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Abstract 

The Use of Bipolar Electrochemistry in Nanoscience:  Contact Free Methods for the Site 
Selective Modification of Nanostructured Carbon Materials 

Patrick Gathura Ndungu 
 

 

Bipolar electrochemistry occurs when an isolated conductive substrate inside an 

electric field supports both oxidation and reduction reactions.  The method requires no 

direct contact between the power supply and the substrate.  In the following thesis bipolar 

electrochemistry has been used to deposit palladium onto isolated graphite platelets, 

carbon nanofibers (CNF), and carbon nanotubes (CNT), as well as, various metals, a 

semiconductor, and an electropolymer on CNTs.   

Initial work used pulsed DC electric fields to deposit palladium onto isolated graphite 

platelets.  Transmission electron microscopy (TEM) studies on the platelets found 

palladium metal on one area, indicative of a bipolar mechanism, and palladium deposits 

that varied from surface bound to highly ramified deposits.  No correlation was found 

between the frequency used to prepare the deposits and the palladium metal dispersion. 

The same field intensities and frequencies used on the graphite platelets were used to 

produce CNFs with palladium on one tip.  The amount of palladium deposited on one tip 

of a CNF was controlled by adjusting how long the electric field was applied.  

Preliminary experiments to produce bulk quantities of CNFs with palladium bipolar 

electrodeposits used CNFs ball milled with silica, and CNFs suspended in 

tetrahydrofuran or methylene chloride.  The palladium content, measured by atomic 

absorption spectroscopy, of the functionalized CNFs in silica showed no difference with 

increased CNF loading; however, TEM studies found a small number of functionalized 

CNFs with palladium on one tip.  Work on CNFs suspended in THF and methylene 



 xx
chloride used suspensions with high loadings of CNFs which led to small percentages of 

CNFs with bipolar electrodeposited palladium. 

Finally CNTs obtained commercially and CNTs grown using chemical vapor 

deposition were successfully functionalized using bipolar electrodeposition.  These 

experiments demonstrate a reliable and controlled method to modify nanostructured 

materials. 
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Chapter 1: Bipolar Electrochemistry 
 

1.1 Summary Statement 
A definition of bipolar electrochemistry as it relates to this thesis is outlined.  The 

chapter presents examples describing bipolar electrochemistry in various applications.  

Finally the chapter ends with a synopsis on early work on bipolar electrochemistry in the 

Bradley research group.   

Early work on bipolar electrochemistry uses substrates on the millimeter scale, and 

with the exception of one example, there are no examples of bipolar electrochemistry on 

the nanoscale or micrometer scale.  It is the goal of this chapter to highlight the key 

literature on bipolar electrochemistry, and how this significantly differs from the unique 

application of bipolar electrochemistry in the Bradley research group. 

 

1.2 Introduction to Bipolar Electrochemistry 
Simply stated, bipolar electrochemistry occurs when an applied electrical field induces a 

cathode-anode pair on an isolated substrate.1,2,3  The substrate can be any kind of material 

with sufficient conductivity, and in the literature these vary from various forms of carbon, 

metals, semiconductors or coated insulators. In this aspect, bipolar electrochemistry does 

not differ from conventional electrochemistry i.e. the substrate can be any shape or size 

but must be conductive; however, a significant difference is the substrate must have a 

higher conductivity than the surrounding medium.  A fundamental difference between 

bipolar electrochemistry and conventional electrochemistry is that no physical connection 

is made between the substrate and the power source.  Instead an electrical field applied 
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between two feeder electrodes provides the potential required to induce electrochemical 

reactions on the substrate.  Literature descriptions of the various configurations that give 

rise to bipolar electrochemistry can be categorized into one of two arbitrary designations; 

these are, open bipolar electrochemistry and closed bipolar electrochemistry.  Figure 1.1 

illustrates the difference between the two designations.  Open bipolar electrochemistry 

(Figure 1.1A) occurs on an electrically and physically isolated substrate that is 

completely immersed in a suitable electrolyte.  In closed bipolar electrochemistry (Figure 

1.1B) the substrate forms a barrier between the electrodes and separates the electrolyte 

into separate areas.  The end result is the electrolyte acts as an electrolytic wire between 

the electrodes and the substrate.  In closed bipolar electrochemistry the potential across 

the substrate is equal to the potential applied across the feeder electrodes, and 

electrochemistry will occur on the isolated substrate at relatively low field intensities4.  In 

contrast in open bipolar electrochemistry the applied electrical field must reach a 

minimum value, which is relatively large, before the onset of bipolar electrochemistry on 

the isolated substrate.  The minimum value in open bipolar electrochemistry depends 

upon the size of the substrate.5,6,7,8  Thus in the open system there is a size dependant 

relationship between the applied field and the onset of bipolar electrochemistry, whereas 

in the closed system there is no size dependence. 

Bipolar electrochemistry, like conventional electrochemistry, requires a solution that 

can support the separate oxidation and reduction reactions i.e. an electrolyte. The 

electrolyte composition affects the electrolyte’s conductivity and the electrochemistry on 

the isolated substrate.   
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Figure 1.1.   The various configurations described in the literature that give rise to bipolar electrochemistry can be 
categorized as open bipolar electrochemistry or closed bipolar electrochemistry.  In Figure 1.1A the 
cathode anode pair is induced on isolated conductive particles that have been subjected to an electrical 
field from the two electrodes.  This is an example of open bipolar electrochemistry, and the potential 
across the particles can be estimated using equation (1).  Figure 1.1B is an example of closed bipolar 
electrochemistry.  The cathode-anode pair is induced across an isolated substrate; however, the 
electrolyte is acting as an electrolytic wire connecting the electrodes to the substrate.  In closed bipolar 
electrochemistry the potential difference across the substrate is essentially the same as the applied 
potential between the electrodes. 
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A concentrated electrolyte, one that has a large amount of free mobile ions, is too 

conductive to support the electric fields with the required magnitude to induce bipolar 

electrochemistry.  A dilute electrolyte, one that has a low number of free or mobile ions, 

is a relatively poor conductor and can support the electric fields needed for bipolar 

electrochemistry.  At these low concentrations the conductivity of the substrate is much 

higher than the solution.  This difference in conductivity provides a driving force for the 

movement of current through the isolated substrates, and at sufficiently large enough 

potentials, electrochemistry occurs on the isolated substrates.2,8 

The potential across an isolated spherical substrate (V) is related to the applied 

electrical field (E) and the radius (r) shown in equation (1)1,9 

rVE 2/)1( =⋅  

This equation has been confirmed empirically.6  This simple relationship between the 

applied electric field and the potential across the substrate illustrates the need for large 

electric fields on spherical substrates with small radii.  For example a particle with a 

radius of 500nm needs an applied electrical field at 10kV/cm to produce a 1.0V potential 

difference across the particle.  With a particle with a radius of 50nm the applied electrical 

field needs to be at least 100kV/cm. 

 

1.3 Examples of Open Bipolar Electrochemistry 
In order to observe open bipolar electrochemistry, any kind of isolated substrate that 

can support redox chemistry has to be in immersed in a suitable electrolyte and an 

electric field with the required magnitude must be applied.  The isolated substrate need 

not be a metal and can take on any shape and size.   
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1.3.a Packed Bed Electrodes 
Packed bed electrodes are early examples on the observations and applications of bipolar 

electrochemistry.  Packed bed electrodes consist of two feeder electrodes and a large 

number of particles placed between the two electrodes, as illustrated in Figure 1.2.  The 

particles are either all conductive or a mixture of conductive and non-conductive 

particles.  The particles can either be a metal, a semi-conductor or some form of carbon.  

The orientation of the system can be horizontal or vertical.  An electrolyte is usually 

flowed through the system, and the flow rate is optimized for the application.  

Applications of packed bed electrodes include electro-organic synthesis of propylene 

oxide10,11, methoxylation of furan12, methoxylation of p-terbutyltoluene,13 trace metal 

recovery,14 and potential use in phenol degradation15.  One of the advantages of a packed 

bed electrode is its high surface area.  In the packed bed electrode, the total surface area 

of the system includes the cathode feeder electrode, and the individual particles making 

up the packed bed.  The larger surface area contributes to the electrodes large space time 

yields in electro-organic synthesis.10-13  In metal recovery the large surface area makes it 

possible to remove trace metal impurities from solutions without the need to pre-

concentrate the solution.14  The ease of operation of the system is another advantage that 

is often cited in regards to the benefits of the packed bed electrode.  Packed bed 

electrodes only need two electrodes connected to a power supply in order to function.  In 

conventional monopolar systems multiple electrodes and connections are often 

needed.16,17 
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Figure 1.2.   This is a simple illustration showing two possible configurations for a bipolar packed bed electrode.  
The electrodes can be arranged in a vertical or horizontal orientation.  The particles in the bed can be 
either spherical or cylindrical.  In the case of cylindrical particles the particles can be orientated in 
regular arrays (vertically or horizontally) or randomly.  The particles in the packed bed can be separated 
from the feeder electrodes by non-conductive particles (e.g. glass beads) or inert spacers (e.g. plastic 
mesh).  The particles can either be separated by non-conductive spacers, or the speed of the electrolyte 
can be used to keep the particles in intermittent contact. 
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Besides isolated particles rods have been used as bipolar electrodes for the electrolysis of 

sodium bromide.  This example used rods as bipolar electrodes and was done as a model 

to study fluidized bed electrodes.18A significant amount of the theoretical work on 

bipolar electrochemistry comes from modeling and testing various hypotheses on packed 

bed electrodes.  In these studies it has been necessary to measure the faradaic current 

across the isolated structures.  The easiest and most common methods are to deposit a 

metal, such as copper, onto the substrate then recover and by some quantitative means 

determine the amount of deposited metal.19,20 

Besides using packed bed electrodes, theoretical modeling using spherical particles,5,7 

diaphragm electrodes,21 and, more recently, aluminum plates in electrokinetic cells22 have 

been used as basis models on bipolar electrochemistry. 

 

1.3.b Spherical Ultramicroelectrodes 
Spherical ultra microelectrodes include loose micrometer sized metal particles or 

metal nano-particles encapsulated in a zeolite matrix.  The hydrogen redox system and 

the oxygen redox system were studied using a suspension of platinum particles (2.5 µm 

diameter).  This initial study proved catalytic processes could be affected by the 

application of an external electric field, and the system could be investigated using ultra 

microelectrodes.23   

The use of metals such as platinum in a zeolite cage demonstrated that electrolysis 

could be accomplished using metals inside zeolite cages.  The metals supported in 

zeolites could either be on the surface of the zeolite or inside.  Thus it is possible to get 
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two types of electrochemical systems i.e. bipolar on isolated particles in the matrix, and 

conventional monopolar when the particles on the surface contact the feeder electrodes.24 

In both examples described above there is no electron microscopy evidence to 

validate the claims that bipolar electrochemistry occurred on such a small scale.  In the 

Pons et al paper23 the electric field used, and the size of the particles (up to 1600 V/cm, 

and 2.5 µm diameter) used correspond to results obtained in the Bradley research lab 

(Figure 1.4C – 1.4F).  In the second example the metal nanoparticles (1 - 2 nm) 

embedded in a zeolite matrix were exposed to electric fields on the order of hundreds of 

volts per centimeter.24  This value for the applied field is below the value calculated using 

equation (1), and without any suitable microscopy evidence (electron or atomic force 

microscopy) it is unlikely this is a conclusive example of bipolar electrochemistry on the 

nanoscale. 

 

1.4 Examples of Closed Bipolar Electrochemistry 
Although a distinction between closed and open bipolar electrochemistry is not made 

in the literature, it is a significant categorization for the purposes of this thesis.  The 

closed system is much simpler than the open system, and as will be seen in the following 

description it is the more technologically significant system. 

 

1.4.a Characterization of Semi-conductors Using a Bipolar 
Electrolytic Cell Configuration 

An alternative method to characterize semi-conductor wafers involves the use of 

suitable electrolytes in contact with the wafer and two feeder electrodes.  The wafer 

separates two compartments that can be filled with the same or different electrolytes.  
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This configuration uses the electrolytes as a Schottky type connection to the two faces of 

the wafer.  As a result the application of a potential across the feeder electrodes induces 

the same potential drop across the wafer.  In contrast to bipolar electrochemistry on 

isolated particles, the potential across the wafer does not depend on the size of the wafer. 

By choosing suitable electrolytes it is possible to etch and deposit on the wafer using 

bipolar conditions i.e. application of an electric field between the two feeder electrodes.  

Mott-Schottky plots, photocurrent/ potential curves, the photo-spectrum, and the minority 

carrier diffusion length can be determined using the bipolar cell configuration.25,26   

Photoelectrochemical cells in a bipolar configuration do support redox reactions on a 

single substrate.  This is induced by light and not an external electrical field and, by the 

definition outlined in this thesis; it is not an example of bipolar electrochemistry.27 

 

1.4.b Bipolar Plate Electrodes 
Bipolar plate electrodes are conductive plates placed between two feeder electrodes 

with a suitable electrolyte.  Bipolar plate electrodes have been used in electrolytic cells16, 

28, batteries29 and fuel cells30.   

In electrolytic cells bipolar electrodes have been used for the electrolysis of 

aluminum, and magnesium in molten salts16, zinc from zinc chloride melts28, and the 

defluoridation of water.31  The bipolar plates have been arranged in various 

configurations which include vertical, horizontal and slanted at an angle.  The conditions 

in bipolar cells used for electrolysis follow similar patterns found in the pack bed 

electrodes.  Some configurations of the bipolar cells in electrolysis do suffer from by-pass 

or current leakage phenomena i.e. application of a small potential between the two feeder 
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electrodes does not induce bipolar electrochemistry on the bipolar plates.5  In this regard 

this system does follow the bipolar electrochemical phenomena seen in open bipolar 

electrochemistry, unlike the previous example that describes the characterization of semi-

conductor wafers. 

Although the oxidation and reduction processes occur on the opposite sides of a 

single substrate in a fuel cell30 and some types of batteries29, the bipolar plates are not 

under the influence of an externally applied electrical field.  This does not fit the 

definition of bipolar electrochemistry used in this thesis. 

 

1.4.c Bipolar Membranes 
Two compartments with electrolyte solutions are separated by a conductive 

membrane.  The membrane can be a porous metal32 or a polymer.4  Application of the 

potential between the two feeder electrodes produces a similar potential drop across the 

membrane.  This set-up is similar to that seen with the characterization of semi-conductor 

wafers i.e. the electrolyte is a ‘wire’ that connects the membrane directly to the feeder 

electrodes.  This example of bipolar electrochemistry differs from the type presented in 

this thesis because the potential across the substrate does not differ with the length or 

radius of the substrate.  Figure 1.1B gives an illustration of the simplest configuration for 

bipolar membranes.  The application of the potential across a bipolar membrane has been 

used to recover acids and bases from salt solutions33, adjusting the pH of various fluids, 

separation of soy proteins and water electrolysis.34 
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1.5 Bradley Research Group’s Early Work with Bipolar Electrochemistry 

The Bradley research group adapted the concepts of bipolar electrochemistry to 

develop a contact free method known as Spatially Coupled Bipolar Electrochemistry 

(SCBE) that connects isolated metal substrates.  In SCBE an applied electrical field 

induces redox reactions on isolated metal substrates.  The oxidation reaction provides 

metal ions in the system which are preferentially driven towards the nearest metal 

substrate by the distorted electrical field and various (electro-, and gravitic-) convective 

forces.  When the concentration of the ions reaches a sufficient value, electrodeposition 

occurs on the opposing isolated metal substrate (Figure 1.3).  The first published work 

involved using two isolated copper beads measuring approximately 900 µm in diameter.  

The copper beads were placed in an aqueous solution containing sulfuric acid and a 

surfactant (Figure 1.4).  Application of an electrical field (any value between 15-75V/cm) 

across the isolated copper beads resulted in the growth of copper dendrites between two 

isolated copper beads.  Growth of the dendrites continued until it contacted the opposing 

copper bead.  Dendrite growth was initiated by the reduction of copper ions that had been 

generated by the electrodissolution of copper.  Under the applied electrical field, copper 

ions were produced by the oxidation of copper on one face of the copper bead. The 

concentration of copper ions between the two beads continued to increase until sufficient 

for the electrodeposition of copper on the opposite bead.  The distortion of the electrical 

field between the two beads and the electroconvective forces helped to ensure the 

dendrite growth followed the shortest path between both beads.  This initial work 

demonstrated it was possible to contact isolated micrometer-size structures using 

electrical fields and no additional metal salt.35   
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Figure 1.3.   1A: Two copper particles are placed in a suitable electrolyte with no supporting metal salt.  Application 
of an electrical field (of sufficient magnitude) induces oxidation on one particle.  The release of copper 
ions by oxidation is represented by the shaded region.   

 2A: When the copper ion concentration near the opposite particles reaches a sufficient value 
electrodeposition occurs, and a wire grows towards the opposing particle. 

 3A: Electrodeposition will preferentially occur on the tip where the cathodic polarization is expected to 
be the highest. 

 4A: When the wire contacts the opposite particle an electrical contact is made, and the potential 
difference between both particles drops to zero.  Electrochemical processes in the region between the 
particles stops and no further growth is seen. 

 2A - 2B illustrate how the same process can be used to selectively grow a wire between particles in an 
array. 
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The method was refined, and connections between isolated copper structures and a 

light emitting diode were established.  In order to light up the diode the electrical 

conductivity of the copper dendrites was enhanced by the electroless plating of copper 

onto the dendrites.36  When a toluene/acetonitrile (60/40) solution was used, the deposits 

were thick and highly ramified, multiple deposits could be grown between two isolated 

copper structures, higher fields could be used, and arrays of copper structures could be 

connected in multiple directions (Figure 1.5).  The plating time had been reduced from a 

typical 48 hours, when the dendrites were grown in aqueous solutions, to 2 hours when 

ramified deposits were grown in organic solvents.37   

Besides growing wires between copper substrates, the copper wires were grown 

between n-type silicon squares (1.0 x 1.0 millimeter) and copper rings.  The resulting 

Schottky junctions displayed rectifying behavior.38  

Besides growing metallic wires between copper beads, there were successful attempts 

to grow polymer wire connections between isolated gold particles.  The polymer chosen 

was polypyrrole, and the sizes of the gold particles were on the order of a few 

millimeters.  The polymer wires were ramified; however, the electrical properties of the 

resulting polymer wires were not elucidated.39 
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Figure 1.4.  Optical micrographs in images (A) and (B) show the control of wire growth within a 4 x 4 particle array. 
In (A) the applied electric field was along the diagonal of the copper particle array (indicated by the 
arrow) generating a single wire in the expected location. The other two particles were left unaffected. In 
image (B) the applied electric field vector was parallel to the side of the particle array (arrow) generating 
two parallel wires. The electrolyte consisted of 0.1 mM H2SO4 and 0.01% Nonidet-P40, and the feeder 
electrodes were made of two parallel 1-mm-diameter Pt wires.  The SEM micrographs in (C) – (F) show 
wire growth between copper particles less than 10 µm in length.  The copper particles were dispersed on 
demetalized commercial circuit boards.  The copper particles in (C) were exposed to a 2.5kV/cm field 
for 5 minutes, in (D) particles were exposed to a 2.5 kV/cm field for 10 minutes, in (E) the copper 
particles were exposed to a 5.0 kV/cm field for 5 minutes, and in (F) the particles were exposed to a 3.5 
kV/cm for 5 minutes.  The electrolyte consisted of 1:1 toluene/acetonitrile, and the copper particles were 
immobilized on a commercial circuit board (metal removed with 50% nitric acid).  Images (G) – (I) 
show SEM micrographs of silver cylinders immobilized in the pores of polycarbonate membrane.  In 
(G) the pores are 1 µm and the silver cylinders were exposed for 180s at 4.0 kV/cm.  In image (H) the 
pores are 400nm and the silver cylinders were exposed for 120s at 4.0 kV/cm.  In (I) the silver cylinders 
are in 200nm pores and were exposed to a 6.0 kV/cm field for 90s. 
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The initial studies used copper beads that were hundreds of micrometers in diameter 

and were in aqueous solutions.  The next step successfully demonstrated that copper 

wires with sub-micrometer (hundreds of nanometers) diameters could be grown to 

connect isolated copper particles.  In these studies the copper particles used were 

approximately 10 µm in diameter and spherical.  The transition to much smaller 

dimensions resulted in ramified deposits instead of the dendrites seen earlier, necessitated 

the use of electrical fields two orders of magnitude greater than before, and the use of 

acetonitrile toluene mixtures (Figures 1.4C - F).40   

SCBE was then studied on the nanoscale.  For these studies gold and silver 

nanocrystals on glass microscope slides, and silver rods in nuclear track etched 

membranes were used.  The silver and gold nanocrystals investigations were 

inconclusive.  Gold, an inert metal in SCBE, did not show any effect as expected; 

however, silver showed an effect that could not be explained conclusively by 

electrochemical or electrorheological effects.  The experiments on silver nano-rods 

(nanowires) in the nuclear track etched membranes did show SCBE-like behavior. The 

nano-rods were orientated perpendicular to the applied field and only a small portion of 

the top part of the nano-rod was exposed to the field thus forming a disc.  In the earlier 

copper experiments there was a focusing effect i.e. wire growth was directed from one 

copper bead to the adjacent bead even when the copper bead was slightly offset relative 

to the adjacent bead.  With the nanoscale silver discs this was not seen, instead wide 

branched deposits that grew in the direction of the applied field were seen (Figure 1.4G - 

I).  This observation was attributed to a possible loss of convective forces on this scale, 

and a greater diffusion of silver ions relative to the disc size.41 
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Figure 1.5.   Selective circuit formation. Schematic diagram of pattern 1 (A) and pattern 2 (B) formed by the 
activation of selected positions shown within an eight-pin array. Examples of micrographs after growth 
of pattern 1 (C) and pattern 2 (D) using conditions of Fig 3C. Examples of selective circuit construction 
form an initially identical component configuration of presoldered leads at positions 1 and 4 and two 
diodes across positions 2-3 and 6-7, respectively. In (E), the growth of pattern 1 leads to the lighting of 
the top diode whereas in (F) the growth of pattern 2 leads to the lighting of the lower diode.  To grow the 
wires the solvent used was 60:40 toluene/acetonitrile and the field was applied for 30 seconds in one 
direction at 2kV/cm, and then the field was reversed and applied for 30 seconds at 2kV/cm.  To improve 
the electrical conductivity of the resulting wires a 2 hour electroless plating (copper) step was done. 
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 Using a combined empirical and theoretical approach on the process of SCBE 

Molina et al., determined that SCBE growth can be divided into two main parts.  In the 

first part the movement of copper ions is due to gravitoconvective fluid motion, and in 

the second part the growth of the copper wires is similar to processes observed in thin 

layer electrochemical deposition.42 

Exploiting the redox chemistry in bipolar electrochemistry the Bradley research group 

demonstrated bipolar electrochemistry can be used to grow interconnects between 

isolated substrates without the addition of any metal salt.  In contrast to this method 

bipolar electrodeposited catalyst (BEC) uses a metal salt in the electrolyte to deposit a 

metal onto one area of an isolated conductive substrate.  Palladium metal was deposited 

onto one area of isolated graphite particles to form BECs.  The resulting BECs were 

catalytically active in the reduction of crotonaldehyde to butyraldehyde.43   

 

1.6 Conclusions 
The concept of open bipolar electrochemistry and closed bipolar electrochemistry is a 

distinction that is not commented on in the literature.  In open bipolar electrochemistry 

there is diameter dependant relationship between the applied electric field and the 

induced potential on the substrate (equation 1).  There is no such relationship in closed 

bipolar electrochemistry. 

