To further validate this hypothesis, we compare CISS and CSSS on 20NG corpus 

and change the number of training documents from one to five hundred. The result is 

reported in Table 5.7. Interestingly, CSSS performs worse than CISS when the training 

data set is very small. With the increase of training documents, the extracted topic 
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signatures become more representative and approach the true topics associated with those 

training documents. Eventually, CSSS exceeds CISS. 

 

 

Table 5.7: The comparison of CSSS to CISS on 20�G corpus with the number of 

training documents ranging from one to five hundred. The parameter λ is 0.4 for 

both CISS and CSSS. 

 

Micro-F1 Macro-F1 Training 

Data Size CISS CSSS Change CISS CSSS Change 

1 docs 0.389 0.324 **-16.7% 0.367 0.294 **-20.0% 

2 docs 0.474 0.422 **-10.9% 0.464 0.404 **-13.0% 

5 docs 0.566 0.539 *-4.8% 0.558 0.531 *-4.8% 

10 docs 0.623 0.613 *-1.6% 0.616 0.609 -1.2% 

25 docs 0.676 0.688 **1.7% 0.668 0.684 *2.4% 

50 docs 0.713 0.736 **3.1% 0.702 0.732 **4.4% 

100 docs 0.749 0.773 **3.2% 0.736 0.769 **4.5% 

250 docs 0.791 0.812 **2.7% 0.775 0.807 **4.1% 

500 docs 0.812 0.828 **2.0% 0.797 0.824 **3.4% 

 

 

 

In summary, two factors influence the effectiveness of CSSS compared to CISS. 

One is the ambiguity of single-word terms in the corpus. The more ambiguous the 

single-word terms, the more effective the CSSS is. The other is the relative number of 

extracted topic signatures. The more topic signatures, the more effective the CSSS is. 

Moreover, CSSS takes less computational complexity and runs faster than CISS because 

the magnitude of unique topic signatures is often much smaller than single-word terms 

and thus needs less mappings.  
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5.4.3 Reuse of Semantic Knowledge 

One advantage of semantic smoothing over topic models including pLSI and LDA is its 

reusability. When one document or one set of documents comes, we can extract topics 

signatures and then map to single-word terms according to previously learned semantic 

knowledge. LDA is also able to predict the distribution of topics in a new document, but 

it assumes the prior Dirichlet distribution of the new document is similar to or the same 

as that of the previously learned document set. Thus, it may be problematic crossing 

domains or collections. 

To verify the reusability of semantic knowledge, we design two experiments. In one 

experiment, we learn semantic mapping knowledge from TDT2 (64,500 news articles) 

and then employ it to classify the LATimes collection. Although TDT2 and LATimes are 

in the same domain of news articles, the overlapping of multiword phrases and words is 

not very high. 6,269 of 10,414 multiword phrases in LATimes appear in TDT2 and 

39,735 of 63,510 words in LATimes appear in TDT2. The phrase and word coverage 

rates are 60% and 63%, respectively. In another experiment, the semantic mapping is 

learned from a subcollection of 280,000 Medline abstracts published in the first half year 

of 2000 and then utilized to classify the OHSUMED collection (7,400 Medline abstracts 

published in 1991). The words and concepts in the second experiment have a complete 

coverage, that is, all words and concepts in the training collections appear in the testing 

collections. 
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Table 5.8: The classification result using external semantic mapping knowledge and 

its comparison to internal knowledge. 1% data is used for training. † indicates the 

result is based on external semantic mapping knowledge. 

 

(a) The result of micro-F1 

Collection Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.352 0.372 0.413 **17.3%         **10.9% 

OHSUMED† 0.352 0.372 0.428 **21.6%  **15.1% 

LATimes 0.525 0.538 0.581 **10.7%  **7.9% 

LATimes† 0.525 0.538 0.559 **6.5%   **3.8% 

 

(b) The result of macro-F1 

Collection Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.205 0.280 0.351 **76.2% **29.1% 

OHSUMED† 0.205 0.280 0.364 **77.6% **30.0% 

LATimes 0.492 0.513 0.562 **14.3% **9.5% 

LATimes† 0.492 0.513 0.541 **10.0% **5.4% 

 

(c) External knowledge vs. internal knowledge 

Collection Internal External Change 

OHSUMED Micro-F1 0.413 0.428 3.6%** 

OHSUMED Macro-F1 0.351 0.364 3.7%** 

LATimes Micro-F1 0.581 0.559 -3.8%** 

LATimes Macro-F1 0.562 0.541 -3.7%** 

 

 

 

The experiment results are shown in Table 5.8. First, the semantic smoothing with 

external mapping knowledge still significantly outperforms the Laplace smoothing and 

the background smoothing on both collections. Second, the performance of external 

knowledge is comparable to that of the internal knowledge. On the collection of 

LATimes, the external knowledge performs slightly worse than the internal knowledge, 

which is mainly due to the low coverage of the external knowledge. On the collection of 

OHSUMED, the external knowledge even achieves slightly better results than the internal 

knowledge. The possible explanation is that the external knowledge is learned from a 
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much larger collection and consequently, the semantic mapping is more robust and 

reasonable. 

This finding is of practical value. It means the learned semantic knowledge can 

serve as a dictionary for future use. One then does not have to prepare semantic 

knowledge by himself, but download online semantic knowledge resources fitting his 

application in future. It is somehow time consuming to prepare high-quality semantic 

knowledge. The reusability of semantic knowledge brings great convenience and high 

feasibility to the wide use of semantic smoothing for Bayesian text classification and 

other related applications. 

5.4.4 Semantic Smoothing vs. SVM 

Support vector machine (SVM) is a powerful learning approach for solving two-class 

pattern recognition problem (Vapnik, 1995). Within the SVM framework, an example 

(document) is represented as a vector and the learning process is equivalent to finding a 

“decision surface” which “best” separates positive and negative training examples. 

Previous empirical studies have shown that SVM using linear kernel could outperforms 

many other text classifiers including Naïve Bayes (Yang and Liu, 1999). However, in 

previous studies, a large number of training examples are used to learn the support 

vectors, making the performance of SVM classifiers with small training data unclear. 

Thus, we compare SVM classifiers and NB classifiers with semantic smoothing in the 

case of small training data. 
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Table 5.9: The comparisons of support vector machines (SVM) to bayesian classifier 

with context-sensitive semantic smoothing (CSSS) 

 

(a) 1% of documents for training 

Micro-F1 Macro-F1 
Collection 

SVM CSSS Change SVM CSSS Change 

OHSUMED 0.351 0.413 **17.5% 0.206 0.351 **70.7% 

20NG 0.472 0.613 **29.9% 0.464 0.609 **31.1% 

LATimes 0.524 0.581 **10.8% 0.491 0.554 **12.7% 

 

(b) 33% of documents for training 

Micro-F1 Macro-F1 
Collection 

SVM CSSS Change SVM CSSS Change 

OHSUMED 0.680 0.665 **-2.2% 0.646 0.640 -0.9% 

20NG 0.797 0.820 **2.8% 0.793 0.816 **2.9% 

LATimes 0.781 0.729 **-6.7% 0.765 0.700 **-8.5% 

 

 

 

SVM cannot handle a multi-class classification problem directly. It is required to 

decompose a multi-class classifier into a set of binary classifiers and then combine the 

results to predict the label of a testing document. The mechanisms of decomposition and 

combination are not trivial, but a hot research topic (Allwein et al., 2000). Furthermore, 

several other factors such as the choice of kernel, scaling, and feature selection can also 

affect the performance of an SVM text classifier. Thus, we try different configurations 

and report the best tuned result. The best configuration uses a linear kernel, 

one-versus-all (OVA) code matrix as well as a loss-based multi-class decoder (hinge loss 

function is used) and does not apply any feature selection or vector scaling. The binary 

SVM classifier uses SVM-light 6.01. 

The results of SVM with a large number of training documents (see Table 5.9b) are 

consistent with previous studies (Yang and Liu, 1999). SVM always significantly 
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outperform naïve Bayes (see Table 5.4). The Bayesian text classifier with semantic 

smoothing has similar performance to naïve Bayes and is less effective than SVM. 

