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Abstract 
Spectral Methods for Modeling Microstructure Evolution in Deformation Processing of 

Cubic Polycrystalline Metals 
Hari Kishore Duvvuru 

Surya R. Kalidindi, Ph.D. 
 
 
 
 

The mechanical properties of engineering materials are directly controlled by the 

underlying microstructure, which in turn is governed by the processing methods. The 

complete description of microstructure is extremely complex and is also not required for 

many microstructure-properties relationships of interest. The relevant details of the 

microstructure that influence strongly the elastic-plastic properties of the material include 

the lattice orientation distribution (texture), the grain size and shape distribution, and the 

arrangement and distribution of dislocation networks on the various slip systems in the 

constituent crystals. Of these, the crystallographic texture is perhaps the most important 

aspect of microstructure that has a strong influence on the elastic and the initial yield 

properties of most polycrystalline materials used in the manufacture of engineering 

components. It should also be noted that crystallographic texture is likely to have the 

dominant effect on the inherent anisotropy exhibited by these materials. 

The objective of this thesis is to provide a mathematical framework for the 

development of material databases; capturing the relevant details of the microstructure, 

while paying attention to inherent anisotropy of properties associated with them. Here 

crystallographic texture is the only microstructural parameter that is considered. This 

work is motivated by a new design paradigm called microstructure sensitive design 



 xi

(MSD) which employs statistical description of microstructure and its core feature is the 

efficient spectral representations of microstructure-property-processing linkages.  Using 

the MSD framework as the basis, novel computational methodologies were developed in 

this work to build material spectral databases in single phase cubic polycrystalline 

materials. These databases were critically evaluated in three different cases: 1) To predict 

the effective macroscale elastic properties in perfectly disordered copper polycrystals 2) 

Evolution of the microstructure and the concomitant anisotropic stress-strain response 

during deformation processes in FCC polycrystals and (3) in developing a processing 

recipe to obtain a targeted texture using selected processing techniques.  
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CHAPTER 1: INTRODUCTION 

Materials are so ubiquitous in our lives that we often overlook the revolutionary impact 

they have in shaping modern society.  From the Bronze Age to the Silicon driven 

Information Age, civilization has defined itself and advanced itself by mastering new 

materials.  Today, thanks to the availability of sophisticated software and computational 

resources, materials scientists are able to simulate realistically physical phenomena over a 

vast range of time and length scales.  In this new era, extensive computational modeling 

will complement and reduces the number of trials in traditional methods of trial-and-error 

experimentation. 

In the manufacture of various metallic products (e.g. automotive parts, beverage cans, 

steel sheet panels), metals are subjected to complex deformation processing operations 

such as forging, rolling, extrusion, and drawing that involve large accumulated plastic 

strains. The properties of a product depend significantly on its processing history and on 

the evolution of the underlying microstructure in the material. In order to optimize the 

performance of the final manufactured product, robust and reliable predictive simulation 

tools are necessary. Finite-element techniques (FE) have proven to be very valuable 

simulation tools for the prediction of material flow and stress distributions in a wide 

variety of metal forming processes. A very important aspect of the finite-element 

formulation is the model that is used to describe the material behavior. Currently, most of 

the FE simulations predominantly employ phenomenological constitutive theories for 

material behavior. Such models do not capture accurately the anisotropy inherent to the 

complex microstructures in polycrystalline metals, and are proving inadequate for robust 

design of metal forming or shaping operations. On the other hand, physics based crystal 
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plasticity models have enjoyed remarkable success in predicting anisotropic mechanical 

response of several polycrystalline metals and in predicting the concurrent evolution of the 

underlying microstructure (mainly crystallographic texture) in finite plastic deformation. 

However, crystal plasticity based finite element simulation tools are extremely 

computationally expensive, and have therefore not yet been adopted broadly by the metal 

working industry. 

The objective of this thesis was to develop “Microstructure Databases” to exploit 

material anisotropy to study complex deformation processes and provide guidance to 

materials design.  This work was motivated by a new design paradigm called 

Microstructure Sensitive Design (MSD) for customized design of material 

microstructures for optimal performance [1-5]. MSD employs statistical description of 

microstructure and its core feature is the efficient spectral representation of 

microstructure-property-processing linkages. 

This thesis is focused  only on the crystallographic texture or the orientation distribution 

function as the main microstructural feature, and it is further restricted to single-phase, 

face-centered cubic metals. The organization of this thesis is as follows: 

i. Section 1.1 describes crystallographic texture and its importance. Chapter 2 

briefly describes spectral methods and the spectral representation of 

microstructure using generalized spherical harmonics as basis functions. 

ii. Chapter 3 describes microstructure-property linkages in spectral framework. A 

novel spectral approach is presented for expressing the elastic localization tensors 

for polycrystalline materials with a random distribution of constituent 

orientations. 
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iii. Chapter 4 gives a brief overview of the mathematical theory of crystal plasticity. 

A very detailed account of the database approach for crystal plasticity is presented 

in chapter 5. Two new proposed methods have been critically validated with a 

number of case studies. Chapter 6 describes the application of microstructure 

databases i.e., it gives an idea of how the developed spectral databases can be 

used with the existing finite element tools  

iv. Chapter 7 provides a case study in process design using deformation processing 

operations. Concluding remarks and future work are provided in Chapter 8. 

1.1 Importance and Quantitative Description of Crystallographic Texture 

Crystallographic texture is one of the fundamental microstructural features of all 

polycrystalline materials. It is described by the Orientation Distribution Function (ODF) 

of the crystal lattices. Its importance as a structural parameter results from the effect it 

has on the anisotropy of the physical properties of crystals. If the orientation distribution 

of the crystallites is not random, then the polycrystalline material is likely to be 

macroscopically anisotropic. Some of the well documented effects of anisotropy due to 

crystallographic texture in polycrystalline metals are 

a. A polycrystalline iron sheet with the appropriate texture can be magnetically 

superior to a randomly oriented sheet, used in the production of the ferromagnetic 

sheets for transformers [6].  

b. One of the widely known undesirable effects of crystallographic texture is the 

formation of “ears”, or nonuniform deformation in deep drawn cups [7].  
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c. crystallographic texture has been found to strongly influence the Langford 

parameter, R, (important for sheet forming operations [8, 9]). 

d. crystallographic texture is also expected to strongly influence the springback 

phenomenon observed in sheet forming [9].  

In order to define the crystallographic orientation of an individual crystallite a crystal 

coordinate system KB has to be specified (e.g. given by the crystallographic axes [100] 

[010] [001] in case of cubic crystal). Another coordinate system AK is related to the 

external shape of the sample (e.g. rolling, transverse and normal direction in rolled sheet). 

The crystal coordinate system  is related to the sample coordinate system KA by the 

rotation g which specifies the orientation of the considered crystal 

BK

AB KgK ⋅=        (1.1) 

The orientation g may be specified in many different ways. A very common 

representation is the set of Bunge-Euler angles ϕ1,φ,ϕ2{ } that define a product of three 

rotations about specified rotation axes and the range of all possible orientations (without 

considerations of crystal symmetry) is established to be [6, 10]. 

0 ≤ ϕ1 < 2π ,  0 ≤ φ ≤ π , 0 ≤ ϕ2 < 2π      (1. 2) 

Any orientation expressed in terms of its Euler angles can be represented as a point in a 

three-dimensional coordinate system whose axes are given by the three Euler angles. The 

resulting space is referred to as Euler space [11]. The texture of the material can be 

characterized by the orientation distribution of the volume fraction of crystals in the 

orientation g. 
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( )dggf
V
dV

=        (1.3) 

ODF is normalized such that ( ) 0.1=∫ dggf  and  represents the invariant measure in 

the orientation space and is given by  

dg

212 sin
8

1 ϕφϕφ
π

ddddg =       (1.4) 

Fundamental Zones of Crystal Orientation 

Fundamental Zone (FZ) in the orientation space refers to the set of all physically-distinct 

orientations of a specific crystal system.  A common choice for the FZ of cubic crystals is 

defined by the ‘loaf’ (Fig. 1) in orientation space [12]: 

FZ(O) = ϕ1,φ,ϕ2( ) | 0 ≤ ϕ1 < 2π,  cos−1 cosϕ 2

1+cos2 ϕ 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ≤ φ ≤ π /2, 0 ≤ ϕ2 ≤ π /4

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 

    (1.5) 

 

 

 

Figure 1. Fundamental zone for cubic crystal materials[12]. 
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CHAPTER 2: SPECTRAL ANALYSIS 

 

2.1 Introduction 

Fourier methods or Spectral methods (as they're often referred to) are a class of 

mathematical techniques that have been employed in many fields of science and 

engineering to handle efficiently a very large class of computational problems. For 

example, in image processing, the JPEG format typically reduces the data requirements for 

a bitmap image by 95% [13]; in music digitization, the MP3 format compresses CD audio 

files by over 90%, with higher compression ratios available [14]. Both of these formats 

utilize a spectral representation of the original data to reduce dramatically the information 

storage requirements. 

Spectral methods are a highly technical and well developed area of mathematics. Only the 

key points of spectral methods that are applicable to this work are described here; this is not 

intended to be an exhaustive and comprehensive review of this field. Any periodic function 

 with period can be expressed as a Fourier series and can be compactly written 

as 

)(xfy = l2

        ,           (2.1) ∑
∞

−∞=

=
n

lxin
neaxf /)( π

where the values of the Fourier coefficients  can be computed as: na

....,2,1,0;)(
2
1 / ±±== −

−
∫ ndxexf

l
a lxin

l

l
n

π
.   (2.2)  
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In Eq. (2.1),  is the basis function. The choice of basis functions determines the ease 

or lack of it in solving the difficult problems using the spectral approaches. The three main 

factors that influence the choice of basis functions are:  

inxe

(i) Easy to compute   

(ii) Rapid convergence 

(iii) Complete, which means that any solution can be represented to arbitrarily high 

accuracy by taking the truncation to be sufficiently large.  

Decomposing a given function as in Eq. (2.1) into harmonic components helps us to 

manipulate the individual parts, and subsequent solution of otherwise difficult problems. 

Also, in many cases, use of a very few terms in the Fourier series adequately describe a 

complex function, resulting in an efficient approximation that reduces computing time and 

facilitates visualization in a low number of dimensions [12]. 

 

2.2 Spectral Representation of Orientation Distribution Function 

Spectral methods have been successfully used in the field of materials science by the 

texture community in efficient representation of the crystallographic texture [6, 10], also 

called the Orientation Distribution Function (ODF).  Textures in polycrystalline metals 

can be expressed efficiently in Fourier series as: 

( ) ( )
( )

∑ ∑ ∑=
∞

= = =0l

lM lN

1

      
μ

l
μ

l gTF   gf
)(

1μ

ν

ν
ν                                                   (2.3) 

Where νμ
lF  represent the Fourier coefficients, and  denote a complete set of 

orthonormal basis functions also referred to as generalized spherical harmonics (GSH). 

( )
      
μ

l gT ν
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For example, the ODF for a single crystal microstructure of orientation, , is 

represented simply as 

kg

( kgg − )δ , where ( )δ denotes the Dirac-delta function [15]. Each 

distinct ODF can be represented by a unique set of Fourier coefficients in the infinite 

dimensional Fourier space. Crystal and sample symmetries can be imposed on the GSH 

functions and are represented by dots over μ
lT ν r example if ( )g . 

      
Fo ( )gf  esses cubic 

crystal symmetry (e.g. fcc, bcc metals) and orthorhombic sample symmetry (e.g. 

deformation processes such as rolling, cross-rolling, simple compression, simple tension), 

the GSH functions would be represented as . Right-hand dots denote the crystal 

symmetry and the left-hand dots denote the sample symmetry. In case of cubic-triclinic 

symmetry, GSH functions are represented as . The functions M(l) and N(l) in Eq. 

(2.3) denote the number of terms needed in the enumeration of indices μ and ν; these 

numbers are a function of the index l and are determined by material and sample 

symmetries [6]. 

poss

2 μν
ll  PT

)

)

(gmn

(gl
μν

) 1νϕi e

.:
T l

T&&

(cosφ

Some of the important properties of GSH functions and their relation with Fourier 

coefficients as relevant to this thesis are listed below. The reader is referred to the work 

of Bunge[6, 10] for more detailed analysis of these mathematical relations. 

Generalized Legendre Functions 

The GSH functions represented in terms of Bunge’s Euler angles are given as 

                         (2.4) 

In Eq. (2.4),  functions are generalized Legendre functions and are defined by (μν coslP )φ

( ) μϕiμν eg =
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           (2.5) 

 

 

The  functions are purely real if ( )xPl
μν νμ +   is even, or purely imaginary if νμ + is 

odd. 

Orthonormality Condition 

The symmetric GSH functions are orthonormal and when integrated over all orientations 

in the entire Euler space or the fundamental zone in the Euler space produce the 

following relation: 

( ) ( ) ''
''

' 12
1

ννμμ
νμμν δδδ lllll dggTgT ′+

=∫
&&&&                (2.6) 

where the bar on top indicates a complex conjugate quantity, ijδ represents the Kronecker 

delta function. 

Determination of Fourier Coefficients 

To determine the Fourier coefficients in Eq. (2.3), multiply both sides of Eq. (2.3) with 

the complex conjugate of the GSH functions and integrate over the fundamental zone in 

the orientation space. For example, to determine the Fourier coefficients of cubic-triclinic 

ODF: 

( ) dggTgTFdggTgf
l

lM lN

llll ∑ ∑ ∑ ∫=∫
∞

= = =0

)(

1

)(

1
)()()(

''

'
μ ν

νμμνμνμν &&&&&&
      (2.7) 

Using the orthonormality condition in Eq. (2.6), Eq. (2.7) can be simplified as: 

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )[ ]μμ
ν

νμνμν

μμ

νμ
νμ

μ

+−
−

−+
−

−
−

−−

+−+−×

⎥
⎦

⎤
⎢
⎣

⎡
−+
+−

−

−
=

ll
l

l
22

1/2l

l

x1 x1
dx

d x1 x1

! l ! l
! l ! l

! l 2

 1x
l

ν
μν iP
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( ) ( )∫+= dggTgflF ll
μνμν &&)(12           (2.8) 

If the ODF consists of only a single orientation, using the normalization condition of 

, Eq. (2.8)  can be simplified as )(gf

( ) ( )gTlF ll
μνμν &&12 +=                                                             (2.9) 

If the ODF consists of several different crystals with orientations  and volumes , The 

Fourier coefficients are weighted average values and are given as 

ig iV

( )
( )

∑
∑

+=

i
i

i
ili

l V

gTV
lF

μν

μν

&&

12                    (2.10) 
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CHAPTER 3: MICROSTRUCTURE-PROPERTY LINKAGES IN A SPECTRAL 
FRAMEWORK 

 
One may appreciate better the computational efficiency of the spectral representation of 

microstructure by linking the microstructure and their associated physical properties 

using the spectral methods. For a macroscopic tensorial property of interest, P, its 

dependence on the local crystal orientation is denoted by P(g)  and expressed in Fourier 

series as [6, 10] 

( ) ( )∑ ∑ ∑=
∞

= = =0l

)lM(

1μ

)lN(

1ν

      
μν

l
μν

l gTP   gP &&&                 (3.1) 

The volume averaged value is then computed as [6] 

( ) ( ) ( )∑ ∑ ∑
+

=∫=
∞

= = =0l

)lM(

1μ

)lN(

1ν

      
μν

l
μν

l FP
1l2

1   gd gf gPP                     (3.2) 

where are referred to as the property coefficients and represent the 

microstructure coefficients, and it is explicitly noted that this Fourier representation 

extends to only a finite number of terms [10, 16]. The actual number of terms required in 

the series is governed by the specific properties of interest. For example, it can be shown 

that volume averaged elastic stiffness tensor can be evaluated exactly using lmax = 4, 

whereas volume averaged yield properties require consideration of a much larger number 

of terms [17]. Using the basic idea of microstructure-property linkage presented in Eqs. 

(3.1) –(3.2), elementary bounds on effective elastic stiffness parameters were established 

in prior work in our research group[18]. 

μν
lP μν

lF
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In the present work, a novel spectral approach is presented for expressing the elastic 

localization tensors for polycrystalline materials with a spatial distribution of constituent 

orientations. In particular, the formulated spectral framework is calibrated to results from 

finite element models. The localization tensor that relates the local elastic stress at the 

microscale to the macroscale (averaged) strain imposed on the composite. The proposed 

approach is critically validated through selected case studies in polycrystalline copper. 

The work that is presented in this chapter can also be found in our journal paper [19].  

3.1 Elastic Localization Tensors 

The primary interest here is in establishing a simple and efficient linkage for the average 

local stress experienced by a crystal of selected orientation g. Figure 2 shows a typical 

photomicrograph of a polycrystalline microstructure in a metallic sample. Note that 

crystals of a selected orientation are expected to occur in multiple locations in the 

microstructure, each time with a potentially different neighborhood,  (see Fig. 1). ( )gN

In this work,  is assumed to be large enough to take into account all details of the 

neighborhood that influence the local stress in the crystal of interest. Let each occurrence 

of the crystal of the selected orientation be associated with a neighborhood  and 

experience an average local stress 

( )gN

( ) )(kgN

( ) )(k
ij gσ . We seek here the average stress experienced 

by all of the crystals of a given orientation, and denote it as ( )gijσ . The main hypothesis 

here is that ( )gijσ  can be linked to the imposed macroscale strain tensor as 

( ) ( )( ) klijklij gNgag εσ ,= ,           (3.3) 
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Figure 2.  A photomicrograph depicting a typical polycrystalline microstructure in a 
metallic sample. The meaning of the neighborhood N(g) used in this study is conveyed in 

this figure. 
 