An examination of the literature finds that bipolar electrochemistry is used in a 

variety of applications; which include, molten salt electrolysis, trace metal recovery, 

electro-organic synthesis, electroanalysis, water electrolysis, soy protein separation, 

recovery of acids and bases from salt solutions, adjusting the pH of various fluids, and 
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the characterization of semiconductor wafers.  With the exception of the electroanalysis 

example, that uses spherical ultramicroelectrodes, there are no examples of open bipolar 

electrochemistry on the micrometer scale (below 10 µm) or on the nanometer scale.  On 

further examination there are no examples of bipolar electrochemistry used to construct 

devices, functional circuit paths or catalytic material.  In this respect the work done by 

the Bradley research lab is unique.  It is the goal of this thesis to present work that 

continues to build upon the foundation of innovation and cutting edge research conducted 

in the Bradley research group. 
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Chapter 2: Bipolar Electrodeposition of Palladium onto Graphite Platelets Using 
Pulsed dc Electrical Fields 

 

2.1 Summary Statement 
This chapter describes the continuation of earlier work on the synthesis of bipolar 

electrodeposited catalysts (BECs).  The initial purpose of the project was to study the 

effect of frequency on the catalytic and morphological properties of the synthesized 

BECs.  Further work on the project led to the development of a technique to study the 

graphite platelets with the minimum amount of perturbation to the platelets after bipolar 

electrodeposition. 

 

2.2 Introduction 
Palladium supported on carbon (Pd/C) is a very versatile catalyst.  It is widely used in 

various research laboratories around the world, and in a wide range of industrial 

processes.1, 2, 3  Carbon is extensively used as a support for palladium (as well as other 

metals) catalysts due to carbon’s several distinct advantages.  These advantages include a 

large surface area, chemical stability, the ability of the carbon support to keep the 

palladium in a highly stable and dispersed state, and carbon supports are cheap and easy 

to produce.1, 2, 3, 4   

A review of the methods used to synthesize Pd/C catalysts is beyond the scope of this 

thesis; however, brief descriptions on various synthetic approaches are presented.  There 

are various methods used to produce Pd/C and the common feature with these methods is 

the carbon is placed in contact with a suitable precursor salt for a certain period of time, 

and then the precursor salt is reduced to the zero valent metal. The various methods 
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include deposition precipitation, deposition reduction, impregnation and drying, colloid 

deposition, electroless plating, and electrodeposition. 1,2,3  In deposition precipitation the 

palladium salt in a suitable solvent is precipitated (often as a hydroxide) onto the carbon 

support, the precipitate is then reduced to the zero valent metal using a suitable reducing 

agent (e.g. hydrazine, formaldehyde, etc). 1,2,3  With the deposition reduction method the 

aqueous metal salt is directly reduced to the metal onto the carbon support. 1,2,3  

Impregnation and drying, also known as the incipient wetness method, consists of leaving 

the carbon support in contact with the palladium salt solution, drying the carbon support 

and then reducing the absorbed metal ions to the metal under a hydrogen stream at high 

temperatures. 1,2,3  Colloidal dispersion simply deposits the metal colloid onto the carbon 

support straight from colloidal solutions. 1,2,3  Electroless plating relies on the fact that the 

carbon surface can be pretreated to induce reduction of the metal ion to the zero valent 

metal without the application of a current or reducing agent. 1,2,3  The method used, the 

type of carbon support used, the surface chemistry of the carbon support, and the 

precursor salt solution used to produce the Pd/C catalyst can affect the resulting catalysts 

activity, selectivity, and lifetime.1,2,3 

Electrodeposition of palladium onto carbon is one of the many methods that have 

been used to prepare Pd/C catalysts.5  Unlike electroless plating; a current source and a 

direct contact between the substrate and the power source is required.  In general, the use 

of electrodeposition has been shown to affect the size and morphology of the deposit as 

well as the dispersion of the deposit.6, 7, 8, 9 Electrodeposition is not limited to Pd/C 

catalysts, and it has been used to prepare various other metal catalysts on carbon, metal, 

polymer, or conductive oxides.10, 11   
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The Bradley research group recently introduced a non-contact method to 

electrodeposit palladium onto isolated graphite platelets. The method takes advantage of 

bipolar electrochemistry and as a result offers several key advantages over conventional 

electrochemical preparative methods.  These advantages include no direct contact 

between the power source and the substrate, homogenous electrodeposition within large 

volumes, and the ability to control where the deposition occurs.  The catalytic particles 

that are produced using bipolar electrochemistry are called bipolar electrodeposited 

catalysts (BECs).  BECs require a current during synthesis only; this is in stark contrast to 

conventional electro-catalysts that require a current for the catalytic activity. 12, 13 

There are other non-contact electrochemical methods to prepare catalysts.  These 

include electroless plating, and photo-electrochemical deposition.  Electroless plating 

requires extensive pretreatment of the carbon substrate but does allow for the synthesis of 

industrial amounts of catalyst.  In photo-electrochemical deposition the substrate used is a 

semi-conductor.  The redox process responsible for the deposition of metal onto the 

substrate is driven by electrons excited into the valence band by the appropriate 

wavelength of light.  This method suffers from the inability to deposit homogenously in 

large volumes. 

 

2.3 Bipolar Electrodeposited Catalysts 
Bipolar electrodeposited catalysts (BEC) were first introduced by the Bradley 

research group in 1999.  This initial work showed that palladium can be electrodeposited 

onto isolated dispersed graphite platelets, the toposelective nature of the deposition, the 

catalytic activity of the resulting deposits, and the bipolar nature of the deposition.12, 13 



 27
Pulsed electrical fields were used to synthesize the BECs in order to determine whether 

the dispersion, the selectivity, and the catalytic activity of the BEC could be modified and 

controlled. 

Using conventional methods of electrodeposition, the particle size and morphology of 

the electrodeposits has been controlled by modulating such parameters as applied 

potential6, and pulsed7,8 or reversed currents6.  Palladium catalysts have been prepared 

using conventional electrodeposition methods on various carbon supports.  Controlling 

the magnitude and the duration of the potential used modifies the catalytic activity and 

particle size of the palladium particles. 

 

2.3.a Experimental 
Graphite powder with an average diameter of 1–2 µm (Fisher, BET surface area 

200m2) was suspended in acetone. The graphite suspension was then nebulized onto 60 

µm thick cellulose paper (Kimwipe).  For some samples the graphite suspension was 

sonicated in a Branson Bath sonicator for 10 hours before nebulization onto the cellulose 

paper.  The cellulose paper was then cut and stacked to a height of 0.3cm between two 

flat graphite electrodes measuring 2 x 2cm. The graphite electrodes were then immersed 

in a solution of 1mM palladium chloride (Aldrich) in 1:1 acetonitrile/toluene (dried over 

calcium hydride).  Under a nitrogen atmosphere the electric field was applied (Figure 

2.1).  The electric field was applied as either a pulse with a 50% duty cycle or as a DC 

electric field.  For DC field experiments the field duration was 7.5 minutes, and for 

pulsed field experiments the field duration was 15 minutes.  Four different electrical field 

intensities were used; these were 0.5 kV/cm, 1.0 kV/cm, 2.0 kV/cm, and 3 kV/cm.   
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Figure 2.1.  Experimental set up used to electrodeposit palladium onto graphite platelets.  Channel 1 on the 
oscilloscope measured the voltage across a potential divider with resistances of 30 MΩ (R1), 300kΩ 
(R2), and channel 2 measured the current across a 100Ω resistor (R3). 
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The pulsed electrical fields were used with the following frequencies of 0.5 kHz, 1.0 kHz, 

2.0 kHz, 5.0 kHz, 10 kHz, and 20.0 kHz.  For pulsed field experiments the voltage signal 

was generated as a square waveform with a 50% duty cycle by an HP 33120A function 

generator.  The voltage signal was amplified by a Trek P0674 high voltage amplifier 

before it was applied across the graphite electrodes.  The current and voltage traces were 

monitored on an HP 54602B oscilloscope.  The function generator and the oscilloscope 

were controlled by Labview.  The experimental parameters (current and voltage data) 

were passed to and from Labview though Internet Explorer 5.0, and stored in a custom 

built laboratory management system (Standard Modulator Integrated Research Protocols, 

SMIRP14).  After the field application the stacked cellulose paper was rinsed with large 

amounts of acetone, dried, and characterized 

 

2.3.b Characterization 
The amount of palladium on the samples was determined by atomic absorption 

spectroscopy (AAS).  To prepare the samples for AAS a sample of the cellulose paper 

was digested in aqua regia (3:1 by volume concentrated hydrochloric acid: concentrated 

nitric acid) and diluted, using distilled water, to a total volume of 10.0 mL.  A series of 

standard solutions were prepared from a stock solution of palladium atomic absorption 

solution (Aldrich).  The solutions were then run through a Varian AA-1275 atomic 

absorption spectrophotometer. The palladium content was then determined from the 

calibration curve obtained and converted to percentage palladium per gram of sample. 

In order to study the morphology of the deposits, BECs were examined on a 

transmission electron microscope (TEM). The graphite platelets were removed from the 
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cellulose paper by vigorously shaking a sample of the paper in acetone, and then drop 

drying the resulting suspension onto copper grids (200 mesh, SPI Supplies Inc) with a 

holey carbon membrane support.  The samples were then examined on a JEOL 2010 F 

TEM with an accelerating voltage of 200 kV. 

The surface area of the samples was studied using two model reactions. The first 

reaction used was the hydrogenation of crotonaldehyde, and the second was the reduction 

of methylene blue.  The hydrogenation of crotonaldehyde to butyraldehyde followed 

methods used in an earlier paper.12  A 60 micromolar solution of crotonaldehyde in 

ethanol and in 1.0 atm of hydrogen were used for the hydrogenation of crotonaldehyde to 

butyraldehyde.  The amount of BEC used depended on the percentage of palladium 

(determined by AAS) on the sample.  For each run the amount of BEC i.e. the number of 

cellulose paper was adjusted to keep the total amount of palladium constant for each run.  

Conversion was monitored by taking aliquots at time intervals of 0-, 0.5-, 1-, 2-, and 4-

hrs. Each aliquot was run through a gas chromatography unit with a flame ionization 

detector.  Reduction of methylene blue was done using methods adapted from 

experiments by Jana and Pal.15  In this method two pieces of cellulose papers with the 

electrodeposited catalyst were immersed in 15.0 mL of an aqueous solution of 69.7 

micromolar methylene blue in an approximately 15 millimolar NaHCO3 /Na2CO3 buffer 

solution (pH 9.5).  Initially a 0.4 mL aliquot was removed from this starting solution and 

then a freshly prepared aqueous solution of sodium borohydride (~107 mL, 0.53 mM) 

was added. 0.4 mL aliquots were removed every 60 seconds for 300 seconds.  The 0.4mL 

aliquots were diluted by adding the aliquots to approximately 4.56 mL NaHCO3 /Na2CO3 

buffer (pH 9.5).  These diluted aliquots were then monitored at a wavelength of 620 nm 
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with a Perkin Elmer Lambda 2 UV-visible spectrophotometer. Calibration data was 

obtained by using palladium with a known surface area.  The palladium used was in the 

form of wire with a 1.0 mm diameter that had been cut into approximately 1.0 cm 

lengths. A plot of surface area versus the first order rate constant for the first 300s of the 

reduction of methylene blue was used as a calibration curve 

 

2.3.c Results 
Figure 2.2 shows the percentage palladium on the platelets for all parameter spaces 

explored.  The figure shows a strong correlation between field intensity and percentage 

palladium (%Pd) especially between 2000V/cm and 3000V/cm.  There is no correlation 

between frequency and %Pd for all parameters explored. The sonication of samples prior 

to nebulization did not cause a significant affect on the %Pd.  The palladium dispersion 

did not correlate with frequency (Figure 2.3).  The dispersion did increase for sonicated 

samples, and there seemed to be a slight trend for samples at higher frequencies.   

Figure 2.4 and Figure 2.5 present TEM micrographs of samples prepared at 

3000V/cm at various frequencies. The TEM studies revealed that generally there were 

three types of palladium deposits: ramified deposit, amorphous deposits, or as surface 

bound deposits.  High resolution images of the deposits revealed that the ramified 

growths consisted of aggregates of spherical deposits on the order of 25-50 nm diameters. 

These aggregates were decorated with smaller structures on the order of a few 

nanometers. In addition to these larger deposits, for both DC and pulsed samples, surface-

bound deposits approximately 5 nm in size were also identified.  
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Figure 2.2.  Amount of palladium deposited, expressed as a percentage, at all field intensities and frequency regimes 
explored. 
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Figure 2.3.  The average surface area per gram of palladium vs. frequency at 3 kV/cm. Entries marked with a (s) 
were sonicated for 10 hours prior to nebulization onto the cellulose support. 
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Figure 2.4.  Electron micrographs of samples prepared at 3000 V/cm and at various frequencies. (a) DC toposelective 
electrodeposition of palladium onto right side of a graphite particle. (b) 5 kHz, toposelective deposition; 
(c) DC deposit magnified view of amorphous deposit in (a); (d) 5 kHz, magnified view of ramified 
deposit in (b); (e) 500 Hz, ramified deposit; and (f) 3 kHz, extended ramified deposit. 
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Figure 2.5.  High-magnification view of different deposit types at various frequencies for samples prepared at 3 
kV/cm: (a) 5 kHz, ramified deposit; (b) further magnified view of (a) showing decoration of ramified 
deposits; (c) dc surface-bound deposits on graphite; and (d) 20 kHz, surface-bound deposits on graphite. 
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2.3.d Discussion 
There is a non linear increase in the amount of palladium deposited, expressed as 

percent of palladium on graphite, with an increase in the field intensity. The relationship, 

however, is not linear, with the palladium content exhibiting a sharp increase at about 2-3 

kV/cm. This transition is very similar to that observed in an earlier study.12  In bipolar 

electrochemistry, the potential (η) at a point (X) on a spherical particle can be calculated 

from the electric field (E), the radius of the particle (r) and the angle (θ) by using the 

following equation16, 17, 12, 13 illustrated in Figure 2.6. 

θη cos2)1( ErX =⋅  

For the case of the graphite particles, if we assume point X is in line with the electrical 

field, then the potential drop across the graphite particle can be estimated from the 

following second equation: 

ErV 2)2( =∆⋅  

From the second equation it is possible to estimate the potential across a graphite particle.  

For example the graphite platelet in Figure 2.4a is approximately 2 µm, thus the potential 

drop experienced by the platelet in the electric field will be 0.6V.  This value is consistent 

with the magnitude of the potential needed to induce deposition of palladium.  A more 

accurate value for the potential cannot be easily determined due to bipolar 

electrodeposition being a contact-less method, thus the exact nature of the redox 

processes can not be ascertained.   
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Figure 2.6.  Illustration of the relationship between the overpotential at a point on a sphere immersed in an 
electrolyte, and the applied electric field. 
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Figure 2.7.  Changes in resistance during the course of the experimental run for all field intensities and frequencies. 

Data points are averages of triplicate experiments. 
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Figure 2.2 shows that there was no trend in the percentage palladium and the 

frequency, however there was a frequency dependant behavior of the cell resistance as 

shown in Figure 2.7.  Possible reasons for this trend can be attributed to a quick depletion 

of palladium ions near the electrodes at high potentials and lower frequencies.  This quick 

depletion results in a decrease in the current and hence an increase in cell resistance, 

whilst at higher frequencies there may be some mixing of the solution near the electrodes.  

This trend can be used in the design of bipolar electrochemical cells, where the optimal 

configuration is the highest cell resistance that will still enable electrochemistry on the 

dispersed conductive phase.  An examination of the frequency and the current showed no 

discernible trend (Figure 2.8).  Due to the nature of bipolar electrochemistry these current 

readings cannot be used to interpret any of the processes that may be occurring on the 

platelets, but only on the feeder electrodes. 

Ideally for morphological studies the graphite platelets should be imaged directly on 

the cellulose support using SEM.  Attempts to do this were unsuccessful due to the nature 

of the cellulose support, thus the graphite platelets were removed from the support and 

imaged using TEM.  This process of removing the platelets and preparing them for TEM 

lead to the breakage and loss of the various deposits, and as a result the TEM studies did 

not give a complete picture of the true nature of the deposits or for the case of the 

ramified deposits the degree of ramification.  Generally the various samples of platelets 

examined showed coverage of palladium that was limited to one general area of the 

platelet as seen in Figure 2.4a.  The exact area of the platelet that is covered by palladium 

depends on the platelets orientation in the electric field.  
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Figure 2.8.  Changes in the current during the course of the experimental run for all field intensities and frequencies. 
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The TEM studies revealed three distinct types of deposits; these were, amorphous, 

surface-bound, and ramified.  It was not uncommon to find deposits that extended for 

several micrometers as seen in Figure 2.4f; however, it was more common to find the 

types of amorphous deposits seen in Figures 2.4a and 2.4c, as well as, the short 

aggregates seen in 2.4b and 2.4d.  The ramified deposits, as seen in Figure 2.5a, consisted 

of collections of spherical structures that were 25-50 nm in diameter.  Higher 

magnification images (Figure 2.5b) of the spherical structures revealed that these were 

decorated by smaller deposits only a few nanometers in diameter.  Surface bound 

deposits of palladium (Figure 2.5c and 2.5d) were found to be of the order of a few 

nanometers; this result suggests that a significant reduction of the deposition time by a 

few orders of magnitude could result in highly dispersed deposits of palladium 5 nm or 

less in size on the surface of the graphite platelets.  The long deposition times used in this 

study did result in micrometer-long chains with diameters of 50 nm that extended off the 

platelet surface (Figure 2.4f); which does suggest a method for the growth of nanowires. 

The process of preparing the TEM samples resulted in a great deal of loss of the 

palladium deposits, and thus it is not possible to correlate any significant TEM data with 

the various field parameters used.  As a result, surface area measurements were 

determined by using a colorimetric technique based on the reduction of methylene blue 

catalyzed by palladium.  The main advantage of this method was it allowed the direct use 

of the BEC supported on the cellulose paper.  This minimized the loss of palladium 

deposit, and thus the data was more inclusive.  Results revealed little difference between 

palladium dispersion from frequency to frequency, however, there was a significant 

difference between sonicated and non-sonicated samples (Figure 2.3).  These differences 
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can be explained by considering the nature of the distribution of the platelets on the 

cellulose support when the platelets are not sonicated before nebulization and when the 

platelets are sonicated before nebulization.  Without sonication a fraction of the platelets 

are nebulized onto the cellulose support as aggregates.  When exposed to the electric field 

the aggregates behave as one particle and the palladium deposits onto a small area of the 

aggregate.  When the platelets are sonicated the aggregates are broken into smaller 

aggregates or individual platelets, and when nebulized onto the cellulose support this 

resulted in a larger total surface area of graphite platelets for the deposition of palladium.  

This resulted in a larger dispersion of palladium. 

 

2.4 Bipolar Electrodeposition of Palladium onto Graphite Platelets 
Immobilized on a Glass Substrate 

 

2.4.a Introduction 
The initial study of BEC synthesized on a cellulose support revealed that there was a 

detrimental loss of information when transferring platelets from the cellulose support to 

the TEM grids for electron microscopy study.  In order to address this issue, a method 

needed to be devised that would avoid the problem encountered in the earlier TEM 

investigations.  The new method had to have the platelets prepared on a substrate that 

would allow the direct examination of the platelets by electron microscopy with the 

minimum amount of disruption of the platelets after deposition of palladium.  This study 

was designed to address this issue specifically and to determine and confirm the nature of 

the palladium deposits on the platelets. 
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Several possibilities to address this issue were considered.  A suspension of the 

platelets in a suitable solution that was then directly exposed to an electric field, spin 

coating of epoxy and subsequent dispersal of the platelets onto the epoxy layer, or simple 

direct dispersal of the platelets onto a suitable substrate using electrostatic interactions.  

The main disadvantage of the suspension method is that the platelets still needed to go 

through a fairly rigorous process to prepare the platelets for electron microscopy.  Such a 

rigorous process would include a method to remove excess reagents and a way to 

disperse the platelets on a suitable substrate.  The end result would be a sample that had 

still undergone a process as rigorous as the earlier methods with cellulose paper, and 

which still resulted in a loss of palladium deposits.  The spin coating method required 

longer processing times when compared to the direct dispersal method.  