However, when the number of training documents becomes extremely small (e.g., 1% in 

our experiment), SVM performs no better than naïve Bayes and significantly less than the 

Bayesian classifiers with CSSS as shown in Table 5.9a. It is mostly likely because a large 

number of features are blind to SVM when the training document set is very small, and 

the power of SVM is compromised while a Bayesian classifier can expand meaningful 

features through semantic smoothing.  

5.4.5 Semantic Smoothing vs. Active Learning 

In our experiments, semantic smoothing has proven to be effective in improving 

classification performance when the size of the training dataset is small. In literature, 

active learning also shows its effectiveness in dealing with a small number of training 

samples. Active learning typically estimates an initial classifier from a few labeled seed 

documents; then it iteratively assigns class labels to unlabeled documents and uses all 

documents to re-estimate a new classifier until the classifier converges (Nigam et al., 

2000). For this reason, we compare semantic smoothing with an active learning classifier 

proposed by Nigam et al. (2000). We choose this approach for comparison because it has 

the state-of-the-art performance and is also within the framework of Bayesian classifiers. 

The comparison result is shown in Table 5.10. The active learning algorithm uses 

Laplace smoothing and seems quite sensitive to the feature selection. The result of active 

learning reported in Table 5.10 is actually the one with the best tuning. 
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Table 5.10: The comparison of active learning (AL) to context-sensitive semantic 

smoothing (CSSS). 1% of documents are used for training and the remaining 99% 

for testing. Among testing documents, 50% will be used to iteratively optimize the 

Bayesian classifier during active learning. 

 

Micro-F1 Macro-F1 
Collection 

AL CSSS Change AL CSSS Change 

OHSUMED 0.368 0.413 **12.1% 0.205 0.351 **71.1% 

20NG 0.575 0.613 **6.6% 0.551 0.609 **10.4% 

LATimes 0.566 0.581 *2.6% 0.536 0.554 3.3% 

 

Active learning does improve the performance over the baseline naïve Bayesian 

classifier on most collections (see Table 5.3). However, it is much less effective than the 

semantic smoothing approach. Likewise, complexity and robustness are two other 

concerns regarding active learning. Active learning has an iterative learning process and 

thus runs slow compared to semantic smoothing and naïve Bayes. The performance of 

active learning depends on the added unlabeled data. Active learning, however, looks 

simpler than semantic smoothing. It does not have to prepare topic signatures and 

semantic knowledge in advance.  

Nigam et al. argue that unlabeled data contain information about the joint 

distribution over feature other than labels, and thus they can sometimes be used together 

with a sample of labeled data to increase classification accuracy. Semantic smoothing and 

active learning are similar in the sense that both use co-occurrence data to improve the 

accuracy of text classifiers. In semantic smoothing, co-occurrence data are employed to 

estimate the semantic mapping between topic signatures and single-word features. There 

is, however, a significant difference regarding the implementations of the two 
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approaches. 

 Active learning typically estimates an initial classifiers from a few labeled seed 

documents; then it iteratively assign class labels to unlabeled documents and use all 

documents to re-estimate a new classifier until the classifier converges (Nigam et al., 

2000). Thus, unlabeled document are assumed to be generated from the same set of class 

models as the labeled documents. This is sometimes still a strong assumption. With this 

assumption, one can not arbitrarily use a huge number of external unlabeled texts (e.g., 

texts collected from the Internet) to obtain a more accurate estimation of the joint 

distributions over features. As shown in Table 5.11, when noise (i.e., an unlabeled 

document outside the collection) is added, the performance of active learning is dropped 

quickly. Take the example of the LATimes collection. The active learning performs 

worse than the naïve Bayes when 40% unlabeled documents are selected from TDT2. 

The method of semantic smoothing does not have such a limitation. Even if the semantic 

knowledge is completely learned from TDT2 corpus, it still significantly outperforms the 

naïve Bayes. 

 

 

 

Table 5.11: The classification performance of active learning with noise on the corpus 

of LATimes. Active learning uses 8,876 unlabeled documents. ALXX means XX 

percentage of unlabeled documents are from the corpus of TDT2. CSSS† denotes 

semantic smoothing with semantic knowledge completely learned from TDT2 

corpus. 

 

 NB AL  AL10 AL20 AL30 AL40 CSSS CSSS† 

Micro-F1 0.525 0.566 0.562 0.552 0.538 0.519 0.581 0.559 

Macro-F1 0.492 0.536 0.529 0.516 0.502 0.481 0.554 0.530 
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In semantic smoothing, the learning and the use of semantic knowledge are two 

independent processes. Theoretically, one can use any available texts to estimate 

semantic mappings. Because topic signatures such as multiword phrases and ontological 

concepts carry some contextual information, we think they are able to cross documents, 

collections, and even domains. In the stage of using semantic knowledge, it is not 

necessary to pick up semantic knowledge (i.e., topic signature mappings) from the same 

source. Instead, one can combine semantic knowledge from different sources. Naturally, 

for real applications, the closer the testing collection to the texts from which semantic 

knowledge are estimated, the more effective. In our experiment, even though the 

vocabulary coverage of the testing collection and the collection for the semantic 

knowledge estimation is only about 60%, the results for text classification and clustering 

are still very good. In short, semantic smoothing does not have limitations on the 

selection of unlabeled documents and it can arbitrarily combine and reuse semantic 

knowledge; it is closer to real world settings compared to active learning.  

 

5.5 Tuning of the Mapping Coefficient 

Topic signatures are very effective in mapping to single-word features, as demonstrated 

in Figures 3.5 and 4.1. But the number of extracted topic signatures is often much less 

than the original single-word features. Therefore, if only topic-signature–based mapping 

is used, one may suffer serious information loss. To solve this problem, we linearly 

interpolate the topic signature–based semantic mapping with a simple language model 

(see equation 5.6), as many other researchers have done (Wei and Croft, 2006; Zhai and 



105 

 

 

Lafferty, 2001a; Zhai and Lafferty, 2002; Zhang et al., 2006a; Zhou et al., 2006c). Then 

the optimization of mixture weights (i.e., mapping coefficient) becomes a problem.  

The interpolation-based mixture model is originally designed to smooth multi-gram 

language models (Blei et al., 2003). The mixture weight lambda can be globally 

optimized using the EM algorithm (Dempster et al., 1977) with the objective function of 

maximizing the posterior probability of generating a text collection. However, the 

objective of text classification is not the maximum posterior probability of the text, but 

the classification accuracy. The inconsistency of two objectives leads to the 

ineffectiveness of this automatic parameter optimization approach for text classification. 

We implement this approach, and the results are shown in Table 5.12. The automatic 

prediction of the optimal mapping coefficient is close to the manually tuned parameter on 

the corpus of 20NG, but quite far from the best results on the other two collections, 

especially in the case of large training data. 

 

 

 

Table 5.12: The comparison of manual parameter tuning to automatic parameter 

tuning. The parameter λ is the mapping coefficient. 

 

Small training (1%) Large training (33%) 

manual automatic manual automatic Collection 

λ mi-F1 λ mi-F1 λ mi-F1 λ mi-F1 

20NG 0.4 0.613 0.4 0.613 0.4 0.820 0.3 0.818 

OHSUMED 0.4 0.413 0.7 0.408 0.1 0.665 0.8 0.627 

LATimes 0.4 0.581 0.6 0.578 0.1 0.729 0.7 0.716 
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The language modeling approach to IR has encountered the same problem. Zhai and 

Lafferty propose a modified EM-based algorithm to find the optimal mixture weight for 

their two-stage language models (Zhai and Lafferty, 2002). But this method is not very 

effective in the setting of text retrieval. They still recommend careful tuning of the 

mixture weight (Zhai and Lafferty, 2001a and 2002). In most of the recent work on 

mixture language modeling IR, the mixture weights are also manually tuned (Wei and 

Croft, 2006; Zhang et al., 2006a; Zhou et al., 2006c). 