 

 

where ( )gN  denotes the ensemble averaged neighborhood of the orientation of interest, 

and  is the fourth-rank stress localization tensor. Eq. (3.3) was largely motivated by 

the well established generalized composite theories [20-22].  

ijkla

Note that the statistical details of the ( )gN  can be described quantitatively using the 

formalism of n-point statistics [23]. For example, the 1-point statistics of ( )gN  is 

essentially the texture in the sample (given by the Orientation Distribution Function as 

described in Chapter 1). The ODF is denoted by ( )gf ′ and reflects the normalized 
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probability density associated with the occurrence of crystallographic orientation g′  in 

( )gN . Likewise, the 2-point statistics of  ( )gN  can be represented by ( )rggf ′′′,2 that 

reflects the normalized probability density associated with the ordered occurrences of 

orientations  and  in g′ g ′′ ( )gN  separated by a specified vector r. 

Using this formalism, Eq. (3.3) can be recast as 

( ) ( ) ( ) ( )( ) klijklaijσ gggfggfgfgg ε,...,,,,,,, 32 rrr ′′′′′′′′′′′= .  (3. 4) 

In Eq. (3. 4), the stress localization tensor is written in its most general form. The 

functional dependence of  on the details of ijkla ( )gN  can take on extremely complex 

forms. Use of appropriate Fourier representations for the n-point statistics allows us to 

recast Eq. (3.4) as 

( ) ( ) klLijklij Fgag εσ μν ,...,= .    (3.5) 

The dependence of ( ),..., μν
LFgijkla  on the orientation g can also be captured efficiently in 

a Fourier series using GSH functions as  

( ) ( ) ( )∑ ∑ ∑ ′′
′=

L

      
μν

LL
μν
Lijklijkl gTFAga

μ ν

,...   &&νμ               (3.6) 

The problem at hand then reduces to establishing the functional form of ( ),...νμ ′′
′L

μν
Lijkl FA . 

Note also that the effective macroscale elastic stiffness tensor can be computed as 

( ) ( ) ( )
∑∑∑∫=

+
=

′′
′

L

LLLijkl
ijklijkl L

FFA
dggfaC

μ ν

μννμμν
μν

)12(
,...

,...*
LFg, .                             (3.7) 
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An important feature of the spectral representations described above is that it can be 

proven that the coefficients  are zero valued for . This feature results in 

tremendous efficiency in quantifying 

μν
Lijkl A 4>L

( ),...νμ ′′
′L

μν
Lijkl FA  in the minimum number of possible 

terms. Consequently, we will not need all of the microstructure coefficients ; as only 

a finite number of these will impact the computation of the average local stress or the 

effective stiffness tensor using Eqs. (3.5)-(3.7). 

μν
LF

3.2 Case Study: Perfectly Disordered Copper Polycrystals  

A case study to illustrate the main strategy for assembling the database of  

coefficients is presented in this section. As a first demonstration of the proposed 

framework, we restrict our attention here to perfectly disordered random textures in 

copper polycrystals. For this special class of microstructures, the Fourier coefficients 

describing the n-point statistics are fully prescribed and equal to zero in the generalized 

spherical harmonic space. Let  

μν
Lijkl A

( ),...0,00 μν
Lijkl

μν
Lijkl AA =             (3.8) 

denote the needed coefficients for describing the stress localization tensor for the 

perfectly disordered random textures in copper polycrystals. 

The basic strategy for establishing the  is to consider special loading conditions 

that conveniently decouple the coefficients. For example, if we impose an uniaxial strain 

at the macroscale on the perfectly disordered polycrystal, say 

μν
Lijkl A0

oεε =11 with all other 

0=ijε , then Eqs. (3.5) and (3.7) reduce to 
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( ) ( ) oij
o

ij
o gag εσ 11= ,   ,   (3.8) ( ) ( )∑ ∑ ∑=

L

      
μν

L
μν
L

o
ijij

o gTAga
μ ν

1111    &&

where the left superscript o reminds us that we are dealing with the perfectly disordered 

polycrystal with a random texture. Using the standard methods of Fourier analyses 

described in chapter 2 allow us to express the coefficients of interest as 

( ) ( )∫
+

=
FZ

μν
Lij

o

o

μν
L

o
ij dggTgLA &&σ

ε
)12(

11 .        (3.9) 

FZ denotes the fundamental zone of distinct orientations for the selected class of textures. 

Using Eq. (3.9),  can be computed numerically (e.g. the Simpson method [24]) if 

the local stresses in grains of different orientations distributed throughout the FZ are 

known. In the approach proposed here, these local stresses are obtained from a 

micromechanical finite element model. 

μν
L

o
ij A11

Figure 3 shows a finite element model of a copper polycrystal developed in this study 

for extracting the information mentioned above. This model comprised 50653 8-noded 

three-dimensional solid elements (C3D4 elements; ABAQUS [25]), where each element 

is assumed to represent one single crystal. The local single crystal elastic stiffness in each 

element is defined as  

( ) ( ) ( )∑
=

−−+++=
3

1r
drcrbrar441211bcadbdac44cdab12abcd gggg2CCCδδδδCδδC C g   (3.10) 

where gij represent the components of the transformation matrix from the local crystal 

reference frame to the global (sample) reference frame. For copper, C11 = 168.4 GPa, C12 

= 121.4 GPa, and C44 = 75.4 GPa [26]. 
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Figure 3. A micromechanical finite element model of a copper polycrystal subjected to a 
macroscale shear strain in 2-3 plane. Each element in the finite element mesh is assumed 
to represent one single crystal. The contours depicted are for the local shear stress, σ23. 

 
 

 

A set of 35301 crystal orientations were selected in the FZ (see Eq. (1.5)) such a way that 

they facilitated a convenient numerical evaluation of the integral in Eq. (3.9) using a 

Simpson method. Using this basic set of 35301 orientations, we created a set of 50653 

orientations by repeating some of the orientations in the original set in such a way that the 

final texture for the set of 50653 orientations was as close to a random texture as 

possible. The set of 50653 orientations were then assigned to the 50653 elements of the 

finite element model in two steps: (i) First, the basic 35301 orientations contained in the 

set of the 50653 orientations were assigned randomly to the interior elements of the finite 

element model (an element is considered an interior element if it is separated from the 

boundary by at least two other elements). (ii) Second, the leftover 15352 orientations 
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were assigned randomly to the remaining elements of the mesh. This process 

accomplished two goals. First, the set of 35301 orientations needed in numerical 

integration of Eq. (3.9) did not constitute a random texture, but the set of 50653 

orientations did constitute a random texture. Second, it allowed us to embed the set of 

35301 orientations of interest in the interior of the finite element model. The model was 

then subjected to boundary conditions that produced the desired uniaxial strain at the 

macroscale. The local stresses in the interior elements computed by the finite element 

model were mapped back to the assigned crystal orientations in these elements and 

stored. The procedure described above was repeated 10 times, each time with a different 

but random assignment of the crystal orientations to the elements of the finite element 

model. The stress results for each crystal orientation from the different finite element runs 

were averaged to take care of any local texturing effects and then used in Eq. (3.9) to 

obtain the . To establish the complete set of coefficients , the procedure 

described above was repeated for a total of six different strain states, where each state 

was defined with a single non-zero strain component (three normal strains and three shear 

strains). 

μν
L

o
ij A11

μν
Lijkl A0

The values of selected  coefficients computed for copper polycrystals are 

shown in Table 1 (note that the  coefficients are complex numbers). To validate the 

 coefficients, we created another finite element model comprising of 1000 

elements. A set of 1000 crystal orientations corresponding to a random texture were 

produced and assigned randomly to the elements of the validation finite element model. 

The predictions for the overall stiffness from the validation finite element model are 

μν
Lijkl A0

μν
Lijkl A0

μν
Lijkl A0

compared against the predictions from the spectral linkage developed here are presented 
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in Table 2. The components of the volume averaged stiffness tensor and the inverse of the 

volume averaged compliance tensor (these make appearances in the elementary bounding 

theories) are also presented in this table. It is seen that the predictions from the finite 

element model are bracketed by the elementary bounds and that the predictions from the 

spectral linkages developed here are in excellent agreement with the finite element 

predictions. 

 

Table 1: Values of selected  coefficients for copper polycrystals computed using 
ed in this paper.

 
 

 

 
μν
Lijkl A0

the spectral framework outlin  The units of these coefficients are GPa. 

000 205.16 205.16 204.83 51.44 50.95 50.81

411 -164.19 -163.58 -442.65 -4.81 20.00 19.92

412 0.03 - 0.03 i  -0.15 - 0.02 i   0.02 i  -0.04 + 0.01 i   0.03 i 0.02 - 0.02 i

413  -0.03 - 0.02 i 0.01 - 0.02 i  0.02 i 0.04 + 0.01 i  0.03 i  -0.02 - 0.02 i

414 177.20 + 0.07 i  -177.05 - 0.02 i 0.05 - 0.53 i 0.03 - 0.01 i -157.34 15.59 - 0.03 i

415 177.20 - 0.07 i  -177.05 + 0.02 i 0.05 + 0.53 i 0.03 + 0.01 i -157.34 15.59 + 0.03 i

416 0.03 + 0.14 i  -0.06 - 0.06 i  -0.06 - 0.07 i  0.02 i  -0.03 - 0.01 i  -0.03 - 0.02 i

417  -0.03 + 0.14 i 0.06 - 0.06 i  -0.06 + 0.07 i 0.025 i 0.03 - 0.01 i 0.03 - 0.02 i

418  -232.16 - 0.06 i  -232.34 + 0.04 i 0.23 + 0.02 i 208.50 - 0.02 i 0.13 - 0.06 i 0.08 - 0.02 i

419  -232.16 + 0.06 i  -232.34 - 0.04 i 0.23 - 0.02 i 208.50 + 0.02 i 0.13 + 0.06 i 0.08 + 0.02 i

A0
1111( )μνL A0

2222

μν
Lijkl A

0

A0
2323 A0

1313 A0
1212A0

3333
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Table 2: The predictions of the components of overall stiffness from the validation finite 
element model and the spectral linkages developed in this paper (units are in gpa). The 
components of the volume averaged stiffness tensor ( ijklC ) and the inverse of the volume 

averaged compliance tensor ( 1
ijklS− ) are also presented is table. 

 

in th

 

1111 2222 3333 2323 1313 1212 1122 1133

210.0 210.0 210.0 54.7 54.6 54.6 100.7 100.6

204.9 204.9 205.3 51 51.7 51.8 102.7 103

205.2 205.2 204.9 51.4 50.9 50.8 102.8 102.9

192.3 192.3 192.4 40.1 40 40 112.2 112.1
1

ijklS−

ijklC

modelFEMValidationC*
ijkl

methodSpectralC*
ijkl

 

 

s a final check we also compared the predictions of the local stresses from both the 

1

11

11

11 11

A

finite element models and the spectral linkages developed here (Eq. (3.9)). From the first 

validation model involving a copper polycrystal with an overall random texture and 

subjected to an uniaxial strain along the e -axis, sorted all of the 1000 crystal orientations 

in the order of increasing σ  values. In Table 3, the five crystal orientations that 

produced the highest σ  values, the five crystal orientations that produced the 

intermediate σ  values, and the five crystal orientations that produced the lowest σ  

values, according to the predictions from the spectral linkages developed in this study are 

presented. Also shown in the table for comparison are the local stresses in the same 

selected crystals predicted from the validation finite element model. The finite element 

predictions are shown as an average with a standard deviation after running the finite 

element model 10 times, where each run represents a different but random assignment of 
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the same set of crystal orientations to the elements of the finite element model. It is 

clearly seen from Table 3 that the spectral linkages developed here track extremely well 

the orientation dependence of local stresses in individual crystals. 

 
 

Table 3. Predictions of the local crystal stresses (σ11) experienced by individual crystals 
from the finite element models and the spectral method. The overall texture in the 

validation finite element model represents a random texture. 

 

 

 
Phi1 Phi Phi2 Spectral FEM

Crystals with high stresses
40.5 61.4 21.5 228.4 225.1 ±  7
220.5 70.9 30.5 228.1 232.8 ± 7.7
220.5 61.4 21.5 228.0 221.6 ± 8.4
40.5 70.9 30.5 228.0 232.1 ± 14.3
49.5 50.4 4.3 227.9 224.6 ± 7.9

Crystals with medium stresses
193.5 53.9 30.5 213.9 213.3 ± 9.5
211.5 77.9 12.8 213.9 211.1 ± 9.6
76.5 50.9 12.8 213.9 216.9 ± 9.1
139.5 69.3 4.3 213.9 213.9 ± 10.9
301.5 69.3 4.3 213.9 212.1 ± 14.3

Crystals with low stresses
274.5 85.9 4.3 174.0 171.5 ± 8.7
94.5 85.9 4.3 173.9 177.3 ± 10
265.5 85.9 4.3 173.9 172.4 ± 7.7
274.5 86.0 12.8 173.9 179.6 ± 5
94.5 86.0 12.8 173.9 176 ±  12.4  
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CHAPTER 4: CRYSTAL PLASTICITY 

Crystal Plasticity is the study of plastic deformation in single crystal and polycrystalline 

materials while taking into account explicitly the details of physics and geometry of 

deformation at the crystal (also called grain) level.  

In metals, at low homologous temperatures, crystallographic slip and deformation 

twinning are the primary observed modes of plastic deformation. Both these modes of 

plastic deformation take place on characteristic planes, i.e. slip planes or twinning planes, 

in characteristic directions, i.e. slip directions or twinning directions. The orientations of 

the characteristic planes and directions are a function of the geometry of the crystal. The 

present work addresses plastic deformation of FCC crystals by crystallographic slip 

alone. As a crystal deforms by slip, it undergoes lattice rotation. These lattice rotations 

are the cause of development of preferred orientations in polycrystalline metals. In FCC 

crystals, such as Copper, Aluminum and Nickel, the slip planes are close packed 

octahedral planes (Fig. 4). There are three slip directions in each slip plane, along the 

diagonals of the cube planes. As there are four different orientations of slip planes, there 

are therefore a total of 12 possible slip systems which can take part during the plastic 

deformation. The slip systems are defined using standard Miller index notation by (111) 

planes and {110} directions and the 12 possible slip systems in FCC crystals are listed in 

table 4. 
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Figure 4. Schematic of typical slip systems of face-centered cubic crystals [26]. 

 

 

Table 4. Slip systems in FCC crystals 

 

 

 Slip Plane 
Slip 

Direction 

1. }111{  ]110[
−

 

2. }111{  ]101[
−

 

3. }111{  ]011[
−

 

4. }111{
−

 ]110[  

5. }111{
−

 ]101[  

6. }111{
−

 ]011[
−
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7. }111{
−−

 ]110[
−

 

8. }111{
−−

 ]101[  

9. }111{
−−

 ]011[  

10. }111{
−

 ]110[  

11. }111{
−

 ]101[
−

 

12. }111{
−

 ]011[  

 

In general, all polycrystal plasticity models are made up of two parts: a set of crystal 

equations describing properties and orientations, and a set of equations that link 

individual crystals together into a polycrystal. The next two sections describe the crystal 

plasticity kinematic framework and some of the polycrystal averaging schemes. 

 

4.1 Single Crystal Kinematics  

The deformation behavior of grains is determined by a crystal plasticity model that 

accounts for plastic deformation by crystallographic slip and for the rotation of the crystal 

lattice during deformation. The crystal plasticity modeling framework [27] used in this 

study is briefly summarized here using a notation that is now standard in modern 

continuum mechanics textbooks. For finite deformations, the total deformation gradient 

tensor (F) can be decomposed into elastic and plastic components as [28] 

F = F* Fp       (4.1) 
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where F* contains deformation gradients due to both elastic stretching as well as the 

lattice rotation, while Fp denotes the deformation gradient due to plastic deformation 

alone. The constitutive equation for stress in the crystal can be expressed as [27]: 

[ ]**= ECT , T* = F * −1 det F*( )T{ }F * − T ,     E * =
1
2

F *T F * − 1{ } (4.2) 

where  is the fourth-order elasticity tensor, T* and E* are a pair of work conjugate 

stress and strain measures, and T is the Cauchy stress in the crystal. The evolution of Fp 

can be expressed in a rate form as 

C

  ,   ppp FLF =& ∑=
α

ααγ o
p SL & ,  ,  (4.3) ααα

ooo nmS ⊗=

where  is the shearing rate on the slip system α, and mαγ& o
α and no

α  denote the slip 

direction and the slip plane normal of the slip system, respectively, in the initial unloaded 

configuration. The shearing rate on the slip system is dependent on the resolved shear 

(τα) on the slip system and the slip resistance (sα) of that slip system, and can be 

expressed in a power-law relationship [29]: 

  )sgn(
s

m/1

o
α

α

α
α ττγγ && = ,                   (4.4) αατ o

* ST •≈

In Eq. (4.4), oγ&  denotes a reference value of the slip rate (taken here as 0.001 sec-1) and 

m represents the strain rate sensitivity parameter (taken here as 0.01 to capture behavior 

of most metals at low homologous temperatures). In the present study, for simplicity, we 

have adopted a simple saturation type hardening law to describe the evolution of the slip 

resistances:  
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β
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α

α γ&&

a

ss
s1hs o .     (4.5) 

The material parameters in Eq. (4.5) for annealed OFHC copper were estimated by curve 

fitting the Taylor predictions to experimental measurements in a previous study [27]. The 

values obtained were . Note that the hardening law 

used here does not reflect any latent hardening (i.e. it assumes equal hardening of all slip 

systems). The lattice spin  in the crystal is given by  

25.2,MPa148,MPa180 === ash so

*W

p* WWW −= app ,   ( )pTpp

2
1 LLW −= ,     (4.6) 

The numerical procedures for the integration of this constitutive model have been 

described in detail in prior literature [27]. 