 

2.4.b Experimental Methods 
Microscope cover glass slides (Fisher Scientific) were cut into square pieces 

measuring 5 mm by 5 mm.  Less than 1 milligram of graphite powder (Fisher, BET 

surface area 200 m2) was placed on a separate uncut cover glass slide.  A 5 mm by 5 mm 

piece was then placed on top of the graphite powder.  By pressing down on the glass 

piece and gently moving the 5 mm by 5 mm piece in a circular motion the graphite 

platelets were immobilized on the glass piece.  Excess platelets were washed off the 

surface using a few milliliters of acetone.  The glass slide was then set up for field 

application (Figure 2.9).  Electrolyte used consisted of 1.0 mM palladium chloride in a 

1:1 mixture of acetonitrile: toluene.  For all experiments the field applied was 3000 V/cm.  
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In this study DC fields were compared to pulsed fields which had frequencies of 500 Hz 

and 50% duty cycle. 

After field application the slides were placed in 100 mL HPLC grade acetonitrile for 

5 minutes to wash away excess salts. Samples were then allowed to air dry and prepared 

for characterization on a scanning electron microscope (SEM).  For SEM preparation 

samples were mounted on SEM stubs and coated with either gold or gold palladium.  

Samples were then examined on an AMRAY 1830, or a JEOL 6300. 

 

2.4.c Results 
Palladium deposits were found on one area of the platelets and an area on the platelets 

opposite to the deposit was devoid of any metal deposit (Figure 2.10).  Various numbers 

of separate platelets combined to form agglomerated structures.  The platelet 

agglomerates had metal deposit on one general area and no deposit anywhere else on the 

agglomerate (Figure 2.10).  The metal deposits varied from large ramified deposits seen 

on separate platelets (Figure 2.10c, and 2.10d), to large deposits that covered one general 

area of an agglomerate of platelets (Figure 2.10a, 2.10b, and 2.11b).  A low magnification 

image of a few agglomerates shows the deposits growing off one end to be aligned 

(Figure 2.11b).  There was no significant difference between the pulsed samples and the 

DC field samples.  High magnification image (Figure 2.11a) revealed the palladium 

deposits consist of spherical clusters.  The clusters build up to form larger spherical 

clusters.  When examining isolated single platelets surrounding the agglomerates; 

typically the isolated single platelets near the agglomerates did not have any palladium 

deposit (Figure 2.10a). 



 45
 
 
 

 
 
 
 

Figure 2.9. Picture of the experimental cell used to hold the glass pieces, and a schematic showing the field 
application set up. 
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Figure 2.10.  These are SEM micrographs of the graphite platelets immobilized on glass microscope slides.  Electric 
field = 3000 V/cm. Image (a) and (c) were exposed for 300s, (b) was exposed for 450s, and (d) was 
exposed for 900s.  In (d) the field was applied as a series of square wave pulses at a frequency of 500Hz 
and with a duty cycle of 50%. 
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Figure 2.11.  A is a high magnification of palladium deposit off of graphite platelets.  B is an unrelated low 
magnification image showing palladium deposit on one area of various platelet agglomerates.  For both 
samples a dc electric field at 3000V/cm was applied for 450seconds. 
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2.4.d Discussion 
One important advantage of the SEM study of the platelets was the ability to image 

the platelets after deposition with the minimum amount of processing.  With little 

processing from electrodeposition to SEM examination certain conclusions could be 

drawn. First, the SEM studies revealed the agglomeration of the graphite platelets.  This 

confirmed earlier conclusions with the experiments with methylene blue.  The methylene 

blue experiments showed sonication increased the total surface area of the graphite 

available for palladium deposition.  This increase was attributed to the breaking up of 

agglomerates by the sonication; however, agglomerates were never found with the TEM 

studies. 

The agglomeration of the platelets dominates the system.  Agglomerates act as one 

large particle, and in bipolar electrochemistry larger particles in the applied electrical 

field will have a larger potential across their diameter when compared to smaller 

particles.12,13,16,17  The larger potential on the agglomerates will result in preferential 

nucleation and subsequent growth of palladium deposit on the agglomerate, and depletion 

of the palladium ions in the vicinity of the agglomerate.  In conventional electrochemistry 

the nucleation density increases with the applied potential.  In the current system a 

similar observation is expected and the large agglomerates will have a much higher 

nucleation density of palladium metal than the smaller isolated platelets.  Continual 

deposition of metal occurs preferentially on metal deposits already present such as 

nucleated deposits.  This favors growth of palladium on the areas were there is a greater 

density of nucleation sites i.e. the agglomerates.  The depletion of palladium ions in the 
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vicinity of the agglomerate will be aided by electroconvective forces.  Such forces were 

observed in experiments involving spatially coupled bipolar electrochemistry (SCBE).18   

An alternative explanation is that the platelets surrounding the agglomerate are not 

large enough for the induction of the minimum potential required for palladium 

electrodeposition.  This alternative explanation is unlikely because a number of the 

isolated platelets surrounding the agglomerate in the image (Figure 2.10a) are above 2 

µm.  The length of 2 µm is significant because in earlier experiments this was the length 

of the smallest platelet found with palladium deposit (Figure 2.4a).  In terms of the 

synthesis of BEC this result suggests that for the bipolar electrodeposition of palladium 

onto graphite platelets the agglomeration of platelets has to be broken up.  This is in line 

with the earlier results obtained when the platelets were sonicated before dispersion. 

In spite of the agglomerates deposition did occur on the separate platelets.  SEM 

micrographs were obtained (Figure 2.10c and Figure 2.10d) that did show palladium 

deposits growing off the ends of isolated graphite platelets.  From SEM studies no 

significant differences could be seen between pulsed samples and DC electric field.  On 

the separate platelets, the long deposition times resulted in large long ramified deposits 

off one end of the graphite platelets.  These long deposits were not seen in the earlier 

TEM studies, and asserted the earlier conclusion that the larger deposits were falling off 

the graphite platelets when processed for TEM.  For the synthesis of BECs much shorter 

deposition times would be needed. The long deposition times however could be used for 

the growth of nanowires between isolated conductive micrometer sized structures. 

The SEM studies revealed that the graphite platelets were a very inhomogeneous 

substrate; specifically, the platelets were all different shapes and sizes.  The shape and 
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size differences did not hinder electrodeposition onto the platelets. The differences in size 

and shape however did make direct comparison between platelets difficult and 

necessitated the need for a more uniform substrate. 

 

2.4.e Conclusions 
By applying a 3000 V/cm electrical field bipolar electrochemistry can be used to 

deposit palladium from a 1.0 mM solution of palladium (II) chloride (1:1 acetonitrile: 

toluene) onto isolated graphite platelets.  The electrical field can be applied as a series of 

square wave pulses (50% duty cycle, 500–20000 Hz) or as a DC electrical field.  Under 

these conditions the average lengths, of the platelets modified, varied from 2–10 µm.  

When examined under TEM, the palladium deposits consisted of 2–5 nm nanocrystals, 

which were, either surface bound to the platelets or were part of highly ramified 

structures.  Catalytic methods (reduction of methylene blue) used to determine the 

palladium dispersion on the platelets found no significant differences between the 

dispersion and the frequency used to prepare the samples; however, sonication of the 

platelets before field application did increase the palladium dispersion.   

Experiments using platelets on a glass substrate conclusively demonstrated that the 

platelets were agglomerating, the agglomeration resulted in the majority of the palladium 

depositing as large ramified structures on the agglomerated platelets, and when 

deposition did occur on the individual platelets it was in the form of long and highly 

ramified structures.  In light of these results, for the synthesis of BECs much shorter 

deposition times are needed and it is imperative the platelet agglomerates are separated 
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into individual platelets.  The separation can be achieved by the sonication of the platelets 

before deposition. 

Possible additional work in this area would be to synthesize the BECs using different 

pulsing regimes, for example, very short on-times (less than 1 millisecond) with long off-

times (20 times greater than the on-time used).  In addition to the modified pulsing 

regime, short deposition times should be used.  A recommended time scale for the short 

deposition times would include 20 seconds or less (compared to 900 seconds used).  

Once the ideal parameters have been established for palladium other metals should be 

explored, examples include, but should not be limited to, gold or nickel.  Then the 

deposition of two different metals on opposite areas of the platelets and on the same area 

can be compared in the appropriate catalytic reactions. 
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Chapter 3:  Development of Bipolar Electrodeposition as a Tool for 
Nanotechnology: Part 1 from Platelets to Nanofibers 

 

3.1 Summary Statement 
The original goal of the work presented in this chapter, was to deposit palladium 

metal onto the ends of carbon nanofibers (CNFs) using bipolar electrochemistry.  After 

establishing the ideal parameters needed for the deposition of palladium metal, the next 

step in the project was to develop an experimental technique that could produce 

milligram quantities of the functionalized CNFs. 

 

3.2 Introduction 
Bipolar electrodeposition is a unique method that can be used to modify isolated 

micrometer sized structures.1,2,3  Practical application of bipolar electrodeposition on the 

micrometer scale was successfully demonstrated with the synthesis of palladium 

supported on carbon catalysts.  The resulting catalysts, called bipolar electrodeposited 

catalysts (BECs), were shown to be catalytically active in two different reduction 

reactions.2,3   

One of the underlying problems encountered during the studies on the synthesis of 

BECs was the graphite platelets.  As a substrate for the synthesis of BECs graphite 

platelets are a non-ideal substrate, and the reason for this is the non-uniform shapes and 

sizes of the graphite platelets.  To address this issue a more uniform substrate was 

selected and the substrate chosen was carbon nanofibers.  Although the impetus for the 

original work was to synthesize BECs, it was immediately realized that this initial 

transition to carbon nanofibers expanded on the capabilities of bipolar electrodeposition.  
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3.3 Carbon Nanofibers 
Carbon nanofibers are a unique tubular form of carbon with diameters that vary from 

tens to hundreds of nanometers and lengths ranging from a few to hundreds of 

micrometers.  Although there is a large amount of size overlap between carbon nanotubes 

and carbon nanofibers, there are significant structural differences.  Carbon nanofibers 

consist of graphitic layers that stack either at an angle, perpendicular or parallel to the 

tube axis (Figure 3.1).4,5,6,7,8  A carbon nanotubes’ wall consists of continuous graphitic 

layers composed of carbon atoms that are arranged in an ordered repeating pattern with 

no defects.  This inherent feature of carbon nanotubes has been used to describe carbon 

nanotubes as single crystals.  In contrast the wall of a carbon nanofiber has numerous 

defects and, because of this, it is not a single crystal.8  A simpler way to distinguish 

between carbon nanofibers and carbon nanotubes is to define nanotubes as graphitic 

layers of carbon arranged around a hollow central core, and carbon nanofibers as 

graphitic layers arranged around a filled central core.7 

Due to the unique characteristics of carbon nanofibers there is a wide range of 

applications for carbon nanofibers.  The thermal and chemical stability, high surface area, 

low ohmic resistance, and the surface properties are the unique qualities that are exploited 

when carbon nanofibers are used as catalytic support materials.4,6,7,9,10  As an additive in 

polymers carbon nanofibers have been shown to increase the thermal, mechanical, and 

electrical properties of a variety of polymer matrices.11   
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(a) (b) (c) 

  
 
 
 

Figure 3.1.  The graphitic layers in carbon nanofibers can adopt different configurations. In part (a) the graphitic 
layers are arranged at an angle to the tube axis in the herring bone configuration.  In (b) the graphitic 
layers are stacked perpendicular to the tube axis.  In (c) the graphitic layers are arranged parallel to the 
tube axis.  The gap in (c) can be filled with amorphous carbon or more layers.4 – 7 
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The surface at the tip of a carbon nanofiber possesses a large amount of exposed 

edges due to the arrangement of the graphitic layers.  This, along with carbon nanofiber’s 

good electrical conductivity, may provide a good pathway for the emission of electrons 

from the nanofiber.  As a result carbon nanofibers have been investigated as components 

in electron field emitting devices.12,,13,14   

Another highly active area of research, and sometimes controversial, is the use of 

carbon nanofibers as hydrogen storage materials.4,5,15  

In general carbon, in various forms, has been used as an electrode material due to its 

stability at positive potentials, wide potential window in various systems (aqueous and 

non-aqueous), good response in stripping voltammetry applications, low cost, and low 

background current.  Carbon nanofibers could prove to be much better electrode 

materials (once the cost of manufacture is reduced) due to the greater conductivity, larger 

surface area, and increased stability.16  The combination of these properties is why carbon 

nanofibers have been explored as electrode materials for a technologically important 

specialized device i.e. fuel cells6,17   

Carbon nanofibers have been investigated as electrode materials for various 

electrochemical based applications.  Bessel et al. and Lukehart et al. studied the use of 

platinum and platinum-ruthenium supported on carbon nanofibers as electrocatalysts for 

methanol oxidation. 6,17  In both cases the authors prepared the electrocatalysts using 

standard wet chemical techniques.6,17  Using cyclic voltammetry, Chen et al. deposited 

platinum onto carbon nanofibers and demonstrated good electro-catalytic activity towards 

methanol oxidation at low platinum loading.18  Cyclic voltammetry experiments have 

been conducted to study whether carbon nanofibers can be used for the effective 
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electrochemical storage of hydrogen.  These studies revealed modest storage capacities 

below the required capacity set by the US department of energy.19,20  In 

sonoelectrochemistry carbon nanofibers were grown on a ceramic backbone and used as 

electrodes.  The electrodes were found to have an increased contact time with the redox 

active species in the system.21 Applications involving the use of carbon nanofibers as 

potential electro-analytical electrodes have been pursued.22,23,24,25 

The work presented in this thesis is not the first example of metal deposition on 

carbon nanofibers.  Zinc and lead have been electrodeposited onto carbon nanofibers. 16,22  

In these examples the carbon nanofibers were used as a web of material supported on 

various substrates that provided support and a direct connection between the nanofibers 

and the power supply.  These studies were done to access the feasibility of using carbon 

nanofibers as electrodes for stripping voltammetry.16,22  Another example of metal 

deposition on carbon nanofibers is the deposition of gold onto individual carbon 

nanofibers.  Using extensive micro-fabrication techniques direct contact to the individual 

nanofibers was achieved.  Unlike previous work this study was able to use individual 

carbon nanofibers as the electrodes in various voltammetry experiments as well as in the 

deposition of gold.  At the time of the writing of this thesis (besides the work presented in 

this thesis) this is the only example where individual carbon nanofibers have been 

electrochemically modified by the deposition of a metal.24 

From a survey of the literature, there is only one example24 where individual carbon 

nanofibers are addressed and modified using any kind of electrochemistry.  There are no 

examples where bipolar electrochemistry has been used to modify carbon nanofibers.  

The immediate goal of the project in this chapter is to functionalize one tip of a carbon 
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nanofiber with palladium metal.  The long term goal of the project in this chapter is to 

produce milligram quantities of the functionalized carbon nanofibers.  This project 

developed from the original BEC project and thus the carbon nanofibers were initially 

investigated as a substrate for the synthesis of BECs.  

 

3.4 Bipolar Electrodeposition onto Carbon Nanofibers Immobilized on a Glass 
Substrate 

 

3.4.a Theoretical Considerations 
A 3000 V/cm electric field was used to electrodeposit palladium on graphite platelets 

immobilized on the glass substrate (chapter 2).  One of the conclusions from these initial 

experiments was that palladium could be deposited onto platelets that were 2-10 µm in 

length.  Theoretically bipolar electrochemistry can be used to modify any isolated 

conductive substrate, and therefore bipolar electrodeposition of palladium can be done on 

substrates other than graphite platelets that are 2-10 µm in length i.e. the carbon 

nanofibers.  This assertion is supported by examining the relationship between applied 

electric field and the potential difference across a sphere, an irregularly shaped object and 

a cylindrical object (Figure 3.2).  Substrates in line with the electric field with the same 

overall length will have the same potential difference across the length of the substrate.  

Even though the nanofibers have diameters well below a micrometer the only factor to 

consider in modifying the nanofibers is the length of the nanofiber that is in line with the 

applied electrical field.  Thus a carbon nanofiber with a length of 10.0 µm in a 3000 

V/cm electrical field will have a potential of 3.0 V.   
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Figure 3.2.  Different shaped particles with the same lengths in line with an applied electrical field (E) will have the 
same potential (V) across the length (L) of the particle. 
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From earlier experiments on graphite platelets1,2 this is greater than the required potential 

for palladium deposition. 

 

3.4.b Experimental Methods 
All carbon nanofibers used were obtained from Applied Sciences Inc.  Nanofibers 

were used without any additional purification steps.  Glass cover slips (Fisher Scientific) 

were cut into 3 mm by 3 mm pieces.  Carbon nanofibers were immobilized onto the glass 

substrates using simple frictional methods.  This was done by placing a small amount 

(less than 1.0 mg) of the nanofibers on an uncut glass cover slip.  The small amount of 

carbon nanofibers was then covered with a 3 mm by 3 mm piece of glass cover slip.  By 

gently pressing down on the 3 mm by 3 mm piece and moving the 3 mm by 3 mm piece 

in a circular motion, the nanofibers were immobilized on the 3 mm by 3 mm glass piece.  

Excess and loose nanofibers were removed by rinsing the glass pieces with a few 

milliliters of acetone.  Once dry the glass piece with the carbon nanofibers was placed in 

an experimental cell and set up for field application (Figure 3.3). 

For all electrical field applications used the electrical field used was 3000 V/cm.  The 

electrolyte used was 1.0 mM palladium chloride in 1: 1 (v/v) acetonitrile/toluene (both 

dried over calcium hydride).  Initial experiments used DC electrical fields, which were 

applied by bypassing the high voltage switch (Figure 3.3).  In these initial experiments 

the electrical field was applied for 120-, 240-, and 480 seconds.  Comparative 

experiments were done with a pulsing (500 Hz, 50% duty cycle) DC electrical field.  The 

pulsed DC electrical fields were applied using the high voltage switch for either 240 

seconds or 480 seconds.  Experiments with shorter field times were done with 10-, 20-, 
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40-, and 80second dc fields.  The shorter timed DC electrical fields were applied using a 

single pulse from the function generator.  The on-time from the single pulse from the 

function generator controlled the amount of time the voltage, through the high voltage 

switch, was applied across the electrodes.     

To remove excess reagents after field application the experimental cell was placed in 

100mL of HPLC grade acetonitrile for five minutes.  After the acetonitrile rinse the cell 

was allowed to air dry and the glass piece was mounted on a scanning electron 

microscopy (SEM) stub for SEM characterization.  SEM work was done on either an 

Amray 1830 at Drexel University, or a JEOL 6300F at Lehigh University. 

For some samples (10-, 20- and 40 seconds) the nanofibers were removed from the 

glass surface and mounted on a 200 mesh copper transmission electron microscopy 

(TEM) grids (Holey carbon membrane support, obtained from SPI, Inc).  Removal of the 

nanofibers was accomplished by placing the glass piece in a 2.0 mL glass vial and then 

adding 0.5 mL of acetone.  The nanofibers were removed from the surface by scratching 

the glass piece with the tip of a Pasteur pipette.  Both surfaces of the glass piece were 

repeatedly scratched with the pipette to ensure that the nanofibers were gathered from the 

correct surface.  Using a 10.0 microliter syringe 50 to 100 microliters of the suspension 

was drop dried onto a TEM grid.  Preliminary TEM examination was done on a JEOL 

100CX2 at Drexel university, and follow up TEM examinations were done on a JEOL 

2000FX at Lehigh university. 
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Figure 3.3.  Picture and schematic of the experimental apparatus used for electrical field application. 
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3.4.c Results 
Carbon nanofibers with palladium on one tip were found on all samples at the 

different regimes attempted.  After removing the carbon nanofibers from the glass piece, 

nanofibers with palladium deposit on one tip were found.  Figure 3.4 presents such an 

example.  The carbon nanofiber is approximately 15.0 µm in length, with the palladium 

deposit extending for a total length of 4.0 µm.  The deposit covers the tip of the nanofiber 

and extends back along the length of the carbon nanofiber, leaving about 11.0 µm of the 

nanofiber uncovered.  Note that the opposite tip is clear of deposit. 

Figure 3.5 is a combination of TEM and SEM micrographs which illustrate the 

increase in the amount of palladium with the increase in the electrical field time.  The 

SEM images (Figure 3.5 E - H) clearly show palladium deposits on only one tip of the 

carbon nanofibers.  The TEM micrograph of the nanofiber with no deposit on the tip 

shows a separate film-like structure with numerous bubbles; the film is located inside the 

nanofiber (Figure 3.5A). 
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Figure 3.4.  A TEM micrograph of a carbon nanofiber with a deposit of palladium on one tip of the carbon 
nanofiber.  A 3000V/cm dc electrical field was applied for 40seconds, and the solution used was 1.0 mM 
palladium (II) chloride in a solvent mixture of 1: 1 acetonitrile/toluene (v/v, both dried over calcium 
hydride).  TEM examination was done on a JEOL 2000 FX with an accelerating voltage of 200 kV. 
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Figure 3.5.   A series of TEM and SEM micrographs of carbon nanofibers with palladium deposit on one tip.  For all 
samples shown the electrical field was 3000 V/cm, and the electrolyte used was 1.0 mM palladium (II) 
chloride in a mixture of 1: 1 (v/v) acetonitrile: toluene (dried over calcium hydride).  The electrical field 
application time for the samples in TEM micrographs A – D was 0-, 10-, 20- and 40seconds.  The time 
for the samples presented in SEM micrographs E – H was 80-, 120-, 240-, and 480seconds.  TEM 
images were obtained on a JEOL 2000FX with an accelerating voltage of 200 kV.  SEM images E and H 
were obtained on an Amray 1830, and SEM images G and H were obtained on a JEOL 6300F.  For all 
SEM imaging the samples were coated with gold. 
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  Figure 3.6 is an example of nanofibers that were not modified while a nanofiber in 

the vicinity was modified with palladium deposit on one tip.  The nanofiber with deposit 

has an approximate length of 8 µm, and the two unmodified nanofibers have lengths of 4-

, and 5 µm.  The two unmodified nanofibers are almost perpendicular to the nanofiber 

with palladium deposit.   

 

3.4.d Discussion 
When a carbon nanofiber is immersed in a suitable electrolyte and is exposed to an 

electrical field with sufficient magnitude, a cathode-anode pair is induced on the isolated 

carbon nanofiber. As a result the palladium will deposit on the cathode of the isolated 

carbon nanofiber and thus on only one tip of the carbon nanofiber.  This is characteristic 

of bipolar electrodeposition and it is why palladium found on one tip of a carbon 

nanofiber is indicative of a bipolar mechanism for electrodeposition, as seen in the 

various SEM and TEM images (Figures 3.4 -3.6). 

