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Abstract

Packet Scheduling Strategies for Emerging Service Models
in the Internet
Hongyuan Shi

Harish Sethu, Ph.D.

Traditional as well as emerging new Internet applications such as video-conferencing

and live multimedia broadcasts from Internet TV stations will rely on scheduling algo-

rithms in switches and routers to meet a diversity of service requirements desired from the

network. This dissertation focuses on four categories of service requirements that cover

the vast majority of current as well as emerging new applications: best-effort service, guar-

anteed service (delay and bandwidth), controlled load service, and soft real-time service.

For each of these service types, we develop novel packet scheduling strategies that achieve

better performance and better fairness than existing strategies.

Best-effort and guaranteed services:A fair packet scheduler designed for best-effort

service can also be employed to achieve bandwidth and delay guarantees. This disserta-

tion proposes a novel fair scheduling algorithm, calledGreedy Fair Queueing (GrFQ), that

explicitly incorporates the goal of achieving better fairness into the actions of the sched-

uler. A simplified version of the scheduler is also proposed for easier deployment in real

networks.

Controlled load service:This dissertation analyzes and defines requirements on packet

schedulers serving traffic that request the controlled load service (part of the Integrated Ser-

vices architecture). We then propose a novel scheduler, called the CL(α) scheduler, which

provides service differentiation for aggregated traffic for controlled load service. The pro-

posed scheduler satisfies the defined requirements with a very low processing complexity

and without requiring per-flow management.
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Soft real-time service:We formally define the service requirements of soft real-time

applications which have delay constraints but which can tolerate some packet losses. Two

novel schedulers of different levels of complexity are proposed. These schedulers achieve

better performance (lower overall loss rates) and better fairness than previously known

schedulers.

We adapt a metric used widely in economics, called theGini index, to our purpose of

evaluating the fairness achieved by our schedulers under real traffic conditions. The Gini

index captures the instantaneous fairness achieved at most instants of time as opposed to

previously used measures of fairness in the networking literature. Using real video, audio

and gateway traffic traces, we show that the proposed schedulers achieve better perfor-

mance and fairness characteristics than other known schedulers.
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Chapter 1. Introduction

1.1 Internet Service Models

1.1.1 The Demand for New Service Models

The Internet is a network of networks linking computers that share the TCP/IP suite of

protocols. Built on the technology of packet switching, as opposed to circuit switching,

the Internet permits an efficient means of data exchange for applications that do not require

firm performance guarantees. Today’s Internet only provides a best-effort service, in the

sense that it does its best to deliver good service but provides no guarantees whatsoever on

the quality of service. This service model is simple, low-cost and pushes much of the com-

plexity to the end-systems. For example, end-systems recover from packet losses through

retransmissions. Most importantly, best-effort service has been a perfectly adequate and

efficient model for the vast majority of the early applications such as e-mail and ftp.

The Internet, however, is also a constantly evolving infrastructure, influenced by a num-

ber of new applications with diverse requirements. For example, streaming multimedia and

real-time interactive applications, which are becoming increasingly popular, require tight

bounds on the end-to-end delay and the loss rate. The best-effort service provided by the

Internet is not sufficient for these applications. Architectural enhancements and additional

mechanisms are required to support the quality of service (QoS) that is demanded by these

classes of applications.

An obvious solution, of course, is to provide excess bandwidth in the network so as

to ensure that all application requirements will always be met. However, there are sev-

eral weaknesses to relying entirely upon the availability of sufficient resources. Firstly,

today’s applications (and not necessarily future applications) already tend to use up more

bandwidth than is available at the edge networks. For example, most college campuses
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today are forced to restrict the bandwidth allocated to certain kinds of applications (such

as music file downloads) in order to ensure an adequate level of service to other appli-

cations. Secondly, many critical applications impose the need for the network to provide

service differentiation. Thirdly and probably most importantly, QoS assurance also pro-

vides a flow protection from the behavior of other misbehaving flows. For example, in

the absence of mechanisms to provide QoS assurance, denial of service attacks based on

excessive consumption of a resource become possible.

In light of the above need for new service models and mechanisms to support these

service models, a number of proposals have been advanced, both in the research literature

as well as by the industry and the IETF. This dissertation focuses on some of these service

models and proposes novel packet scheduling strategies to support these service models.

1.1.2 Service Models Proposed

There have been several service models proposed by Internet Engineering Task Force

(IETF), the industry and the academic research community. Among these, the most pop-

ular and well-accepted are Integrated Services (IntServ) [1, 2] and Differentiated Services

(DiffServ) [3], both of which have been formally defined by IETF in RFCs.

Integrated Services

TheIntegrated Servicesmodel defined by the IETF introduces an architecture to support

two kinds of service additional to the best effort service. One is theguaranteed service[2]

which seeks to provide delay bound guarantees to traffic flows. Such guarantees are ensured

by making per-flow reservations using the Resource Reservation Protocol (RSVP), and then

expecting schedulers in the routers to abide by the reservations [4]. One of the challenges

in providing these guaranteed services is in the management of reservations and scheduling

states corresponding to thousands of traffic flows that may all be active at the same time.



3

Therefore, the Integrated Services framework also specifies a more scalable option called

thecontrolled loadservice [1].

Controlled load service is distinguished by the fact that it seeks to provide users with

a quality of service similar to that in a lightly loaded or unloaded network, and without

requiring or specifying a target upper bound on the delay or loss probabilities. The idea

behind this service model is that many real-time applications do receive adequate perfor-

mance and quality of service in a lightly loaded network, eliminating the need for very strict

performance guarantees. The desired quality of service is intended to be assured through

capacity planning and admission control rather than through per-flow management during

packet scheduling and forwarding. When a user exceeds traffic specifications approved by

the admission control policy, the service obtained by the excess packets degenerates to the

best-effort service.

Differentiated Services

In order to address the scalability issues with the Integrated services framework, es-

pecially its guaranteed services option, theDifferentiated Services(DiffServ) framework

was proposed as as a more scalable choice [3]. The DiffServ model is distinguished from

IntServ by the fact that there is no reserved capacity at each router for individual flows or

connections. Instead, the quality of service is achieved by regulating traffic and marking

packets on the network boundaries. In the DiffServ model, a user first negotiates with the

network about the traffic parameters, service quality and price. The result is contained in

a service level agreement. The future traffic from this user will be regulated based on the

contract before it enters the network. On the boundary of the network, a service classifier

is used to map the flow into the suitablePer-Hop-Behavior(PHB) class according to its de-

sired service quality. The traffic from the user that is sent in violation of the traffic contract

is marked, so that the routers inside the network can decide how to forward the packet and
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what level of service to provide to it. Since service differentiation is achieved by marking,

per flow management is not necessary. This reduces the processing associated with the

scheduling and forwarding of packets at the network nodes, and in addition, allows a more

scalable mechanism for achieving quality of service.

To satisfy the vast variety of requirements from diverse applications, appropriate PHB

classes and the associated forwarding mechanisms should be defined.Assured Forward-

ing (AF) and Expedited Forwarding(EF) are the two PHBs that have been defined by

IETF [5, 6]. Assured Forwarding has different PHB classes with different levels of assur-

ance in delivery, while Expedited Forwarding includes only one PHB class with a strong

requirement on low delay and steady guarantee of bandwidth. The properties of EF-PHB

are particularly suitable for real time communication, such as audio or video teleconferenc-

ing.

Besides Expedited Forwarding and Assured Forwarding, more PHB structures have

been proposed to fit into the DiffServ framework. In [7],Dynamic RT/NRT (DRT)-PHB

group is defined with two PHB classes:RTclass for real-time traffic;NRTclass for flows

without strict delay constraint. Each class has six PHBs, representing different importance

levels. DRT-PHB group can also be extended to include more classes and importance

levels.

Other Service Models

An alternate service framework is based on differentiating quality of service relatively

instead of absolutely [8]. The model is calledRelative Differentiated Services. With this

model, the network does not provide assurance on the absolute quality of service. Instead,

it assures that a higher class has a better QoS than a lower class. It is up to the applications

to select the right class for its purpose. Therefore, the network only provides relative QoS

classes for end systems to choose.



5

Another architectural framework, calledSCORE[9], provides guaranteed services while

maintaining scalability for core networks. It does not have per flow information manage-

ment, but adds an additional QoS state to each packet which, however, is incompatible

with current IP protocol. Yet another service model,Asymmetric Best-Effort[10], provides

a “throughput versus delay jitter” differentiated service for IP packets. In this approach,

best effort packets are marked as eitherGreenor Blue. Green packets receive less delay

jitter but may experience high losses during congestion intervals. These two classes are

still best effort and the traffic sources need to be TCP-friendly.

1.1.3 Network Mechanisms to Support Service Models

A network service model is supported and implemented through several network mech-

anisms, such as packet scheduling, buffer management, flow control, congestion control,

and admission control. A packet scheduling algorithm determines which packet among

those awaiting service should be transmitted next. It is the key component affecting band-

width allocation and service delay since it decides the exact sequence in which packets

should be transmitted. Besides making decision on transmission sequence, a scheduling al-

gorithm is also responsible for making decisions on which packets to drop in the presence

of congestion.

Buffer management schemes are responsible for making decisions regarding which

packets should be stored to await for transmission and how they are stored (for exam-

ple, in common FIFO queues or per-flow queues). It is closely related to packet scheduling

algorithms since a packet should first be stored before transmission. During periods of

network congestion when buffer resources become scarce, the buffer management strategy

becomes critical to overall performance and QoS achieved by the flows. Frequently, buffer

management strategies are very closely tied to the scheduling discipline. However, once a

packet is accepted and stored in the buffer, the length of time it takes to begin transmission
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depends on the scheduling algorithm.

Packet scheduling strategies, in combination with buffer management schemes, are typ-

ically responsible for determining which packets to drop. For example, some multime-

dia sources may generate packets of multiple priorities using “scalable” coding schemes

[11,12]. In such cases, successful delivery of lower priority packets is desired but not crit-

ical for overall quality. The network mechanisms may determine the quality of receiver

playback by dropping packets of lower priority whenever necessary. Such mechanisms are

able to exploit the elasticity in the application with respect to packet loss rates and still

deliver reasonable quality of transmissions.

Flow control mechanisms are used to regulate the traffic injected into the network from

applications. Such a mechanism is necessary since traffic arrival characteristics are typi-

cally not very smooth and since QoS assurance is easier with smooth traffic. Usually, the

most basic parameters used for flow control are average rate, peak rate and burst size. In

spite of flow control mechanisms, traffic from different parts of the network may have ran-

dom correlations and thus, still lead to bursty traffic at certain points in the network causing

congestion.

Congestion control mechanisms are used to limit, shape or divert traffic so that the

probability of congestion is reduced and thus enhancing QoS assurance. For example, video

sources are designed to have rate control mechanism so that it has the ability to reduce the

transmission rate for the purpose of congestion control [13]. A more common approach

to achieving congestion control is to send feedback information to traffic sources [14].

Upon receiving a message about potential congestion, sources reduce their sending rates

appropriately. However, such a mechanism, besides being voluntary on the part of end-

users, also involves some inherent delay in the mitigation of congestion after it is first

detected. Therefore, it is difficult to completely avoid congestion unless the network is

under utilized.

In conjunction with all the above mechanisms, a good admission control strategy is
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typically also essential for QoS assurance. The role of admission control is to protect

the service quality for existing traffic in the network by determining whether or not to

accept a new service request based on current resource utilization. A secondary goal of the

admission control strategy is to achieve as high a utilization of the network as possible.

1.2 Requirements for Packet Schedulers

A packet scheduling strategy is a critical component of the mechanisms that are neces-

sary to achieve the QoS desired by flows of traffic. A goal in the design of packet schedulers

is to satisfy both user requirements such as delay and bandwidth demands and the network

requirements such as efficiency of implementation. In the following, we discuss the specific

requirements of both applications and the network as regards packet scheduling.

1.2.1 Application Requirements

An excellent taxonomy of application requirements may be found in [15]. In this dis-

sertation, we focus more specifically on the requirements that are particularly relevant to

the work presented in the later chapters. For traditional data applications, such as mes-

sage exchanges, file transfers and database inquiries, transmission throughput is the most

important performance metric. These applications usually have flexible requirements on

transmission delay and rate although they do benefit from low delays and high rate. This

is the reason that best effort service model is considered sufficient for such applications.

Usually, such applications also require that there be no packet losses. However, since the

transmission delay requirements are loose, packet losses can be overcome by retransmis-

sion of the lost packet by the traffic sources. Some data transfer applications may require

higher assurance on packet delivery, but their basic requirement is still high throughput.

The requirements of multimedia applications, however, are significantly more complex.

Usually multimedia information is contained in large files; for example, a typical MPEG-4
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coded movie of reasonably good quality is about 700 Mbytes. To access recorded mul-

timedia information, one can first download the entire file completely from the source to

the local memory and play it back later. In such an operation, the requirements on the

network are same as with traditional data traffic. However, since multimedia files tend to

be larger than normal data files, sharing multimedia in such a fashion is very inefficient

since a multimedia file takes a large amount of local memory resource and can also waste a

significant length of time just in the downloading. Since the playback of a multimedia file

is sequential, if the playback starts when the first part of the multimedia file arrives, the data

can be consumed gradually as time elapses. Once the data is used, it is discarded, saving

memory space and eliminating much of the idle wait time associated with downloading.

As a result, the receiver only needs a small amount of memory space to store unplayed

data. Such a technique, used routinely today, is calledstreamingmultimedia transmission.

Clearly, streaming operation has a stricter requirement on transmission quality, especially

delay and throughput, than normal data transfer applications. Even though streaming ap-

plications are real-time applications, they are not two-way interactive applications which

require even stringent requirements on delays and bandwidth.

Examples of two-way interactive real-time applications include video conferencing and

audio communications (such as Voice-over-IP). In such applications, the quality of service

is primarily related to the transmission delay. Since the characteristics of different real-

time applications vary significantly, there exist diverse requirements on the transmission

delay. Usually transmission delay should not exceed a certain pre-determined bound, such

as about 100-200ms for interactive voice and video applications. Otherwise, the transmitted

packet is considered to be of no use to the receiver and is equivalent to having been lost.

Multimedia packets usually carry information on when the data in a packet is to be played

by a receiver in relation to other packets. Some receivers implement a fixed playback delay,

i.e., after a certain amount of fixed delay, they play all received packets strictly according to

the information carried by the packets. In such cases, the receiver only cares as to whether
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or not a packet arrives earlier than a pre-determined time, but does not care as to how early

the packet arrives [15]. However, in some applications such as Voice-over-IP, there may

be periods of silence during which the receiver may adjust its playback delay based on the

current observed end-to-end delays. Thus, for example, a brief silence by a speaker may

become just slightly more brief when played by the receiver but overall, such adaptivity

to current observed delays allows better quality of transmission. Many audio and video

conferencing applications, including vic and vat, implement such adaptive mechanisms to

adjust the playback delay based on the most recent observations of the end-to-end delay.

Such applications, while requiring an end-to-end delay bound, benefit significantly if the

delay is as low as possible.

From the aspect of data losses, real-time applications can usually be classified as either

hard or soft. Hard real-time applications require that all packets are received within a cer-

tain end-to-end delay bound and no packets are lost. Such hard requirements are typical

in some video games as well as many real-time control systems. Soft real-time applica-

tions can tolerate some packet losses while also maintaining reasonable quality of service.

For example, voice applications can tolerate the loss of a few scattered packets without

significant loss in perceived quality.

1.2.2 Requirement of Fairness

We now focus on requirements considering the fact that multiple applications or flows

of traffic will share the network all at the same time while each application also has cer-

tain requirements as described above. Flows of traffic share resources in the network as

they traverse the network. Fairness is both an intuitively desirable and practically valuable

property in the allocation of network resources amongst the flows. For a network pro-

viding best effort service, a fair packet scheduler will help to protect well behaved flows

from ill behaved flows which would otherwise consume all the bandwidth resource in the
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network [16]. Even in a network that implements a supporting mechanism for guaranteed

services, fairness is still desired by users who share network resources. Ideally, the network

should not overwhelmingly satisfy one user while just barely satisfying another user, even

when both users are actually satisfied. Again, this is not merely because it is intuitively

desirable to be fair but also because the features of a network that allow such preferential

treatment to a flow can be readily exploited by attackers for a variety of malicious purposes.

Fairness is especially critical, and will be demanded by consumers, when there are prices

charged to consumers for services rendered.

There exist several notions of fairness. A common notion of fairness,max-min fairness,

has been proposed for best effort networks. It defines principles to allocate a resource fairly

to flows based on the intuition that no flow should receive more service than its demand

and that no flow with an unsatisfied demand should receive less service than any other

flow [17, 18]. The rationale behind this criterion is that the flows have equal rights to the

link resource [16]. For networks with integrated services, this notion of fairness is extended

to utility max-min fairness[19]. Flows in a network with integrated services may have

different utilities even though they are allocated the same amount of resources. Therefore,

the allocation should be fair such that the utilities of flows satisfy max-min criterion.

1.3 Existing Packet Scheduling Strategies

Many packet scheduling disciplines have been proposed for best effort services, guaran-

teed services and differentiated services networks. Here, we will provide a brief summary.

1.3.1 Schedulers for Best Effort Services

In early computer networks, First Come First Serve (FCFS) was a popular schedul-

ing discipline since it results in minimal overall delays for all flows. However, flows are

not protected and isolated from the impact of others. A packet-by-packet round robin ap-



11

proach of scheduling was introduced to overcome this weakness; however, since packets

in networks come in a variety of lengths, a flow can easily capture more than its share

of bandwidth by transmitting large packets. Generalized Processor Sharing (GPS) is a

hypothetical and unimplementable scheduler that exactly achieves the goal of max-min

fairness [20]. During each infinitesimal interval of time, the GPS scheduler visits each

backlogged flow once and schedules an infinitesimal amount of data proportional to the

flow weight for transmission over the output link. Over the last decade, a number of differ-

ent packet-by-packet scheduling algorithms have been proposed that seek to approximate

the GPS scheduler.Weighted Fair Queueing (WFQ)[16, 20] and its variants [21–23] try

to emulate the GPS scheduler by time-stamping each arriving packet with afinish number,

the expected completion time of the packet if it were scheduled by the ideally fair GPS

scheduler, and serve the packets in increasing order of their finish numbers. Thus, these

schedulers seek to emulate GPS through preserving the same order in the packet transmis-

sions as in GPS. Such schedulers are known astimestamp-based schedulers.

Another class of scheduling algorithms are those based on round-robin orframe-based

approaches which do not achieve as good a fairness as most of the schedulers discussed

above but which are significantly simpler to implement in both hardware and software. A

well known example isDeficit Round Robin (DRR)[24]. While serving flows in a round-

robin order, DRR eliminates the unfairness due to different packet lengths by keeping a

deficit counterfor each queue to measure the past unfairness. The amount of service al-

located to each flow is determined by thequantumof the queue and the deficit counter

from the last service. A similar method was proposed in [25, 26], later known asSurplus

Round Robin (SRR). Several variants of DRR have been proposed to further reduce the un-

fairness of the scheduling decision, such asNested-DRR[27] andPre-order DRR[28]. All

the above schedulers require the knowledge of the maximum packet length to ensure a low

computation complexity. A novel frame-based scheduler,Elastic Round Robin (ERR)[29],

uses a method which does not need the maximum packet length to achieve fairness with low
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complexity. It adjusts the amount of service to each flow based on the latest service history.

Therefore, ERR achieves the best performance of fairness while maintaining per packet

computation complexity ofO(1). Recently, ERR is further improved as proposed in [30].

The new scheduling discipline, calledPrioritized Elastic Round Robin (PERR), borrow-

ing the principle used in Pre-order DRR, re-orders the transmission sequence within each

frame of ERR. It achieves fairness close to that of timestamp-based schedulers with a lower

processing complexity than timestamp-based schedulers.

1.3.2 Schedulers for Guaranteed Services

Schedulers for guaranteed services can be classified into two groups, work-conserving

and non-work-conserving. A work-conserving server is not idle whenever there exists a

packet awaiting transmission. In a non-work-conserving system, no packet may be trans-

mitted even though there are packets available to transmit. A non-work-conserving sched-

uler is typically used where packet arrival characteristics can be predicted or when it is

desirable to shape the traffic in a particular fashion for the next scheduler in the path of the

traffic.

Many fair schedulers for best effort service have an important characteristic that the up-

per bound on the delay experienced by a flow is directly related to the bandwidth allocated

to that flow. This property makes fair schedulers capable of providing guarantees. Such

schedulers include both frame-based and timestamp-based schedulers.

A different approach to achieving guaranteed delays, based on deadlines, is used in the

Delay Earliest-Due-Date (Delay-EDD) scheduler [31]. The Delay-EDD scheduler trans-

mits packets in the order of packet deadlines. The deadline of each packet is computed

based on the service contract and previous service history of the associated flow. The sched-

uler cannot provide a service guarantee by itself; the guarantee depends on the assumptions

made about traffic characteristics. However, because the system is work-conserving, the
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traffic pattern can be easily distorted by the random behavior within the network. There-

fore, it is desirable to maintain a traffic pattern on the output link that is similar to traffic

arrival characteristics. Jitter-EDD [32] extends Delay-EDD by adding a regulator before

the scheduler. The regulator holds a packet until it is eligible for transmission. The eligi-

bility time is computed based on the difference between transmission time and the deadline

of the packet at the upstream scheduler. Stop-and-Go [33] uses a framing method. The

scheduler holds a packet until the new frame starts.

1.3.3 Other Schedulers Supporting QoS

Many other schedulers have been proposed to serve QoS requirements besides the sim-

ple services discussed above. The Waiting Time Priority (WTP) scheduler was proposed

three decades ago [34] and is recently employed in the context of relative differentiated

services [8]. It is adopted to provide proportional delay to different service classes. Each

class is associated with a weight. The system monitors the head waiting time of each class

normalized by the class weight. The scheduler will service the class with the maximum

normalized head waiting time so that waiting times of all classes are close to equalized.

Another approach, the Mean-Delay Proportional (MDP) scheduler [35], attempts to equal-

ize the normalized mean delay among different service classes. The mean delay is defined

as minimum possible average delay of packets previously transmitted and currently await-

ing for transmission in the queue. Therefore, the MDP scheduler makes decisions based

on both service history and current system situation. A similar approach, named as Hybrid

Proportional Delays (HPD) [36], uses a delay metric which combines the average delay of

transmitted packets and the waiting time of current head packet in the queue. The impor-

tance ratio between the two parameters is selected through an empirical study to approach

the theoretical model of Proportional Delay Differentiation (PDD). Again the service disci-

pline of the HPD scheduler attempts to equalize the normalized delay metric among service
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classes.

Instead of providing proportional average delays to the flows, the Weighted Earliest Due

Date (WEDD) scheduler [37] attempts to provide proportional deadline violation probabil-

ities to service classes. The rationale behind this design is that some voice communication

applications do not care about the delay of each packet, but rather the probability of miss-

ing the deadline. However, it cannot provide enough assurance to applications requiring

packet losses be scattered and not concentrated in a burst.

