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Abstract 

A Parallel Controller Implementation for Dynamic Resource 

Allocation in Virtualized Computing Environ ment 

Shahab Ahmad 

Advisor: Nagarajan Kandasamy, Ph. D. 

The ability to dynamically allocate system resources in a large scale 

distributed system is highly desirable.  Dynamically allocating system 

resources can significantly reduce under-utilization of system resources and 

reduce the power consumed by the servers.  Since typical enterprise 

computing systems consist of hundreds of servers, it is almost impossible to 

manually reconfigure each system parameter for optimal performance.  

Prior work has shown that by posing the dynamic resource provisioning 

problem as one of sequential optimization, we can dynamically allocate 

system resources for optimal performance in a dynamic operating 

environment.  However, a single threaded implementation of this control 

technique does not scale well with increasing system size.  Therefore, this 

thesis develops a parallel controller implementation for dynamic resource 

allocation using the OpenMP interface.  We analyze the performance of this 

controller in a virtualized computing environment, and show that dynamic 

resource allocation can lead to an average of 30% savings in energy 

consumption, over an uncontrolled system.  Parallelizing the controller also 

significantly reduces its execution time overhead, by as much as 263%, a 

compared to single threaded implementation. 
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Chapter 1 

Introduction 

On-demand computing, a provisioning model where a computer service 

provider makes system resources available to clients as needed is becoming 

increasingly common in enterprise computing systems.  The computing 

infrastructure typically consists of heterogeneous cluster servers that can 

service multiple clients simultaneously.   Companies typically overprovision 

system resources to handle the highest possible incoming workload.  For 

online banking and shopping applications that consists of many replicated 

servers running the application, server utilization is usually less than 20% by 

many estimates.   

The emergence of virtualization technology in recent years has enabled 

companies to consolidate their data centers and reduce power 

consumption.  In a virtualized environment, a single host can be 

transformed into multiple virtual servers that share system resources.  Each 

virtual machine is a performance-isolated platform that provides the same 

functionality as a physical machine.  Dynamically provisioning virtual 

machines by turning both physical servers and virtual servers ON and OFF 

allows service providers to consolidate the workload on a smaller number 

of virtual machines.  The service providers can conserve power and improve 

system utilization while maintaining desired quality-of-service (QoS).    

Dynamically allocating system resources require tuning the system for 

optimal performance for incoming workload.  To adjust the system’s 

configuration, we need to accurately predict the behavior of the system 

under incoming workload.  For complex distributed systems, predicting the 

future behavior requires exploring millions of possible state configurations 

and choosing the optimal state as the next state of the system.  Exploring 

each of these states requires realizing the system’s behavior as each of 

these states is applied to the system.  Therefore, exploring millions of states 

can be very computation intensive.   
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This paper details an optimization approach that takes advantage of 

parallelization techniques to quickly and efficiently solve the dynamic 

resource allocation problem.  It uses the Limited Lookahead Controller 

(LLC), previously developed in [1], [2], to predict the future state of the 

system.  To improve the performance of LLC, our application uses OpenMP 

to parallelize the state search process.  This approach considers all feasible 

configurations of the system and then uses OpenMP to explore these states 

in parallel.  This paper also discusses the optimization techniques used to 

further enhance the performance of the dynamic resource provisioning 

model.   

1.1     Background 

On-Demand resource allocation is an emerging resource provisioning 

model that makes computing infrastructure available to customers as 

needed, and realizing this model requires making dynamic decisions about 

the future state of a distributed system.  A distributed system typically 

consists of hundreds of servers that are connected together by a network.  

These large systems are typical for many fortune 500 companies.  For 

example, Google, a search industry giant, currently utilizes more than 

200,000 serves across the globe to provide search capabilities to its users. 

Since each individual server normally consist of many tunable parameters, 

tuning many servers for optimal performance becomes very difficult and 

cumbersome.   

In a typical enterprise environment, the distributed systems normally 

consist of a heterogeneous cluster of servers.  Each server may be from a 

different vendor, with different processor and memory configurations.  

Furthermore, each server can run a different operating system.  Therefore, 

the configurable parameters may differ greatly from one server to another.  

Having to configure hundreds of servers is difficult enough, but having to 

configure hundreds of different servers for optimal performance is even 

more difficult.  Figure 1 below shows an example of a heterogeneous set of 

serves.  
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Figure 1: A heterogeneous cluster of servers consisting of different processors, 
memory and cache configuration 

The introduction of virtualization technology has revolutionized the 

enterprise computer industry.   Virtualization allows companies to host 

multiple virtualized servers on a single physical server.  The virtualization 

technology is enabling companies to further extend the capabilities of 

individual physical servers by dividing them in multiple virtual servers.  Since 

each virtual server can be configured independently, the number of 

different configurations is increased even further.  Therefore, the ability to 

virtualize servers further complicates the configurations and makes it even 

more difficult to tune the distributed system for optimal performance.   

Enterprise level distributed systems can host anywhere from one to 

many applications simultaneously.   When a distributed system is hosting 

multiple applications, it must share resources among the different 

applications.  These applications may run independent of each other and 

their workload intensity may vary greatly over time.  So the system 

resources required by an application vary over time.  For online applications 

that experience time varying workload, it is especially true.  For such 
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applications, a system administrator does not only need to configure system 

parameters for optimal performance initially, but he also needs to 

continuously reconfigure system parameters to maximize system 

performance.     

1.2     Problem Statement 

While a distributed system consists of hundreds of configurations and 

many tunable parameters, the parameters consists of a finite set of 

possibilities.  Therefore, while it may be cumbersome to manually tune 

multiple parameters for an optimal configuration, we can programmatically 

tune these parameters for optimal configuration.  By posing the dynamic 

resource provisioning problem as a set of sequential optimizations under 

uncertainty, the distributed system resources can be dynamically allocated 

for optimal system performance.  The sequential optimization problem can 

be solved using a Limited Lookahead Control (LLC) scheme.   

Having a large number of idle servers in a cluster leads to higher power 

consumption.  Due to the increasing cost of energy in the past decade, it is 

becoming more important to reduce power consumption to minimize cost 

of operations.  By dynamically switching machines ON and OFF depending 

on the workload requirements, service providers can reduce their cost.    