Fortunately, previous studies have shown that similar collections have similar 

optimal mapping coefficients, making held-out training possible. The previous work 

(Zhou et al., 2006c) showed that 0.3 is a good empirical setting for the mapping 

coefficient in the setting of text retrieval. In the experiment of text classification, all three 

collections achieved the best result when the mapping coefficient was set to 0.4 when 1% 

documents were used for training. When the training documents increased to 33%, the 

data became less sparse, and the optimal mapping coefficient reduced to 0.1, except for 

the 20NG corpus. As discussed earlier, the 20NG corpus is quite sparse. Even if 33% 

documents are used for training, the features still look sparse and the optimal results are 

achieved when the mapping coefficient set to 0.4.  

We can also see the robustness of semantic smoothing for Bayesian text 

classification from Figure 5.2. In a wide range around the optimal mapping coefficient, 

semantic smoothing outperforms background smoothing. On 20NG and OHSUMED, 

semantic smoothing always beats background smoothing regardless the setting of the 
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mapping coefficient. On LATimes, semantic smoothing wins positive gain over 

background smoothing, except with the setting point of one. 
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Figure 5.2: The variance of the classification performance (i.e., micro-F1 and 

macro-F1) on three testing collections with the change of the mapping coefficient, 

which controls the influence of the mapping component in the mixture model. The 

Bayesian text classifiers use 1% of documents for training. 

 



108 

 

 

 

Table 5.13: The variance of the classification performance on three testing collections 

with the change of the mapping coefficient. The Bayesian text classifiers use 1% of 

documents for training. 

 

Micro-F1 Macro-F1 Mapping 

Coefficient OHSUMED 20NG LATimes OHSUMED 20NG  LATimes 

0 37.21 52.60 53.84 28.03 52.31 51.34 

0.1 39.82 59.25 56.58 32.24 58.85 53.91 

0.2 40.89 60.74 57.58 34.00 60.31 54.82 

0.3 41.32 61.25 58.00 34.85 60.83 55.23 

0.4 41.28 61.32 58.12 35.10 60.89 55.35 

0.5 41.18 61.15 57.97 35.20 60.74 55.22 

0.6 40.99 60.70 57.76 35.16 60.30 55.04 

0.7 40.78 60.03 57.29 35.04 59.65 54.63 

0.8 40.50 59.15 56.59 34.81 58.79 53.98 

0.9 40.09 57.77 55.54 34.29 57.45 53.00 

1 38.78 54.60 52.55 32.56 54.37 50.16 

 

 

 

In short, one can take the following empirical rules with respect to the choice of the 

mapping coefficient: if data are very sparse, set the mapping coefficient to 0.3~0.5; 

decrease the value when data become less sparse; when sufficient training data are 

provided, stop using semantic smoothing. 

 

5.6 Conclusions 

We proposed a novel semantic smoothing method for Bayesian text classification. The 

core idea of the smoothing method is to identify explicit topic signatures such as 

multiword phrases and ontological concepts in documents and then statistically map them 

onto single-word features. According to whether the topic signature itself is context 

sensitive, the smoothing method is further categorized into context-sensitive semantic 
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smoothing (CSSS) and context-insensitive semantic smoothing (CISS). The semantic 

mapping from multiword phrases, ontological concepts to single-word features, is viewed 

as CSSS; the word-word semantic mapping is considered CISS. We then evaluated the 

behavior of CSSS and CISS on three collections: 20NG, LATimes, and OHSUMED. 

We estimated semantic mappings between topic signatures and single-word features 

using co-occurrence data and an EM-based algorithm. Because it is cheap to collect 

co-occurrence data, the acquisition of a large amount of semantic mapping knowledge 

becomes feasible. In terms of mapping quality, context-sensitive topic signatures perform 

much better than context-insensitive ones such as single-word terms. Without contextual 

constraints, the mapping result is fairly general and often contains mixed topics. 

Compared to topic models, topic signature is a more intuitive and lightweight 

representation of topics. It is also easy to be identified and stored. Topic signatures, 

especially context-sensitive ones, can cross documents, collections, and even domains, 

which make it possible to reuse learned semantic knowledge in the future. Our 

experiments verified this hypothesis. With 60% vocabulary coverage, the semantic 

knowledge learned from other corpus can still significantly improve the accuracy of text 

classification over Laplace smoothing and background smoothing. 

The effectiveness of semantic smoothing for Bayesian text classification depends on 

the degree of the data sparsity. In general, the sparser the data, the more effective the 

semantic smoothing is. When the size of training documents is small, the Bayesian 

classifier with semantic smoothing not only outperforms the classifiers with background 

smoothing and Laplace smoothing, but also beats the state-of-the-art active learning 
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classifiers and SVM classifiers. With the increase of training documents, the gap among 

semantic smoothing, Laplace smoothing, and background smoothing is decreasing. This 

finding is of great practical value because it is always expensive to get the labeled 

training documents for real applications.  

CSSS performs slightly more effectively than CISS for text classification. But if the 

number of training documents is too small, say, only one or two, CISS runs more 

effectively than CSSS, because too few extracted context-sensitive topic signatures may 

misrepresent the topics associated with the training documents. However, CSSS is always 

more efficient than CISS, whether the size of training documents is small or large. A 

document contains a smaller number of context-sensitive topic signatures (e.g., 

multiword phrases or concepts) than words, on average. Thus, CSSS needs much less 

time complexity than CISS during semantic mapping. 

Semantic smoothing uses a mixture language model with the mapping coefficient to 

control the influence of the two components. The optimization of the mapping coefficient 

is still an ongoing problem. We proposed an automatic parameter tuning method that 

obtains the optimal value by maximizing the generative probability of the testing 

documents. However, this approach is not robust. Sometimes the estimated parameter is 

quite close to the optimal value, but other times it is quite far. This is also the problem of 

the IR community when mixture language models are used for retrieval. First of all, 

fortunately, the proposed semantic smoothing is quite robust; it beats the baseline 

smoothing methods in a wide range. Second, there are rules of thumb available to the 

tuning of the mapping coefficient. If data are very sparse, set the mapping coefficient to 
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0.3~0.5; decrease the value when data become less sparse; and when sufficient training 

data are provided, stop using semantic smoothing. 

 In the future, we will continue working on the optimization of the mapping 

coefficient. We will also focus on the reuse of semantic knowledge. In this chapter, the 

experiment showed that it was quite promising to reuse the semantic knowledge. In future 

work, we will be more interested in factors that affect the effectiveness of semantic 

knowledge reuse for various applications such as text classification and text retrieval. 
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CHAPTER 6: SEMA�TIC SMOOTHI�G I� TEXT CLUSTERI�G 

 

6.1 Introduction 

Document clustering algorithms can be categorized into agglomerative and partitional 

approaches according to the underlying clustering strategy (Kaufman and Rousseuw, 

1990). The agglomerative approaches initially assign each document into its own cluster 

and repeatedly merge pairs of clusters with the shortest distance until only one cluster is 

left. The partitional approaches iteratively re-estimate the cluster generative model (or 

calculate the cluster centroid) and reassign each document into the closest cluster until no 

further documents can be moved. The clustering result of the agglomerative approach is 

free of the initialization and gives a very intuitive explanation of why a set of documents 

are grouped together. However, in comparison with partitional approaches, it suffers from 

the )( 2nO  clustering time and performs poorly in general (Steinbach et al., 2000). 

Recent advances in document clustering have shown that, in general, model-based 

partitional clustering approaches are more efficient and effective than agglomerative 

clustering approaches (Zhong and Ghosh, 2005). However, there are also two identified 

problems, the density of class-independent general words and the sparsity of 

class-specific core words, with the model-based approaches. Model-based partitional 

approaches estimate cluster models instead of document models. A cluster often contains 

much more than one document. Thus, the data sparsity problem is not as serious as in 

pairwise document similarity calculation. But if the size of the dataset for clustering is 

small or the dataset is extremely skewed on different classes, the sparsity of core words 
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will still be a serious problem. Besides, no matter how many documents a cluster has, 

general words always dominate the cluster; thus, discounting the effect of general words 

is always helpful to improve cluster quality. 

