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Abstract 
Reconfigurable Control of Aircrafts undergoing Sensor and Actuator Failures 

Gaurav Bajpai 
Advisor: B. C. Chang 

 
Significant number of fatal aircraft accidents in recent years have been linked to 

component failures. With the predicted increase in air traffic these numbers are likely to 

increase. With reduction of fatal accidents as motivation, this dissertation investigates 

design of fault tolerant control systems for aircrafts undergoing sensor and/or actuator 

failures. Given that the nominal controller may perform inadequately in the event of 

sensors and/or actuator failure, the feasible approach for such a control scheme is to 

predesign various controllers anticipating these failures and then switching to an 

appropriate controller when the failure occurs. This is enabled by the available 

redundancy in sensing and actuation and allows the system to perform adequately even 

when these failures occur. The predesign of controllers for sensor and actuator failures 

is considered. Sensor failures are easily accommodated if certain detectability 

conditions are met. However, the predesign for actuator failures is not trivial as the 

position at which the actuators fail is not known a priori. It is shown that this problem 

can be tackled by reducing it to the classical control problem of disturbance decoupling, 

in which, the functional control enables the steady state output of dynamical system to 

reject any disturbance due to the failed actuators. For linear systems, conditions for 

existence of a controller capable of accommodating these failures can be understood in 

geometric terms and calculations are linked to solvability of coupled matrix equations. 

Although control design for aircrafts is done using linear techniques, failures can cause 

excursions into nonlinear regimes due to ensuing changes in the flight conditions. This 

ix 



dissertation also uses the recent results in the nonlinear regulator theory to address 

actuator failures in nonlinear systems. The utility of design techniques is illustrated 

using flight control examples with failures. The symbolic computational tools are 

developed and are available in the appended disk. A section on the use of variable 

structure servomechanisms to perform the regulation needed in case of actuator failures 

is also included. 
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Chapter 1. Introduction 

Fatal crashes, when they occur, cause tragic loss of life and are accompanied by 

colossal loss of money associated with destruction of property, cost of investigation, 

and reduced public confidence in air travel. In the coming years, commercial air traffic 

is likely to increase significantly. Several regulatory and investigative agencies are 

pushing for creating technologies that will significantly reduce the fatal accident rate, 

which is presently little under 2 per million departures (not including sabotage, 

terrorism and military action) making air travel the safest mode of transport. In many 

cases, inadequate airport facilities and human errors are cited as causes by the 

investigative agencies for these accidents. These present challenges that are not easily 

overcome. However, numerous aircraft accidents in the recent years have been caused 

when components in the control loop have malfunctioned. Failed sensors or actuators, 

such as dysfunctional gyros, stuck horizontal stabilizers or other control surfaces have 

led to catastrophic consequences. Therefore, there is need to design reconfigurable 

control schemes, which actively address such failures in the control loop. The nominal 

controller tends to perform inadequately because of the changes in the system dynamics 

following a failure. Since online computation of the appropriate control algorithm 

makes tremendous demands on the available resources, a feasible approach for such a 

control scheme is to predesign various controllers anticipating component failures and 

switching to an appropriate controller when failure occurs. The key in designing such a 

bank of controllers is the available redundancy in the aircraft sensing and actuation. 

Modern day aircraft are instrumented with redundant sensors and have many control 



 
 

2 
surfaces that may be used even if one or few failures occur. Once these controllers are 

designed, they can be stored in the on-board memory. A supervisory switching scheme 

can be designed based on the failure detection and identification mechanism. In this 

dissertation, the predesign of controllers for sensor and actuator failures is considered. 

The ability to design controllers for sensor failures is linked to the property of the 

system, which allows the design of stable observers for the purpose of reconstructing 

the states for using state feedback. However, the predesign for actuator failures is not 

just related to the stabilizability or controllability of the system. When actuators fail 

they not only reduce control authority, but also may present persistent disturbances, 

which the functional actuators have to compensate for. The most common failure of the 

actuators is when the control surface gets stuck due to mechanical, hydraulic or 

electrical failure at any position. It is shown that the problem of predesigning a 

controller for stuck actuators can be reduced to the classic problem of designing a 

regulator with internal stability. The regulator has the capacity to reject persistent 

disturbance caused by the stuck actuators in the steady state. The transient response can 

be shaped using standard control techniques. For linear systems, the necessary and 

sufficient conditions for accommodating such a failure can be understood in geometric 

terms i.e. finding an invariant subspace in the kernel of the output and the calculations 

are linked to solvability of coupled matrix equations called “Sylvester’s equations”. The 

existence of the solution to these equations along with the stabilizability and 

detectability conditions together provide necessary and sufficient conditions for the 

system to reach the desired steady state. The reconfigurable controller provides a 

supervisor, which switches to the controller designed for the impaired system, when the 



 
 

3 
failures are detected. Hence, it usually takes a period of time before the actuator failure 

is diagnosed by the fault detection and identification mechanism. During this time the 

impaired system continues to operate with the original, but now inappropriate 

controller. If the failures are detected immediately, the linear control techniques used in 

the control design may suffice since the system states remain close to the linear region. 

However, delays in detection may cause significant excursion of the system states. In 

many cases, nonlinearities in the aircraft dynamics may cause the linear design to be 

rendered inappropriate. Nonlinear regulators may provide larger domains of stability, 

providing a larger window of safety in face of delays in detection and identification. 

Therefore, this dissertation also investigates various approaches to design state feedback 

regulators for nonlinear systems to address actuator failures. The utility of design 

techniques is illustrated using flight control examples. The design techniques are 

implemented by developing symbolic computational tools. These tools are included in 

the disk attached with the thesis. In the next section, the organization of the rest of the 

thesis is explained. 

1.1. Organization of the thesis 

 The rest of the thesis is organized as follows. In the remaining sections of this 

chapter the motivation for this research is presented followed by a section on the 

background of fault tolerant control and a survey of the existing methodologies for 

achieving fault tolerance. The contribution of this thesis to the available techniques is 

summarized in the final section. In chapter 2, the predesign of controllers in case of 

sensor failures is considered. It is shown that the sensor failure can be adequately 

addressed by designing appropriate observers and a switching mechanism based on 



 
 

4 
range and spectral checks of the sensory data. The design strategy is demonstrated using 

a model of the F/A-18A Automatic Carrier Landing System taken from literature 

subjected to sensor failures. In chapter 3, we consider the predesign of controller for 

stuck actuators in case of linear systems. It is shown that the problem can be reduced to 

design of a regulator with internal stability by the addition of a dynamic equation for the 

stuck actuators. The problem can now be solved subject to certain conditions, which are 

explained. The design procedure is demonstrated by using the earlier carrier-landing 

example subjected to actuator failures. The details of design are presented. The 

necessary and sufficient conditions presented in chapter 3 leads to a novel way to assess 

the redundancy in systems with regards to actuator failures and this forms the topic of 

chapter 4. Chapter 5 presents the design of nonlinear regulators using series 

approximation for the regulating functions. The improvement in steady state regulation 

in face of actuator failures is demonstrated by using the longitudinal dynamics of a jet 

transport aircraft when the primary control surface is stuck. It is seen that the 

longitudinal axis can be controlled solely by modulating the thrust input. Chapter 6 

discusses the use of variable structure control theory to design controllers to address 

actuator failures. Chapter 7 summarizes the work and presents pointers to further 

research. 

 All through the thesis computations are emphasized, definitions, theorems and their 

proofs are relegated to the appendices to enhance the readability and the utility of the 

thesis. 



 
 

5 
1.2. Motivation 

 In the year 1959, which was probably the first full year of commercial jet 

operations, the world’s air carriers averaged 100,000 jet-flying hour per hull loss*; today 

they average nearly 800,000 flying hours per hull loss [69]. The record varies greatly 

globally; even so, air transportation is the safest of all major modes of transportation. 

However, the current accident rate (which is little under 2/million departures) will be 

soon become unacceptable because of the predicted increase in the commercial air 

traffic, which is expected to triple in the next 20 years [37]. Several agencies including 

the regulatory authority Federal Aviation Authority (FAA), National Aeronautics and 

Space Administration (NASA), International Civil Aviation Organization (ICAO), non-

profit organizations like Flight Safety Foundation and Aviation Safety Network are 

pushing for a significant reduction in airplane accidents in the next few years [34, 36-

38]. e.g. the NASA Aviation Safety Program Goal is to “develop and demonstrate 

technologies that contribute to a reduction in the aviation fatal accident rate by a factor 

of 5 by year 2007 and by a factor of 10 by year 2022 [35].” 

Accidents have been attributed to mistakes by the flight crew, the airworthiness of 

the airplane, harsh environmental conditions, lapses in maintenance or a combination of 

these factors [69]. This varied set of reasons present difficult challenges that technology 

can’t easily overcome. However, in a large number of accidents the sequence of events 

                                                 
 
 
* National Transportation Safety Board (NTSB) and International Civil Aviation Organization (ICAO) 
definition of Hull loss: Airplane damage that is substantial and is beyond economic repair. Hull loss also 
includes events in which: Airplane is missing or Search for wreckage has been terminated without it 
being located or the Airplane is substantially damaged and inaccessible. 
 



 
 

6 
leading to the fatality, rather than being pilot error happens to be a component failure. A 

modern day aircraft has a few million parts, e.g. A Boeing 767 has approximately 

3,140,000 parts. Although, each of these parts are tested the likelihood of some part 

malfunctioning is finitely large. Many accidents can be directly linked to the failures of 

the control system components and a few real accidents are presented in the sequel. 

Figure 1.1 shows the reduction in the fatal accident rate over the years from the late 

1950s. The reduction in fatal accident rate has made flying the safest mode of all forms 

of transport.  
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Figure 1.1. Fatal accident rate (i.e. those involving hull loss), not included are acts 
of sabotage, terrorism and military action 

 
 
 Fatal accidents when they occur cause violent loss of life and property and are the 

subject of newspaper headlines all over the world. This is followed by the immediate 



 
 

7 
reduced public confidence and this makes fatal crashes an expensive affair for the 

airline industry. It takes a significant time, effort and money on the part of the 

investigating agencies to determine the exact cause of the accident [38].  

 With the lowering of accident rates the number of commercial airline operations 

worldwide has continued to grow steadily as shown in Figure 1.2 [69]. 
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Figure 1.2. Commercial airline traffic growth - worldwide 

 

Indeed if the accident rate of the early years of commercial jet accidents were 

maintained with the increase in traffic we would see a few fatal crashes everyday. 

Thankfully, the accident rate has reduced dramatically. However, if the air traffic 

continues to grow even the present low accident rate will become unacceptable [35]. 

Figure 1.3 shows the extrapolation of data from Figure 1.1 and Figure 1.2 for the last 

few years using smoothed polynomial functions. This figure shows a dramatic increase 
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in the number of accidents in the coming years. The technological challenge in making 

an already safe mode of transport safer are significant. 
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Figure 1.3. Predicted increase in air traffic and resultant increase in fatal accidents 
in the coming years 

 
 

It takes months of investigation on the part of the authorities to determine the exact 

sequence of events that led to a fatal air crash. Sometimes these investigations prove 

inconclusive and it is left to imagination as to what may have gone wrong with the 

airplane. Here  are some recent examples of fatal accidents that may have been caused 

by failures in the control loop components. 

Estimated number of fatal accidents 

Number of departures in million based 
on present rate of increase. 

Accident rate based on present rate of 
decrease.  
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1. The Alaska airline flight 261 – Jan. 2000: On January 31, the McDonnell 

Douglas MD-83 of the Alaska Airlines on flight 261 crashed off the coast of 

California about 4:20 p.m.  (PST) en route from Puerto Vallarta, Mexico, to San 

Francisco killing all of its 83 passengers and 5 members of the crew. Although, 

the investigation in still under progress it is clear from the flight data recorder 

that the crew was unable to maintain vertical control due to dysfunctional 

stabilizer. The FDR shows that the stabilizer trim changed to a full-nose down 

trim and remained jammed there until the crash. During the last 12 minutes 

before the crash the crew attempted to diagnose and troubleshoot their stabilizer 

trim problems in vain and the MD-83 finished just off Point Mugu, CA, 650 ft 

deep in water. The failure of the actuation assembly during the final minutes of 

flight was confirmed when the navy recovered the parts from the sea. It can be 

hypothesized that mechanical failure of the actuation assembly of the horizontal 

stabilizer is the primary cause of the tragic accident [39]. 

2. On 12 August, 1985 Japan Airlines (JAL) flight took off from Tokyo-Haneda at 

18.12h for a flight to Osaka. At 18.24h, while climbing through 23900ft at a 

speed of 300kts, an unusual vibration occurred. An impact force raised the nose 

of the aircraft and control problems were experienced. Two minutes later 

hydraulic pressure had dropped and ailerons, elevators and yaw damper became 

inoperative, followed by dutch roll and plughoid oscillations (unusual movement 

in which altitude and speed change significantly in a 20-100sec. cycle without 

change of angle of attack). The aircraft started to descend to 6600ft while the 

crew tried to control the aircraft by using engine thrust. Upon reaching 6600ft 
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the airspeed had dropped to 108kts. The aircraft then climbed with a 39deg. 

angle of attack to a maximum of approx. 13400ft and started to descend again. 

JAL123 finally brushed against a tree covered ridge, continued and struck 

another ridge, bursting into flames. Probable cause was cited as: "Deterioration 

of flight characteristics and loss of primary flight controls due to rupture of the 

aft pressure bulkhead with subsequent ruptures of the tail, vertical fin and 

hydraulic flight control systems. The reason for the aft pressure bulkhead 

rupture was that its strength was reduced by the fatigue cracks propagating in 

the spliced portion of the bulkhead's webs. The initiation and propagation of the 

fatigue cracks are attributable to the improper repairs of the bulkhead, conducted 

in 1978, and since the fatigue cracks were not found in the later maintenance 

inspections, this contributed to the accident." 520 people lost their lives in what 

lives as the among the worst aircraft disasters of all time [36]. 

