
Design and Analysis of Fair, Efficient and Low-Latency Schedulers for

High-Speed Packet-Switched Networks

A Thesis

Submitted to the Faculty

of

Drexel University

by

Salil S. Kanhere

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

May 2003

ii

Dedications

This thesis is dedicated to my wife Alpa and my family.

iii

Acknowledgements

Several people supported my efforts during my graduate years and I would like to thank

them. First of all, I must point out the invaluable help of my advisor, Dr. Harish Sethu.

This dissertation would not have been possible without his encouragement and valuable

guidance. I feel fortunate that I had a chance to work with such an excellent mentor, and I

would like to express my gratitude to him. Special thanks to him for giving so much time

and attention to my dissertation and helping me with the documentation and presentation.

I would also like to thank Dr. Constantine Katsinis, Dr. Oleh Tretiak, Dr. Lazar

Trachtenberg and Dr. Lloyd Greenwald for serving on my committee.

Special thanks to Yunkai Zhou for helping me with the formatting of the dissertation.

I would also like to thank Hongyuan Shi for her help in the simulation efforts using the

Gini index. And of course all the others in the Computer Communications Lab : Madhu,

Hapreet and Adam for their help and advice.

Last but not least, I would like to thank my family for their constant support and guid-

ance and Alpa for her love and support.

Once again, thanks Dr. Sethu for all the help and time that you have given us and for

making these five years at Drexel memorable.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

Abstract . xi

Chapter 1. Introduction . 1

1.1 Overview of Wormhole Switching . 7

1.2 What is Fair Resource Allocation ? . 11

1.3 Classification of Scheduling Disciplines 13

1.4 Representative Schedulers . 16

1.4.1 First Come First Serve (FCFS) . 16

1.4.2 Round Robin Service Policy . 16

1.4.3 Weighted Fair Queuing (WFQ) . 17

1.4.4 Self-Clocked Fair Queuing (SCFQ) 19

1.4.5 Virtual Clock Queuing (VCQ) . 20

1.4.6 Deficit Round Robin (DRR) . 21

1.4.7 Surplus Round Robin (SRR) . 22

1.5 Contributions . 23

1.6 Dissertation Organization . 27

Chapter 2. Elastic Round Robin . 28

2.1 Algorithm Description . 30

2.2 Guaranteed-Rate Scheduling using ERR 37

v

Chapter 3. Performance Analysis of ERR . 39

3.1 Work Complexity . 40

3.2 Fairness Analysis . 41

3.3 Latency Rate Servers . 48

3.4 Latency Analysis . 52

Chapter 4. Prioritized Elastic Round Robin . 63

4.1 Contributions . 66

4.2 Algorithm Description . 67

Chapter 5. Performance Analysis of PERR . 80

5.1 Nested Round Robin Interpretation . 80

5.2 Latency Analysis . 86

5.3 Fairness Analysis . 93

5.4 Work Complexity . 95

Chapter 6. Simulation Analysis . 98

6.1 The Need for a New Measure of Fairness 98

6.2 Gini Index: A New Measure of Fairness 101

6.2.1 Handling a Newly Backlogged Flow 101

6.2.2 The Gini Index . 103

6.3 Simulation Results . 105

6.3.1 Simulation Model . 105

6.3.2 Results with Backlogged Traffic 107

6.3.3 Results with Real Router Traces 109

6.3.4 Comparison of Latency Bounds 116

vi

Chapter 7. Concluding Remarks . 118

7.1 Comparison of ERR and PERR with Other Schedulers 120

7.2 Other Applications of ERR and PERR . 127

Bibliography . 130

Appendix A. Latency Analysis of DRR and Pre-order DRR 135

A.1 Overview of DRR . 136

A.2 Latency Analysis of DRR . 137

A.3 Overview of Pre-Order DRR . 145

A.4 The Nested DRR Interpretation . 147

A.5 Latency Analysis of Pre-Order DRR . 150

vii

List of Tables

6.1 Settings for traffic sources from router traces 106

7.1 Comparison of ERR and PERR with other guaranteed-rate scheduling dis-
ciplines . 122

viii

List of Figures

1.1 Example of downstream congestion in wormhole networks 9

1.2 Sorted-priority schedulers . 15

2.1 The switch model . 29

2.2 Pseudo-code for ERR . 31

2.3 Definition of a round . 33

2.4 An illustration of 3 rounds in an ERR execution 36

2.5 A block diagram illustration of the ERR scheduler 37

3.1 Explanation for|ri − rj| ≤ 1 . 46

3.2 Two busy periods for flowi . 50

3.3 An example of the behavior of anLR server 52

3.4 An illustration of the time interval under consideration for the analysis of
the latency bound of ERR . 56

4.1 Block diagram of (a) PERR scheduler and (b) scheduling decision module
of PERR . 72

4.2 Pseudo-code for PERR . 77

4.3 InitializeRound() routine . 78

4.4 InitializeFlow() routine . 78

4.5 AddToPriorityQueue() routine . 79

4.6 ComputeNewPriority() routine . 79

5.1 Comparison of the transmission sequence of packets in ERR and PERR
over two rounds of execution . 85

5.2 An illustration of the time interval under consideration for the analysis of
the latency bound of PERR . 88

ix

6.1 An illustration of the difference in the disparity in service received while
the upper bounds of the relative fairness and absolute fairness measures are
identical . 100

6.2 An illustration of the lorenz curve and Gini index in the measure of in-
equalities among (a) income distribution (b) session utilities in a packet
scheduler . 104

6.3 Simulation model . 106

6.4 Gini indices of various efficient schedulers with backlogged traffic 108

6.5 Gini indices of PERR and WFQ with backlogged traffic 108

6.6 Average length of arriving packets . 109

6.7 Comparison of Gini indices of DRR and ERR 110

6.8 Comparison of Gini indices of SRR and ERR 111

6.9 Comparison of Gini indices of Nested DRR and ERR 111

6.10 Comparison of Gini indices of Pre-order DRR and ERR 112

6.11 Comparison of Gini indices of DRR and PERR 113

6.12 Comparison of Gini indices of SRR and PERR 114

6.13 Comparison of Gini indices of DRR and PERR 114

6.14 Comparison of Gini indices of SRR and PERR 115

6.15 Comparison of Gini indices of Pre-order DRR and PERR 115

6.16 Comparison of Gini indices of WFQ and PERR 116

6.17 Comparison of latency bounds of various schedulers 117

7.1 Comparison of the latency bound of PERR and ERR with other schedulers
of equivalent complexity . 126

7.2 Example of load sharing using ERR . 128

A.1 An illustration of the time interval under consideration for the analysis of
the latency bound of DRR . 138

A.2 Plot of the service received by flowi with DRR 143

x

A.3 An illustration of the time interval under consideration for the analysis of
the latency bound of Pre-order DRR . 152

A.4 (a) Input pattern (b) Packet classification in the priority queues 156

A.5 Plot of the service received by flowi with Pre-order DRR 158

xi

Abstract

Design and Analysis of Fair, Efficient and Low-Latency Schedulers for
High-Speed Packet-Switched Networks

Salil S. Kanhere
Harish Sethu, Ph.D.

A variety of emerging applications in education, medicine, business, and enter-

tainment rely heavily on high-quality transmission of multimedia data over high speed

networks. Packet scheduling algorithms in switches and routers play a critical role in the

overall Quality of Service (QoS) strategy to ensure the performance required by such appli-

cations. Fair allocation of the link bandwidth among the traffic flows that share the link is an

intuitively desirable property of packet schedulers. In addition, strict fairness can improve

the isolation between users, help in countering certain kinds of denial-of-service attacks

and offer a more predictable performance. Besides fairness, efficiency of implementation

and low latency are among the most desirable properties of packet schedulers.

The first part of this dissertation presents a novel scheduling discipline calledElastic

Round Robin (ERR)which is simple, fair and efficient with a low latency bound. The per-

packet work complexity of ERR is O(1). Our analysis also shows that, in comparison to

all previously proposed scheduling disciplines of equivalent complexity, ERR has signifi-

cantly better fairness properties as well as a lower latency bound. However, all frame-based

schedulers including ERR suffer from high start-up latencies, burstiness in the output and

delayed correction of fairness.

In the second part of this dissertation we propose a new scheduling discipline called

Prioritized Elastic Round Robin (PERR)which overcomes the limitations associated with

the round robin service order of ERR. The PERR scheduler achieves this by rearranging

the sequence in which packets are transmitted in each round of the ERR scheduler. Our

analysis reveals that PERR has a low work complexity which is independent of the number

xii

of flows. We also prove that PERR has better fairness and latency characteristics than other

known schedulers of equivalent complexity. In addition to their obvious applications in

Internet routers and switches, both the ERR and PERR schedulers also satisfy the unique

requirements of wormhole switching, popular in interconnection networks of parallel sys-

tems.

Finally, using real gateway traces and based on a new measure of instantaneous fairness

borrowed from the field of economics, we present simulation results that demonstrate the

improved fairness characteristics and latency bounds of the ERR and and PERR schedulers

in comparison with other scheduling disciplines of equivalent efficiency.

1

Chapter 1. Introduction

Over the last decade, high-speed packet switched networks have become the standard

mode of communication, replacing the earlier telephone-based circuit-switched networks.

In circuit-switched networks, a dedicated path known as acircuit is established between the

communication end points. In addition, the resources needed along this path (buffers, link

bandwidth) are reserved for the entire duration of the communication session. The network

is responsible for allocating sufficient resources to allow the sender to transmit data as a

continuous data flow at its peak transmission rate. A circuit in a link is implemented with

either time-division multiplexing (TDM)or frequency-division multiplexing (FDM). The

public switched telephone network (PSTN) is an example of a circuit switched network.

It is well-known that circuit switching is not very efficient because the dedicated circuits

are idle duringsilent periods, i.e., when the sender and receiver are not exchanging any

messages. This results in poor utilization of the link bandwidths, especially given the

fact that Internet traffic is extremely assymetric and bursty. In addition, establishing end-

to-end circuits and reserving end-to-end resources is complicated and requires complex

signaling mechanisms. To address these shortcomings,packet switchingnetworks [1] were

introduced as an alternative to circuit-switching. With packet switching, the sender breaks

down messages into smaller chunks of data calledpacketsand each packet is transmitted

over a series of communication links just as in circuit switching. However, an important

difference is that in packet switching no resource reservation is required in the network.

If one of the links is congested because multiple packets need to be transmitted over the

link at the same time, then one of the packets is chosen for transmission and the rest have

to be stored in a buffer at the sending end of the link. As a result, buffering is required

in the intermediate nodes of the network to absorb traffic bursts and avoid packet losses.

The main advantage of packet-switching is that it permitsstatistical multiplexing[2] on the

2

communication links. This allows packets from different sources to share the links resulting

in an efficient utilization of the link capacities. Today’s Internet is a quintessential packet-

switched network. The Internet makes itsbest-effortto deliver packets in a timely manner

but it does not make any guarantees.

Until recent years, the best-effort Internet architecture supplemented by the reliable

transport protocol, TCP, has provided good service for the vast majority of thetraditional

applications such as file transfer, e-mail, web-browsing and remote login. For example,

even though a file transfer application would ideally like to have a very high bandwidth and

low end-to-end delay it will still work correctly if the available link bandwidth decreases

and the end-to-end delay increases. In other words, the performance requirement of such

applications areelastic since they can adapt to the resources that are available. These

applications are calledbest effort applicationssince the network only guarantees to attempt

to deliver their packets without providing for any performance guarantees.

In the last few years we have witnessed a rapid growth in the development and deploy-

ment of new networked applications in education, business, entertainment and medicine.

Examples of such applications are many and are rapidly rising. Popular services such as

video and audio on-demand, online radio and TV stations and interactive games are trans-

forming the entertainment industry. Multimedia teleconferencing and banking are just a

couple of other applications that are impacting businesses. Storing multimedia information

in servers and allowing users access to it through networks is an economical solution to the

problem of large-scale distribution of massive amounts of multimedia content. For exam-

ple, applications such as distance learning enable universities to offer courses using video

servers and high-performance networks. In medicine, many hospitals are already experi-

menting with high-resolution video and imaging applications that transfer data from various

hospital facilities to the diagnostic center. All of these applications and many others, will

have a profound impact on our day-to-day lives in ways that we have least imagined.

The utility value of the applications described above will be determined largely by the

3

quality of the multimedia transmission and the ability of networks to carry heavy volumes

of such traffic in a scalable, reliable and predictable fashion. In order to support multimedia

traffic, the network must be able to guarantee performance bounds or meet the Quality-of-

Service (QoS) requirements. The best-effort service model is highly ineffective in meeting

their QoS demands. The task of designing network architectures, suitable for these appli-

cations is both critical and challenging. Providing the necessary bandwidth and keeping

delay within known and manageable bounds are some of the concerns that must be ad-

dressed. For example, to support an application that carries voice as a 64 Kbps stream, the

network must provide 64 Kbps bandwidth on the entire path from end-to-end. Moreover,

if the application is two-way interactive, besides guaranteeing a bandwidth of 64 Kbps, the

network must also guarantee a round trip delay of around 150 ms. Thus, this application

and others of its kind, demand a guarantee of service quality from the network. As a result,

they are known asguaranteed-service applications. Such applications are not elastic or

adaptive and variations in delay or loss of packets can have a detrimental effect on their

functionality.

Another motivation behind enabling QoS guarantees is to achieve service differentia-

tion [3]. Providers may want to offer an eclectic mix of services to their customers. The

service to be carried on the Internet may consist of real-time traffic for applications such as

Internet telephony. A second class of service may be for applications such as transaction

processing that require reliable, low-delay delivery of data. Yet another class of service

to be carried on the Internet is the best-effort traffic, constituting traffic from applications

such as file transfer and e-mail. Real-time applications, such as Internet telephony, demand

a guarantee on the performance bounds and require the network to reserve resources on

their behalf. Services for other applications, such as queries and responses in transaction

processing, may not require stringent performance guarantees but may still require lower

delays than best-effort applications. A network should thus be capable of providing a vari-

ety of services with different QoS requirements to be carried on the same switching nodes

4

or links. These different applications have varying traffic characteristics with different re-

quirements, and rely on the ability of the network to provide QoS guarantees with respect

to several quality measures, such as end-to-end delay, bandwidth allocation, delay jitter and

packet loss. However, network resources such as link bandwidth and buffers are shared by

multiple users or services, some or all of which may try to access a resource simultane-

ously. Resource contention arises because of this sharing. A QoS mechanism is needed

to efficiently apportion, allocate and manage limited network resources among competing

users. QoS deals with engineering and managing network resources to deliver the perfor-

mance levels that satisfy user’s expectations. A QoS mechanism is necessary when there

are not enough resources to prevent queues from becoming congested and when conges-

tion degrades performance guarantees. So, effective queue management is fundamental to

many proposed QoS schemes.

An essential component of a queue manager is aschedulerwhich employs a scheduling

mechanism to decide which packet to serve next. In other words, given a set of resource

requests in the service queue, a switch uses a scheduling algorithm to decide which request

to serve next. A scheduler has to ensure that the network resources are scheduled fairly

among its contending users. Scheduling disciplines are important because they are respon-

sible for protecting one user’s traffic from another and hence are a key to fair sharing of

the network resources. The scheduling algorithms also affect the performance received by

a certain traffic flow. To understand this, let us assume that each traffic flow is assigned

a separate queue and the switch queues the packets that are ready for transmission from

different traffic flows in their respective queues. By the choice of its service order, the

scheduler can allocate different mean delays to the packets belonging to different queues.

Also it can allocate different bandwidths by serving a certain minimum number of packets

from a particular flow in a given time interval. We thus need a scheduling algorithm that

supports fair resource allocation and also supports these performance bounds in order to

serve the performance critical applications such as telephony and other interactive audio

5

and video applications. Fair scheduling becomes especially critical in access networks,

within metropolitan area networks and in wireless networks where the resource capacity

constraints tend to be significantly limiting to high-bandwidth multimedia applications to-

day. Even with the over-provisioning of resources such as is typical in the Internet core,

fairness in scheduling is essential to protect flows from other misbehaving flows triggered

by deliberate misuse or malfunctioning software on routers or end-systems. Fairness in the

management of resources is also helpful in countering certain kinds of denial-of-service at-

tacks. Fair schedulers have now found widespread implementation in switches and Internet

routers [4,5]. Some of the most desirable properties of a scheduling discipline include:

• Fairness:The available link bandwidth must be distributed among the flows sharing

the link in a fair manner. We use the classic notion of fairness given by the max-min

fair share policy [6] which is explained in greater detail in the following section. In

general, it is desirable that the scheduler serves the connections proportional to their

reservations and distributes the unused bandwidth left behind by the idle sessions

proportionally among the active ones. In addition, flows should not be penalized for

the excess bandwidth they received while other flows were inactive. Fairness is also

desirable for good performance, since unfair treatment of some traffic flows in the

network can easily lead to unnecessary bottlenecks.

• Isolation: The scheduling algorithm must isolate a flow from the undesirable effects

of other (possibly misbehaving) flows. This will ensure that the QoS guarantees for a

flow will be maintained even in the presence of other misbehaving flows. Note that,

isolation among flows is necessary even when traffic policing strategies are used for

traffic shaping at the edge of the network, since the flows may become increasingly

bursty as they traverse through the network [7]. Isolation among flows also results in

a more predictable performance for end user applications.

• Latency:It is desirable that the scheduling discipline provides an end-to-end delay

6

guarantee to individual flows. For guaranteed-rate services, the latency should be

measured as the length of time it takes a new flow to begin receiving service at the

guaranteed rate. Low delay bounds imply low buffer requirements for guaranteeing

no packet loss. Thus, the latency of a scheduler has a direct effect on the cost of

implementation in terms of the required memory. The latency is also directly related

to the amount of playback buffering required at the receiver for real-time communi-

cation applications.

• Efficiency: In addition to providing performance bounds and being fair, it is also

important that a scheduler be easily implementable. A scheduler should require as

few simple operations as possible to make a scheduling decision. In particular, the

number of operations should be as independent of the number of flows that are to be

scheduled as possible. Thus, ifn is the total number of queues or traffic flows to be

scheduled by a scheduler, then a scheduler that hasO(1) time complexity is preferred

in comparison to the one that hasO(n) time complexity. This property is especially

desired in high-speed networks and in routers where the number of flows can be in

thousands as in the Internet core.

Even though a network must ideally schedule every multiplexed resource, in this disserta-

tion, we have concentrated on the most commonly scheduled resource: the bandwidth on a

link.

Besides the Internet, fair scheduling algorithms also find their place in the intercon-

nection networks for parallel systems, wherein packets belonging to different traffic flows

often share links in their respective paths toward their destinations. Fairness is an intuitively

desirable property in the allocation of bandwidth available on a link among multiple traffic

flows that share the link. Fairness in packet scheduling becomes especially desirable with

the increasing use of parallel systems in multi-user environments with the interconnection

network shared by several users at the same time. Fair allocation of bandwidth at links

7

within a network is a necessary requirement for providing protection to flows, i.e., for en-

suring that the performance is not affected when another possibly misbehaving flow tries to

send packets at a rate faster than its fair share. In multi-user environments, the protection

guaranteed by fair scheduling of packets improves the isolation between users, a quality

strongly desired by customers of parallel systems [8]. Isolation offers a more predictable

performance to user applications, which also facilitates repeatability of performance re-

sults necessary for reliable benchmarking of systems and applications without taking all

the users off the system. Fairness is also essential for good performance with compilers

that take into account the predicted communication delays in the network. Strict fairness

is also desirable for good performance, since unfair treatment of some traffic flows in the

network can easily lead to unnecessary bottlenecks.

Most switch architectures designed for interconnection networks of parallel systems,

however, eliminate only the worst kinds of unfairness such as starvation, where pack-

ets belonging to one traffic flow may not be scheduled for an indefinite period of time.

The need to design a fair scheduler in these networks is an important motivation for the

work presented in this dissertation. In addition, even though over the last decade, a num-

ber of advances have been made in the architecture of these switches for improved delay

and throughput characteristics, very few researchers have focused on possible performance

gains with scheduling strategies that may be used at the output link or for access to output

queues from the input queues. However, implementing fair scheduling algorithms in the

interconnection networks of parallel systems, poses certain unique challenges which are

described in detail in the following section.

1.1 Overview of Wormhole Switching

Almost all interconnection networks, both direct and indirect, are constructed out of

switches connected together in a certain topology. Wormhole switching is a popular switch-

8

ing technique used in the implementation of switches in interconnection networks for par-

allel systems [8, 9]. Wormhole switching is distinguished by the fact that the granularity

of flow control in a wormhole network can be smaller than a packet [10, 11]. A message

packet is broken up intoflits, a flit being the unit of flow control. Thus, a message is

pipelined through the network at the flit level and at any instant of time, a blocked message

occupies queues in several routers. We use the terms router and switch interchangeably in

this dissertation. In order to not add to the per-flit overhead, only the head flit (the first flit)

of the packet contains information necessary to route the packet through the network. A

switch in the network reads the information in the head flit and directs it to the next switch

or end-system device on its path. The rest of the data flits of a packet are simply forwarded

to the same output link as the head flit. Consequently, the transmission of distinct packets

cannot be multiplexed over a physical link. A packet must be transmitted in its entirety

before a link can be used to transmit another packet.

Implementing fair scheduling disciplines in such a switch poses certain unique chal-

lenges which we describe in the following paragraphs. Consider a wormhole switch with

several input and output queues, with packets in the input queues ready for transmission

to one of the output queues. We define aqueueas a logical entity containing a sequence

of flits that have to be served in a FIFO order. Note that, depending on the buffering ar-

chitecture of the switch, a queue may not be the same as a buffer since a single buffer can

implement multiple logical queues [12, 13]. Consider a certain packetA, with a head flit

that arrives at an input queue of a wormhole switch and is ready to be routed to an output

queue. Once the head flit has been routed to the output queue, as already explained, no flits

from any other packet can be routed to this output queue, until all of the remaining flits of

packetA are routed. Thus, in Figure 1.1, packetB that also wants to use the same output

link as A is blocked and cannot make progress until all the flits from packetA have been

transmitted.

In wormhole switches with virtual channels [14], one typically has as many output

9

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

Packet B

Packet A

Header Flit of A

Data Flits

Header Flit of B

Link 1 Link 2

Link 3

Figure 1.1: Example of downstream congestion in wormhole networks

queues as there are virtual channels associated with each of the output links. Since each

flit is marked by the virtual channel it belongs to, in scheduling flits to the output link from

these output queues, it is not necessary to schedule all flits belonging to a packet before a

flit from another virtual channel is scheduled. If each flow can be assigned a separate virtual

channel, one may use the Flit-Based Round Robin (FBRR) scheduler which visits the flow

queues in round-robin fashion, and transmits one flit from each queue. This scheme is very

fair among the flows in terms of the number of flits scheduled from each flow over any

interval of time. However, this scheme for achieving fairness is prohibitively expensive

since it can only be used if there are as many virtual channels implemented as there are

flows (which can be in hundreds or thousands). In addition, by serving packets flit-by-flit,

the FBRR scheme uniformly increases the delay of packets in all the flows [15]. Further,

multiplexing of flits belonging to different packets is not always feasible. For example,

even in switches with virtual channels, while scheduling entry into the output queues from

10

the various input queues, all flits of a packet have to be scheduled before a flit from another

packet enters the same output queue. A packet-by-packet scheduler, therefore, is a more

suitable and all-encompassing solution. Such a scheduler can also achieve a better average

delay.

Wormhole switches typically use a flit-by-flit credit-based flow control protocol, and

therefore, downstream congestion can thwart the progress of the packet currently being

served for an unpredictable length of time. Since, as explained earlier, it may not always

be possible to time-multiplex the transmission of packets from different flows, one cannot

always begin forwarding packets from another flow until all flits belonging to the packet

currently being served are forwarded. Thus, during the time that a packet is in the middle of

its transmission, packets from other flows may be blocked without access to the output link

even while there are no flits being transmitted over the link. A packet of lengthL bytes,

scheduled for forwarding to an output queue feeding a link of capacityC bytes/second,

may take more thanL/C seconds for transmission. In other words, the length of a packet

cannot singly determine the length of time it takes to dequeue a packet while it blocks other

flows from access to the output queue.

Therefore, the relevant measure of the use of a resource, in this case the output link,

is the length of time a flow occupies the link. In wormhole networks, therefore, fairness

should be based on the length of time each flow occupies a link, and not on the number of

flits sent by each flow over the link. This length of time depends on the downstream con-

gestion which can be hard to predict without complex feedback mechanisms. In wormhole

networks, unlike in Internet routers and many other networks, this length of time cannot

be accurately estimated from knowledge of the length of the packet being transmitted. The

actual length of time that a packet takes to be dequeued, thus, may not be known until the

last flit of the packet is dequeued. A scheduling discipline for wormhole networks, there-

fore, should be able to make a decision on starting the transmission of a packet without

knowledge of the length of time it will take to transmit the entire packet. In addition, the

11

algorithm also cannot assume an upper bound on this length of time. In other words, the

unique requirements of wormhole switching require that a scheduler perform its operations

withoutanyassumptions on how long it will take to transmit a packet. Such a requirement

on the scheduling discipline is also essential in networks where packet delimiters are the

only indication of the beginning and the end of packets, with no length fields in the packet

headers. For example, an ATM network transmitting IP packets over AAL5, where the end

of the packet is not known until the arrival of the last ATM cell corresponding to the packet.

1.2 What is Fair Resource Allocation ?

Traditionally, aflow is defined as a sequence of packets generated by the same source

and headed toward the same destination via the same path in the network. It is assumed that

packets belonging to different flows are queued separately while they await transmission.

A schedulerdequeues packets from these queues, and forwards them for transmission. A

flow is said to beactiveduring a period if its queue is non-empty throughout this period.

A flow is inactive when its queue is empty. Note that, even though we use the above

traditional definition of a flow to present our results in this paper, a flow can also be more

broadly defined as any distinct sequence of packets queued separately at the scheduler and

competing with other sequences of packets for service by the scheduler. For example, in

parallel systems, a flow may also be defined as the set of all packets belonging to the same

user, with packets of these flows queued at the scheduler accordingly.

A precise definition of fairness is essential before further discussion of fair scheduling

of flows. The classic notion of fairness in the allocation of a resource among multiple

requesting entities with equal rights to the resource but unequal demands, is themax-min

fair sharepolicy [6]. It can be formally defined as follows,

• The resource is allocated in order of increasing demand.

• No requesting entity gets a share of the resource larger than its demand.

12

• Requesting entities with unsatisfied demands get equal shares of the resource.

Generalized Processor Sharing (GPS) [16] is an unimplementable but ideal schedul-

ing discipline that satisfies the above notion of max-min fair allocation. GPS is unimple-

mentable because it does not transmit packets as entities and assumes that the traffic is

infinitely divisible. The GPS scheduler visits each non-empty queue in a round-robin or-

der, and serves an infinitesimally small amount of data from each queue, such that in any

finite time interval, it can visit every queue at least once. Consider a set ofn flows denoted

by 1, 2, . . . , n demanding bandwidthsb1, b2, . . . , bn on a link of total bandwidthB. All of

then flows have an equal right to the link bandwidth. Without loss of generality, assume

b1 ≤ b2 ≤ · · · ≤ bn. The GPS scheduler first allocatesB/n of the bandwidth to each of

the active flows. If this is more than the bandwidth demanded by flow 1, the unused band-

width,B/n−b1, is divided equally among the remainingn−1 flows. If the total bandwidth

allocated thus far to flow 2 is more thanb2, the unused excess bandwidth is again divided

equally, this time among the remainingn − 2 flows. The allocation process of the GPS

scheduler continues in this fashion until each flow has received no more than its demand,

and if the demand was not satisfied, no less than any other flow with higher demand. GPS

thus satisfies the max-min fair share allocation.

Note that, thus far, we had assumed that all the flows had the same right to the resource.

However, since guaranteed-rate flows require the network to guarantee a certain minimum

average rate, a weight must be associated with each such flow. The weight allocated to

a flow should be proportional to its reserved rate. The concept of max-min share can be

extended tomax-min weighted fair share allocationto account for the flow weights. The

only change is that the resource allocated to each flow is now normalized by its weight. The

GPS scheduler can be similarly modified to account for the flow weights. Letr represent

the transmission rate of the output link and letφi represent the weight assigned to flowi.

If B(t) denotes the set of flows that are active at timet ≥ 0, the flow i is guaranteed to

13

receive a minimum service rate ofri(t) given by,

ri(t) =

φiP
j∈B(t) φj

r : i ∈ B(t)

0 : otherwise
(1.1)

The effectiveness of a fair scheduler is measured by how closely it approximates GPS.

Over the last decade, a number of scheduling disciplines have been proposed which try to

emulate the GPS scheduler.

1.3 Classification of Scheduling Disciplines

The scheduling disciplines in general can be classified broadly as:

1. Work-conserving: A work-conserving scheduler is never idle while there are packets

waiting to be transmitted in service queues.

2. Non-work-conserving: A non-work-conserving scheduler may be idle even if there are

packets waiting to be served. A scheduler may, for example, postpone the transmission

of a packet when it expects a higher priority packet to arrive soon, even though it is

currently idle.

There are arguments both in favor of and against the above two classes of schedul-

ing disciplines. For example, an argument against non-work conserving scheduling

disciplines is that they waste link bandwidth. However, by idling away the link band-

width, the non-work conserving schedulers can make the traffic arriving at the down-

stream switches more predictable, reducing the delay jitter experienced by a certain

traffic flow [17]. However, work-conserving servers always have lower average delays

than non-work-conserving servers. Examples of work-conserving schedulers include

Weighted Fair Queuing (WFQ) [16, 18], Virtual Clock Queuing [19, 20] and Deficit

Round Robin (DRR) [21]. On the other hand, Hierarchical Round Robin (HRR) [22]

and Stop-and-Go Queuing [23] are non-work-conserving schedulers. The interested

reader may refer to [6] for more details.

14

The scheduling disciplines can also be classified into one of the following two cate-

gories based on their internal architecture:

1. Sorted-Priority Schedulers: These schedulers maintain a global variable known as the

virtual timeor thesystem potentialfunction. A timestamp computed as a function of

this variable is associated with each packet in the system. Packets are sorted based on

their timestamps, and are transmitted in that order.

2. Frame-based or Round Robin Policies: In these schemes, on the other hand, the sched-

uler provides service opportunities to the backlogged flows in a particular order (usu-

ally round-robin) and, during each service opportunity, the intent is to provide the flow

an amount of service proportional to its fair share of the bandwidth.

Weighted Fair Queuing, Virtual Clock Queuing, Self-Clocked Fair Queuing (SCFQ)

[24], Time-Shift Scheduling [25] and Frame-Based Fair Queuing1 (FFQ) [26] and Worst-

Case Fair Weighted Fair Queuing (WF2Q) [27] are some of the popular sorted-priority

queuing mechanisms. The basic idea is depicted in Figure 1.2. These schedulers differ

in the manner in which they calculate the global virtual time function. They generally

provide good fairness and delay properties but are not very efficient. There are two major

costs associated with the implementation of sorted-priority schedulers:

1. The complexity of computing the system virtual time: For WFQ, the worst-case com-

plexity isO(n) wheren is the number of flows sharing the same output link. However,

in a number of schedulers such as SCFQ, SFQ and FFQ proposed in recent years, the

complexity of computing the virtual time isO(1).

2. The complexity of maintaining a sorted list of packets based on their timestamps, and

1Note that, Frame-based Fair Queuing, in spite of its name, is actually a sorted-priority scheduling dis-
cipline. The algorithm uses a framing approach similar to that used in frame-based schedulers to update
the state of the system. However, as in sorted-priority schedulers, packets are transmitted based on their
timestamps.

