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Abstract 
Logic-Based Optimal Control for Shipboard Power System Management 

Edoe F. Mensah 
Advisor: Harry G. Kwatny, Ph.D. 

 

The capability to dynamically reconfigure future naval integrated electric power systems 

is central to the Navy’s vision of the future combat ship. The objective in this thesis is to 

design, implement and evaluate a Shipboard Power System Management system that will 

prevent loss of power at critical buses when damage conditions are encountered. The 

approach that we are proposing is based on a new paradigm for the design of optimal 

control systems for hybrid systems, i.e., systems composed of continuous dynamics and 

discrete events. Discrete events may involve external disturbances, the discrete action of 

protection devices or control systems. The essence of the idea is that the discrete acting 

subsystems are naturally associated with a set of logical conditions or logical and the 

continuous system dynamics are usually described by differential equations or 

differential-algebraic equations. We will introduce a dynamic programming method for 

hybrid systems that solves dynamic optimization problems involving both binary and real 

variables. The stability analysis of the hybrid control systems is conducted via bifurcation 

control analysis. The state feedback controller strategy for the mode switching of the 

power system is obtained through Mixed Integer Dynamic Programming. It is computed 

in the form of a lookup table that represents a mapping from combinations of modes, and 

continuous states to the required switching actions. Simulations results will be analyzed. 
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CHAPTER 1:  INTRODUCTION 

1.1 Motivation 

The DDG 1000, Littoral Combat Ship (LCS) and CG(X) form the Navy’s next-

generation surface combatant family of ships. Together these warships will provide the 

complementary mission capabilities and affordably satisfy the full spectrum of 

operational requirements demanded well into the 21st century. The DDG 1000 fills an 

immediate and critical naval-warfare gap for today’s warfighter, meeting validated 

Marine Corps fire support requirements and supporting the joint warfighting doctrine 

[73]. 

What is DDG 1000? 

Developed under the DD(X) destroyer program, DDG 1000 Zumwalt is the lead ship of a 

class of next-generation multi-mission destroyers tailored for land attack and littoral 

dominance. The DDG 1000 will provide forward presence and deterrence, and operate as 

an integral part of joint and combined expeditionary forces. 

Secretary of the Navy Donald Winter named the lead ship and class in honor of Admiral 

Elmo R. “Bud” Zumwalt Jr., Chief of Naval Operations from 1970 to 1974. 

The DDG 1000 Zumwalt is a key component of the surface combatant ‘family of ships’ 

currently being developed by the Navy to serve as the backbone of tomorrow’s surface 
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Fleet. In addition to the DDG 1000 multi-mission destroyer, the family of ships will 

consist of the focused mission Littoral Combat Ship (LCS) and an air-dominance cruiser, 

CG(X). These ships, together with in-service Aegis combatants, present an affordable 

balance between force size and capabilities to meet current and project threats. 

The DDG 1000 Zumwalt provides a broad range of capabilities that are vital both to 

supporting the Global War on Terror and to fighting and winning major combatant 

operations. Zumwalt’s multi-mission warfighting capabilities are designed to counter not 

only the threats of today, but threats projected over the next decade as well. 

 

 

Figure 1.1-1: The DDG 1000 Systems  

 

Integrated Power System (IPS) 
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An integrated power system (IPS) is an all-electric architecture for future ships, providing 

electric power to the total ship (propulsion and ship service) with an integrated plant. IPS 

enables a ship's electrical loads, such as pumps and lighting, to be powered from the same 

electrical source as the propulsion system (e.g., electric drive), eliminating the need for 

separate power generation capabilities for these loads. In commercial applications, this is 

known as the "power station" concept. 

Anticipated benefits of IPS include: Fewer prime movers: Usually allows for a reduction 

from a total of seven to a total of five prime movers in the traditional gas-turbine surface 

combatant. Reduced costs of ownership: Results in significant fuel savings (15-19% in a 

typical gas-turbine combatant). Fewer engines installed results in less maintenance and 

manning. Naval architectural flexibility: Provides flexibility in locating prime movers, 

allowing space previously used for uptakes to be put to better use. Improved survivability 

and stealth: Quiet propulsion motors can better meet current acoustic requirements. 

Smaller main machinery spaces allow for improved damage control. Improved 

warfighting: Integrated power makes large amounts of power available throughout the 

life of the ship. This power can be reallocated to accommodate future combat systems. 

Advances in power conversion are making it possible to provide uninterrupted power, 

advanced fault isolation, and "fight through" capabilities beyond what is currently 

available. 

In a typical mechanical drive propulsion system, the propulsion prime movers are 

connected to long shafts running through the ship to large reduction gears that rotate the 

ship's propellers. With electric drive, the prime movers rotate electric generators that are 
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connected through cabling to motor drives and electric motors that rotate a ship's 

propellers. Electricity is the medium for transmitting the energy of the prime mover. It 

enables "cross connecting" of any available prime mover/generator combination by 

breaking the physical link between the power generation and power utilization 

components. IPS provides for all of a ship's electrical needs, including propulsion and 

ship service loads. Electric drive only provides for propulsion. It does not include power 

for ship service loads. 

The Navy has used electric drives in many ships, including early aircraft carriers, a 

number of ships during World War II, and many of the current inventory of smaller 

auxiliary ships. In fact, the Navy is leveraging as much as possible what is happening in 

the cruise ship industry, where nearly all new ships are integrated electric. What is new 

and significant is the application of these concepts in a fully electrically integrated (no 

mechanical takeoffs for power) power system on a surface combatant. These ships have 

higher speed and lower noise requirements than any of the other ships, as well as large 

combat systems to support. Commercial systems would be too big and too noisy for a 

surface combatant, and do not have a power system architecture to let them survive 

damage and continue to fight [72]. 

1.2 Objective 

The objective of this thesis is to develop a new approach to the design of ship 

power management systems. The goal of a Power Management System (PMS) controller 

is to prevent loss of power at critical buses of the IPS when damage conditions are 

encountered. This system includes discrete actions, such as load shedding intended to 
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preserve network integrity during battle conditions. The approach that we propose will 

optimally shed load and/or activate an uninterruptible power supply, switch vital load 

feeder or the shift power supply distribution between generators following the occurrence 

of disruptive events. 

Our approach is based on a new paradigm for the design of optimal control systems 

for hybrid systems, i.e., systems composed of continuous dynamics and discrete events. 

Discrete events may involve external disturbances, the discrete action of protection 

devices or control systems. The essence of the idea is that the discrete acting subsystems 

are naturally associated with a set of logical conditions or logical specifications and the 

continuous system dynamics are usually described by differential equations or 

differential-algebraic equations. The key idea in our approach is to symbolically 

transform the logical specification that describes the discrete subsystem to a set of 

inequalities in binary-valued variables or mixed binary real-valued variables. The 

resulting inequalities are called integer programming formulas, or simply IP formulas or 

IP forms. We also develop a dynamic programming method tailored to hybrid systems 

that solves dynamic optimization problems involving both binary and real variables [1], 

[6]. The design of a state feedback controller for the mode switching of the power system 

is obtained through mixed-integer dynamic programming. The controller is computed in 

the form of a lookup table that represents a mapping from combinations of modes, and 

continuous states to the optimal switching actions. Two examples will be studied: 1) a 3-

bus power system with Uninterruptable Power Supply (UPS) and 2) a Shipboard 

Integrated Power System (IPS) based on a notional configuration of the U.S. Navy’s 

DDG 1000 destroyer. We will conduct a stability analysis via bifurcation control on the 
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3-bus power system as well as a complete modeling, design and simulation of the PMS 

controller. We will make survivability and reconfigurability important functionality of 

the PSM. While in the 3-bus power system it is relatively easy to exactly solve the 

algebraic part of the Differential-Algebraic Equation (DAE) model, in the case of the  

DDG 1000 IPS there is no way to avoid working directly with the DAE model, therefore 

a discrete numerical algorithm will be developed and integrated into the dynamic 

programming algorithm.  

1.3 Contribution of this research  

It is now being recognized that the modeling and design of complex systems will required 

a global hierarchical controller design that acknowledges the importance of discrete as 

well as continuous actions. For such complex systems, a hybrid optimal control is a 

viable approach [2], [63]. The overall contribution of this thesis is the working progress 

toward the development of new computational tools integrating continuous and discrete 

event dynamics for the modeling and design of control systems for power system 

management. In that regard several specific contributions had been made, they are 

described in the subsections below. 

1.3.1 Discrete Event Transition Dynamics as Logical Specifications 

Discrete event transition dynamic is traditionally obtained using partial function, e.g. 

( , )f x e y=   where x is state and upon the occurrence of an event e the system transitions 

to the state y.  For a partial function not all transitions are defined for every event [74].  A 

equivalent transition can be written as ( )x e y∧ ⇒ , which signifies that if the system is in 
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state x and the event e occurs then system will transition to state y. As we will see in the 

rest of this thesis, a transition dynamic written as logical specification can be transformed 

to inequality constraints. The interpretation of a transition diagram as logical 

specification has an important computational advantage that can be exploited in 

optimization routines.    

1.3.2 Converting Logical Specifications to IP Formulas 

 A very efficient Mathematica package which generates integer programming inequalities 

is called GenIP [1]. Its efficiency comes from the fact that we eliminate the lengthy 

geometric computation of convex hull described in the Hybrid System Description 

Language (Hysdel). The GenIP package was initiated by a group of researchers whose 

desire was to introduce logic in optimization of complex decision problems.  

Several additions had been made to the GenIP package. 

 Conjunctive Normal Form (CNF) and Disjunctive Normal Form (DNF). 

They can be used to reduce the number of inequalities, by providing tighter bounds for 

the inequalities. 

 Exclusive Or and Exactly predicates 

The Exclusive Or (XOR) is a bin-ary operator between two prepositions. Due to the fact 

that our model of hybrid automaton is a sequential machine rather than a concurrent state 

machine, the Exclusive Or could be used to impose a constraint on a system in order to 

guarantee mutual exclusive property necessary in the hybrid system formulation.  
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Notation: let 1 2and q q   be two literals we have 1 2 1 2(1,{ , })q q exactly q q⊗ =  expresses the 

fact that no matter the situation, exactly one of the two literals is true and the other is 

false.  

The predicate exactly can constitute the generalization of the Exclusive Or.  A 

generalization can be written as 1 2 1 2... (1,{ , ,..., })n nq q q exactly q q q⊗ ⊗ ⊗ = . The 

importance of this generalization will be exploited in hybrid system modeling to 

guarantee that one and only state is valid during the evolution of the system trajectory. 

1.3.3 Mixed-Integer Dynamic Programming 

Transition diagram is the basic tool for modeling any discrete event or hybrid system. 

Since we have selected a logic-based modeling of transition diagrams, after conversion of 

the logical specification, we obtained a set of inequalities constraints called IP formulas.  

The mixed-integer aspect of optimization comes from the fact that the IP formulas are 

sometimes a mix of integer values and real values constraints. Continuous-time optimal 

control problem involving constraints and dynamics are solved using a special purpose 

mixed-integer dynamic programming algorithm.  Two forms of mixed-integer dynamic 

programming were implemented: one form dealing with differential equations and the 

other form dealing with the differential-algebraic equations.   

1.3.4 Applications  

 DC-DC power conditioning: An optimal switching feedback controller is 
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synthesized. The results obtained from simulation agree with our expectations. This case 

study constitutes the first application of our hybrid system design. Any detail information 

on this case study can be found in [49]. 

 A 3-bus power system example: A more challenging power system composed of 

a generator and a transmission line feeding an aggregate induction motor load. The 

system is equipped with a UPS providing backup power. The network algebraic 

equations were solved via formal and informal quantifier elimination [6-10]. 

Bifurcation control  

Bifurcation control deals with designing methods to prevent the occurrence of bifurcation 

point. In the 3-bus power system example the algebraic equation is relatively simple 

therefore an (informal) quantifier elimination method was used to derive the network 

characteristic equation,  its interaction with the load characteristic equation yield system’s 

operating equilibrium. The goal of bifurcation control is to use discrete parameter to 

access the stability of the power system before and after the occurrence of bifurcation 

point.   

Feedback controller via lookup table and Stateflow   

The state feedback controller strategy for mode switching of the power system is 

obtained through Mixed Integer Dynamic Programming. It is computed in form of a 

lookup table that presents a mapping from combinations of modes, events, generator 

angle, slip conditions and battery state to switching actions. Scopes are provided for 

viewing the performance variables such as the internal voltage E, regulated voltage V2, 
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the state of charge of the battery σ as well as mode switching. The simulation block 

diagram is composed of a optimal state feedback controller connecting the power plant. 

The system can be assembled with the Mathematica package ProPac as a SIMULINK 

model targeted for simulation in MATLAB/SIMULINK/Stateflow.  

 DDG 1000 Notional System 

Our model of the DDG 1000 Integrated Power System is a slight modification of the 

model put in place by SYNTEK[50],[51]. The system is composed of a two generators 

feeding two induction motors through transmission lines. Vital loads as well as Non-vital 

loads are connected to various buses. The model is equipped with a UPS that can supply 

voltage to the vital load when the power transfer exceeds its capacity limit. 

Reconfiguration 

Discrete states corresponding to admissible reconfigurations can now be defined and 

system models developed for each discrete state. In addition, a transition structure can be 

defined to express allowable transitions between the discrete states. While it is always 

possible to allow transitions from every discrete state to any other discrete state, the 

specification of a transition structure has many benefits. A specification allows us to 

impose constraints on the reconfiguration process and to eliminate unsuitable transitions. 

DAE for Hybrid system 

The DDG 1000 IPS is a larger system compare with the 3-bus power system example. 

The differential-algebraic equations that model its dynamic is much more difficult to 

solve due to the complexity of the algebraic equation which cannot be solved by  
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quantifier elimination methods. We devised a differential-algebraic algorithm which 

includes discrete event actions. 

SIMULINK/SimPower 

SimPower is an add on package of SIMULINK which provides a graphical toolset that 

allow for modeling of electrical, mechanical and control systems within a power system. 

The use of this software offers various advantages over using a model based on DAEs. It 

provides a well developed system of calculating power system conditions, avoiding the 

complications of developing a set of equation to describe network behavior and necessary 

approximations to make such a model function. Also the SimPower model allows for 

easy modification of fault conditions and other potential damage to the systems. Further, 

using SimPower allowed for the use of its blocks developed to model each individual 

component. We were able to model the DDG 1000 Integration Power System in 

SimPower 
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CHAPTER 2:  PROPOSITION LOGIC AND PREDICATE LOGIC 

2.1 Introduction 

It is only three decades ago that the use of logic has permeated the field of operations 

research for the purpose of solving complex decision making problems. Propositional 

logic and predicate logic had become the basic tools for manipulating logic in a 

computational framework. In this chapter we will introduce the propositional logic and 

the predicate calculus language. The connection between logic specification and integer-

programming formulas will be made and finally we will introduce a Mathematica-based 

automated conversion process for logic specification.  

2.2 Modeling Framework  

2.2.1 Propositional logic 

The basic idea is relatively straightforward. An atomic proposition q is a variable that can 

assume the Boolean values True or False. Propositional logic formulas or formulas are 

constructed by combining atomic propositions using logical connectives:  

" "¬  , " "∨ , " "∧ , " "⇒   , " "⇔ stand for not, and, or, if then, if only if respectively. 

Negation 

An atomic proposition q  is also called a literal and its negation q¬ , is False if q is True. 
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A propositional variable will be referred to as positive literal, while its negative is a 

negative literal and each will be referred as opposite of the other.  

In general we can associate a Boolean variable 
iqδ  with each literal iq  such that 

1 or 0
iqδ =  if True or Falseiq = . That is 

iqδ represents the truth value of q and 

1
iqδ− represents the truth value of  q¬ . 

2.2.2 Disjunctive Boolean Expressions: 

A disjunction of literals is called a clause, for example  p q r∨¬ ∨  is a clause. 

Let 1 2 1 2,   ,..,  ,  ,   ,..,  m nq q q q q q¬ ¬ ¬  be Boolean variables and define 1 2{ , ,..., }j mM q q q=  

1 2{ , ,..., }j nN q q q= as positive and negative literals where jM m=  and jN n= .  

The disjunctive Boolean expression is 1 2 1 2... ... ...m nq q q q q q∨ ∨ ∨ ∨ ∨¬ ∨¬ ∨ ∨¬ .  

The disjunctive expression can be transformed into an inequality as  

 
1 1

1 (1 )
i j

m n

q qδ δ≤ + −∑ ∑  (2.1) 

Examples: 

Using (2.1) the Boolean expression 1 2q q∨  is converted to the linear inequality 

1 2
1 q qδ δ≤ +  
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Using (2.1) the Boolean expression 1 2 3q q q∨ ∨¬ is converted to the linear inequality 

1 2 3
0 q q qδ δ δ≤ + −  

Table 2-1: The “Inclusive Or” 

1q  2q  1 2q q∨  

T T T 

T F T 

F T T 

F F F 

 

Remark: when we use the symbol “∨” , we mean inclusive disjunction or Inclusive Or. 

An Inclusive Or is false only in the case both literal 1q  and 2q  are false. 

The Boolean expression 1 2q q∨  can be written as a sum term: 1 2 1 2q q q q∨ ≡ + . 

2.2.3 Conjunctive Boolean Expression: 

Let 1 2 1 2,  ,..,  ,  ,  ,..,  m nq q q q q q¬ ¬ ¬  be Boolean variables. If we consider the conjunctive 

Boolean expression 1 2 1 2... ...m nq q q q q q∧ ∧ ∧ ∧¬ ∧¬ ∧ ∧¬  as a product term we can 

write the following inequality:  

 
1 1

1 (1 )
m n

i jδ δ≤ −∏ ∏  (2.2) 

which further yields the set of inequalities  

1 2 3
1,  1,.., 1,(1 ) 1,..,(1 ) 1

m nq q q q qδ δ δ δ δ≥ ≥ ≥ − ≥ − ≥  
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Examples: 

Using (2.2) the Boolean expression 1 2q q∧  can be converted to the expressions, 

1 2
1 q qδ δ≤ •  or  equivalently  

1 2
1,   1q qδ δ≥ ≥ . 

1 2 3q q q∧ ∧¬  is converted to the expressions 
1 2 3

(1 ) 1q q qδ δ δ• • − ≥  corresponding to 

1 2 3
1,  1,  (1 ) 1q q qδ δ δ≥ ≥ − ≥ . 

Remark:  

The Boolean expression 1 2q q∧  can be written as a product term: 1 2 1 2q q q q∧ ≡ • . 

2.2.4 Conjunctive Normal Form: CNF 

The conjunctive normal form is the conjunction of disjunctive Booleans expressions in a 

form ( )j jj L i M i i N iq q∈ ∈ ∈∧ ∨ ∨ ¬ , this expression is also called product of sums term. 

The utility of the CNF comes from the fact that it can be transformed into product and 

sum terms. 

The general transformation rule of Boolean expression in CNF in a form 

( )j jj L i M i i N iq q∈ ∈ ∈∧ ∨ ∨ ¬  is 

 

( )

( )

1 1
1 1

1 1

i i

i i

q qi M i N

q qi M i N

δ δ

δ δ

∈ ∈

∈ ∈

≤ + −

≤ + −

∑ ∑

∑ ∑
l l

M  (2.1) 

 where length L=l .  
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The CNF formula 1 2 2 3 1 4( ) ( ) ( )q q q q q q∨¬ ∧ ∨¬ ∧ ∨¬  can be transformed as follows: 

 
1 2

2 3

1 4

1 2

2 3

1 4

1 1

1 1

1 1

q q

q q

q q

q q
q q
q q

δ δ

δ δ

δ δ

⎫≤ + −∨¬ ⎫
⎪⎪∨¬ ⇔ ≤ + −⎬ ⎬

⎪ ⎪∨¬ ≤ + −⎭ ⎭

 (2.2) 

2.2.5 Implication:  Imply “ ( )⇒ ” or If then 

The implication connective involves the conditional statement of two literals, 1 2q q⇒  

read  1 2"  implies "q q  or 1 2" If  then "q q . The literal 1q  is called the antecedent and 2q  is 

called its consequent.  The conditional statement 1 2" If  then "q q  is known to be false only 

in the case where the conjunction 1 2q q∧¬  is true. Therefore the conditional statement 

1 2" If  then "q q  is true if 1 2 1 2( )q q q q¬ ∧¬ = ¬ ∨  true. This equivalent statement 

1 2 1 2q q q q⇒ ≡¬ ∨  provides a practical way to evaluate the truth or the falsehood of the 

“if then” statement in Table 2-2.  

Table 2-2:Implication 

1q  2q  2q¬  1 2q q∧¬  1 2( )q q¬ ∧¬  1 2 1 2q q q q¬ ∨ ≡ ⇒  

T T F F T T 

T F T T F F 

F T F F T T 

F F T F T T 

 

Notice that 1 2 1 2 is logically equivalent to q q q q⇒ ¬ ∨  and an implication is false only 

when it antecedent is true and it consequent is false. 
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 Using the equivalent relation in Table 2-2 and (2.1) , the implication 1 2q q⇒  can be 

converted to the inequality 
1 2 2 1

1 1  or 0q q q qδ δ δ δ≤ − + − ≥ . 

2.2.6 Conditional Equivalent: If and only if  ( )⇔  or ( ) ( )⇒ ∧ ⇐  

Two logical statements are said to be “equivalent” when they are either both are true or 

both are false.  Equivalent is also termed bi-conditional. 

The truth table below describes the derivation of the equivalent connective. 

Table 2-3: If and only if 

1q  2q  1 2q q⇒  2 1q q⇒  1 2 2 1 1 2( ) ( )q q q q q q⇒ ∧ ⇒ ≡ ⇔  

T T T T T 

T F F T F 

F T T F F 

F F T T T 

 

2.2.7 Exclusive Or  

The “exclusive or” (XOr) Boolean operator is often denote “∆”, is the type of logical 

disjunction on two operands that results in a value of “true” if and only if exactly one of 

the operands has a value “true”.  

The following are equivalent expression for “exclusive or” 
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1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

( ) ( )
( ) ( )
( ) ( )

(( ) ( ))

q q q q q q
q q q q q q
q q q q q q
q q q q q q

⊕ = ∧¬ ∨ ¬ ∧
⊕ = ∨ ∧ ¬ ∨¬
⊕ = ∨ ∧¬ ∧
⊕ = ¬ ∧ ∨ ¬ ∧¬

 (2.3) 

The first expression in (2.3) shows that the “exclusive or” is equivalent to the negation of 

a logical bi-conditional, by the rules of implication and equivalence. 

The truth table in             Table 2-4 illustrate the “Exclusive Or” logical behavior. 

            Table 2-4: Exclusive Or 

1q  2q  1 2q q∧¬  1 2q q¬ ∧  1 2 1 2 1 2( ) ( )q q q q q q∧¬ ∨ ¬ ∧ ≡ ⊕  

T T F F F 

T F T F T 

F T F T T 

F F F F F 

 

Remark: The “Exclusive Or “ is a natural Boolean operator to implement mutual 

exclusive property logic systems. 

Summary: 
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Table 2-5: Logic relation and Linear inequalities 

Logical Relation logical specification Linear inequalities 

∨  (Or) 1 2 ... nq q q∨ ∨ ∨  1 2
1 ...

nq q qδ δ δ≤ + + +  

∧     (And) 1 2 ... nq q q∧ ∧ ∧  1 2
1, 1,..., 1

nq q qδ δ δ≥ ≥ ≥  

⇒  (If  then) 1 2q q⇒   i.e. 1 2( )q q¬ ∨  
2 1

0 q qδ δ≤ −  

⇔  (iff) 1 2q q⇔  i.e.  1 2 2 1( ) ( )q q q q⇒ ∧ ⇒  
1 2q qδ δ=  

⊕  (Exclusive Or) 1 2q q⊕  1 2
1 q qδ δ= +  

 

The linear inequalities are called IP-formulas. 

2.3 Predicate Calculus and Modeling Language 

For many years the lack of a concise modeling language and computing environment 

capable of computing in a reasonable time, complex decisions problems had hindered the 

use integer programming by non specialist. The goal of this section is to introduce a new 

declarative language as proposed in [1]. This modeling language with its extension 

represents the foundation of our hybrid system modeling approach. In the previous 

section we have shown how to manually transform a logic specification into inequalities 

for simple Boolean expressions. We will introduce a Mathematica package to 

automatically transform complex logic decisions problems to linear inequality constraints 

called IP-formulas that are solvable by any IP solvers.   

Predicate calculus, first proposed by Mckinnon & Williams offers a more flexible 

modeling synthax than the propositional calculus of Hadjiconstantinou & Mitra or Raman 
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& Grossman. In predicate calculus one can declare predicates n-ary relations between 

objects. The achievement of Qiang Li et al [1] is to extend the Mckinnon & Williams’ 

method [2] by first adding new predicates called meta-predicates. Their modeling 

language provides more rigorous definition of modeling language and systematic 

transformation, it is called L+.  

The L+ modeling language is an extended language based on the first order predicate 

logic with no quantifiers. 

2.3.1 Language L+ 

Syntax:  

1. Improper symbols: (,),  [,],  {,}   

2. Integer: ,-2, 0, +1, +2,.. 

3. Logical connective: ,  ,  ,  ,  ∧ ∨ ⇒ ⇔ ¬  

4. Function symbols: ,  ,  + − ×  

5. Predicate symbols: ,  ,  ,  ,  = ≤ ≥ < >  

6. Proposition variables: p, q, r 

7. Formula: ( , )P x y  

Semantics: 
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The semantics of the L+ language defines the formation rule for well-form formulas as 

follows:  

1. A proposition variable is an atomic formula 

2. An atomic formula is a formula 

3. If P and Q are formulas and x is a variable then , , , ,P P Q P Q P Q P Q¬ ∨ ∧ ⇒ ⇔ are 

formulas 

2.3.2 Meta Predicates: 

Let m Z +∈   and If S is a set of literals we consider two meta-predicates 

1.  ( , )atleast m S also called “less than or equal” predicate. 

The meta-predicate ( , )atleast m S  with argument ( , )m S expresses the fact that at least m 

literal in S must be true. 

2.  ( , )atmost m S also called “greater than or equal” predicate. 

The meta-predicate ( , )atmost m S  with argument ( , )m S expresses the fact that at most m 

literal in S must be true. 

These meta-predicates represent a compact logic specifications or declarations. Their 

advantages are that they avoid us from formulating lengthy Boolean or algebraic 

expressions for describing complex decisions systems.  

Let 1 2 31,  { ,  ,  }m S s s s= =  
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1 2 31 2 3(1,{ , , }) 1 s s satleast s s s δ δ δ←⎯→ ≤ + +  

If 1 element of 1 2 3{ ,  ,  }s s s is true, we have: 1 1≤ . 

If 2 element of 1 2 3{ ,  ,  }s s s is true, we have: 1 2≤ . 

If 3 element of 1 2 3{ ,  ,  }s s s is true, we have: 1 3≤ . 

The second meta-predicate atmost with argument (m, S) expresses the fact that at most m 

formulas in S must be true. 

Let 1 2 31,  { ,  ,  }m S s s s= =  

1 2 31 2 3(1,{ , , }) 1s s satmost s s s δ δ δ←⎯→ + + ≤  

If 1 element of 1 2 3{ ,  ,  }s s s  is true, we have: 1 1≤ . 

If none of element of {s1, s2, s3} is true, we have:  0 1≤ . 

Notation:  

1. [1,{ , }]i i iatmost s s s¬ =  ,   i Z +∈  

2. 1 2 3 1 2 3({ , , })none s s s s s s= ¬ ∧¬ ∧¬  

Proposition: Let 1 2( ,{ , ,..., })natleast m s s s and 1 2( ,{ , ,..., })natmost m s s s be two predicates 

such that ,n m Z +∈   and ,  1m n m≤ >  m ≤ n , and S n m= ≥ , then   

1 2 1 2 1 2( ,{ , ,.., }) ( ,{ , ,.., }) ( ,{ , ,.., })n n nexactly m s s s atleast m s s s atmost m s s s= I    
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And 

1 21 2( ,{ , ,..., }) ...
nn s s sexactly m s s s mδ δ δ←⎯→ + + + =  

Example: 

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

(1,{ , , }) (1,{ , , }) (1,{ , , })

(1,{ , , }) 1 1s s s s s s

exactly s  s  s atleast s  s  s atmost s  s  s

exactly s  s  s δ δ δ δ δ δ

=

←⎯→ ≤ + + + + ≤

I

I
 

And 

1 2 31 2 3(1,{ , , }) 1s s sexactly s s s δ δ δ←⎯→ + + = . 

For a reason that will apparent in subsequent sections or chapters the use of (1, )exactly S  

will be very important in modeling the mutual exclusive property of our hybrid system 

approach. 

The predicate exactly with argument (1, S) expresses the fact that exactly one element in 

the set S must be true. 

2.3.3 Special Order Set of type 1: exactly (m , S) 

Special order set 1, SOS1, was introduced by Beale and Tomlin (1969), it is a modeling 

formalism often used in mathematical programming problems. Its main importance 

comes from the fact it can be used to model a special restriction of a set of variables, with 

such an equality constraint, it is not necessary to stipulate that the binary variables in the 

constraints are integrals [56]. This use of SOS1 constraint takes a special new meaning in 

a branch and bound algorithm for 0-1 integer programming.   
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Definition: Special Order Set 1 (SOS1) 

An SOS1 is a set of variables (continuous or integer) within which exactly one variable 

must be non-zero[56]. 

Example: 

If a set of integer variables 1 2 3{ , , , ......, }    nδ δ δ δ  belongs to the SOS1 then its equality 

constraint can be written as  1 2 3, , ...... 1nδ δ δ δ+ + + + = . 

Note: a SOS1 can be performed even for continuous variables.  

2.3.4 Generalization of the XOr using via Exactly Predicate 

The intrinsic property of the “exclusive or” is its ability to express the mutual exclusive 

property, its usefulness will be apparent in subsequent chapters where we transform a 

non-deterministic automaton to a deterministic one.  

Note: The “exclusive or” is 2-ary operator.  

Another way to express “the exclusive or” is given q1 and q2  two literals. 

1 2 1 2(1,{ , })q q exactly q q⊗ =  

From the truth table in             Table 2-4 it is quite clear that for two literals or operands 

q1 and q2  operated upon by the “exclusive or ” operator , to be true, it is necessary that 

exactly one of the two literals q1 and q2  ought to be true. 
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 The generalization involves the design of an n-ary deterministic operator or 

predicate based on existing non-deterministic predicate.  

 1 2( ,{ , ,.., }),nexactly m q q q  where m n≤  (2.4) 

It is very convenient to implement the predicate exactly based on predicate atleast and 

atmost.  

2.4 From Logic to IP Formulas using Mathematica Package GenIP 

In this section simple examples will be given to illustrate the declarative modeling of the 

results. The main idea here is to learn how to use the Mathematica Package GenIP as a 

logic modeling specification tool and based on basic inequalities developed in Section 2.2 

to have assess the correctness of the computation. Readers who are interested in the detail 

of the implementation could go to [1]. 

2.4.1 Synthesizing IP formulas using Mathematica 

In this section simple examples will be given to illustrate the declarative modeling and 

commenting the results. Readers who are interested in more detail could see [1]. 

Example: 

Given the following logic specification, 1 2 3 4( ) ( )p p p p∧ ⇒ ∨  

Let us obtain the inequality using the modeling language. 
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1 2 3 4 1

2 3 4

1 2 3 4 1 2 3 4[( ) ( ),{ , , , }] {1 ,  0 1,

                                                                             0 1, 0 1,  0 1 }

p p p p p

p p p

GenIP p p p p p p p p δ δ δ δ δ

δ δ δ

∧ ⇒ ∨ = − − + + ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤
 

Note: the solution to this problem could have been obtained if we apply previous 

transformations and the disjunctive rule. 

Definition: 

IP-formulas (or IP-forms) are inequality constraints involve in the formulation of Integer 

programming problem. 

Example  

We buy nine types of stocks numbered by 1 to 9. If three or more types of stocks {1 to 5} 

are bought, or less than four types of stocks {3 to 6, 8, 9} are bought then at most two 

types of stocks {6 to 9} will be bought unless none of stocks {5 to 7} are bought [2]. 