Solving the resource allocation problem millions to times requires 

extensive computational power and time.  To maximize the benefits of 

dynamically changing system state, the controller must be able to quickly 

predict and apply the new system state.  Therefore, it’s imperative to be 

able to quickly predict and apply a new system state that can improve 

system performance and reduce its cost.    
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Chapter 2 

Preliminaries 

2.1     System Components: 

Our system model consists of a heterogeneous cluster of Dell 

PowerEdge serves containing PowerEdge 1950 and 2950 series.   Table 1 

below shows the frequency and processing core configurations for each 

server.  Our actual System model configuration consists of 12 physical 

servers consisting of PowerEdge 2950 and 1950 servers.  At any given time, 

each server may be either in on, off, booting, or in shutting down state.   

To minimize the system resources needed to process the workload, our 

model actively shuts down or boots up the physical servers.  The machines 

are turned ON and OFF based on the workload requirements.  A physical 

server at any given time may be in one of five states, and the state is 

determined based on the processing needs.  Table 2 below shows the 

different possible state and acceptable transitions for the physical servers.  

Through experimental tests, we have learned that it takes about four 

minutes to shut down or boot up a physical host.  Since our controller 

comes up after every 120 seconds (1 time step), shutting down or booting 

up a host takes two time steps.   

It’s important to note that shutting down a host is highly risky because 

when a host is given the order to shut down, it will become off-line for four 

time steps (2 time steps to turn off and 2 time steps to turn on).  During this 

time, if the workload intensity increases and that specific physical machine 

is needed to process the incoming requests, our system will not be able to 

respond to the incoming requests.  This will lead to queuing in the system 

and if the request are not handled promptly, they will lead to  SLA 

violations.  Therefore, extreme care must to be taken to minimize the 

number of SLA violations.   
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Types of Physical Machines in System Model 

Server Name Number of 
Processors 

Cores per 
Processor 

Core 
Frequency  

Frequency Sum 

PowerEdge 
2950 

2 4 2250 MHz 2*4*2250=18GHz 

PowerEdge 
1950 

2 4 1500 MHz 2*4*1500=12GHz 

 Table 1: The Types of Physical Servers in the System Model 

Physical Machine State Transition and Constraints 

State 
Description 

State 
ID 

2950 Power 
Consumption 
(watts) 

1950 Power 
Consumption  
(watts) 

Acceptable State 
Transition*  

Powered Off -2 0 0 -2 1 

Shutting Down -1 241.0 207.0 -1  -2 

Standby 0 19.5 18.5 0  1 

Booting Up 1 295.5 250.0  1  2 

Powered On 2 241+ 45*VMs 207 + 45*VMs 2  -1 
2  0 

 Table 2: The State Transition of the Servers  

Our system model takes advantage of the virtualization technology and 

host different client applications within multiple virtual servers.  Each Dell 

PowerEdge server hosts multiple virtual servers to handle incoming 

workload.  Table 3 below shows the virtual machine configuration and 

constraints.  The PowerEdge 1950 sever can host a maximum of 3 virtual 

machines and the PowerEdge 2950 can host a maximum of 4 virtual 

machines.  Since a virtual machine needs at least 2 GHz to support its 

operating system and application server processing needs, our model puts a 

2 GHz minimum frequency constraint on a virtual server.  Our system model 

consists of 44 virtual machines mounted on 12 physical servers.   
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Virtual Machine Configuration and Constraints 

Server Name Max 
VMs 

Max 
Frequency 
Sum 

Max VM 
Frequency 

Min VM Frequency 

PowerEdge 
2950 

4 18 GHz 9000 MHz 2000 MHz 

PowerEdge 
1950 

3 12 GHz 6000 MHz 2000 MHz 

 Table 3: The Types of Physical Servers in the System Model.  

We used VMware ESX server to create virtual machines.  One of the 

inherent constraints that VMware places on virtual servers is that a Virtual 

Machine (VM) cannot access more than four cores on a physical host.  Since 

we use two quad core machines on our servers, we effectively have eight 

addressable cores on each physical host.  VMware’s constraints limit the 

maximum frequency that a virtual machine can attain.  Therefore, A 

PowerEdge 2950 server can only assign a maximum of 9 GHz to its VM 

(4*2250 = 9000 MHz).   

To limit the set of possible frequency configurations, we place an 

implicit constraint on the VM frequency increments.  A VM can attain any 

frequency between its minimum and maximum frequency range with 1000 

MHz increments.  For example, a VM mounted on PowerEdge 1950 may 

select a frequency from the set {2000, 3000, 4000, 5000, and 6000}.  Placing 

this constraint allows us to limit the size of our frequency configuration 

search space.   

 At any given time, a physical server in our cluster can host multiple VMs 

simultaneously.  When multiple VMs are running on a single server, they 

must share common resources such as the CPU.  Therefore, the sum of the 

virtual machines frequencies cannot exceed the total frequency of the 

physical host.  For example, if a PowerEdge 1950 server is hosting 3 VMs, 

then a frequency configuration of 6000, 3000, and 3000 for the three VMs is 

valid.  However, a frequency configuration of 6000, 4000, and 6000 is not 

valid because the sum of the frequencies exceeds 12000 MHz.  This 

hardware restriction is especially useful in limiting the frequency state 

space because it provides an upper bound.   
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In a virtualized environment, it is beneficial to allocate the maximum 

possible frequencies to each host because using the minimum frequency to 

process the incoming workload has very minimal effect on the power 

savings [2].  Therefore, in our model, the sum of the frequencies on a 

physical host always adds up to the maximum frequency that a host can 

support.  For example, if a host can support a maximum of 12000 MHz, and 

it currently have three operating VMs.  If the three VMs need 4000, 2000, 

and 3000 (sum=9000) MHz respectively to process the workload, our model 

will assign a combination of 4000, 4000, and 4000 (sum=12000) MHz 

respectively to each VM.  Imposing this implicit constraint enables us to 

further reduce the size of frequency state space.   

To minimize the system resources needed to process the workload, our 

model actively shuts down or boots up the virtual severs.  If the incoming 

workload is low and a virtual machine is not needed to processing any work, 

the system model will give the signal to turn off the virtual machine.  In our 

model, it takes one time step to turn off a virtual machine.  Turning off a 

virtual machine saves power and reduces cost.  Therefore, it is desirable to 

turn off virtual machines when they are not needed.  Note that since one 

physical server may host up to three or four virtual servers, turning off a 

virtual machine does not necessarily mean that we will also need to turn off 

the physical host.  A host if turned off only when all of its VM’s are turned 

off and our system model predicts that none of the VMs hosted on the PM 

will be needed.  Figure 2 below shows the state transition table.  
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Figure 2: Virtual Machine and Physical Machine state transition diagram 

2.2     Application Clusters: 

Our system model uses two independent online applications labeled as 

“Gold” and “Silver” where each application is indexed using 𝑖 ∈ {1, 2}.  λ1(t) 

and λ2(t) represents the arriving workload at time t for both Gold and Silver 

application clusters, respectively.  As shown in figure 3, the incoming 

workload is routed to the appropriate cluster via a global dispatcher.  Each 

application cluster itself consists of a WL dispatcher.  The Application 

Workload (WL) dispatcher works as a load balancer and divides the arriving 

workload among active virtual machines.  Each virtual machine receives a 

fraction of the workload γ based on its processing capabilities.  The amount 

of workload given to an individual virtual server also depends on the 

current queue of the virtual server.  If a server currently has an existing 

queue, then the dispatcher scales back the workload share γ given to a 

virtual machine.     

