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Abstract
New Methods in Computational Systems Biology

David J. Miller
Avijit Ghosh, Ph.D.

Systems biology strives to reach greater understanding of biological function through an integra-

tive, multidisciplinary approach utilizing experimentation, theory, and simulation in equal measures.

Drawing from the traditionally distinct fields of biology, chemistry, physics, engineering, mathemat-

ics, computer science, informatics, and medicine, systems biology regards biological components as

acting in tandem in a unified hierarchical system over a wide range of scales, from nano-scale (pro-

teins and small molecules) to micro-scale (organelles and cells) to macro-scale (tissue and organs).

Within this burgeoning field, computational modeling of cell signaling serves not only to validate

theoretical and experimental findings, but also to provide quantitative and even predictive analysis

of biochemical networks and intracellular machinery.

In this thesis, a model of the canonical MAPK signal transduction pathway (well studied for

its role in a large percentage of cancers) is analyzed using the custom simulation software package

CellSim as a tool for predicting targets for effective anti-cancer drugs, as well as predicting the effects

of such drugs on non-cancerous cells. Furthermore, computational tools and methods are developed

for extending such purely kinetic models of intracellular signaling into the spatio-temporal realm,

introducing locality, transport, and cell geometry.
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Chapter 1: A Systems Biology Approach to Oncogene Detection

1.1 Summary

Computational models of signal transduction pathways have been successful both qualitatively as

well as quantitatively in describing how complex protein networks control cell function. Moreover,

the study of networks has been used to elucidate not only how these pathways control the complex

regulation and response mechanism of cells, but also provide insight into how a breakdown in the

biological circuitry can lead to particular disease states.

We have recently examined the circuitry within the MAPK signal transduction pathway to

understand how changes within this canonical network may lead to malfunction, notably the rise of

proto-oncogenic cells. In addition we have developed a new complementary technique that provides

insight into which key players within the pathway are most likely to be most conducive to selective

inhibition within this transformed line of cells. These tools have been made freely available to the

public, as part of a software suite developed by our group, CellSim [2], and an overview will be

given on how CellSim may be used to quantitate cell function and, moreover, malfunction.

1.2 Introduction

Computational Biophysics has always played a complementary role to the experimental biological

sciences. The role of a computational biophysicist, as such, is not to develop tools that simply

reassure the experimentalists that well-regarded experiments may, in fact, be duplicated in silico,

but instead must also provide new predictive and quantitative tools that provide new insight into

biological mechanism or function. New tools from the development of new experimentally designed

united-residue force fields such as UNRES [3] to new special purpose hardware techniques such as
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MDGRAPE [4] have given rise to new predictive mathematical and computational methods that can

probe behavior of individual proteins on a femtosecond scale. It is in this sense that new tools such

as systems biology have been developed to address the complementary issue of how these proteins

can act en masse to dictate not only form, but intra-cellular behavior [5, 6, 7, 8, 9]. The scale is

perhaps different (from angstrom to micrometer; from picosecond to millisecond; from individual

proteins to micromolar concentrations), but the philosophy is the same. The method of systems

biology is to take experimental data that is relatively simple to reproduce, and to use it to provide

insight into phenomena that cannot be easily elucidated by an existing set of experiments.

Systems biology uses these experimentally derived, computational techniques to demonstrate

both how cells have the ability to respond to external stimuli as well as how intra-cellular signaling

circuitry essential for cell function is controlled. The mechanism by which this occurs depends

fundamentally on the way in which cells use protein networks as the mechanism for translating extra-

cellular signals into intra-cellular behavior. Hence, the complexity of signal transduction networks is

based on the interplay between different aspects of the signaling process, any of which may change

with subtle external or internal changes to the cell [1]. The focus of our group is on one particularly

important signaling cascade: the MAPK signal transduction pathway.

1.3 The canonical MAPK signal transduction pathway

The canonical MAPK signaling cascade (Figure 1.1) is one of the most well-studied signal cascades,

both experimentally and computationally [10]. This central cascade is critical for governing cell

growth and proliferation as well as actin cytoskeleton rearrangement [11, 12, 13, 14]. Stimulation of

the cascade activates many downstream effectors including PI3K [15], Bcl-2 [16], and PKC [17, 18],

among others [10]. The central cascade is activated via the following mechanism: The epidermal

growth factor (EGF) signaling begins with the epidermal growth factor receptor (EGFR) and tra-

verses a series of signaling proteins to the Ras protein. The Ras protein works in part by activating a

series of kinases starting from Raf (a Mitogen Activated Protein Kinase Kinase Kinase (MAPKKK)

), which activates the Mitogen Activated Protein ERK Kinase (MEK). This in turn activates the

extracellular-signal regulation kinase (ERK), which subsequently translocates to the nucleus and



CHAPTER 1. A SYSTEMS BIOLOGY APPROACH 3

SHC*.SOS.GRB2 

SHC* 

EGF EGFR

SHC 

EGF.EGFR 

SOS.GRB2 

MEK 

GTP.Ras.Raf* 

Raf* Raf 

GDP.Ras GTP.Ras

GEF* GEFDeph

Ca.PLCγ

EGF.EGFR 

Ca.PLCγ*

GAP* GAP Deph

PKC 

SOS GRB2 

SOS* 

ERK* 

Raf** 

ERK* 

EGF.EGFR
internal

 

EGF.EGFR 

GTP.Ras

Raf* 
GTP.Ras.Raf* 

MEK** 

ERK 

ERK
ty r

* 

MKP1

MEK** 

ERK* 

MKP1MEK* 

GTP.Ras.Raf* 

Ca.PLA2

PLA-2
(cyt)

AA

APC

PIP2

DAG

IP3
Ca.PLA2

PLA2*

ERK* Ca.PLA2*

PKC-i 

DAG.Ca.PLA2

PLCγ

Ca.PLCγ

Ca.PLC
PLC

Ca.PLCγ*

PLCγ*

PLC.Gq

GPCR

Deph

PLC.Ca.Gq

PIP2.PLA2

PIP2.Ca.PLA2
DAG

PIP2*

PLA-2
(cyt)

PIP2*

PKC 

PP2-A

PP2-A PP2-A

PP2-A

PKC 

PKC 

IP3R IP3R*
IP3

Deph

Ca2+

Ca2+

Ca2+

Ca2+
external

Cap
channel

Ca2+
endosome

IP3R* Leak

Leak

Capump

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Figure 1.1: The canonical MAPK pathway

stimulates a series of growth promoting transcription factors [19]. The pathways described represent

a simplified description of the full process of cell signaling, as this cascade is but a single member of

a complex set of parallel, interacting pathways [1].

1.3.1 Oncogenic transformation of the MAPK pathway

The central member of the MAPK pathway, Ras, illustrates the importance of transformations

within the MAPK signal transduction cascade. The Ras protein is a GTP-binding signaling protein,

activating downstream effectors by binding to GTP, while inactive in the GDP bound form. The

Ras oncogene was first found experimentally by its ability to induce tumor-like growth in fibroblasts

[20, 21, 22]. The major oncogenic transformation involves specific mutations in Ras that prevent

hydrolysis of GTP-bound Ras by GTPase Activating Proteins (GAP), leaving Ras continuously

activated (and thus persistently signaling downstream effectors). These particular mutations have

been implicated in approximately 30% of all human cancers, predominantly in lung, colon and

pancreatic cancers [23]. This is likely an under-estimation of oncogenic transformation of Ras related
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cascades as mutations in other effectors downstream may cause a similar transformation in absence of

mutations in the Ras gene itself. The transformation to tumor cells does not occur by a mutational

event in Ras alone, but through a series of malignant transformations along or between several

distinct pathway species [24].

1.4 Methods

Systems biology methods developed by our group use either ordinary differential equations (ODEs)

or partial differential equations (PDEs) to describe the overall temporal or spatio-temporal behavior

of the protein network within (and between) compartments of a cell [8, 9]. Enzymatic reactions and

other chemical interactions are represented as simply a system of ODEs that couple to active and

passive transport. Passive transport includes processes such as simple diffusive processes. Active

transport includes explicit advective terms, modeling transport along actin filaments and other ATP

driven processes.

Elementary chemical reactions describe the enzymatic and non-enzymatic reactions within each

compartment. These reactions may be written as:

∑

i

niRi
kf−⇀↽−
kb

∑

j

njPj (1.1)

where a set of reactant species Ri with stoichiometric coefficients ni inter-converts into a set of prod-

uct species Pj with stoichiometric coefficients nj and rate constants kf and kb. Due to the fact that

chemical collisions greater than bimolecular are rare, the order of an elementary chemical reaction is

not typically greater than two. Characteristic of signaling pathways are enzymatic reactions such as

phosphorylation or dephosphorylation events. These reactions may be expressed as a combination

of a reversible and an irreversible chemical reaction as follows:

E + S
k1−⇀↽−
k2

E.S
k3−→ E + S∗ (1.2)

where E represents an enzyme which catalyzes the substrate S. The intermediate species E.S first
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forms reversibly with rate constants k1 and k2, followed by an irreversible catalytic step with rate

constant k3, which releases the activated substrate S∗ and the enzyme for further catalysis.

These reactions lead to a set of ordinary differential equations such that one may express the time

rate of change in concentration of all species as a system of unimolecular and bimolecular reactions

such that:

d[Ci]

dt
=
∑

j

kij [Cj ] +
∑

l>m

kilm[Cl][Cm] +
∑

j

T (Ci, Cj) (1.3)

where kij is the rate constant for a unimolecular reaction involving species Ci and Cj at concen-

trations [Ci] and [Cj ] respectively. If kilm is positive, then kilm represents the rate constant of

formation of species Ci from a bimolecular reaction between species Cl and Cm with concentrations

[Cl] and [Cm]. Conversely, if kilm is negative, then kilm represents the rate constant of disassociation

of species Ci into two species, Cl and Cm. T (Ci, Cj) represents a function governing the passive

transport of a species Ci into a different compartment via passive channels, after which it is labeled

with a subscript j as Cj .

1.4.1 Mutations

A mutation in a particular gene in a signaling pathway manifests itself in one of two ways. In the

first case, the mutation may directly affect the interaction between two species. If two species A

and B reversibly associate/disassociate with rate constants kf/kb:

A+B
kf−⇀↽−
kb

A.B (1.4)

then a mutation of this type will perturb kf or kb by some amount. For instance, lowering kf by

some amount represents a mutation that hinders the ability of species A or B to associate into A.B.

We define a mutation of this type as an “interaction” mutation. This mutation may occur in either

species A or B, as the effect is the same. A simple analysis using Arrhenius theory may be used to

connect the free energy change from a mutation with the corresponding kinetic parameters kf and

kb [7, 6].
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E
′
a. The effect of a mutation changes the free energy along the reaction coordinate by an amount ∆E,

leading to a change in the forward kinetic rate by an amount proportional to exp {−∆E/kT}

The rate of interconversion from reactant to product may be given as:

kf = Ce−Ea/kBT (1.5)

where C is a constant prefactor, Ea is the barrier energy of activation and kB is Boltzmann’s

constant. Mutations in the enzyme may affect a transition rate by either increasing the barrier

height or changing the free energy of the initial state of the system by some amount ∆E. The new

mutated system may therefore be considered to be a perturbed system with a new barrier of height

E′a and a forward transition rate of k′f (Figure 1.4.1). The ratio k′f/kf is :

k′f/kf =
e−(Ea+∆E)/kbT

e−Ea/kbT
(1.6)

and simplifying

k′f/kf = e−∆E/kbT (1.7)

The right side of Equation (1.7) is a function of the change in the barrier height and not of the

barrier height Ea itself.

Equation 1.7 can be used to simulate the effect of any single mutation on the normal MAPK
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signal transduction pathway without having to explicitly delineate the underlying cause. The key

effect governing the transformation of the normal MAPK signal transduction pathway is the ability

to activate downstream ERK without EGF stimulation. Moreover, such mutations may be rank

ordered in terms of ∆E to yeld a ranked list of predicted proto-oncogenes. See [6, 7] for a full

discussion of this approach.

1.5 Drug targeting

With drug development costs now reaching 500 million dollars or more, development strategies

represent a significant hurdle in bringing new therapeutics to the marketplace [25]. The experimental

development cycle can be optimized in a manner that minimizes the number of false positives during

costly clinical trials using systems biology techniques to detect proto-oncogenes in silico. Rather

than modeling the effect of a mutation, modeling of an inhibitor may be performed with the addition

of a single chemical reaction representing simple competitive binding between the substrate and the

target protein:

I + S
kf−⇀↽−
kb

I.S (1.8)

The binding free energy can be calculated from the equilibrium constant keq of the reversible

binding reaction. A particular inhibitor may bind to any substrate within the MAPK pathway. The

efficacy of the inhibitor against a particular target is gauged by its ability to stop auto-activation

of the entire set of “mutated” pathways described in the previous section. Furthermore, targets

that successfully inhibit all these pathways can further ranked by the minimum binding affinity and

concentration required. Complementarily, effective drug targets can also be ranked by their ability

to avoid effecting non-mutated pathways.

1.6 Concluding Remarks

Computational biophysics has been successful in underscoring how quantitation and simulation can

be used to address difficult problems of interest in biology. Systems biology continues this tradition

with an emphasis on the macroscopic rather than the microscopic, focusing on not single molecules
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or proteins but rather how entire systems interact. As illustrated, systems biology can be used to

not only quantitate how behavior is governed, but additionally how malfunctions in the signaling

process can give rise to aberrant signaling processes. Finally, an analysis of these aberrant networks

can be used to suggest novel treatment strategies based upon both predicted treatment effectiveness

and patient tolerance.
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Chapter 2: A Systems Biology Approach for Lead Drug Target
Prediction with Applications to the MAPK Signal Transduction Pathway

2.1 Summary

In silico models of signal transduction pathways have been highly successful in describing, quantita-

tively, how complex protein networks govern overall cell function. By analyzing a recently developed

model of oncogenesis in the Mitogen Activated Protein Kinase (MAPK) signal transduction pathway,

a quantitative ranking of putative targets that inhibit cells with mutations within the MAPK path-

way has been developed. The inhibitor, a virtual drug, is constructed by specifying its parameters:

initial concentration (drug dosage) and dissociation constant kd. Many of the targets found by this

analysis have inhibitors that are currently under investigation. Several novel targets not previously

investigated have been found. Of the thirteen targets, Ras, Guanine Exchange Factor (GEF), and

Raf, show the highest potential. In addition, the analysis finds that certain calcium blockers may

have potential as anti-tumor agents, functioning at much lower concentrations but requiring higher

binding affinity.

2.2 Introduction

The advantage of a systems approach in drug research is that in silico models can be manipulated

in a more subtle way than global inhibition experiments. As such, these models are a useful method

for discriminating between various ways a molecule influences a cascade of events. Computational

models allow one to thoroughly and efficiently test a wide range of hypothetical inhibitors and gauge

the overall pathway response inexpensively, compared to traditional experimental methods.

One of the focuses of drug design in cancer research has been the MAPK signal transduction

pathway, one of the central signaling cascades in the cell [26, 27, 28, 29, 30]. The MAPK pathway
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mediates signaling of growth hormones and cytokines and participates in regulating both cellular

proliferation and death [31, 32]. There are many mutations known to occur in this pathway that cause

unregulated activation of Extracellular Regulated Kinase (ERK), which in turn leads to activation

of corresponding proliferative pathways in many tumor lines [33, 34]. Mutations of components in

the MAPK pathway have been detected in 48% of tumors in small cell lung cancer [35], 50% of colon

cancers [36], 75% of pancreatic cancers [37] and 27% of breast cancers [38], among others. A systems

biology approach to the MAPK pathway has motivated complex signaling models by several groups,

including Bhalla and coworkers [1, 26], Schoeberl and coworkers [39], Kholodenko [40], Levchenko

[41], and others.

The goal of this computational analysis is to predict drug targets that will stop the uncontrolled

proliferation of tumor cells. Drugs that target the MAPK pathway have shown much promise in

preventing further growth of such tumors, and several are currently in clinical trials [29, 30, 42].

These include Farnesyl Transferase Inhibitors [43, 44, 45], Raf inhibitors [46, 47], and MAPK-ERK

Kinase (MEK) inhibitors [48], among others.

The procedure outlined is a fast, effective computational assay for lead drug targeting, and

complements previous work by our group on mutations in the MAPK signal transduction pathway

[7, 6]. EGF-directed stimulation of ERK in the MAPK pathway occurs through a complex series

of reactions (Figure 2.1). A simplified outline of the main central pathway may be described, be-

ginning with extracellular EGF binding to the EGF receptor on the cell membrane. This induces

receptor dimerization and autophosphorylation [49]. The bound receptor forms a docking site for

the signaling molecule complex of SOS-Grb2, which then activates the G-protein Ras by stimulating

the exchange of Guanosine Diphosphate (GDP) with Guanosine Triphosphate (GTP). This causes

a conformational change in Ras, enabling it to bind to Raf, leading to Raf activation. Activated

Raf phosphorylates and activates MEK, which in turn activates ERK via phosphorylation. Phos-

phorylated ERK (ERK∗) can then enter the nucleus and phosphorylate transcription factors, such

as Elk-1 and other Ets family proteins [28, 50, 51].

This description of the central cascade fails to convey the complete pathway’s inherent complexity,
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as the central pathway is itself controlled through several feedback and feed forward loops that can

act as bistable switches within the network (Figure 2.1). These have been described in a series of

seminal papers by Bhalla and coworkers [1, 52]. This central pathway interacts with the PLC-γ-

PKC pathway at two critical points: Protein Kinase C (PKC) activates both Raf and Ras, which in

turn leads to the activation of ERK in a positive feedback loop, and ERK∗ activates Phospholipase

A2 (PLA2 ), which results in the activation of PKC via diacylglycerol (DAG), leading to another

coupled feedback loop. Conversely, ERK∗ down-regulates its own activation through the double

phosphorylation of Raf in a negative feedback loop [53]. In addition, ERK∗ also phosphorylates Son

of Sevenless (SOS) leading to the inactivation of signaling from the receptor in another negative

feedback loop. A careful balance of positive and negative feedback loops within these coupled

pathways dictate the response [54, 55]. Mutations within these cascades lead to an imbalance and

manifest themselves in either uncontrolled proliferation or cell death.

As shown in previous work by our group, the characteristics of the pathway itself predict which

mutations in the signal cascade will give rise to proliferation in a normally functioning cell [7, 6].

These changes can be classified into two types: 1) mutations that lead to a change in an interaction

between that species and one of its interacting partners and 2) mutations that lead to a change

in concentration of that species within the cell. An example of the first type may be a change in

an active site that causes a particular protein-protein or protein-ligand interaction to be hindered

or completely blocked. The effect of this type of mutation leads to changes in the free energy

along the reaction coordinate of each of the relevant biological reactions in which the mutated

protein participates. Illustrative of this are the oncogenic Ras mutations that prevent Ras-GAP

interactions or prevent GTP hydrolysis [56]. The key point is that the effect of a mutation is

to affect progression along the reaction coordinate adversely. This implies that a mutation in a

particular substrate manifests itself in a temporal model of the signaling pathway by affecting the

chemical kinetics of association or disassociation of that substrate and its interacting partner or of

the irreversible catalytic step. The effect of these mutations is a change in the free energy along

the reaction coordinate by some amount ∆E (Figure 1.4.1) [7]. As an example of the second type,
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mutations may also be classified as those that lead to an over-expression or under-expression of a

particular enzyme either directly or indirectly. The canonical example of this is the over-expression

of the EGF Receptor in breast cancer tumors [38].

The effect of these types of changes in a normal signal transduction pathway can be correlated

with changes in the underlying kinetics or initial conditions of a complex protein network. Top

ranked mutations that are predicted to give rise to activated ERK levels are listed in Tables 2.1 and

2.2. The prediction is based on measuring the biochemical activity of the pathway due to a change

in the free energy of a species within the pathway. These tables will be described in more detail in

the next section.