Find the logic specification model and obtain the IP-formulas. 

Answer: 

1. Logic Specification 

1 2 3 4 5 3 4 5 6 8 9 5 6 7

6 7 8 9

(( [3,{ , , , , }) [3,{ , , , , , }) [{ , , }])

[2,{ , , , }])

atleast s  s  s  s  s atmost s  s  s  s  s  s none s  s  s

atmost s  s  s  s

∨ ∧¬

⇒
 

2. Logic to IP-formulas transformation 
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1 2 3 4 5 3 4 5 6 8 9 5 6 7

6 7 8 9 1 2 3 4 5 6 7 8 9

[(( [3,{ , , , , }) [3,{ , , , , , }) [{ , , }])

[2,{ , , , }]), { , , , , , , , , }]

GenIP atleast s  s  s  s  s atmost s  s  s  s  s  s none s  s  s

atmost s  s  s  s  s  s  s  s  s  s  s  s  s

∨ ∧¬

⇒
 

5

1 2 3 4 5

6

7

6 7 8 9

3 4 5 6 8 9

1 2 3

1 2 3

2

3

2

2

1

3

1 2 3

1:  -1 0

2 :  1- 0

3:  5 3 0

4 :   1- 0

5:   1- 0

6 :  4 2 0

7 :  2 0

8 :  0 1,  0 1,  0 1,  

9 :   0 1,  0 1,  0

s

s s s s s

s

s

s s s s

s s s s s s

s s s

d d d

d

d

d

d

d

d

d d d

δ

δ δ δ δ δ

δ

δ

δ δ δ δ

δ δ δ δ δ δ

δ δ δ

+ + + ≥

+ ≥

− + + − − − ≥

− ≥

− ≥

− − − − − ≥

− − − − − − − ≥

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

4 5 6

7 8 9

1,  

10 :  0 1,  0 1,  0 1,  

11:  0 1,  0 1,  0 1 

s s s

s s s

δ δ δ

δ δ δ

≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤
 

Note that all ,  for 1,..9 id i = are auxiliary binary variables which are introduced during 

the computation, dependency between inequalities are expressed by auxiliary binary 

variables relating them. 

The inequalities in line 2, 4, 5 can be grouped together. They represent the IP-formulas of 

the predicate  5 6 7[{ ,  ,  }]none s s s¬ . 

The inequalities in line 3 and 6 represent respectively the IP-formula of the predicate 
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1 2 3 4 5 3 4 5 6 8 9[3,{ ,  ,  ,  ,  }] and [3,{ ,  ,  ,  ,  ,  }]atleast s s s s s atmost s s s s s s  

The inequality in line 6 represents the IP-formulas of the predicate  

6 7 8 9[2,{ ,  ,  ,  }]atmost s s s s  

The inequalities in line 8 and 9 ,10, 11 represent the range of the binary variables and  

auxiliary binary variables, respectively. 

Corollary: Let 2( , , ,..., })1 matleast n  {s  s s and 2( , , ,..., })1 matmost n  {s  s s be two predicates 

such that ,n  m Z +∈   and n m≤  then  

1 2

1 2 1 2

[ ( ,{ ,  ,.., })]

[ ( ,{ ,  ,.., })] [ ( ,{ ,  ,.., })]

m

m m

GenIP exactly n s s s

GenIP atleast n s s s GenIP atmost n s s s

=

I
 

Example: 

1 2 3 1 2 31 2 3[ (1,{ ,  ,  })] {1 0,  0 1,  0 1,  0 1 }s s s s s sGenIP atmost s s s δ δ δ δ δ δ= − − − ≥ ≤ ≤ ≤ ≤ ≤ ≤

 

1 2 3 1 2 31 2 3[ (1,{ ,  ,  })] { 1 0,0 1,  0 1,  0 1 }s s s s s sGenIP atleast s s s δ δ δ δ δ δ= − + + + ≥ ≤ ≤ ≤ ≤ ≤ ≤

 

1 2 3 1 2 3

1 2 3

1 2 3[ (1,{ ,  ,  })] {1 0,  1 0,

                                                    0 1,  0 1,  0 1  }

s s s s s s

s s s

GenIP exactly s s s δ δ δ δ δ δ

δ δ δ

= − − − ≥ − + + + ≥

≤ ≤ ≤ ≤ ≤ ≤
 

The last expression above is equivalent to: 
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1 2 3 1 2 31 2 3[ (1,{ ,  ,  })] {1 ,0 1,  0 1,  0 1  }s s s s s sGenIP exactly s s s δ δ δ δ δ δ= = + + ≤ ≤ ≤ ≤ ≤ ≤  

2.5 Conclusion 

Propositional logic and predicate are the cornerstones of this thesis, therefore precise 

definitions of logic proposition, predicate logic and their interpretations were given. The 

main important aspect of this chapter is the conversion from logic specification to IP-

formulas. A Boolean expression containing the connective and, or, exclusive or, imply 

exactly, at least and at most were discussed. A Mathematica method was proposed to 

automate the conversion process. 
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CHAPTER 3: HYBRID DYNAMICAL SYSTEMS 

3.1 Introduction 

Hybrid dynamical system is a special type of dynamical system where where discrete 

event interacts with continuous dynamic. This type of dynamical system is suited to 

complex technological systems. Therefore a great deal of effort is now being spent to the 

study of the design and control of hybrid dynamical system. In this chapter we will 

introduce the theory of discrete event dynamical system and present the concept of hybrid 

automata.  We will show how to convert the transition of diagram of a hybrid automaton 

into logic specification. The SIMULINK/Stateflow graphical tool we will be used to 

represent a hybrid automaton. 

3.2 Theory of Automata 

A finite automaton also known as finite state machine (FSM) is a control circuit 

encountered in digital computers or electronic systems. A finite automaton receives 

information input sequences of symbols from some alphabet. At each time interval the 

machine “reads” one symbol of the incoming input sequence and responds by going into 

a new internal state: the response depends both on the symbol being red and on the 

machine’s present internal state.  
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Let Q denote the set of internal states; and E the set of symbols, we describes a particular 

machine by specifying a function f : Q E Q.× →  

If iq is the internal state and js is the symbol currently being red, then i j kf ( q ,s ) q= is the 

machine’s next state. The function f is called the next-state function or the transition 

function of the machine.    

Let M be the machine whose alphabet, i.e. event set) is {0, 1}E  = , whose internal states 

set is 0 1Q { q ,q }= , and whose transition function is given by in 

Table 3-1: Finite State Machine 

Present State 0 1 

0q  0q  1q  

1q  1q  0q  

 
 

Table 3-1 asserts that:  

If the machine is in state 0q  and the reading is 0, then the machine remains in state 0q . 

If the machine is in state 0q  and the reading is 1, then the machine goes to state 1q . 

If the machine is in state 1q  and the reading is 0, then machine remains in state 1q . 

If the machine is in state 1q  and the reading is 1, then the machine goes to state 0q . 
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The machine M can be described with the aid of a state diagram, which consists of circles 

interconnected by arcs. 

 

Figure 3.2-1:Finite State Machine 

 

Note: The arrow indicates the initial state 0q  . 

A finite state machine is a representation of an event-driven system. In event-driven 

system, the system transitions from one state to another state provided that the condition 

defining the change is true. For example, a state machine can be used to represent an 

automatic transmission or to check parity in a communication channel. 

3.3 Discrete Event Systems 

The discrete event system is modeled by a Deterministic Finite Automaton (DFA). The 

automaton is specified as a 6-tuple { , , , , , }S Q P δ φ= Σ Γ    , where Q  is a finite set of 

automaton states, Σ  is a finite set of exogenous events (also called symbols), P is a finite 

set of events from the event generator, Γ  is a finite set of output symbols,  

q0 q1

0
0

1

1



 47

: Q P Qδ ×Σ× →  is the transition function, and : Qφ → Γ  is the output map. The action 

of the DFA is characterized by the equations 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 , , ,q k q k k k k q kδ σ ρ γ φ= − =   

Here k is a discrete time index that may be synchronous or asynchronous. In the 

asynchronous case the index advances when an event occurs. Ordinarily, a binary or 

Boolean labeling of the discrete states and events is used, i.e., {0,1} dnQ ⊆ , { }0,1 dmΣ ⊆ , 

{ }0,1 dqΓ ⊆ . 

Definition: Deterministic Finite Automaton 

An automaton is composed of is a collection of the 6-tuple { , , , , , }S Q P δ φ= Σ Γ      

 Where: 

Q  :is a finite set of automaton states, 

Σ  :is a finite set of exogenous events 

Ρ  :is a finite set of events from the event generator 

Γ  is a finite set of output symbols, 

: Q P Qδ ×Σ× →  is the transition function 

: Qφ → Γ  is the output map. 
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3.4 Hybrid Automaton 

3.4.1 Automata and Hybrid Systems: 

The class of hybrid systems to be considered is defined as follows. The system operates 

in one of m states denoted 1 mq , . . . . ,q . We refer to the set of states  1 mQ { q , . . . . ,q }=  

as the discrete state space. The discrete time dynamical equation describing operation in 

state iq  is 
ik 1 q k kx f ( x ,u ),   i=1,...,m+ =  where nx X R∈ ⊆  is the continuous state and 

nu U R∈ ⊆ is the continuous control. Transitions can occur only between certain states. 

The set of admissible transitions is .E Q Q⊆ ×  It is convenient to view the state transition 

system as a graph with elements of E being the edges. We assume that transitions are 

instantaneous and take place at the beginning of the time interval. The switches that we 

consider, are controlled switches enabled by optimal controllers. So, if a transition 

systems from mode 1q  to 2q  at time k we would write 1 2q( k ) q  and q( k ) q+= = . 

2q( k ) q ( k ) q+ += =  represents the successor of 1q( k ) q=  and 1q( k ) q=  represent the 

predecessor of 2q( k ) q ( k ) q+ += = .We do not consider impulsive events. In other words, 

the continuous state trajectories are continuous through the event i.e., x( k ) x( k )+= . 

Transitions are triggered by external events and guards. We denote the finite set of events 

S.  It is convenient to partition the events into two types; those that are controllable, and 

those that are not. The latter are exogenous and occur spontaneously. Such an event 

might be specified by nature like a component failure, or a higher level operator such as a 

supervisory controller which decides changes in operational mode. We will use the 
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symbols s to represent controllable events and p to represent uncontrollable events. Thus, 

S P∑ = × where s S∈ and p P∈ .  

A guard is a subset of the continuous state space X that enables a transition.  

A transition enabled by a guard assignment function is : 2XG E → . 

We consider each discrete state label, q Q∈ , and each event, σ ∈∑ , to be logical 

variables that take values True or False. Guards also are specified as logical conditions. 

In this way the transition system can be defined by a logical specification L. 

3.4.2 Definition 

A hybrid automaton is composed of a collection HA= (Q, X, E, U, f, G, S) , where: 

 Q: Discrete state space 

 X: Continuous states space 

 E: set of transitions 

 G: Eö2X guard assignment function 

 U: Admissible input set 

 S: Event set 

 f: family of vector fields 
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3.4.3 Hybrid Automaton and Logical Specification 

Consider the simple three modes hybrid system shown in Figure 3.4-1.  

Each mode, 1 2 3q ,q ,q  is characterized by continuous dynamics  

 1 ( , ),  1,2,3.
ik q k kx f x u i+ = =  (3.1) 

Discrete transitions are associated with events represented by logical variables  

1 2 3p,s ,s ,s , i.e., 1 2 3{ , , , }p s s s∑ = .We use different symbols s and p to denote transition 

variables to underscore the fact that some transitions are controllable and others are not.  

Notice that with the introduction of the Boolean variables we can replace the set of 

dynamical equations (3.1) with the single relation: 

 
1 1

( 1) ( ( ), ( ), ( ) = ( ( ), ( )) ... ( ( ), ( )) 
m mq q q q qx k f x k k u k f x k u k f x k u kδ δ δ+ = + +  (3.2) 

  

 

 

 

  

 

Figure 3.4-1: Three modes hybrid Automaton 

 

1s

3q

2q1q

2s

3sp

( )1 1 ,k kx f x u+ = ( )1 2 ,k kx f x u+ =

( )1 3 ,k kx f x u+ =
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1 2, : external events set
: internal events set

s s S
p P

∈
∈

 

In our formulation the transition system behavior is defined by the logical specification:  

 

1 2 3 1 2 3

1 1 2 1 3 1 1 1

2 2 1 2 2 2

(1,{ ( ), ( ), ( )}) (1,{ ( ), ( ), ( )})

      ( ( ) ( ))  ( ( ) ( ))  ( ( ) ( ) ( ))  

                  ( ( ) ( ))  ( ( ) ( ))  

         

L exactly q k q k q k exactly q k q k q k

q k s q k q k p q k q k s p q k

q k s q k q k s q k

+ + +

+ + +

+ +

= ∧ ∧

∧ ⇒ ∧ ∧ ⇒ ∧ ∧¬ ∨ ⇒ ∧

∧ ⇒ ∧ ∧¬ ⇒ ∧

3 3 2 3 3 3           ( ( ) ( )  ( ( ) ( ))     q k s q k q k s q k+ +∧ ⇒ ∧ ∧¬ ⇒

(3.3) 

The first and the second lines of (3.3) express the fact that the system can only be in one 

discrete state before the transition at time k and after the transition at time k+.  The next 

two lines describes all possible transitions from state 1q . Similarly, the last two lines 

characterize all possible transitions from states 2q  and 3q , respectively.  

For computational purpose it is useful to associate with each logical variable, say α, a 

Boolean variable or indicator function, αδ , such that αδ  assumes the values 1 or 0 

corresponding respectively to α being True or False. It is convenient to define the discrete 

state vector 
1

[ ,....., ]
mq q qδ δ δ= , the control event vector 

1
[ ,......., ]

ms s sδ δ δ= , and the 

exogenous event vector 
1

[ ,......, ]
mp p pδ δ δ= . Precisely one of the elements of qδ will be 

unity and all others will be zero. 
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3.5 Hybrid Automaton and Matlab/SIMULINK 

3.5.1 Overview 

Unlike in MLD where a new conceptual framework (Hybrid Discrete Automaton) was 

developed, in this thesis we will take advantage of preexisting tool such as SIMULINK 

/Stateflow. SIMULINK with Stateflow contains all the features needed for simulating 

hybrid systems. Stateflow depicts well automata and SIMULINK is targeted for 

simulation of continuous dynamics. Interface between SIMULINK and Stateflow, makes 

the pair SIMULINK/Stateflow a viable modeling framework and simulation tool for 

hybrid systems.    

We consider a hybrid automaton as the primitive model of a hybrid system. This point of 

view is natural because the hybrid automaton (HA) is an intuitive and efficient way to 

characterize a hybrid system, it has a convenient and appealing graphical representation, 

and SIMULINK with Stateflow is a powerful computer tools for building and simulating 

hybrid systems. Because of those factors the hybrid automaton is a good conceptual tool 

for formulating and simulating hybrid systems. We will show that SIMULINK /Stateflow 

is an effective approach for hybrid simulation. One of the goals of this project is to 

develop a computer tool that converts a hybrid automaton model to an equivalent model 

similar to the MLD model. Our MLD–like model joins the ordinary differential equations 

that describe the system dynamics with a set of mixed continuous and integer inequalities 

which represent the discrete event or logical specification of the system.  
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3.5.2 Stateflow 

Stateflow is a powerful graphical and development tool for complex control and 

supervisory logic problems. Stateflow is a variant of the finite state machine notation 

established by Harel. 

Some Advantages 

1. Create a Stateflow diagram 

2. Visualize a model and simulate complex hybrid systems based on finite state machine 

theory, flow diagram and state-transitions diagrams. 

3. Design and development deterministic supervisory control systems. 

4. Modification of design, evaluate results and verify the system’s behavior at any stage 

of the design. 

5. Take advantage of the integration with the Matlab and SIMULINK environments to 

model, simulate, and analyze your systems. 

Examples of Applications. 

1. Embedded system 

2. Avionics 

3. Automotive: transmission systems, cruise control 

4. Telecommunication 
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5. Hybrid Systems 

6. Air Traffic controls systems    

StateFlow representation of a Power conditioning’s automaton 

 Power Conditioning System 

 

Li

C ovE

R
switching eventS

 
Figure 3.5-1:Power Conditioning Device 

 

Two modes 1 2q ,q and two switches states s, s¬  are needed to represent the transition 

diagram of the above Power conditioning. 

 Stateflow Representation 
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PCS/Chart

q1/Switch Openq0/Switch closed

[s==1]

[s==0]

 

Figure 3.5-2: Power Conditioning in Stateflow 

 

SIMULINK/Stateflow Integration: 

A hybrid system is composed of a continuous dynamical system interfaced with a 

discrete event system. Figure 3.5-3 shows a general hybrid system framework in 

SIMULINK 
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Figure 3.5-3: A hybrid system depicting of a switched dynamical system 

 

In the basic setup, as is often used in studies of supervisory control, the continuous 

system is represented by a set of nonlinear ordinary differential equations. 

 
( ) ( )

{ }

, , , , ,

, , 0,1 ,Mmn m q

x f x u v y h x u v

x R u R v y R

= =

∈ ⊂ ∈ ⊂ ∈ ⊆ ∈ ⊂

&

X U V Y
 (3.4) 

where x is the continuous system state, u is a vector of continuous inputs, v is a vector of 

discrete inputs (from the mode selector). This system is quite general. For example, a 

switched affine system can be represented by   ( ){ }1
mm

i i i ii
x v t A x B u f

=
= + +∑&  
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where { }: 0,1iv R →  and ( )1
1m

ii
v t

=
=∑ . A possible generalization is to replace the system 

of ordinary differential equations by a system of differential-algebraic equations – a 

necessary generalization for dealing with electric power systems.  

3.6 Logic Constraint 

A logic constraint is the general term given to a constraint in Logic-Based preprocessing 

in order to reduce the processing time. Different approaches can be used to generate logic 

constraints. Resolution generates clauses that are prime implicant. The technique of 

resolution is analogous to the Chevatal’s cutting plane.  

We call it Control Logic a logic constraint whose setting reduces the number of feasible 

states. 

We write the Control Logic  specification as: 

1 1 2 3 1 2 3 1 2 3

2 2 1 3 2 1 3 2 1 3

3 3 1 2 3 2 1

 

[1,{ , }] [1,{ , , }] [1,{ , , }]

[1,{ , }] [1,{ , }]

[1,{ , }] [1,{

Control Logic

q atmost s p s s exactly q q q exactly qq qq qq

q s s s exactly q q q exactly qq qq qq

q s s s exactly q q q exactly qq

=

⇒ ∧¬ ∧¬ ∧ ∧

⇒ ∧¬ ∧¬ ∧ ∧¬ ∧ ∧¬

⇒ ∧¬ ∧¬ ∧ ∧¬ ∧ 3 2 1, }]qq qq∧¬

 (3.5) 

Note: [1,{ , }]i i iatmost s s s¬ =   

The effect of the ControlLogic constraint to reduce search space is efficient. The 

computational time has been improved by a factor of 10. 
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3.7 Conclusion 

Hybrid system was introduced using the theory of hybrid automaton which represents an 

excellent modeling framework. The definitions of deterministic finite automaton and 

hybrid automaton were given and an interpretation of an automaton as a logical 

specification was proposed. A three mode automaton was presented for illustration.  

SIMULINK/Stateflow was selected as a design frame work for hybrid system and a 

power conditioning example was presented. A discussion on logical constraint for 

improving the computational speed was proposed. 
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CHAPTER 4: OPTIMAL CONTROL OF HYBRID SYSTEMS 

4.1 Introduction 

The theory of optimal control had provided an impetus for development of space 

missions in the 1960s, during that period the concept of hybrid system was introduced. 

The first article which referred to the hybrid system is [16]. Since then numerous studies 

had been conducted to reflect the ideas developed in [16], it is true that many modern 

complex technological systems are hybrid systems in nature and a form of optimal 

control such as dynamic programming are now receiving considerable attention. 

4.2 Dynamic Programming 

Dynamic programming was invented in 1952 by Richard Bellman, it is a powerful tool 

for solving dynamic optimization problem. It is based on the ‘principle of optimality’ 

which provides a mechanism for backward recursive solution as a single stage 

optimization problem. It can easily be applied to nonlinear continuous systems or hybrid 

systems, and the more constraints there are, the easier is the solution. The Bellman 

principle provides a good characterization of optimality for general dynamical systems 

including hybrid systems. 
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Computational complexity is often a big concern in dynamic programming; however 

various techniques are being proposed to reduce the computational time, in [15] a relaxed 

dynamic programming is studied. It consists of a parameterized sub-optimal solution of 

the value function by an upper and lower bound and the size of the bounds determines the 

computational complexity. An application to a DC-DC voltage converter modeled as 

switched voltage controller is given.   

In this chapter, we will present the theory of dynamic programming for hybrid system by 

stating the Bellman’s principle of optimality. We will propose a mixed-integer dynamic 

programming algorithm for hybrid system. 

4.3 Bellman’s Principle of Optimality 

Let us Consider the state space X and the control space U are discretized into a finite grid. 

The discretized plant dynamic is: 

( )1 , ,  0,1, , 1k kk
x f x u k N+ = = −K  

And let is define the cost function 
N 1

i i N i i
k 1

J ( x ) g L( x ,u )
−

=

= +∑  where [ , ] i N is the time 

interval of interest. 

Suppose a control policy * * * *
1 1 2 1, ,..., ,   k k N Nu u u u+ + − − at state 1kx + . By the principle of 

optimality, whatever the initial state kx and the decision ku  are, the remaining decisions 

also must constitute an optimal policy with regard to the state 1kx +  that is 
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 * *
1 1( ) min{ ( , ) ( )}

k

k
k k k k k ku

J x L x u J x+ += +  (4.1) 

The cost function k kJ ( x )  can be minimize only with respect to the control ku  provided 

the future cost *
k+1 k 1J ( x )+  is optimal, where  *

kJ ( x( k ))  is the optimal cost-to-go function 

or the optimal value function at state kx  starting from stage from stage k. 

The backward recursive procedure in (4.1) provides the solution to the minimization 

problem. 

4.4 Bellman’s Principle of Optimality for hybrid systems 

Our approach to control design is based on finite, (receding horizon) dynamic 

programming. Dynamic programming leads to a feedback strategy where the 

computation is repeated every t∆  sec. The feedback policy is computed off-line and 

implemented in a form such as table look-up. 

We briefly summarize a form of dynamic programming needed to solve control problems 

involving hybrid systems. We will consider a discrete time, deterministic system that 

evolves over a finite time period. This period is divided into N equally spaced intervals 

and k is the discrete time index. All events, controllable or exogenous, are assumed to 

occur at the beginning of the interval, so we distinguish between values of variables at 

instant k, before any event, k +  after the event, e.g., k k
x ,x .+   
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( )1 ,,

,

6 7 0 1 2 3 4 5

, , , ,

                   ( , ),     0,1, , 1

k k s kk q k

k k q k

q s eq

x f x u

y h x k N

E E d E E x E E y E E

δ δ

δ

δ δ δ δ

+ +

+

+ =

= = −

+ ≤ + + + + +

K  (4.1) 

Where k is the discrete time index, and 

kx : the continuous state (real numbers) 

,s kδ : the discrete state (mode) (binary or integer numbers) 

ku : the control, may be composed of discrete and continuous elements 

kd : discrete (binary) auxiliary variables 

ky : continuous (real)  output or auxiliary variables 

e ,kδ : exogenous events. 

A class of feedback control laws or policies consists of a sequence of functions 

( ) ( ) ( ){ }0 0 1 1 1 1, , , N Nx x xπ µ µ µ − −= K , so that ( ), ,{ , } ,k s k k k q ku xδ µ δ= . Given an initial state 

( 0 0,x δ ), the problem is to find a control policy that minimizes the cost functional 

 ( ) ( ) ( )( )1
0 0 0
, , , , ,N

N N N k k k k k kk
J x g x g x xπ δ δ δ µ δ−

=
= +∑  (4.2) 

The optimal cost function is  

 ( ) ( )*
0 0 0 0, min ,J x J xππ
δ δ

∈Π
=  (4.3) 
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And the optimal policy *π  is one that satisfies 

   ( ) ( )* 0 0 0 0, ,J x J xππ
δ δ π≤ ∀ ∈Π  (4.4) 

Principle of optimality: Suppose { }* * *
1 1, , Nπ µ µ −= K  is an optimal control policy. Then the 

sub-policy { }* * *
1, ,i i Nπ µ µ −= K , 1 1i N≤ ≤ −  is optimal with respect the cost function 

   ( ) ( ) ( )( )1, , , , ,N
i i N N N k k k k k kk i

J x g x g x xπ δ δ δ µ δ−

=
= +∑  (4.5) 

Let us denote the optimal cost of the trajectory beginning at ix  as ( )* ,i i iJ x δ . It follows 

from the principle of optimality that  

 
( ) ( ) ( ) ( )( ){ }

( )( ) ( ){ }
1

1*
1 1 1 1 1 1

*
1 1 1 1 1 1

, min , min , , ,

min , , , ,
i

N
i i i i i N N N k k k k kk i

i i i i i i i i i

J x J x g x g x x

g x x J x

ππ π

µ

δ δ δ µ δ

δ µ δ δ
−

−

− − − − − = −∈Π ∈Π

− − − − − −

= = +

= +

∑
(4.6) 

Equation (4.6) provides a mechanism for backward recursive solution of the optimization 

problem. To begin the backward recursion, we need to solve the single stage problem 

with i N= : 

( ) ( ) ( )( ) ( ){ }
1

* *
1 1 1 1 1 1 1 1 1 1 1 1, min , min , , , ,

N
N N N N N N N N N N N N N NJ x J x g x x J xππ µ

δ δ δ µ δ δ
−

− − − − − − − − − − − −∈Π
= = +

 (4.7) 

There are two possible terminal conditions: 

Case 1: Nx  is fixed and ( ) 0Ng x ≡ . In this case ( )* 0N NJ x =  and from Eq (4.1) we have 

the constraint 
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  ( )1 1 1, ,N N N Nx f x δ µ− − −=  (4.8) 

We assume that there exist solution pairs ( )1 1 1, ,N N Nx δ µ− − −  of  Eq (4.8)  . Otherwise, the 

problem is not well posed because Nx  is not reachable. Thus,  

  ( ) ( ){ }
1

*
1 1 1 1 1 1 1, min , ,

N
N N N N N N NJ x g x

µ
δ δ µ

−
− − − − − − −=  (4.9) 

Where the minimization is carried out subject to the constraint Eq (4.8). 

Case 2: Nx  is free. Now,  

 

( ) ( ) ( ){ }

( ) ( )( ){ }

1

1

*
1 1 1 1 1 1 1

1 1 1 1 1 1 1

, min , , ,

                         min , , , ,

N

N

N N N N N N N N N N

N N N N N N N N

J x g x g x

g x g f x

µ

µ

δ δ µ δ

δ µ δ µ

−

−

− − − − − − −

− − − − − − −

= +

= +
 (4.10) 

Once the pair ( )*
1 1 1 1, ,N N N NJ xµ δ− − − −  is obtained, we compute ( )*

2 2 2 2, ,N N N NJ xµ δ− − − −  from 

 

( ) ( )( ) ( ){ }

( )( ) ( )( ){ }

2

2

* *
2 2 2 2 2 2 1 1 1

*
2 2 2 2 2 2 1 2 2 2

min , ,

min , , , , ,

N

N

N N N N N N N N N

N N N N N N N N N N

J x g x x J x

g x x J f x

µ

µ

µ δ

δ µ δ δ µ

−

−

− − − − − − − − −

− − − − − − − − − −

= +

= +

 (4.11) 

Continuing in this way 

 ( ) ( )( ) ( )( ){ }* *
1min , , , 2

N i
N i N i N i N i N i N i N i N i N iJ x g x x J f x i N

µ
µ µ

−
− − − − − − − + − −= + ≤ ≤ (4.12) 

The procedure is illustrated in  
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nX Q R= ×

t

( )* ( , ) ,N NJ x g xδ δ=

( )
( )

( ) ( ){ }
1 1 1
1 1

* *
1 1 1 1 1 1 1,

, ,

, min , , ,
N N N
N N N

N N N N N N N N N Nu x
u x C

J x g x u J x
δ

δ

δ δ δ
− − −

− −

− − − − − − −

∈

= +( )
( )

( ) ( ){ }
1 1 1
1 1

* *
1 1 1 1 1 1 1,

, ,

, min , , ,
k k k
k k k

k k k k k k k k k ku x
u x C

J x g x u J x
δ

δ

δ δ δ
− − −

− −

− − − − − − −

∈

= +

i N=1i k= − 1i N= −0i =

From each state at i=N-1 compute
the optimal control for this stage.
The optimization is carried out with
constraints: mixed integer
inequalities and dynamics.

For computational purposes
discretize the state space.  

Figure 4.4-1: Depiction of dynamic programming algorithm. 

 

The first step in solving the optimal control problem is to transform the logical 

constraints into a set of inequalities involving binary variables and possibly real 

variables, so-called IP-formulas. The idea of formulating optimization problems using 

logical constraints and then converting them to IP formulas has a long history. This 

concept was used as a means to incorporate qualitative information in process control 

[56], and generally introduced into the study of hybrid systems [29]. 

Authors in [1] suggested a sequence of transformations that brings a logical specification 

into a set of IP-formulas. A systematic algorithm is presented for doing this. We have 

modified this implementation in order to obtain simpler and more compact IP formulas.  
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The system operates in one of the m  modes denoted 1q ,…, mq . 1{ ,..., }mQ q q=  is the 

discrete state space. The discrete time difference-algebraic equation (DAE) describing 

operation in mode iq  is 

 1 ( , , )
0 ( , , )

k i k k k

i k k k

x f x y u
g x y u

+ =
=

 (4.13) 

with 1,...,i m=  

where nx X∈ ⊆ℜ  is the system continuous state, py Y∈ ⊆ℜ is the vector of algebraic 

variables and lu U∈ ⊆ℜ  is the continuous control. Transitions can occur only between 

certain modes. The set of admissible transitions is Q Qε ⊆ × . It is convenient to view the 

mode transition system as a graph with elements of ε being the edges. We assume that 

transitions are instantaneous and take place at the beginning of the time interval. So if the 

system transitions from mode 1q  to 2q at time k  we would write 1( )q k q= , 2( )q k q+ = . 

We allow resets. State trajectories are assumed continuous through events, i.e., 

( ) ( )x k x k += , unless a reset is specified.  

Transitions are triggered by external events and guards. Events are of two types; either 

controlled – belonging to the set s∑ , or exogenous (occur spontaneously) – belonging to 

the set e∑ . A guard is a subset of the continuous state space X that enables a transition. A 

transition enabled by a guard might represent a protection device. Not all transitions 

might require simultaneous satisfaction of a guard and occurrence of an event. 
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We consider each discrete state label, q Q∈ , and each event ss∈∑  , ee∈∑  to be logical 

variables that take values True and False. Guards also are specified as logical conditions. 

In this way the transition system can be defined by a logical specification (formula). 

For computational purposes it is useful to associate each logical variable, say α , a binary 

variable or indicator function, αδ , such that αδ  assumes the values 1 and 0 

corresponding respectively to α being True or False. It is convenient to define the 

discrete state vector 1[ ,..., ]q mδ δ δ= . Precisely one of the elements of qδ  will be unity and 

all others will be zero. 

If all the guards are linear (set boundaries are composed of linear segments), then the IP 

formulas are system of linear constraints involving binary variables qδ , qδ + , sδ , 

respectively, the discrete state before transition, the discrete state after transition, the 

exogenous events. They also involve a set of auxiliary binary variables, d , introduced 

during the transformation process, and the continuous state variables, x . With x , qδ , 

sδ given these inequalities provide a unique solution for the unknowns qδ +  and d . 