15

Serve
head of
queue

Output packetsInput packets
timestamp

Calculate Sort based on
timestamps

Figure 1.2: Sorted-priority schedulers

the complexity of computing the maximum or the minimum in this list prior to each

packet transmission. Forn flows the work complexity of the scheduler prior to each

packet transmission isO(log n).

Thus, with a large number of flows, the sorted-priority schedulers becomes expensive to

implement at high speeds. Attempts have been made to improve the efficiency of sorted-

priority schedulers; however, such attempts either do not avoid the implementation bottle-

neck or compromise on fairness.

On the other hand, the frame-based schedulers do not maintain a global virtual time

function and also do not require any sorting among the packets available for transmis-

sion. This reduces the implementation complexity of frame-based scheduling disciplines

to O(1), making them attractive for implementation in routers, and especially so, in hard-

ware switches. Examples of frame-based schedulers are Packet-by-Packet Round Robin

(PBRR) [28] and Deficit Round Robin (DRR) [21,29].

16

1.4 Representative Schedulers

A large number of scheduling algorithms have been proposed in the literature (refer

to [30] for a survey). In this section we will review some of these scheduling algorithms

and outline their properties.

1.4.1 First Come First Serve (FCFS)

FCFS is one of the most common queuing algorithms employed in switches. As the

name implies, in FCFS, the order of arrival completely determines the bandwidth alloca-

tion. FCFS service is trivial to implement, requiring a router or a switch to store only a

single head and tail pointer per output link. However, FCFS fails to provide adequate pro-

tection from a bursty source that may suddenly send packets at a rate higher than its fair

share for brief periods of time. It is easy to see that this rogue flow will capture an arbitrary

part of the outgoing bandwidth. Also such a source can significantly increase the upper

bound on the queuing delay of packets belonging to a flow from another source. Fairness,

however, requires that as long as a source is demanding bandwidth within its rightful share,

the delay experienced by packets from this source should not be affected by other traffic in

the network.

1.4.2 Round Robin Service Policy

Consider several flows, with flits belonging to packets waiting in the respective queues

to be forwarded to another queue or an output link. Two implementation techniques for

round-robin policy are possible.

1. Flit-Based Round Robin (FBRR):One scheduling technique would be to use a pure

Flit-Based Round Robinscheme, in which the scheduler visits each flow’s queue in

a round-robin fashion, and transmits one flit from each queue. This scheme is only

possible in wormhole networks when each flit is tagged with a flow id, such as when

17

each flow represents a virtual channel [14]. This scheme is very fair among the flows

in terms of the number of flits scheduled from each of the queues during any time

interval. However, it cannot be used in other contexts such as for scheduling packets

from input queues to output queues in a wormhole switch for the reasons described in

Section 1.1. In addition, by serving packets flit-by-flit, the FBRR scheme uniformly

increases the delay of packets in all the flows [15].

2. Packet-Based Round Robin (PBRR):An alternate technique would bePacket-Based

Round Robinproposed by Nagle [28], in which the scheduler visits each of the queues

in a round-robin fashion, and transmits an entire packet from a queue before beginning

transmission from another queue. This reduces the average latency experienced by a

packet as compared to FBRR. These techniques and a number of their variations have

been analyzed in [31] for their performance characteristics, but not for their fairness

properties. The PBRR scheduling discipline, for example, ignores the packet lengths

and would be fair if the average packet size over the interval of a connection were

the same for all the traffic flows, in which case each flow would get an equal share

of the outbound bandwidth. It is, however, not fair among the flows when the packet

sizes in the different flows are not equal. Consequently, flows sending longer packets

use up an unfairly high fraction of the available transmission bandwidth. In the worst

case, a flow can getMax/Min times the bandwidth of another flow, whereMax is

the maximum size of the packet andMin is the minimum packet size.

1.4.3 Weighted Fair Queuing (WFQ)

Scheduling mechanisms such as Weighted Fair Queuing also known as Packet-by-Packet

Generalized Processor Sharing (PGPS) [16, 18, 32], try to emulate the ideal GPS scheme

by time-stamping each arriving packet with thefinish number, which is the expected com-

pletion time that a packet would have had if it were scheduled by the GPS scheduler. The

18

WFQ then serves the packets in the increasing order of the finish numbers. Hence, this

requires computation of the finish number for every packet and then sorting among these

time-stamps to determine the relative order in which the packets are to be served. In other

words WFQ simulates GPSon the sideand uses the result of the simulation to determine

the service order.

Let R(t) be the number of rounds of service made by the hypothetical GPS scheduler

up to timet known as theround number. Depending on the number of flows served, each

round of service takes a variable amount of time: the greater the number of flows served,

the longer a round takes. The time taken to serve one bit from each active flow is the length

of a round and it increases in direct proportion to the number of active flows. Hence, in

order to calculate round number, the WFQ scheduler keeps track of the number of active

flows, since the round number grows at the rate inversely proportional ton, wheren is

the total number of active flows. The finish number of a packet arriving to an inactive

connection, i.e, a flow whose queue is empty when the packet arrives, is the sum of the

current round number and the size of the packet in bits. If a packet arrives at an active flow,

then its finish number is the sum of the largest finish number of a packet in its queue and

the packet size in bits. LetL(i, k, t) be the size of the k-th packet that arrives on flowi

at timet andF (i, k, t) be the finish number for thekth packet on flowi. Also letφ(i) be

the weight associated with flowi. Note that, this weight is a function of the reserved rate

requested by flowi. Then,

F (i, k, t) = max{F (i, k − 1, t), R(t)}+
L(i, k, t)

φ(i)
(1.2)

Note that, the finish number is only a service tag that indicates the relative order in which

the packet is to be served, and has nothing to do with the actual time at which the packet is

served.

WFQ conforms to the definition of fairness, in the sense that a flow is not punished if it

temporarily exceeds its reserved rate to take advantage of the unused bandwidth. This can

19

be understood with a simple example given below:

Example 1:Let the packet sizes be constant, and let the output channel have a rate of

1 bit/s. The scheduler has two flowsi andj, each with the same weight. Assume that the

scheduler is initialized at time 0, so thatR(0) = 0 and the finish number of the flowsi andj

are also 0 at time 0. Suppose that a packet of size 100 bits arrives at time 0 on flowi and no

packet from flowj is received up to time 100. Since this is the first packet to arrive on flowi,

its finish number at time 0,F (i, 1, 0) = 0+L(i, 1, 0) = 100 as given by Equation (1.2). At

time 100, 100 bits fromi have been forwarded to the output channel. Since∂R/∂t = 1/n,

R(100) = 100. Hence, from Equation (1.2), assuming that the flowi is still active, the

finish number of flowi at time 100 is equal to 200. At time 100, a packet arrives on flow

j and it is assigned the finish number,F (j, 1, 100) = max{0, 100} + 100 = 200. Since

both the flows have same finish number, the scheduler alternates between the flows and

hence the bandwidth is equally shared. Thus flowi is not punished for using the bandwidth

unused by flowj for the first 100 time units.

The above property may not be satisfied by other scheduling disciplines as will be

illustrated in a subsequent example. While this scheme guarantees absolute fairness, the

packet processing cost makes it hard to implement economically at high speeds. Since it

needs to simulate a GPS scheduler in parallel for updating the round number, the work

complexity of a WFQ scheduler isO(log n) [32]. In general, higher the number of flows

going through the switch, the more expensive it is to implement WFQ.

1.4.4 Self-Clocked Fair Queuing (SCFQ)

To improve the implementation complexity of WFQ, an approximate implementation called

Self-Clocked Fair Queuing was proposed in [24]. In SCFQ, the finish number of a packet

is computed based on the packet currently in service at the scheduler. In other words, when

a packet arrives to an empty queue, instead of using the round number to compute its finish

20

number, it uses the finish number of the packet currently in service. Thus, ifCF represents

the finish number of the packet currently being served by the SCFQ scheduler the finish

number is now calculated as,

F (i, k, t) = max{F (i, k − 1, t), CF}+
L(i, k, t)

φ(i)
(1.3)

This approach reduces the complexity of the algorithm greatly. However, the price paid is

the unfairness over short time scales which also results in larger delay bounds as compared

with WFQ.

1.4.5 Virtual Clock Queuing (VCQ)

The basic idea of virtual clock queuing [19,20] is inspired by Time Division Multiplexing

(TDM). The way WFQ emulates GPS, VCQ emulates time-division multiplexing (TDM).

In the virtual clock method, the scheduler time-stamps the arriving packets with the com-

pletion times under time-division multiplexing, and then serves packets in order of these

completion times. Using the same notation as above, the finish numbers under VCQ is

computed as:

F (i, k, t) = max{F (i, k − 1, t), V C}+
L(i, k, t)

φ(i)
(1.4)

whereV C is the time at which the packet is received by the scheduler. This scheme,

however, like WFQ suffers from the cost associated with sorting among the time-stamps.

Also this scheme may not always be fair as explained by the following example:

Example 2: The scheduler has two flowsi and j, each with a reserved rate of 1/2

packet/s. Assume that the packet sizes are constant (1 bit) and the output channel has a

rate of 1 packet/s. The scheduler is initialized at time 0. From time 0 up to time 100,

packets from flowi arrive at a rate higher than 1 packet/s, and no packet is received from

flow j. At time 0, when the first packet arrives on flowi, from Equation (1.4), its finish

number,F (i, 1, 0) = 2. The finish number of the packet that arrives at time 1,F (i, 2, 1) =

21

max{2, 1} + 2 = 4. Proceeding in the similar manner, at time 100, the finish number or

the time-stamp of flowi is 202. At time 100, packets fromj arrive at the rate of at least 1

packet/s, and packets fromi also continue to arrive. However, when the first packet from

flow j is received, its time-stamp,F (j, 1, 100) = max{0, 100}+ 2 = 102. Since the time-

stamp of flowj is less than the time-stamp of flowi, no packet fromi will be forwarded to

the output channel until 50 packets fromj are forwarded, that is until time 150. In effect,

i is denied service for 50 time units because it earlier took advantage of bandwidth unused

by j. It was seen in the earlier example that this unfairness did not occur in WFQ.

1.4.6 Deficit Round Robin (DRR)

All of the schedulers described above, are sorted-priority schedulers and hence do not avoid

the O(log n) complexity associated with sorting among the timestamps. Deficit Round

Robin (DRR) [21], a less fair but more efficient scheduling discipline with an O(1) per-

packet work complexity, was proposed by Shreedhar and Varghese in 1996. DRR is not a

timestamp-based algorithm, and therefore, avoids the associated computational complexity.

DRR achieves O(1) time-complexity because it serves the active flows in a strict round-

robin order [21,33]. It succeeds in eliminating the unfairness due to different packet lengths

observed in pure PBRR. This is done by keeping a state, associated with each queue called

a deficit count (DC)to measure the past unfairness. AQuantum is assigned to each of the

queues and when a flow is picked for service, its DC is incremented by the quantum value

for that flow. A packet is served from a queue only if the packet size at the head is less

or equal to the sum of the quantum and the deficit counter value; otherwise, the scheduler

begins serving the next flow in the round robin sequence. When a packet is transmitted, the

DC corresponding to that flow is decremented by the size of the transmitted packet.

In DRR, in order that the per-packet work complexity is O(1), one has to make sure

that the quantum value chosen is no smaller than the size of the largest packet that may po-

22

tentially arrive at the scheduler [21]. Otherwise the per-packet work complexity increases

to O(n) since one may encounter a situation, in which, even after visiting each of then

flows and examining the respective DC values, no packet is eligible for transmission. A

per-packet work complexity of O(1) is ensured if we make sure that at least one packet is

transmitted from each active flow during each round. This is ensured if the quantum is no

smaller than the size of the largest possible packet, since this guarantees that the packet

size at the head of each queue at the start of its service opportunity will always be less

than the sum of the DC value and the quantum value of the flow. In order to achieve a

per-packet work-complexity of O(1), therefore, the DRR scheduler requires knowledge of

the upper bound on the size of a packet. DRR, thus, is not ideally suitable for wormhole

networks since it requires the knowledge of the size of a packet before making a decision

on transmitting it, and in addition requires an upper bound on the size of a packet.

1.4.7 Surplus Round Robin (SRR)

In [34, 35], a fair scheduler similar to DRR was proposed. This algorithm, later known as

Surplus Round Robin (SRR), has also been used in other contexts such as in [36]. SRR is

a modified version of DRR, in which the scheduler continues serving a flow as long as the

DC value of the flow is positive. When the DC becomes negative, the scheduler begins

serving the next flow in the round robin sequence. Thus, while DRR never allows a flow to

overdraw its account but rewards an under-served flow in the next round, SRR allows a flow

to overdraw its account but penalizes the flow accordingly in the next round. DRR keeps an

account of each flow’s deficit in service, while SRR keeps an account of the surplus service

received by each flow. SRR does not require the scheduler to know the length of a packet

before scheduling it. However, it does require the use of a fixed quantum assigned to each

flow per round. As in DRR, in order to ensure an O(1) per-packet work complexity, the

quantum value has to be no smaller than the size of the largest packet that may potentially

23

arrive at the scheduler. SRR, like DRR, cannot be readily adapted for use in wormhole

switching since it also requires knowledge of the upper bound on packet sizes.

1.5 Contributions

In this section we will outline the important contributions of this dissertation. As ex-

plained in Section 1.1, wormhole switching, popular in interconnection networks of par-

allel systems, imposes certain unique restrictions on the scheduling algorithms. These

constraints can be summarized as follows:

• The scheduler should be able to make a decision on dequeueing a packet without

knowing the length of time it takes to transmit transmission of a packet without knowl-

edge of how long it will take to transmit the packet.

• The scheduler also cannot assume an upper bound on the length of time it takes to

transmit the packets.

Over the last decade, a variety of scheduling algorithms that seek to achieve fair-

ness in bandwidth allocation have been proposed and implemented in Internet routers

[16, 18, 21, 24, 27, 32, 34–37]. A number of these scheduling disciplines were discussed in

Section 1.4. Unfortunately, most fair scheduling disciplines proposed for Internet routers

are either too expensive to implement in high-speed hardware switches because of the

work complexity of per-packet processing, or cannot be easily adapted to the unique re-

quirements of wormhole networks described above. For example, most timestamp-based

schedulers such as Weighted Fair Queuing [6] have a work complexity of O(log n) with

respect to the number of flows. On the other hand, more efficient schedulers such as Deficit

Round Robin (DRR) [21] and Surplus Round Robin (SRR) [34–36] require knowledge of

the upper bound on packet lengths to achieve a work complexity of O(1), rendering them

difficult to adapt to wormhole networks.

24

In the first part of this dissertation we present a novel and simple scheduling discipline

calledElastic Round Robin (ERR), which is designed to address the unique requirements

of wormhole networks. In traditional scheduling literature, it is typically assumed that the

length of time it takes to transmit a packet is directly proportional to the size of the packet.

Therefore, the problem of designing a fair scheduler for wormhole networks is equivalent to

the problem of designing a fair scheduler in the traditional sense but without the scheduler

makinganyassumptions on the size of a packet before beginning the transmission. Based

on this equivalence, we present the ERR scheduler as a solution to the latter problem. It

should be noted that in many real interconnection networks as well as in Internet routers,

packet headers do carry a field with the packet length in it, and therefore, the problem in

such cases is not a lack of knowledge of the packet length. However, when a scheduler

uses the size of a packet to make its decisions, it cannot be readily adapted to the unique

requirements of wormhole switching.

In spite of the constraints of wormhole switching imposed on the design, ERR is also

suitable for use in Internet routers for scheduling best-effort connections. The emerging

high-speed packet-switched networks are expected to support a variety of services beyond

the best-effort service available in the Internet today. The fair packet scheduling algorithms

in switches and routers play a critical role in providing the Quality-of-Service (QoS) guar-

antees required by the new multimedia applications. We also present a modified version

of ERR which can be used for scheduling these guaranteed-rate application flows. Further

we present analytical results on the efficiency, fairness and performance characteristics of

ERR. A scheduler is considered to be efficient if the order of the work complexity of en-

queuing and dequeuing a packet, with respect to the number of flows, isO(1). We prove

that the work complexity of ERR isO(1), equal to or better than other scheduling disci-

plines. The fairness of a scheduling discipline is measured using a well-known and widely

used metric, known as theRelative Fairness Bound (RFB)[24]. We prove that the rela-

tive fairness bound of ERR is3m, wherem is the size of the largest packet thatactually

25

arrives during the execution of ERR. For guaranteed-rate flows another important perfor-

mance characteristic is the latency, which is measured as the cumulative length of time that

a newly active flow has to wait until it can start receiving service at its reserved rate. We

also evaluate the latency bound of ERR and prove that it belongs to the class ofLatency-

Rate (LR) Servers, a general class of guaranteed-rate schedulers [38]. Our analysis proves

that the ERR algorithm has better fairness properties as well as better performance charac-

teristics than other scheduling disciplines of comparable efficiency such as Deficit Round

Robin and Surplus Round Robin. As a result, ERR is an attractive scheduling discipline

for both best-effort and guaranteed-rate traffic.

As explained earlier, frame-based schedulers are extremely efficient with anO(1) com-

plexity making them attractive for implementation in routers and, especially so, in hardware

switches. However, these frame-based schedulers suffer from a number of disadvantages.

Let us first re-examine the behavior of a frame-based scheduler such as ERR. The ERR

scheduler works inrounds, where a round is defined as one round-robin iteration over all

flows that are active at the start of the round. The scheduler selects the flow at the head of

this list and serves it for a continuous period of time in proportion to its weight. This results

in a highly bursty packet stream at the output of the scheduler. A high degree of burstiness

in the traffic increases the delay jitter which can in turn have an adverse effect on the perfor-

mance of real-time applications. In addition, when a new flow becomes active it has to wait

until all the other previously active flows are served by the scheduler before it can receive

any service. As a result, the latency bound of these schedulers can be considerably greater

than the sorted-priority schedulers. In addition, due to the round robin order of service, a

flow that is lagging in service in comparison to other flows has to wait for its compensation

for this service lag in the subsequent round. Further, there is no means for such a lagging

flow to receive precedence over all the other flows which have already received more than

their fair share of the service in the previous round. These weaknesses stem from the round

robin nature of the service order and from the fact that each flow receives its entire share of

26

service in the round at once in one service opportunity.

In the second part of this dissertation, we address the above problems associated with

the round robin service order of the ERR scheduler and present a a scheduling discipline

called Prioritized Elastic Round Robin (PERR) [39] as a solution. The total service re-

ceived by a flow in a round in PERR is identical to the service received by the flow in

the corresponding round in ERR. However, in PERR, this service received by a flow is

split into several parts over the course of the round. The PERR scheduler eliminates the

strict round-robin nature of service order and re-orders the transmission sequence within

each round of the ERR scheduler. This reordering of packets allows the flows that have

received less service in the previous round to gain precedence over the other flows in the

current round. The exact manner in which the transmission sequence is re-ordered depends

on a certain per-flow state that indicates how far ahead or behind a flow is in consuming

its share of bandwidth. This re-ordering of the transmission sequence in PERR is accom-

plished by adding a limited number,p of priority queues to the original architecture of the

ERR scheduler. We conclude this part of our work with a detailed analysis of the fairness

and performance characteristics of the PERR. To simplify the analysis, we use a novel

approach based on interpreting the PERR scheduler as an instance of the Nested Deficit

Round Robin (Nested-DRR) discipline discussed in [40]. Our analysis shows that both

the relative fairness bound and the latency bound of PERR are lower than those of other

schedulers of comparable efficiency. We also show that the worst-case work complexity

of the PERR scheduler isO(log p), wherep denotes the number of priority queues. It is

important to note thatp ¿ n, wheren is the total number of flows being serviced by the

scheduler. As a result, the work complexity of the PERR scheduler is much lower than those

of sorted-priority schedulers such as WFQ which have a work complexity ofO(log n). The

low work complexity of PERR also results in an efficient and simple software implementa-

tion. In addition, since PERR is based on the ERR scheduler it too satisfies the constraints

of wormhole routing and hence can also be used for scheduling flows in interconnection

27

networks of parallel computer systems.

The fairness and latency measures used in this dissertation and in other literature on

scheduling algorithms, however, are only bounds and do not accurately capture the behav-

ior of the scheduler most of the time under normal circumstances. Recently a new instan-

taneous measure of fairness known as theGini index[41] has been proposed. This index

is adapted from the measures of inequalities used in the field of economics. A complete

evaluation of a scheduler for real-time multimedia traffic is possible with this measure. In

the final part of this work, we present extensive simulation results to comparitively judge

the instantaneous fairness achieved by ERR and PERR in comparison with other schedul-

ing disciplines of equivalent complexity such as DRR, SRR and Pre-order DRR [42]. We

also include the WFQ scheduler as a representative sorted-priority scheduler in our com-

parisons. For our simulations we make use of both synthetic traffic and real gateway traffic

traces. Besides the fairness, we also present a comparison of the latency bounds of these

schedulers.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a detailed de-

scription of the Elastic Round Robin (ERR) scheduling algorithm along with the rationale

behind it. In Chapter 3 we presents analytical results on the efficiency, fairness and perfor-

mance characteristics of ERR. Chapter 4 first highlights the problems associated with the

frame-based schedulers. We then present the Prioritized Elastic Round Robin (PERR) as

a solution to eliminating these limitations. In Chapter 5 we evalulate the performance and

fairness bounds of the PERR scheduler. Chapter 6 presents a simulation-based evaluation

of the instantaneous fairness and latency bounds of ERR and PERR as compared to other

fair efficient schedulers. Finally, Chapter 7 gives a summary of this dissertation, together

with some conclusions and directions for future research.

28

Chapter 2. Elastic Round Robin

In this chapter we propose a novel fair, efficient and low-latency scheduling discipline

called Elastic Round Robin (ERR) which addresses the constraints imposed by wormhole

switching as described in Section 1.1. Even though ERR is designed for wormhole net-

works, it can be used in a wide variety of contexts whenever there is a shared resource that

needs to be allocated fairly among multiple requesting entities. In some of these contexts

its unique properties relevant to wormhole switching are critical, and in some others, its

advantages derive from its simplicity, better fairness and better performance characteris-

tics. For e.g., ERR can be implemented in the Internet routers for fair scheduling of various

flows of traffic corresponding to a source-destination pair. Also, despite the constraints of

wormhole switching imposed on the design, ERR can be used to schedule packets in such

a network, since it does not use the knowledge of the packet length to make a schedul-

ing decision. Besides scheduling packets from input queues to output queues in wormhole

switches, the ERR algorithm can actually also be used for achieving low average delay in

the fair scheduling of packets to the output link from output queues belonging to various

virtual channels. ERR can also be easily adapted for scheduling guaranteed-rate flows.

Because of the wide applicability of our solution, and so that this work may be readily

understood and used in a variety of contexts, we present this algorithm as a solution to the

following abstraction of the problem. Considern flows, each with an associated queue with

packets in it. All then flows have a continuous stream of arbitrary sized packets arriving to

the switch and all these flows wish to leave the switch via the same outgoing link as shown

in Figure 2.1. The scheduler dequeues packets from these queues according to a scheduling

discipline and forwards them for transmission on an output link or to another queue. As

in traditional scheduling problems, we allow that the length of time it takes to dequeue a

packet is proportional to the size of the packet. However, to apply this work to wormhole

29

Traffic
Generators

Switch

Figure 2.1: The switch model

networks, we require that the scheduling algorithm not know the length of a packet until

it has completely dequeued the packet. For wormhole networks, references to the length

of the packet in the algorithm may be replaced by length of time it takes to dequeue the

packet. In all of this chapter, we use a flit as the smallest piece of a packet that can be

independently scheduled, and we measure the length of a packet in terms of flits.

The aim of the ERR scheduler is to give each flow a fair share of the output bandwidth

and hence provide protection from flows that may send large sized packets or the flows

that may send packets at a high rate. The main idea is as follows: in ERR, each flow is

assigned anallowance, measured in terms of the number of flits, that a flow can transmit in

any given round. The queues are serviced in round robin order. When a queue is selected

for service, ERR scheduler calculates itsallowance. ERR serves a queue as long as the

number of flits transmitted from that queue in any round is less than its allowance in that

round. The ERR scheduler, however, allows a flow to exceed its allowance. Associated

with each queue is a state,surplus countwhich keeps track of the extra bandwidth that a

flow used in any given round. Thesurplus countis used to calculate the allowance for a

30

flow in the following round, so that if a flow overdraws its allowance by some amount, it

is penalized by this amount in the next round. A flow that tries to seize a large fraction of

bandwidth beyond its fair share will have a large value of surplus count. In the following

round, the ERR scheduler allows the other flows to transmit at least as many flits as this

flow did in addition to its fair share in the previous round. Thus, the flows that received

little service in a round are compensated for in the next round.

The rest of the chapter is organized as follows. Section 2.1 presents a detailed descrip-

tion of the ERR scheduler along with the rationale behind it. ERR was originally designed

for use in wormhole networks such as the interconnection networks of parallel computer

systems. In addition, ERR can also be used for scheduling best-effort traffic in the Internet.

In Section 2.2, we present a weighted version of ERR which can be used for scheduling

guaranteed-rate flows.

2.1 Algorithm Description

A pseudo-code implementation of the ERR scheduling algorithm is shown in Fig-

ure 2.2, consisting ofInitialize, EnqueueandDequeueroutines.

We define a flow asactivewhen a packet belonging to this flow is in the middle of being

dequeued by the scheduler, or when the queue corresponding to the flow is not empty. In

ERR, we maintain a linked list, called theActiveList, of flows which are active. The ERR

scheduler moves through this list in a round robin manner and serves packets from the

queue it points to. A flow whose queue was previously empty and therefore not in the

ActiveList, is added to the tail of the list whenever a new packet belonging to the flow

arrives. The ERR scheduler serves the flowi at the head of this list. After serving flowi,

if the queue of flowi becomes empty, it is removed from the list. On the other hand if the

queue of flowi is not empty after it has received its round robin service opportunity, flowi

is added back to the tail end of the list.

31

Initialize: (Invoked when the scheduler is initialized)
RoundRobinVisitCount ��� ;
PreviousMaxSC ��� ;
MaxSC ��� ;
for (� ��� ; ����� ; � � �
	��)

SC � ��� ;

Enqueue: (Invoked when a packet arrives)
� � QueueInWhichPacketArrives;
if (ExistsInActiveList(i) == FALSE) then

AddToActiveList(i);
Increment SizeOfActiveList;
SC � ��� ;

end if;

Dequeue:
while (TRUE) do

if (RoundRobinVisitCount ����) then
PreviousMaxSC = MaxSC;
RoundRobinVisitCount � SizeOfActiveList;
MaxSC ��� ;

end if;
� � HeadOfActiveList;
RemoveHeadOfActiveList;� � � ��	����������������! #"�$�%'&�(�%'&)� ;
Sent � ��� ;
do

TransmitPacketFromQueue *+�-, ;
Increase Sent � by LengthInFlitsOfTransmittedPacket;

while (Sent � � � �);
SC � � Sent �'(� � ;
if (SC ��. MaxSC) then

MaxSC � SC � ;
end if;
if (QueueIsEmpty == FALSE) then

AddQueueToActiveList *+�/, ;
else

SC � = 0;
Decrement SizeOfActiveList;

end if;
Decrement RoundRobinVisitCount;

end while;

Figure 2.2: Pseudo-code for ERR

32

TheEnqueueroutine is invoked whenever a new packet arrives at a flow. TheEnqueue

routine queues a packet for an output link of a switch. This is done by looking at the

flow identifier or flow id in the packet header. Then, if the flow identifier does not already

exist in theActiveList, it is added to the list and itsSurplus Countis reset to zero and the

SizeOfActiveListis incremented by one. TheDequeueroutine is the heart of the algorithm

which schedules packets from the queues corresponding to different flows. As long as there

are packets queued for an output link, this process is active. Thus, the work to process a

packet involves two parts: enqueuing and dequeuing.

Consider the instant of time,t1, when the scheduler is first initialized. We defineRound

1 as one round robin iteration starting at timet1 and consisting of visits to all the flows that

were in theActiveListat timet1. We illustrate this definition of a round using Figure 2.3.

Assume that flowsA, B andC are the only flows active at the beginning ofRound 1. The

visits of the scheduler to the flowsA, B andC, compriseRound 1. Let flow D become

active after the time instantt1, but before the completion of Round 1 at time instantt2.

The scheduler does not visit flowD in Round 1sinceD was not in theActiveListat the

start ofRound 1. Round 2is now defined as consisting of the visits to all of the flows

that are in theActiveListat time t2. Assuming that flowsA, B andC are still active at

time t2, Round 2will consist of visits to the flowsA, B, C andD. In general, we define

roundi recursively as the set of visits to all the flows in theActiveListat the instant round

(i − 1) is completed. In order that the scheduler knows the number of flows it has to visit

in any given round, we introduce the quantityRoundRobinVisitCountwhich denotes the

number of flows that are in theActiveListat the start of a round. This is done by setting

RoundRobinVisitCountto theSizeOfActiveListat the start of each round. After a visit to

each flow,RoundRobinVisitCountis decremented by one. This means that at any given

time, RoundRobinVisitCountindicates the number of flows that are yet to be visited by

the scheduler in the current round. WhenRoundRobinVisitCounteventually equals zero, it

implies the end of a round.

33

Flow D
Becomes Active

Flows Served: A, B, C, D

 Round 2

time

 Round 1

t t

Flows Served: A, B, C

1 2

Figure 2.3: Definition of a round

In each round, the scheduling algorithm determines the number of flits that a flow is

allowed to send. We call this quantity theallowancefor the flow during that round. The

allowance assigned to flowi during rounds is denoted byAi(s). This allowance, however,

is not a rigid one and is actuallyelastic, in that a flow may be allowed to send more flits

in a round than its allowance. We allow a flow to exceed itsallowancebecause, as already

explained, in a wormhole switch, once the scheduler starts serving a packet, it will have to

serve that packet in its entirety before it schedules packets from other flows for the output

link. Let Senti(s) be the number of flits that are transmitted from the queue of flowi in

rounds. Each time a packet is successfully transmitted, this quantity in incremented by

the length of the packet in flits. The ERR scheduler will keep serving the packets from the

queue, if the total number of flits transmitted by the flow so far in the current round is less

than its allowance. The ERR scheduler, thus, makes the scheduling decision without any

knowledge about the packet length.

Note that the last packet transmitted by a flow may cause it to exceed its allowance,

as can happen when the allowance is smaller than the size of the packet at the head of the

corresponding queue. The following example will help make this point clear. Consider

a flow i, with allowance equal to 11 flits. Let the queue of flowi have two packets, and

34

assume that the length of the packet at the head and the one following it be 10 and 20 flits,

respectively. Now, the ERR scheduler will transmit the packet at the head. Since the total

number of flits transmitted by the flowi so far in the current round is less than its allowance,

ERR scheduler will schedule the 20-flit packet (now at the head of the queue), letting flow

i to exceed its allowance by 19 flits. Note that every time a scheduler visits a certain flow,

it transmits at least as many flits as its allowance from the queue of that flow. When a flow

ends up sending more than its allowance, it is interpreted as having obtained more than its

fair share of the bandwidth. The scheduler records this unfairness in theSurplus Count

(SC) associated with each flow. The surplus count, during any round, is the number of flits

the flow sent in addition to its allowance.