3. On January 10, 2000, a Saab 340B on a scheduled passenger flight (number 

498) took off normally from Zurich-Kloten to Dresden. Quickly after take off 

resulting from improper right aileron input caused increase in roll rate. 

Meanwhile, the pitch decreased rapidly, accompanied by a marked increase in 

speed and the airplane entered an irrecoverable high speed high rate spiral 

descent crashing in a open field killing all the 7 passengers and 3 crew members 

on board [38]. 

 This list is by no means exhaustive but only representative of the set of fatal, 

commercial jet accidents. It is clearly evident from the list these problems are not 

restricted to any particular plane manufacturer, carrier, make, or region of the world. 
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They also demonstrate a need for designing control schemes that actively address 

failures. These schemes are important for safety of the passengers and crew when such 

failures occur. 

 The next section presents the various functions that the flight control computer 

performs in a modern fly-by-wire aircraft and a survey of control design techniques 

available in the literature. 

1.3 Background and literature review 

 The subject of fault-tolerant control has attracted many researchers and is available 

in widely scattered publications. This research is spread under the varied nomenclature 

of "Fault-tolerant Control" [8, 12, 27, 31, 62, 68] "Reconfigurable Control Systems" 

[13, 14, 68, 86], "Intelligent Control Systems" [71], "Self-repairing Control Systems" 

[42], "Restructurable Control Systems" [17, 27], "Fault Accommodation" [26, 66], 

Failure Compensation” [75], etc. Closely related work has also been done in 

"Supervisory Control" [12, 45], "Fault detection and isolation" [29, 59, 65, 70], "Fault 

Diagnosis" [28, 32, 45], "Hierarchical Control Systems" [5]. The motivation for all the 

research has been to overcome unsatisfactory response of a conventional feedback 

control design in the event of a malfunction of the components. Some survey papers 

[12, 67, 71] exist and provide an overview of the various techniques developed by 

researchers and the various approaches taken before 1997.  In this section, we begin by 

listing the functions of the flight control computer and then examine the relevant 

principles of fault tolerant design. We also present a survey of some of the recent 

approaches to sensor and actuator failures developed by researchers more recently. In 

this thesis, we shall not consider avoidance of faults by shielding of the flight computer, 



 
 

12 
use of filters and surge suppressing devices or use of optical cables for data 

transmission. We shall adopt the view that some faults are inevitable and an active 

approach to fault-tolerance is needed. The problem definition is left at a pertinent fuzzy 

level. Later on we define the problem more clearly when we start considering the 

specific failures and predesigning controllers for those failures.  Right now the idea is to 

present a generic architecture which can provide fault tolerance. Subsequently, this 

generic control architecture can be tailored to fit a specific aircraft by imposing the 

design requirements.   

1.3.1 Functions of the flight control computer. 

 

 

Figure 1.4. The schematics of role of flight control computer in a modern fly-by-
wire aircraft 
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 The various functions of a generic fly-by-wire flight control computer are shown in 

Figure 1.4, the flight control computer performs a multitude of functions.  It is 

responsible to translate the pilot commands from the cockpit (inputs to the pedals, yoke 

and throttle) to the movement of the actuators (ailerons, elevator, flaps, rudder and the 

actuators for engine speed). The control computer also performs the function to 

augment the stability of the aircraft, which involves feedback from the sensors and 

augmenting the pilot input to the controls. At the same time, the control computer is 

responsible to present information to the pilot on the various CRTs and display panels. 

Displayed information includes not only present flight data but also weather and 

navigational information. The flight computer is also involved in controlling the 

communications equipment. It is useful to characterize these functions that the flight 

control computer is involved into three major categories: performance, comfort and 

safety. These categories can then help determine the necessary levels of redundancy in 

functionality needed to make the system fault-tolerant. 

 In the first category of functions, we ideally want all the control systems to function 

at top performance and without glitches. This is the level for performance, because 

either all the systems are operating without fault, or minor faults can be compensated so 

as not to cast any apparent sacrifice of performance of the aircraft.  The second category 

of functions that the flight computer performs is to maintain the comfort of the 

passengers and crew. We can let the fault-tolerant control system tradeoff performance 

if it is more desirable to ensure the comfort of the passengers in the presence of non-

critical faults. The third category of functions can be termed flight-critical functions. To 

maintain the flight safety, the fault tolerant flight control computer must continue to 
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perform these flight-critical functions without error at all times even in an emergency.  

Creating this hierarchy of control objectives of the control computer helps to develop 

modular fault tolerant architecture of the control system. 

1.3.2 Principles of fault tolerant control 

 In case of failure the fault must be determined, identified, contained and 

compensated. The important feature of fault tolerant designs is fault identification and 

isolation. The control system must at all times be aware of the health of the system. 

Fault identification in fault tolerant designs entails the need for supervision or health 

monitoring sub-systems. This supervision may include data range checks, spectral 

nature checks, parity checks, logic checks, checksums, etc. to detect the nature and 

severity of faults. A modular approach to design will enable the capability to contain the 

fault in a very small region of the entire system. In case faults occur the system can be 

reconfigured to either perform without the faulty module, or other functional modules 

must compensate the services of the faulty module. The supervisor for reconfiguration 

must also be able to identify the recovery of the module in the case of transient failures. 

This reconfiguration of the system is only possible if there is some form of redundancy 

in the system. Redundancy can be understood as additional resources beyond those 

required for nominal operation. In the following subsection we examine these principles 

in some detail. 

1.3.2.1 Failure detection and isolation 

 According to the generally accepted terminology the fault detection and isolation 

involves the determination and localization of the faulty elements of the system. Some 
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researchers also include identification as one of the tasks. So the fault detection and 

isolation may involve the following functions 

1. Failure detection: the indication that something is gone or going wrong in the 

system. 

2. Failure isolation: the determination of the exact location or quality of the failure. 

3. Failure identification: the determination of the size or quantity of the failure. 

 The relative importance of the above functions is usually subjective to the specific 

application and also related to the cost associated with performing any of the above 

functions. All failure detection and isolation involve filtering of the sensory data 

available for supervision and control. A large number of schemes merely involve data 

range checks, compatibility checks and spectral checks on the sensory data. However, 

there are schemes in which the failure detection and isolation method makes explicit use 

of some mathematical model of the system. These ideas based on “analytical 

redundancy” employ techniques using thresholds or spectral analysis on residuals or by 

identifying patterns sometimes called signatures of the residuals [29]. More recently 

researchers have employed deterministic nonlinear observer-based approach to fault 

diagnosis [28]. The above techniques based on direct sensory measurements and on 

model-based methods have been extensively studied. The key indicators of a failure 

detection and identification scheme are the time needed to identify the failure(speed) 

and the absence of false alarms(robustness). 

1.3.2.2 Key role of redundancy 

 Not all kinds of redundancy lead to fault tolerance. Even if similar modules are 

available for replacement of faulty module or if many similar modules are working in 
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parallel using some form of voting, it does not preclude the common modes of failure. 

To be truly fault tolerant the system must be redundant but also disallow common 

modes of failure.  One can identify the following forms of redundancy in most systems. 

1. Hardware redundancy: This kind of redundancy involves processors with redundant 

registers and buses, extra processors, alternate sensors and actuators and multiple data 

lines. Rapid advances in VLSI technology allow for more powerful, cheaper and power 

efficient processors. Even today aircraft are equipped with redundant processors or a 

multi-processor to perform the calculations for the flight control. As pointed out in the 

last paragraph, attention needs to be paid to guard against common modes of failure. 

2.  Software redundancy:  The algorithms responsible for the smooth functioning of 

the aircraft must have error checks for the calculations. There must be parity checks for 

all the digital signals and some form of checksum for the calculation. Conducting the 

same calculation independently in two different ways enables the system to perform 

consistency checks.  

3.   Data redundancy: There must be at all times a backup clean copy of the flight 

critical data so that all the important calculations can be restarted using clean data when 

faults occur. 

 Besides the above redundancies there may be need in the system for manual 

overrides that the pilot can invoke in case of emergencies. In addition to all these we 

have some inherent redundancy in sensing and actuation. Design of control systems for 

aircraft and submarines are usually done using generalized inputs. The number of 

physical effectors usually exceeds the number generalized controls. The control 

authority is usually apportioned among the physical effectors. The controller produces 
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the command signals for the servo loops, which are in turn responsible for positioning 

the control surfaces or the throttle at the commanded values. Usually the dynamics of 

the servo loops are fast enough so that the control design can be carried out without 

considering the actuator states. Failure of the servo loop or the positioning mechanism 

may cause the control surface to get stuck at constant value. It is possible that when one 

or some of the actuators fail the remaining functioning actuators are sufficient for safe 

control of the vehicle. This notion of redundancy in terms of the ability to design and 

implement an effective feedback controller to meet the performance objective is 

developed further in Chapter 4. 

1.3.2.3 Supervision and coordination  

 Since the aircraft is a complex assembly of sub-systems operating closely together it 

would not be effective for one supervisor to monitor the health of all the modules. 

Therefore, we propose the hierarchical architecture shown in Figure 1.5, with local 

supervisors monitoring the health of a group of modules and sharing information with 

each other and a central coordinator. 

 An effective model for the supervisor is that of the 'directed graphs' structure where 

the 'nodes' of the graph represent modules and the 'edges' the communication between 

the modules. Data range checks can easily be included in the models as the capacity of 

the edges. We can maintain a running buffer of previous values transmitted through 

these edges to perform spectral checks. These error checks can be programmed as 

interrupts or flags into the control software for supervision. The supervisor inference 

mechanism can be an automaton allowing it to take requisite action when faults occur. 

We can assign states to the nodes of the graph e.g. 'operational' and 'faulty'. The act of 
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reconfiguration will involve changing the edge structure to isolate all the 'faulty' nodes 

and using the 'operational' nodes to carry out the required tasks. When the need for 

reconfiguration is identified at the design stage mechanisms that allow reconfiguration 

may be designed and built or programmed. The directed graph structure allows the 

supervisors to capture the topology of the connections of the system. The representation 

allows for a more knowledge-rich representation than just the dynamical equations. In 

this development, the description of the model is left sufficiently abstract to enable 

modeling all kinds of modules of the aircraft control system and their interfaces.   

 

 

Figure 1.5.  Hierarchical architecture for fault-tolerant control systems 
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 The local supervisors allow quick fault identification and rapid fault isolation. They 

also share information with the central coordinator, which is responsible for global 

decisions and ensuring that the local supervisors perform with consistency. There are 

other approaches that have been developed using bond-graphs and other directed graph 

techniques [45]. 

1.3.3 Recent work to address sensor and actuator failures  

 The “Pseudo-inverse method” or the “Control Mixer” approach was described as the 

key approach to reconfigurable control [17, 26, 27, 42, 66, 68, 85, 86]. The main design 

objective is to maintain as much similarity as possible to the original closed loop with 

the aim of providing graceful degradation. This is achieved by reassignment of the 

feedback gains and the approach can be explained as follows. 

 Let the open-loop plant dynamics be described by the equations 

 BuAxx +=
•

 (1.1) 

 Cxy =  (1.2) 

where nRx ∈ is the state vector, mRu ∈  is the control vector and pRy ∈  is the output 

vector. A , B  and C  are matrices of appropriate dimensions. The nominal closed-loop 

strategy is to design a feedback gain matrix 

 Kxu =  (1.3) 

where K  is a matrix of dimension nm× , generating a closed-loop dynamics given by 

 xBKAx )( +=
•

 (1.4) 

 Let the dynamics after failure be given by 

 uBxAx ff +=
•

 (1.5) 
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 xCy f=  (1.6) 

where the new matrices fA , fB  and fC  model the changes in the system after failure.  

The new closed-loop after feedback be given by 

 xKBAx fff )( +=
•

 (1.7) 

where fK  is the new feedback matrix to be determined. Since the idea is to maintain 

the original closed-loop dynamics we have 

 )( BKAABK fff +−= ⊥  (1.8) 

where ⊥
fB  denotes the pesudo-inverse of ⊥B . These feedback matrices can be 

calculated for many anticipated failures. The main drawback of the method is that the 

stability of the reconfigured system is not guaranteed. Hence if the above approach is 

applied with no appropriate safeguard can lead to instability. The authors in [27] 

proposed a modified pseudo-inverse method.  

Authors using the frequency domain mixers and other embellishment have developed 

this method further [85, 86]. However, this method is ad hoc and doesn’t address the 

additional persistent disturbances that the failed actuators may cause. 

 Other authors have proposed multiple models, switching and tuning schemes [13, 

31]. Assuming that the controlled plant belongs to a set of plant models, a multiple 

model, switching and tuning design has several forms: one based all-fixed plant models, 

one based on all adaptive plant models, one based on fixed models and one based on 

adaptive model, and one based on fixed models with one free-running and one 

reinitialized adaptive model [63]. Among other things an all-fixed model design needs 

sufficient density of fixed models in the set of plant models. More recently, the authors 
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in [77] proposed an adaptive state feedback control approach to achieve plant-model 

state matching in the presence of actuator failures. Some actuators were assumed to fail 

and jam at any fixed position during the operation. The problem formulated in [77] was 

to adaptively adjust the remaining effective controls using the measured state 

information to achieve the plant-model state tracking without the knowledge of the 

system parameters and without knowing which and how many actuators have failed and 

at what fixed positions. The condition for the problem to be solvable is that the 

associated matching equations need to be satisfied. A drawback of the approach is that 

the online adaptive algorithms may require too much time and computation to react to 

the problem created by actuator failures. 

