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ABSTRACT 
A Mathematical Model of Glucose Metabolism 

in Hospitalized Patients with Diabetes and Stress Hyperglycemia 
Brian Ray Hipszer 

Moshe Kam, Ph.D. and Jeffrey I. Joseph, D.O. 
 
 
 
The human body employs several mechanisms to regulate the concentration of glucose in 

the bloodstream. The rates of glucose uptake and release from specific organs within the 

body are modulated directly by the concentrations of metabolites and hormones, and 

indirectly by the autonomic nervous system. The negative feedback relationship between 

glucose and the anabolic hormone, insulin, dominates the process of glycemic regulation. 

The binding of insulin to its receptor begins a cascade of intracellular events that 

increases glucose uptake into the liver and peripheral tissue and reduces glucose release 

from the liver. However, this mechanism can be overwhelmed during the acute stress 

typified by a moderate surgical procedure. Cellular damage and tissue trauma cause a 

surge in catabolic hormones and cytokines, leading to insulin resistance and marked 

hyperglycemia. 

The focus of this study is the mathematical descriptions of the processes that regulate 

glucose production and uptake. Such descriptions model the complex relationships 

between metabolites and hormones and their effects on glycemia. Descriptive models that 

are accurate and robust have the potential to guide the development of tools designed to 

manage glycemia in hospitalized patients with diabetes and stress-induced 

hyperglycemia. Specifically, we investigate the validity of a glucose metabolism model 

published by John Sorensen in a 1985 doctoral thesis. The model is a set of 22 first-order 

time-invariant nonlinear differential equations describing the interaction of glucose, 
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insulin and glucagon and their effect on organ-level glucose uptake and release. We 

modified the model to incorporate recent experimental data, including data we have 

collected in clinical trials. The model was expanded to include a description of 

epinephrine and its effects on glycemia.  
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CHAPTER 1.  INTRODUCTION 

In order to develop a realistic representation of glycemia in the hospitalized patients, the 

mechanisms that alter the normal metabolism in this population need to be considered. 

Understanding the factors that affect net hepatic glucose balance is important in 

describing changes to endogenous glucose production. Factors that change to insulin 

sensitivity will also be discussed because of the dominate role insulin plays in the 

regulation of glycemia. Finally, something cannot be simply overlooked in the 

hospitalized, specifically the surgical, population are factors that change distribution 

volumes of glucose and insulin. 

The mathematical descriptions developed herewith focus on the mechanisms that govern 

glycemic regulation in a perioperative surgical patient. There are a multitude of factors 

that influence glucose metabolism in this setting. This thesis attempts to choose those 

factors that play a predominant role in determining the course of glycemia.  

Data is represented as mean ± SD. When referenced data is reproduced in this text, data 

in mean ± SEM format were converted to mean ± SD. 

1.1. Glycemia in the Hospital 
The goals of diabetes management in the hospital are to avoid hypoglycemia, excessive 

hyperglycemia, lipolysis, ketogenesis, protein catabolism, dehydration, and electrolyte 

imbalance. Adequate levels of the anabolic hormone insulin are required to counter 

balance the surge of catabolic hormones (epinephrine, glucagon, cortisol, and growth 

hormone) that occur with stress and surgery [37-39]. The combination of insufficient 

insulin and excessive catabolism typically leads to diabetic ketoacidosis, hyperosmolar 
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nonketotic syndrome, or excessive lactic acidic production [40]. Historically, patient care 

has focused almost entirely on the importance of maintaining sufficient plasma insulin 

levels to avoid overt metabolic decompensation [41]. Recently, several prospective 

clinical studies have demonstrated improved clinical outcome (decreased morbidity and 

mortality), decreased overall cost, and decreased length of hospital stay, when blood 

glucose levels are managed acutely within a narrow range for specific patient populations 

[42-48].  

In this chapter, we will discuss the state of glycemic management in the hospital setting 

and review the evidence that acute tight glycemic control is clinically important. 

1.1.1. Prevalence of Diabetes and Stress Hyperglycemia 
In 2005, an estimated 20.8 million Americans had diabetes with over one third of this 

population unaware they have this disease [49]. An additional 41 million people are pre-

diabetic, a classification in which a person displays abnormal glycemia but does not meet 

the formal definition of type 2 diabetes [50]. There is a disproportionate per capita 

expenditure in medical care for those with diabetes. Whereas those with diabetes 

comprise only 7.0% of the U.S. population, they are responsible for 18% of the $413 

billion spent on inpatient hospital care with $40 billion directly attributable to the 

treatment of their disease [51]. In 2004, 5.4 million (short stay) diabetic patients were 

discharged from the hospital out of a total of 34.9 million discharges [52]. 15.6% of the 

inpatient population had a diagnosis of diabetes – more than twice the rate of diabetes in 

the general population. These statistics do not even account for the large pre-diabetic 

population who, under the stress of illness and/or medical procedure, will be acutely 

hyperglycemic during their hospital stay. Diabetic patients are more likely to be admitted 
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to the hospital and, once admitted, the costs associated with their care are greater. Recent 

prospective, controlled studies have demonstrated that short-term glycemic control in the 

hospital setting can reduce morbidity/mortality, shorten hospital stays, and decrease 

overall costs [44-47, 53]. 

Among adults with diagnosed diabetes, 16% take insulin only, 12% take both insulin and 

oral medication, 57% take oral medication only, and 15% do not take either insulin or 

oral medications. Many of patients with type 2 diabetes treated by diet and pills will 

require insulin during their hospital stay, due to the stress of anesthesia, surgery, and 

acute illness [54, 55]. Another 1.5 million patients have significant hyperglycemia while 

in the hospital, but do not have the diagnosis of diabetes [56]. Stress hyperglycemia has 

been clearly linked to excessive in-hospital mortality and an increased risk for congestive 

heart failure and cardiogenic shock [57, 58]. Recent prospective studies have 

demonstrated a significant decrease in morbidity and mortality when glucose levels are 

tightly controlled in the hospital setting [45, 46, 59-61]. In a report published by the 

Agency for Healthcare Research and Quality, aggressive glucose management was 

identified as one of the patient practices with great potential to improve patient safety and 

clinical outcome [62]. 

1.1.2. Evidence for Tight Inpatient Glycemic Control 
Diabetes has been proven to be a major risk factor for perioperative myocardial infarction 

(MI), heart failure, infection, and death [46, 57]. Anesthesia and surgery initiates a 

general stress response characterized by a rapid (epinephrine, norepinephrine) and 

delayed (cortisol, growth hormone, thyroid hormones) release of catabolic hormones. 

Insulin levels are depressed and the liver and peripheral tissues exhibit a variable degree 
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of insulin resistance [63]. The result of this metabolic imbalance is an increase in hepatic 

glucose production, a decreased rate of peripheral glucose utilization, and protein 

catabolism [55, 63]. The level of hyperglycemia is related to the patient’s prior diabetic 

status and the degree of metabolic stress. Blood glucose (BG) levels greater than 500 

mg/dl are not uncommon following major stressful events (cardiopulmonary bypass, 

major trauma), including patients without a history of diabetes or glucose intolerance [55, 

64]. In addition, diabetic patients requiring surgery are at increased risk for hypoglycemia 

due to prolonged fasting and a mismatch between intravenous glucose intake, 

endogenous glucose production, glucose utilization, and the timing/amount of insulin 

delivery. Inadequate delivery of intravenous (IV) glucose (< 5 gm/hr) will cause 

excessive proteolysis, lipolysis, and starvation ketosis. Increased amounts of IV glucose 

(>10 gm/hr), especially in the face of insulin resistance, will lead to significant 

hyperglycemia [55, 63]. Therapeutic regimens of glucose infusion, glucose monitoring, 

and insulin delivery have traditionally focused on the avoidance of hypoglycemia, and 

avoidance of acidosis. 

Tight perioperative BG control has clearly been shown to decrease the risk for 

developing a post-operative sternal wound infection (60% risk reduction) following 

coronary artery bypass graft (CABG) surgery [45, 65]. BG levels above 200 mg/dl are 

known to greatly increase the risk for post-operative infection in general, including 

wound infection, urinary tract infection, and nosocomial pneumonia [66, 67]. Even 

transient episodes of hyperglycemia are known to reduce cellular and humoral immunity, 

including a marked inhibition of neutrophil/macrophage phagocytic function and 

decreased opsonin production. Immune function has been shown to quickly return to 
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normal following insulin therapy and normoglycemia [68]. Diabetic patients undergoing 

major surgical procedures are at a significantly increased risk for cardiovascular 

complications (MI, congestive heart failure, and arrhythmia) and death when compared to 

matched controls [46, 69, 70]. Kalin et al. (1998) prospectively evaluated the impact of 

tight BG control (IV insulin infusion controlled by frequent BG measurements) on 

clinical outcome in 400 diabetic patients undergoing CABG surgery compared to 876 

non-diabetic patients. Hospital mortality was nearly identical in the tightly controlled 

diabetic and non-diabetic patients (1.75% versus 1.71%) [61]. During this same period, 

the National Cardiac Surgery Database reported a 50% higher mortality for patients with 

diabetes when compared with non-diabetic patients undergoing similar CABG surgery. 

Another study demonstrated a similar reduction in hospital mortality – MI, stroke, renal 

failure, and less need for an intraoperative aortic balloon pump when BG was tightly 

controlled using a continuous insulin infusion and frequent BG monitoring [71]. Lazar et 

al. (2000) treated diabetic patients aggressively with a variable glucose-insulin-potassium 

infusion (target BG 100 to 200 mg/dl) [44]. When compared to matched diabetic patients 

treated with conventional insulin therapy, the intensively treated patients demonstrated 

improved cardiac function, less need for inotropic and vasopressor support, less need for 

an intra-aortic balloon pump, less time on a ventilator, a lower incidence of atrial 

fibrillation, and shorter hospital stays. Hyperglycemia may also affect renal function in 

the perioperative period. In a prospective, multicenter study of 2,222 patients undergoing 

CABG surgery, preoperative hyperglycemia (>300 mg/dl) was associated with the 

highest relative risk for acute renal failure, especially in patients with pre-existing 

diabetic renal disease [46]. Mortality has also been correlated with elevated BG levels in 
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an observational study of 1,157 CABG surgery patients older than 75 years of age. BG 

levels greater than 300 mg/dl were a significant predictor of postoperative mortality [47].  

Patients with diabetes account for a high percentage of all cardiovascular mortality [72]. 

Possible causes for this increased morbidity and mortality include: a higher incidence of 

multivessel atherosclerotic disease, decreased coronary flow reserve, decreased ejection 

fraction, subclinical cardiomyopathy, congestive heart failure, autonomic neuropathy, and 

ventricular arrythmias [73, 74]. The short-term and long-term risk for death following an 

acute MI has been found to be significantly higher in patients with diabetes [46]. Even 

without symptoms, diabetic patients are known to have a 27-69% incidence of clinically 

significant diastolic dysfunction [75]. Even transient episodes of hyperglycemia are 

known to inhibit endothelial cell relaxation, and therefore local regulation of myocardial 

and cerebral blood flow. Local tissue levels of nitric oxide, oxygen free radicals, lactic 

acid, advanced glycosylation end products, and other intermediary metabolites interact 

dynamically to influence endothelial cell function [76]. The same factors may influence 

platelet activation and adhesion [77]. Even brief periods of inadequate insulin levels are 

known to cause an acute rise in blood free fatty acid levels, a switch to fatty acid 

oxidation within the myocardium, a significant rise in myocardial oxygen consumption, 

and an increased risk of ventricular arrhythmia [78]. Epidemiologic data demonstrate that 

diabetic and non-diabetic patients admitted to the hospital with hyperglycemia have an 

increased risk for death and cardiovascular complications during the stressful period of 

their illness [79]. Diabetic patients admitted to the hospital with a BG above 180 mg/dl 

nearly double their risk for in-hospital death and have a significantly increased risk for 

developing congestive heart failure and cardiogenic shock [58]. 
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The Diabetes-Insulin-Glucose in Acute Myocardial Infarction (DIGAMI) trial 

prospectively studied 660 diabetic and non-diabetic patients admitted to the critical care 

unit (CCU) with a BG value greater than 198 mg/dl. Hyperglycemic patients 

experiencing an acute MI were randomized into an intensive insulin therapy group (24-

hour IV insulin infusion titrated to frequent BG measurements following by tight BG 

control into the outpatient setting) or a conventional insulin therapy group. It was shown 

that the one-year mortality in diabetic patients after an acute MI could be reduced by 30% 

with intensive insulin treatment. A reduction in cardiovascular mortality could still be 

demonstrated at the five-year follow-up. In the subgroup of patients with a prior history 

of diabetes, in-hospital mortality decreased 58%, and 1-year mortality decreased 52%, 

compared to the conventionally treated group [80-84]. Capes et al. (2000) completed a 

meta-analysis of 15 studies that focused on stress hyperglycemia and the risk of death 

following an acute MI [58]. Non-diabetic patients with an acute MI and stress 

hyperglycemia had a four-fold increased risk for in-hospital mortality. Hyperglycemia is 

known to adversely affect platelet function, myocardial oxygen supply and demand, and 

pump function [57, 58, 63, 85].  

In one of the most noted clinical trials regarding the inpatient hyperglycemia, University 

of Leuven researchers at conducted a prospective, randomized, controlled trial which 

evaluated 1548 post-surgical, trauma, and critically ill patients that had BG levels above 

200 mg/dl upon admission to the ICU [43]. Approximately one-third of the patients 

where know to have diabetes, while the remaining patients developed hyperglycemia due 

to the metabolic stress of anesthesia, surgery, and critical illness. Hyperglycemia was 

managed in both groups with an IV infusion of regular insulin. Patients were randomized 
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to receive either intensive-insulin therapy (BG target 80-110 mg/dl) or conventional-

insulin therapy (BG target 180-200 mg/dl) over 3-7 days. The group receiving intensive-

insulin therapy experienced a 34% reduction in overall in-hospital mortality, 46% 

reduction in bacteremia, and a 41% reduction in acute renal failure. The greatest 

reduction in mortality occurred in patients requiring more than 5 days of ICU care 

(20.2% mortality with conventional-therapy versus 10.6% with intensive-insulin 

therapy). Mortality was decreased by preventing sepsis and multi-organ failure. Van den 

Berghe and her colleagues have since qualified their findings, stating that it is the 

normalization of BG levels, not the delivery of insulin, which improves outcome [59]. In 

a subsequent study of 1,200 medical ICU patients, these researchers were not able to 

show a significant decrease in the mortality rates between intensely treated patients 

versus those receiving conventional therapy [42]. However, morbidity was significantly 

reduced as seen in the prevention of newly acquired kidney injury, accelerated weaning 

from mechanical ventilation, and accelerated discharge from the ICU and the hospital. 

1.1.3. Glycemic Management in the Hospital 
Developing an insulin regimen to accomodate long periods of fasting and the stresses of 

major illness and surgery can be quite challenging [64, 86]. The anxiety and fear of 

hypoglycemia continues to dictate the way nurses and physicians manage diabetes. 

Hyperglycemia is tolerated because the factors that predispose one to clinically 

significant hypoglycemia (e.g., long periods of fasting, inadequate and delayed food 

intake, changing insulin sensitivity, variability in subcutaneous insulin absorption, 

changing renal function) commonly occur in the hospital setting [64, 85]. The early signs 

and symptoms of neuroglycopenia may be masked by sedatives, general anesthesia, and 
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cardiovascular medications [55]. A program established by the US Pharmacopoeia to 

track hospital drug errors reported that errors involving insulin delivery ranked second in 

number, and ranked first as the leading cause of significant patient injury [87]. 

Improvement in the glycemic management of patients within the hospital is required. 

This fact was highlighted by Golden et al. (1999) in a study involving 411 diabetic adults 

undergoing CABG surgery in an urban university teaching hospital [66]. Only six 

capillary BG measurements were taken during the 36-hour period following surgery. 

More than 75% of the patients had a mean BG greater than 200 mg/dl. Although 

convenient for nursing and house-staff personnel, the “sliding-scale” method of insulin 

dose adjustment, based upon BG values obtained at fixed intervals, typically fails to 

maintain BG levels in the desired range [86, 88-90]. Limitations include highly variable 

insulin absorption from the subcutaneous tissue, infrequent capillary BG measurements, 

and a dosing schedule unrelated to meals and medical procedures [64]. A more 

physiological method of subcutaneous insulin delivery requires multiple daily 

adjustments of therapy (short acting insulin appropriately timed with meals) based upon 

frequent BG monitoring [85, 91]. IV insulin therapy has gained popularity because of the 

pharmacokinetic limitations of subcutaneous delivery [55, 90]. The injection of large 

bolus doses of regular insulin has been found to be one of the most commonly practiced 

methods of insulin delivery in the U.S. and abroad [40, 64, 92]. In one study at a 

university teaching hospital, 85% of type 1 diabetes patients requiring insulin therapy in 

the perioperative period were treated with intermittent IV boluses, rather than a 

continuous IV infusion [40]. Bolus dosing produces a rapid rise in plasma insulin to very 

high levels. The short plasma half-life (6 minutes) and short biological half-life (less than 
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20 minutes) of IV insulin leads to extremely low plasma and tissue insulin levels 

approximately 60 to 120 minutes following an IV bolus [93]. This “roller-coaster” 

method of BG control is unphysiological, leading to an increased rate of lipolysis, 

ketogenesis, and lactic acid production, and may predispose the patient to dangerous 

hypoglycemia [40, 55]. Finally, intermittent insulin bolus injections can cause a rapid 

extracellular-to-intracellular shift of electrolytes (potassium, phosphorus, and 

magnesium) that may predispose a patient to a life-threatening cardiac arrhythmia [55].  

The continuous intravenous infusion of insulin, titrated to frequent BG measurements, 

has become the safest and most physiological way to manage glycemia during the 

stresses of major surgery and acute illness [94]. For a patient with type 1 diabetes, an IV 

infusion of regular insulin (at a concentration of 1.0 U/ml) is titrated to maintain BG 

levels within the desired range using a dedicated pump. Although the insulin dose for 

optimal control varies, the usual starting dose for the variable rate insulin infusion is 1.0 

U/hr. Numerous clinical algorithms have been developed that account for changes in 

insulin sensitivity, renal function, and nutrient needs [55, 64, 85, 95, 96]. In June 2006, 

the Food and Drug Administration approved a computer software application 

(Glucommander Plus, GlucoTec, Inc., Greenville, SC) that automates the calculation of 

an appropriate dose of insulin as well as glucose, saline and other medications for 

patients on intravenous and subcutaneous insulin therapy [97]. 

The optimal frequency of BG measurement has not been determined. Many 

anesthesiologists, surgeons, and endocrinologists recommend hourly BG monitoring 

during periods of initial titration and stress, followed by less frequent monitoring (every 

2-4 hours). BG measurements as frequently as every 20-30 minutes have been 
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recommended during cardiovascular and transplant surgery to minimize the risk of 

hypoglycemia and metabolic decompensation [64, 98]. Many physicians recommend a 

separate IV infusion of glucose to satisfy the basic nutritional needs of the fasting patient 

(5-10 g/hr) to minimize protein wasting and starvation ketosis, and to avoid 

hypoglycemia [55]. 

Recently, both the American College of Endocrinology (ACE) and the American 

Diabetes Association (ADA) have issued position statements supporting the need to 

reduce hyperglycemia in the hospital. The 2003 ACE statement recommends that fasting 

BG values should be maintained below 110 mg/dl while limiting excursions to a peak of 

180 mg/dl [99]. A 2006 ACE/ADA statement indicates that continuous IV insulin 

administration is the best method to achieve near-normal glycemia in the hospital [100]. 
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CHAPTER 2.  GLUCOSE METABOLISM IN A HOSPITALIZED PATIENT 

The development of a mathematical model that describes blood glucose levels in 

hospitalized patients starts with an understanding the factors that alter the normal glucose 

metabolism in this population. The stress response is primary cause of the imbalance 

between peripheral glucose uptake and endogenous glucose production that often leads to 

hyperglycemia. Conditions in the hospital can also increase the likelihood of 

hypoglycemic episodes. Food intake can be limited because of illness or surgical 

procedure. Lack of adequate exogenous glucose combined with inappropriate dosing of 

certain medications can easily lead to the development of hypoglycemia. 

Abnormal glucose tolerance is common after trauma or illness in spite of normal or 

heightened insulin secretion. Despite the responsiveness of the pancreatic β-cells to 

secrete insulin in response to a glucose load, glucose intolerance and hyperglycemia 

persist, suggesting that certain target organs are relatively insensitive to the effects of 

circulating insulin. Because glucose consumption by central and peripheral nervous 

tissue, renal medulla, bone marrow, erythrocytes, and leukocytes is not insulin sensitive, 

the primary sites of insulin resistance are in the liver and peripheral tissues where insulin 

stimulates glucose uptake.  

Endogenous glucose production sustains the body during periods of fasting. Glucose is 

supplied through the processes of glycogenolysis and gluconeogenesis. Glycogenolysis is 

the process by which stored glycogen is broken down to glucose. In the liver, this glucose 

is released into systemic circulation. Gluconeogenesis is the creation of glucose from 

substrates like pyruvate, lactate, glycerol, and amino acids (primarily alanine and 
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glutamine). It occurs primarily in the liver and, to a smaller extent, in the cortex of 

kidney. These processes are hyperactive in stressful periods typified by surgery and 

illness. The amount of glucose supplied to the body is disproportionate to its metabolic 

need. Coupled with decreased peripheral glucose uptake, hyperglycemia typically ensues.  

