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Abstract

The United States Army is currently looking for new methods of guiding munitions,

which would allow the military to employ guided munitions in place of traditional

munitions. This will give the US Army an edge on the battle field and also allow

the use of munitions in areas where traditional mortars and artillery cannot be used,

including dense urban environments where collateral damage is not acceptable.

In this thesis, an innovative approach to Guidance, Navigation, and Control

(GN&C) is developed for a spinning projectile that utilizes a single axis canard ac-

tuation system. Utilizing the projectiles spin, the controller can provide a full range

of aerodynamic forces, over the 360o of rotation, that provides maneuverability using

only one actuator. This technique minimizes the need for multiple actuators and

maintains the inherent aerodynamic stability provided by the spin.

The GN&C system design described in this thesis consists of a tracking regulator

for sinusoidally oscillating the canard system, a nonlinear state estimator for attitude

measurement, and a guidance law to guide the projectile to a target. By combining

the three components, we can demonstrate a closed-loop guidance system that will

hit a target accurately at distances normally not achieved by an unguided projectile.

ix





Chapter 1: Introduction

1.1 History of Guided Weapons

Since the First World War, the United States has been pursuing advancements in

weapon design in an effort to more accurately engage targets. Guidance Navigation

and Control (GN&C) of missile systems has been the top priority, developed over

many years on nearly an unlimited research budget. Several classes of weapons sys-

tems have emerged as a result of this extensive research, including Radio Controlled

and Laser Guided missile applications. These systems have been used frequently and

reliably by the United States Armed Forces.

While the research and technology of smart missiles has been progressive, the

development of smart munitions, mainly artillery and mortars, is far behind. Most

recently, interest in upgrading artillery for accuracy has led to the development of

new programs within the Armed Forces. Driving the cause for artillery upgrade,

instead of replacement, is the massive arsenal of ”dumb” weapons. The stockpile

of traditional munitions imposes a financial restriction on the military, so instead of

creating totally new weapon platforms, the military has programs in place to make

the ”dumb” weapons systems ”smart”. The Precision Guidance Kit (PGK) and the

Precision Guided Mortar Munition (PGMM) are two programs aimed at upgrading

the exiting arsenal of artillery to smart systems.

After years of development, smart munitions have yet to be fielded due to their

unreliability and extreme cost. In order for the Army to continue to use gun launched

1
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munitions, a GN&C system for a smart round must be developed that is highly

accurate, reliable, and low-cost.

1.2 Traditional Weapons Design

Missile systems utilize a closed-loop design for stability, while projectiles are designed

with inherent open-loop stability. Typically, munitions are designed by engineers to

operate in an open-loop fashion as a ”dumb” round. Current open loop design has

been utilized for many years, so attempting to redesign an entire projectile and gun

system would be impractical. By utilizing current gun systems, and slightly modifying

traditional projectiles, the development and integration of a smart projectile would

not only economically advantageous but would allow for seamless integration into the

current weapons arsenal.

The current open-loop munitions systems allow a field commander the ability to

fire and hit a target with an acceptable level of error. If the target is missed on the first

attempt, the commander can recalculate and hopefully hit the target on the second

shot. Firing tables and software have been developed to provide the commander with

a reasonably reliable tool to recalculate for the second shot. This scenario is typical,

but has downsides; the first round gives away location, and allows the enemy a chance

to retaliate or relocate. It also becomes costly since each round costs a few thousand

dollars, increasing mission cost with each missed target.

Improvement of this system would require a ”smart” round to not only minimize

the error, but do so with a limited budget. The current system works in most instances

with limited collateral damage, but still is not as accurate as commanders would like.
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1.3 Design Considerations

The delay of with developing cost effective smart munitions, until now, was the result

of many factors. They are the inability to find components which survive the gun

launch high-g’s, the high cost of Inertial Measurement Units (IMUs), and the lack of

guidance controllers for artillery rounds. Recent advances in embedded computers and

Micro-Electro-Mechanical Systems (MEMS) allow for low cost production of sensors

and Digital Signal Processor (DSP) micro-processors which are much smaller than

their predecessors. Mass production of those items keeps cost low. The real hurdle is

survivability at high-g’s. Fortunately, most devices produced today can survive the

gun launch using ”potting” techniques. This method, coupled with proper structural

design, can produce a very reliable system.

For accurate control of an artillery shell, the dynamic model must be fully un-

derstood and created for each round that is to be controlled. In order to do this,

parameter estimation techniques are used to create a non-linear dynamic model of

the projectile. Once the model is obtained, a system must be designed to accurately

guide the artillery round as it flies down range. The system should consist of, but is

not limited to, a DSP microprocessor, an array of sensors, and an actuation system.

In order to develop a controller for accurately guiding a projectile, the system

must be reliable and robust. The controller needs to be designed to account for

system uncertainties, disturbances, and failures, such that the smart round does not

cause more unintended damage than the dumb round. The constraints on the size,

weight, power consumption, and cost of the control system also need to be considered

in the design. To accurately estimate the states of the system, an estimator will be

designed based on the available sensors and the dynamics model of the system.
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Commercially available sensors include magnetometers, rate gyros, accelerome-

ters, thermopiles, solar sensors, and Global Positioning System (GPS) modules. In

addition to the above sensors, there are others, that can be utilized for the state

estimation. For example, ground based radar and laser range finding devices can be

used together with a telecommunication link to the projectile.

For any of the aforementioned sensors to be included in a viable solution, each

must undergo a battery of testing to ensure reliability and survivability of the high-g

environment. The process is complex and requires a multitude of checks and balances.

Each sensor must be calibrated to ensure the accuracy of its measurements. The

controller must be programmed to consider sensor nonlinearities including cross-axis

effects, bias and offset errors, temperature and electrical drift.

The control system to be designed for munitions is more challenging than that

for missiles, since it involves more complicated aerodynamics, more constraint on

size, actuation, and cost, and therefore it requires more sophisticated control system

design.

1.4 Relevant Work

Current advances in technology have brought a push by the Army to develop smart

gun launched weapons. Several development programs in progress attempting are

attempting to perform GN&C on a projectile. The Army PGK program utilizes an

add-on kit that attaches to the fuse portion of a standard artillery shell to make the

”dumb” artillery round smart. The technology used in this program is similar to that

in Joint Direct Attack Munition (JDAM) of the United States Air Force. The Army

PGMM project utilizes the existing dimensions of M395 artillery shell and gun system
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to create a new smart weapon which can seamlessly be used in tactical applications

when a smart round is needed. The PGMM round employs a thruster ring about the

center of mass to provide its maneuver capability. One current projectile that has

been field demonstrated is Excalibur. Excalibur is equipped with an IMU and four

canards on the front of the projectile for guidance and flight control. This system has

proved promising on the battlefield and is still in the test and evaluation stages.

The projectiles aforementioned are all far from being completed. Each projectile

has its own inherent problems. PGK relies on GPS to measure roll orientation and

de-spin its nose in order to perform guidance, thus any associated failure in the

actuator system or if the GPS signal is jammed, the system may become unstable

or uncontrollable. The PGMM round uses a Semi-Active Laser (SAL) seeker to

provide target information. This requires a forward spotter for laser designation.

PGMM’s thrusters also minimize the amount of control authority the projectile has.

The Excalibur relies on GPS and has costly IMU system, and very expensive canard

actuation system. These high costs make the Excalibur impractical.

To determine the design path towards a GN&C system, extensive literature searches

were performed through the journals and proceedings of the Institute of Electrical and

Electronics Engineers (IEEE), American Institute of Aeronautics and Astronautics

(AIAA), and Army technical reports. These searches turned up little information

on projectile GN&C, but applications from missile theory, robotics, sensor signal

processing, and space systems can be leveraged.
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1.5 Contributions of the Thesis

In this thesis, an innovative approach is presented for the design of a GN&C system

that can alter the flight path of a spinning projectile, from the standard ballistic

trajectory, which will accurately engage a target. In other projectile guidance systems,

the control system de-spins the projectile so it can be flown more like a missile,

whereas my thesis addresses the possibility of guiding a projectile as it spins.

By maintaining the projectiles spin, the inherent stability that the spin provides

is preserved, thus reducing the requirement that the controller must maintain aero-

dynamic stability. In order to provide guidance on the spinning projectile, canards

placed towards the nose of the projectile would need to oscillate at the spin rate of

the projectile. By varying the phase of the oscillation with respect to the projectiles

roll angle, a force and moment is imposed on the projectiles body. Since the projectile

does not have thrust, this force and moment from the canards are the only means the

projectile has to modify the flight path.

With modern advances in microprocessors and sensors, the design of a complicated

actuation and guidance system is feasible and practical for guidance of a spinning

projectile. The GN&C system described in this thesis uses Multi-Variable Regulator

Theory together with H2 Control Theory to oscillate canards in a sinusoidal motion,

an Extended Kalman Filter (EKF) for state estimation, and a guidance law to guide

the projectile to a target. These topics can be realized utilizing aerodynamics analysis,

nonlinear control theory, and robust control techniques. This thesis explains in detail

the entire design cycle for a GN&C system for spinning munitions that includes the

actuation system design, a method for determining the angular orientation estimation,

and a guidance law for a projectile without thrust.
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A regulator is necessary to control the canard system because under flight condi-

tions, the canard system will undergo nonlinear aerodynamic loading as the projectile

rotates and the amplitude and phase of the canard will be dynamically updated by the

guidance laws. Therefore, aerodynamic theory is developed to provide the necessary

background information for the effects of the canard on the body and the aerody-

namic torques on the canard surface, so that when designed properly, the regulator

can compensate for the undesired effects. The aerodynamic theory using a six degree-

of-freedom (6DOF) dynamic model that is developed in this thesis for simulations and

hardware in the loop testing.

To provide the regulator with a proper tracking signal, including the roll rate

and roll angle of the projectile, an EKF is designed to estimated the attitude, or

angular orientation, of the projectile in flight. Traditionally, an EKF design for a

6DOF system would use Euler Angle Notation for attitude estimations, however, in

a spinning environment and the projectiles complex dynamics, the EKF will tend

to diverge. In this thesis, I will demonstrate that by using quaternions rather than

Euler angles in my EKF, the EKF will not diverge and will provide adequate attitude

estimation.

The guidance system provides command signals, the phase and amplitude of the

tracking signal, to the regulator. Typically in projectile guidance laws, Impact Point

Predictors (IPP) are used to estimate where the projectile will impact and the guid-

ance system will compensate for the error between the impact estimation and the

target. In my thesis, I develop a new method Modified Proportional Navigation

(MPN), which compensates for the projectiles lack of thrust and is more accurate

than IPP.



8

1.6 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 consists of the pro-

jectile aerodynamics background. This chapter will discuss the parameters, including

those of canards, that will affect the forces and moments exerting on a projectile. A

design and simulation model will be developed and used in the control system design,

simulation and Hardware-in-the-Loop (HIL) experimentation for GN&C testing. In

Chapter 3, a novel canard actuation and control system is proposed. The actuation

and control system is evaluated in both simulation and experimentation via a HIL

system that incorporates the flight dynamics of the projectile under test. Chapter

4 addresses the estimation of the projectile attitude, which is crucial in the Guid-

ance, Navigation, and Control of the projectile. Magnetometers, rate gyroscopes,

the theory for the quaternion, and the Extended Kalman Filter are employed in the

estimation. In Chapter 5, two approaches for the guidance and control of a projectile

are presented. One is the IPP approach and the other is the MPN approach. The

conclusions and further research are summarized in Chapter 6.



Chapter 2: Flight Dynamics of Projectiles

An accurate flight dynamics model of the projectile is essential to the design of a

controller that is both practical and possible. The dynamics of symmetric projectiles

are well established, allowing the current dumb rounds to be quite accurate over

long ranges in open-loop flight. The underlying dynamics of a projectile are highly

non-linear and, to complicate matters, are dependant on numerous non-linear terms.

The dynamic equations rely on the angle-of-attack, mach number, air pressure, etc.

and the accuracy of the model can only be as good as the environmental model that

is used. The following section describes the aerodynamic forces and moments on

a projectile that will be used throughout this paper and used in simulations and

hardware-in-the-loop experiments.

2.1 Coordinate System

First, a coordinate system must be developed for reference purposes. A typical sys-

tem is defined as the North-East-Down (NED) coordinate system as described in the

Ballistic Research Laboratory Report BRL-1216, [39]. Figure 2.1 shows the NED

configuration as the base coordinate system described by xi and the transformed axes

x
′
i of the projectile. Let the unit vector in each of the axes systems be described using

ei where i ∈ {1, 2, 3}. The NED describes the 1,2,3 sequence of the subscripts for the

base coordinate system. Therefore, North is aligned with x1, East is aligned with x2,

9



10

Figure 2.1: Coordinate System Definition
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and Down, towards the center of the earth, is aligned with x3. This typical configu-

ration also can be referred in other texts using the i, j, k notation as in [39, 53].

For simplicity, the axes can be transformed by setting up the rotation matrices using

matrix notation and/or tensor notation. The rotational matrix λ, defined as the Di-

rection Cosine Matrix (DCM), describes the rotation from the one coordinate system

to a new coordinate system.

λ =


λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

 (2.1.1)

Where λij represents the cosine of the angle between xi
′

and xj, and the axis trans-

formation can be described by:

x
′

i =
3∑
j=1

λijxj, i = {1, 2, 3} (2.1.2)

Which can also be written in matrix notation as

x
′
= λx (2.1.3)

The inverse transformation can also be simply described by

xi =
3∑
j=1

λjix
′

j, i = {1, 2, 3} (2.1.4)

The angular position of the body frame is represented by Euler angles, ψ, θ, and φ,

which are the yaw, pitch, and roll angles respectively.