1.4 Contributions

This dissertation focuses on the design of novel packet scheduling strategies for four

important service models: best-effort, guaranteed, controlled load and soft real-time. Our

solution for best-effort schedulers also serves as a solution for guaranteed services for real-

time applications. For each of these service models, we propose a novel packet scheduler

that achieves better performance and/or fairness than previously known schedulers.

We presentGreedy Fair Queueing (GrFQ), a novel scheduler that explicitly incorpo-

rates the goal of achieving a better fairness into the actions of the scheduler. The relative

fairness bound (RFB), first used in [21], is a popular measure of fairness that is most fre-

quently used to judge the fairness achieved by a scheduler. We prove that the fairness

achieved by GrFQ, based on the RFB, is extremely close to that of the best among known

fair schedulers. Further, we shown that it achieves a better bound on thenormalizedlag than

other known schedulers [23]. The per-packet dequeuing complexity of GrFQ isO(log N)

with respect to the number of flows.

We further argue that existing measures of fairness do not accurately capture the actual

fairness achieved at most instants of time, and therefore, do not represent a true measure of

the ability of a scheduler to successfully deliver end-to-end quality for applications, espe-

cially real-time applications. A new measure of fairness based onGini indexis proposed.
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This measure captures the instantaneous fairness of a scheduler and, unlike other measures

based on bounds, also captures the fairness of the scheduler in its handling of flows during

idle periods. Both of these characteristics of the new measure are important for the design

of scheduling disciplines for multimedia traffic, since such traffic tends to have heavy-tailed

distribution of packet lengths and highly irregular patterns of backlogged and idle periods.

With the Gini index as the measure of instantaneous fairness and using real video traffic

traces and real gateway traffic traces, we show that the GrFQ scheduler achieves better fair-

ness than any other known scheduler at virtually all instants of time. We further propose

a simplified version of the scheduler, called GrFQ-lite, which avoids the emulation of a

fluid flow system and has a per-packet work complexity ofO(1) in the computation of the

timestamps. Using real traffic traces again, we demonstrate that GrFQ-lite is also able to

achieve close to or better fairness than most other schedulers including those that are sig-

nificantly more computationally intensive in their emulation of the ideally fair fluid-flow

GPS system.

As discussed earlier, fair schedulers are able to also serve as schedulers for guaranteed

services such as bandwidth. The GrFQ scheduler, because it achieves the better fairness

than other schedulers, also achieves better delay guarantees than other known schedulers.

Fair queueing schedulers, however, cannot be used to efficiently serve applications with

quality requirements other than bandwidth. Other service models, such as the controlled

load service and soft real-time services, impose unique new requirements on the schedulers

and cannot be served by fair queueing schedulers.

In designing a scheduler for controlled load service, we begin with analyzing the re-

quirements of applications using the controlled load service defined within IETF’s Inte-

grated Services architecture. The controlled load service requires source points to regulate

the traffic and mark packets that are sent in violation of the traffic contract. One of the

requirements we define is that the additional delay of unmarked packets caused due to the

transmission of marked packets should be bounded. AnO(1) scheduler to achieve this
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bound is non-trivial. In this dissertation, we propose the CL(α) scheduler, which bounds

this extra delay toα or less. Using real traffic traces, we show that the CL(α) scheduler

meets its design requirements. The principle used in this algorithm may also be used to

schedule flows with multi-level priorities, such as in some scalable real-time video streams

as well as in other emerging service models of the Internet that mark packets to identify

drop precedences [3, 38, 39]. In such cases with multiple levels of drop precedences, the

principle of the CL(α) scheduler would have to be applied in a hierarchical manner to

bound the impact of each lower priority layer on the delays experienced by higher priority

layers.

Since the CL(α) scheduler only provides loose quality differentiation on delay, it cannot

satisfy applications with both loss and delay constraints. Many soft real-time applications

have requirements on transmission deadlines and a maximum packet loss rate. Further, cur-

rent schedulers for soft real-time applications cannot achieve fairness when approaching the

service goal, the real performance achieved is not satisfactory. We study the characteristics

of soft real-time applications and define the requirements on the scheduler in this context.

We propose two new schedulers for soft real-time services, which achieve significant im-

provement in the packet loss rates achieved. Further, one of our schedulers, while achieving

better performance than other previously proposed schedulers, also achieves better fairness

amongst the flows. We analytically prove the work complexity of our schedulers. Using

real Voice-over-IP traffic traces, we also demonstrate the better results achieved by our

schedulers.

1.5 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents Greedy Fair

Queueing (GrFQ) discipline and the new measure for instantaneous fairness, Gini index.

Chapter 3 illustrates the design of CL(α) scheduler. In Chapter 4, two schedulers for soft
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real-time applications are proposed which reduced the probability of packet losses and also

achieve better fairness in the distribution of the packet delay. Finally, Chapter 5 concludes

the dissertation.
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Chapter 2. Best-Effort and Guaranteed Services

2.1 Introduction

2.1.1 Fair Packet Schedulers

Fair packet schedulers serve to achieve fairness in the case of best-effort traffic, and can

also serve to achieve delay and bandwidth guarantees required by real-time traffic [18]. In

this chapter, we design a novel scheduler,Greedy Fair Queueing (GrFQ), that may be used

for both best-effort service and guaranteed services.

As illustrated in Section 1.3.1, the Generalized Processor Sharing (GPS) model pro-

vides an ideally fair but unimplementable traffic scheduling discipline. A number of dif-

ferent packet-by-packet schedulers have been proposed over the last decade that seek to

approximate the GPS scheduler. The earliest such algorithm wasWeighted Fair Queueing

(WFQ) [16, 20] which tries to emulate the GPS scheduler by time-stamping each arriving

packet with afinish number, the expected completion time of the packet if it were sched-

uled by the ideally fair GPS scheduler. The WFQ scheduler then serves the packets in

increasing order of their finish numbers. Thus, the WFQ scheduler seeks to emulate GPS

through preserving the same order in the packet transmissions as in GPS. A number of dif-

ferent variants of WFQ have been proposed which seek to either improve the accuracy or

reduce the complexity in the computation of the finish number.Self-Clocked Fair Queue-

ing (SCFQ)[21], uses the finish number of the packet currently being transmitted in the

computation of finish numbers, and thus achieves an easier implementation and also, very

good fairness.Start-time Fair Queueing (SFQ)[22] is a variant of SCFQ which uses the

starting time of the packet currently in service to compute the timestamp of the arriving

packet. Certain other variants of WFQ use additional eligibility criteria in the determina-

tion of the next packet to transmit. For example,Worst-case Fair Weighted Fair Queueing
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(WF2Q) [23] transmits the packet with the lowest finish number among those that would

have already begun transmission under the GPS scheduler.

A different approach to the design of fair scheduling algorithms was proposed by Stil-

iadis and Varma based not on an explicit emulation of GPS through the use of finish

numbers, but instead based on periodically re-calibrating a global variable indicating the

progress of the scheduler. This reduces the complexity of timestamp computations and can

be shown to permit the design of provably fair and computationally efficient schedulers

such asStarting Potential Fair Queueing (SPFQ)[40]. A somewhat similar approach of

time-stamping flows instead of packets, leading to a similar level of computational effi-

ciency, is used inTime-Shift Scheduling (TSS)[41]. In this scheme, each flow is assigned

an increasing time-stamp and the packet chosen for transmission is from the flow with the

least time-stamp.

In general, time-stamp based schedulers usually consist of two components that define

the scheduler: the method of computation of the timestamp and the method used to de-

termine the transmission order based on the timestamps. The method of computing the

timestamp is either based on the GPS reference system (as in WFQ and WF2Q) or is inde-

pendently computed based on tracking of the system progress (as in SPFQ and TSS). The

determination of the transmission order is typically based either only on transmitting the

packet with the smallest time-stamp first (as in WFQ, SCFQ, SFQ, SPFQ and TSS) or on

using additional eligibility criteria based on the GPS reference system (as in WF2Q). Note

that eligibility criteria can be used only in reference to the GPS scheduler, since only the

GPS system can provide meaningful criteria for eligibility.

Another class of scheduling algorithms are those based on round-robin or frame-based

approaches [24,29] which do not achieve as good short-term fairness as most of the sched-

ulers discussed above but which are significantly simpler to implement in both hardware

and software.
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2.1.2 Motivation and Goals

The fairness of scheduling algorithms is most commonly judged by therelative fair-

ness bound (RFB)[18, 42], a popular measure of fairness first used in [21] and later used

in several other works [22,24,29,40,41]. The RFB captures the maximum possible differ-

ence between the normalized service received by any two backlogged flows, and therefore,

serves as a measure of fairness. The RFB of the ideally fair GPS scheduler, of course, is 0.

The design of a real packet-by-packet scheduler based on achieving the same or similar

order of packet transmissions as GPS does not necessarily lead to a close approximation

of the GPS scheduler with a low RFB. For example, the WFQ scheduler can be shown

to allow a flow to lead other flows by an arbitrarily large amount [23]. While not all

of the schedulers discussed above have used an emulation of GPS finish time to achieve

fairness, none have explicitly incorporated the desired result such as a low RFB directly

into the design methodology of the scheduler and into the packet-by-packet actions of the

scheduler. Such goal-oriented action taken by the scheduler at each packet boundary leads

to another significant benefit beyond achieving a low RFB. This has to do with the fact that

the RFB is only a bound and does not quite capture the overall fairness of the scheduler.

For example, a scheduler that rarely reaches the upper bound of the fairness measure will

not, even though it should, achieve a better measure of fairness than another scheduler that

frequently or almost always operates at the same upper bound. A goal-oriented greedy

scheduler can not only achieve a low RFB by seeking to minimize it with its decision at

each packet boundary, but it is also more likely to achieve a low difference in the normalized

service among any two flows at all instants of time.

Fairness at most instants of time as opposed to merely a low RFB offers practical value

to many applications. Real-time applications called playback applications solve the prob-

lem of variations in the delay by using a playback buffer at the receiver. Incoming data

is buffered and then replayed at a certain playback point. Adaptive playback applications
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such asvic andvat dynamically change the playback point based on the current observed

delay [43] and therefore, benefit from the low and stable latency behavior that comes with

better fairness at most instants of time. This forms an important aspect of our motivation

behind this work.

2.2 Greedy Fair Queueing

2.2.1 Preliminaries

Throughout the rest of this dissertation, we use the words “session” and “flow” inter-

changeably. Consider a set of flows,1 ≤ i ≤ N , which share an output link of peak

bandwidth rateR. Flow i is associated with a weightwi. LetB(t) be the set of backlogged

flows at timet and letW (t) be the sum of the weights of these backlogged flows. The

smallest of the weights is denoted bywmin, and the largest bywmax. The total service re-

ceived by flowi over time interval(t1, t2) under a given scheduling disciplineP is denoted

by SP
i (t1, t2). If the scheduling discipline under consideration is GPS, this total service is

denoted bySG
i (t1, t2).

An early measure of fairness achieved by a scheduler, used in the works by Bennett

and Zhang [23] and also by Parekh and Gallagher [20], captures the upper bound on the

difference in the service received with the real scheduler and that with GPS since the be-

ginning of a backlogged period for any given flow. More formally, the measure is defined

as follows:

max
∀τ≥0

(
SG

i (0, τ)− SP
i (0, τ)

)
.

This measure, however, does not use normalized service, i.e., service received by a flow

normalized by its weight, and therefore, is not as adequate a measure of fairness as the

RFB. We now provide a formal definition of the RFB.

Definition 1 Let (t1, t2) be an interval of time during which all flows under consideration

are continuously backlogged while being served by the scheduling policy,P . The relative
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fairness measured with respect to a pair of flows(i, j) over time interval(t1, t2), denoted

by RF(i,j)(t1, t2), is defined as,

RF(i,j)(t1, t2) =

∣∣∣∣∣
SP

i (t1, t2)

wi

− SP
j (t1, t2)

wj

∣∣∣∣∣ . (2.1)

The relative fairness with respect to a flowi over time interval(t1, t2), denoted by RFi(t1, t2),

is defined as,

RFi(t1, t2) = max
∀j

RF(i,j)(t1, t2) (2.2)

The relative fairness over time interval(t1, t2), RF(t1, t2), and therelative fairness bound

(RFB) can be defined as,

RF(t1, t2) = max
∀i

RFi(t1, t2) (2.3)

RFB = max
∀(t1,t2)

RF(t1, t2). (2.4)

The relative fairness bound has been frequently used in the evaluation of the fairness of

several scheduling disciplines [21,22,24,29,40,41]. A related measure of fairness is called

theabsolute fairness bound (AFB)that captures the upper bound on the difference between

the normalized service received by a flow under the schedulerP and that it would receive

under the ideally fair GPS scheduler [18]. It can be shown that the absolute and relative

fairness measures are related to each other by a simple relationship [42]. Therefore, and

for historical reasons, we discuss only the relative fairness bound in this chapter.

For convenience of notation in our subsequent discussions on relative fairness, we in-

troduce the following definition.

Definition 2 Let M be a finite set of size greater than one and consisting of positive real

numbers as its elements. We define thespreadof the set, denoted byD(M), as the absolute

difference between the largest and the smallest elements of the set. More formally, the

spread is defined as:

D(M) = max
x,y∈M

|x− y| = max{M} −min{M}
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Note that RF(t1, t2) is nothing but the spread of the set of real numbers corresponding

to the normalized service received by the flows in the interval(t1, t2).

2.2.2 Handling a Newly Backlogged Flow

Recall that the RFB is the maximum difference between the normalized service re-

ceived by any two flows over any given interval of time during which the flows are both

continuously backlogged. Ifτ is the instant of time that all flows become backlogged, a

greedy scheduling strategy with the goal of achieving a low RFB is simply one that mini-

mizes the value of RF(τ, t) at each instantt that a decision is made regarding the choice of

the next packet to transmit. In this case where all flows have been backlogged for identical

lengths of time, each flow deserves the same amount of total normalized service. During

the execution of a scheduler, however, a flow may change from an idle state to that of

being backlogged or vice-versa quite frequently. Since a flow at an idle state should not

receive any service, a fair scheduler should not allocate the same amount of total normal-

ized service to a flow that is just backlogged as it would to another flow which has been

backlogged for a long time. When the current set of backlogged flows have been continu-

ously backlogged for different lengths of time, as in almost any real scenario, one cannot

use a common interval over which to compare the normalized service received by flows

and obtain a meaningful value for the relative fairness.

Consider a case in whichN flows have been continuously backlogged during the inter-

val (0, t). With the ideally fair GPS scheduler, a flowi with weightwi receives a normalized

service equal to another backlogged flowj with weightwj, i.e.

SG
i (0, t)

wi

=
SG

j (0, t)

wj

(2.5)

Thus, at timet, the above indicates the ideal amount of service each backlogged flow should

have received.

Now, consider a case in which several flows have been backlogged since timet1. One
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of these flows, flowi, changes its status from being backlogged to idle at timet2 > t1 and

later becomes backlogged again at timet3 > t2. In order to accurately and meaningfully

compare the service received by all the flows at instants aftert3, we would have to assign

an appropriate value of the normalized service received by flowi until time t3 so that the

comparison is over the entire interval(t1, t3). Here we claim that to fairly treat a newly

backlogged flow is to neither favor it nor punish it for its idle period in the interval(t2, t3).

Therefore, based on (2.5), for purposes of comparisons between the service received by

flows, we should assume that flowi at timet3 has received service equal to1,

wiS
G
j (t1, t3−)/wj (2.6)

However, if flow i has already received more than the above amount of service before

time t2 while it was backlogged, then total assumed service should beSP
i (t1, t2). This

is because a flow that receives excess service should not be able to become idle and then

immediately become backlogged again without being disadvantaged later for the excess

service it received earlier. These concepts and similar arguments have also been made

in [21,40,44].

In order to correctly assign each flow a value that measures the service it has received

thus far based on the above method, we define a state variable called thesession utility,

denoted byui(t), for each flowi as a function of time.

Assume that the system starts at time 0. During the period(t1, t2) that a flow i is

continuously being serviced, its session utility is updated as follows:

ui(t2) = ui(t1) + SP
i (t1, t2)/wi (2.7)

We now discuss how to update the session utility of a flow that just becomes back-

logged. Let flowi become backlogged for the first time or backlogged again at timet. Our

1The notation “τ−” denotes the time instant just before timeτ .
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goal in assigning a session utility value to flowi at timet is to ensure that the compari-

son between session utilities of all the flows is being made as though the flows have all

been backlogged for the same length of time. Accordingly, flowi is assigned the following

session utility value:

ui(t) = max{ui(t−), v(t)} (2.8)

wherev(t) is the GPS virtual time, which is actually the normalized service received by a

continuously backlogged flow in the GPS reference scheduler2.

Under certain circumstances, a flow can be unbacklogged in the GPS system while still

being backlogged in the real system if the transmission of its packets is delayed in the

real system. At the time when this flow becomes backlogged again in the GPS system,

its session utility should incorporate the amount of service it would receive during the

unbacklogged interval in the GPS system. However, if the flow is still backlogged in the

real system, such changes of the flow state in the GPS system are not explicitly shown

by the cumulative service. To capture this situation, each packet is also timestamped with

the beginning utility. The beginning utility of packetk in flow i, or BUi,k, is defined as

the utility of flow i at the time when packetk is ready for transmission. In order to set

the beginning utility correctly, each flow needs to maintain the finishing utility of the last

packet in the queue. Suppose the last packet in flowi at timet is packetz. The finishing

utility of flow i at timet, orFUi(t), is defined as the utility of flowi at the time instant when

packetz finishes transmission. Thus, at timet, if packetk arrives at flowi, the beginning

utility of this packet is set as:

BU i,k = max{FU i(t−), v(t)}

The finishing utility of flowi would then be updated as:

FU i(t) = BU i,k + Li,k/wi

2The reader is referred to [45] for detailed discussion on the computation of the GPS virtual time.
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whereLi,k is the length of packetk of flow i. When a transmission is finished, session

utility should be updated based on its previous value and the beginning utility of the new

head packet in the queue. Suppose a packet transmission from flowi finishes at timet, and

the new head packet is packeth. The flow utility should be updated as follows:

ui(t) = max{ui(t−),BU i,h} (2.9)

With the above definition of the session utility, as given by Equations (2.7), (2.8) and

(2.9), a newly backlogged flow can be treated as if it had been backlogged for the same

length of time as all other flows. Therefore, the goal of the scheduler is simply to mini-

mize the difference between the maximum and the minimum session utilities among all the

sessions, i.e., minimize the spread of the set consisting of the session utilities of flows.

2.2.3 Choosing the Transmission Order

Let U(t) denote the set consisting of the session utility values of all the backlogged

flows at timet in the GrFQ scheduler. That is,

U(t) = {ui(t) | i ∈ B(t)},

whereB(t) is the set of backlogged flows at timet.

The basic principle behind the GrFQ scheduler is to transmit the packet that, upon

completion of its transmission, will lead to the smallest spread in the set of session utilities.

At the boundaries of packet transmission, we will therefore need to compute the session

utility of each flow if the packet at the head of its queue is chosen for transmission. Here

we define the concept of the potential session utility of each session as follows:

Definition 3 Let t be a time instant when the server completes a transmission. Thepoten-

tial session utilityof a backlogged flowi at timet, ûi(t), is defined as the session utility of

the flow upon completion of the transmission of the packet at the head of its queue at time
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t. Suppose the packeth is at the head of the queue of flowi at timet. LetLi,h be the length

of packeth. Then,

ûi(t) = ui(t) + Li,h/wi

Denote byÛi(t) the set of session utilities of all the flows after completion of the

transmission that begins at timet of a packet from flowi. By our definition of session

utilities, Ûi(t) is formed by merely replacingui(t) in the setU(t) by ûi(t).

Ûi(t) = {ûi(t)}
⋃ {uj(t) | j 6= i and j ∈ B(t)}

Upon completion of each packet transmission, the GrFQ scheduler will choose to trans-

mit the next packet from the flow with the minimum value ofD(Ûi(t)) among all the

backlogged flows.

2.3 Implementation of GrFQ

From the previous description of the GrFQ scheduler, a naive implementation would

entail the computation of the spread corresponding to all different sets,Ûi(t), for each

flow i ∈ B(t). This implies anO(N) per-packet complexity in the worst case which

is somewhat prohibitive. In this section, we discuss how we manage to accomplish the

computations required to determine the next packet to transmit with a significantly lower

complexity ofO(log N).

Suppose the size ofB(t) is k, i.e., we havek backlogged flows at timet. Let uc1 ,

uc2 , . . . , uck
be the elements of the setU(t), such thatuc1 ≤ uc2 ≤ · · · ≤ uck

. The goal of

the GrFQ scheduler is to choose the packet from the head of the queue of flowf such that

D(Ûi(t)) is the smallest fori = f . In other words, the goal of the GrFQ scheduler is to

transmit from the flow that leads to the smallest spread in the set of session utilities at the

next transmission boundary.

In our implementation, we maintain one binary search tree and one heap data structure:
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• Tree of Session Utilities (TSU), a binary search tree of the elements of the setU(t).

This tree is updated at each packet transmission boundary.

• Heap of Potential Session Utilities (HPSU), a minimum heap of all potential session

utilities, ûi(t), i ∈ B(t). Let ûm be the minimum among them.

In TSUand inHPSU, insertion and deletion operations are of complexityO(log N).

Finding the maximum and the minimum inTSU is anO(log N) operation, while finding

the minimum inHPSUis only anO(1) operation. At each packet transmission boundary,

since only one flow changes its session utility, the complexity of maintaining these trees is

O(log N).

Now, the following theorem shows that not all the potential session utilities require

to be examined in order to determine the flow from which the next packet needs to be

transmitted. In fact, the theorem shows that the choice of a flow for the GrFQ scheduler is

narrowed down to only one of two flows.

Theorem 1 Lett be a time instant at a packet transmission boundary. Suppose thatk flows

are backlogged at timet and their session utilities form the setU(t). Letuci
(t), 1 ≤ i ≤ k,

be the elements ofU(t), such thatuc1(t) ≤ uc2(t) ≤ · · · ≤ uck
(t). Let flowm has the

minimum potential session utility at timet, i.e.

ûm(t) = min
1≤i≤k

ûci
(t)

Consider a scheduler that follows the procedure below to determine the next packet to

transmit:

• If ûc1(t) ≤ uck
(t) or if D(Ûc1(t)) ≤ D(Ûm(t)), transmit packet from flowc1; other-

wise, transmit packet from flowm.

This scheduler ensures that the next packet chosen for transmission is from the flowf such

thatD(Ûi(t)) is the smallest fori = f .
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Proof: We prove the theorem by considering two cases based on the relationship be-

tweenûc1(t) anduck
(t).

Case 1: ûc1(t) ≤ uck
(t). For all i 6= c1, sinceui(t) ≥ uc1(t), we get,

D(Ûi(t)) = max{uck
(t), ûi(t)}−uc1(t) ≥ uck

(t)−uc1(t) ≥ uck
(t)−uc2(t) = D(Ûc1(t)).