 

4.2 Polycrystal Homogenization Theories 

The polycrystal constitutive theory of plasticity treats the plastic properties of a 

polycrystalline aggregate as averages over all of the single crystals. Several different 

approaches have been taken in the literature for modeling the behavior of polycrystal 

materials. Most of the polycrystalline simulations have used highly simplistic 

approximations, e.g. that each grain deforms homogeneously, and yet arrived, at least for 

moderate strains, at useful results. There are two extreme assumptions, one proposed by 

Sachs [30] and the other proposed by Taylor [31].  Sachs proposed that the single crystals 

experience the same state of stress as the aggregate. This condition satisfies equilibrium 

across the grain boundaries, but does not satisfy compatibility between the grains and 
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Sachs model leads to inaccurate texture predictions compared to that of the experimental 

results. Taylor proposed a simple isostrain model (strains are the same in all grains and 

are equal to the macroscopic strain) for predicting the macroscopic yield strength of 

polycrystals, and this model with relatively minor improvements continues to be the most 

widely used theory even today.  Based on geometric considerations, a modified version 

of the Taylor model that relaxes some components of the imposed deformation was 

developed by Kocks and Canova [32].  The theory of Taylor was expanded upon by 

Bishop and Hill to include multi-axial stress states and yielded the Taylor-Bishop-Hill 

model [33]. Later, the Taylor model was extended to  viscoplastic deformations by 

Hutchinson [34] and to finite elastic-viscoplastic deformations by Asaro and Needleman 

[29]. All of them are generally referred to as the Taylor-type models. In these models, 

each individual grain in the representative volume element (RVE) of the polycrystal is 

treated completely independent of all the other grains in the polycrystal. 

The other type of models are micro-mechanical finite element (FE) models which 

take the grain interactions into account in modeling the deformations of an aggregate of 

polycrystals [27, 35-38]. In these micromechanical models, the weak form of the 

principle of virtual work (including equilibrium and the boundary conditions) is satisfied 

in a given domain, discretized into a finite element mesh, by evaluating the constitutive 

response at specific locations in each element called integration points. A polycrystalline 

aggregate is discretized into a finite element mesh, such that each grain is modeled by 

one or more finite elements to allow for non-uniform deformations between the grains 

and within the grains. Micro-mechanical finite element models are, in principle, the best 
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models for the simulation of plastic deformation of polycrystalline materials and for the 

prediction of deformation textures.  

Both the Taylor-type models and micro-mechanical FE models have been 

extensively validated by direct comparisons with experiments by several research groups 

[39-46]. It is now well accepted in literature that the Taylor-type crystal plasticity models 

provide good predictions for the anisotropic stress-strain curves exhibited by cubic metals 

along with the evolution of the underlying crystallographic texture in a broad range of 

deformation paths, although the texture predictions are usually much sharper than the 

experimentally measured ones. The predictions from micro-mechanical FE models tend 

to predict more diffuse textures that are in better agreement with experiments, but 

continue to lack the desired accuracy at the scale of individual single crystals [44, 47]. 

Although the crystal plasticity models have shown tremendous potential in capturing well 

the overall anisotropic response of polycrystalline materials subjected to a broad range of 

deformation paths while also capturing the important details of the evolution of the 

averaged crystallographic texture in the sample, their usage has been limited to only a 

small number of studies in simulations of deformation processing operations in the metal 

shaping industry. 

 The main factor hindering the much wider use of these models is the high computational 

cost associated with them; the requirement for high computational resources persists in 

spite of the successful development and implementation of very efficient numerical 

schemes for these calculations. For example, in a finite element simulation of the deep 

drawing of a car body panel, several tens of thousands of elements need to be used, each 

representing an entire polycrystal [48]. It is practically impossible to use crystal plasticity 
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finite element method for each of them. Consequently, there are several ongoing efforts 

in current literature to develop novel techniques that would possess the predictive 

capabilities of the Taylor-type model, but would require significantly less computational 

resource [38, 49-51]. In many of these approaches, the underlying physics governing the 

evolution of the crystallographic texture in deformation processes continues to be 

provided by the Taylor-type model (actually the proposed methods are often calibrated 

with Taylor-type model to ensure good agreements). 
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CHAPTER 5: DATABASE APPROACH FOR CRYSTAL PLASTICITY 

As remarked earlier in chapter 4, the current crystal plasticity models demand an 

extremely high computational effort. Furthermore, one finds in crystal plasticity 

simulations of deformation processing operations that same or similar computations are 

repeated several times given that every material point under consideration has many 

individual crystals, and there are several points of interest in the deformation processing 

operation. This raises the obvious question of whether it would be possible to capture the 

solutions from the crystal plasticity models in an efficient representation, such that one 

might do the necessary computations once and store the results in an efficient database 

that can be used to perform all subsequent computations. Towards this objective, two 

different mathematical frameworks namely: (1) Bunge-Esling approach and (2) Spectral 

Crystal Plasticity has been formulated. Detailed descriptions of these two approaches can 

be found in our published papers [52, 53]. However, to make this thesis report as self 

contained as possible, key features of these two approaches from those two papers [52, 

53] are reproduced here. 

5.1 Bunge-Esling Approach  

About two decades ago, Bunge and Esling [54] put forth a novel concept for capturing 

and simulating crystallographic texture evolution during large plastic strains on metals 

using an efficient spectral representation of the orientation distribution function. 

Although this methodology indicated promise, it was never evaluated critically by these 

authors, possibly because of the high demands it placed on computational resources. In 

this thesis, the Bunge and Esling concept is revisited and evaluated critically for the first 

time for a range of deformation processes and starting textures.  
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Utilizing the spectral representations of the ODF described in chapter 2 together 

with a framework proposed by Clement and Coulomb [55] for representation of crystal 

lattice rotations  as a vector flow field in an eulerian angle space, Bunge and Esling [54] 

derived the following simple relation to represent the evolution of texture in a given 

deformation process (with a prescribed macroscopically imposed velocity gradient 

tensor):  
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∑ ∑ ∑
∞
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d
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     (5.1) 

In Eq. (5.1), η is an appropriate metric of the deformation process (for example, for 

rolling   η could represent the compressive strain), and the coefficients μνσρ
λlA~  are constant 

for a given deformation process independent of the crystal lattice orientation. Following 

the original derivation of Eq. (5.1) by Bunge and Esling [54], one can recognize that the 

coefficients μνσρ
λlA~  are essentially Fourier coefficients in the spectral representation of the 

texture flow field in the orientation space for a given deformation process. 

As with any spectral representation, one can indeed write an analytical expression for 

these coefficients. However, as remarked by Bunge and Esling [54], the derivation of an 

analytical expression for μνσρ
λlA~  requires the use of tedious calculus involving field theory 

and Clebsch-Gordon coefficients. To circumvent this challenge, Bunge and Esling [54] 

suggest that the coefficients μνσρ
λlA~  be established numerically for a specified deformation 

process by calibrating Eq. (5.1) with predictions from a Taylor-type model for a large 

number of single crystal orientations. The calibration procedure suggested by these 

authors is essentially a linear regression analysis to find the coefficients μνσρ
λlA~  by 
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minimizing the error in Eq. (5.1) for a very large number of single crystal orientations, 

for a given deformation process. Although they describe this numerical approach for the 

computation of μνσρ
λlA~  in detail, they actually do not report performing such a calculation 

or any results of such a calculation. They specifically cite that for expansions of the 

Fourier series to include terms up to l = 22 for cubic orthorhombic ODF, one would need 

to handle 185 μν
lF  terms and 34,225 (= 1852) independent μνσρ

λlA~  terms. In this work, we 

have included the terms in the Fourier expansion up to l = 17 lting in 83 independent 

μν
lF  terms and 6972 (= 832) independent μνσρ

λlA

, resu

~  terms. 

   Numerical Procedure 5.1.1

Recognizing that 11
0F is always equal to  recast Eq.  1.0 [6], it was found convenient to

( )

(5.1) as  
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μν η lll BFAF =Δ ∑ ∑
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+0   (5.2) 

In Eq. (5.2), ηΔ

0  

en

 is a suitable increm  the mation process being ent of specific defor

modeled, ( )σρ
λF denote the Fourier coefficients of the initial ODF, ( )ημν ΔlF  denote the 

Fourier co ts of the ODF after an incremental deformation of effici ηΔ , and μνσρ
λlA  and 

μν
lB  are constants for a given deformation process that are independent of the texture. 

hermore, note that in Eq. (5.2),  1,1,0Furt === ρσλ  is excluded (because 11
0F is 

always equal to 1.0). Finally, it is implic t it can be used in a recu e 

manner: 

it in Eq. (5.2) tha rsiv
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where N is an integer and   and  are constants independent of η. μνσρ
λlA μν

lB

To establish the constants   and  , we selected a set of  1000 single crystal 

orientations that are distributed uniformly in the fundamental zone of the cubic-

orthorhombic Euler space, where each of these orientations is represented by g(k). For 

each of these orientations, the lattice orientation after an incremental strain in a selected 

deformation process is computed using the Taylor-type model described in chapter 4. The 

corresponding final orientation is denoted by g(k)’. The deformation itself is defined 

through the velocity gradient tensor L. Two deformation processes: (i) plane strain 

compression (PSC), and (ii) simple compression (SC) are investigated. The 

corresponding velocity gradient tensors are given as: 

μνσρ
λlA μν

lB
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For each of the selected 1000 grains in this analyses, the Fourier coefficients 

corresponding to the initial orientation, ( ) )()0( k
lF μν

μν
lB

, and those corresponding to the 

orientation predicted by the Taylor-type model after an incremental strain in the selected 

deformation process, ( , are computed. A χ2 technique has been used to 

extract the values of the constants  and  that would provide the best possible fit 

) )'()( k
lF ημν Δ

lAμνσρ
λ



 34

to Eq. (5.3) for all 1000 single crystal orientations selected. For this purpose, an error 

function is defined as:  

    (5.5) ( ) ( )( )
( )( )( )( )
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= = =
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= = =
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In the χ2 technique, the error function is minimized by setting its derivatives with each of 

the desired parameters (constants  and ) to zero. Because Eq. (5.5) is quadratic 

in these parameters, the derivatives are linear, and therefore this technique results in a set 

of simultaneous linear equations that can then be solved for the desired parameters  

and . 

μνσρ
λlA μν

lB

μνσρ
λlA

μν
lB

5.1.2 Computation of  and  μνσρ
λlA μν

lB

The first step in actually performing the computations described in the previous section is 

the truncation of the Fourier series to a finite number of terms. The numerical approach 

described above requires truncation of l and λ in Eq. (5.2).  In this study,  and  

constants were computed by truncating the series to λ = l = 17 (a total of 6972 constants 

for each deformation process) for the two different deformation processes defined in Eq. 

(5.4). These are denoted as 

μνσρ
λlA μν

lB

( )PSClAμνσρ
λ  and ( )PSClB μν  for plane strain compression and as 

( )SClAμνσρ
λ  and ( )SClB μν  for simple compression, respectively. These constants were 

computed with Δη = 0.10.  

If the Fourier representation is extended to an infinite (very large) number of terms, then 

Bunge and Esling’s theory actually expects the representation shown in Eq. (5.2) to be 

exact. Noting that  and  represent rotation tensor fields associated with texture μνσρ
λlA μν

lB
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evolution, it should be possible to prove that beyond a certain value of λ and l, the 

constants   and  are identically equal to zero (similar analyses have been 

presented for other tensorial properties [6], but not for these constants). 

μνσρ
λlA μν

lB

( lF μν

However, at λ = l = 17, the values of  and  are non-zero, indicating that we 

have not yet reached the required number of terms where the representation in Eq. (5.2) 

becomes exact. We therefore need to critically evaluate the associated truncation errors. 

In an attempt to evaluate the goodness of fit obtained by the χ2 technique described 

above, we have also performed the computations by truncating the Fourier series to lower 

values of λ and l (i.e. lower than 17). With each choice of truncation level, we obtained 

different values of the constants  and . One convenient method of evaluating 

the truncation errors involved is to represent the crystal lattice rotation due to the 

application of Δη increment of the specified deformation process as a vector in the 

Fourier space, where the tail of the vector represents the initial crystal orientation and the 

head of the vector represents the orientation in the deformed state. For example, if the 

vectors are drawn with as the tail of the vector and with 

μνσρ
λlA

lB

μν
lB

μνσρ
λlA

) )k

μν

()0( ( ) )'()( k
lF ημν Δ as the 

head of the vector for 200 crystal orientations deformed in plane strain compression 

(rolling), we would obtain a vector flow field that represents the lattice rotation tensor 

field predicted by Taylor-type model; this flow field is shown in Figure 5 in the first three 

dimensions of the Fourier space using black colored vectors. Using the values of 

( )PSClAμνσρ
λ  and ( )PSClB μν obtained from the χ2 technique described above, we also 

computed the Fourier coefficients of the deformed ODF for the same initial orientations 

using in Eq. (5.2). Such vector fields, recomputed using the obtained values of ( )PSClAμνσρ
λ  



 36

and ( )PSClB μν  (note that these have different values when truncated to different values of l 

and λ), are also plotted in Figure 5 for the first three dimensions of the Fourier space. 

Ideally, when the truncation errors are insignificant, the recomputed vector field would 

match well with the vector field of the Taylor-type model. A close examination of Figure 

5 (a) reveals that the red colored vectors representing the spectral model predictions 

truncated at l = 4 do not match well with the Taylor-type model predictions.  This error 

gets reduced significantly with increasing the number of terms in the Fourier 

representation as shown in Figure 5(b). In Figure 5 (b), the Taylor-type model predictions 

almost overlap with the spectral model predictions truncated at l = 17 (blue colored 

vectors). 

In order to quantify the goodness of fit obtained by the χ2 technique, an error 

estimate has been defined as: 
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with 
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Taylor model Taylor model 
Spectral model l = 17 Spectral model  l = 4 

 

 
 
 
 

In the error definition in Eq. (5.6), the numerator represents the average distance between 

the Taylor-type model predictions and the recomputed values from Eq. (5.2) for the 1000 

crystals used in the χ2 technique, while the denominator represents the average length of 

the 1000 vectors corresponding to the Taylor-type model predictions. In computing the 

average error according to Eq. (5.6), we have, in some cases, used different values of lmax 

and λmax (see equations 5.7 and 5.8). λmax represents the truncation level in the Fourier 

expansion of the ODF used in Eq. (5.2). The average error computed by Eq. (5.6) is 

 
 
 
Figure 5. Comparison of the vector flow fields, representing the crystal lattice rotations 
 In the Fourier space, for fcc crystals in an increment of rolling reduction as predicted by the 
Taylor model and the spectral method. The flow fields are shown only in the three dimensional 
sub-space corresponding to the first three terms in the Fourier representation of texture. (a) 
Spectral method truncated at l = 4. (b) Spectral method truncated at l =17 terms in the Fourier 
representation of texture. (a) Spectral method truncated at l = 4. (b) Spectral method truncated 
at l =17. 
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plotted in Figure 6 as a function of the number of terms used in the Fourier expansion for 

three different cases: (i) lmax = λmax ( ii) lmax= 8 and  (iii) lmax = 4. Also shown inset in 

Figure 6 is the correspondence between the number of independent Fourier coefficients 

and λmax. As can be seen from the figure, there is substantial truncation error even after 

including large number of terms in the Fourier representation. However, it is also clear 

the average error continues to drop with increasing number of terms in the Fourier 

representation. Most importantly, it is quite clear that in order to keep error within 

acceptable levels, one needs to select λmax significantly larger than lmax.  
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Figure 6. The variation of the average error, for the selected 1000 grain orientations 
spread in the fundamental zone, with the number of terms included in the Fourier 
representation. This error reflects the truncation error associated with limiting the 

Fourier expansion to the selected number of terms. 
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5.1.3 Predictions of Deformation Textures to Large Strains 
 

The accuracy of Eq. (5.2) to predict deformation textures at large strains at the truncation 

level described earlier is evaluated. For this purpose, we have selected a random initial 

texture produced by selection of 1000 grain orientations distributed evenly in the cubic-

orthorhombic fundamental zone of the Euler angle space. Fourier coefficients 

corresponding to the initial texture were computed by averaging the Fourier coefficients 

of the 1000 selected grain orientations. The Fourier coefficients of the deformed texture 

in plane strain compression after a true compressive strain of -1.0 were computed by 

recursive use of Eq. (5.3), ten times, using the ( )PSClAμνσρ
λ  and ( )PSClB μν  constants 

computed in the previous section  (truncated to λmax = lmax = 17). Pole figures 

corresponding to this final texture were then plotted in Figure 7(a). For comparison, the 

pole figures plotted using the Taylor-type model predicted grain orientations for the same 

