Design and Analysis of Fair, Efficient and Low-Latency Schedulers for

High-Speed Packet-Switched Networks

A Thesis
Submitted to the Faculty
of
Drexel University
by
Salil S. Kanhere
in partial fulfillment of the
requirements for the degree
of
Doctor of Philosophy
May 2003

Dedications

This thesis is dedicated to my wife Alpa and my family.

Acknowledgements

Several people supported my efforts during my graduate years and | would like to thank
them. First of all, | must point out the invaluable help of my advisor, Dr. Harish Sethu.
This dissertation would not have been possible without his encouragement and valuable
guidance. | feel fortunate that | had a chance to work with such an excellent mentor, and |
would like to express my gratitude to him. Special thanks to him for giving so much time
and attention to my dissertation and helping me with the documentation and presentation.

| would also like to thank Dr. Constantine Katsinis, Dr. Oleh Tretiak, Dr. Lazar
Trachtenberg and Dr. Lloyd Greenwald for serving on my committee.

Special thanks to Yunkai Zhou for helping me with the formatting of the dissertation.
| would also like to thank Hongyuan Shi for her help in the simulation efforts using the
Gini index. And of course all the others in the Computer Communications Lab : Madhu,
Hapreet and Adam for their help and advice.

Last but not least, | would like to thank my family for their constant support and guid-
ance and Alpa for her love and support.

Once again, thanks Dr. Sethu for all the help and time that you have given us and for

making these five years at Drexel memorable.

Table of Contents

Listof Tables Vi
Listof Figures e viii
Abstract Xi
Chapter 1. Introduction e 1
1.1 Overview of Wormhole Switching 7
1.2 Whatis Fair Resource Allocation? 11
1.3 Classification of Scheduling Disciplines 13
1.4 Representative Schedulers L0 16
141 FirstComeFirstServe (FCFS) 16
1.4.2 Round Robin ServicePolicy 16
1.4.3 Weighted Fair Queuing (WFQ) 17
1.4.4 Self-Clocked Fair Queuing (SCFQ) 19
1.45 \Virtual Clock Queuing (VCQ) 20
1.4.6 DeficitRoundRobin(DRR) 21
1.4.7 SurplusRoundRoObIN(SRR) 22
1.5 Contributions 23
1.6 Dissertation Organization 27
Chapter 2. Elastic Round Robin 28
2.1 Algorithm Description e 30

2.2 Guaranteed-Rate SchedulingusingERR 37

Chapter 3. Performance Analysisof ERR 39
3.1 Work Complexity e 40
3.2 FairnessAnalysis 41
3.3 Latency Rate Servers e 48
3.4 Latency Analysis e 52

Chapter 4. Prioritized Elastic Round Robin 63
4.1 Contributions 66
4.2 Algorithm Description e 67

Chapter 5. Performance Analysisof PERR 80
5.1 Nested Round Robin Interpretation 80
5.2 Latency Analysis 86
5.3 FairnessAnalysis 93
54 Work Complexity e e 95

Chapter 6. Simulation Analysis e 98
6.1 The Need fora New Measure of Fairness 98
6.2 GiniIndex: ANew Measure of Fairness 101

6.2.1 Handling a Newly BackloggedFlow 101
6.2.2 TheGinilndex 103
6.3 SimulationResults 105
6.3.1 SimulationModel oL 105
6.3.2 Results with Backlogged Traffic 107
6.3.3 Resultswith RealRouter Traces 109

6.3.4 Comparison of LatencyBounds 116

Vi

Chapter 7. ConcludingRemarks 118
7.1 Comparison of ERR and PERR with Other Schedulers 120
7.2 Other Applicationsof ERRandPERR 127

Bibliography e 130

Appendix A. Latency Analysis of DRR and Pre-orderDRR 135
Al Overviewof DRR 136
A.2 Latency Analysisof DRR, 137
A.3 Overviewof Pre-OrderDRR 145
A.4 The Nested DRR Interpretation 147
A.5 Latency Analysis of Pre-OrderDRR 150

vii

List of Tables

6.1 Settings for traffic sources fromroutertraces 106

7.1 Comparison of ERR and PERR with other guaranteed-rate scheduling dis-
ciplines e 122

1.1

1.2

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

viii

List of Figures
Example of downstream congestion in wormhole networks 9
Sorted-priority schedulers Lo oL 15
The switchmodel 29
Pseudo-codeforERR 31
Definitionofaround 33
An illustration of 3rounds in an ERR execution 36
A block diagram illustration of the ERR scheduler 37
Explanation fofr; —r;| <1 L 46
Two busy periodsforflow. 50
An example of the behaviorof @ik server 52

An illustration of the time interval under consideration for the analysis of

the latency boundof ERR L L 56
Block diagram of (a) PERR scheduler and (b) scheduling decision module

Of PERR 72
Pseudo-codeforPERR 77
InitializeRound) routine 78
InitializeFlow() routine 78
AddToPriorityQueu@ routine 79
ComputeNewPrioritj routine 79

Comparison of the transmission sequence of packets in ERR and PERR
overtwo roundsofexecution 85

An illustration of the time interval under consideration for the analysis of
the latency bound of PERR o 88

6.1 An illustration of the difference in the disparity in service received while
the upper bounds of the relative fairness and absolute fairness measures are
identical 100

6.2 An illustration of the lorenz curve and Gini index in the measure of in-
equalities among (a) income distribution (b) session utilities in a packet

scheduler 104
6.3 Simulationmodel 106
6.4 Giniindices of various efficient schedulers with backlogged traffic 108
6.5 Giniindices of PERR and WFQ with backlogged traffic 108
6.6 Average length ofarrivingpackets 109
6.7 Comparison of Giniindicesof DRRandERR 110
6.8 Comparison of Giniindicesof SRRandERR 111
6.9 Comparison of Gini indices of Nested DRRandERR 111
6.10 Comparison of Gini indices of Pre-order DRRandERR 112
6.11 Comparison of Gini indicesof DRRand PERR 113
6.12 Comparison of Giniindices of SRRandPERR 114
6.13 Comparison of Giniindicesof DRRand PERR 114
6.14 Comparison of Gini indicesof SRRandPERR 115
6.15 Comparison of Gini indices of Pre-order DRRand PERR 115
6.16 Comparison of Gini indicesof WFQandPERR 116
6.17 Comparison of latency bounds of various schedulers 117

7.1 Comparison of the latency bound of PERR and ERR with other schedulers
of equivalentcomplexity L 126

7.2 Example of load sharingusingERR 128

A.1 An illustration of the time interval under consideration for the analysis of
the latency bound of DRR 138

A.2 Plot of the service received by floowithDRR 143

A.3 Anillustration of the time interval under consideration for the analysis of

the latency bound of Pre-order DRR

A.4 (a) Input pattern (b) Packet classification in the priority queues 156

A.5 Plot of the service received by floiwith Pre-order DRR

Xi

Abstract

Design and Analysis of Fair, Efficient and Low-Latency Schedulers for
High-Speed Packet-Switched Networks
Salil S. Kanhere
Harish Sethu, Ph.D.

A variety of emerging applications in education, medicine, business, and enter-
tainment rely heavily on high-quality transmission of multimedia data over high speed
networks. Packet scheduling algorithms in switches and routers play a critical role in the
overall Quality of Service (Qo0S) strategy to ensure the performance required by such appli-
cations. Fair allocation of the link bandwidth among the traffic flows that share the link is an
intuitively desirable property of packet schedulers. In addition, strict fairness can improve
the isolation between users, help in countering certain kinds of denial-of-service attacks
and offer a more predictable performance. Besides fairness, efficiency of implementation
and low latency are among the most desirable properties of packet schedulers.