In doing the optimal calculations we now exploit the fact that the system is highly 

constrained and all of the constraints are linear in the binary variables. The basic 

approach has been modified to the following: 

4.5 Mixed-Integer Dynamic Programming Algorithm 

1. Before the beginning of the time iteration: 
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a. Separate the inequalities into binary and real sets, binary formulas contain 

only binary variables, real formulas can contain both binary and real 

variables 

b. For each q Q∈ , obtain feasible solutions of the binary inequalities; a list 

of possible solution pairs ( , )q dδ +  

c. Define projection 
_ _
X X Ρ→  where 

_
X Ρ  is the subspace of real states 

actually appearing in the real equations. 

d. For each 
_

Px X Ρ∈  

i. Pre-screen the binary solutions to eliminate those that do not 

produce solutions to the real inequalities – typically a very large 

fraction is dropped 

ii. For every feasible combination of binary variables obtained above, 

solve the real inequalities for the real variables. 

e. Lift real solutions to entire 
_
X . 

2. For each i  

a. For each pair 
_

( , )q x Q X∈ ×  

i. Enumerate the values of the cost to go using the feasible sets of 

binary and real variables 

ii. Select the minimum 
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In step 1b above the number of solutions corresponding to each q can be vary large 

because there are numerous redundant solutions associated with non active transitions. 

Thus, we add additional logical constraints that specify the inactive transitions. Step 1c 

exploits the fact that some real states do not appear in the real formulas. Because a large 

fraction of the binary solutions do not lead to real solutions, the pre-screening in step 1d.i 

is very effective in reducing the computation time. Finally, we note that the inequalities 

are independent of the state of the dynamic programming recursion. Thus, step 1d, which 

is by far the most intensive computational element of the optimization, is done only once 

before the recursion step 2a begins. 

4.6 Conclusion 

Dynamic programming is a powerful method for solving optimal control problems. In 

this chapter we have shown that it is still a viable method for solving hybrid control 

problems. One of the accomplishments of this thesis is to have device a special purpose 

dynamic program algorithm called mixed-integer dynamic programming for constraints 

based hybrid optimal control. A detail algorithm of the mixed-integer dynamic 

programming was presented.    
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CHAPTER 5: A  3-BUS POWER SYSTEM WITH UPS 

5.1 Introduction    

In this chapter, and the following the next two chapters, we are selecting a relatively 

simple power system to illustrate our new hybrid system formulation. The advantage of 

the simple power system is that it is has been studied extensively in literature with regard 

to it voltage stability [65]. Our goal in here is to design a survivable power system where 

voltage regulation and power supply to vital load are critical issues. Control mechanisms 

such as excitation system, load shedding and emergency backup will play a preponderant 

role in our analysis. The big challenge in this example is the addition of an 

uninterruptible power supply (UPS) for emergency backup.  

The organization of the chapter is as follows: we will begin by a description of the 

power system, and highlight all the assumptions such as the type of load, the non-

conventional excitation system, voltage regulation level etc.  The equations for the power 

system will be derived, followed by the use of the method for elimination of variable on 

network equations and finally the hybrid model will be presented. 

5.2 Power System Description 

A relatively simple system that is known to exhibit interesting voltage stability 

characteristics is a single generator feeding an aggregated load composed of constant 
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impedance loads and induction motors. The system has been used to study the effect of 

tap changing transformers and capacitor banks in voltage control, e.g., [52,53,54]. 

Consider the system shown in Figure 5.2-1. The system consists of a generator, a 

transmission line, an on-load tap changing transformer (OLTC) and an aggregated load. 

The generator is characterized by a ‘constant voltage behind reactance’ model. The 

generator internal bus voltage E is used to maintain the voltage at bus 2; so long as E 

remains within the limits imposed by the excitation current limits. The OLTC ordinarily 

moves in small discrete steps over a narrow range. The load is an aggregate composed of 

parallel induction motors and constant impedance loads. An induction motor can be 

characterized as impedance with slowly varying resistance; consequently, the aggregate 

load is represented by constant impedance – actually, slowly varying impedance, where 

the impedance depends on the aggregate induction motor slip. Figure 5.2-2 shows the 

reduced two bus network accounting for the ideal transformer.  

 

1: n

1,E δ 2 2,V δ2
2,

V
n

δ

ja−

c jd−

 

Figure 5.2-1: System configuration. 

1,E δ 2 2,V δ

/ja n−

c jd−

 

Figure 5.2-2: Equivalent circuit 

assuming ideal transformer. 
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The Network Equations: 

Let us define the complex power injected at the bus i into the system as 

 i Gi DiS S S= −  where Gi DiS  and S  are the bus power injections. 

Using the conservation of power 
1

,
n

i ik
k

S S  i=1,2,....n
=

=∑    

We also define the current 
1

,
n

i Gi Di ik
k

I I I I  i=1,2,....n
=

= − =∑   

                                                 or 
1

,
n

i ik k
k

I Y V   i=1,2,....,n
=

=∑    

The complex power iS can be written as: 

 
* * *

1

,
n

i i i i ik k
k

S V I V Y V  i=1,2,....n
=

= = ∑  (5.1) 

The power mismatch equations are given by the real and the reactive power as: 

 

1

1

( cos sin )

( sin cos )

n

i i k ik ik ik ik
k

n

i i k ik ik ik ik
k

P V V g b

Q V V g b

θ θ

θ θ

=

=

= +

= −

∑

∑
 (5.2) 
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Using (5.2) at bus 2 (i=2) and let voltage magnitude be 1 2 2,V E  V V= =  and the phase 

angles difference 2 1 221θ θ θ θ= − =   then  (5.2) reduces to: 

 

2
2 2 2 21 21 21 21 2 22 22 22 22

2
2 2 2 21 21 21 21 2 22 22 22 22

( cos sin ) ( cos sin )

( sin cos ) ( sin cos )

G D

G D

P P V E g b V g b

Q Q V E g b V g b

θ θ θ θ

θ θ θ θ

− = + + +

− = − + −
 (5.3) 

Since at load bus 2 , 2 2 2 2 0G G D DP Q P Q= = = = and 11 12 21 22 0g g g g= = = =   

(lossless transmission line)  and 22 22cos 1, 0 sin θ θ= =  then (5.3)  reduces to: 

 

2
2 21 21 2 22

2
2 21 21 2 22

0 ( sin ) ( )

0 ( cos ) ( )

V E b V g

V E b V b

θ

θ

= +

= − + −
 (5.4) 

Let the Y bus matrix of the network in Figure 5.2-2 be: 

 
11 11 12 12

21 21 22 22
Bus

a ai i
g ib g ib n nY

a ag ib g ib i c i d
n n

⎡ ⎤−⎢ ⎥+ +⎡ ⎤
⎢ ⎥= =⎢ ⎥+ + ⎞⎛⎢ ⎥⎣ ⎦ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (5.5) 

Then 

 

( )2
2 21 2

2
2 21 2

0 sin

0 cos

aV E V c
n

a aV E V d
n n

θ

θ

⎞⎛= − +⎜ ⎟
⎝ ⎠

⎞ ⎞⎛ ⎛= + +⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (5.6) 

or 
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2
2 2 2

2
2 2 2

0 sin

0 cos

a EV cV
n

a aEV d V
n n

θ

θ

⎞⎛= −⎜ ⎟
⎝ ⎠

⎞ ⎞⎛ ⎛= + +⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (5.7) 

Power System Characteristic Curves: 

Power system characteristic curves are expressions derived from the network or the load 

equilibrium equations. The characteristics curves that will be used in this bifurcation 

analysis are of the general form:  

 ( )
( )
2

2

( , , , ) 0
, , , , 0

, , 0

m v

n v

r m

g s E a P
g s V a P

g s V P

η
=

=

=

 (5.8) 

The first two characteristic curves in (5.8) correspond to the excitation and the network 

characteristic curves. Both characteristic curves are obtained from the network equations. 

The third characteristic in (5.8) is the load characteristic curve, it is derived from the load 

equilibrium equations 

The loss of a transmission line between two buses has the effect of decreasing the 

maximum power that can be delivered to the load. Since the maximum power that can be 

delivered is proportional to the admittance of the line, we can model transmission line 

faults by reducing the nominal parameter a. Our goal is to understand how load shedding 

can be effectively utilized to insure service of the vital load and to maximize the amount 

of non-vital load supplied. Considerable insight can be obtained by examining the graphs 

of the two scalar functions in the V s−  plane for fixed values of , , ,m va P Pη .  
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5.3 Systems Modeling 

5.3.1 System Modeling without and with UPS: 

Power System without UPS 

The network equations for the system shown in Figure 5.2-2 can easily be obtained. 

Suppose 1 2,δ δ  denote the voltage angles at bus 1 and, now let us define   

 2
1 0 2gI P cVω ω = −&  (5.9) 

 

2
2 2 1 2

2
2 2 1 2

0 sin( )

0 cos( )

a EV cV
n

a aEV d V
n n

δ δ

δ δ

⎞⎛= − −⎜ ⎟
⎝ ⎠

⎞ ⎞⎛ ⎛= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (5.10) 

Let 2 2 1θ δ δ= −  from the last two equations we obtain: 

 1
2 22 2

/ ,  tan
/( / )

a n cV E
a n dc a n d

θ − −
= =

++ +
 (5.11) 

Since the power absorbed by the load is  2
2L LP jQ V Y+ = − , we have: 

 2 2
2 2,L L

aP V c Q V d
n

⎞⎛= − = +⎜ ⎟
⎝ ⎠

 (5.12) 

Now, let us turn to the induction motor. An equivalent circuit for an induction motor is 

shown in Figure 5.3-1 below. Here, the parameters ,s sR X  denote the resistance and 

inductance of the stator, mX  denotes the magnetizing inductance, and ,r rR X  the rotor 
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resistance and inductance. The resistance ( )1 /rR s s−  represents the motor electrical 

output power. If we can neglect the small stator resistance and inductance, and if the 

approximation of large magnetizing inductance is acceptable, then the equivalent circuit 

reduces to that of Figure 5.3-2. 

 

mjX

rjXsjXsR rR

1
r

sR
s
−sI

sV

Figure 5.3-1: Induction motor  

equivalent circuit. 

rjX rR

1
r

sR
s
−rI

rV

 

Figure 5.3-2: Simplified equivalent circuit  

    assuming small Xs and L and large Xm. 

 

If the simplified circuit of Figure 5.3-2 is acceptable, then we obtain the following. The 

real power delivered to the rotor, dP , and the power delivered to the shaft, eP , are:  

 

( )

2
2 2 2

1

r
d s

r r

e d

R sP V
R s X

P P s

=
+

= −

 (5.13) 

The dynamical equation for the motor (Newton’s law) is:   

      ( )
0

1
m e m

m

P P
I

ω
ω

= −&      (5.14) 

Introducing the slip, s , 
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 0

0

ms ω ω
ω
−

=  (5.15) 

We obtain the motor dynamics in the following form:     

( ) ( )2
2 2 2 2 2
0 0

11 1 r
m e m s

m m r r

R s s
s P P P V

I I R s Xω ω
⎞−⎛

= − = − ⎟⎜ +⎝ ⎠
&  (5.16) 

Transition Structure and Load Shedding 

In the following, we allow for the dropping of a fraction of the load, η .  In the present 

case, we allow three different values of η  including zero, so { }1 20, ,η η η∈ . Consequently, 

there is normal operation and two prioritized blocks of load that can be dropped in 

accordance with the transition behavior defined in Figure 5.3-3. 

In the present case, we assume the blocks are sized such that 

 1 2 30, 0.4, 0.8q q qη η η⇒ = ⇒ = ⇒ =   

1q

1s¬

2q

1s

3q

2s¬

2s
 

Figure 5.3-3: Transition structure. 

  

We assume that the OLTC ratio is fixed, i.e., the OLTC is not being used for control, so 

constn = . If the OLTC is to be employed, the dynamics of tap change must be added. 
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 2
1 0 2gI P cVω ω = −&  (5.17) 

 ( )
2 2

0 0
21

/
c d

E V
a n

η
+

= −  (5.18) 

 ( ) ( )2
22 2 2 2

0

1 1r
m

m r r

R s s
s P V

I R s X
η
ω

⎞− −⎛
= − ⎟⎜ +⎝ ⎠
&  (5.19) 

 ( ) ( )
2

0 0 0 02 2 2 2 2 2

11 , , 1 ,r r

L r r r r

R s X sc c c d d d
R R s X R s X

η η
⎞ ⎞⎛ ⎛

= − = + = − =⎟ ⎟⎜ ⎜+ +⎝ ⎝⎠ ⎠
 (5.20) 

Equation represents turbine-generator dynamics. Ordinarily, the power input gP  is 

adjusted to regulate the speed ω  which is to be maintained at the value, 0ω . We assume 

that regulation is fast and accurate. It is possible to investigate the impact of frequency 

variation on system behavior. If it were assumed that frequency variations were small, 

then the effect on all impedances could be approximated, and this is often done. That has 

not been included here, so there is no apparent coupling between (5.17) and the 

remaining equations, so it can be dropped. 

(5.18)  represents the network voltage characteristic. The field voltage E  is used to 

control the load bus voltage, 2V . We will assume that it is desired to maintain, 2 1V = . If 

we ignore the exciter dynamics, then (5.18)  allows the determination of the field voltage 

that yields the desired load bus voltage. However, the field voltage is strictly limited, 

0 2E≤ ≤ . If we assume that only the upper limit is a binding constraint, there are two 

possibilities for satisfying (5.18): 
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2 2

2

2 2 2

( / )1,
/

/2, 2
( / )

c a n dV E
a n

a nE V
c a n d

+ +
= =

= =
+ +

 (5.21) 

(5.19) represents the aggregated motor dynamics, and the load admittance is given by 

(5.20). ( ) 2
02, 0.25, 0.125, 1 nominal , 4L r r mR R X a I ω= = = = =  

Power System with  UPS 

The load with induction motor as considered above is now expanded to include a UPS for 

the vital load. This system is shown in Figure 5.3-4. 

1,E δ
2 2,V δ

/ja n−

~ -

3V

 
Figure 5.3-4: System with induction 

motor and UPS. 

 

UNINTERRUPTIBLE POWER SUPPLY 

In case of critical applications where a shutdown is unacceptable, a backup to the main 

power supply is provided by means of uninterruptible power supplies (UPS) [66]. An 
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UPS provides protection against power outages as well as voltage regulation during 

power line disturbances. In normal mode an AC-DC converter supplies power to the vital 

load. In case of emergency a DC-DC converter supplies power from the battery to DC 

vital load. The detail presentation of the functionality of the UPS is described in 

subsection 5.3.3. 

The Network Equations: 

The network equations of the system with UPS is similar to the network without UPS 

except that in (5.3) 2 2 2 20, 0, 0, 0G G D DP  Q  P  Q= = ≠ ≠   

Let’s redefine 2 2,v D v DP P  Q Q= =  

Let –SD2= –Pv–jQv  be the complex power consumed by the vital load at bus 2, where Pv 

and Qv  are the real power and the reactive power. S2 is power factor corrected such that 

Qv= 0 

 

( )2
2 21 2

2
2 21 2

( sin )

0 ( cos )

v
aP V E V c
n

a aV E V d
n n

θ

θ

⎞⎛− = − +⎜ ⎟
⎝ ⎠

⎞ ⎞⎛ ⎛= + +⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (5.22) 

Rearranging (5.22) we obtain the network equations: 

 

2
2 2 2

2
2 2 2

sin

0 cos

v
aP EV cV
n

a aEV d V
n n

θ

θ

⎞⎛= −⎜ ⎟
⎝ ⎠

⎞ ⎞⎛ ⎛= + +⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (5.23) 
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Where c = (1- η)c0 , d = (1- η)d0 ,  

And 2 1
3v vP V R−=  is the power consumed by the vital load.  

With,  

 ( ) ( )
2

0 0 0 02 2 2 2 2 2

11 , , 1 ,r r

L r r r r

R s X sc c c d d d
R R s X R s X

η η
⎞ ⎞⎛ ⎛

= − = + = − =⎟ ⎟⎜ ⎜+ +⎝ ⎝⎠ ⎠
 

5.3.2 Elimination Method for Unsaturated and Saturated Excitation Control 

Often in simple power systems bifurcation curves can be obtained by series of 

transformations and eliminations in the network equations at a node of the network. The 

expression obtained can be graphed to produce the so-called Power-Voltage (PV curves) 

or nose curves. The procedures are simple and are described in many power systems 

books such as in [60],[64]. In some problems of low complexity elimination method or 

quantifier elimination method can be employed. Quantifier elimination [57] is a formal 

logic procedure that has been found to be an attractive method in the field of formal 

verification. In emergency situation such as line fault, control actions are needed to 

maintain a voltage profile or power supply to a vital load. We identify three such 

controls. The first control is the excitation control. The excitation control is relevant due 

to fact that when a line shortage occurs on multiple transmission lines, voltage at the 

receiving end decreases, excitation control can therefore be utilized to increase the 

excitation voltage in order to maintain the nominal post-fault voltage level. The second 

control is load shedding, which is a widely used mechanism for voltage collapse 

prevention and regulation. It is enabled whenever the excitation control saturates and it 
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consists of reducing some fractions of the aggregate load admittance. The third control is 

used as an enabling of the uninterruptible power supply when the first two controls failed 

to maintain voltage level to the vital load bus.   

Excitation System and Elimination Method: 

The two possibilities are the unsaturated excitation voltage and the saturated excitation 

voltage. 

 When the excitation voltage is unsaturated, the voltage is limited to the range 

20 2 and the regulated voltage is 1E V< < = . The unsaturated mode can be 

described by the set of constraints: 2( 1 0 2)V E= ∧ < <  

 When the excitation voltage saturates, its voltage is fixed to E=2, but the load bus 

voltage V2 may no longer be regulated to reference voltage Vref =1, therefore the 

value of the load bus voltage needs to be determined from the network equations.  

Elimination method is a straight forward powerful method to eliminate generator phase 

angle in power system network equation. In the remaining part of this section the 

elimination method is performed on both the unsaturated excitation system and the 

saturated excitation system. 

The network equation at bus 2 is as defined in (5.23) 

The phase angle θ2 can eliminated by using trigonometric identity Cos2θ2+Sin2θ2=1. 
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2
2 2 2

2
2 2 2

sin

cos

v
aP cV EV
n

a ad V EV
n n

θ

θ

⎞⎛+ = ⎜ ⎟
⎝ ⎠

⎞ ⎞⎛ ⎛+ =⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

 (5.24) 

Squaring and adding the two equations above yields:   

 
2 2

2 2 4 2 2 2 2
2 2 2 2 22( ) (sin cos )v

a aP cV d V E V
n n

θ θ⎞⎛+ + + = +⎜ ⎟
⎝ ⎠

 (5.25) 

By expanding the above expression and using the trigonometric identity 

2 2
2 2sin cos 1θ θ+ =  we obtain the quartic equation in V2. 

 
2 2

2 2 2 4 4 2 2
2 2 2 222v v

a aP cV P c V d V E V
n n

⎞⎛+ + + + =⎜ ⎟
⎝ ⎠

 (5.26) 

  or  

 
2 2

2 4 2 2 2
2 22( ) (2 ) 0v v

a ac d V cP E V P
n n

⎞⎛+ + + − + =⎜ ⎟
⎝ ⎠

 (5.27) 

Equation (5.27) will be used in both the unsaturated and saturated excitation to derive the 

characteristic curves. 

Elimination Method for Unsaturated Excitation Voltage 

Let us obtain from (5.27) the excitation voltage when the load voltage is regulated ( V2= 

1 and assuming E>0 ) as: 
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2 2

2 2 2
22v v

a aP cP c d E
n n

⎞⎛+ + + + =⎜ ⎟
⎝ ⎠

 (5.28) 

Solving for E  for n=1 we have: 

 
2 2( ) ( )va d c P

E
a

+ + +
=  (5.29) 

Equation (5.29) is the excitation voltage necessary to maintain the regulation voltage to 1.  

Elimination Method for Saturated Excitation Control 

By setting 2
2X V=  and E=2  in (5.27),  the following quadratic equation is obtained: 

 
2 2

2 2 2
2

4( ) (2 ) 0v v
a ac d X cP X P
n n

⎞⎛+ + + − + =⎜ ⎟
⎝ ⎠

 (5.30) 

Using the quadratic formula and simplifications we have: 

 

22 2
2 2 4 4 2

2 2 2

2
2

4 1(2 ) 16 16

2( )

v v v
n a acP cP a n a n d P
n n n nX

ac d
n

⎞⎛− − ± − + − +⎜ ⎟
⎝ ⎠=

⎞⎛+ +⎜ ⎟
⎝ ⎠

 (5.31) 

Setting n =1 in V2  we have: 

  
2 4 2 2 2

2 2 2

(2 ) 4 4 ( )
( )

v v va cP a cP a a d P
V

c a d
− ± − − +

=
+ +                            (5.32) 

The Double Root of a Quadratic Equation (Bifurcation point) 
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The double root as we will later see is the bifurcation point. It is the point where both 

solution of V2 coincide.  The value of the double root is obtained by setting the 

discriminate of quadratic equation (5.30) to zero. 

 
4 2 2 24 4 ( ) 0v va cP a a d P− − + =  (5.33) 

Solving the quadratic equation (5.33) for the positive solution Pv
 at which both upper and 

lower part of V2 coincide is: 

 
2 2 2

2

2 ( ( ) )
( )v

a c a d cP
a d
+ + −

=
+  (5.34) 

The point of Pvmax=Pv in (5.34) is the bifurcation point. 

The graphical representation of (5.29) is called the excitation characteristic curve and 

(5.32) is called the power-voltage (PV) characteristic curve that will be used to analyze 

the bifurcation behavior under parameters variations. 

5.3.3 Hybrid Control Modeling of an UPS 

The induction load as considered in previous section is now expanded to include a vital 

load with an UPS. This system is shown in Figure 5.3-5. We need to consider three 

situations: unconnected, discharging and charging. The battery itself is modeled using the 

simplest reasonable model - which appears to be that in [55]. This model is composed of 

a differential equation describing the battery ‘state of charge’ σ  and an output map that 

gives the battery terminal voltage bv  as a function of the state of charge.  
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 ( )1 , , 0 1b
d i v f
dt C
σ σ σ= = ≤ ≤  (5.35) 

where i  is the battery charging current and C is the battery effective capacitance.   

The battery is connected to the DC load bus through a DC-DC converter. We consider 

three UPS modes: 

 Battery unconnected: in this case battery current is zero, 0i = . 

 Battery discharging; the battery and vital load are detached from the rest of the 

network. The battery alone supplies the load through a voltage-controlled DC-DC 

converter set up to keep the load voltage constant. The load is constant 

admittance. Typically we will have, 0i < . 

 Battery charging: In this mode the battery is charge through a DC-DC converter 

operated in current controlled mode, 0i > . The current is controlled to a specified 

value.  

This system includes operational constraints that we impose on the system. For example, 

we only allow battery charging when the system is operated without any load shedding. 

Also, the battery is not to be used to supply power to the system when the system is 

operated without any load shedding; it may be used only when some load shedding has 

been initiated. In other words, we want the battery to protect vital loads and not to be 

used as an alternative to load shedding unless the supply to vital loads is compromised.  

The power system has a vital load supplied from the DC bus. We assume that the AC-DC 

rectifier is voltage regulated, i.e., it controls the voltage on Bus 3 to a constant voltage. 
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Also, we assume that the rectifier is power factor corrected so that the power factor is 

approximately 1. This means that from the AC side of the rectifier, the vital load looks 

like a resistance. The vital load is therefore characterized by an effective resistance, vR  so 

that the admittance is: 

 1
v

v

Y
R

=  (5.36) 

Nominal Operation (no UPS, no battery charging, modes, 1 2 3q ,q ,q ) 

The network and the load characteristics are as defined in  (5.29) and (5.32) 

 

( )2 2

2

2 4 2 2 2

2 2 2 2

2 2 2

2

( )
1, , 0

(2 ) 4 4 ( )
2, ,

( )

2 ( ( ) )0
( )

v
v

v v v

v

c P a d
V E P

a

a cP a cP a a d P
E V V

c a d

a c a d cP
a d

+ + +
= = <

− ± − − +
= = =

+ +

+ + −
< <

+

 (5.37) 

Note that once the excitation system saturates there is an upper limit to vP . This is the 

voltage collapse bifurcation point that is specified in the third equation of (5.37) . Also, 

these relations are only good for 0vP > . When 0vP =  we need to use (5.21) . The first 

equation does approach the proper limit as 0vP → , but the second does not. This is as it 

should be. There are two different operating curves; one with load bus voltage controlled 

and the other with excitation saturated. The limiting cases are different. 
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Battery Discharging (UPS active, modes, 5 6q ,q  ) 

Now, consider the discharging situation. In this case the vital load and UPS are separated 

from the rest of the system. Thus, the load on the network is reduced so that the network 

equations are the original and load parameters return to those given by (5.20). The DC-

DC converter regulates its output bus to 3 .V const=  so that the battery current is 

3 / vi V R= −  and  

 3

v

d V
dt CR
σ
= −  (5.38) 

Battery Charging (mode, 4q ): 

Now consider battery charging. In this case the DC-DC converter operates in current 

control mode do the battery is charged with constant current, ci i= , so long as 1σ < . For 

1σ ≥ , 0i = . The latter situation triggers a transition out of the charging state. While 

charging we have: 

 cd i
dt C
σ
=  (5.39) 

From the AC side of rectifier, the charging looks like an additional constant power load, 

3c cP V i= . The network behavior is simply the first equation of (5.37). Should, the 

excitation saturate there is a transition out of the charging state. 

5.3.4 Logical specification and IP Formulas: 

State Transition Diagram 
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Figure 5.3-5: Transition diagram of system with UPS 

 

Notice that we include a ‘failed’ state. A very high cost is imposed on the failed state. 

Hence, the optimal control should avoid it. In our formulation failure occurs when the 

batter is depleted ( 0σ ≤ ) and it is not possible to supply the vital loads from other 

sources. 

Logical specification  

We can write the logical specification based on the transition diagram described above. 

The discrete states: 1 2 3 4 5 6 7{ , , , , , , }Q q  q  q  q  q  q  q=  

The state 1q  is the initial state; it corresponds to the state of the system following a line 

fault. 



 90

The states 2q  and 3q correspond to the state of the system following the load shedding 

fraction of 1η and 2η respectively. 

 The state 4q  is charging state. In this configuration the battery can only be charged from 

the transition 1q  to 4q . 

The state 7q  the failed state. When a transition to the state 7q  occurs the system fails.  

The event state is 1 2{ , , , }E s s c d= , 1s  and 2s  are the switching events enabling the states 

1q  , 2q  and 3q . The event d enables the discharging state 5q  and 6q . The event c enables 

the charging state 4q . 

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 1 2 1 4 1 1 1

2 2 3 2 1 2

1 [1,{ ,  ,  ,  ,  ,  ,  }] [1,{ , , , , , , }]

           (( ( )) )  (( ) )  (( ( ( ( )))) )

           (( ( )) )  (( ) )  ((

spec exactly q q q q q q q exactly q q q q q q q

q s q q c q q s c q

q s q q s q

+ + + + + + +

+ + +

+ +

= ∧ ∧

∧ ¬ ⇒ ∧ ∧ ⇒ ∧ ∧ ¬ ¬ ∨ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ⇒ ∧ 2 5 2 1 2 2

3 2 2 3 6 3 1 3

4 1 4 4

5 2 5 2 6 5 2

) ) (( ( ( ( ) ))) )

           (( ) ) (( ) ) (( ( )) )

           (( ( )) ) (( ( )) )

           (( ( )) ) (( ( )) ) (( ( (( ) (

q d q q s s d q

q s q q d q q s d q

q c q q c q

q d q q s q q d s

+ +

+ + +

+ +

+ +

∧ ⇒ ∧ ∧ ¬ ∨ ¬ ∨ ⇒ ∧

∧ ⇒ ∧ ∧ ⇒ ∧ ∧¬ ∨ ⇒ ∧

∧ ¬ ⇒ ∧ ∧¬ ¬ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ¬ ¬ ∨ ¬ 5

6 2 5 6 3 6 2 6

7 7

)))) )

           (( ) )  (( ( )) ) (( ( ( ( )))) )

           ( )

q

q s q q d q q s d q

q q

+

+ + +

+

⇒ ∧

∧ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ¬ ∨ ¬ ⇒ ∧

⇒

 (5.40) 

 

Logic Constraints for Improving Computational Speed 
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Logic constraints are Boolean expressions that will play an important role in restricting 

the computational domain of the mixed-integer dynamic programming.  The idea is based 

on the fact that a current state, events and their one-step successor states, events are the 

only valid local states and events. The two-step or higher-step successor states and events 

from a current state are specified as disable. This domain decomposition translates to 

improving the computational speed of mixed-integer dynamic programming algorithm.  

The following logic constraints which we call Control Logic, is set up so that disable 

states and events are discarded from the logic constraint during computation. 

 

1 2 1 3 5 6 7 1 2 4

2 1 2 4 6 7 1 2 3 5

3 1 2

Control Logic=

{(q ( s d atmost[1,{c, s }] qq qq qq qq exactly[1,{qq ,qq ,qq }])),

 (q ( c atmost[1,{d ,s , s }] qq qq qq exactly[1,{qq ,qq ,qq ,qq }])),

 (q ( s c atmost[1,{d ,s }] qq

⇒ ¬ ∧¬ ∧ ¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧

⇒ ¬ ∧ ¬ ∧¬ ∧¬ ∧¬ ∧

⇒ ¬ ∧ ∧ ∧¬ 1 4 5 7 2 3 6

4 1 2 2 3 5 6 7 1 4

5 1 2 1 3 7 2 5 6

6 1

qq qq qq exactly[1,{qq ,qq ,qq }])),

 (q ( s s d qq qq qq qq qq exactly[1,{qq ,qq }])),

 (q ( s c atmost[1,{ d , s }] qq qq qq exactly[1,{qq ,qq ,qq }])),

 (q ( s c atmost[

∧¬ ∧¬ ∧¬ ∧

⇒ ¬ ∧¬ ∧ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧

⇒ ¬ ∧ ∧ ¬ ¬ ∧¬ ∧¬ ∧¬ ∧

⇒ ¬ ∧ ∧ 2 1 2 4 3 5 6 7

7 1 2 1 2 3 4 5 6 7 7

1,{ d ,s }] qq qq qq exactly[1,{qq ,qq ,qq ,qq }])),

 (q ( d c s s qq qq qq qq qq qq qq exactly[1,{qq }]))}

                          

¬ ∧¬ ∧¬ ∧¬ ∧

⇒ ¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧¬ ∧

 (5.41) 

The first constraint in the Control Logic (5.41), tell us that while in state 1q  the event set 

2{ , }s  d are disabled and at most one the event 1{ , }c  s  is enabled. And that higher-step 
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states 3{ , ,5 6 7qq  qq  qq , qq }are disabled and the one-step states 1 2 4{ , , }qq  qq  qq  could be 

enabled. 

IP Formulas: 

The transition specification in IP form: 

1 2 3 4 5 6 7 1 2 3 4 5 6 7IP1 GenIP[spec1,  { ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , ,  }]q q q q q q q q q q q q q q+ + + + + + +=  

 

1 2 3 1 2 3 1 2 3

1 1 2 11 2 3 1 1

2 2 3 2 1 12 2 2

2 2 33

IP1 { 1 0, 1 0,  1 0,

      1 0,  1 0, 1 0,

       1 0,  1 0,  0,  

0,

q q q q q q q q q

q s q sq q q q q

q s q s q sq q q

q s qq

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

δ δ δ δ

+ + +

+ + + + +

+ + +

+

= − − − ≥ − + + + ≥ − − − ≥

− + + + ≥ − + − ≥ − + − ≥

− + − ≥ − + − ≥ − + + ≥

− + + ≥ −
23

1 2 3
1

1 2
2 3

0,  

0 1,0 1,0 1,  0 1,  

0 1,  0 1,  0 1,0 1 }

sq

q q q q

s sq q

δ δ

δ δ δ δ

δ δ δ δ

+

+

+ +

+ + ≥

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

 (5.42) 

The IP-formulas for the logical constraint:  

2 1 1 1 1 2 1spec2 ( 1 0 2) ( 2) ((   0) ((- )  -2)  (   1))  (  2)V V V V V V V= = ∧ < < ∨ = = > ∧ > ∧ = ∨ =  

1 1IP2 GenIP[spec2, { 0 1,  0 2 }]V V= ≤ ≤ ≤ ≤  

Using the spec2  in GenIP function, gives the following result:   

 
1 1 1 1 2 1 1 2

1 2 1 2 1 2

IP2 { 3 0,  1 0,  2 0,  2 0,  

           2 0,  0 , 1,  0 ,  2 }

d V d V d V d V

d V d d V V

= − − > − + > − + ≥ − + ≥

− + + ≤ ≤ ≤ ≤ ≤
 (5.43) 

And the IP-formulas for the load shed parameter η :  
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1 2 3
4 5 3 4 5

3 4 5

3 4 5

IP3 { 0.4 0,  0.8 0,  0,  0,  0

1 0,  1 0.6 0,  1 0.2 0,

0 1,  0 1,  0 1,  0 1 }

q q q
d d d d d

d d d

d d d

η η δ δ δ

η η η

η

+ + += − + ≥ − + ≥ − ≥ − ≥ − ≥

− + + ≤ − + + ≤ − + + ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

(5.44) 

Let define two rules, z1Rule and z2Rule  corresponding to the voltage regulation case 

2 1V =  and the saturated case 2 2V = .   