Discounting seen words and assigning reasonable counts to unseen words are two 

exact goals of the probabilistic language model smoothing. To the best of our knowledge, 

the effect of model smoothing has not been extensively studied in the context of 

document clustering. Most model-based clustering approaches simply use Laplace 

smoothing to prevent zero probability (McCallum and Nigam, 1998; Nigam et al., 2000; 

Zhong and Ghosh, 2005), while most similarity-based clustering approaches employ the 

heuristic TF-IDF scheme to discount the effect of general words (Steinbach et al., 2000). 

In contrast, the study of language model smoothing has been a hot topic in the 

community of information retrieval (IR) with the increasing popularity of the language 

modeling approach to IR in recent years (Berger and Lafferty, 1999; Zhai and Lafferty, 

2001a; Zhai and Lafferty, 2002; Zhou et al., 2006c). In this chapter, we will adapt the 

smoothing techniques used in IR to the context of document clustering and hypothesize 

that the document or cluster model smoothing can significantly improve the quality of 

document clustering. 

We evaluate our semantic smoothing method in conjunction with a model-based 

k-means algorithm on three datasets: 20-Newsgroups, the Los Angeles Times, and 

OHSUMED. The model-based k-means with semantic smoothing consistently achieves 

better results than with simple background smoothing and Laplace smoothing. The 

performance of model-based k-means with semantic smoothing is also better than the 
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spherical k-means that is considered one of the best algorithms for text clustering 

(Dhillon and Modha, 2001). The rest of the paper is organized as follows: Section 6.2 

describes the clustering algorithm, that is, model-based k-means with semantic smoothing. 

Section 6.3 shows the evaluation method and the datasets. In section 6.4, we present and 

discuss the experiment results. Section 6.5 concludes the chapter. 

 

6.2 The Clustering Method 

6.2.1 Model-based K-Means 

The model-based k-means uses a Bayesian classifier for document assignment in iteration. 

For this reason, we also call it Bayesian text clustering in this thsis. It is a generalized 

version of the standard k-means (Zhong and Ghosh, 2005). It assumes that there are k 

parameterized models, one for each cluster. Basically, the algorithm iterates between a 

model re-estimation step and a sample re-assignment step, as shown in Figure 6.1. The 

implementation of cluster model estimation depends on the word distribution assumption 

made on the dataset. Zhong and Ghosh (2005) compared several generative models for 

document clustering and found out that the multinomial model consistently outperformed 

the multivariate Bernoulli model. For this reason, we chose the multinomial model for 

evaluation. Based on the naive Bayes assumption, the log likelihood of document d 

generated by the j-th multinomial cluster model is: 

(6.1)       )|(log),()|(log ∑
∈

=
Vw

jj cwpdwccdp  

where ),( dwc denotes the frequency count of word w in document d, and V denotes the 



115 

 

 

vocabulary. Thus, the problem remains to estimate parameters )|( jcwp  for the cluster 

model.  

Algorithm: Model-based K-Means 

  

Input: dataset },...,{ 1 nddD = , and the desired number of clusters k. 

 

Output: trained cluster models { }kλλ ,...,1=Λ  and the document 

assignment },...1{ y},,...,{ i1 kyyY n ∈=  

 

Steps: 

1. Initializes document assignment Y. 

2. Model re-estimation: ∑
∈

=
icd

i d )|log(maxarg λλ
λ

 

3. Sample re-assignment: )|(logmaxargy i ji
j

dp λ=  

4. Stops if Y does not change, otherwise go to step 2 

 

Figure 6.1: The framework of the model-based k-means algorithm 

 

 

 

6.2.2 Semantic Smoothing 

The parameter estimation of multinomial models is as simple as counting word frequency 

in the cluster. However, one has to smooth the model in order to prevent zero probability 

caused by a sparse data problem. As we do for the Bayesian text classification, we 

compare three smoothing methods for model-based k-means. They are Laplace 

smoothing, background smoothing, and semantic smoothing. The exact formulas for 

these three smoothing methods are very similar to the ones used by Bayesian text 

classifiers, as described in Chapter 5. The only difference is that the word statistics are 
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from the labeled training document in text classification, while the word statistics are 

from the whole collection of unlabeled documents in text clustering. 

With Laplace smoothing, the cluster model is formalized as below: 

   (6.2)             
),(

),(1
)|(

∑+
+

=
w j

j

j
cwcV

cwc
cwp  

where ),( jcwc is the frequency count of word w in the j-th cluster. Obviously, Laplace 

smoothing assigns to all unseen words of a given cluster a fixed probability. 

The Jelinek-Mercer approach (Jelinek, 1990; Zhai and Lafferty, 2001a) is one of the 

most frequently used background smoothing approaches. In the setting of model-based 

k-means, it interpolates a unigram cluster model with a collection background model, 

controlled by the parameter β as shown in the equation (6.3):  

)3.6(               )|()|()1()|( Dwpcwpcwp jmljb ββ +−=  

where )|( jml cwp  is a unigram cluster model with maximum likelihood estimate and 

)|( jb cwp  denotes the cluster model with the background smoothing. The coefficient β is 

empirically set to 0.5 in the experiment. 

We linearly interpolate the semantic mapping component with a simple language 

model as described in equation 6.3, and the cluster model ends with the following 

formula:  

) (6.4    )|()|( )|()-(1 )|( ∑+=
k

jkkjbjs ctptwpcwpcwp λλ  

where tk denotes the k-th topic signature and )|( jk ctp  is the distribution of topic 

signatures in a given cluster, which can be computed via maximum likelihood estimates. 
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The mapping coefficient λ is to control the influence of the semantic mapping component 

in the mixture model. 

 

6.3 Evaluation Methodology and Datasets 

The clustering quality is evaluated by three extrinsic metrics, purity (Zhao and Karypis, 

2001), entropy (Steinbach et al., 2000), and normalized mutual information (NMI) 

(Banerjee and Ghosh, 2002). In this thesis, we only analyze the NMI results because NMI 

is an increasingly popular measure of cluster quality. NMI is defined as the mutual 

information between the cluster assignments and a pre-existing labeling of the dataset 

normalized by the arithmetic mean of the maximum possible entropies of the empirical 

marginals, that is, 

(6.5)                          
2/)log(log

);(
),(

ck

YXI
YX+MI

+
=  

where X is a random variable for cluster assignments, Y is a random variable for the 

pre-existing labels on the same data, k is the number of clusters, and c is the number of 

pre-existing classes. One can refer to the paper, “Frequency sensitive competitive 

learning for clustering on high-dimensional hperspheres” (Banerjee and Ghosh, 2002), or 

to any text books to get the details of computing mutual information I(X; Y). NMI ranges 

from 0 to 1. The bigger the NMI, the higher quality the clustering is. NMI is better than 

the other common extrinsic measures such as purity and entropy in the sense that it does 

not necessarily increase when the number of clusters increases. 

In the experiment, we first compare the effectiveness of three smoothing methods for 

model-based k-means: Laplace smoothing, background smoothing, and semantic 
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smoothing. Since semantic smoothing is further divided into context-sensitive semantic 

smoothing (CSSS) and context-insensitive semantic smoothing (CISS), we also compare 

CSSS to CISS. To get the sense of how good the model-based k-means is, we finally run 

the spherical k-means (Dhillon and Modha, 2001). Spherical k-means uses cosine 

similarity and usually normalizes the vector to remove the bias that arises because of the 

length of a document. Empirical studies have shown that spherical k-means is far more 

effective in text clustering than other schemes. In our experiments, the spherical k-means 

takes two different scoring schemes: normalized TF and TF-IDF. In summary, we 

compare the effectiveness of six text clustering methods, four for model-based k-means 

and two for spherical k-means.  