The first part of this dissertation presents a novel scheduling discipline ¢abstic
Round Robin (ERRyhich is simple, fair and efficient with a low latency bound. The per-
packet work complexity of ERR is O(1). Our analysis also shows that, in comparison to
all previously proposed scheduling disciplines of equivalent complexity, ERR has signifi-
cantly better fairness properties as well as a lower latency bound. However, all frame-based
schedulers including ERR suffer from high start-up latencies, burstiness in the output and
delayed correction of fairness.

In the second part of this dissertation we propose a new scheduling discipline called
Prioritized Elastic Round Robin (PERRich overcomes the limitations associated with
the round robin service order of ERR. The PERR scheduler achieves this by rearranging
the sequence in which packets are transmitted in each round of the ERR scheduler. Our

analysis reveals that PERR has a low work complexity which is independent of the number

Xii

of flows. We also prove that PERR has better fairness and latency characteristics than other
known schedulers of equivalent complexity. In addition to their obvious applications in
Internet routers and switches, both the ERR and PERR schedulers also satisfy the unique
requirements of wormhole switching, popular in interconnection networks of parallel sys-
tems.

Finally, using real gateway traces and based on a new measure of instantaneous fairness
borrowed from the field of economics, we present simulation results that demonstrate the
improved fairness characteristics and latency bounds of the ERR and and PERR schedulers

in comparison with other scheduling disciplines of equivalent efficiency.

Chapter 1. Introduction

Over the last decade, high-speed packet switched networks have become the standard
mode of communication, replacing the earlier telephone-based circuit-switched networks.
In circuit-switched networks, a dedicated path known eisauit is established between the
communication end points. In addition, the resources needed along this path (buffers, link
bandwidth) are reserved for the entire duration of the communication session. The network
is responsible for allocating sufficient resources to allow the sender to transmit data as a
continuous data flow at its peak transmission rate. A circuit in a link is implemented with
eithertime-division multiplexing (TDMpr frequency-division multiplexing (FDM)rhe
public switched telephone network (PSTN) is an example of a circuit switched network.

Itis well-known that circuit switching is not very efficient because the dedicated circuits
are idle duringsilent periodsi.e., when the sender and receiver are not exchanging any
messages. This results in poor utilization of the link bandwidths, especially given the
fact that Internet traffic is extremely assymetric and bursty. In addition, establishing end-
to-end circuits and reserving end-to-end resources is complicated and requires complex
signaling mechanisms. To address these shortcompagg&et switchingnetworks [1] were
introduced as an alternative to circuit-switching. With packet switching, the sender breaks
down messages into smaller chunks of data cglecketsand each packet is transmitted
over a series of communication links just as in circuit switching. However, an important
difference is that in packet switching no resource reservation is required in the network.
If one of the links is congested because multiple packets need to be transmitted over the
link at the same time, then one of the packets is chosen for transmission and the rest have
to be stored in a buffer at the sending end of the link. As a result, buffering is required
in the intermediate nodes of the network to absorb traffic bursts and avoid packet losses.

The main advantage of packet-switching is that it perstasistical multiplexing2] on the

communication links. This allows packets from different sources to share the links resulting
in an efficient utilization of the link capacities. Today’s Internet is a quintessential packet-
switched network. The Internet makeshisst-efforto deliver packets in a timely manner

but it does not make any guarantees.

Until recent years, the best-effort Internet architecture supplemented by the reliable
transport protocol, TCP, has provided good service for the vast majority ofatigional
applications such as file transfer, e-mail, web-browsing and remote login. For example,
even though a file transfer application would ideally like to have a very high bandwidth and
low end-to-end delay it will still work correctly if the available link bandwidth decreases
and the end-to-end delay increases. In other words, the performance requirement of such
applications areelastic since they can adapt to the resources that are available. These
applications are calleldest effort applicationsince the network only guarantees to attempt
to deliver their packets without providing for any performance guarantees.

In the last few years we have witnessed a rapid growth in the development and deploy-
ment of new networked applications in education, business, entertainment and medicine.
Examples of such applications are many and are rapidly rising. Popular services such as
video and audio on-demand, online radio and TV stations and interactive games are trans-
forming the entertainment industry. Multimedia teleconferencing and banking are just a
couple of other applications that are impacting businesses. Storing multimedia information
in servers and allowing users access to it through networks is an economical solution to the
problem of large-scale distribution of massive amounts of multimedia content. For exam-
ple, applications such as distance learning enable universities to offer courses using video
servers and high-performance networks. In medicine, many hospitals are already experi-
menting with high-resolution video and imaging applications that transfer data from various
hospital facilities to the diagnostic center. All of these applications and many others, will
have a profound impact on our day-to-day lives in ways that we have least imagined.

The utility value of the applications described above will be determined largely by the

guality of the multimedia transmission and the ability of networks to carry heavy volumes
of such traffic in a scalable, reliable and predictable fashion. In order to support multimedia
traffic, the network must be able to guarantee performance bounds or meet the Quality-of-
Service (QoS) requirements. The best-effort service model is highly ineffective in meeting
their QoS demands. The task of designing network architectures, suitable for these appli-
cations is both critical and challenging. Providing the necessary bandwidth and keeping
delay within known and manageable bounds are some of the concerns that must be ad-
dressed. For example, to support an application that carries voice as a 64 Kbps stream, the
network must provide 64 Kbps bandwidth on the entire path from end-to-end. Moreover,
if the application is two-way interactive, besides guaranteeing a bandwidth of 64 Kbps, the
network must also guarantee a round trip delay of around 150 ms. Thus, this application
and others of its kind, demand a guarantee of service quality from the network. As a result,
they are known aguaranteed-service applicationsSSuch applications are not elastic or
adaptive and variations in delay or loss of packets can have a detrimental effect on their
functionality.

Another motivation behind enabling QoS guarantees is to achieve service differentia-
tion [3]. Providers may want to offer an eclectic mix of services to their customers. The
service to be carried on the Internet may consist of real-time traffic for applications such as
Internet telephony. A second class of service may be for applications such as transaction
processing that require reliable, low-delay delivery of data. Yet another class of service
to be carried on the Internet is the best-effort traffic, constituting traffic from applications
such as file transfer and e-mail. Real-time applications, such as Internet telephony, demand
a guarantee on the performance bounds and require the network to reserve resources on
their behalf. Services for other applications, such as queries and responses in transaction
processing, may not require stringent performance guarantees but may still require lower
delays than best-effort applications. A network should thus be capable of providing a vari-

ety of services with different QoS requirements to be carried on the same switching nodes

or links. These different applications have varying traffic characteristics with different re-
guirements, and rely on the ability of the network to provide QoS guarantees with respect
to several quality measures, such as end-to-end delay, bandwidth allocation, delay jitter and
packet loss. However, network resources such as link bandwidth and buffers are shared by
multiple users or services, some or all of which may try to access a resource simultane-
ously. Resource contention arises because of this sharing. A QoS mechanism is needed
to efficiently apportion, allocate and manage limited network resources among competing
users. QoS deals with engineering and managing network resources to deliver the perfor-
mance levels that satisfy user’'s expectations. A QoS mechanism is necessary when there
are not enough resources to prevent queues from becoming congested and when conges-
tion degrades performance guarantees. So, effective queue management is fundamental to
many proposed QoS schemes.