  Researchers have also used soft computing techniques to the problem of sensor and 

actuator failures. In [62] Neural networks are employed for sensor and actuator failure 

detection, identification and accommodation. The scheme for sensor accommodation 

consists of a main neural network and a set of many decentralized neural networks, one 

for each sensor in the flight control system without physical redundancy. The outputs of 

the main neural network are the estimates of the same parameters measured by the real 

sensors. Using thresholds on residuals the sensor failure can be detected. Similarly, 

actuator failure detection is based on spotting substantial changes in the aircraft angular 

velocities following any type of failure. The accommodation scheme involves the use of 

pretrained neural networks in the feedforward sense. The drawbacks for using such 

schemes on a commercial aircraft are the computational burden and the cost of 

verification of the scheme for certification. 
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 The key to practical reconfigurable schemes is to balance the many factors of 

computational complexity, verifiability, maintainability, reliability and cost for each one 

of the aforementioned. It is worthwhile to work with deterministic verifiable schemes 

for which stability and performance of the system is guaranteed before the control 

scheme is put on an aircraft. 

1.4. Contribution of the thesis  

 The subject of this thesis is to investigate and develop techniques of fault 

accommodation for fault-tolerant control. The thesis presents approaches to predesign 

of anticipated component failures of the control loop, which have been responsible for 

many a fatal crashes in the recent years. It uses verifiable well-understood techniques 

for designing controllers for anticipated failures. This greatly enhances the verifiability 

of the control scheme consequently reducing the cost of certification for commercial 

purposes. The connection of the actuator failure problem with the classical problem of 

regulator design with internal stability helps establish measures of redundancy that take 

into account hard constraints of magnitude saturations into account. The thesis also 

examines the role of nonlinearities in system dynamics when failures occur and the 

benefits of the nonlinear design strategy over that of a linear one in face of delays in 

failure detection and identification. It is shown that the nonlinear strategy may provide a 

larger window of safety by increasing the domain of attraction of the regulator. The 

symbolic computational tools for all the control calculations are developed and greatly 

enhance the applicability of the techniques to real systems.  
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Chapter 2. Predesign of controllers for sensor failures in aircraft 

 This chapter deals with the predesign of controllers for sensor failures. Most sensory 

data has some amount of noise in the measurement of the quantity. Robust filtering 

techniques have been developed and are used to generate reliable data from 

measurements[31]. When the sensory data becomes unreliable i.e. when the measurable 

quantities unrecoverable from the readings the controller must either find a way to 

estimate the quantity or work without the information. In this chapter we present ways 

to analyze the sensory redundancy using detectability as the governing system property, 

we also design a bank of observers with hierarchical switching logic to actively address 

sensor failures. 

 Sensors are used not only for feedback information but also for fault detection. In 

this chapter, we consider only the case where the sensors whose information is used by 

feedback controllers to make a control decision. The sensors for fault detection are 

addressed in available literature. The accepted definitions for fault detection are given 

by authors in [19], faults to be (strongly) detectable if it is possible to construct a 

residual generator that is sensitive to the (constant) fault while decoupling all 

disturbances. The calculations for linear systems rely on the well-established theory on 

polynomial matrices and rational vector spaces [48]. 

 For the case in which the sensory information is used for feedback the supervisory 

system must be capable of performing range checks and spectral checks on the data to 

detect the faulty sensors. Other methods for detecting failures can be encoded by 

studying real precedents of sensor failures. The design procedure for sensor failures also 
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gives a measure for redundancy in the sensory system for feedback. If a part of the 

system becomes undetectable for a sensor failure then it calls for hardware redundancy 

to accommodate the failure. This idea is made precise in the next section. 

2.1 Determining detectability for sensor failures. 

 Feasible observers can be designed only if adequate measurements are available to 

satisfy detectability conditions even after failures. Those sensor failures which the 

system becomes undetectable the designer can choose to include hardware redundancy 

to harden the system against such failures or a dummy set of expected values or a 

virtual model of the physical system [73]. Observability is the property of a system that 

enables complete choice in the dynamics of the state estimators. Observability can be 

defined in terms of determination of the initial state vector given the output 

measurements. Those modes that remain undetermined are called unobservable. 

Unobservable states have no effects on the outputs, and maybe viewed, as outside the 

system boundary, and they would be of no interest to control design except for system 

instability. Observability, is important for measurement selection and designing 

observers. Detectability is a property that can be understood as asymptotic 

observability. A system is detectable if all the unobservable modes of the system are 

stable. It follows that a linear dynamical system BuAxx +=
•

, DuCxy += , where 

nRx ∈ , mRu ∈  and pRy ∈ , also, A , B , C  and D  are constant matrices of 

appropriate dimensions, (or the pair ),( CA ) is state detectable if and only if there exists 

a matrix L  of appropriate dimensions such that )( LCA + has a spectral list belonging to 

the open left half of the complex plane, i.e. is stable (Hurwitz). Computations for 
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computing the observable modes and unobservable modes cab be accomplished using 

the well-known decomposition techniques. Finally detectability can be established by 

checking the stability of the modes associated with the unobservable part of the system. 

 If the system remains detectable when one or more sensors fail, one can design 

another controller with the reduced number of measurements using the same state 

feedback design. The design for observers is considered in the next section. 

2.2 Problem formulation and sensor failure models 

 The nominal plant G s( )  is described by the following linear dynamics equations, 

x t Ax t B w t B u t
•

= + +( ) ( ) ( ) ( )1 1 2  (2.1a) 

G s( )  : z t
z t
z t

C
x t

D
u tu

d
( )

( )
( )

( ) ( )= LNM
O
QP =
L
NM
O
QP + LNM

O
QP

1

2

1

120
0

 (2.1b) 

y t C x t v t D u t( ) ( ) ( ) ( )= + +2 22  (2.1c) 

where nRx ∈ is the state vector, w Rmw
1

1∈  the exogenous input vector to the system, 

u Rmu∈  the control input vector, z Rpz∈  the regulated signal vector, y Rpy∈  the 

measured output, and v Rpy∈  the measurement noise. A , 1B , 2B , C u1 , D d12 , 2C , and 

22D  are constant matrices of appropriate dimensions. The regulated vector z  consists of 

z1 and z2  where z Rpz
1

1∈  is the error to be minimized and z Rpz
2

2∈  represents the 

control-input constraints. Without loss of generality, w1 and v  are assumed white noises 

with the following covariances, 

 E w w I E vv V E w v NT
mw

T T( ) , ( ) , ( )1 1 1 1 1 1= = =  (2.1d) 



 
 

26 
where Imw1 is an identity matrix with dimension mw1, V1 a diagonal matrix of size py,   

and N1 an mw py1×  constant matrix. 

 When sensors fail the number of measurements )(ty  reduces and the relevant rows 

in the matrices 2C , 22D  and the vector v t( )  can be disregarded. The system is now 

given by 

  x t Ax t B w t B u t
•

= + +( ) ( ) ( ) ( )1 1 2  (2.2a) 

G s( )  : z t
z t
z t

C
x t

D
u tu

d
( )

( )
( )

( ) ( )= LNM
O
QP =
L
NM
O
QP + LNM

O
QP

1

2

1

120
0

 (2.2b) 

y t C x t v t D u t( ) ( ) ( ) ( )= + +2 22  (2.2c) 

 The quantities with the bar represent the change in the system due to sensor failures.  

 Also, the relevant covariances are given by  

E w w I E vv V E w v NT
mw

T T( ) , ( ) , ( )1 1 1 1 1 1= = =  (2.2d) 

 Now an optimal estimator can easily be designed by solving the relevant Riccati 

equation associated with the system given by equations (2.2) [22, 30]. 

2.3 Design of the observer using linear quadratic estimator design  

 To construct an observer for the states assuming that detectability conditions are 

met. The dynamics of the state estimates, x̂  are given by the following equation 

)()()()(ˆ)()(ˆ 2222 tLytuDLBtxCLAtx +−+−=
•

 (2.3a) 

where the observer gain or the output injection matrix L  is given by  

1
12

−= VCYL  (2.3b) 
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and Y  is the positive semi-definite stabilizing solution of the following algebraic Ricatti 

equation 

0)()() 11
1

1112
1

122
1

1112
1

111 =−+−−+− −−−− TTT BNVNIBYCVCYCVNBAYYCVNBA  

  (2.3c) 

 The eigenvalues of )( 2CLA − , the poles of the observer, are identical to the stable 

eigenvalues of following Hamiltonian matrix. 









+−+−

−−
= −−

−−

2
1

11111
1

111

2
1

122
1

111

)(
)(

CVNBABNVNIB
CVCCVNBA

H TT

TT

obs  (2.3d) 

2.4 A note on supervisory switching logic 

 A supervisory logic then needs to be designed based on a fault detection system. 

The fault detection system can rely on simple consistency checks for average value, 

limiting values, spectral nature of the data from the sensors. When a sensor fails the 

logic switches to the relevant observer starting the equations from the best available 

estimate i.e. the last credible value of the state. Additionally, the supervisor also should 

keep the pilot informed of all the changes in the system and alert him as to the 

unreliable measurements, if any. For cases a stable observer cannot be designed, 

changes in the hardware or ad hoc remedies using a dummy set of values; open-loop 

control may be resorted to. Alternatively, changes in the regulated variable or the 

definition of the system can also help. 
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2.5 Automatic carrier landing example 

 Consider the F/A-18A Automatic Carrier Landing System [72]. The longitudinal 

small perturbation equations of the F/A-18 A at 136 kts and an altitude of 50 ft with full 

flaps, i.e., those of the unimpaired system are given by 

wBuBAxx 21 ++=
•

 (2.4a) 

wDuDxCy 22212 ++=  (2.5b) 

 

where the system vectors are given by 

TVhqVux ]/        /[ θα= , T
PLRTLEFHu ]      [ δδδδ= , and   ]        [ T

4321 wwwww gα= .  The 

terms are explained in Table 2.1. 

 

Table 2.1. Explanation of the term in the F/18 A carrier landing model 

Term Physical quantity 

Vu /  Normalized Velocity 

α  Perturbed angle of attack (rad.) 

θ  Perturbed pitch angle (rad.) 
q  Perturbed pitch rate (rad/s) 

Vh /  Perturbed normalized altitude 

Hδ  Perturbed horizontal tail deflection 

LEFδ  Perturbed leading edge flap deflection 

RTδ  Perturbed rudder toe-in deflection 

PLδ  Engine power lever control angle 

gα  Incremental angle of attack 

41−w  Sensor noises 
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 The system matrices are given below 























−
−−

−−
−−−

=

0000.00000.00000.10000.10000.0
0000.02544.00000.01660.10218.0
0000.00000.10000.00000.00000.0
00102.099133.00000.03430.03110.0
000058.00000.01403.00475.00705.0

A  























−−

−−
=

0000.00000.00000.00000.0
0023.01681.00790.08150.1
0000.00000.00000.00000.0
0338.00128.00140.00721.0

2316.01690.000248.00121.0

1B  























−

−
=

00000
0000166.1
00000
0000343.0
00000475.0

2B  



















−
−

=

00010
001.00087.00343.0311.0

00110
10000

2C  



















−−
=

0000
0338.00218.0014.00721.0
0000
0000

21D  

 

 



















=

10000
0100343.0
00100
00010

22D
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 The general aim is to make the system sufficiently stable to keep the steady-state 

perturbed angle of attack near zero under a step vertical rate command. 

 Analysis for detectability for various cases of sensor failures reveals that the first 

measurement, perturbed normalized altitude is crucial for the design of stable observers. 

The case in which this sensor fails is therefore not considered for simulation. Observers 

for all other cases of failures can be designed. The calculations for the output injection 

matrices are conducted according to design strategy given in Section 2.3. Additionally, 

we use the same state feedback matrix based on linear regulator design to complete the 

controller design. 

 For the sake of simulation of the system, the carrier is given a step command in the 

vertical rate. In the cases, Figure 2.1 is the response of the angle of attack of system 

when all the four sensors are working fine. Figure 2.2 shows disastrous result of using 

the controller designed for the all the four sensors when the readings from 2nd and 4th 

sensors is corrupted by noise. In the third and fourth cases, shown in figures 2.3 and 2.4, 

the 2nd and 4th sensors and 2nd and 3rd sensors respectively, fail at time = 0. The 

hierarchical switch logic immediately switches it to a different controller and although 

the transient response of the closed-loop system is not as fast as the first case, it is 

acceptable. It is also seen for the cases shown in the figures 2.1, 2.3 and 2.4 the 

command signal is tracked fairly well too. It is seen here that multiple sensor failures 

can also be accommodated by the above approach. 
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.  

Figure 2.1.  Response of the system with all measurements 

 

 

Figure 2.2.  Response of the system with failed 2nd and 4th measurements but no 
hierarchical controller 
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Figure 2.3.  Response of the system with failed 2nd and 4th measurements with 
proposed hierarchical scheme 

 

Figure 2.4.  Response of the system with failed 2nd and 3rd measurements with 
proposed hierarchical scheme 
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2.6 Conclusion 

 In this chapter, the predesign of controllers for sensor failures was accomplished. 

Using detectability as the governing property of the system observers can be designed 

ignoring the measurements for anticipated sensor failures and utilized when the sensor 

failure occur. The more severe problem is that of actuator failure. For when an actuator 

fails it cannot be ignored. Also, in modern aircraft the sensory system has a greater 

hardware redundancy that the actuators. Sensor’s are also easier to maintain and are 

cheaper. Also, the failures are easier to diagnose and switching to a new observer 

doesn’t present great problems regards system stability, as the dynamics of state 

estimators are much faster than the dynamical system to be controlled. For these 

reasons, the rest of the thesis concentrates on the important problem of designing 

controllers to accommodate anticipated actuator failures. 
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Chapter 3. Predesign of controllers for actuator failures in linear 

systems 
 
 In this chapter, we consider the predesign of actuators for failed actuators. Other 

researchers as mentioned in section 1.3.3 of Chapter 1 have addressed the problem of 

control design for actuator failures. The most commonly used methods are ad hoc 

involving a control mixer. The mixer is a device responsible for distributing the control 

command signal to the actual physical effectors. When sensors fail they can always be 

ignored but actuator failures are more complicated than that.  