In this chapter, the stress response will be described, concentrating on how it affects 

glucose metabolism. Factors that either exaggerate or attenuate the stress response in the 

hospital setting will be discussed. A typical surgical scenario will be used to illustrate the 

fluctuation in these glycemic modifiers. This information will be the basis for a modeling 

effort to describe glycemia in the perioperative setting.  

2.1. Stress Response 
The stress response refers to the hormonal, immunological and metabolic changes that 

occur after injury, trauma or illness. It is a coordinated response between the 

neuroendocrine and immune systems [101] that causes a catabolic state designed to 

stimulate and promote the process of healing following trauma. When the injury is minor, 

its effects are beneficial. However, when the injury is severe, its effects can be 

detrimental. Hypertension, tachycardia and arrhythmias strain the heart. Vasoconstriction 

can cause tissue hypoxia and acidosis. Increased circulating levels of epinephrine, 

cortisol, growth hormone, and glucagon increase both endogenous glucose production 

and peripheral insulin resistance, resulting in stress-induced hyperglycemia. 

Stress activates the sympathetic nervous system. This activation increases the secretion of 

norepinephrine and epinephrine, as well as neuropeptides such as enkephalin and β-

endorphin. In addition, hypothalamic corticotrophin-releasing hormone (CRF) and 

pituitary adrenocorticotropin hormone (ACTH) levels increase which, in turn, elevate the 
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levels of circulatory glucocorticosteroids. ACTH secretion is also enhanced through 

direct stimulation from the brain noradrenergic neurons. Other hormones involved in the 

stress response are prolactin and growth hormone. The response to stress is modulated by 

the type, duration and magnitude of stressor as well as the person’s previous experience 

and control over stressor [102]. 

2.1.1. Catecholamines 
Catecholamines include compounds dopamine, norepinephrine, and epinephrine. They 

are all derivatives of the amino acid, L-tyrosine. Besides being the precursor to 

norepinephrine and epinephrine, dopamine acts as a neurotransmitter. Both 

norepinephrine and epinephrine are found in sympathetic nerve fibers and the adrenal 

medulla. The adrenal medulla primarily secretes epinephrine into the circulatory system 

while the nervous system primarily uses norepinephrine to convey nerve impulses to 

effector organs. This distinction, epinephrine’s release directly into the bloodstream, 

gives it rapid access to hepatic, muscle and adipose tissues. 

Epinephrine and norepinephrine are classified as sympathetic agents. They bind to α- and 

β-adrenergic receptors on target organs. They cause vasoconstriction, which is selective 

in the case of epinephrine. Epinephrine will actually cause dilation in the blood vessels 

supplying muscle and the liver. They also cause circulating free fatty acid levels to rise. 

Epinephrine also increases the rate and force of contraction of the heart. 

Epinephrine plays a significant role in the development of hyperglycemia associated with 

the stress response. It mobilizes glucose and fatty acids to fuel metabolism, increases the 

endogenous production of glucose by the liver, and inhibits pancreatic insulin secretion. 
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In the study of six normal subjects, epinephrine concentrations greater than 150 pg/ml 

caused an observable increase in blood glucose levels while epinephrine concentrations 

greater than 400 pg/ml suppressed insulin secretion [103]. In addition, epinephrine will 

also stimulate the release of glucagon from the pancreatic α-cells. These actions lead to 

hyperglycemia which feeds back to counteract epinephrine’s effects on glycemia by 

stimulating insulin secretion and inhibiting glucagon secretion.  

While plasma epinephrine levels range between 20 and 120 pg/ml in normal subjects 

[104-106], epinephrine levels range between 10 and 1,370 pg/ml in critically ill patients 

and between 360 and 237,000 pg/ml in patients successfully resuscitated after a heart 

attack [107]. In elective cardiac surgery patients, epinephrine levels return to normal 

within 48 hours after the operation [105]. Acute and chronic stress both can produce 

epinephrine levels great enough to cause both excessive endogenous glucose production 

and suppressed insulin release. Large variability in the epinephrine response to the same 

stress intensity makes it to difficult to predict. 

The direct effect of elevated epinephrine levels on hepatic glucose production appears 

transient. This increase in hepatic glucose production is independent of epinephrine-

induced increase in circulating glucagon and its subsequent down-regulation does not 

stem from the depletion of glycogen or gluconeogenic substrates [6]. Glycogenolysis and 

gluconeogenesis contribute to hepatic glucose output. While epinephrine directly 

modulates glycogenolysis, it indirectly affects gluconeogenesis by increasing the 

abundance of the substrates (e.g., alanine, lactate, and glycerol) required for this process 

[108, 109]. Presented with additional gluconeogenic precursors, the liver will increase its 

rate of gluconeogenesis. 
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The ability of norepinephrine to elevate the glucose level is not as potent as that of other 

glucoregulatory hormones. Its role is primarily that of a neurotransmitter. It is localized 

in the synaptic clefts between neurons and their effector organs but can freely diffuse into 

circulation. The mean (±SD) resting plasma norepinephrine concentration was 228±81 

pg/ml and 526±198 pg/ml (with maximum individual values of 406 pg/ml and 956 pg/ml) 

in the supine and upright positions [110]. When norepinephrine levels exceed 1,800 

pg/ml, suppression of plasma insulin levels and the elevation of blood glucose levels are 

observed [110].  

An increase in plasma norepinephrine levels increases the gluconeogenic precursors 

(increasing the rate of gluconeogenesis) but does not affect glycogenolysis [111]. During 

surgery and acute stress, plasma norepinephrine levels correlate well with epinephrine 

levels [105, 107]. However, norepinephrine levels remain elevated longer postoperatively 

than epinephrine [105]. In a study of catecholamine levels during cardiac bypass surgery, 

arterial norepinephrine peaked at 825± 84.2 pg/ml [112]. Although it is possible to 

achieve the norepinephrine levels required to affect glycemia, its role is secondary to that 

of epinephrine. 

Circulating epinephrine (and, to a lesser extent, norepinephrine) will greatly influence 

glycemia. An acute increase in catecholamines is observed during surgery and 

immediately postoperatively [105, 112]. Circulating levels during these periods surpass 

(greatly in the case of epinephrine) the thresholds required to alter insulin secretion and 

resistance, and endogenous glucose production. Typically, catecholamines will return to 

preoperative levels in 48 hours postoperatively.  
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2.1.2. Cortisol 
Cortisol is a steroid hormone that is released by the adrenal cortex. Its secretion is 

mediated by ACTH. There are two specific brain corticosteroid receptors. The 

mineralocorticoid receptors are nearly always fully occupied even at basal levels of 

circulating steroids. The glucocorticoid receptors become occupied during acute periods 

of stress and are responsible for down regulating sympathetic and hypothalamic-pituitary-

adrenal activity [113]. 

Cortisol is a key mediator of the catabolic actions in the stress response. It promotes 

protein breakdown and hepatic gluconeogenesis while reducing peripheral glucose uptake 

so glucose can be spared for the brain and spinal cord. Cortisol increases insulin 

resistance in hepatic and peripheral tissues by diminishing insulin’s post-receptor effects 

[114]. In addition, it promotes lipolysis which provides additional substrates for 

gluconeogenesis. Cortisol also simulates of glucagon release [115, 116]. However, it 

inhibits the release of catecholamines, the potent hyperglycemic agents, as demonstrated 

in antecedent hypoglycemia studies [117, 118]. 

The normal circadian rhythm of cortisol release will produce circulating plasma 

concentrations of 0-20 µg/dl with elevated levels occurring while awake or waking [119]. 

During surgery, total cortisol can peak at 55 µg/dl. A large majority of circulating cortisol 

is bound to corticosteroid-binding globulin (70-75%) and albumin (20-25%). Free 

cortisol is only 5 percent in controls but this percentage can be 3-fold higher following 

cardiac surgery [120]. Total cortisol levels in critically ill patients were twofold greater 

than in controls while free cortisol levels were fivefold greater [121]. The 
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disproportionate increase in free cortisol levels corresponds to a decrease in the binding 

proteins (corticosteroid-binding globulin and albumin).  

When compared to the time course of catecholamine levels in critical illness, cortisol 

remains elevated longer. In 30 critically-ill patients, total cortisol levels averaged 22.6 ± 

8.9 µg/dl 6.4 ± 5.6 days after hospitalization [121]. In 54 patients admitted to the hospital 

for a ruptured aorta, total cortisol levels were 21.0 ± 8.1 µg/dl within 24 hours of 

admission [122]. 

In a study of six normal subjects, a 24-hour cortisol infusion (2 µg/kg/min) produced a 

mean plasma cortisol level of 37 µg/dl. Elevated plasma glucose levels (126 ± 2 mg/dl 

with cortisol infusion versus 97 ± 2 mg/dl with saline infusion) and plasma insulin levels 

(16 ± 2 mU/l with cortisol infusion versus 10 ± 1 mU/l with saline infusion) were 

observed [114]. However, short term exposure (2-6 hrs) to elevated cortisol levels either 

decreased or did not alter glucose production and utilization [123]. In the hospital setting, 

it is possible for cortisol levels to remain elevated over days to weeks – long enough to 

disrupt the normal regulation of glycemia.  

2.1.3. Growth Hormone 
Growth hormone simulates protein synthesis and lipolysis, inhibits proteolysis, and 

increases peripheral insulin resistance and glycogenolysis. Synthesized within the 

pituitary gland, growth hormone is a 191-amino acid protein with a molecular weight of 

22 kDa. Its release is controlled by GH-releasing hormone, somatostatin, and ghrelin. 

Growth hormone is secreted in a pulsatile fashion after the onset of sleep and 

postprandially. Peak plasma concentrations range from 5 to 35 ng/mL and typically last 
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one to two hours before returning to basal levels (<3 ng/ml) [119]. The amount and 

pattern of growth hormone secretion change throughout life. Adults average about 5 

peaks per day while children and adolescents average about 8 peaks per day with children 

typically having higher basal levels as well.  

In a study of 18 male non-diabetic patients, the magnitude and duration of increases in 

plasma growth hormone were directly related to the severity of the surgery [124]. The 

cohort undergoing aorto-femoral bypass (the highest surgical stress in the study) 

experienced sustained peak levels (~ 24 ± 17 ng/ml) post anesthesia that remained 

elevated past the eighth postoperative day.  

In a forearm glucose uptake study involving seven fasted non-diabetic male subjects, an 

intravenous bolus (0.14 ng) of growth hormone produced a peak plasma level of 21 ± 8 

ng/ml [125]. While plasma levels of insulin, C-peptide, and glucagon did not differ from 

controls throughout the study, forearm glucose utilization decreased significantly (more 

than 50% from baseline) for the first 20 minutes following the growth hormone bolus. 

Further studies could not demonstrate a dose-dependent response [126]. The growth 

hormone bolus also exhibited a significant capacity to increase circulating lipids ~ 30 

minutes after administration. However, euglycemic insulin clamp studies with prolonged 

growth hormone infusions did not exhibit the same rise in circulating free fatty acids in 

11 non-diabetic male subjects [127]. These studies demonstrated a suppression of glucose 

uptake that increased with the length of growth hormone infusion and an antagonistic 

effect of growth hormone on the insulin’s suppression of endogenous glucose production. 

Hyperglycemic clamp studies with the same subjects demonstrated that elevation of 

growth hormone levels for 2-12 hours did not affect beta-cell sensitivity. Thus, prolonged 
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elevation of growth hormone will cause hepatic and peripheral insulin resistance but will 

not affect the ability of the pancreas to respond to hyperglycemia, thus, allowing insulin 

to counter lipolytic action of growth hormone under normal circumstances. In the 

separate euglycemic insulin clamp studies, a one-hour growth hormone infusion prior to 

the start of the clamp demonstrated the ability of growth hormone to elevate circulating 

free fatty acid levels [128]. However, upon initiation of an intravenous insulin infusion 

(0.5 mU/kg/min), free fatty acids levels promptly fell below baseline levels. In addition, 

the use of three separate rates of growth hormone infusion (2, 4, and 8 ng/kg/hr 

producing peak levels of 16 ± 5, 26 ± 6, 51 ± 13 ng/ml) illustrates dose-dependent 

responses in glucose uptake and production. The two highest infusion rates prolonged the 

suppression of glucose uptake with significant (compared to controls) suppression of 

glucose uptake 6 hours after the start of growth hormone infusion versus 4 hours for the 

lowest growth hormone infusion rate. Only the highest growth hormone infusion rate 

showed a significant increase in endogenous glucose production. 

Whereas studies with acute boluses of growth hormone could not demonstrate any effect 

of elevated growth hormone on endogenous glucose production, a study with an extended 

infusion has shown that the chronic elevation of the hormone (20.8 ± 9.3 ng/ml in 6 

subjects receiving a 4-hour exogenous intravenous infusion at a rate of 40 ng/kg/min) 

prevented a fall in the rate of glycogenolysis compared to fasting controls [129]. 

In trauma and illness, the loss of the normal circadian rhythm of growth hormone (in 

addition to its chronic elevation) may have a significant influence on glucose metabolism 

through its influence on circulating levels of insulin-like growth factor [130].  
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2.1.4. Glucagon 
Glucagon is catabolic hormone (29 amino acids in length, 3.5kDa in weight) secreted by 

the α-cells of the pancreas. Its primary function is to counterbalance insulin’s effects, 

protecting against hypoglycemia. It is secreted into the portal vein and its actions occur 

primarily in the liver, promoting glycogenolysis and gluconeogenesis. The mechanism by 

which glucagon promotes gluconeogenesis is separate from that which is used by 

adrenergic mediators [131]. Other stress hormones (epinephrine, growth hormone, and 

cortisol) will stimulate glucagon release [116, 132]. In man, plasma glucagon levels 

range between 20 and 100 pg/ml.  

In the study of 21 surgical patients, immunoreactive glucagon1 (IRG) increased twofold 

during the operation and remained elevated for up to 8 days postoperatively while those 

patients that experienced complications during surgery had peak glucagon levels 6-18 

times greater than preoperative levels [133]. In a study of 40 patients, the patients were 

grouped by their surgical severity. Three stress categories (mild, moderate, and severe) 

were defined by the length of the operation. Average pre-, intra- and postoperative IRG 

levels for the three groups correlated with the degree of surgical stress [134]. Whereas 

IRG levels in mild group did not differ significantly from fasted healthy subjects, those of 

the moderate group increased starting in surgery and peaked on the second postoperative 

day and those in the severe group were significant elevated preoperative and peaked on 

the first postoperative day. IRG levels returned to preoperative levels between the fifth 

and seventh postoperative day in both the moderate and severe groups.  

                                                 
1 The 3.5kDa glucagon molecule is one of several moieties (<2.0, 3.5, 9.0, and >40.0 kDa) of 
immunoreactive glucagon (IRG). The isolation and measurement of the 3.5kDa molecule was not 
performed until the late 1970s. As such, if specific plasma values of pancreatic glucagon (3.5kDa moiety) 
could not be discerned, the results are only discussed in general terms in this text. 
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The postoperative increase in plasma glucagon may not be completely attributable to 

stress. Plasma glucagon levels are elevated in the fasted state as well. In a study of 15 

obese subjects, IRG levels rose twofold, peaking on the 3rd day of fasting [135]. It 

becomes difficult to separate the factors that contribute to the subsequent rise in glucagon 

levels since patients are instructed to withhold consumption of any solid food prior to 

surgery. Regardless of the cause, the course of patient care in the hospital creates the 

proper milieu to support a sustained increase in plasma glucagon levels. 

In pancreatic-pituitary clamp experiments, low- and high-dose glucagon infusions (0.7 

and 2.8 pg/kg/min) produced plasma glucagon levels of 64 ± 7 and 125 ± 61 pg/ml after 4 

hours (compared to 44 ± 12 pg/ml in fasted control subjects). The high-dose infusion 

produced increases in both glycogenolysis and gluconeogenesis while the low-dose 

infusion produced a significant increase in glycogenolysis only [136]. The ability of 

glucagon to increase endogenous glucose production is greatly attenuated by elevated 

levels of circulating insulin [137] and hyperglycemia [114, 138]. However, the 

combination of elevated glucocorticoids (e.g., cortisol) and glucagon elicits a notable 

increase in endogenous glucose production in spite of hyperinsulinemia, demonstrating 

that cortisol increases hepatic insulin resistance and/or hepatic glucagon sensitivity [139].  

The actions of the stress hormones can easily produce a hyperglycemic state. These 

hormones increase endogenous glucose production, suppress insulin secretion, and 

decrease glucose uptake (Table 2.1). The anti-hyperglycemic actions these hormones 

exhibit (i.e., cortisol will inhibit epinephrine release [117, 118] and glucagon 

hypersensitizes the pancreatic beta cells to glycemic changes [140]) are overwhelmed by 

their catabolic effects. Their concerted actions produces a hyperglycemic state greater 
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than the sum of the individual contributions of each hormone [141]. Epinephrine and 

glucagon are potent simulators of endogenous glucose production while cortisol and 

growth hormone cause severe hepatic and peripheral insulin resistance. The increase in 

the supply of glucose into systemic circulation and the inability for glucose and insulin to 

promote the glucose uptake result in sustained hyperglycemia during stress. 

Table 2.1: Hyperglycemic Actions of the Stress Hormones 
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Norepinephrine  +b + +  – – 
Cortisol  + + + + – – 
Growth Hormone +  + – + –  
Glucagon + +     + 

a. lypolysis and proteolysis relate to gluconeogenesis in that these processes liberate gluconeogenic substrates 
b. indirectly increases the rate of gluconeogenesis by increasing the substrates converted into glucose by the liver 
 

Outside the classical endocrine stress response, the immune system also responds to 

trauma and illness through significant alterations in the release of multiple cytokines 

[142]. Cytokines (i.e., interleukin 6) closely parallel changes to insulin sensitivity 

measured in postoperative patients [143]. 

2.2. Modifiers of Glucose Metabolism 
By directly or indirectly increasing endogenous glucose production and inhibiting 

peripheral and hepatic glucose uptake, stress hormones create a glucose imbalance that 
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typically leads to hyperglycemia. Factors that typically alter the stress response, or 

glucose metabolism directly, in the hospitalized patient are summarized in Table 2.2. 

Table 2.2: Modifiers of glucose metabolism during hospitalization 

• Anesthesia and Analgesia 
• Atypical Nutrition 
• Fluid Balance 
• Hypothermia 
• Hypoxia 
• Medications 
• Sepsis 
• Surgical Procedure 
 

2.2.1. Anesthesia and Analgesia 
Pain control and sedation in the hospitalized patient are focused on providing comfort 

and reducing the stress response without suppressing the immune system. Proper 

anesthetic and analgesic management can suppress the surge of catecholamines, cortisol, 

growth hormone and glucagon. Opioids such as morphine, codeine, and fentanyl are 

frequently administered for acute pain management in the hospital. Large doses of 

fentanyl (50-100 µg/kg) or morphine (>3 mg/kg) are necessary to abolish the stress 

response encountered during major cardiac surgery [144]. Patients receiving an epidural 

block during general anesthesia had significantly reduced cortisol and glucagon levels (as 

well as a reduction in endogenous glucose production and overall glycemia) 

intraoperatively when compared to controls [145]. However, the reduction in these levels 

was not sustained postoperatively even though the epidural block was maintained 

implying it was not exclusively attributable to the epidural block. 
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The type of general anesthesia affects the magnitude and time-course of the stress 

response. Sevoflurane was shown to reduce the catecholamine surge observed in patients 

treated with isoflurane while cortisol and glucagon profiles remained indistinguishable 

between the groups [146]. However, the perioperative glycemic profiles for both groups 

were similar and the catecholamine levels in the sevoflurane increased postoperatively to 

match those in the isoflurane group. An intraoperative study of seven elderly patients 

undergoing intra-abdominal surgery using sevoflurane-nitrous oxide anesthesia displayed 

similar profiles for epinephrine, norepinephrine, and cortisol (glucagon was not 

measured) [147].  

In a study comparing epidural analgesia combined with general anesthesia (n=8), fentanyl 

and midazolam anesthesia (n=8), or inhaled anesthesia with isoflurane (n=7), endogenous 

glucose production and uptake (along with glucagon, cortisol, epinephrine and 

norepinephrine) were measured 110 minutes after incision in patients undergoing 

cystoprostatectomy [145]. Compared to preoperative measurements, the epidural group 

had a significant decrease, and the isoflurane group had a significant increase, in 

endogenous glucose production while all groups had significant decrease glucose uptake. 

Epidural analgesia abolished the stress response (i.e., epinephrine, norepinephrine, 

cortisol and glucagon were not significantly different from preoperative values). While 

the decrease in glucose uptake in the isoflurane and fentanyl/midazolam groups could be 

explained by the intact (albeit blunted in the fentanyl/midazolam group) stress response, 

this reasoning cannot explain the decrease in the epidural group. Alternatively, sedation 

per se can reduce energy expenditure [148] which would correspond to a decrease in 

glucose uptake (i.e., a reduction in muscle tone accompanies general anesthesia would 
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result in a decrease metabolic need). Although proper anesthesia can reduce (or even 

abolish) the stress-mediated increase in glucose production and decrease in insulin 

sensitivity, it causes an acute decrease in the body’s metabolic need which also 

predisposes surgical patients to hyperglycemia. 

The choice of anesthetic and analgesic agents can impact the evolution of the stress 

response. The ability to block afferent neural stimuli for the site of incision (e.g., epidural 

analgesia) can completely suppress the surge of stress hormones during surgery and alter 

course of glycemia during a patient’s hospital stay. Typically, the stress response will be 

blunted by anesthesia during surgery but will develop in the immediate postoperative 

period. 