The Euler angles are defined based on a specific rotation sequence. This thesis

will use the Yaw-Pitch-Roll (YPR) sequence, a common aerospace industry standard.

The YPR sequence defines the rotation matrix, λ, which is obtained by sequentially

rotating the body frame from its initial angular position, which is parallel to the earth
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Figure 2.2: Body Fixed Rotations

frame, toward is actual angular position. The notation for the earth fixed and body

fixed frames with the corresponding Euler rotations are shown in Figure 2.2, where,

XYZ correlate to the NED coordinate system, xyz are the body fixed axis, and the

Euler angles are φ, θ, ψ. The rotation matrices λψ, λθ and λφ are given as:

λψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.1.5)

λθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.1.6)

λφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (2.1.7)

The rotation matrix, according to the YPR sequence, λψθφ = λφλθλψ can be found

as follows:

λψθφ =


cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


(2.1.8)
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For the simplicity of presentation, the trigonometric functions are replaced with the

following short-hand notations: cos (•) = c• and sin (•) = s•, and hence Equation

(2.1.8) becomes:

λψθφ =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (2.1.9)

2.2 Projectile Aerodynamics

In order to control a munition in flight, it is essential to have its flight dynamics model.

Although the projectiles share similar basic aerodynamics principles as rockets and

missiles, their flight dynamics are very different due to the lack of propulsion and the

high roll rate. In the following sections, we will investigate the flight dynamics of the

projectile and determine a state-space model, which will be used in the design of the

control system.

Recall that Newton’s second law of motion is:

~F =
∂~p

∂t
(2.2.1)

where ~F is the force on the body and ~p is the momentum of the body. The mass, m,

will be assumed constant, so Equation (2.2.1) can be simplified to Equation (2.2.2).

~F = m
∂~v

∂t
(2.2.2)

In Figure 2.3, we are given two coordinate frames: the earth frame and the body

frame of the projectile. Assume the vector is moving in the body frame, and the

body frame is translating and rotating with respect to the earth frame. Then it can
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Figure 2.3: Frame Definitions

be found using the Equation of Coriolis [3]:(
d~V

dt

)
e

=

(
d~V

dt

)
b

+ ~ω × ~V (2.2.3)

where
(
d~V
dt

)
e

and
(
d~V
dt

)
b

are the time derivatives of ~V in the earth frame and the

body frame respectively, and ~ω is the angular velocity of the body frame with respect

to the earth frame. Assume the vector, ~V , is the velocity and the net force applied

to the projectile is
∑
Fb, then we have:

m

(
d~V

dt

)
e

=
∑

Fb (2.2.4)

and therefore, (
d~V

dt

)
b

=
1

m

∑
Fb − ~ω × ~V (2.2.5)

where m is the mass of the projectile.

The velocity vector, ~V , contains the following components ~V = {u, v, w} and the

angular velocity, ~ω, in component form is ~ω = {p, q, r}. The vector definitions are
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Figure 2.4: Alpha and Beta Definitions

used for compatibility with References [39, 53]. The notation
∥∥∥~V ∥∥∥ ≡ V for the total

velocity will be used throughout this thesis. The Angle of Attack, α, as shown in the

Figure 2.4, can be described as the angle between the velocity vector’s xz projection

and the axis of rotation of the body frame, which can be expressed in terms of the

velocity components {u, v, w}:

cosα =
〈{u, v, w}, {1, 0, 0}〉
|{u, v, w}||{1, 0, 0}|

=
u√

u2 + w2
(2.2.6)

or,

sinα =
√

1−
(

u2

u2+w2

)
= w√

u2+w2
(2.2.7)

In the above equation, the sign of α is the same as w, i.e. Sign[α] = Sign[w].

Another term, Angle of Sideslip, β, is defined as the angle of the projection of the

velocity vector’s xz plane and the velocity vector, ~V , and it can be expressed as a

function of the velocity components, {u, v, w}:

cos β =
〈{u, v.w}, {u, 0, w}〉
|{u, v, w}| |{u, 0, w}|

=
u2 + w2

√
u2 + v2 + w2

√
u2 + w2

≈
√
u2 + w2∥∥∥~V ∥∥∥ (2.2.8)

or,

sin β =
v∥∥∥~V ∥∥∥ (2.2.9)
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In the above equation, the sign of β is the same as v, i.e. Sign[β] = Sign[v]. Another

useful term is the complex yaw, which is defined as follows:

ξ =
v + jw

V
(2.2.10)

Based on the equations of 2.2.6 and 2.2.9, it is straightforward to find the following

equalities [3].
~V
V

= {u,v,w}
V

= {cosα cos β, sin β, sinα cos β}
v = cosα cos β

ξ = sin β + j sinα cos β

δcy = |ξ| =
√

sin2 β + sin2 α cos2 β

(2.2.11)

where δcy is the magnitude of the complex yaw. Another common term, Total Angle

of Attack, αt, is defined as the angle between the velocity vector, ~V , and the spin

axis.

cosαt =
〈{u, v, w}, {1, 0, 0}〉
|{u, v, w}| |{1, 0, 0}|

=
u

V
(2.2.12)

This may also be defined as γ ≡ cosαt [3] The local Mach Number, Ma, is defined

as the ratio of the velocity to the speed of sound, ca, in the local medium: air.

Ma =
‖V ‖
ca

(2.2.13)

The speed of sound varies with both temperature and humidity, but we will only

consider temperature in our discussion as it is the dominant variable. The speed of

sound can be defined by:

ca =
√
κrgT (2.2.14)

where rg is the air gas constant, κ is the adiabatic index, and T is the absolute

temperature.
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The definitions above provide a mathematical simplicity for describing the motion

of the projectile and correlate to the standard terms of aerodynamic theory. Later,

in the following sections, we will further discuss their importance.

2.3 Body Forces

The forces acting on a projectile are mainly the normal forces and the axial forces

(drag), however, in our discussions, we will include all the body forces. These forces

are expressed in terms of the air density, velocity, projectile shape, and diameter and

are described by the following equations. The coefficients are functions of both Mach

number and angle of attack and are described in the Section 2.2.

~Fxyz = ~Fxyzaero + ~Fxyzcanard + ~Fxyzgravity (2.3.1)

The net force, ~Fxyz, is the summation of the forces acting on the projectile. ~Fxyzcanard

is the canard force which varies with canard position, ~Fxyzgravity is the force of gravity,

and ~Fxyzaero is the aerodynamic forces on the body. The three components of ~Fxyzaero

along the body fixed x,y,z directions are given as follows:

Fxyzaero = {Fxa, Fya, Fza}
Fxa = −1

2
ρV 2

wACX

Fya = −1
2
ρV 2

wA
[
−CY 0 − CY β

(
vw
Vw

)
+
(

pd
2Vw

)
CY pα

(
ww
Vw

)
+ CY γα

(
ww
Vw

)]
Fza = −1

2
ρV 2

wA
[
−CZ0 − CZα

(
ww
Vw

)
+
(

pd
2Vw

)
CY pα

(
vw
Vw

)
+ CY δα

(
vw
Vw

)] (2.3.2)

where the aerodynamic coefficients, C•, are described in Table 2.1 and they are func-

tions of Mach number. The variable ρ is the air density and A is the reference area

of the projectile, related to the reference diameter, d, by A = πd2/4. The projectile

velocity includes not only the projectile velocity, but also any external wind. The

wind in the earth frame can be measured using a meteorological station and in vector
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form is ~Vwinde = {uwinde , vwinde , wwinde}. The wind can be rotated to the body frame

using:

Vwindb = λψθφVwinde (2.3.3)

where λψθφ is defined in Equation (2.1.8). The total velocity including wind is defined

as ~Vw = ~Vwindb + ~V , or in component form, Vw = ‖{uw, vw, ww}‖. The subscript w

is used for velocities that include the wind and shown in the above equations. The

forces caused by the canards in the body frame are defined as follows:

~Fxyzcanard = {Fxc , Fyc , Fzc}
Fxc = −1

2
ρV 2

wACNα canard sin δc sin δC

Fyc = −1
2
ρV 2

wACNα canard sin δc cos δc cosφ

Fzc = −1
2
ρV 2

wACNα canard sin δc sin δc sinφ

(2.3.4)

where {Fxc , Fyc , Fzc} are the canard force components in the body frame provided by

the control surfaces and δc is the deflection angle of the canards. Finally, the force

due to gravity in the body frame is represented by:

~Fxyzg = {Fxg , Fyg , Fzg} = λψθφ{0, 0, g} (2.3.5)

where, g is the gravity, which varies with altitude, and λ is the rotation matrix defined

in section 2.1.

2.4 Moments

The moments exerted on the projectile can be broken into those due to the aerody-

namic forces, the canards, and the center of gravity offset as follows:

~Mypr = ~Maero + ~Mcanard + ~Mcgoffset (2.4.1)
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where the three components of ~Maero about the x,y,z axis are:

~Maero = {La,Ma, Na}
La = 1

2
ρV 2

wAd
[(

pd
2Vw

)
Clp + Cl

]
Ma = −1

2
ρV 2

wA
[
Cm0 + Cmα

(
ww
Vw

)
+
(

qd
2Vw

)
Cmq +

(
pd

2Vw

)
Cnpα

(
vw
Vw

)
+ (Cnγα + Cnα)

(
vw
Vw

)]
Na = −1

2
ρV 2

wA
[
Cn0 + Cnβ

(
vw
Vw

)
+
(

rd
2Vw

)
Cnr +

(
pd

2Vw

)
Cnpα

(
ww
Vw

)
+ (Cnγα + Cnα)

(
ww
Vw

)]
(2.4.2)

The aerodynamic moments about the y,z axis due to the canards are described as

follows:
~Mc = {0,Ma, Na}
Mc = 1

2
ρV 2

wAFzc (CG− CPcan) d

Nc = −1
2
ρV 2

wAFyc (CG− CPcan) d

(2.4.3)

where CG is the center of gravity, and CPcan is the center of pressure of the canard.

The moments due to the center of gravity offset are given as:

~Mcgoff = {Lcgoff ,Mcgoff , Ncgoff}
Lcgoff = 1

2
ρV 2

wA (CNα sin ᾱ (CGoffset sinφcg cosφ′ − CGoffset cosφcg sinφ′))

−Cmα (rCGoffset sinφcg + qCGoffset cosφcg)
d
Vw

Mcgoff = 1
2
ρV 2

wACXCGoffset cosφoffset

Ncgoff = −1
2
ρV 2

wACXCGoffset sinφoffset
(2.4.4)

where φ′ = tan−1
(
vw
ww

)
and sin2 ᾱ = u2

w+v2w
V 2
w

. For all practical applications, we assume

the moment due to CG offset is approximately zero.
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Table 2.1: Aerodynamic Coefficient Descriptions

Coefficient Description
CX = CX0 + CXα2ε

2 + CXα4ε
4 Body Axial Force Coefficient

CZα = CZα0 + CNα3ε
2 + CZγαβε

2 cos (Nφ′) Normal Force Coefficient in the Z direction w/ Rear Fins
CY β = CY β0 + CNα3ε

2 + CZγαβε
2 cos (Nφ′) Normal Force Coefficient in the Y direction w/ Rear Fins

CY pα Magnus Force Coefficient in Y Direction due to AOA
CZpβ Magnus Force Coefficient in Y Direction due to Sideslip
Clp Roll Damping Coefficient

Cl = Clδδ + Clγᾱ2ε
2 sin (Nφ′) Roll Torque Moment Coefficient

Cmα = Cmα0 + Cmα3ε
2 + Cmα5ε

4 + Cmγα3ε
2 cos (Nφ′) Pitching Moment Coefficient

Cnβ = Cnβ0 + Cmα3ε
2 + Cmα5ε

4 + Cmγα3ε
2 cos (Nφ′) Yawing Moment Coefficient

Cmq = Cmq0 + Cmqα2ε
2 Pitch Damping Moment Coefficient

Cnr = Cnq0 + Cnqα2ε
2 Yaw Damping Moment Coefficient

Cnγα = Cnγα3ε
2 sin (Nφ′) Combined AOA and Roll Moment Coefficient due to Fins

CY γα = CY γα3ε
2 sin (Nφ′) Combined AOA and Roll Force Coefficient due to Fins

Cnα Side Moment Coefficient
Cnpα Magnus Moment Coefficient due to AOA
Cnpβ Magnus Moment Coefficient due to Sideslip

CNαcanard Canard Normal Force Coefficient
Cy0, Cz0, Cm0, Cno = 0 Force and Moment Coefficient due to Trim

Note: ε = cosα and N is the number of rear fins.
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2.5 State-Space Model

Now that we have described how the forces and moments relate to the aerodynamics

and the control surfaces, it is straightforward to determine the state equations for the

system. The state equations comprise the forces, moments, and rigid body dynamics

equations. Utilizing Equation (2.2.5), it is straightforward to derive the following

equation:
u̇

v̇

ẇ

 =
1

m


Fx

Fy

Fz

− {p, q, r} × {u, v, w} =
1

m


Fx

Fy

Fz

−


0 −r q

r 0 −p
−q p 0



u

v

w


(2.5.1)

where {Fx, Fy, Fz} are the components of the force vector, ~Fxyz, along the x,y,z di-

rections as described in Section 2.3. With ~V replaced by the angular momentum

H = Iω, Equation (2.2.3) becomes:(
dI~ω

dt

)
e

=

(
dI~ω

dt

)
b

+ ~ω × I~ω (2.5.2)