The change in potential across a carbon nanofiber, in line with the applied electrical 

field, can be estimated by using the simple relationship between the length of the carbon 

nanofiber and the applied electrical field (Figure 3.2).  A 15 µm carbon nanofiber (Figure 

3.4) in a 3000 V/cm field will have a potential drop of 4.5 V across its length.  In a 

similar system, the measured reduction potential for palladium ions in 1: 4 

acetonitrile/toluene was 700 mV vs Ag/AgCl in acetonitrile.26  A direct comparison 

between the literature value and the calculated value on the nanofiber cannot be made; 

however, if we assume the oxidation reaction on the nanofiber is Cl-/Cl2, then it is likely 

that the potential at the cathode-end of the nanofiber lies above a similar range.   
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Figure 3.6.  A SEM micrograph of a sample that was exposed to a pulsed dc electrical field (3000V/cm, 500Hz, 50% 
duty cycle) for 480seconds in a 1.0 mM palladium (II) chloride solution in 1: 1 acetonitrile: toluene (v/v, 
both dried over calcium hydride).  The sample was gold coated and the SEM analysis was done on a 
JEOL 6300F. 
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It is also possible to estimate the minimum length a carbon nanofiber has to be in order to 

be modified (i.e. palladium on one tip) in the current system.  Before making this 

estimate a reasonable value for the potential required to deposit palladium from the 

electrolyte used is needed.  In earlier work on the synthesis of bipolar electrodeposited 

catalysts the smallest graphite platelet with metal deposit was 1.5 µm across.1,2  A length 

of 1.5 µm corresponded to a potential of 0.45 V across the platelet.  From this empirical 

data the expected minimum length for the modification of a carbon nanofiber is estimated 

to be 1.5 µm.  

Using a 3000 V/cm pulsed DC electrical field with a 1.0 mM palladium chloride 

solution, the amount of palladium deposited on the tip of a carbon nanofiber can be 

controlled by varying the time of the applied electric field.  Figure 3.5 shows the increase 

in the amount of palladium deposit on the tips of carbon nanotubes.  The increase stops 

after 80 seconds.  This maximum length of the palladium deposits, under these 

conditions, is a result of the depletion of palladium ions in the surrounding electrolyte.  

The main source of the depletion is the cathode feeder electrode.  On the macro-scale, the 

Bradley research group was able to grow copper wires off isolated copper beads.  In this 

example of bipolar electrochemistry, the deposit stopped growing once it contacted the 

opposite electrode.  The micrometer sized wires grown by this method kept growing due 

to a continual supply of metal ions from the dissolution of the copper beads. 27  In the 

current system there is no replenishment of the palladium; however, the results on the 

macro-scale suggest that longer structures grown off of the carbon nanofibers could be 

achieved with a continuous supply of palladium ions.  Application of a DC electrical field 

for 10 seconds gives a thin uniform layer of palladium nanoparticles on the nanofiber 
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(Figure 3.5B).  This suggests that for any further exploration on the synthesis of bipolar 

electrodeposited catalysts using carbon nanofibers as a substrate; a 3000 V/cm field for a 

period of 10 seconds or shorter should be used.  The palladium nucleates along the 

carbon nanofiber on areas were the potential is equal to or greater than the minimum 

potential required for palladium ions to reduce.  Growth then continues preferentially on 

the nucleation sites (seen as coverage over the body of the nanofiber in Figure 3.5B) and 

more-so on areas with higher potentials (seen as ‘horns’ of palladium off the tip of the 

nanofiber in Figure 3.5B).  This is why palladium deposit is seen back along the 

nanofibers.  The point with the highest potential is at the tip of the nanofiber, and it is the 

area in which palladium deposition will occur most favorably.  The result is the 

palladium will grow off the tip of the nanofiber.  A secondary effect that will favor the 

continued growth off the tip is as the length of the nanofiber increases the potential drop 

across the nanofiber increases with a maximum at the growing tip. 

At set electrical field strength, the potential drop across a carbon nanofiber depends 

on the length of the carbon nanofiber.  As a result only carbon nanofibers with a specific 

minimum length, 1.5 µm for palladium deposition, will have palladium deposit on one 

tip.  This size selective deposition of a metal onto the tip of a carbon nanofiber introduces 

a secondary facet to bipolar electrodeposition.  Another characteristic feature of bipolar 

electrodeposition is the dependence of the angle of the carbon nanofiber to the applied 

electric field.  Palladium deposits only on carbon nanofibers aligned with the applied 

electrical field.  In Figure 3.6 the palladium deposits only on the 7 µm nanofiber that is 

aligned with the applied field.  The two nanofibers that are perpendicular to the modified 

nanofiber do not have any deposit.  These two nanofibers are 4 and 5 micrometers in 
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length, which is above the minimum length required to induce the requisite potential drop 

for palladium electrodeposition.  This demonstrates the dependence of the nanofibers 

orientation with the applied field for the deposition of palladium on the tip.    

At the time of the study SEM imaging of samples that had been exposed to an 

electrical field for 40 seconds and below did not show any clear deposits (Figure 3.7).  

This necessitated the development of a method to remove the nanofibers from the glass 

and mount them on a TEM grid.  The process of removing the nanofibers from the glass 

does not seem to remove a significant amount of the deposit from the tip.  The TEM 

micrographs, at various magnifications, do not show any evidence of the deposits falling 

off the nanofibers (Figure 3.8).  Any such evidence would appear as noticeable gaps in 

the deposits on the nanofibers.  This shows how well the palladium deposits have adhered 

to the surface of the nanofibers.  This is an encouraging result and suggests loss of 

precious metal in catalytic applications from carbon nanofiber supports would be low. 

A high resolution image of a carbon nanofiber after a 10 second electrical field 

exposure reveals a uniform coverage of palladium nanocrystals.  The palladium 

nanocrystals are 3-5nm in diameter (Figure 3.5B and Figure 3.8A).  After 20 seconds 

there is an increase in the amount of palladium deposit on the tips of the nanofibers.  The 

size of the deposits has increased slightly from 3-5 nm to 8-12 nm.  After 40 seconds the 

palladium deposits are starting to form larger spherical clusters, at this stage of deposition 

the nanocrystals have grown to between 12- and 18 nm.  By 80 seconds the deposits 

resemble the large ramified spherical clusters seen growing off the graphite platelets.  

After 80 seconds little change in the deposit is seen. 
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Figure 3.7.  The sample was exposed to a 3000 V/cm dc electrical field for 40 seconds (1.0 mM palladium chloride, 
1: 1 acetonitrile: toluene (v/v)).  Image (A) was taken in backscattering mode.  The bright structure at 
the tip in (A) is the palladium deposit.  SEM micrographs were obtained on an Amray 1830.  The 
sample was coated with gold. 
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Figure 3.8.  High magnification TEM images of palladium deposits on the tips of carbon nanofibers.  For all samples 
a dc electrical field with an intensity of 3000V/cm was applied.  The electrolyte consisted of 1.0 mM 
Palladium chloride in 1: 1 acetonitrile: toluene (v/v).  The electrical field had been applied for 10-, 20-, 
and 40seconds for the samples in micrographs (A), (B), and (C) respectively.  The TEM used was a 
JEOL 2000 FX with an accelerating voltage of 200kV. 
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Although the nanofibers differ in length, and as a result the potential across each 

nanofiber will differ slightly, a general pattern in the palladium deposition can be inferred 

from the data.  After initial nucleation palladium growth occurs on the initial nucleation 

sites to produce the 3-5nm nanocrystals seen.  By increasing the duration of the applied 

electrical field larger clusters of palladium nanocrystals grow and eventually develop into 

the ramified spherical clusters.   

Another interesting feature observed on the carbon nanofibers are nanofibers that 

have contacted together to make one nanostructure with two cathodes and one anode.  An 

example is seen in Figure 3.5G and H.  The deposit grows on each nanofiber and does not 

favor the longer or shorter nanofiber.   

 

3.5 Bipolar electrodeposition of Pd onto carbon nanofibers in a silica matrix 
The next step in the synthesis of carbon nanofibers (CNF) with palladium on one tip 

was to try and scale up the production from a simple demonstration model (carbon 

nanofibers on glass) to a bulk model.  One option would be to apply the earlier 

techniques using cellulose (Kimwipe) papers as a support. This was not attempted 

because nebulization of the CNF would result in the nanofibers landing parallel to the 

Kimwipe surface.  Then when the Kimwipe papers are stacked between the electrodes the 

CNF would be perpendicular to the applied electrical field, and the tips would not be 

aligned with the electrical field for deposition onto the tips.  Silica was chosen as an 

alternative support because it is non conductive, easily processed, inexpensive, and 

offered the possibility of easy separation from the carbon nanofibers.   
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3.5.a Experimental methods 

The first step was to obtain a uniform mixture of nanofibers and silica.  Simply 

stirring a mixture composed of toluene, silica and nanofibers did not produce a good 

uniform mixture.  The nanofibers in such mixtures formed aggregates that could be seen 

with the naked eye.  Instead a modified ball milling procedure was developed.  The 

carbon nanofibers (Applied Sciences Inc.) were weighed out and mixed with 10 grams of 

silica.  The silica and nanofibers were placed in a wide mouth glass jar (height 

approximately 11 cm, diameter approximately 4 cm).  Approximately 130 grams of steel 

balls (1/4 inch diameter) were added to the jar.  The glass jar was sealed and placed on a 

wrist action shaker (Burrell Model 75).  The wrist action shaker was set at the maximum 

tilt angle, and the sample was left shaking for 2 hours.  Using a cylindrical sieve the 

mixture of carbon nanofibers and silica (CNF/silica) was separated from the steel balls.   

To prepare the sample for electric field application, 2.0 grams of the CNF/Silica 

mixture was combined with 30 mL of toluene (dried over calcium hydride) to make a 

slurry.  Two graphite electrodes were then placed in a Gooch type filtering crucible with 

a fritted glass disc (porosity = coarse).  The crucible was then filled with blank silica 

slurry (10 grams silica: 100 mL toluene dried over calcium hydride).  The crucible was 

connected to a line vacuum via a filtering flask, and the vacuum was applied to compact 

the silica by removing the toluene.  The compacted silica between the electrodes was 

removed and replaced with the CNF/silica slurry.  Using a burette, toluene was slowly 

dripped onto the CNF/silica slurry, and a ‘gentle’ vacuum was applied.  The CNF/silica 

slurry was then washed with 50 mL of 1.0 mM palladium chloride (1: 1 (v/v) 

toluene/acetonitrile both dried over calcium hydride).  Care was taken to avoid air 

bubbles in the CNF/silica slurry between the electrodes.  This was done by ensuring there 
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was always a small layer of liquid at the top of the slurry at all times.  The crucible was 

then set up for field application.  A 6000 V/cm pulsed dc electrical field was applied for a 

total on-time of 20 seconds.  The electrical field was applied as a series of square wave 

pulses with 1.0 millisecond on-time and 8milliseconds off-time.  The field was generated 

by passing the output from a high voltage dc power supply through a high voltage switch 

(Behlke HTS 651-03-LC) controlled by a HP33120A function generator.  After field 

application the funnel was connected to a line vacuum and the slurry was washed with 

50.0 mL of a 1:1 toluene/acetonitrile mixture, 50.0 mL of 2.5% sodium nitrate solution 

(1:1 acetone/water), and finally 50.0 mL of acetone.  Once dry, the samples of the 

CNF/silica mixture were used for atomic absorption spectroscopy (AAS), or extraction 

experiments, or a combination of both.  After the CNFs had been extracted from the 

silica, the nanofibers were examined on various transmission electron microscopes 

(TEMs). 

For AAS, a 1.5 gram sample was digested with 5.0 mL of aqua regia (1: 4 (v/v) nitric 

acid/hydrochloric acid).  This mixture was filtered through a glass funnel with a fritted 

glass disc (porosity medium) to remove the silica.  A total of eight 1.0 mL aliquots of 

warm concentrated nitric acid were used to wash the silica.  Using distilled water the 

resulting filtrate was made up to 25.0 mL and used for AAS. 

The carbon nanofibers were extracted from the CNF/silica mixture using solvent 

extraction methods.  In a separatory funnel the CNF/silica mixture was mixed with 

approximately 325 mL of toluene and an initial 600 mL of distilled water.  This mixture 

was shaken vigorously and after settling for a few minutes the aqueous layer was 

removed and the process repeated.  Each subsequent cycle used approximately 300 mL of 
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distilled water.  The separated CNF were collected in a glass funnel with a fritted disc 

(porosity = fine), washed with acetone, and dried.   

For TEM characterization, a small sample was suspended in acetone, and drop dried 

on a 400 mesh Holey carbon copper grid.  

 

3.5.b Results and Discussion 
Initial AAS experiments on the CNF/silica samples showed no significant difference 

between the samples that had been exposed to an electric field and samples that had not 

been exposed.  This lack of difference was attributed to the strong adsorption of 

palladium ions onto silica surfaces.  A quick search of the literature found that silica is 

used and is investigated as a support for palladium metal catalysts.  The primary method 

of synthesis involves the adsorption of palladium ions onto the silica surfaces.28,29  To 

remove as much adsorbed palladium as possible, a multi-step washing process was 

developed.  The steps involved first removing excess reagents with an initial wash with a 

solvent mixture that was similar to the electrolyte i.e. 1: 1 (v/v) acetonitrile/toluene 

without any metal salt.  This avoided the precipitation of palladium due to sudden 

changes in the solvent composition.  The second step used a metal salt to displace any 

residual palladium ions absorbed on the silica.  Various metal salts were tried and a 

comparison showing the effect of each salt is shown in Figure 3.9A.  From Figure 3.9A 

there was no difference in the percentage palladium with change in the metal salt used; 

however, there was a change in the percentage palladium with or without a metal salt. 
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Figure 3.9.  Part (A) shows the effect of the wash method used on the percentage of palladium.  Part (B) shows the 
change in the percentage of palladium with the change in CNF loading. 
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  Sodium nitrate was chosen over the other two salts simply because of its high 

solubility, and if any future catalytic studies were conducted it would not be expected to 

have an effect.  Sodium chloride was rejected because it would interfere with any future 

energy dispersive X-ray (EDS) analysis.  Any chlorine detected in the EDS spectrum 

could be easily identified with palladium chloride and not just the sodium chloride, thus 

introducing unnecessary ambiguities. 

AAS results showed no difference, in terms of the %Pd, between blank silica samples 

(silica with no carbon nanofibers) and CNF/silica samples (Figure 3.9B) that had been 

exposed to an electrical field.  Possible explanations for this result are that the application 

of the electrical field deposits palladium onto the silica particles as well as the CNF, or 

the CNF loading is too high or a good amount of palladium off the feeder electrode is 

being collected.  The first reason is dismissed as highly unlikely because silica is non 

conductive and has no surface groups for any electrochemical processes in the current 

system.  The high loading of CNF would lead to a short circuit in the system and thus no 

deposition would occur on any of the CNF.  No high current reading to indicate such a 

condition was recorded and CNF with bipolar deposit were found (Figure 3.10).  High 

loading would reduce the total surface area for deposition.  A simple analysis of a system 

with two nanofibers shows that when the nanofibers are in contact there is only one 

surface for deposition.  When the nanofibers are not in contact the number of surfaces 

available for deposition has doubled, illustrated in Figure 3.11.  No special precautions 

were taken to shield the electrodes.  Covering the electrodes with a membrane or with 

Kimwipes would presumably prevent the palladium deposit on the electrodes from 

entering the system. 
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Figure 3.10.  TEM images of CNF with bipolar electrodeposited palladium.  The CNF had been exposed to a 20 
second (total on-time) 6000V/cm pulsed dc electric field (on-time: 1.0millisecond, off-time: 
8.0milliseconds) in a 1.0 mM palladium chloride solution (1: 1 toluene: acetonitrile both dried over 
calcium hydride). 
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  When such experiments were done, the percentage of palladium was the same as in 

the samples without protected electrodes.  Thus the major source of palladium was not 

from the electrodes.  Although the amount of carbon nanofibers in the silica matrix had 

increased significantly from the model setup, that is CNF on glass, the orientation of the 

carbon nanofibers in the silica was totally random and the carbon nanofibers were 

immobilized.  Thus deposition onto the carbon nanofibers was limited to the small 

fraction of carbon nanofibers that were orientated with the electric field.  This accounts 

for the small percentage of palladium.  The random distribution of the silica particles may 

have resulted in the hindrance of the deposition of palladium on parts of the carbon 

nanofibers.  The small size of the silica particles results in good contact between some 

areas of the carbon nanofibers and the silica, resulting in little to no deposition at these 

contact points.  As a result the palladium deposit on the carbon nanofibers would look 

like patches of deposit, as seen in Figure 3.10, unlike the deposits observed on the glass 

experiments.  There was an order of magnitude difference, in the %Pd, between the 

samples with no applied electrical field and the samples subjected to an electrical field 

(Figure 3.9A and B).   

The density of the carbon nanofibers (2.0 g/cm-3) is very close to that of the silica (2.1 

g/cm-3) used.  Thus separation by solvent extraction methods were carried out with 

limited success.  The recovered CNF were always mixed with a small amount of silica, as 

seen in the TEM micrographs in Figure 3.10. 
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Figure 3.11.  Change in the available area for electrodeposition between two nanofibers that are in contact and non 
contact. 
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TEM studies revealed carbon nanofibers with palladium on one tip, proving a bipolar 

mechanism.  The AAS analysis proved that a very small fraction of the nanofibers were 

being modified.  A significant amount of silica was seen in the TEM analysis.  The silica 

could not be separated adequately from the carbon nanofibers. 

 

3.6 Bipolar Electrodeposition of Pd on Carbon Nanofibers Suspended in 
Tetrahydrofuran 

These experiments were done to take full advantage of bipolar electrochemistry.  

With no need for direct contact between the carbon nanofibers and the electrodes, the 

deposition can be done on a suspension of carbon nanofibers.  The advantages include the 

ability to do bulk processing, an important step in providing enough sample for further 

study, and simpler processing.   

 

3.6.a Background 
In terms of palladium electrodeposition the conditions that induced palladium 

electrodeposition on the carbon nanofibers immobilized on the glass (or in the silica) will 

be the same for the carbon nanofibers suspended in a solution.  The carbon nanofiber will 

have a set minimum length for electrodeposition, and will have to be aligned with the 

direction of the applied electrical field.  With the carbon nanofibers suspended in a 

suitable solvent, the carbon nanofibers are free to rotate and move when the electric field 

is applied.  The rotation of the carbon nanofibers can be controlled by the on-time of the 

applied electrical field.30  The movement of the carbon nanofibers in an applied electrical 

field i.e. dielectrophoresis, can be restricted by selecting appropriate on-time of the 
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electric field.  Previous studies have used dc electric fields to manipulate carbon 

nanotubes.31, 32    

 

3.6.b Experimental 
Carbon nanofibers were refluxed in a mixture of concentrated nitric acid and 

concentrated sulfuric acid (3: 2 v/v) for two hours.  The nanofibers were then filtered 

using a sintered glass funnel connected to a laboratory line vacuum. The nanofibers were 

thoroughly washed with distilled water then acetone.  10.0 mg of the nanofibers were 

then sonicated in 100.0 mL of dry tetrahydrofuran (THF) for 42 hours.  0.1 mL of the 

resulting suspension was mixed with dry THF, and palladium chloride dissolved in 

acetonitrile in a glass vial.  The final concentration of carbon nanofibers was 0.001 

mg/mL, in a solution of 1.0 mM palladium chloride in 1: 4 (v/v) THF/acetonitrile.  

Carbon electrodes were added to the glass vial; and to maintain separation of the 

electrodes a teflon spacer was placed between the electrodes inside the vial, and a 

borosilicate glass tube (Pasteur pipette) was placed on top of the vial between the 

electrodes.  A pulsed DC electrical field (approximately 7400 V/cm) was applied by 

sending the potential from a high voltage power supply through a high voltage switch 

(Behlke HTS 651-03-LC) controlled by a HP33120A function generator. The on-time of 

the applied pulse was 1.0 millisecond and the off-time of the pulse was 24.0 milliseconds 

or 48.0 milliseconds.  A 100 millisecond pulse at approximately 250 V/cm was applied 

just before field application; the same set up was used.  The total on-time for field 

application was 40.0 seconds.  A variation on this experiment used carbon tetrachloride 

instead of THF.  After field application the mixture was transferred to a 15.0 mL 



 85
centrifuge tube mixed with 4.5 mL of acetonitrile and centrifuged in a bench top 

centrifuge, the supernatant was discarded and 14.0 mL of HPLC grade acetonitrile was 

mixed with the remaining pellet, and the sample centrifuged.  This was repeated one 

more time; the pellet was then mixed with approximately 3.0 mL of acetone, and 50 µL 

of the suspension was drop dried onto a Holey carbon membrane supported on a 400 

mesh copper TEM grid.  The samples were examined using TEM. 

 

3.6.c Results and Discussions 
Bipolar electrodeposited palladium was found on the carbon nanofibers (Figure 

3.12C).  An analysis of 85 different images from 4 different samples found that the 

percentage of nanofibers with bipolar electrodeposited palladium were 7%.  An 

unexpected result was that 16% of the total number of nanofibers imaged had a complete 

coverage of palladium deposit, as seen in Figure 3.12B.  These nanofibers with palladium 

(an example is shown in Figure 3.12B) had deposits that typically covered the whole 

nanofiber.  Such deposits were either nanofibers that had come in contact with the feeder 

electrode and fallen off or had been in contact with the cathode tip of another nanofiber.  