Let SCi(s) denote the surplus count of flowi in roundr. Then after serving flowi in

rounds, the scheduler computesSCi(s) as

SCi(s) = Senti(s)− Ai(s) (2.1)

We introduce a quantityMaxSC (s) which denotes the largest surplus count among all

the flows served during rounds. In other words,

MaxSC (s) = max {SCj(s)} ,∀j served in rounds (2.2)

When the ERR scheduler is first initialized this quantity is set to zero. In any given round,

after a flow has been visited by the scheduler, its surplus count is computed using Equa-

tion (2.1). The ERR scheduler then checks if this surplus count is greater then the current

value ofMaxSC (s) and if it is, it sets the value ofMaxSC (s) to this new surplus count.

In a given round, after the scheduler has visited all the flows, let flowi be the one that has

the largest value of the surplus count. In the following round, the scheduler ensures that

each flow is allowed to send at least as many flits as flowi actually sent in excess of its

allowance in the previous round.MaxSC (s) is used, as follows, to recursively compute the

35

allowances for each of the flows in the next round.

Ai(s) = 1 + MaxSC (s− 1)− SCi(s− 1) (2.3)

Note that, for flowi, which had the largest surplus count in the previous round, the new

allowance is 1. This is ensured by the addition of 1 in (2.3) so that the scheduler will

transmit at least one packet from this flow during the next round.

The allowance given to each of the flows in a given round is not fixed and is computed

depending on the behavior of the flows in the previous round. After the ERR scheduler

serves flowi, if the queue of flowi is empty, its surplus count is reset to zero and it is

removed from theActiveListand theSizeOfActiveListis decremented by one. Otherwise if

flow i has packets in its queue that are ready for transmission, it is added back at the tail

end of the list and we store its surplus count for use in the next round.

Figure 2.4 illustrates the first three rounds in an execution of the ERR scheduling disci-

pline. In this figure, at the beginning of the first of these rounds, the surplus counts for all

the three flows and theMaxSC are all initialized to 0. Thus, from Equation (2.3), the al-

lowance during round 1 is equal to 1 for all the flows. The sizes of the packets actually sent

by the flow during this round are shown by the vertical bars, and the new allowances for

the next round are again computed using Equations (2.1) and (2.3). The value ofMaxSC

used in each round to compute the allowance is also shown. In round 1, flowA transmits

a packet of length of 32 flits, thus exceeding its allowance by 31 flits. FlowB transmits a

packet of length 16 flits andSCB(1) is computed as 15. The scheduler schedules a packet

of length 24 flits from flowC andSCC(1) is computed as 23 flits. Thus, at the end of round

1,MaxSC (1) equalsSCA(1) and this is used to calculate the allowances for all the flows in

the next round in accordance with Equation (2.3). In round 2, the allowance for flowA is

minimum, while the allowances for the other flows have been increased, thus compensating

for the past unfairness. It is easily observed from Figure 2.4 that, in general, flows which

receive very little service in a round are given an opportunity to receive proportionately

36

16
24

8 8

8

24

4

8 12

4

16

20

32

Round 1 Round 2 Round 3

MaxSC = 0 MaxSC = 31 MaxSC = 23

32

SC
 =

 3
1

SC
 =

 2
3

SC
 =

 1
1

SC
 =

 2
3SC

 =
 3

1

SC
 =

 1
5

SC
 =

 3

SC
 =

 3SC
 =

 7

Fl
ow

 0
, A

 =
 1

Fl
ow

 1
, A

 =
 1

Fl
ow

 2
, A

 =
 1

Fl
ow

 0
, A

 =
 1

Fl
ow

 1
, A

 =
 1

7

Fl
ow

 2
, A

 =
 9

Fl
ow

 0
, A

 =
 1

7

Fl
ow

 1
, A

 =
 1

Fl
ow

 2
, A

 =
 2

1

Figure 2.4: An illustration of 3 rounds in an ERR execution

more service in the next round.

Figure 2.5 shows a block diagram of a portion of ERR to illustrate the various operations

used to determine when the scheduler should stop service of one flow and begin service for

another. In the diagram,PreviousMaxSCandRoundRobinVisitCountare abbreviated as

PMaxSCandRRVC. The thin lines in the figure indicate single-bit signals, while the thick

37

Register MaxSC
 LoadClear

Register SC
Clear Load

Register A

 Load

A − B
 Subtractor

 A B A = B
Comparator
A B

 Adder
A + B

 A B
Comparator
A B

 Adder
A + B

 Multiplexer
Select

 A B

A < B

A B
Comparator

A <= B

Register PMaxSC
 Load

o

Register RRVC
 Load

 Subtractor
A − B

 A B Subtractor
A − B

 A B

0 1

0

1

1

Begin service of flow i

i Stop service of flow i

Queue of flow i is empty

ActiveList Size

 Size of packet served

i

Clear Load
Register Sent

Last flit of a packet transmitted

i

Figure 2.5: A block diagram illustration of the ERR scheduler

dark lines indicate multi-bit buses carrying quantities such as packet sizes and values of

various counters.

2.2 Guaranteed-Rate Scheduling using ERR

In this section, we show that ERR can be easily adapted for scheduling guaranteed rate

connections. We present a weighted version of ERR for guaranteed-rate services. Consider

an output link of transmission rater, access to which is controlled by the ERR scheduler.

Let n be the total number of flows and letρi be the reserved rate for flowi. Let ρmin be the

smallest of the reserved rates. Note that since all the flows share the same output link, a

38

necessary constraint is that the sum of the reserved rates be no more than the transmission

rate of the output link. In other words,

n∑
i=1

ρi ≤ r

In order that each flow receives service proportional to its guaranteed rate, the ERR sched-

uler assigns a weight to each flow. The weight assigned to flowi, wi, is given by,

wi =
ρi

ρmin

(2.4)

Note that for any flowi, wi ≥ 1.

The weighted version of ERR is exactly similar to the ERR algorithm described in

the preceding section. The only difference is in the calculation of theAllowanceand the

MaxSC (r). MaxSC (s) is defined as the largest weighted surplus count among all the flows

served in rounds. In other words,

MaxSC (s) = max

{
SCj(s)

wj

}
, ∀j served in rounds (2.5)

The allowance for each flow is calculated using theMaxSC value in the previous round, as

follows:

Ai(s) = wi(1 + MaxSC (s− 1))− SCi(s− 1) (2.6)

39

Chapter 3. Performance Analysis of ERR

In this chapter we present a detailed analysis of the performance characteristics of the

ERR scheduling discipline. We evaluate the performance of ERR based on the following

important properties:

• Efficiency: The efficiency of a scheduling discipline is measured in terms of the order

of work complexity associated with the enqueuing and dequeuing operations, with

respect ton, the number of active flows. In high-speed networks with large numbers

of active flows, the time available for a scheduler to make its scheduling decision

is very small. Hence, it is desirable that the time to enqueue a received packet or to

dequeue a packet for transmission is as independent as possible of the number of flows

sharing the output link. A per-packet work complexity ofO(1) is most desirable.

• Fairness:The available link bandwidth must be distributed among the flows sharing

the link in a fair manner. This ensures that the performance achieved by a flow is not

affected when a possibly misbehaving flow tries to transmit packets at a rate faster

than its fair share. We measure fairness using a well-known and widely used metric,

known as the relative fairness bound [24].

• Latency: An appropriate measure of packet schedulers in this regard, especially for

schedulers seeking to provide guaranteed services is the upper bound on the length of

time it takes a new flow to begin receiving service at the guaranteed rate [38]. The

latency bound is directly related to the amount of playback buffering required at the

receiver.

The results in this chapter present an analytical proof that the ERR algorithm has better

fairness properties as well as better performance characteristics than other fair scheduling

disciplines of comparable efficiency such as DRR and SRR.

40

The rest of this chapter is organized as follows. In Section 3.1, we prove that the work

complexity of ERR isO(1), equal or better than other scheduling disciplines. Section 3.2

presents the fairness analysis of ERR. We prove that the relative fairness bound of ERR is

3m, wherem is the size of the largest packet thatactuallyarrives during the execution of

the ERR scheduler. Section 3.3 briefly describes the concept of latency-rate (LR) servers,

a general class of schedulers proposed by Stiliadis and Verma in [38]. In Section 3.4, we

evaluate the latency bound of ERR and prove that it belongs to the class ofLR servers. In

addition, we also show that the latency bound derived in this section is a tight one.

3.1 Work Complexity

The work complexity of a scheduling discipline is defined as follows,

Definition 3.1.1 Consider an execution of a scheduling discipline overn flows. We define

the work complexity of the scheduler as the order of the time complexity, with respect ton,

of enqueuing and then dequeuing a packet for transmission.

Note that, this definition of work complexity does not include the transmission time of the

packet.

Theorem 3.1.1 The work complexity of an ERR scheduler is O(1).

Proof: We prove the theorem by showing that enqueuing and dequeuing a packet are

each of time complexity O(1).

The time complexity of enqueuing a packet is the same as the time complexity of the

Enqueueprocedure in Figure 2.2, which is executed whenever a new packet arrives at a

flow. Determining the flow at which the packet arrives is an O(1) operation. Once, we

figure out the queue to enqueue, the packet is appended to the end of the queue. The flow at

which the new packet arrives is added to theActiveList, if it is not already in the list. This

addition of an item to the tail of a linked list data structure is also an O(1) operation.

41

We now consider the time complexity of dequeuing a packet. During each service

opportunity, the ERR scheduler transmits at least one packet. Thus, the time complexity

of dequeuing a packet is equal to or less than the time complexity of all the operations

performed during each service opportunity. Each execution of the set of operations inside

the while loop of theDequeueprocedure in Figure 3.2, represents all operations performed

during each service opportunity given to a flow. These operations include determining the

next flow to be served, removing this flow from the head of theActiveListand possibly

adding it back at the tail. All of these operations on a linked list data structure can be

executed in O(1) time. Additionally, each service opportunity includes updating the values

of surplus count and allowance corresponding to the flow being served, and also updating

the values ofMaxSC, PreviousMaxSC, SizeOfActiveListandRoundRobinVisitCount. All of

these can be done in constant time, as represented by the constant number of operations in

the dequeue procedure in Figure 2.2.

3.2 Fairness Analysis

The fairness of a scheduling discipline is best measured in comparison to the GPS

scheduling algorithm. The quantity, known as theAbsolute Fairness Bound (AFB)of a

schedulerS, is defined as the upper bound on the difference between the service received

by a flow underSand that under GPS over all possible intervals of time. This bound is often

difficult to derive analytically. Also it has been shown in [43] that theAFB is related by a

simple equation to another popular fairness measure known as theRelative Fairness Bound

(RFB)first proposed in [24]. TheRFB is also much easier to evaluate as compared to the

AFB. In our fairness analysis, we therefore make use of theRFB. Our metric is identical

to the one used in [21]. . TheRFB is defined as the maximum difference in the service

received by any two flows over all possible intervals of time. The following provides a

more rigorous definition. In the following, a flow is consideredactiveduring an interval

42

of time, if, during this interval, its queue is never empty of packets awaiting transmission.

We consider only the active flows to measure the fairness because it makes no sense in

comparing a flow that is not active with the one that is, since the former does not receive

any service when it is not active.

Definition 3.2.1 Let Senti(t1, t2) be the number of flits transmitted by flowi during the

time interval betweent1 andt2. Given an interval(t1, t2), we define the Relative Fairness,

RF(t1, t2) for this interval as the maximum value of|Senti(t1, t2)− Sent j(t1, t2)| over all

pairs of flowsi andj that are active during this interval. Define the relative fairness bound

(RFB) as the maximum of RF(t1, t2) for all possible time intervals(t1, t2).

It is desirable thatRFBbe a small constant. The smaller theRFB, the closer the sched-

uler emulates the GPS scheduler which is considered an ideal fair scheduling algorithm.

Definition 3.2.2 Definem as the size in flits of the largest packet that is actually served

during the execution of a scheduling algorithm.

Definition 3.2.3 DefineM as the size in flits of the largest packet that may potentially

arrive during the execution of a scheduling algorithm. Note that,M ≥ m.

Lemma 3.2.1 For any flowi and roundr in the execution of an ERR scheduling discipline,

0 ≤ SCi(r) ≤ m− 1 (3.1)

Proof: The lower bound onSCi(r) in the expression of the lemma is obvious since

the ERR algorithm always schedules at least as many flits asAi(r) during roundr. The

only exception is when the queue for flowi becomes empty in roundr, in which case the

surplus count of the flow is reset to 0.

The ERR algorithm never begins dequeuing a new packet in a flow after the number of

flits sent in a roundr is equal to or more than the allowanceAi(r). Thus, the lowest value

43

of the allowance at which the ERR scheduler may select a new packet for transmission is

1, and this will be the last packet transmitted by the flow during this round. Since the

size of this packet can be no greater thanm, from Equation (2.1), the upper bound in the

expression of the lemma is proved.

The following corollary follows directly from Lemma 3.2.1.

Corollary 3.2.1 In any roundr, MaxSC (r) is bounded as follows,

0 ≤ MaxSC (r) ≤ m− 1 (3.2)

The next theorem gives the upper and the lower bounds on the number of flits that any flow

can transmit inn consecutive rounds during which it is active.

Theorem 3.2.1 Givenn consecutive rounds starting from roundk during which flowi is

active, the bounds on the total number of flits,N , transmitted by flowi are given by,

n +
k+n−2∑

r=k−1

MaxSC (r)− (m− 1) ≤ N ≤ n +
k+n−2∑

r=k−1

MaxSC (r) + (m− 1)

Proof: Substituting forAi(r) using Equation (2.3) into Equation (2.1), we get,

Sent i(r) = 1 + MaxSC (r − 1)− SCi(r − 1) + SCi(r) (3.3)

Now, sinceN is the total number of flits transmitted by flowi from roundr = k to r =

k + n− 1,

N =
k+n−1∑

r=k

Sent i(r)

Overn rounds of servicing of flowi, starting form roundk, we get the following values of

Sent i(r):

Sent i(k) = 1 + MaxSC (k − 1)− SCi(k − 1) + SCi(k)

Sent i(k + 1) = 1 + MaxSC (k)− SCi(k) + SCi(k + 1)

44

...

Sent i(k + n− 2) = 1 + MaxSC (k + n− 3)− SCi(k + n− 3) + SCi(k + n− 2)

Sent i(k + n− 1) = 1 + MaxSC (k + n− 2)− SCi(k + n− 2) + SCi(k + n− 1)

Summing up the aboven Equations, we get:

Sent i(k) + Sent i(k + 1) + · · ·+ Sent i(k + n− 1) =

n +
k+n−2∑

r=k−1

MaxSC (r) + SCi(k + n− 1)− SCi(k − 1)

Recall that:

N = Sent i(k) + Sent i(k + 1) + · · ·+ Sent i(k + n− 1)

Therefore, we get:

N = n +
k+n−2∑

r=k−1

MaxSC (r) + SCi(k + n− 1)− SCi(k − 1) (3.4)

Using Lemma 3.2.1,0 ≤ SCi(k + n − 1) ≤ m − 1, and0 ≤ SCi(k − 1) ≤ m − 1. The

result of the theorem is readily obtained by substituting for these bounds onSCi(k − 1)

andSCi(k + n− 1) in Equation (3.4).

We now proceed to prove the bound on the fairness measure of the ERR scheduling

discipline. Note that, the relative fairness bound, RFB, is defined taking into consideration

all possible intervals of time(t1, t2). In the following, we prove that a tight upper bound

can be obtained considering only a subset of all possible time intervals. This subset is the

set of all time intervals bounded by time instants that coincide with the beginning or the

end of the service opportunity of flows.

Definition 3.2.4 Let T be the set of all time instants during an execution of the ERR algo-

rithm. DefineTs as the set of all time instants at which the scheduler ends serving one flow

and begins serving another. Define byF (t), for t /∈ Ts, the flow which is being served at

time instantt. For t ∈ Ts, we defineF (t) as the flow just about to begin service.

45

The following lemma allows us to prove an upper bound on the fairness measure, stated

in Theorem 3.2.2, considering only the time intervals(t1, t2), wheret1, t2 ∈ Ts.

Lemma 3.2.2 RFB = max
t1,t2∈Ts

RF(t1, t2).

Proof: This lemma is proved if for anyt1, t2 ∈ T, we can findt′1, t
′
2 ∈ Ts, such that

RF(t′1, t
′
2) ≥ RF(t1, t2).

Consider any two active flowsi and j during the interval betweent1 and t2, where

t1, t2 ∈ T. Without loss of generality, assume that during this interval, more flits have been

scheduled from flowi than from flowj. By appropriately choosingt′1 as the time instant

at either the beginning or the end of the service opportunity given toF (t1) at timet1, one

may verify that RF(t′1, t2) ≥ RF(t1, t2). Similarly, an appropriate choice oft′2 as either the

beginning or the ending instant of the service opportunity given toF (t2) at t2, can lead to

RF(t′1, t
′
2) ≥ RF(t1, t2).

Theorem 3.2.2 For any execution of the ERR scheduling discipline, FM< 3m.

Proof: By the statement of Lemma 3.2.2, we need to only consider all time intervals

bounded by time instants that coincide with the starting or ending of service to a flow. We

therefore prove the statement of the theorem using the time interval between instantst1 and

t2, where botht1 andt2 belong toTs.

Consider any two flowsi andj that are active in the time interval betweent1 andt2.

From the algorithm in Figure 2.2, it follows that after flowi receives service, it is added to

the tail end of theActiveList. Since flowj is in theActiveList, the ERR scheduler will visit

flow j, before flowi receives service again. Thus, in between any two consecutive service

opportunities given to flowi, flow j receives exactly one service opportunity. Hence, ifni

andnj denote the total round robin opportunities received by flowsi andj respectively in

the time interval(t1, t2) then,|ni − nj| ≤ 1.

46

Flow j Flow i Flow j Flow i

t 1 t t 2

Round r(t) Round r(t)21

x

Figure 3.1: Explanation for|ri − rj| ≤ 1

Let r(t) denote the round in progress at time instantt. Also note that the time instant

t1 may be such that the service opportunity received by one of the two flows in roundr(t1)

may not be a part of interval(t1, t2). Thus, the first time that the scheduler visits this flow

in the interval under consideration would be in the round followingr(t1). Consequently, if

ri andrj, denote the rounds in which flowsi andj receive service for the first time in the

interval(t1, t2) respectively, then|ri − rj| ≤ 1. This is illustrated in Figure 3.1

Sincet1 andt2 both belong to setTs, assume that the time instantt1 coincides with the

time when the scheduler has finished serving flowj in roundr(t1). Hence, the scheduler

now visits flowi. Let the time instanttX mark the end of the service opportunity of flow

i and the roundr(t1). Thus, in the time interval under consideration, the ERR scheduler

visits flow i for the first time in the roundr(t1) and flowj in the roundr(t2).

Without loss of generality, we can assume that in the interval(t1, t2), flow i starts

receiving service before flowj. Thus,

rj ≤ ri + 1,

and ni ≤ nj + 1
(3.5)

From Theorem 3.2.1, for flowi

Sent i(t1, t2) ≤ ni +

ri+ni−2∑

k=ri−1

MaxSC (k) + (m− 1) (3.6)

47

For flow j,

nj +

rj+nj−2∑

k=rj−1

MaxSC (k)− (m− 1) ≤ Sent j(t1, t2) (3.7)

Combining Equations (3.6) and (3.7), and using (3.5), we get,

Sent i(t1, t2)− Sent j(t1, t2) ≤ 1 +

ri+ni−2∑

k=ri−1

MaxSC (k)

−
rj+nj−2∑

k=rj−1

MaxSC (k) + 2(m− 1) (3.8)

Let us now consider the quantityD given by,

D =

ri+ni−2∑

k=ri−1

MaxSC (k)−
rj+nj−2∑

k=rj−1

MaxSC (k)

We now computeD for each of the four possible cases.

Case 1(ri = rj, ni = nj):

D = 0

Case 2(ri = rj, ni = nj + 1):

D = MaxSC (ri + ni − 2)

Case 3(ri = rj − 1, ni = nj):

D = MaxSC (ri − 1)−MaxSC (ri + ni − 1)

Case 4(ri = rj − 1, ni = nj + 1):

D = MaxSC (ri − 1)

Using Corollary 3.2.1, in each of the above four cases,D < m. Substituting in (3.8),

the statement of the theorem is proved.

48

It can be easily verified that Theorem 3.2.2 can also be proved for the weighted ERR

scheduler using Equations (2.6) and (2.5) in place of Equation (2.3) and (2.2) in the proof

above.

In comparison to a relative fairness bound of3m for ERR, both DRR and SRR have

a relative fairness bound ofM + 2m, whereM is the size of the largest packet that may

potentiallyarrive during the lifetime of the execution of the scheduling discipline. Recall

that m is the size of the largest packet thatactually arrives during the execution of the

scheduler. In most networks, including the Internet, the vast majority of the packets in the

traffic are of much smaller size than the maximum possible size of a packet [44, 45]. The

value ofm in the expression for the relative fairness, especially over short intervals of time,

is likely to be much smaller thanM . The fairness achieved by ERR, thus, is always equal

to or better than that achieved by DRR or SRR.

3.3 Latency Rate Servers

In this section we present a brief overview of the concept ofLatency Rateservers, first

introduced in [38]. The theory ofLatency Rate(LR) servers provides a means to describe

the worst-case behavior of a broad range of scheduling algorithms in a simple manner. The

two key parameters that determine the behavior of aLR server are thelatencyand the

reserved rateof each flow. The latency of aLR server is a measure of the cumulative time

that a flow has to wait until it begins receiving service at its guaranteed rate. The latency

of a particular scheduling algorithm may depend on a number of factors such as internal

parameters of the scheduling discipline, the reserved rates of the other flows multiplexed

on the same output link and the transmission rate of the flow on the output link. It has

been shown in [38] that several well-known scheduling disciplines such as Weighted Fair

Queuing (WFQ), Self-Clocked Fair Queuing (SCFQ), Virtual Clock and Deficit Round

Robin (DRR) belong to the class ofLR servers.

49

We first present some definitions and notations which will be useful in understanding

the concept ofLR servers.

Definition 3.3.1 A system busy periodis defined as the maximal time interval during which

the server is continuously transmitting packets.

Definition 3.3.2 We define a flow asactiveduring an interval of time, if at all instants of

time during this interval, it has at least one packet awaiting service or being served.

We now define define the notion abusy period, an essential component of the concept

of LR servers.

Definition 3.3.3 A busy periodof a flow is defined as the maximal time interval during

which the flow is active if it served at exactly its reserved rate.

Let ρi be the reserved rate for flowi. Also letArrivedi(t1, t2) denote the total number

of bits of flow i that arrive at the scheduler during the time interval(t1, t2). Consider an

interval of time(τ1, τ2) which represents a busy period for flowi. Then for any time interval

(τ1, t) such thatt ∈ (τ1, τ2), the number of bits that arrive during this interval is greater than

or equal to the number of bits that would exit the scheduler if the flow received service at

its reserved rate,ρi. In other words, for allt ∈ (τ1, τ2),

Arrivedi(τ1, t) ≥ ρi(t− τ1)

A graph ofArrivedi(τ, t) against time is plotted in Figure 3.2. Figure 3.2 illustrates

two busy periods,(t1, t2) and (t3, t4) for flow i. It is important to understand the basic

difference between a session busy period and a session active period. The definition of

the busy period supposes that flowi is served at the constant reserved rate, and therefore,

depends only on the reserved rate of the flow and the packet arrival pattern of the flow. An

active period of a flow, however, reflects the actual behavior of the scheduler where the

50

1

ρ
i

Arrived i

1

ρ
i

τ1 τ2 τ 3 4τ time

Figure 3.2: Two busy periods for flowi

instantaneous service offered to flowi varies according to the number of active flows. If

during a busy period of flowi, the instantaneous service rate offered to flowi is greater

than the allocated rate, then the flow may cease to be active. Thus, a busy period of a flow

may include multiple active periods for that flow. The start of a busy period of a flow is

always caused by the arrival of a packet belonging to the flow.

Note that, when the same traffic distribution is applied to two different schedulers with

identical reserved rates, the ensuing active periods of the flows can be quite different. This

makes it difficult to make use of active periods to analyze a broad class of schedulers. On

the other hand, the busy period of a flow depends only on the arrival rate of the flow and

its reserved rate. Therefore, the busy period can be used as an invariant in the analysis of

different schedulers. It is because of this important property that the definition of anLR
server is based on the service received by a flow during a busy period.

The following definitions lead to a formal notion of latency in the case of guaranteed-

rate servers. The reader is referred to [38] for a more detailed discussion.

Definition 3.3.4 DefineSent i(t1, t2) as the amount of service received by flowi during the

51

interval (t1, t2).

Definition 3.3.5 Let time instantαi represent the start of a certain busy period for flowi.

Let t > αi be such that the flow is continuously busy during the time interval(αi, t). Define

Si(αi, t) as the number of bits belonging to packets in flowi that arrive after timeαi and

are scheduled during the time interval(αi, t).

Note that,Sent i(αi, t) is not necessarily equal toSi(αi, t). This is because, during this

interval of time, the scheduler may still be serving packets that arrived during a previous

busy period.Si(αi, t), therefore, is not necessarily the same as the total number of bits

scheduled from flowi in this interval. We are now prepared to present the definition of

latency inLR servers.

Definition 3.3.6 The latency of a flow is defined as the minimum non-negative constantΘi

that satisfies the following for all possible busy periods of the flow,

Si(αi, t) ≥ max{0, ρi(t− αi −Θi)} (3.9)

As defined in [38], a scheduler which satisfies Equation (3.9) for some non-negative

constant value ofΘi is said to belong to the class ofLatency Rate(LR) servers. The

above definition captures the fact that the latency of a guaranteed-rate scheduler should not

merely be the time it takes for the first packet of a flow to get scheduled, but should be a

measure of the cumulative time that a flow has to wait until it begins receiving service at

its guaranteed rate. A graph ofSi(αi, t) against time is plotted in Figure 3.3. The RHS

of the above equation defines an envelop which bounds the minimum service received by

a flow i during the busy period(αi, t). The dashed line in Figure 3.3 corresponds to this

envelop. For a particular scheduling algorithm several parameters such as its transmission

rate on the output link, the number of the other flows sharing the link and their reserved rate

may influence the latency. It has been proved in [38] that the maximum end-to-end delay

52

αi + θiα

(α ,i t)Arrivedi

(α ,i t)iS

 time

ρ

1

i

Figure 3.3: An example of the behavior of anLR server

experienced by a packet in a network of schedulers can be calculated from only the latencies

of the individual schedulers on the path of the connection and the traffic parameters on

the connection that generated the packet. Since the end-to-end delay increases directly in

proportion to the latency of the schedulers, the model highlights the significance of using

low-latency schedulers for achieving low end-to-end delays.

3.4 Latency Analysis

The analysis of the latency of ERR is facilitated by the following result, stated below

as Lemma 3.4.1 and proved in [38]. This result allows one to obtain a bound on the latency

achieved by a flow as given by Definition 3.3.6 by considering only the active periods of a

flow.

Lemma 3.4.1 Let τi be an instant of time when flowi becomes active. Lett > τi be some

instant of time such that the flow is continuously active during the time interval(τi, t). Let

53

Θ′
i be the smallest non-negative number such that the following is satisfied for allt.

Sent i(τi, t) ≥ max{0, ρi(t− τi −Θ′
i)} (3.10)

Even though(τi, t) may not be a continuously busy period for flowi, the latency as defined

by Definition 3.3.6 is bounded byΘ′
i.

We now proceed to derive a bound on the latency of the ERR scheduler, using the

lemma above. Note that, the instant of time when a flowi becomes active,τi, may or may

not coincide with the start of the round robin service opportunity of some other flow. In

the following, we prove that a tight upper bound on the latency of the ERR scheduler can

be obtained by consideringτi belonging to only a subset of all possible time instants. This

subset is the set of all time instants that coincide with the beginning or the end of the service

opportunity of flows.

Definition 3.4.1 DefineT as the set of all time instants, during an execution of the ERR

algorithm, at which the scheduler ends serving one flow and begins serving another. Define

Ti as the set of all time instants at which the scheduler begins serving flowi. Note that, the

setT is the union ofTi for all flowsi, that are served during the execution of the scheduler.

Lemma 3.4.2 The latency experienced by flowi in an ERR scheduler will reach its upper

bound,Θ′
i, only if the time instant,τi, at which flowi becomes active, belongs to the setT.

Proof: Assume that flowi becomes active at time instantτi. Let (t1, t2), t1 ≤ τi < t2

be the time interval during which some flowj 6= i receives its round robin service opportu-

nity. Consider the case whenτi does not coincide with the start of the service opportunity

of flow i, i.e., τi > t1. Now, the time interval(t1, τi), which is a part of the round robin

service opportunity of flowj, will not contribute to the latency experienced by flowi. On

the other hand, consider the case whenτi coincides witht1, the start of the service opportu-

nity of flow j. Now, the time for which flowi has to wait before receiving any service will

54

include the entire time interval(t1, t2) during which flowj receives its round robin service

opportunity. Clearly, the latency experienced by flowi is always greater whenτi coincides

with the start of the service opportunity of some other flow. The statement of the lemma

follows from this observation.

From Lemma 3.4.2, in deriving an upper bound on the latency experienced by flowi,

therefore, one needs to only considerτi such thatτi ∈ T. The following lemma further

limits the cases we need to consider in deriving the upper bound. Note that, in proving the

upper bound, we need to only consider the intervals of time over which Equation (3.10)

is an equality. In fact, the upper bound on the latency is achieved at time instantst when

Sent i(τi, t) = ρi(t − τi − Θ′
i). The following lemma provides a simple condition ont in

order to achieve the equality in Equation (3.10).

Lemma 3.4.3 If flow i becomes active at time instantτi, then there exists somet ∈ Ti such

that the flow remains active during the interval(τi, t), and

Sent i(τi, t) = ρi(t− τi −Θ′
i)

Proof: Note that, ifSent i(τi, t) = ρi(t−τi−Θ′
i), then the flow experiences the worst-

case latency at time instantt. Consider any two consecutive time instantst1 andt2 which

both belong toTi. Consider an instant of timet, t1 < t < t2.

Case 1:Let t be such that flowi is receiving service at time instantt.

During the interval(t1, t), the amount of service received by the flow isr(t − t1),

wherer is the rate of the link. Clearly, during this time, the flow is receiving service at the

guaranteed rate or higher. Therefore, the worst-case latency experienced by the flow until

any time in the interval(t1, t) is no worse than that experienced by it until timet1 ∈ Ti.

Case 2:Let t be such that some flow other thani is receiving service at time instantt.

During the interval(t, t2), flow i receives no service at all. Therefore, the latency

experienced by the flow increases after timet but only until timet2. Thus, the worst-case

55

latency experienced by the flow until any time in the interval(t, t2) is no worse than that

experienced by it until timet2 ∈ Ti.

The above two cases illustrate that the worst-case latency experienced by a flow during

an interval(t1, t2) is equal to the latency experienced by the flow until either timet1 or time

t2. Extrapolating to all intervals between consecutive time instants that belong toTi, the

statement of the lemma is proved.

Theorem 3.4.1 The ERR scheduler belongs to the class ofLR servers, with an upper

bound on the latencyΘi for flow i given by,

Θi ≤ (W − wi)m + (n− 1)(m− 1)

r
(3.11)

wheren is the total number of active flows,W is the sum of the weights of all the flows and

r is the transmission rate of the output link.