Since, (
dI~ω

dt

)
e

= Mypr (2.5.3)

we have:

I

(
d~ω

dt

)
b

= Mypr − ~ω × I~ω (2.5.4)

The inertia matrix, I, in the above equations is described by the following equation:

I =


Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 =


Ixx 0 0

0 Iyy 0

0 0 Iyy

 (2.5.5)

The Iyy = Izz simplification of the inertia matrix can be made because the projectile

is symmetric about the axis of rotation. Then from, Equation (2.5.4) we have the
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following: 
ṗ

q̇

ṙ

 =


L
Ixx

M
Iyy

+ (Ixx − Iyy) pr
N
Iyy

+ (Iyy − Ixx) pq

 (2.5.6)

Where {L,M,N} are the components of the moment, ~Mypr, about the x, y and z

axes. The aerospace sequence, YPR, is used to relate rate of change of the Euler

angles to the body fixed angular rates in Equation (2.5.7).
p

q

r

 =


φ̇

0

0

+


1 0 0

0 cφ sφ

0 −sφ cφ





0

θ̇

0

+


cθ 0 −sθ
0 1 0

sθ 0 cθ




0

0

ψ̇




=


1 0 sθ

0 cφ cθsφ

0 −sφ cθcψ



φ̇

θ̇

ψ̇


(2.5.7)

and by inverting the equations, an equation for the rate of change of the Euler angles

is found to be: 
φ̇

θ̇

ψ̇

 =


1 −sφtθ −cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ



p

q

r

 (2.5.8)

We will define the remaining states as the earth based location of the projectile,

Xe, Ye, Ze. The rate of change of the position states can be described by rotating the

body fixed velocities according to the aerospace sequence back to the earth frame as

shown in Equation (2.5.9). 
Ẋe

Ẏe

Że

 = λ−1
ψθφ


u

v

w

 (2.5.9)
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The state vector is defined as x = {u, v, w, p, q, r, φ, θ, ψ,Xe, Ye, Ze} and the state

equations can be summarized in:

ẋ1 = Fx
m

+ x6x2 − x5x3

ẋ2 = Fy
m
− x6x1 + x4x3

ẋ3 = Fz
m
− x5x1 − x4x2

ẋ4 = L
Ixx

ẋ5 = M
Iyy

+ (Ixx − Iyy)x4x6

ẋ6 = N
Iyy

+ (Iyy − Ixx)x4x5

ẋ7 = x4 − sx8tx8x5 − cx7tx8x6

ẋ8 = cx7x5 − sx8x6

ẋ9 =
cx7
cx8
x5 +

cx7
cx8
x6

ẋ10 = cx8cx9x1 + cx8sx9x2 − sx8x3

ẋ11 = (sx7sx8cx9 − cx7sx9)x1 + (sx7sx8sx9 − cx7cx9)x2 + sx7cx8x3

ẋ12 = (cx7sx8cx9 − cx7sx9)x1 + (cx7sx8sx9 − sx7cx9)x2 + cx7cx8x3

(2.5.10)

Now that a model has been developed for the system, the system is simulated using

MathworksTM Simulinkr. For reference, the following plots have been assembled

to show the typical open loop response of the system using the Simulinkr 1 6DOF

model. The simulation utilizes the ode23 solver with maximum step size of 2s. The

initial conditions are

x0 = {u0, v0, w0, p0, q0, r0, φ0, θ0, ψ0, X0, Y 0, Z0}
= {300, 0, 0, 0.0001, 0, 0, 0,−0.3491, 0.0000, 0, 0, 0, 0}

(2.5.11)

Where, ~V is measured in m
s

, ~ω is measured in rad
s

, the Euler angles, {φ, θ, ψ}, are

measured in radians, and position, Xe, Ye, Ze is measured in meters.

The initial conditions vector contains the gun information and the charge, or

amount of explosive, for the projectile. we can see from the aforementioned initial

1Simulink r is a Registered Trademark of MathworksTM , Inc.
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Figure 2.5: Velocity of Projectile in Ballistic Flight

conditions, the projectile is fired at 300m/s initial velocity, a small initial spin rate

of 1e-4 rad/s, and a gun elevation of approximately -20 deg in the North-East-Down

coordinate frame. In standard ballistic terms, the gun elevation would have a +20

degree Quadrant Elevation, QE, to correspond to the -20deg θ0 initial condition.

The following Assumptions are made for simulation purposes: no tip-off (gun effect

on projectile’s initial rates) or wind in this simulation. The simulation terminates

when the projectile impacts the ground. The estimated flight time for the given

initial conditions and gun orientation is ≈ 19 seconds.

Figure 2.5 shows the body fixed velocities of the projectile as it flies through the

air. The plot shows that the dominant velocity is in the axial direction as one would

expect. The plot also shows that the velocity of the projectile will slow down with drag

as time progresses. The velocities, v and w will vary slightly as the projectile flies due

to the small coning motion of the projectile. Figure 2.6 shows the body fixed angular
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Figure 2.6: Angular Rates of Projectile in Ballistic Flight

rates for the projectile. The roll rate, p, will increase when the projectile comes out of

the gun. This roll rate increase is due to the tail fins on the projectile, inducing a roll

moment. The maximum spin rate is a design parameter chosen by the aerodynamic

engineer to remove instability and to maintain a spin frequency well above the yawing

frequency. The larger spin rate ensures that the system does not enter a yaw-spin

lock. The yaw-spin lock causes the system to become aerodynamically unstable when

the spin frequency and the yaw frequency are the same. The plots show the maximum

spin rate of ≈ 133 rad
s

or ≈ 21Hz is achieved. Not only are the pitching and yawing

rates less than the spin rate, they are very minimal. This is a good design since the

system will not have any added drag due to high coning motion. Figure 2.7 shows

the Euler angles of the projectile. The unwrapped roll angle, φ, is always increasing,

the pitch angle, θ, varies from ±20 deg and the variation in the yaw angle, ψ, is

relatively small. The projectile’s position is shown in Figure 2.8. The down range
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Figure 2.7: Euler Angles of Projectile in Ballistic Flight

position, Xe, shows an impact ≈ 4.4Km from the gun. The cross range, Ye shows

the impact at ≈ 23m to the left of the gun’s pointing axis. The overall altitude of

the projectile, Ze, can be seen in the Ze plot. The maximum altitude of ≈ 460m is

seen in the projectile as it flies its’ parabolic trajectory. It is important to ensure

that the round will be stable. One measure of stability is a plot of α vs. β. The limit

cycle behavior in Figure 2.9 shows where the system slightly oscillates with a small

pitch/yaw rate through the flight with a maximum angle of ≤ 2e−3 degrees for both

α and β. Typically, the α vs. β plot will be rounder, the octagonal shape is due to

the solver step size and would become more circular as the step size decreased. The

plot allows us to assume that the projectile is open loop stable and will maintain a

prescribed flight path in ideal environmental conditions.
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Figure 2.8: Coordinates of Projectile in Ballistic Flight

Figure 2.9: Coordinates of Projectile in Ballistic Flight



Chapter 3: Canard Control Surfaces

To control the flight of a projectile using canards, a controller must be designed so

that the canards can accommodate the sinusoidal disturbances caused by the spin of

the projectile. The sinusoidal modulation allows the controller to give a net force via

the canards in the body fixed yz plane. In order to provide this force in a desired

direction, the frequency of the canard motion must match the frequency of the spin

of the projectile. A regulator system will be designed to track a sinusoidal signal as

is described in the following sections.

3.1 Multivariable Tracking Regulator and H2 Control Design

The tracking signal is described in Equation (3.1.1) where ar, the deflection of the

canard, is related to the magnitude of the flight-path change, ωr is the frequency,

and φr is determined by both the pases of the spinning projectile and the direction

of flight path change.

ȳ(t) = arsin(ωrt+ φr) (3.1.1)

Utilizing Reference [6], the control problem can be defined as a regulator problem. The

plant of the canard system can be represented by the following state-space equations:

ẋ = Apx+Bp1up +Bp2wp + Epω

y = Cpx+ Fpω + vp
(3.1.2)

where x represents the states of the plant model, up is the control input to the plant

system, wp is disturbance, ω represents the states of a system that generates the

28
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sinusoidal tracking signal, and vp is the measurement noise. We will assume that the

noise, wp, vp, is white with the following covariance.

E(wpw
T
p ) = Qp, E(wpw

T
p ) = Rp, E(wpv

T
p ) = Np (3.1.3)

The sinusoidal tracking signal, ωt can be considered as the output generated by the

following system:

ω̇t = Arωt +Br1ur +Br2wr

ȳ = Crωt + vr
(3.1.4)

where ωt is the state vector of the system that generates sinusoidal signal, ur is the

reference signal input, assumed to be an impulse, and both wr and vr are white noises.

It is assumed that (Ap, Bp1) is controllable, (Ap, Cp) is observable, and Bp1 and

Cp are of full rank. It is also assumed that the composite pair as defined by Equation

(3.1.5) is detectable. {
[Cp (Fp − Cr)] ,

[
Ap Ep

U Ar

]}
(3.1.5)

Another necessary condition for the existence of a solution to the regulator problem,

described in References [6, 33], is that a unique solution exists to the relations

described by:

ApW −WAr +Bp1U = −Ep
CpW = Fp − Cr

(3.1.6)
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The composite system can now be defined as:
ẋ1

ẋ2

ω̇t1

ω̇t2

 =

[
Ap 0

0 Ar

]
x1

x2

ωt1

ωt2

+

[
Bp1

0

]
ur +

[
Bp2 0

0 Br2

] [
wp wr

]

yc =

[
Cp 0

0 Cr

]
x1

x2

ωt1

ωt2

+

[
1 0

0 1

] [
vp vr

]
(3.1.7)

For this particular system that the following matrices are assumed to be zero, Ep and

Fp. For ease of notation, Equation (3.1.7) is rewritten in the following:

ẋc = Acxc +Bcur + Ecw

yc = Ccxc + Iv
(3.1.8)

The composite state vector is composed of the system states and tracking signal states,

xc =
[
x1 x2 ωt1 ωt2

]
, the input noise is now composed of the plant model noise

and the reference signal noise, w =
[
wp wr

]
, the combined measurement noise,

v =
[
vp vr

]
, and the output vector is comprised of the measured plant output

and the measured noise output, yc =
[
y ȳ

]
. The identity matrix notation, I, in

Equation (3.1.8) will be used further for identity matrices.

The error of the system, z, is defined as the difference between the output, y, and

the tracking signal, ȳ, or z = ȳ − y.

z =

[
z1

z2

]
=

[
Crωt − y
Wiup

]
=

[
−Cp

0

]
x+

[
Cr

0

]
ωt +

[
0

Wi

]
up (3.1.9)

Where, Wi, is the control input constraint on the system. Defining new variables

to incorporate the disturbance into the plant yields x̄ = x − Wωt and ūp = up −
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Uωt. Substituting these equations into Equation (3.1.9), we have the following for z1

becomes:

z1 = −Cp(x̄+Wωt) + Crωt

z1 = −Cpx̄+ (Cr − CpW )ωt
(3.1.10)

Substituting Equation (3.1.6) into Equation (3.1.10), we can conclude z1 = −Cpx̄. x̄

is defined in in Equation (3.1.12). The error vector, z is written:

z =

[
z1

z2

][
−Cp

0

]
x̄+

[
0

Wi

]
up (3.1.11)

˙̄x = ẋ−Wω̇t

= Apx+Bp1up +Bp2wp + Epωt −W (Arωt +Br1ur +Br2wr)

= Apx̄+ (ApW + Ep −WAr +Bp1U)ωt +Bp1ūp +Bp2wp −W (Br1ur +Br2wr)

(3.1.12)

Substituting Equation (3.1.6) into Equation (3.1.12):

˙̄x = Apx̄+ (ApW + Ep −WAr +Bp1U)ωt +Bp1ūp +Bp2wp −W (Br1ur +Br2wr)

˙̄x = Apx̄+Bp1ūp +Bp2wp −W (Br1ur +Br2wr)

(3.1.13)

The composite noise is assumed to be white gaussian with the following covariance

matrices

E(wrw
T
r ) = Q,E(vrv

T
r ) = V,E(wrv

2
r) = N0 (3.1.14)

Therefore, an observer can be defined to minimize the steady state covariance

lim
t→∞

E({x− x̂}{x− x̂}T ) (3.1.15)

The observer is designed as follows:

˙̂x = [Ac − LCc]x̂+ Ecωt + Ly (3.1.16)

where the composite observer gain L is:

L = Y CT
c V
−1 (3.1.17)
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and Y is the positive semi-definite solution of the following Ricatti Equation.

(Ac−EcN0V
−1Cc)Y+Y (Ac−EcN0V

−1Cc)
T−Y CT

c V
−1CT

c V
−1CcY+E(I−NV −1NT )ET = 0

(3.1.18)

Next, the state feedback gain, F , can be found using multivariable regulator design.

From the error defined in Equation (3.1.11):

Q = (−Cp)T (−Cp), R = W T
i Wi (3.1.19)

F = −R−1BpX (3.1.20)

where X is a positive semi-definite stabilizing solution of the Algebraic Ricatti Equa-

tion (ARE):

ATpX +XA−XBpR
−1BT

p X +Q = 0 (3.1.21)

In order to break this composite system down and form the controller, the system is

connected as shown in Figure 3.1.

ẋk = Akxk +Bkyc

up = Ckxk
(3.1.22)

Where,

Ck =
[
F U − FW

]
Bk = L

Ak = [Ac − LCc +BcurCk]

(3.1.23)

Now that a method has been described for the controller design, the technique can

be applied to the actual system.