1000 initial grain orientations and the same total strain are presented in Figure 7(b). It is 

seen that the pole figures predicted using ( )PSClAμνσρ
λ  and ( )PSClB μν  in Eq. (5.2) are in 

reasonable agreement with the Taylor-type prediction. A similar calculation was also 

performed for simple compression to a strain of -1.0 using ( )SClAμνσρ
λ  and ( )SC

μν
lB . The 

resulting pole figures from Eq. (5.2) are presented in Figure 8(a), while the corresponding 

Taylor-type prediction is shown in Figure 8(b). The simulation of plane strain 

compression deformation was repeated with a different initial texture. The deformation 

texture predicted by the Taylor-type model for simple compression after a true strain of -

1.0 as the starting texture for a plane strain compression simulation was used. The 

calculated pole figures using ( )PSClAμνσρ
λ  and ( )PSClB μν  in Eq. (5.2) for this fiber-type 
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initial texture and the corresponding Taylor-type prediction are shown in Figures 9(a) and 

9(b), respectively. Once again, it is observed that the predictions from Eq. (5.2) are in 

reasonable agreement with the Taylor-type calculations, indicating that the simple 

formalism expressed by Eq. (5.2), as proposed by Bunge and Esling, is indeed capable of 

capturing the main aspects of deformation texture evolution as predicted by the Taylor-

type model. It should also be noted that the spectral method described here can be made 

to better capture the predictions of the Taylor model by further increasing the number of 

terms in the  and  matrices. μνσρ
λlA μν

lB
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Max = 5.792 Max = 7.796 Max = 4.361 

(a) Taylor-type model 

 

Max = 4.783 Max = 4.083 Max = 6.149 

(b) Spectral method 

 
 
Figure 7. Comparison of the (111), (100), and (110) predicted pole figures in plane strain 
compression of fcc metals after a compressive true strain of -1.0. The starting texture for 
These simulations is shown in Figure 3. (a) Taylor model predictions. (b) Spectral method 
predictions. 
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Max = 3.481 Max = 5.902 Max = 2.303 

(a) Taylor-type model 

Max = 2.293 Max = 5.422 Max = 3.146 

(b) Spectral method 

 
 
 
Figure 8. Comparison of the (111), (100), and (110) predicted pole figures in simple 
compression of fcc metals after a compressive true strain of -1.0. The starting texture for 
these simulations is shown in Figure 3. (a) Taylor model predictions. (b) Spectral method 
predictions.  
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Max = 6.034 Max = 3.179 Max = 6.036 

(a) Taylor-type model 

(b) Spectral method 

 
 
 

Max = 3.695 Max = 3.001 Max = 3.592 

Figure 9. Comparison of the (111), (100), and (110) predicted pole figures in plane strain 
compression of fcc metals after a compressive true strain of -1.0 with the starting texture 

shown in Figure 5(a). (a) Taylor model predictions. (b) Spectral method predictions.  
 
 
 
From this critical validation of Bunge-Esling approach for crystal plasticity, some of the 

observations are  

i. Though the concept showed great promise, evaluation of the higher-order terms in 

this specific Fourier representation demands high computational cost. 

ii. Although the evaluation of the Fourier coefficients in these representations is a 

one-time activity, the computational power needed to establish the high-order 

coefficients was prohibitively high, as it involved the inversion of a very large 
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matrix (in fact the Fourier representations in this work were truncated to l = 17, 

because that was the limit of the computational resources available for this study).  

iii. The extension of this method to other deformation processes (e.g. rotations, shear 

deformation modes) requires the use of cubic-triclinic functions, ( )gTl
μν&& . This 

places further constraint in computing the coefficients using the least squares fit 

method described. 

However, Bunge-Esling approach motivated us for a better spectral framework using 

the GSH basis functions which is described in the next section 

 
5.2 Spectral Crystal Plasticity 
 
A brief review of the crystal plasticity theory presented in chapter 4 suggests that our 

main focus should be to capture the dependence of stresses, the lattice spins, and the 

strain hardening rates in individual crystals as a function of their lattice orientation for a 

specified monotonic deformation path. Specifically, the following representations were 

formulated: 
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Eqs. (5.9)-(5.11) imply that we are seeking Fourier representations for three independent 

components of the skew-symmetric ( )gWij
* , five independent components of the 

symmetric and deviatoric , and for the sum of the absolute values of the slip rates ( )gijσ
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on the different slip systems in the crystal. The variables in Eqs. (5.9)-(5.11)  have been 

selected because they constitute the essential information needed to predict the overall 

texture evolution and the overall anisotropic stress-strain behavior of cubic polycrystals. 

Only the sum of the absolute slip rates in each crystal is being represented in this spectral 

formulation, because this is the only information that is needed for capturing the slip 

hardening description in Eq. (4.5). If latent hardening is introduced into Eq. (4.5), then it 

would be necessary to track the slip rates on the different slip systems individually. In 

order to extend the formalism in Eqs. (5.9)-(5.11) to any arbitrary deformation mode, 

generalized deformation path should be considered. The most generic isochoric 

deformation path to be imposed on a polycrystalline metal can be expressed in the 

principal frame of the stretching tensor as [56] 
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where oε&  is a reference value of strain rate and the range of angle θ  is  [ )π2,0 , and W is 

an arbitrary superimposed spin tensor (describing an arbitrary rotation rate). The 

introduction of the reference strain rate and the superimposed spin in the deformation 

path in Eq. (5.12) requires us to modify Eqs. (5.9) - (5.11) as 
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The Fourier coefficients in Eqs. (5.13)-(5.15) can be expressed as 
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                       (5.18) 
 

 

The coefficients in Eqs. (5.16) - (5.18) can be evaluated numerically. For this purpose, 

one needs to select a distribution of grain orientations in the fundamental zone of the 

cubic-triclinic orientation space [6] and compute the values of , , and *
ijW ijσ ∑

α

αγ&  for 

each of the selected orientation using the crystal plasticity models described in chapter 4. 

In this study , , , and *
ijW ijσ ∑

α

αγ&  were computed for each of the selected orientations in 

the fundamental zone using the Taylor-type model described for a small strain step 

corresponding to 02.0−=ε  for the general deformation modes described by the velocity 

gradient tensor in Eq. (5.12). This information can then be used in Eqs. (5.16) - (5.18) 

using an appropriate numerical integration scheme (e.g. the Simpson method [24] ) to 

obtain the desired Fourier coefficients. After the Fourier coefficients are established, Eqs. 

(5.13)-(5.15) can be used in a recursive manner to simulate large plastic strains on the 

polycrystals.  
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5.2.1 Results and Discussion 

Compared to that of Bunge-Esling approach, the merits of spectral crystal plasticity are 

i. The Fourier coefficients can be computed to very high orders in the series 

expansion as they do not require a least squares fit and the associated 

inversion of large matrices.  This, in turn, has allowed us to address cubic-

triclinic symmetry needed in representing the most general rotation fields for 

cubic crystals, whereas the computational demands in our previous model 

restricted us to the consideration of only the cubic-orthorhombic symmetry. 

ii. The estimation of the Fourier coefficients in this new formulation is 

completely uncoupled, i.e. the Fourier coefficients can be obtained 

individually by numerical integration over the orientation space. This means 

that one can augment the number of terms in the series expansions depending 

on the accuracy needed for a particular application. 

iii. The present formulation allows for Fourier representations of local stresses 

(all tensorial components) and strain hardening rates in the constituent crystals 

in addition to their lattice spins. Consequently, it would be possible to predict 

both the stress-strain curves and the texture evolution using the new 

formulation. 

In order to evaluate the accuracy of the Fourier representations obtained by calibration to 

the Taylor-type model in Eqs. (5.13)-(5.15), we simulated couple of deformation modes. 
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Plane Strain Compression 

Simulated plane strain compression to 0.1−=ε  for two different initial textures: (1) a 

random initial texture, and (2) a <110> fiber texture obtained by simulating simple 

compression to a strain of -1.0 on a initially random texture using the Taylor-type model. 

Deformed textures and the anisotropic stress-strain curves were computed using both the 

Taylor-type model as well as the spectral representations. In the spectral method, we 

applied Eqs. (5.13)-(5.15), recursively fifty times, each time for a strain step of -0.02. In 

each strain step, the grain orientations are updated and the new orientations are used in 

the next strain step. The predicted textures from both the Taylor-type models and the 

spectral methods described here are shown in Figs. 10 and 11, while the corresponding 

predictions of the stress-strain responses are shown in Fig. 12. It is seen that the spectral 

methods accurately reproduced all of the important aspects of the Taylor-type model  

predictions. 

 

Simple Shear 

As the next case study we simulated simple shear deformation. Deformation textures and 

the stress-strain curves in simple shear after a strain of γ = 1.0 were predicted from both 

the Taylor-type model and the spectral method and are shown in Figs. 13 and 14. It is 

seen once again that the spectral method reproduces accurately the results of the Taylor-

type models. 

 



 49

 
 

 

 

Figure 10. Comparison of the predicted textures in plane strain compression of fcc metals 
after a compressive true strain of -1.0. The starting texture for these simulations is a 

random texture. 

 

 

 

 

 

 

Spectral Method Taylor-type Model 
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Taylor-type Model  Spectral Method 

 

 

Figure 11. Comparison of the predicted textures in plane strain compression of fcc metals 
after a compressive true strain of -1.0. The starting texture for these simulations is a 

<110> fiber texture obtained by simulating simple compression to a strain of -1.0 on an 
initially random texture using the Taylor-type model. 

 

 
 

 
 
 

Figure 12. Stress-strain responses in plane strain compression. (a) Random initial texture. 
(b) Initial texture is <110> fiber texture. 

(a) Random initial texture. 
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 Spectral Method 
Taylor-type Model 

 
 

Figure 13. Comparison of the predicted odfs in simple shear of fcc metals after a shear 
strain of 1.0.  
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Figure 14. Stress-strain responses in simple shear of fcc metals subjected to a shear strain 
of 1.0. 
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Deformation Path Change 

As a final case study, investigated texture predictions and stress-strain response in a 

change of deformation mode. Random initial texture is subjected to a strain of 0.1−=ε  

in plane strain compression and then to a strain of γ = 1.0 in simple shear. Corresponding 

texture predictions and stress-strain response are shown in Figs. 15 and 16. Here too the 

predictions from the spectral method and the Taylor-type model are in very good 

agreement.  

 

Spectral Method Taylor-type Model  

 

Figure 15. Comparison of the predicted textures in fcc metals subjected to plane strain 
compression and then to simple shear deformation. The starting texture for these 

simulations is a random texture. 
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Figure 16. Stress-strain responses in change of deformation mode. The initial random 
texture is subjected to plane strain compression and then to simple shear. 

 
 
 

From these case studies, it is demonstrated that the spectral methods do accurately 

reproduce almost all of the salient features of the predictions from the Taylor-type model 

and this is quite remarkable. However, the computational time that we expected to reduce 

with this spectral crystal plasticity was not dramatical (it was not orders of magnitude less 

compared to that of conventional crystal plasticity models). With this work, we found out 

that the computation of the generalized spherical harmonics itself was the speed limiting 

factor. As described in Chapter 2 GSH functions involves computation of Legendre 

functions and these are quite complex mathematically. One of the main advantages of 

using the generalized spherical harmonics was that they are already symmetrized to 

reflect the appropriate crystal and sample symmetries, and therefore would provide a 

compact representation of the orientation dependence of any variable of interest in the 

crystal plasticity computations crystal plasticity computations[6]. Following a similar 

approach as that of the spectral crystal plasticity presented in this section, it was very 
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recently discovered that it is much more efficient computationally to simply store all of 

the important variables of interest on a uniform grid in the orientation space and 

subsequently employ a local spectral interpolation using Discrete Fast Fourier Transform 

(DFFT) methods to recover the values of any of these variables for any orientation and 

deformation mode of interest [57]. This an ongoing work in our research group and 

details of this new approach are described and validated in this paper [58] through a few 

example case studies involving crystal plasticity calculations. 
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CHAPTER 6: INCORPORATION OF SPECTRAL CRYSTAL PLASTICITY 
INTO FORGE3  

 
The objective in this part of the thesis is to incorporate the newly developed spectral 

crystal plasticity framework described in chapter 5 into commercially available finite 

element codes to simulate deformation processing operations.  

Various concepts exist to incorporate texture information into finite element models to 

simulate large deformation of polycrystalline solids, particularly, in metal forming 

including bulk forming and sheet forming operations. The initial material anisotropy 

existing before sheet deformation can be incorporated through an anisotropic yield 

surface function into the finite element codes. The anisotropic yield surface models are 

empirical and phenomenological and the widely used models are the equations of Hill 

from 1948 [59] and 1990 [60], Hosford [8], Barlat [61], or Barlat and Lian [62] to name 

but a few important ones. The advantage of phenomenological theories for mechanical 

anisotropy predictions are relatively short calculation times, when implemented into 

finite element models. The main disadvantage of phenomenological models is that they 

do not consider that the inherited sheet starting textures may evolve further in the course 

of sheet forming. This means that reliable anisotropy simulations should incorporate the 

starting texture as well the gradual update of that texture during deformation processes.  

Currently, there are two types of crystal plasticity finite element applications: first is the 

prediction of evolving microstructure; second is the determination of properties 

associated with the evolving microstructure. Some simulations involve only one of the 

two, while others couple the two together. The basic approach for studying metal 

deformations using the finite element method as a numerical tool is that a polycrystalline 
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aggregate containing many grains is discretized using the finite element technique. The 

microstructural state of the material is characterized by the orientation of the crystal 

lattice and the constitutive response is evaluated at specific locations in each element 

called integration points.  In general, crystal plasticity theories are incorporated into finite 

element codes through use of a user-defined subroutine for material behavior called 

UMAT. The UMAT keeps track of the necessary solution dependent internal state 

variables at each of the integration points in the finite element mesh, and updates them 

during an imposed deformation increment. In addition, some of the finite element codes  

require a computation of the Jacobian matrix at each integration point in the mesh in 

order to compute a better guess of the overall non-uniform deformation field in its 

iterative attempts to satisfy the principle of virtual work during an imposed increment of 

deformation[27]. 

In this first foray in coupling finite element codes and the database approach for crystal 

plasticity, focus was restricted to predict the evolving microstructure during deformation. 

The concomitant anisotropic stress-strain response is not considered. Because of the 

speed limiting factor of the GSH basis functions as remarked in chapter 5, spectral 

databases using the Discrete Fast Fourier Transform (DFFT) methods [57, 58] are used in 

coupling into finite element codes. 

 The finite element S/W package that is used in this work is called FORGE3 which is 

commercially available and specifically developed for various thermo-mechanical metal 

forming simulations. FORGE3 provides an interface where by the user may write his or 

her own constitutive model in a subroutine in a very general way. Integrating spectral 

crystal plasticity DFFT databases and their associated computations (programmed in 
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MATLAB S/W package) and FORGE3 codes (programmed in FORTRAN S/W 

language) required to develop special S/W protocols. The corresponding S/W codes are 

presented in appendix. 

In order to validate the coupling of spectral database and FORGE3 codes, texture 

evolution during simple compression deformation process was investigated. For this 

purpose a 3D finite element model comprising 12 tetrahedron elements (5 nodes for each 

tetrahedron element and so a total of 60 integration points) was developed. A random 

initial texture consisting of 1000 crystals was assigned to each integration point and the 

model was subjected to 75% deformation. Fiber textures that developed during simple 

compression deformation process with varying intensities at various stages of 

deformation are shown in Fig. 17 along with the deformed geometry. This coupled 

simulation took approximately 6 minutes on a regular desktop PC, where as the same 

simulation would take more than an hour with conventional crystal plasticity models. It 

should be also be noted that many other strategies are currently being explored in our 

research group to further speed up the calculations involving spectral databases. The 

details of those strategies are beyond the scope of this present work.  
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Figure 17. Deformed geometry of a 3D finite element model subjected to simple 
compression. Crystallographic textures that are predicted at various stages during the 

deformation process are also shown. 
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CHAPTER 7: PROCESS DESIGN  

The major goal of process design is to develop rigorous mathematical procedures that can 

identify one or more processing paths that are predicted to produce either an element of 

the class of optimal microstructures, or a microstructure (presumably suboptimal) that is 

close to the optimal set, and one that could be realized within reasonable cost by a small 

set of available manufacturing routes. There are no rigorous solution methodologies to 

the process design problem yet. One strategy that was investigated in this work is 

schematically shown in Figure 18. Before describing the strategy for process design, a 

brief mention of texture hull is necessary. As remarked earlier in chapter 2, Fourier 

description of ODF allows the visualization of ODF as a single point in an infinite 

dimensional Fourier space (coordinates given by νμ
lF ). The set of all such points, 

corresponding to the complete set of all physically realizable ODFs, is called the texture 

hull in the MSD  framework [1, 2]. The hull for cubic-orthorhombic textures is depicted 

in the first three dimensional Fourier subspace in Fig. 18. It should be recognized that any 

physically realizable texture has to have a representation inside the depicted hull.  

Note also that the texture hulls are compact and convex in any of their subspaces [5] . 
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Figure 18. A schematic description of a strategy to find process design solutions. The 
circles indicate specific textures and the lines describe streamlines (or paths) of texture 

evolution for a selected processing method. 
 