Our pilot study shows that Laplace smoothing performs poorly on a large vocabulary 

space. Thus, we only keep terms which appear in five or more documents. However, the 

size of the vocabulary space makes no difference on the other five clustering schemes. 

K-means is a type of EM-based clustering algorithm. The final clustering result 

depends on the initialization. Thus, we conduct ten runs with random initialization and 

take the average as the final result. During the comparative experiment, each run has the 

same initialization except for the Laplace smoothing. There are two ways to initialize 

document clusters. One is to randomly select one document for each cluster. The other is 

to randomly assign all documents into the given number of clusters. The second 

initialization scheme may lead to overfitting problems. Our pilot study shows that the 

aforementioned clustering methods, except Laplace smoothing, perform poorly with the 

second initialization scheme. However, Laplace smoothing sometimes receives very bad 
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results with the first initialization scheme. Thus, we try both initialization schemes for 

Laplace smoothing and report the better one.  

The datasets used in the experiment include 20-Newsgroups, the Los Angeles Times, 

and OHSUMED. Since these datasets are the same as the ones used in the text 

classification experiment, please see the details in Chapter 5 regarding their descriptions 

and text processing process. 

The effect of semantic smoothing on small datasets is stronger than on large datasets, 

because small datasets have serious data sparse problems. To test this effect on 

model-based text clustering, we conduct experiments on both large and small datasets. A 

large dataset contains all the documents from selected classes. To build small datasets, 

we randomly pick one hundred documents from each selected class of a given dataset and 

then merge them into a big pool for clustering. For each collection, we create five small 

datasets and average the experiment results.  

 

6.4 Experiment Results 

The clustering quality is measured by three metrics, purity, entropy, and NMI. The 

clustering results in the metrics of purity and entropy are shown in Tables 6.1 and 6.2, 

respectively. In general, the results of purity and entropy are consistent with the result of 

NMI. Our analysis and comparison in this section are based on the NMI metric. 
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Table 6.1: The purity results of four variants of model-based k-means (CSSS, CISS, 

Lap, and Bkg) and two variants of spherical k-means (�TF and TF-IDF) 

 

(a) small dataset, 100 documents per class 

Collection NTF TF-IDF Lap Bkg CISS CSSS 

20NG 0.217 0.414 0.191 0.256 0.482 0.423 

OHSUMED 0.195 0.293 0.184 0.278 0.340 0.323 

LATimes 0.322 0.327 0.258 0.270 0.449 0.434 

 

(b) large dataset, all documents are used for clustering 

Collection NTF TF-IDF Lap Bkg CISS CSSS 

20NG 0.231 0.481 0.472 0.428 0.557 0.545 

OHSUMED 0.277 0.414 0.357 0.348 0.410 0.405 

LATimes 0.351 0.468 0.502 0.489 0.518 0.531 

 

 

 

Table 6.2: The entropy results of four variants of model-based k-means (CSSS, CISS, 

Lap, and Bkg) and two variants of spherical k-means (�TF and TF-IDF) 

 

(a) small dataset, 100 documents per class 

Collection NTF TF-IDF Lap Bkg CISS CSSS 

20NG 2.445 1.758 2.328 2.091 1.483 1.494 

OHSUMED 2.390 2.170 2.429 2.175 2.010 2.056 

LATimes 1.828 1.866 1.884 2.022 1.506 1.514 

 

(b) large dataset, all documents are used for clustering 

Collection NTF TF-IDF Lap Bkg CISS CSSS 

20NG 2.411 1.467 1.249 1.511 1.271 1.180 

OHSUMED 2.231 1.841 1.978 2.022 1.825 1.825 

LATimes 1.825 1.483 1.407 1.420 1.377 1.308 

 

 

 

6.4.1 The Comparison of Three Smoothing Methods 

We compare the effectiveness of Laplace smoothing, background smoothing, and 

context-sensitive semantic smoothing (CSSS). CSSS outperforms Lap and Bkg on all 

small dataset clustering tasks, as described in Table 6.3a. All improvements are 
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statistically significant at the level of p<0.01 according to the paired-sample t-test. It also 

performs significantly better than Lap and Bkg on large dataset clustering, as described in 

Table 6.3b. But the magnitude of improvement on large datasets is much smaller than on 

small datasets. This finding is similar to what we find in the text classification experiment. 

The difference is that CSSS only obtains slight or no improvement over Lap and Bkg for 

the text classification task with a large number of training documents, whereas CSSS still 

wins a significant gain for large dataset clustering tasks.  

 

Table 6.3: The �MI results of model-based k-means clustering with four smoothing 

techniques, that is, context-sensitive semantic smoothing (CSSS), context-insensitive 

semantic smoothing (CISS), Laplace smoothing (Lap), and background smoothing 

(Bkg). The symbols ** and * indicate the change is significant according to the 

paired-sample t-test at the level of p<0.01 and p<0.05, respectively. 

 

(a) small dataset, 100 documents per class 

Collection NTF TF-IDF Lap Bkg CSSS vs. Lap vs. Bkg 

20NG 0.176 0.391 0.240 0.201 0.441 **83.6% **119% 

OHSUMED 0.090 0.172 0.080 0.090 0.212 **164% **135% 

LATimes 0.200 0.185 0.145 0.122 0.322 **122% **164% 

 

(b) large dataset, all documents are used for clustering 

Collection NTF TF-IDF Lap Bkg CSSS vs. Lap vs. Bkg 

20NG 0.192 0.506 0.493 0.489 0.564 **14.5% **15.5% 

OHSUMED 0.085 0.232 0.180 0.165 0.239 **32.8% **44.6% 

LATimes 0.201 0.349 0.382 0.371 0.420 **9.8% **13.2% 

 

 

 

A plausible explanation is that semantic smoothing well solves the overfitting 

problem of model-based k-means. Model-based k-means is an EM-styled iterative 

clustering algorithm. Documents in the whole collection tend to group into several large 

clusters, and all cluster models then quickly converge. The overfitting problem is 
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especially severe when the dataset is highly skewed. With Lap or Bkg smoothing, 

documents tend to group into a few large clusters and quickly converge to local maxima. 

With semantic smoothing, small clusters still have great chance to grow, because small 

clusters could share many significant common words with other documents by semantic 

mapping. Our experiments do show that model-based k-means with semantic smoothing 

takes more iteration steps to converge than the other two smoothing approaches. 

 

 

 

Table 6.4: The �MI comparison of CSSS to CISS on model-based k-means.  

 

(a) small dataset, 100 documents per class 

Collection CISS CSSS vs. CISS 

20NG 0.476 0.441 **-7.3% 

OHSUMED 0.227 0.212 **-6.7% 

LATimes 0.332 0.322 **-3.1% 

 

(b) large dataset, all documents are used for clustering 

Collection CISS CSSS vs. CISS 

20NG 0.571 0.564 -1.1% 

OHSUMED 0.238 0.239 0.3% 

LATimes 0.395 0.420 **6.2% 

 

 

 

6.4.2 Context Sensitive vs. Context Insensitive 

We compare context-sensitive semantic smoothing (CSSS) to context-insensitive 

semantic smoothing (CISS) in terms of effectiveness. In the experiment of text 

classifications, CSSS is slightly more effective than CISS, especially when the number of 

topic signatures in a class is large enough to reflect the underlying topics associated with 

the class. The pattern for text clustering is somehow different, as described in Table 6.4. 
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On small datasets, CISS shows slightly more effectiveness than CSSS. On large datasets, 

CISS and CSSS are comparable to each other. 

We think the difference can also be attributed to the overfitting problem of 

model-based k-means. As discussed in Chapter 5, when a category is too small to contain 

a sufficient number of topic signatures, CISS seems more effective than CSSS. During 

the model-based k-means clustering, there are always many intermediate small clusters, 

especially when the dataset to cluster is small. Thus, CISS can help those intermediate 

small clusters to grow more effectively than CSSS. 