3.2 Canard System Modeling

The canard assembly is shown in Figure 3.2. The actuator consists of a voice-coil, a

linkage to translate motion to the canards, and an optical sensor to measure position.
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Figure 3.1: Controller System
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Figure 3.2: Actuator Assembly

The voice-coil motor assembly utilizes the attached lever arm linkage to connect to

the canards. The lever arm translates the linear motion of the voice-coil to rotational

motion about the canard hinge. The voice-coil canards system is described by the

following state space model.

ẋ =

[
0 1

αm βm

]
x+

[
0

γm

]
u

y =
[

1 0
]
x

(3.2.1)

where αm, βm, and γm are defined by the system’s electrical and mechanical dynamics.

The state variables x1, x2 are the canard angle and angular velocity, respectively.

Since the system has been augmented with the canard assembly, it is easier to lump

the entire system together rather than to separate the system into multiple equations

and gains. The ”canard system” can now be characterized using system identification
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Figure 3.3: Signal Analyzer Setup

methods so the mathematical model will behave similarly to the actual hardware.

The system was connected to an HP vector signal analyzer to obtain frequency

response data. The setup is shown in Figure 3.3. The signal analyzer produces a white

noise signal that is connected through a power amplifier to the canard assembly. The

power amplifier has its own characteristic frequency response, so the power amplifier’s

response was modeled prior to connecting to the canard assembly. A potentiometer

was utilized for canard angle deflection measurements to interface the analog vector

signal analyzer. The next step in system identification is to utilize step response data

that will be incorporated into the actual drive electronics. In the real system the

canard assembly will be controlled via Pulse Width Modulation (PWM). The reason

for using PWM will be evident later in this section. Multiple step response data

sets were obtained for the system using various PWM duty cycles and the measured

canard angle deflection was obtained using an oscilloscope. The setup is shown in
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Figure 3.4: Step Response Setup

Figure 3.4. The step response data and the frequency response data were employed to

create a model that fits the prototype of Equation (3.2.1). There are several methods

for obtaining the unknown variables in the state equations which include Numerical

Algorithms for Subspace State Space System Identification (N4SID) and the recursive

Prediction Error Method (PEM). Utilizing both of these tools, it was found that with

the PEM and a good initial guess of the system parameters, αm, βm, and γm, we could

obtain a system model that truly represented the physical system. Figure 3.5a shows

the step response of the physical system with respect to the predicted step response

of the model, while Figure 3.5b shows the magnitude of the frequency response of the

model vs. the experimental data. A good model has been found, utilizing the PEM

technique, for the system which is utilized to design the regulator of Section 3.1. The

regulator design parameters were chosen to track a sinusoidal signal with a frequency

range from 10 to 30 Hz, an amplitude of 0 to ±10 degrees, and phase error of zero.

These constraints were placed on the design as the result of aerodynamic stability



37

(a) Step Response (b) Frequency Response

Figure 3.5: Model Response

analysis. The input control constraint on the system limits the voltage to the battery

voltage, which was set at 16 Volts. The tracking regulator was designed and Figure

3.6a shows the closed loop frequency response of the system. Figure 3.6b also shows

the designed frequencies of interest for this system; where the maximum amplitude

error is bounded by {0.9979,1.0346} [dB] and the maximum phase error is bounded

by {0.0087,-0.4291} [rad]. The system was designed in a Matlab c© 1 m-file, however

we also use the Simulinkr environment. The Simulinkr block diagram is shown in

Figure 3.7.

3.3 Aerodynamic Loading

The next step in the controller design was to test the system with the proper loading

the canards would experience during flight. The moments on the canard themselves

will be governed by the aerodynamic loading, which is proportional to the canard

aerodynamic coefficients in Chapter 2. We can state that the angle of attack of the

1Matlab r is a Registered Trademark of MathworksTM , Inc.
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(a) Close Loop Frequency Response (b) Closed Loop Frequency Response 10 to 30 Hz

Figure 3.6: Closed Loop Response

Figure 3.7: Simulinkr Block Diagram



39

canard, αtc is the combined sum angle of attack of the body, αt and the angle of

deflection of the canard δc.

In order to properly simulate the loading on the canards, the plant of Section

3.1 is augmented to match the dynamics associated with an aerodynamic loading.

Using a torque sensor, we are able to understand the effect of a torque loading on

the plant and modify the system parameters α, β, and γ. This technique has been

validated by using a spring with a known spring constant and connecting the spring

to the canard system to produce a spring damping. By knowing the spring constant,

the canard system dynamics are adjusted to reflect the added force as well as the

spring damping. The spring/canard system hybrid experimental response validated

the predicted response determined by the Simulinkr model of Figure 3.7.

Knowing that we can properly model the system is key to ensuring that when

an applied aerodynamic torque is added to the system, the system will respond as

predicted and maintain stability. Figure 3.8 is the new Simulinkr model that provides

inputs for the torque, caused by the aerodynamics, on the canard system.

Now that we have a representative relationship between the torque applied and the

model response, we can use use the aerodynamics described in Chapter 2 to perform an

aerodynamic study on the nominal control system. It is noted that a typical ballistic

flight for the model was run to estimate the Angle of Attack (AOA) that a projectile

might undergo. This will feed into our lookup tables for the aerodynamic coefficients

which were obtained through Computational Fluid Dynamics (CFD) analysis. This

effect on the system is shown in Figure 3.9 as an input noise to the original state

space model.

A Monte-Carlo simulation was performed to analyze the effect of the aerodynamic
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Figure 3.8: Simulinkr Block Diagram with Aerodynamics

Figure 3.9: Simulinkr Block Diagram of Canard Actuator Model with Aerodynamics
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Figure 3.10: Monte Carlo Simulation 16V Saturation, 12Hz Oscillation

load and also to check the ability of the controller to maintain tracking of the sinu-

soidal signal. Figure 3.10 shows the effective range of the controller across AOA of

±10 degrees and canard actuation of ±10 degrees with a spin rate of 12Hz.

In Figure 3.10, the green area shows the regions where the controller tracks the

commanded signal correctly and maintains stability. The regulator will perform

through all the commanded regions across a flight. Figure 3.11a shows the response

of the system to a 18 Hz spin rate and Figure 3.11b shows the response of the system

to a 25 Hz spin rate.

Figure 3.11b regions of stability are in blue and the various other colors indicate

the regions where the system became unstable, either the canard becomes stuck to

one extreme (+10 degrees or -10 degrees) or the sinusoidal tracking is inhibited. The

torque applied to this particular voice-coil actuation system cannot exceed ≈ 0.6
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(a) Canard Response to 18 Hz Signal ±10 deg de-
flection

(b) Canard Response to 25 Hz Signal ±10 deg de-
flection

Figure 3.11: Canard Response to 18 and 25 Hz Signals

Nm. When this limit is exceeded, the power required to move the canard cannot be

supplied by the battery, thus the canard will be driven to one side. To ensure the

effects of spin rate and AOA on the torque are under the threshold, the aerodynamic

coefficients must be accurately modeled. A CFD model was used to solve for the

canard aerodynamic coefficients which is more reliable than standard prediction tools.

As a result of the canard torque studies, the operation of the canard actuator will be

limited to the regions of stability and the battery is selected accordingly.

To ensure that the canard system will be able to work throughout a full flight,

the aerodynamics from Section 2.5 are coupled to the actuator model of Figure 3.12.

The regulator/canard system is replaced with an ”ideal” signal for the canard angle:

δcan = ai sin (φ+ φi) (3.3.1)

where δcan is the canard angle, ai is the commanded displacement, and φi is the phase

difference between the roll angle, φ, and the y-axis. The ideal regulator was turned

on after 1 second into the flight with an amplitude, ai = 10 and φi = 0.
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Figure 3.12: Ideal Canard Deflection
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As shown in Figure 3.12, the loading on the canard never exceeds 0.5 Nm, therefore

a 16V supply will work. It is also noted that the spin rate for this particular initial

condition never exceeds 20Hz, and in a practical situation, guidance would not occur

until the spin rate has reduced to approximately 15Hz. The plot of the spin rate is

located in Figure 2.6 for the open loop ballistic flight.

3.4 Open Loop Divert

As mentioned, the canard actuation system has been designed to guide the projectile

by oscillating at the spin rate. By controlling a phase difference between the canard

angle and the roll angle, a net force can be generated to alter the flight path. The force

is proportional to the canard angle and the AOA of the projectile. Figure 3.13 shows

the relationship between the canard tracking angle, φr, and the net force direction on

the body. The coordinate frame shown is when the roll angle, φ = 0. To clarify, if the

current projectile roll angle, φ = 0, and the canards need to apply a lifting force or

”go Up”, the canard tracking phase must be φr = π
2
. Therefore, the tracking phase

equals φr = π
2

+ φ, because the coordinate frame in 3.13 is rotating with angle φ.

The ballistic model of Chapter 2 will now be used in a closed loop simulation

with the regulator. This demonstrates the tracking ability of the controller under

the aerodynamic loading of a real flight. Figures 3.14 and 3.15 show the response

of the system with the controller of Section 3.2 implemented in a Simulinkr block

diagram. Across the full flight, the moments about the canard never exceed the

≈0.6Nm threshold. The zoomed-in plot of Figure 3.15 shows the bimodal response

of the canard moments as it rotates. This is due to the aerodynamic effects on the

canard loading and the movement of the center of pressure, CPcanard. As the center of
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Figure 3.13: Command Maneuver Phase Relationship
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Figure 3.14: Full Canard Loading Full Flight

pressure moves across the face of the canard, the Toque will vary due to the moment

arm generated between CPcanard and the canard pivot point. The top plot in Figure

3.14 shows the canard displacement vs. the tracking signal. Figure 3.15 shows how

closely the phase and frequency of the projectile phase angle command match the

canard displacement angle.

The regulator is simulated in the 6DOF of Chapter 2 to show the performance of

the system under an open-loop divert. The canard tracking angle, φr, is chosen to be

0 degrees, which would give a divert to the right. The relationship between the canard

angle and the net force on the projectile is shown in Figure 3.13. The initial conditions

for the projectile are the same as those in Section 2.5, the maximum deflection of the

canard is ±10deg, and the solver is Matlabr ode23 with 1e−4 maximum step size.

Figures 3.16- 3.19 show the divert capability of the canard open loop maneuver with

the ideal controller versus the regulator controlled canard.

Figure 3.16 shows the body velocities of the projectile. The plot of the velocity,
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Figure 3.15: Full Canard Loading Zoomed In

Figure 3.16: u,v,w Ideal Controller (green) vs. Designed Controller (blue)
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Figure 3.17: p,q,r Ideal Controller (green) vs. Designed Controller (blue)

u, shows how the the added drag due to canard motion will affect the overall velocity

of the projectile. Comparing to the ballistic trajectory of Figure 2.5, the canards will

introduce larger v and w components of the velocity vector which gives the projectile

its divert capability. From the plots, the conclusion can be made that the regulators

effects match closely to the ideal controller on the body velocities.

Figure 3.17 shows the effect of the canard system on the angular rates. When the

canards begin oscillating, they induce larger angular rates than the typical ballistic

flight shown in Figure 2.6. The effect of the canard will slowly damp out due to the

rear tail fins providing the damping moment. The spin rate, p, is only slightly affected
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Figure 3.18: φ, θ, ψ Ideal Controller (green) vs. Designed Controller (blue)

by the regulator as shown in the top plot of Figure 3.17 and comparing to the top

plot of Figure 2.6. The plots show that the regulator controller matches similarly to

the ideal controllers affect on the angular rates.

Figure 3.18 shows the plots of the Euler angles vs. time. The initiation of the

canard system at time, t=1, shows how θ and ψ will oscillate and damp out. The

ideal tracking signal response matches very closely to the regulator results. The ψ

plot shows the divert capability of the projectile as it moves to the right. The ψ plot

can be compared to the ballistic flight plot in Figure 2.7 where the projectile slightly

drifted to the left.
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Figure 3.19: X,Y,Z Ideal Controller (green) vs. Designed Controller (blue)
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(a) α, β vs. Time (b) α, β

Figure 3.20: α, β Ideal Controller (green) vs. Designed Controller (blue)

Figure 3.19 compares the ideal divert capability to the regulator divert capability.

The tracking controller extends the range as shown in the top plot, but this was

not the goal, the intent was to divert to the right. The divert to the right is not as

significant as the ideal controller as shown in the Ye plot. The divert difference is due

to small perturbations in the canard tracking phase. These perturbations attribute

to some component of the force vector in the up direction, creating a lift force, shown

in the Ze plot.

Figure 3.21 shows the error between the canard angle and the perfect tracking

signal in degrees. The plot shows that for the first second, the canard is held at 0

degree canard deflection and the error has no meaning. Throughout the rest of the

flight, the tracking error of φr is below 0.5 degrees which is an acceptable error.

The conclusion can be made that the projectile remains stable as the yawing

motion caused by the actuation reaches a limit cycle as shown in Figure 3.20a. The

limit cycle is shared between the ideal signal and the regulator, which shows the

regulator does not introduce any more instability than a perfect signal.
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Figure 3.21: Ideal Controller (green) vs. Designed Controller (blue)



53

Figure 3.22: HIL Setup

3.5 Hardware-In-The-Loop

Now that the system was modeled correctly and we are obtaining the same response

as expected (our response matches CFD analysis and the prediction tools), we will

load the controller onto an onboard processor and test the response of the system.

The configuration for the Hardware-in-the-Loop (HIL) is shown in Figure 3.22.