2.3 Methods

In silico drugs are used to treat the generated pathways developed in our previous work with the

goal of inhibiting high levels of activated ERK that characterize the mutated cells. In selecting

prime targets within the pathway, two criteria are used: (1) the binding affinity and (2) the initial

concentration of a hypothetical drug that interacts with that target. The most efficacious drug tar-

get is one that requires a low initial drug concentration and a low drug binding affinity to elicit the

primary response. Each model drug is designed to inhibit a single species within the pathway with

a predetermined binding strength and initial concentration. A desirable target is defined as a target

that, when inhibited, causes the activated ERK concentration to fall to basal levels. Furthermore,

of all the targets with this property, the most optimal target is the one that requires the lowest

binding affinity. In general, when one designs therapeutic agents against a particular target, one

looks for the drug with the highest binding affinity. When looking for targets to bind to, however,

one looks for the complement. The reason for this is that the binding affinity is directly related to

the free energy of binding. The free energy of binding is directly related to the set of intermolecular

interactions between the ligand and substrate. These intermolecular interactions include specific hy-

drogen bonding patterns, electrostatic, and steric considerations. These intermolecular interactions

are reduced when a ligand binds to a substrate with a lower binding affinity. This expands the scope

and range of possible inhibitors that will effectively stop the activation of this cascade.
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Each hypothetical drug is tested against a set of perturbed pathways that have elevated activated

ERK levels described previously [7, 6]. Each row in Tables 2.1 and 2.2 represents a different mutation

that leads to activated ERK levels. To illustrate, the third highest ranked mutation in Table 2.1

involves the inhibition of the interaction between Raf and Ras. This results in a lower disassociation

rate by inhibiting the reverse rate constant by a multiplicative factor (kmod) of 0.6. Row 3 in Table

2.1 states that any value of kmod that is 0.6 and lower for this reaction will lead to activation of the

MAPK pathway without stimulation. The multiplicative factor kmod is proportional to the change

in free energy along the reaction coordinate due to a random mutation in either Ras or Raf by:

∆E = −kBoltzT ln (kmod) (2.1)

where kBoltz is Boltzmann’s constant and T is the temperature (Figure 1.4.1). The effect of this

mutation is to change the reverse rate constant kb from 0.5s−1 to 0.3s−1. This particular mutation

represents one that inhibits Raf and Ras-GTP disassociation. The set of reactions listed in Table 2.1

represents 20 possible deactivating mutations that lead to unstimulated activation. The direction

column labels whether kmod is applied to the forward or reverse rate constant. Similarly, Table

2.2 represents an additional 20 possible activating mutations that lead to activation of the MAPK

pathway. Activating mutations are defined by reactions such that kmod > 1, leading to an increase

in the corresponding rate constant. The family of mutations listed in Tables 2.1 and 2.2 represent

a total of 40 virtual cell lines that lead to activated ERK levels without stimulation.

Tables 2.1 and 2.2 do not represent all possible mutations within a cell but are simply the ones

that are highly ranked by measuring the biochemical activity of the MAPK pathway (Figure 2.1)

via the activation of ERK. It is not expected that a cell with only a single mutation from either

table will cause transformation of a real cell. These single mutations must be considered within

a framework of additional mutations in pathways not modeled, which would otherwise inhibit the

biochemical activity of the MAPK pathway. However, the predicted single mutations should be

considered to be leading indicators of mutations that are likely when coupled to mutations in these

additional mechanisms. As such, the targeting of the MAPK pathway must be considered as a single
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possible intervention point in the treatment of possible transformed cells. The approach outlined

can be generalized quite easily, and it is expected that a similar strategy can be used to target these

other pathways.

2.4 In Silico Model of Drug Targets

To calculate the effects of a competitive inhibitor on a particular virtual cell line, one adds a single

chemical reaction representing simple binding between the substrate and the target protein:

P + I
kf−⇀↽−
kb

P.I (2.2)

The binding free energy can be calculated from the binding affinity kd (kb/kf ) of the reaction.

A particular inhibitor may bind to any substrate within the MAPK pathway. The efficacy of the

inhibitor against a particular target is gauged by its ability to stop auto-activation of the pathway of

the entire set of cells described in the previous section. Furthermore, targets that successfully inhibit

all transformed cell lines are further ranked by the minimum binding affinity and concentration

needed to deactivate all cell lines. While competitive binding is of course the simplest way that

a drug may interact with a particular protein, it should be noted that in real systems drugs may

non-competitively bind or may engage in allosteric inhibition and so forth.

Having a high binding energy is equivalent to making the association irreversible or equivalently,

setting kb = 0. In the MAPK model used (Figure 2.1), there are 31 potential drug target candidates.

The range of binding strengths used to test the targets range from a kd value of 10−6µM to 104µM

separated by logged increments of 100.1µM . As the steady state response is being investigated,

kf is set to 1 and the value of kb is adjusted accordingly. The tested concentration range for the

inhibitor lies between 1pM and 1µM in log increments of 100.1µM . Figure 2.2 is illustrative of

the results of this calculation. In Figure 2.2, a drug targets Phospholipase C-γ (PLC-γ) through a

range of concentrations and the number of successfully inhibited pathways is tabulated. The contour

plots outline the number of successfully inhibited pathways (Tables 2.1 and 2.2). There is a clearly

delineated region where the drug at a particular concentration can inhibit all pathways (the top

left portion of the figure) and a region where the drug fails to inhibit any of the pathways (bottom
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right). For drugs targeted against PLC-γ, a kd value of 10−1µM or lower and any concentration

above 10−1.25µM will be sufficient to inhibit all pathways. At higher kd values, a higher concentration

will be needed to compensate for the lower binding affinity of the target. There is a certain trade

off between binding affinity and concentration. The results against all targets are shown in Figures

2.2-2.7. The figures themselves are sorted by the minimum concentration the drug needs to function

against a particular target and within a particular concentration sorted by kd. The figures have

been grouped by similarity and then qualitatively ranked by efficacy.

Figure 2.2 shows the first set of targets that are classified as “high concentration” drug targets.

Inhibitors against PLC, PLC-γ and G-GDP all need a concentration of approximately 10−1µM to

inhibit all the mutation containing pathways. G-GDP refers to the G-αβγ trimer associated with

GDP. At that concentration, the binding affinities required are such that PLC-γ inhibitors need

a slightly higher minimum binding affinity than PLC. PLC inhibitors, in turn, require a slightly

higher minimum binding affinity than G-GDP. It is worth noting that PLC-γ also needs a slightly

higher concentration to fully inhibit all mutated pathways, clearly demarking it as a less promising

drug target than either of the other two candidates. While the numerical values are likely not to

correspond with actual binding affinities or concentrations needed for inhibition of real pathways, it

is this qualitative ranking that provides a simple estimate of plausible targets.

Figure 2.3 consists of only a hypothetical drug designed against the kinase ERK. Drugs targeted

against ERK need a concentration of 10−1.5µM to work successfully and have a similar kd range

to that of G-GDP and PLC as shown in Figure 2.2. Of the drug targets in Figures 2.2 and 2.3,

a clear hierarchy of targets exists, such that ERK targeted drugs provide the best opportunity for

inhibition of proliferative pathways.

The targets in Figure 2.4 reqire a drug with a minimum concentration of 10−1.75µM to be

successfully inhibited. PKC-cytosolic and PLA2 are the two members of this category. While PLA2

inhibitors require a relatively low concentration, they also require a high affinity to function. In

contrast, PKC inhibitors will also function at similar concentrations but additionally inhibit the set

of mutated pathways at a much larger kd range than any previously described drug. The range is
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essentially flat up to 10−0.5µM at a concentration of 10−1.75µM .

MEK, the only target in Figure 2.5, needs a minimum concentration of 10−2.0µM to function.

MEK illustrates the trade-off in choosing a particular target: while inhibitors against MEK will

function at lower concentrations, a higher binding affinity is needed to inhibit all pathways. That

said, the binding affinity needed is quite similar to most of the previous targets, the notable exception

being PKC.

The targets in Figure 2.6 need a drug concentration of 10−2.5µM to successfully inhibit the set

of mutation containing pathways. The enzymes Ras, Raf, and GEF are all in this category. It is

interesting to note that a minimum kd value of 10−1µM is needed for all three drug targets. In

terms of kd, these targets are similar to most of the previously described targets except that they

continue to function at lower concentrations than previously described targets.

The final set of targets includes calcium regulatory proteins (Figure 2.7). These targets are

markedly different from all previously described targets. These targets regulate calcium flow to the

cytosol via various mechanisms. The “Inact Cap Entry” target represents endosomal capacitive

entry channels that are blocked when Ca2+ is sequestered into endosomes. The “Capacitive Ca

Entry” is the transient receptor potential (TRP) plasma membrane channel. The “Ca Leak from

Extracell” target represents the pool of Ca2+ leak channels on the plasma membrane. These “calcium

blocker” drugs work at much lower concentrations than any other previously listed drug target.

“Capacitive Ca Entry” and “Inact Cap Entry” inhibiters work at concentrations up to 10−3.6µM but

require a high binding affinity. The maximum kd range is approximately 10−4.5µM for these targets.

Similarly a hypothetical calcium leak blocker would function at concentrations up to 10−4.5µM with

a maximum kd of approximately 10−4µM . The nature of the calcium blockers is markedly different

from the targets analyzed previously and will be discussed in more detail in the next section.

2.5 Discussion

As there is a clear trade-off between the minimum required binding affinity and initial concentration,

it is difficult to define a clear hierarchical scale that rates the “best” target. A summary of the results

is shown in Figure 2.8. Each point in the figure shows the minimum concentration and maximum kd
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value that still inhibits a majority of the mutation-containing pathways. Many of the highly ranked

targets shown are currently under experimental investigation.

Of the targets in Figure 2.2, PLC and PLC-γ inhibitors are known to have anti-cancer properties.

PLC-γ inhibitor peptides have been found to block cancer cell growth in colorectal carcinoma cells

(KMS-4, KMS-8 cell lines) [57, 58]. Evodonin and coworkers have recently found that the PLC

inhibitor U73122 can significantly reduce the migration of human tumor cells [59]. In a related

study of U73122, it was found that PLC-γ is the rate limiting step for governing tumor cell invasion

in various tumor cell lines including prostate cancer (DU-145) and several breast cancer lines (MDA-

468, MDA-231, MDA-361) [60]. Oh and coworkers have recently discovered a new inhibitor based

on a fungal strain that inhibits PLC activity with potent cytotoxicity against breast cancer (T47D),

prostate cancer (PC-3) and ovarian cancer [61]. There is some evidence that U73122 has the side-

effect of releasing Ca2+ from the intracellular stores by directly activating ion channels [62]. This

may make PLC a less than ideal target. In contrast, inhibitors of large G-proteins associated with

the MAPK pathway are not currently used in cancer therapy.

Inhibitors for ERK (Figure 2.3) are currently not well studied, and only a few ERK inhibitors

are currently known to exist. A small oligonucleotide made from the amino-terminal end portion of

MEK has been recently shown to specifically target ERK1/2. While this peptide can inhibit ERK

in vitro, it does not inhibit ERK in vivo as it cannot pass the membrane barrier [63]. The cyclin-

dependent Kinase (CDK) inhibitor Purvalanol has recently been shown to not only target CDKs

but ERK as well [64]. The antiproliferative activity of Purvalanol has been shown to be mediated

by the inhibition of both ERK and CDK inhibition.

The next set of highly ranked targets found by our study is the PKC and PLA2 kinases. Several

other PKC inhibitors are currently under investigation as possible anti-cancer agents. Koivunen

and coworkers have recently tested several PKC inhibitors including Go6976, Safingol, Rottlerin

and Bisindolylmaleimide I on cultured urinary bladder carcinoma cells (5647 and T24). Of this set

of inhibitors, they found that Go6976 has potential as an anti-cancer drug, as it has the additional

effect of inhibiting metastasis [65]. Schwartz and coworkers have found that the PKC inhibitor
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SPC-100221 stops cancer cell invasion of gastric cancer [66]. The use of PKC inhibitors in cancer

therapy has been reviewed by several groups [67, 68, 69]. Tamoxifen, an antiestrogen, is widely

used in breast cancer treatment. Tamoxifen is also a PKC inhibitor, though its activity is in the

micromolar range and the effect of PKC inhibition is likely not to play a large role in the use of

Tamoxifen in treatment [70, 71, 72].

PLA2 inhibitors are currently used as anti-inflammatory agents [73, 74] and recently PLA2 has

been proposed as a target for therapeutic intervention in cancer [75]. The PLA2 inhibitor Quinacrine

has been shown to be effective against prostate cancer when used with the anti-tumor drug Paclitexal

[76], however there exists conflicting evidence that Quinacrine use may also lead to increased cancer

risk [77, 78]. At this time, no major PLA2 inhibitor is currently in use as a therapeutic agent.

Several MEK inhibitors are currently in various stages of development [48]. Astra-Zeneca is

currently developing AZD6244/ARRY-142886, a MEK inhibitor that has been shown to be tumor

suppressive in melanoma, pancreatic, colon, lung, and breast cancers. This drug has completed

Phase I trials and is currently starting Phase II clinical trials. Pfizer is currently testing the MEK

inhibitor CI-1040 in Phase I and Phase II clinical trials for breast cancer, colon cancer, and melanoma

[79]. Additionally, studies of the MEK inhibitor PD98059 have shown that MEK inhibition impairs

proliferation of cancer cells [80, 81]. The MEK inhibitor PD98059 has recently been shown to

suppress metastasis of the prostate cancer cell lines [82]. PD98059 has also been used to enhance

the efficacy of cancer treatment. For instance, it has been found to increase the success rate of

Docetaxel in suppressing the proliferation of prostate cancer cell lines and increasing apoptosis. The

efficacy of this combinatorial approach was shown to be far more effective than either drug alone

[83].

Excluding the calcium blockers, inhibitors against Ras, Raf, and GEF are predicted by the

method to be the most efficacious drug leads. Ras and Raf inhibitors are some of the most well

studied drug leads within the MAPK pathway, and several candidates are currently in clinical trials.

As Farnesyl Transferase is responsible for collocating Ras to the plasma membrane for activation,

several Farnesyltransferase inhibitors are currently in clinical trials [84, 85, 86]. These inhibitors
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include R115577, which shows promise for leukemia and colorectal cancer and is currently in Phase

I and Phase II clinical trials [44, 87, 88, 89, 90, 91, 92, 93]. Bristol Myers Squibb currently has

shown that BMS-214462 displays cytotoxicity against human tumor cell lines [94, 95, 96, 97, 98, 99,

100, 101]. Schering Plough is currently investigating SCH-66336, currently in Phase I and Phase II

clinical trials against a wide variety of human tumors [102, 103, 104, 105, 106, 107, 108, 109, 110].

There are several new Raf inhibitors that are also currently in clinical trials. Bayer Pharmaceuti-

cals is currently testing Bay43-9006 in Phase I and II clinical trials [111, 112, 113, 114, 115, 116, 117].

Isis Pharmaceuticals is currently testing ISIS-5132, an oligonucleotide based inhibitor that functions

by down-regulating the expression of Raf and is currently in Phase I and Phase II clinical trials

[118, 119, 120, 121, 122, 123, 124, 125, 126]. The last target in this set, GEF, does not presently

have an inhibitor in clinical trials, despite the existance of GEF inhibitors such as Brefeldin-A [127]

and TRIPα [128]. Nontheless, GEF has recently garnered interest as a target for cancer therapy

[129, 130, 127]. While elevated levels of GEF have been found in a variety of cancers, particulary

pancreatic [131], GEF’s role in cell apoptosis may also paradoxically enable it for use in therapies

involving gene transfer to tumors [132] as opposed to a target of inhibitory drugs.

The final set of targets, the calcium channels (Figure 2.7), can be inhibited with drugs at ex-

tremely low concentrations, although they require a higher binding affinity than the previous drug

targets. There is much conflicting data in the literature on the relationship between calcium block-

ers and cancer. It has been proposed that calcium blockers actually increase the risk for cancer

[133, 134, 135]. This work, however, has been somewhat controversial [133, 134, 136, 137, 138,

139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151], as more recent studies have failed

to find any significant correlation between calcium blockers and cancer [152, 153, 154, 155]. Ad-

ditionally, Debes et.al. found an inverse correlation between calcium blockers and prostate cancer

[156], Lee et.al. found that T-type calcium channel blockers inhibit human cancer cell growth

[157] and the calcium blocker Verapamil has been found to stop tumor growth in several studies

[158, 159, 160, 161, 162, 163, 164]. There is also evidence that Nicardipine works in a similar fashion

[165, 166, 167].
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2.6 Conclusion

The method developed is an extension of previous work done by our group [7, 6]. Through direct

simulation, it is shown that drug function can be clearly delineated by drug kd and initial concen-

tration. Thirteen kinases within the pathway are shown to have potential as anti-tumor targets, and

there is considerable evidence in the literature that inhibitors against these targets have anti-tumor

activity. As there is a trade-off in binding affinity and concentration, a simple ranking is overly sim-

plistic. In general, however, targets further towards the bottom right of Figure 2.8 are preferable,

and it is clear from the analysis that some drug targets are better suited. Of these, Ras, Raf, and

GEF targets show the most promise, and can be inhibited by drugs at the lowest concentrations.

It was also found that calcium blockers, while requiring a high binding affinity, function at very

low concentrations. It is possible that certain calcium blockers may function as anti-tumor agents,

perhaps in conjunction with standard therapies.

The advantage of such in silico testing procedures is that the analysis is straightforward both

conceptually and computationally and can provide a simple, fast gauge to focus experimental efforts

as well as point out new leads not previously known. The limitation of these types of systems biology

approaches is that they are dependent on a reasonably complete set of kinetic parameters. As the

MAPK pathway is one of the most well-studied pathways available, it is well suited for this analysis,

and it is envisioned that as newer pathways become available in public databases, such analyses may

become commonplace.

Several immediate in silico extensions to the work described herein exist. A combinatorial ap-

proach of simulating multiple inhibitors in tandem is one such extention that has a dirct experimental

analogue to the use of synergistically acting drug cocktails. Another extension, outlined in the next

chapter, is the simulation of these inhibitors on the wild-type MAPK pathway. This of course models

the action of targeted drugs on non-cancerous cells, i.e. side effects. Finally, the introduction of

locality and transport into models of the MAPK signal transduction pathway leads to an obvious

spatio-temporal complement of the targeting strategy described herein[168, 8].
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Figure 2.1: The main pathways used in this model. The arcs connect species involved in enzymatic (such
as phosphorylation/dephosphorylation) reactions. For example, Phosphatidylinositol bisphosphate (PIP2)
conversion to DAG and Inositol 1,4,5 Trisphosphate (IP3) is carried out by four enzyme complexes Ca-PLC,
Ca-Gα-GTP-PLC, Ca-PLCγ and Ca-PLCγ∗ of the two isoforms of PLC. An asterisk denotes the addition
of a phosphate group on that species. The association and disassociation reactions are shown by straight
arrows. The parameters for this model are taken from the work of Bhalla and Iyengar [1], where a full
discussion of the naming conventions, signalling feedback loops, and individual parameters used may be
found.
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Figure 2.2: Contour plot of the response map to PLC-γ, PLC, and G-GDP as a function of drug concentra-
tion and binding affinity. In the top left portion of the graph, all mutated pathways have been successfully
repressed. On the other side, none of the cell lines are inhibited. At each iso-contour line, an equal number
of pathways have been successfully repressed. These targets only work at relatively high concentrations.
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Figure 2.3: Contour plot of the response map to ERK. Drugs targeting ERK require a lower concentration
and have a similar binding affinity profile as the targets in Figure 2.2.