 

1 2 3 1 2 3 1 2 3

1 1 2 11 2 3 1 1

2 2 3 2 1 12 2 2

2 2 33

IP1 { 1 0, 1 0,  1 0,

      1 0,  1 0, 1 0,

       1 0,  1 0,  0,  

0,

q q q q q q q q q

q s q sq q q q q

q s q s q sq q q

q s qq

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

δ δ δ δ

+ + +

+ + + + +

+ + +

+

= − − − ≥ − + + + ≥ − − − ≥

− + + + ≥ − + − ≥ − + − ≥

− + − ≥ − + − ≥ − + + ≥

− + + ≥ −
23

1 2 3 1

1 22 3

0,  

0 1,0 1,0 1,  0 1,  

0 1,  0 1,  0 1,0 1 }

sq

q q q q

s sq q

δ δ

δ δ δ δ

δ δ δ δ

+

+

+ +

+ + ≥

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

(5.45) 

Rule 1: z1Rule 

 

1 2

2 2 2
1

1 2 3

2 2 2
2

4

2 2 2

5 6 7

( ) ( )
z1Rule = z1 ( )

( ) ( )
                                           

( )                         +( )

1 1where  ,  ,  

qq qq qq

qq

qq qq qq

b
v v

a d c P
a

a d c P
a

a d c
a

P P I
P R

δ δ δ

δ

δ δ δ

+ + +
→ + +

+ + +
+

+ +
+ +

= = +

 (5.46) 

Rule 2: z2Rule 
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1 2

2 4 2 2 2
1 1

1 2 3 2 2

2 4 2 2 2
2 2

4 2 2

5 6 7 2 2

4 4 ( )
z2Rule = z2 ( )

( )
4 4 ( )

                         +
( )

2                         +( )
( )

1 1where  ,  

qq qq qq

qq

qq qq qq

v

a cP a a cP a d P
c a d

a cP a a cP a d P
c a d

a
c a d

P P
P

δ δ δ

δ

δ δ δ

− + − − +
→ + +

+ +
− + − − +

+ +

+ +
+ +

= = ,  b
v

I
R

+

 (5.47) 

The rules z1Rule and z2Rule are specifically designed to satisfy (5.37). The logical 

specification is given by spec4: 

2 1 1 2spec4=(( 1) ( 1)) (( 2) ( 2))V V z V V z= ⇒ = ∧ = ⇒ =   

The corresponding result is obtained as follows: 

 

6 1 3 2 1 2 3 4 5 6

1 1 4 2 5 1 2 2

1 1 4 2 1 2 3

IP4={ 1 3 0,  1 2 0,  1 0,  1 0,  

          2 2 1 0,  2 2 2 0,  3 0,  3 2 0,  

         2 2 1 0,  2 2 2 0,  0 1,  0 1,  0 1,

          0

d V d V d d d d d d

d V z d V z d V d V

d V z d V z d d d

− + > − + > − + + + ≥ − + + + ≥

− + − ≥ − + − ≥ − + + < − + + <

− + + − ≤ − + + − ≤ ≤ ≤ ≤ ≤ ≤ ≤

4 5 6 1 21,  0 1,  0 1,  0 2,  0 1,  0 1 2,  0 2 1    }d d d V V z z≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

 (5.48) 

5.4 Conclusion 

At the foundation of a good analysis lies a good modeling. This chapter had provided the 

modeling apparatus necessary for hybrid control system analysis.  

In this chapter we have selected a 3-bus power system with UPS to illustrate our 

approach to hybrid system. We provided a detailed description of the 3-bus power 
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system. Models without and with UPS were presented. We gave the derivation of all the 

important 3-bus power system equations including excitation characteristic, network and 

load characteristic curves. The elimination method was used to obtain those 

characteristics equation. Hybrid system modeling is an essential part of this chapter 

therefore we’ve presented a model for emergency control using an UPS and gave a 

concise logical specification of the transition structure of the 3-bus power system with 

UPS.  
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CHAPTER 6: BIFURCATION CONTROL OF THE 3-BUS POWER SYSTEM 

6.1 Introduction 

It is becoming well-accepted in emergency control design of complex system that 

hybrid structure approach [22] brings new design promises. Network reconfiguration and 

protection can now be formulated using the hybrid control approach.  However, in the 

hybrid systems literature, very little attention is paid to the role of bifurcation control to 

the underling continuous-discrete structure. As power systems operate increasingly close 

to their stability limits due to high load demand, voltage excitation alone is not sufficient 

to maintain an adequate network voltage profile. The control effectiveness of a generator 

excitation system is inherently limited, by saturation which affects both the ability to 

regulate voltage and the stability of the system, consequently the power system voltage 

inevitably will collapse. Although the basic understanding of the mechanism of voltage 

collapse and spontaneous oscillation in power systems dynamics are well known, the 

picture is not complete because voltage collapse usually involves a period of discrete 

events associated with the action of various protection systems (AVR i.e. exciter control, 

circuit breakers etc..) intended to prevent failures.  The goal of this chapter is to show 

how  bifurcation in a small power system modeled as hybrid system  could be used to 

avoid voltage collapse and how continuous and switching control could be used to 

establish an appropriate equilibrium operating point.  
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The structure of the chapter is as follows: In section 6.2, we will describe the 

stability of equilibria and will give essential definitions and theorems on stability, also the 

method of linearization will be introduced. In section 6.3 we will present the bifurcation 

analysis of the 3-bus power system where the network and load equilibrium 

characteristics curves are described. In section 6.4, the excitation system will be 

described and its effect on the system will be evaluated. The network and the load 

characteristic curves will be analyzed and the effectiveness of switching to maintain 

stable post-fault steady-state operating condition will be investigated. In section 6.5 the 

bifurcation of diagram of the 3-bus power system that incorporate the dynamics of the 

motor will be analyzed based on various load shedding. 

6.2 Stability of Equilibria   

The stability of dynamical systems in literature is numerous. Our interest in stability of 

power systems, modeled as hybrid system, is voltage stability and voltage collapse 

prevention. The object of stability analysis is to draw conclusions about the behavior of 

the system around equilibrium points, and to design feedback strategies that improve the 

system performance. Hybrid systems arise in practice when there is a need to model 

discrete changes of a dynamical system due to component failures acting as disturbances. 

The stability of nonlinear hybrid systems is still an open subject even though much 

progress had been made in the case of linear hybrid system.  The study of power system 

stability that deals with voltage regulation during component failure can be cast as a 

problem of existence of equilibrium points and their associated eigentructures.  

Definition: Equilibrium points 



 98

Let the set of n ordinary differential equations written in a compact form, ( )x f x=& . The 

equilibrium points are given by the solution x* of the algebraic equation ( ) 0f x = .  

Stability of an equilibrium point 

An equilibrium point x* is called stable if all solutions with an initial condition close to x* 

remains near x* for all time. [64].  

An equilibrium point that is not stable is called unstable. 

One can say a great deal about the qualitative behavior of nonlinear systems in the 

vicinity of an equilibrium point from the study of their linearization at the equilibrium 

point.  The qualitative behavior of the nonlinear system can often be approximated by the 

linear systems. The Hartman-Grobman theorem provides a justification for linearization 

method.  

The linearization consists of a small perturbation defined by *x x x∆ = − about an 

equilibrium point. By keeping only the first-order term of the taylor series expansion, one 

obtained the linear system, x A x∆ = ∆&  where 
*

*( )x
x x

fA f x
x =

∂= =
∂

  is called the Jacobian.  

Stable, Unstable and Center Manifolds 

Consider the autonomous system ( )x f x=&  and suppose 0x =  is an equilibrium point so 

that (0) 0f =  , let (0) /A f x= ∂ ∂ . Define the three subspaces of Rn: 

 The stable subspace, Es : the eigenspace of eigenvalues with negative real parts. 

 The unstable subspace, Eu : the eigenspace of eigenvalues with positive real parts 
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 The center subspace, Ec : the eigenspace of eigenvalues with zero real parts.   

Definition: An equilibrium point x* of ( )x f x=&  is said to be hyperbolic if all the 

eigenvalues of the Jacobian matrix *( )xD f x  have nonzero real parts [69] 

Theorem: Hartman-Grobman  

Let f(x) be a Ck vector field on Rn with f(0)=0 and (0)xA f= . If A is hyperbolic then there 

is a neighborhood U of the origin in Rn on which the nonlinear flow of ( )x f x=&   and the 

linear flow of x Ax=&   are topologically conjugate [59]. 

Bifurcation  

The term “Bifurcation“ originates from the concept of different branches of equilibrium 

points intersecting each other and thus bifurcating. At the bifurcation points *x  of the 

system ( )x f x=&   the Jacobian *( )xD f x  is singular [65]. 

We say that a bifurcation occurs at any point in parameter space, for which the qualitative 

structure of the system changes for small variation of the parameter vector. The number 

of solution can change as the parameter is varied. The qualitative changes in the system 

that will be investigated are: 

 Number of equilibrium points. 

 Stability of equilibrium points. 

Definition 
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Consider the set of n ordinary differential equations given by ( , )x f x µ=&  where x is the 

state vector and µ is a parameter vector. 

The equilibrium points are given by the solution *x  of the equilibrium manifold 

*( , ) 0f x µ = . The existence of equilibrium solution is given by the implicit function 

theorem. 

Theorem : Implicit Function Theorem 

Suppose that : ;kf R R R  (x , ) f(x , )µ µ× → a , is a C1 function satisfying  

(0,0) 0 (0,0) 0xf  and f= ≠ . 

Then there are constant 0 0, 1and   and  C  functionδ η> >  

:{ : } Rψ µ µ δ< →  such that  for (0) 0 and f( ( ), )=0  ψ ψ µ µ=  for µ δ<  [69]. 

The implicit Function Theorem can be used to study the equilibria in the following 

contest. Let ( , )x f x µ=&  be a differential equation depending on the parameter µ .  If 

* 0x = is hyperbolic equilibrium point of the differential equation ( , )x f x µ=& at 0µ = , 

then the conditions of the Implicit Function Theorem are satisfied. This guarantees that 

the equation *( , ) 0f x µ =  may be solved locally for ( )x ψ µ=  as function of the 

parameter µ .  

Definition: Bifurcation 
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A one parameter family of vector fields of the form ( , )x f x µ=&  also satisfying the 

conditions (0,0) 0f = , and (0,0) 0xD f =  is said to undergo a bifurcation at 0µ =  if the 

flow of the equation at 0µ =  is not C0 equivalent ( not qualitatively similar) to the flow 

for µ  near zero [68].  

Differential-Algebraic Equations in Power Systems 

The power system model that characterizes the system is composed of differential-

Algebraic Equations: 

 
( )
( )

, ,

0 , ,

x f x y

g x y

µ

µ

=

=

&
 (6.1) 

where mRµ∈  is the vector of parameter representing change in the system such as 

control set point (e.g. generator voltage regulator) or perturbation such as (e.g. load 

changes). The vector nx R∈  is the state vector (e.g. excitation , motor slip , etc) and  

py R∈ is the vector of algebraic constraints variables (e.g. phase-angle, voltage etc.. )  

The functions : , :n p m m n p m pf R R g R R+ + + +→ →   define the evolution of the state.  

By collecting the variable x and y into a single vector  [ ]Tz x y=  the DAE  (6.1) can 

be written in compact form as: 

 ( , )z F z µ=&  (6.2) 

The equilibrium points of the DAE in (6.1) is determine by the solutions of: 
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( )
( )

0 , ,

0 , ,

f x y

g x y

µ

µ

=

=
 (6.3) 

Equation (6.3) represents the load flow solution of a power system. 

The stability of the equilibrium is determined by linearizing about the equilibrium points. 

Using the taylor series expansion on equation (6.1) the linearized equation is: 

 

0

 J=  is the unreduced Jacobian of (6.3)x y

x y

x x
J

y

f f
where

g g

∆ ∆⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥∆⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

&

 (6.4) 

If we assume that gy is nonsingular ( det gy ≠ 0 ), then the algebraic variable ∆y can be 

eliminated in (6.4) by the Schur complement: 

 
1

x y y xx f f g g x−⎡ ⎤∆ = − ∆⎣ ⎦&  (6.5) 

or  

  

 

[ ]

1
z A=F  is the reduced Jacobian of (6.3)

 z=

x y y x

T

x A x

where f f g g

for x y

−

∆ = ∆

⎡ ⎤= −⎣ ⎦

&

 (6.6) 
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Fold bifurcation: Fold bifurcation is the basic mechanism by which fixed points or 

equilibrium points are created and destroyed. As a parameter is varied, two fixed points 

move toward each other, collide, and mutually annihilate [67]  

Theorem: Sufficient Condition for fold bifurcation 

A fold bifurcation occur at the equilibrium (z*, µ*) where the Jacobian DzF|*
    of (6.2) 

has a simple and unique zero eigenvalue, with nonzero right an left eigenvectors v and w, 

respectively, i.e.  

 

* *

* *

( , ) 0

| | 0

0

T
Z Z

F z

D F v D F w

v  or w

µ =

= =

≠

 (6.7) 

Proof:  

This proof demonstrates that optimization can be used to derive the necessary condition 

based on the Kuhn-Tucker optimality condition. 

Based on the definition of bifurcation point the optimization problem can be written as 

follows:  

 ,z
min  ( )

s.t   F(z, )=0
µ
ζ µ

µ
 (6.8) 

Let us define the Lagrangian as:   

 ( ) ( , )TL w F zζ µ µ= +  (6.9) 
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where w  is the Lagrange multiplier. 

The first order optimality condition is:   

 

0 ( , ) 0

0 0

0 0

w

T

T
z z

L F z

L D w

L D Fw

µ µ µ

µ

ζ

∇ = ⇔ =

∇ = ⇔∇ + =

∇ = ⇔ =
 (6.10) 

The first equation in (6.10) is the equilibrium condition. By choosing ζ such as 

0µζ∇ ≠ from the second equation in (6.10) it follows that w cannot be zero, hence  

0w ≠ . Therefore:           

 

* *

*

( , ) 0

| 0

0

T
Z

F z

D F w

w

µ =

=

≠

 (6.11) 

The same approach can be used to prove for the right eigenvector by taking an 

appropriate lagrangian. 

Theorem: Necessary condition for fold bifurcation  

 

det 0

det 0

y

x y
z

x y

g

f f
detJ=det D F

g g

≠

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

 (6.12)  
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6.3 Static Bifurcation Control Analysis of the 3-bus Power System 

Bifurcation control is a control strategy capable of modifying the bifurcation structure of 

a control system. The role of bifurcation control analysis in power systems is to 

characterize the behavior of a power system under parameter variations and to investigate 

the effect of network switching capabilities that may lead to or prevent unstable operating 

conditions. In view of the recent emergence of rich hybrid systems theory, such a 

perspective brings new insight into these problems; particularly with respect to the affects 

of switching. However, the existing theory is primarily limited to linear or benign 

nonlinear continuous dynamics. Consequently, there is a need for an investigation of 

bifurcation control structure of the hybrid systems in which the discrete and continuous 

dynamics exhibit complex behaviors. The loss of a transmission line between buses 

decreases the maximum power that can be delivered to the load. Since the maximum 

power that can be delivered is proportional to the admittance of the line, we can model 

transmission line faults by reducing the nominal parameter a. Our goal is to understand 

how load shedding can be effectively utilized to insure service of the vital load and to 

maximize the amount of non-vital load supplied. Considerable insight can be obtained by 

examining the graphs of the two scalar functions in the V s−  plane for fixed values of 

,  ,  ,  m va P Pη . The intersections of these graphs are equilibrium points. The graph of the 

equilibrium points of the form ( , ) 0F x µ =  is defined as the implicit characteristic curve. 

The graph of the equilibrium points can also be defined as an explicit characteristic 

curve. Through out this chapter and beyond; an explicit characteristic curve will simply 

be called the characteristic curve. We will mainly deal with the network characteristic 

curve and the load characteristic curve. 
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In this section, starting with network equation for the 3-bus power system, and the load 

equilibrium equation we will derive the excitation and the network curves by using the 

elimination method. And we will obtain the load characteristic curves using the load 

equilibrium equation. Plotting of the different curves will be represented graphically to 

illustrate influence of control such as load shedding on the stability of the system. 

6.3.1 Excitation System’s Control and Voltage Regulation  

The classical characterization of the generator is a voltage behind transient reactance 

model. In network studies it is common practice to ignore the dynamics of the excitation 

system and to consider the voltage (behind reactance) as the network input. In our 

approach we take this approach and model a static excitation system with a two mode 

operational: the unsaturated and the saturated modes.   

During the unsaturated excitation mode the terminal (or load) voltage is regulated to the 

value of 2 1V = . The excitation voltage characteristic curve is as in (5.29)  is: 

 
2 2( ) ( )a d c PvE
a

+ + +
=  (6.13) 

The table below describes the excitation voltage for different load shedding and line 

parameters. Notice that the load admittance parameters c and d depends on the load 

shedding. 
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Table 6-1:Excitation computation 

Pm=0.5 η=0 η=0.4 η=0.8 

a=1 

c0=1.086, c=1.086, 

d0=0.043, d=0.043 

E= 21.088 (1.086 )vP+ +  

c0=1.086, c=0.652, 

d0=0.043, d=0.026 

E= 21.052 (0.652 )vP+ +  

c0=1.086, c=0.217, 

d0=0.043, d=0.008 

E= 21.017 (0.217 )vP+ +  

a=0.7 

c0=1.086, c=1.086, 

d0=0.043, d=0.043 

E= 21.428 0.552 (1.086 )vP+ +  

c0=1.086, c=0.652, 

d0=0.043, d=0.026 

E= 21.428 0.527 (0.652 )vP+ +  

c0=1.086, c=0.217, 

d0=0.043, d=0.008 

E= 21.428 0.502 (0.217 )vP+ +  

a=0.375 

c0=1.086, c=1.086, 

d0=0.043, d=0.043 

E= 22.667 0.175 (1.086 )vP+ +  

c0=1.086, c=0.652, 

d0=0.043, d=0.026 

E= 22.667 0.161 (0.652 )vP+ +  

c0=1.086, c=0.217, 

d0=0.043, d=0.008 

E= 22.667 0.147 (0.217 )vP+ +  

 

So long as the load bus voltage 2 1V = , the system equilibrium operating points are 

completely characterized by the motor behavior .  

Table 6-2:Colors: 

Cyan: No load shedding (η = 0) 

Blue: First load shedding (η = 0.4) 

Red: Second load shedding (η = 0.8) 
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Table 6-3 below gives the results of the feasibility analysis of the excitation systems. 

Table 6-3:Excitation Diagrams 
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Figure 6.3-1: Excitation voltage 

a=1 
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Figure 6.3-2: Excitation voltage 

a=0.7 
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Figure 6.3-3: Excitation voltage 

a=0.375 

 

Figure 6.3-1 shows the excitation voltage required to maintain 1 pu load bus voltage with 

nominal transmission line, a=1. The three curves correspond to η=0, 0.4, 0.8, 

respectively left to right. The Pv values at saturation for the corresponding η are 0.6199, 

1.0649, 1.5097. Figure 6.3-2 is similar except the transmission line is impaired with a=0.7. 

Notice that the excitation voltage saturates at 2 pu for sufficiently large Pv. The Pv values 

at saturation for the corresponding η are 0.0999, 0.5452, 0.9901,  Figure 6.3-3 the 

transmission line is more severely impaired with a=0.375. Here, only η =0.8 allows 

regulation of load bus voltage at least for some values of Pv. The Pv values at saturation 

for η=0.8 is 0.4271. 

Table 6-4 below, describes the values of the regulated load bus voltage V2 and the power 

consumed by the vital load Pv, for different load shedding, η, and  transmission line 

parameters, a, when the excitation reaches it saturation limits of E=2.  
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Table 6-4: Excitation, Voltage, Power Consumed   

 

6.3.2 The Load and The Network Characteristic Curves 

The graphical representation of the load and the network characteristic curves are 

powerful geometric concept for investigation the steady-state operating equilibrium point 

of a simple power system.  

Pm=0.5,s=0.1474 a=1,   E=2 a=0.7,  E=2, a=0.375, E=2, 

η=0 

V2=1, 

Pv=0.6199 

 

V2=1, 

Pv=0.0999 

 

V2=1, 

Pv=-0.4638 

 

η=0.4 

V2=1, 

Pv=1.0649 

 

V2=1, 

Pv=0.5452 

V2=1, 

Pv=-0.018 

 

η=0.8 

V2=1.4632, 

Pv=1.5097 

 

V2=1.3358, 

Pv=0.9914 

 

V2=1, 

Pv=0.4271 
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6.3.2.1 The Load  Characteristic: 

We will use the load equilibrium curve (i.e. the slip equation of the induction motor) to 

derive the load characteristic curve.  

Slip equation: 

 ( ) ( )2
22 2 2 2 2

0 0

11 1 r
m e m

m m r r

R s s
s P P P V

I I R s Xω ω
⎞−⎛

= − = − ⎟⎜ +⎝ ⎠
&  (6.14) 

The load equilibrium condition is obtained as follows: 

 
( )2

22 2 2 2
0

11 0r
m

m r r

R s s
P V

I R s Xω
⎞−⎛

− =⎟⎜ +⎝ ⎠
 (6.15) 

Since the load equilibrium equation is quadratic in V2, two equilibrium branches exist for 

fixed Pm. The plotting of slip vs V2 , reveals a left and a right branches. 

The load characteristic curve is: 

 ( )
2 2 2

2 1
r r

m
r

R s XV P
R s s

⎞⎛ +
= ± ⎟⎜⎜ ⎟−⎝ ⎠

 (6.16) 

The load characteristic curve is the voltage at the load bus as a function of the motor slip 

for constant 0.5mP =  . 

Representation of The Load Characteristic: 
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Figure 6.3-4: s vs V2  for Pm=0.5 

 

For a voltage of 2 1V = , there are two equilibrium values of the slip: s = 0.14750 and  s = 

0.82223. 

For a load bus voltage of V2 = 0.72, there is only one equilibrium point s = 0.47. This 

point is the bifurcation point. 

6.3.2.2 The Network and Load Characteristics:  

In this subsection we highlight the interaction between the load characteristic and the 

network characteristic in order to gain insight into the system bifurcation behavior.  The 

governing equations are of the form:   

 
( )
( )

2

2

, , 0

, , , , 0
m m

n v

g s V P

g s V a Pη

=

=   
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The intersection points of the two curves represent various possible operating points of 

the power system. The stability of those points is crucial to the safe operation of the 

power system. The absence of the intersection points indicates that the bus voltage will 

collapse if no action is taken to change parameters of the system. An eigenstructure 

analysis will reveal the stability type of the equilibrium points. 

The operating characteristics of the load and the network will be plotted in the 2V s−  

plane for discrete values of ,mP  , aη . The load and the network equilibrium manifolds 

are given by: 

 ( )
2 2 2

2 1
r r

m
r

R s XV P
R s s

⎞⎛ +
= ± ⎟⎜⎜ ⎟−⎝ ⎠

 (6.17) 

 
2 4 2 2 2

2 2 2

2 4 4 ( )
( )

v v va cP a a cP a d P
V

c a d
− ± − − +

=
+ +

 (6.18) 

Where 0 0(1 ) , (1 )c c  d dη η= − = − . 

Representation of The Network and The Load characteristic 

In the following diagrams for fixed value of mP  in (6.17) and fixed value of  ,vP  a , in 

(6.18), and η  a discrete parameter, we can plot the variation of the voltage 2V  as function 

of the slip s as a family of discrete load shedding curves . For a specific load shedding 

amount there are two equilibrium points. Due to operating constraints one equilibrium 

may be favored over the other, the eigenvalue analysis will be used to determine the 

stable operating equilibrium point.  
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Figure 6.3-5: The nominal network, 1a = , graphs are shown with 0.3vP =  

and for six values of the load shed parameter, η , 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

      from left to right respectively.  The motor characteristic is shown for 0.5mP = . 

  

In the nominal network, only the upper branches of the network characteristic intersect 

the motor (load) characteristics branches. The lower branches are not plotted because 

they don’t contribute to the set of equilibrium points. 
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Figure 6.3-6: An impaired network, a = 0.375. 

All other parameters are the same 

 

 Figure 6.3-6 compares the network and load characteristic for several load shedding 

amounts with an impaired transmission line. As the parameter a decreases higher load 

shedding is needed to establish equilibrium points. Sufficiently high levels of load 

shedding exhibit two equilibrium points. Clearly, one critical value of load shedding 

produces exactly one equilibrium point. In section 6.5, we will discuss the stability of 

these equilibria. 

Stability of equilibrium points 

The stability of power system requires that a stable equilibrium point exists. 

Consequently, we need to assess the stability of the equilibria. This will be done by 

linearization at each equilibrium point and computation of the eigenvalues. 
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Number of equilibrium points 

The number and the stability of the equilibrium points can be predicted. First, let us look 

at equilibria: 

 When the network characteristic intersects the load characteristic transversally, 

then two equilibriums points exist, of which one stable and one unstable.   

 When the network characteristic intersects the load characteristic, but not 

transversally, then number of equilibrium is one. 

 When the network characteristic doesn’t intersect the load characteristic, then 

there are no equilibria. 

We will analyze in detail two cases. Case 1 is for load shedding {0,  0.4, 0.8}η =  and a 

single fixed mechanical, whereas Case 2 is for load shedding {0,  0.4, 0.8}η = and 

multiple discrete mechanical powers.  

Case 1:  {0,  0.4, 0.8}η =  and 0.5mP =  fixed 

For a single mechanical load power the characteristics curves and the system equilibrium 

states are represented below.  
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Figure 6.3-7: Equilibrium Points for 

η ={0, 0.4, 0.8}, Pm =0.5  Pv=0.1 

                                                                                                                 

This diagram shows that the amount of load shedding that is necessary to maintain 

steady-state equilibrium is 0.8η = .  

Stability and Eigenvalue Computation 

The results of the computation, shown in Table 6-5: gives the equilibrium points and their 

corresponding eigenvalues shown in the table bellow. 

Table 6-5:  Equilibrium points and corresponding eigenvalues, 0.1, 0.5v mP  P= = . 

 

 

 

 

 

Pv=0.1, Pm=0.5 Equilibrium point and eigenvalue 

η=0 None 

η=0.4 None 

η=0.8 
(s,V2)=(0.03857,1.83), λ=-11.54 

(s,V2)=(0.6923,0.81), λ=2.11 
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Based on linearization and eigenvalue computation for 0.1vP =  and 0.5mP = , we can 

study the stability of the two equilibrium points that exist at load shedding 0.8η = . The 

stable one, 2 2( , ) {0.03857,1.83}s V =  and the unstable one, 2 2( , ) {0.6923,0.81}s V = .  

The diagram below, Figure 6.3-8, shows the behavior of the equilibrium points structure 

of the system when the power consumed by the vital load is  0.3vP = .                                              
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Figure 6.3-8: Equilibrium Points for 

η ={ 0.4, 0.8}, Pm =0.5, Pv=0.3 

 

In this scenario where the 0.3vP = , the margin of stability decreases, see Table 6-6, this is 

reflected in a smaller negative eigenvalue and also, we see that the two equilibria are 

closer together. The diagram shows that the amount of load shedding that is necessary 

maintain steady state equilibrium is again 0.8η = .   
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Table 6-6: Equilibrium points and corresponding eigenvalues, 0.3vP = , 0.5mP =       

 

 

 

 

 

The diagram below, Figure 6.3-9, shows the behavior of the equilibrium point structure 

of the system when the power consumed by the vital load is  0.5vP = .              
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Figure 6.3-9: No equilibrium points for Pv=0.5 

                                                                       

Pv=0.3, Pm=0.5 Equilibrium point and eigenvalue 

η=0 None 

η=0.4 None 

η=0.8 
(s,V2)=(0.0469,1.67), λ=-8.70 

(s,V2)=(0.3514,0.75), λ=20.73 
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In this scenario where the 0.5vP = , the margin of stability vanishes, i.e. no equilibrium 

point exists and the system will collapse. 

Table 6-7: Equilibrium points and corresponding eigenvalues, 0.5vP = 0.5mP =  

 

 

 

Case 2: {0, 0.4, 0.8}  η =  and multiple discrete mechanical powers 

{0.2, 0.4, 0.6, 0.8, 1}mP     = .  

This case is quiet interesting because by using the discrete controls η and mP , we can 

increase the ability of the power system to maintain stable operating condition. The 

diagram below, Figure 6.3-10, shows the equilibrium points  of the system when the 

power consumed by the vital load is  0.1vP = .      

Pv=0.5, Pm=0.5 Equilibrium point and eigenvalue 

η=0 None 

η=0.4 None 

η=0.8 None 
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Figure 6.3-10: Equilibrium points for various load 

shedding values and discrete mechanical power . 

 

From Figure 6.3-10 above, we can conclude that the chance of establishing stable 

operations  has increased due to the multiplicity of discrete mechanical powers. The 

stability of the equilibrium points is shown in the tables below.  

Table 6-8 gives the number of equilibrium points for the set of control { , }mPη  for 

0.1vP = . 

Table 6-8:Number of equilibrium points 

 

 

 

 

Pv=0.1 Pm=0.2 Pm=0.4 Pm=0.6 Pm=0.8 Pm=1 

η=0 0 0 0 0 0 

η=0.4 2 0 0 0 0 

η=0.8 2 2 2 2 2 
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The equilibrium points in Table 6-8 can be expanded to give the stability results for the 

equilibrium points Table 6-9 gives eigenvalues associated with the equilibrium points. 

Table 6-9: Number of equilibrium points and stability analysis. 

    

By refining the control switching {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}     η =  and  

Pv=0.1 Pm=0.2 Pm=0.4 Pm=0.6 Pm=0.8 Pm=1 

η=0 0 0 0 0 0 

η=0.4 

1  Stables 

(s,V2)=(0.03,1.31) 

λ=-4.953 

1 Unstable 

(s,V2)=(0.3149,0.49) 

λ=0.952 

 

0 0 0 0 

η=0.8 

1 Stable 

(s,V2 ) =(0.014,1.87) 

λ=-13.322 

1 Unstable: 

(s,V2 ) =(0.85,0.69), 

λ=1.58 

1 Stable 

(s,V2)=(0.3014,1.85) 

λ=-12.17 

1Unstable: 

(s,V2)=(0.7417,0.77) 

λ=1.19 

 

1 Stable: 

(s,V2)=(0.0475,1.82) 

λ=-10.87 

1 Unstable: 

(s,V2)=(0.0475,1.82) 

λ=2.26 

 

 

1 Stable: 

(s,V2)=(0.0673,1.79) 

λ=-9.4 

1Unstable: 

(s,V2)=(0.5630,0.94) 

λ=2.52 

 

 

1 Stable: 

(s,V2)=(0.0907,1.74) 

λ=-7.85 

1 Unstable: 

(s,V2)=(0.486,1.03) 

λ=2.65 
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{0.2, 0.4, 0.6, 0.8, 1}mP     =  we obtain a dense bifurcation diagrams with higher number 

of equilibrium points. 
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Figure 6.3-11: Equilibrium Points for multiple control switching at Pv=0.1

 

The computational results in Table 6-9 and Figure 6.3-11 show that the set of equilibrium 

points on the top left side of the diagram are the stable equilibriums points, while the rest 

of equilibrium points are the unstable equilibrium points. 