The PC running the 6DOF model has been developed using xPC TargetTM from

MathworksTM . The PC utilizes a 3GHz Pentium 4 Processor with 2GB of RAM and

contains a National Instruments Digital-to-Analog Converter (DAC) model number

PCI-6733. The PC is running the Simulinkr block diagram of Figure 3.23 at a

loop rate of 5kHz. The 6DOF Simulinkr model has been optimized to run at such

a high rate in real-time because the 6DOF engine utilizes a fixed-plane model for

the plant. The development of this model has been studied extensively in References

[3, 39, 38, 30, 29, 28]. The fixed plane equations of motion are shown in the Appendix
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A.1.

The controller we are using is the Texas Instruments, TITM , TMS320F2812 DSP,

on a custom designed flight controller board. The Magnetometers, described in detail

in Chapter 4, are simulated in the 6DOF Real-Time PC and ported through the DAC

to the DSP’s Analog-to-Digital Converter(ADC) which are updated in real-time. The

controller’s embedded software is generated from the Simulinkr block diagram Figure

3.24 using MathworksTM Target Support PackageTM TC2 (for TIs C2000TM DSP).
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Figure 3.23: HIL 6DOF Setup

Figure 3.24: HIL DSP Controller
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The optical sensor, shown in Figure 3.2 is connected to the DSP via digital lines

which can give a position measurement accurate to 0.0316 degrees. The voice-coil is

driven with a power H-Bridge through a PWM signal from the DSP which is on a

custom designed Printed Circuit Board (PCB).

The entire HIL experiment consists of two feedback loops, the regulator controller

designed in this section as well as the 6DOF Real-Time Simulation utilizing the flight

dynamics model of Chapter 2 which uses the canard angle as feedback. This infor-

mation is streamed digitally via serial port from the DSP to the Personal Computer

(PC). The loop rates are 10kHz for the DSP processor and 5kHz for the 6DOF. The

canard feedback signal is connected to the 6DOF through a Zero-Order-Hold (ZOH).

The HILs setup is pictured in Figure 3.22. Since the information of the roll angle

is required by the regulator, a simple estimate of the roll angle is performed at each

regulator update. The solution for the roll angle, φ, is found using the following

simplified equation using the magnetometer measurements:

φ̂ = tan−1 Mj

Mk

(3.5.1)

where Mj and Mk are defined later in Chapter 4 in more detail and φ̂ is the estimated

roll angle. The detailed mathematics behind Equation (3.5.1) are explained in the

appendix B. The reason for the simplified computations was not to demonstrate roll

estimation, but the maneuver authority of the projectile. To ensure that the HIL

system responds closely to the simulations, a baseline test was performed to ensure

the HIL system solver was correctly updating the states. Figures 3.25- 3.27 show the

6DOF ballistic trajectory versus simulation.

As shown in Figures 3.25 and 3.27 the simulation matches the state propagation of

the HIL system. Figures 3.28- 3.30 show the result of the flight controller response to
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Figure 3.25: Xe Ballistic Trajectory

Figure 3.26: Ye Ballistic Trajectory



58

Figure 3.27: Ze Ballistic Trajectory

a canard deflection of ±6 degrees in the ”up” direction. This displacement was chosen

because of the physical constraints of the test setup on the canard. The controller

was initialized using a ”fire pulse” and did not begin the canard oscillation control

until 2 seconds into the flight. As a reference, the ideal controller of the Section 3.4

is shown as a reference.

The same HIL experiment was performed with a start time of 9 seconds into the

flight and the results are presented in Figures 3.31- 3.33.

From the HIL experiments, we can see that the controller is giving the lift in

the correct direction, we do have some of the force ”bleeding” over in to the cross

range. This can be due to a phase lag on the controller, small error in amplitude,

and estimation errors for the roll angle. The multiple runs were used to compare the

results of turning on the controller during the up-leg of the flight (2 seconds), near
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Figure 3.28: Xe±6 degree deflection, 2 second turn-on

Figure 3.29: Ye±6 degree deflection, 2 second turn-on
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Figure 3.30: Ze±6 degree deflection, 2 second turn-on

Figure 3.31: Xe±6 degree deflection, 9 second turn-on
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Figure 3.32: Ye±6 degree deflection, 9 second turn-on

Figure 3.33: Ze±6 degree deflection, 9 second turn-on
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apogee (9 seconds), and the no-divert case. Figures 3.28 and 3.31 show that turning

the canard system on earlier in the flight will give the projectile more range, as one

would expect. This comes at a price, as the maximum canard angle increases, the

associate drag will begin to limit the range extension capabilities. Figures 3.29 and

3.32 show how the errors explained above have a much more dramatic effect on the

projectile, the cross range component is much larger the longer the system is being

actuated. Figures 3.30 and 3.33 demonstrate how the projectile will achieve a much

higher flight profile when actuation begins at 2 seconds rather than 9 seconds.

The results are repeatable and the controller is acting similarly between simula-

tions and HIL experiments. It should also be noted that the system does not have any

aerodynamic loading on the canards. In order to compensate for the loads, we have

added mass to the canard assembly to better resemble aerodynamic loading. The

added load is not directly related to the response in flight because of the inability to

add a bimodal effect. The aerodynamic inconsistency may also be attributing to the

small mismatch between simulation and experiments. We can assume the bimodal

effect of the aerodynamic loading will not have a significant effect in practice1. We

can assume the controller will respond well during flight because the simulations are

very similar to the HIL results. Now that the controller has been designed for the

canard system, we can focus on possible estimation methods for the attitude.

1The controller will be validated with full aerodynamic loading in an upcoming wind tunnel test.



Chapter 4: Attitude Estimation

The information of the attitude of the projectile is required for the controller de-

signed in Chapter Chapter 3 to work. The attitude of the projectile is also known

as the angular orientation of the projectile. For practicality purposes, it is assumed

that the sensors utilized to measure the attitude would be low-cost and preferably

Commercial-Off-The-Shelf (COTS). Some sensors that are currently used in Inertial

Measurements Units (IMUs) for projectiles include Accelerometers, Magnetometers,

Rate Gyroscopes, and Solar Sensors. Since the body is in free-fall and dominated by

acceleration greater than 1g, accelerometers are not practical for means of attitude

measurement. The solar sensors that are currently used for attitude measurement are

the most reliable of the four sensors types available, however, they are not practical

for use in a tactical situation since they require the sun to be visible. The two remain-

ing sensors that are available for use are magnetometers and rate gyroscopes which

have been extensively utilized and studied at the US Army Research Laboratory as

gun-launch survivable sensors.

4.1 Magnetometers

Extensive research has been conducted by the Army Research Laboratory (ARL)

in the last decade to utilize low-cost magnetometers for attitude measurement in

projectiles. The focus of the research is primarily in Anisotropic Magnetoresistive

(AMR) Magnetometers which are extremely sensitive, solid-state magnetic sensors

63
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designed to measure direction and magnitude of Earths magnetic fields. Magne-

tometers have been used for attitude estimations in spacecraft and other vehicles.

References [41, 36, 2, 47, 27, 16, 10] include magnetometers for magnetic navigation

purposes, however most of the techniques are difficult to implement in a projectile

and have large time sampling period. References [23, 8, 8, 22, 25] explain the details

associated with utilizing magnetometers onboard projectiles.

In order to develop the magnetometer as a viable sensor, we must create a model

for the sensor that can be utilized in simulations and is practical for our application of

attitude determination. For all purposes, we will assume that the AMR magnetometer

that will be used has 3 sensitive axes which are perpendicular to each other. We can

assume there is some bias to the magnetometer and scale factor from the embedded

electronics and surrounding materials. The equation can be written to relate the

magnetometer output, ~m, to the applied magnetic field ~B by:

~m = D ~B +~b (4.1.1)

Where D is defined as off-axis and misalignment effects and ~b is a bias on the output

measurements from any supporting circuitry. Each of these parameters can be pre-

determined or calibrated using methods described in References [25, 11, 12, 54, 44].

The magnetic field can be represented by:

~B = D−1(~m−~b) (4.1.2)

4.2 Rate Gyros

Rate gyroscopes are now available in small packages which allow them to be used

in projectile attitude estimation. These newer MEMS based sensors are designed to
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measure angular rate using the Coriolis force. MEMS sensors have the advantage of

solid-state technology and are much more reliable than mechanical gyroscopes because

they have no moving parts. Rate gyroscopes have also been proven over the years to

be able to survive high-g gun launch, making them ideal at measuring both yaw and

pitch rates. Futhermore, by modifying the dynamic range of commercial sensors as

in Reference [48], we can measure roll rate with rate gyroscopes.

4.3 Quaternion Notation

In order to eliminate divergence problems using the Direction Cosine Matrix of Equa-

tion (2.1.9) and to reduce computation times required by the multiple trigonometric

functions, we will use quaternion math. The quaternion is described by Equation

(4.3.1)

q = q0 + q1i+ q2j + q3k

q = q0 + ~q
(4.3.1)

where,

i2 = j2 = k2 = ijk = −1

~q = {q1, q2, q3}
(4.3.2)

The addition of quaternions is defined by:

q = q0 + ~q

p = p0 + ~p

p + q = (q0 + p0) + (q1 + p1)i+ (q2 + p2)i+ (q3 + p3)k

(4.3.3)

The multiplication of quaternions p,q can be defined by:

p ∗ q = r0 + ~r

r0 = q0 ∗ p0 − ~p · ~q
~r = q0~p+ p0~q + ~p× ~q

(4.3.4)
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The complex conjugate of a quaternion q is defined by:

q∗ = q0 − ~q (4.3.5)

and its inverse is defined by:

q−1 =
q∗

‖q‖2 (4.3.6)

where the norm, ‖q‖, is defined as
√

q∗q.

We can associate the quaternion with rotation using the following equation:

~v′ = q~vq∗ (4.3.7)

as derived in [32]. The above equation can be written in matrix notation as:

~v′ = R (q)~v

R (q) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 − 2q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − 2q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2

 (4.3.8)

which can be found in many texts.

This rotation is defined about the unit vector ~u, or the axis of rotation, through

the angle α, where q = cosα+~usinα and v ∈ R3. For q to be utilized as a rotational

operator, it must be a unit quaternion, that is ‖q‖ = 1. This requirement allows us

to show that the inverse of the quaternion equals the conjugate, q−1 = q∗

We can now relate a quaternion to a rotation sequence. As an example we will use

the standard aerospace sequence, YPR or Equation (2.1.9), and use the trigonometric

notation of Section 2.1. Equation (4.3.10) defines the unit quaternion for the YPR

rotation sequence. Where we can relate Equation (2.1.3) to the quaternion operator.

x
′
= λx

x
′
= q∗xq = R (q)x

(4.3.9)
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From the above definitions and relating the YPR sequence to Equation (4.3.10), we

can find a relationship between Euler angles and a unit quaternion,q.

ψ2 = ψ
2
, θ2 = θ

2
, φ2 = φ

2

q0 = cψ2cθ2cφ2 + sψ2sθ2sφ2

q1 = cψ2cθ2sφ2 − sψ2sθ2cφ2

q2 = cψ2sθ2cφ2 + sψ2cθ2sφ2

q3 = sψ2cθ2cφ2 − cψ2sθ2sφ2

(4.3.10)

And to convert back to Euler angles,

tanψ = q1q2+q0q3
q20+q21−

1
2

1
2
sinθ = q0q2 − q1q3

tanφ = q2q3+q0q1
q20+q23−

1
2

cosθ > 0

(4.3.11)

4.4 Quaternion Extended Kalman Filter

In order to determine the attitude of the projectile, we can utilize the quaternion

notation described in Section 4.3 to implement a Extended Kalman Filter. By cou-

pling the measurement of the local Earth magnetic field in the body frame with rate

sensors, we can estimate the attitude of the projectile. The following notation will be

used:

Notation Description

x State Variable

x̂ Estimate of State x

x̄ Error Between State x and Estimate x

x̃ Measurements of States



68

Given Equation (4.3.8), we can state that the measurement of a reference field in the

fixed coordinate system can be measured in the the rotation field by:

~Mb = R (q) ~Me (4.4.1)

Where Mb is the magnetic field measurement in the body fixed rotating frame, Me is

the local magnetic field, and R (q) is from Equation (4.3.8). Since there is noise on

the system, we can rewrite Equation (4.4.2) to include noise on both the body and

the reference measurements.

~Mb = R (q)
(
~Me + ~nMb

)
+ ~nMb

(4.4.2)

Where nMb
is the noise on the measurement and nMe is the noise on the reference

vector. Using the components of q = {q0, q1, q2, q3} and ~ω = {p, q, r}, the rate of

change of the quaternion is defined by:

q̇ = Ωq (4.4.3)

where,

Ω =


0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0

 (4.4.4)

Because we are using rate sensors, we have a measurement of {p, q, r}, however, this

measurement contains noise, nω. nω is assumed zero mean Additive White Gaussian

Noise (AWGN). Writing the measurements with noise:

ω̃ = ω + ω̄ (4.4.5)

where, ω̃ is the measurement for each of the rates, ω̄ is the error between the mea-

surement and the true rates. Similarly, Ω̃ is defined with elements ω̃. The quaternion
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can be estimated by:

Ω = Ω̃− Ω̄

q̇ =
(
Ω̄− Ω̄

)
q

(4.4.6)

Ω̄ is defined with the elements of ω̄. To find the the quaternion error q̄ we can subtract

the estimate of the quaternion, q̂ = Ω̃q̂.

q̇− ˙̂q =
(

Ω̃− Ω̄
)

q− Ω̃q̂

˙̄q = Ω̃q̄− Ω̄q
(4.4.7)

And with matrix algebra, we can rearrange the last term Ω̄q = Bω̄.