6.4.3 Reuse of Semantic Knowledge 

We design two experiments to verify the reusability of semantic knowledge. In one 

experiment, we learn semantic mapping knowledge from TDT2 and then utilize it to 

cluster the LATimes collection. In another experiment, we partition the OHSUMED 

collection (7,400 Medline abstracts published in 1991) using the semantic mapping 

knowledge learned from a subcollection of 280,000 Medline abstracts published in the 

first half of the year 2000. The design of the reusability experiment is the same as the one 

for text classification. Please refer to Section 5.4.3 for details. 

The semantic smoothing using the external semantic knowledge still significantly 

outperforms Laplace smoothing and background smoothing within the framework of 

model-based k-means clustering as shown in Table 6.5. This result of semantic 

smoothing with external knowledge is also considerably better than the best result of 

spherical k-means. The performance of the external knowledge is comparable to that of 

the internal knowledge. On the collection of LATimes, the external knowledge performs 
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worse than the internal knowledge, which is mainly due to the low coverage of the 

external knowledge. On the collection of OHSUMED, the external knowledge achieves 

slightly worse results than the internal knowledge. The possible explanation is that the 

external knowledge is learned from a much larger collection, and consequently, the 

coverage of the semantic mapping is very high. 

 

 

 

Table 6.5: The clustering result on small datasets using external semantic mapping 

knowledge and its comparison to internal knowledge. † indicates the result is based 

on external semantic mapping knowledge. 

 

(a) �MI Result 

Collection NTF TF-IDF Lap Bkg CSSS vs. Lap vs. Bkg 

OHSUMED 0.090 0.172 0.080 0.090 0.212 **164% **135% 

OHSUMED† 0.090 0.172 0.080 0.090 0.207 **159% **130% 

LATimes 0.200 0.185 0.145 0.122 0.322 **122% **164% 

LATimes† 0.200 0.185 0.145 0.122 0.245 **69.3% **101% 

 

(b) External knowledge vs. internal knowledge 

Collection Internal External Change 

OHSUMED  0.212 0.207 -2.4%* 

LATimes 0.322 0.245 -23.9%** 

 

 

 

6.4.4 The Comparison to Spherical K-Means 

We compare the effectiveness of spherical k-means to the model-based k-means using 

semantic smoothing. The semantic smoothing has been empirically proven to be more 

effective than Laplace smoothing and background smoothing, but the comparison to other 

state-of-the-art clustering approaches remains unclear. Spherical k-means is one of the 

most effective clustering approaches to text clustering (Dhillon and Modha, 2001), and its 



125 

 

 

comparison to semantic smoothing is shown in Table 6.6. Since both have two variants in 

our experiment, we compare the best results of these two clustering approaches. The 

semantic smoothing significantly outperforms spherical k-means on all collections (both 

small dataset and large dataset). This shows the effectiveness of the semantic smoothing 

approach to text clustering. 

 

 

 

Table 6.6: The comparison of the best semantic smoothing results (CISS or CSSS) to 

the best spherical k-means results (�TF or TF-IDF).  

 

Small dataset Large dataset 
Collection 

spkmeans mkmeans change spkmeans mkmeans change 

20NG 0.391 0.476 **21.7% 0.506 0.571 **12.7% 

OHSUMED 0.172 0.227 **31.9% 0.232 0.239 2.8% 

LATimes 0.200 0.332 **66.5% 0.349 0.420 **20.2% 

 

 

 

6.4.5 Tuning of Parameters 

In the experiment of text classification and text retrieval (Zhou et al., 2006), the mapping 

coefficient seems to be empirically optimal in the range of 0.3~0.5, since too small a 

weight cannot take advantage of semantic smoothing and too large a weight may cause 

information loss. The optimal pattern for the mapping coefficient in the setting of text 

clustering is simpler, as shown in Table 6.7 and Figure 6.2. All collections achieve the 

best result when the mapping coefficient is set to one (i.e. the cluster model is a purely 

semantic mapping model).  
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(a) Small dataset, 100 documents per class 

 

 

Model-based K-Means (Large Dataset)
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(b) Large dataset, all documents are used for clustering 

 

Figure 6.2: The variance of the �MI with the change of the mapping coefficient, 

which controls the influence of the mapping component in the mixture model.  
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Table 6.7: The variance of the �MI with the change of the mapping coefficient (λ). 

The clustering algorithm is the model-based k-means with context-sensitive semantic 

smoothing (CSSS). 

 

Small Datasets Large Datasets 
Lambda 

20NG OHSUMED LATimes 20NG LATimes OHSUMED 

0 0.201 0.090 0.122 0.489 0.371 0.165 

0.1 0.287 0.120 0.185 0.536 0.383 0.181 

0.2 0.318 0.134 0.211 0.549 0.389 0.192 

0.3 0.340 0.144 0.227 0.552 0.397 0.200 

0.4 0.361 0.151 0.241 0.554 0.400 0.207 

0.5 0.377 0.158 0.254 0.560 0.407 0.215 

0.6 0.394 0.165 0.265 0.559 0.404 0.218 

0.7 0.407 0.173 0.281 0.562 0.408 0.224 

0.8 0.425 0.183 0.298 0.564 0.413 0.229 

0.9 0.440 0.197 0.314 0.560 0.416 0.235 

1.0 0.441 0.212 0.322 0.545 0.420 0.239 

 

 

 

Model-based k-means has serious overfitting problems. Many documents tend to 

group into a few large clusters and quickly converge at local maxima. The semantic 

smoothing is very effective in helping those small clusters to grow and jump out of the 

local maxima. This may explain why the best results are often achieved when the 

semantic mapping component is fully used, even though the full use of the mapping 

component may bring some information loss. 

 

6.5 Conclusion 

Model-based k-means text clustering is very similar to bayesian text classification except 

that the former does not require labeled texts for training whereas the latter requires 

labeled texts. Most findings of topic signature language models (i.e., semantic smoothing) 

in the settings of text classification are also found in the settings of text clustering. First 
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of all, semantic smoothing performed significant better than two baselines, Laplace 

smoothing and background smoothing. Second, the model-based k-means with semantic 

smoothing also significantly outperform spherical k-means, which has been proven to be 

one of the most effective approaches to text clustering. Third, semantic smoothing is a 

robust technique. Semantic mapping knowledge learned from one collection could be 

effectively used to cluster another collection of documents. For example, when semantic 

knowledge learned from TDT2 was used to cluster LATimes articles, the performance 

was still better than model-based k-means with Laplacian smoothing and background 

smoothing as well as spherical k-means. 

However, the topic signature language model brings extra advantages to the 

model-based k-means text clustering probably because it solves the overfitting problem 

of k-means algorithm. K-means is an EM-styled climbing algorithm and achieves local 

maxima rather than global maxima. In other words, a good part of documents probably 

falsely grouped into a few large clusters simply because a large cluster tends to share 

more common information to a single document than a small cluster. The topic signature 

language model introduces an extra semantic mapping component in addition to the 

unigram component. Consequently, the clustering algorithm is somehow transformed to 

concept clustering and then mapping each document into concept groups. Thus, the 

overfitting problem was dramatically relaxed. Unlike information retrieval and text 

classification which has the optimal mapping coefficient around 0.3~0.5, the task of text 

clustering achieved the best performance when the mapping coefficient is set to 1.0 in 

which the text clustering simply becomes the concept (topic signature) clustering.  
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In the task of information retrieval and text classification, the semantic smoothing 

will degrade the performance if the mapping coefficient is too large, i.e. overusing the 

semantic mapping component. The semantic smoothing shows much more robustness in 

the task of text clustering. It always beats the baseline smoothing methods when the 

mapping coefficient ranges from 0 to 1. Besides, the topic signature language model 

presents much more effectiveness in text clustering than in text classification. The model 

does not work when the training dataset is large in text classification. But the model not 

only makes considerable improvement on small dataset clustering, but also on large 

dataset clustering that is not supposed to have serious data sparse problems.  