2.2.2. Atypical Nutrition 
Before elective surgery, it is common practice for a patient to fast overnight so the 

digestive tract is empty prior to the surgical procedure thereby avoiding aspiration of 

stomach contents into the lungs which can cause pneumonia. However, upon fasting for 

12-16 hours, liver glycogen stores are largely depleted and body metabolism is in a fasted 

state, with an increased breakdown of fat and protein to support increased 

gluconeogenesis and fat oxidation. This practice contributes, in part, to the increased 

insulin resistance and glucose intolerance in the hospitalized patient population [149]. 

Preoperative oral carbohydrate administration reduces the relative decreases in insulin 

sensitivity and whole body glucose uptake in patients undergoing elective total hip 

replacement [150]. In this study, cortisol levels were indistinguishable between the 

carbohydrate and placebo groups whereas nonesterified fatty acid levels were 

significantly depressed in the carbohydrate group. Elevated perioperative cortisol is a 
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common component between the treatment groups and will account for the part of the 

reduction in insulin sensitivity. However, fatty acid levels also influence endogenous 

glucose production and uptake [151] and a longer period in the fasted state accounts for 

the greater relative insulin resistance in the placebo group. 

Inadequate nutrition in the perioperative period can profoundly affect insulin sensitivity. 

In a hospital setting, stress cause by the trauma of a surgical procedure combined with 

hypocaloric nutrition can lead to a state of severe glucose intolerance. 

2.2.3. Fluid Balance 
In health, water makes up 60% of total body weight. Its relative distribution between the 

vascular, interstitial and intracellular spaces is 10, 30, and 60 percent, respectively. In a 

study of 8 healthy volunteers, these volumes were 72 ± 7, 204 ± 26, and 417 ± 78 ml/kg 

for the vascular, interstitial and intracellular spaces [152]. 

The redistribution of fluid in the perioperative period is highly variable [153]. Capillary 

permeability increases in response to surgery, causing fluid to shift from the vasculature 

to the interstitial space [154]. Crystalloid solutions are administered intravenously to 

replace lost fluids, maintain adequate tissue perfusion and prevent anesthetic-induced 

hypotension. The stress response impairs the body’s ability to excrete excess salt and 

water [155]. Compared to normal volunteers, extracellular volume increased (15 and 55 

percent increase in vascular and interstitial volumes, respectively) while intracellular 

volume decrease postoperatively in trauma patients that were, on average, 15 liters 

positive [152]. 
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Both hyper- and hypovolemia are associated with negative outcomes in the surgical 

patients [156, 157]. The need to maintain adequate blood pressure and volume during 

anesthesia typically leads to positive fluid balance intraoperatively. The amount of fluid 

given to a patient depends on several factors (Table 2.3). On average, patients undergoing 

major surgery will gain 3-7 kg during the procedure [156]. In the postoperative period, 

diuretic therapy can be used to restore fluid balance [158]. Within a relatively short 

period of time, a patient can experience considerable changes in the distribution and 

amount of total water.  

Table 2.3: Factors affecting intraoperative fluid balance (adapted from Rosenthal 1999 [1]) 

• Preoperative intravascular volume 
• Preoperative cardiovascular function 
• Anesthetic agent and technique 
• Patient position 
• Thermoregulation 
• Capillary permeability 

• Operative fluid management protocol 
• Duration of surgery 
• Operative site 
• Surgical technique 
• Splanchnic ischemia 
• Intraoperative cardiac function 

 

The dynamic nature of relative and absolute volumes of the intravascular, interstitial, and 

intracellular spaces in the perioperative period may have a significant effect on glycemia 

and, more importantly, the distribution of insulin. In addition, renal insufficiency will 

alter the elimination of insulin. 

2.2.4. Hypothermia 
Thermoregulation maintains core body temperature between 36.1 and 37.5°C. 

Hypothermia is defined as a core temperature below 35°C. Accidental hypothermia is 

routinely encountered in trauma victims upon their arrival at the hospital. It is also 
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common for a patient to become hypothermic in the time around the procedure. The 

benefit of hypothermia on patient outcome is mixed. On one hand, it attenuates the 

inflammatory response, but it also compromises the ability of the immune system to 

protect against infection [159].  

Hypothermia is an unavoidable consequence of the current standard practices within the 

hospital. Within the hospital, ambient air temperature is maintained below 25ºC to 

minimize the infection risk posed by air-borne pathogens. The Center for Disease Control 

recommends a cool temperature standard with temperatures of 20-23ºC within operating 

rooms and 21-24ºC within holding areas and recovery rooms [160]. In addition to being 

placed in a cool environment, patients are sedated. Sedation decreases resting energy 

expenditure [161] which reduces endogenous heat production especially when the 

shivering reflex is ablated during anesthesia. Poor insulation (patients are scantly clothed 

prior to surgery and are placed naked on the operation table) increases the loss of heat. 

Convective heat loss is further increased by peripheral vasodilation as a result of 

anesthesia. Additional heat loss occurs from evaporation at the site of incision. Measures 

to limit the degree of hypothermia include the use of heated blankets [162]. 

Whether intentional or accidental, hypothermia is common in surgical patients. Of 

interest to us is the effect of hypothermia on the ability of the body to maintain 

euglycemia. Although hypothermia per se will cause an increase in catecholamine levels, 

hypothermic patients undergoing cardiopulmonary bypass had lower hormone levels 

(insulin, glucagon, cortisol, catecholamines) when compared to normothermic patients 

[163]. In addition, endogenous glucose production in hypothermic patients was decreased 

[164]. However, intraoperative hyperglycemia developed under both conditions. So, 
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although hypothermia attenuates the stress response, it is accompanied by a decrease in 

pancreatic insulin release [165] and metabolic need [166]. In addition, exogenous insulin 

administration cannot overcome the severe hypothermia-induced insulin resistance while 

leading to hypoglycemia after the rewarming period [167]. 

2.2.5. Hypoxia 
Hypoxia is one of multiple factors in perioperative milieu that stimulates sympathetic 

activity in this setting. Hypoxia elicits a sympathetic response that significantly raises 

epinephrine levels as compared to normoxic same-subject controls [168]. Its role in 

decreased insulin sensitivity is well-defined in obstructive sleep apnea [169]. The 

hormonal and immunological changes that accompany intermittent hypoxia typify the 

classical stress response. 

2.2.6. Medications 
Insulin and oral agents are used to manage glycemia in the outpatient treatment of 

diabetes mellitus and within the hospital. However, hospitalized patients are often 

exposed to medications that inadvertently alter glucose production, insulin secretion and 

insulin sensitivity (Table 2.4). 

Anesthesia increases the sympathetic tone of the cardiovascular system, causing an 

undesired drop in blood pressure. Ephedrine (which stimulates norepinephrine release) 

and epinephrine may be given to increase a patient’s blood pressure. These medications 

will compound the effects of the endogenous catecholamines. Corticosteroids are 

typically given to decrease the inflammatory response following traumatic injuries and 

serious surgery. These medications cause both an increase in hepatic gluconeogenesis and 

a decrease in insulin sensitivity [170].  
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Table 2.4: Glycemia-altering drugs (adapted from Pandit 1993 [2]) 

Drug Hyperglycemia Hypoglycemia 
β-blockers • • 
fibric acid derivatives • • 
fluoroquinolones • • 
octeotide • • 
atypical antipsychotics •  
calcium channel blockers •  
cyclosporine •  
diazoxide •  
ephedrine and epinephrine •  
glucocorticoids •  
nicotinic acid and niacin •  
phenytoin •  
protease inhibitors •  
sex hormones •  
Thiazides •  
thyroxine •  
ACE inhibitors  • 
β2 agonists  • 
β-adrenergic agonists  • 
disopyramide  • 
ethanol  • 
MAOIs and tricyclics  • 
pentamidine  • 
quinine, chloroquine  • 
salicylates and acetaminophen  • 
streptozotcin  • 
sulfamethoxyzole  • 

 

β-blockers and thiazides diuretics typically prescribed to treat hypertension. The 

mechanisms by which β-blockers cause hyperglycemia include the reduction of 

peripheral blood flow, a decrease in the first-phase of insulin release, and a decrease in 

insulin clearance which leads to hyperinsulinemia and a downregulation in insulin 

receptors [171]. Thiazides can cause hypokalemia which inhibits insulin secretion [172].  
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Fluoroquinolones are broad spectrum antibiotics that are commonly used in the hospital 

to treat infection. Drugs in this class (i.e., moxifloxacin, gatifloxacin, levofloxacin, and 

ciprofloxacin) appear to stimulate insulin secretion, leading to hypoglycemic episodes. 

The combination with oral glucose-lowering agents increases the potency of these drugs 

[173, 174]. Gatifloxacin has also been associated with hyperglycemia [175].  

Protease inhibitors are prescribed to treat viral infections, most commonly human 

immunodeficiency virus and hepatitis C. In healthy volunteers, the protease inhibitor, 

Indivavir, reduced the insulin-mediated increase in peripheral blood flow [176]. In this 

population, no difference in peripheral insulin sensitivity could be observed after four 

weeks of protease inhibitor treatment compared to baseline. However, there was also no 

significant difference in plasma lipid, insulin and glucose levels before and after 

treatment. But, protease inhibitors have been associated with increased insulin resistance 

in patients with HIV, which may be linked to their dyslipidemic effects [177]. There is 

also evidence that these drugs may attenuate insulin release [178]. 

2.2.7. Sepsis 
Sepsis results from the immune response to a severe infection. It is associated with 

tachycardia, hyperthermia, hyperventilation and an abnormal white blood count. Sepsis 

causes a marked decrease in insulin sensitivity due, in part, to an exaggerated stress 

response.  

Sepsis will inhibit the responsiveness of the pancreatic beta-cells and exaggerate the 

stress response.  Peak insulin secretion in response to an intravenous glucose challenge 

was significantly decreased in septic postoperative patients (20.4 ± 6.8 mU/l, n=8) when 

compared to controls (51 ± 14 mU/l, n=6) and postoperative patients (42.4 ± 31 mU/l, 
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n=5) even though all groups had similar basal insulin levels [179]. In a comparison of 

postoperative patients categorized as septic (n=22) or nonseptic (n=12), the average 

levels of cortisol, catecholamines, and glucagon were greater in the septic patients 

(statistically significant for glucagon and catecholamines) [180].  

2.2.8. Surgical Procedure 
The emotional anxiety prior to surgery, the magnitude of tissue trauma sustained during 

surgery and the length of the procedure all modulate the severity of the stress response. 

Limiting the amount of tissue trauma has been shown to decrease the levels of plasma 

stress hormone levels and cytokines [181-183].  

The magnitude of surgical procedure shows a positive correlation to the degree of 

subsequent insulin resistance. This resistance can be independent of changes in 

circulating cortisol, catecholamines, and glucagon. The resistance is localized in the 

skeletal muscle and it appears to involve the translocation of GLUT-4 transporters. 

Insulin resistance can change 20-60% postoperatively compared to preoperative 

measurements and it may require days to weeks to return to baseline [184]. 

Assessing the risk of death or complications in the course of patient care has given rise to 

several scoring systems [185]. The Physiological and Operative Severity Score for 

enUmeration of Mortality and morbidity (POSSUM) tracks 12 physiological variables 

and six variables related to the operation [186]. POSSUM ranks the severity of the 

procedure by placing it into one of four groups, minor, moderate, severe, and severe + 

(Table 2.5). 
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Table 2.5: Severity of General and Orthopedic Procedures (adapted from Copeland 2002) 

Minor Moderate Severe Severe + 
• hernia 
• varicose vein 
• minor perianal 

surgery 
• scrotal surgery 
• minor transurethral 

tumor resection 
• excision of large 

subcutaneous lesion 
• fasciotomy 
• ganglion/bursa 
• tenotomy/tendon 

repair 
• endoscopic joint 

surgery 
• carpal tunnel/nerve 

release 
• removal of wire/nail 
• closed reduction of 

fracture 

• mastectomy 
• open cholecystectomy 
• laparoscopic 

cholecystectomy 
• appendectomy 
• excision of lesion 

requiring grafting or 
minor excision 

• minor amputation 
• thyroid lobectomy 
• excision/osteotomy of 

small bone 
• minor joint 

replacement 
• amputation of digit 
• closed reduction with 

external fixation 
• open reduction of 

small bone fracture 

• laparotomy and small 
bowel resection 

• colonic resection or 
anterior resection 

• major amputation 
• nonaortic vascular 

surgery 
• cholecystecttomy and 

exploration of bile 
duct 

• total thyroidectomy 
• osteotomy of long 

bone 
• ligamentous 

reconstruction and 
prosthesis 

• anthrodesis of large 
joint 

• major joint 
replacement 

• amputation of limb 
• disk surgery 
• open reduction of 

long bone fracture 

• abdominoperineal 
resection 

• pancreatic or liver 
resection 

• oesophagogastrectomy 
• abdominoperineal 

excision of rectum 
• aortic surgery 
• whipple resection 
• radical total gastrectomy 
• radical tumorectomy 
• major spinal 

reconstruction 
• revision prosthetic 

replacement of major 
joint 

• hind limb/forelimb 
amputation 

 

2.3. Perioperative Timeline 
A patient’s physiology is very dynamic in the time leading up to, during, and following 

surgery. A multitude of factors predispose a hospitalized patient to abnormal glycemia – 

predominantly hyperglycemia. This section describes the relative order of events (Figure 

2.1) in the perioperative period in order to understand the evolution of the stress response 

and the development of hyperglycemia.  
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Figure 2.1: Perioperative timeline 

Prior to admission into the hospital, the patient’s diet is restricted. Typically, the patient 

will not have eaten 12-18 hours before undergoing surgery. In certain gastrointestinal 

procedures, a patient may be hypocaloric for several days to cleanse the bowel before 

surgery. In this prolonged fasted state, glycogen stores are depleted, circulating levels of 

free fatty acid levels are elevated. To spare protein, circulating levels of growth hormone 

are elevated in response to the patient’s hypocaloric state as well. Cortisol levels are 

elevated, especially if the surgery is scheduled in the morning when this hormone 

naturally peaks. Patient anxiety over the impending surgical procedure can also elevate 

catecholamine levels before any physical tissue trauma is incurred. As a result, the 

surgical patient is insulin resistance before any tissue trauma occurs. 

After admission to the hospital, a patient changes into a standardized robe which provides 

easy access for physical examination but little warmth. Prior to entering the operating 

room, the patient is confined to a bed in a preoperative holding area. Catheters are placed 
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to access to the bloodstream, allowing medications and maintenance fluids to be 

delivered to, and blood to be sampled from, the patient. Placed in a cool environment, 

inadequately clothed and delivered maintenance fluids at room temperature (typically 

below 25ºC), a patient becomes susceptible to hyperthermia-induced insulin resistance.  

Within the operating room, the patient is sedated through an intravenous administration 

of fentanyl or similar agent prior to the induction of general anesthesia. Under general 

anesthesia, a breathing tube is inserted in the throat and the patient is ventilated with a 

mixture of inhaled anesthetic and oxygen-rich air. The anesthetic agent is carefully 

titrated to control the patient’s sympathetic tone - maintaining adequate blood pressure 

while ensuring adequate sedation during the procedure. The reduced sympathetic tone 

causes vasodilation and “leaky” capillaries. Crystalloid solutions are infused to maintain 

vascular volume and perfusion pressures. In addition, glucose-containing solutions are 

infused to provide a substrate for basal metabolism (~5g/hr for adults). The large amount 

of intravenous fluids given during surgery leads to a positive fluid balance (excessive 

fluid retention). At the site of incision, cells release inflammatory and necrotic factors 

while nerves alert the central nervous system to the tissue trauma. The degree of tissue 

trauma and the length of the procedure will determine, in part, the strength the stress 

response. The use of regional anesthesia can a block transmission of pain before it 

reaches the central nervous system, further attenuating the stress response. While 

anesthesia will attenuate the stress response in the intraoperative period, it will interfere 

with thermal regulation. With the patient partially or fully disrobed and a low ambient 

room temperature, the patient’s core body temperature will decrease. 
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The patient emerges from anesthesia cold and shivering. No longer suppressed by the 

anesthetic agent, a surge in circulating stress hormones occurs in response to the trauma 

incurred during the operation. Analgesic agents are administered for pain management. 

After surgery, the patient is transported a recovery area within the hospital – the surgical 

severity and the patient’s condition will determine the degree of care and monitoring the 

patient requires. Fluid restriction and diuretic therapy is employed to restore fluid 

balance. Other medications may inadvertently increase insulin resistance (e.g., steroid 

therapy is prescribed to attenuate the inflammatory response). Caregivers must verify 

gastric motility prior to starting enteral nutrition. After a minor surgical procedure, a 

patient typically returns to enteral nutrition within 6-12 hours. In severe procedures, the 

patient may not begin eating for 24-48 hours. While patients are encouraged to ambulate 

primarily to promote gastrointestinal motility, muscle contraction will increase peripheral 

insulin sensitivity. As the patient recovers, the stress response will subside. However, 

complications can slow the recovery progress. Most notable, systemic infection is a life-

threatening complication that will exacerbate the stress response. To compound the 

situation, medications used to treat sepsis will cause insulin resistance. 

Subsequent chapters will attempt to quantify the effects of the stress response on glucose 

metabolism by focusing on tissue-specific changes to insulin sensitivity and endogenous 

glucose production.  
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CHAPTER 3.  A MODEL OF GLUCOSE METABOLISM 

The present effort will review and improve upon the model of glucose metabolism 

developed by John Sorensen [187] to describe glucose metabolism during periods of 

stress. As published, the model is a set of 22 first-order time-invariant nonlinear 

differential equations describing the interaction of glucose, insulin and glucagon. The 

model can be separated into three subsystems: glucose, insulin, and glucagon. Each 

subsystem divides the body into various compartments representing the capillary blood 

space of one or several biological tissues. The influx and outflow of mass (i.e, glucose, 

insulin or glucagon) is modeled for each compartment.  

3.1. Compartmental Modeling 
In general, arterial blood enters and venous blood drains the capillary space. Mass is 

exchanged between the capillary and interstitial spaces, and between the interstitial and 

intracellular spaces. At most, the glucose metabolism model describes the flow of mass in 

the capillary and interstitial spaces (Figure 3.1). Mass that leaves the interstitial space 

either returns to the capillary space or is irrevocably removed from circulation once it is 

taken up by a cell. The general form of the equations governing the exchange of mass in a 

compartment is: 

 

 ( ) ( ) RBCBoIBoBi
Bo rCCCC

dt
dC

−−+−= PAQV BB  3.1 

 ( ) IIBo
I rCC

dt
dC

−−= PAVI  3.2 

 
where VB and VI are the volumes of the capillary blood and interstitial fluid; QB is the 

volumetric flow rate; PA is the permeability-area product; CBi, CBo and CI are the mass 
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(i.e, glucose, insulin or glucagon) concentrations in the arterial blood, capillary (and 

venous) blood and the interstitial fluid; and rRBC and rI are the rates of mass uptake from 

the red blood cells and cells bathed by the interstitial fluid. In certain instances, the 

permeability of the capillary membrane is great enough to merge the capillary and 

interstitial spaces, forming one differential equation to describe the whole compartment. 

Auxiliary equations may be appended to the compartmental equations to describe rates of 

uptake or production. 

 

VB,CBo

VI,CI

QB,CBoQB,CBi

PA

rRBC

rI
 

Figure 3.1: Simplified representation of a biological compartment used in the glucose metabolism 
model 

The complexity of each subsystem varies. The glucose subsystem contains six 

compartments: the brain, heart and lungs, gut, liver, kidney, and peripheral tissues. It is 

described by eight first-order differential equations. Four rates (i.e., hepatic glucose 

uptake, hepatic glucose production, peripheral glucose uptake, and renal glucose 

excretion) are described by a set of nonlinear auxiliary equations, including three 

additional first-order differential equations. The insulin subsystem contains the same six 

compartments. It is described by seven linear first-order differential equations. A 

nonlinear model of pancreatic insulin release is also included, adding three differential 
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equations to the subsystem. The glucagon subsystem contains only one compartment. It is 

described by one nonlinear first-order differential equation. 

3.2. Model Equations 
The equations for the model of glucose metabolism as they appear in the 1985 doctoral 

thesis of John Sorensen are provided here and in Appendix A. In general, time-varying 

variables (e.g., GH and rPIR) are italicized whereas time-invariant quantities (e.g., I
LQ and 

rRBCU) are not. Some minor corrections and clarifications are described in Table 3.1.  

Table 3.1: Glucose metabolism model clarifications and corrections 

• In equation 3.11 that describes the kidney glucose excretion rate rKGE, the quantity 
0.011 multiplying the expression (GK-460) within the hyperbolic tangent function 
was incorrectly reported in some sections of Sorensen’s thesis.  

• In one of the equations describing pancreatic insulin release (equation 3.37), the 
superscript 0+ in the expression (X-I)0+ denotes that the expression only takes on 
positive values and is zero otherwise. 
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3.2.2. Insulin Subsystem 
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3.2.3. Glucagon Subsystem 
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3.3. Model Parameter Analyses 
As originally published, the glucose metabolism model has 59 parameters. Nearly all the 

parameters can be categorized as distribution volumes, flow rates, time constants, basal 

values, or fractional clearances for glucose, insulin and glucagon.  
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3.3.1. Parameter Dependencies 
Several model parameters are dependent. In a majority of the cases, dependency arises 

because parameters from different subsystems are based on the same underlying 

physiological quantities. These physiological quantities have been scaled or combined 

together so the model equations can be written in a compact form. The volumetric flow 

rates and distribution volumes both exhibit this type of dependency. Between all three 

subsystems, there are 14 volumetric flow rate parameters and 16 distribution volume 

parameters. Out of these 30 parameters, only 19 are independent.  