Therefore, choosing a packet from flowc1 results in the minimal spread in the session

utilities after completion of the transmission of the chosen packet.

Case 2: ûc1(t) > uck
(t). For all i 6= c1, we haveui(t) ≥ uc1(t); and for alli 6= m, we

haveûi(t) ≥ ûm. Therefore, fori 6= c1, we get,

D(Ûi(t)) = max{uck
(t), ûi(t)} − uc1(t) ≥ max{uck

(t), ûm(t)} − uc1(t) = D(Ûm(t)).

Therefore, transmitting a packet from any flow other thanc1 leads to at least as large a

spread at the next packet boundary as one would get with transmitting a packet from flow

m. Therefore, the packet chosen to transmit should be either fromc1 or from m if the

spread at the next packet boundary is to be minimized. Which of these two flows yields

the smaller spread is simply determined by comparingD(Ûc1(t)) andD(Ûm(t)) as in the

statement of the theorem.

Figure 2.1 and 2.2 present the pseudo-code of the GrFQ scheduler. Note that theDe-

queueroutine uses the simplification due to Theorem 1 above.

2.3.1 Fairness Analysis

In the following, we use weights instead of reserved rates. For purposes of fairness

analysis, the two are equivalent. If the sum of the reserved rates on a link is less than its

capacityR, then one may assign weights directly proportional to the reserved rates.

Theorem 2 Given a GrFQ scheduler, during any given interval(t1, t2) in which flows are

continuously backlogged,
∣∣∣∣∣
Si(t1, t2)

wi

− Sj(t1, t2)

wj

∣∣∣∣∣ ≤ 2 max

(
Li,max

wi

,
Lj,max

wj

)
.
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Initialize: (Invoked when the scheduler is initialized)
1 TSU← NULL;
2 HPSU← NULL;

Enqueue: (Invoked when a packetP arrives at flowi)
3 if (Queuei is empty)then
4 ui ← max{ui, v(t)}; /* See Eq. (2.8)*/
5 ûi ← ui + P .Length/ wi;
6 AddFlowToTSU(i);
7 AddFlowToHPSU(i);
8 end if;
9 P.BU ← max{FU i(t), v(t)};
10 FU i(t) ← P.BU + P.Length/wi;
11 AddPacketToQueue(i, P );

Figure 2.1: Pseudo-code ofInitialize andEnqueueroutines in GrFQ scheduler

for any two flowsi andj.

Proof: Without loss of generality, we assume that both flows are backlogged since

time 0. We prove the theorem by showing that, for any given instant of timet,
∣∣∣∣∣
Si(0, t)

wi

− Sj(0, t)

wj

∣∣∣∣∣ ≤ max
(

Li,max

wi

,
Lj,max

wi

)
(2.10)

Since the maximum difference in service occurs immediately after a transmission from

flow i or flow j, we will consider only these instants of time. Consider one of these in-

stants of time,τe. Without loss of generality, assume that it is flowi that completes its

transmission at timeτe. Let τb be the instant of time that flowi begins this transmission.

Case 1: At time τb, assume flowj has received less normalized service than flowi.

Now, from Theorem 1, the GrFQ scheduler only chooses either the flow with the smallest

session utility or the flow with the smallest potential session utility. Given that flowi is

chosen for transmission at timeτb and flow i is not the flow with the smallest session

utility, it must be the flow with the smallest potential session utility. Thus, since flowj’s
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Dequeue:
12 while (At least one queue is not empty)do
13 c1 ← TreeMinimumOfTSU;
14 ck ← TreeMaximumOfTSU;
15 if (ûc1 ≤ uck

) then P ← HeadPacketOfQueue(c1);
16 else
17 c2 ←TreeSuccessorInTSU(c1); 3

18 m ← MinimumOfHPSU;
19 Dc1 ← ûc1 − uc2 ;
20 Dm ← max{uck

, ûm} − uc1 ;
21 if (Dc1 ≤ Dm) then P ← HeadPacketOfQueue(c1);
22 elseP ← HeadPacketOfQueue(m); end if;
23 end if;
24 TransmitPacket(P );
25 UpdateTSUandHPSU; /* See Eq. (2.9)*/
26 end while;

Figure 2.2: Pseudo-code ofDequeueroutine in GrFQ scheduler

potential utility is larger, after the transmission from flowi, Lj,max/wj must be larger than

the difference betweenSi(0, τe)/wi andSj(0, τe)/wj.

Case 2:At time τb, assume flowj has the same or more normalized service than flow

i. We will prove this case by induction on time instants under consideration. Assume that

(2.10) holds true for all time instantst ≤ τb. Now, after completion of transmission from

flow i at timeτe, flow i will not be ahead of flowj in the normalized service it receives

by more thanLi,max/wi since one transmission from flowi cannot cause more than this

difference beginning with a lower normalized service than flowj. Therefore, (2.10) holds

at timeτe.

The above proves (2.10) fort = τe under the assumption that it holds fort ≤ τb. Since

the difference in normalized services is 0 at time 0, (2.10) also holds for any timet > 0.
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SinceSi(t1, t2) = Si(0, t2)−Si(0, t1), the theorem is proved by substitutingt by t1 and

t2 in (2.10) and combining the resulting equations. .

Corollary 1 The Relative Fairness Bound of the GrFQ scheduler is given by,

RFB =
2Lmax

wmin

(2.11)

whereLmax is the size of the largest packet in the system andwmin is the minimum of the

flow weights.

Proof: The proof follows readily from Theorem 2.

It may also be noted that the relative fairness measure of GrFQ as expressed in The-

orem 2 is further from the optimal than that achieved by some schedulers such as SCFQ.

This is not entirely surprising since the GrFQ scheduler is a greedy algorithm and is not

necessarily guaranteed to achieve the most optimal final result. However, as shown by the

analysis in this section, the GrFQ scheduler achieves a value of the RFB that is extremely

close to that of SCFQ. Also, as we will demonstrate in our section on simulation results,

the GrFQ scheduler achieves better overall fairness characteristics than any other scheduler,

including those with significantly higher computational complexity.

Corollary 2 If all flows become backlogged at time 0 and remain continuously backlogged

until timet, ∣∣∣∣∣
Si(0, t)

wi

− Gi(0, t)

wi

∣∣∣∣∣ ≤ (1− wmin

W
)
Lmax

wmin

, (2.12)

whereSi(0, t) is the amount of service received by flowi from a GrFQ server andGi(0, t)

is the amount of service the flow would have received from the ideally fair fluid flow GPS

server.

3The successor of an elementc1 in a binary search tree is the element with the smallest key value greater
than that ofc1.
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Proof: Using the relationship proved in [42], we have,
∣∣∣∣∣
Si(0, t)

wi

− Gi(0, t)

wi

∣∣∣∣∣ ≤ (1− wmin

W
) RF(0, t) (2.13)

According to Theorem 2,RF(0, t) ≤ Lmax/wmin. Therefore, the statement of the corollary

follows readily from Theorem 2.

According to [23], the service difference between WF2Q and GPS satisfies

|SWF2Q
i (0, t)−Gi(0, t)| ≤ Lmax

Therefore for the WF2Q scheduler, we have
∣∣∣∣∣∣
SWF2Q

i (0, t)

wi

− Gi(0, t)

wi

∣∣∣∣∣∣
≤ Lmax

wmin

(2.14)

Comparing 2.12 and 2.14, we can see that the absolute fairness measure of GrFQ is bet-

ter than that of WF2Q. The WF2Q scheduler is commonly believed to be the most fair

scheduler [18] because it achieves the best possible lag in comparison to the ideally fair

GPS scheduler. However, as seen from the above corollary, the GrFQ scheduler achieves a

betternormalizedlag than the WF2Q scheduler.

2.3.2 Computational Efficiency

Theorem 3 The GrFQ scheduler has a per-packet work complexity ofO(log N) with re-

spect to the number of flows.

Proof: The per-packet work complexity of GrFQ is determined by the per-packet work

complexity of itsEnqueueandDequeueroutines shown in Figure 2.1 and 2.2.

Enqueuing a packet entails adding the packet to the tail of its flow’s queue if the queue

is not empty, requiring onlyO(1) time. However, if the corresponding queue is empty when

the packet arrives, theEnqueueroutine needs to initialize the corresponding session utility,

and then insert the flow into the data structuresTSUandHPSU. The insertion procedures

requireO(log N) time with respect to the number of flows.
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To dequeue a packet, the scheduler needs to compare the spread of potential session

utilities of two flows. Computing the spread requires the utilities of at most four flows, as

stated by Theorem 1. The determination of these flows in theTSUand theHPSUdata struc-

ture takesO(log N) andO(1) time, respectively. Also, upon transmission of the packet,

the scheduler updates the data structuresTSUandHPSU. Since both insertion and deletion

operations in these data structures are ofO(log N) complexity, the overall time taken by

theDequeueroutine is alsoO(log N).

2.4 GrFQ-lite

As mentioned earlier, there are two components to a timestamp-based scheduler: the

method by which the timestamps are computed and the method by which the transmission

order is determined. The computation of the timestamp in the GrFQ scheduler involves the

computation of the virtual time,v(t), based on an emulation of the ideally fair GPS sched-

uler. Certain other schedulers such as WFQ and WF2Q also involve the computation of the

virtual time based on an emulation of the GPS scheduler. This is a computationally inten-

sive task and is of work complexityO(N) with respect to the number of flows. Therefore,

various computationally efficient methods of system tracking and timestamp computations

have been proposed for practical implementations, including SCFQ, SPFQ and TSS.

In SCFQ, the system status is tracked throughself-clocking; when the system is busy,

the timestamp is always equal to the finishing time of current packet in transmission. Since

the service order is determined by the policy of smallest finishing-time first, the assigned

timestamps are monotonically increasing functions of time. In such a self-clocked system,

a flow which becomes backlogged at the beginning of a transmission will bear a start-

ing credit that is the same as the one which comes later but before the completion of the

transmission. This punishes the packet of a flow that arrives early and this error in the

time-stamps of the earlier flow is always maintained leading to biased scheduling decisions
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thereafter.

SPFQ and TSS solve this problem by including the time factor between two arrivals.

The system state is based on the starting-time of the packet in transmission plus the time

elapsed since the beginning of the transmission. Upon finishing each transmission, the

tracking mechanism will perform a re-calibration and set to the starting-time of the next

packet for transmission. This method is closer to the GPS system than the self-clocked

system, since a flow that arrives earlier will have an earlier starting point. However, devi-

ations still exist from the ideal GPS system. During each transmission, the system clock

increases as if all flows are backlogged. However, in a real system, flows are not always

backlogged. In these schedulers, the system clock is always tracking the lower bound of

the real system value. If a flow uses the tracked system state as the reference to set its

starting point, an error is introduced. The largest error occurs at the instant just before a

transmission finishes.

In spite of the deviations from the GPS in the tracking mechanisms of SCFQ, SPFQ

and TSS, their practical value cannot be overlooked since the processing time is only of

O(1). These tracking methods can all be used along with GrFQ’s method of determining

the transmission order given the timestamps. However, the result with such a combination

of the system tracking method and GrFQ method of determining the transmission order is

sub-optimal since the above-mentioned errors in the timestamp computation will mislead

the scheduler away from the right decision. In this section, we introduce a novel technique

of tracking system state that also incurs a complexity of onlyO(1). In combination with the

GrFQ method of determining the transmission order, this computationally efficient sched-

uler, calledGrFQ-lite achieves better fairness characteristics than the other schedulers of

equivalent complexity in system tracking.

Consider a case in whichN flows have been continuously backlogged during the in-

terval (0, t). The total service received by all the flows using scheduling policyP is the

summation ofSP
i (0, t) for 1 ≤ i ≤ N . Assuming a work-conserving scheduler, this is also
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the total service received by all the flows if the server is the ideally fair GPS scheduler.

With the ideally fair GPS scheduler, a flowi with weightwi receives service equal to

wi

W (t)

∑

i

SP
i (0, t) (2.15)

Thus, at timet, the above indicates the ideal amount of service flowi should have received.

The above leads us to the definitions of the nominal system service and the nominal

system time, approximations of the accurate values in the ideally fair GPS system. Suppose

that, starting from timet0 until time t1, B(t) consists of the same set of flows. At timet

(t0 ≤ t < t1), the nominal system service, orS∗(t), is defined as the total service provided

by the system fromt0 to t, i.e.,

S∗(t) =
∑

i∈B(t)

SP
i (t0, t)

The nominal system time,v∗(t), is computed fromS∗(t) as

v∗(t) =
S∗(t)
W (t)

(2.16)

At time t1, a flow i becomes empty in the real system. The nominal system service will

adjust its value by subtracting an amount of service which flowi would receive in the GPS

system up tot1, i.e.,

S∗(t1) = S∗(t1−)− wiv
∗(t1−)

Sincewi is excluded fromW (t), the nominal system time att1 is the same asv∗(t1−).

However, the ticking rate of nominal system clock will accordingly change to1/W (t1). If

a flow j becomes backlogged at timet2, the nominal system service would adjust its value

as

S∗(t2) = S∗(t2−) + wjv
∗(t2−)

The nominal system time also adjusts its rate by includingwj into W (t2).

Therefore, the nominal system time is a monotonically increasing function of time and

is also a continuous function of time. The computation complexity ofv∗(t) is of O(1). To
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utilize the nominal system time, one only needs to replace GPS virtual timev(t) by the

nominal system timev∗(t). GrFQ-lite is the same scheduler as GrFQ, except thatv(t) is

replaced byv∗(t) in all computations.

2.5 Evaluation of GrFQ and GrFQ-lite

2.5.1 A Measure of Instantaneous Fairness

To evaluate the performances of GrFQ and GrFQ-lite, we use a new measure of instan-

taneous fairness [46, 47] based on an adaptation of the Gini index used widely in the field

of economics. This metric is capable of measuring the fairness at any instant of time during

the execution of a scheduler. In earlier sections, we have shown that the relative fairness

bound (RFB) of the GrFQ scheduler is better than or as good as the relative fairness bound

of any other known packet-by-packet scheduler. However, as mentioned in Section 2.1, the

RFB is just a bound and does not quite capture the overall quality of a fair scheduler. This is

because a scheduler that rarely reaches the upper bound of relative fairness will achieve the

same measure of fairness as another scheduler that frequently or almost always operates at

the same upper bound. Therefore, we also need aninstantaneousmeasure of fairness that

captures the fairness achieved by the scheduler at any given instant of time.

In addition, fairness measures based on upper bounds on the spread in the session util-

ities also do not inform us of how a scheduler treats packets of one flow in comparison to

those of another. Fairness, after all, is expected to be based on a comparison among the

levels of service received by all the flows and not merely on the maximum difference in the

normalized service received by flows. Figures 2.3(a) and (b) illustrate an example where

the bars represent the service received by flows under two different schedulers A and B,

during a certain interval of time in which all flows are backlogged. Assuming the weights

associated with the flows are identical, the dashed line represents the level of service each

of the flows would receive under the ideally fair GPS scheduler. One may observe from the
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Figure 2.3: An illustration of the difference in the disparity in service received while the
upper bounds of the relative and absolute fairness measures are identical in two packet
scheduling systems

figures that scheduler B leads to a greater disparity in the levels of service received by the

flows since scheduler A allows more flows to achieve service close to the ideally fair level.

If the absolute and relative fairness bounds are exactly reached in this interval of time, note

that both schedulers would lead to the same values for the RFB and the AFB, even though,

the levels of service received by flows under scheduler A are closer to each other than with

scheduler B.

Thus, measures of fairness based on an upper bound serve the excellent purpose of

capturing the fairness characteristics of a scheduler in a single number. However, they do

not capture the overall behavior of the scheduler at all instants of time and also do not

quite capture the characteristics of the distribution of the service among all the flows (the

AFB only reports the maximum deviation from GPS for any flow while the RFB reports

the maximum difference in service received by two different flows, but neither capture the

overall fairness of the allocation among all the flows.) This is addressed by the measure of

instantaneousfairness described below based on measures of inequality used in the field of

economics.

Various measures of inequality have been used in the field of economics for several
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decades in the study of social wealth distribution and many other economic issues of inter-

est [47]. Some of these methods are related to the theory of majorization used in mathe-

matics as a measure of inequality [48]. This theory has occasionally found use in research

in computer networks in the fairness analysis of protocols [49]. A popular, mature and

one of the least ambiguous measures of inequality developed in the field of economics is

that based on the concept of theLorenz curveandGini index[47]. Since fairness is often

believed to be a concept based on equality of treatment to all competitors with equal rights

to a resource (though not necessarily equal allocation to all competitors), one can borrow

from the field of economics and use these concepts to judge the fairness of our schedulers

at each instant of time.

Consider the problem of measuring the inequality amongk quantities,g1 ≤ g2 ≤ . . . ≤
gk. Defined0 = 0, anddi = di−1 + gi, for 1 ≤ i ≤ k. Now, a plot ofdi againsti is a

concave curve, known as theLorenz curve[50], as shown in Figure 2.4(a). Note that if there

is perfect equality in thesek quantities, the Lorenz curve will be a straight line starting from

the origin. The Gini index measures the area between the Lorenz curve and this straight

line, and thus measures the inequality amongst thek quantities [47]. Appendix A provides a

detailed discussion on different computational methods of the Gini index and a comparison

of the Gini index with other common measures of inequality.

In our case, we wish to measure the inequality in the session utility of the backlogged

flows at any given instant of time. The Gini index in our case is the area between the Lorenz

curve of the actual session utilities and the Lorenz curve corresponding to the ideally fair

GPS scheduler. A discussion of the difference between the Gini index for packet schedulers

and for economic studies is provided in Appendix A.

When the sum of thek quantities is the same as the sum in the case of perfect equality,

the Lorenz curve always lies below the straight line corresponding to the Lorenz curve of

the ideal equal case, as shown in Figure 2.4(a). However, the sum of the session utilities

is almost never exactly identical to the sum of the session utilities in the ideally fair GPS
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Figure 2.4: An illustration of the Lorenz curve and Gini index

case. Note that, in a work-conserving scheduler, only the sum of the total service delivered

is identical to that in the ideally fair GPS scheduler. The sum of the session utilities which

represents the sum of thenormalizedservice delivered is not identical to that in the GPS

system. In a work-conserving scheduler, when the sum of thek quantities is not the same

as the sum in the case of perfect equality as with the GPS scheduler, a portion of the Lorenz

curve for the actual scheduler will lie below and another portion will lie above the straight

line Lorenz curve for the GPS scheduler. This is illustrated in Figure 2.4(b). The sum of

the areas marked byα1 andα2 in the figure is the Gini index.

We describe the computation of the Gini index formally as follows:

Definition 4 Let U(t) denote the set of session utilities obtained with a real scheduler at

time t, and letG(t) denote the same with the GPS scheduler. Letuc1 , uc2 , . . . , uck
be the

elements of the setU(t), such thatuc1 ≤ uc2 ≤ . . . ≤ uck
. TheLorenz Curveof the set of

session utilitiesU(t) is the functionF (i;U(t)), given by,

F (i;U(t)) =
i∑

j=1

ucj
, 0 ≤ i ≤ k
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The Gini index over thek elements inU(t) is computed as:

k∑

i=1

|F (i;U(t))− F (i;G(t))| (2.17)

2.5.2 Evaluation through Simulations

We construct experiments with real traffic traces of various characteristics. In this study,

we have simulated the following schedulers:

• WFQ [16,20], for obvious historical reasons.

• WF2Q [23], because it achieves the best possible lag in comparison to the ideally fair

fluid flow GPS scheduler, and has therefore been sometimes believed to be the most

fair packet scheduler. (As discussed earlier, the GrFQ scheduler achieves a better

lag if normalized by the weight of the flow. However, we do find that WF2Q is the

scheduler that comes closest in fairness to our GrFQ scheduler.)

• Time-Shift Scheduling (TSS) [41], for its apparent closeness to the packet-by-packet

actions of GrFQ.

• Self-Clocked Fair Queueing (SCFQ) [21], as a representative scheduler among those

with the best relative fairness bound.

• Starting Potential Fair Queueing (SPFQ) [40], a representative scheduler based on

the concept of rate-proportional servers introduced in [44].

2.5.3 Results with Video Traffic Traces

In this set of experiments, each flow is from an MPEG-4 video trace. We use video

traces collected from the Telecommunication Networks Group at Technical University of

Berlin, Germany [51]. The traces used in our study are coded using MPEG-4 of different

qualities. For each input, one distinct video stream is used, and the starting point within the
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Table 2.1: Settings for MPEG-4 traffic sources

Source 1 2 3 4

Movie Name4 J S W B
Video Quality High High Medium Low
Lmin (bytes) 72 158 26 26
Lmax (bytes) 16,745 22,239 4,690 7,565
ravg (Kbps) 770 580 78 110
rpeak (Mbps) 3.3 4.4 0.94 1.5
Weight (wi) 9.88 7.44 1 1.41

Link Capacity 1.54 Mbps
Total Time 112 seconds

video stream is randomly selected. Table 2.1 shows the settings for this set of input traffic.

The flow weights are set based on average rate of each flow. Here we set the weight of the

slowest flow as 1, and weights of other flows are equal to the ratios of their average rate to

the smallest rate.

The GrFQ scheduler

In our comparisons with the GrFQ scheduler, we assume continuously backlogged

queues since, with accurate tracking of the GPS scheduler, it does not matter whether or not

the queues are continuously backlogged. The traffic used to feed the backlogged queues is

generated by extracting information on packet lengths from MPEG-4 traces. Figure 2.5(a)

plots the average length of packets in transmission during each periodic interval of 560

ms. It provides a rough idea of the changes in packet lengths with time. Throughout the

simulation period, the average packet length ranges from 1200 bytes to 3200 bytes.

Figures 2.5(b-c) plot the performances of GrFQ, WF2Q and WFQ. Since queues are

backlogged all the time, variations in the packet lengths are the only reason for unfair

4The alphabet letters, J, S, W and B, stand for movies “Jurassic Park I”, “Silence Of the Lambs”, “Star
Wars IV”, and “Mr. Bean”, respectively.
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transmission order. Therefore, the performances of TSS, SCFQ and SPFQ are very close

to that of WFQ since, even though their method of timestamp computations is different,

the timestamps of arriving packets are very close in the case of each of these schedulers.

Timestamp values differ significantly only when flows go back and forth between the back-

logged state and the unbacklogged state. Therefore, for reasons of brevity, Figure 2.5 plots

only the comparisons between GrFQ, WFQ and WF2Q.

As defined in Equation (2.17), the lower the Gini index, the more fair the algorithm.

Figure 2.5 shows that the GrFQ scheduler displays better fairness than WFQ and WF2Q.

The fairness achieved by WF2Q is very close to that of GrFQ while WFQ clearly has a

worse fairness performance.

The GrFQ-lite scheduler

In our comparisons with the GrFQ-lite scheduler, we assume that flows will go back

and forth between a backlogged state and a non-backlogged state. Since the effectiveness

of a tracking scheme is more clearly exhibited when the link is close to fully utilized, we

set the link capacity such that the sum of average rates of all the flows is more than 98% of

the link capacity.