The low percentage of functionalized nanofibers can not be simply accounted for by the 

field parameters used.  If we consider that the parameters were such that the majority of 

nanofibers moved to the electrodes and deposited on the electrodes, this would not affect 

the deposition of palladium onto the remaining nanofibers in the solution.  The deposition 

of palladium will occur on the nanofibers aligned with the electrical field and with the 

minimum length needed for deposition. 
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Figure 3.12.  TEM images of carbon nanofibers recovered after field application on nanofibers suspended in THF.   
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From Figure 3.12, nanofibers with a 1 µm length do have palladium deposit on one 

tip, and nanofibers with greater lengths do not have any deposit.  This discrepancy cannot 

be explained by bipolar electrodeposition.  The nanofibers taken for TEM examination 

were only a small part of the whole sample, thus a thorough examination of the sample 

needed to be taken.  Filtering the suspension after field application recovered all the 

nanofibers, and provided a larger sample for electron microscopy examination.  The SEM 

examination found extremely large nanofibers that were 20-100 µm in length with 

diameters varying from 250-500 nm in diameter.   These large nanofibers dominated the 

system.  The applied electric field induces a dipole moment on the nanofibers, larger 

nanofibers will have a larger induced dipole, and the dipoles between nanofibers can 

interact and result in the nanofibers sticking together.30  These nanofibers then contact the 

larger nanofibers on various parts of these larger nanofibers.  If a nanofiber is in complete 

contact with the cathode area of the larger nanofibers then the nanofiber will be 

completely covered (Figure 3.12B).  If the nanofiber is in contact with the anodic section 

of the larger nanofiber than it will have no palladium deposit on it at all (Figure 3.12A).  

Only a small sample of nanofibers in such a system will be modified by bipolar 

electrodeposition.  There are two ways to overcome this problem.  The first is by diluting 

the nanofiber suspension further.  This would limit the interaction between adjacent 

nanofibers and ideally limit nanofiber interaction to nil.  The second is to separate the 

larger nanofibers by filtration. 

Experiments that separated the nanofibers by filtration were conducted; however, the 

following bipolar experiments did not reveal a significant change in the functionalization 

of the nanofibers.  This result suggests that on the time scale of the experiment the 
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nanofibers were settling in the system or in retrospect the concentration of nanofibers in 

the solution was still too high.  The concentration factor was actually elucidated in the 

experiments that used carbon nanotubes. 

 

3.7 Conclusions 
The original goal of the work presented in this chapter was too deposit palladium 

metal onto carbon nanofibers.  Once this was accomplished, the second objective was to 

devise a procedure for the bulk synthesis of carbon nanofibers with bipolar 

electrodeposited palladium.  Using bipolar electrochemistry palladium was deposited 

onto the tips of carbon nanofibers.  The lengths of the functionalized nanofibers varied 

between 0.5–15 µm (nominal diameter 250 nm).  In a solution of 1: 1 acetonitrile/toluene 

with 1.0 mM palladium chloride, the amount of palladium deposit can be controlled using 

the time the electrical field is applied.  In silica, the nanofibers are immobilized and 

orientated in random directions.  As a result, in the silica matrix, only a small fraction of 

the nanofibers can be functionalized by bipolar electrochemistry.  Thus, nanofibers in a 

silica matrix are a non-ideal method to produce large quantities of metal modified 

nanofibers.  The oxidized nanofibers are not easily modified as a suspension.  The 

variation in length in the carbon nanofibers resulted in larger nanofibers dominating the 

system, and in the production of bipolar functionalized nanofibers, and nanofibers with 

complete coverage of palladium deposits.  To overcome this problem the larger 

nanofibers should be filtered out of the suspension and a greater dilution of nanofibers 

should be used. 
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Possible future work on this project would be to develop methods that optimize 

procedures for the bipolar electrodeposition of palladium onto suspensions of carbon 

nanofibers.  Such methods would need to address the issue of removing the larger 

nanofibers by filtration (or any other suitable method), and the ideal concentration of a 

suspension of carbon nanofibers for bipolar electrodeposition.  Besides palladium, 

experiments to deposit other metals onto the tips of nanofibers should be conducted.  

Once suitable quantities of the bipolar functionalized nanofibers are produced, the 

activity of the structures can be tested in simple catalytic reactions.  It should be noted the 

catalytic reactions are suggested as a means to test whether the deposited material is 

functional after deposition.  The use of the bipolar electrodeposited nanofibers in 

catalytic applications may not offer any significant advantages over catalysts produced in 

the traditional way.  However, one plausible scenario that may merit some investigation 

is if two metals on opposite ends, e.g. gold and palladium, could simplify some synthetic 

methods down to a one-pot synthesis. 
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Chapter 4: A Non-Contact Method to Address and Modify Isolated Carbon 
Nanotubes 

 

4.1 Summary Statement 
The objective of the work in this chapter was to develop a method to reliably 

functionalize carbon nanotubes using bipolar electrochemistry. 

Work in this chapter presents a non-contact method to modify the tips of isolated 

carbon nanotubes.  A methodology was developed that allows us to place polymers or a 

wide variety of metals on the tips of isolated carbon nanotubes.  The method is simple 

and does not require lengthy lithographical techniques or long processing times.  

Palladium, gold, cobalt, nickel, cadmium, tin, zinc, and polypyrrole were successfully 

deposited on the tips of commercial and home grown (by chemical vapor deposition) 

multi-walled carbon nanotubes.  The experimental techniques discussed in this chapter 

are a completely new tool in the ever growing field of nanotechnology.  Results showing 

the potential applications for nanotubes modified by bipolar electrodeposition are also 

discussed.   

 

4.2 Carbon Nanotubes 
Carbon nanotubes are a unique material with enormous potential as fundamental 

building blocks for devices composed of nano-sized architectures.  The potential of 

carbon nanotubes stems from the structure and resulting electronic and physical 

properties of carbon nanotubes. 
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Carbon nanotubes consist of a sheet or sheets of graphene rolled around a central 

axis, and the center of the nanotube is hollow.1,2,3  Ideally the walls of the nanotubes have 

no defects and as a result can be considered as a single crystal4.  One or both of these 

criteria (single crystal or hollow center) are often used to distinguish carbon nanotubes 

from carbon nanofibers.  If the nanotube consists of a single sheet it is termed a single 

walled carbon nanotube (SWCNT); if the nanotube has two or more sheets it is classified 

as a multi-walled nanotube (MWCNT).1-5,6,7,8,9,10  The manner in which the graphene 

sheet is rolled around the central axis is described as the chirality.  The way the graphene 

sheet can be rolled around the central axis determines the electronic properties of a 

SWCNT.5  In MWCNT the same effect is thought to occur, however, if one of the walls 

of a MWCNT is rolled in such a way as to be semi-conducting in nature, it can be easily 

obscured by another wall that is metallic in nature.1-10 

 

4.2.a Carbon Nanotube Synthesis 
Carbon nanotubes can be synthesized using various methods or a variant of these 

three methods.  The methods consist of arc discharge, laser vaporization, and chemical 

vapor deposition.1-10   

The arc discharge method is important historically, because it is the method used by 

Iijima when he first synthesized and characterized multi-walled carbon nanotubes11.  This 

method was then optimized by various groups to produce significant yields of nanotubes 

and eventually the first observations of single walled nanotubes.11  In the arc discharge 

method, two high purity graphite rods in an inert atmosphere such as helium or argon are 

brought close together.  A large current is passed between the two rods, and an intense 
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electrical arc is formed between the two rods. The extreme environment of the arc 

vaporizes the carbon from the anode, consuming the graphite rod making up the anode, 

and as the anode is consumed the distance between the two electrodes is adjusted to keep 

the distance constant and thus maintain the arc.  The vaporized carbon produced by the 

arc reforms on the cathode as a mixture of carbon nanotubes, amorphous carbon, and 

metal particles.  The process has been optimized by varying gas pressure, current, amount 

and type of catalyst in the graphite rod.  This method can be used to produce single 

walled carbon nanotubes or multi-walled carbon nanotubes.2,3,12,13,14   

In the laser ablation method, a graphite rod in an inert atmosphere is targeted by a 

laser; the resulting plume containing various carbon species is carried by a buffer gas 

towards a cooled metal rod (usually copper).  A carbon soot deposits on the metal rod.  

Initial experiments used an Nd: YAG laser, a graphite rod in a 1200 ºC furnace, and 

argon as the buffer gas.3,15  This setup produced multi-walled carbon nanotubes in the 

collected soot.  When small amounts of various transition metals were incorporated into 

the graphite rod single walled carbon nanotubes were found in the resulting soot.  Nickel 

was found to produce the largest percentage of single walled carbon nanotubes in the 

soot.  Subsequent developments in the laser ablation technique started using a CO2 laser.  

This setup does not require a furnace, and produces 2 – 3 times more material than the 

optimized Nd: YAG method.  Irrespective of the method used, the soot is always a 

mixture of nanotubes, amorphous carbons, and metal catalyst particles.3,15,16 

Sunlight concentrated onto a graphite target with metal catalyst has been used to 

produce carbon nanotubes.  This method can result in temperatures of up to 3000 K in the 

reaction chamber, and can produce up to 100mg of material an hour, but this depends on 
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the weather.  This method is unique in it does not use lasers or high current.  It is similar 

to laser methods because the carbon material is vaporized using light.15  

The growth of carbon nanotubes by arc discharge or laser vaporization always 

produces nanotubes with a significant amount of impurities.  The impurities often require 

extensive harsh processing to purify the nanotubes.  Another drawback to the arc 

discharge and laser vaporization method is they are not amenable to scale up.  To 

overcome these drawbacks in the arc discharge and laser vaporization methods 

researchers began exploring chemical vapor deposition methods.  Chemical vapor 

deposition is a method that produces high purity carbon nanotubes.  Nanotubes produced 

by CVD are free of amorphous carbon deposits, carbon nanoparticles and, depending on 

the technique used, can be free of catalyst particles.  There are a myriad of variations on 

the CVD method, however the basic process in CVD synthesis involves a precursor gas 

that is flowed through a CVD system and the gas decomposes on a substrate (with or 

without catalyst particles) to produce nanotubes.  If the CVD system uses elevated 

temperatures (usually above 500 ºC) it is sometimes referred to as thermal CVD.9  If the 

CVD system uses a plasma it is often referred to as plasma-assisted CVD.9  The CVD 

method can produce multi-walled or single walled nanotubes.2,3,5,7,9,10,17,18,19,20   

A CVD method of particular interest is the CVD growth of carbon nanotubes inside 

an alumina membrane.  This method can grow nanotubes with or without the use of 

catalysts, can tailor the length and diameter of the nanotube, and can control the wall 

thickness of the nanotube.17-20 

There are two methods used for the catalyst free growth of carbon nanotubes using an 

alumina membrane template, these are, chemical vapor deposition (CVD),17-20 and 
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carbonization.21,22  The advantages of anodized aluminum are: it is stable at the 

temperatures needed for decomposition of the precursor, it has straight well ordered 

channels,17-20 it can be synthesized to meet specific criteria,20 and it is easily removed 

without significant damage to the carbon nanotubes. 17-20 Anodized aluminum can be 

obtained commercially under the brand name Whatman Anodisc membrane filters, and 

comes in a variety of pore sizes from 20-250 nm.23,18  The channels, however, have been 

found to be of similar diameter (250–300 nm).24  In order to use temperatures above 600-

700 ˚C, the commercial membranes are usually preheated before use. If this is not done, 

the membrane will curl during CVD synthesis.18  The curling of the membrane is 

associated with different phase changes of the alumina.18  It is not uncommon to find 

researchers’ that grow their own templates; and this is because of several key advantages, 

which include; the size of the pore openings, the channel diameter, and the channel 

branching can be controlled. With this precise control of the template, carbon nanotubes 

with specific diameters, specific lengths,17,19,20 and, if so desired, multiple branches can 

be grown.20 The templates are usually grown from a high purity aluminum sheet, which is 

preprocessed using various combinations of either annealing, polishing (mechanically 

and/or electrochemically), and washing. The sheet is then anodized using either a one or 

two-step method in one of various acidic solutions (phosphoric, oxalic or sulfuric acids). 

After growing the carbon nanotubes, the template can be easily removed using either 

sodium hydroxide or hydrofluoric acid.17-22 

In the catalyst-free CVD synthesis of carbon nanotubes in an alumina membrane the 

precursor is usually a gaseous unsaturated hydrocarbon such as ethylene, acetylene, or 

propylene17-20; however, there are examples of a solid unsaturated hydrocarbon being 
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used (pyrene18). The CVD system is usually flushed with an inert gas, such as nitrogen or 

a noble gas, and then the precursor is introduced either pre-mixed in an inert gas or mixed 

in house before entering the CVD system. Pyrolysis of the precursor (usually above 600 

˚C) results in the deposition of carbon nanotubes along the inside of the channels and a 

thin (~30 nm) carbon film on the surface of the anodized alumina template. For the 

carbonization method, a polymer is introduced into the pores of the alumina membrane.  

The polymer is dried, and then in an inert atmosphere the alumina membrane is heated to 

a high temperature (above 750 ˚C). At the high temperature the polymer carbonizes to 

form carbon nanotubes in the pores of the alumina template. Using a polymer precursor 

can result in carbon nanotubes with a bamboo like structure.  Although described as 

nanotubes in the literature, these structures are more accurately identified as nanofibers. 

The use of a polymer precursor requires long carbonization times and higher 

temperatures than the CVD method. The main advantage of the carbonization method is 

that there is no handling of any gas and thus no need for setting up any gas handling 

apparatus. The CVD method requires relatively short synthesis times (can be as short as 4 

minutes19), and at a specific temperature the thickness of the carbon nanotube walls can 

be controlled by the flow rate of the precursor gas and the deposition time. In both 

methods, the nanotubes produced are amorphous; however, annealing under vacuum at 

high temperature will result in highly ordered nanotubes. No matter the method chosen, a 

carbon film forms on the surface of the template. In the case of carbonization, removing 

the polymer on the surface of the template before carbonization can prevent the formation 

of the carbon film. For the CVD method the film can only be removed after deposition.17-

22 
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4.2.b Exploiting the Unique Properties of Carbon Nanotubes 
One area that carbon nanotubes are expected to have a great impact is in the area of 

nanoscale electronic devices.  As the limits of current silicon based devices are 

approached, researchers are exploring new materials, as well as new methods for the 

fabrication of future electronic devices.  The properties that make carbon nanotubes such 

attractive materials for nanoscale devices include the high current-carrying capacity, 

good thermal conductivity, ballistic conductivity, and they are chemically inert at 

standard temperature and pressure.  The high current-carrying capacity of carbon 

nanotubes has been measured to be about 1000 times greater than copper.  One 

fundamental issue with metal nanowires with similar dimensions is that at the small 

diameters comparable to nanotubes, the metal nanowires fail due to electromigration, and 

the smaller the diameter the lower the resistance to electromigration.  Current induced 

mass transport i.e. a series of oxidative processes will remove material from one area 

causing a break (open circuit), and the corresponding series of reductive processes will 

deposit material in another area leading to short circuits. The covalent bondings of the 

carbon atoms in a nanotube help prevent similar breakdowns in nanotubes.  The observed 

ballistic transport of current along nanotubes means that electrons can be transported 

along relatively long distances without scattering the electrons i.e. little to no resistance.  

The thermal conductivity of nanotubes has been measured to be greater than 3000W/mK. 

These thermal and electrical properties, coupled with the chemical and physical stability 

of carbon nanotubes, makes them attractive candidates for the building of nanoscale 

electronic devices.6,7,10,25 
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4.2.b.I Carbon Nanotube Electronic Nanoscale Devices 

Using carbon nanotubes, various nanoscale electronic devices have been built and 

characterized.  Simple interconnects, field effect transistors, nanoscale spintronic devices, 

carbon nanotube actuators, and low voltage field emission devices are examples of 

nanotube devices that have been built and characterized by various groups.6,7,10,25   

One way in which carbon nanotube interconnects have been fabricated is by first 

sonicating nanotubes in a suitable solvent, and then drop drying a few drops of the 

suspension onto an oxidized silicon substrate.  The nanotubes are located by AFM or 

SEM and electrodes are fabricated onto the opposite ends of the nanotubes using focused 

ion beams.  A slight variation of this method is to drop dry or spin coat the nanotubes 

onto the electrodes that have been pre-fabricated using lithography.  Prefabricating the 

electrodes is the least favorable method, because this often leads to high contact 

resistance between the nanotube and the metal electrodes, which negates the advantages 

of the nanotubes. One way to overcome the high contact resistance is to anneal the 

structures.26,27 Using similar methods to produce a nanotube interconnect i.e. fabricating 

electrodes onto immobilized MWCNTs, a spintronic device was investigated by 

depositing cobalt as the electrodes and measuring the magnetization behavior of the 

device. The high contact resistance at the metal nanotube junction resulted in large spin 

scattering at the nanotube metal junction.26 

By using the CVD method, nanotubes can be grown onto prefabricated electrodes.  In 

a recent study, molybdenum catalysts on pre-fabricated electrodes were used to grow 

SWCNTs across the electrode gap and bridge the separate electrodes. The SWCNTs were 

shown to be semi-conducting by measuring the current-voltage characteristics.28  The 

method of CVD growth onto pre-fabricated structure for subsequent device 
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demonstration has been successfully applied to the demonstration of a nanotube memory 

device.29 

When arrays of MWCNTs or SWCNTs are contacted to a power source as a cathode, 

and an anode is placed opposite the nanotube array, electrons will tunnel from the tips of 

the nanotubes when a potential is applied between the nanotubes and the anode.  When 

the electrons are directed by an electric field onto a phosphor coated screen the device is 

a display (usually flat panel). If the electrons are directed towards a metal screen, X-rays 

are produced (with a narrower range than thermionic sources), thus the device is an X-ray 

generator. A lamp can be made by placing the nanotube array cathode and opposing 

anode in a low pressure gas system (eg mercury lamps).  Other devices that have been 

demonstrated include microwave generators and gas discharge tubes for power surge 

protection.  The emission properties of nanotubes can be improved by opening the tips of 

the nanotubes.  The advantages nanotubes offer compared to thermionic sources such as 

tungsten or molybdenum tips is that they can operate in higher vacuum (10-6 Pa vs 10-8 

Pa), they provide stable emission, have longer lifetimes, and operate at lower currents.6,30 

One aspect of the electronic nanoscale devices is the metal used to contact the 

nanotubes is patterned using conventional lithographic techniques.  As a result, the metal 

connects significantly increase the size of the device to the extent that the overall 

dimensions approaches that of conventional silicon based devices.  With bipolar 

electrochemistry, we eliminate the need for lithographic methods to attach metal onto the 

nanotubes, and we provide metal deposits similar in size and dimension to the nanotube, 

thus offering the possibility to produce nanotube devices on dimensions much smaller 

than the conventional silicon based architectures.   
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4.2.b.II Use of Carbon Nanotubes in Composites 
In the early 1990’s Hyperion Catalysis International Inc. started producing MWCNTs 

by the ton, and selling the MWCNTs as a component of plastics.  This was the first 

successful commercial application of MWCNTs6.  The addition of MWCNTs to plastics 

improves the conductivity of the plastic.5,3,6,8  A loading of 5% can produce 

conductivities between 0.01 – 0.1 S.  The low loading used maintains or does not 

significantly alter the plastics mechanical and physical properties, specifically the low 

melt flow viscosity. This is important for molding the plastic.  Low loadings of 

MWCNTs are usually used to help prevent the accumulation of electrostatic charge. Such 

plastics are currently used in automotive gas lines, gas filters, plastic computer chip 

carriers, conductive plastic auto parts, and electromagnetic shielding in cell phones and 

computers.  By using single walled carbon nanotubes in composites the loading level can 

be significantly reduced to one tenth the current level used with MWCNTs.6,8, 31  

Compared to the more conventional additive, carbon black, nanotubes are a significant 

improvement.  Carbon black loading can vary between 30 – 50%; at such high levels the 

performance of the plastic is severely compromised.  The plastic either becomes unusable 

or can no longer be molded, and particles embedded in the plastic stick out of the surface 

and easily break off i.e. sloughing.  Nanotubes can be used at much lower loading levels 

because of their high aspect ratios.  The aspect ratio is the length to diameter ratio. 

Nanotubes have a high aspect ratio (~ 1000: 1), whilst carbon blacks are comparatively 

low (essentially 1: 1).  The long lengths of nanotubes results in extended connected 

networks inside a polymer matrix.31  Another area where nanotubes have been used to 
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alter the electrical properties of a host polymer is in the incorporation of nanotubes into 

organic light emitting diodes and photovoltaic cells.  The incorporation of nanotubes has 

improved the electrical properties and the thermal stability of these devices, and has 

actually improved the quantum efficiency of the photovoltaic cells.1 

Besides changing the electrical properties of the plastics, nanotubes have been shown 

to change their mechanical and thermal properties. This has been realized by simply 

dispersing the nanotubes in the polymer.  Methods used include functionalizing the 

nanotubes with functional groups that aid in uniformly dispersing the nanotubes in the 

monomer, dispersing the nanotubes in the monomer with minimal processing of the 

nanotubes, or adding surfactants or polymers that coat individual nanotubes and prevent 

the nanotubes from coagulation. This area of research is still very active because a few 

fundamental issues need to be overcome; these include a reliable method to disperse high 

purity nanotubes, efficient transfer of mechanical load to the nanotubes and the reduction 

in cost of high purity nanotubes.1,3,6,8  

 

4.3 Modification of Carbon Nanotubes 
In order to utilize carbon nanotubes in devices, methods need to be developed that 

can reliably modify and manipulate nanotubes as needed.  The modification of carbon 

nanotubes can be accomplished by covalent methods, non-covalent methods, and 

electrochemistry. 