Here, the volumetric flow rates and distribution volumes are denoted by Q = i
jQ where i = 

{G, I} and j = {B, H, L, G, K, P, A} and V = i
jV  where i = {G, I, Γ} and j = {B, BV, BI, 

H, L, G, K, P, PV, PI}, respectively. Here the superscript i represents the subsystem: 

glucose (G), insulin (I), or glucagon (Γ). The first character of the subscript j represents 

the compartment: brain (B), heart and lungs (H), liver (L), gut (G), kidneys (K), 

periphery (P), and hepatic artery (A). If present, the second character differentiates 

between the vascular (V) and interstitial (I) parts of the compartment.  

The anatomy of the human circulatory system is the basis of four dependencies in Q. 

Without any formal representation of the lymphatic system, the model assumes that all 

blood supplying the tissues and organs of the body returns to the heart. In order to avoid 

any accumulation of blood any given tissue, all the flow rates to these tissue beds must 

equal the flow rate returning to the heart. As shown in equation 3.47, G
HQ  and I

HQ  are 

dependent on the flow rates to the brain, liver, kidneys, and peripheral tissues.  

 iiiii
PKLBH QQQQQ +++=  3.47 
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Blood supplied to the liver is composed of arterial blood from the hepatic artery and 

venous blood that drains into the portal vein from the gastrointestinal tract. The oxygen-

rich arterial blood and the venous blood (laden with nutrients following a meal) are 

brought together within the liver and return to the heart through the inferior vena cava. As 

shown in equation 3.48, G
LQ  and I

LQ  are dependent parameters. 

 iii
GAL QQQ +=  3.48 

The cause of remaining dependencies in Q is that parameters in both the glucose and 

insulin subsystems are scaled quantities of the same flow rates. The distribution space of 

glucose in the blood is water and it was estimated that water comprises 84% of the total 

volume of whole blood (water content percentage, WCP), which includes the intracellular 

fluid of the red blood cells. If Qj represents the rate at which whole blood flows into 

compartment j, Qj is reduced by 16% to generate the glucose subsystem flow rate, GQ j . 

The glucose subsystem’s flow rate, GQ j , in dl/min for j = {B, H, L, G, K, P, A} is given 

by the following equation: 

 jj QWCP
l
dl 10QG ××=  3.49 

Similarly, the insulin distribution space in whole blood is limited to the plasma since 

insulin does not cross the plasma membrane of the circulating red blood cells. Therefore, 

Qj is reduced by the fraction of the space occupied by red blood cells in a fixed volume of 

blood, or the hematocrit (HCT). The hematocrit was estimated at 40%. The insulin 
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subsystem’s flow rate, IQ j , in l/min for j = {B, H, L, G, K, P, A} is given by the 

following equation: 

 jj QHCT)1(QI ×−=  3.50 

The values for the blood flow rates and the flow rates used by Sorensen for the glucose 

and insulin subsystems of the glucose metabolism model are summarized in Table 3.2. 

These values were based on the quantities for a 70kg man in the postabsorbative state. 

The 16 parameters in Q can be described by smaller set of 7 independent physiologic 

parameters (Qj for j = {B, G, K, P, A}, WCP, and HCT). 

Table 3.2: Volumetric flow rates for blood, glucose (water), and insulin (plasma). Rates in 
parentheses are redundant. 

  Flow Rate (l/min) 
Tissue or Organ Subscript j Blood jQ  Glucose GQ j  Insulin IQ j  
Brain B 0.70  0.59  0.42  
Heart & Lungs H (5.20) (4.37) (3.12) 
Liver L (1.50) (1.26) (0.90) 
Gut G 1.20  1.01  0.72  
Kidney K 1.20  1.01  0.72  
Periphery P 1.80  1.51  1.08  
Hepatic Artery A 0.30  0.25  0.18  

 

The values of V can also be derived from a common set of independent physiological 

parameters. This set includes WCP, HCT, and volumes representing the blood, interstitial 

fluid, and intracellular fluid. The volumes for blood, interstitial fluid and intracellular 

fluid used by Sorensen in the glucose metabolism model are given in Table 3.3. Italicized 

values were not used in the calculation of any parameter in V but were provided for 

completeness. 
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Table 3.3: Blood, interstitial fluid and intracellular fluid volumes for the given tissue or organ. 

   
Volume (l) 

  

Tissue or Organ 
 

Compartment
j 

Blood 
Vj,B 

Interstitial Fluid 
Vj,ISF 

Intracellular 
Fluidb 
Vj,ICF 

Brain B 0.41 0.45 8.60 
Heart & Lungsa H 1.64 - - 
Liver L 0.90 0.60 1.15 
Gut G 0.71 0.52 1.01 
Kidney K 0.68 0.09 0.18 
Periphery P 1.26 6.74 19.65 

a heart and lung tissues lumped with the periphery 
b intracellular fluid volumes are neglected in the distribution volume of a compartment except for the liver 
 

There are no compact expressions to relate these independent parameters to V. For the 

subsequent discussion, the blood, interstitial fluid and intracellular fluid volumes will be 

denoted by Vj,k where j = {B, H, L, G, K, P} refers to the compartment and k = {B, ISF, 

ICF} refers to blood, interstitial fluid, or intracellular fluid component of the 

compartment. Except for VL,ICF which was used in the calculation G
LV , intracellular fluid 

volumes were not used in the calculation of the distribution spaces for glucose, insulin 

and glucagon. The expressions relating V to Vj,k are given in the following equations: 

Glucose Subsystem 

 BB,
G
BV VWCP

l
dl 10V ××=  3.51 

 ISFB,
G
BI V

l
dl 10V ×=  3.52 

 BH,
G
H VWCP

l
dl 10V ××=  3.53 

 ( )ICFL,ISFL,BL,
G
L VVVWCP

l
dl 10V ++×=  3.54 

 ( )ISFG,BG,
G
G VVWCP

l
dl 10V +×=  3.55 

 ( )ISFK,BK,
G
K VVWCP

l
dl 10V +×=  3.56 
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 BP,
G
PV VWCP

l
dl 10V ××=  3.57 

 ISFP,
G
PI V

l
dl 10V ×=  3.58 

Insulin Subsystem 
 BB,

I
B VHCT)1(V ×−=  3.59 

 BH,
I
H V)HCT1(V ×−=  3.60 

 ISFL,BL,
I
L VV)HCT1(V +×−=  3.61 

 ISFG,BG,
I
G VV)HCT1(V +×−=  3.62 

 ISFK,BK,
I
K VV)HCT1(V +×−=  3.63 

 BP,
I
PV V)HCT1(V ×−=  3.64 

 ISFP,
I
PI VV =  3.65 

Glucagon Subsystem 

 ∑×=Γ

j
j
IV

l
ml1000V for j = {B, H, L, G, K, PV, PI} 3.66 

Since WCP and HCT were included in the independent parameter set describing Q, the 

16 parameters in V can be described by 12 independent parameters.  

The last parameter dependency that will be discussed here is that of the basal rate of 

peripheral glucose uptake, B
PGUr . Here, B

PGUr  describes the rate at which peripheral tissue 

takes glucose from systemic circulation. The peripheral tissue is comprised of muscle and 

adipose tissue including the heart and lung tissues. The basal rate of peripheral glucose 

uptake was fixed between 22.7 and 88.9 mg/min using data from published forearm 

glucose metabolism studies. This estimate was made under the assumptions that (1) a 

nonobese 70 kg man has 30 kg of muscle and 10 kg of adipose tissue, (2) muscle and 

adipose tissue constitute 64 and 8 percent of the total forearm volume, and (3) muscle and 

adipose tissue constitute 89 and 11 percent of forearm glucose uptake. The need to 
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balance glucose uptake with hepatic glucose production in the fasted basal state lead 

Sorensen to set B
PGUr equal to basal rate of hepatic glucose production less all other 

sources of glucose uptake (equation 3.67). 

 RBCUGGUBGU
B
HGU

B
HGP

B
PGU rrrrrr −−−−=  3.67 

3.3.2. Sensitivity Analysis 
To study the effect of parameter uncertainty on the overall behavior of the glucose 

metabolism model, the model’s sensitivity to changes in parameter values was 

investigated. Analytical approaches to this analysis were considered impracticable. The 

mathematical complexity of the glucose metabolism model makes it impossible to find 

the explicit expression relating the sensitivity of the model’s output to parameter changes. 

Instead, a sampling-based approach was chosen. The sampling-based approach involves 

running the model for a set of input/parameter combinations (sample points) and 

estimating the sensitivity using the model output at those points. 

In this analysis, only one parameter value was changed at a time to identify the subset of 

parameters to which the model was most sensitive. The glucose metabolism model was 

studied with the pancreatic insulin release rate, rPIR, set to zero. By excluding the 

equations governing endogenous insulin secretion, the model’s sensitivity to changes in a 

small subset of parameters was not assessed. Plasma insulin and glucose concentrations 

were directly manipulated using external inputs. 

The external inputs can be described as intravenous infusions of glucose and insulin. The 

glucose infusion rate, RG, in units of mg/min was added as an input to the heart & lung 

compartment of the glucose subsystem (equation 3.68). This compartment represents the 
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blood volume in the cardiopulmonary system and the major arteries. The heart & lung 

compartment is the most appropriate location for the external inputs since an infusion 

catheter placed in a vein (most commonly, in the antecubital region) will mix with blood 

draining from other tissue beds as it returns to the heart. The insulin infusion rate, RI, in 

units of mU/min was added as an input to the heart & lung compartment of the insulin 

subsystem (equation 3.69). 

 [ ]RGGGGGGGdt
d +−−+++= RBCUH

G
HPV

G
PK

G
KL

G
LBV

G
BG

H
H rQQQQQ

V
1

 3.68 

 [ ]RIIIIIIIdt
d +−+++= H

I
HPV

I
PK

I
KL

I
LB

I
BI

H
H QQQQQ

V
1

 3.69 

As originally published, the glucose metabolism model has 59 parameters. Eight 

parameters appear in the equations describing pancreatic insulin release. The remaining 

51 parameters can be categorized as physiological quantities such as volumes, flow rates, 

time constants, basal values, and fractional clearances. Several dependencies exist among 

these parameters. A set of 39 independent parameters (Table 3.4) is sufficient to calculate 

the 51 parameters. The complete description of the parameter dependencies and the 

independent parameter set is given in the previous section.  
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Table 3.4 Independent Parameters of the Glucose Metabolism Model 

Volumes (l) Volumetric Flow (l/min) Time Constants (min) 
VB,B = 0.41 QA =  0.3 T1 = 25 

VB,ISF = 0.45 QB = 0.7 TB = 2.1 
VG,B = 0.71 QG = 1.2 G

PT  = 5 
VG,ISF = 0.52 QK = 1.2 TΓ = 65 

VH,B = 1.64 QP = 1.8 I
PT  = 20 

VK,B = 0.68 Mass Flow (mg/min) Basal Values 
VK,ISF = 0.09 B

HGPr  = 155 B
HG  = 91.89 mg/dl 

VL,B = 0.90 B
HGUr  = 20 B

LG  = 101 mg/dl 
VL,ISF = 0.60 rBGU = 70 B

PIG  = 86.81 mg/dl 
VL,ICF = 1.15 rGGU = 20 B

HI  = 15.15 mU/l 
VP,B = 1.26 rRBCU = 10 B

LI  = 21.43 mU/l 
VP,ISF = 6.74 Fractional Clearances B

PII  = 5.304 mU/l 
  FKIC = 0.30 Other 

Metabolic Clearance Rate FLIC = 0.40 HCT = 0.40 
rMΓC = 9.10 ml/min FPIC = 0.15 WCP = 0.84 

 

The model output is the plasma glucose concentration G. In the glucose metabolism 

model, whole blood water glucose concentration is the basis for the vascular glucose 

distribution. Therefore, the state variable GH must be multiplied by 92.5% to convert it to 

the concentration of glucose in the plasma (equation 3.70). 

 H925.0 GG =  3.70 

The sensitivity analysis was restricted to steady-state conditions. The change in G was 

used to assess the model’s sensitivity to a change in a single parameter under a variety of 

input combinations.  

3.3.2.1. Steady-State Single Parameter Sensitivity Analysis 
In the steady-state sensitivity analysis, the effect of changing a single parameter on the 

steady-state value of G (denoted by Gss) was assessed. The value of each parameter was 
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increased by 10% and decreased by 10% from its original value (see Table 3.4) such that 

any set of parameter values differs from the original set by only one parameter value. For 

each parameter set, Gss was calculated under various insulinemic and glycemic conditions 

achieved by choosing the constant rates for RI and RG in equations 3.71 and 3.72. All 

possible combinations of RI and RG were used. 

 RI(i) = (i-1) mU/min for i = 1…201 3.71 
 RG(j) = 5×(j-1) mg/min for j = 1…401 3.72 

Given N1 and N2 unique values for RI and RG, an N1×N2×2P matrix of Gss values was 

constructed for P parameter values, Gss(i,j,k) where i = 1…N1, j = 1…N2 and k = 1…2P. 

For each sample point (i,j,k), only one parameter value was changed. Odd values of k 

indicate that the changed parameter was decreased by 10% and even values of k indicate 

that the changed parameter was increased by 10%. N1×N2 sample points (and Gss values) 

are associated with each parameter set. Gss(i,j,0) denotes the Gss values using the original 

parameter set. 

The percent change in Gss (denoted by ∆Gss) is defined in equation 3.73. The difference 

between Gss(i,j,k) and Gss(i,j,0) was scaled by the reciprocal of Gss(i,j,0) in order to 

balance the influence of large differences when Gss itself was large. 

 [ ] )0,,(G)0,,(G),,(G),,(G ssssssss jijikjikji −=∆  3.73 

The L1 and L∞ norms of ∆Gss for each parameter set are defined in equations 3.74 and 

3.75. If the input values, RI(i) and RG(j), produced Gss less than 0 mg/dl for any k, ∆Gss 

was excluded from the calculation of the norms for all k. 
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 ∑ ∆
×

=∆=
ji

kjik
,

ss
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Each norm reduced the N1×N2 values of ∆Gss to one summary statistic for each parameter 

set which was used to determine the effect of changing a single parameter value on Gss. 

In total, 79 parameter sets were studied (the original set and 78 sets with one parameter 

that was different from its original value). 80,601 Gss values were calculated for each 

parameter set. Figure 3.2 plots the contour lines of Gss(i,j,0) for the constant rates of RI 

and RG. The 0 mg/dl contour line demarcates a region of sample points (loosely 

described by RI > 38 mU/min and RG < 75 mg/min) that was excluded from L1 and L∞ 

norm calculations since Gss was negative in that region.  

The L1 and L∞ norms for each parameter set are given in Table 3.5. Two parameter sets 

are associated with a change in one parameter value. The k (where k is odd) and k+1 

parameter sets correspond to a 10% decrease and a 10% increase in the associated 

parameter, respectively. Nine parameters (rMΓC, VB,B, VG,B, VP,B, VB,ISF, VG,ISF, TB, T1, 

TΓ) did not produce any change in Gss. These parameters did not appear in the model 

equations when they were solved for steady-state conditions. Seven other parameters (QB, 

VH,B, VK,B, VL,B, VK,ISF, VL,ISF, VL,ICF) produced difference less then 0.0001 mg/dl 

between Gss(i,j,k) and Gss(i,j,0) for all i and j. The parameter sets that produced the five 

largest L1 norms were k = 18, 17, 21, 77, 22 (corresponding to parameters B
HGPr , B

HGPr , 

rBGU, FPIC, rBGU). The parameter sets that produced the five largest L∞ norms were k = 73, 

14, 4, 74, 21 (corresponding to parameters FLIC, B
LI , HCT, FLIC , rBGU).  
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Figure 3.2: Contour map of simulated steady-state plasma glucose concentrations (in mg/dl) for 
constant intravenous infusions of glucose and insulin. 

The combination of the top five parameters as ranked by the L1 and L∞ norms yields six 

unique parameters in which a 10% change in that parameter had a largest effect on 

steady-state glycemia. Of this set of 6 parameters, half are directly related to the liver. 

Clinical experimentation has firmly established its prominent role in glycemic regulation. 

The steady-state sensitivity analysis highlights its importance within the model in terms 

of hepatic glucose production ( B
HGPr ), insulin-mediated effects on net hepatic glucose 
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balance (as expressed through the affect of B
LI  on hepatic glucose production and 

utilization) and hepatic insulin clearance (FLIC). 

The rate of glucose uptake by the brain (rBGU) is the only parameter to appear in the five 

most sensitive parameters as measured by both the L1 and L∞ norms. At basal conditions, 

the rate at which the brain utilizes glucose is twice as much as any other tissue 

compartment. The central nervous system represents the only collection of tissues that are 

completely reliant on glucose as the sole source of fuel for metabolism. An accurate 

determination of rBGU is vital to ensure the model’s realism. 

This analysis also illustrated the model’s sensitivity to changes in the fractional rate of 

insulin clearance by peripheral muscle and adipose tissues (FPIC). Peripheral tissue is the 

most insulin-sensitive tissue in the body with the rate of glucose uptake changing by an 

order of magnitude over the range of physiological insulin concentrations. The rate of 

peripheral insulin clearance determines, in part, the insulin concentration in the periphery. 

The model’s description of peripheral glucose uptake is depends on the amount of insulin 

in the peripheral interstitial fluid. As modeled, increasing FPIC will lower the steady-state 

value of IPI which will, in turn, reduce insulin-mediated modifier of peripheral glucose 

uptake, I
PGUM . However, as insulin binds to its receptor on the cell membrane, it sets off 

a cascade of events that increases the concentration of glucose transport proteins 

(specifically, GLUT4) on the cell membrane thereby enhance the cell’s ability to take up 

glucose for the surrounding interstitial space. To be removed from the interstitial space, 

the entire insulin/receptor complex is internalized and degraded with the cell. Unless a 
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post-receptor defect is present, it stands to reason that an increase in FPIC should increase 

peripheral glucose uptake rather than decrease it.  

The steady-state glucose concentration was also sensitive to changes in hematocrit as 

measured by the L∞ norm. Hematocrit (HCT) is the volume of red cells in the body 

divided by the total blood volume. Normal HCT values range from 40 to 53 percent and 

36 to 48 percent in adult males and females, respectively [188]. An increase in HCT 

means a greater fraction of the blood volume is occupied by red blood cells and less 

space is available for insulin. With all other parameters fixed, an increase in HCT will 

cause an increase in plasma insulin concentrations for a given exogenous insulin infusion 

rate. Greater insulin concentrations will, in turn, increase insulin-mediated glucose uptake 

and reduce steady-state plasma glucose concentrations. 
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Table 3.5: L1 and L∞ norms for all unique parameter sets (an odd or even value of k corresponds to 
the 10% decrease or the 10% increase in a parameter, respectively) 

parameter k L1 norm L∞ norm k L1 norm L∞ norm 
WCP 1 0.0120 0.0179 2 0.0146 0.0218 
HCT 3 0.0401 0.7116 4 0.0523 1.1982 

B
PIG  5 0.0401 0.0713 6 0.0418 0.0729 
B
LG  7 0.0196 0.0915 8 0.0205 0.0929 
B
HG  9 0.0007 0.0525 10 0.0008 0.0583 

B
HI  11 0.0264 0.1387 12 0.0248 0.1331 
B
LI  13 0.0095 1.2826 14 0.0092 0.9137 
B
PII  15 0.0001 0.0084 16 0.0001 0.0091 
B
HGPr  17 0.1303 0.2345 18 0.2743 0.494 
B
HGUr  19 0.0104 0.0465 20 0.0106 0.0487 

rBGU 21 0.0861 0.9455 22 0.0621 0.7444 
rRBCU 23 0.0105 0.120 24 0.0101 0.1160 
rGGU 25 0.0218 0.2403 26 0.0199 0.2247 
rMΓC 27 0 0 28 0 0 
VB,B 29 0 0 30 0 0 
VH,B 31 <0.0001 <0.0001 32 <0.0001 <0.0001 
VL,B 33 <0.0001 <0.0001 34 <0.0001 <0.0001 
VG,B 35 0 0 36 0 0 
VK,B 37 <0.0001 <0.0001 38 <0.0001 <0.0001 
VP,B 39 0 0 40 0 0 
VB,ISF 41 0 0 42 0 0 
VL,ISF 43 <0.0001 <0.0001 44 <0.0001 <0.0001 
VG,ISF 45 0 0 46 0 0 
VK,ISF 47 <0.0001 <0.0001 48 <0.0001 <0.0001 
VP,ISF 49 0.0374 0.1492 50 0.0585 0.2460 
VL,ICF 51 <0.0001 <0.0001 52 <0.0001 <0.0001 
QB 53 <0.0001 <0.0001 54 <0.0001 <0.0001 
QG 55 0.0149 0.5723 56 0.0145 0.4621 
QK 57 0.0083 0.3137 58 0.0081 0.2776 
QP 59 0.0489 0.5461 60 0.0369 0.3649 
QA 61 0.0037 0.1327 62 0.0037 0.1258 
TB 63 0 0 64 0 0 

G
PT  65 0.012 0.0217 66 0.0122 0.0218 

T1 67 0 0 68 0 0 
I
PT  69 0.0401 0.2077 70 0.0284 0.1525 

TΓ 71 0 0 72 0 0 
FLIC 73 0.0262 1.8745 74 0.0232 0.9955 
FKIC 75 0.0064 0.2325 76 0.0066 0.2216 
FPIC 77 0.0668 0.6540 78 0.0422 0.3978 
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3.3.2.2. Insulin Subsystem Example 
Additional steady-state sensitivity analysis has been performed to illustrate its utility. 