 Various actuator failure scenarios include partial failures, floating surfaces and 

jammed actuators. Partial failures of actuators can be addressed by rescaling the control 

law on the actuators. However, accurate failure identification is a must for rescaling and 

is generally not an easily accomplished if there are no direct measurements of the servo 

loop of the actuator. Floating surfaces present less of a problem determining the model 

of the failed system as the entire column with associated control variable disappears 

from the equations. This may severely restrict the redesign of the control law if 

adequate control authority is not available in the remaining effective actuators. 

However, the most common failure and mathematically most severe failures of an 

actuator is when it gets jammed due to hydraulic/mechanical/electrical failure at a 

possibly unknown position. 

3.1 Problem formulation for jammed actuators 

 In our proposed remedy to the problem caused by jammed actuators, we assume the 

information of which and how many actuators have failed can be detected although the 

jammed positions need not to be known. We also assume that the plant models for all 
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possible failure scenarios are given a priori. With these assumptions a set of controllers 

specifically tailored for their corresponding actuator failure scenarios are ready to work 

with the controller switching mechanism to accommodate every possible actuator 

failure. As mentioned before, the occurrence of actuator failures changes the structure 

of the plant model. The jammed actuators not only reduce the number of control inputs 

but also present persistent disturbances to the system. We employ the regulator theory 

[21, 25, 57, 80, 81] to address the persistent disturbance problem so that the steady-state 

response due to the persistence disturbance is zero. We will also use LQR (linear 

quadratic regulator) [22, 30] and LQE (linear quadratic estimator or Kalman estimator) 

[22, 30, 31] to respectively compute the state feedback gain and construct the observer 

that gives an estimate of the plant states and the persistent dynamics states. The state 

feedback gain and the observer determine the transient behavior of the system. 

 Consider the feedback control system shown in Figure 3.1 in which G s( )  is the 

nominal plant and K s( ) is the nominal controller that gives an optimal H2 closed-loop 

performance [22, 30]. 

 

 

 

 

Figure 3.1. The nominal closed-loop system 
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 The nominal plant G s( )  is described by the following linear dynamics equations, 

x t Ax t B w t B u t
•

= + +( ) ( ) ( ) ( )1 1 2  (3.1a) 

G s( )  : z t
z t
z t

C
x t
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u tu

d
( )

( )
( )
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O
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 (3.1b) 

y t C x t v t D u t( ) ( ) ( ) ( )= + +2 22  (3.1c) 

where nRx ∈ is the state vector, w Rmw
1

1∈  the exogenous input vector to the system, 

u Rmu∈  the control input vector, z Rpz∈  the regulated signal vector, y Rpy∈  the 

measured output, and v Rpy∈  the measurement noise. A , 1B , 2B , C u1 , D d12 , 2C , and 

22D  are constant matrices of appropriate dimensions. The regulated vector z  consists of 

z1 and z2  where z Rpz
1

1∈  is the error to be minimized and z Rpz
2

2∈  represents the 

control-input constraints. Without loss of generality, w1 and v  are assumed white noises 

with the following covariances, 

E w w I E vv V E w v NT
mw

T T( ) , ( ) , ( )1 1 1 1 1 1= = =  (3.1d) 

where Imw1 is an identity matrix with dimension mw1, V1 a diagonal matrix of size py,   

and N1 an mw py1×  constant matrix.  The nominal controller K s( ) is assumed to be an 

optimal H2 controller, i.e., it is the one that minimizes the following quadratic 

performance index 

 J
T

E z t z t dt
T

TT
= L

NM
O
QP→∞ zlim ( ) ( )1

0
 (3.1e) 

The nominal optimal H2 control solution can be found in [22,30]. 
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3.1.1. Change in the system due to actuator failure 

 In the following, we will investigate the structure change in the system caused by 

jammed actuators. This type of actuator failure is very common in practice; for example 

in the flight control of aircraft, some of the control surfaces may get stuck due to 

hydraulic, mechanical or electrical failure. The control input u  is partitioned into two 

parts and the controller is also divided into two parts accordingly as 

 u
u
u

f

e
= LNM
O
QP             and    K

K
K

f

e
= LNM
O
QP  (3.2) 

where  u Rf
muf∈  represents the failed actuators and u Re

mue∈  the remaining effective 

controls. 

 

 

 

 

 

Figure 3.2. The system with actuator failure 

 

When the actuator failure occurs, the system becomes that described in Figure 3.2. The 

input u f , which originally was connected to the controller output, now is a persistent 

disturbance vector generated by the integrators I smuf / , the weighting matrix W2 , and 
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ue

u f

u f

I s/W2
w2

z
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the white noise vector w2  with covariance E w w IT

muf( )2 2 = . The plant model now is 

changed to G sf ( ): 

x t Ax t B w t B u B u tf f e e

•
= + + +( ) ( ) ( ) ( )1 1 2 2  (3.3a) 

 z t
z t
z t

C
x t

D
u tu

de
e( )

( )
( )

( ) ( )= LNM
O
QP =
L
NM
O
QP + LNM

O
QP

1

2

1

120
0

 (3.3b) 

 y t C x t v t D u t D u tf f e e( ) ( ) ( ) ( ) ( )= + + +2 22 22  (3.3c) 

and the persistent disturbance model is described by 

 

u t W w tf

•
=( ) ( )2 2  (3.3d) 

In the above, B f2 , B e2 , D f22 , D e22 , and D de12  are obtained from the following partitions, 

B B Bf e2 2 2= ,    D D Df e22 22 22= ,   D D Dd df de12 12 12=  (3.3e) 

 Note that the system dynamics have been altered significantly because of the 

actuator failure. Continuing to use the nominal controller usually will lead to 

unacceptable performance or even system instability. A new controller is needed to 

accommodate the altered system dynamics. 

3.2. Regulator controller design to accommodate the actuator failure 

 The failed actuators not only reduce the number of effective controls but also 

introduce persistent disturbances to the system. A new controller using the remaining 

effective controls needs to be designed so that the close-loop system is internally stable, 

steady-state regulation takes place, and the quadratic performance index is minimized.  
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The steady-state regulation means that the error z t1( )  due to the persistent disturbance 

will approach to zero as t → ∞. 

 

 

 

 

 

 

Figure 3.3. Regulator controller design to accommodate the actuator failure 

 

3.2.1 Steady-state regulation 

 The block diagram of the proposed regulator controller to accommodate the actuator 

failure is shown in Figure 3.3. The condition for the existence of stabilizing controllers 

is that the system ( , , )A B Ce2 2  is stabilizable and detectable. As long as the closed-loop 

system is internally stable, the steady-state regulation will take place if W  and U  are 

chosen so that the following equations are satisfied [21, 76], 

 AW B B Uf e+ + =2 2 0  (3.4a) 

 C Wu1 0=   (3.4b) 

It is worthwhile to mention here that if the above regulator equations are 

underdetermined and further embellishment in order to introduce weighting or 

additional constraints in terms of the minimization of control for regulation can be 
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conducted to make the system of equations exactly determined. If however, these 

equations are overdetermined and no solutions exist then one cannot meet the zero error 

criterion and further tradeoff by of modification of the error variables is necessary.  The 

nature of the regulator equations provides a measure for assessing the redundancy 

available for reconfiguration. This is elaborated in the next chapter. 

 

3.2.2. Composite observer construction using linear quadratic estimator design 

 A composite observer will be constructed to generate $( )x t , the estimated plant state, 

and $ ( )u tf , the estimated disturbance dynamics state.  For this purpose, a composite 

system is formed as follows, 

 x t A x t B w t B u tc c c c c e

•
= + +( ) ( ) ( ) ( )1 2  (3.5a) 

 z t C x t D u tc c c e( ) ( ) ( )= +1 12  (3.5b) 

 y t C x t v t D u tc c e e( ) ( ) ( ) ( )= + +2 22  (3.5c) 

where 

x t
x t

u tc
f

( )
( )
( )=
L
NM
O
QP ,    w t

w t
w t

( )
( )
( )

= LNM
O
QP

1

2
 

A
A B

c
f= LNM
O
QP

2

0 0
, B

B
Wc1

1

2

0
0

= LNM
O
QP , B

B
c

e
2

2

0
= LNM
O
QP  (3.5d) 

C
C

c
u

1
1 0
0 0

= LNM
O
QP , D Dc

de
12

12

0
= LNM

O
QP , C C Dc f2 2 22=  

and w  and v  are white noises with the following covariances, 

E ww I E vv V E wv NT
mw

T T( ) , ( ) , ( )= = =  (3.5e) 
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where Imw  is an identity matrix with dimension mw mw muf= +1 , V  a diagonal matrix 

of size py,  and N  an mw py×  constant matrix. 

For the ease of presentation, we assume that ( , )A Cc c2  is detectable. With this 

assumption, a stable composite observer can be constructed as follows, 

 $ ( ) $ ( ) ( ) ( )x t A LC x t B LD u t Ly tc c c c c e e

•
= − + − +2 2 22b g b g  (3.6a) 

where the composite observer gain L  is 

 L YC Vc
T= −
2

1 (3.6b) 

and Y  is the positive semi-definite stabilizing solution of the following algebraic Riccati 

equation 

( ) ( ) ( )A B NV C Y Y A B NV C YC V C Y B I NV N Bc c c c c c
T

c
T

c c
T

c
T− + − − + − =− − − −

1
1

2 1
1

2 2
1

2 1
1

1 0
  (3.6c) 

 Note that the eigenvalues of A LCc c− 2 , the poles of the composite observer, are 

identical to the stable eigenvalues of the following Hamiltonian matrix 

 H
A B NV C C V C

B I NV N B A B NV Cobs
c c c

T
c
T

c

c
T

c
T

c c c
=

− −
− + − +

L
NM

O
QP

− −

− −
( )

( )
1

1
2 2

1
2

1
1

1 1
1

2
 (3.6d) 

3.2.3. Computation of the state feedback gain using linear quadratic regulator 
design 
 
 Define 

 Q C Cu
T

u= 1 1 ,     R D Dde
T

de= 12 12  (3.7a) 

Then the state feedback gain matrix F  can be computed as follows 
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 F R B Xe

T= − −1
2  (3.7b) 

where X  is the positive semi-definite stabilizing solution of the following algebraic 

Riccati equation 

 A X XA XB R B X QT
e e

T+ − + =−
2

1
2 0 (3.7c) 

Note that the eigenvalues of A B Fe+ 2 , the regulator poles, are identical to the stable 

eigenvalues of the following Hamiltonian matrix 

 H
A B R B
Q Areg

e e
T

T=
−

− −
L
NM

O
QP

−
2

1
2  (3.7d) 

 

 

3.2.4. State-space realization of the regulator 

 From the interconnection of Figure 3.3 and the composite observer dynamics given 

by Eq. (3.6a), we have the following state space realization for the regulator controller 

K se ( ): 

 x t A x t B y tK K K K

•
= +( ) ( ) ( ) (3.8a)

 u t C x te K K( ) ( )=  (3.8b) 

where 

 B LK =  (3.8c) 

 C F U FWK = −  (3.8d) 

 A A LC B LD CK c c c e K= − + −2 2 22( )  (3.8e) 
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The state vector of the controller, x tK ( ), is the same as that of the composite observer, 

$ ( )x tc . It is easy to show that the closed-loop systems poles are the eigenvalues of 

A B Fe+ 2 , the regulator poles, and those of A LCc c− 2 , the composite observer poles. 

Note that there are n  regulator poles and composite observer n muf+  poles, where n  is 

the order of the plant and muf  is the number of failed actuators. 

 In the next section, an F/18-A automatic carrier landing system undergoing actuator 

failures is employed to illustrate the proposed design procedure. 

3.3 An F/A 18-A automatic carrier landing system with actuator failures 

 In the aircraft flight control system the number of control surfaces or thrust 

vectoring actuators usually exceeds the number of control inputs that is necessary for 

the system to be controllable. This redundancy in control actuation may be utilized for 

controller reconfiguration allowing the aircraft to deliver acceptable performance even 

when some of the control surfaces get stuck at any fixed position during operation. 

3.3.1 Nominal plant 

 In this section, the proposed regulator controller design is applied to an aircraft 

landing system with an actuator failure. The nominal plant is again taken from [72] and 

is a F/A 18-A aircraft in a landing maneuver onto a carrier. The system matrices for the 

nominal plant, which is the longitudinal small perturbation equations of F/A-18A at 136 

kts and an altitude of 50 ft with full flaps, are given as 

 x t Ax t B w t B u t
•

= + +( ) ( ) ( ) ( )1 1 2  (3.9a) 

  z t
z t
z t

C
x t

D
u tu

d
( )

( )
( )

( ) ( )= LNM
O
QP =
L
NM
O
QP + LNM

O
QP

1

2

1

120
0

 (3.9b) 



 
 

44 
y t C x t v t D u t( ) ( ) ( ) ( )= + +2 22  (3.9c) 

where 

A =

− − −
− −

− −
−

L

N

MMMMMM

O

Q

PPPPPP

0 0705 0 0475 0 1403 0 0 000058
0 3110 0 3430 0 0 99133 0 00102

0 0 0 1 0
0 0218 11660 0 0 2544 0

0 1 1 0 0

. . . .

. . . .

. . .
 

B1

0 0475
0 343

0
1166
0

=
−

−

L

N

MMMMMM

O

Q

PPPPPP

.
.

.
,     B2

0 0121 0 00248 0 1690 0 2316
0 0721 0 0140 0 0128 0 0338

0 0 0 0
18150 0 0790 0 1681 0 0023

0 0 0 0

=
− −

− −

L

N

MMMMMM

O

Q

PPPPPP

. . . .
. . . .