B (q) =
1

2


q1 q2 q3

−q0 q3 −q2

q3 q0 q1

q2 −q1 −q0

 (4.4.8)

Equation (4.4.7) is now represented as

˙̄q = Ω̃q̄ +B (q) ω̄ (4.4.9)

The error propagation for the quaternion is in continuous time, however, the EKF

will be solved on an onboard processor, therefore, we require a discrete system. We

can descretize the Equation (4.4.7) to yield:

q̄k+1 = Φkqk +Bkω̄k (4.4.10)

Where,

Φk = eΩ̃ts (4.4.11)

The sampling time, ts, would be defined by the dynamics of the system. We can

ensure proper propagation with a sampling time ts ≥ 10kHz for this particular ap-

plication. The following equations are the summary of the Discrete Time Extended
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Kalman Filter routine:

Using the above state equations, we will assume the process noise, wk, and measure-

ment noise, vk, to be zero mean AWGN:

wk ≈ (0, Qk)

vk ≈ (0, Rk)
(4.4.12)

We will Initialize the filter using:

q+
0 = E (q0)

P+
0 = E

[(
q0 − q̂+

0

) (
q0 − q̂+

0

)T] (4.4.13)

Next, we perform the state estimation update and the estimation error covariance

update:

Φ−k−1 = eΩ̃k−1ts

B−k−1 = B (q̂k−1)

q̂−k =
∥∥Φ−k−1qk−1

∥∥
P−k = Φ−k−1P

+
k−1Φ−k−1

T
+B−k−1QB

−
k−1

T

(4.4.14)

It should be noted that eΩ̃k−1ts can be simplified utilizing spectral decomposition since

the matrix is full rank and square:

Ω̃k−1ts = V DV −1

eΩ̃k−1ts = V (edi I)V −1
(4.4.15)

Where D is the diagonal matrix composed of the eigenvalues of Ω̃k−1ts, V is the

corresponding eigenvalues, dii ∈ {1, 2, 3, 4} are the diagonal elements of D, and I is

the 4x4 identity matrix.

Computing the partial derivatives with the priori estimate we obtain:

H−k =

{
∂R(q)
∂q0

∣∣∣
q̂−k

, ∂R(q)
∂q1

∣∣∣
q̂−k

, ∂R(q)
∂q2

∣∣∣
q̂−k

, ∂R(q)
∂q3

∣∣∣
q̂−k

}
Mb (4.4.16)
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The new measurements are used to update the state estimate, which is normalize to

ensure rotation properties are maintained, and finally, the gain matrix is updated:

Kk = P−k H
−
k
T
(
H−k P

−
k H

−
k
T

+Rk

)−1

q̄k = Kk [Mb −DkMe]

q̂+
k =

∥∥q̂−k + q̄k

∥∥ (4.4.17)

The covariance matrix with a posterior data and another normalization is performed:

H+
k =

{
∂R(q)
∂q0

∣∣∣
q̂+
k

, ∂R(q)
∂q1

∣∣∣
q̂+
k

, ∂R(q)
∂q2

∣∣∣
q̂+
k

, ∂R(q)
∂q3

∣∣∣
q̂+
k

}
Mb

v+
k = D+

kMb

Rk = RMe +D+
k RMb

P+
k =

(
I −KkH

+
k

)
P−k
(
I −KkH

+
k

)T
+KkRkKk

(4.4.18)

Now that we have a definition for the EKF, we can analyze the response.

4.5 Quaternion Extended Kalman Filter Results

As an example, we will use the system simulated in Chapter 2 for the attitude esti-

mation.

x0 = {300, 0, 0, 0.0001, 0, 0, 0,−0.3491, 0.0000, 0, 0, 0, 0} (4.5.1)

We use Equation (4.3.10) to convert the initial condition Euler angles to the initial

conditions for the quaternion.

q0 = {0.9848, 0.0000,−0.1736, 0.0000} (4.5.2)

The noise for the rate sensors and magnetometers is based on experimental results

and determined to be nω = [0, 0.0698〉 and nMb = nMe = [0, 0.0038〉. It should be

noted that this information is collected using properly calibrated sensors. We will
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(a) Quaternion Estimation Full Flight (b) Quaternion Estimation Zoom @ 10 Seconds

Figure 4.1: Quaternion Estimation (green) and True Quaternion (blue)

initialized the EKF using the following:

P0 = 1000I4x4

Qk0 = .1I3x3

RMe0 = 30I3x3

RMb0
= 30I3x3

(4.5.3)

The 6DOF trajectory utilizes the ideal controller and not the designed controller of

Chapter 3 to reduce simulation complexity, however, this substitution could easily be

made. The controller is turned on at 1 second in and commanded to perform a right

turn maneuver.

Figures 4.1a and 4.1b show the quaternion estimation for the full flight and a

zoomed in region of flight, respectively. As shown, the EKF’s estimated quaternion,

q̂, tracks the true quaternion, q, very well and does not deviate as the flight progresses.

The quaternion error, plotted as q− q̂, is shown in 4.2a and 4.2b. Though this plot

gives no graphical meaning to the attitude error, it shows that the errors are very

small.
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(a) Quaternion Estimation Error Full Flight (b) Quaternion Estimation Error Zoom @ 10 Sec-
onds

Figure 4.2: Quaternion Estimation Error

In order to obtain a physical representation of the error, we can convert the

quaternion to Euler angles using Equation (4.3.11). The Euler angles for the projectile

are shown in Figures 4.3a and 4.3b. The angles are plotted in degrees, where we can

see that ψ varies from ≈ 0 → −75, θ varies from ≈ −20 → 30 degrees, and the roll

angle φ is bounded by ±180 degrees. The Euler angles track very well and there is

minimal error, as shown in Figure 4.3a. The projectile is making a right turn, as

indicated by the psi angle, and we can see the overturning of the projectile in θ where

apogee occurs at ≈ 9.7s. Apogee can be defined as θ → 0. This attitude estimate will

aid in the guidance system in Chapter 5. The Euler errors, in degrees, are plotted

in Figures 4.4a and 4.4b, and are all ≤ .8degrees. This accurate estimate of the roll

orientation will allow for us to control the projectile using the regulator of Chapter 3.

It is also advantages to see how well the EKF will recreate our sensor measurements

to gauge the performance of the EKF. Figures 4.5a and 4.5a show the magnetometer

data recreation and how closely the EKF will track the true magnetometer sensors
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(a) Euler Estimation Full Flight (b) Euler Estimation Zoom @ 10 Seconds

Figure 4.3: Euler Estimation (green) and True Euler Angles (blue)

(a) Euler Estimation Error Full Flight (b) Euler Estimation Error Zoom @ 10 Seconds

Figure 4.4: Euler Estimation Error
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(a) Magnetometer Recreation Full Flight (b) Magnetometer Recreation Zoomed @ 10 Sec-
onds

Figure 4.5: Magnetometer Recreation (green) Actual Magnetometer Data (blue)

measurements. In order to maintain confidence in the ability of the EKF to estimate

the states, 1000 Monte-Carlo simulations were performed for a projectile in flight. At

each run, the initial conditions for the gun orientation and noise seed on the sensors

were varied. The variance of the gun orientation was ±1 degree for θ, φ, ψ using a

normal distribution. Figure 4.6 shows the mean error of each of the Euler angles

throughout the flight. The plots show the mean error is always near zero degrees

for each of the Euler angles. It has been demonstrated that the Quaternion Discrete

Time Extended Kalman Filter tracks the quaternions/Euler angles for the projectile

during flight. It is noted that the reliance on sensor measurement allows this system

to track even during a maneuver. This simplified filter can be easily implemented on

a DSP alongside the controller algorithm and does not require an extensive model of

the entire projectile and its associated dynamics. Therefore, it can be concluded that

the attitude can be tracked in real time at an update rate of 10kHz. Since the error

magnitude is so small, the conclusion can be made that the tracking regulator will
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Figure 4.6: Mean Euler Estimation Error, 1000 Monte Carlo Simulations

perform well with the reference signal generated by the Quaternion EKF (QEKF).



Chapter 5: Projectile Guidance

Now that a method has been developed to determine the attitude of the projectile and

we have a controller to determine the canard position, a guidance controller must be

designed to guide the projectile to engage the target. In order to predict the onboard

states that are not determined by the attitude, {Xe, Ye, Ze}, and corresponding earth

fixed velocities, {Vxe, Vye, Vze}, a GPS module is utilized. The GPS system provides

the state information at a 10Hz update rate and requires approximately 5 seconds to

acquire the satellites.

In this chapter, we will present the two methods for guidance; Impact Point Pre-

diction (IPP) and Modified Proportional Navigation (MPN). We will demonstrate

the effectiveness of hitting a target when the canard perfectly tracks the commanded

guidance signals, the regulator with ideal state estimation, and finally a fully in-

tegrated system with estimated states and multivariable regulator and H2 control

system.

5.1 Impact Point Prediction

Though Impact Point Prediction has been studied using linear projectile theory, [30,

29, 28], an alternative method of using a simple point mass model / vacuum trajectory

will be utilized to integrate the states forward in time and calculate the impact point.

Though this method is fairly simple, it should provide enough fidelity to prove a

successful Circular Error Probable (CEP). The equations of motion for the projectile

77
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in the vacuum / point mass are given by:

Xe = X0 + Vx0t+ 1
2

(
−

1
2
ρV 2ACX
m

cθcψ

)
t2

Ye = Y0 + Vy0t+ 1
2

(
−

1
2
ρV 2ACX
m

cθsψ

)
t2

Ze = Z0 + Vz0t+ 1
2

(
−g −

1
2
ρV 2ACX
m

sθ

)
t2

(5.1.1)

We can solve the above set of equations at each GPS update to determine the es-

timated impact point. For each time that we solve the equations, we will utilize

the latest values of ρ, θ, V , and initialize {Vx0, Vy0, Vz0, X0, Y0, Z0, } with the GPS

updates. We will assume for simplicity that cψ = 1. The unguided projectile will

have a small component ψ and the errors from this substitution would be negligible.

The drag coefficient CX is evaluated each iteration of the impact point prediction.

The mach number is evaluated using lookup tables which contain the meteorological

information.

Since we have a target location, {Xt, Yt, Zt}, the equations of Equation (5.1.1) can

be solved to find a the time to impact, ti. This impact time can then be used in the

equations for cross-range impact, Yi, and down-range impact, Xi. Because the system

is only affected by drag, it is assumed that the impact point prediction should be off

and progressively improve as the projectile flies. The following plot is an example of

impact point prediction with no guidance utilizing the same 6DOF model and initial

conditions as Section 2.5.

The plots in Figure 5.2 show the impact point calculations, in blue, will eventually

converge on the correct impact point solution of 4448.0m for Xe and 28.8404m for Ye.

The oscillations shown in Figure 5.1b can be attributed to the sψ term in Equation

(5.1.1). Figure 5.1a shows the impact point prediction is predicting the projectile will

land further than the true impact point until apogee, at 9.8 seconds. If the projectile

attempted to maneuver prior to apogee, the projectile would potentially fall short of
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(a) Down Range Impact Point (b) Cross Range Impact Point

Figure 5.1: Impact Point Prediction (blue), True Impact Point (red)

the target because of IPP prediction errors. To ensure the proper IPP is obtained,

the projectile would not begin guidance until apogee.

5.2 Guidance Definitions for Impact Point

Now that we can effectively determine the impact point, we can calculate the error

between the impact point and the target.

ex = Xi −Xt

ey = Yi − Yt
(5.2.1)

It is not necessary to correct for the altitude because the solution is already determined

in the IPP equations. The error between the impact point and the target is evaluated

to determine the direction and magnitude the canard controller must operate to

successfully navigate to the target. Figure 5.2 shows the XeYe plane, the location

of the target is located at the origin of this frame. The error between the impact

point, shown in red, and the target can be related in polar coordinates. By mapping

the polar coordinates to a commanded phase/amplitude relationship for the canard
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Figure 5.2: Impact Point Error Definition

tracking signal, we can develop a navigation routine to hit the target. Where,

φe = a tan 2
(
ex
ey

)
‖re‖ =

√(
e2
x + e2

y

) (5.2.2)

where the error angle, φe, can be mapped to the canard tracking angle, φr, by adding

3π
2

and the error magnitude is ‖re‖. The mapping from the polar coordinates to the

canard tracking signal can be visualized with the following example:

Using the impact point (red) in Figure 5.2, the IPP predicts the projectile will

miss the target, short and to the left. In order for the projectile to hit the target,

the projectile must guide up and to the right. Using the above definitions and Figure

3.13, the phase error, φe ∈ {π2 , π}, can be mapped to the canard tracking phase

φr ∈ {0, π2}.

To provide the necessary mapping of the miss distance, ‖re‖, to the commanded
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canard deflection amplitude, δc, a simple PI controller is used:

δc = Kp‖re‖+Ki

∫ t

0

‖re‖dT (5.2.3)

Where the constants Kp and Ki are chosen experimentally.

5.3 Guidance Method using Modified Proportional Navigation

As an alternative method for guidance, we wish to choose the target location and

the current state of the projectile as the primary variables and not the impact

points. We will use the same notation for the current velocity and position as

{Vxe, Vye, Vze, Xe, Ye, Ze} which are defined in the earth fixed reference frame. The

target, which is also in the body fixed reference frame is {Vxet , Vyet , Vzet , Xet , Yet , Zet}.