The Table 6-10 gives the number of equilibrium points and the type of stability for a set 

of control { , }m Pη  for 0.1vP = . The type of stability can be described as 

 1+1=2: 1 Stable+1 Unstable points 

 

Table 6-10:The Number of Equilibrium points 
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Pv=0.1 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 

Pm=0.2 1+1=2 1+1=2 1+1=2 1+1=2 1+1=2 1+1=2 

Pm=0.4 0 1+1=2 1+1=2 1+1=2 1+1=2 1+1=2 

Pm=0.6 0 0 1+1=2 1+1=2 1+1=2 1+1=2 

Pm=0.8 0 0 0 1+1=2 1+1=2 1+1=2 

Pm=1 0 0 0 0 1+1=2 1+1=2 
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Figure 6.3-12: Equilibrium Points for multiple control switching at 
Pv=0.3 

 

Figure 6.3-12 gives a similar diagram and the equilibrium points for a set of control 

{ , }m Pη  for 0.3vP = .  
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Table 6-11:Stable Equilibrium points: 

 

 

 

 

 

The Table 6-11 gives the number of equilibrium points and the type of stability for the set 

of control { , }m Pη  for 0.3vP = . 
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Figure 6.3-13: Equilibrium Points for multiple control switching at Pv=0.4

 

Pv=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 

Pm=0.2 0 0 1+1=2 1+1=2 1+1=2 1+1=2 

Pm=0.4 0 0 0 1+1=2 1+1=2 1+1=2 

Pm=0.6 0 0 0 0 1+1=2 1+1=2 

Pm=0.8 0 0 0 0 1+1=2 1+1=2 

Pm=1 0 0 0 0 1+1=2 1+1=2 
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Figure 6.3-13 gives a similar diagram and the equilibrium points for a set of control 

{ , }m Pη  for 0.4vP = .  

We can see that as the load power vP  increases the number of equilibrium points 

decreases. 

Table 6-12: Stable Equilibrium points 

 

 

 

 

 

Table 6-12 gives the number of equilibrium points and the type of stability for a set of 

control { , }m Pη  for 0.4vP = .  

6.4 Voltage Stability Analysis and Bifurcation Curves 

In the previous diagrams we used characteristic curves to analyze, the stability of the 3-

bus power system, in this section however, we will analyze stability using bifurcation 

diagrams.  

Pv=0.4 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 

Pm=0.2 0 0 0 1+1=2 1+1=2 1+1=2 

Pm=0.4 0 0 0 0 1+1=2 1+1=2 

Pm=0.6 0 0 0 0 1+1=2 1+1=2 

Pm=0.8 0 0 0 0 0 1+1=2 

Pm=1 0 0 0 0 0 1+1=2 
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6.4.1 Bifurcation Curves  

In this analysis we will us bifurcation curves for assessing voltage regulation and the 

bifurcation point.  

The Differential-Algebraic-Equations of the 3-bus power system 

The slip equation (5.16) along with the network equations form the Differential-

Algebraic Equations of the 3-bus power systems are: 
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 (6.19) 

Since for the unsaturated excitation case, the response of the load is negligible a classical 

bifurcation analysis will provide the same results as in  6.3.1.What will be analyzed here 

is the saturated case  

The DAE for the saturated case (E=2)  can be written as:     
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 (6.20) 

or 
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Bifurcation Point: 

In section 5.3.2 we derived the bifurcation point as: 
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Where c = (1- η)c0 , d = (1- η)d0 ,  
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Normal System: a = 1 

Table 6-13:Normal system a =1 
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Figure 6.4-1: Pv=0.6199, 

s=0.1474,V2=1,η=0 
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Figure 6.4-2: Pv=1.0649, 

s=0.1474,V2=1, η=0.4 
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Figure 6.4-3: s=0.1474, 

η=0.8 

 

These bifurcation curves can be used to visualize the saturation point and the fold 

bifurcation point. The unsaturated and the saturated excitation system are both depicted 
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in the curves. The unsaturated case corresponds to the regulation line V2=1. The 

saturation point besides being the point where the excitation system saturates is also the 

point where both unsaturated and saturate cases are satisfied, which is the point where the 

switching between the two cases occurs. The saturation point, when it exists, is given 

without ambiguity by the excitation characteristic curves at saturation as shown in Table 

6-3, when using bifurcation curves, from the right to the left, the saturation point is the 

first intersection point provided that the intersection point belongs to the upper branch 

when the bifurcation curve is degenerated. (i.e fragmented). In Figure 6.4-1 the excitation 

saturation point occurs at Pv=0.6199 for a load shedding amount of η=0 and the 

occurrence of fold bifurcation point is delayed which suggests a security margin ∆Pv 

greater than zero which represents an increase in the power consumed by the vital load 

before the bifurcation point is reached.   

In Figure 6.4-2 the excitation saturation point occurs at Pv=1.0649, and the fold 

bifurcation seems to occur at the saturation point. Therefore the security margin ∆Pv is 

close to zero. In  

Figure 6.4-3 the excitation voltage is infeasible for maintaining the load bus voltage 

(V2=1) for the load shedding amount of η=0.8, which means that even the normal system 

(a=1) can fail to regulate the voltage (V2=1) despite load shedding. 

These bifurcation curves show that for load shed of η=0 and η=0.4 the voltage regulation 

is admissible. However for load shedding η=0.8 the voltage V2 cannot be regulated at a 

value of 1.  

Impaired System : a = 0.7 
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Table 6-14: Impaired system a=0.7 
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     Figure 6.4-4: Pv=0.0999 

           s=0.1474,V2=1, η=0 
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Figure 6.4-5: Pv=0.5452, 

 s=0.1474,V2=1, η=0.4
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Figure 6.4-6: Pv=  

   η=0.8 

 

For the impaired system (a=0.7) the interpretation is similar to the normal system (a=1), 

In Figure 6.4-4 and in Figure 6.4-5 the excitation saturation points don’t coincide with the 

bifurcation points.  And in  

Figure 6.4-6 the saturation is infeasible which means that right after the line fault (a=0.7) 

the excitation system fails to regulate the voltage (V2=1) and a voltage collapse will 

follow. 

Severely Impaired System: a=0.375, η=0.8  

For a severely impaired line only a high load shedding unlike in the two previous cases, 

is capable to maintain the load voltage during the excitation period.  

Table 6-15: Severely impaired system a=0.375, η=0.8 
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     Figure 6.4-7: Pv=0.5452, 

s=0.1474,V2=1 

 

The following diagram shows that the load bus voltage V2  can be regulated with the 

maximum load shed, and the plots the other shedding are infeasible. 

6.5 Conclusion 

Bifurcation control was defined as the control of the appearance of bifurcation 

phenomenon. As technological control systems become more and more complex 

traditional control studies had failed to explain the global control of systems subject to 

multiple parameter variation and changing dynamics. At the core of our hybrid 

bifurcation control study, is not just how continuous parameter variation affects the 

stability of the system but also how discrete parameter such as load shedding that were 

used as an effective control for preventing voltage collapse. We have presented the 

voltage stability analysis for the nominal system, an impaired system and a severely 

impaired system. Two types of bifurcation control analysis were conducted for the 3-bus 

network. The first type involved the network and load characteristic curves. This method 

gives considerable insight as to how various parameters affect the existence of equilibria. 

The equilibrium points of the 3-bus power system are found to be the points were the two 

characteristic curves intersect. The analysis of the stability of the equilibrium was 
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relatively straight forward, using linearization and computing the eigenvalues. The 

second type of bifurcation control analysis, utilizes conventional bifurcation curves for 

the entire system. This bifurcation control analysis developed in this chapter gives an 

insight into the how discrete changes in the system affect its capability to continue 

operation. It suggests ways to set up optimization criteria for the hybrid controller that 

will be investigated in chapter 7.  
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CHAPTER 7:  OPTIMAL HYBRID CONTROL OF THE 3-BUS POWER 
SYSTEM WITH UPS 

7.1 Introduction 

The problem of voltage regulation and emergency control to prevent voltage collapse 

following severe disturbance in a 3-bus power system with UPS can be formulated as an 

optimization problem. Optimal control theory has started to play big role in the design of 

hybrid control and in addition it represents a natural the generalization of all existing 

control methods such as linear quadratic regulator, dynamic programming, variable 

structure control and method such Model Predictive Control (MPC) originally designed 

for process control is now successfully being applied to power system control [58]. The 

advantage of the MPC method pertains to real-time simulation capability. The innovation 

in this thesis is the adoption of a new method based on mixed-integer dynamic 

programming. We will design an optimal controller in an offline fashion that will be 

utilized in real-time as a lookup table.  This chapter is organized as follows. Section 7.2 

describes the optimal control problem of the 3-bus power system; section 7.3.1 describes 

the synthesis of an optimal controller. We will give an overview of the Mathematica code 

that generates the controller. By using SIMULINK /StateFlow, we will build a simulation 

framework. The simulation results are presented to illustrate the effectiveness of our 

approach. In Section 7.4 we will give a summary of the chapter.  
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7.2 The Optimal Control Problem 

The optimal control theory was discussed in CHAPTER 4:. In this section we will define 

the optimal control problem and present the problem formulation for the case of 3-bus 

power without UPS and for the case with UPS.   

Problem Formulation 

Our approach to optimal control design is based on finite, (receding horizon) dynamic 

programming. Dynamic programming leads to a feedback strategy that can be computed 

off-line. The plant to be controlled is described by the linear discrete-time dynamic of the 

motor slip which evolves over a finite time period. This period is divided into N=25 

equally spaced intervals and k= 0.5 is the discrete time index. All events, controllable or 

exogenous, are assumed to occur at the beginning of the interval, so we distinguish 

between values of variables at instant k, before any event, k +  after the event, e.g., k k
s ,s .+  

The state space of the slip value is {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The control variables are 

( ) ( ),E k kη  and the regulated variable is V2. The goal is to keep the load voltage V2  close 

to one, specifically, we require 20.95 1.05V≤ ≤ . Our intent is to use the field voltage, E , 

to regulate the terminal voltage, 2V  to 1 p.u. Because 0 2E< ≤  is constrained, we specify 

that solutions must satisfy the excitation-controlled voltage constraint 

2( 1 0 2) ( 2)V E E= ∧ < < ∨ = . 
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The dynamics of the system:      

 

( )

( )

1 2

2 2

2

, ,

( )                   1     0,1, ,19

k k
s f s V

c a dE V k
a

η

η

++ =

+ +
= − = K

 (7.1) 

Transition, constraints and Cost Function of the 3-bus power system without UPS 

In the following transition structure, we allow for the dropping a fraction of the load, η .  

In the present case, we allow three different values of η  including zero, so { }1 20, ,η η η∈ . 

Consequently, there is normal operation and two prioritized blocks of load that can be 

dropped in accordance with the transition behavior defined in Figure 7.2-1. 

In the present case, we assume the blocks are sized such that  

 1 2 30, 0.4, 0.8q q qη η η⇒ = ⇒ = ⇒ =  (7.2) 

1q

1s¬

2q

1s

3q

2s¬

2s
 

Figure 7.2-1: Transition structure. 

 

The IP formulas obtained from the logical specification of the transition diagram, the 

excitation-controlled voltage and the load shedding is: 
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1 2 3 1 2 3

1 2 3 1 2 3
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δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ

δ δ δ δ δ δ

+ + + + + +
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− + − ≥ − + − ≥

− + − ≥ − + − ≥
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1 2 2
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0 , 1, 0 , 2
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q qq

q q q

s s

d d d
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η

η
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 (7.3) 
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Cost function: 

As an optimal control problem we need a cost function. A cost function is function 

defined by the designer to make the system behave in a certain way.   

We seek an optimal control policy, i.e., a sequence of controls ( ) ( )0 , , 1u u N −K , 

( ) ( )u k kη= , that minimizes the cost function 

 ( ) ( )( )2 21
2 10

1 / 25N
Lk

J V k r kη−

=
= − +∑  (4) 

subject to the system constraints. We can make some rough assessments of appropriate 

weighting constants 1r . Load shedding should be avoided with respect to regulating 2V  

unless the 2V  tolerance is violated. Hence we want 2 2
1 0.25 / 0.05 1/ 25r > = . 

Notice that there are a number of variations to this setup. For example, we could penalize 

soft constraint violations of the generator terminal voltage, 2V , e.g., 

Summary: 



 137

 

( ) ( )( )
( )

( )
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 (7.5) 

Due to space limitation the logic constraint is not included in (7.5). 

In the following we provide an illustration of the optimal load shedding strategy 

following a line failure represented as a reduction of a . The feedback control is given as 

a function of the state - the latter composed of the continuous slip and the three discrete 

states. At each state, the values of the control actions 
1 2
,s sδ δ  are given. The controlled 

transitions are also indicated .  
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Figure 7.2-2: Depiction of the optimal feedback controller. 

 

 

Suppose immediately post-failure, the system is in mode 1q , with a reduced slip of 0.1, 

then the system will respond as follows. Given a mechanical power level of 0.7, the 

equilibrium slip is about 0.47. As slip increase, the first block of load is dropped at about 

0.3s =  and the second at about 0.4s = . 

Power system with UPS 

In this case, in addition of the motor slip dynamics we include the dynamic of the battery, 

a detail modeling of the battery dynamic and the IP formulas were given in subsection 

5.3.3. 
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Figure 7.2-3: Transition diagram of system with UPS 

 

Notice that we include a ‘failed’ state.  

Dynamic of the motor slip: 

 ( )1 2, ,   k ks f s V η+ =  (7.6) 

Dynamic of the battery: 

 3

3

                Continuous-time: 

Discharging :  

Charging :      

c

v

c c

d i V
dt C CR

d i P
dt C V C

σ

σ

= = −

= =

 (7.7) 

The two modes can be combined in discrete-time as:  
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 ( ) ( )k+1

          Discrete-Time:
= , + ,  c c k d d kf i f iσ δ σ δ σ  (7.8) 

Optimization Constraints: 

 Equalities constraints: Excitation-Controlled Voltage 

2 2 2 2 2 2
1 2

1 2 3 4

2 2 2

5 6 7

2 4 2 2 2 2
1 1 1

1 2 3 42 2

                                            

( ) ( ) ( ) ( )
z1=( )
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4 2 2 2
2 2 2

2 2

5 6 7 2 2

4 4 ( )
( )
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qq qq qq

P a a cP a d P
c a d

a
c a d

δ δ δ
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 (7.9) 

 Inequalities constraints: Switching Rules z1, z2 Constraints 

 
6 3 2 1 2 3 4 5 6

1 1 4 2 5 1 2 2

1 1 4 2 1 2 3

                         
   1 3 0,  1 2 0,  1 0,  1 0,  

   2 2 1 0,  2 2 2 0,  3 0,  3 2 0,  

 2 2 1 0,  2 2 2 0,  0 1,  0 1,  0 1,

    0

d E d V d d d d d d

d E z d V z d V d V

d E z d V z d d d

− + > − + > − + + + ≥ − + + + ≥

− + − ≥ − + − ≥ − + + < − + + <

− + + − ≤ − + + − ≤ ≤ ≤ ≤ ≤ ≤ ≤

4 5 6 1 21,  0 1,  0 1,  0 2,  0 1,  0 1 2,  0 2 1 d d d E V z z≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

(7.10) 
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 (7.11) 

Cost function: 

Consider the following cost function: 

 ( ) ( )( )2 21 2 2
2 1 70

1 ( 1) 10 / 25N
L c dk

J V k r k qqη δ σ δ σ δ−

=
= − + + − + +∑  (7.12) 
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The cost function is a multi-objective cost function that includes a deviation of the 

reference voltage term ||V2(k)-1||2. The other cost elements are: ||ηL(k)||2 , (σ-1)2, σ2, δqq7  

where the indicator δqq7  corresponds to the fail mode at the next step of an execution. A 

very high cost is imposed on the failed state. Hence, the optimal control should avoid it. 

In our formulation failure occurs when the batter is depleted ( 0σ ≤ ) and it is not possible 

to supply the vital loads from other sources. The constants 1r  , 10 are the weighting 

constants. They play the role of penalties on the load shedding and on the transition to the 

failed mode. We can make some rough assessments of appropriate weighting constant 1r .  

Load shedding should be avoided with respect to regulating 2V  unless the 2V  tolerance is 

violated. Hence we want 2 2
1 0.25 / 0.05 1/ 25r > = . The indicators δc , δd  are binary 

variables, they correspond respectively to charging and discharging mode of the battery.  

Notice that there are a number of variations to this setup. For example, we could penalize 

soft constraint violations of the generator terminal voltage, 2V , e.g., 

 ( ) ( ) ( )( )
2 2

2 21 2 2
2 1 7 20

1 ( 1) 10 / 25N
L c d V Vk

J V k r k rη δ σ δ σ δ δ δ+ −

−

=
= − + + + − + + + +∑

 (7.13) 

Where we define the binary variables  

 
2 2

2 2

2 2

1 0.9 1 1.1
0 0.9 0 1.1V V

V V
V V

δ δ− +

< >⎧ ⎧
= =⎨ ⎨≥ ≤⎩ ⎩

 (7.14) 
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To establish appropriate values for 2r , we take the view that it is appropriate to use all 

available load shedding to eliminate any violation of the constraint (7.14) imposed on 2V . 

Thus, we should have 
2

2 1 max 1/100Lr r η> = .  

In summary, we have slip dynamics in discrete time form   
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 (7.15) 

7.3 Optimal Control and Simulation  

The optimal controller consists of a code in Mathematica that implements the mixed 

integer dynamic programming; more detail on the implementation of the code can be 

found in the appendix. 

7.3.1 Mathematica Code for Controller Synthesis 

The Mathematica code is presented as a front end code that implements the mixed integer 

dynamic programming. The state space is composed of descretized continuous state such 

as the slip, the battery  state of charge one side and the discrete state such as the hybrid 

modes. The descretization step size, h  is fixed.  

A cost function with no terminal cost which specified the voltage deviation is proposed. 

The hybrid modes reflected the simulation through the transition structure. The dynamics 

of the system are the slip and the battery state of charge. An optimal controller is 

synthesized as a look up table in term of the status of switches that can be enabled or 

disabled over the entire time horizon. The code is described below;        
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01: ContinuousS = Flatten[Outer[List, Range[0.1, 0.5, 0.1], Range[0.25, 1, 0.25]]; 

02: h = 0.5; m = 25;r = 1/25;

03: DiscreteS = Range[7]; 

04: S = Map[Flatten[#] &,  Flatten[Outer[List, ContinuousS, Di

2 2 2 2
c d qq7 qq2 qq5 qq3 qq6 qq7

screteS, 1], 1]]; 

05: G[BinaryVars_List, RealVars_List, StateVars_List,  n_Integer] := 

      (((V2 - 1)  + (  - 1) + + r  + 10 ) / m ) / .{ ( + )0.4+( + + )0.8;

06: GN[StateVars_

δ σ δ σ η δ η δ δ δ δ δ− >

q1 q2 q3 q4 q5 q6 q7

List] := 0 ;  (*terminal cost*)

07: BinaryStateVars = { + + + + + + }; 

08: BooleanStateVars = {q1, q2, q3, q4, q5, q6, q7, qq1, qq2, qq3, qq4, qq5, qq6, qq7}; 

09: DiscreteState = Boole

δ δ δ δ δ δ δ

qq1 qq2 qq3 qq4 qq5 qq6 qq7

c d s1 s2

anStateVars; 

10: NextBinaryState = { , , , , , , };

11: BinaryControlVars = { , , , };

12: BooleanControlVars = {c, d, s1, s2};

13: RealStateVars = {s, }; 

14: RealVars = {V1, 

δ δ δ δ δ δ δ

δ δ δ δ

σ

qq2 qq5 qq3 qq6 qq7

V2}; 

15: AllRealVars = {V1, V2, s, }; 

16: BinaryVars = Complement[varBinary, BinaryStateVars]; 

17: DynamicsRHS = {SlipEq, ChargeEq} / .{ ( + )0.4+( + + )0.8;

18: {T, Control} = Optim

σ

η δ δ δ δ δ− >

alPolicy[eqBinary, eqReal, ControlLogic, BinaryVars, RealVars, 

       BinaryStateVars, BooleanStateVars, NextBinaryState, RealStateVars, DynamicsRHS, 

       BinaryControlVars, BooleanControlVars, S, GN, G, m]];
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Description of the Code: 

These lines described the meaning of the code. The code appears as implemented in 

Mathematica except that there is no the line numbering 1 through 18. 

Line 01:  Describes the grid design of the continuous space of the two continuous 

variables respectively: the slip s, and the state of charge of the battery, σ.  

Line 02: h = 0.5 is the descretization step size, m is the number of steps, r is the ratio of 

the penalty weight in the cost function. 

Line 03: DiscreteS correspond to the seven modes of the hybrid automaton. 

Line 04: S is the hybrid continuous and discrete state space. 

Line 05: G corresponds to the running cost of  the cost function. The mean square error 

of the voltage V1 from the desired voltage 1 pu is minimized as well as the state of charge  

σ , the load shedding η, and the failed mode qq7. The substitution rule signifies that the 

load shedding η is set to 0.4 when the system is mode q2 or q4 and it is set 0.8 when the 

system is in mode q3 or q6 or q7. 

Line 06: GN express the fact that the terminal cost is free. 

Line 07: BinaryStateVars is the summation of all binary nodes  

Line 08: BooleanStateVars is the collection of all modes and next modes. 

Line 10: NextStateVars is the collection of the next binary states variables. 

Line 11: BinaryControlVars: is the collection of the four binary control variables. 
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Line 12: BooleansControlVars is the corresponding Booleans control variables of the 

binary control variables. 

Line 13: RealStateVars is the collection two real variables symbols 

Line 14: RealVars is the collection of the real variables that are not Real state variables. 

Line 15: AllRealVars is the collection Real state variables and real variables. 

Line 16: BinaryVars 

Line 17: DynamicsRHS={ Slip, Charge} is the two dynamics considered in this example. 

The substitution rule signifies that the load shedding η is set to 0.4 when the system is 

mode q2 or q4 and it is set 0.8 when the system is in mode q3 or q6 or q7. 

Line 18: {T, Control} is the pair composed of time T, the total computational time and 

the synthesized optimal feedback controller. 

Note: The controller can be viewed from the appendix. 

To put the controller in a form readable in Matlab/Simulink, the following mathematica 

code builds a table lookup and generates a mfile called TableDefs, ready to be used in the 

Simulink block. 

Mathematica command for lookup table building: 

Our controller is obtained by an exhaustive optimization over the entire state space, 

therefore the controller is presented as a look up table. For every continuous and discrete 
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mode state they correspond an optimal action represented by switches enabling or 

disabling. 

BuildLookupTable[{5, 4, 7}, BinaryControlVars, {“AAA”, “BBB”, “CCC”, “DDD”}, 

Control[[-1]], “TableDefs.m”] 

The first argument of BuildLookupTable, {5, 4, 7} is the list of statedimension, where 5 

is the dimension of the discretized slip space, 4 is the dimension of the discretized state of 

charge of the battery, and 7 is the dimension of discrete mode ( i.e. Dim[DiscreteS] = 7) 

The second argument is the list of Control Variables. 

The third argument, {“AAA”, “BBB”, “CCC”, “DDD”} is the list of Table names 

corresponding to the four  control variables. 

The fourth argument is the Controller:  Control[[-1]] 

The fifth argument is the Table look up file name: TableDefs.m 

The optimal control was computed in about 9 minutes on a laptop with 1.1 Ghz Pent M.  

Building a look up Table 

The SIMULINK block diagrams below generate the look up table which represents the 

controller based on the mixed dynamic programming described earlier. 
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Figure 7.3-1: Look up Table 

 

The first table with output c, is the table AAA. The output c is the discrete action of the 

battery’s charging.  

The second table with output d, is the table BBB. The output d is the discrete action of 

the battery’s discharging.  

The third table with output s1, is the table CCC. The output s1 is the discrete action of the 

load shedding with load shedding fraction 0.4.  

The fourth table with output s2, is the table DDD. The output s2 is the discrete action of 

the load shedding with load shedding fraction 0.8.  

7.3.2 Simulation 

Stateflow diagram of 3-bus system with UPS 

The state diagram the 7 mode automaton can easily be drawn using the Stateflow tool is 

the SIMULINK simulation environment.  
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Figure 7.3-2: Stateflow 

 

The seven hybrid modes of the 3-bus power system with UPS are represented using the 

Stateflow graphical interface. The load shedding and battery’s information are indicated 

in each mode. 
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Figure 7.3-3: Optimal Controller 

 

This schematic describes the structure of the optimal controller. It is composed of a 

interconnection a Stateflow diagram and a lookup table.  
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Figure 7.3-4: Power Plant 

 

The power plant is designed such that it can receive input such as η , Pm , battery 

information. The output are the slip (s), state of charge (sigma), excitation voltage (E), 

terminal voltage (V2) , battery information (empty, c, d ). 

Simulation 

The following simulation is obtained with an optimal controller for a line fault of reduced 

admittance a = 0.375. ( a = 1 represents no line fault). The initial battery state of charge σ 

= 0.1 and slip s = 0. 
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Figure 7.3-5:Mode vs time 

 

Figure 7.3-6: Battery State of charge vs time 

 

Figure 7.3-7: Excitation vs time 

 

Simulation Results 

The battery, initially merely charged, switched instantaneously to the charging mode, q4 

with increasing excitation E. At time 1 sec the excitation reached saturation and the mode 
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q1 is activated. The voltage performance starts to grade. The terminal voltage, V2 drops to 

0.7 p.u. at time 1.8 sec. At time 1.8 sec the first load shedding occurs with an 

instantaneously switch to mode q3 without dwelling in mode q2. From time 1.8 to 20 sec 

the system stays in mode q3, the battery ‘s state of charge remains at  σ = 0.18 (i.e not 

being discharged). The slip starts to decrease due to the load shedding, the excitation drop 

to about 1.18 p.u. and as expected the terminal   V2 voltage is back to regulation 

immediately after load shedding.  

7.4 Conclusion 

The goal achieved in this chapter is to have successfully designed an optimal controller 

and used it in the emergency control of complex but simple system such a 3-bus power 

system modeled as hybrid system. In this chapter, we showed that the optimal control 

method is a viable method with regard to hybrid control structure. A multi-objective cost 

was setup to reflect the voltage regulation and various objectives such as battery charging 

or discharging and the fail mode and constraints for the mixed-integer dynamic 

programming are the integer programming formulas derived in subsection 5.3.4. The 

Mathematica code executes the mixed-integer dynamic program and generates an optimal 

controller. The optimal controller was further integrated to the SIMULINK/Stateflow 

representation of the 3-bus power system with UPS. A simulation of the controlled power 

plant was run and the results were conclusive.     
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CHAPTER 8: SHIPBOARD POWER SYSTEMS 

8.1 Introduction 

The adoption of the concept of Integrated Power Systems (IPS) brings new possibilities 

for safety critical system design of ship power systems with respect to a single or 

multiple faults due to internal failures or enemy attack. Survivability following a fault 

event is essential to the safe operation of a ship. In case of failure, the topological 

structure of the network should be reconfigured to best accommodate the post-fault 

configuration of the system. In most ship power systems, load is prioritized as non-vital 

and vital and sometimes a finer graduation is available. Non-vital loads are loads such as 

auxiliary service loads for which interruption for a short period of time does not impact 

the safety or mission of the ship. However for vital loads such as aircraft launch, weapon 

or communications systems, a short power interruption could be detrimental to safety or  

mission completion. Such loads are treated with high priority. In the design of future 

naval ships, a great deal of effort will be spent in identifying ways to maintain power 

delivery to vital loads during failure of various network components.  

The goal of this research is to identify the best possible strategies for maintaining power 

supply to vital loads in emergency situations. As in  CHAPTER 7:, optimal control will 

play a crucial role in the hybrid control design of reconfiguration strategies. This chapter 

will be organized as follows: In section 8.2 below we will provide a description of an 

Integrated Power System and its main functionalities, follow by a per-unit analysis. In 

section 8.3 we will layout the reconfiguration strategy for the Integrated Power System. 

In section 8.4 we will provide the dynamic model of the Integrated Power System. 
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8.2 The Integrated Power System for Shipboard 

The Integrated Power Systems (IPS) as conceived for future ship is exemplified by the 

notional system for the DDG1000 destroyer as shown in Figure 8.2-1. It is a tightly 

coupled system composed of two parts, the starboard and the port distribution buses 

[50,51]. The starboard distribution system is a mirror image of the port distribution. They 

are interconnected through two transmission lines. There is a main turbine generator 

(MTG) on each port with 36 MW capacity. The generators are 3-phases synchronous 

generators powered by gas turbines. Also two Auxiliary Turbine generators (ATG) of 

capacity 4 MW each support the total generation, their primary role is to provide power 

to vital and non-vital loads. For the model simplification purpose, the main turbine 

generator and the auxiliary turbine generator are combined giving a 40 MW generation 

capacity. Vital loads are supplied via a DC bus in two ways. Either through an AC/DC 

converter designed to appear as unity power factor to the AC system or through a DC/DC 

converter whenever the battery supply is activated. An auctioneering diode guarantees the 

power supply from either the starboard or port side of the network. 

In this power system the majority of the load is attributed to motor loads. Each generator 

primarily supplies power to the motor load bus through a transformer and a transmission 

line. Two alternate transmission lines (bus ties) from the starboard to the port distribution 

play the role of interconnecting the two subsystems. In the present work, we consider the 

propulsion motors to be induction motors. 
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Figure 8.2-1: DDG 1000  distribution system abstraction 

 

 Reconfiguration Strategies  

Reconfiguration strategies consist of pre-specifying all modes of operation of the 

impaired system. When fault occurs the system will operate at reduced propulsion. 

o Two types of faults will be investigated: Generator fault and Line fault.  

o Non-vital load shedding will be performed at various modes. 

o Vital load will be  switched to battery mode when necessary. 

The DDG 1000 Abstraction and Circuit Breakers  

 The DDG 1000 Abstraction 
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s 

Figure 8.2-2.: Configuration of simulated system. 

 

Figure 8.2-2 represents the abstraction of this system is shown in Figure 8.2-1. 

 DDG 1000 circuit breakers: 

The table below gives the nomenclature of the circuit breakers present in Figure 8.2-2. 
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Table 8-1:Circuit Breakers nomenclature 

GSB Generator Starboard 

GP Generator Port 

MSB Motor Starboard 

MP Motor Port 

TIE Tie Breaker 

NVLSB Non Vital Load on the Starboard

NVLP Non Vital Load on the Port 

VLSB Vital Load on the Starboard 

VLP Vital on the Port 

BATT Battery 

CONN Connected 

 

 

The Admittance Matrix: 

Based on the network configuration in Figure 8.2-2 we can derive the following 

admittance matrix: 
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12 12

12 21 23 24 27 23 24 27

23 23 nvl1 nvl1

24 1 1 24

2 2 57 57

67 nvl2 nvl2 67

27 57 67 27 57 67

ib ib 0 0 0 0 0
ib i(b b b b ) ib ib 0 0 ib
0 ib i(b b ) g 0 0 0 0
0 ib 0 c i(d b ) 0 0 0
0 0 0 0 c i(d b ) 0 ib
0 0 0 0 0 i(b b ) g ib
0 ib 0 0 ib ib i(b b b )

−⎡ ⎤
⎢ ⎥− + + +⎢ ⎥
⎢ ⎥− + +
⎢ ⎥− +⎢ ⎥
⎢ ⎥− +
⎢ ⎥

− + +⎢ ⎥
⎢ − + +⎣ ⎦⎥

 (8.1) 

8.3 Reconfiguration of an Integrated Power System 

Reconfiguration of a system is the change from a current topological configuration to a 

new configuration in order to improve a performance towards an intended functional 

mode. Reconfigurability is a desirable property of modern safety critical system. It is the 

ability of a system to alter its structure so as to satisfy a performance specification.  