An essential component of a queue managesish@dulewhich employs a scheduling
mechanism to decide which packet to serve next. In other words, given a set of resource
requests in the service queue, a switch uses a scheduling algorithm to decide which request
to serve next. A scheduler has to ensure that the network resources are scheduled fairly
among its contending users. Scheduling disciplines are important because they are respon-
sible for protecting one user’s traffic from another and hence are a key to fair sharing of
the network resources. The scheduling algorithms also affect the performance received by
a certain traffic flow. To understand this, let us assume that each traffic flow is assigned
a separate queue and the switch queues the packets that are ready for transmission from
different traffic flows in their respective queues. By the choice of its service order, the
scheduler can allocate different mean delays to the packets belonging to different queues.
Also it can allocate different bandwidths by serving a certain minimum number of packets
from a particular flow in a given time interval. We thus need a scheduling algorithm that
supports fair resource allocation and also supports these performance bounds in order to

serve the performance critical applications such as telephony and other interactive audio

and video applications. Fair scheduling becomes especially critical in access networks,
within metropolitan area networks and in wireless networks where the resource capacity
constraints tend to be significantly limiting to high-bandwidth multimedia applications to-
day. Even with the over-provisioning of resources such as is typical in the Internet core,
fairness in scheduling is essential to protect flows from other misbehaving flows triggered
by deliberate misuse or malfunctioning software on routers or end-systems. Fairness in the
management of resources is also helpful in countering certain kinds of denial-of-service at-
tacks. Fair schedulers have now found widespread implementation in switches and Internet

routers [4,5]. Some of the most desirable properties of a scheduling discipline include:

e Fairness:The available link bandwidth must be distributed among the flows sharing
the link in a fair manner. We use the classic notion of fairness given by the max-min
fair share policy [6] which is explained in greater detail in the following section. In
general, it is desirable that the scheduler serves the connections proportional to their
reservations and distributes the unused bandwidth left behind by the idle sessions
proportionally among the active ones. In addition, flows should not be penalized for
the excess bandwidth they received while other flows were inactive. Fairness is also
desirable for good performance, since unfair treatment of some traffic flows in the

network can easily lead to unnecessary bottlenecks.

¢ Isolation: The scheduling algorithm must isolate a flow from the undesirable effects
of other (possibly misbehaving) flows. This will ensure that the QoS guarantees for a
flow will be maintained even in the presence of other misbehaving flows. Note that,
isolation among flows is necessary even when traffic policing strategies are used for
traffic shaping at the edge of the network, since the flows may become increasingly
bursty as they traverse through the network [7]. Isolation among flows also results in

a more predictable performance for end user applications.

e Latency:lt is desirable that the scheduling discipline provides an end-to-end delay

guarantee to individual flows. For guaranteed-rate services, the latency should be
measured as the length of time it takes a new flow to begin receiving service at the
guaranteed rate. Low delay bounds imply low buffer requirements for guaranteeing
no packet loss. Thus, the latency of a scheduler has a direct effect on the cost of
implementation in terms of the required memory. The latency is also directly related
to the amount of playback buffering required at the receiver for real-time communi-

cation applications.

e Efficiency: In addition to providing performance bounds and being fair, it is also
important that a scheduler be easily implementable. A scheduler should require as
few simple operations as possible to make a scheduling decision. In particular, the
number of operations should be as independent of the number of flows that are to be
scheduled as possible. Thusnpifs the total number of queues or traffic flows to be
scheduled by a scheduler, then a scheduler thabkastime complexity is preferred
in comparison to the one that h&@$n) time complexity. This property is especially
desired in high-speed networks and in routers where the number of flows can be in

thousands as in the Internet core.

Even though a network must ideally schedule every multiplexed resource, in this disserta-
tion, we have concentrated on the most commonly scheduled resource: the bandwidth on a
link.

Besides the Internet, fair scheduling algorithms also find their place in the intercon-
nection networks for parallel systems, wherein packets belonging to different traffic flows
often share links in their respective paths toward their destinations. Fairness is an intuitively
desirable property in the allocation of bandwidth available on a link among multiple traffic
flows that share the link. Fairness in packet scheduling becomes especially desirable with
the increasing use of parallel systems in multi-user environments with the interconnection

network shared by several users at the same time. Fair allocation of bandwidth at links

within a network is a necessary requirement for providing protection to flows, i.e., for en-
suring that the performance is not affected when another possibly misbehaving flow tries to
send packets at a rate faster than its fair share. In multi-user environments, the protection
guaranteed by fair scheduling of packets improves the isolation between users, a quality
strongly desired by customers of parallel systems [8]. Isolation offers a more predictable
performance to user applications, which also facilitates repeatability of performance re-
sults necessary for reliable benchmarking of systems and applications without taking all
the users off the system. Fairness is also essential for good performance with compilers
that take into account the predicted communication delays in the network. Strict fairness
is also desirable for good performance, since unfair treatment of some traffic flows in the

network can easily lead to unnecessary bottlenecks.

Most switch architectures designed for interconnection networks of parallel systems,
however, eliminate only the worst kinds of unfairness such as starvation, where pack-
ets belonging to one traffic flow may not be scheduled for an indefinite period of time.
The need to design a fair scheduler in these networks is an important motivation for the
work presented in this dissertation. In addition, even though over the last decade, a num-
ber of advances have been made in the architecture of these switches for improved delay
and throughput characteristics, very few researchers have focused on possible performance
gains with scheduling strategies that may be used at the output link or for access to output
gueues from the input queues. However, implementing fair scheduling algorithms in the
interconnection networks of parallel systems, poses certain unique challenges which are

described in detail in the following section.

1.1 Overview of Wormhole Switching

Almost all interconnection networks, both direct and indirect, are constructed out of

switches connected together in a certain topology. Wormhole switching is a popular switch-

ing technique used in the implementation of switches in interconnection networks for par-
allel systems [8, 9]. Wormhole switching is distinguished by the fact that the granularity
of flow control in a wormhole network can be smaller than a packet [10, 11]. A message
packet is broken up intdlits, a flit being the unit of flow control. Thus, a message is
pipelined through the network at the flit level and at any instant of time, a blocked message
occupies queues in several routers. We use the terms router and switch interchangeably in
this dissertation. In order to not add to the per-flit overhead, only the head flit (the first flit)
of the packet contains information necessary to route the packet through the network. A
switch in the network reads the information in the head flit and directs it to the next switch
or end-system device on its path. The rest of the data flits of a packet are simply forwarded
to the same output link as the head flit. Consequently, the transmission of distinct packets
cannot be multiplexed over a physical link. A packet must be transmitted in its entirety
before a link can be used to transmit another packet.

Implementing fair scheduling disciplines in such a switch poses certain unique chal-
lenges which we describe in the following paragraphs. Consider a wormhole switch with
several input and output queues, with packets in the input queues ready for transmission
to one of the output queues. We defingueeueas a logical entity containing a sequence
of flits that have to be served in a FIFO order. Note that, depending on the buffering ar-
chitecture of the switch, a queue may not be the same as a buffer since a single buffer can
implement multiple logical queues [12, 13]. Consider a certain pakkeitth a head flit
that arrives at an input queue of a wormhole switch and is ready to be routed to an output
gueue. Once the head flit has been routed to the output queue, as already explained, no flits
from any other packet can be routed to this output queue, until all of the remaining flits of
packetA are routed. Thus, in Figure 1.1, paclgthat also wants to use the same output
link as A is blocked and cannot make progress until all the flits from pa8kedve been
transmitted.