Table 2.1: Set of deactivating mutations. The ranking of the interaction mutations is based on the highest
value of kmod, below which ERK activation occurs without stimulation in the MAPK pathway. Reactions
with X (or X∗) or (g) represent reactions involving multiple species.

Rank kmod Reaction Dir
1 0.75 X∗ + PP2A 
 X∗-PP2A f
2 0.75 X∗-PP2A → PP2A +X f
3 0.6 Raf∗ +GTP-Ras 
 Raf-GTP-Ras∗ b
4 0.55 Raf∗ + PP2A 
 Raf∗-PP2A f
5 0.55 GTP-Ras + GAP 
 GTP-Ras-GAP f
6 0.55 GTP-Ras-GAP → GAP +GDP-Ras f
7 0.55 AA → APC f
8 0.55 Ca-Capump → Capump +Caext f
9 0.5 X + Raf-GTP-Ras∗ 
 X-Raf-GTP-Ras∗ b
10 0.5 Ca + Capump 
 Ca-Capump f
11 0.5 Raf∗-PP2A → PP2A +Raf f
12 0.5 PKC-DAG-AA 
 PKC-DAG-AA∗ b
13 0.5 PKC-DAG +AA 
 PKC-DAG-AA b
14 0.5 DAG → PC f
15 0.45 Raf + PKC(g) 
 Raf-PKC(g) b
16 0.45 PKCcytosolic +Ca 
 PKC-Ca b
17 0.45 PKCcytosolic +DAG 
 PKC-DAG b
18 0.4 X∗-MKP1 → X + MKP1 f
19 0.4 GDP-Ras + GEF(g)∗ 
 GDP-Ras-GEF(g)∗ b
20 0.4 MEK∗ + PP2A 
 MEK∗-PP2A f
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Figure 2.4: Response map of a inhibitory drug targeting PLA2 and PKC. This set of drug targets function
at concentrations as low as 10−1.75µM .
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Figure 2.5: Response map of an inhibitory drug targeting MEK. While MEK can function at concentrations
as low as 10−2.0µM , it requires higher binding affinity than targets against PKC.

Table 2.2: Set of activating mutations. The ranking of the interaction mutations is based on the lowest
value of kmod, above which ERK activation occurs without stimulation in the MAPK pathway. Reactions
with X (or X∗) or (g) represent reactions involving multiple species.

Rank kmod Reaction Dir
1 1.35 X + PP2A 
 X-PP2A b
2 1.6 Raf-GTP-Ras∗ + X 
 Raf-GTP-Ras∗-X f
3 1.65 Raf∗ +GTP-Ras 
 Raf-GTP-Ras∗ f
4 1.7 Raf-GTP-Ras∗-X → X∗ + Raf-GTP-Ras∗ f
5 1.75 GTP-Ras + GAP 
 GTP-Ras-GAP b
6 1.75 Raf + PKC(g) 
 Raf-PKC(g) f
7 1.85 GEF(g)∗ + GDP-Ras 
 GDP-Ras-GEF(g)∗ f
8 1.9 Raf∗ + PP2A 
 Raf∗-PP2A b
9 1.9 PKC-DAG-AA 
 PKC-DAG-AA∗ f
10 1.95 PKC-DAG +AA 
 PKC-DAG-AA f
11 2 GDP-Ras-GEF(g)∗ → GTP-Ras + GEF(g)∗ f
12 2.1 Raf-PKC(g) → Raf∗ + PKC(g) f
13 2.2 Ca + Capump 
 Ca-Capump b
14 2.2 PKCcytosolic +DAG 
 PKC-DAG f
15 2.25 MEK∗ + Raf-GTP-Ras∗ 
 MEK∗-Raf-GTP-Ras∗ f
16 2.25 MEK∗∗ + X 
 X-MEK∗∗ f
17 2.25 PKCcytosolic +Ca 
 PKC-Ca f
18 2.3 GDP-Ras + GEF∗ 
 GDP-Ras-GEF∗ f
19 2.35 GAP + PKC(g) 
 GAP-PKC(g) f
20 2.4 Ca-PKC 
 PKC-Ca∗membrane f
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Figure 2.6: Response map of a drug targeting Raf, Ras, and GEF. This set of targets represent the best
low concentration, low binding affinity drug targets found in this study.
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Figure 2.7: The set of calcium blockers continue to function at much lower concentrations than any other
target found, however they require higher binding affinities to function properly.
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Figure 2.8: An overview of the results are shown. Each set of targets that were analyzed as a group are
boxed together. Each dot represents the highest kd at the lowest concentration that a drug (labeled by its
target) needs to inhibit a majority of the mutated pathways. As there is a trade-off in binding affinity and
initial concentration, a simple ranking is overly simplistic. In general, however, targets further towards the
bottom right are better performing than those on the top left as drugs targeting these species function at
both lower concentrations and lower binding affinities.
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Chapter 3: Reducing Side Effects: A Systems Approach for the
Prediction of Wild-Type MAPK Pathway Response to Targeted Drugs

3.1 Introduction

In this paper we simulate the wild-type MAPK pathway response to twelve in silico drugs that were

previously found to reduce elevated ERK∗ levels in forty top ranked mutations in a model of the

MAPK signal transduction pathway. We find that a subset of the simulated drugs (most notably

those targeting GEF and the Gαβγ G-protein trimer) are able to effectively inhibit the elevated

ERK∗ levels of the mutated pathways, whilst simultaneously eliciting only a small inhibition of the

wild-type pathway ERK∗ response to EGF stimulation. While controlled MAPK pathway regula-

tion is required for a number of wildtype cell functions (including proliferation, differentiation, and

migration), excessively elevated ERK∗ levels have been associated with numerous cancer types, no-

tably colo-rectal [169], breast [170], and lung [171] cancers. Moreover, MAPK pathway deregulation

is found in approximately one third of all human cancers [172].

3.2 Background

In previous work [7, 6], forty top-ranked proto-oncogenes in the MAPK signal transduction pathway

were identified that, when expressed, caused elevated levels of phosphorylated ERK to develop.

The corresponding mutations consisted of perturbations of model parameters, specifically forward

and backward kinetic rate constants. A smaller perturbation that resulted in an equal or greater

increase in steady state ERK∗ levels was ranked higher on the list of proto-oncogenes than a larger

perturbation.

Subsequently, using this list of mutations, a ranked list of drug targets within the same pathway

were identified that, through competitive binding to specific pathway participants, were able to affect
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the signalling cascade in such a way as to reduce steadystate ERK∗ levels to below a chosen threshold

[173, 174]. These in silico drugs were ranked by their minimum binding affinity and minimum initial

concentration required to elicit reduced ERK∗ levels. A roughly ranked list of thirteen effective

drugs was produced and compared to existing drugs that are either presently in clinical trials or are

in some instances fully marketed cancer therapies.

As a logical extension to this work, we investigate the application of the same drugs found via

the mutated pathway model to the un-mutated wild-type MAPK pathway. Will the drugs also

inhibit the pathway’s normally functioning ERK response to EGF stimulation or will the wild-type

pathway exhibit some amount of resistance to one or more of the drugs? A therapy that is able

to effectively reduce ERK∗ levels in mutated cells, while still allowing for normal cell function and

ERK∗ response in non-cancerous cells would be better tolerated, and therefore more desireable, than

therapies which do not distinguish between cancerous and non-cancerous cells.

3.3 Methodology

To find out if any drugs could be found that could effectively differentiate between mutated and

wildtype pathways, we adopted a simulation from Figure 2d in [1], from where the original MAPK

pathway model was also taken. The original figure demonstrates the pathway’s ERK∗ response to

three different EGF stimulations: a brief, high concentration stimulation; a long, low concentration

stimulation; and a long, high concentration stimulation. We replicated the first of these using a 10

min, 3nM EGF stimulation (see Figure 3.2) using our group’s CellSim software [8, 2].

After initially allowing the pathway to reach steady state by integrating the model equations

through a one hour simulation time, a fixed 3nM EGF concentration is added to the model equations,

sustained for 10 min, and then removed. The system is then again allowed to reach steady state.

Shortly after stimulation begins, ERK∗ reaches a response peak of around 0.7µM concentration.

Shortly thereafter, MAPK* levels fall back to basal levels via the actions of cytosolic phosphatases

and EGF receptor (EGFR) internalization – a robust signal desensitization mechanism.

As described previouly, the introduction of an inhibiting drug to the system only involves the

addition of a single reaction to the model’s reaction set:
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Drug + Target� Drug.Target (3.1)

The forward rate constant kf is set to 1(µM · s)−1 and the backward rate constant kb (or

equivalently the dissociation constant kd = kb/kf ) and initial drug concentration C0 are taken as

free parameters over which to explore. At low C0 and high kd values, the drug has negligible effect

on the system kinetics. However at high C0 and low kd values, the drug in effect removes the

target protein’s ability to participate in the system kinetics, interrupting signaling, and results in

the complete inhibition of the ERK∗ response.

For each of the twelve target proteins in the wild-type pathway (Figure 3.1), we ran simulations

using C0 and kd value pairs over the region C0 = 10−6 to 1 µM and kd = 10−6 to 104 µM using

a log resolution of 0.1. These points match up with those of the previous chapter. For all targets,

the majority of the parameter space was of little interest and elicited either zero or total signal

inhibition for both wild-type and mutated pathways. In between these two regions lay an area of

transition, where the wild-type and mutated pathways exhibited responses of varying degrees of

partial inhibition. As the response curves of the wild-type pathway did not identically match those

of the mutated pathways, we were able to find regions of drug parameter values that elicited total or

near total inhibition of the mutated pathway signaling, yet elicited little or no effect on the wild-type

response.
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Figure 3.1: The MAPK Pathway adopted from [1] in circuit form. In this pathway, EGF binds to membrane
receptors and leads to Ras activation via SHC*.SOS.GRB2 complex. The phosphorylation cascade continues
via Raf and MEK, and leads to ERK activation. The twelve drug targets are highlighted in the schematic
and consist of Raf, Ras, Gαβγ G-protein trimer, GEF, MEK, ERK, PLA2, PKC, PLC, PLCγ , and two
calcium channels.
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3.4 Results and Conclusions

In dramatic fashion, Figure 3.2 illustrates the effectiveness of GEF as a drug target in a single

mutated cell line. The drug reduces spurious ERK∗ levels in a mutated pathway (Deactivating

mutation 1 in Table 2.1), while only minimally affecting the wild-type pathway’s natural ERK∗

response to EGF stimulation.

For Figures 3.3-3.14 the peak wild type pathway ERK∗ response to each targeted drug is com-

pared to each drug’s effect on the forty mutated pathways. The responses are plotted over identical

ranges of initial drug concentration and the drug dissociation constant kd = 10−4µM in all cases.

The plots are roughly in descending order of drug desirability, i.e. the drug’s ability to deactivate the

mutated pathways while leaving the wild type pathway unaffected. A mutated pathway is considered

deactivated when its steady state ERK∗ concentration drops below 0.002µM .

While these plots are useful for visualizing a drug’s effect at a specific dissociation constant, they

do not provide information over the full range of kd nor do they give a quantitative measurement of

the drug’s ability to effectively differentiate between mutated and wild-type pathways.

Therefore, for each drug we take a sum of the normalized wild-type pathway response (ratio of

peak ERK∗ value upon EGF stimulation to same value in an un-drugged pathway) and the nor-

malized mutated pathway response (the fraction of the 40 mutated pathways that were successfully

deactivated). This yields values between zero and two, however, as no simulated drug ever substan-

tially inhibits ERK∗ in the wild-type pathway without first inhibiting the mutated pathways as well,

the values do not drop significantly below 1. We therefore subtract out this lower range, yielding

values in the range from zero (ERK∗ levels are either unaffected or completely suppressed in both

mutated and wild-type pathways) to unity (complete ERK∗ suppression in the mutated pathways,

wild-type unaffected). This yields an intuitive measure of drug desirability from undesirable (zero)

to perfectly effective (unity).

We can then contour plot these desirability values as a function of initial drug concentration and

dissociation constant as in Figures 3.15–3.26. The top performing targets are GEF, with a central

peak region of values above 0.9, Gαβγ at 0.8, and PLC at 0.7 (Figures 3.15–3.17). The next ranked
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group consists of the Ca2+ leak channel, PKC, and PLA2, all of which reach values between 0.6 and

0.7 (Figures 3.18–3.20). The remaining six drug targets (Figures 3.21–3.26) do not elicit a value of

desirability above 0.6. These targets consist of the transient receptor potential (TRP) Ca2+ channel,

Raf, MEK, Ras, ERK, and PLCγ .

As can be seen, the previous ranking of these targets [173, 174], based upon their ability to deac-

tivate the mutated pathways at low drug concentrations and at high kd values, does not identically

match this alternative ranking in terms of desired wild-type response. Nonetheless, the best target

in this ranking, GEF, also performed highly in the previous ranking. While all of the investigated

pathway components have precedent as cancer therapy targets (as described in detail in the previ-

ous chapter), GEF’s high ranking in both studies buttresses the more recent interest in GEFs as

potential therapeutic targets for cancer [129].

In the pathway model used here, phosphorylated GEF acts mainly to exchange the GDP molecule

bound to Ras for the more abundant GTP, activating Ras in effect [175]. However, this is not the

sole role of GEFs in the cell, as GEFs constitute a large family of proteins that are involved in

cytoskeletal rearrangement and motility, vesicle trafficking, and nuclear import [176]. In addition,

a recent study examined the potential for small G-protein inhibition by targeting GEFs [127] and

found that GEF’s action of small G-protein activation is inherently spatiotemporal (i.e., localized

and temporally defined within the cell). Therefore, while we have seen that purely kinetic cell

signaling pathway models can describe a multitude of cell functionality and interaction, such models

will need to expand in scope in order to include locality, transport, and cell geometry/morphology

if they hope to accurately describe such spatiotemporal phenomena. The remaining chapters aim to

describe a number of mathematical and computational tools developed by our group for use in this

growing area of spatiotemporal systems biology.
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Figure 3.2: Simulated ERK∗ responses in wild-type vs mutated pathways. Elevated ERK∗ levels in a
mutated pathway are reduced considerably by the addition of the drug. Conversely, ERK∗ response to EGF
stimulation in the wild type pathway is only minimally effected by the same drug. In both cases the drug is
targeting GEF with Kd = 10−4µM and C0 = 0.02µM . EGF stimulation of the wild type pathway is 3 nM
for 10 min. The mutated pathway contains mutation (1) from the set of inhibiting mutations in Table 2.1



CHAPTER 3. REDUCING SIDE EFFECTS 36

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 1e-06  1e-05  1e-04  0.001  0.01  0.1  1

W
ild

ty
pe

 [E
R

K
*]

 R
es

po
ns

e 
(µ

M
)

Initial Drug Concentration (µM)

GEF

Wildtype

 1e-06  1e-05  1e-04  0.001  0.01  0.1  1
 0

 5

 10

 15

 20

 25

 30

 35

 40

D
ea

ct
iv

at
ed

 M
ut

at
ed

 P
at

hw
ay

s

Initial Drug Concentration (µM)

GEF

Mutated

Figure 3.3: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting GEF. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.4: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK path-
ways to drugs targeting Gαβγ , the GDP-bound G protein trimer. The left axis corresponds to the response
(peak ERK∗ concentration) of the drugged wild-type pathway through range of initial drug concentration.
The right axis corresponds to the number of mutated pathways deactivated by the same drug through the
same range of initial concentration. The drug dissociation constant is kd = 10−4µM .
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Figure 3.5: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting PKC. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.6: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting PLC. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.7: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting the extracellular calcium leak channel. The left axis corresponds to the response
(peak ERK∗ concentration) of the drugged wild-type pathway through range of initial drug concentration.
The right axis corresponds to the number of mutated pathways deactivated by the same drug through the
same range of initial concentration. The drug dissociation constant is kd = 10−4µM .
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Figure 3.8: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting PLA2. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.9: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting Raf. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.10: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting the calcium TRP channel. The left axis corresponds to the response (peak
ERK∗ concentration) of the drugged wild-type pathway through range of initial drug concentration. The
right axis corresponds to the number of mutated pathways deactivated by the same drug through the same
range of initial concentration. The drug dissociation constant is kd = 10−4µM .
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Figure 3.11: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting MEK. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.12: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting PLCγ . The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.13: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting RAS. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.14: Response of both wild-type (curve, left axis) and mutated (stair step, right axis) MAPK
pathways to drugs targeting ERK. The left axis corresponds to the response (peak ERK∗ concentration) of
the drugged wild-type pathway through range of initial drug concentration. The right axis corresponds to the
number of mutated pathways deactivated by the same drug through the same range of initial concentration.
The drug dissociation constant is kd = 10−4µM .
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Figure 3.15: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting GEF through a range of kd and C0. A center band encloses a region of desirability where
the drug maximally affects the mutated pathways yet only minimally affects the wild type pathway. The
plotted values of desirability range from zero (ERK∗ levels are either unaffected or completely suppressed
in both mutated and wild-type pathways) to unity (ERK∗ suppression in the mutated pathways, wild-type
unaffected).
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Figure 3.16: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting Gαβγ .
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Figure 3.17: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting PLC.
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Figure 3.18: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting the extracellular calcium leak channel.
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Figure 3.19: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting PKC.
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Figure 3.20: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting PLA2.
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Figure 3.21: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting Raf.
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Figure 3.22: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting the calcium TRP channel.
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Figure 3.23: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting MEK.
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Figure 3.24: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting PLC.
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Figure 3.25: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting Ras.
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Figure 3.26: A contour plot of the sum of the normalized wild type and mutated pathway responses for
the drug targeting ERK.
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Chapter 4: Spatio-Temporal Systems Biology

4.1 Summary

In this chapter, we discuss computational and theoretical considerations for the extension of systems

biology into the spatio-temporal realm, as well as how such an extension to systems biology may an-

swer questions about complex protein networks and the role spatial heterogeneity may play in such

processes. Both limitations and extensions of current approaches within the research community

will be discussed, along with the approach taken by our group in a newly developed software pack-

age, CellSim. Theoretical foundations, both biophysical and numerical, are presented, afterwhich

CellSim is introduced along with examples of simulations using the software.

4.2 Cell Compartmentalization and Heterogeneity

Systems biology has, until recently, considered the cellular activity to be fully described as simply

a set of complex, coupled chemical reactions that occur concurrently to bring about the disparate

and multifaceted behavior exhibited by cells. In this sense, perhaps one of the most important

aspects of systems biology is its emphasis on describing the cell (and its chief component, protein)

as being intimately part of this complexity, manifested in networks of protein and messenger molecule

cascades. In this view, the complexity of cellular function emerges through these cascades, which

may exhibit (through feedback, feed-forward, amplification and other signaling processes) important

biological regulatory and functional mechanisms controlling all aspects of cellular function from

metabolism to cellular growth.

It is a testament to systems biology’s recent coming of age that even this immense complexity

belies the true nature of cells. A cursory glimpse into the inner workings of living cells gives rise to
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the notion that cells are immense, heterogeneous, complex machines with a hierarchy of macroscopic

(∼ 10−6m) to microscopic (∼ 10−9m) features acting in unison. Furthermore, cells are organized in

multi-cellular systems on a much larger scale into an array of specialized and differentiated groups

forming organs and other structures that encompass a viable living creature.

A host of compartments such as the mitochondria, endoplasmic reticulum (ER), nucleus, Golgi

apparatus, lysosomes and peroxisomes all play important and localized roles in cellular function.