8.3.1 Reconfiguration Strategy 

Let us describe the reconfiguration strategy by first presenting the reconfiguration 

transition diagram and various strategies. 
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Reconfiguration Transition Diagram 
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Figure 8.3-1: Discrete state transition diagram illustrates  discrete actions. 

 

The system is assumed to be operating at full capacity in mode q0 of Figure 8.3-1. We 

consider a complete loss of main turbine generator and auxiliary turbine generator 

connected to bus 7. The following reconfigurations are possible: 

 vital loads 

 remain connected to bus 3 
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 switched to bus 6 

 switched to battery 

 non-vital loads 

 non-vital load connected to bus 3 can remain connected or dropped completely 

 non-vital load connected to bus 6 can remain connected or dropped completely 

 propulsion motors 

 propulsion motor 1, connected to bus 4, can remain at full power or reduced to 

50% power, or dropped completely. 

 propulsion motor 2, connected to bus 5, can remain at full power or reduced to 

50% power, or dropped completely. 

Discrete states corresponding to admissible reconfigurations can now be defined and 

system models developed for each discrete state. In addition, a transition structure can be 

defined that expresses allowable transitions between the discrete states. While it is always 

possible to allow transitions from every discrete state to every other discrete state, the 

specification of a transition structure has many benefits. A specification allows us to 

impose constraints on the reconfiguration process and to eliminate obviously unsuitable 

transitions. The severity of the failure obviously requires that both motors be dropped to 

50% or that motor 1 is dropped completely. It is preferable that both motors remain in 

operation so the first transition is clearly to a state with both motors at 50%. Figure 8.3-1 

shows one possible transition specification. 
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8.3.2 Reconfiguration Transition Diagram and Logic Specification 

The table bellow describes the status (0/1) of the circuit breakers which enables or 

disables all the power system components in the DDG 1000.  

Table 8-2: Circuit Breakers 

Breaker N. 1 2 3 4 5 6 7 8 9 10 11 12 13 

GSB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

GP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

MSB 1 1 1 0 1 0 1 0 1 0 0 1 1 1 

MP 1 1 0 1 0 1 0 1 0 1 0 0 0 0 

TIE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

NVLSB 1 1 1 1 1 0 0 1 0 0 1 0 1 0 

NVLP 1 1 1 1 0 1 1 0 0 0 1 1 0 0 

VLSB 1 1 0 1 0 1 0 1 0 1 0 0 0 0 

VLP 1 1 1 0 1 0 1 0 1 0 0 0 0 0 

BATT -- 0 0 0 0 0 0 0 0 0 1 1 1 1 

CONN -- 0 0 0 0 0 0 0 0 0 1 1 1 1 

 

Let us describe a few mode of the transition configuration. 

1) In mode q0 (fully functional system) all circuit are normally closed except the 

battery and the connection which are left unspecified.   

2) In mode q1, the circuit breakers on the port generation, the battery and connection 

are switched off.  
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3) In mode q2, the circuit breakers on the port generation, propulsion on the port 

side, the vital load on the starboard side, the battery and connection are switched 

off.  

Logic specification  

Based on the discrete states transition diagram in Figure 8.3-1 there are: 

 12 discrete states, 2 3 4 5 6 7 8 9 10 11 12 13{ ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  }q q q q q q q q q q q q  , 

 5 switches , 1 2 3 4 5{ , , , , }s s s s s  

The following logic specification is formulated. 

  

  



 166

 

2 3 4 5 6 7 8 9 10 11 12 13

2 3 4 5 6 7 8 9 10 11 12 13

2 1 6 2 2 4 2

1 [1,  { ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  }]

            [1,  { ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  }]

(( ( )) )  (( ( )) )  ((

spec exactly q q q q q q q q q q q q

exactly q q q q q q q q q q q q

q s q q s q q

+ + + + + + + + + + + +

+ +

= ∧

∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ 3 10 2 5 3

2 1 2 3 5 2

3 1 5 3 2 7 3 5 2 3 4 10

3 1 2 5 4

) ) (( ) )

                        (( ( (( ) ( ) )) )

(( ( )) )  (( ( )) )  (( ) ) (( ) )

                        (( ( (( ) ( ) ( )

s q q s q

q s s s s q

q s q q s q q s q q s q

q s s s s

+ +

+

+ + + +

∧ ⇒ ∧ ∧ ⇒ ∧

∧ ¬ ¬ ∨ ¬ ∨ ∨ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧¬ ⇒ ∧ ∧ ⇒ ∧

∧ ¬ ¬ ∨ ¬ ∨ ¬ ∨ 3

4 2 2 4 1 8 4 3 12 4 5 7

4 1 2 3 5 4

5 1 3 5 2 9 5 5 6 5 4 11

)) )

(( )) )  (( ( )) )  (( ) ) (( ) )

                        (( ( (( ) ( )) )

(( ) )  (( ( )) )  (( ( )) ) (( ) )

         

q

q s q q s q q s q q s q

q s s s s q

q s q q s q q s q q s q

+

+ + + +

+

+ + + +

⇒ ∧

∧ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧

∧ ¬ ¬ ∨ ∨ ∨ ⇒ ∧

∧ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ⇒ ∧

5 1 2 4 5 5

6 1 2 6 2 8 6 3 11 6 5 5

6 1 2 4 5 6

7 2 3 7 1 9 7

               (( ( ( ) ( ))) )

(( ) )  (( ( )) )  (( ) ) (( ) )

                        (( ( )) )

(( ) )  (( ( )) )  (( (

q s s s s q

q s q q s q q s q q s q

q s s s s q

q s q q s q q

+

+ + + +

+

+ +

∧¬ ∨ ¬ ∨ ∨ ¬ ⇒ ∧

∧ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧

∧¬ ∨¬ ∨ ∨ ⇒ ∧

∧ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ¬ 5 4 7 4 12

7 2 1 4 5 12

8 2 6 8 1 4 8 5 9 8 3 13

8 1 2 3 5 8

9 2 5

)) ) (( ) )

                        (( ( )) )

(( ) )  (( ) )  (( ) ) (( ) )

                        (( ( )) )

(( ) )

s q q s q

q s s s s q

q s q q s q q s q q s q

q s s s s q

q s q

+ +

+

+ + + +

+

+

⇒ ∧ ∧ ⇒ ∧

∧¬ ∨¬ ∨ ∨¬ ⇒ ∧

∧ ⇒ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧

∧¬ ∨ ∨ ∨ ⇒ ∧

∧ ⇒ 9 1 7 9 4 13 9 5 8

9 1 2 4 5 9

10 1 11 10 2 12 10 4 3 10 3 2

 (( ) )  (( ) ) (( ( )) )

                       (( ( )) )

(( ( )) )  (( ( )) )  (( ( )) ) (( ( )) )

                       ((

q s q q s q q s q

q s s s s q

q s q q s q q s q q s q

+ + +

+

+ + + +

∧ ∧ ⇒ ∧ ∧ ⇒ ∧ ∧ ¬ ⇒ ∧

∧¬ ∨ ∨ ∨¬ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧

10 1 2 4 4 10

11 4 5 11 3 6 11 1 10 11 2 13

11 1 2 4 4 11

12 4 7 12 3 4 12

( )) )

(( ( )) )  (( ( )) )  (( ) ) (( ( )) )

                       (( ( )) )

(( ( )) )  (( ( )) )  ((

q s s s s q

q s q q s q q s q q s q

q s s s s q

q s q q s q q

+

+ + + +

+

+ +

∧ ¬ ¬ ∨¬ ∨¬ ∨¬ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ⇒ ∧ ∧ ¬ ⇒ ∧

∧¬ ∨¬ ∨¬ ∨¬ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ 1 13 12 3 10

12 1 2 3 4 12

13 4 9 13 3 8 13 2 11 13 1 12

13 1 2 3 4

( )) ) (( ) )

                       (( ( )) )

(( ( )) )  (( ( )) )  (( ) ) (( ) )

                       (( ( ))

s q q s q

q s s s s q

q s q q s q q s q q s q

q s s s s

+ +

+

+ + + +

∧ ¬ ⇒ ∧ ∧ ⇒ ∧

∧¬ ¬ ∨ ∨¬ ∨¬ ⇒ ∧

∧ ¬ ⇒ ∧ ∧ ¬ ⇒ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧

∧¬ ∨ ∨¬ ∨¬ 13 )         
          
          

q+⇒

(8.2) 

For the same reason given in 5.3.4 we set up the  logic constraint. 

For example in state q2 the switch s4 is always set to zero (i.e. disabled) and at most one 

of 1 2 3 5{ , , , }s s s s¬ ¬  switches is can be enabled. Similarly the Control Logic 

specifications are obtained for the others modes.  
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Control Logic: 
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 (8.3) 

8.4 Dynamic Models and Network Equations 

The dynamics of the integrated power system as represented for the purpose of the 

deriving the controller is composed of the dynamics of the two motors and the dynamics 

of the battery. Unlike the 3-bus power system where the network equation was easily 

reducible to a characteristic equation, in a relatively large power such as the IPS, the 
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elimination method is not applicable, therefore we are compelled to use a direct 

numerical analysis of the differential-Algebraic system. 

8.4.1 Motor and Battery Dynamics 

Motor Dynamics 

The model of each motor are composed of a constant impedance load with a slow varying 

parameter which is the motor slip, aggregated with a constant impedance non vital load. 

The model of the motor is as obtained from the equivalent circuit in the 3-bus example 

shown in (5.16). 

The slip dynamics of the two motors are defined as: 

Motor 1: 0
1

0

m
ms ω ω

ω
−

= , ( ) ( )2 1 1
1 2 1 42 2 2 2 2

0 0 1

11 1 r m m
m m e m

m m r m r

R s s
s P P P V

I I R s Xω ω
⎞−⎛

= − = − ⎟⎜ +⎝ ⎠
&  (8.4) 

Motor 2: 0
2

0

m
ms ω ω

ω
−

= , ( ) ( )2 2 2
2 2 2 52 2 2 2 2

0 0 2

11 1 r m m
m m e m

m m r m r

R s s
s P P P V

I I R s Xω ω
⎞−⎛

= − = − ⎟⎜ +⎝ ⎠
&  (8.5) 

Modeling of the Battery: 

The modeling of the battery is similar to what was described previously except that there 

are no charging mode, and the nominal and the discharging mode are defined according 

to the transition state diagram. 

2) Nominal mode  (UPS inactive, modes: 2 3 4 5 6 7 8 9q , q , q , q , q , q , q , q )            

     0d
dt
σ
=        (8.6) 
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1) Battery Discharging (UPS active, modes: 10 11 12 13q , q , q , q ) 

                                                           cd i
dt C
σ
=                         (8.7) 

where 3 3/ ,  1vi V R V= − =  

Summary: 

 0n d
d i
dt C
σ δ δ= × + ×           (8.8) 

Where 
2 3 4 2 5 6 7 8 9 10 11 12 13

n dq q q q q q q q q q q q q
,  = δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ+ + + + + + + + + + + + += + + + + + + + + + + +  

This expressed the fact that in modes 2 3 4 5 6 7 8 9q , q , q , q , q , q , q , q+ + + + + + + +  the battery is 

inactive, and active in modes 10 11 12 13q , q , q , q+ + + + . 

The descretized  form of the battery: 

The two modes can be combined in discrete-time as:  

 ( ) ( )k+1

          Discrete-Time:
= ,  ,  n n k d d kf i f iσ δ σ δ σ+  (8.9) 

where  
2 3 4 2 5 6 7 8 9 10 11 12 13

n dq q q q q q q q q q q q q
,  = δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ+ + + + + + + + + + + + += + + + + + + + + + + +  

By this approach the change in the battery dynamics is taken into consideration with the 

change in the parameters from configuration changes.  
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Per Unit Analysis and Network Equations 

When different bases, and phases (i.e voltage , current, power) are used for power system 

components such generators, transformers, transmission lines it is often quiet convenient 

to pick one component power an voltage bases and perform a per unit normalization other 

power and voltage levels. A great advantage of the per unit values is that no computations 

are required to refer an impedance from one side of a transformer to the other. The goal 

of the normalization of the DDG 1000 Integrated power system is to reduced to scale the 

power system so as to give flexibility in computation and to prevent any numerical 

problem during computation. The detail of the per-unit calculation is shown in appendix 

A. 

The goal of the per-unit normalization is to simplify computations. We will use the per 

unit normalization on the impedance diagram of the DDG 1000 network model. 

 The Admittance Matrix: Y Bus 

The admittance matrix is essential in deriving the network equations. 

 

12 12

12 21 23 24 27 23 24 27

23 23 nvl1 nvl1

24 1 1 24

2 2 57 57

67 nvl2 nvl2 67

27 57 67 27 57 67

ib ib 0 0 0 0 0
ib i(b b b b ) ib ib 0 0 ib
0 ib i(b b ) g 0 0 0 0
0 ib 0 c i(d b ) 0 0 0
0 0 0 0 c i(d b ) 0 ib
0 0 0 0 0 i(b b ) g ib
0 ib 0 0 ib ib i(b b b )

−⎡ ⎤
⎢ ⎥− + + +⎢ ⎥
⎢ ⎥− + +
⎢ ⎥− − +⎢ ⎥
⎢ ⎥− − +
⎢

− + +⎢
⎢ − + +⎣ ⎦

⎥
⎥
⎥

 (8.10) 
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Where: 

1 12 2

2 22 2

0.25sl1 0.125sl1c 0.5 ,  d
0.0625 0.015625sl1 0.0625 0.015625sl1

0.25sl2 0.125sl2c 0.5 ,  d
0.0625 0.015625sl2 0.0625 0.015625sl2

= + =
+ +

= + =
+ +

 

Network Equations: 

The swing bus is taken as bus 1, therefore we ca make the following transformations 

1 2 2 2 3 23 2 4 24 2 7 27 5 7 57 6 7 67, , , , , δ δ θ δ δ θ δ δ θ δ δ θ δ δ θ δ δ θ− = − = − = − = − = − =  

1

2

2 2 3 v 3 4 2 5 5

6 v 2 7 7

P 0, Q 0, P P , Q 0, P 0, Q 0, P 0, Q 0, 

P P , Q 0, P 0, Q 0

= = = − = = = = =

= − = = =
 

The real and the reactive power equation is obtained using the formulas in (5.2). 

The equation 1 12 2 1 2P b sin( )V Vθ−  at bus 1 is eliminated from the network equations. 
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Real Equations: 

1

2

12 2 1 2 23 23 2 3 24 24 2 4 27 27 2 7

2
v 23 23 2 3 33 3

2
24 24 2 4 44 4

2
57 57 5 7 55 5

2
v 67 67 6 7 66 6

27 27 2 7 57 57

0 b sin( )V V b sin( )V V b sin( )V V b sin( )V V

0 P b sin( )V V g V

0 b sin( )V V g V

0 b sin( )V V g V

0 P b sin( )V V g V

0 b sin( )V V b sin( )

θ θ θ θ

θ

θ

θ

θ

θ θ

= − − −

= − + −

= −

= − −

= − − −

= + 5 7 67 67 6 7V V b sin( )V Vθ+

 (8.11) 

Reactive Equations: 

2
12 2 1 2 22 2 23 23 2 3 24 24 2 4 27 27 2 7

2
23 23 2 3 33 3

2
24 24 2 4 44 4

2
57 57 5 7 55 5

2
67 67 6 7 66 6

27 27 2 7 57 57 5 7

0 b cos( )V V b V b cos( )V V b cos( )V V b cos( )V V

0 b cos( )V V b V

0 b cos( )V V b V

0 b cos( )V V b V

0 b cos( )V V b V

0 b cos( )V V b cos( )V V

θ θ θ θ

θ

θ

θ

θ

θ θ

= − + + +

= −

= −

= −

= −

= + 2
67 67 6 7 77 7b cos( )V V b Vθ+ −

(8.12) 

Per Unit Admittance matrix: 
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1 1

2 2

0.21 21.2i 0.21 21.29i 0 0 0 0 0
0.21 21.29i 0.72 91.6i 0.31 12.49i 0.20 9.91i 0 0 47.97i

0 0.31 12.49i 0.36 12.53 0 0 0 0
0 0.20 9.91i 0 0.20 c i(d 9.91) 0 0 0
0 0 0 0 0.20 c i(d 9.91) 0 0.20 9.91i
0 0 0 0 0 0.36 12.53i 0.31 12.4

− + −
− − + − − −

− − +
− − − − −

− − − − −
− + − 9i

0 47.97i 0 0 0.20 9.91i 0.31 12.49i 0.51 70.37i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − +⎣ ⎦
 (8.13) 

8.4.2 Differential-Algebraic Equations Models 

Differential-Algebraic-Equations (DAEs)  form the essential mathematical model for 

power systems. So it is not surprising that a great deal of attention has been paid to the 

development of computational methods for solving them. Nevertheless, computing 

trajectories remains problematic and analysts often need to experiment with a variety of 

methods and parameters before obtaining satisfactory results. When the system involves 

switching or mode transitions the difficulty is magnified many times, and, to this date, 

very little thought has been given to hybrid systems with continuous dynamics described 

by DAEs. 

 In section 5.3.2 we were able to solve the algebraic equations (the network 

equations) using elimination methods. However, this is only feasible in the case of very 

small networks or systems with special structure. For more complex systems we need to 

compute approximate solutions, possibly using numerical computations. 

In our situation we need compute discrete time trajectories for hybrid-DAE systems, 

both forward in time (for the control problem) and backward in time (for the estimation 

problem). The distinguishing feature of hybrid systems vis-à-vis systems with only 
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continuous dynamics is that not all of the dependent variables need be continuous in time. 

Ordinarily, there will be discontinuities at time of discrete state transitions. In the 

following paragraphs we describe a discrete time model for the forward case. The 

backward model is obtained in a similar way.  

8.4.2.1 Problem Definition 

Consider the semi-explicit Differential-Algebraic-Equation (DAE) 

 
( )
( )

, ,

0 , ,

x f x y u

g x y u

=

=

&
 (14) 

where time t R+∈ , mu R∈  is an external input, the state is composed of ,n px R y R∈ ∈  

and the functions : , :n p m m n p m pf R R g R R+ + + +→ →   define the evolution of the state. We 

will assume that the control ( )u t  is piecewise continuous and the state ( )x t  is 

continuous. Our goal is to show that under appropriate conditions the system (14) can be 

approximately described by a discrete time system 

 
( )
( )

1 1

1 2

ˆ ˆ ˆ, ,
ˆ ˆ ˆ, ,

k k k k

k k k k

x F x y u

y F x y u
+

+

=

=
 (15) 

Where ˆ ˆ,k kx y  are approximations to ( ) ( ),k kx t y t , respectively. 

8.4.2.2 Differential Algebraic-Difference – Hybrid Case 

We will derive a discrete time representation where , 0,1,2,kt kh k= = K  and 0h >  is the 

time increment. It is assumed that ( ) ku t u= , a constant, for 1[ , )k kt t t +∈ . A basic 
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assumption is that mode changes can occur only at the time instants, kt . In other words, 

for the interval 1[ , )k kt t t +∈  we the system is described by 

 
( ) ( )

( ) ( )
, ,

0 , ,
k

k

i t

i t

x f x y u

g x y u

=

=

&
 (16) 

where modei I∈ , the mode index set. If we disallow resets during mode transitions, then it 

is reasonable to assume that ( )x t  is continuous.  On the other hand, ( )y t  cannot be 

expected to be continuous across a mode transition. This implies that at each discrete 

time instant kt  it is necessary to compute ( )k ky y t+ +=  from 

 ( ) ( )( ) ( ) ( )0 , , , ,
k kk k k k k ki t i tg x y u t g x y u+ + += =  

We will drop the subscript ( )ki t which is to be understood in the following expressions. 

Thus, ky+  is obtained from: 

 ( )0 , ,k k kg x y u+=  (17) 

Now, we use a backward difference formula, in particular the trapezoidal formula, to 

obtain from (14): 

 
( ) ( )( )

( )

1
1 1 12

1 1

, , , ,

0 , ,
k k k k k k k k

k k k

x x h f x y u f x y u

g x y u

+
+ + +

+ +

= + +

=
 (18) 
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With 1, ,k k kx y u+
+  known, it is necessary to solve (18) for 1 1,k kx y+ + . To do this Taylor 

expand ( )1 1, ,k k kf x y u+ +  and ( )1 1, ,k k kg x y u+ +  about an initial estimate 0 0
1 1,k kx y+ +  to obtain 

 

( ) ( )( )
( )( )

( )( )

( ) ( )( )

( )( )

0 0
1 1 12

0 0 0
1 1 1 12

0 0 0
1 1 1 12

0 0 0 0 0
1 1 1 1 1 1

0 0 0
1 1 1 1

, , , ,

, ,

, , . .

0 , , , ,

, , . .

h
k k k k k k k k

h
k k k k k

h
k k k k k

k k k k k k k k

k k k k k

x x f x y u f x y u

f x y u x x
x
f x y u y y h o t
y

gg x y u x y u x x
x

g x y u y y h o t
y

+
+ + +

+ + + +

+ + + +

+ + + + + +

+ + + +

= + +

∂
+ −

∂
∂

+ − +
∂

∂
= + −

∂
∂

+ − +
∂

 

By neglecting higher order terms, these equations can be approximately solved for the 

unknowns 1 1,k kx y+ +  using the linear equations: 

 

( ) ( )

( ) ( )
( )
( )

( ) ( ) ( )( )
( )

0 0 0 0
01 1 1 12 2

1 1

0
0 0 0 0 1 1

1 1 1 1

0 0 0
1 1 12

0 0
1 1

, , , ,

, , , ,

, , , ,

, ,

h h
k k k k k k

k k

k k
k k k k k k

h
k k k k k k k k

k k k

f fI x y u x y u x xx y
g g y yx y u x y u
x y

x x f x y u f x y u

g x y u

+ + + +
+ +

+ +
+ + + +

+
+ + +

+ +

∂ ∂⎡ ⎤− −⎢ ⎥ ⎡ ⎤−∂ ∂
⎢ ⎥ ⎢ ⎥ =

∂ ∂⎢ ⎥ ⎢ ⎥−− − ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤− + +
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (19) 

The approximation can be improved by replacing the initial values with the solution of 

(19), 0
1 1k kx x+ +← , 0

1 1k ky y+ +←  and resolving (19). Continuing recursively in this way is, 

of course, the Newton-Raphson method for finding solutions of (18). 

If h  is small and ( )x t  continuous, it is common to take 0 0
1 1,k k k kx x y y+
+ += = , so that (19) 

becomes 
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( ) ( )

( ) ( )
( )
( )

( )
( )

2 2
1

1

, , , ,

, , , ,

, ,

, ,

h h
k k k k k k

k k

k k
k k k k k k

k k k

k k k

f fI x y u x y u x xx y
g g y yx y u x y u
x y

h f x y u

g x y u

+ +

+

+
+ + +

+

+

∂ ∂⎡ ⎤− −⎢ ⎥ ⎡ ⎤−∂ ∂
⎢ ⎥ ⎢ ⎥ =

∂ ∂⎢ ⎥ ⎢ ⎥−− − ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (20) 

Note that if a mode transition takes place at kt  into a mode requiring a state reset to say 

*x , then we would take 0 *
1kx x+ = . In summary the discrete time model is given by (17) 

and (19) or (20). Notice that by making appropriate correspondences, the model (17) and  

(20) does take the form of (15).  

Ordinarily, the model is integrated by solving (17) for ky+  using a Newton-Raphson 

method, with termination dependent on an error check, or simply a fixed number of 

iterations. The latter is typical for DAE solvers. Then the linear Equation (20) is solved 

for 1 1,k kx y+ + . If we choose to implement the computations in the most flexible manner, 

we should permit solution of (17) with any specified number of iterations, 1n  and then 

1 1,k kx y+ +  should be obtained from (19) with any specified number of iterations, 2n . 

0 0t = 1t h= Nt Nh=kt kh= ( )1 1kt k h+ = +

0u ku

0 0,x y 1 1,x y ,k kx y 1 1,k kx y+ +

 

 

Algorithm 1: 
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Given , ,k k kx y u  and 1 2,n n  and , , ; , ,x y x yf f f g g g  

Determine 1 1,k kx y+ +  

1. Compute  ky+  from ( ), , 0k k kg x y u+ =  using 1n  iterations of Newton’s method, 

starting with  ky  

a. ( ) ( )( )1Newton , , , , , , , ,k k y k k kg x y u g x y u y y n+  

2. Compute 1 1,k kx y+ +  from 

 
( ) ( )( )

( )

1
1 1 12

1 1

, , , , 0

, , 0
k k k k k k k k

k k k

x x h f x y u f x y u

g x y u

+
+ + +

+ +

− − + =

=
 

using 2n  iterations of Newton’s method starting with ,k kx y+   

a. Define ( ),z x y= ,  

( ) ( ) ( )( ) ( )( )1
2 , , , , , , ,k k k k k kF z x x h f x y u f x y u g x y u+= − − +  and   

( ) ( )

( ) ( )

, , , ,
2 2

, , , ,

x k y k
z

x k y k

h hI f x y u f x y u
F

g x y u g x y u

⎡ ⎤− −⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 

b. ( ) ( ) ( ) ( )( )2Newton , , , , , , , , , ,k z k k kF x y u F x y u x y x y n  

The idea is that for any given power system in the form of (14) we will automatically 

create code for implementing (17) and (19), with 1 2,n n  as parameters. The computational 
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routines will be targeted for numerical computation in Mathematica and SIMULINK. We 

developed Mathematica code to implement the following functions.. 

Function Newton:  

( ) ( )( )0Newton , , , ,xF x F x x x n  

Given: function  ( )F x , Jacobian ( )xF x , initial estimate 0x  and number of iterations n  

1. set 0Ix x= , 1k =  

2. While k n≤  

a. solve for x , ( ) ( )( ) 0I x I IF x F x x x+ − =  (use Mathematica function 

Solve) 

b. set Ix x=  

c. set 1k k= +  

Function DAEDiscrete: 

( )0 0 1 2DAEDiscrete , , , , , , , , ,f g x y x y u n n h  

1. Given: 

a. Functions ,f g  

b. Argument lists 0 0, , , ,x y u x y  

c. Iteration integers 1 2,n n  

d. Time increment h  
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2. Implement Algorithm 1 to compute ( ),F z u  such that 

 ( ) ( )1 ˆ ˆ, , ,i k k k k kz F z u z x y+ = =  (21) 

 

Utilization: 

We will provide in this paragraph some guidelines about how to select some of the 

parameters of DAE Discrete function described above. 

If 0 0, ,x y u  are symbols, then (21) gives us the discrete time approximation suggested in 

(15). This is the primary intent of this model. Ordinarily, we take h  small and expect that 

a relatively small number of iterations, i.e., 1 2,n n  are small. Once F  is computed, it can 

be simplified using standard Mathematica functions. In view of the expected complexity 

of the expressions, it may also be desirable to truncate them, retaining only low orders of 

the small parameter h . 

8.5 Conclusion 

The concept of Integrated Power System was proposed by the Navy as replacement for 

the conventional power system existing in most naval ships, which have the disadvantage 

to be segmented, i.e. generator supplying power to lone propulsion and service loads. The 

integrated Power system has many advantages such reduce manning, the maintainability, 

and most importantly the survivability and the reconfigurabilty. In this chapter we had 

focused on the reconfiguration as a strategy for dealing with malfunctioning and 
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regulation problems. In this chapter we introduced the concept of Integrated Power 

System for Shipboard Power System. A reconfiguration strategy was proposed for 

maintaining safety operation after a loss of generation. A transition diagram highlighted 

the reconfiguration scheme. The dynamic models of the Integrated Power System, as well 

as the algebraic equations were provided. Due to the presence of discrete components 

such as circuit breakers, battery switching and our hybrid modeling approach, a special 

numerical algorithm was developed for solving hybrid differential-algebraic equations. 
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CHAPTER 9: OPTIMIZATION AND SIMULATIONS 

9.1 Introduction 

The concept of reconfigurability was introduced in section 8.3. What is presented in this 

chapter is how to optimally determine the reconfiguration strategy. In this chapter we will 

define the optimal control problem and present the problem formulation for the DDG 

1000 integrated power system. We will also apply the discrete DAE computation to the 

DDG model and will generate simulations plots follows by comments of simulation 

results.  

9.2 Optimization 

The optimal control theory was discussed in CHAPTER 4: and  CHAPTER 7: for the 3-

bus power system. In this section we will define the optimal control problem and present 

the problem formulation for the case of the Integrate Power System.   

9.2.1 Control Problem Formulation 

The integrated power system was described in section 8.2, it is mainly composed of two 

generators, two motors and transmission lines connecting them. The reconfiguration of an 

IPS consists of activating various circuit breakers to shed non vital load, or reduced 



 183

propulsion, or switching vital loads to battery supply. All in order to maintain a favorable 

voltage profile throughout the network.  

Our approach to optimal control design once again is based on finite, (receding horizon) 

dynamic programming. The state trajectory of the integrated power system is described 

by two linear discrete-time dynamic of the motor slips, and battery that evolves over a 

finite time period. This period is divided into N=25 equally spaced intervals and k= 0.5 is 

the discrete time index. The state space of the slips values are {0, 0.1, 0.2, 0.3, 0.4, 0.5}. 

The discrete state space is 2 3 4 5 6 7 8 9 10 11 12 13{ q , q , q , q , q , q , q , q , q , q , q , q } . The control 

variables are the binary variables {s1, s2, s3, s4, s5} and the regulated variable is V2. The 

goal is to keep the load voltage V2  close to one, specifically, we require 20.95 1.05V≤ ≤ . 

Differential-Algebraic Equations: 

 Differential Equations: 

 

( )

( )

2 r m1 m1
m1 42 2 2 2

m 0 r m1 r

m1
2 r m2 m2

m2 m2 52 2 2 2
m 0 r m2 r

R s 1 s1 P V
I R s X

s
R s 1 s1s P V

I R s X
i
C

ω

ω
σ

⎡ ⎤⎞−⎛
−⎢ ⎥⎟⎜ +⎝ ⎠⎢ ⎥

⎡ ⎤ ⎢ ⎥⎞−⎛⎢ ⎥ ⎢ ⎥= − ⎟⎜⎢ ⎥ +⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

&

&

&

 (9.1) 

 Algebraic-Equations: 

The algebraic equations are the real and the reactive power flow equation in (8.11) 

and  (8.12) 
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 1 1 2 3 4 5 6 7 2 23 24 27 57 67

2 1 2 3 4 5 6 7 2 23 24 27 57 67

0 g (V , V , V , V , V , V , V , , , , , , )
0 g (V , V , V , V , V , V , V , , , , , , )

θ θ θ θ θ θ
θ θ θ θ θ θ

=
=

 (9.2) 

 Differential-Algebraic Equations-Discrete 

The function DAEDiscrete is the descretized form the DAE.  Due to space limitation we 

will not attempt to give descretized DAE results but, we will give only the operational 

form: 

 

( )

( )

2 r m1 m1
m1 m1 42 2 2 2

m 0 r m1 r

2 r m2 m2
m2 m2 52 2 2 2

m 0 r m2 r

1 1 2 3 4 5 6 7 2 23 24 27 57 67

2 1 2 3 4 5 6 7

R s 1 s1s P V
I R s X

R s 1 s1s P V
I R s X

iDAEDiscrete
C

0 g (V , V , V , V , V , V , V , , , , , , )
0 g (V , V , V , V , V , V , V , 

ω

ω

σ

θ θ θ θ θ θ

⎞−⎛
= − ⎟⎜ +⎝ ⎠

⎞−⎛
= − ⎟⎜ +⎝ ⎠

=

=
=

&

&

&

2 23 24 27 57 67, , , , , )θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

(9.3) 

 

Constraints: 

A relatively large set of constraints obtained from the logic specifications presented in 

(8.2) and (8.3). We will only give the general form of constraints:  

 
i i6 qq 7 0 1 2 q 3 4 s 5 eE E d E E x E E y E E  ,   i=2,...,13δ δ δ δ+ ≤ + + + + +  (9.4) 

Cost Function 
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Consider the following cost function: 

2 2 2 2
7 2 4 5 qq4 qq5 qq6 qq7 qq10

qq11 qq12 qq8 qq9 qq13

 J=(((V  - 1)  +(V  - 1) +.25(V  - 1) .25(V  - 1) r (
     + 2( ))) / m );

δ δ δ δ δ

δ δ δ δ δ

+ + + + + +

+ + + +
 (9.5) 

The cost function is a multi-objective cost function that includes a deviation of the 

reference voltage term: ||V7 - 1||2, ||V2 - 1||2, ||V4 - 1||2, ||V5 - 1||2 where V7, V2, V4, V5   are 

bus voltage at the port, starboard, motor on starboard, motor on port side.  The two 

motors bus voltages are weighted less than the generator bus voltages. The other cost 

elements are indicators qq4 qq5 qq6 qq7 qq10 qq11 qq12+δ δ δ δ δ δ δ+ + + + +  corresponding to the 

summation of all state where exactly one of the non-vital load is shed for a weighting 

constant, r =1/25 and qq8 qq9 qq13δ δ δ+ +  corresponding to the summation of the state 

where all non-vital load are shed for a high penalty of 2. The cost function is a weighted 

average  (i.e divided by  m). 