. . . .
 

C u12
5 17 0 0 0

0 0 0 0 35
=

−L
NM

O
QP ,       D d12

0 075 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0

=

L

N

MMMM

O

Q

PPPP

.
.

.
.4

 

C2

0 0 0 0 1
0 1 1 0 0

0 311 0 343 0 0 0087 0 001
0 1 0 0 0

=
−

−

L

N

MMMM

O

Q

PPPP. . . .
,  

D22

0 0 0 0
0 0 0 0

0 0721 0 014 0 0218 0 0338
0 0 0 0

=
− −

L

N

MMMM

O

Q

PPPP. . . .
 

and w1 and v  are assumed white noises with the following covariances, 

 E w w E vv V E w v NT T T( ) , ( ) , ( )1 1 1 1 11= = =  (3.9d) 
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where V diag1

21 1 1 0 343 1= +, , . ,n s and  N1 0 0 0 343 0= . . 

 The F/A 18-A has five pairs of aerodynamic control surfaces: stabilators, rudders, 

ailerons, leading-edge flaps, and trailing edge flaps. The twin vertical stabilizers, with 

trailing edge rudders, are canted outboard at approximately 20° from the vertical. Being 

a modern day aircraft the flight control system features measurements from a redundant 

production sensor sets and air data. The actuation of the aircraft surfaces is provided by 

redundant hydraulic systems and so it is highly unlikely that all the control surfaces fail 

at the same time. The magnitude and rate saturation for the relevant control surfaces is 

given in [44] and the relevant ones are reproduced here in Table 3.1. 

 

Table 3.1 Rate and magnitude saturations of the aircraft actuators 

 

Surface Magnitude Saturation (deg.) Rate Saturation(deg/sec) 

Stabilator: 

Trailing edge up (+) 24 40 

Trailing edge down (-) 10.5 40 

Leading edge flap: 

Up (+) 3 15 

Down (-) 33 15 

Rudder: 

Trailing edge left (+) 30 82 

Trailing edge right (-) 30 82 
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 The reconfigurable controller has to be designed to accommodate the complete 

failure of the leading-edge flaps and the rudder of the aircraft. 

3.3.2. Change in the system due to actuator failure 

 Now we assume that the 2nd and 3rd controls of the control input vector, u t( ) , fail 

and jam at an unknown position while the 1st and 4th controls are still effective. The 

failed controls are represented by u f , which now act like persistent disturbances, and 

the remaining effective ones by ue . The plant now has been changed to that described as 

in Eq. (3.3 a, b, c) where 

 

B f2

0 00248 0 1690
0 0140 0 0128

0 0
0 0790 0 1681

0 0

=
−

L

N

MMMMMM

O

Q

PPPPPP

. .
. .

. .
, B e2

0 0121 0 2316
0 0721 0 0338

0 0
18150 0 0023

0 0

=
− −

−

L

N

MMMMMM

O

Q

PPPPPP

. .
. .

. .
 (3.10a) 

 

D de12

0 075 0
0 0
0 0
0 0

=

L

N

MMMM

O

Q

PPPP

.

.4

,     D e22

0 0
0 0

0 0721 0 0338
0 0

=

L

N

MMMM

O

Q

PPPP. .
,      D f22

0 0
0 0

0 014 0 0218
0 0

=
− −

L

N

MMMM

O

Q

PPPP. .
 

  (3.10b) 

The persistent disturbance model is described in Eq. (3.2-3.3d) where w2  is assumed a 

white noise with covariance E w w IT( )2 2 2=  and W2  is a weighting matrix chosen to be 

W I2 23= . 
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3.3.3. Regulator controller design to accommodate the actuator failure 

 The block diagram of the controller is shown in Figure 3.3. The first step is to check 

if the failed-actuator system ( , , )A B Ce2 2  is stabilizable and detectable, which is the 

necessary and sufficient condition of the existence of stabilizing controllers for the 

system. Using PBH rank test [48], it is easy to find that ( , , )A B Ce2 2  is controllable and 

observable. 

3.3.3.1 Steady-state regulation 

 The steady-state regulation takes place if W  and U  are chosen so that the equations 

of (3.4) are satisfied. The steady-state regulation means that the error response z t1( )  due 

to the persistent disturbance at u f  will approach to zero as t → ∞. A solution of (3.4) 

can be found as follows, 

 

W =

L

N

MMMMMM

O

Q

PPPPPP

0.04211270800091091 0.07496200503388845
0.012386090588503209 0.022047648539378954
0.012386090588503209 0.022047648539378954

0 0
0 0

 (3.11a) 

U = LNM
O
QP

-0.050965140412176015 0.07846372577233009
0.009736845076272217 -0.70215271132341

 (3.11b) 

 

3.3.3.2 Composite observer construction using linear quadratic estimator design 

 To construct a composite observer for $( )x t  and $ ( )u tf , the composite system is 

formed as in Eq. (3.5) with which w  and v  are white noises with the following 

covariances, 
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 E ww I E vv V E wv NT T T( ) , ( ) , ( )= = =3  (3.12a) 

where V diag= +1 1 1 0 343 12, , . ,n s and 

 N =
L

N
MMM

O

Q
PPP

0 0 0 343 0
0 0 0 0
0 0 0 0

.
 (3.12b) 

It is easy to see that the composite system is observable.  A stable composite observer 

can be constructed as 

 $ ( ) $ ( ) ( ) ( )x t A LC x t B LD u t Ly tc c c c c e e

•
= − + − +2 2 22b g b g  (3.13a) 

where the composite observer gain L  is 

 L YC Vc
T= −
2

1 (3.14b) 

and Y  is the positive semi-definite stabilizing solution of the algebraic Riccati equation 

in Eq. (3.2-3.6c).  With this composite observer gain L , the composite observer poles or 

the eigenvalues of A LCc c− 2  are 

{ -0.6622  1.1368i± ,   -0.3057  0.5960i± ,  -0.5423  0.2010i± ,  -0.1309 }  (3.15) 

 

 

3.3.3.3 Computation of the state feedback gain F using linear quadratic regulator 

design 

 The state feedback gain F can be found using 

 F R B Xe
T= − −1
2  (3.16) 
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where X  is the positive semi-definite stabilizing solution of the algebraic Riccati 

equation in Eq. (3.7c). With this state feedback gain F , the regulator poles or the 

eigenvalues of A B Fe+ 2  are 

{ -16.8703 11.3696i± ,  -1.2612  1.7704i± ,   -1.7641}  (3.16a) 

 

3.3.3.4 State-space realization of the regulator controller 

 From the interconnection of Figure 3.3 and the composite observer dynamics given 

by Eq. (3.6a), we have the following state space realization for the regulator controller 

K se ( ): 

 
x t A x t B y t

A LC B LD F U FW x t Ly t
K K K K

c c c e K

•
= +

= − + − − +

( ) ( ) ( )

( ) ( ) ( )2 2 22m r
 (3.17a) 

 u t F U FW x te K( ) ( )= −  (3.17b) 

where the composite observer gain is 

L =

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

0.5098 0.9203 0.7197 0.1257
0.0167 0.0673 0.2026 0.8371
0.4880 0.6275 0.5385 0.9044
0.1674 0.2151 0.1109 0.6718
0.8384 0.4713 0.1244 0.0167
0.5103 0.8887 0.6321 -2.7392
0.8598 1.8569 1.7314 1.2092

 (3.17c) 

and the regulator gain is 

F = LNM
O
QP

-57.9344 127.7988 99.5565 12.5596 102.4137
-10.0780 68.3006 -65.9201 -2.4374 -85.3418

 (3.17d) 
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With this controller realization, it is easy to verify that the set of the closed-loop system 

poles, 

-16.8703 11.3696i,  -1.2612 1.7704i,  -1.7641,  - 0.1309
-0.6622 1.1368i,  - 0.3057 0.5960i,  - 0.5423 0.2010i 

± ±
± ± ±

RST
UVW (3.18) 

includes the composite observer poles 

{ -0.6622  1.1368i± ,   -0.3057  0.5960i± ,  -0.5423  0.2010i± ,  -0.1309 } 

and the regulator poles 

{ -16.8703 11.3696i± ,  -1.2612  1.7704i± ,   -1.7641} 

With this controller, the error response z t1( )  due to the persistent disturbance u tf ( )  is 

shown in Figure 3.4. 

 

 

 

 

 

 

 

Figure 3.4.  Error response z t1( )  due to step input at u f  
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 Note that the error response z t1( )  due to the persistent disturbance input at u f  will 

approach to zero as t → ∞.  The transient behavior is determined by the composite 

observer gain L  and the state feedback gain F , which in turn depend on the choice of 

weighting matrices. The transient behavior of the error response due to u f  can be traded 

off with the control-input constraint or the system performance concerning other 

exogenous inputs. 

3.4 Conclusion 

 In this chapter, the predesign for controllers for actuator failure was considered. The 

design was accomplished using the well-established regulator theory with internal 

stability. It is worthwhile to note that the example presented multiple actuator failures 

were overcome using the design procedure. In comparison the most widely used 

procedure, that of control mixer or pseudo-inverse method could not overcome such 

failures completely. The theory allows the controller to utilize the system dynamics in 

addition to the redundancy in the control actuation for the purpose of output regulation. 

The natural extension of this design procedure would be to analyze and synthesize fault-

tolerant systems. The reduction in control authority can also be addressed by using the 

computed matrices from the regulator equations. This forms the subject of next chapter. 
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4. Characterizing redundancy in systems with actuator failures. 

 
 Redundancy can be understood as the addition of resources beyond those needed for 

nominal operation. In modern day aircrafts redundancy is provided in terms of same or 

similar hardware/software/data components. This notion of duplex/triplex/quadruplex 

redundancy albeit expensive does help in providing the increase in safety by allowing 

the system to perform even when some of the components fail [67]. The notion of 

analytical redundancy like that used in model based methods for failure detection and 

identification have also proved useful [29]. These notions are however insufficient 

when it comes to describing the redundancy with respect to actuator failures. Authors in 

[82] have made an attempt to define “Control reconfigurability” trying to capture the 

transparency needed to design an effective feedback controller. They measure the 

redundancy in connection with feedback control by assuming that the foreseeable faults 

are parameterized in the model of the process. The change in the smallest second order 

mode, which is taken to be a measure of combined controllability and observability, this 

is the potential of the system to maintain or meet a certain performance criterion 

through control reconfiguration at the occurrence of the worst fault in the fault 

parameter space. Since the definition requires the parameterization of faults this 

definition works only for systems with partial failures in actuation. However, when an 

actuator gets stuck in possibly non-zero position there may be drastic changes in the 

input output structure as seen in the last chapter. This chapter develops a way to 

characterize redundancy for systems undergoing complete failures of actuators. 

 It has known that the existence of solution to the coupled matrix equations(regulator 

equations) along with the conditions for stabilizability and detectability give not only 
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the sufficient, but also the necessary conditions to design a control to meet the zero 

error objective. This idea can then be developed to define what redundancy the system 

might have with regards to stuck actuators. In the following development the systems 

are considered so as not to include the zero mean variables associated with white noise 

and the feedforward measurements. Addtionally, the failures are restricted to single 

failures however the discussion could easily be generalized to multiples failures. 

4.1. Using regulator conditions to establish reconfigurability with respect to 

actuator failures. 

 Consider then the systems for which the failure models are given by 

x t Ax t B u B u tf f e e

•
= + +( ) ( ) ( )2 2  (4.1a) 

 z t
z t
z t

C
x t

D
u tu

de
e( )

( )
( )

( ) ( )= LNM
O
QP =
L
NM
O
QP + LNM

O
QP

1

2

1

120
0

 (4.1b) 

 y t C x t( ) ( )= 2  (4.1c) 

 Additionally, the dynamics of the persistent dynamics caused by the failed actuator 

is given by 

 0=
•

fu  (4.1d)  

Since, in the above equations we restrict fu  to be a scalar, the column associated with 

it, fB2 is a vector. 

The necessary and sufficient conditions for output regulation for output regulation are 

given by 

1. ),( 2eBA  is stabilizable. 

2. ),( 2CA  is detectable. 
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3. There exist two matrices W  and U  of appropriate dimensions that are solutions to 

the following matrix equations 

 fe BUBAW 22 −=+  (4.2a) 

 01 =WC u  (4.2b) 

or 

 






 −
=
















00

2

1

2 f

u

e B
U
W

C
BA

 (4.2) 

If any of the conditions are not met then the goal of 0)(1 →tz  as ∞→t  cannot be met 

[80]. It is useful then to examine how these conditions might not be satisfied. 

 The first condition fails when the column fB2  is instrumental in stabilizing an 

unstable mode and the span of eB2  doesn’t include fB2 . If the matrix associated with 

the remaining functional controls contains the column associated with the failed control 

in it’s span then the effect of failed control on stabilizability can be overcome. 

The second condition doesn’t depend upon the failed controls in any way hence if the 

original system is detectable then the failed system remains detectable and this 

condition is satisfied automatically. 

 Finally, if the system remains stabilizable and detectable but no W  and U  exist that 

satisfy the two given equations, the outputs )(1 tz  cannot be regulated to zero if fu  is 

not zero, i.e., the actuator fails at a non-zero position. The solvability of the matrix 

equations can also be understood in geometric terms as the requirement of finding an 

),( 2eBA  invariant mapping in the kernel of uC1 . The first matrix equation is associated 

finding the linear map fWux =  that is rendered locally invariant by the feedback law 
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fUuu = . The second equations represents the kernel calculations associated with the 

output matrix. Together the conditions imply that the variable fu  can be made not to 

affect the output variables 1z  in the steady state. The existence of solution implies that 

the set of linear equations given by 4.2 are undetermined or exactly determined. If the 

system is underdetermined they can be made exactly determined by imposing additional 

constraints, like the reduction of the weighted norms associated with the matrices W  

and U . This may be done to get a unique solution for these matrices. 