In the task of information retrieval and text classification, the context sensitive 

semantic smoothing (CSSS) is a little bit more effective than the context insensitive 

semantic smoothing (CISS). However, CISS performs slightly more effective than CSSS 

in the task of text clustering, when the collection to cluster is small, and two algorithms 

performs similarly when the collection to cluster is large. Again, we attribute this 

phenomenon to the overfitting issue of k-means. A small collection contains two few 

number of multiword phrases or ontological concepts. Therefore, word clustering makes 

much more sense than phrase clustering and concept clustering. In other words, CISS is 

more effective in handling overfitting issue than CSSS. 
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CHAPTER 7: CO�CLUSIO�S A�D FUTURE WORK 

 

We proposed a novel semantics-based language model called topic signature language 

model for information retrieval, text classification, and text clustering. The core idea of 

the topic signature language model is to identify topic signatures such as multiword 

phrases and ontology-based concepts in documents, and then statistically map topic 

signatures to single-word features for model smoothing purposes. According to whether 

the topic signature itself is context sensitive, the smoothing method is further divided into 

context-sensitive semantic smoothing (CSSS) and context-insensitive semantic 

smoothing (CISS). The semantic mapping from multiword phrases, ontology-based 

concepts to single-word features, is viewed as CSSS, and the word-word semantic 

mapping is considered CISS. 

 

7.1 The Summary of Model Effectiveness 

7.1.1 The Comparison of Applications 

In ad hoc information retrieval, each document is considered a document language model. 

Because a document is usually short, there is a serious data sparsity issue of estimating 

the language model for each document. The semantic smoothing with whichever topic 

signatures (i.e., single-word terms, multiword phrases, or ontological concepts) 

significantly outperformed background smoothing approaches. The language model with 
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semantic smoothing also beat famous Okapi models. CSSS performs slightly better than 

CISS in terms of both recall and average precision. 

The effectiveness of semantic smoothing for Bayesian text classification depends on 

the data sparsity. In general, the sparser the data, the more effective the semantic 

smoothing is. When the size of training documents is small, the Bayesian classifier with 

semantic smoothing not only outperforms the classifiers with background smoothing and 

Laplace smoothing, but it also beats the state-of-the-art active learning classifiers and 

SVM classifiers. With the increase of training documents, the gap among the three 

smoothing methods is decreasing. This finding is of great practical value because it is 

expensive to get the labeled documents for real applications. CSSS performs slightly 

more effectively than CISS on the task of text classification. But if the number of training 

documents is too small, say, only one or two, CISS runs more effectively than CSSS, 

mostly because too few extracted context-sensitive topic signatures may misrepresent the 

topics associated with the training documents. However, this also could be an advantage 

of CSSS over CISS. A document contains fewer context-sensitive topic signatures (e.g., 

multiword phrases or concepts) than words on average. Thus, CSSS needs much less time 

complexity than CISS during semantic mapping. 

Semantic smoothing also wins significant gain over Laplace smoothing and 

background smoothing for model-based k-means text clustering. The gained 

improvement in text clustering is even larger than in text classification. It not only makes 

considerable improvement on small dataset clustering but also on large dataset clustering, 

which is not supposed to have serious data sparse problems. Model-based k-means is a 
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sort of EM algorithm and has serious overfitting problem. It tends to force most 

documents into a few large clusters and quickly converges on local maxima. Semantic 

smoothing helps small clusters grow and jump out of local maxima. With semantic 

smoothing, small clusters still have considerable chance to absorb documents from large 

clusters, because semantic mapping makes small clusters share much more significant 

terms with documents in other clusters. Unlike in the task of text classification, CISS 

looks a bit more effective than CSSS in the task of text clustering when the dataset to 

cluster is small. Documents contain much more number of words than context-sensitive 

topic signatures. Thus, CISS may be more effective in overcoming the overfitting 

problem. But again, CISS runs much slower than CSSS. The model-based k-means with 

semantic smoothing also significantly outperform spherical k-means, which has been 

proven to be one of the most effective approaches to text clustering. 

Semantic smoothing uses a mixture language model with the mapping coefficient to 

control the influence of the two components, a simple language model and a semantic 

mapping model. The optimization of the mapping coefficient is still an ongoing problem. 

In the application of text classification, we proposed an automatic parameter tuning 

method which computed the optimal mapping coefficient by maximizing the generative 

probability of the testing documents. However, this approach is not robust. Sometimes 

the estimated parameter is quite close to the optimal value, but sometimes is quite far. 

This is also the problem for mixture language modeling approach to text retrieval. 

Fortunately, first of all, the proposed semantic smoothing is quite robust; it beats the 

baseline smoothing methods in a wide range setting of the mapping coefficient. Second, 
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there are rules of thumb available to the tuning of the mapping coefficient. For 

information retrieval, the mapping coefficient between 0.3~0.5 always achieves good 

results. In the case of text classification, if data are very sparse, set the mapping 

coefficient to 0.3~0.5; decrease the value when data become less sparse; when sufficient 

training data are provided, stop using semantic smoothing. In the case of text clustering, 

the rule is even simpler; setting the mapping coefficient to 0.8~1.0 always gets good 

results. 

 

 

 

Table 7.1: The summary of the effectiveness of the topic signature language models 

for different applications. 

 

Applications 
Small (Training) 

Dataset 

Large (Training) 

Dataset 

Optimal Mapping 

Coefficient 

Retrieval Very effective Not applicable 0.3-0.5 

Classification Very effective Not effective 0.3-0.5 

Clustering Very effective Effective 0.8-1.0 

 

 

 

7.1.2 The Comparison of Domains 

We applied the topic signature language models to two domains in the thesis. One is the 

general news domain. The other is the specialized biomedical domain. The new model 

improved the performance of information retrieval, text classification, and text clustering 

on both domains. However, the model in the domain of biomedical literature performed 

slightly better than in the domain of news. The domain difference in effectiveness could 

be attributed to two sources. 
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 First, biomedical literature contains a large number of multiword terms (e.g., high 

blood pressure, breast cancer) and one term often has many synonyms. This fact makes 

the ontological concept representation meaningful. A meaningful concept will never be 

broken down into several separate words; several synonyms will be represented by the 

same concept identities. 

 Second, the domain ontology benefited from the extraction of high quality topic 

signatures. We used statistical approaches to automate the extraction of multiword 

phrases in the news domain. Statistical approaches only extracted frequently occurring 

phrases, and some of them were even noisy. On the contrary, we used UMLS as the 

dictionary to extract concepts from biomedical literature. The dictionary-based extraction 

approach does not have statistical constraints and can extract more meaningful topic 

signatures than statistical approaches. 

  

7.1.3 Knowledge Reusability 

In the thesis, we also evaluated the effectiveness of external knowledge. In other words, 

we learned semantic knowledge from one collection and applied it to another collection. 

The experiment results showed that the topic signature language model with external 

semantic knowledge worked very well in general. In the experiment of text classification 

and clustering, it still outperformed background smoothing and Laplace smoothing. In the 

domain of biomedical literature, the external knowledge even achieved a slightly better 

result than the internal knowledge. As a rule of thumb, the effectiveness of external 

knowledge depends on the coverage of topic signatures, that is, the percentage of topic 
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signatures of the testing collection that also appears in the training collection. The higher 

the coverage, the more effective the model is. In practice, the coverage of topic signatures 

will not be a serious issue because we can linearly merge semantic knowledge learned 

from multiple collections, which greatly raises the coverage of topic signatures.  

  

7.2 The Comparisons of Three Topic Signatures 

We have introduced three types of topic signatures in the thesis. They are multiword 

phrases, ontology-based concepts, and single-word terms. In this section, we give a brief 

comparison. The use of topic signatures in ad hoc information retrieval, text classification, 

and clustering involves three stages: (1) the extraction of topic signatures, (2) the 

estimation of semantic mapping, and (3) the incorporation of semantic mapping into 

language models. In the first stage, single-word term extraction is the easiest. The 

accuracy of automated multiword phrase extractions is acceptable. For example, Xtract, 

the one used in this thesis, has an accuracy of 80%. But it is much less efficient than word 

extraction. The extraction of concepts needs domain ontology. This is a limitation 

because not all domains have ontology available. Besides, the mapping of ontological 

concepts is not a trivial task. In our case, the F-score for the MaxMatcher, which can 

extract UMLS concepts from texts, is about 70%. Compared to multiword phrase 

extraction, however, one can extract more concepts than multiword phrases because 

ontological concept extraction has no statistical constraints.  