In wormhole switches with virtual channels [14], one typically has as many output

Packet B

i

—————

]] -
==
Packet A Link 1 Link 2 |
— 1 --> B--=- 1 .\V []
[] [] [|
iLinkB

Bl Header Flitof A

T
@ Header Flit of B
B DataFlits

Figure 1.1: Example of downstream congestion in wormhole networks

gueues as there are virtual channels associated with each of the output links. Since each
flit is marked by the virtual channel it belongs to, in scheduling flits to the output link from
these output queues, it is not necessary to schedule all flits belonging to a packet before a
flit from another virtual channel is scheduled. If each flow can be assigned a separate virtual
channel, one may use the Flit-Based Round Robin (FBRR) scheduler which visits the flow
gueues in round-robin fashion, and transmits one flit from each queue. This scheme is very
fair among the flows in terms of the number of flits scheduled from each flow over any
interval of time. However, this scheme for achieving fairness is prohibitively expensive
since it can only be used if there are as many virtual channels implemented as there are
flows (which can be in hundreds or thousands). In addition, by serving packets flit-by-flit,
the FBRR scheme uniformly increases the delay of packets in all the flows [15]. Further,
multiplexing of flits belonging to different packets is not always feasible. For example,

even in switches with virtual channels, while scheduling entry into the output queues from

10

the various input queues, all flits of a packet have to be scheduled before a flit from another
packet enters the same output queue. A packet-by-packet scheduler, therefore, is a more
suitable and all-encompassing solution. Such a scheduler can also achieve a better average
delay.

Wormhole switches typically use a flit-by-flit credit-based flow control protocol, and
therefore, downstream congestion can thwart the progress of the packet currently being
served for an unpredictable length of time. Since, as explained earlier, it may not always
be possible to time-multiplex the transmission of packets from different flows, one cannot
always begin forwarding packets from another flow until all flits belonging to the packet
currently being served are forwarded. Thus, during the time that a packet is in the middle of
its transmission, packets from other flows may be blocked without access to the output link
even while there are no flits being transmitted over the link. A packet of lehdtites,
scheduled for forwarding to an output queue feeding a link of cap#tibytes/second,
may take more that/C' seconds for transmission. In other words, the length of a packet
cannot singly determine the length of time it takes to dequeue a packet while it blocks other
flows from access to the output queue.

Therefore, the relevant measure of the use of a resource, in this case the output link,
is the length of time a flow occupies the link. In wormhole networks, therefore, fairness
should be based on the length of time each flow occupies a link, and not on the number of
flits sent by each flow over the link. This length of time depends on the downstream con-
gestion which can be hard to predict without complex feedback mechanisms. In wormhole
networks, unlike in Internet routers and many other networks, this length of time cannot
be accurately estimated from knowledge of the length of the packet being transmitted. The
actual length of time that a packet takes to be dequeued, thus, may not be known until the
last flit of the packet is dequeued. A scheduling discipline for wormhole networks, there-
fore, should be able to make a decision on starting the transmission of a packet without

knowledge of the length of time it will take to transmit the entire packet. In addition, the

11

algorithm also cannot assume an upper bound on this length of time. In other words, the
unique requirements of wormhole switching require that a scheduler perform its operations
withoutanyassumptions on how long it will take to transmit a packet. Such a requirement
on the scheduling discipline is also essential in networks where packet delimiters are the
only indication of the beginning and the end of packets, with no length fields in the packet
headers. For example, an ATM network transmitting IP packets over AAL5, where the end

of the packet is not known until the arrival of the last ATM cell corresponding to the packet.

1.2 What is Fair Resource Allocation ?

Traditionally, aflow is defined as a sequence of packets generated by the same source
and headed toward the same destination via the same path in the network. It is assumed that
packets belonging to different flows are queued separately while they await transmission.
A scheduledequeues packets from these queues, and forwards them for transmission. A
flow is said to beactiveduring a period if its queue is non-empty throughout this period.

A flow is inactive when its queue is empty. Note that, even though we use the above
traditional definition of a flow to present our results in this paper, a flow can also be more
broadly defined as any distinct sequence of packets queued separately at the scheduler and
competing with other sequences of packets for service by the scheduler. For example, in
parallel systems, a flow may also be defined as the set of all packets belonging to the same
user, with packets of these flows queued at the scheduler accordingly.

A precise definition of fairness is essential before further discussion of fair scheduling
of flows. The classic notion of fairness in the allocation of a resource among multiple
requesting entities with equal rights to the resource but unequal demandsmsthain

fair sharepolicy [6]. It can be formally defined as follows,

e The resource is allocated in order of increasing demand.

e No requesting entity gets a share of the resource larger than its demand.

12

¢ Requesting entities with unsatisfied demands get equal shares of the resource.

Generalized Processor Sharing (GPS) [16] is an unimplementable but ideal schedul-
ing discipline that satisfies the above notion of max-min fair allocation. GPS is unimple-
mentable because it does not transmit packets as entities and assumes that the traffic is
infinitely divisible. The GPS scheduler visits each non-empty queue in a round-robin or-
der, and serves an infinitesimally small amount of data from each queue, such that in any
finite time interval, it can visit every queue at least once. Consider a sefl@iis denoted
by 1,2,...,n demanding bandwidths, bs, ..., b, on a link of total bandwidth3. All of
then flows have an equal right to the link bandwidth. Without loss of generality, assume
by < by < --- < b,. The GPS scheduler first allocatBgn of the bandwidth to each of
the active flows. If this is more than the bandwidth demanded by flow 1, the unused band-
width, B/n—by, is divided equally among the remaining- 1 flows. If the total bandwidth
allocated thus far to flow 2 is more thapn the unused excess bandwidth is again divided
equally, this time among the remainimg— 2 flows. The allocation process of the GPS
scheduler continues in this fashion until each flow has received no more than its demand,
and if the demand was not satisfied, no less than any other flow with higher demand. GPS

thus satisfies the max-min fair share allocation.

Note that, thus far, we had assumed that all the flows had the same right to the resource.
However, since guaranteed-rate flows require the network to guarantee a certain minimum
average rate, a weight must be associated with each such flow. The weight allocated to
a flow should be proportional to its reserved rate. The concept of max-min share can be
extended tanax-min weighted fair share allocatidn account for the flow weights. The
only change is that the resource allocated to each flow is now normalized by its weight. The
GPS scheduler can be similarly modified to account for the flow weightsr tegtresent
the transmission rate of the output link and ¢etrepresent the weight assigned to flow

If B(t) denotes the set of flows that are active at time 0, the flow: is guaranteed to

13

receive a minimum service rate of t) given by,

ri(t) = jeB(t) Pi (1.1)
0 : otherwise
The effectiveness of a fair scheduler is measured by how closely it approximates GPS.
Over the last decade, a number of scheduling disciplines have been proposed which try to

emulate the GPS scheduler.

1.3 Classification of Scheduling Disciplines

The scheduling disciplines in general can be classified broadly as:

1. Work-conserving: A work-conserving scheduler is never idle while there are packets

waiting to be transmitted in service queues.

2. Non-work-conserving: A non-work-conserving scheduler may be idle even if there are
packets waiting to be served. A scheduler may, for example, postpone the transmission
of a packet when it expects a higher priority packet to arrive soon, even though it is

currently idle.