 

On VMs

Off VMs

Shut Down 
PM

PM Off

Boot Up PM

PM ON

1 

 
 1 

1 

 
 1 1 

1 
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Figure 3: System Model consisting of Gold and Silver Application Clusters with 
both powered ON and powered OFF machines  

Typical distributed systems consist of multiple application clusters 

processing requests at different rates.  In our system model, the Gold and 

Silver applications process the arriving workload at different rates.  While 

these two applications may share system resources, an individual 

applications processing rate dependent solely on the available frequency 

and an existing work queue.  Figure 4 & 5 below shows the processing rate 

for the tow applications with and without the queue.   
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Figure 4: Gold Application Processing Rate 

 

Figure 5: Silver Application Processing Rate 

The two applications in our system share 44 virtual servers mounted on 

12 physical servers.  At any given time, each application has at least 1 virtual 

machine dedicated towards processing the incoming request.  As the 

workload intensity increases, the number of virtual machines assigned to 

each application also increases.  Depending on the processing 
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requirements, a virtual machines mounted on a single physical machine 

may be serving one or both applications simultaneously.  For example, at 

run time, a PowerEdge 1950 server may be hosting two virtual servers 

serving gold and silver applications with each running at 6000 MHz (third 

VM is off).  When number of VMs needed to process the workload is 

greater than the maximum number of VMs, then priority is given Gold 

application because it is the higher paying client.   

Our system consists of 3 tunable parameters: (1) the number of virtual 

machines assigned to each application; (2) the number of physical machines 

to turn on or off; (3) the CPU share assigned to each VM to process the 

workload.  Each tunable parameter consists of a finite set of states to 

choose from.  To maximize utility, our goal is to choose an optimal 

configuration from the tunable parameters. 

For any given incoming workload, our goal is to use the minimum 

number of virtual machines and physical machines to process the workload.  

To reduce power consumed by physical hosts, our controller tries to bunch 

together virtual machines on as few physical machines as possible.  There is 

however a disadvantage of consolidating the VMs on the fewest possible 

number of physical hosts; As the number of VMs hosted on a PM increases, 

the average CPU share of the VMs also decreases.  This leads to a decrease 

in the throughput.  To maximize the throughput, our model constructs a 

CPU frequency state table and searches for an optimal configuration that 

can adequately handle the incoming workload.    

2.3     Workload Characteristics 

Each application receives a time varying workload in terms of requests 

per second.  The workload files were obtained from 1998 World Cup Soccer 

web site’s.  These files include the incoming workload requests during a 24-

hour period in 120 second intervals.  Figure 6 below shows the incoming 

request for both Gold and Silver application over a 24 hour period.  Note 

that this specific workload includes the worst case scenario where both of 

the applications workload peaks at the same time.   
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Figure 6: The Incoming Workload for both Gold and Silver Applications 

To predict the future behavior of the applications, our system model 

uses a predicted workload.  The predicted workload is generated using 

Kalman filter.  The filter is first trained using a small portion of the actual 

workload, and then used to forecast the remainder of the load during 

controller execution.  Figure 7 and 8 below shows the difference between 

the actual incoming requests and the predicted requests.  It’s important to 

note that the predictor generally over-predicts to reduce the number of SLA 

violations.  The over prediction helps avoid under allocation of system 

resources which may lead to queuing.  The Kalman filter does a fairly good 

job in minimizing the prediction error.  The gold application experiences a 

6% prediction error while the silver application experiences a 7% prediction 

error.   
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Figure 7: Actual and Predicted Workload for Gold Application 

 

  Figure 8: Actual and Predicted Workload for Silver Application 

Among the main objectives of our system model is to minimize the 

power consumed by a distributed system.  To achieve this goal, our model 

actively uses the minimum possible system resources to process the 
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incoming workload.  To minimize the number of resources used, the LLC 

controller predicts the minimum number of VMs needed to process the 

incoming workload.  Any virtual or physical hosts that are not needed to 

process the workload are shut down to conserve power.   

2.4     Online Control Concepts 

Limited Lookahead Controller (LLC) framework is an online control 

framework for self-managing distributed computing systems.  This 

framework continuously configures and reconfigures the distributed 

systems for optimal performance in response to changing computing 

demands and environmental conditions [1].   This framework uses a model-

predictive control approach in discrete domain where the control actions 

optimizing the distributed system’s Quality of Service (QoS) are derived 

over a limited prediction horizon.  At each time step over the prediction 

horizon, the optimal control actions are obtained by solving a multi-variable 

(finite) objective function.  This objective function specifies the trade-offs 

between achieving the desired QoS and the corresponding cost incurred in 

terms of resource usage.    

The objective function estimates the system behavior by generating a 

discrete-time state-space equation  

𝑥 𝑡 + 1 =  𝜙( 𝑥 𝑡 ,𝑢 𝑡 ) 

where x(t) and u(t) ∈ {𝑢1,𝑢2 ,… ,𝑢𝑟}  denote the sampled form of the 

continuous state vector and the discrete valued input vector at time t, 

respectively.  The state vector consists of all possible state configurations 

(finite set) for a specific distributed system.  To achieve the desired QoS 

objectives, the algorithm uses Utility optimization performance 

specifications.  The utility optimization is used to maximize (or minimize) a 

given performance measure represented as a function of state and input 

variables.   

To predict the system’s state at next time stepx(t + 1) , the LLC 

framework explores a limited look-ahead horizon within the system state 

space and selects the next state that provides the maximum utility.  The 
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system state space is expanded into a tree and each state is given a utility 

function.  This function assigns a cost (revenue) associated with reaching 

and maintaining a specific state.  In exploring this tree, the LLC framework 

searches for the set of states that best satisfy the QoS specifications.  A 

state 𝑥𝑚  that provides the minimum cost is selected from the finite list of 

states.  The selected state is tracked back to the current state and the input 

leading to 𝑥𝑚  is chosen as the given to the discrete-time state-space 

function.   