Analysis of the glucose metabolism model’s insulin subsystem identified those 

parameters which have the greatest influence on the steady-state value of the peripheral 

venous insulin concentration (IPV). Estimates of selected parameters are revised based on 

published information. Clinical data is used to demonstrate an improvement in the 

subsystem’s prediction of steady-state plasma insulin levels.  

The insulin subsystem is a 7th order system of ordinary differential equations (excluding 

the equations governing insulin secretion from the pancreas). This analysis assesses the 

sensitivity of IPV to a change in a single parameter value. As with the sensitivity analysis 

of glucose metabolism model, rPIR is set to zero. The sole external input in this example is 

RI as defined in equation 3.68. The insulin subsystem contains 20 of the 39 independent 

parameters in Table 3.4. Of those 20 parameters, only 8 parameters (HCT, QG, QK, QP, 

QA, FLIC, FKIC, FPIC) determine the steady-state value of IPV.  

Under steady-state conditions, RI is constant (denoted by RIss) and IPV (denoted by Iss) is 

a linear function of RIss, 

 

( )( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
++−

=

PICP
KIC

KICK
LICGAPIC

ss
ss

FQ
1F

FQFQQF1HCT-1

RII . 3.76 

The linear relationship between the Iss and RIss eliminates the need to evaluate the 

subsystem over the range of values (as described in equation 3.71). This, in turn, 

eliminates the need to calculate the L1 and L∞ norms. To calculate the sensitivity of Iss to 

a change in a parameter value, a term α is defined as 
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where Iss = αRIss. The change in α for a change in a single parameter value is determined. 

The sensitivity of Iss to a change in a single parameter value corresponds directly to that 

of α since Iss is simply a scale quantity of α where the scaling factor is RIss.  

The percent changes in α for a 10% increase or a 10% decrease in parameter i are defined 

as  

 
0

0

α
ααα −

=∆
+

+ i
i  and 

0

0

α
ααα −

=∆
−

− i
i  3.78 

where α0 is the value of α using the published parameter values in Table 3.4, +
iα  is the 

value for α when the value for parameter i is increased 10% above its published value, 

−
iα  is the value for α when the value for parameter i is decreased 10% below its 

published value and i is an parameter in the set {HCT, QG, QK, QP, QA, FLIC, FKIC, FPIC}.  

Table 3.6 lists the results of the steady-state sensitivity analysis for the insulin subsystem. 

Ranking the parameters based on the magnitude of +∆ iα  or −∆ iα  produces the same order. 

Iss is most sensitive to changes in HCT and FLIC. A 10% increase in the HCT produces a 

7.1% increase Iss while a 10% decrease in HCT results in a 6.3% decrease in Iss. A 10% 

increase in the FLIC produces a 5.0% decrease Iss while a 10% decrease in FLIC results in a 

5.5% increase in Iss.  
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Table 3.6: Percent change in α for 10% increase ( +∆ iα ) and a 10% decrease ( −∆ iα ) in parameter i  

parameter i 
+∆ iα  −∆ iα  

HCT 0.071 -0.063 
QK -0.024 0.025 
QP -0.023 0.024 
QA -0.010 0.011 
QG -0.040 0.044 
FKIC -0.018 0.019 
FLIC -0.050 0.055 
FPIC -0.005 0.006 

 

Next, we demonstrate how these results can be used to refine the insulin subsystem. The 

selected parameters (HCT and FLIC) are revised and the subsystem’s estimates of steady-

state insulin concentrations are compared to clinical data. Here we will use clinical data 

collected in subjects with type 1 diabetes who participated in meal studies at the Artificial 

Pancreas Center (Thomas Jefferson University, Philadelphia, PA). In previously 

published analysis, data were used to compare insulin kinetics models consisting of one, 

two, and three first-order linear differential equations [189]. A first-order linear insulin 

kinetics model was sufficient to describe the clinical data. The model had a fractional 

insulin loss rate of 0.112 ± 0.063 min-1 and a distribution volume of 15.6 ± 4.0 L. 

Briefly, the meal studies consist of seven experiments on five human subjects with type 1 

diabetes (one subject was studied on three separate occasions). The data consists of the 

variable rate of insulin delivery and plasma insulin concentrations every ten minutes over 

the 510-minute experiment as well as subject height, weight, age, sex and average daily 

insulin requirement. During each experiment, each subject consumed an identical 829 

Kcal meal of solid food for breakfast and lunch, followed by exercise on a stationary 
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bicycle. Regular human insulin was infused into a peripheral vein at a basal rate (0.5 U/h) 

for the entire study. Coinciding with the consumption of each meal, insulin was infused at 

a higher rate for 120 min (average dose 8.5 ± 2.1 U). The bolus dose was based upon 

preprandial and 60-min postprandial blood glucose measurements and a sliding scale 

regimen. Blood glucose levels were allowed to fluctuate throughout the protocol (mean 

174 mg/dL, range 55–340 mg/dL). A total of 346 plasma samples were assayed to 

measure the concentration of human insulin. 

A portion of the clinical data collected in the meal study will be used here, namely, paired 

points consisting of the insulin infusion rate and steady-state plasma insulin 

concentration. Steady-state plasma insulin concentrations were determined to be those 

points collected at least 20 minutes after a change in the insulin infusion rate (greater than 

4 half-lives for insulin). In [189], one subject (subject 4) was identified as an outlier and 

data collected form this subject will be excluded from analysis here. 

While HCT can be determined with a simple blood test, the subjects that participated in 

the meal study did not have their HCT measured. Therefore, mean HCT values based on 

sex and ethnicity were used: 45.5 for adult Caucasian males and 40.2 for adult Caucasian 

females [188]. A review of the literature also indicates that the value for FLIC was 

underestimated – the fractional clearance of insulin by the liver was revised to 60% 

[190]. Using the new values for HCT and FLIC, the average value of the residuals was 

-0.57 ± 6.55 mU/l compare to 4.60 ± 7.39 mU/l using the original parameter values 

(Figure 3.3). 
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Figure 3.3: Residual plots for insulin subsystem predicted steady-state plasma insulin concentration 
versus measured plasma insulin concentrations for various intravenous insulin infusion rates. Panel 
A contains the residuals for the subsystem using the original parameter values and panel B contains 
the residuals for the subsystem using update values for HCT and FLIC. In each panel, the red dashed 
line is the mean of the residuals. 

The new parameter values were also validated with data collected from seven published 

insulin studies employing intravenous infusions of insulin. The constant infusion rates 

and steady-state plasma insulin concentrations are given in Table 3.7. Several studies 

(Gottesman 1983, Best 1981, Yki-Jarvinen 1987) used a concurrent somatostatin infusion 

to suppress endogenous insulin release. For the remaining studies, it was assumed that the 

exogenous insulin infusion sufficiently suppressed endogenous insulin release. Plasma 

insulin concentrations were simulated using the original and updated parameter values for 

HCT (0.4 vs. 0.46) and FLIC (0.4 vs. 0.6). All data were log-normalized. The regression 

line (y = 1.07x + 1.82) produced the best fit to the log-transformed data in the least-

squares sense. Compared to the original parameter set, the simulated data from the 

updated parameter set fit the regression line better (Figure 3.4), and reduced the bias 

(calculated as the average difference between the log-transformed plasma insulin and the 
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log-transformed simulated plasma insulin concentrations) by a factor of ten (-0.101 vs. 

-0.011).  

Table 3.7: Experimental data from seven published studies where constant intravenous insulin 
infusions were performed in normal man. 
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6 0.2 18 ± 5 
5 

1 ± 1 
0.5 47± 11 

Best 1981 

4 0.3 26 ± 3 
5 0.9 61 ± 7 
4 4.3 427 ± 54 
4 

8 ± 4 

8.6 1371 ± 138 

Bonadonna 1993 

4 0.9 42 ± 20 
7 1.7 106 ± 16 
6 3.5 183 ± 47 
4 

11 ± 5 

8.7 564 ± 50 

Brooks 1984 

5 0.2 18 ± 2 
4 1.0 84 ± 10 
5 

n/a 
2.0 156 ± 5 

Gottesman 1983 

6 0.5 18 ± 7 
6 0.9 42 ± 10 
6 1.8 86 ± 15 
6 13.8 1350 ± 401 
6 

5 ± 2 

27.5 3017 ± 951 

Laakso 1992 

6 1.6 65 ± 4 
4 

8 ± 4 
4.8 183 ± 18 

Williams 2001 

5 0.8 45 ± 2 
6 2.8 170 ± 31 
5 

7 ± 5 
18.9 1710 ± 561 

Yki-Jarvinen 1987 
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Figure 3.4: Log-transformed insulin infusion rate and plasma insulin concentration data from 
published experiments (gray cicrles), model simulations using the original (blue dot-dashed line) and 
updated (red dashed line), and the linear least-squares regression model of the experimental data 
(green line). 
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CHAPTER 4. REFINING DYNAMIC GLUCOSE UPTAKE 

Glucose utilization in peripheral muscle and the liver change dramatically when glucose 

and insulin concentrations vary (Table 4.1). As such, these tissues are primarily 

responsible for maintaining glycemia under various conditions (e.g., fasting versus 

postprandial). It is important to accurately describe the processes within these two organs 

that alter circulating levels of insulin and glucose in order to have a realistic model of 

glucose metabolism. This chapter is devoted to the review of relevant clinical data to 

improve the model’s description of these processes.  

Table 4.1: Sources of glucose uptake 

Parameter   
Basal Rate 
(mg/min) 

Range† 
(mg/min) Mediators 

rBGU Brain Glucose Uptake 70 - constant 
rPGU Peripheral Glucose Uptake 35 10 - 1600 insulin, glucose 
rHGU Hepatic Glucose Uptake 20 0.2 - 400 insulin, glucose 
rGGU Gut Glucose Uptake 20 - constant 
rRBCU Red Blood Cell Glucose Uptake 10 - constant 
rKGE Kidney Glucose Excretion 0.05 0.02 - 10 glucose 

† minimum and maximum steady-state glucose uptake rates for plasma insulin between 1 and 100 mU/l, 
and plasma glucose concentrations between 40 and 300 mg/dl 
 

4.1. Peripheral Glucose Uptake 
The rate at which glucose is transported into muscle tissue is very sensitive to changes in 

circulating insulin concentrations. The relationship between rate of peripheral glucose 

uptake and plasma insulin concentrations has been the focus of several clinical studies. 

As originally published in the glucose metabolism model, this relationship is described 

using a hyperbolic tangent function, 
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where IPI is the insulin concentration in the interstitial fluid bathing the peripheral tissue, 

B
PII  is the value of IPI under basal conditions and the parameters {A, B, C, D} were 

estimated from forearm glucose uptake studies (see Table 4.2). The rate of peripheral 

glucose uptake, I
PGU

G
PGU

B
PGUPGU r MMr = , is a combination of I

PGUM , G
PGUM  and B

PGUr , the 

insulin-mediated modifier of peripheral glucose uptake, the glucose-mediated modifier of 

peripheral glucose uptake and the basal rate of peripheral glucose uptake, respectively. 

Under euglycemic conditions, 1G
PGU =M  and PGUr  is reduced to I

PGU
B
PGUPGU r Mr = . 

Table 4.2: Hyperbolic tangent equation parameter values for the insulin-mediated modifier of 
peripheral glucose uptake 

A B C D 
7.03 6.52 0.338 5.82 

 

Laakso et al. (1990) have used an alternative formulation of the relationship between the 

concentration of insulin and its effect on peripheral glucose uptake, described by the 

logistics equation: 

 m
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where IPI is the interstitial plasma insulin concentration, Vmin and Vmax are the minimal 

and maximal rates of glucose uptake, K50 is the insulin concentration at which uptake is 

halfway between Vmin and Vmax, and m is a slope factor [191]. Using the hyperbolic 
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tangent relationship in equation 4.1 rewritten to incorporate parameters analogous to that 

in equation 4.2, PGUr  can also be written as: 

 ( ) ( ) ( )( )( )50PIminmaxminmaxPGU KmtanhVVVV
2
1

−−++= Ir  4.3 

where ( )BArV B
PGUmax += , ( )BArV B

PGUmin −= , DIK B
PI50 = , B

PII
Cm = . Whereas the 

parameters {Vmax, Vmin, K50, m} in the hyperbolic tangent equation have the same 

interpretation as the logistics equation, only the values of Vmax, Vmin and K50 can be 

directly compared between equations 4.2 and 4.3. 

Appendicular (forearm and leg) studies have been used to estimate the rate of glucose 

uptake by muscle for a range of insulin concentrations. The majority of insulin-mediated 

peripheral glucose uptake data reported in the literature has been collected under steady-

state conditions. In these studies, exogenous glucose and insulin are infused 

intravenously to maintain euglycemia and achieve a desired level of insulinemia. Glucose 

uptake is computed as a product of the blood flow rate and glucose concentration gradient 

across the tissue (measured as the difference between measured arterial and venous 

glucose concentrations that supply and drain a specific tissue). These data have been 

pooled to evaluate the model’s ability to describe insulin-mediated peripheral glucose 

uptake (Table 4.3). Except for [192], all measured insulin concentrations are from arterial 

(or arterialized) blood. In [193], somatostatin was also infused to produce a state of 

hypoinsulinemia such that plasma insulin levels were not detectable below the 2.2 mU/l 

threshold of the assay.  
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Table 4.3: Data from published appendicular studies 
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arm 10 0 6 ± 3 78 ± 6 0.18 ± 0.06 
arm 7 0.01 33 ± 11 69 ± 10 0.21 ± 0.7 
arm 7 0.02 40 ± 13 79 ± 10 0.32 ± 0.14 
arm 8 0.035 67 ± 23 78 ± 5 0.43 ± 0.20 

Louard 1992† [192] 

arm 7 0.05 124 ± 29 78 ± 5 0.85 ± 0.33 
leg 4 0 8 ± 4 88 ± 4 0.04 ± 0.02 
leg 6 1.61 65 ± 4 96 ± 13 0.87 ± 0.69 Williams 2001 [194] 
leg 4 4.82 183 ± 18 92 ± 4 1.13 ± 0.28 
arm 4 0 < 2.2‡ 88 ± 10 0.10 ± 0.05 
arm 6 0 7.5 ± 3.9 90 ± 3 0.10 ± 0.07 
arm 4 0.35 26.9 ± 2.6 90 ± 10 0.18 ± 0.08 
arm 5 0.86 60.5 ± 7.1 90 ± 10 0.48 ± 0.18 
arm 4 4.32 426.5 ± 53.5 90 ± 10 0.99 ± 0.15 

Bonadonna 1993a 
[193] 

arm 4 8.64 1371 ± 138 90 ± 10 1.10 ± 0.39 
arm 5 0 6 ± 2 92 ± 5 0.08 ± 0.05 Bonadonna 1993b 

[195] arm 5 34.6 68 ± 7 94 ± 13 0.68 ± 0.32 
leg 6 0 5 ± 2 81 ± 4 0.04 ± 0.01 
leg 6 0.46 18 ± 7 76 ± 4 0.11 ± 0.06 
leg 6 0.92 42 ± 10 79 ± 9 0.52 ± 0.22 
leg 6 1.83 86 ± 15 79 ± 9 1.06 ± 0.36 
leg 6 13.76 1350 ± 401 81 ± 9 1.52 ± 0.54 

Laakso 1990 [191] 

leg 6 27.52 3017 ± 951 81 ± 9 1.55 ± 0.50 
arm 6 0 7 ± 5 91 ± 5 0.17 
arm 5 0.84 45 ± 2 90 ± 2 0.40 
arm 6 2.76 170 ± 31 89 ± 2 1.19 

Yki-Jarvinen 1987 
[196] 

arm 5 18.87 1710 ± 561 90 ± 2 1.55 
arm 9 0 15 ± 4 92 0.08 ± 0.05 Fugmann 1998 [197] 
arm 9 2.49 92 ± 12 92 0.58 ± 0.4 
arm 21 0.00 11 ± 5 96 ± 5 0.06 ± 0.09 
arm 4 0.98 42 ± 20 91 ± 6 0.61 ± 0.20 
arm 7 1.97 106 ± 16 92 ± 5 0.76 ± 0.32 
arm 6 3.93 183 ± 47 92 ± 5 1.10 ± 0.27 

Brooks 1984 [198] 

arm 4 9.83 564 ± 50 94 ± 8 1.13 ± 0.36 
† insulin concentrations were measured from deep vein blood 
‡ Somatostatin was infused to produce a state of hypoinsulinemia, insulin concentraion was below 
detectable limit of assay 
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As illustrated in Figure 4.1, a ten-fold increase in the glucose uptake rate can occur 

within physiological insulin concentrations (5-200 mU/l). At any given insulin 

concentration, the rates of peripheral glucose uptake measured in these studies 

demonstrate a large variability. This variability is caused, in part, to the coarse methods 

used to measure glucose uptake (i.e., errors introduced through inaccuracies in blood 

flow and glucose gradient measurements). However, this variability can also be partially 

attributed to the random effect of each subject – highlighting the existence of a 

continuum of curves that describes the relationship between insulin concentrations and 

peripheral glucose uptake for the whole population. 
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Figure 4.1: Pooled data from appendicular glucose uptake studies. Open and solid circles indicate leg 
and forearm glucose uptake studies, respectively. For each data point, horizontal and vertical error 
bars represent the standard deviations in measured plasma insulin concentrations and calculated 
rates of glucose uptake, respectively, among the subjects in the study.  

Glucose uptake data are reported in units of mg min-1 100ml tissue-1, mg min--1 arm-1, or 

mg min-1 leg-1. The assumptions listed in Table 4.4 made it possible to compare clinical 
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data to the model estimate of peripheral glucose uptake (tissue densities in assumption 1 

were found at http://physics.nist.gov/cgi-bin/Star/compos.pl, assumptions 2-4 were taken 

directly from [187] and assumption 5 was derived from [199]). 

Table 4.4: Assumptions used to translate appendicular glucose uptake data (in mg min-1 100ml 
tissue-1) to total peripheral tissue glucose uptake (mg/min).  

1. Muscle and adipose tissue densities are 1.04 g/ml and 0.92 g/ml  
2. Total muscle and adipose masses in a 70 kg man are 30 kg and 10 kg, respectively 
3. Muscle and adipose tissue account for 89 and 11 percent of basal glucose uptake, 

respectively 
4. Muscle and adipose tissue constitute 64 and 8 percent of total forearm volume in 

nonobese subjects 
5. Muscle and adipose tissue constitute 58 and 40 percent of total leg volume in 

nonobese subjects 
 

Published appendicular glucose uptake data was pooled to estimate the parameters in the 

two proposed functional relationships (equations 4.2 and 4.3). The assumptions in Table 

4.4 were used to standardize the rate of peripheral glucose uptake in units of mg/min. In 

addition, plasma insulin concentrations (IH) were converted to peripheral interstitial 

insulin concentrations (IPI) using  
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which was derived from the model’s insulin subsystem equations under steady-state 

conditions.  

Parameter estimates were computed using a nonlinear least-squares fitting routine in the 

curve fitting toolbox (version 1.1) of Matlab (version 6.5). Parameters were constrained 
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to positive values and each data point was weighted by the reciprocal of the variance of 

the measured peripheral glucose uptake rate2.  

The parameter estimates for each equation is given in Table 4.5 along with the 

(transformed) parameter values for the hyperbolic tangent equation originally reported in 

[187]. Goodness-of-fit (R2) was 0.949 and 0.935 for the logistics and hyperbolic tangent 

equations, respectively. Estimates for Vmax and K50 were similar for both equations. 

Evaluating PGUr  at IPI=0 (rather than comparing Vmin estimates) provides similar 

estimates between the two equation (28 and 34 mg/min for the logistics and hyperbolic 

tangent equations, respectively).  

Both equations adequately describe the relationship between peripheral interstitial insulin 

concentration and peripheral glucose uptake. For both functional relationships, Vmax and 

K50 are greater than the original parameter values (Table 4.5). The original model would 

have underestimated peripheral glucose uptake at supra-physiological insulin 

concentrations. However, all three relationships are similar at basal insulin concentrations 

(Figure 4.2). 

Table 4.5: Parameter estimates with 95% confidence limits in parentheses for the hyperbolic tangent 
and logistics equations and the (transformed) original parameter values for the hyperbolic tangent 
relationship between peripheral interstitial insulin concentration and peripheral glucose uptake. 

Equation Vmin  Vmax  K50  m 
Logistics 28 (5, 50) 647 (571, 723) 46 (36, 56) 1.94 (1.23, 2.64) 
Hyperbolic Tangent 0† 598 (539, 656) 43 (36, 49) 0.033 (0.025, 0.041) 
Original Hyperbolic Tangent 18 474 31 0.064 

† confidence limits not reported by Matlab curve fitting function 
 
                                                 
2 Yki-Jarvinen et al. (1987) did not report the variance in their computed uptake rates and these points were 
weighted arbitrarily based on the weights of data points from other studies with similar uptake rates. 