 
 
The proposed methodology for process design is as follows. Let the green circle in the far 

right in the convex hull represent the microstructure of the as-received material and the 

blue circle on the far left represent the location in Fourier space of a class of 

microstructures with desired combination of properties. The problem at hand is to find an 

overall processing route that will transform the given initial microstructure (green circle 

in Fig 18) to an element of the family of desired microstructure(s) (blue circle). The 

processing route has to be made up of segments chosen from a set of available 

manufacturing routes. If it is not possible to reach the desired microstructure(s) using the 
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available manufacturing routes, then process design aims to get as close as possible to the 

desired microstructure(s). For each available manufacturing process, one could envision 

developing the spectral representations of the type described in Chapter 5.  Figure 18 

shows schematically three different microstructure evolution paths starting from the 

green circle, each corresponding to an available manufacturing route. These paths can be 

computed very efficiently for any given location in the microstructure hull using the 

spectral databases described in Chapter 5. 

 

7.1 Case Study 

As a case study, an orthotropic thin plate with a central circular hole and subjected to in-

plane tensile loads is considered. The design objective is to maximize the load carrying 

capacity of the plate, without allowing plastic deformation. An optimum texture was 

identified using the MSD framework [2, 63]. The goal is now to obtain a processing 

solution to obtain the desired texture starting from a random initial texture. The 

processing routes considered here included only those room temperature deformation 

processes that preserve the orthorhombic sample symmetry. This limited set of 

processing paths can be defined through the following velocity gradient tensor. 
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Figure 19 delineates the region corresponding to all physically realizable textures, in the 

first three component subspace of the Fourier space, as a gray wire-framed convex hull 

[4]. However, not all textures in this convex hull can be realized by the selected set of 
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processing paths; the set of textures that can be produced is depicted as a black wire-

framed region in Figure 19. The proposed methodology allows us to identify the 

complete set of textures that can be produced, starting from a given initial texture, by an 

arbitrary combination of selected processing techniques.  It is further possible to design a 

processing route for any selected target texture that lies in this subset of realizable 

textures (the black wire-framed subspace in this case study).   
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Figure 19. The gray wire-framed convex hull denotes the set of all possible textures, 
while the black subspace denotes the set of textures that can be produced by a 

combination of selected processing routes starting with a random initial texture. 
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The above case study reveals that the none of the elements of the previously identified 

class of textures that were deemed best for the thin orthotropic plate with a circular hole 

can be produced starting with an initial random texture. Therefore, the MSD optimization 

computations were repeated a second time, and this time the choice of Fourier 

coefficients in the MSD optimization computations was restricted to the inner region in 

Fig. 19, because we know we can realize these textures by deformation processing 

(starting with a random initial texture). In this manner, a target texture was identified as 

the texture that would yield the best possible performance for the selected design case 

study that is also easily producible using deformation processing steps. The texture 

identified is shown in Fig. 20 as a (111) pole figure and Taylor-type models predict that 

this texture can be produced in a two step rolling process: a 50% rolling of the plate 

followed by a 20% rolling in a direction perpendicular to the original rolling direction. 
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Figure 20. (111) pole figure corresponding to the Fourier coefficients of the ODF 

identified as the optimized texture in the MSD framework for the present case study, 
while being producible using deformation processing steps on a material with an initial 

random texture. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65

CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

The following conclusions can be drawn from three different sections of this work. 

Microstructure-Property Linkage 

• A new spectral framework has been established to develop efficient scale-bridging 

laws that link the quantitative statistical descriptors of the microstructure at the 

lower length scale to the effective properties exhibited by the microstructure at the 

higher length scale. 

• The new framework is built around a localization relationship that provides 

information on the spatial variation of important local variables at the 

microstructural length scales. These localization relationships can prove very 

valuable in formulating microstructure based macroscale property/performance 

models. 

• The proposed framework was successfully applied to perfectly disordered random 

textures in copper polycrystals. The spectral linkages developed provided 

excellent predictions of local stresses in individual crystals as well as the 

components of the effective stiffness tensor. 

Spectral Crystal Plasticity 

• A new spectral framework is presented to capture efficiently the predictions for 

the stresses, the lattice spins, and the strain hardening rates in individual crystals 

from the currently used crystal plasticity models as a function of the crystal’s 

lattice orientation.  

• It is particularly noteworthy that although the spectral methods were calibrated by 

simulating the Taylor-type model to only a small strain increment of 2%, the 
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recursive use of this calibration yields excellent predictions up to very large strain 

levels. 

• Incorporated the spectral crystal plasticity databases into FORGE3 finite element 

tool for texture evolution and validated in simple compression deformation 

process. 

Process Design 

• The proposed process design methodology allows us to identify the complete set 

of textures that can be produced, starting   from a given initial texture, by an 

arbitrary combination of selected processing techniques.  

• It is also possible to design a processing route for any selected target texture that 

lies in the subset of realizable textures  

Future Work 
 

• Spectral crystal plasticity framework can be extended to other class of metals, e.g. 

hcp metals. 

• At present, only texture prediction calculations were performed in coupling the 

FORGE3 finite element tool and spectral databases. This can be extended to 

predict the anisotropic stress-strain behavior along with the texture evolution 

calculations by including the computation of the Jacobian matrix.  

• In the process design, selected manufacturing processes were limited to those that 

retain cubic-orthorhombic symmetry. The methodology can be extended to 

include all possible deformation processes. 
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APPENDIX A: FORTRAN CODE TO COMPUTE THE SPECTRAL 
DATABASES DESCRIBED IN BUNGE_ESLING APPROACH 

 
 
 
 
C**********************************************************************
**** 

C   THIS PROGRAMS COMPUTES the constants   and  in equation        μνσρ
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approach in Chapter 5 
C   
C**********************************************************************
**** 
      IMPLICIT REAL*8(A-H,O-Z)  
 PARAMETER(MAXCRYS=2000,MAXDIM=10000) 
 DIMENSION CCOEFF0(MAXCRYS,MAXDIM),CCOEFF1(MAXCRYS,MAXDIM) 
  
 DIMENSION cout(maxcrys,maxdim),each_crystal(MAXDIM) 
  
      DIMENSION AMAT(MAXDIM,MAXDIM),CNEW(MAXDIM),AINV(MAXDIM,MAXDIM), 
     & INDX(MAXDIM),CONS(MAXDIM),A(MAXDIM,MAXDIM),C(MAXDIM) 
C 
C 
 TINY = .001 
C 
      OPEN(10,FILE='Ccoeff192_Taylortex_2000Initial.txt',STATUS='OLD') 
      OPEN(11,FILE='Ccoeff192_100pts_Taylrtex_10%.txt',STATUS='OLD') 
 OPEN(15,FILE='INFO') 
 OPEN(20,FILE='Cout') 
 OPEN(66,FILE='Big AMAT') 
 OPEN(33,FILE='C') 
 OPEN(88,FILE='crystal') 
100   FORMAT(A20) 
 write(*,*)'Enter No. of Crystals' 
      read(*,*)NCRYS 
      WRITE(*,*)'ENTER NO. OF DIMENSIONS'  
 READ(*,*)NDIM 
 IM2=NDIM**2 ND
 IF(NCRYS.GT.MAXCRYS)WRITE(*,*)'ERROR:NCRYS>MAXCRYS' 
 IF(NDIM2.GT.MAXDIM)WRITE(*,*)'ERROR:NDIM2>MAXDIM' 
C Reading the X and Y vectors and writing them to CCOEFFO and 
CCOEFF1 arrays respectively 
      DO 102 ICRYS=1,NCRYS 
  READ(10,*)(CCOEFF0(ICRYS,J),J=1,NDIM) 
  WRITE(22,*)(CCOEFF0(ICRYS,J),J=1,NDIM) 
  READ(11,*)(CCOEFF1(ICRYS,J),J=1,NDIM) 
102  WRITE(22,*)(CCOEFF1(ICRYS,J),J=1,NDIM) 
C   
 DO 103 K=1,(NDIM2+NDIM) 
 CNEW(K)=0.0  
 DO 103 L=1,(NDIM2+NDIM) 
103  AMAT(K,L)=0.0 
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CC Populating the AMAT matrix with NDIM2*NDIM2 elements 
      DO 400 ICRYS=1,NCRYS 
 DO 400 K=1,NDIM2 
  IA= (K-1)/NDIM+1 
  IB= K-((K-1)/NDIM)*NDIM 
  CNEW(K)=CNEW(K)+CCOEFF1(ICRYS,IA)*CCOEFF0(ICRYS,IB)       
 DO 400 L=(IA-1)*NDIM+1,IA*NDIM 
400  AMAT(K,L)=AMAT(K,L)+CCOEFF0(ICRYS,L-(IA-
1)*NDIM)*CCOEFF0(ICRYS,IB) 
C Populating the rest of AMAT with (NDIM2+NDIM)*(NDIM2+NDIM) 
elements 
 DO 8000 ICRYS=1,NCRYS 
  itemp1=0 
  t=1 
 s=ndim  
 DO 8000 K=(NDIM2+1),(NDIM2+NDIM) 
  itemp1=itemp1+1 
  CNEW(K)=CNEW(K)+CCOEFF1(ICRYS,itemp1)    
  itemp2=0   
   IF(K .EQ. (NDIM2+1)) THEN 
    DO 4444 L=1,NDIM 
    itemp2=itemp2+1 
    AMAT(K,L)=AMAT(K,L)+CCOEFF0(ICRYS,itemp2) 
4444    AMAT(L,K)=AMAT(K,L)  
   ELSE 
    t=t+ndim 
    s=s+ndim 
    DO 5555 L=t,s 
    itemp2=itemp2+1 
    AMAT(K,L)=AMAT(K,L)+CCOEFF0(ICRYS,itemp2) 
5555    AMAT(L,K)=AMAT(K,L) 
   END IF 
8000 continue 
C Diagonal elements(NDIM2+NDIM) of AMAT 
 DO 4500 K=(NDIM2+1),(NDIM2+NDIM) 
4500  AMAT(K,K)=NCRYS 
C  
      DO 421 i=1,ndim2+ndim 
421 write(*,422)(amat(i,j),j=1,ndim2+ndim)  
422 format(9e10.2) 
cc 
 DO 4221 i=1,ndim2+ndim 
4221  write(66,422)(amat(i,j),j=1,ndim2+ndim) 
 