Covalent methods are usually accomplished by oxidizing the tips and sidewalls of the 

nanotube.  The oxidation methods produce carbonyl containing functionalities on the tips 

and sidewalls.  The oxidation is usually achieved by using a combination of acids such as 
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concentrated nitric and sulfuric acids, or piranha (sulfuric acid mixed with hydrogen 

peroxide) solutions, or just one acid such as hydrochloric acid. In addition to the 

aforementioned methods, ozone treatment of single walled nanotubes has been shown to 

introduce various carbonyl functionalities onto the tips and sidewalls.  The oxidation 

produces a variety of carbonyl functionalities on the sidewalls and the tips of the 

nanotubes, but the majority of the groups are carboxylic acids.  Once the carboxylic acid 

groups have been introduced onto the tips and sidewalls of the nanotubes, the nanotubes 

can then be subjected to various well known organic chemical methods.  Examples of the 

modification of nanotubes through oxidation and then subsequent organic chemical 

methods include esterification and the introduction of amide linkages. 1-3,5-8,10,16  Through 

the use of amide linkages or ester bonds various alkyl amines, anilines, lipophilic and 

hydrophilic dendron species, DNA nucleotides, and polymers have been attached to 

SWCNTs.5,32, 33 

In addition to various molecules, colloids and quantum dots have been linked to 

SWCNTs and MWCNTs.  The colloid or quantum dot is bound to a molecule that 

contains both a suitable capping agent that attaches to the colloid or quantum dot and a 

functionality that can form either an amide bond or ester link with the carboxylic acid 

groups on the nanotube.32, 34 

The covalent chemistry of carbon nanotubes extends beyond amide and esterification 

reactions.  Using elemental fluorine and high temperatures the sidewalls and tips can be 

bonded with fluorine atoms.  The fluorine functionalized nanotubes can then undergo a 

variety of reactions which include; organolithium reactions, alkylation by Grignard 

reagents, alkoxylations, oxidation by peroxides, and addition of undecyl radicals via 
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lauroyl peroxide.  The fluorination of nanotubes completely alters the electric properties, 

optical properties and solubility properties of the nanotubes.35 

Metal co-ordination complexes such as Vaska’s complex (trans-[IrCl(CO)(PPh3)2]) 

and Wilkinsons adduct [RhCl(PPh3)3] have been linked to the sidewalls of SWCNTs.  

The resulting adducts increased the solubility of SWCNTs in such solvents as DMF and 

DMSO, and the adducts helped to separate SWCNTs from larger bundles.  Solution 

ozonoylsis reactions on SWCNTs were shown to purify the tubes, and oxidize the tubes 

without significant damage to the tubes.36  The sidewalls and tips of SWCNTs have been 

modified covalently with different moieties using carbenes, nitrenes, 1,3 dipolar 

cycloaddition, and arylation..5,33,36, 37 

Covalent chemistry on carbon nanotubes is often a very harsh and destructive process 

that can completely alter the properties of the carbon nanotubes.  One highly desirable 

goal is the ability to disperse carbon nanotubes in various solvents without altering the 

sidewalls through covalent chemistry.  This has been achieved by using various 

surfactants such as sodium dodecylsulfate and benzylalkonium chloride.  Surfactants can 

be avoided by using molecules with large aromatic groups such as pyrenes.  The aromatic 

groups on the pyrenes lie alongside the aromatic rings in the nanotube walls; this 

adsorption on the nanotube walls is often described as π−π stacking.  By attaching a 

chain of molecules to the pyrene group the nanotube solubility in various solvents can be 

increased without disrupting the properties of the nanotube.37  

By wrapping a suitable polymer chain around a nanotube, the solubility of the 

nanotube in various solvents can be increased.  Depending on the polymer used the 
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interaction between polymer and nanotube is either π−π stacking or some form of van der 

Waals forces.37   

 

4.3.a Electrochemical Deposition onto Carbon Nanotubes 
Electrochemical deposition onto carbon nanotubes offers a way to control the way in 

which the nanotubes are modified by controlling the amount of deposit, and the type of 

material deposited onto the nanotube.  The following paragraphs will briefly review work 

on electrodeposition onto carbon nanotubes. 

MWCNTs bundles in the form of whiskers obtained from an arc discharge system 

were used as electrodes in the electropolymerization of polyaniline.  The 

electropolymerization did not address individual nanotubes, but did result in fully 

covered nanotubes.38 

Burghard et al. dispersed SWCNTs onto prefabricated electrodes on an oxidized 

silicon surface.  Under an applied potential substituted phenyl groups formed radicals that 

directly attacked and attached to the carbons on the SWCNTs, and after applying the 

potential for sufficient time the phenyls polymerized to form nanometer coatings on the 

SWCNTs.  This method did functionalize individual nanotubes as well as bundles of 

nanotubes.39  

Using CVD methods, aligned dense arrays of MWCNTs were synthesized and used 

as an electrode for the electropolymerization of polypyrrole and polyaniline.  The 

resulting nanotubes were covered with uniform thin polymer coatings.  The covered 

arrays of MWCNTs were shown to have superior redox properties when compared to 

bare MWCNTs arrays or polymer films on metal electrodes, and the polymer covered 
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MWCNTs exhibited superior charge storage applications.  These nanotube composites 

may find use in optoelectronic devices (eg OLED), super capacitors, or secondary 

batteries.40, 41, 42 

MWCNTs were grown by the CVD method (acetylene at 700 ºC and cobalt vanadium 

particles dispersed on a zeolite), purified, ultrasonically dispersed in ethanol and then 

sprayed onto hot platinum or highly orientated pyrolytic graphite (HOPG) surfaces.  

Cycling the potential in sulfuric acid solutions detected and removed surface impurities 

on the MWCNTs immobilized on platinum and HOPG surfaces.  Using cyclic 

voltammetry, metal electrodeposition onto the MWCNTs was studied by monitoring the 

electrodeposition of copper from aqueous solutions.  MWCNTs on platinum exhibited 

two oxidation peaks, that were assigned to copper (0) and copper (I), and one reduction 

peak which corresponded to the copper (II) reduction. Copper deposition occurred 

preferentially along MWCNTs on a HOPG surface. The copper deposits were randomly 

distributed along the length of the nanotubes and differed in size.  This observation was 

attributed to defects in the nanotubes’ walls providing high energy areas for metal 

nucleation.43 

SWCNTs were grown by pulsed laser vaporization, ultrasonically dispersed in 1, 2-

dichloroethane, and then spin coated onto a silicon substrate with a 200 nm oxide layer 

and prefabricated palladium electrodes.  The current-voltage properties of the resulting 

carbon nanotube field effect transistor (CNFET) were measured.  From these initial 

measurements the nanotube was determined to be semi-conducting and the device was of 

the p-channel type.  The palladium electrodes were then contacted and used as the 

cathode for electrodeposition of gold from a commercial electroplating solution.  The 
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current-voltage properties of the CNFET were then measured after the electrodeposition.  

AFM characterization showed gold covering the palladium electrodes and no gold on the 

nanotube sidewalls.  Previous studies by the authors found gold deposition on the 

sidewalls of the nanotube when the nanotube was metallic in nature.  The authors 

suggested that the low energy of the electrons in this region could not reduce gold ions 

from the solution, and thus no gold was found on the sidewalls of the semi-conducting 

nanotube. This was not the case for electrons located where the SWCNT contacts the 

palladium electrodes.  The current-voltage measurements after the deposition revealed a 

decrease in the contact resistance between nanotube and the electrodes, and a change in 

the current voltage characteristics.44 

CVD synthesized carbon nanotubes were ball milled, ultrasonically dispersed in an 

electrolyte, and under ultrasonic agitation electrochemically co-deposited with nickel 

onto carbon steel substrates.  The resulting metal nanotube composite showed improved 

wear resistance and enhanced mechanical properties.45  

SWCNTs synthesized by the CVD method were purified and shortened using 

ultrasonic agitation and mixed acids (sulfuric, nitric acid mixes, and sulfuric acid, 

hydrogen peroxide mixes).  The resulting SWCNTs were 10 – 40nm in length and the 

tips were terminated with carboxylic acid groups.  The SWCNTs were then chemically 

assembled onto gold substrates terminated with amine functionalities.  To chemically 

assemble the SWCNTs, 11-amino-n-undecylmercaptan monolayers were attached to the 

gold substrates.  The sulfur end of the 11-amino-n-undecylmercaptan attached to the gold 

substrate, and the amine end provided a link for the SWCNTs by forming an amide bond 

with the carboxylic acid groups on the SWCNT.  Using AFM, the majority of the 
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SWCNTs were shown to be vertically aligned with respect to the surface of the gold 

substrate.  In a ruthenium hexaamino trichloride solution the cyclic voltammograms of 

the SWCNT array electrode were similar to that of a bare gold electrode, and from an 

aqueous solution copper could be electrodeposited onto the SWCNT array electrode. 

Through-bond tunneling was the proposed mechanism for electron transfer from the gold 

substrates through the covalent bonds connecting the SWCNT and the gold substrate.46  

The advantages bipolar electrochemistry offers include; the ability to modify either a 

single tip or both tips of a carbon nanotube without the need to contact the nanotube, the 

ability to control the amount of deposit, and the ability to modify carbon nanotubes with 

very little preliminary processing.  Current methods of contacting nanotubes for nano-

electronic devices uses microlithography techniques that often result in nanotubes 

contacted to large metal pads.  The resulting device is usually not that much larger than 

the conventional silicon cousins.  Bipolar electrodeposition offers the possibility of 

contacting nanotubes with metal connects on a similar size scale to the nanotube. 

The work in this chapter was done to develop methods that would produce unique 

functionalized carbon nanotube structures through the use of bipolar electrochemistry. 

 

4.4 Bipolar Electrodeposition onto Isolated Carbon Nanotubes 
The successful electrodeposition of various metals, a semiconductor, and a polymer 

onto one tip of isolated carbon nanotubes has been demonstrated.  The basic strategy 

involved dispersing the carbon nanotubes in a suitable solvent such as toluene, diluting 

the nanotubes to a very low concentration, immobilizing the nanotubes on a non-

conductive support, applying the electrical field with the nanotubes in a suitable 
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electrolyte, and finally examining the nanotubes under scanning electron microscopy.  

This method has the advantage of addressing individual nanotubes with out the need for 

lengthy processing procedures. 

 

4.4.a Experimental Methods 
Two sources of multi-walled carbon nanotubes were used.  The first source was a 

commercial source of nanotubes obtained from Nanolab, Inc.  The commercial 

MWCNTs had a nominal diameter between 30-50 nm, and lengths between 1-5 µm.  The 

second source of MWCNTs was synthesized in house by the CVD method adapted from 

methods developed by Martin, et al.18 

 

4.4.a.I CVD Synthesis of MWCNT 
The CVD synthesis method was adapted from methods developed by Martin, et 

al18.  An alumina membrane (Whatman Anodisc 13 mm diameter, and a 100 nm pore 

size) was set up in a quartz reaction vessel (Figure 4.1).  The quartz reaction vessel was 

placed in a tube furnace, and argon gas was flowed at a rate of 20 mL/min.  Under an 

argon atmosphere the temperature was ramped to 670 ºC.  Once the temperature had 

stabilized at 670 ºC the gas flow was switched to a premixed mixture of 30% ethylene 

and 70% helium at a flow rate of 20 mL/min.  After approximately 6 hours the flow was 

switched back to argon (flow rate = 20 mL/min) and the furnace was left to cool to room 

temperature overnight.  Using this set up a maximum of 12 alumina membranes could be 

set up for CVD synthesis of MWCNT, but the system can be used with larger batches 

(Figure 4.1).  
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Figure 4.1.  The experimental set up used for CVD synthesis of MWCNTs in an alumina membrane template.  The 
two smaller quartz tubes were cut in half, and as a result three alumina membranes could be placed in 
one quartz reaction vessel.  Four quartz reaction vessels could be placed in the furnace at once; this 
would produce a total of twelve alumina membranes with MWCNTs. 
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In Initial experiments, the alumina membrane was shattered and mounted on a 

scanning electron microscopy (SEM) stub for direct examination by SEM.  In subsequent 

experiments and for use in bipolar experiments; the membrane was processed and the 

MWCNTs recovered for use.  The alumina membrane was processed by shattering the 

membrane in a glass vial, and then agitating the fragments in a 4.0 M sodium hydroxide 

solution.  After overnight agitation, the sample was sonicated for 10 to 20 seconds in a 

bath sonicator.  This step was necessary to disperse the MWCNT.  The resulting 

suspension of MWCNT was filtered through a polyester nuclear track etched membrane 

with 100 nm pores (Osmonics Laboratory Products, 13 mm diameter).  The polyester 

membrane was supported by a Büchner funnel with a glass frit (porosity = coarse); and 

the Büchner funnel was connected to a standard lab vacuum line via a filtering flask. The 

MWCNTs were washed with copious amounts of water and acetone.  Once dry, the 

MWCNTs were dispersed in toluene to make an original suspension.  The suspension of 

MWCNTs for the bipolar experiments was made by diluting 1.0 mL of the original 

suspension in 99.0 mL of toluene to make a second suspension.  The second suspension 

had a concentration of approximately 0.1µg/mL. 

 

4.4.a.II Electrical Field Application 
1.0 mL of a 0.1 µg/mL suspension of carbon nanotubes (solvent was toluene) was 

filtered through a 100 nm polyester nuclear track etched membrane (13.0 mm diameter, 

Osmonic Laboratory products).  A strip measuring approximately 5 mm wide by 13 mm 

long was cut out of the center of the polyester membrane using a razor blade.   
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Figure 4.2.  Experimental materials and the schematics for the electrical field application experiments. 
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The polyester strip was placed in an experimental cell and extraneous bits of the 

membrane strip were cut off.  The cell was connected to the electrical field application 

apparatus and 50.0 mL of electrolyte (see table 1) was added.  In case an errant spark 

occurred, all experiments were done under nitrogen. A pulsed dc electrical field was 

applied using one of two possible methods.  In the first method, the output from a dc 

power supply was sent through a high voltage switch (Behlke HTS 651-03-LC) and then 

across two platinum electrodes (Figure 4.2).  The second method used a pre-programmed 

pulse from an HP33120A function generator amplified through a Trek P0674 high 

voltage amplifier, which was then applied across the platinum electrodes (Figure 4.2F).  

The dc electrical field varied between 5000 V/cm – 10000 V/cm and the on-time used 

was always 1.0 millisecond, and the off-time was always 24.0 milliseconds.   

To remove excess reagents after field application, the experimental cell was 

immersed in the solvent used to dissolve the metal salt or monomer (and dopant) used for 

electrodeposition.  For example, in the electrodeposition of cadmium the solvent used to 

dissolve cadmium chloride was dimethylsulfoxide (DMSO).  After cadmium 

electrodeposition, the experimental cell was immersed in HPLC grade DMSO for five 

minutes, and then followed by five minutes in distilled acetone to remove the DMSO. 

Typically the solvent used to dissolve metal salts was acetonitrile, and after immersing 

the cell for five minutes in HPLC grade acetonitrile the cell was left to air dry.  Once dry, 

the membrane strip was mounted on a scanning electron microscopy (SEM) stub, gold 

coated, and examined under a SEM.  The SEM used was either an AMRAY 1830, or a 

Philips XL30 environmental SEM (ESEM). 
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Table 4.1.   A table showing the composition of the electrolytes used, type of MWCNT used, and the time used to 
try to electrodeposit onto one tip of an isolated carbon nanotube. 

 
 
 

Material 
Deposited 

Nanotubes 
Used Electrolyte 

Ratio 
Solvent: 
Toluene 
(v/v) 

Total on-
time 
(seconds) 

Palladium 
commercial 
MWCNT 

1.0 mM palladium (II) 
chloride, acetonitrile + 
toluene 3: 7 60 

Gold 
commercial 
MWCNT 

0.2 mM gold (III) 
bromide, acetonitrile + 
toluene 1:4 60 

Nickel 
commercial 
MWCNT 

1.0 mM nickel (II) 
chloride, N, N-
dimethylformamide+ 
toluene 1:4 60 

Cobalt 
commercial 
MWCNT 

1.0 mM cobalt (II) 
chloride, acetonitrile + 
toluene 1:4 60 

Samarium 
commercial 
MWCNT 

1.0 mM samarium (II) 
iodide, acetonitrile + 
toluene 1:4 60 

Samarium/Cobalt 
commercial 
MWCNT 

0.5 mM cobalt (II) 
chloride, 0.5 mM 
samarium (II) iodide, 
acetonitrile + toluene 3: 7 60 

Lead 
commercial 
MWCNT 

0.5 mM lead nitrate, 
DMSO + toluene 1:4 10 

Cadmium 
commercial 
MWCNT 

1.0 mM cadmium chloride, 
DMSO + toluene 1:4 60 

Tin 
CVD 
MWCNT 

1.0 mM tin (II) chloride, 
acetonitrile + toluene 1:4 10 

Silver 
CVD 
MWCNT 

1.0 mM silver chloride, 
acetonitrile + toluene 1:4 20 

Zinc 
CVD 
MWCNT 

1.0 mM zinc (II) nitrate 
hexahydrate, acetonitrile + 
toluene 1:4 40 

Polypyrrole 
CVD 
MWCNT 

0.2 mM toluene sulfonic 
acid sodium salt, 1.0 M 
Pyrrole acetonitrile + 
toluene 2:3 10 

Cadmium Sulfide 
CVD 
MWCNT 

0.2 mM cadmium chloride, 
0.5 mM elemental sulfur, 
Acetonitrile + toluene 1:4 20 
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4.4.b Results 
Figure 4.3 shows a commercial MWCNT with palladium deposit on one tip of the 

nanotube.  The combined length of the nanotube and deposit is approximately 5 µm.  The 

deposit is ramified, extends off the nanotube, and is approximately 1.5 µm in length.  A 

micrometer long nanotube with no deposit on either end is located near the center of the 

image.  Energy dispersive X-ray spectroscopy (EDS) on the deposit showed a distinctive 

palladium peak. 

In Figure 4.4 three SEM micrographs on three different commercial MWCNTs are 

presented.  In Figure 4.4A the nanotube and deposit has an overall length of about 3.5 

µm, and the deposit has an overall length of 2.0 µm.  The deposit is ramified and the EDS 

on the deposit revealed a significant gold peak.  In Figure 4.4B the nanotube and deposit 

structure has an overall length of approximately 6 µm, and the deposit is a mixture of 

ramified and large ‘needle shaped’ deposits.  The deposit in Figure 4.4B has an average 

length of 3 µm.  In Figure 4.4C the total length of the nanotube deposit structure is 

approximately 9 µm, and the deposit is around 3 µm in length.  The deposit consists only 

of ‘needle shaped’ structures. 

The nanotubes in Figure 4.5 vary in length.  In Figure 4.5A the nanotube is about 

12 µm in length with the deposit having an approximate length of 4 µm.  In Figure 4.5B 

the total length of nanotube cobalt structure is about 8 µm and the deposit measures 1.5 

µm.  In Figure 4.5C the length from the bare tip of the nanotube to the end of the cobalt 

deposit is 4.5 µm. 
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Figure 4.3.  A commercial MWCNT with palladium metal deposited on one tip of the nanotube. The pulsed DC 

electrical field was 10kV/cm, with an on-time of 1.0 millisecond, an off-time of 24.0 milliseconds, the 
electrolyte used was 1.0 mM palladium chloride in 3: 7 acetonitrile/toluene, and the total on-time was 60 
seconds.  The acetonitrile and toluene had been distilled over calcium hydride.  The EDS spectrum 
shows a significant palladium peak with no chlorine.  Sample was examined on a Philips XL30 ESEM. 
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Figure 4.4.   Three different commercial nanotubes with gold deposited onto one tip.  The electrolyte consisted of 0.2 
mM gold (II) bromide in a solvent mixture of 1: 4 (v/v) acetonitrile/toluene (both dried over calcium 
hydride).  The pulsed DC electrical field was applied at 10kV/cm, with an on-time of 1.0 millisecond, an 
off-time of 24.0 milliseconds and for a total on-time of 60 seconds.  SEM micrograph obtained on a 
Philips XL30 ESEM. 
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Figure 4.5.  Commercial MWCNT with cobalt on one tip.  Electrolyte was 1.0 mM cobalt (II) chloride in 1: 4 (v/v) 
acetonitrile/toluene (both dried over calcium hydride).  A 10kV/cm DC pulsed electrical field (on-time: 
1millisecond, off-time: 24milliseconds) was applied for a total on-time of 60.0seconds. 
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The deposit extends for approximately 1.5 µm, and unlike the previous examples the 

deposit has distinct separate bulbous regions.  In all samples the cobalt deposits appear 

ramified. 

Figure 4.6 presents SEM micrographs obtained on an AMRAY 1830 (Figure 4.6A 

and 4.6B), and a micrograph obtained on a Philips XL30 ESEM.  In Figure 4.6 all 

nanotubes have a deposit on the tip.  In Figure 4.6A the nanotube has a length of 3.0 µm 

and the deposit faintly resembles ramified metal deposits seen in previous experiments 

with palladium, gold, and cobalt.  Figures 4.6B and 4.6C have small metal deposits on the 

tips of the nanotubes which could not be resolved with either SEM.  The small metal 

deposit in 4.6C was characterized by EDS and nickel was identified in the EDS spectrum.  

The first attempts at depositing a bimetallic species i.e. samarium cobalt are presented 

in Figure 4.7.  Deposits with the characteristic ramified metal deposits were found on the 

tips of nanotubes.  EDS characterization of the deposit revealed significant peaks of 

samarium, cobalt and chlorine. 

Figure 4.8 is a combination of two SEM micrographs and an EDS spectrum of the 

deposit in Figure 4.8B.  When measured from the uncoated tip to the end of the deposit, 

the nanotube in Figure 4.8A has a total length of approximately 9 µm. The total length of 

the deposit is approximately 5 µm, and it covers over half the length of the nanotube.  

Figure 4.8B shows a nanotube and deposit with an overall length of approximately 10 

µm. The deposit in Figure 4.8B has an overall length measuring 4.0 µm.  From the EDS 

spectrum shown in Figure 4.8B cadmium and chlorine are identified in the deposit. 
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Figure 4.6.  Nickel deposit on the tips of MWCNTs.  Pulsed DC electrical field; 10kV/cm, 1.0 millisecond on-time, 
24.0 millisecond off-time, and applied for a total on time of 60 seconds.  The electrolyte consisted of 0.5 
mM nickel (II) chloride in 1: 4 dry N, N-Dimethylformamide (obtained from Sigma Aldrich, used 
straight from the bottle): toluene (dried over calcium hydride).  SEM images obtained on an Amray 
1830 (images A and B), and a Philips XL 30 ESEM (image C). 
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Figure 4.7.  Ramified deposit on the tips of commercial carbon nanotube.  Electrical field: 10kV/cm, on-time: 
1.0millisecond, off-time: 24.0milliseconds, electrolyte: 3: 7 (v/v) acetonitrile/toluene (both dried over 
calcium hydride); 0.5 mM cobalt chloride; 0.5 mM samarium (II) iodide, the total on-time was 60 
seconds.  SEM micrographs obtained on a Philips XL 30 ESEM. 
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Figure 4.8.  Cadmium deposits on one tip of commercial MWCNT.  Deposition conditions were a 10kV/cm pulsed 
DC electrical field with an on-time of 1.0 millisecond, an off-time of 24.0 milliseconds, and a total on-
time of 60.0 seconds.  The electrolyte used was 1.0 mM cadmium (II) chloride in a solvent mixture of 1: 
4 dimethylsulfoxide (dried over calcium hydride under reduced pressure): toluene (dried over calcium 
hydride). SEM characterization was done on a Philips XL30 ESEM. 
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Figure 4.9 shows unique whisker like deposits on one tip of isolated CVD grown 

MWCNTs.  The morphology of the deposits differed from previous experiments on 

MWCNTs.  The isolated MWCNT in Figure 4.9A has a length of 3 µm and the deposit 

has a large number of whiskers.  In Figure 4.9B the nanotube has a length of 2.5 µm and 

the length of the whisker like deposits vary between 200-400 nm.  In Figure 4.9B EDS 

characterization of the deposit identified tin and chlorine.   