Figure 2.6 shows the values of the Gini index during the simulations of six different

schedulers including the GrFQ scheduler. For clarity in comparison, we plot each sched-

uler’s Gini index distribution on a separate graph, with the GrFQ-lite scheduler plotted on

each of the graphs.

Figure 2.6(a) shows the average length of arriving packets among all sessions during

the simulation interval. Since MPEG-4 streams generate periodic traffic, the traffic load

is directly proportional to packet lengths. Therefore, from this figure, we observe 3 large

bursts starting around time instants 32, 60, and 92 seconds. Figures 2.6(b–f) show the GrFQ

scheduler’s fairness in comparison to WF2Q, WFQ, SPFQ, TSS and SCFQ, respectively.
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Even though WF2Q assumes accurate GPS tracking and GrFQ-lite achieves an approx-

imation, as is readily observed, GrFQ-lite comes very close in fairness to the WF2Q sched-

uler.

Amongst SCFQ, TSS, and SPFQ, SPFQ and TSS achieve fairness closer to the GrFQ

scheduler. SCFQ is more unfair than SPFQ and TSS during the bursts. As discussed before,

this is because SCFQ uses the finishing time stamp of the packet currently being served as

the start time for newly arrived packets in all sessions. This introduces a discrepancy in the

computation of the timestamp in the flows other than the one currently being served. This

discrepancy does not get corrected at a later time, leading to a less fair allocation.

SPFQ and TSS solve the above problem by using the starting value corresponding to

packet currently being served. One can also see from Figure 2.6(d) and (e) that the fairness

achieved by these two schedulers is similar.

In general, the fact that the GrFQ-lite scheduler achieves better fairness most of the

time illustrates that the tracking scheme of system time proposed here, as given by (2.16),

is a good approximation to the GPS scheduler.

Results with Different Traffic Loads

In these experiments, we increase the capacity of the transmission link to compare the

performance of schedulers under different traffic load situations. We simulate two cases:

one with 90% traffic load; the other with 80% traffic load. The incoming traffic is still from

real video traces as listed in Table 2.1.

Figure 2.7 and 2.8 show the Gini index of GrFQ, GrFQ-lite, WF2Q, WFQ, SPFQ, TSS

and SCFQ with 90% and 80% traffic load, respectively. Since we are more interested in the

performance of the practical design, we plot the Gini index of GrFQ-lite in each graph to

compare with other schedulers including GrFQ. From these graphs, one can observe that

GrFQ-lite maintains a better performance than all other schedulers most of time. For some
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Table 2.2: Settings for traffic sources from gateway traces

Source 1 2 3 4 5 6

Router Name5 ADV ANL APN BUF MEM TXS
Interface OC3 OC3 OC3 OC3 OC3 OC3

Lmin (bytes) 38 28 29 32 32 28
Lmax (bytes) 4470 9180 1500 1560 4470 9180
ravg (106Bps) 0.56 0.63 1.4 1.45 0.37 2.1
Weight (wi) 1.5 1.6 3.6 3.8 1 5.8

Link Capacity 6.4× 106 Bps
Total Time 50 seconds

intervals, GrFQ-lite performs even better than GrFQ with this set of incoming traffic.

2.5.4 Results with Gateway Traffic Traces

Here we repeat the experiments in Section 2.5.3 with real gateway traffic traces. As

opposed to video streams, packet lengths in router traffic are more uniformly distributed

while the time interval between two packet arrivals may be random. These properties result

in different performance from schedulers.

The traces used in this set of simulations are provided online by National Laboratory

for Applied Network Research [52]. Now each input is fed by a gateway traffic trace with a

random starting time. The settings of this set of experiments is listed in Table 2.2. Similar

to the previous set of experiments, the link is close to fully utilized. The sum of average

rates of all flows is about 99% of the link capacity. Flow weights are selected based on the

observed average rates of the traces used in experiments. The computation method for Gini

index is same as in previous experiments.

5The long names of routers are: Argonne National Laboratory(ANL), APAN(APN), University of Buf-
falo(BUF), University of Memphis(MEM), and Rice University(TXS).
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The GrFQ scheduler

As before, we assume continuously backlogged queues. Figure 2.9(a) plots the average

length of packets in transmission during each period of 250 ms. Figures 2.9(b-c) show the

value of Gini index of GrFQ, WF2Q and WFQ. The relative performances of WF2Q and

WFQ versus GrFQ are similar to the results under video traffic, as shown in Figure 2.6.

Again, the GrFQ scheduler achieves the best fairness among these schedulers.

The GrFQ-lite scheduler

In this case, as before, we assume that flows will go back and forth between a back-

logged state and a non-backlogged state. Figure 2.10(a) shows the traffic load throughout

the duration of the simulation. There are 3 overloaded periods around time intervals 5–

10, 20–30 and 35–45 seconds. Among the six schedulers under simulation, GrFQ-lite and

WF2Q both have excellent fairness performance (shown in Figure 2.10(b)), even though

GrFQ-lite is usingO(1) service tracking system while WF2Q uses theO(N) service track-

ing system.

Figures 2.10(c-f) show the fairness performance of WFQ, SPFQ, TSS, and SCFQ as

compared to GrFQ-lite. SPFQ, TSS and SCFQ have similar fairness performance, as shown

in Figures 2.10(d-f). However, except for a few short unfair intervals, SPFQ and TSS still

exhibit slightly better fairness than SCFQ.

Results with Different Traffic Loads

Here we compare the performance of schedulers under 90% traffic load and 80% traffic

load. The incoming traffic is from real gateway traces as listed in Table 2.2.

Figure 2.11 and 2.12 show the Gini index of GrFQ, GrFQ-lite, WF2Q, WFQ, SPFQ,

TSS and SCFQ with 90% and 80% traffic load, respectively. From Figure 2.12 one can

observe GrFQ, GrFQ-lite and WF2Q maintain better fairness than the rest of the schedulers
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and they also achieve similar performance. Thus GrFQ-lite bears significant advantages of

achieving good performance with very low processing complexity.
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Figure 2.5: Gini indices of fair schedulers on backlogged queues with real video traffic
traces
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Figure 2.6: Gini indices of fair schedulers with real video traffic traces
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Figure 2.7: Gini indices of fair schedulers with real video traffic at 90% load
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Figure 2.8: Gini indices of fair schedulers with real video traffic at 80% load
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Figure 2.9: Gini indices of fair schedulers on backlogged queues with real gateway traffic
traces
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Figure 2.10: Gini indices of fair schedulers with real gateway traffic traces
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Figure 2.11: Gini indices of fair schedulers with real gateway traffic at 90% load
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Figure 2.12: Gini indices of fair schedulers with real gateway traffic at 80% load
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Chapter 3. Controlled Load Service

3.1 Network Mechanisms for Controlled Load Service

Controlled load service is defined under the Integrated Services model to provide users

with a quality of service similar to that in a lightly loaded or unloaded network, and without

requiring or specifying a target upper bound on the delay or loss probabilities. The idea

behind this service model is that many real-time applications do receive adequate perfor-

mance and quality of service in a lightly loaded network, eliminating the need for very strict

performance guarantees. The desired quality of service is intended to be assured through

capacity planning and admission control rather than through per-flow management during

packet scheduling and forwarding. When a user exceeds traffic specifications approved by

the admission control policy, the service obtained by the excess packets degenerates to the

best-effort service.

Controlled load service allows a scalable means to achieve the required quality of ser-

vice since it does not require the network to distinguish between flows beyond the admis-

sion control stage at the edges of the network. Each user/application provides an estimate

of its traffic specifications,Tspec, and the service provider admits the traffic based on one

of several possible admission control strategies that determine whether or not supporting

the new user will still keep the network “lightly loaded” [53]. Packets sent by an applica-

tion in excess of theTspecagreed upon by the user and the service provider are marked

by a traffic policer at the entry point into the network. As required by the definition of the

controlled load service, the unmarked packets receive service similar to that in a lightly

loaded network but the marked packets receive only a best-effort service. To preserve the

generality of our solutions, we refer to these excess packets as simplymarkedpackets and

the rest asunmarkedpackets. Such marking of packets to indicate their level of importance
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for dropping policies within the network is also used in the Differentiated Services model

defined by the IETF [3] and in related buffer management and congestion control strate-

gies as in the RED with In/Out (RIO) [38]. In addition, certain applications such as the

multicasting of video streams employ schemes where the signal is encoded in layers so that

progressively higher quality in the received stream can be achieved by receiving packets

from more layers [11, 12]. Packets from layers corresponding to higher quality may be

selectively dropped by the routers at congested points in the network.

Several admission control [53], packet forwarding and scheduling strategies [54, 55]

have been suggested for use in routers to support the controlled load service. The au-

thors in [55] propose a strategy that dynamically alters the priority of the packets (for e.g.,

marked or unmarked) to appropriately achieve the expected arrival time of each packet.

The complexity of the algorithm is ofO(n log n) with respect ton, the number of flows.

However, the controlled load service was designed as a scalable alternative to providing

guaranteed service for applications that do have certain quality of service requirements but

which can, to some extent, adapt to changes in network conditions. One of the goals in

the design of our scheduler for controlled load service is that it should be efficient with

no per-flow management of flows, and with anO(1) dequeuing complexity with respect

to the number of flows and also the number of packets awaiting service. We consider it

important to preserve this original intent in the implementation of mechanisms that support

the controlled load service. To this end, as intended by the designers of this class of service

and as also suggested in [54], we believe that a First-Come-First-Serve scheduling strategy

is adequate for controlled load service, in combination with an effective admission control

policy and a simple threshold-based buffer management strategy.

In addition to the simplicity and the scalability desired in the mechanism that supports

the controlled load service, it is also desirable that we provide some guidelines on how to

treat marked packets in relation to unmarked packets. For example, if capacity planning

and admission control are reliably and correctly executed, the scheduler will have enough



58

bandwidth for the unmarked packets. However, it is desirable that as many marked packets

be transmitted as possible while the delay caused to unmarked packets because of marked

packet transmissions is bounded. Even though scheduling algorithms have been studied

extensively for best effort traffic as well as for guaranteed services, scheduling strategies

for merged packet streams with marked and unmarked packets requiring different levels

of service have not been studied within a theoretical framework. Scheduling of packets

seeking the controlled load service provides such a context with packets of the same flow

belonging to different priority levels. In the design of the scheduler for controlled load ser-

vice, our goal is to provide a framework and a mechanism that recognizes the trade-offs in

the conflicting requirements of sending as many marked packets as possible, while ensur-

ing that the unmarked packets of the same or other traffic streams continue to experience

delays consistent with that in a lightly loaded network.

This chapter presents a scheduler ofO(1) per-packet complexity with respect to the

number of flows and the number of packets awaiting service, and which ensures that the

impact of marked packets on the delay experienced by an unmarked packet is bounded. In

addition, it transmits very close to the maximum possible number of marked packets that

may be transmitted while meeting the above goals.

3.1.1 Requirements of the Scheduler for Controlled Load Service

Our primary goal in the design of a scheduler for controlled load service is to preserve

the original intent in the design and specification of the controlled load service. Certainly,

it would be inappropriate to add implementation complexity to the service by adding per-

flow management in the routers. Therefore, it is desirable that the scheduler use some

simple discipline such as first-come-first-served (FCFS), while aggregating packets from

all flows awaiting service by the scheduler into the same queue. Note that, in a lightly

loaded network with regulated traffic, the FCFS scheduling discipline is expected to be
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more than adequate. This facilitates the design of an efficient scheduler with a per-packet

dequeuing complexity that is independent of the number of flows and also the number

of marked or unmarked packets awaiting service in the queue. Also, by such a strategy

which places all the packets in the same queue, the packets within the same flow, marked

or unmarked, are delivered in order.

Secondly, the controlled load service packets do not have a delay or bandwidth spec-

ification. Therefore, a scheduler cannot make decisions based on delay requirements as

in traditional guaranteed-service schedulers such as virtual clock or weighted fair queue-

ing [56]. Instead, it is the capacity planning phase and admission control mechanism, based

on theTspecprovided by the applications, that are responsible for ensuring that the packets

can receive a delay approximating that in a lightly loaded network. Therefore, given ef-

fective capacity planning and admission control, it is sensible for the scheduler to assume

that the unmarked packets of one flow will not affect the unmarked packets of another flow

to the point that the network appears congested to any flow. However, the marked packet

arrival characteristics are not part of theTspecand therefore, unregulated. The scheduler

does have to ensure that the impact of too many marked packets on the quality-of-service

received by the traffic flows is kept under control within a certain acceptable bound. Since

delay is the primary QoS parameter for real-time traffic, we can define the scheduler re-

quirement as follows: the scheduler should guarantee that,for any unmarked packet, the

additional delay caused by marked packet transmissions is no more than a certain con-

stant,α. In other words, if an unmarked packet, in the absence of marked packets, could be

forwarded with a delay of∆, then the delay of the same packet in the presence of marked

packets should be no more than∆ + α. The quantityα may be defined by the router or

may be a negotiated quantity between service providers.

Finally, we do wish to send as many marked packets (unregulated, best-effort packets)

as possible without violating the above requirement on the impact of marked packets on

the delays experienced by unmarked packets, and also without violating the requirements
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on the efficiency and complexity of the scheduler. This set of requirements is non-trivial to

meet, especially in the absence of per-flow management. Note that in the absence of per-

flow tracking and management of packet arrivals, the scheduler cannot predict with suffi-

cient precision the new packet arrival characteristics, and therefore, cannot know whether

sending a marked packet at a certain instant of time can be a cause for additional delay for

unmarked packets at some later time.

In summary, the following are the goals in the design of our scheduler for controlled

load service:

1. The scheduler should be efficient with no per-flow management of flows, and with

anO(1) dequeuing complexity with respect to the number of flows and with respect

to the number of packets awaiting service.

2. The scheduler should be able to ensure that the impact of marked packets on the

delay experienced by an unmarked packet is bounded.

3. Given the above two goals, the scheduler should be able to transmit as many marked

packets as possible. For example, the scheduler should not trivially achieve the above

goals by dropping all marked packets.

We assume that, within any given router, the quantityα is the same for all flows in the

network. This critical parameter cannot be used in a cumulative fashion across multiple

routers in the path of a flow since this would imply that schedulers would have to manage

per-flow states. We assume that the capacity planning and the admission control phases

will determine and set this parameter for each of the routers in the network prior to the

beginning of transmissions that require such service.
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3.2 The CL(α) Scheduler

The CL(α) scheduler for Controlled Load service presented in this section meets the

requirements specified in the previous section. For any givenα, the CL(α) scheduler en-

sures that the increase in the delay experienced by an unmarked packet due to the presence

of marked packets is bounded byα.

The CL(α) scheduler maintains a single FCFS queue for all arriving packets. Marked

as well as unmarked packets are all added to the tail of the same queue in the order of their

arrival times. The CL(α) scheduler removes packets from the head of the queue for trans-

mission, dropping marked packets if necessary. In our presentation of the scheduler, we

assume that a marked packet transmission will not be pre-empted for the transmission of

an unmarked packet. Consequently, we also assume thatα is no smaller than the maximum

possible length of time it may take to transmit a marked packet. Without this assump-

tion, however, pre-emption will be necessary to ensure that marked packet transmissions

do not increase the delay of an unmarked packet by more thanα. While our presenta-

tion assumes no pre-emption for purposes of improved clarity, the CL(α) scheduler can be

trivially changed to allow pre-emption if so desired.

In this paper, we use the following definitions of the delay of a packet and the extra

delay of an unmarked packet at time instantt.

Definition 5 Thearrival timeof a packet is the instant of time that the last bit of the packet

arrives into the queue of packets awaiting transmission by a scheduler. Thedeparture time

of a packet is the instant of time that the last bit of the packet is transmitted by the scheduler.

Thedelayof a packet at a scheduler is the length of the time interval between the arrival

time and the departure time of the packet.

Definition 6 Theextra delay, denoted byEDP (t), experienced at a scheduler by an un-

marked packet,P , at time instantt is the cumulative additional delay that is experienced

byP caused by transmissions of marked packets before timet.
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In a scheduling policy in which all marked packets are always dropped, the extra delay

of an unmarked packet is always zero. The extra delay of a packet at a scheduler represents

the difference between the delay experienced by the packet at the scheduler and the delay

it would experience with a reference scheduler that drops all marked packets.

The extra delay, as defined above, is a function of time and changes whenever the sched-

uler chooses to send marked packets. If a scheduler chooses to drop all marked packets after

time t, the extra delay of unmarked packets in the queue will not increase after timet. Ob-

viously, when a marked packet is scheduled for transmission, all the unmarked packets in

the queue will suffer an extra delay. In addition, some of the extra delay is “passed on”

further to the unmarked packets which arrive after the transmission of the marked packet.

This is because, in a first-come-first-served queue, a packet’s delay depends on the time at

which its predecessor is served. Thus, the extra delay caused to one unmarked packet can

cause an extra delay to unmarked packets that arrive later as well.

The extra delay of a newly arrived packet, however, is not merely equal to the extra

delay suffered by its predecessor until this time, and can actually be less than that of its

predecessor in the queue. This is best illustrated by considering an unmarked packet that

arrives during a period of low congestion with only a small number of packets in the queue.

However, the unmarked packet ahead of it in the queue, i.e., the predecessor packet, may

have arrived in the queue during a period of heavy congestion when the queue length was

large and thus may have a large extra delay associated with it. It is possible that the queue

length later reduces and the newly arrived packet will only inherit a portion of the delay

suffered previously by the predecessor packet. We will analyze these aspects of the extra

delay in greater detail in Section 3.2.1.

The goal of the CL(α) scheduler is to ensure thatEDP (t) ≤ α for all unmarked packets

at all time instantst. In achieving this goal, the system has to (i) keep track of the changes in

the extra delay of each packet in the queue and also (ii) determine the extra delay inherited

by each new arriving packet from its predecessor packet. In the following, we describe an
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efficient algorithm that manages these two important functions in the CL(α) scheduler.

3.2.1 Tracking Changes inEDP (t)

To track the extra delay of packets in the queue as it changes with time, a naive method

is to maintain an extra delay counter for each unmarked packet in the queue. The sched-

uler in such a case would have to check each of the extra delay counters before sending a

marked packet. Upon sending a marked packet, it would have to update each counter by

the transmission time of the marked packet. Obviously, this scheme has a processing delay

proportional to the number of unmarked packets in the queue, with the potential of severely

limiting scheduling efficiency when the queue length is large. The CL(α) scheduler, how-

ever, achieves significantly better scalability by inferring the extra delay of each unmarked

packet from that of its predecessor packets in the queue. In fact, the CL(α) scheduler suc-

ceeds in achieving anO(1) per-packet work complexity. Figures 3.1, 3.2 and 3.3 present a

pseudo-code description of the CL(α) scheduler.

Recall that the FCFS queue consists of both marked and unmarked packets. We denote

the first unmarked packet in the queue that has not yet completed transmission as theun-

marked head. Note that an unmarked packet that is being transmitted at a certain instant of

time is the unmarked head at that instant. Similarly, we define theunmarked tailas the last

unmarked packet in the queue that has not yet completed transmission. The CL(α) sched-

uler maintains a record of the extra delays for the unmarked head and tail packets, denoted

by HeadEDandTailED, respectively. Both of these values have to be updated whenever a

marked packet is transmitted while there are unmarked packets in the queue.

Suppose the arrivingunmarkedpackets are labeled as 1, 2, . . . , in the order of their

arrival times. Letai be the arrival time of packeti. Let di be the departure time of packet

i. If packeti arrives before packeti − 1 completes its transmission (i.e.,ai < di−1), note

that neither of the packets would have completed transmission during the interval between
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Initialize: (Invoked when the scheduler is initialized)
1 HeadED← 0;
2 TailED← 0;

Enqueue: (Invoked when a packetP arrives)
3 if (P is unmarked)then
4 if (EDDQueueIsNotEmptyAND 5U < TailED) then
6 AddToEDDQueue(TailED− U);
7 TailED← U;
8 else
9 AddToEDDQueue(0);
10 end if;
11 end if;
12 AddPacketToQueue(P );

Figure 3.1: Pseudo-code ofInitialize andEnqueueroutines of the CL(α) scheduler;U , at
any given time instantt, stands forU(t)

ai anddi−1. The additional accumulated extra delay due to marked packet transmissions

during this time interval is the same for both packets. That is, forai ≤ t ≤ di−1, we have,

ED i(t)− ED i(ai) = ED i−1(t)− ED i−1(ai)

Thus,

ED i(t) = ED i−1(t)− [ED i−1(ai)− ED i(ai)] (3.1)

Note that the quantityEDi−1(ai)− EDi(ai) does not change with time, and is a constant for

a giveni. To further simplify our presentation and analysis, we define this quantity below.

Definition 7 Consider an unmarked packeti, and its predecessor unmarked packeti − 1.

At the instantai when packeti arrives, if the predecessor packet has not yet completed

its transmission, defineExtraDelayDifferencei or EDDi of an unmarked packeti as the

difference between the extra delay of packetsi−1 andi at time instantai. If the predecessor

packet has already completed its transmission, defineEDDi as 0.
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Dequeue:
13 while (QueueIsNotEmpty) do
14 P ← PacketAtHeadOfQueue;
15 if (P is unmarked)then
16 TransmitUnmarkedPacket(P );
17 else /* P is marked. */
18 if (EDDQueueIsNotEmpty) then
19 if (HeadED+ TxTime(P ) ≤ α) then
20 HeadED← HeadED+ TxTime(P );
21 TailED← TailED + TxTime(P );
22 TransmitPacket(P );
23 else
24 V ← UnmarkedHeadOfQueue;
25 Drop all packets ahead ofV ;
26 TransmitUnmarkedPacket(V );
27 end if;
28 else
29 TransmitPacket(P );
30 end if;
31 end if;
32 end while;

Figure 3.2: Pseudo-code ofDequeueroutine of the CL(α) scheduler

In other words,EDDi = EDi−1(ai)− EDi(ai) if unmarked packeti arrives while un-

marked packeti− 1 is still in the system, andEDDi = 0 otherwise.

Now, from (3.1),

ED i(t) = ED i−1(t)− EDD i, (3.2)

Therefore,EDi(t) can be obtained fromEDDi, and the extra delay of the predecessor packet

in the queue,EDi−1(t).