Proof: From Lemma 3.4.1, we know that the latency of the ERR scheduler as defined

by Equation 3.3.6 is bounded byΘ′
i. Hence, we will prove the theorem by showing that,

Θ′
i ≤

((W − wi)m + (n− 1)(m− 1))

r

Let time instantτi represent the time instant at which flowi becomes active. To prove

the statement of the theorem we must consider a time interval(τi, t) wheret > τi, during

which flow i is continuously active. We first obtain the lower bound on the total service

received by flowi during the time interval under consideration. Then we express the lower

bound in the form of Equation (3.10) to derive the latency bound. By the statement of

Lemma 3.4.2, this upper bound on the latency is reached only if the time instant at which

flow i becomes active,τi, belongs toT. Therefore, in seeking the upper bound on the

latency, we may assume that flowi becomes active at exactly the instant that some other

flow begins receiving service. Letτ k
i be the time instant marking the start of thek-th service

opportunity of flowi after it becomes active at time instantτi. Note that,τ k
i belongs to

56

t 1t 0
t 2 t k t k+1

Flow i
becomes active

τ i

 Round k0 Round k + 10 Round k + k0

τ i
kτ i

1

time

time interval
under consideration

i u21u u21 ni1 2 n

Figure 3.4: An illustration of the time interval under consideration for the analysis of the
latency bound of ERR

Ti. Therefore, from Lemma 3.4.3, in order to determine the latency bound as defined by

Equation 3.10, one needs to only consider intervals of time(τi, τ
k
i) for all k. Figure 3.4

illustrates the time interval under consideration for a givenk.

The first step toward analyzing the latency bound involves determining the upper bound

on the time interval under consideration. Note that, the time instantτi may or may not

coincide with the end of a round and the start of the subsequent round. Letk0 be the round

which is in progress at time instantτi or which ends exactly at time instantτi. Let the time

instantth mark the end of round(k0 +h−1) and the start of the subsequent round. For any

flow j during a rounds in the interval under consideration, using (2.1) and (2.6), we have,

Sent j(s) = wj(1 + MaxSC (s− 1)) + SCj(s)− SCj(s− 1) (3.12)

As illustrated in Figure 3.4, assume that the time instant when flowi becomes active

coincides with the time instant when some flowj is about to start its service opportunity

during thek0-th round. LetGa denote the set of flows which receive service during the

time interval(τi, t1), i.e., after flow i becomes active and during roundk0. Similarly, let

57

Gb denote the set of flows which are served by the ERR scheduler during the time interval

(t0, τi), i.e., beforeflow i becomes active and during roundk0. Note that, flowi is not

included in either of these two sets since flowi will receive its first service opportunity

only in the(k0 + 1)-th round. If the time instantτi coincides with the end of a round, then

the setGa will be empty and all the (n − 1) flows will belong to the setGb. Note that, the

union of the setsGa, Gb and flowi results in the set ofn active flows. In other words,

Ga ∪Gb ∪ {i} = {n} (3.13)

Consider the time interval(τi, τ
k
i) during which flowi receivesk round robin service

opportunities. This time interval can be split into three sub-intervals:

1. (τi, t1): This sub-interval includes the part of thek0-th round during which all the

flows belonging to the setGa will be served by the ERR scheduler. Summing Equation

(3.12) over all these flows,

t1 − τi ≤ 1

r

∑
j∈Ga

{wj(1 + MaxSC (k0 − 1)) + SCj(k0)− SCj(k0 − 1)} (3.14)

2. (t1, tk): This sub-interval includesk − 1 rounds of execution of the ERR scheduler

starting at round(k0 + 1). Consider the time interval (th, th+1) when round(k0 + h)

is in progress. Summing Equation (3.12) over alln flows,

th+1 − th ≤ W

r
(1 + MaxSC (k0 + h− 1))

+
1

r

n∑
j=1

{SCj(k0 + h)− SCj(k0 + h− 1)}

Summing the above over(k − 1) rounds beginning with round (k0 + 1),

tk − t1 ≤ W

r
(k − 1) +

W

r

k−1∑

h=1

MaxSC (k0 + h− 1)

+
1

r

n∑
j=1

{SCj(k0 + k − 1)− SCj(k0)} (3.15)

58

3. (tk, τ
k
i): This sub-interval includes the part of the(k0 + k)-th round during which

all the flows belonging to the setGb will be served by the ERR scheduler. Summing

Equation (3.12) over all these flows,

τ k
i − tk ≤ 1

r

∑
j∈Gb

wj(1 + MaxSC (k0 + k − 1))

+
1

r

∑
j∈Gb

{SCj(k0 + k)− SCj(k0 + k − 1)} (3.16)

Combining Equations (3.14), (3.15) and (3.16) we have,

τ k
i − τi ≤ 1

r

∑
j∈Ga

wj(1 + MaxSC (k0 − 1)) +
1

r

∑
j∈Gb

wj(1 + MaxSC (k0 + k − 1))

+
W

r
(k − 1) +

W

r

k−1∑

h=1

MaxSC (k0 + h− 1)

+
1

r

∑
j∈Ga

{SCj(k0)− SCj(k0 − 1)}

+
1

r

∑
j∈Gb

{SCj(k0 + k)− SCj(k0 + k − 1)}

+
1

r

n∑
j=1

{SCj(k0 + k − 1)− SCj(k0)} (3.17)

Simplifying Equation (3.17) using Equation (3.13) results in,

τ k
i − τi ≤ 1

r

∑
j∈Ga

wj(1 + MaxSC (k0 − 1)) +
1

r

∑
j∈Gb

wj(1 + MaxSC (k0 + k − 1))

+
W

r
(k − 1) +

W

r

k−1∑

h=1

MaxSC (k0 + h− 1)

+
1

r

∑
j∈Ga

{SCj(k0 + k − 1)− SCj(k0 − 1)}

+
1

r

∑
j∈Gb

{SCj(k0 + k)− SCj(k0)}

+
1

r
{SCi(k0 + k − 1)− SCi(k0)}

59

Using the bounds on the surplus count from Equation (2.1) in the above equation, we have,

τ k
i − τi ≤ W

r
(k − 1) +

W − wi

r
+

1

r

∑
j∈Ga

wjMaxSC (k0 − 1)

+
W

r

k−1∑

h=1

MaxSC (k0 + h− 1) +
1

r

∑
j∈Gb

wjMaxSC (k0 + k − 1)

+
(n− 1)(m− 1)

r
+

1

r
SCi(k0 + k − 1) (3.18)

Solving for(k − 1),

(k − 1) ≥ (τ k
i − τi)

r

W
− W − wi

W
− 1

W

∑
j∈Ga

wjMaxSC (k0 − 1)

−
k−1∑

h=1

MaxSC (k0 + h− 1)− 1

W

∑
j∈Gb

wj(MaxSC (k0 + k − 1)

−(n− 1)

W
(m− 1)− 1

W
SCi(k0 + k − 1) (3.19)

Note that, the total data transmitted by flowi during the time interval under considera-

tion, (τi, τ
k
i) can be expressed as the following summation,

Sent i(τi, τ
k
i) =

k0+k−1∑

z=k0+1

Sent i(z)

Substituting Equation (3.12) in the above equation,

Sent i(τi, τ
k
i) = wi(k − 1) + wi

k∑

h=1

MaxSC (k0 + h− 1) + SCi(k0 + k − 1)− SCi(k0)

Note that, in ERR the surplus count of a newly active flow is initialized to zero. As a result,

since flowi becomes active at time instantτi, SCi(k0) is equal to zero. Substituting this in

the above equation, we get,

Sent i(τi, τ
k
i) = wi(k − 1) + wi

k∑

h=1

MaxSC (k0 + h− 1) + SCi(k0 + k − 1) (3.20)

60

Using Equation (3.19) to substitute for(k − 1) in Equation (3.20), we have,

Sent i(τi, τ
k
i) ≥ wir

W
(τ k

i − τi)− wi

W
(W − wi)− wi

W

∑
j∈Ga

wjMaxSC (k0 − 1)

− wi

k∑

h=1

MaxSC (k0 + h− 1)− wi

W

∑
j∈Gb

wjMaxSC (k0 + k − 1)

− wi

W
(n− 1)(m− 1)− wi

W
SCi(k0 + k − 1)

+wi

k∑

h=1

MaxSC (k0 + h− 1) + SCi(k0 + k − 1)

Simplifying the above equation,

Sent i(τi, τ
k
i) ≥ wir

W

(
(τ k

i − τi)− 1

r
(W − wi)− 1

r

∑
j∈Ga

wjMaxSC (k0 − 1)

− 1

r

∑
j∈Gb

wjMaxSC (k0 + k − 1)− 1

r
(n− 1)(m− 1)

)

− SCi(k0 + k − 1)
(wi

W
− 1

)
(3.21)

Using Equation (3.18), it can be easily verified that,

(τ k
i − τi)− 1

r
(W − wi)− 1

r

∑
j∈Ga

wjMaxSC (k0 − 1)

− 1

r

∑
j∈Gb

wjMaxSC (k0 + k − 1)− 1

r
(n− 1)(m− 1) > 0 (3.22)

Now, since the reserved rates are proportional to the weights assigned to the flows as

given by Equation (2.4), and since the sum of the reserved rates is no more than the link

rater, we have,

ρi ≤ wi

W
r (3.23)

61

Using Equations (3.22) and (3.23) in Equation (3.21), we get,

Sent i(τi, τ
k
i) ≥ max

{
0, ρi

(
(τ k

i − τi)− 1

r
(W − wi)− 1

r

∑
j∈Ga

wjMaxSC (k0 − 1)

− 1

r

∑
j∈Gb

wjMaxSC (k0 + k − 1)− 1

r
(n− 1)(m− 1)

)

− SCi(k0 + k − 1)
(wi

W
− 1

) }
(3.24)

Comparing the Equation (3.24) with Equation (3.10) and using Lemma 3.4.1, the latency

bound is given by,

Θi ≤ 1

r
(W − wi) +

1

r

∑
j∈Ga

wjMaxSC (k0 − 1)

+
1

r

∑
j∈Gb

wjMaxSC (k0 + k − 1) +
1

r
(n− 1)(m− 1)

+ SCi(k0 + k − 1)
(wi

W
− 1

)
(3.25)

From the above equation it is readily seen that the upper bound on the latency will be

reached under the following conditions:

• MaxSC (k0 − 1) for each flowj in the setGa is equal to it upper bound,(m− 1).

(From Corollary 3.2.1)

• MaxSC (k0 + k − 1) for each flowj in the setGb is equal to it upper bound,(m− 1).

(From Corollary 3.2.1)

• SCi(k0 + k − 1) is equal to its lowest possible value,0. (From Equation (2.1))

Substituting these bounds in Equation (3.25), we get,

Θi ≤ (W − wi)m + (n− 1)(m− 1)

r

As discussed earlier, based on Lemmas 3.4.2 and 3.4.3, flowi will experience its worst

latency during an interval(τi, τ
k
i) for somek. Therefore, from (3.20) and Lemma 3.4.1, the

statement of the theorem is proved.

62

We now proceed to show that the latency bound given by Theorem 3.4.1 is tight by

illustrating a case where the bound is actually met. Assume that a flowi becomes active

at time instantτi, which also coincides with the end of a certain roundk0 and the start of

the round(k0 + 1). Since other flows in theActiveListwill be served first, flowi becomes

backlogged instantly. Assume that for any time instantt, t ≥ τi, a total ofn flows, including

flow i, are active. Also, assume that the summation of the reserved rates of all then flows

equals the output link transmission rate,r. Hence,ρi = wi

W
r. Since flowi became active

at timeτi, its surplus count at the start of round(k0 + 1) is 0. Let the surplus count of

all the other flows at the start of round(k0 + 1) be equal to 0. Assume that, a flowp

which is not active after timeαi and hence is not included in then flows, was active during

the k0-th round. Also assume that flowp exceeded its allowance by(m − 1) during its

service opportunity in roundk0, leading to a value ofMaxSC (k0) equal to(m− 1). From

Equations (2.1) and (3.12) and Corollary 3.2.1, any given flowj can transmit a maximum

of wjm + (m− 1) bits during a round robin service opportunity. In the worst case, before

flow i is served by the ERR scheduler, each of the other(n − 1) flows will receive this

maximum service. Hence, the cumulative delay until flowi receives service is given by,

D =

(
∑

j 6=i

wj)m + (n− 1)(m− 1)

r

=
(W − wi)m + (n− 1)(m− 1)

r

Noting thatSi(αi, αi + D) equals zero, it is readily verified that the bound is exactly

met at timet = αi + D.

63

Chapter 4. Prioritized Elastic Round Robin

As explained in Chapter 1, in the frame-based schemes, the scheduler provides service

opportunities to the backlogged flows in a particular order and, during each service oppor-

tunity, the intent is to provide the flow an amount of service proportional to its fair share

of the bandwidth. Examples of such schedulers are Deficit Round Robin (DRR) [21], Sur-

plus Round Robin (SRR) [34–36] and Elastic Round Robin (ERR) [46]. The frame-based

schedulers do not maintain a global virtual time function and also do not require any sorting

among the packets available for transmission. This reduces the implementation complexity

of frame-based scheduling disciplines toO(1), making them attractive for implementation

in routers and, especially so, in hardware switches. However, these frame-based schedulers

suffer from the following disadvantages:

• High Start-Up Latency:The above frame-based schedulers operate in a round-robin

fashion, with each active flow receiving exactly one opportunity to transmit in each

round. When a new flow becomes active, it has to wait until all other previously

active flows receive their service opportunity before it can receive service from the

scheduler. With large numbers of flows, this time period can be very large, especially

in comparison to sorted-priority schedulers such as WFQ and WF2Q.

• Bursty output:Each flow is served over a continuous time interval during its round

robin service opportunity leading to a bursty packet stream at the output of the sched-

uler for any given flow. This is not an ideal situation for real-time multimedia traffic

since even smooth flows are rendered bursty as they exit the scheduler.

• Delayed correction of unfairness:If a flow receives very little service in a particular

round, it is compensated with proportionately more service in the next round. While

64

this disadvantaged flow waits for its compensation in the next round, other flows which

have already received more service than their fair share in the previous round continue

to receive yet more service before the disadvantaged flow receives its opportunity.

• Compounded Jitter:When a flow’s arrival pattern at the scheduler has high jitter, it

can frequently happen that the flow runs out of packets even before it has received

its fair share of service during its service opportunity. At this point, the scheduler

moves on to serve other currently active flows in a round-robin fashion. Our flow with

high jitter will receive its next opportunity only in the next round after all the other

active flows have completed their transmissions. This further increases the jitter in the

output of the scheduler since a delayed packet that just misses its service opportunity

in a certain round ends up experiencing significant additional delay because of having

to wait for all the other active flows to complete their transmissions.

These weaknesses of frame-based schedulers discussed above are caused by the same fea-

tures that are common to these schedulers:

1. The round robin nature of the service order.

2. Each flow receives its entire share of service in the round at once in one service op-

portunity.

Overcoming these weaknesses while preserving the low complexity of frame-based sched-

ulers forms the primary motivation behind this chapter.

At least a few proposals have been made in the last few years to overcome the limi-

tations of frame-based schedulers discussed above. The Nested-DRR scheduler proposed

in [40] tries to eliminate some of these limitations of the DRR scheduler [21]. For each

flow i, the DRR scheduler maintains aquantum, Qi, which represents the ideal service

that the flow should receive in each round of service. If the entire quantum is not used in

a given round, the deficit is recorded and used to compensate the flow in the next round.

65

Nested-DRR splits each DRR round, referred to as anouter round, into one or more smaller

inner roundsand executes a modified version of the DRR algorithm within each of these

inner rounds. IfQmin is the quantum assigned to the flow with the lowest reserved rate, the

Nested-DRR scheduler tries to serveQmin worth of data from each flow during each inner

round. During an outer round, a flow is considered to be eligible for service in as many

inner rounds as are required by the scheduler to exhaust its quantum. The Nested-DRR

scheduler, just like the DRR scheduler, has a per-packet work complexity ofO(1) as long

as the largest packet that may potentially arrive in flowi is smaller thanQi.

The technique of nesting smaller rounds within a round as in the Nested-DRR scheduler

may be adapted for use with otherO(1) schedulers such as ERR and SRR. The Nested-

DRR scheduler results in a significant improvement in the latency in comparison to DRR,

but only in those cases in which there is a significant difference between the quanta assigned

to the flows. If all flows are of the same weight, the behavior of the Nested-DRR scheduler

is identical to that of DRR. Further, the improvement gained in fairness or latency is again

limited by the fact that, within each inner round, the nested scheduler still serves the active

flows in a round robin manner.

The Pre-order DRR algorithm proposed in [42] combines the nesting technique ex-

plained above with a scaled down version of the sorting of packets used in the sorted-

priority schedulers and thus, succeeds in overcoming some of the drawbacks of the DRR

scheduler. The Pre-order DRR scheduler adds a limited number of priority queues in which

packets wait before being actually scheduled for transmission. The packets that are trans-

mitted in a DRR round from each flow are now classified into these queues depending

on the percentage of the flow’s quantum that each packet will utilize following its trans-

mission. Thus, the transmission sequence of the packets in a round in DRR isreordered

allowing certain packets to receive priority over others, resulting in an improvement in the

latency and fairness properties. The rest of the chapter is organized as follows. Section 4.1

highlights the important contributions of the our solution. In Section 4.2 we present a de-

66

tailed description of our new scheme, Prioritized Elastic Round Robin (PERR) which aims

at overcoming the drawbacks of ERR.

4.1 Contributions

In this chapter, we propose a novel packet scheduler,Prioritized Elastic Round Robin

(PERR), which exhibits improved fairness and latency characteristics in comparison to

other known schedulers of equivalent complexity, including Pre-order DRR discussed ear-

lier. The total service received by a flow in a round in PERR is identical to the service

received by the flow in the corresponding round in ERR. However, in PERR, this service

received by a flow is split into several parts over the course of the round. The PERR sched-

uler, borrowing the principle used in Pre-order DRR, re-orders the transmission sequence

within each round of the ERR scheduler. The transmission sequence of the packets in a

round is reordered to allow the flows that have received less service in the previous round

to gain precedence over the other flows in the current round. The exact manner in which the

transmission sequence is re-ordered depends on a certain per-flow state that indicates how

far ahead or behind a flow is in consuming its share of bandwidth. As in the Pre-order DRR,

the scheduler maintains a limited number,p, of priority queues which serve to implement

the re-ordered transmission sequence.

The PERR scheduler achieves a significant improvement in the fairness, latency, and

delay jitter characteristics and addresses several of the weaknesses (such as burstiness of

output traffic) of round-robin schedulers. In addition to its superior fairness and latency

characteristics, the PERR scheduler holds several advantages over other schedulers, such

as Pre-order DRR, that have attempted to address these weakness of round-robin sched-

ulers. For example, at the start of a round, the Pre-order DRR scheduler has to classify all

the packets that will be transmitted by the active flows in that round into the priority queues

prior to the beginning of the transmission of the packets. On the contrary, the PERR sched-

67

uler simply has to classify the flows (as opposed to packets) present in theActiveListinto

its priority queues before the start of the round. This reduces the buffering requirements

and the delay through the finite state machines managing the transmission scheduling, since

classifying all the packets in the round into priority queues requires considerably more time

than simply sorting the flow identifiers. In addition, in comparison to Pre-order DRR, this

allows a more dynamic re-ordering of the transmission sequence based on the latest state

of the flows, leading to improved fairness at all instants of time.

As shown in [46,47], the ERR scheduler has a couple of important advantages in com-

parison to DRR. Since PERR is based on the ERR scheduler, PERR inherits some of these

advantages as well. For example, unlike DRR or Pre-order DRR, the PERR scheduler does

not require the knowledge of the transmission time of each packet prior to the scheduling

operation. As a result, the scheduler can be used in other networks such as wormhole net-

works, where the transmission time of a packet depends not only on the size of the packet

but also the downstream congestion. For the same reasons, PERR—but not DRR or Pre-

order DRR—may be used in ATM networks transmitting IP packets over AAL5, where the

end of the packet is not known until the arrival of the last ATM cell corresponding to the

packet.

4.2 Algorithm Description

The basic principle of the PERR scheduler involves modifying the transmission se-

quence of the packets that are scheduled within each round in ERR. This re-ordering is

performed upon the transmission of each packet, and is carried out based on the amount of

each active flow’s allowance for the round that is actually consumed until the instant that

the re-ordering is executed. This allows each flow to utilize its allowance in pieces over the

duration of each round. The reordering is implemented through the use of priority queues,

which are nothing but linked lists of flow identifiers. The scheduler transmits packets from

68

the flows in the highest priority queue first, and begins serving a flow in another priority

queue only after all higher priority queues are empty. The core aspect of the PERR algo-

rithm is how it manages these priority queues and rearranges flows amongst these priority

queues.

In this section, we present a detailed description of the PERR algorithm. We begin our

discussion by introducing certain important definitions that are essential to understanding

the rationale behind the design of the PERR scheduler.

As in ERR, letSent i(s) represent the total service received by flowi in thes-th round

of service. Assume that a total ofy packets are transmitted from flowi in rounds. The

packets are labeled as 1, 2,. . . , y, indicating their position in the transmission sequence of

flow i. Let Sentk
i (s) represent the total data transmitted by flowi after completion of the

transmission of the firstk packets of the flow during thes-th round. Note that, the service

received by flowi in rounds prior to the transmission of its first packet in that round is

equal to zero, i.e.,Sent0
i (s) = 0. Also, note thatSenty

i (s) = Sent i(s), since both represent

the total service received by flowi in rounds. In general, of course,

0 ≤ Sentk
i (s) ≤ Sent i(s), 0 ≤ k ≤ y

The following defines a quantity that tracks the unused portion of a flow’s allowance,

and thus serves to help in determining the priority queue into which the flow should be

placed.

Definition 4.2.1 Define theUnserved Allowanceof a flow at any given instant of time

during a certain round as the flow’s allowance for the round minus the amount of traffic

transmitted by the flow during the round until that instant.

Let UAk
i (s) represent the unserved allowance of flowi after the transmission of itsk-th

packet during thes-th round. In general,UAk
i (s) is computed as follows:

UAk
i (s) = Ai(s)− Sentk

i (s) (4.1)

69

At the start of rounds, before service for flowi begins,UA0
i (s) is exactly equal to the

flow’s allowance for the round,Ai(s). Note that, the last packet transmitted from flowi in

rounds may cause the flow to exceed its allowance. This may result in a negative value of

UAk
i (s).

Definition 4.2.2 DefineUAmax
i (s) as the maximum possible value of the unserved al-

lowance of flowi in rounds.

At the start of each round, the unserved allowance of a flow is initialized to its allowance

for the round, as defined in Equation (2.6). Therefore,UAmax
i (s) equals the maximum

possible value of the right-hand side of Equation (2.6). Using Equation (3.1), we have,

UAmax
i (s) = wi(1 + MaxSC (s− 1)) (4.2)

The ratio of the unserved allowance of a flow at a given instant and the allowance of the

flow for the entire round represents the fraction of the allowance of a flow that is not yet

consumed until the given instant. This ratio accurately captures how far ahead or behind a

flow is in comparison to other flows in obtaining its fair share of service, and may therefore

be used in placing flows in specific priority queues. However, an approximation to this

quantity is necessary to ensure a per-packet work complexity ofO(1) for PERR.

Normalizing the unserved allowance of a flow with respect to its maximum possible

value (instead of the actual allowance of the flow for the round) represents one measure,

though not necessarily the most accurate measure, of the fraction of its allowance that is

not yet consumed. The PERR scheduler uses this approximation which is necessary for the

efficient implementation of the scheduler. It will be shown in later sections of this chapter

that, in spite of this approximation, the PERR scheduler achieves better fairness than other

knownO(1) schedulers.

Definition 4.2.3 TheUnserved Allowance Quotientof a flow at any given instant is defined

as the ratio of the unserved allowance of the flow at that instant and its maximum possible

70

unserved allowance,UAmax
i (s). Let Qk

i (s) represent the unserved allowance quotient of

flow i after the transmission of thek-th packet of flowi during thes-th round.

Qk
i (s) is given by,

Qk
i (s) =

UAk
i (s)

UAmax
i (s)

=
UAk

i (s)

wi(1 + MaxSC (s− 1))
(4.3)

For purposes of brevity, in the rest of this chapter, the unserved allowance quotient will be

simply referred to as thequotient.

The quotient of a flow at any given instant during a round represents the approximate

fraction of its unserved allowance that can be used by the flow in the remainder of the

round. The ERR scheduler never begins dequeuing the new packet from a flowi if Sentk
i (s)

is equal to or more than the allowance,Ai(s). Thus, the next packet of a flow is transmitted

in the same round as the previous packet if and only ifUAk
i (s) is positive. This in turn

implies that a flowi, after the transmission of itsk-th packet in rounds, is eligible for more

service in the same round if and only if,

0 < Qk
i (s), 0 ≤ k ≤ y (4.4)

wherey is the number of packets of flowi served during rounds.

The quotient for flowi at the start of rounds is equal toQ0
i (s). Using Equations (2.6),

(4.1), (4.2) and (4.3) we have,

Q0
i (s) =

UAmax
i (s)− SCi(s− 1)

UAmax
i (s)

Simplifying further, we get,

SCi(s− 1) = (1−Q0
i (s))UAmax

i (s) (4.5)

This indicates that flowi has already used up(1 − Q0
i (s))-th fraction of itsUAmax

i (s) in

the excess service that it received in the previous round(s− 1). If the quotient for a flow at

the start of a round is equal to unity, it implies that the surplus count of the flow following

71

its service in the previous round is zero, i.e., the flow did not receive any excess service in

the previous round.

In general, the larger the quotient of a flow, the lesser the proportion of itsUnservedAl-

lowancethat has been expended in the current round.

Definition 4.2.4 DefineQmax (s) as the maximum of the quotients among all active flows

at the start of rounds.

Since theUnserved Allowancefor each flow at the start of a round is equal to its al-

lowance, using Equations (2.6), (4.2) and (4.3), we have,

Q0
i (s) =

wi(1 + MaxSC (s− 1))− SCi(s− 1)

wi(1 + MaxSC (s− 1))

This implies that the flowi with the least value ofSC i(s−1)
wi

, which is the normalized

surplus count at the end of the previous round(s − 1), will be the one with the maximum

value of the quotient among all active flows at the start of rounds.

Ideally the scheduler should serve a packet from the flow with the largest quotient

among all the active flows since it has received the least service in the current round. How-

ever, the complexity of maintaining a sorted list of active flows based on their quotients,

and the complexity of computing the maximum in this list prior to each packet transmission

is high. Givenn flows, the work complexity of the scheduler prior to each packet trans-

mission would beO(log n). The PERR scheduler avoids this by grouping the flows into a

limited number of priority queues.

Figure 4.1(a) illustrates a block diagram of a generic scheduler. TheScheduling Deci-

sion Modulewhich determines the order in which packets are served from the flow queues

is the heart of the scheduler. Figure 4.1(b) details the architecture of theScheduling De-

cision Moduleof the PERR scheduler which is responsible for selecting the next flow for

service. As can be seen from Figure 4.1(b), anOrganizer, p priority queues and aSelector

are appended to the originalScheduling Decision Moduleof ERR. LetPQ1, PQ2, . . . and

72

Selector

PQ1

PQ p

PQ
2

Scheduler

n

2

1

Flow Queues
Scheduling Decision Module

(a)

Selected Flow

(b)

Scheduling Decision Module

Priority QueuesFlow State Variables

ActiveList

Organizer

Output Link

Figure 4.1: Block diagram of (a) PERR scheduler and (b) scheduling decision module of
PERR

PQp denote the priority queues in the descending order of priority withPQ1 representing

the queue with the highest priority. Unlike the priority queues in Pre-order DRR which

have to buffer the packets that will be transmitted in the round in progress, these queues

in PERR simply contain the flow identifiers. As in ERR, the PERR scheduler maintains a

linked list, called theActiveList, of flows which are active. However, the flows in theAc-

tiveListare not served in a round robin manner as in ERR. This is a list of the active flows

that have exhausted their allowance in the current round but, will be eligible for receiving

73

service in the subsequent round. It is the task of theOrganizerto determine the order in

which the flows will receive service in a round. At the start of the round, theOrganizer

module classifies the active flows present in theActiveListinto several classes according to

theirUnserved Allowance Quotientand places them into the corresponding priority queue.

Since there arep priority queues, theOrganizercan classify the flows intop classes. In

general, classz of flow i after serving thek-th packet of thes-th round is derived as,

z = (p + 1)−
⌈
p× Qk

i (s)

Qmax (s)

⌉
(4.6)

Note that, at the start of thes-th round,k = 0 for all the flows in the above equation.

Note that, the quotient of a flow is a monotonically decreasing function of time over

the duration of a round. Using this fact and the definition ofQmax (s), we can conclude

that during rounds, the quotients of all the active flows will always be less than or equal to

Qmax (s), and thusz is always a non-negative quantity. By the above method, the flow with

the maximum quotient at the start of the rounds is initially added into the highest priority

queue,PQ1.

Note that,Qmax (s) is computed only at the start of the round and need not be updated as

the round progresses. The computation ofQmax (s) simply requires the scheduler to record

the least value of the normalized surplus count amongst all the flows in theActiveList. This

can be easily accomplished inO(1) time by carrying out a simple comparison operation

as the flows are added into theActiveListafter exhausting their allowance in the previous

round.

Consider a situation where a flowi becomes active for the first time while some round

s is in progress. It may be possible that the the initial value of the quotient of flowi, Q0
i (s)

is greater thanQmax (s). Using Equation (4.6), it is seen that the priority class for flowi is

less than1, the highest priority class. One possible solution would be to delay the service

of flow i until the next round as is done in ERR. However, this would result in an increased

latency for flowi since it would then have to wait until all the active flows have exhausted

74

their allowance before receiving any service. The PERR scheduler instead simply adds flow

i into the highest priority queuePQ1. This eliminates the increased latency that would be

otherwise experienced by flowi.

When the scheduler is ready to transmit, theSelectormodule selects the highest non-

empty priority queue, sayPQe and chooses the flow at the head ofPQe, say flowi, for

service. The scheduler serves the packet at the head of the queue corresponding to flowi

and following the service of this packet recalculates the priority class,z, to which flow i

belongs using Equation(4.6). The scheduler will continue to serve the next packet from the

queue of flowi until the occurrence of at least one of the following events:

1. A newly active flow is added to a higher priority queue :In this case, the scheduler

stops the service of flowi and begins serving the newly active flow since it belongs to

a higher priority class than flowi.

2. Queue of flowi is empty : In this case, flowi is removed from the head of priority

queuePQe. Also, theServed flag for flow i is set to indicate that it has received

service in the current round.

3. The newly computed priority class of flowi, f , does not match its current priority

class,e : In this case flowi is removed from the head of priority queuePQe and is

added to the tail of priority queuePQf . Note that, the only exception is whenf > p.

In this case no further packets are to be scheduled from flowi during the current

round since it has exhausted its allowance. Flowi is instead added to the tail of the

ActiveList.

At any given instant of time each active flow can either be present in at most one of

thep priority queues or in theActiveList. Over the course of the round, as the flow con-

sumes more and more of its allowance, it will gradually move down from the higher prior-

ity queues into lower priority queues until it completely exhausts its allowance following

75

which it is added into theActiveList. However, during a round it is not necessary that a

flow will pass through each of thep priority queues. In fact it may be possible that the

only priority queue which a flow visits is the initial queue into which it is classified at the

start of the round. As a result of the categorization brought about by the priority queue

module in PERR, each flow uses its allowance in pieces over the course of the round. The

Organizerreorders the sequence of transmissions to enable the flows that have not utilized

a large portion of theirUnservedAllowanceto get precedence over the other flows.