The ESEM micrographs in Figure 4.10 show deposition on the single tips of aligned 

MWCNT.  The lengths of the nanotubes vary between 6-12.0 µm.  The deposits were 

highly ramified and the EDS spectrum showed a large silver peak, and a small chlorine 

peak.  A Philips XL30 ESEM was used to examine the sample. 

Figure 4.11 is a combination of ESEM images, EDS spectra, and EDS quantitative 

data tables.  Figure 4.11A is an electron micrograph of a 27 µm CVD grown MWCNT 

with a 5 µm dendritic zinc growth on one tip.  A 24 µm CVD grown MWCNT with a 

dendritic growth of zinc on one end of the nanotube is presented in Figure 4.11B.  The 

corresponding EDS spectrum and quantitative data table identifies zinc in the deposit.  

The zinc growth extends approximately 4 µm from the tip of the nanotube and is non 

continuous with large gaps located in various parts of the zinc deposit. The image in 

Figure 4.11C shows an 11 µm CVD grown MWCNT with a zinc growth that extends 4.0 

µm from one tip of the nanotube.  The growth is not as branched as the growth in Figures 

4.11A and 4.11B, and zinc is identified in the EDS spectrum. 
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Figure 4.9. CVD grown MWCNT with tin on one tip.  The electrolyte used consisted of 1.0 mM tin (II) chloride in 
1: 4 (v/v) acetonitrile/toluene (both dried over calcium hydride).  A pulsed DC electrical field with an 
on-time of 1.0millisecond, an off-time of 24.0milliseconds, a total on-time of 10 seconds, and a field 
intensity of 10kV/cm was applied.  Sample was examined on a Philips XL30-ESEM. 
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Figure 4.10.  Bipolar electrodeposition of silver onto isolated CVD grown MWCNT.  Solution used consisted of 1.0 
mM silver nitrate in 1: 4 acetonitrile: toluene (both dried over calcium hydride).  The electric field used 
had a field intensity of 10kV/cm, an on-time of 1.0milliseconds, an off-time of 24.0milliseconds, and 
was applied for a total on-time of 20seconds.  The white arrow indicates the sample used for EDS 
characterization.  SEM analysis was done on a Philips XL 30 ESEM. 
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Figure 4.11.  CVD grown MWCNT with zinc metal deposit on one tip.  10kV/cm pulsed dc electrical field, on-time: 
1.0 millisecond, off-time: 24.0 milliseconds, total on-time: 40 seconds, and the electrolyte was 1.0 mM 
zinc (II) nitrate hexahydrate; 1: 4 (v/v) acetonitrile/toluene (both dried over calcium hydride). Images 
were obtained on a Philips XL30 ESEM. 
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Figures 4.12 and Figure 4.13 show examples of the bipolar electrodeposition of 

gold and then palladium on opposite tips of isolated CVD grown MWCNTs.  In Figure 

4.12 the MWCNT has over 95% of the surface covered by deposit.  The nanotube deposit 

structure is approximately 5 µm in length and the center of the nanotube seems to have 

collapsed.  The EDS spectra and quantitative data tables of the deposits on opposite tips, 

show one tip with gold and very little palladium, and the opposite tip to have significant 

amounts of palladium and gold.  In Figure 4.13 the CVD grown MWCNT is 1.5 µm in 

length, the deposit is limited to the tips and the quantitative data tables from the EDS 

spectrum show gold and palladium on both tips. 

The SEM micrographs in Figure 4.14 show a dendritic growth off one tip of an 

isolated 12 µm nanotube (Figure 4.14A), and a branched growth off one tip of an isolated 

5 µm nanotube (Figure 4.14B).  The dendritic growth in Figure 4.14A is about 4 µm, and 

in Figure 4.14B it is about 2 µm.  A few interesting features in Figure 4.14 are the 

transparent nature of the nanotube in Figure 4.14A, in Figure 4.14B the deposit seals one 

end of the nanotube, and the differences in the morphology of the deposits obtained on 

the 12 µm nanotube and the 5 µm nanotube.  

A 15 µm isolated CVD grown MWCNT with deposits on both tips is presented in 

the electron micrographs in Figure 4.15.  From the higher magnification image in Figure 

4.15B the deposit has a length of approximately 4 µm, has two branches, and seals the 

end of the nanotube.  In Figure 4.15C the deposit is highly branched, seals the end of the 

nanotube, and from Figure 4.15A the deposit extends about 7 µm from the tip of the 

nanotube.   
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Figure 4.12.  SEM (Philips XL30 ESEM) micrographs showing the bipolar electrodeposition of palladium and gold 
onto opposite tips of an isolated CVD grown MWCNT.  Two field application experiments were 
conducted on one sample.  The first experiment deposited gold on one tip and the second deposited 
palladium on the opposite tip.  For both experiments a pulsed DC electrical field with a field intensity of 
10kV/cm, an on-time of 1.0millisecond, and an off-time of 24.0milliseconds.  The first electrolyte used 
had 0.2 mM gold (III) bromide in a mixture of 1: 4 acetonitrile: toluene.  The second electrolyte used 
consisted of 1.0 mM palladium (II) chloride in 1: 4 acetonitrile: toluene.  The solvents used had been 
dried over calcium hydride before use. 
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Figure 4.13.  A Second example of the bipolar electrodeposition of gold and palladium onto opposite tips of an 
isolated CVD grown MWCNT.  For both experiments a pulsed DC electrical field was used (on-time: 
1.0millisecond, off-time: 24.0milliseconds), solvent mixture was 1: 4 acetonitrile: toluene (both dried 
over calcium hydride), and the concentrations of metal salt were 0.2 mM gold (III) bromide for the first 
deposition, and 1.0 mM palladium (II) chloride for the second deposition. SEM micrographs obtained on 
a Philips XL30 ESEM 
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Figure 4.14.  ESEM micrographs of polypyrrole deposits on one tip of a CVD grown MWCNTs.  The electrolyte 
consisted of 0.35 mM sodium salt of p-toluene sulfonic acid and 0.70 M pyrrole in a mixture of 40% 
acetonitrile and 60% toluene (both dried over calcium hydride).  The field used was a pulsed DC 
electrical field with an intensity of 10kV/cm, an on-time of 1.0millisecond, and an off-time of 
24.0milliseconds.  The total on-time used was 10 seconds. 
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Figure 4.15.  An example of the successful bipolar electrodeposition of polypyrrole onto opposite tips of an isolated 
CVD grown MWCNT.  The electrolyte consisted of 0.40 mM sodium salt of p-toluene sulfonic acid and 
0.80 M pyrrole in 40% acetonitrile and 60% toluene (both dried over calcium hydride).  For both field 
applications a 10kV/cm pulsed electrical field (on-time: 1.0millisecons, off-time: 24.0milliseconds) was 
applied for a total on-time of 5seconds. 
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The nanotube in Figure 4.15 is a Y-branched nanotube, and is transparent under 

SEM (Philips XL 30 ESEM). 

 

4.4.c Discussion 
When an isolated carbon nanotube is immersed in a suitable electrolyte and an 

electrical field is applied across the nanotube, a potential difference is induced across the 

nanotube.  The potential difference polarizes the solution nanotube interface.  If the 

applied electrical field is increased it will reach a magnitude great enough to induce 

electrochemistry on the tips of the nanotubes.  The tip of the nanotube facing the cathodic 

feeder electrode will act as the anode, and the tip of the nanotube facing the anodic feeder 

electrode will act as the cathode.  Located on each nanotube there will be a cathode/anode 

pair.  A direct consequence of this is that metal deposition will occur on one tip i.e. the 

cathode, and in the case of electropolymerization of polypyrrole the deposition occurs on 

the anode tip. 

The potential difference across the tips of the isolated nanotubes used in the various 

experiments can be estimated.  If the nanotube is aligned with the direction of the applied 

electrical field, the potential difference (Vd) is calculated by taking the product of the 

electrical field (E) and the length (L) of the nanotube. 

LEVd ×=o)1(  

In a 10kV/cm electric field a 10µm long nanotube will have a potential difference of 

10.0V (10, 000V/cm x 0.001cm). 
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If the nanotube is at an angle (θ) to the direction of the applied electrical field the 

potential drop across the nanotube is calculated from equation (2): 

θcos)2( ××= LEVdo  

These equations can be easily applied to the CVD MWCNT, but when looking at the 

commercial MWCNT the curvaceous nature of the nanotubes has to be accounted for.  

When the commercial MWCNT are aligned with the field the actual length that produces 

the potential difference is not the true length of the nanotube.  The actual length that 

produces the potential drop is the distance from the modified tip to the furthest part of the 

nanotube that curves back towards the functionalized tip (Figure 4.16).  A clear example 

is presented in Figure 4.3.  The unmodified tip of the nanotube, seen in the lower right 

corner of Figure 4.3A, curls back on the nanotube and there are several curls and bends in 

the nanotube.  The nanotube (plus deposit) has a true length of 6.8 µm, while the actual 

length that results in the potential difference for bipolar electrodeposition is 3.3 µm.  

From these values the potential drop across the nanotube was 3.3 V.  This value is above 

the potential required for palladium metal deposition in our system, and it is well above 

the empirical value seen in earlier studies on the carbon nanofibers and on graphite 

platelets.  Figure 4.16 helps to illustrate two important factors in bipolar 

electrodeposition.  Nanotubes aligned with the applied electrical field must have a 

minimum length in order for the potential drop to reach the minimum value for 

electrodeposition of the metal of interest i.e. if the nanotube is too short no metal will 

deposit on the tip.  Figure 4.10 presents a clear example. 
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Figure 4.16.  The illustration demonstrates how the potential drop (V) across a commercial MWCNT is calculated, 
and the dependence of the nanotubes angle in the applied electric field. 
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The nanotube in the center of the image has a length of 3.0 µm, and the shortest nanotube 

with deposit has a length of 6.0 µm. 

In all examples for the bipolar electrodeposition of a metal onto the tip of an isolated 

commercial MWCNT, the length of the nanotube is estimated.  A true length can not be 

given because the tip is completely covered with metal deposit.  The nature of this 

coverage can occur in one of two ways.  In both types of growth, nucleation will occur on 

the tip of the nanotube and along the nanotube at points where the potential has a value 

equal to or greater than the potential required for metal deposition.  Continued growth 

will occur preferentially on the nucleation sites; however, the growth can follow an 

isotropic growth pattern, or an anisotropic growth pattern. 

In the isotropic growth pattern the metal deposition occurs on all nucleation sites 

equally resulting in the ramified deposits seen in Figures 4.3 through 4.8.  In this case the 

length of the nanotube can be estimated with an error of a few tens of nanometers.  In the 

anisotropic growth pattern the metal deposition occurs preferentially on nucleation sites 

with a higher potential i.e. the tip of the nanotube.  As the metal deposits on the tip of the 

nanotube the overall length of the nanotube increases and the potential drop across the 

nanotube increases.  Thus, the most preferential site for continual deposition will be the 

growing tip.  In this growth pattern, the deposit may extend for several micrometers, thus 

the length of the nanotube cannot be determined with any accuracy.  The pattern of 

growth is most likely anisotropic because this is what was seen on the carbon nanofibers 

(chapter 2) and in the growth of copper wires from isolated copper beads.47 

Palladium, gold, nickel, cobalt, samarium/cobalt, and cadmium deposition on the 

commercial MWCNT produced ramified deposits.  The ramified deposits were similar in 
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morphology to the deposits seen on the graphite platelets and carbon nanofibers.  The 

deposits were identified through the use of EDS.  For all samples on the polyester 

membrane there are three common peaks; these are, carbon, oxygen, and gold.  The gold 

peak is from the gold coating put on all of these samples before SEM characterization.  

The carbon and oxygen peak is from the polyester membrane.  It is possible the oxygen 

peak is from the deposit if the oxide formed instead of the native metal.  The likelihood 

of the oxide forming is very low.  A source of oxygen is needed to form the oxide in the 

non-aqueous solvents used.  Possible sources of oxygen include atmospheric oxygen, 

water of crystallization, or the metal counter ion.  The experiments are conducted under 

nitrogen for safety reasons (a spark in a mostly toluene solvent will produce large fires), 

and as a result the amount of atmospheric oxygen is minimized.  Dissolved oxygen in the 

solvents used will be low especially after distillation.  Water of crystallization is not a 

factor, since for all experiments (except zinc deposition) anhydrous salts were used. 

Another concern in the deposition experiments was the deposit was simply the metal 

salt re-crystallizing on the tip of the nanotube.  EDS analysis helped to disprove this 

notion.  Figure 4.3 has the quantitative data table for the palladium deposit, and no 

chlorine was present in the sample.  When the chlorine was detected the amount did not 

correspond to stoichiometric quantities (Figure 4.7), thus the residual chlorine was 

attributed to insufficient washing of the sample after field application. 

Figure 4.4 shows a transition in the morphology of the gold deposits from ramified to 

large needle like structures off one tip of the nanotubes.  This transition is strange simply 

because bipolar electrodeposition favors a directional growth that, in the case of the 

nanotube, will produce a wire like growth off the tip. 
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Unusual metal deposits were observed with tin (Figure 4.9) and with zinc (Figure 

4.11).  With tin these deposits are similar to what was seen with tin electrodeposition 

from aqueous solutions.48   

Cadmium electrodeposition onto commercial MWCNT produced large ramified 

deposits on one tip of the nanotube.  This is very similar to what has been observed 

before on previous samples with palladium, gold, nickel and cobalt.  What has not been 

observed before is the deposit accounting for more than 50% of the nanotube deposit 

structure.  This is not possible in bipolar electrochemistry.  The potential drop across a 

nanotube is going to vary from a cathodic potential at the tip where metal deposition 

occurs, to an anodic potential at the opposite tip.  This variation between the two tips 

means at some point along the nanotube the cathodic potential will reach a minimum and 

then the anodic potential will begin to increase.  This transition will occur at the midpoint 

of the nanotube and metal deposition will not occur at or past this point, therefore the 

deposit cannot account for over 50% of the length of the nanotube structure.  Figure 4.17 

illustrates two possible scenarios that will result in such large deposits.  The majority of 

MWCNT 1 experiences a cathodic potential due to the numerous curves and bends.  

After deposition MWCNT 1 will produce a nanotube deposit structure that has over 50% 

of its length made up of metal deposit.  MWCNT 2 is in the exact opposite scenario.  The 

majority of MWCNT 2 experiences an anodic potential; however, the resulting nanotube 

deposit structure has metal deposit for over 50% of its length.  In the case of MWCNT 2 

the deposit grew off the tip of the nanotube to produce a long ramified metal deposit, 

which is consistent with what has been observed with previous results on carbon 

nanofibers. 
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Figure 4.17.  Illustration of how the metal deposit can make up more than 50% of the nanotube deposit structure. In 
MWCNT 1, the majority of the nanotube experiences a cathodic potential as a result more than 50% of 
the nanotube is covered with deposit.  On MWCNT 2 the deposit simply grows off the tip resulting in a 
long deposit that is more than 50% of the total structure. 
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Gold and palladium were deposited on opposite tips of a CVD grown MWCNT (Figure 

4.12 and Figure 4.13).  The double deposition experiment followed the same general 

method i.e. nanotubes on a polyester membrane were exposed to a pulsed dc electrical 

field (10 kV/cm, on-time: 1.0 millisecond, off-time: 24.0 milliseconds).  The difference is 

two successive deposition cycles were done on the sample.  The first cycle used 0.2 mM 

gold (III) bromide in 1: 4 (v/v) acetonitrile/toluene (both dried over calcium hydride).  

After the first deposition the experimental cell was placed in 100 mL HPLC grade 

acetonitrile for five minutes, removed, and left to air dry.  Once dry the experimental cell 

was set up for the second field application.  The second cycle was applied by switching 

the leads to the platinum electrodes.  The solution used was 1.0 mM palladium chloride 

in 3: 7 (v/v) acetonitrile/toluene (both dried over calcium hydride).  For both cycles the 

total time (on-time) the field was applied was 10 seconds.  After a second immersion in 

100 mL of HPLC grade acetonitrile the dry membrane was transferred to a test tube.  

After the addition of 0.5 mL of 200 proof ethanol (Pharmco) the test tube was sonicated 

(Branson bath sonicator) for 30 seconds.  50 microliters of the resulting suspension of 

modified nanotubes were then drop dried onto an n-doped silicon wafer ( approximately 

2.0 mm by 3.0 mm), and a separate 50.0 microliters was drop dried onto a 200 mesh 

copper TEM grid (Holey carbon membrane, SPI Inc) .  The SEM analysis was done on a 

Philips XL 30 ESEM.  The logic behind removing the nanotubes from the membrane was 

to obtain a suspension that could be mounted for TEM studies.  Unfortunately, TEM 

examination of the sample proved fruitless.  The fact nanotubes with deposits on opposite 

ends were found attests to the robust nature of the metal nanotube interaction.  The EDS 

analysis on the deposit on the left side of the nanotube in Figure 4.12A shows the deposit 
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is gold.  The gold deposit has a small percentage of palladium, which are possibly 

palladium ions that were not washed off the deposit.  This deposit was the first to be 

deposited.  The second deposit, on the right of the nanotube in Figure 4.12A, is a mixture 

of gold and palladium.  The mixture of gold and palladium on the second deposit is likely 

due to the electrodissolution of gold.  When the direction of the field is reversed the tip 

with the first deposit of gold becomes the anode.  This is also true of the feeder 

electrodes.  Thus there are two sources of gold the tip of the nanotube and the anodic 

feeder electrode.  This system consists of multiple nanotubes and it is quite possible that 

any number of nanotubes in the vicinity would also provide a source of gold.  Gold is a 

very stable metal and will not typically electrodissolve in most electrochemical 

applications, hence its use as an electrode.  Gold; however, can electrodissolve in 

acetonitrile solutions with NaSCN present.49  In aqueous solutions, the electrodissolution 

of gold has been shown to be aided by the presence of chloride ions.50  Gold oxidation 

occurs at -1.498V.51  The potentials across the nanotubes in Figure 4.12 and 4.13 were 

5.0V and 1.5V, thus it is possible the potential at the ends of the nanotubes could induce 

the oxidation of gold.  The dissolution of the gold from the feeder electrode is the likely 

source for the gold on the deposit on the opposite tip.  The unusual coverage of the 

nanotube in Figure 4.12A is attributed to a similar mechanism that produced the long 

structures of cadmium off of commercial MWCNT (Figure 4.8). 

Cadmium sulfide is a group II-VI semiconductor and it is used in a variety of 

applications such as photocatalysis, solar cells, and other opto-electronic devices.  The 

interest in depositing cadmium sulfide onto carbon nanotubes is to provide a direct 

connection between nanotubes and semiconductor nanocrystals.  Such nanostructures 
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may find use in various nanoscale optoelectronic devices.  Semi-conductor nanocrystals 

have been attached to carbon nanotubes via ester or amide linkages using wet chemical 

processing.  These methods usually result in complete coverage of the nanotubes with the 

nanocrystals.52,53,54  In bipolar electrochemistry the tip of the nanotube is covered with the 

nanocrystals.  It is important to note that an uncapped nanotube tip has exposed graphene 

layers that may provide an electron rich area for nanocrystal nanotube interaction.  The 

bipolar electrochemical deposition of cadmium sulfide onto one tip of an isolated 

nanotube was successfully demonstrated.  The solution composition used was adapted 

from Xu et, al55.  A primary concern with this method of deposition is the separate 

deposition of cadmium and sulfur as opposed to cadmium sulfide.  The EDS analysis 

gave percentages of cadmium and sulfur that correspond to the stoichiometric amount for 

cadmium sulfide. 

Deposition of polypyrrole expanded the ability to modify carbon nanotubes through 

bipolar electrodeposition.  By depositing polymers on one tip of a nanotube, the tip can 

be further modified by attaching different functionalities to the polymer modified tip.  

Figure 4.14 shows two types of deposits.  The first type is dendritic in nature (Figure 

4.14A) and the second has only two branches (Figure 4.14B).  This difference can be 

explained by considering the potential across the two nanotubes.  High applied potentials 

result in polypyrrole growths with a large amount of dendrites.56  In Figure 4.14A the 

potential across the nanotube is 12.0 V (10.0 kV/cm x 12.0 µm), and in Figure 4.14B the 

potential is 5.0 V (10.0 kV/cm x 5.0 µm).  Thus, in Figure 4.14A the nanotube with the 

higher potential has the larger number of dendrites. 
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The double deposition of polypyrrole resulted in sealed nanotubes.  The first deposit 

seen is the shorter deposit on the left of the nanotube in Figure 4.15A.  When the first 

polypyrrole structure deposits on the tip of the nanotube, it increases the total length of 

the nanotube polypyrrole structure.  In this example the total length increases from 15.0 

µm (no deposit) to 19.0 µm (4.0 µm deposit).  The potential across the nanotube changes 

from 15.0 V, during the first deposition, to 19.0 V for the second deposition.  This 

increase in the potential results in the larger highly branched second deposit.   

 

4.5 Potential Applications with Carbon Nanotubes Modified by Bipolar 
Electrochemistry 

With the development of a system to reliably modify carbon nanotubes with 

polymers, semi-conductors, and metals, the next steps will involve the characterization of 

the physical, optical or electrical properties of the resulting nanostructures.  In order to 

apply the resulting nanostructures, it is not absolutely necessary to fully characterize the 

structures.  Two examples that illustrate this point are presented. 