The nucleus serves as a repository for the genome and is the chief location of regulatory processes

controlling gene expression, as well as DNA and RNA synthesis. Synthesis of the integral membrane

and secretory proteins occur within the ER and are later relocated elsewhere within the cell. The

Golgi apparatus is not only a major site of carbohydrate synthesis but also provides the conduit

for trafficked proteins exported from the ER. Mitochondria, which represent the energy factories of

the cellular machinery, are the sources for ATP synthesis. Defunct macromolecules are degraded

in lysosomes. Specific oxidative reactions that would be harmful if occurring in the cytosol are

confined within peroxisomes. While the complexity of cells is inherently inscribed by the wide

array of interacting protein and molecular networks and systems, the heterogeneous nature of these

compartments and their interactions play a large role in regulating the protein networks thus far

described. As can be seen cellular complexity is inherently spatio-temporal and more fully described

as not only sets of complex protein networks within organelles and the cytosol, but as a set of

interactions between compartments and the cytosol.

Protein motility within cells is guided by both passive and active transport, with protein localiza-

tion controlled by specialized sorting signals (either peptides or patches). Gated transport regulates

trafficking between the nucleus and the cytosol, while transmembrane protein complexes can di-

rectly transport proteins through the complex into a neighboring compartment. In addition, a large

amount of soluble protein is also transported by vesicular transport. In this mechanism, a vesicle

is formed in a source compartment containing the proteins to be transported and is subsequently

ejected and then localized to the destination compartment. In all three cases, protein transport may

be described as a combination of random motion and localized recognition via binding events. The
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recognition occurs through specific signal peptides or patches that may bind to a complementary

recognition complex. In gated transport and transmembrane protein complexes, the complementary

recognition complex is itself directly part of the transmembrane protein or the nuclear pore complex.

Conversely, vesicular transport is controlled specifically by SNAREs and targeting GTPases (Rabs),

which serve a similar function but will localize the entire vesicle rather than a single complex. Trans-

port of a protein to a nuclear pore complex or to a transmembrane complex is chiefly governed by

random thermal motions within the organelle itself. Similarly, localization of a vesicle to a target

organelle may also be considered to be random diffusion of the vesicle coupled to SNAREs and then

docked via Rabs.

4.3 Diffusion

Diffusion, the natural random motion of objects through a medium, plays a vital role in cell function

in many processes such as calcium transport, transcription, and non-equilibrium dynamics [177, 178,

179, 180]. As described previously, nature has given cells numerous mechanisms for transporting

materials into and out of the cell, as well as moving materials to different locations within the cell

itself - notably transporter proteins, motor proteins, and transport via potential differences and ion

gradients.

Typically, diffusion is neglected in most systems biology models. The model cell is instead treated

as a single point in space possessing instant dilution, often called the “well-stirred” approximation.

This is due to the added complexity of modeling diffusion as well as the lack of straightforward

experimental techniques to provide the necessary measurements needed to fully describe a spatio-

temporal model. If the time resolution of the system is large enough, this approximation is valid

for many materials with fast diffusion rates and/or small volumes. Furthermore, the diffusion con-

stant may in many cases be folded into the effective association or disassociation rate constants in

Michaelis-Menten reactions. In this approximation, diffusion acts simply as a mechanism to slow

down the apparent associative or disassociative rate constant, and transport between compartments

may be effectively treated as exchanges between spatially averaged concentrations of the transported

species. Concentration gradients of enzymes within cells that modulate signal transduction belie this
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simplicity [181, 182, 183, 184]. With experimental and computational technological advancements

allowing finer temporal and spatial resolution, the development of spatio-temporal extensions to

traditional systems biology has become much more tractable. Unless the timescale of interest is

fast enough to neglect intra-compartmental concentration gradients or the concentration gradient is

essentially flat, diffusion is likely to play a critical role in governing the time evolution of the system

and should not be ignored.

4.4 Spatio-Temporal Systems Biology - Theory
4.4.1 The Mathematics of the Diffusion Equation

Diffusion is based on the fact that random Brownian movement [185] is statistically more likely to

cause particles in areas of higher concentration to move to areas of lower concentration. One may

view this as a consequence of the fact that there are simply more particles in the high concentration

area that can randomly move to the low concentration area than particles in the low concentration

area that can do the reverse. The mathematical equation describing diffusion is, aptly, the diffusion

equation.

∂φ

∂t
= κ∇2φ (4.1)

This describes how the time rate of change of the amount of a substance at a location is pro-

portional to the second spatial derivative at the same location. The expression can be derived for

the case of one spatial dimension simply using elementary arguments on a Cartesian grid and can

easily be expanded to higher dimensions using superposition. We shall do this here for illustrative

purposes.

Assume that on a 1D grid a single particle takes a random right or left step of length dx in each

time span of dt. Each step is taken to be independent of all previous steps, and the total number of

particles involved is high enough to validate our probability assumptions. On average, the change

in number of particles at a position x in a time step dt is given by

∆n = nt+1
x − ntx (4.2)
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with the subscript x representing position and the superscript t representing time. For readability,

nt+1
x−1 should be interpreted as the number of particles at position x − dx at time t + dt. That

is, ±1 represents plus or minus one infinitesimal in the appropriate units. Consider the following

discretization: If the particles make steps of dx each and every time step dt, and the particles have

a probability pl of moving to the left and probability pr of moving to the right, then ∆n is

∆n = prn
t
x−1 − (pl + pr)n

t
x + pln

t
x+1 (4.3)

which simplifies to

∆n =
1

2
ntx−1 − ntx +

1

2
ntx+1

=
1

2

(
ntx−1 − 2ntx + ntx+1

)
(4.4)

Multiplying through by the identity dx2

dt
dt
dx2 gives

dntx
dt

= D
ntx−1 − 2ntx + ntx+1

dx2
(4.5)

where D = dx2

dt equals the diffusion constant. Letting the infinitesimals go to zero while keeping D

constant results in the original Equation 4.1 [186].

It is worth noting that the diffusion constant itself is dependent on a variety of factors, such

as the size/shape of the diffusing particles and the viscosity/density of the diffusive medium, and

must be derived experimentally [187]. For this derivation, we assume that D is not a function of

position. For certain simple cases the diffusion equation may be analytically integrated. However,

in general such analytic solutions do not exist for diffusion problems, and certainly not for problems

pertaining to cells, where cell geometry, kinetics, and non-trivial initial conditions complicate the

problem. Before embarking on this more complicated problem, we will first provide a cursory review

of the coupled problem in the reaction-diffusion equation, namely the reaction portion.
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The Mathematics of Chemical Kinetics

The framework of the reaction part of the reaction-diffusion equation is grounded in kinetic rate

theory [188]. Every interaction between members of the signal cascade is expressed as a set of basic

chemical reactions between species such as:

A+B
kf−⇀↽−
kb

AB (4.6)

A+B
kf−⇀↽−
kb

C +D (4.7)

where Equation 4.6 represents an aggregation event between species A and B and Equation 4.7

represents a chemical reaction between A and B forming products C and D. The rates kf and kb

are the forward and backward rate constants to be determined from an analysis of the response of

mammalian cell assays to various perturbations. Enzymatic reactions such as phosphorylation or

acetylation are represented using the Michaelis-Menten formulation:

E + S
k1−⇀↽−
k2

E.S
k3−→ E + S∗ (4.8)

Such an enzymatic process is the product of two sequential processes. The catalytic step is

irreversible with a rate constant of k3 and the association is reversible with forward and backward

rate constants of k1 and k2 respectively.

The system of kinetic reactions represented by Equations 4.6 and 4.7 can be rewritten as a series

of ordinary differential equations (ODEs). These equations describe a contribution to the rate of

change in concentration of a particular species as a function of time:

d[A]

dt
= kb[AB]− kf [A][B] (4.9)

d[A]

dt
= kb[C][D]− kf [A][B] (4.10)
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with corresponding ODEs for each of the other species expressed in Equations 4.6 and 4.7. The entire

pathway is represented as a system of differential equations that describes the change in concentration

of any particular species as a function of rate constants. Modeling protein interactions using only

equations of the type in 4.9 and 4.10 is again referred to as the “well-stirred” approximation.

Stochastic Models

Simulating differential equations to model reaction-diffusion processes will accurately predict the

average behavior of (a) large numbers of molecules within cells and (b) the average outcome of

a cell process over a large number of cells. In many cases however, deterministic and continuous

approaches cannot accurately simulate biological phenomena that arise from stochastic effects. For

example, in the case of cancer, random molecular and cellular effects with low individual probability

accumulate, eventually causing dramatic physiological effects. Biological systems, particularly those

involved with genetic regulation, are very noisy, and distinct phenotypic outcomes directly result

from such noise [189, 190, 191]. The problem of noise is exacerbated by the low cellular concentrations

typical of many key regulatory proteins. If one speaks of nanomolar concentrations of a protein, that

corresponds to just a few to tens of individual protein molecules. For example, in gene regulation

there are only a few sites on DNA (each of which can be thought of as an individual “molecule” or

reaction site) where transcription factors can bind and mRNA is produced. Therefore, stochastic

and discrete simulations may be necessary to develop accurate reaction-diffusion models for such

processes. Further discussion of such methods focusing on simulation in bacterial cells can be found

in [192].

As biological processes involve a large number of molecules and protein species, the state space

is too large for an exact solution of stochastic differential equations describing a reaction. Gillespie

[193, 194] proposed a Monte Carlo method to exactly simulate the stochastic time evolution of

a reaction system. The probability of each reaction occurring is a function of its rate constant

(measured experimentally) and the number of available reactants in the simulation. At each point

in time, there exists a joint probability distribution function for both the reaction and the time at

which it can occur.



CHAPTER 4. SPATIO-TEMPORAL SYSTEMS BIOLOGY 62

This generates a random trajectory through the state space that converges in the mean to the

solution of the continuum model. Similarly, an average over an appropriate set of repeated experi-

ments is expected to lead to the solution from a continuum model. In this context, one may view

deterministic spatio-temporal models as the expected solutions from an appropriate ensemble aver-

age of experiments which is convenient as these ensemble averages are the simplest experimentally

reproducible observables.

Arkin et al. [195] applied the Gillespie method to a fully stochastic model of E. coli infected by

the λ phage virus, with two outcomes: lysogeny (integration of the phage into the bacterial DNA and

“quiet” replication) and lysis (explosion of the cell and virus release). The simulation incorporated

transcription and translation of genes, protein-protein and DNA-protein reactions responsible for

replication, and proteases, for a total of 32 chemical reactions (including transcription and transla-

tion, which were modeled as hundreds of individual reaction events for each base). The simulation

was implemented using parallel supercomputers; however, subsequent algorithmic improvements

[196] have made it much faster without changing any physical assumptions.

While most applications of the Gillespie approach to stochastic reaction simulation have been only

for a homogenous volume (i.e., 1D reaction systems), it has recently been applied to non-biological

surface chemistry [197]. A significant drawback is scalability, since the number of time steps that

must be computed increases with the total number of protein molecules to a point of intractability for

eukaryotic cells. As a result, much work has been made towards developing accelerated and adaptive

methods that integrate stochastic-discrete and deterministic-continuum methods at appropriate time

scales. For example, the stochastically induced spatio-temporal patterns of Jung and Mayer-Kress

[198, 199] has biological applications from evolution [200], electrochemical oscillators [201], neuronal

models [202] and calcium signaling [203]. Turner et al. [204] is an excellent review of the state-of-

the-art in stochastic biochemical simulation.

4.4.2 The Mathematics and Numerical Analysis of the Reaction-Diffusion
Equation

In the spatio-temporal extension of this classical model, transport will be treated explicitly. Active

transport is modeled using elementary reactions that couple to transporter proteins and may be
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represented by differential equations of the type 4.9 and 4.10. Passive transport can be represented

with the diffusion equation for each species:

∂C

∂t
= D∇2C (4.11)

where D is the diffusion constant for that particular species concentration C. Active transport along

actin filaments for instance may be modeled directly as part of a system of ATP driven chemical

reactions.

As rate parameters need to be derived by the appropriate experimental approaches, diffusion

constants may be estimated by experimental techniques such as using modulated fringe pattern

photobleaching [187]. The key to building a quantitative model of the dynamical behavior of the

chromatin network is coupling the system of ODEs representing the enzymatic kinetics (Equations

4.9 and 4.10) with a system of partial differential equations (Equation 4.11) representing the diffusive

behavior of each species within the nucleus or on the membrane. The total contribution to the rate

of change in concentration of any species at position ~r is the sum total of the contributions to the

rate of change from all relevant reactions and transport equations. The coupling between transport

and molecular kinetics may then be rewritten in a mixed finite-difference format as follows:

∆
[
Cir
]

∆t
= Di

(
[Cir+1]− 2[Cir] + [Cir+1]

2∆x

)
+
∑

j

kij [C
i
r] +

∑

l>=m

kilj [C
l
r][C

m
r ] +

∑

j

Pij

Vi

(
[Cjr ]− [Cir]

)

(4.12)

The term [Cir] represents the concentration of species i at point ~r in the nuclear matrix. Di is the

diffusion constant for species i. The first sum tallies all unimolecular reactions involving species i, the

second sum tallies bimolecular reactions, and the final sum represents passive diffusive transport of

species i between compartments. Higher order reactions may be included in the obvious generalized

fashion. In the previous equation, ∆x is the spatial separation between two consecutive points, and

∆t represents the temporal resolution of the numerical analysis. Using this formulation, the time

evolution of each species in the protein network may be followed both spatially and temporally.
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Operator Splitting

For the combined reaction-diffusion system, one may use operator splitting to propagate the total

operator. Given

dC(t)

dt
= LRDC(t) = (LR + LD)C(t) (4.13)

where LRD is a reaction diffusion operator, LR and LD are the individual reaction and diffusion

operators with corresponding propagators UR(t) and UD(t):

C(t+ δt) = UR(δt)C(t) (4.14)

C(t+ δt) = UD(δt)C(t)

The 2nd order Strang splitting method [205] may be written as:

C(t+ δt) = UR

(
δt

2

)
UD(δt)UR

(
δt

2

)
C(t) (4.15)

In a software package CellSim, described in more detail later in this thesis, we have implemented

the Reaction-Diffusion-Reaction ordering for the splitting as recommended by Sportisse [206] and

implemented by others [207]. For reaction limited models, CellSim uses an adaptive time step

algorithm which uses a 2nd order Rosenbrock method to propagate the first operator a half step.

The time step determined is then used to propagate the diffusion operator and then 2nd half of the

reaction operator. It must be emphasized that this adaptive scheme is only valid for stiff reaction-

limited reaction-diffusion models. A more general approach, discussed later on in this thesis, uses

both the errors of each operator as well as the splitting error to determine an appropriate time step

[168].

The Diffusion Operator

Many schemes exist for integration of diffusion. The most straightforward implementation of the

diffusion operator is the forward time-centered space algorithm (FTCS). Using reduced units by
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setting the constant a = Ddt
dx2 , the FTCS method calculates the concentration n at the next time

step as follows:

nt+1
x = (1− 2a)ntx + a(ntx−1 + ntx+1) (4.16)

Stability analysis of this algorithm reveals a stability condition of 2a < 1. While this method

is simple and stable for small time steps, it is generally inefficient and undesirable. To remove the

stability condition, one could use a first order implicit scheme where the Laplacian is applied a step

ahead of the current time,

nt+1
x − ntx
dt

= D

(
nt+1
x−1 − 2nt+1

x + nt+1
x+1

dx2

)
(4.17)

If spatial boundary conditions (Dirichlet or Neumann), are known then the set of equations

produced by the above equation can be solved iteratively. Such solution by recursion is typical

of implicit methods, where concentrations at a forward time step appear on the right side of the

equation. Related to this approach is the 2nd order scheme Crank-Nicolson [208], which has a simple

description as the average of the previous two methods:

nt+1
x − ntx
dt

=
D

2

(
ntx−1 − 2ntx + ntx+1

dx2
+
nt+1
x−1 − 2nt+1

x + nt+1
x+1

dx2

)
(4.18)

Crank-Nicolson is unconditionally stable for dt and dx, and yields second-order accuracy in

time and space. Implicit methods have the main advantage of being unconditionally stable but also

require a matrix inversion. For one-dimensional problems, this method requires the diagonalization of

a tridiagonal matrix at each time step. While the one-dimensional case is relatively inexpensive, two

and especially three-dimensional problems require solutions of considerably more complex (although

still sparse) matrices. To alleviate this unwieldy structure, further splitting of the diffusion operator

into three 1D operators may be used.

This involves splitting the multi-dimensional diffusion into appropriate time intervals and apply-

ing a 1D step for each direction. In two dimensions using two steps of δt
2 , the scheme’s stability
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properties are maintained, but this is lost in three dimensions with three δt
3 time steps and the

scheme becomes only conditionally stable [209]. For problems in higher dimensions, an Alternating

Direction Implicit (ADI) method introduced by Douglas [210] maintains unconditional stability, is

second order accurate in both space and time, and is generalizable for solving diffusion problems of

arbitrary dimensionality. In 3D it may be schematically written out as

w∗ − wt
∆t

=
α

2
∆2
x(w∗ − wt) + α∆2

yw
t + α∆2

zw
t

w∗∗ − wt
∆t

=
α

2
∆2
x(w∗ − wt) +

α

2
∆2
y(w∗∗ − wt) + α∆2

zw
t

wt+1 − wt
∆t

=
α

2
∆2
x(w∗ − wt) +

α

2
∆2
y(w∗∗ − wt) +

α

2
∆2
z(w

t+1 − wt) (4.19)

where α = D/∆x2 and ∆2 is the simple second order finite difference along a strip of space in the

direction of the subscript:

∆2
xw

t = wtx−1 − 2wtx + wtx+1 (4.20)

Subtracting (4.19-a) from (4.19-b) and (4.19-b) from (4.19-c) reduces the scheme to three tridi-

agonal systems of equations, each of which can be solved efficiently using elementary linear algebra.

In 1D the scheme reduces to the standard Crank-Nicolson diffusion scheme [208]

The Reaction Operator

The reaction operator may be integrated using a host of standard methods. Currently CellSim has

the following integrators:

1. Euler

2. Exponential Euler

3. 2nd and 4th order Runga-Kutta

4. Adaptive 4th order Runga-Kutta

5. 2nd and 4th order adaptive Rosenbrock
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Although Euler,

y (t+ δt) = ẏ (t, y(t)) δt

is perhaps the simplest of numerical integrators, it is neither stable nor particularly accurate. For

problems in chemistry and biology, exponential Euler takes advantage of the fact that simple kinetic

interactions often give rise to exponential decay functions. That is, for kinetics one frequently

encounters equations of the form:

dy

dt
= A−By (4.21)

Schematically, the exponential Euler method may be written as

y (t+ δt) = y (t) e−Bδt +
A

B

(
1− e−Bδt

)
(4.22)

Although this scheme allows for the use of larger time steps, at low concentrations this scheme

suffers from some inaccuracy that will propagate through the system and therefore should be used

with caution. The workhorses of ODE solvers, Runga-Kutta methods have been implemented within

CellSim to address this problem. The commonly used fourth-order formulation uses four strate-

gically placed evaluations of the function’s derivative within a given time step dt, and a weighted

average of these derivatives is used to propagate the system a full time step:

k1 = ẏ (t, y(t)) δt

k2 = ẏ

(
t+

δt

2
, y(t) +

k1

2

)
δt

k3 = ẏ

(
t+

δt

2
, y(t) +

k2

2

)
δt

k4 = ẏ (t+ δt, y(t) + k3) δt

y (t+ δt) = y(t) +
1

6
(k1 + 2k2 + 2k3 + k4) (4.23)
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For highly coupled stiff systems of nonlinear ODEs, explicit Runga-Kutta methods become less

desirable. For these systems, implicit generalizations of Runga-Kutta methods, such as Rosenbrock

methods, are recommended. The Rosenbrock scheme uses a Jacobian matrix of the equations to

propagate the system forward in time. In other words, the sensitivity of the solution’s slope to

changes in other species is considered rather than just the slope of the solution itself. One such

second-order Rosenbrock method has been implemented into CellSim [211]:

(I− λJδt) k1 = ẏ(y(t))

(I− λJδt) k2 = ẏ

(
y(t) +

k1

2
δt

)
− 2k1

y (t+ δt) = y(t) +
3

2
k1δt+

1

2
k2δt (4.24)

with constant λ, identity matrix I and Jacobian J.