There are arguments both in favor of and against the above two classes of schedul-
ing disciplines. For example, an argument against non-work conserving scheduling
disciplines is that they waste link bandwidth. However, by idling away the link band-
width, the non-work conserving schedulers can make the traffic arriving at the down-
stream switches more predictable, reducing the delay jitter experienced by a certain
traffic flow [17]. However, work-conserving servers always have lower average delays
than non-work-conserving servers. Examples of work-conserving schedulers include
Weighted Fair Queuing (WFQ) [16, 18], Virtual Clock Queuing [19, 20] and Deficit
Round Robin (DRR) [21]. On the other hand, Hierarchical Round Robin (HRR) [22]
and Stop-and-Go Queuing [23] are non-work-conserving schedulers. The interested

reader may refer to [6] for more details.

14

The scheduling disciplines can also be classified into one of the following two cate-

gories based on their internal architecture:

1. Sorted-Priority Schedulers: These schedulers maintain a global variable known as the
virtual time or thesystem potentigunction. A timestamp computed as a function of
this variable is associated with each packet in the system. Packets are sorted based on

their timestamps, and are transmitted in that order.

2. Frame-based or Round Robin Policies: In these schemes, on the other hand, the sched-
uler provides service opportunities to the backlogged flows in a particular order (usu-
ally round-robin) and, during each service opportunity, the intent is to provide the flow

an amount of service proportional to its fair share of the bandwidth.

Weighted Fair Queuing, Virtual Clock Queuing, Self-Clocked Fair Queuing (SCFQ)
[24], Time-Shift Scheduling [25] and Frame-Based Fair QuetiffFQ) [26] and Worst-
Case Fair Weighted Fair Queuing (W®) [27] are some of the popular sorted-priority
gueuing mechanisms. The basic idea is depicted in Figure 1.2. These schedulers differ
in the manner in which they calculate the global virtual time function. They generally
provide good fairness and delay properties but are not very efficient. There are two major

costs associated with the implementation of sorted-priority schedulers:

1. The complexity of computing the system virtual time: For WFQ, the worst-case com-
plexity isO(n) wheren is the number of flows sharing the same output link. However,
in a number of schedulers such as SCFQ, SFQ and FFQ proposed in recent years, the

complexity of computing the virtual time i9(1).

2. The complexity of maintaining a sorted list of packets based on their timestamps, and

INote that, Frame-based Fair Queuing, in spite of its name, is actually a sorted-priority scheduling dis-
cipline. The algorithm uses a framing approach similar to that used in frame-based schedulers to update
the state of the system. However, as in sorted-priority schedulers, packets are transmitted based on their
timestamps.

15

Serve
Sort based on
Input packets —=| | Calculate fimestam heedof | |~ Output packets
. ps
timestamp queue

Figure 1.2: Sorted-priority schedulers

the complexity of computing the maximum or the minimum in this list prior to each
packet transmission. Farflows the work complexity of the scheduler prior to each

packet transmission 9 (logn).

Thus, with a large number of flows, the sorted-priority schedulers becomes expensive to
implement at high speeds. Attempts have been made to improve the efficiency of sorted-
priority schedulers; however, such attempts either do not avoid the implementation bottle-
neck or compromise on fairness.

On the other hand, the frame-based schedulers do not maintain a global virtual time
function and also do not require any sorting among the packets available for transmis-
sion. This reduces the implementation complexity of frame-based scheduling disciplines
to O(1), making them attractive for implementation in routers, and especially so, in hard-
ware switches. Examples of frame-based schedulers are Packet-by-Packet Round Robin

(PBRR) [28] and Deficit Round Robin (DRR) [21, 29].

16

1.4 Representative Schedulers

A large number of scheduling algorithms have been proposed in the literature (refer
to [30] for a survey). In this section we will review some of these scheduling algorithms

and outline their properties.

1.4.1 First Come First Serve (FCFS)

FCFS is one of the most common queuing algorithms employed in switches. As the
name implies, in FCFS, the order of arrival completely determines the bandwidth alloca-
tion. FCFS service is trivial to implement, requiring a router or a switch to store only a
single head and tail pointer per output link. However, FCFS fails to provide adequate pro-
tection from a bursty source that may suddenly send packets at a rate higher than its fair
share for brief periods of time. It is easy to see that this rogue flow will capture an arbitrary
part of the outgoing bandwidth. Also such a source can significantly increase the upper
bound on the queuing delay of packets belonging to a flow from another source. Fairness,
however, requires that as long as a source is demanding bandwidth within its rightful share,
the delay experienced by packets from this source should not be affected by other traffic in

the network.

1.4.2 Round Robin Service Policy

Consider several flows, with flits belonging to packets waiting in the respective queues
to be forwarded to another queue or an output link. Two implementation techniques for

round-robin policy are possible.

1. Flit-Based Round Robin (FBRRPne scheduling technique would be to use a pure

Flit-Based Round Robischeme, in which the scheduler visits each flow's queue in
a round-robin fashion, and transmits one flit from each queue. This scheme is only

possible in wormhole networks when each flit is tagged with a flow id, such as when

17

each flow represents a virtual channel [14]. This scheme is very fair among the flows

in terms of the number of flits scheduled from each of the queues during any time

interval. However, it cannot be used in other contexts such as for scheduling packets
from input queues to output queues in a wormhole switch for the reasons described in
Section 1.1. In addition, by serving packets flit-by-flit, the FBRR scheme uniformly

increases the delay of packets in all the flows [15].

2. Packet-Based Round Robin (PBRR) alternate technique would deacket-Based

Round Robimproposed by Nagle [28], in which the scheduler visits each of the queues
in a round-robin fashion, and transmits an entire packet from a queue before beginning
transmission from another queue. This reduces the average latency experienced by a
packet as compared to FBRR. These techniques and a number of their variations have
been analyzed in [31] for their performance characteristics, but not for their fairness
properties. The PBRR scheduling discipline, for example, ignores the packet lengths
and would be fair if the average packet size over the interval of a connection were
the same for all the traffic flows, in which case each flow would get an equal share
of the outbound bandwidth. It is, however, not fair among the flows when the packet
sizes in the different flows are not equal. Consequently, flows sending longer packets
use up an unfairly high fraction of the available transmission bandwidth. In the worst
case, a flow can get/ax/Min times the bandwidth of another flow, whetéax is

the maximum size of the packet andin is the minimum packet size.

1.4.3 Weighted Fair Queuing (WFQ)

Scheduling mechanisms such as Weighted Fair Queuing also known as Packet-by-Packet
Generalized Processor Sharing (PGPS) [16, 18, 32], try to emulate the ideal GPS scheme
by time-stamping each arriving packet with tir@sh numberwhich is the expected com-

pletion time that a packet would have had if it were scheduled by the GPS scheduler. The

18

WFQ then serves the packets in the increasing order of the finish numbers. Hence, this
requires computation of the finish number for every packet and then sorting among these
time-stamps to determine the relative order in which the packets are to be served. In other
words WFQ simulates GP&n the sideand uses the result of the simulation to determine
the service order.

Let R(¢) be the number of rounds of service made by the hypothetical GPS scheduler
up to timet known as theound number Depending on the number of flows served, each
round of service takes a variable amount of time: the greater the number of flows served,
the longer a round takes. The time taken to serve one bit from each active flow is the length
of a round and it increases in direct proportion to the number of active flows. Hence, in
order to calculate round number, the WFQ scheduler keeps track of the number of active
flows, since the round number grows at the rate inversely proportional wheren is
the total number of active flows. The finish number of a packet arriving to an inactive
connection, i.e, a flow whose queue is empty when the packet arrives, is the sum of the
current round number and the size of the packet in bits. If a packet arrives at an active flow,
then its finish number is the sum of the largest finish number of a packet in its queue and
the packet size in bits. Let(i, k,t) be the size of the k-th packet that arrives on flow
at timet and F'(i, k, t) be the finish number for thieth packet on flowi. Also let¢(i) be
the weight associated with flow Note that, this weight is a function of the reserved rate

requested by flow. Then,

F(i,k,t) =max{F(i,k —1,t), R(t)} + (1.2)

Note that, the finish number is only a service tag that indicates the relative order in which
the packet is to be served, and has nothing to do with the actual time at which the packet is
served.