For each unmarked packeti in the queue awaiting transmission, one may associate a

constant value,EDDi. The scheduler maintains theseEDD values in a separate queue,

which we shall denote byEDDQueue. The head of this queue, denoted byEDDHead, con-
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TransmitUnmarkedPacket(P )
33 if (EDDQueue.length≥ 2) then
34 RemoveEDDHeadfrom EDDQueue;
35 E ← CurrentHeadOfEDDQueue;
36 if (E.EDD< HeadED) then
37 HeadED← HeadED− E.EDD;
38 else
39 HeadED← 0; TailED← 0;
40 end if;
41 TransmitPacket(P );
42 else
43 TransmitPacket(P );
44 RemoveEDDHeadfrom EDDQueue;

/* New unmarked packets may arrive during the transmission. */
45 E ← CurrentHeadOfEDDQueue;
46 if (E 6= NULL AND E.EDD< HeadED) then
47 HeadED← HeadED− E.EDD;
48 else
49 HeadED← 0; TailED← 0;
50 end if;
51 end if;

Figure 3.3: Pseudo-code ofTransmitUnmarkedPacketroutine used byDequeueroutine of
the CL(α) scheduler

tains theEDD value corresponding to the unmarked head. Similarly, the tail of this queue,

denoted byEDDTail, contains theEDD value corresponding to the unmarked tail. Let

packeth be the unmarked head at timet. If there is another unmarked packet in the queue,

then the next unmarked packet in the queue, packeth + 1, should have a corresponding

entry in the EDD queue equal toEDDh+1. Note from Equation (3.2) thatEDh+1(t) can be

computed fromEDDh+1 and theHeadED(extra delay of packeth) at timet. After packet

h is transmitted, the value computed forEDh+1 becomes the newHeadED, since packet

h + 1 is now the new unmarked head. Thus,HeadED, always contains the extra delay

corresponding to the current unmarked head which has not yet completed transmission.
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3.2.2 ComputingEDD

The above mechanism of tracking the extra delay of each unmarked packet relies upon

knowledge of the correctEDD value corresponding to the packet. The CL(α) scheduler sets

this value for each unmarked packet at the instant that the packet arrives into the queue. We

will need the following definition and lemma to explain the algorithm used to determine

theEDD value of an unmarked packet.

Definition 8 Consider the system at time instantt. DefineU(t) as the minimum possible

additional time it will take for the unmarked tail in the system at timet to complete its

transmission.

U(t) may also be thought of as the additional time it will take a packet that arrives at

time t to begin its transmission if all marked packets in the system that have not yet begun

transmission at timet are dropped. In this paper, we assume that unmarked packets will

not pre-empt the transmission of a marked packet. Therefore,U(t) includes the residual

transmission time of the packet being transmitted at timet even if it is a marked packet.

Thus,U(t) is the sum of this residual transmission time and the transmission times of all

the unmarked packets in the queue at timet awaiting the beginning of transmission.

We now proceed to obtain an expression forEDi(ai) that facilitates the computation of

theEDD values.

Lemma 1 During an execution of the CL(α) scheduler, when unmarked packeti arrives

into the queue at time instantai,

ED i(ai) = min{ED i−1(ai),U (ai)},

if its predecessor, packeti− 1, has not yet completed transmission (ai ≤ di−1), and,

ED i(ai) = U (ai),

otherwise.



68

Proof: SinceEDi(ai) records the cumulative additional delay of packeti caused by

marked packet transmissions before timeai, we prove the statement of the theorem by

comparing the departure time of the packet in the CL(α) scheduler assuming no marked

packet is transmitted afterai and its departure time in a reference system which drops all

marked packets.

In this proof, we now separately consider each of the two cases in the statement of the

lemma.

Case 1(ai ≤ di−1): In this case, the predecessor packet has not yet completed trans-

mission at timeai. If an unmarked packeti arrives at timeai, the earliest possible time at

which it can begin transmission isai +U(ai), which can occur only if no additional marked

packets are transmitted after timeai. Its earliest departure time isai +U(ai)+Li/R, where

Li is the length of the packet andR is the peak rate of the link. Let̂di be the departure time

of the packet using the reference scheduler that drops all marked packets. The extra delay

of packeti at timeai, EDi(ai), is the component of the delay caused to the packet due to

transmissions of marked packets before time instantai. Therefore, this is nothing but the

difference betweenai + U(ai) + Li/R andd̂i. In other words,

ED i(ai) = ai + U (ai) + Li/R− d̂i (3.3)

We will now consider two sub-cases and use the Equation (3.3) above to prove the

lemma.

Sub-Case A(EDi−1(ai) ≤ U (ai)): This sub-case is illustrated in Figure 3.4(a). In this

case, packeti− 1 departs at timêdi−1 = ai + [U(ai)−ED i−1(ai)] in the reference system.

In the reference system, packeti can begins its transmission at timed̂i−1 and completes the

transmission at timêdi = d̂i−1 + Li/R. Using Equation (3.3),

ED i(ai) =
(
ai + U(ai) +

Li

R

)

−
(
ai + [U(ai)− ED i−1(ai)] +

Li

R

)

= ED i−1(ai).
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Figure 3.4: Illustration of the sub-cases 1A and 1B in the proof of Lemma 1

Sub-Case B(EDi−1(ai) > U (ai)): This sub-case is illustrated in Figure 3.4(b). In this

sub-case, packeti − 1 has already completed its transmission in the reference system at

time instantai. Therefore, in the reference system, packeti will find the queue empty upon

arrival at timeai and will begin transmission immediately. Thus, the departure time for

packeti in the reference system iŝdi = ai + Li/R. Using Equation (3.3) again, we have,

ED i(ai) =
(
ai + U(ai) +

Li

R

)
−

(
ai +

Li

R

)
= U(ai).

Case 2(ai > di−1): For the case that packeti − 1 has completed its transmission at

time ai in the CL(α) scheduler, the extra delay of packeti is not simply zero even though

it is the only unmarked packet in the queue. When packeti arrives, the scheduler may be

transmitting a marked packet. Since the scheduler does not pre-empt this transmission, the

unmarked packet will acquire an extra delay equal toU(ai), the residual transmission time

of the marked packet currently being transmitted. 2
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Lemma 1 relates the extra delay of a newly arrived packet at timeai to that of its

predecessor packet and toU(ai). The extra delay of the predecessor packet is nothing but

the TailED maintained by the scheduler.U(t) is also easily maintained by the scheduler

with updates upon the arrival and departure of packets. This allows an easy computation of

theEDD value corresponding to each packet, representing the difference between the extra

delay values at timeai between that of packeti and its predecessor.

3.2.3 Limiting ED to α

In Lemma 1, it is proved thatEDk(t) is no more thanEDk−1(t). Thus, the unmarked

head has the largestED(t) for any givent among all the unmarked packets in the queue.

When the scheduler tries to send a marked packet, it only needs to make sure that the

HeadEDwill not exceedα. Thus, checking theEDs of all the packets in the queue is

rendered unnecessary, and thus reduces the per-packet work complexity toO(1).

If HeadEDwill exceedα upon transmission of a marked packet, the scheduler will

drop that marked packet and all marked packets ahead of the unmarked head before begin-

ning the transmission of the unmarked head. Searching the queue for the next unmarked

packet is obviously not a scalable option, and will not preserve theO(1) complexity of this

algorithm. Therefore, the CL(α) scheduler associates with each element ofEDDQueuea

pointer that indicates the position or address of the corresponding unmarked packet in the

queue. Recall that each element ofEDDQueuecorresponds to a unique unmarked packet in

the queue. When the scheduler determines that the marked packet at the head of the queue

cannot be transmitted, it can simply look up the pointer associated with theEDDHeadand

send the unmarked packet corresponding to it.
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3.3 Analysis

In this section, we present an analysis of the performance and the efficiency of the

CL(α) scheduler and prove that the scheduler satisfies the requirements listed in Sec-

tion 3.1.1.

Theorem 4 The CL(α) scheduler has a per-packet work complexity ofO(1).

Proof: All of the operations in the enqueueing and dequeueing routines are shown in

Figures 3.1, 3.2 and 3.3. The theorem is proved by showing that the number of these

operations isO(1).

To enqueue an unmarked packet, one needs to find out the states of the scheduling

system, setEDD and add it toEDDQueue, setTailED, and finally append the packet to

the end of the queue. To enqueue a marked packet, the server needs only one operation of

appending the packet to the end of the queue. In either case, the number of operations of

constant time complexity is bounded by a small finite constant. Thus, theEnqueueroutine

in Figure 3.1 has a per-packet work complexity ofO(1).

In dequeueing an unmarked packet, one needs to updateHeadEDandTailED, opera-

tions that are readily verified to be ofO(1) time complexity. In dequeuing a marked packet,

the scheduler needs to first determine if it should be transmitted at all, which is based on a

simple comparison operation. If the packet is to be transmitted, the scheduler only needs to

updateHeadEDandTailED, which again involves only anO(1) complexity in time. If the

marked packet is not to be transmitted, the scheduler dequeues the unmarked head packet

in O(1) time using the pointer stored in the elements of theEDDQueueand without going

through a search operation among the packets. Thus, the total time taken to dequeue a

marked packet is also of complexityO(1). 2
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3.3.1 Bound on the Extra Delay

In the following, we prove that the CL(α) scheduler correctly computes the extra delay

of each unmarked packet, and that the CL(α) scheduler successfully bounds the extra delay

of each unmarked packet toα.

Theorem 5 During any execution of the CL(α) scheduling discipline, the additional delay

of an unmarked packet caused by the transmission of marked packets is never greater than

α.

Proof: The CL(α) scheduler computes the values in theEDDQueuebased on Lemma 1.

When the unmarked head is transmitted, as per Equation (3.2), a new value ofHeadEDis

computed as the difference between the previous value and the EDD value corresponding

to the new unmarked head. Thus,HeadEDrepresents the extra delay of the new unmarked

head. For each marked packet transmission thereafter, the CL(α) scheduler increments the

HeadEDvalue by the transmission time of the marked packet. Thus, theHeadEDvalue

always contains the extra delay of the unmarked head packet at all time instants. Recall

that the CL(α) scheduler does not transmit a marked packet if its transmission time plus

HeadEDis larger thanα. Therefore, if an unmarked packet becomes the unmarked head

with an extra delay of less than or equal toα, it will be transmitted early enough to ensure

that its extra delay never goes beyondα.

Using induction on the sequence on unmarked packets, we now proceed to show that

every unmarked packet has an extra delay less than or equal toα when it becomes the

unmarked head.

As the basis step of the induction, consider the very first unmarked packet that arrives at

the scheduler. This becomes the unmarked head with aHeadEDvalue equal to the residual

time of the current marked packet transmission, which is guaranteed to be less than or equal

to α.
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As part of the inductive step of the proof, assume that each of the unmarked packets

until packeti − 1, i.e., each unmarked packet that arrive at or beforeai−1, experiences an

extra delay of no more thanα when it becomes the unmarked head. We have to now prove

that packeti will also experience an extra delay of no more thanα when it becomes the

unmarked head. We consider two cases:

(a) If unmarked packeti arrives after packeti−1 completes transmission, it immediately

becomes the current unmarked head similar to the case of the first unmarked packet that

arrives in the system. Therefore, it has an extra delay no more thanα when it becomes the

unmarked head.

(b) If unmarked packeti arrives before packeti − 1 completes transmission, from

Lemma 1, the extra delay of packeti is always less than or equal to the extra delay of

packeti − 1 until packeti − 1 completes transmission. Since packeti − 1 is transmitted

with an extra delay of less than or equal toα, packeti will have an extra delay of no more

thanα when it becomes the unmarked head.

From the above inductive proof, every unmarked packet has an extra delay less than or

equal toα when it becomes the unmarked head. Now, as long as the packet has an extra

delay of less than or equal toα when it becomes the unmarked head, it will be transmitted

before its extra delay goes higher thanα as is ensured by the CL(α) scheduler. This proves

the theorem. 2

3.4 Simulation Results

The effectiveness of the CL(α) scheduler may be demonstrated using simulation. In

our simulation, we use seven sources, each of which generates an MPEG-4 video stream.

These video streams of certain popular movies and sports programs are from the traces

made available by the Telecommunication Networks Group at the Technical University of

Berlin, Germany [51]. In order to remove any effects due to possible correlation between
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Figure 3.5: Simulation set-up of the CL(α) scheduler

early portions of the video streams, in our simulation, each source begins transmitting at

a random point within the movie trace. The generated traffic is policed by token bucket

regulators and associated packet markers before it arrives at our CL(α) scheduler. The

traffic policer and marker for flowi is configured to allow a long-term average rate ofρi

and a maximum burst size ofσi. Packets in the source traffic that do not conform to these

token bucket parameters are marked. Figure 3.5 illustrates the simulation setup. The details

of the video stream sources and the token bucket parameters are listed in Table 3.1.

We assume that, through the capacity planning phase, traffic policers are configured

so that
∑

i ρi ≤ R, whereR is the peak link rate at the output of the scheduler. In our

experiment, we use values of the token generation rates,ρi, such that
∑

i ρi ≈ 0.98R.

We also ensure that each source traffic has a higher long-term average rate than allowed

by the policer, so that a sufficient number of marked packets are generated to verify the

algorithm. In our simulation, the peak link rateR is selected to be smaller than the sum

of the average transmission rates (not the same as the corresponding token generation rate)

of video streams so that the input queue is backlogged most of time with either marked or

unmarked packets, and so that some marked packets would have to be dropped.

Our simulation implements an instance of the CL(α) scheduler whereα = 50 ms. The
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Table 3.1: Settings for MPEG-4 traffic sources and token bucket regulators

Source 1 2 3 4 5 6 7

Movie Name6 J S W B D K F
Video Quality High Medium High Medium High High High
Lmin (bytes) 72 28 26 27 71 307 130
Lmax (bytes) 16,745 11,915 9,370 7,565 16,960 15,813 14,431
ravg (Kbps) 770 180 280 180 700 830 840
rpeak (Mbps) 3.3 2.4 1.9 1.5 3.4 3.2 2.9
ρi (Kbps) 567 135 203 135 473 567 709
σi (bytes) 16,755 11,935 9,384 7,570 16,982 15,848 14,458

Link Capacity 2.83 Mbps
α 50 ms

Total Time 160 seconds

duration of the simulation is 160 seconds. Figure 3.6(a) shows a cumulative distribution of

the extra delay of unmarked packets that go through the CL(α) scheduler over the length

of the experiment. Figure 3.6(b) shows the distribution density represented as a histogram

of the extra delay experienced by these unmarked packets. Figure 3.6 verifies that no

unmarked packets suffer an extra delay greater thanα = 50 ms in the CL(α) scheduler.

Once the CL(α) scheduler determines that transmitting the marked packet at the head

of the queue will increase the extra delay of an unmarked packet beyondα, it decides

to send the unmarked packet and drop all marked packets ahead of it. This ensures the

O(1) per-packet complexity of the scheduler. At a greater complexity, one might design

a scheduler that tries to send a smaller marked packet that will also not increase the extra

delay of the unmarked head beyondα, and thus increase the number of marked packets

that are transmitted. In fact, an ideal scheduler that maximizes the data in marked packet

transmissions will need to examine each marked packet in the queue ahead of the unmarked

6The alphabet letters stand for the following movies and sports programs:
J: “Jurassic Park I” S: “Silence Of the Lambs” W: “Star Wars IV”
B: “Mr. Bean” D: “Die Hard III” K: “Alpine Ski” F: “Formula 1”
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Figure 3.6: Distribution of the extra delay from CL(α) scheduler: (a) cumulative distribu-
tion (b) distribution density

head, and send exactly the set of marked packets that together make up the largest amount

of data that can be transmitted without increasing the extra delay of the unmarked head

beyondα. However, this will require the scheduler to examine each of the marked packets

in the queue ahead of the unmarked head, and the number of packets one may have to

examine is unbounded except by the size of the queue. Our CL(α) scheduler makes a

compromise in favor of achieving simplicity of implementation and a lower per-packet

work complexity. Figure 3.7 shows the amount of data from marked packets transmitted

by the CL(α) scheduler and that transmitted by the ideal scheduler under the simulation

setup described earlier. The figure illustrates that the amount of data in marked packets

transmitted using the CL(α) scheduler is almost identical to that transmitted by an ideal but

more complex scheduler.
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Chapter 4. Soft Real-Time Service

4.1 Background

4.1.1 Scheduling Real-Time Traffic

As more people use the Internet as a medium to share and distribute multimedia in-

formation, researchers and developers are motivated to design a versatile network to sup-

port such transmissions with a satisfactory level of quality-of-service. Since multimedia

data tends to consume large amounts of local resources, multimedia traffic is frequently

streamed and then played back in real time. Such real-time traffic, therefore, typically has

much tighter requirements on the timeliness of transmission than traditional data traffic. A

variety of techniques have been proposed and employed to provide guaranteed delays to

real-time traffic flows. We discuss some these below.

The First Come First Served (FCFS) scheduling strategy, used in most early routers,

achieves the minimum average delay among all flows. However, it cannot provide any

differentiation between real-time traffic and elastic traffic, and therefore it cannot provide

a delay guarantee. The static priority scheduler has been proposed to provide some level

of discrimination between real-time traffic and elastic data traffic [54]. In this method, the

lower priority queue is serviced only when the higher priority queue is empty. Thus, real-

time traffic in a higher-priority queue has better chance of transmission with a lower delay.

However, it still cannot provide any level of quality assurances to real-time traffic.

Fair queueing schedulers are known to allocate bandwidth resource fairly to flows, and

can be used to also achieve guaranteed delays. One group of such schedulers, including

Weighted Fair Queueing (WFQ) [16, 20] and its variants [21–23], provide a closed-form

relationship between transmission delay bound and bandwidth allocation. Their service

principles are all based on an ideal fair scheduler model, Generalized Processor Sharing
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(GPS). A slightly different approach, used in Starting Potential Fair Queueing (SPFQ) [40],

is based on the concept of Rate-Proportional Servers [57], where GPS is not the basis

for scheduling. Instead, scheduling decisions are made based on a global variable that is

constantly updated upon the transmission of each packet. The SPFQ scheduler achieves the

same relationship between the delay bound and the minimum bandwidth allocation as that

achieved by WFQ. Such a relationship provides a feasible way to guarantee transmission

delay bounds to real-time flows.

The delay bound guaranteed to a flow by fair queueing schedulers such as the above

is inversely proportional to the minimum bandwidth allocated to the flow. Thus, a flow

desiring a low delay has to reserve a large share of the bandwidth in order to ensure a delay

guarantee. This can frequently result in a situation where the router has to allocate a larger

amount of bandwidth resource than what is actually consumed by a flow. This is because a

flow may require low delays but may not necessarily be a high-volume flow. Thus, in using

fair queueing to guarantee delay bounds, the network resources cannot be fully utilized

because the provisioning and admission control have to make sure that the network has

enough resource to support the delay requirements of existing flows.

A different approach, Earliest Deadline First (EDF) [58], is able to decouple the propor-

tional relationship between delay bound and bandwidth. Packets are stamped with desired

deadlines on them and are scheduled in order of their deadlines. Therefore, a flow can

be served with low delay through having an early deadline rather than through reserving

a large bandwidth. Together with an admission control policy, EDF can guarantee delay

bounds to real-time traffic.

Some real-time applications with stringent requirements on delay bounds can be largely

satisfied by fair queueing schedulers or the EDF scheduler. However, most real-time ap-

plications do not strictly require such a guarantee on the transmission delay bound for all

its packets. For these applications, playback quality is tolerable in spite of some packet

losses. This means that networks with mechanisms for delay bound guarantees provide
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services with higher quality than what clients are willing to pay. To efficiently utilize

network resources, therefore, a frequent technique has been to deliberately reduce the al-

located resource to real-time flows based on the statistical pattern of the incoming network

traffic [59]. Thus, even though the network is over-provisioned from the view of guaran-

teed service, flows are still serviced with good quality most of the time. Although networks

are better utilized by implementing such statistical guaranteed services schedulers, flows

are not protected well enough against each other. Once an unexpected burst of one flow

arrives at the system, other flows have to suffer a degradation in service quality since most

of the resource is temporarily consumed by the burst. To avoid such degradation, we need

a scheduling discipline which does not over-allocate bandwidth resource but provides good

protection from bursty traffic. Further, even though real-time traffic always needs an as-

surance on delay bound, it benefits from transmission with a low delay. Many playback

algorithms nowadays have incorporated mechanisms which adapt playback delays to the

current condition of a network.

4.1.2 Fairness Issues in Scheduling Real-Time Traffic

Some real-time applications have stringent requirements on timely deliveries, while

others do not require services with strict guarantee. According to the service requirements,

real-time applications are usually classified into hard and soft applications. Hard real-time

applications require strict on-time completion of the transmission of each packet. Such

applications need complete guarantee on the delay bound from the network. Soft real-time

applications can tolerate sparse packet losses and overdue transmissions. Their quality

is not degraded significantly as long as most packets (not necessarily all) arrive on time.

In the following, we will consider a packet that is delayed beyond its deadline as a lost

packet. Soft real-time applications have a QoS requirement that is frequently captured by

two parameters,D andx: packet transmissions should achieve a delay bound ofD with a
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loss rate ofx%.

How we compute the packet loss rate in the case of soft real-time applications is very

different from that in the case of non-real-time applications. When a data file is transmitted

through the network, the loss rate of the transmission refers to the portion of data from the

file which is lost in the network. This kind of loss rate is evaluated over the long term such

as over the entire session or the entire transmission of the file. Soft real-time applications

impose a requirement on the short-term loss rate, i.e., the loss rate needs to be less thanx%

over smaller intervals of time as well and not just over the entire length of the session. For

example, in a voice-over-IP application, a loss rate of up to 5% is acceptable as long as the

losses are uniformly distributed during the session but a 5% loss rate is not acceptable if all

the losses occur in a burst all at once.

Many video and audio communications, except for secure communications, can be clas-

sified as soft real-time applications. Nowadays, many real-time interactive communication

applications, such as vic and vat, are designed to adapt the current condition of the net-

work and adjust their playback delays. For example, if the network is not congested and

the delays experienced are low, the application will use a smaller playback delay to en-

hance the quality of interactive communications. They benefit from low average delays and

can present satisfactory quality even with scattered losses of data. Many coding/decoding

schemes can reconstruct the original information using received data with scattered losses.

However, the acceptable level of sparse losses depends on the frame size used for cod-

ing/decoding within each specific application. Therefore, the network should provide as-

surances to soft real-time applications with various different requirements on delay and

losses.

We now introduce our metrics and notation for quantifying the delay and short term

loss rate requirements of flows. For a packet scheduler, the transmission delay of a packet

is defined as the length of the time interval between a packet’s arrival time and the time

it completes its transmission. In [60], a framework is proposed to quantify and stipulate
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QoS requirements regarding short-term losses. This framework specifies QoS requirements

based on(m, k)-firm deadlines, where the quality of service delivered by the network is

acceptable to a flow if at leastm packets within a window ofk consecutive packets are

transmitted before their deadlines. Note that the window is a sliding window which means

it can start at any packet and endk packets later. As discussed before, the values ofm and

k will depend on the specific application.