The semantic mapping between single-word terms is less effective and efficient than 

multiword phrases and ontological concepts. First, because a single-word term is unable 
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to incorporate contextual information into the semantic mapping procedure, the mapping 

result is fairly general and contains mixed topics. Second, a typical document contains a 

larger number of words than ontological concepts and multiword phrases and, thus, takes 

more time to get the parameter estimation because it involves the calculation of the 

co-occurrence matrix, which has the time complexity in proportion to the square of 

average document length. 

 

 

 

Table 7.2: The summary of the comparison among three types of topic signatures. P, 

C, and W denote multiword phrases, ontology-based concepts, and single-word terms, 

respectively. The signs “>” and “<” mean “better than” and “worse than”, 

respectively. 

 

Tasks Efficiency Effectiveness 

Extraction P,C<W C<P<W 

Semantic Mapping P,C>W P,C>W 

Information Retrieval P>C>W C,P>W 

Text Classification P>C>W C, P>W 

Text Clustering P>C>W C,P<W 

 

In the stage of online semantic smoothing, the topic signature of single-word terms 

has the highest time complexity because the number of single-word terms is usually 

much higher than the number of multiword phrases or ontological concepts. During 

semantic smoothing, the complexity is in proportion to the number of topic signatures for 

mapping. With respect to the effectiveness of the three types of topic signatures, it is 

difficult to predict. Several factors determine the effectiveness of semantic smoothing, for 

example, the sparsity of data, the representative of extracted topic signatures, and the 
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consistency of single-word terms in a corpus. However, in general, we have the following 

rules. In the application of information retrieval, multiword phrases and ontology-based 

concepts are more effective than single-word terms. For text classification, multiword 

phrases and ontology-based concepts are slightly more effective than single-word terms. 

But when the number of training documents is too small, say, one or two documents per 

class, single-word terms are more effective than the other two. For text clustering, 

single-word terms seem more effective than the other two on small datasets and 

comparable to the other two on large datasets. 

 

7.3 The Comparison to Other Models 

The statistical translation model and latent topic models, such as LDA and pLSI, are two 

representative language models that address the issue of utilizing semantic knowledge for 

language model smoothing. We would like to summarize the strengths and weaknesses of 

the topic signature language model compared to the aforementioned two models in the 

aspects of data acquisition, scalability, reusability, and complexity.  

The statistical translation model requires paired corpora for training. For example, it 

uses large numbers of query-document pairs to train the translation model. It is often very 

difficult or expensive to collect such paired training data. The latent topic models and the 

topic signature language model use co-occurrence data, which is easy to collect. However, 

the topic signature language model has to extract the topic signatures prior to semantic 

mapping estimates. For general domains such as news collection, it is quite effective to 

use some automated algorithm (e.g., Xtract) to extract topic signatures such as multiword 
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phrases. For some specific domains such as biomedical literature, we have to use domain 

ontology to extract meaningful topic signatures. This is the limitation of the topic 

signature language model. 

Both the statistical translation model and latent topic models estimate all model 

parameters simultaneously. This means the parameter space will be in proportion to the 

number of training documents as well as to the size of the word space. In other words, 

both models are not scalable to huge collections. On the contrary, the topic signature 

language model estimates semantic mapping individually for each topic signature and 

thus is highly scalable to large collections. 

The latent topic models will learn semantic profiles for each latent topic themes. 

Since the topic theme is latent and abstract, it is difficult to apply latent topics learned in 

one collection to another. Some latent topic models such as pLSI can’t estimate the 

distribution of latent topics in a new document because it does not have a document 

model. Some latent topic models such as LDA include a document model and are able to 

estimate the distribution of latent topics in new documents. But it assumes the content of 

the new document should be similar to the training collections. Both translation models 

and topic signature language models result in semantic mappings from explicit words or 

topic signatures to words. Since it is straightforward to extract explicit words or topic 

signatures in new documents, the semantic mapping knowledge learned from training 

data can be easily applied to new documents and collections. However, the translation 

model results in semantic mapping from single word to single word, that is, it is unable to 

incorporate contextual information and word sense into the translation procedure. As we 
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know, individual words without context could be very ambiguous. Therefore, it may be 

problematic to apply translation knowledge learned in one collection to another. The 

topic signature language model does not have this issue if the topic signature itself is 

context sensitive. 

 The complexity of the three models in the testing stage is of the same magnitude. 

In the testing stage, the three models will statistically map words, topic signatures, and 

latent topics to individual words, respectively. The complexity is thus subject to the 

number of words, topic signatures, and latent topics in a document. In practice, the three 

numbers are in the same magnitude. 

 

7.4 The Contribution of the Thesis 

The contribution of the paper is five-fold. First, we developed a novel topic signature 

language model that could incorporate semantic knowledge into a traditional language 

model. This new language model can be easily applied to many text applications such as 

information retrieval, text classification, and text clustering. 

Second, we developed an efficient co-occurrence–based semantic knowledge 

learning method. This method does not require labeled training data. Instead, it uses 

co-occurrence data, which is quite cheap to collect. It learns semantic mapping 

knowledge individually for each topic signature and, therefore, is highly scalable to large 

datasets. The knowledge unit is explicit topic signatures such as multiword phrases and 

ontological concepts, rather than latent topic themes. The topic signature somehow 

self-contains contextual information, and the mapping results are usually specific and 
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accurate. Thus, the semantic knowledge of topic signatures can be reused in new 

documents and collections. 

Third, we applied the topic signature language model to three applications 

(information retrieval, text classification, and text clustering) and evaluated these 

applications on two different domains (news and biomedical literature). In general, it was 

safe to conclude that the topic signature language model significantly outperformed the 

baseline language models and the majority of the state-of-the-art nonlanguage modeling 

approaches on all these applications and domains. The summarization in Section 7.1 gave 

users high level guidance regarding how to use the topic signature language model 

properly. For example, how to set the optimal mapping coefficient of the model; when 

one can use the model and when one cannot. 

Fourth, we compared and contrasted the effectiveness and the efficiency of three 

types of topic signatures: individual words, multiword phrases, and ontological concepts. 

A short summary was described in Section 7.2. The comparison gave guidance regarding 

how to choose topic signatures for different applications and domains. 

Last, we developed the dragon toolkit (http://dragon.ischool.drexel.edu) for academic 

use. The dragon toolkit implemented the topic signature extraction approaches; semantic 

mapping knowledge learning methods; and the topic signature language models for 

information retrieval, text classification, and text clustering. It was written in Java, the 

platform-independent language, and is free to public. Since its first release in April 2007, 

the dragon toolkit has been downloaded by more than one thousand researchers or 

research groups worldwide, in the community of information retrieval and text mining. 
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7.5 Future Work 

The topic signature language model is a framework rather than a specific algorithm for 

semantics-based language model smoothing. It can be extended in many aspects. First, it 

is able to accommodate more types of topic signatures. For example, significant word 

pairs or concept pairs can be used as topic signatures as well. We have tested this topic 

signature in information retrieval and proven it was effective in improving the accuracy 

of information retrieval. The complexity of this topic signature, however, still needs to be 

improved. 

 Second, other types of semantic knowledge could be incorporated into the topic 

signature language model. In addition to the semantic mapping knowledge, a semantic 

category of topic signatures is also effective in smoothing language models, especially 

for bigram language models. The core idea is that words, phrases, and concepts in the 

same semantic category should share many similar language characteristics.  

 Third, we plan to apply the topic signature language models to more text applications. 

Because of time constraints, we only evaluated the model on three applications 

(information retrieval, text classification, and text clustering). We believe future studies 

will show that the model is also effective in improving the performance of applications 

like speech recognition, question classification, and content-based image annotations. 
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