       
 CALL MATINV(AMAT,AINV,INDX,CONS,MAXDIM,NDIM2+NDIM) 
C 
      DO 416 IDIM=1,NDIM2+NDIM 
   CONS(IDIM)=0.0 
 DO 416 JDIM=1,NDIM2+NDIM 
416   CONS(IDIM)=CONS(IDIM)+AINV(IDIM,JDIM)*CNEW(JDIM) 
C A matrix 
      DO 417 I=1,NDIM 
 DO 417 J=1,NDIM 
417 A(I,J)=CONS((I-1)*NDIM+J)  
      DO 418 I=1,NDIM 
418 WRITE(15,999)(A(I,J),J=1,NDIM) 
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C Constant C matrix 
 ndim2 j=
 DO 4177 I=1,NDIM 
  j=j+1 
4177 C(I)=CONS(j)  
 WRITE(33,999)(C(I),I=1,NDIM) 
C 
C ******* Multiplying I/P with A and printing O/p for vector plots 
***** 
 IDIM=1 
 IM=1 JD
 DO 212 ICRYS=1,NCRYS 
  cout(icrys,idim)=0.0 
  DO 213 IDIM=1,NDIM 
 cout(icrys,idim)=cout(icrys,idim)+C(idim) 
    DO 211 JDIM=1,NDIM 
211
 cout(icrys,idim)=cout(icrys,idim)+A(IDIM,JDIM)*CCOEFF0(ICRYS,JDIM
) 
213     continue 
212 continue 
 DO 312 icrys=1,ncrys 
999 format(1X,100F20.14) 
312 WRITE(20,999)(cout(icrys,j),j=1,ndim) 
cc 
c *********** Calculating the error ********************** 
 ERR=0.0 
 nrm_err=0.0 
 tot_dist=0.0 
 tot_errdist=0.0 
 avg_dist=0.0 
 total_dist=0.0 
c Calculating the distance between intial point (co) and final 
point (ci) and taking the average 
 DO 500 ICRYS=1,NCRYS 
 st = 0.0 di
 DO 501 IDIM=1,NDIM 
 CI = CCOEFF1(ICRYS,IDIM) 
501 dist =dist+(ci-ccoeff0(icrys,idim))**2 
 dist=dsqrt(dist) 
500 tot_dist=tot_dist+dist 
 avg_dist=(tot_dist)/ncrys 
c Calculating the distance between original final point 
(ci,taylor)and calculated final point (cout ,A matrix) 
c nd taking the average     a
    DO 5000 ICRYS=1,NCRYS 
 ERRDIST=0.0 
 DO 5001 IDIM=1,NDIM 
 CI = CCOEFF1(ICRYS,IDIM) 
5001 ERRDIST=ERRDIST+(CI-cout(icrys,idim))**2 
 ERRDIST = DSQRT(ERRDIST) 
 tot_errdist=tot_errdist+ERRDIST 
 each_crystal(ICRYS)=(ERRDIST)/(avg_dist) 
5000 WRITE(88,*)(each_crystal(ICRYS)) 
 avg_err=(tot_errdist)/ncrys  
 nrm_err=(avg_err)/(avg_dist) 
 write(*,*) 'Avg dist bet initial and final point=',avg_dist 
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 write(*,*) 'Avg error bet original and cal final point=',avg_err 
 write(*,*)'Norm_error,(Avg_dist)/(Avg_error)=',(avg_err)/(avg_dis
t) 
120   FORMAT(6F10.5) 
      STOP 
 END 
C(((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))) 
C  THIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX B TO GIVE MATRIX C 
 SUBROUTINE UL(A,IA,B,IB,C,IC,L,M,K)  MATM
 IMPLICIT REAL*8(A-H,O-Z) 
 DIMENSION A(IA,IA),B(IB,IB),C(IC,IC) 
 DO 10 I=1,L 
 DO 10 J=1,K 
  C(I,J)=0.0 
  DO 20 II=1,M 
  20    C(I,J)=C(I,J)+A(I,II)*B(II,J) 
10    CONTINUE 
 RETURN 
 END 
C(((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))) 
C  THIS SUBROUTINE ADDS MATRIX A TO MATRIX B TO GIVE MATRIX C 
 SUBROUTINE MATADD(A,IA,B,IB,C,IC,L,K) 
 IMPLICIT REAL*8(A-H,O-Z) 
 DIMENSION A(IA,IA),B(IB,IB),C(IC,IC) 
 DO 10 I=1,L 
 DO 10 J=1,K 
10 )=A(I,J)+B(I,J)  C(I,J
 RETURN 
 END 
C(((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))) 
C  THIS SUBROUTINE SUBTRACTS MATRIX B FROM MATRIX A TO GIVE MATRIX C 
 SUBROUTINE MATSUB(A,IA,B,IB,C,IC,L,K) 
 IMPLICIT REAL*8(A-H,O-Z)  
 DIMENSION A(IA,IA),B(IB,IB),C(IC,IC) 
 DO 10 I=1,L 
 DO 10 J=1,K 
10  C(I,J)=A(I,J)-B(I,J) 
 RETURN 
 END 
C(((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))) 
C  THIS SUBROUTINE EQUATES MATRIX A TO MATRIX B 
 SUBROUTINE QL(A,IA,B,IB,L,K)  MATE
 IMPLICIT REAL*8(A-H,O-Z) 
 DIMENSION A(IA,IA),B(IB,IB) 
 DO 10 I=1,L 
 DO 10 J=1,K 
10  B(I,J)=A(I,J) 
 RETURN 
 END 
C(((((((((((((((((((((((((((((((((((((()))))))))))))))))))))))))))))))) 
C  THIS SUBROUTINE INVERTS MATRIX A.  
        SUBROUTINE MATINV(A,AINV,INDX,R,NP,N) 
        IMPLICIT REAL*8(A-H,O-Z) 
        DIMENSION A(NP,NP),INDX(NP),R(NP),AINV(NP,NP) 
        CALL LUDCMP(A,N,NP,INDX,D) 
 write(*,*)'no problem' 
    DO 10 I= 1,N 
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         CALL VEC0(R,NP,N) 
         R(I) = 1.0 
         CALL LUBKSB(A,N,NP,INDX,R) 
         DO 10 J = 1,N 
10         AINV(J,I) = R(J) 
         END 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C  THIS SUBROUTINE AND THE NEXT ONE USE THE LU DECOMPOSITION METHOD 
C  TO SOLVE A SYSTEM OF ALGEBRIAC EQUATIONS 
      SUBROUTINE LUDCMP(A,N,NP,INDX,D) 
      PARAMETER (NMAX=8500) 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION A(NP,NP),INDX(NP),VV(NMAX) 
      TINY = 1.0D-20 
      D=1. 
      DO 12 I=1,N 
        AAMAX=0. 
        DO 1 J=1,N  1
          IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J)) 
11      CONTINUE 
        IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.' 
        VV(I)=1./AAMAX 
12    CONTINUE 
      DO 9 J=1,N  1
        IF (J.GT.1) THEN 
          DO 14 I=1,J-1 
            SUM=A(I,J) 
            IF (I.GT.1)THEN 
              DO 13 K=1,I-1 
                SUM=SUM-A(I,K)*A(K,J) 
13            CONTINUE 
              A(I,J)=SUM 
          ENDIF   
14        CONTINUE 
        ENDIF 
        AAMAX=0. 
        DO 16 I=J,N 
          SUM=A(I,J) 
          IF J.GT.1)THEN  (
            DO 15 K=1,J-1 
              SUM=SUM-A(I,K)*A(K,J) 
15          CONTINUE 
            A(I,J)=SUM 
          ENDIF 
          DUM=VV(I)*ABS(SUM) 
          IF (DUM.GE.AAMAX) THEN 
            IMAX=I 
            AAMAX=DUM 
          ENDIF 
16      CONTINUE 
        IF (J.NE.IMAX)THEN 
          DO 17 K=1,N 
            DUM=A(IMAX,K) 
            A(IMAX,K)=A(J,K) 
            A(J,K)=DUM 
17        CONTINUE 
          D=-D 
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          VV(IMAX)=VV(J) 
        ENDIF 
        INDX(J)=IMAX 
        IF(J.NE.N)THEN 
          IF(A(J,J).EQ.0.)A(J,J)=TINY 
          DUM=1./A(J,J) 
          DO 18 I=J+1,N 
            A(I,J)=A(I,J)*DUM 
18      CONTINUE   
        ENDIF 
19    CONTINUE 
      IF(A(N,N).EQ.0.)A(N,N)=TINY 
      RETURN 
      END 
c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
      SUBROUTINE LUBKSB(A,N,NP,INDX,B) 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION A(NP,NP),INDX(NP),B(NP) 
      II=0 
      DO 12 I=1,N 
        LL=INDX(I) 
        SUM=B(LL) 
        B(LL)=B(I) 
        IF II.NE.0)THEN  (
          DO 11 J=II,I-1 
            SUM=SUM-A(I,J)*B(J) 
11      CONTINUE   
        ELSE IF (SUM.NE.0.) THEN 
          II=I 
        ENDIF 
        B(I)=SUM 
12    CONTINUE 
      DO 14 I=N,1,-1 
        SUM=B(I) 
        IF(I.LT.N)THEN 
          DO 13 J=I+1,N 
            SUM=SUM-A(I,J)*B(J) 
13        CONTINUE 
        ENDIF 
        B(I)=SUM/A(I,I) 
14    CONTINUE 
      RETURN 
      END 
C********************************************************************* 
C    THIS SUBROUTINE DOES THE POLAR DECOMPOSITION F=[R][U]=[V][R]  
C    ANY GIVEN POSITIVE DEFINITE TENSOR F 
C********************************************************************* 
 SUBROUTINE MP(F,R,U,N)  DECO
 IMPLICIT REAL*8(A-H,O-Z) 
 REAL*8 IC,IIC,IIIC,IU,IIU,IIIU,ID 
 DIMENSION F(N,N),FT(3,3),ID(3,3),C(3,3),CC(3,3), 
     .            U(N,N),UINV(3,3),R(N,N) 
C 
C    TRANSPOSE F MATRIX, OBTAIN [C] = [FT] [F], [CC]= [C][C], FIND  
C    PRINCIPAL INVARIANTS OF MATRIX [C]. 
C 
 M=3 
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 CALL MAT1(ID,3,3) 
 CALL MATTRANS(F,N,FT,3,M,M) 
 CALL MATMUL(FT,3,F,N,C,3,M,M,M) 
 CALL MATMUL(C,3,C,3,CC,3,M,M,M) 
 CALL INVARIANTS(C,3,IC,IIC,IIIC) 
 CALL INVEIGEN(IC,IIC,IIIC,E1,E2,E3) 
C 
C    EIGEN VALUES AND INVARIANTS OF U 
C 
 UE1=DSQRT(E1) 
 UE2=DSQRT(E2) 
 UE3=DSQRT(E3) 
 CALL EIGENINV(UE1,UE2,UE3,IU,IIU,IIIU) 
C 
C    EVALUATE COMPONENTS OF U 
C 
 PHI1=1.0/(IIU*(IIU*(IIU+IC)+IIC)+IIIC) 
 ALP1=-(IU*IIU-IIIU) 
 BETA1=(IU*IIU-IIIU)*(IIU+IC) 
 M1=(IU*IIIC+IIIU*(IIU*(IIU+IC)+IIC)) GA
 DO 10 I=1,M 
 DO 10 J=1,M 
10       U(I,J)=PHI1*(ALP1*CC(I,J)+BETA1*C(I,J)+GAM1*ID(I,J)) 
C 
C    EVALUATE COMPONENTS OF U INVERSE 
C 
 PHI2=1.0/(IIIU*IIIU*(IIIU+IU*IC)+IU*IU*(IU*IIIC+IIIU*IIC)) 
 ALP2=IU*(IU*IIU-IIIU) 
 BETA2=-(IU*IIU-IIIU)*(IIIU+IU*IC) 
 M2=IIU*IIIU*(IIIU+IU*IC)+IU*IU*(IIU*IIC+IIIC) GA
 DO 20 I=1,M 
 DO 20 J=1,M 
20  UINV(I,J)=PHI2*(ALP2*CC(I,J)+BETA2*C(I,J)+GAM2*ID(I,J)) 
C 
C    EVALUATE [R]=[F][UINV] 
C 
 CALL MATMUL(F,N,UINV,3,R,N,M,M,M) 
 RETURN 
 END 
C************************************************************** 
C  THIS SUBROUTINE CALCULATES THE INVARIANTS OF A 3X3 MATRIX 
C************************************************************** 
 SUBROUTINE INVARIANTS(C,ICC,IC,IIC,IIIC) 
 IMPLICIT REAL*8(A-H,O-Z) 
 REAL*8 IC,IIC,IIIC 
 DIMENSION C(ICC,ICC) 
C 
C   FOR 3 X 3 MATRICES ONLY 
C 
 IC=0.0 
 DO 10 I=1,3 
10  IC=IC+C(I,I) 
 IIC=0.0 
 DO 20 I=1,3 
 DO 20 K=1,3 
20  IIC=IIC+C(I,K)*C(K,I) 
 IIC=0.5*(IC**2-IIC) 
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 IIIC=C(1,1)*(C(2,2)*C(3,3)-C(2,3)*C(3,2))- 
     .      C(1,2)*(C(2,1)*C(3,3)-C(2,3)*C(3,1))+ 
     .      C(1,3)*(C(2,1)*C(3,2)-C(2,2)*C(3,1)) 
 RETURN 
 END 
C************************************************************* 
C  THIS SUBROUTINE CALCULATES THE EIGENVALUES, GIVEN THE  
C  INVARIANTS OF A 3X3 SYMMETRIC MATRIX WHOSE EIGEN VALUES ARE  
C  ALL POSITIVE. THE METHOD USED IS SOLVING THE CUBIC 
C  CHARACTERISTIC EQUATION OF THE MATRIX. PAGE 157 OF NUMERICAL 
C  RECIPES. 
C************************************************************* 
 SUBROUTINE INVEIGEN(IC,IIC,IIIC,E1,E2,E3) 
 IMPLICIT REAL*8(A-H,O-Z) 
 REAL*8 IC,IIC,IIIC 
 IF(IC.EQ.3.0D0.AND.IIC.EQ.3.0D0.AND.IIIC.EQ.1.0D0)THEN 
   E1=1.0D0 
   E2=1.0D0 
   E3=1.0D0 
   RETURN 
 ENDIF 
C B=IC 
C C=-IIC 
C D=IIIC 
C CALL CUBIC(B,C,D,E1,E2,E3) 
C 
C  REFORMULATE THE EQUATION INTERMS OF (E-1) AS UNKNOWN 
C 
 P=0.0D0 
 A1=-(3.0-IC)*10.0**P 
  A2=-(3.0-2.0*IC+IIC)*10.0**(2.0*P) 
 A3=-(1.0-IC+IIC-IIIC)*10.0**(3.0*P) 
 CALL CUBIC(A1,A2,A3,E1,E2,E3) 
 E1=1.0+E1/10.0**P 
 E2=1.0+E2/10.0**P 
 +E3/10.0**P E3=1.0
 RETURN 
 END 
C****************************************************************** 
C   THIS SUBROUTINE SOLVES A CUBIC EQUATION: 
C   X^3 = A1*X^2 +A2*X + A3 
C****************************************************************** 
 SUBROUTINE CUBIC(A1,A2,A3,X1,X2,X3) 
 IMPLICIT REAL*8(A-H,O-Z) 
 Q = (A1*A1)/3.0+A2 
 R = (2.0*A1*A1*A1+9.0*A1*A2+27.0*A3)/27.0 
 S=2.0*DSQRT(Q/3.0) 
 IF(S.EQ.0.0)THEN 
   X1=0.0 
   X2=0.0 
 =0.0   X3
 ELSE 
   XARG=4.0*R/(S*S*S) 
   IF(ABS(XARG).GT.1.0D0)XARG=1.0D0 
   THETA=(1./3.)*DACOS(XARG) 
   PI=DACOS(-1.0D0) 
   X1=S*DCOS(THETA) 
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   X2=S*DCOS(THETA-2.*PI/3.) 
 S*DCOS(THETA+2.*PI/3.)   X3=
 ENDIF 
 AA=A1/3.0 
 X1=X1+AA 
 X2=X2+AA 
 X3=X3+AA 
 RETURN 
 END 
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APPENDIX B: C++ CODE TO COMPUTE THE TEXTURE EVOLUTION AND 
THE CONCOMITANT ANISOTROPIC STRESS_STRAIN RESPONSE IN 

A GIVEN DEFORMATION PROCESS USING THE SPECTRAL 
CRYSTAL PLASTICITY APPROACH. 

 
 
 

 
/*** 

The original code was from Steve Sintay (Brigham Young    
University),to calculate the Fourier coefficients for cubic 

 system. 06/19/2004 
Modified by Hari Duvvuru to incorporate spectral crystal 
plasticity.  
The modified files msdi.cpp, material.cpp and material.h are 
presented in this appendix. Also, some of the C++ methods used in 
the calculation of Fourier coefficients that are not modified 
from the original project in material.cpp are not reproduced 
here. 
Other required files for the entire project to execute  are not 
provided here as they are not modified. 

 Last modified 02/19/2007. 
***/ 
 
***** Msdi.cpp **************************************************** 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <fstream> 
#include <iostream> 
#include <string> 
#include <vector> 
#include "material.h" 
using namespace std; 
int main() 
{ 
double InitialAngle[2000][3]; 
double W21Re[2000],W21Im[2000],W31Re[2000],W31Im[2000],W32Re[2000], 
       W32Im[2000]; 
double Wstar[9],GF[3][3],b[3]; 
//double DeltaT=20.00*1.414213562;  
double DeltaT=10.0*1.414213562;//for shear 
int i,j,nterms,nsteps,Totcrys;   
cout<<"Enter no. of crystals(min=1): "<<endl; 
cin>>Totcrys; 
cout<<"Enter no. of strain steps: "<<endl; 
cin>>nsteps;  
//Create a material object 
Material m; 
 
////////////////////////////////////////////////////////////////// 
/*The SetSymmetry() function will accept the following values for 
SampleSym and CrystalSym. The values must 
 of course be integers so the values must be #defined or "enumed" 
in some other part of the program. In  



 82

 this case they are defined in the header file TexCalcGSHE_sds.h. 
If a symmetry value is given that is not 
 know then the default is to set the symmetry to unknown.*/ 
// SampleSym Only:     SampleSym and 
CrystalSym:   
// 
//  SSYM_TRICLINIC    OH   cubic 
//  SSYM_ORTHOTROPIC   D4H  
 ditetragonal 
//  SSYM_AXIAL     D2H  
 orthrohombic 
//         D6H  
 dihexagonal 
//         D3D  
 ditrigonal 
//         CIs  
 triclinic 
m.SetSymmetry(OH,CIs); //Cubic Triclinic 
// m.SetSymmetry(OH, D2H); // Cubic Orthorhombic  
//Set the rank 
m.SetRank(10);  
 //Initialize all the stuff that depends on symmetry and rank 
 if(!m.Init(m.CrystalSym(),m.SampleSym())) 
 { cout << "Material init failed" << endl; 
  return(1); 
 } 
 for(int z=0;z<Totcrys;z++){//Intialization 
 W21Re[z]=0.0;W21Im[z]=0.0; 
 W31Re[z]=0.0;W31Im[z]=0.0; 
 W32Re[z]=0.0;W32Im[z]=0.0; 
 } 
ifstream initialOrient("Initial_1000.txt"); 
 if(!initialOrient.is_open()){ 
 cout<<"Error openeing Initial_1000.txt file"<<endl; exit(1); 
  }   
ofstream Wfile("Wstar-Spectral.txt");//output file for Acoeffs 
ofstream Texfile("Texture.txt");//output file for Texture 
ofstream Stfile("AvgStress.txt");//output file for stress 
ofstream Crysfile("CrystalStress.txt");//output file for Crysstress 
Stfile<<"Average Stress"<<endl;       
for(int n=0;n<nsteps;n++){ 
 cout<<"n="<<n<<endl; 
 Crysfile<<n<<endl; 
for(i=0;i<Totcrys;i++){ 
 if(n==0){ 
initialOrient>>InitialAngle[i][0]>>InitialAngle[i][1]>>InitialAngle[i][
2];  
    } 
m.Summation(Wstar,InitialAngle[i][0],InitialAngle[i][1],InitialAngle[i]
[2],n,i);   
  for(j=0;j<9;j++){   
  Wstar[j]=DeltaT*Wstar[j]; 
  Wsfile<<Wstar[j]<<"\t"; 
  } 
  Wsfile<<endl;; 
m.AngleAxis(Wstar,GF,InitialAngle[i][0],InitialAngle[i][1],InitialAngle
[i][2]); 
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  m.EulerAngles(GF,b); 
  if(n==nsteps-1){ 
  Texfile<<b[0]<<"\t"<<b[1]<<"\t"<<b[2]<<endl; 
  } 
InitialAngle[i][0]=b[0];InitialAngle[i][1]=b[1];InitialAngle[i][2]=b[2]
; 
} 
m.AvgStress11Re=m.AvgStress11Re/(100.0*Totcrys); 
m.AvgStress11Im=m.AvgStress11Im/(100.0*Totcrys); 
m.AvgStress22Re=m.AvgStress22Re/(100.0*Totcrys); 
m.AvgStress22Im=m.AvgStress22Im/(100.0*Totcrys); 
m.AvgStress33Re=m.AvgStress33Re/(100.0*Totcrys); 
m.AvgStress33Im=m.AvgStress33Im/(100.0*Totcrys); 
Stfile<<m.AvgStress11Re<<"\t"<<m.AvgStress22Re<<"\t"<<m.AvgStress33Re<<
endl; 
 } 
for(j=0;j<Totcrys;j++){ 
Gammafile<<m.GammaRe_t[j]<<"\t"<<m.GammaIm_t[j]<<endl; 
} initialOrient.close(); 
 Wfile.close(); 
 Stfile.close(); 
} 
 
***** material.h **************************************************** 
// material.h: interface for the Material class. 
// 
////////////////////////////////////////////////////////////////////// 
#ifndef MATERIAL_HPP 
#define MATERIAL_HPP 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <vector> 
#include <string> 
#include <iostream> 
#include <fstream> 
 
 
#include "point.h" 
#include "TexCalcGSHE_sds.h" 
 
class Material : public CTexCalcGSHE 
{ 
public: 
  
 Material(void); 
 ~Material(void); 
  
void FourIndicesFromTwo(int q, int t, int &i, int &j, int &r, int &s);  
//Helper functions to setup the symmetry of the material 
void SetSymmetry(int CrystalSym, int SampleSym); 
int CrystalSym(){return(m_crystalSym);}; 
int SampleSym(){return(m_sampleSym);};  
void getName(std::string &name); 
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void setName(std::string name);  
gshe_complex Kijrs[6][6][10], Ksijrs[6][6][10]; 
gshe_complex *****mStiffCoeff, *****mCompCoeff; 
double mS[6][6], mC[6][6], mC11, mC12, mC44, mS11, mS12, mS44, Cg; 
double AvgStress11Re,AvgStress11Im,AvgStress22Re,AvgStress22Im, 
       AvgStress33Re,AvgStress33Im; 
double W21AlmnRe[1000],W21AlmnIm[1000],W31AlmnRe[1000],W31AlmnIm[1000], 
       W32AlmnRe[1000],W32AlmnIm[1000]; 
double S11Blmnk1Re[29][80],S22Blmnk1Re[29][80],S33Blmnk1Re[29][80]; 
double S11Blmnk1Im[29][80],S22Blmnk1Im[29][80],S33Blmnk1Im[29][80]; 
double W21Blmnk1Re[29][80],W31Blmnk1Re[29][80],W32Blmnk1Re[29][80]; 
double W21Blmnk1Im[29][80],W31Blmnk1Im[29][80],W32Blmnk1Im[29][80], 
  GaBlmnk1Re[29][80],GaBlmnk1Im[29][80]; 
double W21Re,W21Im,W31Re,W31Im,W32Re,W32Im; 
double GlmnRe[1000],GlmnIm[1000],GammaRe,GammaIm,SgRe,SgIm; 
double Slmn11Re[1000],Slmn11Im[1000],Sigma11Re,Sigma11Im; 
double Slmn33Re[1000],Slmn33Im[1000],Sigma33Re,Sigma33Im; 
double Slmn22Re[1000],Slmn22Im[1000],Sigma22Re,Sigma22Im; 
double GammaRe_t[1000],GammaIm_t[1000],SRe_t[1000],SIm_t[1000],k[29], 
       theta[10]; 
double So,ho,Ss,a;double rs; 
double xRe,xIm; 
double ts1,ts2; 
double CrysStress11Re,CrysStress11Im,CrysStress33Re, 
       CrysStress33Im,CrysStress22Re,CrysStress22Im; 
double W21TmpRe,W21TmpIm, W31TmpRe,W31TmpIm, W32TmpRe,W32TmpIm; 
double S11TmpRe,S11TmpIm, S22TmpRe,S22TmpIm, S33TmpRe,S33TmpIm,         
GaTmpRe,GaTmpIm; 
   
void Summation(double A[9],double ,double ,double, int,int ); 
void Material::AngleAxis(double A[9],double   
GF[3][3],double,double,double); 
void Material::RotaMat(double ,double B[3],double R[3][3]); 
void Material::EulerAngles(double GF[3][3],double b[]); 
 
protected: 
 