Summary:   
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2 2 2 2
7 2 4 5

qq4 qq5 qq6 qq7 qq10 qq11 qq12 qq8 qq9 qq13

2
m1 m1 42

m 0

                       J=(((V  - 1)  +(V  - 1) +.25(V  - 1) .25(V  - 1)
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⎢ ⎥
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⎦
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 (9.6) 

 

9.2.2 Optimal Controller Synthesis 

A cost function with no terminal cost which specified voltage deviations is proposed. The 

hybrid modes reflected the simulation through the transition structure which are 

embedded in the IP-formulas (inequality constraints). The dynamic of the system is the 

difference-Algebraic Equations based on the slips and the battery state of charge and the 

algebraic equations. An optimal controller is synthesized as a look up table in term of the 

status of switches that can be enabled or disabled over the entire time horizon. The code 

is described below.        
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01: ContinuousS = Flatten[Outer[List, Range[0, 1, 0.25], Range[0, 0.5, 0.1],Range[0, 0.5, 0.1], 2]; 

02: h = 0.5; m = 25;r = 1/25;

03: DiscreteS = Range[1, 12]; 

04: S = Map[

Mathematica Code Formulation:

2 2 2 2
7 2 4 5 qq4

Flatten[#] &,  Flatten[Outer[List, ContinuousS, DiscreteS, 1], 1]]; 

05: [BinaryVars_List, RealVars_List, StateVars_List,  n_Integer] := 

      (((V  - 1)  +(V  - 1) +.25(V  - 1) .25(V  - 1) r (

Γ

δ+ + + qq5 qq6 qq7 qq10 qq11 qq12

qq8 qq9 qq13

q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13

+

      2( ))) / m );

06 : N [ StateVars _ List ] : 0;

07: BinaryStateVars = { , , , , , , , , , , , }; 

08: BooleanStateVars = {q2, q3,

δ δ δ δ δ δ

δ δ δ

Γ

δ δ δ δ δ δ δ δ δ δ δ δ

+ + + + +

+ +

=

 q4, q5, q6, q7,q8, q9, q10, q11, q12, q13,

                                         qq2, qq3, qq4, qq5, qq6, qq7,qq8, qq9, qq10, qq11, qq12, qq13}; 

09: DiscreteState = BooleanStateVars; 

10: NextBinary

1 2 3 4 5

qq2 qq3 qq4 qq5 qq6 qq7 qq8 qq9 qq10 qq11 qq12 qq13

s s s s s

1 2 3 4 5

State = { , , , , , , , , , , , };

11: BinaryControlVars = { , , , , };

12: BooleanControlVars = {s ,s ,s ,s ,s };

13: RealStateVars = { ,sl1,sl2 }; 

14: R

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

σ

1 2 3 4 5 6 7 2 23 27 24 57 67

1 2 3 4 5 6 7 2 23 27 24 57 67

ealVars = {V , V ,V , V ,V , V ,V , , , , , , }; 

15: AllRealVars = { , sl1, sl2, V , V , V , V , V , V ,V , , , , , , }; 

16: BinaryVars = Complement[varBinary, Binary

θ θ θ θ θ θ

σ θ θ θ θ θ θ

StateVars]; 

17: y0 {1,1,1,1,1,1,1,0,0,0,0,0,0 }

18: {T, Control} = Timing[OptimalPolicyDAE[eqBinary, eqReal, BinaryVars,RealVars, { }, 

      BinaryStateVars, BinaryStateVars, BooleanStateVars, NextBinar

=

yState, RealStateVars, 

     DAERHS, y0, BinaryControlVars, ContinuousS, DiscreteS, N, , m]];Γ Γ
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Look Up Table implementation: 

In order to put the controller in a form that is readable from Matlab/SIMULINK, the 

following Mathematica code builds a table lookup and generates a mfile called 

TableDefsI that is map as a SIMULINK block. 

Mathematica command for building lookup table: 

BuildLookupTable[{5, 6, 6, 12}, BinaryControlVars, {“AAA”, “BBB”, “CCC”, “DDD”, 

“EEE”}, Control[[-1]], “TableDefs.m”] 

 The first argument of BuildLookupTable, {5, 4, 7} is the list of statedimension, 

where 5 is the dimension of the discretized state of charge of the battery , 6, 6 is 

the dimension of the two slips, and 12 is the dimension of discrete mode ( i.e. 

Dim[DiscreteS] = 12) 

 The second argument is the list of Control Variables. 

 The third argument, {“AAA”, “BBB”, “CCC”, “DDD”, “EEE”} is the list of 

Table names corresponding to the five  control variables. 

 The fourth argument is the Controller: Control[[-1]] 

 The fifth argument is the Table look up file name: TableDefs.m 

 

The optimal control was computed in about 33 hrs on a laptop with 1.1 Ghz Pentium M.   
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Simulation results will be analyzed to confirm the performance of the controllers. 

Optimal Controller: Lookup Table 

5
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Figure 9.2-1:Table Look up 

 

This lookup table has input {sigma, slip sb, slip p, mode}. The output is {s1, s2, s3, s4, s5}.  

 

9.3 Simulations 

Simulations and the interpretation of their results are the ultimate steps in the 

conceptualization of any engineering or scientific research. Simulation provides a 

framework for validating assumptions made before simulation and an approximation of 

the behavior of a system before any attempt to a real-time simulation of that system. 

Implementation of the Integrated Power System in SIMULINK using the SimPower 

Toolset:  
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SIMULINK provides a power system simulation tool called SimPower. Various power 

system components such as generator, exciter, motor, transformer, short transmission line 

are available for open loop power system design.  

The SimPower model of the IPS is modeled based on the description of the IPS provided 

in Figure 8.2-2 with the modification that the system is a three phase system with the 

generator dynamics incorporated. The dynamic of the governor and prime mover are 

neglected so that the generators receive a constant mechanical input of 40 MW. An 

exciter is attached to the generator in order to regulate the generator terminal voltage to 

13.8 kV. Two 13.8-4.16 kV transformers between the generators and the motors busses 

;and two 13.8-0.450 kV transformers between the generators and non-vital loads busses. 

The mechanical power input to the induction motors is 36 MW. The transmission line 

and tie line are modeled as short transmission lines.  

Faults are modeled by using circuit breakers. A generator fault on the port side is 

modeled by disconnecting the generator from the system. 

 



 192

L=((4.16e3/sqrt(3))^2/40e6)*sin(60*pi/180)/3

L=((4.16e3/sqrt(3))^2/40e6)*sin(60*pi/180)/3

7
Vdc

6
Vgp

5
Vgsb

4
slip p

3
slip sb

2
sigma

1
s0

Vabc
AVmag
BVmag
CVmag

Voltage Data Vdc

Vabc
AVmag
BVmag
CVmag

Voltage Data VGSB

Vabc
AVmag
BVmag
CVmag

Voltage Data VGP

Vdc Reading

activ eA

B

C

a

b

c

Fault at 

VSB Fault

c
c A

B

C

a
b
c

VSB

activ eA

B

C

a

b

c

Fault at 

VP Fault

c
c A

B

C

a
b
c
VP

activ eA

B

C

a
b
c

Fault at 

VMSB Fault

activ eA

B

C

a
b
c

Fault at 

VMP Fault

c

c
A

B

C

a

b

c

VDC
c

c
A

B

C

a

b
c

V6

c

c
A

B

C

a

b

c

V3

PeGSB

To Workspace PeGSB

PeGP

To Workspace PeGP

ac
tiv

e
A B C

a b c
T ie Line With Reduction Fault

ac
tiv

e
A B C

a b c

Fault at Tie Line Fault

Sigma Reading

A
B
C
Shunt

Scope Vgsb

SB Motor Readings

Fault
Pm

mA
B
C

SB Motor

com

A

B

C
RL Load NVLSB

com

A

B
C

RL Load NVLP

A

B

C

R Load VL

A B C

R Load Batt

Product MSB

Product MP

P Motor Readings

Fault
Pm

mA
B
C

P Motor

m
Slip

Torque
Speed

Motor Measurements SB

m
Slip

Torque
Speed

Motor Measurements P

40e6

Mech Power P

36e+006

Mech Power MSB

36e+006

Mech Power MP

40e6

Mech Power GSB
A

B

C

a

b

c

Line SB

A

B

C

a

b

c

Line P

com
on
A1
B1
C1
A2
B2
C2

a

b

c

Line Control

Invert

Invert

Pm

Excitor Voltage

m

V

I

A

B

C

Generator SB

Fault

Pm

Excitor Voltage

m
V

I

A

B

C

Generator P

GSBPe Reading

GPPe Reading

activ e
A

B

C

a

b

c

Fault at 

GP Fault

Vabc

Iabc

Feeder Bus VSB

Vabc

Iabc

Feeder Bus VP

Vabc

Iabc

Feeder Bus V7

Vabc

Iabc

Feeder Bus V6

Vabc

Iabc

Feeder Bus V3

Vabc
Iabc

Feeder Bus V2

1

Excitor Voltage SB

1

Excitor Voltage P

ConvertData Type Conversion

batt

conn

sigma

charging

dc connected

Battery System co
m A B C

a b c

Battery Load (Charging)

A

B

C

a

b

c

13.8 kV to 450 V
SB Transformer

A

B

C

a

b

c

13.8 kV to 450 V
P Transformer

A

B

C

a

b

c

13.8 kV to 4.16 kV
SB Transformer

A

B

C

a

b

c

13.8 kV to 4.16 kV
P Transformer

7
PmP

6
PmSB

5
conn

4
batt

3
VLSB

2
NVLP

1
NVLSB

<Electrical power Pe (W)>

<Electrical power Pe (W)>

Figure 9.3-1: IPS in SimPower 

 

In the DDG 1000s case study we will consider only with one fault, the generator fault on 

the port side. Other fault such as tie line fault was conducted but is reported in this thesis. 

The user can select the time of occurrence of a fault. We selected time of the fault as t= 1 

sec. 

9.3.1 Open Loop Simulation and Results: 

An open loop simulation is simulation with some input to the controller fixed. All the 

circuit breakers are set constants except the circuit which activates the generator fault on 

the port side. 
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Figure 9.3-2:Open Loop System with circuit breakers set. 

 

 

  Figure 9.3-2 indicates how the circuit breakers feed into the plant. 
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Figure 9.3-3: Open Loop Generator Powers and Bus Voltages 

 

 

Figure 9.3-3 shows that when a generator fault occurs on the port side at time t=1 sec, the 

power on the port side generator drops to zero and the power on the starboard side jumps 

from 48 MW to 82 MW, then reaches 78 MW after t =30 sec. The bus voltage on the 

starboard side is maintained at 13.8 kV. The port side generator power and voltage 

immediately drop to zero after the fault on the port side generator. 



 195

0 10 20 30
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Starboard Side Motor Slip

S
lip

0 10 20 30
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Port Side Motor Slip

S
lip

0 10 20 30
0

10

20

30
Starboard Side Motor Electrical Torque

E
le

ct
ric

al
 T

or
qu

e/
1e

4

0 10 20 30
0

10

20

30
Port Side Motor Electrical Torque

E
le

ct
ric

al
 T

or
qu

e/
1e

4

0 10 20 30
170

180

190
Starboard Side Motor Speed

S
pe

ed
 R

P
M

Time (seconds)
0 10 20 30

170

180

190
Port Side Motor Speed

S
pe

ed
 R

P
M

Time (seconds)
 

Figure 9.3-4:Open Loop Motor Slip, Electrical Torque, Speed 

 

In Figure 9.3-4, when a fault occurs at time t =1 sec, on the port side, the motor slip 

increases and electrical torque and the speed decrease. 
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Figure 9.3-5:Open Loop Motor Power and Voltages 

 

Figure 9.3-5 shows that with a generator fault on the port side at time t = 1 sec, without  

reduction of power (i.e. propulsion) on the motors, the power and the voltage on the port 

side will collapse. 
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Figure 9.3-6: Open Loop Vital load Powers and Bus Voltages 
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In Figure 9.3-6 the Vital load bus power demand on the starboard side before and after 

the fault at t =1sec, is 2 MW. On the port side the power drops and the voltage is on the 

verge of collapsing after t =30 sec.   

 

9.3.2 Closed Loop Simulation and Results:   

A comparison can be made, between the open loop simulation and the closed loop 

simulation to evaluate the effectiveness of the optimal controller. 

Simulation Framework: 

The simulation framework describes the interconnection of different components of the 

integrated power system in SIMULINK environment.  
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Figure 9.3-7:Simulation Framework 
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The plant represents the integrated power system with the switch breakers as inputs and 

as outputs s0,  slip sb, slip p and sigma representing the state of the switch s0, the slip on 

the starboard, the slip on the port, the state of charge of the battery, and then Vgsb, Vgp, 

Vdc, corresponding to voltage on the generator starboard,  generator port and DC vital 

load. 

The Lookup Table receives as input the state of charge sigma, the slip on the starboard 

slipsb, the slip on the port, slipp and the mode of the system 

The workspace contains the graphical representation of inputs signals indicated in the 

workspace block.  

The mode controller is the stateflow representation of the thirteen states of the integrated 

power system. Its input signals are initial switch s0 and the five switches s1, s2, s3, s4, s5. 

The outputs are the status of the circuit breakers. 

Let us analyze how the components in the simulation framework feed to each other. 

 The plant feeds into {mode controller, Lookup Table, Workspace}. 

 The mode controller feeds back into the {Plant, Workspace, Lookup Table}. 

 The Lookup Table feeds into the {Mode Controller}.  

Stateflow diagram: 

As indicated before stateflow is a graphical tool in SIMULINK for representing a hybrid 

automaton. Each state contains the circuit breakers setting of a configuration of the 
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integrated power system. The changes in the circuit breakers status are dictated by the 

optimal controller that was derived using the mixed-integer dynamic programming. 

Figure 9.3-8:Stateflow Diagram for the DDG 1000 
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Figure 9.3-9: Closed Loop Generator Powers and Bus Voltages 

 

 

Figure 9.3-9 Shows that when a generator fault occurs on the port side at time t=1 sec, 

the power on the port side generator drop to zero and the power on the starboard side at 

t=1 sec, jumps from 48 MW to 82 MW, then it starts to slowly decrease and reaches a 

steady-state value 42 MW after t =17 sec. The bus voltage on the starboard side is 

maintained at 13.8 kV. 
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Figure 9.3-10:Closed Loop Motor Slip, Electrical Torque, Speed 

 

In Figure 9.3-10, when a fault occurs at time t =1 sec the motor slip and electrical torque 

decrease to a steady state values of 0.012 and 9.8 respectively, whereas the speeds 

increase to a steady-state values of 186 RPM. 
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Figure 9.3-11:Closed Loop Motor Power and Voltages 

 

Figure 9.3-11 shows that with a generator fault on the port side at time t = 1 sec, a 

reduction of power on both motors will prevent the voltage on both motors to collapse 

and to maintain the bus voltages of the motors within a small deviation from the 

reference voltage of 4kV. 
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Figure 9.3-12 : Closed Loop Vital load Powers and Bus Voltages 
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In Figure 9.3-12 the Vital load bus power demand on the starboard side before the fault  

at t=1sec, is 2 MW, after the fault the power demand is 4 MW, whereas on the port side, 

before the fault the power demand is 7.2 MW, after the fault the power demand is 2 MW. 

 

9.4 Conclusion 

The design of the Integrated Power System for future Navy’s Ships is a challenging task; 

we have proposed a reconfiguration approach based on the emerging field of optimal 

hybrid control design. The approach is sound and constitutes a step toward a global 

optimal design. The problem of reconfigurations of the Integrated Power System was 

formulated as an optimal hybrid control.  An Optimal controller was synthesized in a 

form a lookup table. Simulation was conducted on the open loop plant followed by the 

simulation of the closed loop plant. A comparative study of the open loop and the closed 

showed that the closed loop plant achieved the reconfiguration goal and prevented 

voltage collapse.   
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CHAPTER 10: CONCLUSION AND FUTURE RESEARCH 

10.1 Conclusion 

The objective of this thesis was to design a power management system capable of 

dynamically reconfiguring the shipboard power systems in order prevent loss of power at 

critical buses when damage conditions are encountered. A salient aspect of power 

management for mission critical power systems is the presence of an uninterruptible 

power supply that provides power to vital loads in case of in extremis situations such as 

imminent voltage collapse.  

In order to tackle this challenging problem we proposed a new design paradigm based on 

hybrid control systems theory. Hybrid systems theory provides an ideal design 

framework for dealing with complex decision problems that involve discrete as well as 

continuous actions. Discrete subsystems can be associated with logical conditions. We 

had expressed that notion of discreteness by making logical specification an integral part 

of the hybrid modeling and design process.  

The main contributions of this thesis involved the development of: 

 The transition dynamics of the discrete event system are expressed in terms of a 

logical specification 



 205

 A Mathematica package has been developed that converts any logical 

specification into a set of inequalities in binary and possibly real variables 

 A Mathematica package that computes optimal feedback switching strategies 

based on mixed integer dynamic programming has been developed 

 Continuous dynamics were modeled as sets of differential-algebraic equations. 

The latter are essential for modeling realistic power systems. Two approaches to 

computation with DAE models have been addressed. 

 The control problem was viewed as a problem of ‘bifurcation control’ where 

discrete actions were taken to prevent the occurrence of bifurcations.  

On the application viewpoints, two examples were investigated. The first example was a 

3-bus power system with UPS, in that example we studied the feasibility of our approach. 

A bifurcation control analysis was conducted on this system. The significance of the 

bifurcation analysis was that it showed the stability limits of the system for parameter 

variation and gave a clear picture of how discrete actions could prevent bifurcation. It 

indicated what actions would be most effective and provided insight into the resultant 

stability margins. An optimal controller was generated using our mixed-integer dynamic 

programming tools. A simulation framework was built using the SIMULINK/Stateflow 

and simulation results agreed with expectations. The system was described by a system of 

differential-algebraic equations. However, it was possible to solve the algebraic equations 

on multiple domains of the state space. These domains being algebraic sets, a strategy for 

solving problems reducible to this form is easily implemented, because the logic 
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identifying solution corresponding to a particular domain is easily incorporated into the 

logical specification.   

The second example is more complex; the notional DDG 1000 integrated power system. 

In that example the emphasis was on the reconfiguration of the integrated power system 

after a loss of generation. Because the IPS is a relatively larger system, its model 

contained differential-algebraic equations in which the algebraic equations are too 

complex to be solved by present day elimination or quantifier elimination tools. As a 

result the continuous dynamics were numerical solved during the optimization process. 

After designing an optimal controller, various simulations were run.  

10.2 Future Research 

We identified four areas of research that should be pursued in the future  

 Hamilton-Jacobi Bellman equation (HJB) 

In our approach we used a discrete time scale and set up a temporal recursion using 

Bellman’s Principle of Optimality. It would be interesting to set up the continuous time 

Hamilton-Jacobi-Bellman equation and study the impact of constraints in the form of IP 

formulas. Solution of even very simple problems of this type could provide valuable 

insight into the structure of optimal controllers for hybrid systems. 

 Variable Structure Control 

Variable structure control consists on designing switching surfaces and using 

discontinuous control to maintain the state system on the switching surface. Optimal 
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switching surface can be designed by using the Pontryagin Maximum Principle. An 

optimal variable structure control can be cast as a logic-Based optimal control. The idea 

emanates from the fact that existing variable structure theory based on stabilization of the 

sliding manifolds provides essentially local controllers. If we consider m as the number of 

switching surfaces there corresponds 2m regions of the state-space. A logic-based optimal 

control of variable structure control problem could be formulated with 2m  modes hybrid 

automaton. Therefore a logic-based optimal control could provide an ideal framework for 

solving variable structure system where global behavior is important. 

 Bifurcation control analysis for the IPS 

A study of bifurcation control was conducted for the 3-bus power system to investigate 

the effect of switching on voltage collapse. A bifurcation control study could also be 

conducted on the integrated power system. Critical buses could be identified and a 

performance index could be structured using this insight. Weaknesses in controllability 

could also be identified so that more effective switching options could be incorporated 

into the system.  

 Prime mover and governor dynamics for frequency analysis. 

In the integrated power system example with a loss of the port generation, the assumption 

made was to neglect the effect of prime mover dynamics by assuming an infinite inertia 

on the starboard generator, thereby establishing a fixed system frequency of 60 Hz. In 

reality the generator inertia is not infinite and there would be a frequency swing. 

Ordinarily, frequency variations are limited in order to protect equipment. In small 

systems frequency excursions could be as important as voltage collapse. 
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Appendix A: Per Unit Normalization 

Generator 1: 

Power Base: 40

Voltage Base: Vbase = 13.6 kV

Resistance: R=0.2236*0.01 

Inductance: L=0.2236/2 60 H

S MW

π

=

Ω
 

2

12 12

4.761,   0.002236 0.2236 ,   0.000469 0.0469

1 0.2129 21.29 ,  0.2129,  21.29

Vbase ZactualZbase Zactual i Zpu i
Sbase Zbase

Ypu i g b
Zpu

= = = + = = +

= = − = = −
 

Transformer 1 and 2: 

1 2

1 2

1 2

  40 

 13.8 

13.8 ( primary),  4.16  (secondary)

0.001 ,  0.001 

0.04 ,  0.04 

500,  500,  ( magnetizing)m m

Sbase MW

Vbase kV

V kV V kV

R pu R pu

L pu L pu

R X m

=

=

= =

= =

= =

= = =

 

Because the resistance and the inductance are in per unit we can write: 
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2 1 2 1 2( ) ( ) 0.02 0.08tZ R R L L i i= + + + = +  

Transmission lines: 

The line model used is the short line model. 

We need to specify the model transmission line parameters. The maximum power 

capacity of a line of admittance jk jkY ib=  connecting busses with voltage magnitudes 

,j kV V is :   

 max sin sin
3 3

j k
j k jk

jk

V V
P V V b

X
π π

= =  (10.1) 

Furthermore assume that the power base is 40 MW and that each of the two sides of the 

ideal transformer have a base as specified by the nominal bus voltages.  Assuming that 

lines 2-4 and 7-9 are sized to carry 40 MW at nominal conditions, we have a basis for 

estimating the line admittances. Then, we have: 

 
max

sin
3

j k
jk

V V
X

P
π

=  (10.2) 

Since the transmission line is between the transformer and the voltage bus 4 we use 

4tX as reactance where it defines the reactance of the combined three phase so we divide 

by a factor of 3 and multiply by a corrective factor 0.65 (i.e. to increase the reactance) 

 

4

4
4 t4

max max

3 3 sin 0.65 sin 0.65 0.009  , Z =0.009  (SI)
9 3 27 3

t

t
t

V V
VVX i

P P
π π

= × = × =  (10.3) 
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2 2

4
(4.16 ) 0.4326,  Z 0.0208 p.u

40 t
Vbase kV ZZbase
Sbase MW Zbase

= = = = =  (10.4) 

The total admittance of the transformer and line is 

 

24 57
2 4

24 24

57 57

1 0.1966 9.912 ,

0.1966 . ,  9.912 . .

0.1966 . ,  9.912 . .

t t

Y Y i
Z Z

g p u b p u

g p u b p u

= = = −
+

= = −

= = −

 (10.5) 

Transmission line 2-7: Tie line 

 

2 7

2 7
27 t4

max max

3 3(1/ 9) sin 0.65 sin 0.65 0.0992  , Z =0.0992  (SI)
3 27 3

V V
V VX i

P P
π π

= × = × = (10.6) 

 

2 2
27

27

27 27

(13.8 ) 4.761,  47.9645 . .
40

0,  47.9645 . .

Vbase kV ZZbase Z p u
Sbase MW Zbase

g b p u

= = = = = −

= = −
 (10.7) 

Constant admittance  load:  

Now, consider the loads. For the non vital loads at buses 3 and 6, we assume constant 

admittance load with a:   

Lagging PF = 0.8

Real power: P = 2 MW

Vbase = 4.16 kV

Sbase = 40 MW
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6

6 6

2

nvl 2
3

2.5 10
cos

(cos sin ) 2 10 1.5 10  (SI)

0.05 0.0375 . .

The power absorbed by the non vital load is: 

  , 

0.05 0.0375 . .Y 0.05 0.0375 
1 .

nvl

nvl
nvl

nvl

nvl

PS

S S j j

SS j p u P jQ
Sbase

P jQ V Y

S j p u j
V p u

θ

θ θ

∗

= = ×

= + = × + ×

= = + = +

− =

−
= = = − p.u.

 

 Non vital load at bus 3:  

1 nvl0.05 . .,  b -0.0375 . .nvlg p u p u= =  

 Non vital load at bus 6: 

2 20.05 . .,   -0.0375 . .nvl nvlg p u b p u= =  

 Vital load : 

The vital loads, fed from the DC bus are assumed to be power unity factor corrected. 

2(cos sin ) 2  ( )

 1  . .
20

v

v
vu

P i MW SI

PP p u
Sbase

θ= + =

= =
 

Vital load at bus 3 and 6: 
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Appendix B: OptimalPolicy  

Dynamic Programming Functions 
� The main function is OptimalPolicy which calls the function Findmin. Given the 

current state, FindMin computes the optimal control that will be applied over the 
next time interval. 

 
FindMin 

� Define binary and real variables: BinaryVars, RealVars 
� Split Inequalities into eqBinary, eqReal, binary equations contain only binary 

variables, real equations can contain both binary and real variables 
� GIVEN RealStateVars, BinaryStateVars, BinaryVars, RealVars, eqBinary, eqReal, 

J = cost as (interpolation) function of  (RealStateVars, BinaryVars, RealVars, 
AltBinaryState) 

� Use Reduce to get all feasible binary combinations. Note: In this case there are 
2^8=256 possible combinations of binary values, but only 8 are feasible 

� Use Reduce to solve for real variables for each feasible combination of binary 
variables - the result will be unique for each feasible combination of binary 
variables 

� Evaluate J for each pair of binary & real & select minimum. 
�  
� FindMin comes in two flavors, the first is defined above. The second has all 

solutions, both binary and real as input. 
1. Clear[FindMin]; 
2.FindMin[ListSolsBinary_List,EqReal_List,BinaryVars_List,Re
alVars_List,RealStateVars_List,BinaryStateVars_List,x_List
,AltBinaryState_,NextBinaryState_,J_]:=Module[{StateReplac
e,SolsBinary,SolsReal,Sols,Cost,Ind,A,RR,SolAlt}, 

3.    StateReplace=Inner[Rule,RealStateVars,Drop[x,-
1],List]; 

4.    RR=True; 
5.    Map[(RR=RR&&#)&,EqReal]; 
6.    
SolsReal=Map[Resolve[Exists[RealVars,Rationalize[(RR//.Sta
teReplace)]//.#],Reals]&,ListSolsBinary[[x[[-1]]]]]; 

7.    (* SolsBinary is solved and the result is substituted 
in the EqReal. Similarily EqReal now contained only real 
variable is ratinalized and reduced *) 

8.    Ind=Position[SolsReal,True]; 
9.    (* Identify positions where there are real solution.  
*) 
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10.    
SolsReal=N[Map[Reduce[Rationalize[(EqReal//.StateReplace)]
//.#,RealVars,Reals]&,ListSolsBinary[[x[[-
1]]]][[Flatten[Ind]]]]]; 

11.       A=ListSolsBinary[[x[[-1]]]][[Flatten[Ind]]]; 
12.    (*  Take the corrsponding binary solutions *) 
13.    
Sols=MapThread[Join[#1,#2]&,{A,Map[Solve[#,RealVars][[1]]&
,SolsReal]}]; 

14.     (* Pair up the valid binary and real solutions *) 
15.    (* Set up a rule to switch to the alternate binary 
state representation *) 

16.     
SolAlt=Map[{AltBinaryState→Position[NextBinaryState/.#,1]
[[1]]}&,Sols]; 

17.    (* SolAlt select the NextBinaryState (if any) for 
which a transition occurs, ie it binary value is 1  *) 

18.    
Cost=Flatten[MapThread[(((J//.StateReplace)//.#1)//.#2)&,{
Sols,SolAlt}]]; 

19.    (* A mapping of J (cost) with the Sols, after SolAlt  
is substituted  *) 

20.       Ind=Position[Cost,Min[Cost]]; (* assign a position 
to the minimum cost*) 

21.      (*  If[Length[Ind]>1,Print["Warning: Multiple 
minima found! Indices = "<>ToString[Ind]]]; *) 

22.       {Cost[[Ind[[1]]]],Sols[[Ind[[1]]]]} 
23.    (* Select the cost value and the solution Sols 
corresponding to the minimum cost*) 

24.    ]; 
25. 
26.FindMin[ListSolsAll_List,x_List,AltBinaryState_,NextBinar
yState_,J_]:=Module[{StateReplace,Cost,Ind,SolAlt}, 

27.    StateReplace=Inner[Rule,RealStateVars,Drop[x,-
1],List]; (* Pull out real state from x *) 

28.    (* Set up a rule to switch to the alternate binary 
state representation *) 

29.        
SolAlt=Map[{AltBinaryState→Position[NextBinaryState/.#,1]
[[1]]}&,ListSolsAll]; 

30.    (* Compute cost associated with each admissible mode 
change *) 

31.    
Cost=Flatten[MapThread[(((J//.StateReplace)//.#1)//.#2)&,{
ListSolsAll,SolAlt}]]; 

32.    Ind=Position[Cost,Min[Cost]]; (* identify positions 
of minimum cost*) 

33.    Print["Cost ="]; 
34.    Print[Cost]; 
35.    (*  If[Length[Ind]>1,Print["Warning: Multiple minima 
found! Indices = "<>ToString[Ind]]]; *) 

36.       {Cost[[Ind[[1]]]],ListSolsAll[[Ind[[1]]]]} 
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37.    (* Select the cost value and the solution Sols 
corresponding to the minimum cost*) 

38.    ]; 
 
 
 General ::spell  :  Possible spelling error : new symbol name "Cost " is similar to existing symbols 8Cos , Cosh , Cot , Most <. More…  
1. Clear[FindMinDAE]; 
2.FindMinDAE[ListSolsAll_List,x_List,AltBinaryState_,NextBin
aryState_,DaeDynamics_,y0_,G_,J_]:=Module[{StateReplace,Co
st,Ind,SolAlt,BinaryStateRules,NextRules,CurrentRules}, 

3.    (* Set up rule to define current real state variables. 
*) 

4.    StateReplace=Inner[Rule,RealStateVars,Drop[x,-
1],List]; (* Pull out real state from x *) 

5.    (* Set up rules to define the next binary state in the 
alternate binary state representation *) 

6.          
SolAlt=Map[{AltBinaryState→Position[NextBinaryState/.#,1]
[[1]]}&,ListSolsAll]; 

7.    (* Set up rules that define next binary state *) 
8.    
BinaryStateRules=Map[Inner[Rule,NextBinaryState,NextBinary
State/.#,List]&,ListSolsAll]; 

9.    (* Set up rules to define all next real variables. *) 
10.    
CurrentRules=Map[Flatten[ReleaseHold[DaeDynamics[Drop[x,-
1],y0,#,0]]]&,BinaryStateRules]; 

11.    
NextRules=Map[Flatten[ReleaseHold[DaeDynamics[Drop[x,-
1],y0,#,1]]]&,BinaryStateRules]; 

12.    (* Compute cost associated with each admissible mode 
change *) 

13.    
Cost=Flatten[MapThread[(((((G//.StateReplace)//.#1)//.#2)/
/.#3)+((((J//.StateReplace)//.#1)//.#2)//.#4))&,{ListSolsA
ll,SolAlt,CurrentRules,NextRules}]]; 

14.    Ind=Position[Cost,Min[Cost]]; (* identify positions 
of minimum cost*) 

15.    (*  If[Length[Ind]>1,Print["Warning: Multiple minima 
found! Indices = "<>ToString[Ind]]]; *) 

16.       {Cost[[Ind[[1]]]],ListSolsAll[[Ind[[1]]]]} 
17.    (* Select the cost value and the solution Sols 
corresponding to the minimum cost*) 

18.    ]; 

 
 
Auxilliary Functions 

� The problem real variables are always known from the problem definition. 
However, the bianry variables need to be identified after the IP fromulas are 
determined. Here are two functions that generate the binary variables, the binary 



 220

equations and the real equations and a simple one that generates the real equations 
after binary equations are identified. 