WFQ conforms to the definition of fairness, in the sense that a flow is not punished if it

temporarily exceeds its reserved rate to take advantage of the unused bandwidth. This can

19

be understood with a simple example given below:

Example 1:Let the packet sizes be constant, and let the output channel have a rate of
1 bit/s. The scheduler has two flowsndj, each with the same weight. Assume that the
scheduler is initialized at time 0, so th@f0) = 0 and the finish number of the flowsnd;
are also 0 attime 0. Suppose that a packet of size 100 bits arrives at time 0 emfidwmo
packet from flow; is received up to time 100. Since this s the first packet to arrive oniflow
its finish number at time 7'(¢, 1,0) = 0+ L(7, 1,0) = 100 as given by Equation (1.2). At
time 100, 100 bits from have been forwarded to the output channel. SiBgot = 1/n,
R(100) = 100. Hence, from Equation (1.2), assuming that the floiw still active, the
finish number of flowi at time 100 is equal to 200. At time 100, a packet arrives on flow
j and it is assigned the finish numbéi(j, 1,100) = max{0,100} + 100 = 200. Since
both the flows have same finish number, the scheduler alternates between the flows and
hence the bandwidth is equally shared. Thus flaswnot punished for using the bandwidth

unused by flow; for the first 1200 time units.

The above property may not be satisfied by other scheduling disciplines as will be
illustrated in a subsequent example. While this scheme guarantees absolute fairness, the
packet processing cost makes it hard to implement economically at high speeds. Since it
needs to simulate a GPS scheduler in parallel for updating the round number, the work
complexity of a WFQ scheduler i8(logn) [32]. In general, higher the number of flows

going through the switch, the more expensive it is to implement WFQ.

1.4.4 Self-Clocked Fair Queuing (SCFQ)

To improve the implementation complexity of WFQ, an approximate implementation called
Self-Clocked Fair Queuing was proposed in [24]. In SCFQ, the finish number of a packet
is computed based on the packet currently in service at the scheduler. In other words, when

a packet arrives to an empty queue, instead of using the round number to compute its finish

20

number, it uses the finish number of the packet currently in service. THOB,répresents
the finish number of the packet currently being served by the SCFQ scheduler the finish

number is now calculated as,

L(i, k,t)
(i)

This approach reduces the complexity of the algorithm greatly. However, the price paid is

F(i,k,t) = max{F(i,k —1,t),CF} + (1.3)

the unfairness over short time scales which also results in larger delay bounds as compared

with WFQ.

1.4.5 Virtual Clock Queuing (VCQ)

The basic idea of virtual clock queuing [19, 20] is inspired by Time Division Multiplexing
(TDM). The way WFQ emulates GPS, VCQ emulates time-division multiplexing (TDM).
In the virtual clock method, the scheduler time-stamps the arriving packets with the com-
pletion times under time-division multiplexing, and then serves packets in order of these
completion times. Using the same notation as above, the finish numbers under VCQ is

computed as:

L@, k, 1)
(1)

where V(' is the time at which the packet is received by the scheduler. This scheme,

F(i,k,t) = max{F(i,k — 1,t),VC} +

(1.4)

however, like WFQ suffers from the cost associated with sorting among the time-stamps.
Also this scheme may not always be fair as explained by the following example:

Example 2: The scheduler has two flowisand j, each with a reserved rate of 1/2
packet/s. Assume that the packet sizes are constant (1 bit) and the output channel has a
rate of 1 packet/s. The scheduler is initialized at time 0. From time O up to time 100,
packets from flowi arrive at a rate higher than 1 packet/s, and no packet is received from
flow j. At time 0, when the first packet arrives on flawfrom Equation (1.4), its finish

number,F'(i, 1,0) = 2. The finish number of the packet that arrives at timé'{, 2, 1) =

21

mazx{2,1} + 2 = 4. Proceeding in the similar manner, at time 100, the finish number or
the time-stamp of flow is 202. At time 100, packets frormarrive at the rate of at least 1
packet/s, and packets froiralso continue to arrive. However, when the first packet from
flow j is received, its time-stamg@;(7, 1, 100) = max{0, 100} + 2 = 102. Since the time-
stamp of flowy is less than the time-stamp of flaywno packet from will be forwarded to

the output channel until 50 packets frgnare forwarded, that is until time 150. In effect,

1 is denied service for 50 time units because it earlier took advantage of bandwidth unused

by j. It was seen in the earlier example that this unfairness did not occur in WFQ.

1.4.6 Deficit Round Robin (DRR)

All of the schedulers described above, are sorted-priority schedulers and hence do not avoid
the O(ogn) complexity associated with sorting among the timestamps. Deficit Round
Robin (DRR) [21], a less fair but more efficient scheduling discipline with an O(1) per-
packet work complexity, was proposed by Shreedhar and Varghese in 1996. DRR is not a
timestamp-based algorithm, and therefore, avoids the associated computational complexity.
DRR achieves O(1) time-complexity because it serves the active flows in a strict round-
robin order [21,33]. It succeeds in eliminating the unfairness due to different packet lengths
observed in pure PBRR. This is done by keeping a state, associated with each queue called
adeficit count (DCYo measure the past unfairnessQantumis assigned to each of the
queues and when a flow is picked for service, its DC is incremented by the quantum value
for that flow. A packet is served from a queue only if the packet size at the head is less
or equal to the sum of the quantum and the deficit counter value; otherwise, the scheduler
begins serving the next flow in the round robin sequence. When a packet is transmitted, the

DC corresponding to that flow is decremented by the size of the transmitted packet.

In DRR, in order that the per-packet work complexity is O(1), one has to make sure

that the quantum value chosen is no smaller than the size of the largest packet that may po-

22

tentially arrive at the scheduler [21]. Otherwise the per-packet work complexity increases
to O(n) since one may encounter a situation, in which, even after visiting each of the
flows and examining the respective DC values, no packet is eligible for transmission. A
per-packet work complexity of O(1) is ensured if we make sure that at least one packet is
transmitted from each active flow during each round. This is ensured if the quantum is no
smaller than the size of the largest possible packet, since this guarantees that the packet
size at the head of each queue at the start of its service opportunity will always be less
than the sum of the DC value and the quantum value of the flow. In order to achieve a
per-packet work-complexity of O(1), therefore, the DRR scheduler requires knowledge of
the upper bound on the size of a packet. DRR, thus, is not ideally suitable for wormhole
networks since it requires the knowledge of the size of a packet before making a decision

on transmitting it, and in addition requires an upper bound on the size of a packet.

1.4.7 Surplus Round Robin (SRR)

In [34, 35], a fair scheduler similar to DRR was proposed. This algorithm, later known as
Surplus Round Robin (SRRias also been used in other contexts such as in [36]. SRR is
a modified version of DRR, in which the scheduler continues serving a flow as long as the
DC value of the flow is positive. When the DC becomes negative, the scheduler begins
serving the next flow in the round robin sequence. Thus, while DRR never allows a flow to
overdraw its account but rewards an under-served flow in the next round, SRR allows a flow
to overdraw its account but penalizes the flow accordingly in the next round. DRR keeps an
account of each flow’s deficit in service, while SRR keeps an account of the surplus service
received by each flow. SRR does not require the scheduler to know the length of a packet
before scheduling it. However, it does require the use of a fixed quantum assigned to each
flow per round. As in DRR, in order to ensure an O(1) per-packet work complexity, the

guantum value has to be no smaller than the size of the largest packet that may potentially

23

arrive at the scheduler. SRR, like DRR, cannot be readily adapted for use in wormhole

switching since it also requires knowledge of the upper bound on packet sizes.