To estimate the system’s behavior over the prediction horizon, relevant 

environment parameters such as the arriving workload and per request 

processing rate must first be predicted.  For Web Server workloads, the 

arriving requests (workload) can be predicted using a Kalman filter[3].  The 

average request processing time is estimated using an exponentially-

weighted moving average (EWMA) filter as [4] 

𝑢  𝑡 = 𝜋 × 𝑢  𝑘 +   1 − 𝜋 × 𝑢(𝑡 − 1) 

where π is a smoothing constant. 

The model predictive control approach is especially effective for 

switching hybrid systems where the set of possible control inputs are finite. 

Switching hybrid systems are practical distributed systems that have a finite 

set of possible control inputs, and they exhibit hybrid behavior comprising 

of both discrete-event and time-based dynamics.   

2.5     Limitations of LLC 

Typical distributed systems consist of large cluster of servers.  The 

ultimate goal of dynamic resource provisioning frameworks is to be able to 

manage hundreds of servers.  However, the number of manageable serves 

is limited by the computation power and the memory available on the 

servers.   

The exponential growth of the system state search space limits the 

maximum number of manageable servers.  As the number of servers to be 

managed grows linearly, the number of possible system states grows 

exponentially.  Predicting the future state of a large cluster of servers 
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involve iterating through millions of possible states.  As the prediction 

algorithm iterate over each individual state, it considers the cost and 

revenue associated with attaining this state.  Additionally, the controller 

also considers the risk associated with turning on or off individual servers 

(virtual servers and physical servers).  

Computing the cost, revenue and the risk associated with each state 

millions of times as the prediction algorithm iterate over all possible 

configurations require extensive computational power.  Therefore, the 

ability to manage large number of serves is limited by the computation 

power of available servers.  Figure 9 below shows the growth in the search 

space as the number of servers is increased.   

As the number of system states grow, the amount of memory needed to 

store the states grow also.   Each individual state not only stores the virtual 

machine configuration, but it also stores frequency state configuration and 

physical machine state configuration.  The available memory is further 

strained by the need to store the state information over multiple horizon 

steps.  Therefore, an exponential growth in the number of stats leads to an 

exponential growth in the amount of memory needed to store the states.  

The amount of memory available on the machine running the dynamic 

resource provisioning framework application limits the maximum number 

of servers that can be managed.   
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Figure 9: The exponential Increase in the number of VM States as the number of 
servers is increased   
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Chapter 3 

Proposed Solution 

3.1     Main design objectives 

 The main objective is to design a high performance dynamic resource 

provisioning framework (DRPF) that can reduce power consumption and 

under-utilization of distributed systems.  The DRPF must be able to 

maximize system throughput via dynamically configuring system 

parameters for optimal performance while managing a large number of 

servers.  The framework should also be aware of the risks associated with 

sudden changes in the workload and be able to adapt to workload 

fluctuations while minimizing SLA violations.      

Reduce Power Consumption:  In typical data centers today, server 

utilization usually averages about 6%.  Furthermore, up to 30% of the 

servers are typically idle.  The significant underutilization leads to higher 

power consumption and waste of system resources.  Our main design 

objective is to minimize the power consumption of large scale distributed 

systems.  Using the dynamic resource provisioning framework discussed in 

this paper, we can significantly reduce the power consumption by 

dynamically allocating the minimum number of resources needed to handle 

incoming workload.   

Minimize Needed Resources:  In Most service providers overprovision 

system resources to adequately handle the highest possible workload 

specified in the Service Level Agreement (SLA) by a client.  For online e-

commerce applications that experience a time varying workload, the 

workload intensity very rarely reaches its maximum level.  During intervals 

of low workload intensity, the incoming requests can ideally be processed 

with minimal system resources.  Minimizing the resources needed by a 

specific application allows service providers to provision the resources to 

additional clients and maximize their return on investment.  It is highly 

beneficial to use only the resources necessary to process client workloads.  

Therefore, our objective is to design a framework that utilizes minimal 

system resources.    
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The resource provisioning framework discussed in this paper reduces 

the number of system resources needed to process client requests.  At any 

given time, our framework dynamically provisions virtual servers to client 

applications based on the processing needs.   

Maximize Server Performance:  To use minimum system resources to 

process the workload, a dynamic resource allocation framework must be 

able to optimally configure the distributed system for best performance.  

The framework must be able to continuously configure and reconfigure the 

distributed system to reflect the changes in the workload.  The framework 

proposed in this paper actively configures the CPU share of virtual servers 

to maximize the throughput.   

Manage Large Number of Machines Efficiently:  Data centers typically 

consist of a large number of machines serving multiple applications.  As the 

number of machines to manage increases linearly, the dimensions of the 

state spaces increase at an exponential rate.  Therefore, most dynamic 

resource provisioning frameworks face the problem of managing a large 

number of machines simultaneously.  Our goal is to study the properties of 

the state search space as the number of machines is increased and 

minimize the growth of state search space.   

The main difficulty in managing a large number of machines is the 

inability to efficiently predict a future state of the system.  Predicting the 

behavior of a large scale distributed system often requires exploring 

millions of possible system state configuration.  Furthermore, predicting the 

behavior of a system while looking multiple time steps into the future 

requires exploring tens of millions of states.  Since exploring each state 

involves doing complex calculations such as realizing the revenue and cost 

associated with a specific state, making a single prediction may take a long 

time.  Therefore, our goal is to be able to manage a large number of virtual 

servers while being able to predict can configure the behavior of a large 

cluster of servers.   

Flexible Application Design:  To study the behavior of resource 

provisioning frameworks under varying conditions, a resource provisioning 
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framework must be highly flexible.  Therefore, in designing an application to 

simulate a dynamic resource provisioning framework, our goal is to make 

the application highly flexible and configurable.  This application should be 

able to accept multiple user specified parameters such as number of 

threads, Horizon Levels, number of virtual machines and physical machines 

and simulate the framework.   

Minimize SLA Violations:  Dynamic resource provisioning frameworks 

make system resources available as they are needed.  During time of low 

workload intensity, the right action for resource provisioning frameworks to 

take is to turn unused resources off.  However, if the distributed system 

experiences a sharp increase in the incoming workload, it may not be able 

to respond quickly enough because of the time delay associated with 

turning on hosts and virtual machines.  The inability to respond to system 

changes in time leads to Service Level Agreement (SLA) violations.  A 

dynamic resource management system should be aware of the risk 

associated with turning off virtual and physical machines.  Our goal is to 

develop a risk aware provisioning framework that can respond quickly to 

extreme changes in the workload and minimize SLA violations.   