Adaptive Algorithms and Error Analysis

As many chemical systems exist as transients that rapidly equilibrate to steady state, it is natural to

seek adaptive time-step algorithms. Stiff integrators such as Rosenbrock methods have been highly

successful in integrating purely kinetic systems. Inherent in such schemes is the need to calculate

the Jacobian at each time step. For a single grid point with no diffusion, the Jacobian is a N ×N

square matrix where N is the number of reactants in the simulation. Expanding this to an extended

grid of multiple points (say, n grid points in any arrangement) and including diffusion will generate

a Jacobian in the form of a n× n block matrix, each block itself an N ×N matrix.

This matrix is highly sparse. The second order diffusion operator would only involve near-

est neighbor grid points, leaving most matrix elements empty as non-adjacent grid points do not

exchange mass. Unfortunately, the size of the matrix is still cost prohibitive for performing the

necessary LU decomposition required by adaptive Rosenbrock methods.

A scheme for adaptive integration of such extended spatio-temporal systems has been developed

by the author and implemented in Cellsim [168]. The method extends time adaptivity to the more
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general case of reaction-diffusion systems by determining an error estimate for Strang’s method of

operator splitting at each time step and then including this information in determining future time

steps. This method will be explained in detail in a later chapter of this thesis.

Spatio-temporal Sensitivity Analysis

Consider the following spatio-temporal biochemical system:

dC

dt
= f(C, k, t) +D∇2C (4.25)

where C denotes N time dependent species concentrations, the kinetics component of the system is

f(C, k, t) with parameters k and the corresponding diffusion component is D∇2C. The generalized

sensitivity parameter

Sij =
dCi
dkj

i = 1, ..., N j = 1, ...,M (4.26)

is then:

d

dt

dCi
dkj

=
dSij
dt

=

N∑

l=1

∂fi
∂kl

∂Cl
∂kj

+
∂fi
∂kj

+∇2 dCi
dkj

(4.27)

Applying operator splitting, it is clear from this equation that applying the diffusion propagator

to the sensitivity parameters is sufficient to account for diffusion. The final term in the equation can

be determined through simple finite differencing of the sensitivity parameters. The first two terms,

however, are more complicated. Cellsim’s implementation uses a Rosenbrock-based method that

allows adaptive time steps to be incorporated into sensitivity calculations. In practice, two types of

sensitivity parameters may be calculated within CellSim: sensitivity parameters with respect to k

and parameters with respect to individual initial concentrations. As the latter is simpler to evaluate,

we shall focus this discussion on fast evaluations of parameter-based sensitivities.

The reaction component of the previous equation may be rewritten as:

∑

l

Jil
∂Cl
∂kj

+
∂fi
∂kj

(4.28)
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where J is the N ×N Jacobian matrix. To propagate both the sensitivity parameters Sij and the

original set of species Ci, consider an extended biochemical system of (M + 1)N equations:




dC1

dt

...

dCN
dt

dS1,1

dt

...

dS1,N

dt

...

dSN,M
dt




(4.29)

CellSim will integrate the coupled system using both standard integrators as well as Rosenbrock

methods. For standard integrators, the propagator is reasonably simple to define. One needs

only to generate the appropriate equations and consider the extended system. The Rosenbrock

method requires the generation of an extended Jacobian of the new model system. This requires

the generation of the Hessian (a third-order tensor containing second order derivatives) along with

several other terms in the original system.

CellSim automatically generates these higher order terms. The computational expense of eval-

uating the extended Jacobian is mitigated by its sparsity and the method’s ability to use large time

steps, which reduces the required number of steps. To both illustrate this procedure and describe

its implementation within CellSim, a small sample system is introduced. Consider a simple system

with five species C1, ..., C5:

2C1 + C2

k1−⇀↽−
k2

C3

C4

k3−⇀↽−
k4

C5 (4.30)

CellSim will first automatically generate the following differential equations:
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f1 =
dC1

dt
= −k1[C1]2[C2] + k2[C3]

f2 =
dC2

dt
= −k1[C1]2[C2] + k2[C3]

f3 =
dC3

dt
= k1[C1]2[C2]− k2[C3]

f4 =
dC4

dt
= −k3[C4] + k4[C5]

f5 =
dC5

dt
= k3[C4]− k4[C5] (4.31)

Despite the degeneracy of terms appearing in the differential equations, only unique terms are

generated for use during each elementary step of the reaction propagator. In this example, the four

terms are as follows:

t1 = k1[C1]2[C2]

t2 = k2[C3]

t3 = k3[C4]

t4 = k4[C5] (4.32)

Hence, a system of differential equations may be considered simply a summation over precalcu-

lated terms. Two types of terms currently exist: one for passive transport channels (described in

a later section) and one for mass action kinetics termed a kineticTerm. A species is indexed by

two integers, one for the compartment number r (row) and one for the species c (column) in that

compartment. In Cellsim, each kinetic species is stored as an instance of a simple C++ class:

class kineticSpeciesClass {

public:

int r,c;

...

}
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The standardized indexing of this term (r, c) is used for fast retrieval of information about the

species - perhaps most importantly the current concentration value of the species. The actual

concentrations are packed into a large, contiguous memory array to minimize cache misses. Within

CellSim, a kinetic term class has the following structure:

class kineticTermClass: public genericTermClass {

public:

svector <kineticTermClass> species;

svector <firstderivativeClass> firstderivativesforC;

firstderivativeforKClass firstderivativeforK

svector <secondderivativeClass> secondderivativesforC;

svector <secondderivativeforKClass> secondderivativeforK;

double k;

svector <double> jacobianMultiplier;

}

A svector may be considered simply a standard C++ STL vector that has been optimized for

the purposes of CellSim. When using methods that require the Jacobian, the partials are all pre-

generated and calculated once, minimizing the number of evaluations as well as taking advantage of

the sparsity of the extended Jacobian (and other objects) that need to be built. The definitions for

each term in the class are as follows:

species

The species in a particular term. For instance, for the term t1 the species list contains

C1, C1, C2. The species C1 is stored twice in the structure because it appears in the term

as [C1]2.

firstderivativesforC

Stores the partial derivatives of a term with respect to all the species within the term. For the

term t1, this vector stores ∂t1
∂C1

and ∂t1
∂C2

.

secondderivativesforC

Contains all non-zero Hessian derivatives for this term. For the term t1, three derivatives are

stored: ∂2t1
∂C2

1
, ∂2t1
∂C1∂C2

, and ∂2t1
∂C2

2

firstderivativeforK
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Stores the partial derivative of a term with respect to its kinetic rate constant. For the term

t1, the evaluated derivative is ∂t1
∂k1

.

secondderivativeforK

Stores a vector of all the mixed terms of the form ∂2t
∂Ci∂k

. For t1 the stored terms are ∂2t1
∂C1∂k1

and ∂2t1
∂C2∂k1

.

k

The rate constant of the kinetic term. For the term t1, the kinetic rate constant is k1.

jacobianMultiplier

A precalculated coefficient for partial derivatives with respect to Ci. Two values are stored for

the term t1.

Evaluating the original Jacobian

Before extending the system to the sensitivity parameters, we perform fast evaluation of the extended

Jacobian of the fully coupled system. In our example the original Jacobian is:




−2k1C1C2 −k1C1C1 k2 0 0

−2k1C1C2 −k1C1C1 k2 0 0

2k1C1C2 k1C1C1 −k2 0 0

0 0 0 −k3 k4

0 0 0 k3 −k4




(4.33)

CellSim pre-generates the appropriate terms by first evaluating firstDerivativesForC at a given

time step. The Jacobian may then be evaluated directly by taking the appropriate summation of

the derivatives:

∂fi
∂Cj

=

L∑

k

∂tik
Cj

(4.34)

where L is the number of terms for equation fi. The Jacobian itself is stored in a special sparse matrix

class that only stores the non-zero elements for the calculation. For non-Rosenbrock integrators,
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the sparse matrix class allows CellSim to use fast sparse matrix multiplies to evaluate the first

term in Equation 4.28. The second part of the equation is precalculated in firstderivativeforK. By

precalculating these terms, only derivatives requested by the user script are actually calculated.

Once these terms have been evaluated, the right side of the equation may be evaluated to fully

propagate the reaction portion of the sensitivity parameters.

The propagation of sensitivity parameters using the method thus described works for classes of

integrators such as Euler and Runga-Kutta, however the method is not particularly suitable for stiff

systems of equations. For this reason, considerable time has been spent in implementing implicit

integrators such as Rosenbrock for sensitivity parameters within CellSim.

Calculation of the extended Jacobian

From a computational standpoint, one may consider the propagation of the extended system as

simply a new system with its own corresponding Jacobian, Jc. The structure of this Jacobian has a

simple block matrix form:




J | 0 · · · 0

−−− + −−− −−− −−−

S(1...N, 1)1...N | J · · · 0

... | . . .
...

S(1...N,M)1...N | 0 J




(4.35)

The submatrix S(i, j)q is defined as
∂Sij
∂Cq

, and the vector S(i, 1...M)1...N is defined as

[S(i, 1)1...N , S(i, 2)1...N , ..., S(i,M)1...N ]T . As J is already calculated, the only new terms that need

to be calculated are the bottom-left portion of JC .

Numerical Evaluation of JC

An individual term in the bottom left portion of the block matrix may be written out in the following

form:

∂

∂Cq

dSij
dt

=
∑

l

∂2fi
∂Cl∂Cq

∂Cl
∂kj

+
∂2fi

∂Cq∂kj
(4.36)
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The form of this equation is similar to Equation (4.28), with J = ∂fi
∂Cl

changed to ∂2fi
∂Cl∂Cq

and the

addition of the term ∂2fi
∂Cq∂kj

. Hence, the procedure is the same as was used in calculating the original

Jacobian J , only now the previously defined secondderivativeClass is also precalculated before

each time-step. The ∂2fi
∂Cq∂kj

term also is precalculated in the same manner as before. As usual,

only non-zero terms and requested terms by the user script are precalculated and used to populate

the final matrix. Throughout the calculation, sparse matrix classes are used to remove unnecessary

matrix multiplies through out the calculation.

4.5 CellSim - A Cellular Simulator

The mathematics described are all implemented in the freely available software package CellSim

developed by our group under the Gnu Public License (GPL) [2, 212]. This package is intended for

high performance distributed computing platforms that use the Message Passing Interface (MPI)

parallel programming library [213].

The distributed computing platform is particularly efficient for transport-coupled kinetics. The

kinetic terms are essentially communication independent as they depend only on the local concen-

trations of each species. Furthermore, as the computational cost of transport is much lower than

the kinetic components, the system is subject to only minimal communication overhead and may

often be parallelized with near linear efficiency.

4.5.1 Compartmentalization

Currently, cell geometry is explicitly defined by placing grid points on a Cartesian grid. The set of

compartments defined at a grid point determines which species may exist at that point in space. The

appropriate set of chemical reactions at each grid point is automatically generated from the set of

all possible chemical reactions and knowledge of the compartments that contain each species. From

this information, the complete set of appropriate differential equations is automatically generated

over the entire grid, which is optimized for each localized grid point in both terms of storage and

calculation speed. The natural boundary conditions for the system are periodic, but both Dirichlet

and von Neumann boundary conditions (as well as more complicated boundary conditions) may be

implemented through the appropriate use of localized chemical reactions.
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4.5.2 MPI Parallelization

The explicit schemes described in the previous section allow CellSim to be parallelized efficiency. A

large simulation grid may be split into evenly sized blocks. As the reaction operator is communication

independent, the only communication cost is for diffusion across facing facets of the blocks. As the

computational cost of a block will scale as the number of grid points within the block (proportional

to the volume of the block) and the communication cost will go as the surface area of the block, a

regime may always be found in which the communication cost of the system is small in comparison

to the computational cost. Within this regime, one may naturally move to larger sized systems with

linear computational cost.

4.5.3 Downloading and Compiling

A current version of the software may be downloaded via anonymous CVS from sodium.physics.drexel.edu.

In a UNIX environment, first set the CVSROOT environmental variable and login as follows:

export CVSROOT=:pserver:anonymous@bio.physics.drexel.edu:/user/local/cvs-repository

cvs login

Then execute the following command to retrieve the source code:

cvs co cellsim-src

The code may be compiled using standard make.

In the CellSim source directory, we have included a script titled setup.sh that sets up standard

compilers and optimization options. Alternatively, one may further customize a build by defining

a number of environmental variables in setup.sh using the following machine-dependent compiler

flags:

OPT

Sets any optimization flags

CXX

C++ compiler
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CFLAGS

Any compiler flags

LFLAGS

Link flags

L

Linker

INCDIR

Include directory.

The CellSim code base is platform independent and has been compiled on MacOS, Linux and

SunOS using a variety of different compilers including both the Gnu compilers and the Intel high

performance compilers. It is necessary to have the freely available Gnu Scientific Library (GSL) in-

stalled on your system. If a parallel-enabled version of CellSim is desired, MPI must be additionally

installed. The default environmental variables are set by running:

source setup.sh

An MPI enabled version may be compiled by using:

source setup.sh 1

After the environmental variables have been set, the code may be compiled by using the following

commands:

make depend

make

To illustrate the use of CellSim, several example simulations have been included which both

illustrate some of the features in the current version as well their use in spatio-temporal modeling.
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4.5.4 Examples

The use of CellSim can be best described through the use of several biologically relevant examples

that highlight some of the more salient features of the software suite. CellSim uses a command line

based scripting interface that is executed as cellsim file.input, where file.input is the input

script.

2D Gray-Scott Model of Glycolysis

The first biological example is the celebrated Gray-Scott autocatalytic model of glycolysis, originally

developed by Selkov [214, 215, 216]. All input file contents (including file names) are set to be case

insensitive within CellSim. Comments may be incorporated into any input file using C, C++ or

Perl comment styles.

A typical input script appears as follows:

useReactions reactions.input;

useGrid grid.input;

useInitConcentrations initconc.input;

printOutput output1 {

printinfo 1;

printgrid 10 plot/U.10.plot U;

printgrid 10 plot/V.10.plot V;

}

diffusionConstant all 1e-4;

diffusionConstant species U 2E-5;

diffusionConstant species V 1E-5;

printSysTime;

integrate Euler {

dt = 1;

dx = 0.009765625;

runtime = 2000;

runDiffusion;

use output1;

}

printSysTime;

exit;

The main input file provides the names of all the other necessary initialization files needed

for a CellSim run. These files are required for the initialization of the 3D spatial geometry of

the simulation, the initialization of species concentrations, and the description of all the chemical
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reactions possible amongst the species. The main input file (in this example file.input) defines

the simulation itself, providing definitions and instructions for printing and integration.

The first three lines of file.input direct CellSim where to find definitions of the simulation

reactions (useReactions), grid geometry (useGrid), and initial concentrations of the reactants

(useInitConcentration). These accessory files will be described in more detail in the next section.

Following the definition of the accessory files is a bracketed printOutput block that defines a

print object named output1, which may be used for printing during an integration run. Multiple

print objects may be defined and will only be executed with a corresponding use command within

the integrator.

The particular printOutput block defined above instructs CellSim to print a time stamp to the

screen at each step via the printinfo command as well as print the entire grid contents of species U

and V to files every 10 steps via the printgrid command. After the print command, the diffusion

constants are then defined for the reactants of interest via the diffusionConstant command. The

first command uses the keyword all to set the default diffusion constant for all species and the

second and third commands set the diffusion constant individually for species U and V .

Following the definition of the diffusion constants, CellSim is instructed to integrate the system

equations using the integrate command. In this particular case, CellSim is using the Euler method

with a fixed time step dt = 1, a spatial resolution of dx = 0.009765625, and a runtime of 2000. Within

the integrate command, runDiffusion ensures that diffusion is enabled. In addition, use output1

instructs CellSim to use the print commands defined previously in the printOutput command. The

runtime sets the simulation time, which for this example is 2000 seconds.

The final instructions to CellSim are to print out the machine time (printSysTime) used for

the simulation and then exit the simulation. The user should take care to make sure that the

units are all self-consistent. The chemical reactions defined within the model are located in the file

reactions.input defined by the useReactions command.

In this simulation the reactions are the celebrated Gray-Scott reactions [215]. A variant of the

autocatalytic Selkov model of glycolysis, the Gray-Scott reactions are:



CHAPTER 4. SPATIO-TEMPORAL SYSTEMS BIOLOGY 80

U + 2V → 3V

V → P (4.37)

This simple system produces a wide variety of spatio-temporal patterns sensitive to the reaction

rates and diffusion constants [216]. The reactions file for this simulation reads:

locationlist {

location cytosol 1;

default cytosol;

}

reactionlist {

U + V + V -> V + V + V :: 1;

V -> P :: 0.06;

U -> bath :: 0.05;

bath -> U :: 0.05;

V -> bath :: 0.05;

P -> bath :: 0.05;

}

The locationList block defines a single compartment cytosol and assigns to that compartment

a total volume per unit grid of 1 liter. For spatio-temporal models, leave the volume unit as 1, since

the actual volume is defined by the spatial geometry. The volume definition for a compartment may

be used in mixed volume kinetic models where the volume is not inherently defined by the spatial

arrangement of the grid. The final command, locationlist, defines the default compartment for

all reactants as cytosol via the default command. In this example, all species exist in the default

compartment and thus do not need to be explicitly listed within the locationlist command.

The next block, reactionlist, defines the reactions in the Gray-Scott model. All the reactions

are nonreversable with rate constants following double colons. For this simulation, the grid is simply

a square plane of cytosol. The grid file defined by the useGrid command takes the following form:

grid 48 48 1;

0 0 0 cytosol;

0 1 0 cytosol;
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0 2 0 cytosol;

...

0 47 0 cytosol;

...

47 0 0 cytosol;

...

47 47 0 cytosol;

Here the grid has dimensions of 48×48×1, and all species are defined to exist in the compartment

cytosol. A grid point may be defined to have any number of compartments. Grid points with

multiple compartments may be considered to be an interface region, and reactions involving species

of different compartments may additionally react within such interface regions.

The initial conditions in this example consist of a grid containing two areas, a central square

and the area surrounding it. The two species U and V initially exist in both areas at different,

randomly perturbed concentrations. For CellSim, the initial concentrations can be specified for a

species throughout all its compartments or individually specified at each grid point. Using perturbed

concentrations, the initconc.input file contains the following commands:

P = 0.0;

fixed bath = 1.0;

point 0 0 0 U = 1.00312899386658;

point 0 0 0 V = 0;

point 0 1 0 U = 1.00259570383182;

point 0 1 0 V = 0;

point 0 2 0 U = 0.996343013072222;

point 0 2 0 V = 0;

point 0 3 0 U = 0.990340706493643;

...

The first command defines the concentration of P to be 0 everywhere. The next command

sets the bath to a concentration of 1.0 units and fixes it as a constant value. Species U and V

are perturbed around 1.0 and 0.0, respectively, in the outer region and 0.5 and 0.25 in the inner

region. All concentrations are listed individually at each grid point. As with all CellSim files, the

scripting language will override previous commands with any subsequent commands, so a default

concentration may be set and then altered at specific grid points with the point command.

3D Kinase Phosphatase Model
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Figure 4.1: The evolved equations of the Gray-Scott model.
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As an example of a fully 3D multi-compartment model, the next simulation models a simple signal

transduction model of a plasma membrane bound receptor, cytosolic phosphatase and a cytosolic

kinase which is activated at the cell surface in a spherical cell originally developed by Brown and

coworkers [177]. Extracellular stimulant S reacts with membrane-bound receptor R to produce S.R,

which in turn phosphorylates kinase K to K∗ at the membrane. The species K∗ then diffuses

inward to react with P inside the cell. After an initial transient stage, K∗ reaches a steady state of

exponentially decreasing radial concentration (Figure 4.2).