1. 
BinaryEquations[IPFormulas_List,RealVars_List]:=Module[{Dr
opReals,AA=IPFormulas}, 

2.      
DropReals[AA_List,i_]:=AA[[Flatten[Position[Map[(Cases[Var
iables[Level[#,1]],i])&,AA],{}]]]]; 

3.      Map[(AA=DropReals[AA,#])&,RealVars]; 
4.      AA 
5.      ]; 
6. 
RealEquations[IPFormulas_,EqBinary_]:=Complement[IPFormula
s,EqBinary]; 

7. 
BinaryVariables[IPFormulas_,RealVars_]:=Module[{AA=IPFormu
las},Complement[Union[Flatten[Map[(Variables[Level[#,1]])&
,AA]]],RealVars]]; 

8. 
ControlRules[ControlLogic_,StateReplaceList_,DiscreteState
_,InputEvents_]:=Module[{ControlIP,F,vars,ControlEqns,Comb
inedList,ControlReplacements}, 

9.    
ControlIP=Map[GenIP[#,Join[DiscreteState,InputEvents]]&,Co
ntrolLogic]; 

10.    F[x_]:=Union[Flatten[Map[Variables[Level[#,1]]&,x]]]; 
11.    
vars=Map[F[#]&,MapThread[#1/.#2&,{ControlIP,StateReplaceLi
st}]]; 

12.    (* 
MapThread[Print[#1/.#2,#3]&,{ControlIP,StateReplaceList,va
rs}]; *) 

13.    
ControlEqns=MapThread[Reduce[#1/.#2,#3,Integers]&,{Control
IP,StateReplaceList,vars}]; 

14.    CombinedList=MapThread[{#1,#2}&,{ControlEqns,vars}]; 
15.    
ControlReplacements=Map[Solve[#[[1]],#[[2]]]&,CombinedList
]; 

16.    ControlReplacements 
17.    ] 
18. Clear[BinarySolutions]; 
19.BinarySolutions[EqBinary_,StateReplaceList_,ControlReplac
ements_]:=Module[{MyEqns,F,Ans,G,Sols,H}, 

20.    
MyEqns=MapThread[(EqBinary//.#1)//.#2&,{StateReplaceList,C
ontrolReplacements}]; 

21.    
F[x_]:=Map[Reduce[#,Union[Flatten[Map[Variables[Level[#,1]
]&,#]]],Integers]&,x]; 

22.    Ans=Map[F[#]&,MyEqns]; 
23.    (* x corresponds to discrete state results (Ans), y 
to control (ControlReplacements) *) 
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24.    G[x_,y_]:=Module[{}, 
25.        H[k_]:=Module[{DDD,EEE}, 
26.            
DDD=Map[Flatten[Solve[#,Variables[Level[#,2]]]]&,Level[x[[
k]],1]]; 

27.            EEE=Map[Join[#,y[[k]]]&,DDD] 
28.            ]; 
29.        Map[H[#]&,Range[Length[y]]] 
30.        ]; 
31.    
MapThread[Flatten[G[#1,#2],1]&,{Ans,ControlReplacements}] 

32.    ]; 
33.BinarySolutions[EqBinary_,StateReplaceList_]:=Module[{MyE
qns,F,Ans,G,Sols,H}, 

34.    MyEqns=Map[(EqBinary/.#1)&,StateReplaceList]; 
35.    
Ans=Map[Reduce[#,Union[Flatten[Map[Variables[Level[#,1]]&,
#]]],Integers]&,MyEqns]; 

36.    Map[Solve[#,Variables[Level[#,2]]]&,Ans] 
37.    ]; 
38. Clear[RealSolutions] 
39.RealSolutions[ListSolsBinary_List,EqReal_List,BinaryVars_
List,RealVars_List,RealStateVars_List,BinaryStateVars_List
,x_List]:=Module[{StateReplace,SolsReal,Sols,Ind,A,RR}, 

40.    (* Given full state x, and list of binary solutions, 
find real solutions. RealSolutions will be mapped over S. 
*) 

41.    StateReplace=Inner[Rule,RealStateVars,Drop[x,-
1],List]; (* Pull out real state from x *) 

42.    RR=True; 
43.    Map[(RR=RR&&#)&,EqReal]; (* Convert real equation 
list to "&&" *) 

44.    
SolsReal=Map[Resolve[Exists[RealVars,Rationalize[(RR//.Sta
teReplace)]//.#],Reals]&,ListSolsBinary[[x[[-1]]]]]; 

45.    (* For each binary solution associated with given 
discrete state, substitute current real state into EqReal 
and check if next real state exists using Resolve *) 

46.    Ind=Position[SolsReal,True]; 
47.    (* Identify positions where there are real solutions.  
*) 

48.    
SolsReal=N[Map[Reduce[Rationalize[(EqReal//.StateReplace)]
//.#,RealVars,Reals]&,ListSolsBinary[[x[[-
1]]]][[Flatten[Ind]]]]];  

49.    (* use reduce to find real solutions if where they 
exist *) 

50.       A=ListSolsBinary[[x[[-1]]]][[Flatten[Ind]]]; 
51.    (*  Take the corrsponding binary solutions *) 
52.    
Sols=MapThread[Join[#1,#2]&,{A,Map[Solve[#,RealVars][[1]]&
,SolsReal]}]; 

53.     (* Pair up the valid binary and real solutions *) 
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54.    Sols 
55.    ] 
56.Clear[AllSolutions] 
57.AllSolutions[ListSolsBinary_List,EqReal_List,BinaryVars_L
ist,RealVars_List,RealStateVars_List,BinaryStateVars_List,
S_List]:=Map[RealSolutions[ListSolsBinary,EqReal,BinaryVar
s,RealVars,RealStateVars,BinaryStateVars,#]&,S] 

58. 
AllSolutions[ListSolsBinary_List,EqReal_List,BinaryVars_Li
st,RealVars_List,RealStateVars_List,BinaryStateVars_List,C
ontinuousS_List,DiscreteS_List]:=Module[{RSIndex,ShortEqua
tions,SBar,S2SBar,Sols,ExSols={}}, 

59.    
{RSIndex,ShortEquations}=ReducedState[EqReal,RealStateVars
]; 

60.    
{SBar,S2SBar}=StateSpaceProjection[ContinuousS,DiscreteS,R
SIndex]; 

61.    
Sols=Map[RealSolutions[ListSolsBinary,ShortEquations,Binar
yVars,RealVars,RealStateVars[[RSIndex]],BinaryStateVars,#]
&,SBar]; 

62.    ExSols=Map[Join[ExSols,Sols[[#]]]&,S2SBar]; 
63.    ExSols 
64.    ] 
 
 
State Space Projection 
Identify the Required States 

� ReduceState has two arguments: 1) the list of the real equations, and 2) the list of 
real state variables. It returns a list of indices for the state  variables that appear in 
the real equations. 

1. Clear[ReducedState]; 
2.ReducedState[RealEquations_,RealStateVariables_]:=Module[{
ConstraintIndexList,ShortEquations,TempVars,RS,RSIndex,Dro
pState,DropIndex,DropPosition}, 

3.    
ConstraintIndexList=Flatten[Position[Map[ConstraintQ[#]&,R
ealEquations],True]]; 

4.    ShortEquations=RealEquations[[ConstraintIndexList]]; 
5.    TempVars=Variables[Level[ShortEquations,{-1}]]; 
6.    RS=Intersection[TempVars,RealStateVars]; 
7.    DropState=Complement[RealStateVars,RS]; 
8.    RSIndex=Flatten[Map[Position[RealStateVars,#]&,RS]]; 
9.    DropList=Map[_≤#≤_&,DropState]; 
10.    
DropPosition=Flatten[Map[Position[RealEquations,#]&,DropLi
st]]; 

11.    
{Flatten[Map[Position[RealStateVars,#]&,RS]],Drop[RealEqua
tions,DropPosition]} 

12.    ] 
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Projection 
� StateSpaceProjection has three arguments: 1) continuoues state space, 2) discrete 

state space, and 3) the reduced continuous state indices.   It returns two quantities: 
1) the reduced state space, and 2) and index list that maps elements of the state 
space to the corresponding elements of the reduced state space.  

1. Clear[StateSpaceProjection]; 
2.StateSpaceProjection[ContinuousS_ 
,DiscreteS_,ReducedStateIndex_]:=Module[{ReducedContinuous
S,SPre,SBar}, 

3.    
ReducedContinuousS=Map[#[[ReducedStateIndex]]&,ContinuousS
]; 

4.    
SPre=Map[Flatten[#]&,Flatten[Outer[List,ReducedContinuousS
,DiscreteS,1],1]]; 

5.    SBar=Union[SPre]; 
6.    IndexList=Flatten[Map[Position[SBar,#]&,SPre]]; 
7.    {SBar,IndexList} 
8.    ] 

 
 
OptimalPolicy 

� For now, we assume that we seek binary-valued controls, the optimal policy is the 
control vector, ustar, determined as a tabular function over the state space, S. 

� The state is composed of the real state variables, RealStateVars, and the discrete 
state variables. RealStateVars is simply a vector of length n, where n is the 
dimension of the real state space, X. We use two different representations of the 
discrete state space. Suppose there are m modes of the system, labeled . One 
representation of the discrete state is a list (vector) d={ , } where each is 
either 0 if the system is not in that state or 1 if it is. Thus there is precisly one 
element equal to one and all of the others are zero. We denote the space of all d's, 
D. The state space is S=X×D.  

� The other representation is simply {i} where i is the index such that =1. Let Z 
denote the integers 1,2,... The state space S is the product space S=X×Z. It is easy to 
see that SñS. Clearly, given d, i=Position[d,1]. or given i, construct 
d={ , }. 

� To use OptimalPolicy it is necessary to define the following arguments: 
�      eqBinary, eqReal, BinaryVars, RealVars, BinaryStateVars, NextBinaryState, 

RealStateVars, DynamicsRHS, BinaryControlVars, S, GN, G, N 
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�  

ContinuousS=Outer@List, Range@0.1, 1.9, 0.01DD;
DiscreteS= IdentityMatrix@2D;
DiscreteS=Range@2D;
Statespace, S = X µZ = Map@Flatten@#D &, Flatten@Outer@List, ContinuousS, DiscreteS, 1D, 1DD;
Integratedcost, G@BinaryVars_List, RealVars_List, StateVars_List, n_IntegerD := HRealVars@@1DD ê H1 ê nLL^10 ê m;
Terminalcost, GN@StateVars_ListD := H0.5 HStateVars@@1DD - qbarL^2L;
BinaryStateVars = 8dq1, dq2<;
NextBinaryState= 8dqq1, dqq2<;
BinaryControlVars = 8ds<;
RealStateVars = 8q<;
RealVars = 8i, z<;
AllRealVars = 8i, q, z<;
BinaryVars =Complement@BinaryVariables@AA, AllRealVarsD, BinaryStateVarsD;
DynamicsRHS= 8z<;
Number of steps, N  

� Control=OptimalPolicy[eqBinary,eqReal,BinaryVars,RealVars,BinaryStateVars,Ne
xtBinaryState,RealStateVars,DynamicsRHS,BinaryControlVars,S,GN,G,N]; 

1. Options[OptimalPolicy]={PrecomputeRealSolutions→True}; 
2.Clear[OptimalPolicy]; 
3.Clear[OptimalPolicy1]; 
4.Clear[OptimalPolicy2]; 
5.OptimalPolicy[EqBinary_List,EqReal_List,ControlLogic_,Bina
ryVars_List,RealVars_List,BinaryStateVars_List,BooleanStat
eVars_List,NextBinaryState_List,RealStateVars_List,Dynamic
sRHS_,BinaryControlVars_List,BooleanControlVars_List,S_,GN
_,G_,n_Integer,opts___]:=If[PrecomputeRealSolutions{/.opts
}/.Options[OptimalPolicy],OptimalPolicy2[EqBinary,EqReal,C
ontrolLogic,BinaryVars,RealVars,BinaryStateVars,BooleanSta
teVars_List,NextBinaryState,RealStateVars,DynamicsRHS,Bina
ryControlVars,BooleanControlVars,S,GN,G,n],OptimalPolicy1[
EqBinary,EqReal,ControlLogic,BinaryVars,RealVars,BinarySta
teVars,BooleanStateVars_List,NextBinaryState,RealStateVars
,DynamicsRHS,BinaryControlVars,BooleanControlVars,S,GN,G,n
]]; 

6.OptimalPolicy1[EqBinary_List,EqReal_List,ControlLogic_,Bin
aryVars_List,RealVars_List,BinaryStateVars_List,BooleanSta
teVars_List,NextBinaryState_List,RealStateVars_List,Dynami
csRHS_,BinaryControlVars_List,BooleanControlVars_List,S_,G
N_,G_,n_Integer]:=Module[{SR,Data,Jstar,StateVars,NextStat
e,AltBinaryState,sol1,OptSol,Delta,del,StateReplaceList,Co
ntrolReplacements,ListSolsBinary,ustar,ustarList={}}, 

7.    (* Construct data table in the form 
{{x1,x2,..,xn,Jstar} .....} *) 

8.    
Data=Map[Join[S[[#]],{Map[GN[#]&,S][[#]]}]&,Range[Length[S
]]]; 

9.    (* Data = a list of the states S paired with 
corresponding values of GN (the terminal cost) *) 

10.    (* Create function Jstar(x1,x2,...,xn) *) 
11.    Jstar=Interpolation[Data,InterpolationOrder → 1]; 
12.    (* BINARY Solutions - solve binary IP's for all 
discrete states *) 

13.    (* Create an array, Delta, of elements del[i] of the 
length of BinaryStateVars*) 

14.     Delta=Array[del,Length[BinaryStateVars]]; 
15.    (* initialization of all elements del to 0 *) 
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16.    Map[(del[#]=0)&,Range[Length[Delta]]]; 
17.    
StateReplaceList=Map[Inner[Rule,BinaryStateVars,ReplacePar
t[Delta,1,#],List]&,Range[Length[BinaryStateVars]]]; 

18.    
ControlReplacements=ControlRules[ControlLogic,StateReplace
List,BooleanStateVars,BooleanControlVars]; 

19.    
ListSolsBinary=BinarySolutions[EqBinary,StateReplaceList,C
ontrolReplacements]; 

20.    (* MAIN Loop, Iterate Backward in Time *)   
21.    For[r=n,r≥1,r--, 
22.         StateVars=Join[RealStateVars,BinaryStateVars]; 
(* The set of all state variables *) 

23.         NextState=Join[DynamicsRHS,{AltBinaryState}]; 
24.      (* The set of dynamic variable and NextBinaryState 
(if any) for which a transition occurs, ie it binary value 
is 1*) 

25.         sol1[x_ 
]:=FindMin[ListSolsBinary,EqReal,BinaryVars,RealVars,RealS
tateVars,BinaryStateVars,x,AltBinaryState,NextBinaryState, 
G[BinaryVars,RealVars,StateVars,r]+Apply[Jstar,NextState]]
; 

26.      (* the function sol1 call the function FindMin 
given it full state x *) 

27.         OptSol=Map[sol1[#]&,S];(*  map sol1 - FindMin- over S( 
continuous and discrete) and find the minimum  at each state *) 

28.      Print["Finished FindMin. r = "];Print[r]; 
29.         
Data=Map[Join[S[[#]],{OptSol[[Range[Length[S]],1]][[#]][[1
]]}]&,Range[Length[S]]]; 

30.         Jstar=Interpolation[Data,InterpolationOrder → 
1]; 

31.         
ustar=Map[Inner[Rule,BinaryControlVars,Flatten[BinaryContr
olVars//.OptSol[[#,2]]],List]&,Range[Length[S]]]; 

32.      Print[ustar]; 
33.      ustarList=Join[ustarList,{ustar}]; 
34.      ]; 
35.    Simplify[ustarList] 
36.    ] 
 Syntax ::sntxf  :  "8" cannot be followed by " ê. opts <". More…  
 
OptimalPolicy[EqBinary_List,EqReal_List,ControlLogic_,BinaryVars_List,Re
alVars_List,BinaryStateVars_List,BooleanStateVars_List,NextBinaryState_L
ist,RealStateVars_List,DynamicsRHS_,BinaryControlVars_List,BooleanContro
lVars_List,S_,GN_,G_,n_Integer,opts___]:=If[PrecomputeRealSolutions{/.op
ts}/.Options[OptimalPolicy],OptimalPolicy2[EqBinary,EqReal,ControlLogic,
BinaryVars,RealVars,BinaryStateVars,BooleanStateVars_List,NextBinaryStat
e,RealStateVars,DynamicsRHS,BinaryControlVars,BooleanControlVars,S,GN,G,
n],OptimalPolicy1[EqBinary,EqReal,ControlLogic,BinaryVars,RealVars,Binar
yStateVars,BooleanStateVars_List,NextBinaryState,RealStateVars,DynamicsR
HS,BinaryControlVars,BooleanControlVars,S,GN,G,n]]; 
1. Clear[OptimalPolicy2]; 
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2.OptimalPolicy2[EqBinary_List,EqReal_List,ControlLogic_,Bin
aryVars_List,RealVars_List,BinaryStateVars_List,BooleanSta
teVars_List,NextBinaryState_List,RealStateVars_List,Dynami
csRHS_,BinaryControlVars_List,BooleanControlVars_List,S_,G
N_,G_,n_Integer]:=Module[{SR,Data,Jstar,StateVars,NextStat
e,AltBinaryState,sol1,OptSol,Delta,del,StateReplaceList,Co
ntrolReplacements,ListSolsBinary,ustar,ustarList={},ListSo
lsAll}, 

3.    (* Construct data table in the form 
{{x1,x2,..,xn,Jstar} .....} *) 

4.    
Data=Map[Join[S[[#]],{Map[GN[#]&,S][[#]]}]&,Range[Length[S
]]]; 

5.    (* Data = a list of the states S paired with 
corresponding values of GN (the terminal cost) *) 

6.    (* Create function Jstar(x1,x2,...,xn) *) 
7.    Jstar=Interpolation[Data,InterpolationOrder → 1]; 
8.    (* BINARY Solutions - solve binary IP's for all 
discrete states *) 

9.    (* Create an array, Delta, of elements del[i] of the 
length of BinaryStateVars*) 

10.     Delta=Array[del,Length[BinaryStateVars]]; 
11.    (* initialization of all elements del to 0 *) 
12.    Map[(del[#]=0)&,Range[Length[Delta]]]; 
13.    
StateReplaceList=Map[Inner[Rule,BinaryStateVars,ReplacePar
t[Delta,1,#],List]&,Range[Length[BinaryStateVars]]]; 

14.    
ControlReplacements=ControlRules[ControlLogic,StateReplace
List,BooleanStateVars,BooleanControlVars]; 

15.    
ListSolsBinary=BinarySolutions[EqBinary,StateReplaceList,C
ontrolReplacements]; 

16.    
ListSolsAll=AllSolutions[ListSolsBinary,EqReal,BinaryVars,
RealVars,RealStateVars,BinaryStateVars,S]; 

17.    Print["Toatal number of solutions = 
"<>ToString[Length[Flatten[ListSolsAll]]]]; 

18.    (* MAIN Loop, Iterate Backward in Time *)   
19.    For[r=n,r≥1,r--, 
20.         StateVars=Join[RealStateVars,BinaryStateVars]; 
(* The set of all state variables *) 

21.         NextState=Join[DynamicsRHS,{AltBinaryState}]; 
22.      (* The set of dynamic variable and NextBinaryState 
(if any) for which a transition occurs, ie it binary value 
is 1*) 

23.      (* sol1[x_ 
]:=FindMin[ListSolsBinary,EqReal,BinaryVars,RealVars,RealS
tateVars,BinaryStateVars,x,AltBinaryState,NextBinaryState, 
G[BinaryVars,RealVars,StateVars,r]+Apply[Jstar,NextState]]
; *) 
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24.      (* In sol1[x,y], x is the full state and y is the 
corresponding solution list from which FindMin seeks the 
one with least cost *) 

25.         sol1[x_,y_List 
]:=FindMin[y,x,AltBinaryState,NextBinaryState, 
G[BinaryVars,RealVars,StateVars,r]+Apply[Jstar,NextState]]
; 

26.      (* OptSol pairs up states with corresponding 
solutions and applies sol1 to each pair *) 

27.         OptSol=MapThread[sol1[#1,#2]&,{S,ListSolsAll}]; 
28.      Print["Finished FindMin. r = "];Print[r]; 
29.         
Data=Map[Join[S[[#]],{OptSol[[Range[Length[S]],1]][[#]][[1
]]}]&,Range[Length[S]]]; 

30.         Jstar=Interpolation[Data,InterpolationOrder → 
1]; 

31.         
ustar=Map[Inner[Rule,BinaryControlVars,Flatten[BinaryContr
olVars//.OptSol[[#,2]]],List]&,Range[Length[S]]]; 

32.      (* Print[ustar]; *) 
33.      ustarList=Join[ustarList,{ustar}]; 
34.      ]; 
35.    Simplify[ustarList] 
36.    ] 
 General ::spell1  :  Possible spelling error : new symbol name "Data " is similar to existing symbol "Date ". More…  
 
 
 
1.  
2.Clear[OptimalPolicy]; 
3.  
OptimalPolicy[EqBinary_List,EqReal_List,ControlLogic_,Bina
ryVars_List,RealVars_List,BinaryStateVars_List,BooleanStat
eVars_List,NextBinaryState_List,RealStateVars_List,Dynamic
sRHS_,BinaryControlVars_List,BooleanControlVars_List,Conti
nuousS_,DiscreteS_,GN_,G_,n_Integer]:=Module[{SR,Data,Jsta
r,StateVars,NextState,AltBinaryState,sol1,OptSol,Delta,del
,StateReplaceList,ControlReplacements,ListSolsBinary,ustar
,ustarList={},ListSolsAll,S2SBar,S},S=Map[Flatten[#]&,Flat
ten[Outer[List,ContinuousS,DiscreteS,1],1]]; 

4.      (* Construct data table in the form 
{{x1,x2,...,xn,Jstar} .....} *) 

5.      
Data=Map[Join[S[[#]],{Map[GN[#]&,S][[#]]}]&,Range[Length[S
]]]; 

6.      (* Data = a list of the states S paired with 
corresponding values of GN (the terminal cost) *) 

7.      (* Create function Jstar(x1,x2,...,xn) *) 
8.      Jstar=Interpolation[Data,InterpolationOrder → 1]; 
9.      (* BINARY Solutions - solve binary IP's for all 
discrete states *) 

10.      (* Create an array, Delta, of elements del[i] of 
the length of BinaryStateVars*) 

11.       Delta=Array[del,Length[BinaryStateVars]]; 
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12.      (* initialization of all elements del to 0 *) 
13.      Map[(del[#]=0)&,Range[Length[Delta]]]; 
14.      
StateReplaceList=Map[Inner[Rule,BinaryStateVars,ReplacePar
t[Delta,1,#],List]&,Range[Length[BinaryStateVars]]]; 

15.      
ControlReplacements=ControlRules[ControlLogic,StateReplace
List,BooleanStateVars,BooleanControlVars]; 

16.      
ListSolsBinary=BinarySolutions[EqBinary,StateReplaceList,C
ontrolReplacements]; 

17.      
ListSolsAll=AllSolutions[ListSolsBinary,EqReal,BinaryVars,
RealVars,RealStateVars,BinaryStateVars,ContinuousS,Discret
eS]; 

18.      (* MAIN Loop, Iterate Backward in Time *)   
19.      For[r=n,r≥1,r--, 
20.           StateVars=Join[RealStateVars,BinaryStateVars]; 
(* The set of all state variables *) 

21.           NextState=Join[DynamicsRHS,{AltBinaryState}]; 
22.        (* The set of dynamic variable and 
NextBinaryState (if any) for which a transition occurs, ie 
it binary value is 1*) 

23.        (* sol1[x_ 
]:=FindMin[ListSolsBinary,EqReal,BinaryVars,RealVars,RealS
tateVars,BinaryStateVars,x,AltBinaryState,NextBinaryState, 
G[BinaryVars,RealVars,StateVars,r]+Apply[Jstar,NextState]]
; *) 

24.        (* In sol1[x,y], x is the full state and y is the 
corresponding solution list from which FindMin seeks the 
one with least cost *) 

25.           sol1[x_,y_List 
]:=FindMin[y,x,AltBinaryState,NextBinaryState, 
G[BinaryVars,RealVars,StateVars,r]+Apply[Jstar,NextState]]
; 

26.        (* OptSol pairs up states with corresponding 
solutions and applies sol1 to each pair *) 

27.           
OptSol=MapThread[sol1[#1,#2]&,{S,ListSolsAll}]; 

28.        Print["Finished FindMin. r = "];Print[r]; 
29.           
Data=Map[Join[S[[#]],{OptSol[[Range[Length[S]],1]][[#]][[1
]]}]&,Range[Length[S]]]; 

30.           Jstar=Interpolation[Data,InterpolationOrder → 
1]; 

31.           
ustar=Map[Inner[Rule,BinaryControlVars,Flatten[BinaryContr
olVars//.OptSol[[#,2]]],List]&,Range[Length[S]]]; 

32.        (* Print[ustar]; *) 
33.        ustarList=Join[ustarList,{ustar}]; 
34.        ]; 
35.      Simplify[ustarList] 
36.      ] 
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 Null2 
1. 
Clear[OptimalPolicyDAE];OptimalPolicyDAE[EqBinary_List,EqR
eal_List,BinaryVars_List,RealVars_List,RealVarsIP_List,Bin
aryStateVars_List,BooleanStateVars_List,NextBinaryState_Li
st,RealStateVars_List,DaeDynamics_,y0_,BinaryControlVars_L
ist,BooleanControlVars_List,ContinuousS_,DiscreteS_,GN_,G_
,n_Integer]:=Module[{SR,Data,Jstar,StateVars,NextState,Alt
BinaryState,sol1,OptSol,Delta,del,StateReplaceList,Control
Replacements,ListSolsBinary,ustar,ustarList={},ListSolsAll
,S2SBar,S}, 

2.    
S=Map[Flatten[#]&,Flatten[Outer[List,ContinuousS,DiscreteS
,1],1]]; 

3.    (* Construct data table in the form 
{{x1,x2,..,xn,Jstar} .....} *) 

4.    
Data=Map[Join[S[[#]],{Map[GN[#]&,S][[#]]}]&,Range[Length[S
]]]; 

5.    (* Data = a list of the states S paired with 
corresponding values of GN (the terminal cost) *) 

6.    (* Create function Jstar(x1,x2,...,xn) *) 
7.    Jstar=Interpolation[Data,InterpolationOrder → 1]; 
8.    (* BINARY Solutions - solve binary IP's for all 
discrete states *) 

9.    (* Create an array, Delta, of elements del[i] of the 
length of BinaryStateVars*) 

10.     Delta=Array[del,Length[BinaryStateVars]]; 
11.    (* initialization of all elements del to 0 *) 
12.    Map[(del[#]=0)&,Range[Length[Delta]]]; 
13.    
StateReplaceList=Map[Inner[Rule,BinaryStateVars,ReplacePar
t[Delta,1,#],List]&,Range[Length[BinaryStateVars]]]; 

14.    
ListSolsBinary=BinarySolutions[EqBinary,StateReplaceList]; 

15.    
ListSolsAll=AllSolutions[ListSolsBinary,EqReal,BinaryVars,
RealVarsIP,RealStateVars,BinaryStateVars,ContinuousS,Discr
eteS]; 

16.    (* MAIN Loop, Iterate Backward in Time *)   
17.    For[r=n,r≥1,r--, 
18.         StateVars=Join[RealStateVars,BinaryStateVars]; 
(* The set of all state variables *) 

19.         (* NextState=Join[DynamicsRHS,{AltBinaryState}]; 
*) 

20.      (* The set of dynamic variable and NextBinaryState 
(if any) for which a transition occurs, ie it binary value 
is 1*) 
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21.      (* In sol1[x,y], x is the full state and y is the 
corresponding IP solution list from which FindMin seeks 
the one with least cost *) 

22.      sol1[x_,y_List]:=Module[{}, 
23.          
FindMinDAE[y,x,AltBinaryState,NextBinaryState,DaeDynamics,
y0,G[BinaryVars,RealVars,StateVars,r],Apply[Jstar,Join[Rea
lStateVars,{AltBinaryState}]]] 

24.          ]; 
25.         (* OptSol pairs up states with corresponding 
solutions and applies sol1 to each pair *) 

26.          OptSol=MapThread[sol1[#1,#2]&,{S,ListSolsAll}]; 
27.      Print["Finished FindMin. r = "];Print[r]; 
28.         
Data=Map[Join[S[[#]],{OptSol[[Range[Length[S]],1]][[#]][[1
]]}]&,Range[Length[S]]]; 

29.         Jstar=Interpolation[Data,InterpolationOrder → 
1]; 

30.         
ustar=Map[Inner[Rule,BinaryControlVars,Flatten[BinaryContr
olVars//.OptSol[[#,2]]],List]&,Range[Length[S]]]; 

31.      (* Print[ustar]; *) 
32.      ustarList=Join[ustarList,{ustar}]; 
33.      ]; 
34.    Simplify[ustarList] 
35.    ] 

 
 
Controller Maps 

� The following functions are used to generate the lookup table that implements the 
optimal feedback controller. The main function is BuildLookupTable which opens 
and closes a textfile in which the lookup arrays are written. BuildLookupTable calls 
the function LookupTable that actually constructs and writes the arrays. 

1. MyToString[X_List]:=Module[{B,BB}, 
2.    B=X[[1]]; 
3.    Map[(B=ToString[B]<>","<>ToString[#])&,Drop[X,1]]; 
4.    B 
5.    ] 
6. 
LookupTable[StateDimensions_,ControVar_,TableName_,Control
_,ChannelName_]:=Module[{A,a,B,dRule,A1,Levels,TransLevels
,ATest,MatrixNames,channel,ArrayStrings,OnesList}, 

7.    A=Array[a,StateDimensions]; 
8.    
dRule=MapThread[(#1→ControVar/.#2)&,{Flatten[A],Control}]
; 

9.    A1=A/.dRule; 
10.    OnesList=Position[A1,1]; 
11.    
ArrayStrings=Map[(ToString[TableName]<>"("<>MyToString[#]<
>") = 1;")&,OnesList]; 
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12.    WriteString[ChannelName,ToString[TableName]<>" = 
zeros("<>MyToString[StateDimensions]<>");\n"]; 

13.    Map[WriteString[ChannelName,#<>"\n"]&,ArrayStrings]; 
14.    ] 
 General ::spell1  :  Possible spelling error : new symbol name "dRule " is similar to existing symbol "Rule ". More…  
 General ::spell1  :  Possible spelling error : new symbol name "Levels " is similar to existing symbol "Level ". More…  
1. 
BuildLookupTable[StateDimensions_List,BinaryControlVars_Li
st,TableNameList_List,Control_,FileName_String]:=Module[{c
hannel}, 

2.    channel=OpenWrite[FileName]; 
3.    
MapThread[LookupTable[StateDimensions,#1,#2,Control,channe
l]&,{BinaryControlVars,TableNameList}]; 

4.    Close[channel] 
5.    ] 
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