3.2     Object Design of Dynamic Resource Provisioning 

Framework 

 Dynamic Resource Provisioning Framework (DRPF) is an online resource 

provisioning framework that makes system resources available to client 

applications as needed.  This framework maximizes system utilization by 

dynamically allocating virtual and physical machines to client applications.  

This dynamic allocation allows service providers to minimize power 

consumption and under-utilization of system resources.  The DRPF also 

automatically tunes the system for optimal performance by computing an 

optimal frequency configuration   

DRPF is a C++ application that uses objects oriented design principles to 

organize and manage its internal objects.  This section provides a 

description of various DRPF objects, and how they are created and used.   
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LLC Object: 

The Limited Lookahead Controller (LLC) class is the main driver in DRPF.  

This class instantiates virtual machines, physical machines and application 

clusters and manages them by keeping a track of their pointer.  During the 

DRPF initialization phase, the LLC also generates the VM State Table, 

Frequency State Table, and PM State Table.  The LLC class also generates 

and initializes the Prediction State Tree.   

The two main functions of the LLC class are to measure the performance 

of the current system, and to predict an optimal system configuration.  

After a prediction is made, LLC proceeds by applying the prediction to the 

current system.  The application process involves both turning on and 

turning off VMs and PMs.  The VMs that are left on are then assigned 

appropriate frequencies for optimal performance.  The LLC repeats this 

process after every time step until it finishes with a 24 hour period 

workload trace file.   

Machine Object: 

The machine class is the base object for a computer machine.  Since 

both Physical machines and Virtual machines share common traits such as 

CPU, IP Address, and Computer Name, Machine object provides the basic 

functionality shared by both VMs and PMs.  The Machine object includes 

data members such as Machine Name, State and CPU Configuration; and 

they are used to manage a machine’s configuration.  Figure 10 below shows 

the machine members.   

Physical Machine Object: 

The physical machine object represents a physical server and is derived 

from machine object.  In addition to inheriting members from the base 

machine class, the physical machine class has additional members that 

primarily keep track of the virtual machines mounted on a physical host.  

The additional members include maximum number of VMs that the physical 

machine can handle, and a list of pointers to the virtual machines currently 

managed by the physical machine.  Figure 10 below shows physical machine 

class’s members. 
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Virtual Machine Class: 

The virtual machine object represents a virtual server mounted on a 

physical machine.  The virtual machine class is derived from machine class 

so it inherits the base functionality provided by the machine class.  To 

associate a virtual machine with a physical host, the virtual machines store 

the physical machine’s name and ID.  The Virtual machine keeps track of the 

application they are serving by storing the application’s name. Additionally, 

each virtual machine also keeps track of the processing rate and queue 

associated with the application.  Figure 10 below shows virtual machine’s 

class members.   

 

Figure 10: The Class Diagram of Machine, Physical Machine and Virtual Machine 
showing their members 
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Application Cluster Object: 

The Application Cluster Object represents a client application.  Each 

cluster object keeps track of the number of VMs and PMs currently 

associated with the client application.  Since VMs and PMs are dynamically 

assigned to application clusters, they number of VMs and PMs assigned to 

each cluster changes over time.  The Cluster object also holds the SLA 

related information such as dollars paid per request and the refund 

associated with SLA violations.  Figure 11 below shows the class design of 

Cluster class. 

 

Figure 11: The Class Diagram of Cluster Class that represents client applications   
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VM State Table: 

The VM State Table is a matrix of integers that contains all possible 

configurations of VM assignments to gold and silver applications.  The table 

consists of a two dimensional array that is defined using the Matrix 

structure.  Each row in the table consists of a unique VM configuration.  The 

first column of a row contains the sum of all VMs that are assigned to gold 

application.  The second row contains the sum of all VMs assigned to the 

silver application.  The Middle columns consists of 1s, 2s and 0s where 1 

means that the VM is serving Gold application, 2 means the VM is serving 

silver application, and 0 means that the VM is off and is not serving any 

application.  The last few columns contains a sum of the VM that are ON 

and operational on a PM.   

Figure 13 below shows an example of a small portion of VM Table that 

consists of 7 VMs and 2 PMs.  This example shows how VMs can be 

partitioned among Gold and Silver application if we assign 6 VMs to Gold 

application and 1 VM to Silver application.  The last two rows labeled PM1 

and PM2 shows the sum of VMs that are currently mounted on Physical 

machine 1 and Physical Machine 2.  In this specific example, since all VMs 

are ON, the sum of PMs mounted on PM1 and PM2 stays constant at 3 and 

4 respectively.  

 

Figure 13: A small portion of a VM State Table that consists of all possible ways 
of assigning 6 VMs to Gold Application and 1 VM to Silver Application.   

PM1 PM2 

Gold = 1 

Silver = 2 

Off = 0 

Note: expert 

from VM 

State Table. 
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PM State Table: 

The PM State Table is a matrix of integers that contains the current 

states of all PMs in our system model at any given time.  Figure 14 below 

shows an example of PM State Table as different PMs are turned ON and 

OFF.    

 

Figure 14: The states of 7 PM over 5 time steps showing machines turning ON 
and OFF   

Frequency State Table: 

The frequency state table is a four dimensional matrix which consists of 

all possible configurations of frequencies for a given set of VMs and PMs.  

Figure 15 below shows a visual demonstration of the Frequency State Table.  

The w dimension in the table consists of PMs.  The x dimension consists of 

the number of VMs that are currently ON and operational on the PM.  The y 

dimension lists the different possible configurations for a given set of PM 

and VM combination.  The z dimension consists of an array of individual 

frequencies for each VM.   

ON = 2 

OFF = -2 

BOOTING=1 

SHUTTING DOWN = -1 
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Figure 15: A 4-Dimensional Frequency State Table with four PMs   

It’s important to note that the Frequency State Matrix is not a square 

matrix and its w, x, y, and z dimensions are variable.  For example, the x 

dimension for PM1 is three whereas it is four for PM4.  Since the x 

dimension depends on the PM, we need a mechanism to keep track of the 

length of each dimension to prevent out of index exception.  To achieve this 

goal, we have created an additional 2-dimensional table called the 

Frequency State Index Table.  The index table keeps a track of the x and y 

direction.  Figure 16 below shows a graphical illustration of the Frequency 

State Index Table.   

 

Figure 16: A 2-Dimensional Frequency State index table 
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State Search Tree Object: 

The state object represents the state of our simulated distributed 

system at a given time.  The state object takes snapshoot of the VM states 

and PM states at a given time.  In our system model, the Root state always 

represents the current system state x(t) at horizon level 0.  The state object 

constructs a 1-to-n tree where the pointers to the children are saved in a 

children matrix.  The root state expands the state tree by creating n children 

states for x horizon level x(t+1); where n is equal to the total number of all 

possible VM configurations. For horizon level one and onwards, each state 

node creates just one child.  Each state node keeps pointers to all of its 

children and single parent.  Figure 17 below shows the State Tree Object 

graphical representation.   