The reactions.input file for this simulation contains:

locationList {

location extracellular 1 S;

location imembrane 1 R S.R S.R.K;

location cytosol 1;

default cytosol;

}

numberReactionList {

S + R <> S.R :: 4.2 0.25;

S.R + K <> S.R.K :: 1.2 0.8;

S.R.K -> K* + S.R :: 0.2;

K* + P <> K*.P :: 1.98 25;

K*.P -> K + P :: 6;

}
The locationlist command defines the compartment of each species. The stimulus S exists only

in the extracellular region, the receptor and its intermediates are all on the intracellular membrane

and all other species are within the cytosol.

The numberReactionList block tells CellSim to read the contained equations in terms of quan-

tity (in this case micromoles), instead of quantity/volume (micromolar) concentration that is used

in reactionList. This option is useful when the rate constants are in terms of quantity and not

concentration.

The compartments for this simulation consist of a circle of cytosol with a membrane region

overlapping the outermost edge of the cytosol region. At the edges of the cytosolic region, the grid

input file for this simulation reads as follows:

grid 81 81 81;

...
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Figure 4.2: CellSimVis plot of Cellsim data, showing a 2D slice through the center of a simple 3D signal
transduction model. The Z axis represents predicted concentration of a single cytosolic kinase.
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40 40 2 extracellular;

40 40 3 imembrane cytosol extracellular;

40 40 4 cytosol;

...

80 80 80 extracellular;

In the overlapping region the cytosol, membrane, and extracellular compartments all coexist. In

this region, reactions involving the stimulus and receptor will occur as well as reactions involving

the stimulated receptor and the cytosolic kinase K. As an example of the adaptive integrators in

CellSim, this simulation uses a second-order Strang-split reaction-diffusion integration scheme:

useReactions reactions.input;

useGrid grid.input;

useInitConcentrations initialconc.input;

printOutput output1 {

printinfo 10;

printplane 10 plot/K.plane.plot K 40 * *;

printplane 10 plot/K*.plane.plot K* 40 * *;

printgrid 10 plot/K*.grid.plot K*;

printgrid 10 plot/K.grid.plot K;

}

integrate arb2 {

dtguess = 1e-2;

dt = 1.0;

dx = 0.009765625;

runtime = 100;

useStrang;

runDiffusion;

diffusionTolerance 1e-2;

safety = 0.9;

tolerance = 1e-2;

dtmin = 1e-10;

use output1;

}

The new print command printplane prints the plane specified by the x, y, z coordinates follow-

ing the filename, where the integer coordinate specifies the position of the plane through the grid

and the asterisks define the direction the plane faces. In this example, the simulation prints out the

plane of grid points defined by the equation x = 40.
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The integrate command integrate arb2 instructs CellSim to integrate the system equations

using a second-order adaptive Rosenbrock method. The previously unseen commands within the

integrate block are specific to the adaptive integrator:

dtguess

The initial time step for the adaptive integrator.

dtmin

The minimum time step allowed.

safety

The maximum increase of a time step is internally set to 50%. This value sets the fraction

(0-1) of the maximum increase that should be used.

tolerance

Directs the adaptive method to choose the maximum time step that still achieves a given

relative accuracy for the kinetics calculation. In this example, a relative accuracy of 0.01 is

required.

diffusionTolerance

Similar to the tolerance command, this command directs the adaptive step-doubling diffusion

calculation to achieve the given relative accuracy.

Sensitivity Analysis

Consider the system defined previously (Equation 4.30). Suppose one would like to calculate ∂C1

∂k1

and ∂C4

∂k5
. The reaction file for this system is defined in the same format as before:

locationList {

location cytosol 1;

default cytosol;

}

volumeToLiters = 1.0;

reactionList {

C1 + C1 + C2 <> C3 :: 1e-5 2e-5 k1 k2;

C4 <> C5 :: 1E-2 1E-3 k3 k4;

}
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This includes the addition of optional labels k1, ..., k4 appended to each reaction. CellSim has

the ability to use the same label as part of multiple reactions in addition to the notation above.

This is sometimes useful for parameter optimization in which several parameters are tied together

and optimized as a single identity. Similarly, the initial concentration file has the same format as

before:

C1 = 100;

C2 = 10;

C3 = 5;

C4 = 1;

C5 = 5;

In this example a purely kinetic model is being used, so our grid file consists only of the following:

grid 1 1 1;

0 0 0 cytosol;

Finally, the main scripting file must carry new instructions to define, calculate, and print the

sensitivity parameters.

use Reactions reactions.input;

useGrid grid.input;

useInitConcentrations initconc.input;

defineAnalyticalDerivative {

numerator = C1 C5;

denominator = k1 k4;

}

printOutput output1 {

printkinetics 10 screen C1;

printsensitivity 1 screen C1 k1;

printsensitivity 1 screen C5 k4;

printsensitivity 1 dc1dk1 C1 k1;

outputappendstring = analyticalDerivative;

outputprependstirng = plot/;

}

integrate arb4_sa {

use output1;

dt = 1E-5;

safety = 0.9;

dtmin = 1E-10;

dtguess = 1E-5;
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tolerance = 1E-4;

}

runAnalyticalDerivative 100;

The new commands not previously seen begin with the defineAnalyticalDerivative com-

mand. Two required subcommands are numerator and denominator. The numerator must be

followed by a list of defined species, while the denominator may be either a list of species or labeled

rate constants. If species are used, sensitivity analysis with regards to the initial concentration of

that species is carried out. All combinations of derivatives of the numerator and denominator are

analytically evaluated throughout the sensitivity run.

The outputappendstring command optionally appends any printed files of derivatives by the

argument string. Similarly, outputprependstring prepends the filename. In the example file, only a

single derivative is being printed to a file whose name will be plot/dC1dk1.analyticalderivative.

The printOutput command has a single new command named printsensitivity. Its format is

similar to that of printgrid except that two parameters (numerator and denominator) are used

to define the derivative to be printed.

In this case, the two derivatives ∂C1

∂k1
and ∂C5

∂k4
are printed to the screen and the former is also

printed to a file. The next step defines a Rosenbrock integrator designed especially for sensitivity

analysis. This new definition makes sure that enough memory is allocated for the extended Jacobian

JC . Finally, the runAnalyticalDerivative tells CellSim to perform the calculation for 500 units

of time.

4.5.5 CellSim Visualization

The visualization component of CellSim is a separate program, modeled on a client-server package,

and used as a simple monitoring tool for large jobs as well as for visualization of generated data.

CellSimVis is based on the freely available GPL Licensed QT widget set from Trolltech, (used to

develop the popular Unix environment KDE on the GNU/Linux platform). To compile the GUI,

OpenGL, QT, and the QT development libraries must be installed. CellSimVis may be downloaded

and compiled as follows:

Step 1: Login to the anonymous cvs server as before using:
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export CVSROOT = :pserver:anonymous@bio.physics.drexel.edu:/user/local/cvs-repository

cvs login

Step 2: Check out the source code for the GUI with the command:

cvs co cellsim-gui

Step 3: Then run the following commands using:

qmake

make

The current version of CellSimVis has the following features:

1. Exportation of rendered images for publication (PNG format)

2. Exportation of MPEG movie files

3. Import of CellSim plot files

4. Socket based monitoring of CellSim and interactive switching of exported species from CellSim

5. OpenGL-based 3D contour plot rendered as 2D grids (solid surface, line mesh, or points)

6. Rendered visualization of surface normals

7. Automatic scaling of model

Imaging of multidimensional data is available within CellSimVis. Simple plotting (concentration

versus time) is hardware rendered using OpenGL primitives. For two-dimensional data (versus time),

visualization is implemented both as a simple 2D color contour plot and as rendered 3D plot of the

data with the height representing the concentration on the plane (rendered in real time as a movie).

For reading from saved data files, a slider is available for data examination that enables the user to

track the changes in concentration with time.

Plot files generated by CellSim may easily be imported from the menu (File → Open). For

socket based communication, (File → Sockets) should be used. Specify the hostname and socket
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for the machine running CellSim. In this mode, CellSimVis will automatically import all available

species in the simulation and make them available for rendering. Snapshots of the visualization can

be saved as PNG files using (File → Save).

4.6 Spatio-Temporal Imaging

In recent years, high-resolution single cell imaging has been recognized as a most favorable way to

look at biology [217]. Cytomics aims to provide cellular information by executing imaging in a high-

throughput, high-content fashion. This information can be used to classify cells, identify molecular

hot spots and carry out statistical correlation across different levels of biological hierarchy. Cytomics

approaches can also be applied in functional genomics research to characterize the location of proteins

[218] and subcellular phenotypes specific to RNAi knockouts in high-throughput assays [219].

These screening technologies provide end-points for a precise description and classification of cells

and subcellular phenotypes and a framework for spatio-temporal systems biology. As an example,

basic morphological properties of cells have been used to increase the realism of computational

models [39]. However, in view of the complex cellular machineries being investigated, the goal

would be to perform both a time-resolved and multiplexed analysis at high 3D resolution, within

spatially distinguishable compartments inside single cells. Fluorescence confocal microscopy is ideal

to perform these tasks.

While confocal microscopes come in a variety flavors, they serve a common function: performing

non-invasive optical sectioning using low intensity light (and therefore low radiation damage). This is

ideal for studying structural and functional properties of living cells at full 3D microscopic resolution.

Specific experimental perturbations can be introduced and monitored, and the quantified cellular

behavior can be used to classify distinct cellular phenotypes or phenomes (see chapter 4 of [8]).

However, tagging cellular structures and species with multiple fluorescent dyes are limiting factors,

although a wealth of non-invasive fluorescent probes has been developed and is now available for

monitoring membranes and cell compartments as well as specific protein targets in living specimens

[220].

As a specific example, for the study of signaling pathways one would require quantification of the
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(i) localization, (ii) concentration, (iii) dynamics, (iv) interaction and (v) activation (phosphoryla-

tion) status of many components involved in the cascade. Newly developed fluorescent technologies

move this field forward, such as quantum dot (Q-dot) nanoparticles that are ideal to image both

localization and concentration of target proteins [221]. In a study of EGFr internalization, an av-

erage of 30000 internalized receptors could be monitored at the single cell level, and subsequent

image analysis provided regional, average information about concentration and active endosomatic

transport.

A distinct advantage of Q-dot assays is their capability to be multiplexed, however they are

currently limited in their ability to provide protein interactions and status of protein activation.

Diffusion processes can be measured by fluorescence recovery after photobleaching (FRAP) and

fluorescence correlation spectroscopy (FCS) [222]. GFP fusion proteins are ideal for FRAP, since

they can be bleached without detectable damage to cells. With these tools, differences in the diffusion

constant D due to membrane association, scaffolding and compartmentalization can be measured.

In order to detect protein associations in the 1 − 10nm range, fluorescence resonance energy

transfer (FRET) is the preferred imaging technique [223]. In conjunction with radiometric sensors

like EGFR-ECFP and PTB-EYFP in one molecule, FRET can be used to monitor phosphorylation

dynamics [224]. Both FRAP and FRET related technologies are currently limited in monitor-

ing multiple species simultaneously. As these fields progress, they will determine the realism of

comprehensive spatio-temporal models of regulation in signaling networks, nuclear processes and

morphogenesis.

4.7 Conclusion

A biological cell is a complex environment for chemical reactions with a vast and diverse collection of

active and passive transport mechanisms, membrane surfaces, and compartments. A new generation

of microscopic imaging techniques capable of real-time tracking of single molecules in living cells

provides visible evidence of the biological significance of processes dynamically evolving in both

space and time. Computer simulation of physics-based models, coupled with quantitative spatio-

temporal data will allow cell biologists to rigorously develop and test complex hypotheses. While
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Figure 4.3: Computational imaging delivers quantitative description of the internalization of EGFR, acti-
vated by a biotinylated EGF/streptavidin quantum dot complex (green) with A431 cells. Transport routes
of internalized EGFR can be monitored by in vivo imaging, as well as concentration increase over the time
of the experiment (left to right). Concentrations of q-dots within equidistant zones of the cytosol (right) of
many cells deliver average information of dynamical processes that feed spatio-temporal systems biology.

methods to simulate reaction-diffusion systems have been successfully applied to complex physical

systems such as the atmosphere, oceans, and engine combustion, cells present an unprecedented

complexity of significant molecular species, transport mechanisms, and a continuing challenge for

experimental measurement.

The relatively small size of the cell also presents a challenge, as many relevant processes occur

on atomistic scales that are unsuitable for the continuous, deterministic approach described in this

chapter. However, remarkably, cell imaging data suggests that a variety of cell processes are amenable

to a reaction-transport model, and the number of proteins per cell generally range from several

hundred to hundreds of thousands of each species, supporting the use of molecular concentrations.

To address biological problems for which discrete, stochastic approaches are more suitable, several

stochastic simulation methods have been proposed (reviewed in [204]). Regardless of the algorithm

used, it is necessary to develop tools to interpret simulation results, including efficient sensitivity

analysis and interactive, simple interfaces. The emergence of quantitative techniques in cell biology is

ushering an era of “predictive” biology and medicine, in which experiments and computer simulation
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will be blended to help study disease mechanisms and identify therapeutic targets.
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Chapter 5: A Fully Adaptive Reaction-Diffusion Integration Scheme with
Applications to Systems Biology

5.1 Introduction

Fully-adaptive time integration for multi-dimensional reaction-diffusion PDE problems requires more

than a simple error estimate from each integration operator at each time step. Truncation error can

also arise from the method in which the operators are applied. A popular second order method

for combining operators, particularly in atmospheric science [225], is Strang’s method of operator

splitting or “Strang splitting” [205, 226, 227]. In the first part of this paper, we derive an expression

for the truncation error resulting from Strang splitting reaction and diffusion operators to form

a second order integration scheme. We then present explanations of the specific implicit reaction

and implicit diffusion operators used as well as their individual error calculations. The method is

implemented in CellSim [8, 2], a PDE-based cell simulation software package developed by our group

and freely available under the GNU Public License [212]. Finally, we give examples of and discuss

the use of this calculation for problems in systems biology.

5.2 Strang Splitting Truncation Error

We first derive an expression for the truncation error due to Strang splitting reaction and diffusion

operators [225]. Our generalized system consists of a vector C(~x, t) of chemical concentrations that

evolve in time and space according to specified differential equations

∂

∂t
C(~x, t) = F (C(~x, t)) = FR(C(~x, t)) + FD(C(~x, t)) (5.1)

where the expressions
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FR(C(~x, t)) = R(C(~x, t)) =

n∑

i=0


αi

m∏

j=0

[Cj(~x, t)]
βij


 , αi ∈ R, βij ∈ N0 (5.2)

FD(C(~x, t)) = D∇2C(~x, t) (5.3)

are the source term vectors for chemical kinetics and for simple constant-rate diffusion, respectively.

The kinetics are composed of a sum over n terms, each of which is a product of a rate constant αi

and concentrations from amongst the system’s m reactants, and D is a diagonal matrix of diffusion

constants. The exponent βij determines which reactants contribute to each term. Throughout

the paper, we will assume that all operators possess both time and space dependence, and we will

specify this dependence when required for clarity. The function space S consists of all operators

of interest that can act on C. For reaction-diffusion systems, this consists of {I, FR, FD} and any

linear combination of these.

Following the work of Lanser and Verwer [225], using Lie operator notation [228] adapted from

Sanz-Serna and Calvo [229, 230], we start with a reaction-diffusion solution operator S(δt) for

Equation (5.1) that acts on a solution at time t to give a solution at time t+ δt,

C (t+ δt) = S(δt)C(t). (5.4)

Let S̃(δt) denote a numerical approximation to S(δt), such that C̃ (t+ δt) = S̃(δt)C(t).

By combining the reaction and diffusion sub-operators using Strang splitting [205] and using the

preferred order of the stiff and non-stiff operators as outlined in [206, 231] and further applied in

[232, 207], the solution operator becomes

S̃(δt) ≡ S̃R(
δt

2
)S̃D(δt)S̃R(

δt

2
). (5.5)

By this, we mean the following:

1. Propagate the system concentrations forward a half step in time using the reaction operator.
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2. Propagate the resulting concentrations forward a full step in time using the diffusion operator.

3. Propagate the resulting concentrations forward a final half step in time using the reaction

operator.

The evolution of the concentrations can be written as the result of operating on the concentrations

with an operator F̂

∂C(t)

∂t
= F̂C(t), (5.6)

and a solution can be found using the solution operator

C(t+ δt) = eF̂ δt C(t). (5.7)

The truncation error associated with using the approximate solution operator from Equation

(5.5) can be found as follows: For each operator Fi in our function space S, a Lie operator Fi is

associated. This linear operator Fi maps any operator G in S into the operator Fi · G such that

[229]

(Fi ·G)(C) = Fi(C)
∂

∂C
G(C). (5.8)

We will use this property to find a propagator for the problem at hand. Let Fi be the operator

F = ∂
∂t defined by the left hand side of Equation (5.1). Substituting F into the mapping of Equation

(5.8) yields

(F ·G)(C) =
∂C

∂t

∂

∂C
G(C) (5.9)

=
∂

∂t
G(C). (5.10)

Moreover, by recursively applying Equation (5.8) using F we find
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(Fk ·G)(C) =
∂k

∂tk
G(C). (5.11)

Evaluating these derivatives at time t = 0, we find the Taylor expansion of G about time t,

(∑ δtkFk
k!

·G
)

C(t) =
((
eδtF

)
·G
)

C(t). (5.12)

Of particular interest is the case of G = I , the identity operator. Substituting it in reveals

((
eδtF

)
· I
)

C(t) =

(
I + δtFI +

δt2

2
F2I + . . .

)
C(t) (5.13)

=

(
1 + δt

∂

∂t
+
δt2

2

∂2

∂t2
+ . . .

)
C(t) (5.14)

= C(t+ δt), (5.15)

thus propagating the system a step δt forward in time. It is critical to point out that the above pro-

cedure spanning Equations (5.9-5.15) applies for all operators in S, not just F = ∂
∂t . Consequently,

as our Strang-split propagation operator is actually a combination of sub-operators, this treatment

applies such that

eδtF̃ ≡ e δt2 FReδtFDe δt2 FR , (5.16)

where we have performed the above procedure three times, using the appropriate ordering of FR

and FD, the Lie operator representations of our reaction and diffusion operators from the splitting

scheme in Equation (5.5). We note that F̃ represents a numerical approximation to F .

Since the reaction and diffusion operators do not in general commute, we make use of the BCH

formula [233, 234, 235] for gauging the splitting error. The BCH formula stipulates that an expression

of linear operators X and Y of the form eXeY can be written as eZ in terms of commutators, where
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Z = X + Y +
1

2
[X,Y ]

+
1

12
([X, [X,Y ]] + [Y, [Y,X ]]) +

1

24
[X, [Y, [Y,X ]]] + . . . . (5.17)

Applying this formula twice to Equation (5.16) leads to an expression for the exponent:

F̃ = FD + FR +
δt2

24
[FR, [FD,FR]] +

δt2

12
[FD, [FD,FR]] +O(δt4), (5.18)

where we note that odd-ordered terms cancel. The second order and higher terms of Equation (5.18)

constitute the error due to splitting the exact reaction and diffusion Lie operators FR and FD. What

we are interested in finding is a similar expression to Equation (5.18) but in terms of the numerical

operators FR and FD,

∂̃

∂t
C(t) = F̃ (C) ≡ FR(C) + FD(C) + δt2EF (C) +O(δt4), (5.19)

thus EF will reveal the second order splitting error of the propagation operator from Equation

(5.16). To find this we must first convert EF from an expression of Lie operators to an expression

of numerical operators in S.