The PERR scheduler also maintains two flags,ServedandActive for each flow. The

Activeflag indicates whether a flow is active or not. TheServedflag is set when the sched-

uler serves the first packet from a flow in the current round and remains set for the entire

duration of the round indicating that the flow has been served at least once during the cur-

rent round. TheServedflags for all the flows are reset at the start of a new round. The

Servedflag prevents a flow which frequently oscillates between active and inactive periods

to receive excessive service. Consider a flow which runs out of packets in the middle of a

round before utilizing its entire allowance in that round. Since this flow is no longer active

its Activeflag will be reset. Assume that a new packet arrives at the flow at some time

before the end of the current round. In the absence of theServedflag this flow would be

treated as a newly active flow and its per-flow states would be reset. This would allow the

flow to receive service in excess of what it would have received if it were active during

the entire duration of the current round. However, in PERR, theServedflag will be set for

the flow under consideration indicating that the per-flow states for that flow are still valid

for the current round. When the flow becomes active it will be added into the appropriate

priority queue using Equation (4.6) depending on how much of itsUnservedAllowancewas

utilized when it was last active in the current round, and thus, the flow will not receive any

excess service. Note that, since theServedflags for all the flows are reset at the end of a

round, accumulation of service credits from a previous round is prevented.

A psuedo-code implementation of the PERR scheduling algorithm is shown in Fig-

76

ure 4.2, consisting of theInitialize, EnqueueandDequeueroutines. TheEnqueueroutine

is called when a new packet arrives at a flow. TheDequeueroutine is the heart of the

algorithm which schedules packets from the queues corresponding to different flows. Fig-

ure 4.3–4.6 illustrate the pseudo-code of four routines that are used in the execution of the

EnqueueandDequeueroutines. All of these routines can be easily implemented as simple

hardware modules.

77

Initialize: (Invoked when the scheduler is initialized)
MaxSC ��� ;�������
	������������������ ��� ;�����
� ��� ;
MinNormalizedSC �! !"$# ;
for (

� �!� ;
�&%'�

;
� � �)(�)"$* ���+,	�- � FALSE;./	���+0	�12- � FALSE;

Enqueue: (Invoked when a packet arrives)� � QueueInWhichPacketArrives;
if ("�* ���+,	�- ��� FALSE) then

if (
.3	4��+,	�12- ��� FALSE) then.5�6- �!� ;.3	4�7�- �!� ;

end if;
InitializeFlow(

�
);8 	�9������������:�� � ComputeNewPriority(

�
);

AddToPriorityQueue(
8 	�9���������������);<�

);
if (
8 	�9���������������>=����)���
	���������������:��

) then
ObtainHighestActivePriority == TRUE;

end if
end if;

Dequeue:
while (TRUE) do

if (AllPriorityQueuesEmpty ��� TRUE) then
InitializeRound();

end if;
if(ObtainHighestActivePriority == TRUE) then�������
	������������������ � GetHighestActivePriorityQueue;
end if;� � HeadOfPriorityQueue(

�������
	4�7���������������
);

do
TransmitPacketFromQueue(

�
);

Increase Sent
-

by LengthInFlitsOfTransmittedPacket;.3	4��+,	�12- ��� TRUE;8 	49��������������� ��� ComputeNewPriority(
�
);

while ((
8 	�9��������������� ��� �������
	������������������

) and
(IsEmpty(Queue

-
) == FALSE) and

(ObtainHighestActivePriority == FALSE))
if ((

8 	49���������������>=��������
	������������������
) or

(IsEmpty(Queue
-
) == TRUE)) then

RemoveHeadOfPriorityQueue(
�������
	������������������

);
if (IsEmpty(Queue

-
) == FALSE) then

AddToPriorityQueue(
8 	�9���������������);<�

);
end if
if (IsEmpty(

�������
	4�7���������������
) == TRUE) then

ObtainHighestActivePriority = TRUE;
end if

end if
end while

Figure 4.2: Pseudo-code for PERR

78

InitializeRound()
for (

�����
;
�����

;
�	����
�

)������������� �
FALSE;

PreviousMaxSC = MaxSC;
MaxSC

��
;

MinNormalizedSC
�������

;
InitializeFlow(� ���);�! #"%$ �'&�(*),+- & (/.�0(*),+ ;

ObtainHighestActivePriority == TRUE;
while (IsEmpty(ActiveList) == FALSE) do13254�6 �

HeadOfActiveList;
RemoveHeadOfActiveList;��� �87:9%; <�=>���

;
InitializeFlow(

13254�6
);? � 6#@ � � 4 � ��7BAC�

ComputeNewPriority(
13254�6

);
AddToPriorityQueue(

? � 6#@ � � 4 � �D7BA�E 1F254�6
);�HG 9%; <I= ���

;
end while;

Figure 4.3:InitializeRound() routine

InitializeFlow(
�
)����� ���	��
�
TRUE;� �������
 ����

(��� PreviousMaxSC) ;�
���� �������
 �����
 ;

Figure 4.4:InitializeFlow() routine

79

AddToPriorityQueue(�����);
if (�����) then

AddFlowToActiveList(�);	�
����	��������������
;

if (
��� �
! � � MaxSC) then

MaxSC
� ��� �

! � ;
end if
if (

��� �
! �#" MinNormalizedSC) then
$%� �&� � ;
MinNormalizedSC

� �'� �
! � ;

end if
else

AddFlowToPriorityQueue((*),+ �-�);
end if

Figure 4.5:AddToPriorityQueue() routine

ComputeNewPriority(
�
)�������	��
����������������� ;� ��� ���! #"�$&%�' �#(*)' ���#�,+ ;

return � ;

Figure 4.6:ComputeNewPriority() routine

80

Chapter 5. Performance Analysis of PERR

This chapter focuses on the performance analysis of the PERR scheduler. We analyti-

cally prove the fairness and latency properties of PERR, using a novel approach based on

interpreting the PERR scheduler as an instance of the Nested Deficit Round Robin (Nested-

DRR) discipline discussed in [40]. We prove that the latency bound obtained in this paper

using this approach is tight. We also show that the per-packet work complexity of the

PERR scheduler isO(1) with respect to the number of flows andO(log p) with respect to

the number of priority queues,p. It is important to note thatp << n, wheren are the

total number of flows being serviced by the scheduler. As a result, the work complexity

of the PERR scheduler is much lower than the sorted-priority schedulers such as WFQ

which have a work complexity ofO(log n). This low work complexity of PERR makes it

attractive for implementation in high speed switches and routers.

The rest of this chapter is organized as follows. Section 5.1 discusses the interpretation

of PERR bandwidth allocations as an instance of allocations in a nested version of ERR. In

Section 5.2, we evaluate the latency bound of ERR and prove that it belongs to the general

class of Latency Rate (LR) servers [38]. In addition we also show that the latency bound

derived in this section is tight. Section 5.3 analyzes the relative fairness bound of PERR.

In Section 5.4, we prove that the worst-case work complexity of PERR isO(log p), where

p denotes the number of priority queues in the PERR scheduler.

5.1 Nested Round Robin Interpretation

The primary goal of the PERR scheduler is to distribute theUnservedAllowanceof a

flow in an ERR round into several parts, so that it can be utilized in pieces over the course

of the round. The Nested-DRR algorithm proposed in [40], modifies the DRR scheduler

81

by creating a nested set of multiple rounds inside each DRR round. The Nested-DRR

scheduler serves the active flows in a round robin order in these nested rounds by executing

a modified version of the DRR algorithm.

We can hypothetically interpret the operation of the PERR scheduler as anestedversion

of ERR which is similar to Nested-DRR. This interpretation proves useful in the analysis

of the latency bound of the PERR scheduler. Each round in ERR can be referred to as an

outer round. The time interval during which the PERR scheduler serves the flows present

in priority queuePQu during thes-th outer round is referred to asinner round(s, u). In

effect, each outer round is split into as many inner rounds as the number of priority queues,

p. Since the PERR scheduler serves the priority queues in a descending order starting at the

higher priority queuePQp, the first inner round during outer rounds will be (s, 1), while

(s, p) will denote the last inner round.

From Equation (4.5), we know that the excess service, if any, received by each flow

i in the previous outer round(s − 1) is equal to(1 − Q0
i (s))UAmax

i (s). SinceQmax (s)

represents the maximum quotient among all the flows at the start of rounds, it is guar-

anteed that each active flowi has already utilized at least(1 − Qmax (s))-th fraction of its

(UAmax
i (s)) during its last service opportunity in the previous round(s − 1). The goal of

the PERR scheduler is to distribute the remaining portion of each flow’s maximum pos-

sible UnservedAllowance, Qmax (s)(UAmax
i (s)), equally among thep inner rounds. Let

IdealServed i(s) represent the ideal service received by flowi during each inner round of

thes-th outer round.IdealServed i(s) is computed as follows,

IdealServed i(s) =
Qmax (s)(UAmax

i (s))

p
(5.1)

Ideally, therefore, each flowi will receive exactlyIdealServed i(s) amount of service in

each of thep inner rounds of outer rounds. In reality, however, the last packet served in an

inner round from a flow may cause it to exceed its ideal service in that inner round. Just as

in ERR, aSurplus Count (SC)is maintained for each flow which records any excess service

82

received by the flow. The flow is penalized for this excess transmission in the subsequent

inner round. When the scheduler selects a flowi for service in an inner round(s, u), its

SC is incremented byIdealServed i(s). The scheduler will serve the packet at the head

of flow i as long as its SC value is positive. Following the transmission of a packet, the

SC corresponding to that flow is decremented by the size of the transmitted packet. Let

SC i(s, u) represent the surplus count of flowi at the end of inner round(s, u). Further, let

Served i(s, u) denote the actual service received by flowi in inner round(s, u). SC i(s, u)

is calculated as follows,

SCi(s, u) = Served i(s, u)− (IdealServed i(s) + SCi(s, u− 1)) (5.2)

Note that, ifIdealServed i(s) is less than or equal to theSC i(s, u− 1), then flowi will not

receive any service in inner round(s, u). Thus, a flow does not necessarily receive service

in each inner round. However, the surplus count for flowi is updated at the end of each

inner round using Equation (5.2), irrespective of whether the flow receives service in that

inner round or not. In fact, it may be possible that none of the active flows receive service

in an inner round. Hence, if the PERR scheduler followed a round robin service order

as in Nested-DRR, then the scheduler would have a prohibitively large work complexity.

However, theOrganizermodule of the PERR scheduler decides which priority queues each

active flow is added into over the course of each outer round. This, in turn, determines the

inner rounds in which each flow will be served. The PERR scheduler does not need to

query all the active flows in a round robin order, thus leading to a low implementation

complexity.

Note that, the surplus count of a flow at the end of the last inner round of an outer round

is the same as its surplus count at the end of the corresponding round in ERR. In other

words,SC i(s, p) is the same asSC i(s). Also, note thatSC i(s, 0) represents the surplus

count of flowi at the start of the first inner round,(s, 1), in outer rounds. As explained

earlier, we know that flowi should ideally transmitQmax (s)(UAmax
i (s)) worth of data in

83

outer rounds. The remaining fraction,(1 − Qmax (s))-th of the quantityUAmax
i (s), has

already been utilized in the excess service received by flowi in outer round(s − 1) and,

therefore, is a part ofSC i(s− 1). To account for this already utilized portion ofUAmax
i (s),

SC i(s, 0) is computed as:

SCi(s, 0) = SCi(s− 1)− (1−Qmax (s))(UAmax
i (s)) (5.3)

It can be easily proved that Equation (3.1), which expresses the bounds on the surplus

count,SC i(s), also holds true forSC i(s, u). Therefore, for any flowi and inner round

(s, u),

0 ≤ SCi(s, u) ≤ m− 1 (5.4)

Definition 5.1.1 Let Sent i(s, u) represent the total service received by flowi since the

start of thes-th outer round until the PERR scheduler has finished serving the flows in the

priority queue,PQu.

Note that, it is not necessary that flowi was present in priority queuePQu during outer

rounds. From Equation (5.2), the total data served from flowi in inner round(s, u) is,

Served i(s, u) = IdealServed i(s) + SCi(s, u)− SCi(s, u− 1) (5.5)

Sent i(s, u) is calculated as follows:

Sent i(s, u) =
w=u∑
w=1

Served i(s, w) (5.6)

Substituting forServed i(s, w) from Equation (5.5) in Equation (5.6), we have,

Sent i(s, u) = u(IdealServed i(s)) + SCi(s, u)− SCi(s, 0) (5.7)

Sent i(s, u) will be positive only ifu(IdealServed i(s)) is greater thanSC i(s, 0). Otherwise

it indicates that flowi has not received any service until the end of the(s, u)-th inner round.

84

However, flowi is guaranteed to receive service in at least one inner round during thes-th

outer round. Using Equations (5.1), (5.3) and (5.7) we have,

Sent i(s, u) =

(
u

p

)
Qmax (s)UAmax

i (s) + SCi(s, u)− SCi(s− 1) (5.8)

Definition 5.1.2 DefineSent i(s) as the total service received by flowi in outer rounds.

Note that,Sent i(s, p) represents the service received by flowi when the scheduler has

finished serving the flows in priority queuePQp which in fact equalsSent i(s). Substituting

u = p in Equation (5.8) and using Equation(4.2), we get,

Sent i(s) = wi(1 + MaxSC (s− 1)) + SCi(s)− SCi(s− 1) (5.9)

Hence, the total service received by flowi in an outer round in PERR is identical to the

service received by flowi in the corresponding round in ERR.

Ideally, during the normal operation of the PERR scheduler, thep inner rounds in outer

rounds follow a strictly sequential order starting at inner round(s, 1) and ending at round

(s, p). However, in certain situations, it is possible to interrupt the sequential ordering. Let

us assume that a flowj becomes active for the first time in outer rounds while the PERR

scheduler is serving a flowk at the head of priority queuePQd. Since the quotient for

flow j is equal to 1, it will be added into priority queuePQ1 which has the highest priority

among all the priority queues. Upon finishing the transmission of the current packet from

flow k, the PERR scheduler temporarily suspends the service of flowk and starts serving

flow j which is at the head of queuePQp. The PERR scheduler will keep serving flow

j until it is added either into priority queuePQd or some other queue with lower priority

thanPQd. The scheduler will then resume service of thek-th flow. Note that, the service

received by flowi while it is present in queuePQp is part of the inner round(s, p) even

though it is not contiguous with the time interval during which the PERR scheduler served

the flows present in queuePQp at the start of the outer rounds. Also, the inner round(s, d)

will not extend over a continuous time interval because it will be interposed by the entire

85

101010510 10 4

52356554

4586

106

A

pq 4
10

D

4 10 4

A

5

BABB

1023

BD

5 5

pq 1
6

ABD

6 5 10

pq 3

A

5

A

10

B

4

B

pq 4

C

5

AD B

8 6 10

pq 2

Round 2
C

Round 1

pq 1

Transmission Sequence of Packets in PERR

6 10 410586

DDD

105410105102356554

CC AAB
Round 1

DAAAAABBBB B BB
Round 2

 Flow A, w = 5a

 Flow B, w = 3

 Flow C, w = 1

 Flow D, w = 2
d

b

c

Transmission Sequence of Packets in ERR

Figure 5.1: Comparison of the transmission sequence of packets in ERR and PERR over
two rounds of execution

service received by flowi since the time it became active until its addition into priority

queuePQd or a lower priority queue. It is, therefore, not necessary that the inner rounds

in an outer round should sequentially follow one another and that the flows which receive

service in an inner round should be served in succession. However, note that this disruption

of the otherwise sequential service can only be caused due to a new flow becoming active

during the execution of that outer round.

Figure 5.1 compares the transmission sequence in the first two rounds of execution of

the ERR and PERR schedulers for the given input pattern and flow weights. In the PERR

scheduler, the flows are classified into 4 classes corresponding to the 4 priority queues.

At the start of inner round(1, 1) all the flows are present in priority queuePQ1. After

receiving service in this inner round, flowA is added intoPQ4. However, the other 3 flows

86

exceed their allowance in this inner round and are therefore added into theActiveList. Note

that, in the second outer round, unlike the ERR scheduler where the flowsB andD have to

wait for their turn in the round robin order to receive service, flowsB andD start receiving

service in the inner round(2, 1). However, note that flowC is served for the first time only

in inner round(2, 4). This is because its surplus count in the previous outer round was very

large resulting in a very low value of the quotient.

In the following sections we present analytical results on the fairness, latency properties

and the work complexity of PERR.

5.2 Latency Analysis

A detailed description on the concept of the Latency-Rate (LR) servers was presented

in Section 3.3. In this section we derive an upper bound on the latency of the PERR

scheduler and prove that it belongs to the general class ofLR-servers. In addition, we also

prove that this bound is tight by illustrating a case where the bound is actually met. Our

approach here is similar to the one used in Section 3.4 while analyzing the latency of the

ERR scheduler.

Theorem 5.2.1 The PERR scheduler belongs to the class ofLR servers, with an upper

bound on the latencyΘi for flow i given by,

Θi ≤
(W−wi)m

p
+ (n− 1)(m− 1)

r
(5.10)

wheren is the total number of active flows,p is the number of priority queues,r is the

transmission rate of the output link andW is the sum of the weights of all the flows.

Proof: Since the latency of aLR server can be estimated based on its behavior in the

flow active periods, we will prove the theorem by showing that,

Θ′
i ≤

(W−wi)m
p

+ (n− 1)(m− 1)

r
.

87

Let τi be the time instant when flowi becomes active. To prove the statement of the theorem

we consider a time interval(τi, t), wheret > τi, during which flowi is continuously

active. We first obtain the lower bound on the total service received by flowi during

the time interval under consideration. Then we express the lower bound in the form of

Equation (3.10) to derive the latency bound.

In Section 3.4 and [47] it has been proved that to obtain a tight upper bound on the la-

tency of the ERR scheduler, we must consider an active period(τi, t) such thatτi coincides

with the beginning of the service opportunity of a flow andt belongs to the set of time

instants at which the scheduler begins serving flowi. We can easily prove that the same

conditions apply for proving the upper bound on the latency of the PERR scheduler. Let

τ
(e,f)
i be the time instant marking the start of the service of flowi when flowi is at the head

of priority queuePQf in rounde. In other words, this time instant represents the start of

the service opportunity of flowi in inner round(e, f). Therefore, in trying to determine the

latency bound of the PERR, we need to only consider time interval(τi, τ
(e,f)
i) for all (e, f).

The first step in proving the latency bound involves determining the upper bound on

the size of the time interval under consideration. Note that, the time instantτi may or may

not coincide with the start of a new round. Letk0 be the round which is in progress at

time instantτi or which starts exactly at time instantτi. Let th mark the start of the round

(k0 + h). In either case, flowi will be able to transmit at leastAi(k0) worth of data over

the course of thek0-th round. If flow i becomes active when the roundk0 is in progress,

i.e. whenτi < t0 then the service received during the interval(t0, τi) will be excluded

from the time interval under consideration. The time interval(τi, τ
(e,f)
i) will be maximal

only if the time instantτi coincides witht0, the start of thek0-th round. Hence, we assume

that τi coincides with the start of the thek0-th round. Figure 5.2 illustrates the interval

under consideration assuming that(e, f) is equal to(k0 + k, v). Note that, in Figure 5.2,

OR(e) represents thee-th outer round in the execution of the PERR scheduler andIR(e, f)

denotes the inner round(e, f).

88

time

t 0
t 1 t k t k+1

0

i

becomes active
Flow i

time interval
under consideration

OR(k + k)0

g

i

0

1

0 0

OR(k)0

0

j2ihgj j i21 jj 21 i

τ

IR(k , 1) IR(k +k, 1)IR(k , 2) IR(k +k, v)

(k +k,v)0τ

IR(k +1, 1)

Figure 5.2: An illustration of the time interval under consideration for the analysis of the
latency bound of PERR

The time interval under consideration,(τi, τ
(k0+k,v)
i), can be split into two sub-intervals:

1. (τi, tk): This sub-interval includesk rounds of execution of the PERR scheduler start-

ing at roundk0. Consider the time interval (th, th+1) when round(k0+h) is in progress.

Summing Equation (5.9) over alln flows,

th+1 − th =
W

r
(1 + MaxSC (k0 + h− 1))

+
1

r

n∑
j=1

{SCj(k0 + h)− SCj(k0 + h− 1)}

Summing the above overk rounds beginning with roundk0,

tk − τi =
W

r
(k) +

W

r

k−1∑

h=0

MaxSC (k0 + h− 1)

+
1

r

n∑
j=1

{SCj(k0 + k − 1)− SCj(k0 − 1)} (5.11)

2. (tk, τ
(k0+k,v)
i): This sub-interval includes the part of the(k0 + k)-th round prior to

the start of the service of flowi when it is at the head of priority queuePQv. In the

worst-case flowi will be the the last flow to receive service among all other flows

89

which are present in priority queuePQv. In this case, during the sub-interval under

consideration, the service received by flowi equalsSent i(k0 + k, v − 1) whereas the

service received by each flowj among the othern− 1 flows equalsSent i(k0 + k, v).

Note that, ifv equals1 then flowi does not receive service in this sub-interval. Hence,

summingSent i(k0 + k, v− 1) andSent j(k0 + k, v) for each flowj such that1 ≤ j ≤
n, j 6= i, we have,

τ
(k0+k,v)
i − tk =

1

r

Sent i(k0 + k, v − 1) +

n∑
j=1
j 6=i

Sent j(k0 + k, v)

Using Equation (5.8) in the above, we have,

τ
(k0+k,v)
i − tk =

1

r

n∑
j=1
j 6=i

(
v

p

)
Qmax (k0 + k)UAj(k0 + k)

+
1

r

(
v − 1

p

)
Qmax (k0 + k)UAi(k0 + k)

+
1

r

n∑
j=1
j 6=i

(SCj(k0 + k, v)− SCj(k0 + k − 1))

+
1

r
(SCi(k0 + k, v − 1)− SCi(k0 + k − 1)) (5.12)

To simplify the analysis we introduce a new variableΩ, such that,

Ω = Qmax (k0 + k)(1 + MaxSC (k0 + k − 1)) (5.13)

Using Equation (3.2) in Equation (5.13), we get,

0 < Ω ≤ m (5.14)

90

Combining Equations (5.11) and Equations (5.12) and using Equations (4.2) and (5.13),

we have,

τ
(k0+k,v)
i −τi ≤ W

r
k +

W

r

k−1∑

h=0

MaxSC (k0 + h− 1) +
1

r

n∑
j=1
j 6=i

(
v

p

)
wjΩ

+
1

r

(
v − 1

p

)
wiΩ +

1

r

n∑
j=1
j 6=i

(SCj(k0 + k, v)− SCj(k0 − 1))

+
1

r
(SCi(k0 + k, v − 1)− SCi(k0 + k − 1))

Using the bounds on the surplus count from Equation (3.1) in the above equation, we have,

τ
(k0+k,v)
i −τi ≤ W

r
k +

W

r

k−1∑

h=0

MaxSC (k0 + h− 1) +
1

r

n∑
j=1
j 6=i

(
v

p

)
wjΩ

+
1

r

(
v − 1

p

)
wiΩ +

1

r
(n− 1)(m− 1) +

1

r
SCi(k0 + k, v − 1) (5.15)

Solving fork and using the fact thatW is the sum of the weights of all then flows,

k ≥ (τ
(k0+k,v)
i − τi)

r

W
−

k−1∑

h=0

MaxSC (k0 + h− 1)− 1

W

(
v

p

)
(W − wi)Ω

− 1

W

(
v − 1

p

)
wiΩ− 1

W
(n− 1)(m− 1)− 1

W
SCi(k0 + k, v − 1) (5.16)

Note that, the total data transmitted by flowi during the time interval under consideration

can be expressed as the following summation,

Sent i(τi, τ
(k0+k,v)
i) = Sent i(τi, tk) + Sent i(tk, τ

(k0+k,v)
i) (5.17)

As explained, earlierSent i(tk, τ
(k0+k,v)
i) is the same asSent i(k, v − 1). Sent i(τi, tk) can

be obtained by summing Equation (5.9) overk rounds starting at roundk0. Substituting the

result and Equation (5.8) in Equation (5.17), we get,

Sent i(τi, τ
(k0+k,v)
i) = wik + wi

k−1∑

h=0

MaxSC (k0 + h− 1)

+

(
v − 1

p

)
UAi(k0 + k) + SCi(k0 + k, v − 1)− SCi(k0)

91

Note that, in PERR, the surplus count of a newly active flow is initialized to zero. As a

result, since flowi becomes active at time instantτi, SCi(k0) is equal to zero. Substituting

this and using Equations (4.2) and (5.13) in the above equation, we get,

Sent i(τi, τ
(k0+k,v)
i) = wik + wi

k−1∑

h=0

MaxSC (k0 + h− 1)

+

(
v − 1

p

)
wiΩ + SCi(k0 + k, v − 1) (5.18)

Using Equation (5.16) to substitute fork in Equation (5.18), we get,

Sent i(τi, τ
(k0+k,v)
i) ≥ wir

W
(τ

(k0+k,v)
i − τi) +

(
v − 1

p

)
wiΩ

(
W − wi

W

)

− wi

W

(
v

p

)
(W − wi)Ω− wi

W
(n− 1)(m− 1)

− SCi(k0 + k, v − 1)
(wi

W
− 1

)

Simplifying further we get,

Sent i(τi, τ
(k0+k,v)
i) ≥ wir

W

(
(τ

(k0+k,v)
i − τi)− 1

r

(
W − wi

p

)
Ω

− 1

r
(n− 1)(m− 1)

)
− SCi(k0 + k, v − 1)

(wi

W
− 1

)
(5.19)

Using Equation (5.15), it can be easily verified that,

τ
(k0+k,v)
i − τi >

1

r

(
W − wi

p

)
Ω− 1

r
(n− 1)(m− 1) (5.20)

Now, since the reserved rates are proportional to the weights assigned to the flows as given

by Equation (2.4), and since the sum of the reserved rates is no more than the link rater,

we have,

ρi ≤ wi

W
r (5.21)

92

Substituting forwir
W

from Equation (5.21) in Equation (5.19) and using Equation (5.20)

we have,

Sent i(τi, τ
(k0+k,v)
i) ≥ ρi

(
(τ

(k0+k,v)
i − τi)− 1

r

(
W − wi

p

)
Ω

− 1

r
(n− 1)(m− 1)

)
− SCi(k0 + k, v − 1)

(wi

W
− 1

)
(5.22)

Comparing the above equation with Equation (3.10), the latency bound is given by,

Θi ≤ 1

r

(
W − wi

p

)
Ω +

1

r
(n− 1)(m− 1)

+ SCi(k0 + k, v − 1)
(wi

W
− 1

)
(5.23)

From the above equation it is readily seen that the latency reaches the upper bound under

the following conditions:

• Ω is equal to its upper bound,m. (From Equation (5.14))

• SC i(k0 + k, v − 1) is equal to its lower bound, 0. (From Equation (3.1))

Substituting these bounds in Equation (5.23), we get,

Θi ≤ 1

r

((
W − wi

p

)
m + (n− 1)(m− 1)

)
(5.24)

As discussed earlier, flowi will experience its worst latency during an interval(τi, τ
(e,f)
i)

for some inner round(e, f). Therefore, from Equation (5.24), the statement of the theorem

is proved.

We now proceed to show that the latency bound given by Theorem (5.2.1) is tight by

illustrating a case where the bound is actually met. Assume that a flowi becomes active at

time instantτi, which also coincides with the start of a certain roundk0. Assume that for

any time instantt, t ≥ τi, a total ofn flows, including flowi, are active. Also, assume that

the summation of the reserved rates of all then flows equals the output link transmission

rate,r. Hence,ρi = wi

W
r. Since flowi became active at timeτi, its surplus count at the

93

start of roundk0 is 0. Let the surplus count of all the other flows at the start of round

k0 be equal to 0. Assume that, a flowl which is not active after timeτi and hence is not

included in then flows, was active during thek0-th round. Assume that flowl exceeded its

allowance by(m − 1) in its last service opportunity in round(k0 − 1), leading to a value

of MaxSC (k0 − 1) equal to(m− 1). Since the surplus counts of all then active flows are

equal to 0, theUnserved Allowance Quotientfor all the flows at the start of thek0-th round

will be equal to unity. Hence,Qmax (k0) will be equal to 1 and all then flows will be added

into the priority queuePQp at the start of the round. Assume that flowi is the last flow

to be added into this queue. From Equations (5.4), (3.2) and (5.5), any given flowj can

transmit a maximum ofwj(
m
p
) + (m − 1) bits during its service opportunity in an inner

round. In the worst case, before flowi is served by the PERR scheduler, each of the other

(n− 1) flows will receive this maximum service. Hence, the cumulative delay until flowi

receives service is given by,

D =

(
∑

j 6=i

wj)(
m

p
) + (n− 1)(m− 1)

r

=
(W−wi

p
)m + (n− 1)(m− 1)

r

Noting thatSi(τi, τi + D) equals zero, it is readily verified that the bound is exactly met at

time t = τi + D.

5.3 Fairness Analysis

In our fairness analysis, we use the popular metric,Relative Fairness Bound (RFB)first

proposed in [24] and defined in Section 3.2. The RFB is defined as the maximum difference

in the normalized service received by any two flows over all possible intervals of time.

Theorem 5.3.1 For any execution of the PERR scheduling discipline,RFB < 2m + 2m
p

Proof: In [46] and Section 3.2, while analyzing the fairness properties of ERR, we

have proved that a tight upper bound on the the RFB of ERR can be obtained by considering

94

only a subset of all possible time intervals. This subset is the set of all time intervals

bounded by time instants that coincide with the start of the service opportunities of flows.

It can be easily verified that to prove the RFB of the PERR scheduler we need to consider

a time interval(t1, t2) such that both the time instantst1 andt2 coincide with the start of a

service opportunity of a flow in an inner round.

Consider any two flowsi and j that are active in the time interval between the time

instantst1 andt2. Let (k0, f) and(k0 + k, g) be the inner rounds which are in progress

at time instantst1 andt2 respectively. Let time instantt(h,v) mark the start of inner round

(k0 + h, v). In other words,t(k0,f) < t1 < t(k0,f+1) andt(k0,g) < t2 < t(k0,g+1). It may be

possible that, if flowj receives service in the inner round(k0, f), then it does so in the time

interval(t(k0,f), t1). Unlike the ERR scheduler, in PERR if flowj is served before flowi in

a certain inner round then, it is not necessary that the same order of service is followed in

each of the following inner rounds. Hence, on a similar note, it may be possible that if flow

j receives service in the inner round(k0 +k, g), then that service is also not included in the

time interval under consideration. Hence,Senti(t1, t2) andSentj(t1, t2) can be evaluated

as follows:

Sent i(t1, t2) = Sent i(k0)− Sent i(k0, f − 1)

+
h=k−1∑

h=1

Sent i(k0 + h) + Sent i(k0 + k, g)

Sent j(t1, t2) = Sent j(k0)− Sent j(k0, f)

+
h=k−1∑

h=1

Sent j(k0 + h) + Sent j(k0 + k, g − 1)

Using Equations (4.2), (5.8) and (5.9) in the above and simplifying, we get,

Sent i(t1, t2) =

(
f

p
Qmax (k0)

)
UAmax

i (k0) + k

h=k−1∑

h=1

UAmax
i (k0 + h)

+

(
g

p
Qmax (k0 + k)

)
UAmax

i (k0 + k)

+ SCi(k0 + k, g)− SCi(k0, f − 1) (5.25)

95

Sent j(t1, t2) =

(
f − 1

p
Qmax (k0)

)
UAmax

j (k0) + k

h=k−1∑

h=1

UAmax
j (k0 + h)

+

(
g − 1

p
Qmax (k0 + k)

)
UAmax

j (k0 + k)

+ SCj(k0 + k, g − 1)− SCj(k0, f) (5.26)

Without loss of generality, we can assume that in the interval(t1, t2) flow i receives more

service as compared to flowj. The normalized service for each of the flows can be obtained

by dividing the above two equations by their respective weights. Subtracting the normalized

service of flowj from that of flowi using Equations (5.25) and (5.26) we have,

Sent i(t1, t2)

wi

− Sent j(t1, t2)

wj

=
UAmax

i (k0)Q
max (k0)

wi p

+
UAmax

j (k0 + k)Qmax (k0 + k)

wj p
+

SCi(k0 + k, g)

wi

− SCi(k0, f − 1)

wi

+
SCj(k0 + k, g − 1)

wj

− SCj(k0, f)

wj

Simplifying the above using Equations (3.2), (4.2), (5.4) and Corollary 1, the statement of

the theorem is proved.