 

Figure 17: State Search Tree Object showing span of tree 
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Figure 18: The Class diagram of State Object   

System Configuration Class: 

The DRPF application consists of hundreds of user defined parameters 

that are used to initialize the application.  The configuration class allows us 

to read these parameters from a configuration file and load them into our 

application.  This class allows us to read crucial user defined parameters 

such as number of threads, maximum horizon level, number of VMs and 

PMs.  The configuration class makes DRPF application highly flexible and 

configurable which enables us to run the application using multiple 

configurations.   

The Configuration File Reader class is an open source tool that has been 

developed by Rick Wagner from University of Michigan.  The configuration 

class works by loading a .confg file into memory.  To load a specific value 

from the configuration file, our application provides a search keyword.  This 

file allows us to easily load hundreds of configurations from a configuration 

file.  Figure 19 below shows the class design of Configuration File Class.   
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Figure 19: The class diagram of ConfigFile Class   

3.3     DRPF Behavioral Design: 

In the following section, we will discuss the behavioral design of DRPF.   

Program Startup:  The DRPF application begins by taking the file path of 

the configuration file and loading it into memory.  The main function 

creates a new instance of the LLC class and sends the file path as a 

parameter.  When the LLC is done with loading and initializing the system, 

the main function give the command “Go” to start the controller.   

Initialization Machines and Hosts:  To initialize the program data 

structures, the LLC default constructed calls the “Init” method.  The init 

method read the configurations from the config file and loads them into 
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appropriate variables.  Part of the initialization process includes 

instantiating virtual machines, physical machines, and client applications.   

The LLC class reads the virtual machine configurations from the config 

file and instantiates virtual machine objects by calling virtual machine 

constructors.  Since virtual machines are derived from machines objects, 

the machine class’s default constructors are called also.  During the 

instantiation phase, the virtual machines are assigned ids and names.  

The LLC class reads the physical machine configurations from the config 

file and instantiates physical machine objects by calling physical machine 

constructors.  Since physical machines are derived from machines objects, 

the machine class’s default constructors area also called.  During the 

instantiation phase, the physical machines are assigned ids and names.  As 

an additional step in the initialization process, the physical machines search 

through the list of virtual machines and insert a pointer of the VM it is 

hosting into its VMList array.    

The LLC class reads the client application cluster configurations and 

creates two client applications.  After loading cluster information, the 

cluster continues by searching through the VM and PM lists and inserts a 

pointer of the VMs and PMs It is currently using to process the workload 

into its VM and PM lists.   

Creating Frequency State Table:  The frequency configuration state 

table consists of all possible set of frequencies that can be assigned to 

virtual machines mounted on a given physical host.  To limit the size of 

frequency state table, we impose implicit constraints on the table.  We use 

the following constraints to develop the Frequency State Table. 

1. The minimum possible frequency on a VM is 2000 MHz. 

2. The maximum possible frequency on a VM cannot exceed more 

than half of the maximum frequency on the physical host the VM 

is mounted on. 

3. The minimum frequency step is 1000 MHz.  
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4. The sum of the frequencies assigned to VMs on a single host 

must be exactly equal to the maximum frequency of the physical 

machine.   

Creating VM State Table:  The VM state configuration table consists of all 

possible ways of assigning the virtual machines to two client application.  To 

divide the VMs among two applications, we first consider the total number 

of VMs we can assign to two applications.  The total number of VM assigned 

to each application is limited by the following constraints.  

1. At any given time, each application must have at least one 

operational VM.    

2. The sum of the VMs assigned to each application cannot exceed 

the total number of VMs in the system. 

Using these constraints, we can develop a table of valid VM assignments 

to two applications.  Figure 20 shows the number of VMs assigned to each 

application given a maximum of 7 VMs.   

The table in figure 21 shows a set of possible ways to assign the total 

number of VMs to gold and silver applications.  There are a number of ways 

to map each set (e.g. {1,1} where {gold, silver}) to VMs.  For example, given 

five VMs and a {4,1} assignment set, there are 5 different ways of assigning 

the VMs to two applications.  Figure x below show a small example of how 

to assign applications to different VMs. 

 

Figure 20: VM State Table application VM assignments   
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Figure 21: An example of VM State Table that consists of all possible ways of 
assigning VMs to client applications   

Creating State Search Tree:  The State Tree is used in the LLC prediction 

algorithm.  The initialization procedure starts from the root state and 

creates n children where n is equal to the number of VM states.  The 

controller continues by creating a single child for each of the children states 

until the maximum horizon level is reached.  Each child node is assigned a 

VM state.  Figure 22 below shows the algorithm used to create the State 

Search Tree.  A visual representation of the state search tree is shown in 

figure 17.   
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Figure 22: The Algorithm used to create the State Search Tree   

Loading Incoming and Predicted Workload Files:  The workload files 

contain the incoming user requests in 120 second increments.  Our program 

loads these comma-separated files into memory and multiplies the 

workload with a scalar to adjust the workload intensity.   Our system model 

is designed to adequately handle the maximum workload intensity for both 

applications simultaneously.  For example, the maximum predicted 

workload is 70,602 and 13,408 requests per 120 seconds for both gold and 

silver applications, respectively.  The gold application needs at least 24 VMs 

to process its maximum workload and the silver application needs at least 

19 VMs to process its workload.  The sum of the minimum number of VMs 

need to process the workload is 43 VMs; and our model consists of 44 VMs.  

Therefore, at any given time, we should always have enough VMs to 

process the workload. 

Until this point, our application is involved in initializing various system 

parameters.   Beginning from the following step, the main controller begins 

to simulate the workload for a 24 hour period.  The controller will repeat 
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the steps listed below until it is done with simulating the workload.   The 

controller comes up after every 120 seconds and tunes our modeled 

distributed system for optimal performance and minimal power 

consumption.  The controller is designed to predict the future state and 

apply the state to the system within 10 seconds.   

Updating Physical Machine States:  The controller first updates the 

physical machine states.  If a PM is given the order to shut down, the 

controller checks to see if all of the VMs mounted on the PM have been 

turned off successfully. If all VMs are off, the controller changes the state of 

the system to “ready to shut down” but does not give the order to shut 

down the PM immediately.  It uses passive control and allows the prediction 

algorithm to first predict the next state of the system.  If the next state 

requires the PM to be on and operational, then the controller can easily 

turn on the VMs.  However, if the next state does not use the current PM, 

then this PM is given the order to begin shutting down. 