 These important conditions are considered by other authors as changes in the zero 

structure and the relative degree of the system with and without the persistent 

disturbance dynamics [80]. These conditions presented here are also equivalent to the 

matching conditions presented in geometric terms in [77] for the design of adaptive 

controllers. However, when the conditions are presented as here they lead to two 

interesting extensions, one to address the required control authority in the effective 

controls to overcome failure and the generalization to nonlinear systems, which form 

the subject of the next chapter. 

4.2. Addressing loss of control authority 

 All physical actuators have magnitude and rate restrictions. The discussion here is 

restricted to magnitude saturations. In this section, we seek to determine how much 

control authority is needed in the functioning actuators in order to overcome the failed 

controls assuming that the three conditions for output regulation are met if the 

magnitude saturations for the failed control are known. Consider that for nominal 

operation ],[ maxmin fff uuu ∈ , i.e., maxmin fff uuu ≤≤ . The control then can fail at any 
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value between the two extreme values. This implies the additional need for control 

authority in the functional control is the difference between the extreme values 

min)( fuUKW −  and max)( fuUKW − . 

4.3. Examples 

 Consider then the example taken from [82]. The unimpaired model has a state space 

description given as 

 )()()( tButAxtx +=
•

 

 )(tCxyz ==  

where 



















−−
−

−−−−

=

0100
063.27.110123.0
0983.09.10

1.329.186.360226.0

A , 



















−
−

=

0
4.22

0
0

0
8.77

414.0
0

B  and 









=

73.5000
0073.50

C . 

 The above plant has fours states: physically they represent forward velocity, angle 

of attack, pitch rate and pitch angle. The plant model has two inputs: elevon command 

and canard command. The two outputs to be regulated are also the measurements: angle 

of attack and pitch angle. It can be shown that using one column at a time the above 

system remains stabilizable and detectable but the regulator equations wind up being 

overdetermined and hence no solutions exist. This implies we cannot meet the objective 

of regulating both the variables of the output if the failures of the actuators occur at non-

zero positions. The only resort then is to change the system design by adding additional 

controls or by relaxing the control objectives. One way to relax the control objective 
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would be to combine the angle of attack and the pitch angle into a single variable. In 

this case it makes physical sense to take the difference between the two variables and 

define the flight path angle and make that the regulated variable. It is then seen that the 

following matrices for the regulation can be calculated for the failure associated with 

the second control, i.e. the canard command. 

 

















 −

=

07274.0
0

07274.0
104.221

W  and [ ]33381.0−=U  

 This means that we can regulate the flight path angle to zero but each of the 

variables composing the flight path angle cannot be each regulated. If we want to 

continue to regulate both variable additional actuators are needed in the system. 

Additionally, the extra requirement in control authority to regulate the variable can be 

easily calculated. 

 In the example of the F/A-18 A aircraft in a carrier landing maneuver given in the 

last chapter it can be shown that failure of any two actuators not involving the stabilator 

can be overcome by the system. However, for the failure of the stabilator although one 

can solve the regulator equations the control authority required in the remaining 

actuators is prohibitive if the failure occurs at a value away from the zero position. This 

can be shown by comparing the extreme values with available authority given earlier in 

Table 3.1. 

4.4. Conclusion 

 In this chapter, the necessary and sufficient conditions for regulation are developed 

to determine the amount of redundancy required in systems to completely over failed 



 
 

58 
actuators. This analysis can be very useful in synthesizing fault-tolerant systems and 

assessing the amount of control authority required to overcome failures in which the 

surface get stuck. The analysis is demonstrated on one example taken from literature 

and the analyzing control authority issues for the example given in the previous chapter. 

These ideas can be further developed to arrive at measures of redundancy in the 

dynamical sense for actuator failures. The advantage that the regulator design gives 

over the previous methods of control design for actuator failures is clearly demonstrated 

using these ideas for redundancy management. Regulator design the entire system with 

the input-output structure is used to overcome failures. All the calculations are easily 

verifiable and allow the engineer to make smart choices when designing the system. 
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Chapter 5. Predesign of controllers for actuator failures in nonlinear 

systems 
 Chapter 3 provides a regulator approach to predesigning control for linear systems 

with stuck actuators. In presented regulator design provides necessary and sufficient 

conditions for the design of controllers for linear systems but also addresses transient 

performance when the system is trying to reconfigure. 

 As mentioned earlier an important component of a fault tolerant system is the fault 

detection and identification mechanism. Approaches to reconfigurable control provide 

hierarchical switching mechanisms that switch to a controller designed for the impaired 

system when the failures are detected. It usually takes some time before the actuator 

failure is correctly diagnosed by the fault detection and identification mechanism. 

During this time the impaired system continues to operate with the original but now 

inappropriate controller. 

 If the faults are detected immediately the linear control techniques may suffice since 

the system states are close to the linear region. However, delays in the detection may 

cause significant excursion of the states. In many cases, nonlinearities in the aircraft 

dynamics may cause the linear design to be rendered inappropriate. Nonlinear 

regulators may provide larger domains of stability providing a larger window of safety 

in face of delays in detection and identification. 

 

5.1. Formulation of the nonlinear actuator failure problem 

 
 In this section, we consider the actuator failures of nonlinear systems. We consider 

systems of the form 
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),( uxfx =
•

 (5.1) 

with state x  defined in the neighborhood X  of the origin in nR  and the input mRu ∈ , 

We also assume that 0)0,0( =f . We also have a set of output variables that we are 

trying to regulate given as  

)(xhe =  (5.2) 

where pRe ∈ . 

we consider only the case in which some of the controls get stuck at a particular 

position. We consider the value at which the controls get stuck is available for feedback 

by measurement. 

 Let ff Uu ∈ represent the set of failed controls and ee Uu ∈ the set of effective 

controls after failure. The dynamics of the plant and the output equation can now be 

rewritten as  

),,( ef uuxfx =
•

 (5.3) 

)(xhe =  (5.4) 

 Since the actuators represented by the control inputs fu are stuck they can be 

thought of as outputs of a dynamical system given as 

0=
•

fu  (5.5) 

Note: UUU fe =×  

Equations (5.3), (5.4) and (5.5) then form the basis of control design for the impaired 

system. We are interested in designing a control strategy for the effective controls as a 

function of the states and the position of the failed controls i.e.  
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),( fe uxu α=  (5.6) 

Problem Statement: Given a nonlinear system of the form (5.3) and the disturbance 

dynamics of failed actuators given by (5.5), find, if possible, a mapping of the form 

(5.6) such that  

the equilibrium 0=x  of  

))0,(,0,( xxfx α=
•

 (5.7) 

is asymptotically stable in the first approximation, 

and there exists a neighborhood fUXV ×⊂  of (0,0) such that, for each initial 

condition Vux foo ∈),( , the solution of )),(,,( ff uxuxfx α=
•

 satisfies 

0))(),((lim =
∞→

twtxh
t

. (5.8) 

Note: Since the stability of the equilibrium in the first approximation of the closed loop 

system is demanded, the stabilizability of the linearized system is a requirement. 

In the following section the design of nonlinear regulator for the systems are described. 

The linearization of the system described by equation (5.3) about the origin results in 

equations of the form.  

eeff uBuBAxx ++=
•

 (5.9) 

where 
0,0,0 ===∂

∂=
ueufxx

fA , 
0,0,0 ===

∂
∂=

ueufxf
f u

fB , 
0,0,0 ===

∂
∂=

ueufxe
e u

fB . In addition the 

output equation also needs to be linearized to get 

Cxy =  (5.10) 
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where 
0=∂

∂=
xx

hC . 

As is seen earlier the necessary and sufficient conditions for the design of a linear state 

feedback regulator are  

1. The pair ),( eBA  is stabilizable 

2. There exist two matrices W  and U  such that the following equations are satisfied. 

fe BUBAW −=+  (5.11) 

0=CW  (5.12) 

or 






 −
=








00

fe B
W

BA
 

The design is then completed using the linear quadratic theory to design a state 

feedback gain matrix K , that minimizes a weighted quadratic norm formed using the 

states and the functional controls. For details of the linear design the reader is referred 

to earlier chapter. 

 

 

 

 

 

Figure 5.1. Schematics for the full information linear regulator for actuator failure 

The matrices are then used to put together the feedback controller as shown in figure 

5.1. 

 

),,( ef uuxfx =
•

W

K

U

- 

)(te
fu

x

eu
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5.2 Nonlinear regulator design to address actuator failures 

 Theorem: The full information feedback problem is solvable if and only if the pair 

),( eBA is stabilizable and there exist mappings )( fux π= and )( fucu = , with 

0)0( =π  and 0)0( =c , both defined in the neighborhood of the origin, satisfying the 

conditions 

0))(,),(( =fff ucuuf π  (5.13) 

0))(( =fuh π  (5.14) 

for all fu . 

For the proof of the above theorem the reader is referred to [46]. The above conditions 

can be understood as a special case of the output regulation in the case of full 

information. 

 Note that the conditions (5.13) represent the fact that there exists a submanifold 

contained in fUXV ×⊂  namely a graph of the mapping )( fux π= , which is rendered 

locally invariant by means of a suitable feedback law, namely )( fucu = . The equations 

(5.14) express the fact that the error map, i.e. the output of the system, is zero for every 

initial condition 0)0( xx = and 0)0( ff uu = in the neighborhood of the origin. Again it 

can seen that the search involves finding a mapping that is locally invariant and lies in 

the kernel of the output. 

 Equations (5.13) and (5.14) are in general nonlinear algebraic equations that must be 

solved for the mappings )( fuπ and )( fuc . It may not always be possible to solve for 
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these mappings explicitly. In order to calculated we can assume the required mappings 

to be power series in the variable fu  as follows 

...)( 3
3

2
210 ++++= ffff uuuu πππππ  (5.15) 

...)( 3
3

2
210 ++++= ffff ucucuccuc  (5.16) 

The conditions 0)0( =π  and 0)0( =c give us the first coefficients of the series  

i.e. 00 =π  and 00 =c  (5.17) 

 Using the expressions from (5.15) and (5.16) along (5.17) in the equations (5.13) 

and (5.14) we obtain power series expressions that are needed to be solved for the 

coefficients 1π , 2π , … and 1c , 2c , …It turns out that the coefficients of the power 

series obtained by the above substitution can solved.  

 The full information nonlinear regulator can then be put together as shown in Figure 

5.2. 

 

 

 

 

 

 

Figure 5.2: Schematics of the full information nonlinear regulator for actuator 
failure. 
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 The above design procedure is made clear by an example of the longitudinal 

dynamics of an airplane in the next section. The solutions to the regulating functions 

can be obtained to any order desired.  

5.3. The example of longitudinal dynamics 

 In this section we design linear and nonlinear regulators for the longitudinal 

dynamics of an aircraft. The purpose of the controller is to maintain a zero flight path 

angle in face of complete elevator failure.  

The nondimensional equation of motion for aircraft can be written by normalizing the 

three equations: linear momemtum balance in the body X axes, linear momemtum 

balance in the Z direction and angular momemtum balance in the body X-Z plane, by 

choosing a appropriate nominal velocity.  The development of the model follows the 

same by authors in [52].  

 The nondimensional equations can be written as follows  

Cos Sin Sin
Sin Cos Cos d

d
q

Sin Sin Sin Cos
Cos Cos Sin Sin

q
v l
gr

Cos Cos cv
mgr

q

w t t

w t t

w w t t

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

α υ α υ α
α υ α υ α

τ

υ
α
θ

θ α α α
θ α α α

κ α κ α

−
−

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
=

− + + + −
− − −

+ − − −

L

N

MMMMM

O

Q

PPPPP

0
0

0 0 1 0
0 0 0 1 10

2

2
0

2

Λ Λ Π ∆
Λ Λ ∆

Σ Λ Λ

 

 Where, υ  is normalized velocity, α  the angle of attack, θ  is the pitch angle, q  the 

nondimensional pitch rate, α t  is the tail angle of attack and is related to the angle of 

attack α , tail angle downwash angle it  and elevator deflection δ e  via a relation  

α α ε δt t ei= + − +  

 The equations are written in nondimensional time, τ := g
v

t
0

 where g  is the 

gravitational acceleration, v0  the nominal velocity and t  is time. Also, κ  is a 
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nondimensional parameter for the center of gravity location, Λw , Λ t , ∆  and Σw  are 

nondimensional lift forces, drag force and moment which take the following form. 

Λw wf= ( )α ρυ 2  

Λ t tf= ( )α ρυ 2  

∆ = +( [ ( )] )a b fw α ρυ2 2  

Σw w= σ α ρυ( ) 2 

 In order to use the above model for illustrative purposes a complete set of 

aerodynamic properties must be defined. We choose characteristic values that 

correspond to hypothetical, subsonic, jet transport flying at high altitude. For more 

details see sections 9.1-9.4 of [23]. We choose 

ρ =1, ε = 0, σ αw ( ) = 0, a = 0 05. , b = 0 05. , fw ( ) . ( )α α α α
α

= − −2 08 0
3

0

, 

fw
e e( ) . ( ) ( )α α α δ α α δ

α
= − + − − +0 1 30 0

3

0

 with α 0 0 05= . , v l
gr

0
2

2 300= , cv
mgr

0
2 8= , 

κ = 0.  

Under nominal operating conditions control inputs are the elevator deflection δ e  and 

thrust input Π . We are to design state feedback controllers that regulate the flight path 

angle given by γ α θ= −  and γ = 0 corresponds level flight. 

For control design we assume the linearisation of the of the above model about the 

equilibrium given by δ e = 0 0005. , Π = 0 1. , υ =1 0. , α = 0 0495. , θ = −0 0495. , q = 0 0. .  