5.4 Work Complexity

Consider an execution of the PERR scheduler overn flows. The work involved in

processing each packet at the scheduler involves two parts: enqueuing and dequeuing.

Hence, the work complexity of a scheduler is defined as the order of time complexity, with

respect ton of enqueuing and then dequeuing a packet for transmission [21,46]. Note that,

n, the number of flows competing for a link can be of the order of tens of thousands of

flows in backbone routers. Hence, it is desirable that the work complexity should be as

independent as possible ofn.

Theorem 5.4.1 The worst-case work complexity of the PERR scheduler isO(log p).

Proof: The time complexity of enqueuing a packet is the same as the time complexity

of theEnqueueroutine in Figure 4.2, which is executed whenever a new packet arrives at

96

a flow. Identifying the flow at which the packet arrives is anO(1) operation. If theActive

flag is not set for the flowi, theIdeal Allowance Utilizationfor the flow is calculated which

in turn determines the priority queue into which the flow should be added. Also, if this

priority queue is of a higher priority than the priority queue which the PERR scheduler is

serving, a flag is set to indicate that after completing the transmission of the current packet,

the scheduler should start serving packets from the newly active flow. The addition of an

item to the tail of a linked-list data structure and conditionally setting a flag are bothO(1)

operations.

Let us now consider the time complexity of dequeuing a packet. Assume that the PERR

scheduler is serving flows from the priority queuePQg. Note that, at least one packet is

transmitted from each of the flows that are present inPQg. The operations involved in serv-

ing flows in this priority queue include determining the next flow to be served, removing

this flow from the head of the priority queue and possibly adding it into some other priority

queue or the ActiveList. All these operations can be executed inO(1) time. Additionally

the PERR scheduler may need to update certain per-flow variables which can be easily

done in constant time. However, once the queuePQg is empty the PERR scheduler needs

to determine the highest non-empty priority queue. To aid in this, the PERR scheduler

maintains a linked list of the identifiers of all the non-empty priority queues. This linked

list is sorted in descending order of priority with the head of the list pointing to the high-

est non-empty priority queue. The complexity of inserting a new identifier into this sorted

linked list isO(log p) wherep represents the total number of priority queues. To select the

highest non-empty priority queue, the PERR scheduler simply has to read the identifier at

the head of this sorted list which can be done inO(1) time. Hence, the overall time com-

plexity of this operation isO(log p). A similar situation arises when a flow is added into

a priority queue which has a higher priority than the current priority queue being served

by the PERR scheduler. However, if all the priority queues are empty it is an indication

that the current round has come to an end. In this case, prior to the start of the subsequent

97

round, theOrganizermodule has to classify all the flows present in theActiveListinto thep

priority queues which requiresO(n) time. However, since each of then flows is guaranteed

to transmit at least one packet, the overall complexity of this operation isO(1).

Note that, the PERR scheduler needs to sort the non-empty priority queues only in

the two special cases discussed above, unlike the sorted-priority algorithms like WFQ and

SCFQ where these sorting operations need to be executed prior to each packet transmission

resulting in aO(log n) work complexity wheren is the number of active flows. Also, since

n À p, the work complexity of the PERR scheduler is always lower than that of the

sorted-priority schedulers. Hence, the worst-case work complexity of the PERR scheduler

is O(log p) resulting in an efficient hardware implementation.

98

Chapter 6. Simulation Analysis

In this chapter we present a detailed simulation-based evaluation of both the ERR and

PERR schedulers in comparison with other schedulers of comparable efficiency. We first

present a brief discussion on a recently proposed new measure of fairness which captures

the instantaneousbehavior of a scheduler. A more detailed presentation of this measure

may be found in [41]. We then present some simulation results using real gateway traffic

traces which compare the fairness characteristics of ERR and PERR based on this new

metric with other efficient schedulers. In addition, we also compare the latency bounds of

our schemes with these schedulers.

The rest of this chapter is organized as follows. Section 6.1 presents arguments for the

need of a new measure of fairness which captures the instantaneous fairness of a scheduler.

In Section 6.2 we describe the new fairness measure known asGini Index. A more detailed

description can be found in [41]. Section 6.3 presents a simulation-based evaluation of

the Elastic Round Robin (ERR) and Prioritized Elastic Round Robin (PERR) schedulers

with other guaranteed-rate schedulers of comparable efficiency. This section also presents

a qualitative analysis of the observed results.

6.1 The Need for a New Measure of Fairness

As explained in earlier chapters of this dissertation, the fairness of scheduling algo-

rithms is most commonly judged by therelative fairness bound (RFB)[24]. The RFB

captures the maximum possible difference between the normalized service received by any

two backlogged flows and therefore serves as a measure of fairness. The RFB of the ide-

ally fair GPS scheduler, of course is zero. A related measure of fairness called theabsolute

fairness bound (AFB), captures the upper bound on the difference between the normalized

99

service received by a flow under the current scheduler being analyzed and that it would

receive with the ideal GPS scheduler [6]. It has been shown in [43], that the AFB and

RFB are related to each other by a simple relationship. Another fairness measure known

as theworst-case fair index, is defined in [48]. It is used to analyze the Worst-Case Fair

Weighted Fair Queuing (WF2Q) scheduler in [27]. However, all these fairness measures

including the RFB simply capture the worst-case behavior of any scheduler. They do not

provide any insight into the actual quality of a fair scheduler. This is because a scheduler

that rarely reaches the upper bound of relative fairness will achieve the same measure of

fairness as another scheduler that frequently or almost always operates at the same upper

bound. Hence, we also need aninstantaneousmeasure of fairness that captures the fairness

achieved by the scheduler at any given instant of time.

Note that, the RFB also fails to inform us of how a scheduler treats packets of one flow

in comparison to those of another. Fairness, after all, is expected to be based on a compar-

ison among the levels of service received by all the flows and not merely on the maximum

difference in the normalized service received by flows. Figure 6.1(a) and (b) illustrate an

example where the bars represent the service received by flows under two different sched-

ulers A and B, during a certain interval of time in which all flows are backlogged. Assuming

the weights associated with the flows are identical, the service received by each of the flows

under the ideally fair GPS scheduler is illustrated as a separate bar. One may observe from

the figures that scheduler B leads to a greater disparity in the levels of service received by

the flows since scheduler A allows more flows to achieve service close to the ideally fair

level. If the absolute and relative fairness bounds are exactly reached in this interval of

time, note that both schedulers would lead to the same values for the RFB and the AFB,

even though, the levels of service received by flows under scheduler A are closer to each

other than with scheduler B.

Thus, measures of fairness based on an upper bound serve the excellent purpose of

capturing the fairness characteristics of a scheduler in a single number. However, they do

100

� � � �� � � �� � � �� � � � � � � �� � � �
� � � �� � � �

(a) (b)

a

b

GPS

Flows c

d

e

RFB

a

b

GPS

Flows c

d

e

RFB

AFB AFB

Figure 6.1: An illustration of the difference in the disparity in service received while the
upper bounds of the relative fairness and absolute fairness measures are identical

not capture the overall behavior of the scheduler at all instants of time and also do not

quite capture the characteristics of the distribution of the service among all the flows (the

AFB only reports the maximum deviation from GPS for any flow while the RFB reports

the maximum difference in service received by two different flows, but neither capture the

overall fairness of the allocation among all the flows). This is addressed by the measure of

instantaneousfairness described below based on measures of inequality used in the field of

economics.

To measure the fairness at any instant of time, we also need to consider situations in

real applications. The RFB is defined under the assumption that queues are continuously

backlogged in the interval of interest. Such an assumption is rarely true in real networks.

In networks with real traffic, flow states can change frequently from active state to idle

state, or vice versa. However, existing measures of fairness have not taken this factor into

account. To effectively guide the design of a fair scheduler, a fairness measure should

also be able to capture the performance under the situation where flows change their states

101

unpredictably.

6.2 Gini Index: A New Measure of Fairness

A recently proposed measure of fairness described in [41] addresses all of the above

issues. There are two components to this measure: one of how to handle real traffic where

flows are not always backlogged and the other of how to measure inequality in service

received by the flows. We review these components briefly in this section; a detailed treat-

ment and a more extensive rationale behind the approach may be found in [41].

6.2.1 Handling a Newly Backlogged Flow

In order to evaluate the fairness of a scheduler in its treatment of a newly backlogged

flow, we need to first define the ideally fair way of doing this. We begin with an examination

of the ideal but unimplementable GPS scheduling discipline.

Let B(t) represent the set of backlogged flows at timet. Assume that the system starts

at timet = 0.

Definition 6.2.1 Let V (t) represent the virtual time function [18, 49] (also known as the

system potential) at timet. The virtual time is used to track the progress of the GPS sched-

uler and is computed as follows:

V ′(t) =
dV (t)

dt
=

 ∑

i∈B(t)

wi

−1

(6.1)

Hence, the service received by a backlogged flow under the GPS server in the time interval

(0, t) is given bywiV
′(t). Intuitively, the virtual time represents the ideal fair normalized

service that each flow should have received by timet.

Let us now consider a set ofn flows served by a scheduling policyP . Consider a case in

which then flows have been backlogged since timet1. One of these flows, flowi, changes

its status from being backlogged to idle at timet2 > t1 and later becomes backlogged again

102

at timet3 > t2. In order to accurately and meaningfully compare the service received by

all the flows at time instants aftert3, it is necessary to assign an appropriate value of the

normalized service received by flowi until t3 so that the comparison is over the entire time

interval(t1, t3). As mentioned earlier, a newly backlogged flow should neither be favored

nor be punished for its idle period in the interval(t2, t3). Therefore, based on the discussion

of the virtual time, the service received by flowi at timet should bewiV (t). However, if

flow i has already received more service than the above amount of service before timet2

while it was backlogged, then the total assumed service should beSent i(0, t2). This is

because a flow that receives excess service should not be able to become idle and then

immediately become backlogged again without being disadvantaged later for the excess

service it received earlier. These concepts and similar arguments have also been made

in [24,26,38,41].

In evaluating the fairness of a specific scheduler it is necessary to keep track of the

amount of service allocated by the above method. We borrow the method used in [41]

where a per-flow state known as thesession utilityis defined for this purpose. This vari-

able is independent of the scheduling discipline used by the scheduler and is defined as a

function of time. Letui(t) represent the session utility for flowi at time instantt. As-

sume that the system starts at time 0. During the period(t1, t2) that a flow is continuously

backlogged, its session utility is updated as follows:

ui(t2) = ui(t1) +
Senti(t1, t2)

wi

(6.2)

We now discuss how to update the session utility of a flow that just becomes back-

logged. Let flowi become newly backlogged or backlogged again at timet. Let B(t−)

represent the set of flows that are backlogged just prior to the time that flowi becomes

backlogged. Our goal in assigning a session utility value to flowi at timet is to ensure that

the comparison between session utilities of all the flows is being made as though the flows

have all been backlogged for the same length of time. Accordingly flowi is assigned the

103

following session utility value:

ui(t) = max{ui(t−), V (t)} (6.3)

With the above definition of the session utility, a newly backlogged flow can be treated as

if it had been backlogged for the same length of time as all other flows. Therefore, with a

measure which is based on session utility, it is possible to capture the fairness of a scheduler

in its treatment of flows that are not always continuously backlogged.

6.2.2 The Gini Index

Various measures of inequality have been used in the field of economics for several

decades in the study of social wealth distribution and many other economic issues of inter-

est [50]. Some of these methods are related to the theory of majorization used in mathe-

matics as a measure of inequality [51]. This theory has occasionally found use in research

in computer networks in the fairness analysis of protocols [52]. The fairness measure

proposed in [41] and adopted in this paper borrows from a related measure of inequality

developed in the field of economics based on the concept of theLorenz curveandGini

index[50].

Consider the problem of measuring the inequality amongk quantities,g1 ≤ g2 ≤ · · · ≤
gk. Defined0 = 0, anddi = di−1 + gi, for 1 ≤ i ≤ k. Now, a plot ofdi againsti is

a concave curve, known as theLorenz curve[53], as shown in Figure 6.2(a). Note that,

if there is perfect equality in thesek quantities, the Lorenz curve will be a straight line

starting from the origin. The Gini index measures the area between the Lorenz curve and

this straight line, and thus measures the inequality amongst thek quantities [50].

In our case, we wish to measure the inequality in the session utilities of the backlogged

flows at any given instant of time. The Gini index in our case, therefore, is the area be-

tween the Lorenz curve of the actual normalized service received and the Lorenz curve

corresponding to the ideally fair GPS scheduler.

104

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � � �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

i

F(i; U(t))

F(k; U(t))

k0

x

y

z

dk

d i

i
k0

Actual Lorenz Curve

Ideal Lorenz Curve

(a) (b)

Figure 6.2: An illustration of the lorenz curve and Gini index in the measure of inequalities
among (a) income distribution (b) session utilities in a packet scheduler

When the sum of thek quantities is the same as the sum in the case of perfect equality,

the Lorenz curve always lies below the straight line corresponding to the Lorenz curve of

the ideal equal case, as shown in Figure 6.2(a). However, the sum of the session utilities

with a real scheduler is almost never exactly identical to the sum of the session utilities

with the ideally fair GPS scheduler. Note that, in a work-conserving scheduler, only the

sum of the total service delivered is identical to that in the ideally fair GPS scheduler; the

sum of the session utilities is not identical to that in the GPS system. In the Lorenz curve

for a work-conserving scheduler, when the sum of thek quantities is not the same as the

sum in the case of perfect equality as with the GPS scheduler, a portion of the curve for the

actual scheduler will lie below and another portion will lie above the straight line Lorenz

curve for the GPS scheduler. This is illustrated in Figure 6.2(b). The sum of the shaded

areas in the figure is the Gini index.

The computation of the Gini index is described formally as follows:

Definition 6.2.2 LetU(t) represent the set of the session utilities of the flows at time instant

t when served by a real scheduler and letG(t) denote a similar set which is obtained when

105

the flows are served with the ideal GPS scheduler. Letuc1 , uc2 , . . . , uck
be the elements of

the setU(t), such thatuc1 ≤ uc2 ≤ · · · ≤ uck
. TheLorenz Curveof the set of session

utilities U(t) is the functionF (i;U(t)), given by,

F (i;U(t)) =
i∑

j=1

ucj
, 0 ≤ i ≤ k

The Gini index over thek elements inU(t) is computed as:

k∑
i=1

∣∣F (i;U(t))− F (i;G(t))
∣∣ (6.4)

As defined above, the closer the Lorenz curve ofU(t) is to the curve of GPS, the

smaller the Gini index is, and thus, the fairer the distribution of the session utilities. From

the definition of the virtual time function, we know that the normalized service received by

each flow at timet in the GPS system is equal to the virtual time,V (t). Hence, the Gini

index can be computed as :
k∑

i=1

∣∣F (i;U(t))− F (i; V (t))
∣∣ (6.5)

With the Gini index, the fairness of a scheduler can be evaluated at each instant during the

execution of the scheduler. A comparison of schedulers based on their Gini indices allows

us to determine which scheduler achieves better fairness than others at each instant of time.

6.3 Simulation Results

In our simulation experiments, we compare the Gini index and latency bound of PERR

with those of other efficient and fair schedulers such as DRR, ERR, Nested-DRR and Pre-

order DRR. We also include the WFQ as a representative sorted-priority scheduler in our

comparisons. We shall first present our simulation model.

6.3.1 Simulation Model

Figure 6.3 illustrates our simulation model. We model each flow as atraffic generator

module. Each of these modules generates a packet stream with the packet length distribu-

106

Traffic
Generators

Switch

Figure 6.3: Simulation model

Table 6.1: Settings for traffic sources from router traces

Source 1 2 3 4 5

Router Abbr. 2 ANL APN BUF MEM TXS

Interface OC3 OC3 OC3 OC3 OC3

Lmin (bytes) 28 29 28 32 32

Lmax (bytes) 9,180 1,500 1,560 4,470 9,180

ravg (106Bps) 0.63 1.4 1.45 0.39 2.1

Weight (wi) 1.6 3.5 3.7 1 5.5

Link Capacity 6× 106 Bps

Total Time 50 seconds

tion obtained from backbone router traces.

We used the traces provided by the National Laboratory for Applied Network Research

2The long names of routers are: Argonne National Laboratory(ANL), APAN(APN), University of Buf-
falo(BUF), University of Memphis(MEM) and Rice University(TXS)

107

[54]. Each generator is fed by a router trace with a random starting time. Table 6.1 shows

the settings for this set of input traffic. The flow weights are set based on the average

rate of each flow. Here we the set the weight of the slowest flow as 1, and weights of

other flows are equal to the ratios of their average rate to the smallest rate. The switch

maintains separate input queues for packets arriving from different sources. We assume

that the packets arriving at all the input queues wish to leave the switch through the same

output port, say port 0, thus creating a contention for the bandwidth on that link. The

scheduling discipline employed by the switch for serving these input queues is varied.

In our simulation we compare the instantaneous fairness of ERR and PERR with other

efficient schedulers such as DRR, SRR, Nested-DRR and Pre-order DRR. We also include

the popular WFQ scheduler, as a representative sorted-priority scheduler. The number of

prioriy queues,p for the Pre-order DRR and PERR schedulers have both been set to10.

6.3.2 Results with Backlogged Traffic

In our first set of experiments we extract the length of each packet from the router traces

and simulate a scheduling system with continuously backlogged queues. Figure 6.4 shows

the Gini index at periodic instants of time for the schedulers under consideration. Recall

that the lower the Gini index, the more fair the algorithm. As is readily seen from the

graph, ERR outperforms SRR and DRR by a huge margin. In fact ERR has substantially

better fairness properties as compared to the Nested DRR scheduler. This illustrates that

ERR has the best fairness properties among all existingO(1) scheduling disciplines. PERR

improves upon the fairness properties of ERR as illustrated by the extremely low value of

its Gini index. Figure 6.4 shows that PERR displays better fairness than all other schedulers

of equivalent complexity.

Figure 6.5 compares the Gini indices of the WFQ and PERR schedulers. The WFQ

scheduler achieves slightly better fairness than PERR. However, note that WFQ is a sorted-

108

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

Time(in seconds)

G
in

i I
nd

ex

DRR
SRR
ERR
Nested DRR
Pre−order DRR
PERR

Figure 6.4: Gini indices of various efficient schedulers with backlogged traffic

0 5 10 15 20 25 30 35 40 45 50
2

2.5

3

3.5

4

4.5

5
x 10

−3

Time(in seconds)

G
in

i I
nd

ex

PERR
WFQ

Figure 6.5: Gini indices of PERR and WFQ with backlogged traffic

109

priority scheduler and has a large work complexity which is proportional to the number of

flows being served.

6.3.3 Results with Real Router Traces

In our next set of experiments, we allow that the flows are not always backlogged, while

still using real router traces. Since we are more interested in the performance when the link

is close to fully utilized, we set the link capacity such that the sum of average rates of all

the flows is 98% of the link capacity. Figure 6.6 shows the average

length of arriving packets among all sessions during the simulation interval.

0 5 10 15 20 25 30 35 40 45 50
480

500

520

540

560

580

600

620

640

660

680

Time(in cycles)

A
ve

ra
ge

 L
en

gt
h

of
 A

rr
iv

in
g

P
ac

ke
ts

 (
in

 B
yt

es
)

Figure 6.6: Average length of arriving packets

In Figures 6.7 to 6.10 we compare the Gini index of ERR with those of DRR, SRR,

Nested-DRR and Pre-order DRR. For the sake of clarity, we plot each scheduler’s Gini

index on a separate graph, with that of the ERR scheduler plotted on each of the graphs.

Once again, we find that ERR exhibits better fairness than DRR, SRR and Nested-DRR.

110

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (in seconds)

G
in

i I
nd

ex

DRR
ERR

Figure 6.7: Comparison of Gini indices of DRR and ERR

Note that, in both SRR and DRR the quantum for each flowi, Qi is wiQmin whereQmin

represents the quantum for the flow with the lowest reserved rate. Note that,Qmin has to

be greater than or equal to the size of the largest packet that may potentially arrive,M .

As a result, irrespective of the actual size of the arriving packets both these schedulers

on an average serve a quantum’s worth of data from each flow in its round robin service

opportunity. However, in reality a large percentage of the arriving packets are much smaller

thanM . As a result, these schedulers are unfair over short periods of time . On the contrary

the ERR scheduler calculates the allowance of a flow based on the maximum normalized

surplus count in the previous round. As a result, for the most part the allowance of a flow

in ERR is much lower than the flow’s quantum in DRR and SRR resulting in better fairness

for the ERR scheduler.

111

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Time (in seconds)

G
in

i I
nd

ex

SRR
ERR

Figure 6.8: Comparison of Gini indices of SRR and ERR

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (in seconds)

G
in

i I
nd

ex

 Nested DRR
ERR

Figure 6.9: Comparison of Gini indices of Nested DRR and ERR

112

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (in seconds)

G
in

i I
nd

ex

Pre−order DRR
ERR

Figure 6.10: Comparison of Gini indices of Pre-order DRR and ERR

Since the quantum assigned to each flow in DRR is proportional to its reserved rate,

flows with large reserved rates tend to have a very large quantum. As a result, DRR can be

extremely unfair to flows with lower reserved rates over short durations of time. The Nested

DRR eliminates some of the drawbacks of DRR by spliting each DRR round into multiple

inner rounds and then scheduling the minimum quantum,Qmin from each eligible flow

in the inner rounds. Even though this succeeds in alleviating the unfairness experienced

by the low-rate flows it has an adverse effect on the fairness properties of the flows with

higher reserved rates. Hence, the Gini index for Nested DRR is widely varying as seen in

Figure 6.9. Finally, in Figure 6.10 we compare the Gini indices of ERR and Pre-order DRR.

As seen from the plot, for a small percentage of the time Gini index of ERR is lower than

that of Pre-order DRR. Also for the other time instants Pre-order DRR is only marginally

better than ERR.

113

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (in seconds)

G
in

i I
nd

ex

DRR
PERR

Figure 6.11: Comparison of Gini indices of DRR and PERR

Figures 6.11 to 6.15 illustrate the comparison of the Gini index of PERR with those

of DRR, SRR, Nested-DRR and Pre-order DRR. As before, we plot each scheduler’s Gini

index on a separate graph, with that of the ERR scheduler plotted on each of the graphs.

Once again, we find that the PERR scheduler displays a lower Gini index than any of the

other schedulers of equivalent complexity at almost all instants of time. Finally, Figure 6.16

compares the Gini indices of the PERR and WFQ schedulers. It is seen PERR is almost

as fair as the WFQ scheduler. However, WFQ is a sorted-priority scheduler and hence

suffers from a large implementation complexity. PERR on the higher hand has a low work

complexity which is independent of the number of flows.

114

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Time (in seconds)

G
in

i I
nd

ex

SRR
PERR

Figure 6.12: Comparison of Gini indices of SRR and PERR

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (in seconds)

G
in

i I
nd

ex

ERR
PERR

Figure 6.13: Comparison of Gini indices of DRR and PERR

115

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (in seconds)

G
in

i I
nd

ex

 Nested DRR
PERR

Figure 6.14: Comparison of Gini indices of SRR and PERR

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time (in seconds)

G
in

i I
nd

ex

Pre−order DRR
PERR

Figure 6.15: Comparison of Gini indices of Pre-order DRR and PERR

116

0 5 10 15 20 25 30 35 40 45 50
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time (in seconds)

G
in

i I
nd

ex

WFQ
PERR

Figure 6.16: Comparison of Gini indices of WFQ and PERR

6.3.4 Comparison of Latency Bounds

We now compare the latency bounds of the router traces in Table 6.1 for the PERR and

ERR schedulers with that of the other efficient schedulers such as DRR, SRR, Nested-DRR

and Pre-order DRR. As before we include the WFQ scheduler as a representative sorted-

priority scheduler. Note that the latency bounds of all these schedulers are summarized in

Table 7.1.

Figure 6.17 illustrates the latency bounds of these schedulers for the five router traces

that we use in our simulations. As is readily seen from the graph, the latency bound of ERR

is much lower that that of the DRR and SRR schedulers. In addition, ERR even outperforms

the Nested-DRR and Pre-order DRR schedulers. It is also evident that the latency bound

of the PERR scheduler is significantly lower that all the other efficient schedulers. In fact,

the bound for PERR is almost equal to that of theO(log n) WFQ scheduler.

117

Figure 6.17: Comparison of latency bounds of various schedulers

118

Chapter 7. Concluding Remarks

In the emerging integrated-services packet-switched networks, fair packet scheduling

algorithms in switches and routers play a critical role in providing the Quality-of-Service

(QoS) guarantees required by real-time applications. In this dissertation, we have consid-

ered the problem of fair and efficient scheduling of packets to meet these QoS objectives.

We have also addressed the requirements and the constraints imposed on a scheduling dis-

cipline used in wormhole switches, popular in the interconnection networks for parallel

systems. In this dissertation, we first presented a new fair, efficient, simple and low-latency

scheduling discipline called Elastic Round Robin (ERR). ERR was originally designed to

satisfy the unique requirements of wormhole switching. We have shown that ERR can be

easily adapted for scheduling best-effort and guaranteed-rate traffic in the Internet. We

have also provided a detailed analysis of the performance and fairness properties of the

ERR scheduler. We have shown that the work complexity of ERR is O(1) and therefore,

ERR can be easily implemented in networks such as the Internet, with large number of

flows. We have proved analytically the fairness properties of ERR. In particular, we show

that ERR satisfies Golestani’s [24] definition of throughput fairness, i.e., the difference in

the bandwidths allocated to any two backlogged flows in any time interval is bounded by

a small constant. The relative fairness bound of ERR has an upper bound of3m, wherem

is the size of the largest packet that actually arrives during the execution of ERR. While

fairness is an intuitively desirable goal, its practical relevance is in the bound on the la-

tency that fair schedulers are able to provide. This latency, as defined for Latency RateLR

servers in [38], has a direct bearing on the size of the playback buffers needed at the re-

ceivers for real-time communications. We have shown that ERR belongs to the the class of

LR-servers and have also evaluated the upper bound on the latency experienced by a flow

served by the ERR scheduler. Our analysis reveals that ERR has better fairness character-

119

istics and a significantly better latency bound in comparison to other scheduling disciplines

of equivalent complexity such as DRR and SRR.

We also identified the problems associated with the frame-based schedulers. Since ERR

is inherently a frame-based scheduling algorithm, it suffers from the limitations of all round

robin schedulers such as (i) bursty transmission and (ii) the inability of the flows lagging

in service to receive precedence over the flows that have received excess service. In the

latter part of this dissertation, we have presented a novel scheduling discipline called Pri-

oritized Elastic Round Robin (PERR) which rearranges the sequence in which packets are

transmitted in each round of the ERR scheduler. This is achieved through the addition of a

priority queue module consisting ofp priority queues. AnOrganizermodule dynamically

classifies the active flows into these priority queues. We have analytically shown that PERR

has a low work complexity ofO(log p) which is independent of the total number of flows,

resulting in a simple and efficient implementation. We also prove that PERR belongs to

the class ofLR servers and also evaluate an upper bound on its latency using a novel tech-

nique based on interpreting the PERR scheduler as an instance of the Nested Deficit Round

Robin algorithm. Our analysis also reveals that PERR has better fairness characteristics

and a significantly lower latency bound in comparison to other scheduling disciplines of

equivalent work complexity such as DRR, SRR, ERR, Nested-DRR and Pre-order DRR.

We further study the fairness properties of ERR and PERR using a recently proposed

measure of instantaneous fairness known as the Gini index that seeks to more accurately

capture the fairness of a scheduler. Using real router traffic traces, we present simula-

tion results that demonstrate that ERR achieves better fairness characteristics than other

scheduling disciplines of equivalent complexity such as DRR and SRR. In fact, the Gini

index of ERR is lower than that of Nested-DRR and almost equal to that of the Pre-order

DRR scheduler. PERR improves upon ERR and has better fairness properties than all other

efficient scheduling algorithms. In fact, our results show that PERR is almost as fair as

WFQ, a popular sorted-priority scheduler.

120

The rest of the section is organized as follows. Section 7.1 presents a detailed com-

parison of the fairness and performance characteristics of the ERR and PERR scheduler in

comparison with other popular guaranteed-rate scheduling disciplines. A tabulated sum-

mary of the properties is provided. Section 7.2 discusses various other situations where the

ERR and PERR scheduling disciplines can be utilized.

7.1 Comparison of ERR and PERR with Other Schedulers

In this section we present a detailed comparison of the the fairness and performance

characteristics of the ERR and PERR scheduler which were evaluated in Chapters 3 and 5

with other well-known guaranteed-rate schedulers.

Table 7.1 summarizes the work complexity, fairness and latency bounds of several

guaranteed-rate scheduling disciplines that belong to the class of (LR) servers. It is im-

portant to note that not all of these schedulers satisfy the unique requirement imposed by

wormhole switching. Table 7.1 makes this distinction by providing a column which in-

dicates the applicability of a scheduling discipline to workhole networks. In this table,n

represents the number of active flows andp represents the number of priority queues in Pre-

order DRR and PERR. The peak rate of the output link is denoted byr. M is the size of the

largest packet that may potentially arrive during the execution of a scheduling algorithm.

Recall thatm is the size of the largest packet thatactuallyarrives during the execution of

the scheduler. Usually, in most networks including the Internet,M À m since the majority

of packets are much smaller than the largest possible packet [44,45]. The properties of all

the frame-based scheduling disciplines are derived in [49]. The latency bounds of DRR

and Pre-order DRR have been analyzed in [55] and [56, 57]. The appendix at the end of

the dissertation includes the latency analysis of both these scheduling disciplines. Note

that, the latency bounds evaluated in the appendix are tighter than the previously known

bounds of DRR and Pre-order DRR. The expression for the latency bound of Nested-DRR,

121

as stated in [40], is extremely complex and hence does not allow for an easy comparison

with the other schedulers under consideration. Hence, in order to gain a quick understand-

ing of the differences in the latency bounds of Nested-DRR and the other schedulers, in our

comparison we include the latency bound of Nested-DRR at two boundary conditions. In

the first case, we consider the latency bound of a flow whose reserved rate is much lower

than that of the other flows sharing the same output link (ρi ¿ ρj, ∀j ∈ n, j 6= i). In

the second case, we consider the opposite end of the spectrum, i.e., the latency bound of a

flow whose reserved rate is much greater than the other flows multiplexed on the same link

(ρi À ρj, ∀j ∈ n, j 6= i). In [40], an expression for the latency of a low-rate flow has been

derived and it has also been shown that the latency of a high-rate flow is marginally lower

than that of the DRR scheduler. For simplicity, we assume the latter to be equal to DRR.