Delaying the order to shut down the PMs allows the controller to better 

handle turbulent workload and minimize potential SLA violations.  When it 

comes to turning on a Physical Machine, the controller gives the order to 

turn on a PM as early as possible.  If it is needed, the main objective of the 

controller is to have a machine up and operational as soon as possible.   

Updating Virtual Machine States:  After turning on or off PMs, the 

controller moves on to turn ON or OFF VMs.  If the previous prediction 

suggested that a specific VM is not needed, and one time step has passed 

since the last prediction, the controller will update the state of the VM as 

OFF.  Turning a VM off saves energy and helps lower down cost.   

Obtaining System Dynamics:  Once our system model’s PM and VM 

states have been updated, the controller moves on towards handling the 

incoming workload.  The controller first sums up the total processing 

capabilities of each application by iterating over all of the VMs.  Note that 

the controller skips the VMs that have been turned off.  For any VM that is 

on, the controller computes its processing rate based on its current 

operating frequency and current queue.  Then, depending on the 
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application the VM is serving, the processing rate is added to the total 

processing power for that application.  Calculating the processing rate sum 

for each application helps us in distributing the workload among active 

VMs.  

Using the processing rate sum for client applications, the controller 

computes the workload share for each VM using the following function. 

𝑊𝑜𝑟𝑘 𝐿𝑜𝑎𝑑 𝑆ℎ𝑎𝑟𝑒 𝑓𝑜𝑟 𝑉𝑀𝑖 =
Proc Rate of VMi

Proc Rate Sum of App VMi  is Serving
 

The function listed above allows us to distribute the incoming workload 

evenly among processing VMs.  The controller next computes the next 

queue for the VM using the following function.   

𝑄 𝑡 + 1 = 𝑄 𝑡 +  
𝑊𝐿 𝑡 × 𝑊𝐿𝑓𝑟𝑎𝑐

120 𝑠
−
𝑃𝑟𝑜𝑐 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑉𝑀𝑖  × (120s) 

𝑠
   

where Q represents the queue and WL represents the fraction of the 

workload assigned to VMi .  The controller next computes the revenue 

generated by the specific VM by multiplying the number of requests 

processed by the SLA Revenue function.  If there is a queue, a refund is 

given to the client by subtracting from the revenue.   

The power consumed by the distributed system depends on the number 

of PMs and the number of VMs that are currently on.  The controller 

iterates over each PM and computes its power consumption that also takes 

into account the number of VMs on.  The figure below shows the code used 

in estimating the system cost.   

 

Figure 23: The Algorithm used to compute cost   
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3.4     Controller Design and Implementation 

After handling the current workload, the controller moves on towards 

predicting the future state of our system.  The RootState denotes the 

current system state.  The controller calls the function 

SingleStateExpansionController() with references to current queue and 

current system state.  This function recursively calls itself until the 

maximum horizon level is reached.  It effectively does the job of nested FOR 

loops without using nested statements.  The recursive design allows us to 

easily control the depth of horizon levels without the need to make any 

code changes.  Figure below shows a functional design of this function 

(Note that this is not the complete code, the actual function is 700 lines 

long).  

 

Figure 24: An outline of the parallelized prediction algorithm   
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The prediction algorithm begins by looking at the predicted workload 

and computing the minimum number of VMs needed to process the 

incoming workload for each application.  To compute the minimum number 

of VMs needed for each application, the controller takes the Average VM 

frequency, which in our cluster is 4000 MHz, and computes the processing 

rate for each application.   

Next, the controller adds the predicted workload with the queue to 

compute the total requests each application has to process.  The controller 

then divides the total requests that each application must process by the 

average processing rate for each application to come up with the minimum 

number of VMs needed to process the workload.  The code listed in figure 

25 shows how we compute the minimum number of VMs needed for gold 

and silver applications.   

To improve the performance of our controller; we parallelize the state 

exploration process.  We use OpenMP to create and manage threads.  At 

horizon index 1, we assign a thread to a state and explore it for three 

horizon levels.  When the thread is done with exploring the current state 

over three horizon levels, it moves on and obtains a new state to explore.  

Since the controller must explore millions of VM states at each time step, 

parallelizing the state exploration process significantly improves the 

performance of the controller.   

Note that at horizon level 2 and 3, the controller explores the same state 

that was selected in horizon level 1.  The controller explores horizon levels 2 

and 3 with the same thread also.  So for example, Thread 1 will explore VM 

State 1 at all horizon levels.  When thread 1 gets done with exploring state 

1, it moves on to select the next available state that is not being currently 

explored by another thread.  In the figure 26 shown below, thread 1 sees 

that VM State 3 is not being explored so it select VM3 and explores it over 

all three horizon levels. 
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Figure 25: The Algorithm used to compute the minimum number of VMs needed 
for gold and silver applications   

 

Figure 26: An example showing how multiple threads explore different VMs 
states in parallel   

The VM state search space is huge and exploring the entire search space 

(even when parallelized) will take a long time.  To reduce the number of 

states that are fully explored, the controller limits the number of states 

explored at horizon level 1 by eliminating unneeded states.  for example, if 

the controller predicts that (described in step I) it needs 15 VMs for gold 

application and 12 VMs for silver application, then it makes no sense to 

explore a state that allocated 10 and 8 VMs to gold and silver applications, 

respectively.  Our controller explores only the states that have at least 

enough VMs to process the workload.  Figure 27 below shows the code 

segment that limits the number of VM states explored at horizon level 1.   

Root State

VM State 1
Thread 1
(Horizon 1)

(Horizon 2) (Horizon 3)

VM State 2
Thread 2
(Horizon 1)

(Horizon 2) (Horizon 3)

VM State 3
Thread 1
(Horizon 1)

(Horizon 2) (Horizon 3)

VM State 4
Thread 2
(Horizon 1)

(Horizon 2) (Horizon 3)
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Figure 27: The Algorithm used to limit the number of states explored for 
prediction purposes   

For a given VM state combination, the controller explores the Frequency 

state search space table to find an optimal combination of VM frequencies 

that will maximize the throughput.  To find the optimal frequency 

combination, the controller assigns the frequencies to VMs and observes 

their processing rate.  If all of the VMs can process the predicted workload 

without generating any queues, then an optimal frequency configuration 

has been obtained.   

For a given VM state combination and a Frequency state combination, 

the controller computes the cost and revenue associated with the VM state.  