1.5 Contributions

In this section we will outline the important contributions of this dissertation. As ex-
plained in Section 1.1, wormhole switching, popular in interconnection networks of par-
allel systems, imposes certain unique restrictions on the scheduling algorithms. These

constraints can be summarized as follows:

e The scheduler should be able to make a decision on dequeueing a packet without
knowing the length of time it takes to transmit transmission of a packet without knowl-

edge of how long it will take to transmit the packet.

e The scheduler also cannot assume an upper bound on the length of time it takes to

transmit the packets.

Over the last decade, a variety of scheduling algorithms that seek to achieve fair-
ness in bandwidth allocation have been proposed and implemented in Internet routers
[16,18,21,24,27,32,34-37]. A number of these scheduling disciplines were discussed in
Section 1.4. Unfortunately, most fair scheduling disciplines proposed for Internet routers
are either too expensive to implement in high-speed hardware switches because of the
work complexity of per-packet processing, or cannot be easily adapted to the unique re-
guirements of wormhole networks described above. For example, most timestamp-based
schedulers such as Weighted Fair Queuing [6] have a work complexitylog @) with
respect to the number of flows. On the other hand, more efficient schedulers such as Deficit
Round Robin (DRR) [21] and Surplus Round Robin (SRR) [34—36] require knowledge of
the upper bound on packet lengths to achieve a work complexity of O(1), rendering them

difficult to adapt to wormhole networks.

24

In the first part of this dissertation we present a novel and simple scheduling discipline
calledElastic Round Robin (ERRyvhich is designed to address the unique requirements
of wormhole networks. In traditional scheduling literature, it is typically assumed that the
length of time it takes to transmit a packet is directly proportional to the size of the packet.
Therefore, the problem of designing a fair scheduler for wormhole networks is equivalent to
the problem of designing a fair scheduler in the traditional sense but without the scheduler
makinganyassumptions on the size of a packet before beginning the transmission. Based
on this equivalence, we present the ERR scheduler as a solution to the latter problem. It
should be noted that in many real interconnection networks as well as in Internet routers,
packet headers do carry a field with the packet length in it, and therefore, the problem in
such cases is not a lack of knowledge of the packet length. However, when a scheduler
uses the size of a packet to make its decisions, it cannot be readily adapted to the unique

requirements of wormhole switching.

In spite of the constraints of wormhole switching imposed on the design, ERR is also
suitable for use in Internet routers for scheduling best-effort connections. The emerging
high-speed packet-switched networks are expected to support a variety of services beyond
the best-effort service available in the Internet today. The fair packet scheduling algorithms
in switches and routers play a critical role in providing the Quality-of-Service (QoS) guar-
antees required by the new multimedia applications. We also present a modified version
of ERR which can be used for scheduling these guaranteed-rate application flows. Further
we present analytical results on the efficiency, fairness and performance characteristics of
ERR. A scheduler is considered to be efficient if the order of the work complexity of en-
queuing and dequeuing a packet, with respect to the number of flowg])s We prove
that the work complexity of ERR i®(1), equal to or better than other scheduling disci-
plines. The fairness of a scheduling discipline is measured using a well-known and widely
used metric, known as thieelative Fairness Bound (RFEB}4]. We prove that the rela-

tive fairness bound of ERR i&n, wherem is the size of the largest packet treattually

25

arrives during the execution of ERR. For guaranteed-rate flows another important perfor-
mance characteristic is the latency, which is measured as the cumulative length of time that
a newly active flow has to wait until it can start receiving service at its reserved rate. We
also evaluate the latency bound of ERR and prove that it belongs to the claagenty-
Rate (CR) Serversa general class of guaranteed-rate schedulers [38]. Our analysis proves
that the ERR algorithm has better fairness properties as well as better performance charac-
teristics than other scheduling disciplines of comparable efficiency such as Deficit Round
Robin and Surplus Round Robin. As a result, ERR is an attractive scheduling discipline
for both best-effort and guaranteed-rate traffic.

As explained earlier, frame-based schedulers are extremely efficient withilarcom-
plexity making them attractive for implementation in routers and, especially so, in hardware
switches. However, these frame-based schedulers suffer from a number of disadvantages.
Let us first re-examine the behavior of a frame-based scheduler such as ERR. The ERR
scheduler works imounds where a round is defined as one round-robin iteration over all
flows that are active at the start of the round. The scheduler selects the flow at the head of
this list and serves it for a continuous period of time in proportion to its weight. This results
in a highly bursty packet stream at the output of the scheduler. A high degree of burstiness
in the traffic increases the delay jitter which can in turn have an adverse effect on the perfor-
mance of real-time applications. In addition, when a new flow becomes active it has to wait
until all the other previously active flows are served by the scheduler before it can receive
any service. As a result, the latency bound of these schedulers can be considerably greater
than the sorted-priority schedulers. In addition, due to the round robin order of service, a
flow that is lagging in service in comparison to other flows has to wait for its compensation
for this service lag in the subsequent round. Further, there is no means for such a lagging
flow to receive precedence over all the other flows which have already received more than
their fair share of the service in the previous round. These weaknesses stem from the round

robin nature of the service order and from the fact that each flow receives its entire share of

26

service in the round at once in one service opportunity.

In the second part of this dissertation, we address the above problems associated with
the round robin service order of the ERR scheduler and present a a scheduling discipline
called Prioritized Elastic Round Robin (PERR) [39] as a solution. The total service re-
ceived by a flow in a round in PERR is identical to the service received by the flow in
the corresponding round in ERR. However, in PERR, this service received by a flow is
split into several parts over the course of the round. The PERR scheduler eliminates the
strict round-robin nature of service order and re-orders the transmission sequence within
each round of the ERR scheduler. This reordering of packets allows the flows that have
received less service in the previous round to gain precedence over the other flows in the
current round. The exact manner in which the transmission sequence is re-ordered depends
on a certain per-flow state that indicates how far ahead or behind a flow is in consuming
its share of bandwidth. This re-ordering of the transmission sequence in PERR is accom-
plished by adding a limited number,of priority queues to the original architecture of the
ERR scheduler. We conclude this part of our work with a detailed analysis of the fairness
and performance characteristics of the PERR. To simplify the analysis, we use a novel
approach based on interpreting the PERR scheduler as an instance of the Nested Deficit
Round Robin (Nested-DRR) discipline discussed in [40]. Our analysis shows that both
the relative fairness bound and the latency bound of PERR are lower than those of other
schedulers of comparable efficiency. We also show that the worst-case work complexity
of the PERR scheduler i9(log p), wherep denotes the number of priority queues. It is
important to note that < n, wheren is the total number of flows being serviced by the
scheduler. As a result, the work complexity of the PERR scheduler is much lower than those
of sorted-priority schedulers such as WFQ which have a work complexiilof; n). The
low work complexity of PERR also results in an efficient and simple software implementa-
tion. In addition, since PERR is based on the ERR scheduler it too satisfies the constraints

of wormhole routing and hence can also be used for scheduling flows in interconnection

27

networks of parallel computer systems.