122

Ta
bl

e
7.

1:
C

om
pa

ris
on

of
E

R
R

an
d

P
E

R
R

w
ith

ot
he

r
gu

ar
an

te
ed

-r
at

e
sc

he
du

lin
g

di
sc

ip
lin

es

A
pp

lic
ab

le
to

S
ch

ed
ul

in
g

A
lg

or
ith

m
s

C
om

pl
ex

ity
F

ai
rn

es
s

La
te

nc
y

B
ou

nd
fo

r
flo

wi
W

or
m

ho
le

N
et

w
or

ks

G
P

S
[1

8]
—

0
0

—

W
ei

gh
te

d
F

ai
r

Q
ue

ui
ng

[1
6]

O
(n

)
3
m

m r
+

m ρ
i

—

S
el

fC
lo

ck
ed

F
ai

r
Q

ue
ui

ng
[2

4]
O

(l
o
g

n
)

2
m

(n
−

1
)m

r
+

m ρ
i

—

V
irt

ua
lC

lo
ck

[1
9]

O
(l

o
g

n
)

∞
m r

+
m ρ

i
—

F
ra

m
e-

ba
se

d
F

ai
r

Q
ue

ui
ng

[2
6]

O
(l

o
g

n
)

2
M

+
m

m r
+

m ρ
i

—

D
efi

ci
tR

ou
nd

R
ob

in
[2

1]
O

(1
)

M
+

2
m

1 r

� (W
−

w
i
)Q

m
in

+
(m

−
1
)

�
W w

i
+

n
−

2

��
—

S
ur

pl
us

R
ou

nd
R

ob
in

[3
4–

36
]

O
(1

)
M

+
2
m

1 r
{(

W
−

w
i
)Q

m
in

+
(m

−
1
)(

n
−

1
)}

—

E
la

st
ic

R
ou

nd
R

ob
in

[4
6,

47
]

O
(1

)
3
m

1 r
{(

W
−

w
i
)m

+
(m

−
1
)(

n
−

1
)}

√

L
o

w
-r

a
te

:
1 r

� (n
−

1
)Q

m
in

+
(m

−
1
)

�
W w

i
+

n
−

2

��

N
es

te
d-

D
R

R
[4

0]
O

(1
)

M
+

2
m

—

H
ig

h
-r

a
te

:
1 r

� (W
−

w
i
)Q

m
in

+
(m

−
1
)

�
W w

i
+

n
−

2

��

P
re

-o
rd

er
D

R
R

[4
2]

O
(l

o
g

p
)

2
M p

+
2
m

1 r

�
(W

−
w

i
)Q

m
in

p
+

(m
−

1
)

�
W w

i
+

n
−

2

��
—

P
rio

rit
iz

ed
E

R
R

[3
9]

O
(l

o
g

p
)

2
m p

+
2
m

1 r

�
(W

−
w

i
)m

p
+

(m
−

1
)(

n
−

1
)�

√

123

The GPS scheduler visits each active flow in a round-robin fashion, and serves an in-

finitesimally small amount of data proportional to the reserved rate of the flow [18]. Using

this fluid model, the GPS scheduler is able to ensure that over any interval of time how-

ever small, the normalized difference between the service received by any two active flows

is exactly zero. The RFB of GPS, therefore, is zero. The latency of GPS is also zero

since a newly active flow begins receiving service instantaneously at the guaranteed rate.

Recall that GPS is an ideal but not an implementable scheduler. The sorted priority sched-

ulers such as Weighted Fair Queuing (WFQ) [16], Self-clocked Fair Queuing (SCFQ) [24],

Frame-based Fair Queuing (FBFQ) [26] and Virtual Clock [19] all have a low value of the

latency bound. Virtual Clock has an RFB of infinity and therefore, cannot be considered

to be a fair scheduler. The RFB of the WFQ scheduler is3m and thus, has better fairness

However, WFQ requires the simulation of the ideal GPS scheduler on the side and hence

has a very large work complexity ofO(n). SCFQ does not require simulation of GPS in

parallel and also has a lower value of the RFB. However, the latency bound of SCFQ is

much greater than that of WFQ. FBFQ achieves the same latency bound as that of WFQ

and is also more efficient. The price paid is in the slightly higher RFB. In addition, FBFQ

also requires periodic re-calibration of the virtual time, and also has a work complexity of

O(log n) rendering it less efficient than ERR or DRR. In fact, the work complexity of all

these sorted priority schedulers is a function of the number of the active flows,n. As a

result, these schedulers are inefficient to implement in high-speed hardware switches.

In fact, only ERR, DRR, SRR and Nested-DRR have a work complexity ofO(1). How-

ever, as explained earlier, excluding ERR, none of these schedulers are ideally suitable for

use in wormhole networks, where the length of time a packet occupies the link is not known

before a decision to transmit the packet is made. On the other hand ERR can be readily used

in wormhole networks, in addition to being perfectly suitable for achieving fair scheduling

in Internet routers. In addition, Table 7.1 shows that ERR has better fairness properties and

a lower latency bound as compared to other scheduling disciplines of equivalent complex-

124

ity, especially considering thatM is typically much greater thanm.

As discussed earlier in Chapter 4, ERR, DRR, SRR and Nested-DRR are all round-

robin schedulers and hence suffer from the characteristic limitations of all round robin

schedulers. Both Pre-order DRR and PERR overcome these drawbacks in the DRR and

ERR schedulers respectively and also have a low work complexity ofO(log p) which is

independent of the number of flows. As explained earlier, the basic principle of the PERR

algorithm is similar to the Pre-order DRR algorithm [42]. The Pre-order DRR scheduler

alters the transmission sequence of the packets in each DRR round based on the quantum

utilization of each flow. The PERR scheduler similarly changes the sequence in which

packets are transmitted in an ERR round depending on the utilization of the maximum

possible allowance of each flow in that round.

There is however an important difference between these two schedulers. At the start of

a round, the Pre-order DRR scheduler has to classify all the packets that will be transmitted

by the active flows in that round into the priority queues prior to starting the transmission of

the packets. On the contrary, the PERR scheduler simply has to classify the flows present

in the ActiveListinto its priority queues before the start of the round. It has been shown

in [47] that ERR has a couple of important advantages over DRR. Now since the PERR and

Pre-order DRR algorithms are modifications of ERR and DRR, respectively, PERR inherits

those advantages over Pre-order DRR. The following lists these advantages:

• Lower Buffer Requirement :Since the priority queues in PERR simply need to contain

the flow identifiers they can be much smaller in size as compared to those in Pre-order

DRR which have to buffer all the packets that will be transmitted in the current round.

• Reduced Round Start Delay :Classifying all the packets that are to be transmitted in

the round into the priority queues requires considerably more time than simply sorting

the flow identifiers. Thus, the delay incurred by the PERR scheduler at the start of the

round is much less in comparison to that incurred by the Pre-order DRR scheduler.

125

• Improved Latency and Fairness Characteristics:Table 7.1 illustrates that PERR has

better fairness properties and a lower latency bound than Pre-order DRR, especially

considering thatM is typically much greater thanm.

• Adaptability in other contexts:Unlike DRR and Pre-order DRR, the PERR scheduler

does not require the knowledge of the transmission time of each packet. As a result,

the scheduler can be used in other networks such as wormhole networks, where the

transmission time of a packet depends not only on the size of the packet but also the

downstream congestion.

Note that, the latency bound of aLR server is an extremely important QoS parameter

since it has a direct influence of the the size of the playback buffers needed at the receiver

for real-time communication applications. In order that the reader can fully appreciate

the improvement in the latency characteristics of PERR, we compare the latency bound

of PERR with other efficient scheduling disciplines of equivalent work complexity such

as DRR, ERR, SRR, Nested-DRR and Pre-order DRR within the context of an example.

Note that, for this comparison we use the actual latency bound for Nested-DRR as proved

in [40].

Let us assume that a total of 100 flows are multiplexed on an output link with a trans-

mission rate,r of 150 Mbps. Assume thatM is equal to 576 bytes, equal to the minimum

value of the Maximum Transmission Unit (MTU) required of all networks. Assume that

ρmin is equal to 0.1Mbps and that the output link is completely utilized, i.e.
∑n

i=1 ρi = r.

Note that, this implies that the sum of all the weights,W , is equal to150/0.1 = 1500. Let

the number of priority queues in the priority queue module of Pre-order DRR and PERR

be equal to 10, i.e.,p = 10. We compare the latency bounds of the afore-mentioned sched-

ulers for flow i as a function of its reserved rate,ρi, for two values ofm : (a) m = M ,

(b) m = M/2. Figure 7.1 illustrates a plot of these latency bounds of flowi for both the

values ofm. Note that, latency bounds of all the schedulers under consideration depend

126

0 10 20 30 40 50 60 70 80
5

10

15

20

25

30

35

40

45

50

55

La
te

nc
y

B
ou

nd
 (

in
 m

se
c)

Reserved Rate of flow i (in Mbps)

(a)

DRR
SRR
ERR
Nested−DRR
Pre−order DRR
PERR

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

La
te

nc
y

B
ou

nd
 (

in
 m

se
c)

Reserved Rate of flow i (in Mbps)

(b)

DRR
SRR
ERR
Nested−DRR
Pre−order DRR
PERR

Figure 7.1: Comparison of the latency bound of PERR and ERR with other schedulers of
equivalent complexity

127

on the sum of the weights of all the flows but not on the distribution of the weights among

all the flows other than flowi. Therefore, the weights of the flows other than flowi are

not discussed in the context of this illustration. From Figure 7.1, it can be easily seen

that PERR has the lowest latency bound among all the scheduler under consideration. The

improvement in the latency of PERR is even more apparent whenm < M .

7.2 Other Applications of ERR and PERR

Even though ERR was originally designed for wormhole networks, it can be used in

a wide variety of contexts whenever there is a shared resource that needs to be allocated

fairly among multiple requesting entities. In some of these contexts its unique properties

relevant to wormhole switching are critical, and in some others, its advantages derive from

its simplicity, better fairness and better performance characteristics. Note that, since PERR

is based on the ERR scheduling discipline it too inherits these advantages of ERR. In this

section we present a few scenarios where the ERR and PERR schedulers can be put to use to

achieve improved performance. Note that, in the rest of this section we list several possible

applications of ERR. However, the ERR scheduler can be readily replaced by PERR in all

of these instances.

For example, in wormhole networks one may define a flow as the stream of packets

belonging to the same virtual channel, in which case, ERR can be used to achieve fairness

among virtual channels in the forwarding of flits to the output link. ERR can also be

used in the forwarding of packets from the input buffers to the output buffers of switching

elements in networks. Further, the fact that ERR does not require the knowledge of the

length of a packet before making a scheduling decision makes it a suitable candidate in

an ATM network transmitting IP packets over AAL5, where the end of the packet is not

known until the last ATM cell of the packet arrives.

Fair scheduling deals with the problem of partitioning the bandwidth on a single output

128

8

Fair

Sharing

4 10 16 8 16 32

10 8 32

4 8 16 16

Channel 1

Channel 2

Output ChannelQueue 1

4 16 16

4 10 8 16 8 16 32

Scheduling

Load

Algorithm

Algorithm
Queue 2

Input
Queue

3210 8

8

Figure 7.2: Example of load sharing using ERR

channel equally from a set of input queues which feed that channel. On the other hand,

load sharing deals with the problem of partitioning the traffic arriving on a single input

queue equally among a set of output channels [58]. Intuitively, one can see that the above

mentioned two problems are complementary in nature. Figure 7.2 helps make this idea

clear. The ERR algorithm works in the same way in the load sharing context as in the case

of fair scheduling. This is explained with the help of Figure 7.2. Initially the surplus counts

of the channels 1 and 2 are both initialized to zero. Channel 1 is first selected for service,

i.e. for transmitting packets and its allowance is calculated using Equation (2.3). The ERR

load sharing algorithm will keep transmitting packets on this channel, if the total number

of flits transmitted so far in the current round is less than its allowance. A packet of length

32 flits is transmitted on channel 1, at the end of which the surplus count is calculated as 31

flits using Equation (2.1). Channel 2 is then selected for service. The operation continues

to proceed in a similar manner. It is easy to see that the ERR allocates the bandwidth fairly

among the output channels.

ERR can also be a solution in token ring networks where the bandwidth of the ring has

to be shared among multiple sources. ERR, similarly, can be used to efficiently arbitrate

129

access to a busy shared bus. The lower start-up latency of ERR among similarly efficient

algorithms is especially useful here in improving the latency of short control messages.

Finally, ERR is particularly relevant to the problem of job scheduling in operating systems,

where multiple processes are competing for limited CPU cycles.

130

Bibliography

[1] P. Baran, “On distributed communication networks,”IEEE Transactions on Commu-
nication Systems, March 1964.

[2] D. Bertsekas and R. Gallager,Data Networks, Prentice Hall, Upper Saddle River, NJ,
2nd edition, 1991.

[3] V. P. Kumar, T. V. Lakshman, and D. Stiliads, “Beyond best effort: Router architec-
tures for the differentiated services of tomorrow’s internet,”IEEE Communications
Magazine, vol. 36, no. 5, pp. 152–164, May 1998.

[4] D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing scheduling algorithms
in high-speed networks,”IEEE Journal on Selected Areas in Communications, vol.
17, no. 6, pp. 1145–1158, June 1999.

[5] Cisco Systems Inc., “Cisco 12016 Gigabit Switch Router: Application Note,” 1999.

[6] S. Keshav,An Engineering Approach to Computer Networks, Addison-Wesley Pub-
lishing Company, Reading, MA, 1997.

[7] R. Cruz, “A calculus for network delay. i. network elements in isolation,”IEEE
Transactions on Information Theory, vol. 37, pp. 114–131, January 1991.

[8] H. Sethu, C. B. Stunkel, and R. F. Stucke, “IBM RS/6000 SP large system inter-
connection network topologies,” inProceedings of the International Conference on
Parallel Processing, Minnesota, MN, August 1998.

[9] C. B. Stunkel, “The SP2 high-performance switch,”IBM Systems Journal, vol. 34,
no. 2, pp. 185–204, February 1995.

[10] W. J. Dally and C. L. Seitz, “The torus routing chip,”Journal of Distributed Comput-
ing, vol. 1, no. 3, pp. 187–196, October 1986.

[11] J. Duato, S. Yalamanchili, and L. Ni,Interconnection Networks: An Engineering
Approach, IEEE Computer Society Press, Los Alamitos, CA, 1997.

[12] J. Ding and L. N. Bhuyan, “Evaluation of multi-queue buffered multistage inter-
connection networks under uniform and non-uniform traffic patterns,”International
Journal of Systems Science, vol. 28, no. 11, 1997.

[13] M. Katevenis, P. Vatsolaki, and A. Efthymiou, “Pipelined memory shared buffer for
VLSI switches,” inProceedings of ACM SIGCOMM, Cambridge, MA, August 1995,
pp. 39–48.

131

[14] W. J. Dally, “Virtual channel flow control,” IEEE Transactions on Parallel and
Distributed Systems, vol. 3, no. 3, pp. 194–205, March 1992.

[15] H. Sethu, H. Shi, S. S. Kanhere, and A. B. Parekh, “A round-robin scheduling strategy
for reduced delays in wormhole switches with virtual lanes,” inProceedings of the
International Conference on Communications in Computing, Las Vegas, NV, June
2000, pp. 275–278.

[16] A. Demers, S. Keshav, and S. Shenker, “Design and analysis of a fair queuing algo-
rithm,” in Proceedings of ACM SIGCOMM, Austin, September 1989, pp. 1–12.

[17] D. Verma, D. Ferrari, and H. Zhang, “Guaranteeing delay jitter bounds in packet
switched networks,” inProceedings of Tricomm, April 1991, pp. 35–43.

[18] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control—the single node case,” inProceedings of IEEE INFOCOM, Florence, Italy,
May 1992, pp. 915–924.

[19] L. Zhang, “Virtual clock: A new traffic control algorithm for packet switching net-
works,” in Proceedings of ACM SIGCOMM, Philadelphia, PA, September 1990, pp.
19–29.

[20] N. Figueira and J. Pasquale, “An upper bound on delay for the virtual clock ser-
vice discipline,” IEEE/ACM Transactions on Networking, vol. 3, no. 4, pp. 399–408,
August 1995.

[21] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE Transactions on Networking, vol. 4, no. 3, pp. 375–385, June 1996.

[22] A. Kumar and J. Kleinberg, “Fairness measures for resource allocation,” inProceed-
ings of the Symposium on Foundations of Computer Science, November 2000, pp.
75–78.

[23] S. Golestani, “A framing straregy for congestion management,”IEEE Journal on
Selected Areas in Communications, vol. 9, pp. 1064–1077, September 1991.

[24] S. J. Golestani, “A self-clocked fair queuing scheme for broadband applications,” in
Proceedings of IEEE INFOCOM, Toronto, Canada, June 1994, pp. 636–646.

[25] J. A. Cobb, M. G. Gouda, and A. El-Nahas, “Time-shift scheduling—fair scheduling
of flows in high-speed networks,”IEEE Transactions on Networking, vol. 6, no. 3,
pp. 274–285, June 1998.

[26] D. Stiliadis and A. Varma, “Efficient fair queuing algorithms for packet-switched
networks,”IEEE Transactions on Networking, vol. 6, no. 2, pp. 175–185, April 1998.

[27] J. C. R. Bennett and H. Zhang, “WF2Q : Worst-case fair weighted fair queueing,” in
Proceedings of IEEE INFOCOM, San Francisco, CA, March 1996, pp. 120–128.

132

[28] J. Nagle, “On packet switches with infinite storage,”IEEE Transactions on Commu-
nications, vol. 35, no. 4, April 1987.

[29] M. Shreedhar, “Efficient fair queuing using deficit round-robin,” M.S. thesis, Depart-
ment of Computer Science, Washington University, St. Louis, 1996.

[30] Hui Zhang, “Service disciplines for guaranteed performance service in packet-
switched networks,” inProceedings of the IEEE, October 1995, vol. 8, pp. 1374–
1396.

[31] M. Pirvu, L. Bhuyan, and N. Ni, “The impact of link arbitration on switch per-
formance,” inProceedings of the Fifth Symposium on High-Performance Computer
Architecture, Orlando, FL, January 1999.

[32] S. Keshav, “On the efficient implementation of fair queuing,”Journal of Internet-
working Research and Experience, vol. 2, no. 3, pp. 3–26, September 1990.

[33] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” in
Proceedings of ACM SIGCOMM, Boston, MA, September 1995.

[34] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet
networks,” IEEE Transactions on Networking, vol. 3, no. 4, pp. 365–386, August
1995.

[35] S. Floyd, “Notes on class-based-queueing and guaranteed service,”Unpublished
Notes: http://www.aciri.org/floyd/cbq.html, July 1995.

[36] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and scalable striping protocol,”
in Proceedings of ACM SIGCOMM, Palo Alto, CA, August 1996, pp. 131–141.

[37] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: A scheduling al-
gorithm for integrated services packet switching networks,”IEEE Transactions on
Networking, vol. 5, no. 5, pp. 690–704, October 1997.

[38] D. Stiliadis and A. Verma, “Latency-rate servers: A general model for analysis of
traffic scheduling algorithms,”IEEE Transactions on Networking, vol. 6, no. 3, pp.
611–624, October 1996.

[39] S. S. Kanhere and H. Sethu, “Prioritized elastic round robin: An efficient and low-
latency packet scheduler with improved fairness,”submitted to Computer Networks,
March 2003.

[40] S. S. Kanhere and H. Sethu, “Fair, efficient and low-latency packet scheduling using
nested deficit round robin,” inProceedings of the IEEE Workshop on High Perfor-
mance Switching and Routing, Dallas, TX, May 2001, pp. 6–10.

[41] H. Shi and H. Sethu, “An evaluation of timestamp-based packet schedulers using
a novel measure of instantaneous fairness,” inProceedings of IEEE International
Performance, Computing and Communications, Phoenix, AZ, April 2003.

133

[42] S. Tsao and Y. Lin, “Pre-order deficit round robin: a new scheduling algorithm
for packet-switched networks,”Computer Networks, vol. 35, no. 2-3, pp. 287–305,
February 2001.

[43] Y. Zhou and H. Sethu, “On the relationship between absolute and relative fairness
bounds,”IEEE Communication Letters, vol. 6, no. 1, pp. 37–39, January 2002.

[44] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area internet traffic patterns and
characteristics,”IEEE Network, vol. 11, no. 6, pp. 10–23, November/December 1997.

[45] I. Widjaja and A. I. Elwalid, “Performance issues in vc-merge capable switches for
multiprotocol label switching,”IEEE Journal on Selected Areas in Communications,
vol. 17, no. 6, pp. 1178–1189, June 1999.

[46] S. S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet scheduling using
elastic round robin,”IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 324–326, March 2002.

[47] S. S. Kanhere and H. Sethu, “Low-latency guaranteed-rate scheduling using elastic
round robin,” Computer Communication, vol. 25, no. 14, pp. 1315–1322, September
2002.

[48] A. K. Parekh, A Generalized Processor Sharing Approach to Flow Control in Inte-
grated Services Networks, Ph.D. thesis, Massachusetts Institute of Technology, Cam-
bridge, February 1992.

[49] D. Stiliadis, Traffic Scheduling in Packet-Switched Networks: Analysis, Design and
Implementation, Ph.D. thesis, University of California, Santa Cruz, 1996.

[50] F. A. Cowell,Measuring Inequalities: Techniques for the Social Sciences, John Wiley
and Sons, New York, NY, 1977.

[51] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applica-
tions, Academic Press, New York, NY, 1979.

[52] A. Kumar and J. Kleinberg, “Fairness measures for resource allocation,” inProceed-
ings of the Symposium on Foundations of Computer Science, November 2000, pp.
75–78.

[53] J. E. Stiglitz,Economics, W. W. Norton and Co, 1993.

[54] National Laboratory for Applied Network Research, “”Passive Measurement and
Analysis”,” http://pma.nlanr.net/PMA/ .

[55] S. S. Kanhere and H. Sethu, “On the latency bound of deficit round robin,” inProceed-
ings of the International Conference on Computer Communications and Networks,
Miami, FL, October 2002.

134

[56] S. S. Kanhere and H. Sethu, “On the latency bound of pre-order deficit round robin,”
in Proceedings of the IEEE Conference on Local Computer Networks, Tampa, FL,
November 2002.

[57] S. S. Kanhere and H. Sethu, “On the latency and fairness characteristics of pre-order
drr,” submitted to Computer Communications, January 2003.

[58] H. Adisheshu, G. Parulkar, and G. Varghese, “Reliable fifo load balancing over mul-
tiple fifo channels,” Tech. Rep., Washington University, 1995.

[59] S. S. Kanhere, A. B. Parekh, and H. Sethu, “Fair and efficient packet scheduling in
wormhole networks,” inProceedings of the International Parallel and Distributed
Processing Symposium, Cancun, Mexico, May 2000, pp. 623–632.

135

Appendix A. Latency Analysis of DRR and Pre-order DRR

In this appendix we present the latency analysis of the Deficit Round Robin (DRR) and

Pre-order DRR schedulers. DRR is one of the most popular frame-based fair scheduling

disciplines that is now employed in a number of real environments involving fair schedul-

ing, including Cisco routers and Microsoft’s Windows NT. It is shown in [49] that the DRR

scheduler belongs to the class ofLR servers. Stiliadis and Varma report an upper bound on

the latency of DRR [38], and its derivation is detailed in [49]. In this appendix, however,

we obtain a significantly lower value of the upper bound on the latency of DRR and show

that the DRR scheduler has better performance characteristics than previously believed.

We also show that our upper bound on the DRR latency is tight.

In [42], Tsao and Lin have proposed a new scheduling discipline called Pre-order

Deficit Round Robin (Pre-order DRR) which aims at overcoming the aforementioned draw-

backs. In Pre-order DRR a limited number of priority queues,p, are added to the DRR

scheduler. These queues reorder the transmission sequence of the packets in each DRR

round and thus eliminate the strict round-robin nature of service order. It is shown in [42]

that Pre-order DRR belongs to the general class of Latency-Rate (LR) servers [38] and

the authors derive an upper bound on its latency. In this appendix, we use a different,

unique, and novel approach to analytically re-derive the latency bound of Pre-order DRR

and we prove that our bound is a tight one. Our approach is based on interpreting the

Pre-order DRR bandwidth allocations as an instance of the Nested Deficit Round Robin

(Nested DRR) discipline discussed in [40]. Note that, a similar interpretation was used

for while evaluating the latency bound of the PERR scheduler in Section 5.1. The latency

bound of Pre-order DRR derived in this appendix is significantly lower than the bound

derived by Tsao and Lin, demonstrating that Pre-order DRR has even better performance

characteristics than previously argued by its own authors.

136

The rest of the appendix is organized as follows. Section A.1 presents a brief overview

of the DRR scheduler. In Section A.2 we present our analysis of the latency bound of

Pre-order DRR. Section A.3 presents a brief overview of the Pre-order DRR. Section A.4

discusses the interpretation of Pre-order DRR bandwidth allocations as an instance of al-

locations in Nested DRR. Finally, in Section A.5, we present our analysis of the latency

bound of Pre-order DRR.

A.1 Overview of DRR

In this section, we present a brief overview of the DRR scheduler, a detailed description

of which can be found in [21].

Let r be the transmission rate of the output link, the access to which is controlled by a

DRR scheduler. Assume that there are a total ofn flows multiplexed on this link. Letρi

be the reserved rate for flowi and letρmin be the minimum reserved rate among all then

flows. Since all thesen flows share the same output link,
∑n

i=1 ρi ≤ r. In order that the

flows receive service proportional to their reserved rates, each flowi is assigned a weight,

wi, given by,

wi =
ρi

ρmin

(A.1)

Note that, for any flowi, wi ≥ 1.

A flow is said to beactiveduring a certain time interval, if it always has packets awaiting

service during this interval. The DRR scheduler maintains a linked list of the active flows,

called theActiveList. At the start of an active period of a flow, the flow is added to the tail

of theActiveList. A round is defined as one round robin iteration during which the DRR

scheduler serves all the flows that are present in theActiveListat the outset of the round.

Each active flow is assigned aquantumby the DRR scheduler. The quantum allocated to a

flow is defined as the service that the flow should receive during each round robin service

opportunity. LetQi represent the quantum assigned to flowi and letQmin be the quantum

137

assigned to the flow with the lowest reserved rate. The quantum assigned to flowi, Qi is

given bywiQmin . Thus, the quanta assigned to the flows are in proportion of their reserved

rates. In order that the work complexity of the DRR scheduler is O(1), it is necessary that

Qmin should be greater than or equal to the size of the largest packet that may potentially

arrive during the execution of the scheduler. Note that, during some service opportunity, a

flow may not be able to transmit a packet because doing so would cause the flow to exceed

its allocated quantum. The scheduler maintains a per-flow state, thedeficit count, which

records the difference between the amount of data actually sent thus far, and the amount

that should have been sent. This deficit is added to the value of the quantum in the next

round, as the amount of data the scheduler should try to schedule in the next round. Thus,

a flow that received very little service in a certain round is given an opportunity to receive

more service in the next round.

A frame is defined as the sum of the quanta allocated to all the active flows in a DRR

round. LetF denote the size in bits of a DRR frame. The upper bound of the latency of

DRR is derived in [49] as(3F − 2φi)/r, wherer represents the transmission rate of the

output link. This, however, is a loose bound borne of the incorrect assumption that the

upper bound on the deficit count of a flow is equal to its quantum.

A.2 Latency Analysis of DRR

In this section we analyze the latency analysis of the DRR scheduler. Our approach is

similar to the approach employed in Section 3.4 in deriving the latency bound of ERR.

Theorem A.2.1 The DRR scheduler belongs to the class ofLR servers, with an upper

bound on the latencyΘi for flow i given by,

Θi ≤ 1

r

(
(W − wi)Qmin + (m− 1)

(
W

wi

+ n− 2

))
(A.2)

wheren is the total number of active flows,W is the sum of the weights of all the flows and

r is the transmission rate of the output link.

138

Proof: Since the latency of anLR server can be estimated based on its behavior in

the flow active period, we will prove the theorem by showing that,

Θ′
i ≤

1

r

(
(W − wi)Qmin + (m− 1)

(
W

wi

+ n− 2

))

Let flow i become active at time instantτi. For deriving an upper bound on the latency

of DRR we consider a time interval(τi, t) during which flowi is continuously active. Then

we obtain the lower bound on the total service received by flowi during the time interval

under consideration. Lastly we express the lower bound in the form of Equation (3.10) to

derive the latency bound. In Section 3.4, it has been proved that for deriving a tight upper

bound on the latency of the ERR scheduling discipline, we must consider an active period

(τi, t) such thatτi coincides with the beginning of the service opportunity of a flow andt

belongs to the set of time instants at which the scheduler begins serving flowi. It can be

t 1t 0
t 2 t k t k+1

Flow i
becomes active

τ i

 Round k0 Round k + 10 Round k + k0

τ i
kτ i

1

time

time interval
under consideration

i u21u u21 ni1 2 n

Figure A.1: An illustration of the time interval under consideration for the analysis of the
latency bound of DRR

easily verified that these conditions are applicable in the analysis of the latency bound of

all round robin schedulers including DRR. Letτ k
i be the time instant marking the start of

thek-th service opportunity of flowi. From the above, to determine a tight upper bound

on the latency of the DRR scheduler we need to only consider time intervals(τi, τ
k
i) for

139

all k. Figure A.1 illustrates the time interval under consideration for a givenk. Note that,

the time instantτi may or may not coincide with the end of a round and the start of the

subsequent round. Letk0 be the round which is in progress at time instantτi or which ends

exactly at time instantτi. Let the time instantth mark the end of round(k0 + h − 1) and

the start of the subsequent round.

Let Sent i(s) represent the total data transmitted from flowi in thes-th round of service

of the DRR scheduler. Also letDCi(s) represent the deficit count of flowi following its

service in rounds. It has been proved in [21] that for any flowi in any rounds,

0 ≤ DCi(s) ≤ m− 1 (A.3)

Sent i(s) = wiQmin + DCi(s− 1)−DCi(s) (A.4)

Note that, while analyzing the latency bound of the DRR scheduler in [49], it has been

assumed that the upper bound onDCi(s) is Qi. It is easily verified that this assumption

will be true only if Qi = M = m. In all other situations, the upper bound on the deficit

count as specified by Equation (A.3) is a much tighter bound.

As illustrated in Figure A.1, assume that the time instant when flowi becomes active

coincides with the time instant when some flowu is about to start its service opportunity

during thek0-th round. LetGa denote the set of flows which receive service during the

time interval(τi, t1), i.e., after flow i becomes active. Similarly, letGb denote the set of

flows which are served by the DRR scheduler during the time interval(t0, τi), i.e.,before

flow i becomes active. Note that, flowi is not included in either of these two sets since

flow i will receive its first service opportunity only in the(k0 + 1)-th round. If the time

instantτi coincides with the time instantt1, which marks the end of thek0-th round and the

start of the(k0 + 1)-th round, then the setGa will be empty and all then− 1 flows will be

included in the setGb. Note that, in this case, flowi will be the last to receive service in the

(k0 + 1)-th round and all subsequent rounds during the time interval under consideration.