Since we have control of the acceleration of the projectile through the canards, a

control law can be realized using the accelerations. Using the standard Kinematic

equations of motion for a rigid body:

~r = ~r0 + ~v ∗ tgo +
1

2
~at2go (5.3.1)

Where tgo is the time-to-go in flight, which is related to tgo = tf − tc, r is the relative

displacement, v is the relative velocity, and a is the relative acceleration. Therefore,

the velocities and the position are related to the acceleration using Equation (5.3.4).

~ap =
(~rt − ~rp) + (~vt − ~vp) ∗ tgo + 1

2
~att

2
go

t2go
(5.3.2)

The subscript p denotes the projectile and the subscript t denotes the target. Each of

the vectors are described in the earth frame. We will make the following assumptions:

• The projectile will be mostly under the influence of gravity.
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• The target is stationary i.e. no velocity or acceleration.

• The projectile has no thrust.

From the first two assumptions, we can state that the time-to-go, tgo is the positive

solution to the quadratic equation.

0 = zt − zp − vpztgo −
1

2
gt2go (5.3.3)

The solution for tgo can be visualized by assuming a vacuum flat fire trajectory at

each computation point. One can assume that without the effect of body lift, the

impact time will be proportional to the height. For example, if a bullet was fired with

0 degree quadrant elevation and at the exact same time a bullet was dropped, they

would both hit the ground at the same time.


apx

apy

apz

 = ~Kp


xt − xp
yt − yp
zt − zp

−

vpx

vpy

vpz

 tgo
t2go

(5.3.4)

We now have a vector notation for the earth fixed acceleration required to hit the

target with a proportional gain term, ~Kp. This acceleration can be mapped into the

body fixed coordination, or more simply into the canard actuation system as a phase

angle and an amplitude. The mapping is similar to section 5.2 with the angle defined

by:

φr = atan2(apy, apx) + π
2

δc = ‖{apx, apy}‖
(5.3.5)
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5.4 Guidance Results Ideal Controller

In this section, the two separate guidance techniques will be compared, the Impact

Point Prediction Method and the Modified Proportional Navigation Method with

an ideal canard tracking system. The 6DOF projectile simulation with the initial

conditions from Chapter 2 will be used for comparison for conformity. The GPS

errors are assumed to be zero for this simulation. The unguided projectile, under

nominal trajectory, would impact at ≈ {4448, 29, 0}m. The unguided trajectory

results of Chapter 2 will be used as a reference for the unguided case. As a measure

of performance, the CEP of an unguided round is approximately 100+m, whereas the

guided round must have a CEP of 10m. This implies 50% of the projectiles will land

in a 10m radius. The canard regulator will be assumed ideal for this section, i.e. the

regulator tracks the canard command angle perfectly.

5.4.1 Using Impact Point Prediction

The IPP based controller will begin guidance at 10 seconds into the flight. The reason

for the delay is due to the assumption that the GPS might not acquire until this point

and also to minimize the effect of impact point prediction error earlier on in the flight.

Figures 5.3 and 5.4 show the results of the guidance controller on the trajectory. The

target location is set at {Xt, Yt, Zt} = {6000,−200, 0}. The error in the final impact

is 1.045 meters in down range impact and .701 meters in the cross range impact.

We can take a look at δc in Figure 5.5 and see the amount of burden on the

controller is minimal as the angle stays below ±6 degrees near the end of the flight.

Figures 5.6 and 5.7 show impact point predictor will eventually converge on the target

location as the flight progresses. The impact point prediction is plotted in in blue and
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Figure 5.3: Down Range Flight of Projectile (blue), Target Location (red)

Figure 5.4: Cross Range Flight of Projectile (blue), Target Location (red)
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Figure 5.5: Canard Amplitude, δc

the target location in red. Figure 5.6 shows the down range impact point prediction

vs. time. At approximately 10 seconds, the impact point error is acceptable for

prediction of the down range impact point and will converge as guidance is initiated.

The cross range impact point in Figure 5.6 shows the impact point prediction will

oscillate continuously around the true impact point. This is due to the yawing motion

of the projectile. The projectile’s overall dynamics when guided will ”low-pass” this

effect and guide to the correct location. Figure 5.8 shows the impact point prediction

as the flight progresses. The plot demonstrates how the IPP will converge in an

oscillatory motion onto target. It has been shown that the impact point prediction

method, though simplified provides sufficient results for the purpose of guidance with

the ideal controller.
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Figure 5.6: Down Range Impact Point Prediction (blue), True Impact Point (red)

Figure 5.7: Cross Range Impact Point Prediction (blue), True Impact Point (red)
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Figure 5.8: Cross Range Impact Point Prediction (blue), True Impact Point (red)

5.4.2 Using Modified Proportional Navigation Guidance

The proportional navigation controller will begin guidance once apogee is achieved.

Again, this will assume the GPS has acquired and locked. Also, since the algorithm

requires a flat fire trajectory model, the projectile must have hit apogee for proper

time-to-go calculations.

Figures 5.9 and 5.10 show the results of the guidance controller on the trajectory.

The target location is set at {Xt, Yt, Zt} = {6000,−200, 0}. The error in the final

impact is 0.897 meters in down range impact and 0.099 meters in the cross range

impact. Figure 5.9 shows that the system will guide well in down range towards

the target. The cross range plot, Figure 5.10, shows the projectile will first begin

navigating toward the left and then converge towards the solution. In comparison

to the results of Figure 5.4, the projectile diverts more in the wrong direction in the
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Figure 5.9: Down Range Flight of Projectile (blue), Target Location (red)

Figure 5.10: Cross Range Flight of Projectile (blue), Target Location (red)
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Figure 5.11: Canard Amplitude, δc

beginning. Figure 5.11 shows the canard displacement as the projectile flies. When

the guidance first turns on at approximately 10 seconds, then the projectile begins to

give larger acceleration commands which slowly damp out. The maneuvers become

more aggressive closer to impact as one would expect. The conclusion can be made

that both techniques are relatively good at hitting the target.

5.5 Guidance Results Multivariable Regulator Controller

Now, we will again run the simulation with the controller from Chapter 3 assuming

that the state measurements for the attitude are ideal and correct. Again, the GPS

errors are assumed zero and updated at 10Hz after 10 seconds into the flight. The

target location will again remain at {Xt, Yt, Zt} = {6000,−200, 0}.
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(a) Canard Amplitude, δr (blue), δc (green): Full
Flight

(b) Canard Amplitude, δr (blue), δc (green):
Zoomed In

Figure 5.12: Canard Response

5.5.1 Using Impact Point Prediction

Figure 5.12a shows the canard displacement as a function of time vs. the commanded

canard displacement. The zoomed-in plot of Figure 5.12b shows how close the canard

angle, δc, is to the commanded canard angle δc. The canard angle does not ide-

ally track the guidance system commands, but this is expected. The instantaneous

changes in displacement shown in Figure 5.12b are due to the GPS sampling and

corresponding controller update rate. The instantaneous phase changes give rise to

large spikes in error shown in Figure 5.13, which is a plot of the difference between

the ideal phase and canard phase, δr − δc. Figure 5.14 shows the impact point pre-

diction will eventually converge on cross range impact point and Figure 5.15 shows

the convergence of the cross range impact point. These plots correlate nicely to the

ideal controller case of Section 5.4. The cross range and down range plots of the

projectile vs. time are shown in Figures 5.16 and 5.17, respectively. The projectile

falls short of the target by 15.135; an error most likely caused by added drag to early
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Figure 5.13: Canard Error, δr − δc

Figure 5.14: Down Range Impact Point Prediction (blue), True Impact Point (red)
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Figure 5.15: Cross Range Impact Point Prediction (blue), True Impact Point (red)

canard maneuvers. The cross range plot shows the projectile hits within .043m of

the target cross range location. Though these errors are substantially larger than the

ideal case of section 5.4, we can state with some confidence that the resultant CEP

still outperforms an unguided round.

5.5.2 Using Modified Proportional Navigation Guidance

It is necessary to analyze the MPN guidance method to see how much of an impact the

canard regulator would have on the target miss distance. First, the canard tracking

error is analyzed to show how much the guidance law affects the regulator. Figure

5.18a shows the canard displacement as a function of time vs. the commanded canard

displacement. The zoomed-in plot of Figure 5.18b shows how close the canard angle,

δc, is to the commanded canard angle δc. Though it might seem like the canard angle

perfectly tracks the command angle, there is some slight error. The small error is
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Figure 5.16: Down Range Flight of Projectile (blue), Target Location (red)

Figure 5.17: Cross Range Flight of Projectile (blue), Target Location (red)
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(a) Canard Amplitude, δr (blue), δc (green): Full
Flight

(b) Canard Amplitude, δr (blue), δc (green):
Zoomed In

Figure 5.18: Canard Response

shown in Figure 5.19. A comparison of Figure 5.19 to Figure 5.13 shows that the IPP

Method has many more large phase angle changes, which are harder for the regulator

to track. Therefore, even though an IPP will work well with the ideal system, when

the regulator and body dynamics are added, the MPN method outperforms the IPP

method. The small changes in angles are evident for the phase angle commands in

Figure 5.20. As the controller turns on at 10 seconds into the flight, the phase angle

is nearly 90 degrees until near impact. The 90 degree phase will give the body lift

until close to the impact when the system will begin to narrow in on the target.

The results for the down range and cross range impacts for the target vs. time

are shown in Figures 5.21 and 5.21. This demonstrates that the MPN method works

better than the IPP method. The error for the impact is 0.43m for the down range

and -1.26m for the cross range. Again, we can state with some confidence that the

resultant CEP is a great improvement over an unguided round.

Using both methods, a simplified guidance law can be combined with the complex
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Figure 5.19: Canard Error, δr − δc

Figure 5.20: Canard Phase Angle, φc
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Figure 5.21: Down Range Flight of Projectile (blue), Target Location (red)

Figure 5.22: Cross Range Flight of Projectile (blue), Target Location (red)
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(a) Canard Amplitude, δr (blue), δc (green): Full
Flight

(b) Canard Amplitude, δr (blue), δc (green):
Zoomed In

Figure 5.23: Canard Response

controller to drive the projectile to a target with minimal error.

5.6 Guidance Results Full System

Now that the system will accurately guide utilizing the regulator, we wish to know

if the system will guide with the estimated attitude using the QEKF of Chapter 4.

Another simulation of the same target for consistency will show the effect of the error

of the state estimates and the controller can affect the performance of the guidance.

5.6.1 Using Impact Point Prediction

Using the IPP method, we will use the estimated states and the regulator to show

how the system will perform to the same initial conditions as the previous simulations

for uniformity. The GPS is updated at 10Hz and the guidance begins at 10s.

Figures 5.23a and 5.23b show the instantaneous effect due to the IPP updating with

GPS updates. With this simulation the regulators error is compounded by the state
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Figure 5.24: Canard Error, δr − δc
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Figure 5.25: Down Range Impact Point Prediction (blue), True Impact Point (red)

estimate error and instantaneous phase shift updates. The impact point predictor,

though it does converge, is not 100% effective. The IPP error could be attributed to

drag associated with canard maneuvers and attitude estimates feeding into the IPP

Equations 5.1.1. The impact point errors from Figures 5.25 and 5.26 propagate

to the final impact of the projectile as a biased error. The error in the cross-range

impact is shown in Figure 5.30. Figures 5.29 and 5.30 show that the system will

hit the target with errors of {8.856, 49.308}. It has been shown that combining a

simplified guidance law, the complex controller, and the QEKF state estimator, the

system can be driven close to the target, but would probably be insufficient to justify

the guidance system. It also should be noted that the case presented is extreme

and there is a lot of burden on the controller and hence the impact point prediction

may be off due to the added lift / drag of the canard system. Typically, the fire
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Figure 5.26: Cross Range Impact Point Prediction (blue), True Impact Point (red)

Figure 5.27: Down Range Flight of Projectile (blue), Target Location (red)
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Figure 5.28: Cross Range Flight of Projectile (blue), Target Location (red)

control system will come up with a more practical trajectory which would require less

maneuver authority. The error between the target and nominal impact point would

most likely be bounded within the hundreds of meters and not thousands and thus

the impact point prediction would maintain its accuracy. As an example, we will pick

a target that is closer to the ballistic trajectory, {4600, 10}

The trajectory down range and cross range plots are shown in Figures 5.29 and

5.30. The figures show that with the new target location, the projectile can hit the

target with an error of {7.318, 1.392}. This error is much smaller than the previous

simulation, but there is room for improvement.

5.6.2 Using Modified Proportional Navigation Guidance

The previous section shows to hit the target with accuracy and confidence, a simu-

lation of the entire system is necessary. To show the effect of estimation errors on
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Figure 5.29: Down Range Flight of Projectile (blue), Target Location (red)

Figure 5.30: Cross Range Flight of Projectile (blue), Target Location (red)
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(a) Canard Amplitude, δr (blue), δc (green): Full
Flight

(b) Canard Amplitude, δr (blue), δc (green):
Zoomed In

Figure 5.31: Canard Response

the MPN method of guidance, a simulation similar to the previous section 5.6.1 is

performed using the initial conditions. The GPS updates at 10Hz and the guidance

begins at 10s.

We will first look at the regulator output to ensure that the canard is tracking

the commanded signals correctly. Figures 5.31a and 5.31b show the canard angle vs.

time. The plots show the guidance controller requires the canard to actuate for a

good portion of the flight and how well the regulator tracks the commanded signal

in the zoomed in portion of Figure 5.31b. The canard error is plotted in Figure 5.32,

showing that the the canard will track very well throughout the flight and the error is

minimal. Figures 5.33 and 5.37 show that the system will hit the target with errors of

{−0.744321,−0.140927}. The combination of the MPN guidance law, the regulator,

and the QEKF state estimator, accurately guides the projectile to the target.