Equation (5.8) reveals that a commutator of Lie operators [F1,F2] is itself a Lie operator asso-

ciated with a Lie-Poisson bracket of F1 and F2,

[F1,F2]I(C) = F1(C)
∂

∂C

(
F2(C)

∂

∂C
I(C)

)

−F2(C)
∂

∂C

(
F1(C)

∂

∂C
I(C)

)
(5.20)

= F1(C)
∂F2

∂C
(C)− F2(C)

∂F1

∂C
(C) (5.21)

= {F1(C), F2(C)} . (5.22)
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Expanding the nested commutators that appear in Equation (5.18) reveals their form for numer-

ical operators,

[F1, [F2,F3]] I(C) =

{F2(C), F3(C)}′F1(C)− F1(C)
′{F2(C), F3(C)}, (5.23)

where the primes signify partial differentiation with respect to C.

To find the term EF , replace the two nested commutators in Equation (5.18) with their corre-

sponding expressions of Equation (5.23). Doing so reveals

∂̃

∂t
C(t) = F̃ (C) ≡ FR(C) + FD(C)

+δt2
1

24

[
F
′
DR(FR + 2FD)− (F

′
R + 2F

′
D)FDR

]
+O(δt4), (5.24)

where

FDR = F
′
RFD − F

′
DFR (5.25)

is the Lie-Poisson bracket from Equation (5.20). Equation (5.24) contains the original components

of Equation (5.1) plus terms describing the splitting error and leads to the following expression for

EF :

EF =
1

24

[
F
′
DR(FR + 2FD)− (F

′
R + 2F

′
D)FDR

]
. (5.26)

Substituting into this using Equations (5.2), (5.3), and (5.25), we arrive at
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EF =
1

24

[(
R
′
(C)D∇2(C)−

(
D∇2(C)

)′
R(C)

)′ (
R(C) + 2D∇2(C)

)

−
(
R(C) + 2D∇2(C)

)′ (
R
′
(C)D∇2(C)−

(
D∇2(C)

)′
R(C)

)]
(5.27)

For all linear operators Fl ∈ S with any operator Fi ∈ S the following property holds:

F
′
l (C)Fi(C) ≡ Fl (Fi(C)) . (5.28)

Applying this to Equation (5.27), the term
(
D∇2(C)

)′
R(C) becomes D∇2(R(C)). Expanding

out the braced expression leads to

DR
′
(C) ∇2C−D(∇2(C))

′
R(C)

= DR
′ · (Cxx + Cyy + Czz)

−D~∇ ·
(
î(R

′
Cx +Rx) + ĵ(R

′
Cy +Ry) + k̂(R

′
Cz +Rz)

)
(5.29)

= DR
′ · (Cxx + Cyy + Czz)−DR

′ · (Cxx + Cyy + Czz)

−DR
′′ · (CxCx + CyCy + CzCz)

−2D(R
′
xCx +R

′
yCy +R

′
zCz)−D(Rxx +Ryy +Rzz), (5.30)

where for simplicity, we no longer explicitly write R’s dependency on C. After canceling terms,

Equation (5.29) can be incorporated into the expanded expression for Equation (5.26).
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EF =
−D

24

[(
R
′′ · (CxCx + CyCy + CzCz)

+2(R
′
xCx +R

′
yCy +R

′
zCz) + (Rxx +Ryy +Rzz)

)′ (
R+ 2D∇2(C)

)

−
(
R+ 2D∇2(C)

)′ (
R
′′ · (CxCx + CyCy + CzCz)

+2(R
′
xCx +R

′
yCy +R

′
zCz) + (Rxx +Ryy +Rzz)

)]
. (5.31)

The terms Cx, Rxx, etc., represent first and second spatial derivatives taken in the direction

of the subscripts. Expanding the first line of Equation (5.31) and applying Equation (5.28) for the

underlined term in Equation (5.31) produces

EF =
−D

24

[(
R
′′′ · (CxCx + CyCy + CzCz)

+2(R
′′
xCx +R

′′
yCy +R

′′
zCz) + (R

′
xx +R

′
yy +R

′
zz)
) (
R+ 2D∇2C

)

−
(
R
′
+ 2D∇2

)(
R
′′ · (CxCx + CyCy + CzCz)

+2(R
′
xCx +R

′
yCy +R

′
zCz) + (Rxx +Ryy +Rzz)

)]
. (5.32)

Equation (5.32) is the general form for EF . For typical simulation geometries, most neighboring

grid points will contain the same set of compartments and by extension share the same reaction

set. For these homogeneous grid areas, the splitting error can be significantly simplified with spatial

derivatives of the reaction operators falling out. Accounting for this yields

EFh =
−D

24

[(
R
′′′ · (CxCx + CyCy + CzCz)

)(
R + 2D∇2(C)

)

−
(
R
′
+ 2D∇2

)(
R
′′ · (CxCx + CyCy + CzCz)

)]
. (5.33)

Further reduction of the expression can be achieved for most biological systems as reactions are
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typically first and second order. In such cases, R
′′

will be a constant and R
′′′

will fall out of the

equations entirely, yielding

EF
h,2nd

=
D

24

(
R
′
+ 2D∇2

)(
R
′′ · (CxCx + CyCy + CzCz)

)
. (5.34)

One approach to the evaluation of Equation (5.32) would be to expand out its second line by

evaluating∇2 across the terms analytically and then numerically calculating the result. It is however

more efficient to evaluate the final group of terms at each spatial grid point and subsequently calculate

∇2 of the values numerically.

As δt2EF has units of µM/s, we take the value of δt3EF as our truncation error estimate in units

of concentration. It is this error estimate, along with those of the reaction and diffusion operators,

that allow for a full estimation of the numerical error for the propagator over a time step δt.

For stiff systems, Press et al. [209] recommend using a relative error above a given threshold con-

centration value and an absolute error below. We adopt their recommended scaling of max(|C|, s),

and so error values presented in this paper should be interpreted as the maximum non-negligible

error values used to determine system evolution. Therefore, units for truncation error values will

not be specified. The value s is determined by the characteristic scale of the system’s concentration

values, and we set s = 1 for all simulations presented in this paper.

As biochemical reactions are rarely more than bimolecular, Equation (5.34) is often the case for

systems of equations modeling homogeneous components of biochemical processes. For the purposes

of implementation, we have kept the generalized form (Equation (5.32)) and exploit the sparsity of

the high order terms for computational efficiency.

For example, in one dimension the vector term R
′′
CxCx may be written component-wise as

(
R
′′
CxCx

)(i)

=
∑

j,k

∂2R(i)

∂C(j)∂C(k)
C(j)
x C(k)

x . (5.35)

This term may be evaluated efficiently by only summing over nonzero ∂2R(i)

∂C(j)∂C(k) .

Similarly, one may efficiently evaluate R
′′′

CxCx(R + 2D∇2C) component-wise using
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(
R
′′′

CxCx (R + 2D∇2C
))(i)

=

∑

j,k,l

∂3R(i)

∂C(j)∂C(k)∂C(l)
C(j)
x C(k)

x

(
R(l) + 2D∇2C(l)

)
. (5.36)

This sum is evaluated over terms that are third order or higher, and while it would seem that for

a system of 100 reactants Equation (5.36) would require a sum over 1003 iterations, R
′′′

is generally

very sparse, if not entirely empty, reducing its cost of calculation considerably.

Similarly, other reduced terms are component-wise

(
R
′′
Cx

(
R+ 2D∇2C

))(i)

=
∑

j,k

∂2R(i)

∂C(j)∂C(k)
C(j)
x

(
R(k) + 2D∇2C(k)

)
, (5.37)

(
R
′
Cx

)(i)

=
∑

j

∂2R(i)

∂C(j)
C(j)
x . (5.38)

5.3 Boundaries and Inhomogeneity

In biological cell simulations, the full expression of Equation (5.32) is required in regions where

cell compartments border or overlap. At these locations, specific elements of R may differ due to

the distinct sets of reactions that take place in the various compartments. To determine the partial

derivatives of R with respect to x, we cannot simply numerically difference the values of R(C(~x, t), ~x)

on the grid as this would yield total derivatives. Instead we must determine new reaction sets for

spatial derivatives of R at these locations.

Consider a three-point quadratic interpolation of R over the evenly spaced grid points x0, x1,

and x2. The one-dimensional interpolation is expressed as follows

R(C(x), x) = R(C(x0), x0) + (R(C(x1), x1)−R(C(x0), x0))

(
x− x0

∆x

)
(5.39)

+
R(C(x2), x2)− 2R(C(x1), x1) +R(C(x0), x0)

2

(
x− x0

∆x

)(
x− x1

∆x

)
.
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Taking the first centered partial derivative with respect to x, ∂R
∂x

∣∣
x1

yields the expression

∂R

∂x

∣∣∣∣
x1

=
R(C(x1), x2)−R(C(x1), x0)

2∆x
. (5.40)

The second derivative is

∂2R

∂x2

∣∣∣∣
x1

=
R(C(x1), x2)− 2R(C(x1), x1) +R(C(x1), x0)

∆x2
. (5.41)

The inhomogeneous equations (5.40) and (5.41) can be predetermined and then evaluated in the

same manner as the standard reaction operator equations.

5.4 Reaction and Diffusion Truncation Error Estimates

In addition to the splitting error calculation, a fully adaptive integration scheme must also be able

to determine error estimates for the reaction and diffusion operators. For completeness, we present

brief explanations of how we determine truncation error estimates for the two operators as well as

present explanations of the methods themselves.

5.4.1 Evaluation of the Error for the Diffusion Propagator

For propagating the diffusion operator, we use an ADI method introduced by Douglas [210, 236].

The method easily generalizes to problems of arbitrary dimensionality and is well-suited to our

intracellular diffusion problem. In three dimensions it may be written as

c∗ − cn
∆t

=
α

2
δ2
x(c∗ − cn) + αδ2

ycn + αδ2
zcn (5.42)

c∗∗ − cn
∆t

=
α

2
δ2
x(c∗ − cn) +

α

2
δ2
y(c∗∗ − cn) + αδ2

zcn (5.43)

cn+1 − cn
∆t

=
α

2
δ2
x(c∗ − cn) +

α

2
δ2
y(c∗∗ − cn) +

α

2
δ2
z(cn+1 − cn), (5.44)

where α = D
∆x2 and δ2

x is a tridiagonal matrix representing 1D diffusion along a strip of space in the

direction of the subscript. The concentration vector c is a vector whose elements are concentrations

of a single reactant at successive locations along the grid strip. For a strip in the x direction having
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periodic boundary conditions, the matrix δ2
x is of the form




−2 1 0 0 · · · 0 0 0 1

1 −2 1 0 · · · 0 0 0 0

. . .

0 0 0 0 · · · 0 1 −2 1

1 0 0 0 · · · 0 0 1 −2




Notice that due to periodic boundaries the upper right and lower left corner matrix elements are

non-zero, and so will require cyclic tridiagonal solving methods [209].

We can somewhat simplify the above ADI equations by subtracting Equation (5.42) from Equa-

tion (5.43) and Equation (5.43) from Equation (5.44) and then defining a = αδt. After doing so, we

are left with the following reduced equations:

(1− a

2
δ2
x)c∗ = (1 +

a

2
δ2
x + aδ2

y + aδ2
z) cn (5.45)

(1− a

2
δ2
y)c∗∗ = c∗ − a

2
δ2
ycn (5.46)

(1− a

2
δ2
z)cn+1 = c∗∗ − a

2
δ2
zcn, (5.47)

or in the generalized form for an N dimensional system,

(1− a

2
δ2
1)c∗1 = (1 +

a

2
δ2
1 +

N∑

i=2

aδ2
i ) cn (5.48)

(1− a

2
δ2
i )c∗i = c∗i−1 −

a

2
δ2
i cn for i = 2...N (5.49)

cn+1 = c∗N . (5.50)

In one dimension, this is simply the Crank-Nicolson differencing scheme [208]. In three di-

mensions, determining cn+1 consists of evaluating three tridiagonal linear equations, each an O(n)
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operation. As the left hand side matrices (1− a
2 δ

2) possess strict diagonal dominance, they are nec-

essarily non-singular [237, 238]. In our own implementation in Cellsim, we make generous use of the

Gnu Scientific Libraries for quickly solving these tridiagonal and other linear algebra problems. For

both zero flux and periodic boundary conditions, no special treatment is required at the boundaries

when calculating the intermediate values, c∗ and c∗∗.

When the grid is uniformly spaced in all three directions, these intermediate values can be

eliminated from the set of equations to yield

a(δ2
x + δ2

y + δ2
z)

(cn+1 + cn)

2
= (cn+1 − cn) +

+
a2

2∆t
(δ2
xδ

2
y + δ2

yδ
2
z + δ2

zδ
2
x)(cn+1 − cn)− a3

4∆t2
δ2
xδ

2
yδ

2
z(cn+1 − cn), (5.51)

The first line of the equation is the standard Crank-Nicolson scheme. The last two terms of

Equation (5.51) appear entirely due to the arrangement of the ADI scheme, and are taken to be

the second order splitting error of this ADI scheme. Note that in two dimensions, the final step of

Equation (5.45) is eliminated, leaving c∗∗ as the resultant cn+1. Also, the splitting error expression

is considerably simplified as all terms containing δ2
z fall away, with a2

2∆tδ
2
xδ

2
y(cn+1 − cn) as the only

remaining error term.

To estimate the truncation error of the method, we first notice that the right side of Equation

(5.45) contains all the required elements of the first-order FTCS diffusion scheme [209, 239], which

in three dimensions appears as

ĉn+1 = (1 + aδ2
x + aδ2

y + aδ2
z) cn. (5.52)

Therefore, the second order ADI method contains an embedded first order FTCS method that

can be used for a simple truncation error estimate:

∆D = cn+1 − ĉn+1. (5.53)
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The maximum valued element of the vector ∆D is taken as the truncation error estimate for a

single time step diffusion propagation.

5.4.2 Evaluation of the Error for the Reaction Propagator

For propagating chemical kinetics, we employ a Rosenbrock method [209]. Such methods have the

general form

Cn+1 = Cn +

s∑

i=1

biki (5.54)

ki = δtFR


Cn +

i−1∑

j=1

aijkj


+ δtJ

i∑

j=1

γijkj , (5.55)

where aij ,bi, and γij are constants, and J is the Jacobian matrix of the chemical kinetics whose

elements Jij = ∂FR(Ci)
∂Cj

. We employ the second order method developed in [211]. The method is

written

Cn+1 = Cn +
3

2
δtk1 +

1

2
δtk2, (5.56)

(I − γδtJ) k1 = FR(Cn),

(I − γδtJ) k2 = FR(Cn + δtk1)− 2k1,

where γij = γ = 1± 1/
√

2 is chosen for desired stability properties. Further details can be found in

[211]. The method contains an embedded first-order method giving an approximate solution of

Ĉn+1 = Cn + δtk1. (5.57)

Again, subtracting the first-order solution, Equation (5.57), from the second order solution,

Equation (5.56), yields a truncation error estimate of ∆R ≡ Cn+1 − Ĉn+1 = δt
2 k1 + δt

2 k2. We use

the maximum valued element of the vector ∆R as the truncation error estimate for a single time

step reaction propagation.
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5.5 The Integration Scheme

Depending upon the model system being integrated, any of the three sources previously described

(reaction, diffusion, and Strang splitting) may contribute to the truncation error. Monitoring all

three affords one the most information when adjusting the time step during adaptive integration. If

any single source’s truncation error is above a maximum tolerance ∆max for that source, the error

can be reduced to an acceptable value by shrinking the time step value. Correspondingly, if all three

truncation errors are below their tolerances, the time step can be increased to improve efficiency for

a given desired accuracy. This is the basic approach of our integration scheme.

First, since the splitting calculation is explicit, the truncation error due to splitting can be

determined without the need to take the step first. Accordingly our integration scheme checks the

splitting error first. If this error surpasses the splitting tolerance, the time step δt is reduced to

the maximum value allowed by the tolerance. This can be done without the need to recalculate

the splitting error using the smaller step size because the splitting error is directly proportional to

δt3. So, if we calculate a splitting error value of ∆fail which turns out to be larger than the error

tolerance ∆max, we need only reduce the step size by a factor of (∆max/∆fail)
1
3 to find a time step

that will result in a splitting error equal to the tolerance. If, on the other hand, the error is less

than the tolerance, no adjustment to δt is made.

After determining the splitting error, the system is propagated forward in time an amount δt/2

by the reaction operator FR. If the step fails the tolerance test, the time step size is reduced and

the step is re-taken until the tolerance test is passed. If the step passes the tolerance test, the value

of the next time step (δt′) is increased and δt is left unchanged.

After this, the system is propagated forward in time an amount δt by the diffusion operator

FD . If the step fails the tolerance test, the time step size is reduced, the partly taken integration

step is abandoned, and the entire step is restarted with the reaction propagation. If the diffusion

propagation passes the tolerance test, the system is propagated forward in time a final half time

step δt/2 by FR. Finally, the value for the next time step is set to the saved value δt′. A flow chart

depicting this algorithm can be found in Figure 5.1.
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5.6 Example Systems

We now examine three example systems that individually demonstrate system evolution dominated

by truncation error from each of the three sources. For the reaction error-dominated system, we

use a simple auto-catalytic system diffusing through a medium with two slowly diffusing reactants

A and B that react quickly to form a dimer. For the diffusion error-dominated system, we use

a similar system with different time scales for reaction and diffusion constants. For the splitting

error-dominated system we use a simple simulation of a kinase/phosphatase cascade, activated by

a membrane-bound receptor/stimulus complex on a compartmentalized grid. All simulations are

integrated using CellSim [8].

As a check for the accuracy of the method, we also integrate out each system using an explicit

4th-order Runge-Kutta (RK4) method and FTCS diffusion with a small fixed time step (10−5s for

the two auto-catalytic systems and 10−3s for the kinase cascade system), an accurate but compu-

tationally costly method. We plot the maximum concentration difference between the two methods

at each time step as cumulative error calculations. Since the time points of the two methods do

not identically match, we use simple linear interpolation of the RK4 data to determine appropriate

values. We provide these values for the first 100 seconds of each simulation, approaching steady

state concentrations in all cases. Computational storage and time constraints prevented us from

integrating the RK4 simulations out further.

5.6.1 Diffusion Error-Dominated System

Diffusion error-dominated dynamics are characterized by fast diffusion constants compared to other

system rate parameters. In our example of a diffusion error-dominated system, we start with a

100×100 square grid of width 2 microns, with an initial Gaussian distribution of the reactants. The

relative concentrations of the reactants do not match their kinetic equilibrium concentrations, and

the boundary conditions are periodic. The sole kinetic reaction is

A+B � 2A, (5.58)
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where the forward rate constant is 0.001(µM · s)−1, the backward rate is 0.0001(µM · s)−1, and

diffusion constant for both reactants is 5.0µm2/s. This leads to the reaction and diffusion operators

for this system:

FR =




0.001[A][B]− 0.0001[A][A]

0.0001[A][A]− 0.001[A][B]


 (5.59)

FD = 5.0∇2




[A]

[B]


 . (5.60)

Initial conditions are

A(x, y) =
1√
2πσ

e−
x2+y2

2σ2 (5.61)

B(x, y) = 2A(x, y), (5.62)

where σ = 0.205, and the origin is at the center of the grid. This 2D system is integrated out from

time t0 = 0s to time t = 1000s using the adaptive integration algorithm presented earlier in this

paper (Figure 5.1). The maximum allowed error for each source of error is ∆max = 0.001.

The initial dynamics of the reactants can be seen in the first two rows of Figure 5.2. Shown

are the concentration profiles after the first step (t1 = 0.000125s), after the initial Gaussians have

diffused to approximately half their initial height (t2 = 0.00342s), and after they have diffused to

uniform distributions (t3 = 0.0995s). From this point the uniformly distributed reactants rise/fall

to steady-state reaction values. Note that the legend scales are different for all rows in these image

collages.