 //Helper functions and variables for output of Triclinic Terms 
 void ReduceTricTerms(); 
 void ExpandTricTerms(); 
 void AllocateTricTerms(); 
 void FreeTricTerms(); 
 bool TricTermsAllocReady; 
 gshe_complex ***mTricTerms; 
 //Helper functions and variable for calculation of Stiff Coeff 
 bool StiffAllocReady, StiffCoeffReady; 
 //Helper functions and variable for calculation of Comp Coeff 
 void AllocateCompCoeff(void); 
 void FreeCompCoeff(void); 
 bool CompAllocReady, CompCoeffReady;   
// double x[6], c[6];  
 std::string mName; 
 double g1[3][3]; 
 int m_sampleSym, m_crystalSym; 
 int mHullPointCount, mHullDim;  
private:  
}; 
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#endif 
 
***** material.cpp **************************************************** 
// material.cpp: implementation of the Material class. 
////////////////////////////////////////////////////////////////////// 
#include <stdio.h> 
#include <stdlib.h> 
#include <fstream.h> 
#include <iostream.h> 
#include "material.h" 
/* 
Class constructor to initiallize certain values that will be 
needed by other elements of the class. 
*/ 
Material::Material(void) 
{    
  TricTermsAllocReady = false; 
 AvgStress11Re=0.0,AvgStress11Im=0.0; 
 AvgStress33Re=0.0,AvgStress33Im=0.0; 
 AvgStress22Re=0.0,AvgStress22Im=0.0; 
 So=16; 
 ho=180; 
 Ss=148; 
 a=2.25; 
 rs=0.01; 
 //k=pow(0.5,rs); 
ifstream updatefile1("slipresupdate.txt"); 
    for(int i=0;i<1000;i++){ 
 GammaRe_t[i]=0.0,GammaIm_t[i]=0.0; 
 updatefile1>>ts1 >>ts2; 
 //SRe_t[i]=So,SIm_t[i]=0.0; 
 SRe_t[i]=ts1,SIm_t[i]=ts2; 
 } 
ifstream Afile1("W21AlmnCoeffs.txt"); 
 if(!Afile1.is_open()){ 
 cout<<"Error openeing W21AlmnCoeffs.txt file"<<endl; exit(1); 
  } 
ifstream Afile2("W31AlmnCoeffs.txt"); 
 if(!Afile2.is_open()){ 
 cout<<"Error openeing W31AlmnCoeffs.txt file"<<endl; exit(1); 
  } 
ifstream Afile3("W32AlmnCoeffs.txt"); 
 if(!Afile3.is_open()){ 
 cout<<"Error openeing W32AlmnCoeffs.txt file"<<endl; exit(1); 
  }   
ifstream Afile4("Slmn11Coeffs.txt"); 
 if(!Afile4.is_open()){ 
 cout<<"Error openeing SlmnCoeffs.txt file"<<endl; exit(1); 
  } 
ifstream Afile4a("Slmn33Coeffs.txt"); 
 if(!Afile4a.is_open()){ 
 cout<<"Error openeing Slmn33Coeffs.txt file"<<endl; exit(1); 
  } 
ifstream Afile4b("Slmn22Coeffs.txt"); 
 if(!Afile4b.is_open()){ 
 cout<<"Error openeing Slmn22Coeffs.txt file"<<endl; exit(1); 
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  } 
ifstream Afile5("GlmnCoeffs.txt"); 
 if(!Afile5.is_open()){ 
 cout<<"Error openeing GlmnCoeffs.txt file"<<endl; exit(1); 
  } 
ifstream ip("lmnfile.txt"); 
 if(!ip.is_open()){ 
 cout<<"Error openeing lmnfile.txt file"<<endl; exit(1); 
  }  
 //for(int i=0;i<80;i++){   
 for(int i=0;i<29;i++){// number of coefficients k  
  for(int j=0;j<80;j++){ 
 Afile1>> k[i] >> W21Blmnk1Re[i][j] >> W21Blmnk1Im[i][j];  
 Afile2>> k[i] >> W31Blmnk1Re[i][j] >> W31Blmnk1Im[i][j];  
 Afile3>> k[i] >> W32Blmnk1Re[i][j] >> W32Blmnk1Im[i][j];  
 Afile4>> k[i] >> S11Blmnk1Re[i][j] >> S11Blmnk1Im[i][j]; 
 Afile4b>> k[i] >> S22Blmnk1Re[i][j] >> S22Blmnk1Im[i][j]; 
 Afile4a>> k[i] >> S33Blmnk1Re[i][j] >> S33Blmnk1Im[i][j]; 
 Afile5>> k[i] >> GaBlmnk1Re[i][j]  >> GaBlmnk1Im[i][j]; 
  } 
 }  
 Afile1.close();Afile2.close();Afile3.close(); 
 Afile4.close();Afile4a.close();Afile5.close();Afile4b.close(); 
}  
/* 
Class destructor used to clean up any memory leaks and other 
stuff when the class is dropped from scope. 
*/ 
Material::~Material() 
{ 
 DataPoints.clear(); 
 FreeTricTerms(); 
} 
 
ifstream ip ("lmnfile.txt"); 
int l,mu,nu; 
 
void Material::getName(std::string &x) 
{ 
    x = mName; 
} 
/* 
Set the name of the material 
*/ 
void Material::setName(std::string x) 
{ 
    mName = x; 
} 
 
void Material::Summation(double Wstar[],double phi1,double PHI,double 
phi2,int flag,int ncrys) 
{   
int counter=0; 
//begin of the loops for l,m,n: 
//cout<<"phi1= "<<phi1<<"PHI= "<<PHI<<"phi2= "<<phi2<<endl; 
GammaRe=0.0,GammaIm=0.0,Sigma11Re=0.0,Sigma11Im=0.0,Sigma33Re=0.0,Sigma
33Im=0.0; 
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Sigma22Re=0.0,Sigma22Im=0.0; 
W21Re=0.0,W21Im=0.0,W31Re=0.0,W31Im=0.0,W32Re=0.0,W32Im=0.0; 
CrysStress11Re=0.0,CrysStress11Im=0.0; 
CrysStress22Re=0.0,CrysStress22Im=0.0; 
CrysStress33Re=0.0,CrysStress33Im=0.0; 
ofstream op ("e.txt");  
  for (int l=0; l<=m_Rank; ++l){ 
    for (int mu=m_Mstart; mu<=m_MLinEq[l]; ++mu){ 
     for(int nu=m_Nstart; nu<=m_NLinEq[l]; ++nu){  
 
int n=0; theta[n]=0.0; 
W21TmpRe=0.0,W21TmpIm=0.0, W31TmpRe=0.0,W31TmpIm=0.0, 
W32TmpRe=0.0,W32TmpIm=0.0; 
S11TmpRe=0.0,S11TmpIm=0.0, S22TmpRe=0.0,S22TmpIm=0.0, 
S33TmpRe=0.0,S33TmpIm=0.0, GaTmpRe=0.0, GaTmpIm=0.0; 
for(int iii=0;iii<29;iii++){ // number of coefficients k 
W21TmpRe=W21TmpRe+(W21Blmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
W21Blmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
W21TmpIm=W21TmpIm+(W21Blmnk1Re[iii][counter]*sin(k[iii]*theta[n])+W21Bl
mnk1Im[iii][counter]*cos(k[iii]*theta[n])); 
 
W31TmpRe=W31TmpRe+(W31Blmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
W31Blmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
W31TmpIm=W31TmpIm+(W31Blmnk1Re[iii][counter]*sin(k[iii]*theta[n])+W31Bl
mnk1Im[iii][counter]*cos(k[iii]*theta[n])); 
 
W32TmpRe=W32TmpRe+(W32Blmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
W32Blmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
W32TmpIm=W32TmpIm+(W32Blmnk1Re[iii][counter]*sin(k[iii]*theta[n])+W32Bl
mnk1Im[iii][counter]*cos(k[iii]*theta[n])); 
 
S11TmpRe=S11TmpRe+(S11Blmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
S11Blmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
S11TmpIm=S11TmpIm+(S11Blmnk1Re[iii][counter]*sin(k[iii]*theta[n])+S11Bl
mnk1Im[iii][counter]*cos(k[iii]*theta[n])); 
 
S22TmpRe=S22TmpRe+(S22Blmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
S22Blmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
S22TmpIm=S22TmpIm+(S22Blmnk1Re[iii][counter]*sin(k[iii]*theta[n])+S22Bl
mnk1Im[iii][counter]*cos(k[iii]*theta[n])); 
 
S33TmpRe=S33TmpRe+(S33Blmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
S33Blmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
S33TmpIm=S33TmpIm+(S33Blmnk1Re[iii][counter]*sin(k[iii]*theta[n])+S33Bl
mnk1Im[iii][counter]*cos(k[iii]*theta[n])); 
 
GaTmpRe=GaTmpRe+(GaBlmnk1Re[iii][counter]*cos(k[iii]*theta[n])-
GaBlmnk1Im[iii][counter]*sin(k[iii]*theta[n])); 
GaTmpIm=GaTmpIm+(GaBlmnk1Re[iii][counter]*sin(k[iii]*theta[n])+GaBlmnk1
Im[iii][counter]*cos(k[iii]*theta[n])); 
} 
   W21AlmnRe[counter]=W21TmpRe; 
   W21AlmnIm[counter]=W21TmpIm; 
   W31AlmnRe[counter]=W31TmpRe; 
   W31AlmnIm[counter]=W31TmpIm;   
   W32AlmnRe[counter]=W32TmpRe; 
   W32AlmnIm[counter]=W32TmpIm; 
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   Slmn11Re[counter]=S11TmpRe; 
   Slmn11Im[counter]=S11TmpIm;    
   Slmn22Re[counter]=S22TmpRe; 
   Slmn22Im[counter]=S22TmpIm; 
   Slmn33Re[counter]=S33TmpRe; 
   Slmn33Im[counter]=S33TmpIm; 
   GlmnRe[counter]=GaTmpRe; 
   GlmnIm[counter]=GaTmpIm; 
  
 double TReal=(symmetricT(l,mu,nu,phi1,PHI,phi2,true)).re; 
 double TImag=(symmetricT(l,mu,nu,phi1,PHI,phi2,true)).im;  
 //Tfile<<TReal<<"\t"<<TImag<<"\t";  
  
 W21Re=W21Re+W21AlmnRe[counter]*TReal-W21AlmnIm[counter]*TImag; 
 W21Im=W21Im+W21AlmnRe[counter]*TImag+W21AlmnIm[counter]*TReal; 
 
 W31Re=W31Re+W31AlmnRe[counter]*TReal-W31AlmnIm[counter]*TImag; 
 W31Im=W31Im+W31AlmnRe[counter]*TImag+W31AlmnIm[counter]*TReal; 
 
 W32Re=W32Re+W32AlmnRe[counter]*TReal-W32AlmnIm[counter]*TImag; 
 W32Im=W32Im+W32AlmnRe[counter]*TImag+W32AlmnIm[counter]*TReal; 
 

Sigma11Re=Sigma11Re+Slmn11Re[counter]*TReal-
Slmn11Im[counter]*TImag; 
Sigma11Im=Sigma11Im+Slmn11Re[counter]*TImag+Slmn11Im[counter]*TRe
al; 

 
Sigma33Re=Sigma33Re+Slmn33Re[counter]*TReal-
Slmn33Im[counter]*TImag; 
Sigma33Im=Sigma33Im+Slmn33Re[counter]*TImag+Slmn33Im[counter]*TRe
al; 

 
Sigma22Re=Sigma22Re+Slmn22Re[counter]*TReal-
Slmn22Im[counter]*TImag; 
Sigma22Im=Sigma22Im+Slmn22Re[counter]*TImag+Slmn22Im[counter]*TRe
al;  

 
 GammaRe=GammaRe+GlmnRe[counter]*TReal-GlmnIm[counter]*TImag; 
 GammaIm=GammaIm+GlmnRe[counter]*TImag+GlmnIm[counter]*TReal;  
  
 ++counter;  
   } 
    }  
}//end of the loop for l    
 Wstar[0]=0.0, Wstar[1]=-W21Re, Wstar[2]=-W31Re; 
 Wstar[3]=W21Re, Wstar[4]=0.0, Wstar[5]=-W32Re; 
 Wstar[6]=W31Re, Wstar[7]=W32Re, Wstar[8]=0.0; 
 xRe=1-(SRe_t[ncrys]/Ss); 
 xIm=1-(SIm_t[ncrys]/Ss); 
 //  PSC 
 SgRe=SRe_t[ncrys]+ho*pow(xRe,a)*GammaRe_t[ncrys]*20.0*1.41421356;
 SgIm=SIm_t[ncrys]+ho*pow(xIm,a)*GammaIm_t[ncrys]*20.0*1.41421356;
 SRe_t[ncrys]=SgRe;  
      // these four shd be executed after SgRe and  SgIm.Updates  
 //cout<<"in material SRe="<<SRe_t[ncrys]<<endl; 
 SIm_t[ncrys]=SgIm; 
 GammaRe_t[ncrys]=GammaRe; 
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 GammaIm_t[ncrys]=GammaIm; 
 CrysStress11Re=SgRe*Sigma11Re-SgIm*Sigma11Im; 
 CrysStress11Im=SgIm*Sigma11Re+SgRe*Sigma11Im;  
 AvgStress11Re=AvgStress11Re+CrysStress11Re; 
 AvgStress11Im=AvgStress11Im+CrysStress11Im;  
 CrysStress22Re=SgRe*Sigma22Re-SgIm*Sigma22Im; 
 CrysStress22Im=SgIm*Sigma22Re+SgRe*Sigma22Im;  
 AvgStress22Re=AvgStress22Re+CrysStress22Re; 
 AvgStress22Im=AvgStress22Im+CrysStress22Im;  
 CrysStress33Re=SgRe*Sigma33Re-SgIm*Sigma33Im; 
 CrysStress33Im=SgIm*Sigma33Re+SgRe*Sigma33Im;  
 AvgStress33Re=AvgStress33Re+CrysStress33Re; 
 AvgStress33Im=AvgStress33Im+CrysStress33Im;      
}//end of function 
 
void Material::AngleAxis(double Wstar[],double GF[3][3],double 
phi1,double PHI,double phi2) 
{  double Q[3][3],axis[3],R[3][3]; 
    
    Q[0][0]=cos(phi1)*cos(phi2)-sin(phi1)*cos(PHI)*sin(phi2); 
         Q[1][0]=sin(phi1)*cos(phi2)+cos(phi1)*cos(PHI)*sin(phi2); 
         Q[2][0]=sin(PHI)*sin(phi2); 
         Q[0][1]=-cos(phi1)*sin(phi2)-sin(phi1)*cos(PHI)*cos(phi2); 
         Q[1][1]=-sin(phi1)*sin(phi2)+cos(phi1)*cos(PHI)*cos(phi2); 
         Q[2][1]=sin(PHI)*cos(phi2); 
         Q[0][2]=sin(phi1)*sin(PHI); 
         Q[1][2]=-cos(phi1)*sin(PHI); 
         Q[2][2]=cos(PHI);  
double ang=sqrt(Wstar[1]*Wstar[1]+Wstar[2]*Wstar[2]+Wstar[5]*Wstar[5]); 
   if(ang==0.0){ 
   axis[0]=1.0;axis[1]=0.0;axis[2]=0.0; 
   } 
   else{ 
    axis[0]=Wstar[5]/ang; 
          axis[1]=-Wstar[2]/ang; 
    axis[2]=Wstar[1]/ang; 
   }  
   RotaMat(ang,axis,R); 
   for(int i=0;i<3;i++){ 
    for(int j=0;j<3;j++){ 
     GF[i][j]=0.0; 
     for(int k=0;k<3;k++){ 
     GF[i][j]=GF[i][j]+R[i][k]*Q[k][j]; 
     } 
   } 
   } 
}//end of AngleAxis function 
 
void Material::RotaMat(double ang,double axis[],double R[3][3]){  
 R[0][0]=(1-axis[0]*axis[0])*cos(ang)+axis[0]*axis[0]; 
 R[0][1]=axis[0]*axis[1]*(1-cos(ang))-axis[2]*sin(ang); 
 R[0][2]=axis[0]*axis[2]*(1-cos(ang))+axis[1]*sin(ang); 
 R[1][0]=axis[0]*axis[1]*(1-cos(ang))+axis[2]*sin(ang); 
 R[1][1]=(1-axis[1]*axis[1])*cos(ang)+axis[1]*axis[1]; 
 R[1][2]=axis[1]*axis[2]*(1-cos(ang))-axis[0]*sin(ang); 
 R[2][0]=axis[1]*axis[2]*(1-cos(ang))-axis[1]*sin(ang); 
 R[2][1]=axis[1]*axis[2]*(1-cos(ang))+axis[0]*sin(ang); 
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    R[2][2]=(1-axis[2]*axis[2])*cos(ang)+axis[2]*axis[2]; 
}//end of RotaMat function 
 
void Material::EulerAngles(double GF[3][3],double b[]){  
 if(fabs(GF[2][2])>1){ 
 cout<<"Error in gn[2][2]"<<endl; 
 } 
 b[1]=acos(GF[2][2]); 
 if(GF[2][2]==1.0 || GF[2][2]==-1.0){ 
 b[2]=0; 
 b[0] = acos(GF[0][0]); 
 if (GF[1][0]<0.0) {b[0] = 2*PI-b[0];} 
 } 
 else{ 
  b[2]=atan2((GF[2][0]),(GF[2][1])); 
  b[0]=atan2((GF[0][2]),(-GF[1][2]));    
  } 
 double TOL=0.001; 
/*angles 0 and 2PI are same for Phi1 and Phi2 in the Euler space 
0<=Phi1<2PI,0<=Phi<=PI,0<=Phi2<2PI. 
To avoid numerical approximations angles are checked with in some 
tolerance*/ 
 if (fabs(b[0]-0.0)<TOL) 
  b[0]=0.0; 
 else 
 if (fabs(b[0]-2.0*PI)<TOL){b[0]=0.0;}      
 if(fabs(b[2]-0.0)<TOL) 
  b[2]=0.0; 
 else 
 if(fabs(b[2]-2.0*PI)<TOL){b[2]=0.0;} 
 //force angles to be positive 
 while(b[0]<0){b[0]=b[0]+(2*PI);} 
 while(b[1]<0){b[1]=b[1]+(2*PI);} 
 while(b[2]<0){b[2]=b[2]+(2*PI);}  
}//end of EulerAngles function 
 
 
void Material::SetSymmetry(int CrystalSym, int SampleSym) 
{ 
    m_crystalSym = CrystalSym; 
    m_sampleSym = SampleSym; 
} 
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APPENDIX C: C++ CODE THAT COUPLES FORTRAN SUBROUTINES 
IN FORGE3 AND SPECTRAL CRYSTAL PLASTICITY WRITTEN 

IN MATLAB. 
 