The controller computes the cost and revenue at each horizon level and 

passes these values to the next horizon level.  For example, if the revenue 

generated at horizon level 1 is $2 and cost is 2 cents, it will pass this 

information to horizon level 1.  If the revenue and cost at horizon level is $3 

and 3 cents, then the controller will pass $5 and 5 cents as the cost to 

horizon level 3.   

As the controller threads moves from one horizon level to the next, they 

sums up the revenue and cost associated with a specific VM states.  After a 

thread is done with exploring the last horizon level, the thread compares its 

earnings (revenue – cost) with the highest earnings obtained by all threads 

so far.  If the thread A has higher earnings, then it updates the highest 

earnings state to point towards the state that thread A is exploring.  This 

process continues until all states have been explored.   
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Figure 28: An example showing how the best state is chosen among many 
alternatives   

When the controller is done with exploring all states, the highest 

earning state will point towards the state with highest earnings.  The 

highest earnings state is the best predicted state of the system.   

After the controller has successfully predicted the state with highest 

earnings, the controller next applies the predict state to the current system.  

The application process involves the following steps. 

1. Based on the predicted VM states, give the signal to turn VMs 

ON or OFF. 

2. Based on the predicted PM states, give the signal to turn PMs 

ON or OFF. 

3. Apply the optimal frequencies to each VM that in the cluster. 

It’s important to note that before a PM can be turned off, all of its VMs 

must be turned off.   

The controller comes up after every 120 seconds and repeats the 

process listed in steps 7 through 13.  The controller repeats this process for 

a period of 24 hours.     

Root State

Revenue=$2
Cost=$0.02

Revenue Sum=$5

Cost Sum = $0.05

Revenue Sum=$7

Cost Sum = $0.07

Revenue=$3
Cost=$0.02

Revenue Sum=$6

Cost Sum = $0.06

Revenue Sum=$8

Cost Sum = $0.08

Revenue=$2
Cost=$0.02

Revenue Sum=$5

Cost Sum = $0.04

Revenue Sum=$7

Cost Sum = $0.05

Best State
Revenue=$4
Cost=$0.02

Revenue Sum=$7

Cost Sum = $0.05

Revenue Sum=$10

Cost Sum = $0.05
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Chapter 4 

Simulation Results 

In this chapter we explore the results obtained by simulating our 

dynamic resource provisioning framework.  We will first discuss the power 

savings associated with dynamically turning ON and OFF virtual machines 

and physical machines.  Next, we will discuss the benefits of parallelizing the 

controller’s search routine to enhance the performance of our DRPF.   

4.1     Control Performance 

The results from our DRPF simulations show that dynamically allocating 

system resources can reduce power consumption by as much as 30% over a 

24 hour period.  During periods of low activity, the power savings can grow 

as high as 59%.  The power savings are realized by turning off virtual 

machines and physical machines in response to lower workload intensity.    

In an uncontrolled system, the resource providers leave PMs and VMs 

ON.  Therefore, the power consumption of uncontrolled systems stays 

constant over time.  On the contrary, our system turns unneeded resources 

off to conserve power.  Figure 29 below shows the power consumption of 

both controlled and uncontrolled systems.   

Comparing the power consumption of controlled system with the 

workload intensity shows a very close correlation between the workload 

intensity and the amount of power used by the system.  As the workload 

decreases, the power consumption decreases; and as the workload 

increases, the power consumption goes to 100%.   
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Figure 29: Power Consumption comparison of controlled and uncontrolled 
systems 

 

Figure 30: Incoming Workload for both gold and silver application  
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Over a 24 hour period, the graph of number of PMs operating very 

closely correlates the workload intensity graph.  Figure 31 below shows that 

as the number workload intensity decreases, the number of PMs ON 

decreases also.   

 Figure 31: Number of Physical Machines ON and OFF during 24 hours period 

The virtual machine utilization graph shows that the number of VM 

utilized in the system fluctuates in response to workload fluctuations.  

Figure 32 below shows the number of VMs operating as the incoming 

workload increases and decreases.   

0

2

4

6

8

10

12

14

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7
2

4
4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3
4

6
0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

N
u

m
b

e
r 

o
f 

P
M

s 
O

N

Time (120 s interval)

Number of Physical Machines ON

Controlled System Uncontrolled System



 

 46 

 

Figure 32: Number of Virtual Machines ON and OFF during 24 Hours Period 

4.2     Execution Speedup via Parallelization: 

Our results show that parallelizing the LLC’s state exploration routine 

improves the performance by as much as 263%.   Parallelizing allows us to 

make a control decision from millions of states within just 4.5 seconds.  This 

performance improvement is obtained by running the DRPF application on a 

virtualized quad-core machine.  Figure 33 below shows a decrease in 

average prediction time as the number of threads is increased.   
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Figure 33: The Average Prediction Time of the controller VS. number of threads 

It’s interesting to note that we see a significant improvement in the 

average prediction time as the number of threads is increased from 1 to 2 

to 4.  However, after 4, we see minimal performance improvement.  This is 

due to the fact that our simulation environment consists of a virtual 

machine with 4 cores.  Our controller can run 4 threads in parallel but it 

cannot run more than 4 threads in parallel.  Therefore, as the number of 

threads is increased, the additional threads have to wait before they can be 

executed.   

It’s important to note that as the number of threads is increased from 4, 

we still see a minute performance improvement.  This is due to the fact that 

at 4 threads, the processer utilization goes to an average high of 90%, but it 

rarely reaches 100% utilization.  As the number of threads is increased from 

4, the processor utilization begins to go up to 100%.   
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Figure 34: Execution Speedup obtained via parallelization of the prediction 
algorithm 
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Chapter 5 

Conclusions 

Being able to dynamically allocate the resources of large scale 

distributed systems based on the arriving workload can save millions of 

dollars for many large corporations such as Google and IBM.  We have 

shown a practical approach to the dynamic resource provisioning problem 

that can reduce server underutilization and minimize the power cost.  A 

parallelized Limited Lookahead Controller provides these capabilities by 

efficiently using the available system resources for optimal performance.  

The prediction algorithm of the LLC is a computation intensive process it 

can take a long time to predict the optimal state for a large system.  As the 

size of the distributed system increases, the possible state configurations 

begins to increase exponentially and the response time of the sequential 

LLC begins to decrease.  Parallelizing the LLC with OpenMP shows significant 

performance enhancement.  The performance gain is further enhanced by 

the use of code optimization strategies.  With the use of more powerful 

hardware, the performance of the LLC increases even further.  The 

strategies detailed in this paper proves that the use of parallelization 

techniques substantially improve the performance of the LLC.  
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