The lower three rows of Figure 5.2 show the maximum error values over the grids for the three

sources of error – diffusion, reaction, and Strang splitting. For time t1 = 0.000125s, the diffusion

error plot contains three points of interest – a central peak corresponding to the central concentration
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peaks, an inner ring corresponding to the bottom edge of the concentration Gaussian, and a less

pronounced third outer ring corresponding to the area just outside the concentration Gaussian. The

central peak of truncation error arises simply due to the central curvature of the concentration

distribution. The inner and outer truncation error rings correspond to the areas approaching the

edge of the concentration Gaussian – from both the zero gradient outside area and the constant

gradient slope of the Gaussian. As the concentration Gaussians spread out, these diffusion error

rings move radially as well, as shown for time t2 = 0.00342s. By time t3 = 0.0995s, each Gaussian

has spread out enough to completely fill the grid. The outer error ring disappears, and the inner ring

diameter continues to grow larger than the grid width, causing the four peaks in the grid corners,

constituting a single peak wrapped around the periodic boundary edge.

At this point, the initial Gaussian concentration distributions have diffused to a uniform distribu-

tion over the grid. This lack of strong curvature for concentration causes the diffusion error to drop

drastically for small time steps. In Figure 5.3, the system diffusion error remains pinned just under

the maximum allowed error until around t = 0.1s. At this point the reactant concentrations have

become uniform over the grid, which causes the diffusion error to drop several orders of magnitude

(from 10−3 to 10−6). From this point on, all three sources of error are below the maximum allowed

error, and so the adaptive algorithm gradually increases the system time step δt. As the errors do

not reach the maximum allowed error until the very end of the run as seen in Figure 5.4 , δt is

increased exponentially from a time step of δt ≈ 0.1 at time t = 0.1s to a time step of δt ≈ 500s at

time t = 1000s (Figure 5.4). Only with such large time steps does the diffusion error re-approach

the maximum allowed error at this later stage of the simulation.

The reaction error and splitting error do not play a major role in the early stages of the system

evolution, and remain several orders of magnitude below the system dominating diffusion error up to

time t = 0.1s, as seen in the bottom two rows of Figure 5.2 and in Figure 5.3. At time t = 0.1s the

reaction error does not fall off as does the diffusion and splitting error. This is because the reaction

error is most sensitive to kinetic rates and concentration values rather than spatial gradients. The

reaction error instead increases exponentially along with δt, though it still remains more than two
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orders of magnitude smaller than the diffusion error.

The cumulative error for the diffusion dominant system remains low throughout the simulation,

ranging between 4.11×10−4µM and 1.31×10−5µM until a uniform reactant distribution is reached

around t = 0.1s, at which point the cumulative error drops significantly (Figure 5.3).

5.6.2 Reaction Error-Dominated System

For a reaction error-dominated example, we start with the same two Gaussian distributions of A

and B reacting to form 2A in an autocatalytic reaction. The grid geometry and initial concentration

distributions also remain the same. The forward and backward kinetic rate constants are changed

to 1(µM · s)−1 and 0.1(µM · s)−1, respectively. The diffusion constant for both reactants is set to

0.001µm2/s and ∆max = 0.001. The reaction and diffusion operators for this system become:

FR =




[A][B]− 0.1[A][A]

0.1[A][A]− [A][B]


 (5.63)

FD = 0.001∇2




[A]

[B]


 (5.64)

The time scale of the reaction operator is now much smaller than the diffusion operator.

In Figure 5.5 we examine a series of reactant concentrations and maximum truncation errors over

the grid during the initial stages of system evolution – the early reaction error-dominated period

from time t = 0s to time t ≈ 3s. Figure 5.6 shows the same concentrations and errors during the

later, diffusion error-dominated stages of system evolution. As the reaction kinetics reach steady-

state values, the reaction error no longer dominates and the system integration evolves at a faster

rate that allows the slower diffusion to dominate.

In Figure 5.5, we see that the enzymatic reaction kinetics initially dominate, rapidly converting

B into A (t1 = 0.001s to t2 = 0.227s). This increases the height of A’s Gaussian distribution and

creates a depression at the center of B’s distribution (t3 = 0.676s). At time t4 = 2.776s in Figure 5.6,

the “shoulders” of B’s distribution (t4 = 2.776s) are reduced to reach a final Gaussian distribution
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at kinetic equilibrium (t5 = 15.064s).

Eventually, near time t6 = 918.65s, the reactants have diffused uniformly over the grid to steady-

state concentrations, which allows for exponential growth of the time step value. As seen in Figure

5.8, δt grows over the full extent of the simulation from an initial time step of 10−3s to final steps

of over 1000s.

As for the truncation errors, during the first second of integration the reaction error plays a

larger role in the system evolution than the diffusion error and splitting error, though the latter two

rise in tandem (Figure 5.7). At time t2 = 0.227s, the reaction error peaks just under the maximum

allowed error and then begins decreasing exponentially in three stages: from t ≈ 0.2s to t ≈ 1.5s

after it has been overtaken by the diffusion error, from t ≈ 1.5s to t ≈ 100s, and from t ≈ 100s

to t ≈ 200s. After the diffusion/reaction crossover around time t ≈ 1.5s, the splitting error falls in

tandem with the falling reaction error. Beyond t ≈ 200s, both the the reaction and splitting error

remain at low values approaching the lower limit of double precision.

During the drop in the reaction error and splitting error, the diffusion error dominates from

time t4 = 2.776s to time t6 = 918.65s, with the maximum diffusion error hovering just under the

maximum allowed error value (Figure 5.7). After this point, the uniform reactant distributions

greatly reduce the diffusion truncation error for small time steps, and so the diffusion error drops

two orders of magnitude before the increased time step sizes level the diffusion error magnitude at

the end of the simulation. Due to the limited time span of the simulation, truncation error values

do not re-approach the maximum allowed value

Similarities can be seen between the time step evolution and truncation error evolution of the

reaction and diffusion error-dominated system simulations in their later periods. As seen in Figures

5.3 and 5.7, after the reactants reach uniform distribution, the diffusion error drops by multiple

orders of magnitude. This allows δt to grow exponentially until errors re-approach specified limits

as seen in Figures 5.4 and 5.8.

The similarities can be further illuminated by comparing Figures 5.2 and 5.6. Differences between

the two sets of images can largely be attributed to the “shoulder” of B’s distribution in Figure 5.6.
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For instance, the additional rings present in the diffusion error of the reaction-dominated system

(third row in Figure 5.6) can be attributed to this. Once the reactants reach kinetic equilibrium

around t ≈ 15s, the diffusion error evolves quite similarly to that of the diffusion error-dominated

system, only at a slower time scale. Conversely, the reaction and splitting error profiles evolve

differently between the two simulations. In the diffusion error-dominated system, the reactants have

not reached kinetic equilibrium by the time diffusive equilibrium is reached, so reaction error values

do not fall as they do in the reaction error-dominated system. Because the splitting error is affected

by both reaction and diffusion terms, it also is dissimilar between the two simulations.

Again, the cumulative error for the reaction dominant system remains low throughout the simula-

tion, ranging between 1.11×10−3µM and 5×10−6µM for the first 100 seconds of simulation (Figure

5.7). The initial peak in the cumulative error corresponds to the initial fast reaction-dominated dy-

namics of the system evolution and is mirrored by a less pronounced peak in the reaction truncation

error estimate.

5.6.3 Strang Splitting Error-Dominated System

As an example of a system dominated by Strang splitting error, we model a kinase/phosphatase

cascade activated by an extracellular stimulus [177]. In our simulation, an extracellular ligand S

binds to a transmembrane receptor R, which activates a cytosolic kinase K near the membrane.

This activated kinase K∗ is free to diffuse within the cytoplasm and undergo dephosphorylation by

a phosphatase P . The system equations are as follows:

Reaction kf kb

S +R � S.R 4.2 0.25

S.R+K � S.R.K 1.2 0.8

S.R.K → K∗ + S.R 0.2

K∗ + P � K∗.P 1.98 25

K∗.P → K + P 6

with appropriate units of micromolar concentration and seconds. The initial concentrations of

the reactants are
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S 0.001 µM

R 1.6667 µM

K 0.2 µM

P 0.224 µM.

All other concentrations are initially zero, and the stimulus concentration S is held constant. All

parameter values are adapted from the kinase cascade in [1].

The simulation is run on a 100× 100 point square grid of total width 5µm. We model the cell

as a circular region whose radius extends to the edge of the grid. The outer grid points of the

circular region form the cell membrane region. The extracellular region overlaps with the membrane

region and extends to the grid edge. The cytosolic region also overlaps with the membrane region

and extend into and fills the cell center. The receptor R and all its complexes exist in (and are

free to diffuse among) grid points containing the membrane compartment. The stimulus S exists in

extracellular grid points, and reactants K, K∗, K∗.P , and P all exist in the cytosol. The diffusion

constant for all reactants is 1µm2/s. This system is integrated from time t = 0 out to time t = 200s

using our adaptive integrator with a tolerance of ∆max = 10−5 for all three sources of error.

We chose this system not only to more directly show the algorithm’s applications to problems

encountered in systems biology, but also to demonstrate how splitting errors can dominate for

compartmentalized, heterogeneous systems of nonlinear reactions. Such systems often occur for

spatiotemporal cell signal transduction simulations, where the system reactants (proteins, small

molecules, ions, etc.) are kept separate by compartment borders and cell geometry.

As seen in Figure 5.9, K∗ concentration rises to a steady state of 0.0853nM at the cell edge

which decays exponentially inward to a central concentration of 0.075nM . Almost immediately

(t1 = 0.071s, first column of Figure 5.9), the splitting error dominates the system evolution. The

error is most prominent at the interface between the extracellular and membrane compartments

located at the outer edges of the cell. After sufficient accumulation of S.R in the membrane, splitting

error increases at the interface between the membrane and cytosolic compartments located at the

internal edges of the cell, eventually overtaking the outer-edge splitting error at time t2 = 8.327s
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(Figure 5.9, second column). The splitting error at the outer edge reduces slightly by time t3 = 100s

and the system reaches steady state (Figure 5.9, third column).

In Figure 5.9, the reaction error (third row) quickly reaches a peak value at t1, which then reduces

to the distributions seen at times t2 and t3. The diffusion error distribution (second row) mimics

that of the splitting error and gradually increases in value up to a maximum of 7.63× 10−6 at time

t2, just below the allowed tolerance.

As seen in Figure 5.10, for the vast majority of integration time, the splitting error is at the

maximum allowed value. At steady state, the diffusion error is three-quarters of this value and the

reaction error is five orders of magnitude smaller. Therefore, the splitting error determines the time

step evolution plotted in Figure 5.11. During the initial integration steps, the time step size increases

exponentially until the splitting error reaches the maximum allowed value at time t ≈ 0.03. From

here the time step size increases more slowly until time t2 = 8.327s. From this time on through the

remainder of the simulation, the time step size does not significantly change.

Of the seven reactants present in the simulation, it is inactive K that produces the greatest

splitting error throughout the simulation. This is localized at the cell membrane where K partakes

in the most reactions, involving S.R, S.R.K, and K∗.P simultaneously. It is interesting to note that

the splitting error for the reactants S, R, S.R and S.R.K quickly drop off to negligible values after

time t2 = 8.327s.

The discontinuous appearance of the splitting and diffusion error is a result of modeling a circular

cell on a square grid lattice. Membrane grid points will have neighboring grid points of varying

compartments, depending on the circular membrane’s orientation to the square lattice direction.

Therefore, the three-point numerical differencing used in the diffusion error and splitting error

calculations will be affected by the location on the membrane. Despite the random appearance, the

concentration and error profiles all have four-fold symmetry (eight-fold mirror symmetry), as would

be expected on a square grid.

The cumulative error for the Strang splitting dominant system is highest for the kinase K, as

the total error for both the active and inactive form reach values of 3.75× 10−7µM within the first
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twelve seconds of the simulation (Figure 5.10).

5.7 Discussion and Final Remarks

We have shown that the evolution of even the simplest reaction-diffusion systems likely to be en-

countered in multi-dimensional systems biology simulations can be dominated by truncation error

due to both reaction and diffusion operators, as well as the truncation error due to the common

second-order Strang’s method of operator splitting. In multi-dimensional cell signaling simulations,

truncation error due to Strang splitting can entirely dominate the system evolution as demonstrated

by our third example simulation.

We have presented a method of monitoring the truncation error due to Strang splitting and

incorporating it into an adaptive step size integration algorithm. While truncation error and global

error monitoring and control of individual operators is a common field of study [240, 241], time

adaptive methods that incorporate Strang splitting truncation error as an input to time step control

have, to our knowledge, not been previously evaluated.

Operator splitting and time splitting methods have found popularity in a wide variety of simula-

tion applications including Bose-Einstein condensation [242], quantum statistical calculations [243],

optical interactions in media [244], and transport in porous media [245]. Moreover, Strang splitting

is used extensively in the field of atmospheric simulation. This lead Lanser and Verwer [225] to

conjecture that splitting errors are kept within practical bounds for typical problems encountered

in the field. As we have shown, this statement cannot be made, in general, for problems in multi-

dimensional cell signal modeling. We suggest that the inherent compartmental nature of cells is a

significant contributor to the splitting error in modeling cells.

Unlike atmospheric problems, where the chemistry is reasonably smooth spatially (it is a func-

tion of temperature, altitude, pressure, humidity, etc., all of which are continuous variables), cells

contain clearly defined compartments and borders, over which chemistry can discontinuously vary.

While more complex models of cell signaling may take into account such factors as temperature and

pressure, which are indeed important for a multitude of cell functionality, the inclusion of locality

into even the simplest models of cell signaling requires the presence of compartments and physi-
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cal borders. Such structures create abrupt sources and sinks within the model chemistry, which

substantially contribute to the splitting error.

As shown by Lanser and Verwer [225], a complete and general splitting error calculation for

reaction-advection-diffusion problems is too cumbersome to be of much practical use. As such

they prescribe a number of simplifications to make the calculation more manageable. Since we are

not currently modeling advection, the splitting expression is simplified considerably. While this

simplification makes the calculation more feasible, it is still at a significant time cost per step.

In our simulations, we have only seen significant calculation time advantages for problems where

uniform distributions of reactants reduce the role played by diffusion. In such situations the time step

size can increase dramatically (as seen in the reaction error-dominated and diffusion error-dominated

examples), and significantly reduce the calculation time. For more common heterogeneous problems,

calculating the various truncation errors every N steps reduces the calculation cost of each by a factor

of N, although this makes the method’s time adaptivity less robust. The time cost to calculate

reaction and diffusion errors using the methods presented in this paper are near negligible.

Currently the most common approach for modeling intracellular signaling networks is based on

purely kinetic reaction systems modeled using ODEs, such as Gepasi [246] and Genesis [247]. This

is referred to as the “well mixed model” as it assumes homogenous chemistry throughout the cell.

Focus has also recently extended to modeling transport phenomena requiring the use of spatially

resolved stochastic approaches such as MCell [248] and StochSim [249] as well as spatially resolved

kinetic approaches like Virtual Cell [250] and CellSim [8]. The last of these approaches, or possibly

even a hybrid of the last two methods, is the most suited for utilization of the Strang splitting error

monitoring method outlined in this paper.

Other adaptive methods for solving partial differential equations include adaptive mesh methods

[251] and multigrid methods [252], time adaptive splitting methods for quickly equilibrating diffusion

[253], and in situ adaptive tabulation [207], essentially a storage and retrieval system. The main

benefit of our method is ease of implementation into software packages that use fixed Cartesian

grids. The method is independent of the underlying reaction and diffusion integrators, and for
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already existing implementations of Strang splitting only the splitting error calculation and the

simple adaptive control method need to be added. However, we have recently proposed methods to

extend splitting error control to adaptive mesh refinement techniques, providing adaptivity in space

as well as time.

As a possible extension to this work, there are important intracellular advective processes such as

active transport along actin filaments, which are interesting in so far they can be entirely decoupled

from diffusion [254]. In other words, reactants undergoing such advection are not simultaneously dif-

fusing. Adding an advection propagator to the Strang split calculation for such reactants introduces

splitting error due to the coupling of reaction and advection, while for such reactants diffusion no

longer contributes to the splitting error. As such, determining the significance of advection-reaction

splitting error in reaction-diffusion/advection cell models is one possible step for further investigation

into the role of splitting error in spatiotemporal cell modeling.
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Figure 5.1: Algorithm flowchart for a single time step δt. The method consists of four steps: 1. Determine
the Strang splitting error and adjust the time step, if needed. 2. Propagate the reaction operator a half
time step. 3. Propagate the diffusion operator a full time step. 4. Propagate the reaction operator a half
time step. The method checks to see if each error estimate is below the maximum tolerance set for its
corresponding propagator. The time step choice δt is considered successful if all error estimates pass this
check.
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Figure 5.2: Detailed concentration and truncation error profiles of the diffusion error-dominated system
during the initial 0.1 seconds of simulation. During this initial period, the Gaussian distributions of the
reactants A and B quickly diffuse out to uniform distributions over the grid. The three columns of images
correspond to the simulation times t1 = 0.000125s, t2 = 0.00342s and t3 = 0.0995s. The top two rows
show the time evolution of the reactants A and B, and the bottom three rows show the pointwise maximum
truncation error profiles due to diffusion, reaction, and Strang splitting.
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Figure 5.3: Maximal truncation error estimates (bottom) and cumulative errors (top) for the diffusion
error-dominated system. After 0.1 seconds, the reactants A and B are uniformly distributed over the grid,
resulting in reduced truncation error estimates for small time steps. The cumulative error also drops at this
point, as the system reaches steady state.
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Figure 5.4: Evolution of the time step δt for the diffusion error-dominated system.
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Figure 5.5: Detailed concentration and truncation error profiles of the reaction error-dominated system
during the initial 0.676 seconds of simulation. During this initial period the Gaussian distributions of the
reactants A and B react quickly to increase the concentration of A and reduce the concentration of B. The
three columns of images correspond to the simulation times t1 = 0.0001s, t2 = 0.227s and t3 = 0.676s.
The top two rows show the time evolution of the reactants A and B, and the bottom three rows show the
maximum pointwise truncation error profiles due to diffusion, reaction, and Strang splitting.
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Figure 5.6: Detailed concentration and truncation error profiles of the reaction error-dominated system
during the later, diffusion error-dominated, stages of simulation. During this period the reactants A and
B slowly diffuse to a uniform distribution over the grid. The three columns of images correspond to the
simulation times t4 = 2.776s, t5 = 15.064s and t6 = 918.65s. The top two rows show the time evolution of
the reactants A and B, and the bottom three rows show the maximum pointwise truncation error profiles
due to diffusion, reaction, and Strang splitting.
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Figure 5.7: Truncation error estimates (bottom) and cumulative errors (top) in an initially reaction error-
dominated system. The reactants A and B quickly reach kinetic reaction steady-state values at time t ≈ 15s,
by which point the system has become diffusion error-dominated. By time t = 1000s, the reactants have
been uniformly distributed over the grid.
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Figure 5.8: Evolution of the time step δt for the reaction error-dominated system.
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Figure 5.9: Activated kinase (K∗) concentration and truncation errors for the Strang splitting error-
dominated system. The distribution of K∗ rises to a steady state by time t3 = 100s. The splitting error
immediately increases during the initial time steps until it peaks at the maximum allowed value of ∆max =
10−5. The splitting and diffusion errors are most prominent near the membrane region of the cell.
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Figure 5.10: Truncation error estimates and cumulative errors of the Strang splitting error-dominated
system. The diffusion error rapidly approaches the splitting error initially, then levels at 0.76 of the maximum
allowed value.
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Figure 5.11: Evolution of the time step δt for the Strang splitting error-dominated system. The integration
time step reaches a steady-state value of 0.01026s at time t2 = 8.327s.
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