 
72

 

0

100

200

300

400

500

600

700

800

1 10 100 1000

Peripherial Interstitial Insulin Concentration (mU/l)

Pe
ri

ph
er

al
 G

lu
co

se
 U

pt
ak

e 
(m

g/
m

in
)

 

Figure 4.2: Various response curves describing the relationship between peripheral interstitial 
insulin concentrations and peripheral glucose uptake (pooled data – filled black circles, original 
hyperbolic tangent relationship - solid black line, the hyperbolic tangent relationship with updated 
parameter values - dashed red line and the logistics relationship - dot-dash blue line). 

Data describing peripheral glucose uptake under the stress of trauma and surgery are 

limited. In a study of nine healthy male subjects, an intravenous infusion of 

hydrocortisone, glucagon and epinephrine was given over four days to mimic the stress 

response [4]. With subjects acting as their own controls, steady-state levels for cortisol, 

glucagon and epinephrine were 40 ± 4 µg/dl, 507 ± 65 pg/ml and 417 ± 52 pg/ml during 

the hormone infusion and 12 ± 1 µg/dl, 79 ± 14 pg/ml and 22 ± 5 pg/ml during the saline 

infusion. These levels are comparable to those reported in studies of the in-hospital 

patient population as reviewed herewith in. At the end of the study period, a 
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hyperinsulinemic, euglycemic clamp was performed to evaluate forearm glucose uptake. 

The mean forearm glucose uptake was reduced by 50% in the simulated state of stress 

(0.48 ± 0.36 versus 1.03 ± 0.27 mg/100 ml tissue/min). In forearm glucose uptake 

measurements performed on trauma patients, no basal glucose uptake was observed in 

four patients that were studied in the immediate postoperative period [198]. When 

measured under hyperinsulinemic glucose clamp conditions, the forearm glucose uptake 

in these post-traumatic patients varied greatly although the mean uptake value was 

reduced more than 50% relative to healthy controls. Under similar conditions, Little et al. 

(1987) demonstrated a 40% reduction in insulin-mediated forearm glucose uptake in 

trauma patients 5-10 days postoperative [200]. These data demonstrate the response of 

insulin-mediated peripheral glucose uptake to stress is significantly attenuated after 

severe injury (i.e., Vmax acutely decrease around the stressful event). However, no data 

exists to describe the relationship between the surgical severity and the degree of 

peripheral glucose uptake attenuation. 

Laakso et al. (1992) performed euglycemic insulin-mediated leg glucose uptakes studies 

in six healthy lean non-diabetic subjects with and without an epinephrine infusion [201]. 

With the subjects acting as their own controls, the epinephrine-infusion experiments 

achieve an average arterial epinephrine concentration of 390 pg/ml (compared to an 

average basal concentration of 38 pg/ml). Leg glucose uptake was determined at several 

insulin levels and the data was fitted to a logistic equation. While Vmax decreased and K50 

increased during the epinephrine-infusion group, the changes did not reach statistical 

significance. However, there were profound (statistically significant) changes in the 

underlying mechanisms that contribute to glucose uptake: glucose extraction decreased 
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while blood flow increased in the epinephrine-infusion group. It can be postulated that a 

decrease in peripheral blood flow during the perioperative period coupled with decrease 

in glucose extraction will lead to an overall decrease in peripheral glucose uptake. 

4.2. Net Hepatic Glucose Balance 
The liver acts as both a sink and source for glucose, typically removing glucose from 

circulation in the hours following a meal and adding it to circulation otherwise. The flux 

of glucose in and out of hepatocytes is regulated by the abundance of glucose and other 

substrates in circulation, various hormones secreted by the pancreas and other organs, and 

direct neural simulation. The liver has the capability to store glucose as glycogen, a 

highly branched polymer that may contain upwards of 60,000 glucose molecules. A 

healthy adult liver contains 90 grams of glucose (stored as glycogen) in the hours 

following a meal [202]. The breakdown of glycogen (glycogenolysis) provides a source 

of glucose that can be released rapidly into the bloodstream. Alternatively, the liver can 

also convert specific substrates (i.e., lactate, glucogenic amino acids, and glycerol) into 

glucose in a process referred to as gluconeogenesis. 

The basal hepatic glucose production rate of a healthy adult is 2.2 mg kg-1 min-1 [203] 

which decreases with a prolonged fast [204]. In the postabsorptive state, glycogenolysis 

and gluconeogenesis contribute equally to the endogenous production of glucose [205]. 

However, as glycogen are depleted during fasting, the role of gluconeogenesis increases 

so that, after 42 hours of fasting, over 90% of endogenous glucose production is from 

gluconeogenesis [206]. 

The fate of intracellular glucose is controlled by a myriad of factors that directly or 

indirectly modulate the processes of glucose storage and production in the liver. Glucose, 
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insulin, glucagon, epinephrine and cortisol directly affect enzyme function and/or 

expression within hepatocytes. The distinction between these two forms of regulation is 

temporal. Controlling the activity of an enzyme (i.e., enhancing or inhibiting its function) 

has an immediate effect, whereas controlling the expression (transcription and 

translation) of these enzymes has a delayed effect, on the rate of the reaction. Glucose per 

se decreases the output of glucose by the liver by reducing the activity of glycogen 

phosphorylase which is responsible for glycogen breakdown [207]. When hepatic 

glycogen concentrations are reduced (as with a prolonged fast), a reduction in 

gluconeogenesis can be observed during hyperglycemia [208].  

Insulin decreases the release of hepatic glucose by increasing the activities of key 

enzymes involved glycogen production, glycogen synthase and glucokinase [207, 209]. 

Insulin will also suppress the genetic expression of key gluconeogenic enzymes, 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase [210]. The 

effect of insulin on glycogenolysis is more profound than on gluconeogenesis[211]. The 

counterregulatory hormones (glucagon and epinephrine) oppose insulin’s actions. 

Glucagon acts solely on the liver. It increases the activity of glycogen phosphorylase, 

increasing the rate of glycogenolysis, [212]. It also increases the activity and transcription 

of PEPCK, which increases the rate of gluconeogenesis, and downregulates the activity 

and transcription of pyruvate kinase, which decreases the metabolism of glucose within 

the cell, making more glucose available for release from the liver [212]. Like glucagon, 

epinephrine also increases glycogenolysis by increasing glycogen phosphorylase activity. 

In fact, adrenergic and glucagon receptors are coupled to the same type of G-protein that 

initiates the cascade of events that ultimately lead to the activation of glycogen 
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phosphorylase. Unlike glucagon, epinephrine indirectly increases the rate of 

gluconeogenesis by increasing the supply of glucogenic precursors in the bloodstream 

[108]. Cortisol directly and indirectly increases the rate of gluconeogenesis by promoting 

the expression of enzymes involved in the process and increasing the supply of 

gluconeogenic amino acids [213, 214]. Acute cortisol simulation does not cause 

significant alterations in hepatic glucose release because (1) its regulation relies on 

increasing enzyme expression and (2) new glucose is shuttled directly into glycogen in 

the short term. In contrast, prolonged cortisol simulation results in an increased hepatic 

glucose output and glycogen stores despite increased phosphorylase activity, probably as 

a consequence of a greater stimulation of synthetase activity coupled with a marked 

augmentation of gluconeogenesis [123]. 

The release of glucose from hepatocytes into the bloodstream is offset by their uptake. 

The transport of glucose across the plasma membrane of the hepatocyte is facilitated by 

glucose transporters (GLUT-2) which do not increase their membrane-bound numbers in 

a insulin-dependent manner unlike GLUT-4 which is found in insulin-sensitive muscle 

and adipose tissue[215]. Inside the hepatocyte, glucose is phosphorylated predominantly 

by glucokinase to produce glucose 6-phosphate which is not release back into circulation. 

Insulin modulates glucose uptake by increasing glucokinase expression [216] thereby 

exerting an influence on the ability to retain glucose with the cell once it is taken out of 

circulation.  

Quantification of the hepatic glucose uptake in man is hindered by the limited access to 

the portal vein which supplies the liver with blood draining from the gut which comprises 

the gastrointestinal tract, pancreas and spleen (Figure 4.3). Without access to the portal 
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vein, it is virtually impossible to measure gut glucose uptake, the pancreatic insulin 

release and the appearance of glucose from the intestines. As such, much of the insight 

into the control of hepatic glucose metabolism has been gain through animal 

experimentation. In man, direct measurements of hepatic glucose uptake are typically 

reported for the region as a whole. Referred to as splanchnic glucose uptake, it is the sum 

of glucose uptake from the gut and the liver.  
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Figure 4.3: Arterial (red) and venous (blue) blood supplying the liver where QG and QL represent the 
blood flow from the gut and liver, respectively, and QA represents the blood flow through the hepatic 
artery such that the sum of QA and QG equals QL.  

Sacca et al. (1982) studied splanchnic glucose balance in experiments with normal male 

subjects. Using a combination of hepatic vein catheterization, labeled and unlabeled 

glucose infusions and hormone infusions, the rates of hepatic glucose production, 

splanchnic glucose uptake and peripheral (all non-splanchnic) glucose uptake were 

measured [9]. The model was employed to simulate the data from a set of experiments 

which consisted of a 90-minute glucose infusion at a rate of 6.5 mg/kg min-1 into a 

peripheral vein (control experiments). The simulated data are superimposed on the mean 

(± SE) data collected in five subjects (Figure 4.4). The glucose infusion was started at 
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time 0. The model accurately depicts the time course of hepatic glucose output (i.e., 

hepatic glucose production) and it slightly underestimates of peripheral (all non-

splanchnic) glucose uptake. However, there is considerable difference in the estimation 

of splanchnic glucose uptake such that the steady-state values (between 60-90 minutes) 

were twofold greater.  

 

 
Figure 4.4: Model simulation (red dashed line) of a 6.5 mg kg-1 min-1 intravenous glucose infusion in 
normal man superimposed on plot of experimental data originally published in [9] 
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As modeled, the rate of hepatic glucose uptake (rHGU) is controlled by insulin and 

glucose. The model describes their control of rHGU through the variables G
HGUM  and 

I
HGUM  in the equation  

 I
HGU

G
HGU

B
HGUHGU r MMr =  

where B
HGUr  is the basal rate of hepatic glucose uptake. The value of G

HGUM  is based on 

the instantaneous hepatic glucose concentration, GL, described in the equation 
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where B
LG  is the basal hepatic glucose concentration. The value of I

HGUM  is based on the 

hepatic insulin concentration, IL, subjected to a delay, τI, described in the differential 

equation 
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where B
LI  is the basal hepatic insulin concentration. As discussed previously in this 

section, insulin’s regulation of glucokinase expression introduces the lag in its effect of 

glucose uptake.  

To define the relationship between glucose and its uptake by the liver, Sorensen (1985) 

combined data from experiments that derived rHGU from (i) clamp studies where insulin 

and glucose levels were fixed by the intravenous infusion of glucose and either insulin or 

somatostatin and (ii) oral glucose tolerance tests where a fixed dose of labeled glucose 
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was ingested and plasma glucose and insulin levels were allowed to vary (Figure 4.5). 

The route of glucose administration does not alter the rate at which the liver takes up 

glucose [217, 218] but portal insulin and glucose concentrations are not measured 

directly because this compartment is not readily accessible. In a glucose/insulin clamp 

study, portal concentrations of glucose and insulin can be assumed to be equivalent to 

arterial concentrations. There is no glucose appearance from the gut and pancreatic 

insulin release is suppressed through the infusion of exogenous somatostatin or insulin. In 

oral glucose tolerance tests, glucose absorption from the gut and pancreatic insulin 

release occur which will elevate the concentrations of glucose and insulin in portal 

circulation. These quantities must be measured in order to estimate portal glucose and 

insulin concentrations. As seen in Figure 4.5, hepatic glucose uptake estimates from oral 

glucose tolerance tests are distinctly higher than clamp study estimates.  

 

 
Figure 4.5: Data from Sorensen (1985) used to compute G

HGUM . Data from glucose/insulin clamp 
studies (solid symbols) are circled in blue and data from oral glucose tolerance tests (open symbols) 
are circled in red.  
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The use of glucose/insulin clamp data is preferred to derive the relationship between 

portal glucose concentrations and hepatic glucose uptake. Hepatic glucose uptake in 

humans must be derived using measurements of splanchnic glucose uptake since blood 

supplying the liver is not accessible. Splanchnic glucose uptake (rSGU) is the sum of 

hepatic and gut glucose uptake,  

 GGUHGUSGU r+= rr . 

Since the model assumes a constant rate of gut glucose uptake (rGGU), a direct comparison 

between reported measures and model estimates of rSGU are possible. Data from two 

published studies are given in Table 4.6. 

After insulin concentrations are normalized by basal insulin concentrations, these data are 

compared to model estimates of rSGU at steady-state (Panel A of Figure 4.6). As with the 

experimental data from Sacca et al. (1982), these data also illustrate an overestimation of 

the influence of glucose to promote hepatic glucose uptake. There is insufficient data to 

derive the parameters {A, B, C} of the functional relationship in the form 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= C

G
BtanhAA B

L

LG
HGU

GM . 

Therefore, A was adjusted to fit the experimental data. Then, C was adjusted so 

1B
LL G

G
HGU =

=G
M . As illustrated in panel B of Figure 4.6, the new parameterization 

(A=1.89, B=2.44 and C=1.27) improves the model’s fit to the experimental data. In 

addition, the new parameter values for G
HGUM  also rectify the overestimation of hepatic 

glucose uptake in the control experiments (Figure 4.7). 
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Table 4.6: Estimates of splanchnic glucose uptake from glucose/insulin clamp experiments 
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37a  13 ± 12 95 ± 6  
4 0.25  37 ± 4 95 ± 8 0.38 ± 0.2 
3 0.5 53 ± 4 93 ± 5 0.37 ± 0.12 
6 1 101 ± 12 94 ± 7 0.46 ± 0.22 
3 5 428 ± 64 94 ± 5 
2 10 1189 ± 20 94 ± 5 } 0.68 ± 0.29 

3b 0 10 ± 2 224 ± 2 0.63 ± 0.26 

DeFronzo et 
al. (1983) 
[219] 

3b 0.30 40 ± 10 222 ± 4 1.02 ± 0.17 
14a  6 ± 3 99 ± 7  
14 0.50  23 ± 5 168 ± 7 1.5 ± 0.9 
14 1 47 ± 11 168 ± 7 168 ± 7 

Basu et al. 
(2004) [220] 

14 2 102 ± 25 2.0 ± 0.5 2.7 ± 0.8 
a basal glucose and insulin concentrations 
b insulin suppression via somatostatin infusion 
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Figure 4.6: Steady-state rates of splanchnic glucose uptake at euglycemia (light blue) and 
hyperglycemia (dark blue) as a function of normalized insulin concentrations. The lines represent 
model estimates of uptake and points represent actual measurements. Panel A: model estimates 
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Figure 4.7: Model simulation (red dashed line) of a 6.5 mg kg-1 min-1 intravenous glucose infusion in 
normal man superimposed on plot of experimental data originally reported in [9] after adjustment of 
the function parameters of glucose-mediated hepatic glucose uptake (gray line represents the 
simulation data with original parameter values). 

Increased circulating levels of glucagon, epinephrine and cortisol during stress 

profoundly alter glucose processing within the liver. The synergistic interactions of these 

hormones are responsible, at least in part, to an increase in endogenous glucose 

production that leads to stress-induced hyperglycemia. The infusion of either glucagon or 

epinephrine [8] causes a rapid but transient increase in endogenous glucose production 

while the infusion of cortisol [3] had no demonstrative effect on endogenous glucose 
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production. However, when combined, the infusion of these hormones produces a rapid 

and sustained increase in glucose production. Endogenous glucose production was 50 

percent above basal levels despite concurrent hyperinsulinemia and hyperglycemia after 5 

hours of a combined glucagon, epinephrine, and cortisol infusion [3]. Under similar 

conditions, Bessey et al. (1984) demonstrated that endogenous glucose production in 

subjects receiving the triple-hormone infusion remained elevated compared to controls 

after 72 hours (Table 4.7). 

Table 4.7: The increase in endogenous glucose production (EGP) and circulating levels of glucagon, 
epinephrine, and cortisol after 5h [3] and 72h [4] of hormone infusion in healthy subjects 

  Shamoon et al. (1981) Bessey et al. (1984) 
Number of Subjects 10 9 
 
Hormone Infusion Rates     

Glucagon (ng kg-1 min-1) 3.0 3.0 
Epinephrine (ng kg-1 min-1) 33a 30 

Cortisol (ug kg-1 min-1) 2.3b 2.3 
 
Basal Hormone Concentrations 

Glucagon (pg/ml) 90 ± 57 79 ± 42 
Epinephrine (pg/ml) 28 ± 9 22 ± 15 
Cortisol (ug/dl) 12 ± 3 12 ± 3 

 
Hormone Concentrations During Triple-Hormone Infusion 

Glucagon (pg/ml) 313 ± 126 464 ± 165 
Epinephrine (pg/ml) 377 ± 243 432 ± 339 
Cortisol (ug/dl) 38 ± 9 38 ± 15 

 
Endogenous Glucose Production (mg kg-1 min-1) 

Basal 1.8 ± 0.1 2.08 ± 0.05c 
Triple-Hormone Infusion 2.9 ± 0.3d 2.55 ± 0.05e 
Percent Increase from Basal  61% 23% 

a infusion rate converted from 1.2 ug/m2 min-1 assuming 1.9 m2 body surface area and 70 kg body weight 
b infusion rate converted from 5 mg/m2 hr-1 assuming 1.9 m2 body surface area and 70 kg body weight 
c EGP determined in three control subjects after 72h saline infusion 
e EGP determined in three subjects after 72h of triple-hormone infusion 
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The relationship between stress hormones and endogenous glucose production has been 

documented in hospitalized patients. Dahn et al (1995) compared net hepatic output in 

healthy volunteers and hospitalized patients [221]. Patients were separated into two 

groups based on evidence of sepsis. They were studied in the postoperative intensive care 

unit 4-11 days after admission to the hospital. Volunteers were studied after an 18h fast. 

Glucagon levels in both patient groups were five-fold greater than those of the volunteers 

(507 ± 464 and 513 ± 423 vs. 93 ± 30 pg/ml) while plasma insulin and arterial glucose 

concentrations were similar in all subjects. Cortisol levels in the septic patients were also 

significantly elevated compared to non-septic patients and controls (34 ± 31 vs. 20 ± 7 

and 15 ± 6 ug/dl). The net hepatic glucose output was significantly higher in septic 

patients (3.0 ± 1.0 mg/kg min-1) when compared to volunteers (1.7 ± 0.5 mg/kg min-1) 

and non-septic patients (1.9 ± 0.6 mg/kg min-1). The concentrations of glucagon and 

cortisol hospitalized patients are comparable to those reported in the triple-hormone 

infusion studies discussed above. Associated with significant increases in cortisol levels 

and endogenous glucose production, septic patients are at greater risk for hyperglycemia. 

Wilmore et al. (1980) also confirmed an association between sepsis and increased 

endogenous glucose production [222]. Nineteen burn patients (mean burn size: 51% total 

body surface, range 41-83.5%) were studied approximately 10 days post-injury. Patients 

were grouped as non-septic, septic and septic with complications. Catheterizations of the 

right hepatic vein were performed to study the metabolic response of the liver to injury. 

At the time of study, cardiac output for all patients was near maximal, doubling hepatic 

blood flow. Hepatic glucose production in the non-septic patients was elevated (2.9 ± 0.4 

mg/kg min-1). It was significantly greater in uncomplicated septic patients (4.1 ± 0.7 
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mg/kg min-1) compared to non-septic patients while septic patients experiencing 

complications (e.g., renal insufficiency) had normal hepatic glucose production (1.6 ± 0.5 

mg/dl). Complicated sepsis was associated with an absolute mortality rate. Whether this 

return to baseline hepatic glucose production is a result of a decrease in the levels of 

stress hormones or a product of end-organ failure was not investigated. 
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CHAPTER 5. MODELING STRESS-INDUCED HYPERGLYCEMIA 

The stress response is characterized by increased levels of circulating epinephrine, 

cortisol, growth hormone, and glucagon which lead to increased insulin resistance and 

increased endogenous glucose production. The imbalance in glucose flux created by 

increases in insulin resistance and endogenous glucose production often leads to 

hyperglycemia. 

Simultaneous exogenous infusions of epinephrine, cortisol and glucagon have been 

shown to mimic the metabolic response to injury [4]. The concerted elevations in 

circulating levels of glucagon, epinephrine and cortisol during stress have profound 

effects on the processes that regulate glycemia. Collectively, these hormones suppress 

insulin release, decrease glucose disposal and increase glucose production. This chapter 

describes the kinetics and dynamics of epinephrine in the compartmental framework of 

the glucose metabolism model. 

The terms endogenous glucose production and hepatic glucose production are use 

interchangeably in this chapter. 

5.1. Epinephrine Kinetics 
Epinephrine is synthesized from norepinephrine in the cytosol of adrenergic neurons and 

cells of the adrenal medulla. The majority, if not all, of circulating epinephrine originates 

from the cells found in the adrenal glands. However, under the extreme stress of cardiac 

arrest, significant epinephrine release from the heart, lungs, gut and liver has been 

demonstrated [223, 224].  
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Epinephrine release is controlled by the sympathetic nervous system acting via 

splanchnic nerves to the adrenal medulla. Acetylcholine released by preganglionic 

sympathetic fibers of these nerves acts on nicotinic acetylcholine receptors, causing cell 

depolarization and an influx of calcium through voltage-gated calcium channels. Calcium 

triggers the exocytosis of chromaffin granules and thus the release of epinephrine (and 

norepinephrine) into the bloodstream. The average release of epinephrine in man at rest 

has been measured in several studies (Table 5.1). The majority of these studies have 

employed radiolabeled epinephrine infused intravenously at very low rates in order to 

avoid the pharmacodynamic effects of elevated epinephrine levels [36, 223, 224]. In an 

extensive study of regional epinephrine kinetics, Eisenhofer et al. (1995) determined that 

91% of circulating epinephrine originates from the adrenal glands while the gut, liver and 

kidneys had modest contributions of 3.1, 2.9 and 2.1 percent, respectively [224]. 