Borrowing from [60], consider a queueing system withN flows. Flowi has a require-

ment of(mi, ki)-firm deadline. The system maintains a record of the recent service results

on deadlines met or missed for each flow. Letxj
i denote the transmission result of packetj

from flow i, where the result can be amissor ameetdepending on whether packetj missed

or met its deadline. A packet is considered as missing the deadline if it is dropped by the

system. The state of flowi is determined by theki-tuple,(xj−ki+1
i , . . . , xj−1

i , xj
i ), wherej

is the index of the most recent packet served by the system. We call those states with fewer

thanmi meets asfailing statesfor flow i. For each flow, a state transition diagram can be

drawn. In the transition diagram, a flow becomes “closer” to a failing state when a packet

misses its deadline. In [60], the rate at which a flow experiences failure is considered as the

metric of quality of service. Thus, the lower the rate, the higher the quality. The schedul-

ing discipline proposed in [60] attempts to keep flows away from failing states. It assigns

higher priority to flows which are closer to failing states. In this specific approach, the

priority of a flow equals to the minimum number of consecutive misses required to move

the flow from its current state to a failing state. If we define the distance of a non-failing

state from a failing state as the number of transitions between them, the priority of a flow

with a non-failing states also equals the minimum distance to any failing state. Thus, the

approach is named asDistance-Based Priority(DBP) assignment.
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4.1.3 Fairness of Existing Schedulers with QoS Assurance

While the basic requirements and the associated metrics for scheduling soft real-time

applications described above are a good starting point, they are not sufficient to serve as

a guide toward designing schedulers. An important requirement on the schedulers should

be that they maximize the utilization of network resources while also providing a similar

level of delays and loss rates to every flow. This requirement is similar to the idea of fair

queueing schedulers in the best-effort service model. Fair queueing schedulers attempt to

provide an equal opportunity to flows sharing the same transmission link. Similarly, when

serving real-time traffic, the level of QoS assurance should be fairly allocated such that no

flow suffers from degraded service while another flow receives premium services.

Since the delay requirements from various applications can differ greatly, the fairness

principle should normalize the impact of different delay requirements. We define thenor-

malized delayof a packet as the packet’s delay divided by the delay bound required by

the flow which that packet belongs to. Therefore, we claim that a fair scheduler for soft

real-time flows with(m, k)-firm deadlines should reduce the failure rate of flows and serve

packets with equal normalized delays (as far as possible).

We now analyze the fairness of some existing schedulers which are used to provide QoS

assurance to soft real-time traffic. TheEarliest Deadline First(EDF) scheduler achieves the

minimum actual delay bounds of packets by transmitting the packet with the earliest dead-

line in the system. Clearly, the EDF scheduler does not consider the impact of packet loss

or a missed deadline on the QoS for a flow. Therefore, it cannot satisfy the requirements of

scheduling soft real-time traffic. Fair queueing schedulers control the transmission delay

by the amount of bandwidth assigned to each flow. Similar to the EDF scheduler, they do

not take the packet loss rate into account for QoS.

The DBP scheduler [60] combines packet loss rates and delay constraints. However, it

cannot achieve a low failure rate and equal normalized delay at the same time. To illustrate
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its unfair scheduling discipline, consider a system of two flows,A andB, with periodic

arrivals as in most real-time traffic. Assume both flows stay at states with the same distance

of one to a failing state, which indicates both flows have priority 1 at the moment. Suppose

flow A’s head packet has an deadline earlier than flowB’s head packet. Suppose that flow

A’s head packet misses the deadline by a small amount. The system will update flowA’s

state and promote flowA to a higher priority, i.e. priority 0 in this case. Now, the new head

packet of flowA can be transmitted immediately. However, if the previous head packet

of flow A missed its deadline only by a small amount, the current head packet in flowA

may still have enough time to meet its deadline while the head packet in flowB may have

very limited time to meet its deadline. In this scenario, after flowA is promoted to a higher

priority, its packets are served with very low delay. Packets from flowB, however, will

experience long delays until flowA has no packet waiting for service. The DBP scheduler,

therefore, does not achieve the desired fairness in the delays experienced by different flows.

There are several variants of the DBP scheduler proposed in [61–63] which attempt to

reduce the work complexity of the DBP scheduler. A different approach which incorporates

delay and loss constraints is proposed in [64], known asDynamic Window-Constrained

Scheduling(DWCS). This method uses fixed windows instead of sliding windows to mea-

sure the packet loss rate. This notion can be used to schedule flows whose packets have

known logical relationships and can be grouped into segments. Therefore the QoS de-

scribed by it forms a subset of those by the(m, k) constraint. Despite this difference in the

constraints, the DWCS scheduler uses a similar method to determine the scheduling order.

It gives a higher priority to flows with a tighter window-constraint. In addition, it alleviates

the unfairness in the priority queueing discipline by constantly updating the flow states.

However, it does not take any action to further tune the transmission order so as to achieve

better fairness.

We propose two packet schedulers for soft real-time traffic that achieve the fairness

goal while also reducing the number of packets that are dropped. The first scheduler uses
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the method of priority queueing with promotions to reduce the unfairness in the traditional

priority queueing method. The second one consists of a mechanism for maintaining a

transmission timetable and a conditional priority queueing scheduler. It further improves

the fairness achieved in scheduling soft real-time traffic.

4.2 SRTS-PQP: Soft Real-Time Scheduler Using Priority Queueing with Promo-
tions

According to the discipline of priority queueing, a flow with low priority can transmit

its packets only if no high priority flow is backlogged. Therefore, a low priority flow cannot

update its state if high priority packets are waiting for service. Furthermore, if high priority

queues are continuously backlogged, low priority flows cannot be promoted to a higher

priority even though their packets have missed the deadlines. Since the DBP scheduler

uses priority queueing scheduling, the probability of failure is greatly affected by the traffic

arrival characteristics. Some flows may end up with higher failure probability than others

simply because they encounter a bursty period from flows with higher priorities.

One way to solve the problem just mentioned is to update states of flows more fre-

quently than traditional priority queueing. With additional promotion chances, it is possible

for a low priority flow to acquire a higher priority before its packets have been delayed for

too long. In the following, we call this methodPriority Queueing with Promotions(PQP).

A somewhat similar method is used in a different context within the DWCS scheduler [64].

In designing a scheduler to exploit the above method, we maintain the dynamic priority

assignment approach in the DBP scheduler and replace the traditional priority queues with

the PQP queues. As a result, the scheduler is able to serve soft real-time traffic with a

reduced probability of failure (packet loss) and relatively lower delays in comparison to the

DBP scheduler. We name this scheduler asSoft Real-Time Scheduler with PQP(SRTS-

PQP), which we describe in greater detail below.

The SRTS-PQP scheduler attempts to reduce the probability of packet losses by giving



86

Dequeue:
while (the system is not empty)do

H ← the nonempty queue with the highest priority;
Q ← the packet with the earliest deadline inH;
TransmitPacket(Q);
Update the related flow state;
Update the related priority queue;
UpdateTreeOfDeadlines;
while (TreeOfDeadlines.earliestD< t) do

Fi ← the flow with the earliest deadline inTreeOfDeadlines;
Drop the head packet of queuei;
RemoveFi from the original priority queue;
UpdateFi’s state and calculate its new priority;
InsertFi to the right priority queue;
UpdateTreeOfDeadlines;

end while;
end while;

Figure 4.1: Pseudo-code ofDequeueroutine in the SRTS-PQP scheduler

promotion chances to low-priority flows. The scheduler consists of the data structure for

the DBP scheduler. After each transmission, the scheduler checks for any packets that have

missed their deadline. If a flow just has an overdue packet (i.e., it has missed its deadline),

that flow should have a higher priority. The scheduler promotes such flows to higher priori-

ties and then begins the next transmission from the currently highest priority flows. In order

to find overdue packets in a short amount of time, the scheduler maintains a binary search

tree,TreeOfDeadlines, of all head packets sorted by their deadlines. Whenever the head

packet with the earliest deadline in the system is overdue, the scheduler drops the packet,

updates the state and priority of that flow, and adds the deadline of its new head packet

to TreeOfDeadlines. Then, among those packets with the highest priority, the scheduler

selects one with the earliest deadline and begins to transmit this packet. The pseudo-code

of the dequeueing routine is shown in Figure 4.1.
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The SRTS-PQP scheduler has a per-packet work complexity ofO(log N), whereN is

the number of flows in the system.

4.3 SRTS-CPQ: Soft Real-Time Scheduler Using Conditional Priority Queueing Sys-
tem

Even with the improvement devised in the SRTS-PQP scheduler, a higher priority

packet is still transmitted earlier than a lower priority packet even though there is enough

time to transmit the lower priority packet first and ensure a lower overall loss rate. As a

result, packets from lower priority flows have long delays and these flows become closer

to failing states unnecessarily, which in turn results in a higher probability of failure and

higher normalized delay. To avoid this inefficiency, we propose a different scheduler us-

ing conditional priority queueing to achieve better fairness. We call this schedulerSoft

Real-Time Scheduler using Conditional Priority Queueing(SRTS-CPQ). In the SRTS-CPQ

scheduler, the flows also have(m, k)-firm deadline requirements. With the same definition

of the state of a flow in the DBP scheduler, we further categorize flow states into three

groups. When the number of packets transmitted before the deadline is less thanm among

pastk packets, the flow is said to be in afailing state. A flow in the edge stateis at a

distance of one to the failing state. A flow in theinner stateis at a distance larger than one

to the failing state. The SRTS-CPQ scheduler uses a new discipline of conditional priority

queueing to organize the transmission order based on these flow states. It assigns higher

conditional priority to failing state flows than edge state flows, and similarly, a higher pri-

ority to edge state flows than inner state flows.

4.3.1 Conditional Priority Queueing

Conditional priority queueingis based on a simple principle that a higher priority flow

should not necessarily be favored over a lower priority flow at all times. When the traffic

load is light, a flow with low priority is treated equal to a flow with higher priority, i.e.,
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the flow with lower priority can transmit packets before the higher priority one if the trans-

mission will not result in any dropped packets from the higher priority ones. In general,

we say that an edge state flow has higherconditional priority than an inner state flow. To

simplify the discussion, in the rest of this dissertation, when we say “high priority”, we will

mean high conditional priority. In the SRTS-CPQ scheduler, flows at failing states have the

highest conditional priority and flows at inner states have the lowest.

4.3.2 System Structure

The primary goal in maintaining conditional priority queueing is to ensure a fair dis-

tribution of the opportunity to transmit to both the higher and lower priority packets. To

achieve this goal, the system keeps a record of the latest transmission time for packets with

higher priority. With the knowledge of the latest time to transmit a higher priority packet

without causing a packet loss, the scheduler can readily determine whether or not to trans-

mit a packet with lower priority. Thus, the system sorts the head packets from all flows

with low and high priorities based on their deadlines and attempts the transmission of the

packet with the earliest deadline. If the packet with the earliest deadline has higher priority,

it is transmitted. Otherwise, the scheduler examines the latest time that a higher priority

packet transmission may begin without causing a loss, and checks whether the transmission

of the lower priority packet would delay the transmission of higher priority packets. If it

will, then the lower priority packet is dropped, the associated flow updates its priority and

obtains the correct position for its new head packet. If not, the lower priority packet is then

transmitted.

To ensure efficiency in the operation of the scheduler, packets are sorted using a mini-

mum heap, calledDeadlineHeap. A record of the latest transmission times of high priority

packets is updated and maintained in a table with entries corresponding to these packets.

This table, henceforth called thetimetable, is not arranged by simply sorting the deadlines
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of high priority packets. Since the length of any transmission is not negligible, transmitting

a packet at the last moment may cause other packets with later deadlines to be dropped.

Therefore, it is necessary to appropriately arrange the transmissions of all higher prior-

ity packets. Here, we propose a data structure which can accomplish the function of the

timetable inO(log N) time. The data structure is described in Section 4.3.3. The packet

with the earliest deadline is selected first. A packet with low priority can be transmitted

only if its transmission will not result in a higher priority packet missing its deadline. This

is determined by looking up the timetable. If the earliest starting deadline in the timetable

is later than the finishing time of the transmission, that packet can be sent. Otherwise, the

packet is dropped.

Once a packet is sent or dropped, the flow it belongs to should update its state informa-

tion. The new head packet of this flow is then inserted into theDeadlineHeap. If this flow is

in edge state, then the timetable should also be updated to include the deadline of the new

head packet. The pseudo-code for the SRTS-CPQ scheduler is presented in Figures 4.2,

4.3 and 4.4. In the pseudo-code, the current time is denoted byt. The reader is referred to

Appendix B for a description of the routines used by the pseudo-code.

4.3.3 Maintaining the Timetable

Structure of the Timetable

To describe the algorithm used to maintain the timetable, we first introduce some defi-

nitions. The priority of a packet is determined based on the flow state. In the SRTS-CPQ

scheduler, there are a total of three (3) levels of priority, namely priority 0, 1 and 2. Flows

in the failing state have priority 0, which is the highest priority. Flows in the edge state

have priority 1 and flows in the inner state have priority 2. Priorities 0 and 1 are the same

as in the DBP scheduler [60], while all priorities lower than and equal to 2 are combined

into priority 2.
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Enqueue: (Invoked whenP arrives at flowFi)
Assign deadline toP ;
if (Queuei is empty)then

Update the state of flowFi;
if (Fi.priority ≤ 1) then

T1.InsertPacket(P );
if (Fi.priority = 0) then

T0.InsertPacket(P );
end if;

end if;
AddPacketToDeadlineHeap(P );

end if;
AddPacketToQueue(i, P );

Figure 4.2: Pseudo-code ofEnqueueroutine in SRTS-CPQ

The deadlineof a packetx, denoted asDx, is the latest time when the transmission

of packetx should complete. Thestarting deadlineof packetx, SDx, is defined as the

latest time when the transmission of packetx should begin to meet the deadline. Then,

SDx = Dx − Lx/R, whereLx is the length of this packet, andR is the link capacity. The

timetable checks the deadlines of high priority packets, arranges the latest transmission

time of high priority packets in order to efficiently determine the latest time for the system

to start transmitting an edge state packet. Since the deadlines can be spread over time, we

design a data structure, described later, to maintain the tracking information efficiently and

to update the timetable quickly.

The purpose of maintaining a timetable for high priority packets is to provide the infor-

mation on the latest time to start a transmission of a high priority packet. Since there can

be more than one packet with high priority, and their deadlines may not be far apart enough

to fit the transmission of the packet with the later deadline, the scheduler should be able

to arrange the transmission deadlines so that enough time is left for the transmission of all
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Dequeue:
while (DeadlineHeapis not empty)do

P ← MinOfDeadlineHeap;
if (t+ P.TxTime≤ P.D) then

if (P.priority = 0) then
TransmitPacket(P );

else if(P.priority = 1 AND (T0 is empty ORt < T1.earliestSD) ) then
TransmitPacket(P );

else if(P.priority = 1 AND T0 is not empty ANDt+ P.TxTime< T0.earliestSD) then
TransmitPacket(P );

else if(P.priority = 1 AND T0 is not empty ANDt+ P.TxTime≥ T0.earliestSD) then
DropPacket(P );

else if(Q.priority > 1 AND T1 is empty)then
TransmitPacket(P );

else if(Q.priority > 1 AND T1 is not empty ANDt+ P.TxTime< T1.earliestSD) then
TransmitPacket(P );

else if(P.priority > 1 AND T1 is not empty ANDt+ P.TxTime≥ T0.earliestSD) then
DropPacket(P );

end if;
else /* P will miss its deadline */

DropPacket(P );
end if;

end while;

Figure 4.3: Pseudo-code ofDequeueroutine in SRTS-CPQ

high priority packets.

To facilitate further discussion of the SRTS-CPQ scheduler, we define several terms in

the following:

Definition 9 A packet of priorityp∗ is a packet from a flow with a priority higher than or

equal top. If packetx is of priority p∗ andk ≥ 1, anassemblyof k packets of priorityp∗

beginning at packetx, denoted byyp(x, k), consists of packetx andk − 1 other packets

which satisfy the following conditions:

1. Each packet is of priorityp∗ and has a deadline later than packetx.

2. If thek packets ofyp(x, k) are numbered asx, x + 1, . . . , x + k − 1 in order of their
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TransmitPacket(P ):
TransmitP ;
if (P.priority = 0) then

T0.ReleasePacket(P );
T1.ReleasePacket(P );

else if(P.priority = 1) then
T1.ReleasePacket(P );

end if;
Update the related flow state andDeadlineHeap;
UpdateT0 andT1 if necessary;

DropPacket(P ):
RemoveP from its queue;
Update the state of its flow andDeadlineHeap;
UpdateT0 andT1 if necessary;

Figure 4.4: Pseudo-code ofTransmitPacketand DropPacketroutines in the SRTS-CPQ
scheduler

deadlines, there exists a relation on their deadlines and packet lengths as

Dx+k−1 −Dx ≤
x+k−1∑

i=x+1

Li. (4.1)

From Definition 9, an assembly is a group of packets whose deadlines are close to each

other. If the system only begins to transmit packetx atSDx, some deadlines of packets in

yp(x, k) may be missed. In the following, we define some of the properties of assemblies

that we will use in our algorithm description and analysis.

Definition 10 The size of an assemblyyp(x, k), denoted by|yp(x, k)|, is defined as the

number of packets contained in it, i.e.

|yp(x, k)| = k.

Thelengthof an assemblyyp(x, k), L{yp(x, k)}, is the total length of the packets contained
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byyp(x, k), i.e.

L{yp(x, k)} =
x+k−1∑

i=x

Li.

Thedeadlineof an assemblyyp(x, k), D{yp(x, k)}, is the latest deadline among all packets

in yp(x, k), which is actually the deadline of packetx + k − 1, i.e.

D{yp(x, k)} = max
x≤i≤x+k−1

Di = Dx+k−1.

The starting deadlineof an assemblyyp(x, k), SD{yp(x, k)}, is the latest time to start

transmission of packets ofyp(x, k) so as to meet their deadlines.SD{yp(x, k)} is obtained

by subtracting the length of the assembly from the deadline of the assembly, i.e.

SD{yp(x, k)} = D{yp(x, k)} − L{yp(x, k)}.

According to Definition 9, assemblies with different sizes can begin at the same packet.

For each packet, we call the assembly with the maximum size asmax-assembly. We define

it formally as follows.

Definition 11 A max-assemblyof priority p∗ beginning at packetx, Yp(x), is the one with

the maximum size among those assemblies of priorityp∗ beginning at packetx.

Figure 4.5 shows an example of assemblies beginning at packetx. Now we can par-

tition a group of packets into a set of assemblies according to Definitions 9 and 11. Here

we are interested in a special set of max-assemblies which includes all packets in the group

and such that, any given packet is contained in one and only one max-assembly. This set

is constructed through the following procedure. LetA be a group ofk packets of pri-

ority p∗. Each of them is numbered according to the order of their deadlines, and the

packet with the earliest deadline is numbered as 1 while the one with the latest dead-

line ask. Ymin
p (A) is a set of max-assemblies ofA which contains all packets inA.

If Ymin
p (A) = {Yp(a1), Yp(a2), . . . , Yp(am)}, wherea1, a2, . . . , am are the indices of the
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 xDSDx

py  (x, 4) = Y p  (x)

x+2

Time increases

xLegend

x−1

x

x+1

x+3

Figure 4.5: An illustration of assemblies beginning at packetx

beginning packets and satisfy




a1 = 1

ai = ai−1 + |Yp(ai−1)|, 2 ≤ i ≤ m

am + |Yp(am)| − 1 = k,

(4.2)

Ymin
p (A) is called themax-assembly partitionof A.

As long as each max-assembly is served no later than its starting deadline, it is possible

for the system to meet all high priority deadlines and at the same time serve low priority

packets whenever possible.

As packets are arriving and being transmitted,Ymin
p (A) changes constantly. In order to

trackYmin
p (A) and therefore to compute the latest starting time, we propose a data structure

of a timetable. A timetable consists ofoccupied periodsandvacant periods, definitions of

which are presented below.

Definition 12 Let A be the set of all packets of priorityp∗ awaiting service in the SRTS-

CPQ system.Ymin
p (A) = {Yp(a1), Yp(a2), . . . , Yp(am)} denotes the max-assembly por-
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Table 4.1: Variables in aVacancyElement

b The beginning time of the vacant period
e The ending time of the vacant period
len The length of this vacant period
leftLen The total length of vacant periods in its left subtree
rightLen The total length of vacant periods in its right subtree
Pointers Used for data structure maintenance
pktLen The total length of packets sitting between thisVEand its predecessor.

tion of A whose elements satisfy the relations in (4.2). Theoccupied periodof Yp(ai) is

the latest possible transmission time forYp(ai), for 1 ≤ i ≤ m. Thevacant period of

[Yp(ai−1), Yp(ai)] is the time interval between the occupied periods ofYp(ai−1) andYp(ai).

The timetable of priorityp, denoted asTp, consists of occupied periods ofYp(ai) from

Ymin
p (A), 1 ≤ i ≤ m, and vacant periods of[Yp(ai−1), Yp(ai)], 2 ≤ i ≤ m. Tp starts

with the earliest occupied period of all head packets with priorityp∗, and ends with the

latest occupied period among the same group of packets. In the middle ofTp, occupied

periods and vacant periods are interleaved with each other. To keep track of the timetable,

the basic unit in the data structure is an object namedVacancyElement, or in shortVE.

EachVE represents a vacant period and the occupied period before it. The object contains

several variables, which are listed in Table 4.1. The vacant period starts atVE.band ends at

VE.e. The occupied period before it can be obtained fromVE.bandVE.pktLen. To search

fast among vacant periods, we implement a binary search tree ofVEs, calledVacancyTree.

Necessary pointers are stored inVEs. To facilitate the appropriate tracking of the timetable,

eachVE also contains the length of the vacant period within itself and the total length of

the vacant periods within its left and right subtrees.

BesidesVacancyTree, the timetable keeps records of the beginning and ending time in

earliestSDandlatestDrespectively. SinceVEsin VacancyTreeonly contains the occupied

periods before each vacant period, the timetable needs to track the last occupied period
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VE1 VE2 VE3 VE4 VE5

VE2

VE4

VE3 VE5

VE1

Y (1)p Y (3)p Y (5)p Y (6)p Y (8)p Y (9)p

VacancyList Head

VacancyList Tail

EarliestSD LatestD

Figure 4.6: An illustration of the structure of a timetable of priorityp. The size of each
max-assembly is:|Yp(1)| = |Yp(3)| = |Yp(6)| = 2, |Yp(5)| = |Yp(8)| = |Yp(9)| = 1

within it, which is done by recording the total length of packets behind the lastVE, denoted

aspktLenAtTail. Figure 4.6 illustrates the structure of a sample timetable.

Arranging the Timetable

Arranging the timetable includes inserting a packet and releasing a packet. When we in-

sert a packet into the timetable, the system first locates the occupied period for this packet.

Let this occupied period beE. The length ofE is increased and therefore the vacant periods

beforeE will be shrunk. As a result, some vacant periods may disappear and the occupied

periods between them will be combined into one long occupied period. The insertion op-

eration consists of a chain of adjustment amongVEs. On the other hand, releasing a packet

is much easier to finish. A packet is released from the timetable when it is transmitted or

dropped. In either case, the packet is within the earliest occupied period. Since the length

of a period is the only value of concern in the timetable, it suffices to only adjust the length

of the first occupied period and the value ofearliestSDaccordingly.