The control before the switch to the regulator is made can be formed by designing a 

linear quadratic regulator using the equations formed by linearizing the equation for the 

dynamics about the above equilibrium. 
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Using identity matrices of appropriate dimensions for the weighting matrices we can 

calculate the feedback matrix for nominal operation and is given by 

K
e

=
− −
− −
L
NM

O
QP

−0 779181 0 030292 0 361829 0 566283
0 325643 0 923677 1 26007 0 987161

4. . . .
. . . .

  

 Now consider the predesign for a stuck elevator. The Taylor linearized model for 

the impaired system is given by equations of the form (5.9) and (5.10) with  

A =

− −
− −

−
− −

L

N

MMMM

O

Q

PPPP

0 10024 0 981453 0 995104 0
1 98016 22 1987 0 0988384 1

0 0 0 1
0 599 25 0 8

. . .
. . .

.

 

Be =
−
L

N

MMMM

O

Q

PPPP

0 998775
0 0494798

0
0

.

.
 and Bf =

−

−

L

N

MMMM

O

Q

PPPP

0 0010
2 0
0

599 25

.
.

.

 

 

C = −0 1 1 0  

The solution to linear regulator equations (5.11) and (5.12) for the above linearized 

model is given by 

W =
−
−

L

N

MMMM

O

Q

PPPP

10 1256
1 0
1 0

0 0

.
.
.
.

 and U = 1 00157. . 

 The feedback matrix that minimizes the norm again with weighting matrices chosen 

to be identity matrices is given by 

K f = -1.8109 0.183034 -1.83687 0.0146075  
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 For nonlinear design it is almost impossible to do all the calculations by hand. 

Symbolic computation packages like Mathematica® have to be employed to make the 

design feasible.  

eqns= Simplify@Inverse@88Cos@αD,−νSin@αD, νSin@αD,0<,8Sin@
αD,νCos@αD, −νCos@αD,0<,80,0,1, 0<,80,0,0,1<<D D.88−Sin@θD + LambdaWSin@αD +LambdaTSin@αtD +Th− δCos@αD<,8Cos@θD − LambdaWCos@αD − LambdaTCos@αtD −δSin@αD<, 8q<,8V0 Hσw+ κ LambdaWCos@αD − H1−κL LambdaTCos@αtDL −Cv0q<<;  

LambdaW= fwρ ν^2; LambdaT= ftρ ν^2;fw =
α−2.08Hα − α0L^3

α0
;

ft= 0.1 
Hα − α0+δeL −3Hα − α0+ δeL^3

α0
;

δ = Ha+ b HfwαL^2L ρ ν^2;

σw= 0;

eqns1= eqnsê.8ρ → 1,a→ .05, b→ .05,α0→.05, V0→300,Cv0→ 8,
κ → 0,αt→ α +δe<:9Sin@αD I−20.H−2.08H−0.05+ αL3 +αL ν

2Cos@αD −

2.H−0.05+ α +δe− 3H−0.05+α + δeL3L ν
2Cos@α + δeD+

Cos@θD− I0.05+20.α
2H−2.08H−0.05+ αL3+αL2M ν

2Sin@αDM +

Cos@αD ITh− I0.05+ 20.α
2H−2.08H−0.05+ αL3 +αL2M ν

2Cos@αD +

20.H−2.08H−0.05+ αL3+ αL ν
2Sin@αD +

2.H−0.05+ α +δe− 3H−0.05+α + δeL3L ν
2Sin@α + δeD− Sin@θDM=,:q+

1

ν
 ICos@αD I−20.H−2.08H−0.05+ αL3+ αL ν

2Cos@αD −

2.H−0.05+ α + δe− 3H−0.05+α + δeL3L ν
2Cos@α + δeD+

Cos@θD− I0.05+ 20.α
2H−2.08H−0.05+ αL3+αL2M ν

2Sin@αDMM −

1

ν
 ISin@αD ITh−I0.05+ 20.α

2 H−2.08H−0.05+ αL3+ αL2M ν
2Cos@αD+

20.H−2.08H−0.05+ αL3+ αL ν
2Sin@αD +

2.H−0.05+ α + δe− 3H−0.05+α + δeL3L ν
2Sin@α + δeD−Sin@θDMM>,8q<, 8−8q− 600.H−0.05+α + δe−3H−0.05+ α + δeL3L ν

2Cos@α+ δeD<>  

 Shifting the equilibrium. 

eqns2= eqns1ê.8Th→ Th+.1,δe−> δe+.0005,ν → ν +1.,α → α +0.0495,

θ → θ−0.0495,q→q<  



 
 

69 :9Sin@0.0495+ αDI−20.H0.0495− 2.08H−0.0005+ αL3+ αL H1.+ νL2Cos@0.0495+ αD −

2.H0.+ α + δe−3H0.+ α + δeL3L H1.+ νL2Cos@0.05+ α + δeD+Cos@0.0495− θD −I0.05+ 20.H0.0495+ αL2H0.0495−2.08H−0.0005+ αL3+αL2MH1.+ νL2Sin@0.0495+ αDM + Cos@0.0495+ αDI0.1+Th− I0.05+20.H0.0495+ αL2 H0.0495− 2.08H−0.0005+ αL3+ αL2MH1.+ νL2Cos@0.0495+ αD +20.H0.0495− 2.08H−0.0005+ αL3+ αLH1.+ νL2Sin@0.0495+ αD +2.H0.+ α+ δe− 3H0.+α + δeL3LH1.+ νL2Sin@0.05+ α + δeD +Sin@0.0495− θDM=,:q+
1

1.+ν
 ICos@0.0495+ αD I−20.H0.0495− 2.08H−0.0005+ αL3+αLH1.+ νL2Cos@0.0495+ αD − 2.H0.+ α+ δe−3H0.+α + δeL3LH1.+ νL2Cos@0.05+ α + δeD + Cos@0.0495− θD −I0.05+20.H0.0495+ αL2H0.0495− 2.08H−0.0005+ αL3+αL2MH1.+ νL2Sin@0.0495+ αDMM −

1

1.+ ν
 ISin@0.0495+ αDI0.1+ Th− I0.05+20.H0.0495+ αL2 H0.0495− 2.08H−0.0005+αL3 + αL2MH1.+ νL2Cos@0.0495+ αD + 20.H0.0495−2.08H−0.0005+ αL3+ αLH1.+ νL2Sin@0.0495+ αD + 2.H0.+ α+ δe−3H0.+α + δeL3LH1.+ νL2Sin@0.05+ α + δeD + Sin@0.0495− θDMM>,8q<, 8−8q−600.H0.+ α+ δe−3H0.+ α + δeL3L H1.+ νL2

Cos@0.05+ α + δeD<>  

 

 Setting up regulator equations 

regeqs= Flatten@Join@eqns2,8α −θ<DD  



 
 

70 :Sin@0.0495+ αD I−20.H0.0495−2.08H−0.0005+ αL3+ αL H1.+ νL2Cos@0.0495+ αD−

2.H0.+ α + δe−3H0.+ α + δeL3L H1.+ νL2Cos@0.05+ α + δeD+Cos@0.0495− θD −I0.05+ 20.H0.0495+ αL2H0.0495− 2.08H−0.0005+ αL3+αL2MH1.+ νL2Sin@0.0495+ αDM + Cos@0.0495+ αDI0.1+ Th− I0.05+20.H0.0495+ αL2 H0.0495− 2.08H−0.0005+ αL3+ αL2MH1.+ νL2Cos@0.0495+ αD +

20.H0.0495−2.08H−0.0005+αL3+ αL H1.+ νL2Sin@0.0495+αD +

2.H0.+ α + δe−3H0.+ α + δeL3L H1.+ νL2Sin@0.05+ α + δeD+Sin@0.0495− θDM,
q+

1

1.+ν
 ICos@0.0495+ αD I−20.H0.0495− 2.08H−0.0005+ αL3+αLH1.+ νL2Cos@0.0495+ αD − 2.H0.+ α+ δe− 3H0.+α + δeL3LH1.+ νL2Cos@0.05+ α + δeD + Cos@0.0495− θD −I0.05+20.H0.0495+ αL2H0.0495− 2.08H−0.0005+ αL3+αL2MH1.+ νL2Sin@0.0495+ αDMM −

1

1.+ ν
 ISin@0.0495+ αDI0.1+Th− I0.05+20.H0.0495+ αL2 H0.0495− 2.08H−0.0005+αL3+ αL2MH1.+ νL2Cos@0.0495+ αD + 20.H0.0495−2.08H−0.0005+ αL3+ αLH1.+ νL2Sin@0.0495+ αD + 2.H0.+ α+ δe− 3H0.+α + δeL3LH1.+ νL2Sin@0.05+ α + δeD + Sin@0.0495− θDMM,

q, −8q− 600.H0.+ α + δe− 3H0.+ α+ δeL3L H1.+ νL2
Cos@0.05+ α + δeD, α − θ>  

 Declaring the order of approximation and creating the series 

n= 3

3

rules= 8ν → Series@ν @δeD,8δe,0,n<D,α → Series@α @δeD,8δe, 0,n<D,
θ → Series@θ @δeD,8δe,0,n<D,q→ Series@q@δeD,8δe, 0,n<D,
Th→ Series@Th@δeD,8δe,0,n<D< ê.8ν@0D → 0,α@0D → 0,θ@0D → 0,Th@0D → 0,q@0D → 0<:ν → ν�@0D δe+

1

2
ν��@0D δe2+

1

6
νH3L@0D δe3 +O@δeD4,

α → α�@0D δe+
1

2
α��@0D δe2+

1

6
αH3L@0D δe3 +O@δeD4,

θ → θ�@0D δe+
1

2
θ��@0D δe2+

1

6
θH3L@0D δe3 +O@δeD4,

q→ q�@0D δe+
1

2
q��@0D δe2+

1

6
qH3L@0D δe3 +O@δeD4,

Th→ Th�@0D δe+
1

2
Th��@0D δe2+

1

6
ThH3L@0D δe3 +O@δeD4>
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 Solving for the first set of coefficients 

first=

Flatten@Solve@Transpose@regeqns1D@@2DD m 80,0,0,0,0<,8Th'@0D,α'@0D, θ'@0D,ν'@0D,q'@0D<DD  8Th�@0D → 1.00157, α�@0D → −1., θ�@0D → −1., ν�@0D → 10.1256, q�@0D → 0.<  

 Solving for the second set of coefficients using the solutions for the first 

second=

Flatten@
Solve@Flatten@Transpose@regeqns1D@@3DD ê.firstD m 80,0,0,0,0<,8Th''@0D,α''@0D, θ''@0D,ν''@0D,q''@0D<DD  8Th��@0D → 20.6228, α��@0D → 0., θ��@0D, ν��@0D → 153.241,q��@0D → 0.<  

 Similarly solving for the third set of coefficients using the above solutions 

 

 

 

 

 

and so on we can find all the coefficients and construct the solution. 

 As a result of the procedure we obtain the following regulating functions, four for 

each of the states and one for the functional control. These can then be used to construct 

the nonlinear regulator as shown in Figure 5.2. 

][.8124089.4493906.2558241.1531256.10 65432
1 eeeeee O δδδδδδπ +++++=  

][ 6
2 ee O δδπ +−=  

][ 6
3 ee O δδπ +−=  

][0 6
4 eO δπ +=  

third=

Flatten@
Solve@Flatten@Transpose@regeqns1D@@4DD ê.Join@first,secondDD m80,0,0,0,0<,8Th'''@0D,α'''@0D, θ'''@0D,ν'''@0D,q'''@0D<DD8ThH3L@0D → 2459.86, αH3L@0D → 0.,

θH3L@0D → 0., νH3L@0D → 15348.4,qH3L@0D → 0.<8ThH3L@0D → 409.977, αH3L@0D → 0.,

θH3L@0D, νH3L@0D → 25558.1, qH3L@0D → 0.<
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][1659472.8258977.4096228.2000157.1 65432

eeeeee Oc δδδδδδ +++++=  

 Note: The first terms of the above series are exactly the same as the linear regulator. 

5.4 Simulation results 

 In these simulations it is assumed that the elevator fails at 0=τ  and continues to 

operate with the inappropriate controller till a switch is made the magnitude of elevator 

failure and the switching time are indicated at the bottom of each figure. It is seen that 

the mechanism of regulation in this case involves change in the velocity of the aircraft 

which is also plotted with the flight path angle. It is also noteworthy to mention that 

each second on the x-axis corresponds to roughly 22.8 sec. in real time. 
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Figure 5.1. Flight path angle for elevator failure 02.−=eδ  and switching time 

2=τ  
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Figure 5.2. Normalized velocity elevator failure 02.−=eδ , Switching time 2=τ  
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Figure 5.3. Flight path angle for elevator failure 02.=eδ , Switching time 2=τ  
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Figure 5.4. Normalized velocity for elevator failure 02.=eδ , Switching time 2=τ  
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Figure 5.5. Flight path angle for elevator failure 04.−=eδ , Switching time 1=τ  
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Figure 5.6. Normalized velocity for elevator failure 04.−=eδ , Switching time 1=τ  

 

5.5. Conclusions 

 Nonlinear design may be desirable when the functions associated with the either the 

failed control; the functioning control or the system contains significant nonlinearities. 

As seen in the example as the magnitude at which the failure takes place becomes larger 

the nonlinear design achieves significantly better regulation than the linear design. 

Since the nonlinear design has a larger domain of conversion than the linear design it 

offers a larger window of safety in face due to the delays in the failure detection 

mechanism. In the simulation the increase in regulation accuracy with the increase in 

the order of the controller is clearly demonstrated. 
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Chapter 6. Use of variable structure controllers 

 A class of systems with discontinuous feedback control, called variable structure 

systems developed initially in the former USSR has evolved as a useful design 

technique for control systems [24,58, 79, 84]. The important class of these systems 

gives rise to motion referred to as the sliding mode, which is motion along the 

governing “switching” surface of the discontinuity [79]. Since the design of output 

regulators, hence, the problem of predesign of controllers for jammed actuators involves 

stabilization to a zero error manifold a parallel can be drawn between the two problems.  