140

The first step towards analyzing the latency bound involves obtaining an upper bound

on the size of the time interval(τi, τ
k
i). This time interval can be split into the following

three sub-intervals:

1. (τi, t1): This sub-interval includes the part of thek0-th round during which all the

flows belonging to the setGa will be served by the DRR scheduler. Summing Equation

(A.4) over all these flows,

t1 − τi =
1

r

∑
j∈Ga

{wjQmin + DCj(k0 − 1)−DCj(k0)} (A.5)

2. (t1, tk): This sub-interval includesk − 1 rounds of execution of the DRR scheduler

starting at round(k0 +1). Consider the time interval (th, th+1) when round(k0 +h) is

in progress. Summing Equation (A.4) over alln flows and sinceW is the sum of the

weights of all then flows, we have,

th+1 − th =
W

r
Qmin +

1

r

n∑
j=1

{DCj(k0 + h− 1)−DCj(k0 + h)}

Summing the above over(k − 1) rounds beginning with roundk0 + 1,

tk − t1 =
W

r
(k − 1)Qmin +

1

r

n∑
j=1

{DCj(k0)−DCj(k0 + k − 1)} (A.6)

3. (tk, τ
k
i): This sub-interval includes the part of the(k0 + k)-th round during which all

the flows belonging to the setGb will be served by the DRR scheduler. Summing

Equation (A.4) over all these flows,

τ k
i − tk =

1

r

∑
j∈Gb

{wjQmin + DCj(k0 + k − 1)−DCj(k0 + k)} (A.7)

141

Combining Equations (A.5), (A.6) and (A.7) and sinceW is the sum of the weights of all

then flows, we have,

τ k
i − τi =

W

r
(k − 1)Qmin +

(
W − wi

r

)
Qmin

+
1

r

∑
j∈Ga

(DCj(k0 − 1)−DCj(k0 + k − 1))

+
1

r

∑
j∈Gb

(DCj(k0)−DCj(k0 + k))

+
1

r
(DCi(k0)−DCi(k0 + k − 1)) (A.8)

Now since flowi becomes active during roundk0, its deficit count at the end of thek0-th

round,DCi(k0) is equal to zero. Using this fact and the bounds on the deficit count from

Equation (A.3) in Equation (A.8), we have,

τ k
i − τi ≤ W

r
(k − 1)Qmin +

(
W − wi

r

)
Qmin

+
(n− 1)(m− 1)

r
− 1

r
DCi(k0 + k − 1)

Solving for(k − 1),

(k − 1) ≥ r

WQmin

(τ k
i − τi)− W − wi

W
− 1

WQmin

(n− 1)(m− 1)

+
1

WQmin

DCi(k0 + k − 1) (A.9)

Note that, during the time interval under consideration,(τi, τ
k
i), flow i receives service in

(k − 1) rounds starting at round(k0 + 1). Hence, using Equation (A.4) over these(k − 1)

rounds of service for flowi, and since the deficit count of a newly active flow is 0, we get,

Sent i(τi, τ
k
i) = wi(k − 1)Qmin −DCi(k0 + k − 1) (A.10)

Using Equation (A.9) to substitute for (k − 1) in Equation (A.10), we get,

Sent i(τi, τ
k
i) ≥ wir

W
(τ k

i − τi)− wi

W
(W − wi)Qmin − wi

W
(n− 1)(m− 1)

+
wi

W
DCi(k0 + k − 1)−DCi(k0 + k − 1) (A.11)

142

Simplifying the above, we have,

Sent i(τi, τ
k
i) ≥ wir

W

(
τ k
i − τi − 1

r
(W − wi)Qmin − 1

r
(n− 1)(m− 1)

− DCi(k0 + k − 1)

r

(
W − wi

wi

))
(A.12)

Using Equation (A.8) it can be easily verified that,

τ k
i − τi >

1

r
(W − wi)Qmin +

1

r
(n− 1)(m− 1)

+
DCi(k0 + k − 1)

r

(
W − wi

wi

)
(A.13)

Now, since the reserved rates are proportional to the weights assigned to the flows as given

by Equation (A.1), and since the sum of the reserved rates is no more than the link rater,

we have,

ρi ≤ wi

W
r (A.14)

Substituting forwir
W

from Equation (A.14) in Equation (A.12) and using Equation (A.13)

we have,

Sent i(τi, τ
k
i) ≥ ρi(τ

k
i − τi)− ρi

r
(W − wi)(Qmin)

− ρi

r
(n− 1)(m− 1)

− ρi

r

(
W − wi

wi

)
DCi(k0 + k − 1) (A.15)

Comparing the above equation with Equation (3.10), the latency bound of the DRR sched-

uler is given by,

Θi ≤
(

W − wi

r

)
Qmin +

1

r
(n− 1)(m− 1)

+
1

r

(
W − wi

wi

)
DCi(k0 + k − 1) (A.16)

From the above equation it is readily seen that the latency reaches the upper bound if the

deficit count,DCi(k0+k−1) is equal to its upper bound(m−1) as given by Equation (A.3).

143

i min
w Q − (m−1)

WQ min
r

WQ − (m−1)
min

r

1

r

1

r

i min
w Q − (m−1)

ρ
i

τ i τ i
1 τ i

2

Service
received
by flow i

 time

i

Y

θ+ i

1

ρ
iw Qmin

i

X
θ

iτ

Figure A.2: Plot of the service received by flowi with DRR

Substituting this in Equation (A.16), we get,

Θi ≤ 1

r

{
(W − wi)Qmin + (m− 1)

(
W

wi

+ n− 2

) }
(A.17)

As discussed earlier, flowi will experience its worst latency during an interval(τi, τ
k
i)

for somek. Therefore, from Equation (A.17), the statement of the theorem is proved.

We now proceed to show that the latency bound given by the above is tight by illus-

trating a case when the bound is actually achieved. Assume that flowi becomes busy at a

certain time instantτi, which also coincides with the start of a certain round(k0 +1). Since

the other flows in theActiveListwill be served first, flowi becomes backlogged instantly

andτi is also the start of its active period. Assume that for any time instantt, t ≥ τi, a

total of n flows, including flowi, are active. LetF represent the set of alln flows. Also,

assume that the summation of the reserved rates of all then flows equals the output link

transmission rate,r. Hence,ρi = wi

W
r. Since flowi became active at timeτi, its deficit

count at the start of round(k0 + 1) is 0. Let the deficit count of all the other flows at the

144

start of round(k0 + 1) be equal to (m-1). From Equations (A.3) and (A.4), a flowj can

transmit a maximum ofwjQmin + (m − 1) bits during a round robin service opportunity.

In the worst case, before flowi is served by the DRR scheduler, each of the other(n − 1)

flows will receive this maximum service. Hence, the cumulative delay until flowi receives

service,X, is given by,

X =
(
∑

j∈F
j 6=i

wj)(Qmin) + (n− 1)(m− 1)

r

=
(W − wi)(Qmin) + (n− 1)(m− 1)

r
(A.18)

Even though X represents the time for which flowi has to wait until its first packet is

scheduled, Equation (3.10) does not hold true whenX is substituted asΘi. This is because

in the time interval(τi, τi + X) flow i has not yet started receiving service at its guaranteed

rate. We assume that the latency,Θi is given by,

Θi = X + Y (A.19)

A plot of the service received by flowi against time is illustrated in Figure A.2. Assume

that the total service received by flowi during its first service opportunity iswiQmin −
(m− 1). Note that, from Equations (A.3) and (A.4), this equals the minimum service that

flow i can receive during any service opportunity. At the end of the(k0 + 1)-th round,

the deficit count for flowi is (m − 1) whereas the deficit count for all the other flows is

zero. In the worst case, during the(k0 + 2)-th round, each flowj from amongst the other

(n − 1) flows will transmit a maximum ofwjQmin bits before flowi receives its second

service opportunity. During this service opportunity, flowi will be able to transmit at-

least a minimum ofwiQmin bits, and will thus start receiving service at its guaranteed rate.

Referring to Figure A.2, we have,

Y +
wiQmin

ρi

− m− 1

ρi

=
WQmin

r
− m− 1

r

145

Now sinceρi = wi

W
r, simplifying further, we have,

Y =
(m− 1)

r

(
W − wi

wi

)
(A.20)

Substituting forX andY from Equations (A.18) and (A.20) in Equation (A.19), it can be

easily verified that the latency bound is exactly met.

A.3 Overview of Pre-Order DRR

However, note that DRR is a frame-based scheduler and hence suffers from all of its

associated problems as discussed in Chapter 4. In [42], Tsao and Lin have proposed a new

scheduling discipline called Pre-order DRR which aims to eliminate the above weaknesses

of the DRR scheduler while trying to preserve its good properties such as its low work

complexity. The assignment of the weights and the quanta in Pre-order DRR are identical to

those in DRR. In fact, the Pre-order DRR scheduler also works in rounds. However, unlike

the DRR scheduler which serves the active flows in a round robin fashion, the Pre-order

DRR scheduler reorders the transmission sequence of the packets within each DRR round.

In this section, we present a brief overview of the Pre-order DRR scheduling discipline. A

significantly more detailed treatment may be found in [42].

Let us assume that a total ofy packets are transmitted from flowi in the s-th round

of service. The packets are labeled as 1, 2,. . . y indicating their position in the stream of

packets that are scheduled from flowi in rounds. Note that,y represents the last packet that

is served in rounds from flow i. As in DRR, the deficit count serves as a measure of past

unfairness. LetDCm
i (s) represent the deficit count of flowi following the transmission of

them-th packet of thes-th round.

Definition A.3.1 Define theQuantum Availability, denoted byQAm
i (s), of flowi after the

transmission of them-th packet from flowi in rounds as follows:

QAm
i (s) =

DCm
i (s)

Qi

(A.21)

146

TheQuantum Availabilityof a flow keeps track of the unused quantum of the flow in the

current round.

In Pre-order DRR a priority queue module consisting ofp queues and aclassifiermod-

ule are appended to the original DRR architecture. LetPQ1, PQ2, . . . , PQp represent the

priority queues in the descending order of priority withPQ1 as the highest priority queue

andPQp denoting the lowest priority queue. Just as in DRR, the Pre-order DRR maintains

a linked list of active flows called theActiveList. However, the flows in theActiveListare

not served in a round robin manner as in DRR. This is a list of the active flows that have

already received their fair share of service in the current round. These flows are, however,

eligible for receiving service in the subsequent round. At the start of a round, theClassi-

fier module classifies the packets that will be served in the current round from each flow

present in theActiveListaccording to itsQuantum Availabilityinto thep priority queues.

In general, the priority queue,zm
i (s) into which them-th packet served from flowi in the

s-th round is added is calculated as follows,

zm
i (s) = p− bQAm

i (s)× pc (A.22)

Once all the packets that can be scheduled in the current round from flowi have been

transferred from the flow buffers into the priority queues, if flowi is still active, it is added

to the tail of theActiveList.

When the scheduler is ready to transmit, it begins serving the packet at the head of the

highest non-empty priority queue. Note that, if a packet is added to a priority queue that has

a higher priority than the queue from which the scheduler is currently serving a packet, then

following the current transmission, the scheduler will first serve the packet added into the

higher priority queue. The round in progress ends when all the priority queues are empty. It

has been proved in [42] that Pre-order DRR has a low worst-case work complexity ofO(1)

with respect to the number of flows andO(log p) with respect to the number of priority

queues.

147

A.4 The Nested DRR Interpretation

In this section we present the interpretation of PERR bandwidth allocations as an in-

stance of allocations in the Nested-DRR scheduler. Note that, a similar approach was

adopted in Section 5.1 while analyzing the latency bound on the PERR scheduling disci-

pline.

The primary goal of the Pre-order DRR scheduler is to break the quantum allocated

to a flow in a DRR round into several pieces so that it can be utilized in pieces over the

course of the round. The Nested DRR scheduler proposed in [40] tries to eliminate the

drawbacks of the DRR scheduler by creating a set of multiple rounds inside each DRR

round and executes a modified version of the DRR algorithm within each of these inner

rounds. The Nested DRR scheduler tries to serveQmin worth of data from each flow during

each inner round. During an outer round, a flow is considered to be eligible for service in

as many inner rounds as are required by the scheduler to exhaust its quantum. This results

in a significantly lower latency bound, while preserving theO(1) work complexity and the

fairness characteristics of DRR. We can hypothetically interpret the operation of the Pre-

order DRR scheduler as anestedversion of DRR similar to Nested DRR. This interpretation

is useful in analyzing the latency bound of the Pre-order DRR scheduler. Each round in

DRR can be referred to as anouter round. The time period during which the Pre-order

DRR scheduler serves the flows present in the priority queuePQu during thes-th outer

round is referred to asinner round(s, u). Thus, each outer round can be split into as many

inner rounds as the number of priority queues,p. Since the Pre-order DRR scheduler visits

the priority queues in a descending order of priority starting at priority queuePQ1 and

ending with queuePQp, the first and last inner rounds in outer rounds are(s, 1) and(s, p)

respectively.

The quantum assigned to each flow is divided equally among thep priority queues.

Thus, the quantum allocated to flowi in each of its inner rounds is equal toQi

p
. Let

148

Served i(s, u) represent the total data scheduled from flowi in inner round(s, u). Also

let DCi(s, u) denote the deficit round of flowi at the end of the(s, u)-th inner round. Note

that, the deficit count of a flow at the end of the last inner round of an outer round is the

same as its deficit count at the end of the corresponding round in DRR. Also, this deficit

count is carried over to the first inner round of the subsequent outer round. Hence,

DCi(s, p) = DCi(s) = DCi(s + 1, 0)

Note that,DCi(s + 1, 0) is used to represent the deficit count of flowi at the start of the

inner round(s + 1, 1). As in DRR, the deficit count is calculated as follows,

DCi(s, u) =
Qi

p
+ DCi(s, u− 1)− Served i(s, u) (A.23)

It can be easily proved that Equation (A.3) which represents the bounds on the deficit count,

DCi(s), also holds true forDCi(s, u). Hence, for any flowi and inner round(s, u),

0 ≤ DCi(s, u) ≤ m− 1 (A.24)

In DRR, since the quantum of each flow is greater than or equal to the size of the largest

packet that may potentially arrive during its execution, the scheduler is guaranteed to serve

at least one packet from each of the active flows in each round. However, in Pre-order DRR,

it may be possible that the sum ofQi

p
andDCi(s, u − 1) is less than the size of the packet

at the head of flowi. In this case, flowi will not receive any service in inner round(s, u).

Thus, a flow need not necessarily receive service in each inner round. If the Pre-order DRR

scheduler was serving flows in an exact round robin manner as in Nested DRR then, in the

worst-case, it may be possible that none of the active flows will be able to transmit a packet

in an inner round resulting in a work complexity ofO(n) or greater, wheren represents the

total number of active flows. TheClassifiermodule in the Pre-order DRR scheduler avoids

this large work complexity by classifying the packets into thep priority queues at the start

of each outer round. This classification determines which inner rounds each flow will be

served in and the scheduler does not need to query all the flows in a round robin order.

149

Note that, the deficit count of a flow is updated at the end of each inner round using

Equation (A.23) irrespective of whether it receives service in that inner round. From Equa-

tion (A.23), the service received by flowi in inner round(s, u) is,

Served i(s, u) =
Qi

p
+ DCi(s, u− 1)−DCi(s, u) (A.25)

Definition A.4.1 Let Sent i(s, u) represent the total service received by flowi since the

start of thes-th outer round until the time instant when the scheduler finishes serving the

packets in the priority queuePQu.

Sent i(s, u) is computed as follows:

Sent i(s, u) =
w=u∑
w=1

Servedi(s, w)

Substituting forServed i(s, w) from Equation (A.25) in the above, we have,

Sent i(s, u) = (
u

p
)Qi + DCi(s− 1)−DCi(s, u) (A.26)

Sent i(s, u) will be positive only if the the sum of(u
p
)Qi andDCi(s − 1) is greater than

or equal to the size of the packet at the head of flowi. If this condition is not satisfied

then it implies that flowi has not received any service in the firstu inner rounds. However,

each flow is guaranteed to receive service during at least one inner round within each outer

round.

Definition A.4.2 DefineSent i(s) as the total service received by flowi in outer rounds.

Note that,Sent i(s) is equal toSent i(s, p). Therefore, substitutingu = p in Equation

(A.26), we get,

Sent i(s) = Qi + DCi(s− 1)−DCi(s) (A.27)

150

A.5 Latency Analysis of Pre-Order DRR

In this section we analyze the latency analysis of the DRR scheduler and also prove

that it belongs to the general class ofLR-servers. Our approach is similar to the approach

employed in Section 3.4 in deriving the latency bound of PERR.

Theorem A.5.1 The Pre-order DRR scheduler belongs to the class ofLR servers, with an

upper bound on the latencyΘi for flow i given by,

Θi ≤ 1

r

{
(W − wi)Qmin

p
+ (m− 1)

(
W

wi

+ n− 2

) }
(A.28)

wheren is the total number of active flows,p represents the number of priority queues,W

is the sum of the weights of all the flows andr denotes the transmission rate of the output

link.

Proof: Since the latency of anLR server can be estimated based on its behavior in

the flow active periods, we will prove the theorem by showing that,

Θ′
i ≤

1

r

{
(W − wi)Qmin

p
+ (m− 1)

(
W

wi

+ n− 2

)}

Let τi be the time instant when flowi becomes active. To prove the statement of the theorem

we must consider an active period(τi, t) of flow i. We then obtain the lower bound on the

total service received by flowi during the time interval under consideration. Lastly, we

express the lower bound in the form of Equation (3.10) to derive the latency bound.

In [47] and Section 3.4 it has been proved that to obtain a tight upper bound on the

latency of the Elastic Round Robin scheduler [46, 59], we need to consider only those

active periods(τi, t) which satisfy the following two requirements:

1. τi coincides with the start of a service opportunity of some flow.

2. Time instantt belongs to a subset of all possible time instants at which the scheduler

begins serving flowi.

151

It can be easily verified that these two conditions are applicable for proving the upper bound

on the latency of the Pre-order DRR scheduler. Letτ
(e,f)
i be the time instant marking the

start of the service of flowi when flowi is at the head of priority queuePQf in rounde. In

other words, this time instant represents the start of the service opportunity of flowi in inner

round(e, f). Note that,τ (e,f)
i belongs to the set of time instants when the scheduler begins

serving flowi. Therefore, in order to determine the latency bound of the Pre-order DRR

we need to only consider time intervals(τi, τ
(e,f)
i) for all (e, f) in which flow i receives

service.

The first step towards analyzing the latency bound involves choosing a suitable time

interval (τi, τ
(e,f)
i) such that the size of this time interval is the maximum possible. Note

that, the time instantτi may or may not coincide with the start of a new outer round. Let

k0 be the outer round which is in progress at time instantτi or which starts exactly at time

instantτi. In either case, flowi will receive an opportunity to transmitQi worth of data in

thek0-th round. Let the time instantth mark the start of the outer round(k0 +h). Consider

the case whenτi does not coincide with the time instantt0, the start of outer roundk0,

i.e., τi > t0. In this case, the time interval(t0, τi) will be excluded from the time interval

under consideration. On the other hand, whenτi coincides witht0, the size of the time

interval(τi, τ
(e,f)
i) is maximal. We, therefore, assume that theτi coincides with the start of

thek0-th outer round. Figure A.3 illustrates the time interval under consideration assuming

that(e, f) is equal to(k0 + k, v). Note that, in Figure A.3,OR(a) represents thea-th outer

round andIR(a, b) denotes the inner round(a, b) in the execution of the Pre-order DRR

scheduler.

The time interval under consideration,(τi, τ
(k0+k,v)
i), can be split into two sub-intervals:

1. (τi, tk): This sub-interval includesk outer rounds of execution of the Pre-order DRR

scheduler starting at outer roundk0. Consider the time interval (th, th+1) when outer

152

time

t 0
t 1

0

t k t k+1

i

becomes active
Flow i

time interval
under consideration

OR(k + k)0

i

0

0

0

 OR(k)

0

g1

0

2ihg jj j j21ji 2 i1

IR(k +1, 1)

τ

IR(k +k, v)

τ

IR(k +k, 1)IR(k , 1)

0

 IR(k , 2)

(k +k,v)

Figure A.3: An illustration of the time interval under consideration for the analysis of the
latency bound of Pre-order DRR

round(k0 + h) is in progress. Summing Equation (A.27) over alln flows,

th+1 − th =
W

r
Qmin +

1

r

n∑
j=1

{DCj(k0 + h− 1)−DCj(k0 + h)} (A.29)

Summing the above overk rounds beginning with roundk0,

tk − τi =
W

r
(kQmin) +

1

r

n∑
j=1

{DCj(k0 − 1)−DCj(k0 + k − 1)} (A.30)

2. (tk, τ
(k0+k,v)
i): This sub-interval includes the part of the(k0 + k)-th round prior to

the start of the service of flowi when it is at the head of priority queuePQv. In the

worst-case, flowi will be the last flow to receive service among all the flows which

may be present in priority queuePQv. In this case, during the sub-interval under

consideration, the service received by flowi equalsSent i(k0 + k, v − 1) whereas the

service received by each flowj among the other(n − 1) flows equalsSent j(k0 +

k, v). Note that, ifv equals1 then flowi does not receive service in this sub-interval.

SummingSent i(k0 +k, v− 1) andSent j(k0 +k, v) for each flowj such that1 ≤ j ≤

153

n, j 6= i and using Equation (A.26), we have,

τ
(k0+k,v)
i − tk =

1

r

n∑
j=1
j 6=i

(
v

p
)wjQmin +

1

r
(
v − 1

p
)wiQmin

+
1

r

n∑
j=1
j 6=i

(DCj(k0 + k − 1)−DCj(k0 + k, v))

+
1

r
(DCi(k0 + k − 1)−DCi(k0 + k, v − 1)) (A.31)

Combining Equations (A.30) and (A.31), we have,

τ
(k0+k,v)
i − τi =

W

r
(kQmin) +

1

r

n∑
j=1
j 6=i

(
v

p
)wjQmin +

1

r
(
v − 1

p
)wiQmin

+
1

r

n∑
j=1
j 6=i

(DCj(k0 − 1)−DCj(k0 + k, v))

+
1

r
(DCi(k0 − 1)−DCi(k0 + k, v − 1)) (A.32)

Now since flowi becomes active at the start of outer roundk0, its deficit count at the start

of thek0-th outer round,DCi(k0 − 1) is equal to zero. Using this fact and the bounds on

the deficit count from Equations (A.3) and (A.24) in Equation (A.32), we have,

τ
(k0+k,v)
i − τi ≤ W

r
(kQmin) +

1

r

n∑
j=1
j 6=i

(
v

p
)wjQmin +

1

r
(
v − 1

p
)wiQmin

+
(n− 1)(m− 1)

r
− 1

r
DCi(k0 + k, v − 1)

Solving fork,

k ≥ (τ
(k0+k,v)
i − τi)

r

WQmin

− r

W

n∑
j=1
j 6=i

(
v

p
)wj − r

W
(
v − 1

p
)wi

− 1

WQmin

(n− 1)(m− 1) +
1

WQmin

DCi(k0 + k, v − 1) (A.33)

Note that, the total data transmitted by flowi during the time interval under consideration

can be expressed as the following summation.

Sent i(τi, τ
(k,v)
i) = Sent i(τi, tk) + Sent i(tk, τ

(k,v)
i) (A.34)

154

As explained earlier,Sent i(tk, τ
(k,v)
i) is the same asSent i(k, v − 1). Sent i(τi, tk) can

be obtained by summing Equation (A.27) overk outer rounds starting at outer roundk0.

Substituting the result of this summation and Equation (A.26) in Equation (A.34) and using

the fact that the deficit count of a newly active flow is equal to zero, we have,

Sent i(τi, τ
(k0+k,v)
i) = wi(kQmin) + (

v − 1

p
)wiQmin −DCi(k0 + k, v − 1) (A.35)

Using Equation (A.33) to substitute fork in Equation (A.35), we get,

Sent i(τi, τ
(k0+k,v)
i) ≥ wir

W
(τ

(k0+k,v)
i − τi)− wi

W
(
v

p
)(W − wi)Qmin

− wi

W
(
v − 1

p
)wiQmin − wi

W
(n− 1)(m− 1)

+
wi

W
DCi(k0 + k, v − 1) + (

v − 1

p
)wiQmin

− DCi(k0 + k, v − 1)

Simplifying the above we get,

Sent i(τi, τ
(k0+k,v)
i) ≥ wir

W

(
τ

(k0+k,v)
i − τi − 1

r
(
v

p
)(W − wi)Qmin

− 1

r
(
v − 1

p
)(W − wi)Qmin − 1

r
(n− 1)(m− 1)

−1

r
DCi(k0 + k, v − 1)

(
W

wi

− 1

))
(A.36)

Using Equation (A.32) it can be easily verified that,

τ
(k0+k,v)
i − τi >

1

r
(
v

p
)(W − wi)Qmin

+
1

r
(
v − 1

p
)(W − wi)Qmin +

1

r
(n− 1)(m− 1)

−1

r
DCi(k0 + k, v − 1)

(
W

wi

− 1

)
(A.37)

Now, since the reserved rates are proportional to the weights assigned to the flows as

given by Equation (A.1), and since the sum of the reserved rates is no more than the link

rater, we have,

ρi ≤ wi

W
r (A.38)

155

Substituting forwir
W

from Equation (A.38) in Equation (A.36) and using Equation (A.37),

we have,

Sent i(τi, τ
(k0+k,v)
i) ≥ ρi(τ

(k0+k,v)
i − τi)− ρi

r

(
W − wi

p

)
Qmin − ρi

r
(n− 1)(m− 1)

− ρi

r
DCi(k0 + k, v − 1)

(
W

wi

− 1

)
(A.39)

Comparing the above equation with Equation (3.10), the latency bound of the Pre-order

DRR scheduler is given by,

Θi ≤ 1

r

(
W − wi

p

)
Qmin +

1

r
(n− 1)(m− 1)

+
DCi(k0 + k, v − 1)

r

(
W

wi

− 1

)
(A.40)

From the above equation it is readily seen that the latency reaches the upper bound if

the deficit countDCi(k0 + k, v − 1) is equal to its upper bound(m − 1) as given by

Equation (A.24). Substituting this in Equation (A.40), we get,

Θi ≤ 1

r

{
W − wi

p
Qmin + (m− 1)

(
W

wi

+ n− 2

)}
(A.41)

As discussed earlier in Section 3.4, flowi will experience its worst latency during an

interval(τi, τ
(k0+k,v)
i) for some inner round(k0 + k, v). Therefore, from Equation (A.41),

the statement of the theorem is proved.

We now proceed to show that the above latency bound is tight by illustrating a case

when the bound is actually achieved. LetF represent the set of alln flows. Assume that

flow i becomes active at a certain time instantτi which also coincides with the start of

certain outer roundk0. Since the arrival of a packet into the empty buffer of a flow signals

the start of a busy period of the flow,τi is also the start of its busy period. Assume that for

any time instantt, t > τi, a total ofn flows, including flowi, are active. Also, assume that

the summation of the reserved rates of all then flows is equal to the transmission rate of

the output link,r. Therefore, we have,ρi = wi

W
r. Since flowi became active at timeτi, its

deficit count at the start of outer roundk0 is 0. Let the deficit count of all the other(n− 1)

156

flows be equal to the maximum value of(m− 1). Using Equations (A.24) and (A.25), it is

seen that the maximum service received by a flowj during an inner round,Smax
j is given

by,

Smax
j =

wiQmin

p
+ (m− 1) (A.42)

On a similar note, the minimum service received by flowj during an inner round,Smin
j ,

provided it is present in the priority queue being served, is given by,

Smin
j =

wiQmin

p
− (m− 1) (A.43)

S
max
1 S

max
1

S
max
2

S
max
2S

max
n−1

PQ1

S
min
i

PQ2

S
min
i

S
max
n−1

.

.

.

PQ3

.

.

.
p

w Q
min

p

w Q
min

p

p

p p

1

2

n−1

. . .

i

. . .

Flows

(a)

(b)

i

i

w Q
1 min

2
w Q

min

n−1
p

w Q
min

n−1
p

2w Q
min min

w Q
1

w Q
min

Figure A.4: (a) Input pattern (b) Packet classification in the priority queues

Figure A.4(a) illustrates a part of the input traffic present in the queues of then flows at

the start of outer roundk0. Figure A.4(b) shows how theClassifiermodule of the Pre-order

DRR scheduler classifies these packets into the priority queues using Equation (A.22).

From Figure A.4(b) it can be seen that, except for flowi, all the other(n − 1) flows have

packets classified into the highest priority queuePQ1. Prior to the service of the first packet

157

of flow i, each flowj, j ∈ F, j 6= i, transmitsSmax
j worth of data. Hence, the cumulative

delay until flowi receives service,X, is given by,

X =
∑
j∈F
j 6=i

Smax
j

r

Substituting forSmax
j from Equation (A.42), we have,

X =
1

r

(
(W − wi)Qmin

p
+ (n− 1)(m− 1)

)
(A.44)

Also the total flowi data that is served fromPQ2 equalsSmin
i .

Even thoughX represents the time for which flowi has to wait until it starts receiving

service, Equation (3.10) does not hold true if we substituteX asΘi. This is because in time

interval(τi, τi + X) flow i has not yet started receiving at its guaranteed rate. We assume

that the latency,Θi is given by,

Θi = X + Y (A.45)

A plot of the service received by flowi against time is illustrated in Figure A.5. In order

to determine the value ofY we shall consider the time interval(τi, τ
(k0,2)
i) which satisfies

the aforementioned requirements for deriving a tight upper bound on the latency. Referring

to Figure A.5, we have,

Y +
Smin

i

ρi

=
1

r

∑
j∈F
j 6=i

wjQmin +
Smin

i

r

Substituting forSmin
i from Equation (A.43), we have,

Y +

wiQmin

p

ρi

− m− 1

ρi

=

WQmin

p

r
− m− 1

r

Now, sinceρi = wi

W
r, simplifying further, we have,

Y =
(m− 1)

r

(
W

wi

− 1

)
(A.46)

Substituting forX andY from Equations (A.44) and (A.46) in Equation (A.45), it can be

readily verified that the latency bound is exactly met.

158

1

r

1

r

iSmin

iSmin

ρ
i

1

ρ
i

τ i

(k ,2)0τ i

(k ,1)0τ i

w Q i min

Service
received
by flow i

 time
Y

θ+ i

i

X
θ

iτ

p

r

(W−w)Q

p + S
min
i

i min

Figure A.5: Plot of the service received by flowi with Pre-order DRR

159

Vita

Salil Subhash Kanhere was born in Bombay, India and is a citizen of India. He gradu-

ated from VJTI (Bombay, India) in 1998 with a bachelor’s degree in electrical engineering.

Subsequently, he joined the Department of ECE as a graduate student and in 1999, became

a member of the Computer Communications Laboratory. He is currently pursuing a PhD

in electrical engineering and expects to graduate in June of 2003. Salil’s current research

interests are in quality of service in computer networks, interconnection networks of paral-

lel and distributed systems, switch and router design, mobile computing and systems, and

computer architecture. His PhD dissertation is in the area of fair, efficient, and low-latency

scheduling in high-speed networks with a particular focus on achieving low implemen-

tation complexity for practical use in switches and routers. During his years at Drexel,

Salil has served as a teaching assistant in physics as well as several computer engineering

courses. Salil was a recepient of the Teaching Assitance Excellence Award in 1999 and a

Special Recognition in Teaching Assistance Award in 2001. He also received the Graduate

Student Research Award from the College of Engineering and the Allen Rothworf Out-

standing Graduate Student of the Year Award from the ECE Department, both in 2003. He

has submitted six journal papers (of which two have already been published) and authored

six conference papers.