From the scenario of inserting a packet, one needs an efficient way to finish the chain
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of adjustments. SinceVacancyTreeis a binary tree structure, it has a potential to finish

these adjustments withO(log N) work complexity. There are two cases as regards how

the adjustments are made, depending on whether or not theVacancyTreeis empty. In the

following, we analyze and explain these cases in more detail.

Case 1: VacancyTreeis empty, which means the timetable has up to one occupied

period. If the timetable is empty, i.e. no occupied period at all, an occupied period is

created. If one occupied period exists, two possible actions may be taken depending upon

the deadline of the inserted packet. If the starting deadline falls within the existing occupied

period, the system only adjusts the length of that period. Otherwise, aVE is generated and

VacancyTreebecomes non-empty. Finally,earliestSDandlatestDare updated accordingly.

Case 2: VacancyTreeis not empty. The system first locates the position of the inserted

packet in the timetable. If the latest possible transmission time is outside the range ofVa-

cancyTree, a newVE may be created if needed and related updates are accordingly made.

However if the latest possible transmission is within the range ofVacancyTreeand specifi-

cally inside the range of oneVE, denoting thatVEasV , the system starts a search along the

tree fromV . The search procedure contains up to two stages, searching upward and down-

ward. The search stops completely when it finds enough amount of vacant time to hold the

inserted packet or when it finds out that the vacant time inVacancyTreeis not enough to

hold the inserted packet. In the latter case, the packet is inserted into the timetable tem-

porarily and allVEs beforeV are deleted. TheearliestSDis pushed to an earlier time. If the

newearliestSDis earlier than current time, the packet dropping mechanism is triggered. A

fair dropping mechanism is discussed later.

Now we look into the two stages of the search action. In the first stage the system

searches upward in theVacancyTree. Since the inserted packet may advance the starting

deadline of some max-assembly with earlier time, only those vacant periods beforeV can

be affected. By searching upward, the system finds out the highest level in the tree to

be adjusted and determines whether to search downward. If theVE at the highest level
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provides enough vacancy, the search may stop. Otherwise, the system starts to search

downward in the left subtree. Once the system finds the earliestVE, denoted asU , whose

vacant period together with all vacant periods after it but beforeV can accommodate the

expansions on max-assemblies caused by the inserted packet, all those vacant periods are

deleted fromVacancyTree. The occupied periods among those deleted vacant periods are

left and combined into one occupied period.

Deleting nodes from a binary tree one by one is certainly not an efficient method. Actu-

ally, during the search action, the system can determine which node and/or subtree should

be deleted. The complexity of such deletion isO(log m) if m is the total number ofVEs.

This is proved in the following lemma.

Lemma 2 When inserting a packet into the timetable, if at least oneVE is deleted during

the search action, at most oneVE is deleted withO(log m) time, wherem is the number of

VEs in VacancyTree, while all other VE deletions take O(1) time.

Proof: The proof is better explained with the search action. When searching upward

along the tree branch, eachVE is examined onVE.lenandVE.leftLen. Suppose the inserted

packet needs additional∆T to accommodate its transmission. The result of the examination

may be one of the following cases:

1. If VE.len> ∆T , VE is not deleted.

2. If VE.len= ∆T , only VE is deleted and the search stops.

3. If VE.len+VE.leftLen> ∆T , the upward search stops and the downward search starts

while ∆T is reduced byVE.len. VE is deleted in this case.

4. If VE.len+VE.leftLen= ∆T , VEand its left subtree are deleted. The search stops.

5. If VE.len+VE.leftLen< ∆T , VEand its left subtree are deleted. After reduce∆T by

the sum ofVE.lenandVE.leftLen, the upward search moves on to the parent ofVE.
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Now we consider aVE on the route of downward search. Similarly∆T represent the

additional time needed to accommodate the inserted packet. The result of the examination

is one of the following cases:

6. If VE.rightLen> ∆T , the downward search moves on to the right child ofVE.

7. If VE.rightLen= ∆T , the right subtree ofVE is deleted and the downward search

stops.

8. If VE.rightLen< ∆T andVE.rightLen+VE.len> ∆T , same as case 7.

9. If VE.rightLen+VE.len= ∆T , bothVE and its right subtree are deleted. The down-

ward search also stops.

10. If VE.rightLen+VE.len< ∆T , bothVE and its right subtree are deleted. The down-

ward search moves on to the left child ofVE.

Clearly, throughout the search operation, only theVE at the highest level may be deleted

by itself alone, as in case 2 and 3. In other cases, aVE is deleted with either its left or

right subtree, which can be finished withinO(1) time. And deleting a node from a binary

tree only needsO(log m) if m is the total number of nodes in the tree. Thus the lemma is

proved.

Lemma 3 When inserting a packet into the timetable, deleting used vacant periods is done

in O(log m) time, wherem is the total number of nodes in theVacancyTree.

Proof: Suppose that the search starts at nodeV and stops at nodeU . Since the search

route is along the shortest path betweenV andU , the number of nodes examined is of

O(log m). Therefore, the number of node deletions is alsoO(log m). As illustrated in

the proof for Lemma 2, at most one node deletion among those examined nodes requires

O(log m) time. Each of the rest of the node deletions is done inO(1) time. Therefore, the

total time needed to delete used vacant periods is ofO(log m).
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4.3.4 Dropping Packets

From previous discussions, in the SRTS-CPQ scheduler, a packet with a lower priority

may be dropped if its transmission conflicts with the starting deadlines of max-assemblies

of packets with a higher priority. The reason for this kind of dropping is to reduce the prob-

ability of dynamic failure according to the(m, k)-firm deadline requirements. The decision

is made at the boundary of packet transmissions when the scheduler is searching a packet

for the next transmission opportunity. The principle of dropping under this circumstance is

straightforward: if a lower priority packet cannot finish its transmission before the earliest

starting deadline of higher priority packets, it is dropped.

Such a conflict in transmissions may also emerge through the arrangement of the

timetable. After inserting a packet into the timetable, the earliest starting deadline may

be pushed ahead. If the new earliest starting deadline is even earlier than current time,

some packet would have to be dropped to ensure other packets’ chances of meeting dead-

lines. Under this circumstance, it is critical to ensure fairness in the selection of a packet

to drop. Here, we do not apply a complex dropping scheme; the scheduler just attempts to

transmit the packet with the earliest deadline in the timetable. Once it finds out the packet

from the timetable cannot be transmitted before its deadline, that packet is dropped and the

scheduler proceeds onto the next packet in the timetable.

To achieve fairness in the probability of dynamic failure, we need a fair dropping dis-

cipline to correctly select a packet to drop. A possible approach is to maintain a record of

past dropping history for each flow. Once it is determined that a packet should be dropped,

the system selects the flow with the lowest dropping rate and the head packet of that flow

bearing a deadline within the first occupied period in the timetable. However, this approach

cannot guarantee that dropping the selected packet can ensure that the rest of the packets

will meet their deadlines. It is possible that the selected packet and the packets with earlier

deadlines do not form any assembly. Thus, the earliest starting deadline may not be post-
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poned enough after dropping that packet. As a result, the system may need to drop another

packet hoping thatearliestSDwould retreat to an instant later than current time. This will

takeO(N) time and therefore, is not a scalable option.

4.4 Analysis of the SRTS-CPQ Scheduler

Lemma 4 In the SRTS-CPQ scheduler, it takesO(log m) time to insert a packet into or

release a packet from a timetable, wherem is the total number of nodes in theVacancyTree.

Proof: As shown in Figure B.2, inserting a packet into a timetable requires one to locate

the range of vacant periods to be occupied, delete the occupied vacant periods, and update

VacancyTreeas regards the vacancy length. The first two operations are actually done at

the same time and only takeO(log m) time to finish since the locating procedure is along

the shortest path between the earliest and latestVEs within VacancyTree.

To consider the procedure of updating the rest ofVacancyTreeon vacancy length, we

assume that, among thoseVE affected by the insertion,w is at the highest level in the tree.

Once the range of vacant periods is located, the total length of vacancy which becomes

occupied is recorded during the locating procedure. Only the ancestor nodes ofw should

update their records of the vacancy length within their subtrees. Such updating can be

completed by traversing the tree along the shortest path fromw to the root, and thus only

takesO(log m) time to finish. Within the subtree rooted atw, only the ancestors of the

affectedVEs have to adjust their records on vacancy lengths which can be finished during

the search procedure. Since the search procedure is done withinO(log m) time, updating

records on vacancy length is also on the same order. This proves the lemma.

The DBP scheduler, on the other hand, consists of two major parts, one to decide the

priority of each flow and one to sort the deadlines within each priority. The priority of a

flow is directly related to the transmission history. A record of it is maintained at all times

and updated only at the time when a packet is transmitted or dropped. Thus it hasO(1) per
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packet work complexity.

The other part of the DBP scheduler is basically a priority queueing scheduler. However

within each priority, the service order is determined by the earliest deadline first discipline.

Maintaining the sorted order of packets based on deadlines hasO(log k) complexity if k

packets have the same priority. In the worst case,k equals toN . On the other hand, when

a packet is dropped because its deadline is missed, the system will need to update the state

of the related flow and insert the new head packet into the sorted order of packets with

the same priority. Thus the complexity of dropping depends on the number of packets

dropped. Since the incoming traffic is not known, one cannot estimate how many packets

are awaiting service in a higher priority queue, and therefore the number of packets dropped

from a lower priority queue cannot be predicted. Thus, the complexity of the scheduler is

unbounded.

Theorem 6 In a SRTS-CPQ scheduler for a system withN flows, the per-packet processing

complexity isO(log N).

Proof: Processing a packet consists of enqueueing and dequeueing routines. In the

enqueue routine, when a packet arrives, it is added to the queue for its flow and its deadline

is assigned based on that flow’s traffic parameter. If the flow is previously empty, the flow

state is reset and this packet is inserted intoDeadlineHeap. And the same packet may be

inserted to the timetable of the scheduler if its flow has a high priority. Since the insertions

of DeadlineHeapand the timetable are ofO(log N) each, the enqueue routine of the SRTS-

CPQ scheduler has a work complexity ofO(log N) for each arriving packet.

In the dequeue routine, the packet with the earliest deadline is taken fromDeadline-

Heap. The scheduler checks the priority and transmission time of the packet and deter-

mines whether to send or drop the packet. If the scheduler decides to transmit the packet,

then after the transmission the scheduler should update the flow state, delete the transmit-

ted packet from the data structure, and add the new head packet, if there is a new one, into
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the heap and the timetables. Since the deletion and the insertion can be finished within

O(log N) time, transmitting a packet only takesO(log N) time. On the other hand, if

the scheduler decides to drop the packet, it takesO(log N) time to update the heap and

timetables. Therefore, the theorem is proved.

4.5 Discussions and Evaluation

4.5.1 Discussions

In this chapter, SRTS-PQP and SRTS-CPQ schedulers have been presented. Both

schedulers improve the performance of the DBP scheduler. The SRTS-PQP scheduler uses

a similar method as the Dynamic Window-Constrained Scheduling (DWCS) method. In

comparison to the DBP scheduler, the SRTS-PQP scheduler reduces the probability of dy-

namic failure for flows and, in addition, its work complexity is not high. However, since the

scheduling decision is based on priority queueing discipline, it cannot avoid the unfairness

inherent in priority queueing.

The SRTS-CPQ scheduler uses a new scheduling discipline, conditional priority queue-

ing. It provides a framework for treating real-time traffic with both QoS and fairness re-

quirements. Even though the data structure used for SRTS-CPQ is not simple, its per-packet

work complexity isO(log N) if totally N flows are sharing one output link.

4.5.2 Evaluation Based on Simulations

We use simulation experiments to evaluate the performance of the SRTS-CPQ sched-

uler. The comparison is made among SRTS-CPQ, DBP and SRTS-PQP schedulers. In the

simulation, each scheduler is fed by traffic from six Voice-over-IP (VoIP) flows and the

probability of dynamic failure is recorded. The VoIP traffic traces used here are obtained

from a public data made available by a research project on modeling real-time multimedia

traffic [65]. The packet lengths and generation time instants were recorded by VoIP appli-
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Table 4.2: Settings for traffic sources from VoIP traces

Source 1 2 3 4 5 6

Lavg (bytes) 36 36 36 36 32 or 17 36
ravg (Bps) 460 812 98 810 807 727
rpeak (Bps) 936 1002 1234 1050 1062 1188
∆D (ms) 10 10 10 10 10 10

Link Capacity 3.75× 103 Bps
Total Time 50 seconds
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Figure 4.7: Incoming traffic throughout the simulation.

cation softwares. Table 4.2 lists the traffic traces used in our simulation. As shown in the

table, most flows have constant-sized packets except for Flow 5. Figure 4.7 plots the total

rate of incoming traffic throughout the simulation.

To show the validity of SRTS-CPQ, the value of(m, k) is chosen such thatm is smaller

thank by at least two. We present two sets of results. One is from a system with flows

of (2, 4)-firm deadlines and the other is with flows of(6, 8) deadlines. Note that we do

not reduce(2, 4) to (1, 2) for the purpose of SRTS-CPQ. We first compare the probability
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of dynamic failure in each of the three schedulers. Figures 4.8 (a)–(d) show the failure

probability of each flow under different traffic loads in both experiments. Figures 4.8 (e)

and (f) show the average failure probability over all flows versus traffic load. As observed

from those figures, SRTS-CPQ has the lowest failure probability with heavy traffic load.

For flows with (2, 4)-firm deadlines, the average failure probabilities of the SRTS-PQP

scheduler is close to that of the SRTS-CPQ scheduler, and even lower than that of SRTS-

CPQ when traffic load is about 70%. Since(6, 8) deadlines are more stringent that(2, 4),

failure probabilities with(6, 8) deadlines are higher than those with(2, 4) deadlines and the

differences between schedulers are less. With(2, 4) deadlines, the SRTS-CPQ scheduler

reduces the failure probability by about 40% from the DBP scheduler, while with(6, 8)

deadlines the reduction is about 5%. However, the SRTS-PQP scheduler produces failure

probabilities very close to the DBP scheduler under heavy traffic load with(6, 8) deadlines.

This indicates that the SRTS-CPQ scheduler maintains a relatively good performance even

with tighter loss and delay constraints.

Now we study the average delay achieved by each of the schedulers. Figures 4.9(a)–

(d) plot the average delay of each flow under different traffic loads. Here we also present

results from the systems of(2, 4) deadlines and(6, 8) deadlines. In these graphs, the value

of average delays is normalized by the guaranteed delay bound corresponding to the flows.

As shown by these graphs, both SRTS-PQP and SRTS-CPQ reduce average delays in com-

parison to the DBP scheduler. SRTS-PQP achieves slightly lower delays than SRTS-CPQ.

However, delays of different flows in the SRTS-PQP scheduler have larger differences be-

tween each other. To compare these differences with quantities, we compute the Gini index

of every set of average delays and list the results in Table 4.3. One can see that SRTS-CPQ

has a lower Gini index than SRTS-PQP. It verifies that SRTS-CPQ achieves a more fair

distribution of the delays among the flows.
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Figure 4.8: The probability of failure with different traffic loads
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Figure 4.9: The average normalized delay of each flow with different traffic loads

Table 4.3: Gini index of average delays among flows

(2, 4)-firm deadlines (6, 8)-firm deadlines
Traffic > 99% Traffic≈ 90% Traffic > 99% Traffic≈ 90%

DBP 0.0347 0.0500 0.0366 0.0702
SRTS-PQP 0.0565 0.0586 0.0554 0.0589
SRTS-CPQ 0.0509 0.0458 0.0528 0.0517
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Chapter 5. Concluding Remarks and Future Work

5.1 Summary and Concluding Remarks

A number of emerging real-time and multimedia Internet applications will rely on

scheduling algorithms in switches and routers to guarantee performance and an acceptable

level of quality of service. Based on requirements of heterogeneous applications and bene-

fits of the network, packet scheduling strategies are designed to satisfy both network users

and network operators. This dissertation proposes novel packet schedulers for best-effort

service, guaranteed (bandwidth and delay) services, controlled load service and soft real-

time service. These service models and their variants cover the vast majority of services

requested by applications today.

We have proposed a novel scheduler,Greedy Fair Queueing (GrFQ), for fair queueing

that can also serve as a low-latency scheduler for guaranteed bandwidth services. The per-

packet dequeuing complexity of GrFQ isO(log N) with respect to the number of flows.

This scheduler achieves better fairness (as measured by traditional metrics such as the

normalized lag) than other schedulers of equivalent complexity. In this dissertation, we

further argue that existing measures of fairness do not accurately capture the actual fairness

achieved at most instants of time, and therefore, do not represent a true measure of the abil-

ity of a scheduler to successfully deliver end-to-end quality for real-time applications. To

correctly evaluate the overall fairness performance, we borrow from the field of economics

and propose a new measure of fairness based on theGini index. This measure captures

the instantaneous fairness of a scheduler and, unlike other measures based on bounds, also

captures the fairness of the scheduler in its handling of flows during idle periods. With the

Gini index as the measure of instantaneous fairness, we use real video traffic traces and

real gateway traffic traces to show that the GrFQ scheduler achieves better fairness than
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any other known scheduler at virtually all instants of time. We further propose a simplified

version of the scheduler, called GrFQ-lite, which avoids the emulation of a fluid flow sys-

tem and has a per-packet work complexity ofO(1) in the computation of the timestamps.

Using real traffic traces again, we demonstrate that GrFQ-lite is also able to achieve close

or better fairness than most other schedulers including those that are significantly more

computationally intensive in their emulation of the ideally fair fluid-flow GPS system. The

GrFQ and GrFQ-lite schedulers can be applied to switches and routers to achieve better

bandwidth allocation among flows of traffic.

The Integrated Services framework, however, defines two kinds of services: guaranteed

service and controlled load service. The GrFQ scheduler may also be used for guaranteed

services (for both bandwidth guarantees and delay guarantees). This dissertation, therefore,

next considers the controlled load service and develops a novel packet scheduler to meet the

unique requirements of such a service model. The controlled load service requires source

points to regulate the traffic and mark packets that are sent in violation of the traffic contract.

One of the requirements we define is that the additional delay of unmarked packets caused

due to the transmission of marked packets should be bounded. AO(1) scheduler to achieve

this bound is non-trivial. In this dissertation, we have proposed the CL(α) scheduler, which

bounds this extra delay toα or less.

The principle used in the CL(α) scheduler may also be used to schedule flows with

multi-level priorities, such as in some scalable real-time video streams as well as in other

emerging service models of the Internet that mark packets to identify drop precedences

[3, 38, 39]. In such cases with multiple levels of drop precedences, the principle of the

CL(α) scheduler would have to be applied in a hierarchical manner to bound the impact of

each lower priority layer on the delays experienced by higher priority layers. For exam-

ple, consider flows of packets with three priority levels labeled as type 1, type 2 or type

3 packets, with type 1 at the highest priority level. In transmissions using such layered

coding, one may get tolerable quality from receiving just type 1 packets. The quality of
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the received video and audio deteriorates if a type 1 packet is delayed or dropped, but not

as much if a type 2 packet is delayed or dropped, and even less when a type 3 packet is

delayed or dropped. The extra delay of a type 1 packet due to the transmissions of type 2

packets could be required to be less than a certain quantityα1,2 and that due to transmis-

sions of type 3 packets could be required to be less than another quantityα1,3. Similarly,

the extra delay of a type 2 packet due to transmissions of type 3 packets may be bounded by

α2,3. One may inferED values corresponding to each of these three relationships through

maintaining three differentEDD queues, with each queue managed similarly as in the case

of the CL(α) scheduler presented in this paper. Trade-offs between scheduler complexity,

desired quality and bandwidth capacity may be achieved by adjusting theα values and the

number of relationships for which anα value is defined.

Finally, in order to satisfy the diverse QoS requirements of real-time communication

applications, we investigate their operational characteristics at end-systems. The common

quality of service desired by such applications, besides fairness, is an upper bound on

the loss rate with delay constraints. We apply the basic idea of fairness in the context of

scheduling real-time traffic with QoS assurances and derive the specific fairness require-

ments when scheduling such traffic. Using the notion of(m, k) delay criterion, we define

that the service goal of scheduling soft real-time traffic is to achieve fairness in the dynamic

failure rate for every flow awaiting service in the system.

Since several strategies have been proposed to schedule soft real-time traffic, we ana-

lyzed these strategies and showed that none of them achieve the goal of both QoS assur-

ances and fairness. In this dissertation, we proposed two strategies which are designed to

achieve the service goal we proposed. SRTS-PQP, one of the proposed strategies, has a

simple data structure but its performance is not as good as the other strategy, SRTS-CPQ.

SRTS-CPQ achieves better performance with a new data structure for maintaining packet

information. Although the system implements complex operations to update required infor-

mation, the processing complexity is limited to the same order,O(log N), of SRTS-CPQ.
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Using real Voice-over-IP (VoIP) traffic traces, we have evaluated both strategies in simula-

tion experiments. Our results show that they both achieve better performance than existing

schedulers in both QoS assurance and fairness.

5.2 Future Work

This dissertation has primarily focussed on packet scheduling for the Internet core and

therefore concentrated on requirements based on bandwidth and delay (packet losses are

assumed to be packets delayed beyond a certain deadline). In wireless environments, how-

ever, new kinds of resources such as power become important and packet losses occur not

just because of excessive delays but also simply due to errors caused by channel condi-

tions. Some of the techniques developed in this dissertation, especially those in the GrFQ

scheduler, may be used to distribute power and packet loss rates in a fair manner as well.

However, wireless networks remain a challenge for scheduling techniques for controlled

load or real-time services. For example, in developing a mechanism for controlled load

service in a wireless network, not just the delay but also the packet losses of unmarked

packets caused by marked packets need to be considered (since packet losses are likely in

wireless networks and admission control cannot always guarantee that admitted traffic will

achieve a certain throughput). Similar issues arise in the design of real-time schedulers

where the packet losses are caused both by inordinate delays in the buffers as well as ran-

dom errors. Incorporating these random errors into the packet scheduling algorithms is a

potential area of research that is not yet investigated.

This dissertation has focused only on packet scheduling strategies (which, one might

argue, affect quality of service more directly than almost any other mechanism). However,

other supporting mechanisms play a significant and sometimes critical role in developing

the overall mechanisms that a network service may require. Future work should include re-

search on admission control, routing, congestion control and related mechanisms to support
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the scheduling algorithms developed as part of this dissertation.

It is important, however, not to create a zoo of service models and mechanisms that

become so specialized as to discourage deployment. In this dissertation, we have identified

certain specific new service requirements; however, developing a parsimonious set of ser-

vices that will potentially serve a large class of applications (including possibly even future

applications) is an ambitious but achievable research goal. Many attempts have been made

in this direction, especially in the context of defining per-hop-behaviors for Differentiated

Services. However, a consensus on a small set of service models has not yet been achieved.

Solutions based on employing economic incentives, however, suggest a potential mecha-

nism. In such a solution, services are merely defined in terms of the amount and type of

resources that a flow requires from the network. Further, prices are associated with the con-

sumption of each type of resource while users only modulate the price they are willing pay.