 
 
 

// TestInterface.h: interface for the TestInterface class. 
// 
////////////////////////////////////////////////////////////////////// 
#include <iostream> 
 
 
 
#if 
!defined(AFX_TESTINTERFACE_H__48425A71_320E_4AC4_A95F_BA85B63FEE11__INC
LUDED_) 
#define 
AFX_TESTINTERFACE_H__48425A71_320E_4AC4_A95F_BA85B63FEE11__INCLUDED_ 
 
#if _MSC_VER > 1000 
#pragma once 
#endif // _MSC_VER > 1000 
 
 
extern "C" int _cdecl FFT_SCP(long double* LMatrix, long double* 
additionalArguments); 
 
#endif // 
!defined(AFX_TESTINTERFACE_H__48425A71_320E_4AC4_A95F_BA85B63FEE11__INC
LUDED_) 
 
 
 
// TestInterface.cpp: implementation of the TestInterface class. 
// 
////////////////////////////////////////////////////////////////////// 
#include "TestInterface.h" 
 
#include <matrix.h> 
#include <engine.h> 
#include <sstream> 
#include <fstream> 
#include <iostream> 
#include <cstdlib> 
#include <cstdio> 
#include <iomanip> 
 
static Engine* globalEngine = (Engine*)NULL; 
const char* SCP_FFT_PATH = "C:\\Temp\\SCP_FFT_Forge_Test\\"; 
const char* SCP_FFT_COMMANDLOG = 
"C:\\Temp\\SCP_FFT_Forge_Test\\commandLog.txt"; 
 
extern "C" int _cdecl SCP_FFT(long double* LMatrix, long double* 
additionalArguments) { 
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 // Check for instance of the MATLAB Engine... 
 if(globalEngine == (Engine*)NULL) { 
  globalEngine = engOpen("-nojvm -nodesktop"); 
  if(globalEngine == (Engine*)NULL) { 
   std::cerr << "Unable to start MATLAB Engine" << 
std::endl; 
   return 0; 
  } 
 } 
 
 // Setup LMatrix  
 mxArray* mxLMatrix = mxCreateDoubleMatrix(3,3, (mxComplexity)0); 
 double* dLmatrix = mxGetPr(mxLMatrix); 
 if(mxLMatrix == (mxArray*)NULL) { 
  std::cerr << "Unable to Create L Matrix" << std::endl; 
  return 0; 
 } 
 for(int i = 0; i < 3; ++i) { 
  for(int j = 0; j < 3; ++j) { 
   dLmatrix[i*3+j] = LMatrix[i*3+j]; 
  } 
 } 
 
 // Setup TimeSteps 
 mxArray* mxTimeStep = mxCreateDoubleMatrix(1,1, (mxComplexity)0); 
 double* dTimeStep = mxGetPr(mxTimeStep); 
 if(mxTimeStep == (mxArray*)NULL) { 
  std::cerr << "Unable to Create TimeStep Matrix" << 
std::endl; 
  return 0; 
 } 
 dTimeStep[0] = additionalArguments[0]; 
 
 // Setup Print Y/N 
 mxArray* mxFilePrint = mxCreateDoubleMatrix(1,1, 
(mxComplexity)0); 
 double* dFilePrint = mxGetPr(mxFilePrint); 
 if(mxFilePrint== (mxArray*)NULL) { 
  std::cerr << "Unable to Create FilePrint Matrix" << 
std::endl; 
  return 0; 
 } 
 dFilePrint[0] = additionalArguments[1]; 
 
 // Setup Print Y/N 
 mxArray* mxElementTimeStep = mxCreateDoubleMatrix(1,1, 
(mxComplexity)0); 
 double* dElementTimeStep = mxGetPr(mxElementTimeStep); 
 if(mxTimeStep == (mxArray*)NULL) { 
  std::cerr << "Unable to Create FilePrint Matrix" << 
std::endl; 
  return 0; 
 } 
 dElementTimeStep[0] = additionalArguments[3]; 
 
 // Setup Print Y/N 
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 mxArray* mxElementNumber = mxCreateDoubleMatrix(1,1, 
(mxComplexity)0); 
 double* dElementNumber= mxGetPr(mxElementNumber); 
 if(mxElementNumber == (mxArray*)NULL) { 
  std::cerr << "Unable to Create FilePrint Matrix" << 
std::endl; 
  return 0; 
 } 
 dElementNumber[0] = additionalArguments[2]; 
 
 // Copy Arguments to workspace 
 if(engPutVariable(globalEngine, "LMatrix", mxLMatrix)!=0) { 
  std::cerr << "Unable to Copy LMatrix to workspace" << 
std::endl; 
 } 
 if(engPutVariable(globalEngine, "TimeStep", mxTimeStep)!=0) { 
  std::cerr << "Unable to Copy TimeStep to workspace" << 
std::endl; 
 } 
 if(engPutVariable(globalEngine, "FilePrint", mxFilePrint)!=0) { 
  std::cerr << "Unable to Copy FilePrint to workspace" << 
std::endl; 
 } 
 if(engPutVariable(globalEngine, "ElementNumber", 
mxElementNumber)!=0) { 
  std::cerr << "Unable to Copy ElementNumberto workspace" << 
std::endl; 
 } 
 if(engPutVariable(globalEngine, "ElementTimeStep", 
mxElementTimeStep)!=0) { 
  std::cerr << "Unable to Copy ElementNumberto workspace" << 
std::endl; 
 } 
 
 std::ostringstream matlabCommand; 
 matlabCommand << "cd " << SCP_FFT_PATH << ";" << 
"FFT_SCP_final_theta(LMatrix,TimeStep,FilePrint,ElementNumber,ElementTi
meStep);"; 
#if 0 
 // Build MATLAB command... 
 FILE* commandLog = fopen(SCP_FFT_COMMANDLOG, "a+"); 
 if(commandLog != 0) { 
  fprintf(commandLog, "%s\n", matlabCommand.str().c_str()); 
  fclose(commandLog); 
 } 
 return 1; 
#endif 
 
 // Evaluate with MATLAB... 
 if(engEvalString(globalEngine, matlabCommand.str().c_str())!=0) { 
  std::cerr << "Unable to evaluate MATLAB command:" << 
matlabCommand.str() << std::endl; 
 } 
 
 return 1; 
} 
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APPENDIX D: FORGE3 FINITE ELEMENT INPUT FILE  
 
 

 
 

Forge3 finite element input file to simulate simplecompression using forge3 loiv_meca 

subroutine. 

! File Type:  FORGE3 V7.0 Data File 
! Creator:  GLPre Version 2, 3, 0, 27-Release 
! Author:   
! Creation Date: 2007-05-03 09:54:24 
! GLPre active language:English 
! System language: English (United States) 
! Data File Name: squaredie.ref 
! Data File Location: C:\Forge3-
V6.3B\GLpre\Computations\NewProject.tsv\SquareDie\ 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!! 
 
!================================ OBJECTS Block 
.OBJETS 
 ProjectName = NewProject 
 SimulationName = SquareDie 
 
 Fout = squaredie.out 
 Fres = results\squaredie.res 
 Faux = results\squaredie.vtf 
 NBSD = 1 
 objet 1, NAME=Billet 
 objet 1, FMAY=billet.may 
 objet 1, NomGen=results\billet_ 
 objet 1, rheol=1 
 outil 1, NAME=LowerDie 
 outil 2, NAME=UpperDie 
.FIN OBJETS 
!================================  
 
!================================ APPROXIMATION Block 
.APPROXIMATION 
 Periode_Meca = 1 
.FIN APPROXIMATION 
!================================  
 
!================================ UNITS Block 
.UNITES 
 MM-MPA-MM.KG.S 
.FIN UNITES 
!================================  
 
!================================ RHEOLOGY Block 
.RHEOLOGIE 
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!!!!!!!!!!!!!!!!!!!!! 
MATERIAU 1 ! (object Billet) 
!!!!!!!!!!!!!!!!!!!!! 
 EVP  
 Thermoecroui: Hansel Spittel Nb1,  
 ! Material name: AlMg1Si0, 6Cr 
 ! Material type: Al-alloys 
 ! Material subtype: Al-Mg-Si 
 ! Properties type: cold forming 
 ! Units: MPa, degC 
 ! Validity domain: 
 ! Temperature: 20 - 250 
 ! Strain: 0.04 - 3 
 ! Strain rate: 0 - 500 
 A1=260.49451,  
 m1=-0.00168,  
 m2=0.16992,  
 m3=0.0184,  
 m4=0.00073,  
 m5=0,  
 m6=0,  
 m7=0,  
 m8=0,  
 m9=0,  
 eps_ss=0 
  
 !Elasticity coefficients 
 Youngmodulus = 7.300000e+04 
 Poissoncoeff = 0.300000 
 
 !Thermal coefficients 
 mvolumique = 2.800000e-06 !Density 
 cmassique = 1.230000e+09 !Specific Heat 
 conductmat = 2.500000e+05 !Conductivity 
 epsilon = 5.000000e-02 !Emissivity 
 
!--------------------------------  
OUTIL1  !LowerDie 
 
 !Friction between deformable object and rigid die 
 bilateral collant  ! Friction Law 
 
 Temp = 20.000000 
FIN OUTIL 
!--------------------------------  
 
!--------------------------------  
OUTIL2  !UpperDie 
 
 !Friction between deformable object and rigid die 
 bilateral collant  ! Friction Law 
 
 Temp = 20.000000 
FIN OUTIL 
!--------------------------------  
 
 !Thermal Exchange between deformable object and air 
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 AlphaText = 1.000000e+001  ! Global Transfert Coeff. 
 TempExt = 20.000000   ! Ambient Temperature 
 
 ! Initial temperature has been set in mesh file: already exists 
in mesh file 
!!!!!!!!!!!!!!!!!!!!! 
FIN MATERIAU 
!!!!!!!!!!!!!!!!!!!!! 
 
 ! *** User Variable : Sigma1 
 
   LOIV MECA 
 Sigma1 
 Par STRESSTENSOR(6) = EXIST 
 Var SIG1 = 0. 
   FIN LOI 
 
   ! *** User Variable Law: LatAndCN 
   LOIV UTIL 
 LatAndCN 
 Par SIG1 = EXIST 
 Par STRAIN_RATE = EXIST 
 Par EQ_STRESS = EXIST 
 Eta LATANDCN = 0. 
   FIN LOI 
 
   ! *** User Variable Law: Sig1_direction 
   LOIV MECA 
 Sig1_direction 
 Par STRESSTENSOR(6) = EXIST 
 Var SIG1_VECTOR(3) = 0, 0, 0 
   FIN LOI 
 ! *** User Variable Law: VELOCITY_GRADIENT 
   LOIV MECA 
 VEL_GRAD 
 VAR VELGRAD1(3) = 0,0,0 
 VAR VELGRAD2(3) = 0,0,0 
 VAR VELGRAD3(3) = 0,0,0 
  FIN LOI 
   
!Stock=VELGRAD1,VELGRAD2,VELGRAD3 
    
.FIN RHEOLOGIE 
!================================  
 
!================================ TOLERCONV Block 
.TOLERCONV 
.FIN TOLERCONV 
!================================  
 
!================================ INCREMENT Block 
.INCREMENT 
 Deformation= 1.000000e-002 
.FIN INCREMENT 
!================================  
 
!================================ EXECUTION Block 
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.EXECUTION 
 Inertia 
 dhSto = 1.666667e-002 
 Fine Sto = 1.000000e+000 
 Calcul Outillage 
 Folds_Detection 
.FIN EXECUTION 
!================================  
 
!================================ THERMAL Block 
.THERMIQUE 
.FIN THERMIQUE 
!================================  
 
!================================ MESH BOXES Block 
.BOITE 
 
.FIN BOITE 
!================================  
 
!================================ SENSORS Block 
.CAPTEURS 
 
.FIN CAPTEURS 
!================================  
 
!================================ BOUNDARY CONDITIONS Block 
.CONDLIM 
 
.FIN CONDLIM 
!================================  
 
!================================ REMESHING Block 
.MAUTO 
 
OBJET1 
 periode = 50 
 lbase = 0.155479 
FIN OBJET 
 
.FIN MAUTO 
!================================  
 
!================================ KINEMATICS Block 
.CINEMAT_OUT 
   Outil2  ! UpperDie 
 maitre 
 Axe = 3 
   Fin Outil 
.FIN CINEMAT_OUT 
 
.PILOT 
NbPass= 1 
   Pass1 
   Fin Pass 
.FIN PILOT 
!================================  
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APPENDIX E: LOIV_MECA FORGE3 USERSUBROUITNE.  

 
 
 

 
********************************************************************** 
C 
The original authors of the subrouitne are forge3 developers 
(transvalor s. A.)   
The following code is added to the original LOIV_MECA subroutine code. 
The entire subroutine code is not presented and only the code that is 
added to the original code is given here. The input file presented in 
appendix D invokes this subroutine to compute the velocity gradient 
tensor at each integration point for each element and pass the same to 
spectral crystal plasticity code (MATLAB code) to compute texture 
evolution during simple compression deformation. 
C 
 
 
      elseif (nom.eq.'VEL_GRAD') then 
C********************************************************************** 
C Determination of  the velocity gradient tensor 
C 
C    LOIV MECA 
C      VELOCITY_GRADIENT 
C      VAR VELGRAD(9) = 0,0,0,0,0,0,0,0,0 
C    FIN LOI 
C********************************************************************** 
 
 if ((nbpar.ne.0).or.(nbvar.ne.3)) goto 99 
C write(*,*) nbpar 
 
 gs_var(1) = gradv(1,1)  ! GRAD (V1) 
 gs_var(2) = gradv(1,2) 
 gs_var(3) = gradv(1,3) 
 gs_var(4) = gradv(2,1)  ! GRAD (V2) 
 gs_var(5) = gradv(2,2) 
 gs_var(6) = gradv(2,3) 
 gs_var(7) = gradv(3,1)  ! GRAD (V3) 
 gs_var(8) = gradv(3,2) 
 gs_var(9) = gradv(3,3) 
C numIterations = numIterations + 1 
 LTrace = (gradv(1,1)+gradv(2,2)+gradv(3,3)) 
 
C Setup L Matrix to pass to MATLAB...   
 nativeLMatrix(1,1) = gradv(1,1)-(1.0/3.0)*(LTrace) 
 nativeLMatrix(1,2) = gradv(1,2) 
 nativeLMatrix(1,3) = gradv(1,3) 
 nativeLMatrix(2,1) = gradv(2,1) 
 nativeLMatrix(2,2) = gradv(2,2)-(1.0/3.0)*(LTrace) 
 nativeLMatrix(2,3) = gradv(2,3) 
 nativeLMatrix(3,1) = gradv(3,1) 
 nativeLMatrix(3,2) = gradv(3,2) 
 nativeLMatrix(3,3) = gradv(3,3)-(1.0/3.0)*(LTrace) 
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C Create L Matrix in Matlab... 
 
 additionalArguments(1) = tps 
 additionalArguments(2) = 0.0 ! Non-zero value for updated texture 
file O/P 
 additionalArguments(3) = elt 
 additionalArguments(4) = incr 
 
 if(tempelt.ne.elt) then 
   mxLMatrix = SCP_FFT(nativeLMatrix, additionalArguments) 
 endif 
 
 tempelt=elt 
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