Table 5.1: Average (± SD) release rate and clearance of epinephrine in man at rest reported in the 
literature (n, number of subjects; ND, not determined). 

n Release Rate (ng/min) Clearance (l/min) Reference 
95a 197 ND [224] 
23 187 ± 115 3.64 ± 0.91 [223] 
8 303 ± 108 3.10 ± 0.75 [36] 
6 516 ± 341 9.41 ± 3.36 [24] b 

a 8 of the 95 subjects were surgical patients 
b kinetics were determined with intravenous infusions of unlabelled epinephrine at 0.01, 0.03, 0.05, 
0.075 and 0.10 ug/kg/ per min 

 

Blood supplying the adrenal glands drains via the suprarenal veins: the right suprarenal 

vein drains into the inferior vena cava and the left suprarenal vein drains into the left 

renal vein or the left inferior phrenic vein which drains into the inferior vena cava. Upon 

entering systemic circulation, epinephrine is rapidly distributed through the extracellular 
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space. The liver, kidneys, and skeletal muscle are the primary sites responsible for 

clearing epinephrine from systemic circulation. The concentration of epinephrine in 

arterial blood is significantly greater than peripheral venous concentrations (Figure 5.1).  
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Figure 5.1: Average (±SD) plasma epinephrine concentrations in arterial, arterialized venous, and 
venous blood as reported in [3, 5, 10-33] (* p < 0.005 versus arterial) 

The extraction of epinephrine is determined by measuring its concentration in the arterial 

blood supplying, and venous blood draining, the tissue. The exogenous administration of 

radiolabeled epinephrine is typically used to differentiate a tissue’s extraction of 

circulating epinephrine from its release. Studies measuring the extraction of plasma 

epinephrine by the tissue compartments (brain, periphery, lungs, kidneys, gut, and liver) 

used in the glucose metabolism are summarized in Table 5.2.  
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Table 5.2: Fractional extraction of epinephrine for specific regions reported in the literature 

Brain Peripherya Lungs Kidneys Gut Liver Reference 
 0.79 0.02 0.62 0.37 0.87 [224] 
   0.45 0.83b [22] 
   0.50 0.88b [225] 
    0.90b [226] 
   0.46   [20] 
 0.70     [10] 
 0.49     [29] 
 0.75     [21] 
 0.44     [23] 
 0.46     [227] 
 0.36     [11] 
 0.39     [13] 
  0    [228] 
  0    [229] 

0c           [230, 231] 
0.00 0.55 0.00 0.51 0.37 0.87  

a periphery extraction extrapolated from appendicular studies 
b extraction reported for splanchnic region (liver and gut combined) 
c extraction inferred from reported animal studies 
 

Epinephrine does not diffuse across the blood-brain barrier [230, 231]. The majority of 

epinephrine is cleared from the extracellular fluid by extraneuronal cells. These cells take 

up epinephrine and metabolize it via beta-adrenergic receptors [232]. Beta-adrenergic 

receptors have been found on a variety of blood cells (erythrocytes, lymphocytes and 

granulocytes) [233-235]. Epinephrine is stored in platelets with intracellular 

concentrations that are 500-fold higher than those found in erythrocytes or in plasma 

[17]. In dogs, epinephrine concentrations in whole blood were stable several hours after 

the samples were obtained which suggests that epinephrine is not metabolized to a 

significant amount by any constituent of blood [236].  

Epinephrine is inactivated by O-methylation and sulfoconjugation. Catechol-O-methyl 

transferase (COMT) inactivates catecholamines by O-methylation [22]. This 
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extraneuronal enzyme is most abundant in liver and kidney [237]. Phenolsulfotransferase 

(PST) is the enzyme responsible for sulfoconjugation [238]. PST activity has been found 

in liver, kidney, intestine, brain, skeletal muscle, platelets and erythrocytes. In a study of 

eight normal subjects, the average free epinephrine level was 46% lower in venous than 

in arterial blood while average sulfated epinephrine level was 37% higher, suggesting 

that epinephrine sulfoconjugation occurs within the muscle of the forearm [227]. 

5.2. Epinephrine Pharmacodynamics 
Epinephrine exerts control over several mechanisms which determine how glucose is 

handled within the body. Epinephrine displays a transient stimulatory effect on hepatic 

glucose production. It directly antagonizes the actions of insulin. The uptake of glucose 

by splanchnic and peripheral tissues is inhibited by epinephrine. These effects are 

amplified by synergistic interactions with other stress hormones.  

5.2.1. Insulin Release 
Epinephrine attenuates insulin secretion via an alpha-adrenergic mechanism [239-242]. 

Epinephrine (infused at 6 ug/min) abolished the first phase, and attenuated the second 

phase, of insulin secretion in response to a 5g intravenous glucose challenge [243]. 

Glucose clamp studies performed in eight male subjects demonstrated that epinephrine 

inhibits the first phase insulin response to 5g intravenous arginine in a dose-dependent 

manner [5]. When average glucose levels were raised (without exogenously infused 

epinephrine) to 156 mg/dl and 242 mg/dl using an intravenous glucose infusion, the peak 

first phase insulin response increased two- and four-fold, respectively, compared to the 

peak response of 77 ± 37 mU/l during euglycemia. Intravenous infusions of epinephrine 

at 1.05 and 5.60 ug/min progressively decreased the peak first phase insulin response 
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independent of glycemia (Table 5.3). Similarly, Morrow et al (1993) observed a 

progressive decrease in the first phase insulin response to an intravenous tolbutamide 

bolus (125-150 mg/m2) when epinephrine levels were increase via a constant intravenous 

infusion (at rates of 0.5, 1.0 and 2.0 ug/min) that was independent of age [244]. Clutter et 

al (1980) observed that plasma insulin levels doubled and quadrupled 15 minutes after 

the cessation of 2.5 and 5.0 ug/min epinephrine infusions, respectively, in response to 

plasma glucose levels 40 and 70 mg/dl above basal [103]. Combining the results from [5, 

103, 243], the suppression of insulin release displays a dose-dependent response to 

epinephrine (Figure 5.2). 
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Figure 5.2: Percent decrease in first phase (red circles) and second phase (blue squares) insulin 
release as a function of arterial epinephrine concentration. The solid line represent the best fit of all 
data points to the equation ∆IR = Vmax (x-1)/(Km + x-1) where Vmax and Km are constants and x is the 
arterial epinephrine concentration divided by the basal arterial epinephrine concentration. 
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Table 5.3: Peak first-phase insulin response to a 5g intravenous arginine bolus at different plasma 
glucose (100, 150 and 250 mg/dl) and epinephrine concentrations [5]. 

Peak Insulin Response (mU/ml) Epinephrine 
Infusion (ug/min) 

Venous Epinephrine 
(pg/ml) 100 mg/dl 150 mg/dl 250 mg/dl 

0.00 47 ± 20 77 ± 37 232 ± 99 388 ± 122 
1.05 192 ± 54 49 ± 17 138 ± 48 319 ± 96 
5.60 1140 ± 342 - 59 ± 31 170 ± 74 

 

The fractional decrease in insulin release (∆IR) as a function of arterial epinephrine 

concentrations was fit to the Michaelis-Menten equation  

 
( )
( )1K

1VIR
m

max

−+
−

=∆
x

x
 5.1 

where x is the arterial epinephrine concentration divided by the basal arterial epinephrine 

concentration and Vmax and Km are coefficients. The best fit (in a least-squares sense) 

between equation 5.1 and the published data from [5, 103, 243] was achieved with 

coefficient values -0.99 and 5.71 for Vmax and Km, respectively (R2 = 0.9029). A 

logarithmic relationship (i.e., ∆IR = A + B log10(x) where A and B are coefficients) 

originally proposed in [5] produces a similar fit (R2 = 0.9084). However, equation 5.1 is 

preferred because its behavior is bounded at physiologically low epinephrine 

concentrations (for which no data exists) whereas the logarithm relationship increases to 

infinity when arterial epinephrine concentrations approach zero.  

Conclusive evidence demonstrating a lag between a change in epinephrine concentration 

and its subsequent effect on pancreatic insulin release is not available. The two published 

studies that measured the effect of epinephrine on the first (acute) phase of insulin release 

[5, 243] began intravenous epinephrine infusions 45 to 60 minutes before administering 



 
94

the insulin stimulus (either glucose or arginine). Clutter et al (1980) observed an increase 

in plasma insulin levels 15 minutes after the cessation of intravenous epinephrine [103]. 

If any lag exists between the pharmacological action of epinephrine upon insulin release, 

it is on the order of seconds to minutes. For modeling purposes, it will be assumed that no 

lag exists. 

5.2.2. Endogenous Glucose Production 
The ability of epinephrine to increase endogenous glucose production has been 

demonstrated. Epinephrine binds to beta adrenergic receptors in the liver to stimulate 

endogenous glucose production [15]. Direct stimulation increases the hepatic glucose 

output primarily through an increase in glycogenolysis [108]. In addition, epinephrine 

indirectly increases endogenous glucose production by increasing the abundance of 

gluconeogenic substrates (e.g., alanine, lactate, and glycerol) [108, 109, 245].  

Attempts to relate changes in endogenous glucose production to epinephrine per se are 

confounded by its complex interactions between glucose and other hormones. The work 

of Guy et al. (2005) illustrates this problem. Performing a hyperinsulinemic (1.3 

mU/kg/min) euglycemic clamp with and without the concomitant infusion of epinephrine 

(0.06 ug/kg/min), insulin and glucose concentrations were fixed with a constant infusion 

of insulin and a variable infusion of glucose. The epinephrine infusion caused an eight-

fold increase in endogenous glucose production as measured at the end of the two-hour 

experiment (1.51 ± 0.97 vs. 0.19 ± 0.42 mg/kg per min). However, the epinephrine 

infusion also altered circulating levels of glucagon and cortisol – final concentrations 

were increased compared to experiments without concomitant infusion of epinephrine in 
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nondiabetic subjects [16]. Since glucagon is a potent simulator of hepatic glycogenolysis, 

the increase in glucose production cannot be attributed solely to epinephrine. 

Rizza et al. (1979) reported a transient increase in endogenous glucose production when 

epinephrine was infused over three hours (50 ng/kg per min) with a concomitant infusion 

of somatostatin [6]. Glucose appearance peaked 30 minutes after the start of the 

epinephrine infusion. It reached a maximum value of 3.8 ± 0.5 mg/kg per min from a 

baseline value of 1.7 ± 0.2 mg/kg per min to. Since glycemia was not clamped, venous 

plasma glucose concentrations rose from 89 ± 3 mg/dl at baseline to 217 ± 37 mg/dl at 

the end of the epinephrine infusion. As described by the model herewith in, the rise in 

glucose levels observed in these experiments alone would decrease glucose-mediated 

control of hepatic glucose (i.e., G
HGPM ) production by 77 percent at the conclusion of the 

experiments. In addition, there was an incremental increase in plasma insulin 

concentrations from an average basal concentration of 8 mU/l to 11.5 mU/l and glucagon 

concentration fell 37 percent from their basal values. These conditions (i.e., an increase in 

plasma glucose, an increase in plasma insulin and a decrease in plasma glucagon) will 

suppress endogenous glucose production. However, endogenous glucose production was 

at least 50 percent above basal for all measurements taken during the three-hour 

epinephrine infusion – demonstrating epinephrine’s ability to stimulate glucose release 

from the liver. 

Definitive studies of epinephrine’s effect on endogenous glucose production do not exist. 

The confounding effect of glucose, insulin and glucagon has not been adequately 

controlled in the few reported studies. In order to determine a functional relationship 
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between epinephrine and hepatic glucose production, certain assumptions were adopted 

to analyze the available data. Epinephrine was assumed to independently modify the 

hepatic glucose production through E
HGPM  in equation 5.2 

 E
HGPHGP

I
HGP

G
HGP

B
HGPHGP r MMMMr Γ=  5.2 

where rHPG is the rate of hepatic glucose production, B
HGPr  is the basal rate of hepatic 

glucose production, and G
HGPM , I

HGPM , and Γ
HGPM  are determined from the reported 

glucose, insulin and glucagon concentrations using equations 5.3, 5.4 and 5.5 (which are 

modified versions of the auxiliary equations presented in chapter 4). 
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In equations above, GN, IN and ΓN are glucose, insulin, and glucagon concentrations 

divided by their respective basal values as reported. The time constants, τ1 and τΓ, are 25 

and 65 min, respectively, as defined in [187] and t = 0 is defined as the start of the 

epinephrine infusion. Therefore, E
HGPM  can be determined using available data using the 

equation: 

 Γ=
HGP

I
HGP

G
HGP

N
HGPE

HGP
r

MMM
M  5.6 
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where N
HGPr  is the normalized rate of hepatic glucose production reported in the study and 

all other variables have been described above. 

Data from Rizza et al (1979), Deibert et al (1980) and Shamoon et al (1980, 1981) were 

used to investigate epinephrine’s effect on hepatic glucose production. The first two 

studies infused somatostatin to suppress endogenous insulin and glucagon secretion and 

infused epinephrine at the same rate (~3.5 ug/min). In addition, Deibert et al performed a 

euglycemic hyperinsulinemic clamp and replaced glucagon to achieve physiological 

concentrations of the hormone. In contrast, Shamoon et al did not infuse somatostatin 

while infusing epinephrine at a lower rate (~2.3 ug/min) over five hours. More recently, 

Guy et al (2005) also published a study investigating the effect of epinephrine on 

endogenous glucose production. However, this report was excluded from the analyses 

because it lacked a basal measure of hepatic glucose production and did not have serial 

measurements throughout the two-hour epinephrine infusion. 

Table 5.4 summarizes the calculations involved in the determination of E
HGPM . Although 

plasma levels of glucagon (in the data from Rizza et al) and insulin (in the data from 

Deibert et al) were reasonably constant throughout the experiment, their effects on rHGP 

(as measured by Γ
HGPM  and I

HGPM ) were not. As modeled, both glucagon and insulin 

have first-order dynamics that do not equilibrate during the experiments. For the data 

from Rizza et al, the need to account for glucagon dynamics was in addition to 

adjustments for increasing glycemia. In ideal conditions, these confounding variables 

would be held constant in order to study the effect of epinephrine on hepatic glucose 

production. The data from Shamoon et al needed to adjust for all three confounding 
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variables. However, the length of the epinephrine infusion (5 hours) was invaluable in 

terms of elucidating the time course of epinephrine’s effect on the liver. In fact, if the 

data from Shamoon et al is excluded from the analysis, the evolution of E
HGPM  during the 

constant epinephrine infusion would appear to grow unbounded (Figure 5.3). The 

transient influence of epinephrine on hepatic glucose appearance appears to dissipate 

after several hours.  
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Figure 5.3: The time course of epinephrine-mediated hepatic glucose output in response to a constant 
intravenous epinephrine infusion as predicted from data from published by ●Rizza et al [6], ▲ 
Deibert [7] and ■ Shamoon  [3, 8]. The red dashed line demarcates unity.  
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A dose-dependent increase in E
HGPM  is not evident from the three datasets analyzed. The 

estimates of E
HGPM  from data of Rizza et al (1979) and Deibert et al (1980) differ greatly 

although the two studies use the same epinephrine infusion rate (Figure 5.3). Although no 

single human study has investigated the dose-dependent response of epinephrine, 

correlation between peak endogenous glucose production and plasma epinephrine 

concentrations has been demonstrated in pancreatic clamp experiments in dogs [109]. 

Here, the investigators used somatostatin to inhibit endogenous insulin and glucagon 

release and infused these hormones intraportally to achieve clamped physiological 

concentrations. However, glucose remained a confounding variable. In separate 

experiments, epinephrine was infused at a constants rate of 0.04, 0.16 or 0.23 ug/kg per 

min over three hours. Arterial epinephrine levels reached plateau levels 447 ± 75, 1,812 ± 

97, and 2,495 ± 428 pg/ml, respectively. Endogenous glucose production increase 27, 67 

and 132 percent above baseline 15 minutes after the start of the epinephrine infusion. 

In order to derive a functional form for E
HGPM , the data from Shamoon et al (1981) were 

used. In equation 5.7, E
HGPM  is modeled as the difference of the two differential 

equations, E
1f  and E

2f , if the difference is greater than or equal to one. The expression 

for ∞E
HGPM  is arbitrary because there is insufficient data to establish a dose-dependent 

response of E
HGPM  to epinephrine. Below the basal arterial epinephrine concentration, 

B
HE , there is no epinephrine-mediated increase in hepatic glucose production, (i.e., 

1E
HGP =∞M ) while ∞E

HGPM  is modeled to increase in a linear fashion above B
HE . The time 
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constants, E
1τ  and E

2τ , were assigned values of 90 and 60 minutes, respectively. Figure 

5.4 depicts the model’s estimate of E
HGPM . 
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Figure 5.4: A model of the time course of epinephrine-mediated hepatic glucose output (solid line) 
compared to the experimental data (■) from published by Shamoon [3, 8]. 
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5.2.3. Glucose Uptake 
A physiological increase in epinephrine will decrease insulin-mediated glucose uptake by 

insulin-sensitive tissues [246]. Using an euglycemic insulin clamp technique, Deibert et 

al (1980) demonstrated a time-dependent reduction in whole body glucose utilization 

when epinephrine levels are increased [7]. Compared with the insulin infusion alone 

(~5U/hr), whole body glucose utilization declined 7 percent 0-20 minutes, 43 percent 20-

40 minutes and 53 percent 60-120 minutes from the start of the concomitant infusion of 

epinephrine (3.5 ug/min). 

5.2.3.1. Peripheral Glucose Uptake 
A functional description of a dose-dependent effect of epinephrine on peripheral glucose 

uptake is sought. However, this description is complicated by epinephrine’s complex 

interaction with the sigmoidal relationship between insulin and peripheral glucose uptake. 

As described in the previous chapter, the nonlinear relationship between insulin and 

peripheral glucose uptake can be adequately described by either the hyperbolic tangent 

equation or logistics equation. Laakso et al (1992) demonstrated that a physiological 

increase in circulating epinephrine will right shift the curve describing insulin-mediated 

peripheral glucose uptake (i.e., it will significantly increase K50 in equation 5.3) whereas 

no significant changes were observed in the minimal and maximal responses (i.e., Vmin 

and Vmax are not altered in equation 5.3) [201]. However, the marked reduction of 

peripheral glucose uptake observed at basal insulin concentrations (see [247]) contradicts 

the hypothesis that epinephrine’s effect on peripheral insulin-mediated glucose uptake 

can be described by a right-shift in the insulin-mediated peripheral glucose curve alone. 
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Many published studies that investigated epinephrine’s effect on peripheral glucose 

uptake failed to clamp insulin and glucose (e.g., [32]), making it impossible to associate 

the change in glucose uptake with the increase in epinephrine concentration. Table 5.5 

summarizes a handful of studies in man that clamped insulin and glucose levels and 

measured peripheral glucose uptake with and without concomitant epinephrine infusions. 