This research requires algorithmic advances in the dynamic and distributed determination

of prices for each of the resources based on current demand. Innovative engineering mech-

anisms and network protocols are needed to achieve rapid communication and distribution

of these costs for feedback and billing purposes. Of course, finally, a solution based in

economics will also require novel technical solutions (for packet scheduling, routing, etc.)

that operate within this pricing framework.
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Appendix A. Gini Index as a Measure of Fairness

In this appendix, we present several computational methods of the Gini index and dis-

cuss the properties of the Gini index in comparison with some other measures of inequality.

In order to extend the Gini index as a measure of fairness for packet schedulers, we make

some modifications based on the specific characteristics of fair packet schedulers.

A.1 Computational Methods of the Gini Index

The Gini index was proposed more than 80 years ago. It has been thoroughly studied

by economists and widely applied in economic policy research. There are several different

methods to compute the Gini index. A survey on various interpretations of the Gini index

is provided in [66]. Here we present three kinds of computational methods: geometric

approaches, Gini’s mean difference approach and the covariance approach. We also discuss

the relationships between them.

The geometric approaches of computing the Gini index are based on the Lorenz curve.

Considerk quantities,g1 ≤ g2 ≤ · · · ≤ gk. Defined0 = 0, anddi = di−1 + gi, for

1 ≤ i ≤ k. A plot of di againsti is a concave curve, known as theLorenz curve[50].

Figure A.1 shows two examples of the Lorenz curve. Note that if there is perfect equality

in thesek quantities, the Lorenz curve will be a straight line starting from the origin. The

Gini index measures the area between the concave curve and the straight line. In Figure A.1,

the concave curve from point 0 toA split the triangle∆0Ak into two parts. Denote the area

between the straight line and the concave curve asα and the area under the concave curve

asβ. The Gini index is computed as

Gini =
α

α + β
= 1− β

α + β
(A.1)

To represent this method in a mathematical format, defineFi = i, L0 = 0 and Li =
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∑i
j=1 gi, 1 ≤ i ≤ k. β can be computed as

β =
1

2

k−1∑

i=0

(Fi+1 − Fi)(Li+1 + Li)

Therefore,

Gini = 1− 1

k2ḡ

k−1∑

i=0

(Fi+1 − Fi)(Li+1 + Li) (A.2)

whereḡ is the mean value ofgi, 1 ≤ i ≤ k, i.e. ḡ = 1
k

∑k
i=1 gi. SinceF0 = L0 = 0, Fk = k

andLk = kḡ, (A.2) can be further simplified as

Gini = 1 +
1

k2ḡ

[
k−1∑

i=0

(FiLi+1 − Fi+1Li)−
k−1∑

i=0

(Fi+1Li+1 − FiLi)

]

=
1

k2ḡ

k−1∑

i=0

(FiLi+1 − Fi+1Li) (A.3)

A different way to compute the areaβ is

β =
k∑

i=1

[(k + 1− i)gi − 1

2
gi] =

k∑

i=1

(k + 1− i)gi − 1

2
kḡ

The Gini index can also be computed as

Gini = 1− 2

k2ḡ

[
k∑

i=1

(k + 1− i)gi − 1

2
kḡ

]

=
k + 1

k
− 2

k2ḡ

k∑

i=1

(k + 1− i)gi (A.4)

Therefore, the weight of each quantity is inversely associated with the value of the quantity.

In fact, (A.2) and (A.4) are equivalent to each other since

1

k2ḡ

k−1∑

i=0

(FiLi+1 − Fi+1Li)

=
1

k2ḡ

k∑

i=1

(Fi−1Li − FiLi−1) =
1

k2ḡ

k∑

i=1

[Fi(Li − Li−1)− (Fi − Fi−1)]

=
1

k2ḡ

k∑

i=1

(igi −
i∑

j=1

gj) =
1

k2ḡ




k∑

i=1

igi −
k∑

i=1

i∑

j=1

gj


 (A.5)

=
1

k2ḡ

[
k∑

i=1

igi −
k∑

i=1

(k + 1− i)gi

]
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Figure A.1: An illustration of the Lorenz curve for computing the Gini index

=
1

k2ḡ

[
k∑

i=1

(k + 1)gi − 2
k∑

i=1

(k + 1− i)gi

]

=
k + 1

k
− 2

k2ḡ

k∑

i=1

(k + 1− i)gi

The Gini index can also be interpreted as the relative mean difference of a set of quan-

tities. This relation was first given by Gini in 1912, which is the reason that the index is so

named [66]. If we define the mean difference ofg1, g2, . . . , gk as

∆ =
1

k2

k∑

i=1

k∑

j=1

|gi − gj|

the Gini index is one-half of the relative mean difference which is the mean difference

divided by the mean̄g, i.e.

Gini =
∆

2ḡ
=

1

2k2ḡ

k∑

i=1

k∑

j=1

|gi − gj| (A.6)

Since
k∑

i=1

k∑

j=1

|gi − gj| = 2
k∑

i=1

k∑

j=1

max(0, gi − gj) = 2
k∑

i=1

∑

j≤i

(gi − gj)

(A.6) can also be expressed as

Gini =
1

k2ḡ

k∑

i=1

∑

j≤i

(gi − gj) =
1

k2ḡ

k∑

i=1


igi −

i∑

j=1

gj
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which has the same form as in (A.5). Therefore the expression (A.6) based on the relative

mean difference is equivalent to expressions (A.2) and (A.4).

If we define the covariance between quantity value and its rank as

cov(gi, i) =
1

k

k∑

i=1

(gi − ḡ)(i− ī)

wherēi = 1
k

∑
i = (k + 1)/2, the Gini index can be computed by

Gini =
2cov(gi, i)

kḡ
=

2

k2ḡ

k∑

i=1

(gi − ḡ)(i− ī)

=
2

k2ḡ

k∑

i=1

igi − k + 1

k
(A.7)

Since (A.4) can also be transformed as

k + 1

k
− 2

k2ḡ

k∑

i=1

(k + 1− i)gi

=
k + 1

k
− 2(k + 1)

k
+

2

k2ḡ

k∑

i=1

igi

=
2

k2ḡ

k∑

i=1

igi − k + 1

k

(A.7) is equivalent to (A.4). Therefore, all these methods of computing the Gini index are

equivalent to each other.

A.2 Comparison to Other Measures

As shown in the expression of the Gini index based on the relative mean difference, the

Gini index incorporates the difference between any two quantities in the group. A similar

measure might be the sum of the distances from the mean, divided by the mean. However,

this metric gives more emphasis on extremely large or small quantities; it is hard to tell

whether the inequality within an income distribution is due to the difference among most

quantities or due to the difference between quantities with extremely large or small values.

This ambiguous situation can be illustrated using examples in Figure A.2. Figures A.2 (a)

and (b) plot two groups ofk quantities. In both graphs, curve0CD represents the value
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Figure A.2: An illustration of two distributions

of k quantities and lineAB represents the mean value of the samek quantities. The sum

of the distance from the mean is nothing but the area between lineAB and curve0CD.

We can observe that both groups have the same mean value and the area between lineAB

and curve0CD is almost same in both graph. However in Figure A.2(a) most quantities

are close to each other and close to the mean value while most quantities are different from

each other in Figure A.2(b). Therefore, the sum of the distances from the mean cannot

show how much difference there exists between majority of the quantities.

Another common metric used by statisticians is variance or standard deviation. It has

the same shortcoming as the sum of distances from the mean. Therefore, variance cannot

serve as a measure of inequality as well as the Gini index does.

A.3 Gini Index for Packet Schedulers

Since the Gini index captures the inequality among a group of unequal quantities, we

use it to measure the inequality among session utilities and therefore measure the instan-

taneous fairness in bandwidth allocation. However the characteristics of session utilities

require some modification of the original definition of the Gini index. Here we explain the

rationale behind these modifications.
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The first modification is about choosing the set of equal quantities. When we compute

the Gini index for social income distribution, the straight line associated with the ideal

equal distribution can be obtained by dividing the total income by the total number of

persons. However, in a packet scheduler, we cannot use the same method since not all

flows are continuously backlogged from the beginning of the system. The GPS virtual time

records the normalized service a flow should receive in a GPS system, an ideal system

which allocates service equally among all backlogged flows. Therefore, we use the GPS

virtual time as the mean of session utilities and the straight line is associated with the GPS

virtual time, which is also the normalized service in the GPS reference system.

Similar to the Gini index in the economic field, we define the fairness metric as the area

between the Lorenz curves of the real scheduling system and the GPS reference system.

Since the sum of normalized service in a real system may not equal that in a GPS system

even though the sum of total service is equal in the two systems, the ending point of the

Lorenz curve of a real system may not always meet the ending point of the curve from the

GPS system. Therefore, under certain conditions, the Lorenz curve of a packet scheduling

system may appear similar to that in Figure 2.4(b). This results in another modification

of the Gini index. As recalled from Equation (A.1) and Figure A.1, the Gini index in the

economic field divides the areaα by the whole area under the Lorenz curve of an equal

distribution,α + β. For packet schedulers, we do not use such relative value since the total

area under the Lorenz curve of the GPS system can increase as time elapses, while the area

between Lorenz curves from the GPS and the real system will not increase significantly if

the real system is close to being fair. In order to avoid a misleading result because of the

relative area reducing as the system keeps executing, we only use the absolute area as the

Gini index for packet schedulers.
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Appendix B. Data Structure for the SRTS Scheduler

B.1 Data Structure for the Timetable

In this appendix, we present the data structure for the timetable. Fig. 4.6 plots an example

timetable with six occupied periods and five vacant periods. The elements of a timetable

include VacancyTree, pktLenAtTail, earliestSDand latestD. Except forVacancyTree, all

other elements are registers.VacancyTreeis basically an augmented binary search tree

consisting ofVE nodes. Each node contains a vacant period and the occupied period just

before it. The lengths of both periods are stored inside theVE node, and the tuple(b, e)

which defines the beginning and ending of the vacant period is used as the key for the

binary tree. In addition, eachVE node stores the total length of vacant periods covered by

its left and right subtrees in registersleftLenandrightLen. Besides the tree organization,

VacancyTreealso combines a linked list structure of nodes. The order of this linked list

conforms to the sorted order ofVacancyTreeand we denote the linked list asVacancyList.

The pointers of eachVEare listed in Table B.1.

To create a newVE, the beginning time, the ending time and the length of the occupied

period before thisVE are initialized based on the given information. The pointers for

VacancyTreeandVacancyListare initialized as null pointers and will be modified when

this VE is inserted into the tree and the list. The pseudo-code is presented in Figure B.1.

The rest of this section describes the two basic operations: inserting a packet and re-

leasing a packet. The next appendix section describes the details of the data structure of

VacancyTree.
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NewVE(tbegin, tend, Loccupied)
b ← tbegin;
e ← tend;
pktLen← Loccupied;
len← e− b;
All pointers are initialized as NULL;

Figure B.1: Create a newVE

Table B.1: Pointers in aVacancyElement

VacancyTree parent; left; right;

VacancyList front; back;

B.1.1 Inserting a Packet

The insertion operations can be categorized into several cases and each case is independent

of another. Here we summarize the cases in Table B.2 and provide the pseudo-code for

each of the cases seperately. Within the code, we assume that each packet has a deadline

(D) and a starting deadline (SD).

B.1.2 Releasing a Packet

When a packet in the timetable is transmitted, it should be released from the timetable.

Since the scheduling order is based on the order of deadlines, the released packet must

from the earliest occupied period. Figure B.8 shows the pseudo-code of this operation.
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Table B.2: Different cases when inserting a packet into a timetable.

Description Logic Condition
Case 1: The timetable is empty. pktLenAtTail= 0

The timetable is nonempty; pktlenAtTail6= 0 AND
Case 2:

VacancyTreeis empty. VacancyTree.root= NULL
VacancyTreeis not empty; VacancyTree.root6= NULL AND

Case 3: The inserted packet is outside (P.SD≥ latestD+1 OR P.D≤ earliestSD−1)
the range of the timetable.
VacancyTreeis not empty; VacancyTree6= NULL AND

Case 4: The inserted packet is within theP.SD≤ latestDAND P.D≥ earliestSD
range of the timetable.

B.1.3 Searching

Searching the position of a packet to be inserted is locating the occupied period where the

packet will reside. The operation returns the lastest one amongVEs which are affected by

the packet if there exists one. If the packet is within the first occupied period, the operation

returns the head ofVacancyList. The pseudo-code is describe in Figure B.9.

B.2 Data Structure for VacancyTree

In this section, we present insertion and deletion operations forVacancyTree.

B.2.1 Insertion

Inserting aVE into the tree consists of inserting theVE into the tree andVacancyListwhile

also updating the length of vacant periods at the same time. The pseudo-code is presented

in Figure B.10.

B.2.2 Deletion

Deleting aVE from the tree procedure only operates on the pointers forVacancyTree. The

structure ofVacancyListremains untouched. The records of vacancy lengths are not ad-
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justed except for the case when the deletedVE is replaced by its successor. The pseudo-

code is presented in Figure B.11.



128

InsertPacket(P ):
Case 1:

earliestSD← P.SD;
latestSD← P.D;
pktLenAtTail← P.length;

Case 2:
if (P.SD> latestD+1) then

W ← NewVE(latestD+1, P.SD−1, pktLenAtTail);
pktLenAtTail← P.length;
latestD← P.D;
InsertVEtoVacancyTree(W );

else if(P.D < earliestSD−1) then
W ← NewVE(P.D +1, earliestSD−1, P.length);
earliestSD← P.SD;
InsertVEtoVacancyTree(W );

else if(P.SD≤ latestD+1 AND P.D≥ earliestSD−1) then
pktLenAtTail← pktLenAtTail+ P.length;
latestD← max{latestD, P.D};
earliestSD← latestD− pktLenAtTail;

end if;

Case 3:
if (P.SD> latestD+1) then

W ← NewVE(latestD+1, P.SD−1, pktLenAtTail);
pktLenAtTail← P.length;
latestD← P.D;
InsertVEtoVacancyTree(W );

else if(P.SD= latestD+1) then
pktLenAtTail← pktLenAtTail+ P.length;
latestD← P.D;

else if(P.D = earliestSD−1) then
H ← HeadOfVacancyList;
H.pktlen← H.pktlen+ P.length;
earliestSD← P.SD;

else if(P.D < earliestSD−1) then
W ← NewVE(P.D +1, earliestSD−1, P.length);
earliestSD← P.SD;
InsertVEtoVacancyTree(W );

end if;

Case 4:
V ← SearchPositionInVacancyTree(P );
∆T ← ComputeAdditionalVacancyNeeded(V, P );
if (∆T > 0) then

U ← V ;
downward← UpwardSearch(∆T , U , V , totalShrink);
if (downward= TRUE) then

DownwardSearch(∆T , U , V );
end if;

end if;

Figure B.2: Pseudocode ofInsertPacketroutine
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UpwardSearch(∆T , U , V , totalShrink)
downward← FALSE;
while (TRUE)do

OccupyVacancyLen(∆T , U , V , totalShrink, TRUE);
while (U.parent6= NULL AND U is a left child)then

U ← U.parent;
U.leftLen← U.leftLen− totalShrink;

end while;
if (U is the root)then

if (V is in the left subtree ofU ) then
earliestSD← earliestSD−∆T ;

else if(U.len> ∆T ) then
U.e ← U.e−∆T ; W ← U.back;
DeleteVEs fromW to V in VacancyList;

else if(U.len= ∆T ) then
DeleteVEfromVacancyTreeU ;
DeleteVEs fromU to V in VacancyList;

else
∆T ← ∆T− U.len;
if (U.leftLen≥ ∆T ) then

U ← U.left; downward← TRUE;
DeleteVEfromVacancyTree(root);

else /* U.leftLen< ∆T */
∆T ← ∆T− U.leftLen;
earliestSD← earliestSD−∆T ;
CutU andU ’s left subtree fromVacancyTree;
DeleteVEs beforeV in VacancyList;

end if;
end if;
break;

else
OccupyVacancyLen(∆T , U , V , totalShrink, FALSE);

end if;
end while;
return downward;

Figure B.3: Pseudocode ofUpwardSearchroutine
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OccupyVacancyLen(∆T , U , V , totalShrink, leftTree)
if (leftTree= TRUE) then

vlen← U.leftLen;
elsevlen← U.len;
end if;
if (vLen≥ ∆T ) then

totalShrink← totalShrink+∆T ;
UpwardUpdateOnVacancyLength(U , totalShrink);
if (leftTree= TRUE) then

W ← U ;
U ← U.left;
DeleteVEfromVacancyTree(W );
downward← TRUE;

else
if (vlen= ∆T ) then

DeleteVEfromVacancyTree(U);
else /* U.len> ∆T */

U.e ← U.e−∆T ;
U ← U.back;

end if;
DeleteVEs fromU to V in VacancyList;

end if;
break;

else
∆T ← ∆T− vlen;
totalShrink← totalShrink+∆T ;
if (leftTree= TRUE) then

if (U.left 6= NULL) then
CutU ’s left subtree fromVacancyTree;

else
DeleteVEfromVacancyTree(U);

end if;
end if;

end if;

Figure B.4: Pseudocode ofOccupyVacancyLenroutine
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DownwardSearch(∆T , U , V )
while (downward= TRUE)do

if (∆T > U.rightLen+ U.len) then
∆T ← ∆T− U.rightLen− U.len;
CutU and its right subtree inVacancyTree;
U ← U.left;

else if(∆T > U.rightLen) then
downward← FALSE;
∆T ← ∆T− U.rightLen;
CutU ’s right subtree fromVacancyTree;
if (U.len= ∆T ) then

DeleteVEfromVacancyTree(U);
DeleteVEs fromU to V in VacancyList;

else /* U.len> ∆T */
U.e ← U.e−∆T ;
W ← U.back;
DeleteVEs fromW to V in VacancyList;

end if;
break;

else /* ∆T < U.rightLen*/
U.rightLen← U.rightLen−∆T ;
U ← U.right;

end if;
end while;

Figure B.5: Pseudocode ofDownwardSearchroutine
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ComputeAdditionalVacancyNeeded(V , P )
∆T ← 0;
if (V = HeadOfVacancyListAND V.b > P.D) then

V.pktLen← V.pktLen+ P.length;
earliestSD← earliestSD− P.length;
∆T ← 0;

else if(V = HeadOfVacancyList
AND V.b ≥ P.SDAND V.e > d) then

V.pktLen← V.pktLen+ P.length;
∆T ← P.length−(P.D − V.b);
earliestSD← earliestSD−∆T ;
∆T ← 0;
V.b ← P.D + 1;
totalShrink← P.D − V.b;
UpwardUpdateOnVacancyLen(V , totalShrink);

else if(V.b < P.SDAND V.e > P.D) then
W ← NewVE(b ← P.D + 1, e ← V.e);
W.pktLen← P.length;
InsertVEtoVacancyTree(W );
totalShrink← V.e− P.SD;
V.e ← P.SD;
UpwardUpdateOnVacancyLen(V , totalShrink);

else if(V.b ≥ P.SDAND V.e > P.D) then
V.pktLen← V.pktLen+ P.length;
∆T ← P.length−(P.D − V.b);
totalShrink← P.D − V.b;
V.e ← P.D;
UpwardUpdateOnVacancyLen(V , totalShrink);
if (∆T > 0) then

V ← V.front;
V.e ← V.e−∆T ;
∆T ← ∆T− V.len;

end if;
else

if (V = TailOfVacancyListAND P.D > latestD) then
∆T ← ∆T − (P.D− latestD);
latestD← P.D;

else ∆T ← P.length;
end if;
V.e ← V.e−∆T ;
∆T ← ∆T− V.len;

end if;
return ∆T ;

Figure B.6: Pseudocode ofComputeAdditionalVacancyNeededroutine
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UpwardUpdateOnVacancyLen(V , totalShrink):
W ← V.parent;
while (W 6= NULL) do

if (V is a left child)then
W.leftLen← W.leftLen− totalShrink;

else /* V is a right child */
W.rightLen← W.rightLen− totalShrink;

end if;
V ← W ;
W ← W.parent;

end while;

Figure B.7: Pseudocode ofUpwardUpadteOnVacancyLenroutine

ReleasePacket(P ):
earliestSD← earliestSD+ P.length;
if (VacancyTreeis not empty)then

H ← HeadOfVacancyList;
H.pktLen← H.pktLen− P.length;
if (H.pktLen≤ 0) then

DeleteVEfromVacancyTree(H);
DeleteVEfromVacancyList(H);

else /* VacancyTreeis empty */
pktLenAtTail← pktLenAtTail− P.length;

end if;

Figure B.8: Pseudocode ofReleasePacketroutine
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SearchPositionInVacancyTree(P ):
W ← HeadOfVacancyList;
X ← TailOfVacancyList;
if (P.SD> latestDORP.D < earliestSDORW = NULL) then

V ← NULL;
else if(W 6= NULL AND earliestSD≤ P.D < W.b) then

V ← W ;
else if(X 6= NULL AND P.SD≤ earliestSDAND P.D≥ X.b) then

V ← X;
else

W ← RootOfVacancyTree;
while (W 6= NULL) do

X ← W.front;
Z ← W.back;
if (Z 6= NULL) then

if (W.b ≤ P.D < Z.b) then
V ← W ;
break;

else if(W.b ≥ P.D) then
W ← W.left;

else /* Z.b ≤ P.D */
W ← W.right;

end if;
else if(X 6= NULL) then

if (X.b ≤ P.D < W.b) then
V ← X;
break;

else if(W.b ≤ P.D) then
V ← W ;
break;

else
W ← W.left;

end if;
else

V ← W ;
break;

end if;
end while;

end if;
return V ;

Figure B.9: Pseudocode ofSearchPositionInVacancyTreeroutine
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InsertVEtoVacancyTree(V ):
W ← RootOfVacancyTree;
if (VacancyTreeis not empty)then

while (W 6= NULL) do
X ← W ;
if (W.e > V.e) then

W.leftLen← W.leftLen+ V.len;
W ← W.left;

else
W.rightLen← W.rightLen+ V.len;
W ← W.right;

end if;
end while;
V.parent← X;
if (V.e < X.e) then

X.left← V ;
InsertV beforeX in VacancyList;

else
X.right← V ;
InsertV behindX in VacancyList;

end if;
else /* VacancyTreeis empty */

RootOfVacancyTree← V ;
HeadOfVacancyList← V ;
TailOfVacancyList← V ;

end if;

Figure B.10: Pseudocode of the insertion routine ofVacancyTree
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DeleteVEfromVacancyTree(V ):
if (V only has up to one child)then

ReplaceV by its child;
else

W ← MinOfSubtreeWithRoot(V.right);
X ← W.parent;
while (X 6= V ) do

X.leftLengets X.leftLen− W.len;
X ← X.parent;

end while;
DeleteVEfromVacancyTree(W );
ReplaceV by W ;
W.leftLen← V.leftLen;
W.rightLen← V.rightLen− W.len;

end if;

Figure B.11: Pseudocode of the deletion routine inVacancyTree
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