Figure 5.35 shows the projectile’s effective maneuver to the target from and over-

head view (cross range vs. down range). The overhead view provides insight to the
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Figure 5.32: Canard Error, δr − δc

Figure 5.33: Down Range Flight of Projectile (blue), Target Location (red)
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Figure 5.34: Cross Range Flight of Projectile (blue), Target Location (red)

proportional law. Earlier in the guidance, the projectile puts a higher demand on the

down-range location which causes the projectile to slightly drift to the left. This effect

is also shown in Figure 5.36 which shows the canard phase angle command through-

out flight. In the commanded phase plot, the phase is close to pi
2

. and slight errors

about this location will cause the side motion as seen in the open loop divert tests.

The projectile guidance will eventually correct for this error in the cross range. As in

previous cases with this guidance law, the projectile performs aggressive maneuvers

close to impact. This can be explained by the high gain associated with tgo → 0 term

in Equation (5.3.4). The lift portion of the flight can also be seen in the altitude plot

of the projectile as it flies through the air, shown in Figure 5.37. This section shows

how a simple MPN guidance law out performs the IPP method when coupled with

the regulator and the attitude estimate of the QEKF. The target has been hit with
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Figure 5.35: Flight of Projectile (blue), Target Location (red)

Figure 5.36: Canard Error, δr − δc
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Figure 5.37: Cross Range Flight of Projectile (blue), Target Location (red)

minimal error and we can conclude that the CEP would be dramatically improved.

5.7 Effective Range Area of MPN

Since the MPN has been shown to impact the target in all three cases, we would like

to know the effective controller range for the projectile. Since the full system behaves

similarly to the ideal case for the MPN, we will simulate several runs, moving the

target at each run. The target will vary from 3km to 10km in down range and -3km

to 3km in the cross range. Figure 5.38 shows a plot of the effective range of the

projectile when fired with the initial conditions used through

The color bar on the right of Figure 5.38 shows the guidance controller effec-

tive range. The region is bounded by 3km, 7.8km down range and -2.8km,2.8km

cross range. These limits are caused by a combination of the guidance controller,
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Figure 5.38: Effective Range of the Projectile

the available canard forces, and the projectile aerodynamics. Figure 5.39 shows the

relationship between the effective range and the original ballistic impact point. The

ballistic impact point is shown as a Red X at ≈ 4.5km down range and ≈ 30m cross

range. The area highlighted in Green are the regions where the target miss distance

is less than 10m.

In conclusion, the guided projectile has a much larger effective range and is more

accurate than a ballistic projectile. The above plots only relate to one set of initial

conditions and only represent range improvements over the ballistic trajectory.
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Figure 5.39: Effective Range of the Projectile Overhead View with Target



Chapter 6: Conclusion and Future Work

6.1 Conclusions

In this thesis, an innovative canard control system design approach has been developed

for gun-launched spinning flying munitions to compute an optimal flight path, control

the canard position to maneuver the flight, and eventually hit the target. A new

single-axis canard assembly was built and installed in the fuse located at the front

end of the projectile, and the multivariable regulator and H2 control theory has been

successfully employed to accurately control the canard movement and therefore the

flight of the projectile regardless of the difficulties caused by the persistent spin and

the lack of propulsion thrust.

The persistent spin issue is resolved by oscillating canards according to the spin

rate of the projectile. The phase of the oscillation is controlled to reflect the de-

sire deflection angle of the canards, which determines the heading direction of the

projectile. The solution involves the construction of a flight dynamics model for the

projectile with the proposed canard assembly, the design and implementation of the

multivariable regulator and H2 controller, and the attitude estimation using magne-

tometers, rate gyros, quaternions, and extended Kalman filtering. Due to the lack of

propulsion thrust, the guidance and control law for projectiles is required to be more

sophisticated and robust.

The aerodynamics equations presented in Chapter 2 explain how the canard sys-

tem interacts with the body of the projectile. In the case of missile or airplane, the
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equations of motion can be simplified and linearized around nominal states, whereas

with the spinning projectiles, these simplifications cannot be made due to the complex

aerodynamic behavior. The aerodynamics is crucial in determining the effect of the

canards on the projectile flight path and in understanding how the nonlinear torques

on the canard actuator will pose design constraints. The aerodynamics model is used

in the computer flight simulation of the projectile, and in a hardware-in-the-loop sys-

tem to test and evaluate the tracking regulator with the canard actuation systems

hardware.

In Chapter 3, it has been made clear that by oscillating the canards in a sinusoidal

motion, with a phase offset from projectiles roll angle, a net force can be imparted on

the body of the projectile. The tracking regulator has demonstrated that by using the

proposed control system, the single-axis canard actuation can be used to move the

projectile in any direction on the y-z plane of the projectile. Implementation of the

regulator and H2 controller in a Hardware-in-the-Loop experiment has shown that

not only was the method theoretically feasible, but that the system can be realized

experimentally on a digital processor in a realistic environment.

Traditional methods of state estimation rely costly on inertial measurement units

and linearized equations of motion, but in a spinning projectile, these traditional

methods will not work. In this thesis, it has been proposed a method of estimating

the attitude of the projectile through the use of extended Kalman filtering that utilizes

the quaternions rather than the Euler angles in the state vector. This method is more

promising because the quaternion is computationally more efficient and impervious

to asymptotic divergence. The results of Chapter 4 show how the extended Kalman

filtering based on quaternions is both effective and robust.
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To engage the target, two guidance laws were compared, Impact Point Prediction

and Modified Proportional Navigation. The comparison showed that even though

the IPP will work in an ideal situation with perfect canard tracking and no state

estimation errors, the method will not work in realistic situations that are not ideal.

This thesis shows that by using basic kinematic equations and properly accounting

for the lack of propulsion thrust, the MPN method performs better guidance even in

the presence of error from both the state estimations and the regulator tracking.

6.2 Future Work

All the work presented in this thesis relies on some fundamental assumptions for a

projectile system. These assumptions include rate sensors that do not have bias drift

and the canard system will perform under the aerodynamic loading properly. In order

to improve on the design, bias estimation techniques should be studied to ensure the

QEKF will not diverge with rate sensor drift. Several techniques exist to estimate the

angular orientation using magnetometers, [53, 24, 23, 22]. These techniques could be

used to estimate the bias of the rate sensors, but we must ensure that the bias drift

is observable. There are many papers on this topic, and investigation further would

be necessary to conclude that the aforementioned techniques would be sufficient for

all cases. To verify that the QEKF will work in practice, I plan to implement the

QEKF on a DSP and integrate into a HIL test and follow up with a flight test. The

multivariable regulator controller will be verified in an upcoming wind tunnel test to

ensure the controller works under aerodynamic load.

The guidance laws proposed in this thesis are not robust, so in practice, it may be

necessary to develop more modern control techniques to the guidance problem. The
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ideal guidance law would minimize the control effort from the projectile and improve

the accuracy over the current design. We would also like to add constraints on the

guidance system such as angle of fall or terminal impact velocities, which could be

accomplished with modern control methods.

Another topic that warrants more discussion is GPS. The assumption was made

in this thesis that there are no GPS errors, where in reality, the GPS will have error

in the position and velocity measurements. Future research should include methods

for resolving the position and velocity of the projectile in the presence of these GPS

errors. A possible method to minimize the estimation error due to GPS errors is to

use Differential GPS or inertial measurement techniques to aid in the observations.



Appendix A: Alternative Equations of Motion

A.1 No Roll (Fixed Plane)

The derivation of these equations are based on the 6DOF model of Chapter 2 and

have been simplified using the no-roll plane of motion as the body reference frame.

Therefore, when computing the equations of motion, the roll angle φ = 0. The roll

rate, φ̇fp is maintained in the euler angle equations.
u̇fp

v̇fp

ẇfp

 = 1
m


Ffpx

Ffpy

Ffpz

+


0 −rfp qfp

rfp 0 −pfp
−qfp pfp 0



ufp

vfp

wfp



ṗfp

q̇fp

ṙfp

 =


Lfp
Ixx

Mfp

Iyy
− Ixx

Iyy
pfprfp + r2

fptθ
Nfp
Iyy

+ Ixx
Iyy
pfpqfp + qfprfptθ



φ̇fp

θ̇fp

ψ̇fp

 =


1 0 tθfp

0 1 0

0 0 1
cθfp



Ẋfpe

Ẏfpe

Żfpe

 = λ−1
ψθφ

∣∣∣
φ=0


ufp

vfp

wfp



(A.1.1)
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A.2 Quaternion Equations of Motion

The equations below represent the state equations for a quaternion based 6DOF

projectile. 
u̇

v̇

ẇ

 =
1

m


Fx

Fy

Fz

−


0 −r q

r 0 −p
−q p 0



u

v

w

 (A.2.1)


ṗ

q̇

ṙ

 =


L
Ixx

M
Iyy

+ (Ixx − Iyy) pr
N
Iyy

+ (Iyy − Ixx) pq

 (A.2.2)

q̇ = Ωq

Ω =


0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0


(A.2.3)


Ẋe

Ẏe

Że

 = R (q)−1


u

v

w

R =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 − 2q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − 2q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2


(A.2.4)



Appendix B: Simplified Magnetometer Roll Rate Calculations

The following equations assume the magnetometer measurement are in Gauss and

are obtained from a calibrated magnetometer. From chapter 2 equation, 2.1.9, shows

the relationship of the DCM to the magnetic field of the Earth B.0.1.
Mi

Mj

Mk

 = λψθφ


MN

ME

MN

 (B.0.1)

Where the Mi,Mj,Mk are the body fixed measurements of the magnetic field and

MN ,MN ,MD is the local magnetic field in the NED coordinate system. The expres-

sion for Mj and Mk can be grouped in terms of cφ and sφ:

Mj = cθMDsφ +MN(cψsθsφ − cφsψ) +ME(cφcψ + sθsφsψ)

= sφ (cθMD + cψsθMN + sθsψME) + cφ (−sψMN + cψME)

= Asφ +Bcφ

Mk = cθcφMD +ME(−cψsφ + cφsθsψ) +MN(cφcψsθ + sφsψ)

= sφ (sψMN − cψME) cφ (cθMD + cψsθMN + sθsψME)

= −Bsφ + Acφ

(B.0.2)

Combining the expressions:[
Mj

Mk

]
=

[
A B

−B A

][
sφ

cφ

]
→

[
sφ

cφ

]
=

[
A B

−B A

]−1 [
Mj

Mk

]
(B.0.3)

And making the assumption that ψ ≈ 0 and ME ≈ 0 then B = 0 and solving for φ:[
sφ

cφ

]
=

[
A 0

0 A

]−1 [
Mj

Mk

]
=

[
A−1 0

0 A−1

][
Mj

Mk

]
→ tφ =

sφ
cφ

=
Mj

Mk

(B.0.4)
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Appendix C: Acronyms

Acronym Description

6DOF Six Degree-Of-Freedom

ADC Analog-to-Digital Converter

AIAA American Institute of Aeronautics and Astronautics

AMR Amnisotropic MagnetoResistive

AOA Angle Of Attack

ARL Army Research Laboratory

AWGN Additive White Gaussian Noise

CEP Circular Error Probable

CFD Computational Fluid Dynamics

CG Center of Gravity

COTS Commercial-Off-The-Shelf

CP Center of Pressure

DAC Digital-to-Analog Converter

DCM Direction Cosine Matrix

DSP Digital Signal Processor

EKF Extended Kalman Filter

GN&C Guidance Navigation & Control

GPS Global Positioning System

HIL Hardware-In-the-Loop

IEEE Institude of Electrical and Electronics Engineers

IMU Inertial Measurement Unit
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Acronym Description

IPP Impact Point Prediction

JDAM Joint Direct Attack Muntion

MEMS Micro-Electro-Mechancalical Systems

MPN Modified Proportional Navigation

N4SID Numerical Algorithms for Subspace State Space System Identification

NED North East Down

PC Personal Computer

PCB Printed Circuit Board

PEM Prediction Error Method

PGK Precision Guidance Kit

PGMM Precision Guided Mortar Munition

PWM Pulse Width Modulation

QE Quadrant Elevation

QEKF Quaternion Extended Kalman Filter

SAL Semi-Active Laser

YPR Yaw-Pitch-Roll

ZOH Zero-Order-Hold



Appendix D: Notations

Variable Description

λ Euler Angle Direction Cosine Matrix

R (q) Quaternion Direction Cosine Matrix

{ψ, θ, φ} Euler Yaw, Pitch, and Roll Angles

~ω Body Fixed Angular Rate Vector

{p, q, r} Body Fixed Angular Rate Components

{Xe, Ye, Ze} Projectile Coordinates in Earth Coordinates

{Xt, Yt, Zt} Target Position in Earth Coordinates

{Vxe, Vye, Vze} Projectile Velocities in Earth Coordinates

~V Body Fixed Velocity Vector

{u, v, w} Body Fixed Velocity Vector Components

α Angle of Attack

β Sideslip Angle

Ma Mach Number

~Fxyz Force Vector in Body x,y,z Directions

~Mypr Moment Vector About Yaw-Pitch-Roll Axis

δc Deflection Angle of the Canard

ar Canard Tracking Signal Amplitude

ωr Canard Tracking Signal Frequency

φr Canard Tracking Signal Phase

φi Ideal Tracking Signal Phase

q Quaternion
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