 

4.5.a Nanofluidics 
The movement of fluid in to a nanotube i.e. nanofluidics57 is an area in which bipolar 

electrochemistry can be applied.  A logical assumption in this regard would be 

experiments conducted that traps various liquids in nanotubes by sealing the ends, with a 

suitable material, using bipolar electrochemistry.  Such experiments are in the 

preliminary stages with little success so far.   
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Figure 4.18.  Water condensation inside CVD grown carbon nanotubes functionalized with polypyrrole.  The 

nanotubes were exposed to a 10kV/cm pulsed (on-time: 1.0millisecond, off-time: 24.0milliseconds, 
1.0M pyrrole, 0.3 mM p=toluene Sulfonic acid sodium salt, 30%: 70% acetonitrile/toluene) for a total 
on-time of 5.0 seconds.  The CNTs were imaged in a Philips XL-30 ESEM in environmental mode.  The 
sample was mounted on an SEM stub.  The SEM stub was placed on peltier stage and the temperature 
was maintained at 5 degrees Celsius.  Water was condensed by slowly increasing the water vapor 
pressure from 2.5 Torr to 5.3 Torr. 

 



 146
However, imaging the condensation of water on isolated carbon nanotubes with 

polypyrrole on one tip did reveal some interesting results (Figure 4.18).  The carbon 

nanotubes had been modified with polypyrrole on one tip, and when water was forced to 

condense onto the substrate, water condensed on the tips with polypyrrole and filled the 

nanotube from the functionalized tip and into the nanotube.  The mechanism for this is 

unknown, but it may be due to the highly hydrophilic polypyrrole deposit.  The 

experiment does demonstrate an alternative method for the directed and controlled filling 

of carbon nanotubes. 

 

4.5.b Carbon Nanotube Arrays 
One of the first attempts made to apply this non-contact method to end use 

applications was the synthesis of an array of nanotubes modified by bipolar 

electrodeposition.  Similar arrays have been synthesized with or without modifying the 

tips of the nanotubes.  The arrays are simply the CVD grown nanotubes in the alumina 

template, as shown in the ESEM micrograph in figure 4.19.   

The array was made by first removing the carbon layer on top of the alumina 

membrane.  The removal was attempted by sonicating the membrane in toluene for about 

5 minutes.  To expose the tips of the nanotubes, 4.0M sodium hydroxide was placed on 

top of the membrane for 5 minutes.  After rinsing and drying the membrane fragment, the 

fragment was exposed to a pulsed (t-on: 1millisecond; t-off: 24milliseconds) DC 

electrical field at 10kV/cm for 20 seconds. 
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Figure 4.19.  Image (A) shows two Teflon blocks used to hold the membrane fragment.  The Teflon block was placed 
between two graphite electrodes (image B) and set up for field application using same field application 
seen in Figure 4.2.  The sample was exposed to a pulsed dc electrical field (10kV/cm, t-on: 
1.0millisecond, t-off: 24.0millisecond) in a 1.0 mM solution of palladium chloride in 20% acetonitrile: 
80% toluene (both dried over calcium hydride).  Image (C) is an ESEM micrograph with the 
corresponding EDS of the deposit seen on the top of the membrane. 
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The electrolyte used consisted of 1.0 mM palladium chloride in 3: 7 (v/v) 

acetonitrile/toluene.  On ESEM examination palladium deposits were found on the tips of 

the nanotubes.  This simple array could be used in catalysis.  One possible method would 

be to construct a setup that would allow for the use of the nanotubes as pipes that flow the 

reaction mixture to the palladium particles, thus constraining the reaction to the 

dimensions of the nanotubes.  Another possible method would be to simply place the 

array in a container with the reaction mixture. 

 

4.6 Conclusions 
The goal of the work presented in this chapter was to develop a method that could 

produce carbon nanotubes that had been modified by bipolar electrochemistry. 

Using bipolar electrochemistry (a non-contact method) various metals, a semi-

conductor and a polymer were deposited onto the tips of isolated carbon nanotubes.  

Double deposition experiments, using gold and palladium or pyrrole, successfully 

modified both tips of isolated carbon nanotubes.  Bipolar electrodeposition was 

demonstrated on carbon nanotubes from either a commercial source or from CVD 

nanotubes, which were successfully grown in house using the CVD method.  The system 

developed can be used to demonstrate the deposition of electropolymers, metals and 

semiconductors onto the tips of carbon nanotubes. 

An area that will need to be pursued is the functionalization of single-walled 

nanotubes by bipolar electrodeposition.  Single-walled carbon nanotubes exhibit a wide 

range of unique electrical and physical properties, the direct coupling of nanocrystals on 

the tips of single-walled nanotubes is sure to produce a variety of unique nanostructures. 
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One aspect to note about bipolar electrochemistry is it can be applied to any 

conductive structure, thus any metal, polymer or possibly semi-conductors in a variety of 

forms besides nanotubes can be functionalized via bipolar electrodeposition.  Thus 

another possible path for future work would be to synthesize and fully characterize 

bipolar functionalized nanostructures other than carbon.   

The non-contact method offers a new level of control in functionalizing carbon 

nanotubes, and other conductive nanostructures.  The direct and controlled deposition of 

material onto the tips of carbon nanotubes produces unique nanotube-metal, nanotube-

semiconductor, or nanotube-polymer nanostructures.  Elucidating the properties of these 

unique nanostructures will help determine potential applications and can form the basis 

for future work.  Other future work could include the deposition of ferromagnetic 

materials on the tips of the nanotubes, and the separation of the functionalized nanotubes 

from non-functionalized nanotubes using a powerful magnet.  The bulk synthesis of 

functionalized nanotubes is an area that merits future study. 

A good source of bipolar functionalized nanotubes would allow for the construction 

of potential nanoscale devices such as opto-electronic devices, biosensors, or 

biocompatible autonomous agents.  Examples of such devices include; CdS capped 

nanotubes that are incorporated into polymer based photovoltaic devices to help increase 

quantum efficiency, arrays of nanotubes with tin oxide for use as gas sensors with 

exceptional sensitivity, or polymer capped nanotubes with the relevant bio-markers for 

drug delivery.  In general a nanotube with two different functionalities, on opposite ends, 

is a device within itself.  The challenge will be how to incorporate or functionalize such a 

device so that it can interact with the macro-scaled world. 
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Appendix 1: SMIRP 
 

A1.1 Summary Statement 
A basic description on what SMIRP is and how SMIRP works will be described.  The 

actual programming of SMIRP was done by various other people.  Thus this chapter will 

present SMIRP from the perspective of a user. 

 

A1.2 Introduction to SMIRP: 
Standard Modular Integrated Research Protocols (SMIRP)1 is a web based system 

that incorporates the order and structure found in a computer database system, and 

incorporates the flexibility of a traditional paper based filing system.  Unlike 

conventional database systems, SMIRP is a highly flexible, extremely adaptable, and a 

continually evolving system.  SMIRP has been used as a laboratory management tool, 

and a research aid in the Bradley research group2.  SMIRP has also been used as an 

interactive teaching aid and tool in various courses at Drexel University3. 

Within SMIRP there exists a primary structure called a SMIRP-space.  The SMIRP-

space consists of several secondary structures called Modules.  Within each Module there 

is a tertiary structure called a record.   

There are several primary structures i.e. there are a number of SMIRP-spaces (Figure 

A1.1).  Each SMIRP-space can run independently, or one or more spaces can interact.  

When a user logs into SMIRP they are greeted with a screen displaying the SMIRP-

spaces they have access to.  A user cannot see and thus cannot access spaces they are not 

assigned too.  If an outside group is interested in using SMIRP they can be assigned thier 
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own SMIRP-space and can organize it in whatever manner suits their group without fear 

of having other SMIRP users corrupting their space.  The closest real world analogue of a 

SMIRP-space would be filling cabinet. 

Once inside a SMIRP-space, navigation between modules is accomplished via a drop 

down menu (Figure A1.1).  The modules are the part of SMIRP that gives it order and 

flexibility at the same time.  For example, two modules of recent interest are the modules 

that describe experiments to synthesize carbon nanotube by the CVD method, and the 

second is how to modify the tips of carbon nanotubes by bipolar electrochemistry.  These 

two modules contain descriptive experimental procedures that would allow a member of 

the group to repeat the experiments.  Thus, the information is stored in these particular 

modules and can be accessed at any time.  A modules closest real world analogue is the 

folders contained within a filling cabinet.  Each module can be organized according to the 

module designer’s preference. 

Within a module, different events are stored as a record (Figure A1.1).  Navigation 

through different records can be done using a drop down menu or a pop-up menu if there 

are more than 100 records.  An event in this case would be an experiment carried out 

using the procedures outlined in the module.  For example the modification of carbon 

nanotubes using bipolar electrochemistry utilized various metals.  Each experiment that 

used a metal such as zinc or cadmium would be stored as a separate record.  The 

information stored and presented in a record is organized in parameters.  A parameter can 

store information and present information as text, as various office files, image files, or 

video files.  Parameters in a record correspond to parameters in an experiment. 
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Figure A1.1.  Navigation within SMIRP.  (1) Is a partial image of the screen that displays the SMIRP spaces a user has 
access too.  (2) By clicking on “smirpspace 1” on (1) the user is directed to a module, in this example 
the module has been set as “121: WELCOME”.  The module that greets a user can be set to be any 
module and does not necessarily have to be a welcome module.  (3) Shows the drop down menu used to 
navigate between different modules.  (4) Is a partial screen shot of a record within a module. 
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  Any part of the experiment that the module designer deems necessary can be 

incorporated into the module and stored in any form in a parameter. 

 

A1.3 SMIRP is More Than a Filing System 
The simple description of a SMIRP-space representing a filling cabinet, the module 

the folders, and the records the actual papers is crude at best and does not begin to 

highlight the capabilities of SMIRP.  This simplified description does offer a familiar 

reference point for a first time user but does not highlight SMIRP’s many advantages.  

The first major advantage about SMIRP is that it is a web-based application.  A web-

based application means it can be accessed from anywhere in the world with an internet 

connection, and it requires minimal training to use.  The next advantage is that linking 

between modules can be established.  For example, there is a module called solutions.  

The solutions module contains records of the various solutions that have been prepared 

for use in various experiments.  Whenever a new module is designed, and the protocol 

requires a solution, a parameter that links to any record created in the solutions module 

can be added to the new module.  Thus, in the module that describes bipolar 

electrodeposition onto carbon nanotubes there is a parameter that is an actual link to the 

solutions module, and if the link is activated it will navigate to the solutions module 

(Figure A1.2).  This eliminates the need to keep adding common parameters to every new 

module that is created.  The linking can go beyond modules.  In various modules there 

exist links to web sites.  A good example can be found in the orders module.  The orders 

module is used to keep track of what has been ordered for the lab. 
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Figure A1.2.  The activation of a link navigates the user to the relevant module.  In this example the parameter labeled 
“SOLUTION USED 2” is a link that will navigate the user to a specific record in the module titled “128: 
Solutions”.  The record has a table labeled “Incoming to Parameter Solution” were all links from other 
records that are linked to this record are presented.  This provides a way to determine what the solution 
was used for. 



 161
It has been useful to have a link to the manufacturer’s website.  This outside linking has 

made it possible to link different SMIRP space records. 

Modules can be added anytime to a SMIRP-space, and parameters within the modules 

can be ordered in any manner the designer finds useful.  Parameters can be added at 

anytime by a module designer, thus if a parameter in the protocol seemed to be 

unimportant at one point, it can be added later on and tracked.  This does highlight one 

advantage of the SMIRP system, which is, the data is always live and accessible.  As 

soon as a new record is created one can begin a cursory examination of the data 

To go beyond looking at one record at a time in SMIRP, there is another feature 

known as the table view functionality.  Table view displays all the records in a module as 

one page.  The table view can be configured to include all parameters or exclude certain 

parameters.  In table view all data is displayed, including pictures and text data.  The only 

data not viewed in table view are any zip files that have been uploaded and the module 

description. 

 

A1.4 SMIRP Can Do More than Data Storage 
Besides the storage of data, SMIRP has various features that go beyond simple data 

storage.  The first of interest is the alert system which provides a way to obtain 

information without actually looking for the information.  The alerts keep track of new 

records or new activity in SMIRP.  An alert can be set up that will send an e-mail with a 

summary of a record from a module of interest and a link to the record.  The alert system 

in SMIRP is highly versatile and can be customized to the needs of the individual.  An 

alert can be set up to e-mail an individual when a specific user works in SMIRP, or it can 
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e-mail an individual when any module is modified.  The alerts can be set to check for the 

activity of interest every hour, day or week.  An example where this has been useful is in 

obtaining literature.  When an article cannot be obtained on-line, a request for the article 

can be made in a module called article requests.  An alert can then be set up to send an e-

mail when the link to the pdf version of the article is added to SMIRP. 

Searching within SMIRP can be done using keyword searches.  Searching can also be 

done by looking at the SMIRP logs.  Logs are simply SMIRP recording all activity within 

SMIRP, this includes a user logging in, updating records, or adding new records.  Logs 

can be downloaded as an excel file, or using the SMIRP excel tool.  The SMIRP excel 

tool can be used to download modules as well as logs. 

SMIRP bots are autonomous agents that carry out various functions in SMIRP.  The 

alert system is an example of a SMIRP bot.  The bots run automatically or manually 

depending on the function.  An example of the work done by a bot is key word searching.  

The key word searching bot would take a string of text entered in SMIRP and use it to do 

a google search.  This does return hits with links to websites of research groups using 

similar methods for totally different research. 
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Figure A1.3.  Summary of how SMIRP bots function, and examples of an e-mail alert and a key word search.  In (A) 
the parse bot creates a search string from the experimental write up generated by a user.  The google bot 
uses the search string in google and returns a link to the number of hits found with the search string 
used.  (B) Shows an example of an e-mail alert sent when a new entry with a link to the pdf was 
uploaded in SMIRP.  (C) Demonstrates how using the key word ‘nanotubes’ returns all records in the 
different modules with the word nanotubes. 

 
 
 



 164
 

A1.5 SMIRP as a Research Management tool 
Within SMIRP various modules have been developed to store numerous experiments. 

Before implementing a set protocol to conduct experiments and finalizing the protocol as 

a module, the protocol undergoes various adjustments.  A Module, called protocol 

prototyping, was designed to handle such experimentation.  This module is the most 

flexible and dynamic module in SMIRP.  Its development has taken years and there is 

little doubt it will continue to develop as time goes by.  The Module began with simple 

parameters that could store text information, Microsoft office files and media files.  The 

text parameters can be stored in two forms a short text data box, and a long data box.  

The short data box is designed to hold no more than a sentence.  The long data box is 

unlimited.  This simple arrangement allowed a user to type in a unique name to identify 

the record, an experimental description, a results description, upload any results, and a 

short conclusion.   

Links to various modules were added as the need arose, and a link to records in the same 

module was later added.  This module is used when various ideas are tested out and, if 

successful, refined to form an independent module.  It is possible to trace the 

development of a module from protocol prototyping to a fully developed module.   

As a research management tool the simplest example is the creation of a unique 

record id number that can be used as a number to store various samples.  Samples can be 

stored in numerical order.  With no need to question or refer to other lab personnel lab 

notebook, samples can be taken and used for the next phase of experiments.   
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One aspect of research work in the Bradley research lab has been how to manage 

undergraduate students interested in doing laboratory work.  Generally the first step 

involves instructing a student to read the module description.  Next the student is given 

one on one instruction on the experimental procedure.  After these initial meetings the 

student is asked to complete at least one experiment in a week.  Once this initial shake 

down period is over, the student is asked to complete a higher number of experiments per 

week.  A module that has been extremely useful in maintaining a consistent work output 

is productivity tracking.  Every week, after a meeting, the student enters a new record in 

this module with a description of what they believe they need to do for the next week.  

The new record can then be checked to see if the student’s goals are in line with what was 

discussed in the meeting.  The new record is e-mailed by an alert, thus avoiding the need 

to search for the information.  If any changes need to be made to what the student has 

entered they can be notified before any unnecessary work is done.  Ideally the student 

would have an alert telling them if such changes have been made, however experience 

has shown e-mailing the student directly is more effective. This module has and does 

ensure a consistent amount of work is done each week as well as helps to manage the 

work done. 
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Figure A1.4.  Quick document production and dissemination using SMIRP.  (1) A suitable record is identified and the 
relevant information is updated and formatted if needed.  (2) Pertinent parts of the record are transferred 
to a new record in a different SMIRP space.  (3) The collected information is converted into an HTML 
document, which is then presented on a web page maintained on the SMIRP server.  (4) The HTML 
document is converted to a pdf document, which is then submitted to the Chemweb pre-print server.  (5) 
The finished document is abstracted by CAS; it is searchable on the World Wide Web, and on other 
mediums such as D-space and kazaa. 
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A1.6 Document Production in SMIRP 
There are two ways used to produce documents for publication in SMIRP.  The first 

method used developed a specific module, called document production, which collected 

text, figures and references.  The main advantage with the module is that it allows direct 

linking to the references; however, links from the figures to the original records in which 

the figures were constructed from were not added.  The second way to produce 

documents, illustrated in Figure A1.4, is by using specific records to make a pre-print.  

The module that contains the record of interest is modified by adding the relevant 

parameters necessary for a pre-print.  These parameters are text boxes for an author list, 

an abstract, introduction, experimental description, results, discussion and conclusion as 

well as links to references and funding sources.  This second method uses a separate 

SMIRP space and SMIRP bots (run manually) to create an HTML file of the record of 

interest.  The HTML file is converted to an Adobe Acrobat file and once it has been 

scrutinized by the various authors, it is submitted to the Chemweb pre-print server.  The 

Chemweb pre-print server is a free online service run by Elsevier for chemistry related 

articles.  Articles are editorially reviewed before being published on-line and the 

principal author retains copyright.  The advantages with this service are that it allows for 

large exposure in the shortest time possible, and a rough estimate of the amount of 

interest an article generates can be gauged.        
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A1.7 Personal Work Patterns in SMIRP 

SMIRP keeps a record of all activity, such as when a person logs in to SMIRP, when 

a person modifies a record in SMIRP or if a person adds a new record in SMIRP.  This 

abundance of information can be downloaded and graphed. 

Using the SMIRP excel tool (which is Microsoft’s’ Excel program with a series of 

macros written specifically to interact with SMIRP) all new records entered by Patrick 

Ndungu for the years 1999 – 2003 were downloaded.  Typically, a record has more than 

one parameter and when it is created or updated each parameter is counted as a new 

entry.  For example if a record has 20 parameters, then when it is created SMIRP counts 

this as 20 new entries.  If the same record is updated the next day and only 5 of the 20 

parameters are updated, SMIRP counts these as 5 new entries.  In order to graph the 

information, if such a new record was created it was counted as one new entry.  If the 

record was updated the next day it was counted as one new entry.  Updating a module a 

day later or days later is mainly due to limited access to specialized equipment such as a 

scanning electron microscope.  Such specialized instrumentation can only be used days 

after the experiment is done, and the results from using such equipment are inevitably 

updated days later.  The end result is the new entries are based on what was entered per 

day.  

The obvious trends seen in a graph that shows all of Patrick’s five years (Figure A1.5) 

are the blanks corresponding to breaks in the Drexel schedule, most notably in December.  

The large amounts of breaks in 1999 and 2000 (fewer than 1999) are due to the usual 

problems a graduate student encounters when trying to juggle teaching duties, classes and 

research. 
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Figure A1.5.  Graph showing Patrick’s activity measured as the number of new entries in SMIRP. 
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From the graph, the work trends follow a general increase right after the Christmas break 

which reaches a peak, and then drops off and finally the cycle starts again every 4–6 

months.  This is unexpected because Drexel follows a quarter system thus peaks would 

be expected between breaks when a graduate student has only to worry about research. 

Figure A1.6 shows when the information is categorized into work done on actual 

experiments (corresponds to full working modules), literature-related work (mainly 

article archive, knowledge filters), lab management (e.g. productivity tracking, ordering 

material), other (modules that do not fit any category), and prototypes; a different pattern 

emerges.  In any year, the majority of work is done on fully developed modules i.e. 

experiments.  This is followed by literature-related work.  Prototype work varies from 

year to year and does not necessarily seem to result in a greater amount of work in full 

modules i.e. experiments. 

The amount of literature work done as a whole remains relatively constant from year 

to year.  Lab management saw significant increases in 2001 and 2002.  This is due to the 

influx of undergraduate students during the summer months of those years. 

 

A1.8 SMIRP Pros and Cons 
The ability to organize experimental data in a digital format is one significant 

advantage of working with SMIRP.  This has been useful, especially in this lab since 

electron micrographs can be presented with the experimental parameters.  I see this as “a 

quick and dirty poster” available twenty four hours a day.  Flexibility inherent within 

SMIRP means that modules can be created as needed, modified as needed, and evolve 

with the researcher’s needs.  A good example is protocol prototyping. 
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Figure A1.6.  A column graph displaying new entries in SMIRP by Patrick; the data was first organized in to specific 
categories for each year, and then percentages were calculated. 
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SMIRP provides a way to organize and, if necessary, obtain literature references.  

References are available through a specific module (Article Archive), and through a 

separate module, articles containing information of interest can be linked in one record. 

Data can be retrieved and examined with relative ease.  Since all the information is 

already in a digital format, it can be easily downloaded and manipulated using 

conventional commercial software. 

The main issue with SMIRP has been the need to enter the data after writing it down 

in a conventional lab notebook.  But this only comes up when prototypes are done (need 

to give procedure and any results), otherwise for a full module this is not an issue.  One 

point about the data entry issue that I immediately realized is that in today’s modern 

world, the data eventually has to be digitized some way.  Thus SMIRP actually provides 

a way to do half the work by providing a medium for a researcher to store experimental 

data in a digital format.  With the SMIRP excel tool, the manipulation of data is 

extremely easy.   

 

A1.9 Summary 
SMIRP is a web based highly dynamic and interactive database system.  From the 

point of view of a frequent user SMIRP has been an extremely useful way to maintain 

and organize literature references, digitization and presentation of data, and a way to 

increase productivity. 
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