Whereas Laakso et al (1992) and Bessey et al (1983) used systemic intravenous infusions 

of insulin (at a constant rate) and glucose (at a variable rate) to achieve euglycemic 

hyperinsulinemic conditions [201, 248], Fryburg et al (1995) and Capaldo et al (1992) 

infused epinephrine (and insulin) directly into the brachial artery to raise forearm 

concentrations while maintaining basal concentrations of epinephrine, glucose and insulin 

throughout the rest of the body [247, 249]. Peripheral glucose uptake was reduced 

between 16 and 85 percent compared to experiments without a concomitant infusion of 

epinephrine. Epinephrine infusion rates were similar in the four experiments. The 

reduction in glucose uptake does not display a strong dose-dependency within this range 

of epinephrine concentrations (except for the data collected by Laakso et al (1992) under 

supra-physiological insulin concentrations). A systemic study that quantifies peripheral 

glucose uptake at different epinephrine and insulin concentrations is required to fully 

reveal the functional relationship between epinephrine and peripheral insulin-mediated 

glucose uptake. 
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Table 5.5: Summary of published euglycemic insulin clamp studies in man that report on the effect of 
epinephrine on peripheral glucose uptake 

EH 
(pg/ml) 

IPI 
(mU/l)a 

GH 
(mg/dl) 

rPGU 
(mg/min per 100ml) H

H

 basal

 elevated

EPGU

EPGU

r

r
 

Reference 
46 1114 81 ± 9 1.572 
349 1865 81 ± 4 1.316 0.84 Laakso et al 

1992 
48 32 79 ± 9 1.075 
418 38 81 ± 4 0.332 0.31 Laakso et al 

1992 
60b 38 93 ± 3 0.660 
643c 34 99 ± 5 0.18 0.27 Bessey et al 

1983 
60b 33 79 ± 7 0.480 
660d 26 79 ± 7 0.070 0.15 Capaldo et al 

1992 
60b 4 83 ± 2 0.026 
935d 4 85 ± 2 0.010 0.38 Fryburg et al 

1995 
a estimated from reported arterial or venous insulin concentrations 
b no basal value reported - assumed to be the mean value of published basal epinephrine concentrations 
reported on herewith in. 
c estimated from reported systemic epinephrine infusion rate 
d estimated from reported peripheral venous epinephrine concentrations 
e glucose uptake reported in mg/min per leg (assumed a muscle weight per leg of 10kg in adult men and a 
muscle density of 0.106 kg/100ml) 
 

Epinephrine may reduces the magnitude and right-shifts curve describing peripheral 

insulin-mediated glucose uptake. However, available data is cannot adequately quantify 

this complex interaction. Therefore, it has been assumed that the rate of peripheral 

glucose uptake (rPGU) is the product of a basal rate and separable epinephrine-, insulin- 

and glucose-dependent modifiers:  

 E
PGU

I
PGU

G
PGU

B
PGUPGU r MMMr =  5.11 

where the constant, B
PGUr , and the functions, G

PGUM  and I
PGUM , have been defined 

previously. A hyperbolic expression was chosen for the epinephrine-dependent modifier, 

E
PGUM , to be consistent with other modifiers in the model. 
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where HE  in the arterial epinephrine concentration, B
HE  is the basal epinephrine 

concentration; the parameters, Vmin and Vmax, determine the value of E
PGUM  as EH 

approaches negative and positive infinity, respectively; the slope factor, m, determines 

the rate at which E
PGUM  transitions between Vmin and Vmax; and K50 is the normalized 

epinephrine concentration where )VV( maxmin2
1E

PGU +=M . Figure 5.5 plots E
PGUM  

( B
HE = 60 pg/ml, Vmin = 1, Vmax = 0.3, m =1.5, and K50 = 6) against the available data 

(first and fifth columns of Table 5.5).  
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Figure 5.5: The epinephrine-dependent peripheral glucose uptake modifier. Blue circles represent 
the pooled clinical data from [201, 247-249] as shown in Table 5.5 and the red line represents 
equation 5.12 with B

HE = 60 pg/ml, Vmin = 1, Vmax = 0.3, m =1.5, and K50 = 6. 
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5.2.4. Blood Flow 
Epinephrine increases blood flow to specific tissues in a dose-dependent manner by 

reducing vascular resistance and increasing in cardiac output [26, 28, 250]. The 

epinephrine-induced increase in cardiac output is due to an increase in both the frequency 

of contractions (heart rate) and the volume of blood pushed out of the heart per 

contraction (stroke volume) [24, 26, 28]. Cardiac output increases instantaneously (within 

one minute of the start of a intravenous infusion of epinephrine) [250] while cardiac 

responsiveness to epinephrine generally decreases with age [34]. Figure 5.6 summarizes 

observations from four published studies that investigated the effect of an intravenous 

epinephrine infusion on cardiac output. The fractional increase in cardiac output (∆CO) 

as a function of arterial epinephrine concentrations was fit to the Michaelis-Menten 

equation  

 
( )
( )1K

1VCO
m

max

−+
−

=∆
x

x
 5.13 

where x is the arterial epinephrine concentration divided by the basal arterial epinephrine 

concentration and Vmax and Km are coefficients. The coefficient values for the four 

published studies are given in Table 5.6. 

When epinephrine concentrations are elevated, blood flow to the splanchnic region (gut 

and liver) increases significantly via a beta-adrenergic mechanism [22]. Measured 10, 20 

and 30 minutes into a 30-minute epinephrine infusion (0.10 ug/kg per min), hepatic blood 

flow increased 30 to 190 percent (average baseline hepatic blood flow rate 1.48 l/min) 

[251]. The infusion of exogenous epinephrine induces a dose-dependent increase in blood 

flow of the superior mesenteric artery and a selective decrease in superior mesenteric 
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artery resistance within 5 minutes of commencement [31]. These effects were observed 

before steady-state plasma levels of epinephrine were achieved and flow returned to 

baseline within 5 minutes of discontinuing the infusion.  

Table 5.6: Coefficient values (Vmax and Km) and goodness-of-fit for each published dataset and the 
average coefficient values. Fractional increase in cardiac output (∆CO) and arterial epinephrine 
concentrations were fit to the equation ∆CO = Vmax(x-1)/(Km + x-1) where Vmax and Km are constants 
and x is the arterial epinephrine concentration divided by the basal arterial epinephrine 
concentration. Italicized coefficient values represent the values averaged from the four published 
studies. 

Vmax Km R2 Reference 
0.96 9.60 0.99698 [26] 
1.01 8.55 0.99997 [28] 
1.19 32.78 0.99733 [34] 
1.07 27.91 0.96957 [35] 
1.06 19.71 0.85935  
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Figure 5.6: Percent change in cardiac output (l/min) as a function of arterial epinephrine 
concentration. The points represent data reported in [26, 28, 34, 35] and the lines represent the best 
fit to the equation ∆CO = Vmax (x-1)/(Km + x-1) where Vmax and Km are constants and x is the arterial 
epinephrine concentration divided by the basal arterial epinephrine concentration. 
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In contrast, renal blood flow did not significantly increase when plasma epinephrine 

concentrations were increased [22]. Stumvoll et al (1995) did not observed any 

significant increase in renal blood flow from baseline values (average renal blood flow 

rate 1.47 l/min at baseline and 1.58 l/min during the final 30 minutes of a 50 ng/kg per 

min intravenous epinephrine infusion) [252]. Similarly, a graded infusion of epinephrine 

that increased arterial epinephrine concentrations from 45 ± 38 pg/ml to 1177 ± 171 

pg/ml in 12 male subjects did not have any noticeable impact on renal vascular resistance 

or blood flow [20]. 

Epinephrine increases blood flow to skeletal muscle and adipose tissue [26, 29, 253]. 

However, supraphysiological doses of epinephrine have caused vasoconstriction and 

decreased peripheral blood flow [254]. 

Epinephrine increases cerebral blood flood via a beta-adrenergic mechanism [255] but 

the data necessary to quantify this increase in man is not available. The ramped infusion 

of epinephrine in sheep (0-40 ug/min) significantly increased cerebral blood flow [256]. 

The intravenous infusion of epinephrine in rats (8 ug/kg/min) increased cerebral blood 

flow three-fold [257]. Both animal studies infused extreme quantities of epinephrine to 

observe the increase in cerebral blood flow.  

5.2.5. Glucagon Release 
The ability of epinephrine to promote glucagon release in vivo appears to be secondary to 

its abilities to enhance endogenous glucose production and inhibit insulin release. No 

significant changes to venous glucagon levels were observed during five separate 60-

minute intravenous epinephrine infusions at 0.1, 0.5, 1.0, 2.5 and 5.0 ug/min in six 

healthy subjects (which produced circulating venous epinephrine concentrations of 54 ± 
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30, 114 ± 28, 219 ± 83, 412 ± 89 and 715 ± 228 pg/ml) [103]. However, resultant 

hyperglycemia observed at the two highest epinephrine infusion rates could have 

contributed to an inhibition of glucagon. Rizza et al (1979) observe a transient, yet 

significant, increase in venous glucagon concentrations that lasted 60 minutes after the 

start of an intravenous epinephrine infusion at 50ng/kg per min (~3.5ug/min) [6]. 

However, this minor transient increase (50% above basal for 60 minutes) does not 

account for substantial increase in glucagon levels (300% increase over several hours or 

days) that can be encountered in severely stressed patients in the hospital. 

5.3. Models of Epinephrine Kinetics 
An accurate mathematical description of epinephrine kinetics is sought to integrate with 

the existing glucose metabolism model. Three kinetics models are described: a two-

compartment model originally described by Rosen et al (1989), a six-compartment model 

with the same compartmental structure as the glucose metabolism model, and the same 

six-compartment model with a description of the hemodynamic changes that occur with 

changes in epinephrine concentrations. The ability of each model to estimate steady-state 

and transient epinephrine concentrations is assessed. 

5.3.1. Two-compartment Model 
A two-compartment model is necessary to accurately estimate arterial epinephrine 

kinetics [36]. Rosen et al (1989) published the parameters to a model in which sampling, 

endogenous epinephrine release (rAER) and irreversible epinephrine loss (L01) occurred 

from the same compartment (Figure 5.7). The distribution volume of this compartment 

(V1) corresponds to the intravascular volume. 

 



 
110

1 2

rAER

L21

L12

L01

rAER = 0.303 ng/min 
L01  = 0.5663 min-1 
L12  = 0.0337 min-1 
L21  = 0.0872 min-1 

V1   = 6000 ml 
 

Figure 5.7: Two-compartment model of epinephrine kinetics adapted from [36]. 

5.3.2. Six-compartment Model 
A descriptive model was developed in which each of the six compartments has a direct 

physiological interpretation representing either an organ or vascular space (Figure 5.8). 

Irreversible loss of epinephrine occurs in the liver, kidneys, gut and peripheral tissues. 

Endogenous epinephrine is released into the central venous blood supply from the adrenal 

glands. It travels through the heart and lungs without loss and then is distributed to the 

various organs.  

The system of six differential equations describing epinephrine kinetics is given in Table 

5.7 along with auxiliary equations. Parameter values are provided in Table 5.8. Here, rAER 

and RE denote the rates of endogenous and exogenous epinephrine appearance and jE , 

E
jQ , EV j  and rjEC with j = {B, H, L, G, K, P, A} denote organ epinephrine concentrations 

(pg/ml), volumetric flow rates (ml/min), distribution volumes (ml) and clearance rates 

(pg/min), respectively. The subscript j represents the compartment: brain (B), heart and 

lungs (H), liver (L), gut (G), kidneys (K), periphery (P), and hepatic artery (A). WCP and 

B
HE  represent the fraction of water in blood (water content percentage) and basal arterial 

epinephrine concentration. The epinephrine subsystem was formulated with and without 

a description of the hemodynamic changes that are associated with epinephrine. 
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Hemodynamic compensation is controlled through the epinephrine flow rate modifier, 

E
QM . With 1=E

QM , the system does not have hemodynamic compensation. Otherwise, 

the value of E
QM  was defined 1 + ∆CO where ∆CO is defined in equation 5.13. The 

values (1.06, 19.7) for Vmax and Km, respectively, are the average values reported in 

Table 5.6.  
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Figure 5.8: A six compartment model of epinephrine kinetics 



 
112

Table 5.7: System of six first-order differential equations describing the kinetics of epinephrine. 

Differential Equations 

( )[ ]BH
E
BE

B
B V

1 EEQEdt
d −=  5.14 

[ ]RErIQEQEQEQEQEdt
d ++−+++= AERH

E
HPV

E
PK

E
KL

E
LB

E
BE

H
H V

1  5.15 

( )[ ]GECGH
E
GE

G
G V

1 rEEQEdt
d −−=  5.16 

[ ]LECL
E
LG

E
GH

E
AE

L
L V

1 rEQEQEQEdt
d −−+=  5.17 

( )[ ]KECKH
E
KE

K
K V

1 rEEQEdt
d −−=  5.18 

( )[ ]PECPH
E
PE

P
P V

1 rEEQEdt
d −−=  5.19 

 
Clearance Rates (pg/min) 

[ ]G
E
GH

E
ALECLEC F EQEQr +=  5.20 

G
E
GGECGEC F EQr =  5.21 

K
E
KKECKEC F EQr =  5.22 

P
E
PPECPEC F EQr =  5.23 

Table 5.8: Parameter Values for the 6th order model of epinephrine kinetics 

Distribution Volumes (ml) 

BB,
E
B VWCP

l
ml 1000V ××=  5.24 

BH,
E
H VWCP

l
ml 1000V ××=  5.25 

( )ISFG,BG,
E
G VVWCP

l
ml 1000V +××=  5.26 

( )ISFL,BL,
E
L VVWCP

l
ml 1000V +××=  5.27 

( )ISFK,BK,
E
K VVWCP

l
ml 1000V +××=  5.28 

( )ISFP,BP,
E
P VVWCP

l
ml 1000V +××=  5.29 
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Table 5.8 (continued) 
Flow Rates (ml/min) 

B
E
Q

E
B QWCP

l
ml 1000

×××= MQ  5.30 

K
E
K QWCP

l
ml 1000

××=Q  5.31 

P
E
Q

E
P QWCP

l
ml 1000

×××= MQ  5.32 

G
E
Q

E
G QWCP

l
ml 1000

×××= MQ  5.33 

A
E
Q

E
A QWCP

l
ml 1000

×××= MQ  5.34 
E
G

E
A

E
L QQQ +=  5.35 

E
L

E
P

E
K

E
B

E
H QQQQQ +++=  5.36 

 
Other Parameter Values 

B
HE  = 75 pg/ml, WCP = 0.84, FLEC = 0.87, FKEC = 0.51, FPEC = 0.55, FGEC = 0.37 

 
Tissue or Organ Subscript j Qj (l/min) Vj,B (l) Vj,ISF (l) 
Brain B 0.70  0.41 0.45 
Heart & Lungs H (5.20) 1.64 - 
Liver L (1.50) 0.90 0.60 
Gut G 1.20  0.71 0.52 
Kidney K 1.20  0.68 0.09 
Periphery P 1.80  1.26 6.74 
Hepatic Artery A 0.30  - - 

 

5.3.3. Model Accuracy in Steady-State and Transient Conditions 
Published clinical data were pooled to investigate the accuracy of the three epinephrine 

kinetics models describe above. Model A, B and C will refer to the two-compartment 

model, the six-compartment model and the six-compartment model with hemodynamics, 

respectively. Published human studies that measured the concentration of epinephrine in 

the plasma of arterial, arterialized and/or venous blood in response to a constant 

intravenous epinephrine infusion were used to assess steady-state accuracy. A 

comprehensive list of the data used here is provided in Appendix B. Data reported by 
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Fitzgerald et al (1980) were used to assess each model’s ability to estimate the transient 

response to a step-change in epinephrine appearance. The root mean square error 

(RMSE) was used to assess goodness-of-fit. 

The results of the analyses are given in Figure 5.9 and Figure 5.10. The formulation of 

Model A does not differentiate between arterial or venous epinephrine concentrations. 

However, it is apparent that this model adequately describes arterial epinephrine 

concentrations. In order to assess goodness-of-fit to venous measurements in the steady-

state and transient analyses, a correction factor of 1-FPEC applied to the output of Model 

A. In all analyses, Model C provided the best fit to the data (Table 5.9). The limitation of 

Model A is apparent in the transient analysis (Figure 5.10) where it overestimated the 

speed by which venous epinephrine concentrations will reach steady-state after a step-

change in the input. 

Table 5.9: Goodness-of-Fit of epinephrine kinetics models to clinical data as assessed by the root 
mean square error (RMSE). 

Accuracy Analysis Model A Model B Model C 
Arterial steady-state 114 307 109 
Venous steady-state 131 318 119 
Transient 261 233 63 
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Figure 5.9: Model estimates of steady-state arterial (red circles) and venous (blue triangles) plasma 
epinephrine concentrations. Solid red line, arterial estimates of model A; red and blue dashed lines, 
arterial and venous estimates of model B; red and blue dot-dashed lines, arterial and venous 
estimates of model C; magenta squares, arterialized venous plasma epinephrine concentrations. 
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Figure 5.10: Comparison of experimental and simulated data for an intravenous epinephrine 
infusion at a rate of 0.83ug/kg per min over 60 minutes. Blue triangles, measured epinephrine levels 
from the brachial vein; solid blue line, model A; dashed blue line, model B; dot-dashed blue line, 
model C. 
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5.4. An Expanded Model of Glucose Metabolism 
We have demonstrated the ability of the 6th-order subsystem with hemodynamic 

compensation to provide the best fit to experimental data. Next we must integrate the 

functional relationships between circulating epinephrine and the mechanisms of glycemic 

regulation that have been developed in this chapter into the existing glucose metabolism 

model. The complete system of equations appears in Figure 5.11 and the model 

parameters appear in Appendix C. 

The functional relationship for the epinephrine-mediated modifier of pancreatic insulin 

release, E
PIRM , was explored in section 5.2.1. It was determined that E

PIRM  acts 

collectively on the first and second phases of insulin secretion. As such, the rate of 

pancreatic insulin release it will appear as  

 
( )
( )B

H

HE
PIR

B
PIRPIR G∞

=
S

GSMrr  

with all other terms besides E
PIRM  defined in the original model. E

PIRM  is defined as 

1 + ∆IR where ∆IR is defined in equation 5.1 with coefficients -0.99 and 5.71 for Vmax 

and Km. The expression for E
PIRM  can be approximated as: 
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Figure 5.11: Extended model equations categorized by subsystem with equations highlight gray 
associated with a particular organ or tissue in each subsystem. Equations and variables highlighted 
in green and yellow identify our contribution to the extended model with green representing 
modifications to the original model (equation 5.11and FLIC in 13.1) and yellow representing new 
equations (5.7-5.9, 8.3, 13.9, and 17-22). 
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APPENDIX A: ORIGINAL MODEL EQUATIONS  

The equations for the model of glucose metabolism as they appear in the 1985 doctoral 

thesis of John Sorensen are provided here. In general, time-varying variables (e.g., GH 

and rPIR) are italicized whereas time-invariant quantities (e.g., I
LQ and rRBCU) are not. 

Some minor corrections and clarifications are provided for the reader. In equation A.A.45 

(a description of the kidney glucose excretion rate rKGE), the quantity 0.011 multiplying 

the expression (GK-460) within the hyperbolic tangent function was incorrectly reported 

in some sections of Sorensen’s thesis. In the equations for pancreatic insulin release 

(equations A.34-A.41), the superscript 0+ in the expression (X-I)0+ denotes that the 

expression only takes on positive values and is zero otherwise. 
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APPENDIX B: EPINEPHRINE INFUSION STUDIES IN MAN 

Subjects 
(Male/Female) 

Infusion Rate 
(ug/min) 

Average (± SD) Epinephrine Concentration 
(pg/ml) 

Reference 

  Arterial  Arterialized  Venous   
6M 0.00 71 ± 32  50 ± 17 [11] 
6M 0.10 112 ± 22  77 ± 27  
6M 2.00 826 ± 174   437 ± 161  
16 0.00 57 ± 21   29 ± 15 [12] 

13M/1F 0.00 132 ± 63   80 ± 37 [13] 
40 0.00 27 ± 12   7 ± 5 [21] 
6M 0.00 62 ± 36   35 ± 18 [23] 
12 0.00 53 ± 44  13 ± 6 [10] 
12 0.00 46 ± 19   16 ± 13  

12M 0.00 35 ± 19  24 ± 19 [29] 
12M 0.26b 125 ± 19  66 ± 19  
12M 0.77b 291 ± 63  115 ± 44  
12M 2.56b 842 ± 164   382 ± 70  

8 0.00 49   [19] 
8 3.40 668      

12M 0.00 45 ± 38   [20] 
12M 0.42 163 ± 70    
12M 1.39 456 ± 82    
12M 4.18 1177 ± 171      
10M 0.00 55 ± 35   [25] 
10M 0.32b 152 ± 20    
10M 3.85b 1130 ± 119      
11M 0.00 49 ± 24   [26] 
11M 0.64b 245 ± 42    
11M 1.28b 421 ± 55    
11M 3.85b 1102 ± 164      

8M/3F 0.00 78   [30] 
8M/3F 1.92b 504    
8M/3F 3.85b 981      

6M 0.00 37 ± 22   [31] 
6M 0.70b 251 ± 130    
6M 2.80b 683 ± 179      

1M/6F 0.00 29 ± 12   [32] 
1M/6F 2.56b 636 ± 150    
1M/6F 5.13b 1283 ± 156      
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8 0.00   100 ± 28   [103] 
6M/3F 0.00  84 ± 33  [14] 
6M/3F 1.05a  360 ± 72   
6M/3F 5.23a   1177 ± 165    

5F 0.00  26 ± 9  [15] 
5F 3.00b   822 ± 134    

8M/9F 0.00  31 ± 17  [16] 
8M/9F 4.20b   736 ± 230    

6 0.10   54 ± 30 [103] 
6 0.50   114 ± 28  
6 1.00   219 ± 83  
6 2.50   412 ± 89  
6 5.00     715 ± 228  

5M/7F 0.00     38 [17] 
5 0.00     37 ± 13 [18] 
8 0.00   28 ± 8 [8] 
8 2.30a     375-425  

6M 0.00   49 ± 13 [24] 
6M 0.00   53 ± 27  
6M 0.79   155 ± 45  
6M 2.36   267 ± 107  
6M 3.93   391 ± 897  
6M 5.90   692 ± 1004  
6M 6.52   797± 480  
6M 7.86     844 ± 256  
8M 0.00   47 ± 20 [5] 
8M 1.05b   192 ± 54  
8M 5.60b     1140 ± 342  
7M 0.00   27 ± 15 [27] 
7M 0.70b   134 ± 39  
7M 3.50b     401 ± 73  
95 0.00   55 ± 22 [28] 
5M 1.75b   178 ± 34  

10M 3.50b   259 ± 76  
5M 7.00b     484 ± 154  

a intravenous epinephrine infusion rate reported per m2 body surface area without subject body surface area reported (1.9m2 body 
surface area assumed) 

b intravenous epinephrine infusion rate reported per kg body weight without average subject weight reported (assumed 60kg and 
70kg body mass for female and male subjects, respectively) 
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APPENDIX C: VALUES FOR EXTENDED MODEL PARAMETERS 

Subscript j Qj (l/min) Vj,B (l) Vj,ISF (l) Vj,ICF 
B 0.70  0.41 0.45 8.60 
H (5.20) 1.64 - - 
L (1.50) 0.90 0.60 1.15 
G 1.20  0.71 0.52 1.01 
K 1.20  0.68 0.09 0.18 
P 1.80  1.26 6.74 19.65 
A 0.30  - - - 
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