6.1. Variable structure servomechanisms. 

 Consider then the linear time invariant systems of the form 

 BuAxx +=
•

 (6.1) 

where nRx ∈ , rRu ∈  and A  and B  are matrices of appropriate dimensions. 

The failure models can therefore be written as 

 ffee uBuBAxx ++=
•

 (6.2a) 

with 0=
•

fu  (6.2b) 

Let the number of failed controls, i.e. size of fu  be q  and the remaining effective 

controls be, i.e. eu be m  

Let the regulated variables be represented by an l -dimensional vector given by 

 fe uDuDxCz 12111 ++=  (6.2c) 

Also, consider the measurements be given by an s -dimensional vector and given by 

 fe uDuDxCy 22212 ++=  (6.2d) 
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The objective again is to regulate the output to zero without directly measuring the 

disturbance due to the stuck actuators fu . 

 It is assumed that ),( 2eBA  is controllable and ),( 2CA  is observable. These 

conditions along with the existence of two matrices W  and U  used to define the steady 

state ssx  and control input essu  as linear functions of the failed control fu . 

Moreover, 

 The calculation for W  and U  can be accomplished by solving  

 0=++ UBBAW ef  (6.3a) 

 012111 =++ DUDxC  (6.3b) 

The design procedure for the variable structure controller to address regulation 

conveniently separates into four distinct parts: 

1. Determination of the steady state solutions, i.e. for matrices W  and U . 

2. Solution of an mn −  dimensional state feedback problem 

3. Solution of a nonlinear state feedback stabilization problem with m  states and 

m  controls and finally 

4. the design of the observer. 

6.2. Details of the design 

 As shown earlier W  and U can be calculated by solving the coupled matrix 

equations given in the last section. First we define the motion of the plant state and the 

control input relative to their steady state values. 

 ssxxx −≡∆   (6.4a) 

 essee uuu −≡∆  (6.4b) 
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The feedback law when it is implemented uses the estimates from a composite observer 

for the states and the stuck controls, i.e. x̂  and fû . The dynamics of the observer are 

given by 

 y
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The matrices 1L  and 2L , can be designed given the observability assumption earlier, 

such that )()(ˆ txtx →  and )(ˆ)(ˆ twtw →  as ∞→t . 

Let eu∆ be a discontinuous feedback control  
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 with  

 xGxs ˆ)ˆ( ∆=∆  (6.7) 

The servomechanism structure is as shown in the figure. 
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The idea in the design of the hyperplane is to get acceptable sliding dynamics. The 

motion assuming sliding occurs is described by the equations. 
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where xMxs ˆˆ ∆≡∆ , the columns of the matrix TM  span the null space of TB2 ,  

i.e. ,0=TT MB  

and the columns of the matrix N  span the null space of G , 

i.e. 0=GN  

The only thing left is to make the hyperplane globally attracting and this is done by 

using discontinuous feedback law in manner that the vector field at all neighborhoods 

about the hyperplane is pointing towards the hyperplane. These part of design is enabled 

the discontinuity. 

The discontinuity in the feedback functions  
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allows shaping of the vector field towards the manifold 

0=∆xG  

Under the hypotheses of the above results the variable structure mechanism regulates 

the system error to zero for arbitrary persistent disturbances generated by the failed 

controls fu . 
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6.3. Conclusion 

 In this chapter the design of variable structure mechanisms for the predesign of 

controllers was presented. The variable structure servomechanism can be used as an 

alternate design methodology for the design of fault-tolerant systems.  
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Chapter 7. Conclusions and further research 

 The thesis has addressed the predesign of controllers for sensor and actuator 

failures. Sensor failures are seen not to be as severe as the actuator failures. The 

predesign for actuator failures has been addressed in available literature using ad hoc 

techniques or using adaptive control techniques. In this thesis, important connection 

between the predesign for actuator failure problem and the regulator problem with 

internal stability is made. Since both necessary and sufficient conditions for the design 

of regulators for linear systems are fairly well understood this leads to ways of assessing 

available control redundancy in systems. This analysis can be used for designing 

systems with designs capable of tolerating faults. The connection with the regulator 

theory also allows generalizing the result to the state feedback control of nonlinear 

systems. In addition to the above the final chapter of the thesis addresses design of 

variable structure servomechanisms and these can be utilized to design controller for 

actuator failures. 

 Many aspects of the thesis call for further investigation. Chief among them is the 

coupling of the state feedback nonlinear design with nonlinear observers to solve 

problem with output feedback. The design of nonlinear observers is an active research 

field just like the output regulation problem. The extension of ideas presented in the 

final chapter of the thesis, i.e., those of using alternative techniques to design 

servomechanisms to address failures calls for further investigation in order to generalize 

the result to nonlinear systems. 
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Appendix A 

 

 

Notation 

∈  belongs to 

=:  is defined as 

→  tends to 

R  field of real numbers 

C  field of complex numbers 

nR  n-dimensional Euclidean space 

+R  set of non-negative real numbers 

Tx  transpose of vector x  

TA  transpose of matrix A  

⊥A  pseudo-inverse of a matrix A  

** , Aa  the complex conjugate transpose of the complex vector a , matrix A  

ba,   inner product of two vectors a  and b  

[a,b] closed interval on the real line from a to b 
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Appendix B 

 

 

 This appendix reviews some definitions and theorems associated with the thesis.  

 Let for a matrix A  with a spectral list n
kk 1}{ =λ , n

kke 1}{ =  represent the basis of right 

eigenvectors associated with the spectral list defined by the solution of the equation 

kkk eAe λ=  for all .,...2,1 nk = n
kk 1}{ =η  represent the basis of left eigenvectors associated 

with the spectral list defined by the solution to the equation **
kkk A ηλη =  for all 

.,...2,1 nk =  

Theorem B1: Consider the autonomous linear differential system Axx =
•

, 0)0( xx =  

where Rt ∈ , nRx ∈ , the solution can be expressed as ∑
=

n

k
kkk etx

1
0 )exp(, λη . 

Proof: [45] 

N.B.: So if we think of initial state vector as a linear combination of eigenvectors, then 

the resulting motion of the states is a linear combination of very simple motions given 

in Theorem B1. These motions are called modes and form a basis of linear space of 

solutions of the autonomous differential system given in Theorem B1. 
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Stability 

 The states of dynamical system Axx =
•

 are referred to as asymptotically stable if 

and only if for all nRx ∈0  

a. the solution is bounded for all 0≥t  

b. the solution tends to zero as ∞→t  

additionally, those modes that do not go to zero as ∞→t  are unstable modes. 

Definition B.1:  The dynamical system BuAxx +=
•

, DuCxy += , where nRx ∈ , 

mRu ∈  and pRy ∈ , also, A , B , C  and D  are constant matrices of appropriate 

dimensions, or equivalently, the pair ),( BA , is said to be state controllable, for any 

initial state 0)0( xx = , any time 01 >t  and any final state 1x , there exists an input 

)(tu such that 11 )( xtx = . Otherwise the system is said to be state uncontrollable. In 

addition, the modes that are controllable are referred to as uncontrollable modes. 

Definition B.2: The dynamical system BuAxx +=
•

, DuCxy += , where nRx ∈ , 

mRu ∈  and pRy ∈ , also, A , B , C  and D  are constant matrices of appropriate 

dimensions, (or the pair ),( CA ) is said to be state observable, if for any time 01 >t  the 

initial state 0)0( xx =  can be determined from the time history of the input )(tu  and 

output )(ty  in the interval ],0[ 1t . Otherwise the system, (or ),( CA ), is said to be state 

unobservable. Additionally, if the system is unobservable there are states in the system 

that remain undetermined and are referred to as unobservable states. 
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Definition B.3: Consider the time-invariant system given in Definition B.1 and B.2. Let 

}{:][ kA λσ = , nk ...2,1= , be the spectrum of nnRA ×∈ with the corresponding 

eigenspaces. An uncontrollable hidden mode at kλ  exists if an only if the generalized 

eigenvector associated with kλ  uncontrollable. An unobservable hidden mode at 

kλ exists if and only if there exists a generalized eigenvector at kλ  that is unobservable. 

Definition B.4: A system is said to be state stabilizable or simply stabilizable if all the 

uncontrollable modes are stable. A system is state detectable or simply detectable if all 

unstable modes are state observable.  

R1: Remark on Kalman Decompositions 

Using transformations which use basis-vectors from the A -invariant subspaces we can 

construct transformations that put a linear system into the following form 

u
B
B

x
x
x
x

A
AA
AA
AAAA

x

x

x

x



















+





































=























•

•

•

•

0
0

000
00

00 2

1

4

3

2

1

44

3433

2422

14131211

4

3

2

1

 

[ ] Du

x
x
x
x

CCy +



















=

4

3

2

1

42 00  

The above form explicitly reveals the controllability, observability structure of a control 

system. The coordinates 1x , 2x  correspond to the controllable subspace and 2x , 4x  

correspond to the observable subspace. 
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Definition B.5: Second order modes 

Consider the dynamical system BuAxx +=
•

, Cxy = , where nRx ∈ , mRu ∈  and 

pRy ∈ , also, A , B  and C  are matrices of appropriate dimensions. The controllability 

Gramian is defined by 

 ∫≡
t

ATA
c deBBetW

T

0

)( τττ  

and the observability Gramian is defined by 

 ∫≡
t

ATA
o dCeCetW

T

0

)( τττ  

The eigenvalues for ocWW  are called the second order modes of the system. 

R.2: Steady state response of a Nonlinear System 

Steady state response of a system intuitively is that particular response which any initial 

condition converges to as time increases. More rigorously, consider 

),( uxfx =
•

 (B.1) 

with state x  defined in the neighborhood U  of the origin in nR  and the input mRu ∈ , 

assume that 0)0,0( =f , and let ))(,,( 0 •uxtx  denote the value of state achieved at the 

time 0>t  under the effect of the input )(•u , starting from the initial state 0x at time 

0=t . Let )(* •u  be a specific input function and suppose these exists an initial state *x  

with the property that 

 0))(,,())(,,(lim ***0 =•−•
∞→

uxtxuxtx
t

 (B.2) 

for every 0x  in some neighborhood *U  of *x . If this is the case, then the response 
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 ))(,,()( ** •= uxtxtxss  (B.3) 

is called the steady state response of (B.1) to the specific input )(* •u . 

This notion of steady state response is particularly useful in the analysis of responses of 

system to inputs, which are “persistent” in time, as is the case with failed actuators. 

Usually, these inputs can be thought of as being “generated” by a suitable dynamical 

system modeled by the equations of the form. 

 )(wsw =
•

 

 )(wpu =  

whose state w is defined in a neighborhood W of the origin in rR and in which 0)0( =s  

and 0)0( =p . To impose that the inputs generated by such a system are bounded, it is 

sufficient that the point 0=w  is a stable equilibrium (in the ordinary sense of 

Lyapunov) of the vector field )(ws  and to choose the initial condition at time 0=t  in 

some appropriate neighborhood WW ⊂0 . To impose that the inputs are persistent in 

time, it is convenient to assume that every point 0w  of 0W  is Poisson stable.  Poisson 

stability implies that the trajectory )(tw , which originates in 0w  passes arbitrarily close 

to 0w  for arbitrarily large times, in forward and backward direction. For convenience 

we call the both the conditions i.e. those of origin being stable in the ordinary sense and 

that of Poisson stability in the neighborhood of origin as neutral stability. 

If the dynamics of w  are neutrally stable and the equilibrium 0=x  of )0,(xfx =
•

is 

stable in the first approximation then there exists a mapping )(wx π=  defined in a 

neighborhood WW ⊂0  of the origin, with 0)0( =π , which satisfies 
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 ))(),(()( wpwfws
w

ππ =
∂
∂  

for all 0Ww ∈ . Moreover, for each 0* Ww ∈ , the input 

 ))(()( ** wptu s
tΦ=  

produces a well-defined steady state response, which is given by 

 ))(,(,()( ** •= uwtxtxss π . 

This is the sufficient condition for the existence of well-defined steady state response 

and is used to develop the regulator equations. 

A differentiable manifold is a set of points, which is locally equivalent to a Euclidean 

space.  We will make this concept precise. 

Definition B.6:  An m-dimensional manifold is a set M together with a countable 

collection of subsets Ui⊂ M and one-to-one mappings ϕi: Ui→Vi onto open subsets 

Vi of mR , each pair (Ui,ϕi) called a coordinate chart , with the following properties: 

a) the coordinate charts cover M,  

 

MU
i

i =U  

b) on the overlap of any pair of charts ji UU ∩  the composite map 

)()(:1
jijjiiij UUUUf ∩→∩= − ϕϕϕϕ o  

is a smooth function. 

c) if p∈ Ui and p- ∈ Uj are distinct points of M, then there are neighborhoods, W 

of ϕi(p) in Vi and W of )( pjϕ  in Vj such that 
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ϕi-1(W) ∩ ϕj-1(W ) = ∅  

The coordinate charts provide the set M with a topological structure so that the manifold 

is a topological space.  Condition c) of the definition is a form of the so-called 

Hausdorff separation axiom so that these manifolds are Hausdorff topological spaces.  

The coordinates in mR  (x1,..,xm)  of the image ϕ(p) of a point p∈ M are called the 

coordinates of p.  A chart (U,ϕ) is called a local coordinate system.  If the overlap 

functions 1−= ijf ϕϕ o  are k-times continuously differentiable, then the manifold is 

called a Ck-manifold. If ∞=k , then the manifold is said to be smooth. 
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