The fairness and latency measures used in this dissertation and in other literature on
scheduling algorithms, however, are only bounds and do not accurately capture the behav-
ior of the scheduler most of the time under normal circumstances. Recently a new instan-
taneous measure of fairness known as@me index[41] has been proposed. This index
is adapted from the measures of inequalities used in the field of economics. A complete
evaluation of a scheduler for real-time multimedia traffic is possible with this measure. In
the final part of this work, we present extensive simulation results to comparitively judge
the instantaneous fairness achieved by ERR and PERR in comparison with other schedul-
ing disciplines of equivalent complexity such as DRR, SRR and Pre-order DRR [42]. We
also include the WFQ scheduler as a representative sorted-priority scheduler in our com-
parisons. For our simulations we make use of both synthetic traffic and real gateway traffic
traces. Besides the fairness, we also present a comparison of the latency bounds of these

schedulers.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a detailed de-
scription of the Elastic Round Robin (ERR) scheduling algorithm along with the rationale
behind it. In Chapter 3 we presents analytical results on the efficiency, fairness and perfor-
mance characteristics of ERR. Chapter 4 first highlights the problems associated with the
frame-based schedulers. We then present the Prioritized Elastic Round Robin (PERR) as
a solution to eliminating these limitations. In Chapter 5 we evalulate the performance and
fairness bounds of the PERR scheduler. Chapter 6 presents a simulation-based evaluation
of the instantaneous fairness and latency bounds of ERR and PERR as compared to other
fair efficient schedulers. Finally, Chapter 7 gives a summary of this dissertation, together

with some conclusions and directions for future research.

28

Chapter 2. Elastic Round Robin

In this chapter we propose a novel fair, efficient and low-latency scheduling discipline
called Elastic Round Robin (ERR) which addresses the constraints imposed by wormhole
switching as described in Section 1.1. Even though ERR is designed for wormhole net-
works, it can be used in a wide variety of contexts whenever there is a shared resource that
needs to be allocated fairly among multiple requesting entities. In some of these contexts
its unique properties relevant to wormhole switching are critical, and in some others, its
advantages derive from its simplicity, better fairness and better performance characteris-
tics. For e.g., ERR can be implemented in the Internet routers for fair scheduling of various
flows of traffic corresponding to a source-destination pair. Also, despite the constraints of
wormhole switching imposed on the design, ERR can be used to schedule packets in such
a network, since it does not use the knowledge of the packet length to make a schedul-
ing decision. Besides scheduling packets from input queues to output queues in wormhole
switches, the ERR algorithm can actually also be used for achieving low average delay in
the fair scheduling of packets to the output link from output queues belonging to various
virtual channels. ERR can also be easily adapted for scheduling guaranteed-rate flows.

Because of the wide applicability of our solution, and so that this work may be readily
understood and used in a variety of contexts, we present this algorithm as a solution to the
following abstraction of the problem. Consideflows, each with an associated queue with
packets in it. All then flows have a continuous stream of arbitrary sized packets arriving to
the switch and all these flows wish to leave the switch via the same outgoing link as shown
in Figure 2.1. The scheduler dequeues packets from these queues according to a scheduling
discipline and forwards them for transmission on an output link or to another queue. As
in traditional scheduling problems, we allow that the length of time it takes to dequeue a

packet is proportional to the size of the packet. However, to apply this work to wormhole

29

Treffic
Generators

VAR
5\

Figure 2.1: The switch model

networks, we require that the scheduling algorithm not know the length of a packet until

it has completely dequeued the packet. For wormhole networks, references to the length
of the packet in the algorithm may be replaced by length of time it takes to dequeue the
packet. In all of this chapter, we use a flit as the smallest piece of a packet that can be

independently scheduled, and we measure the length of a packet in terms of flits.

The aim of the ERR scheduler is to give each flow a fair share of the output bandwidth
and hence provide protection from flows that may send large sized packets or the flows
that may send packets at a high rate. The main idea is as follows: in ERR, each flow is
assigned aallowance measured in terms of the number of flits, that a flow can transmit in
any given round. The queues are serviced in round robin order. When a queue is selected
for service, ERR scheduler calculatesatiowance ERR serves a queue as long as the
number of flits transmitted from that queue in any round is less than its allowance in that
round. The ERR scheduler, however, allows a flow to exceed its allowance. Associated
with each queue is a statgyrplus countwhich keeps track of the extra bandwidth that a

flow used in any given round. Theurplus counis used to calculate the allowance for a

30

flow in the following round, so that if a flow overdraws its allowance by some amount, it
is penalized by this amount in the next round. A flow that tries to seize a large fraction of
bandwidth beyond its fair share will have a large value of surplus count. In the following
round, the ERR scheduler allows the other flows to transmit at least as many flits as this
flow did in addition to its fair share in the previous round. Thus, the flows that received

little service in a round are compensated for in the next round.

The rest of the chapter is organized as follows. Section 2.1 presents a detailed descrip-
tion of the ERR scheduler along with the rationale behind it. ERR was originally designed
for use in wormhole networks such as the interconnection networks of parallel computer
systems. In addition, ERR can also be used for scheduling best-effort traffic in the Internet.
In Section 2.2, we present a weighted version of ERR which can be used for scheduling

guaranteed-rate flows.

2.1 Algorithm Description

A pseudo-code implementation of the ERR scheduling algorithm is shown in Fig-

ure 2.2, consisting dhitialize, EnqueueandDequeueoutines.

We define a flow aactivewhen a packet belonging to this flow is in the middle of being
dequeued by the scheduler, or when the queue corresponding to the flow is not empty. In
ERR, we maintain a linked list, called ti#etiveList of flows which are active. The ERR
scheduler moves through this list in a round robin manner and serves packets from the
gueue it points to. A flow whose queue was previously empty and therefore not in the
ActiveList is added to the tail of the list whenever a new packet belonging to the flow
arrives. The ERR scheduler serves the fiomt the head of this list. After serving flowy
if the queue of flowi becomes empty, it is removed from the list. On the other hand if the
gueue of flowi is not empty after it has received its round robin service opportunity,flow

is added back to the tail end of the list.

Initialize: (Invoked when the scheduler isinitialized)
RoundRobinMisitCount = 0;
PreviousMaxSC = 0;

MaxSC = 0;
for(i=0i<n;i=1i+1)
; =0;

Enqueue: (Invoked when a packet arrives)
1 = Queuel N'WhichPacketArrives;
if (ExistslnActiveList(i) == FALSE) then
AddToActiveList(i);
Increment SzeOfActivelist;
SC; =0;
end if;

Dequeue:
while (TRUE) do

if (RoundRobinMisitCount == 0) then
PreviousMaxSC = MaxSC;
RoundRobinVisitCount = SzeOfActivel.ist;
MaxSC = 0;

end if;

1 = HeadOfActiveList;

RemoveHeadOfActiveList;

A; =1+ PreviousMazSC — SC;;

Sent; = 0;

do
TransmitPacketFromQueue(z);

Increase Sent; by Lengthl nFlitsOf TransmittedPacket;

while (Sent; < A;);
SC; = Sent; — Ai;
if (SC; > MaxSC) then
MaxSC = C;;
end if;
if (QueuelsEmpty == FALSE) then
AddQueueToActiveList(i);
ese
&:i = 0;
Decrement SzeOfActiveList;
end if;
Decrement RoundRobinVisitCount;
end while;

Figure 2.2: Pseudo-code for ERR

31

32

TheEnqueuegoutine is invoked whenever a new packet arrives at a flow. Hirgpieue
routine queues a packet for an output link of a switch. This is done by looking at the
flow identifier or flow id in the packet header. Then, if the flow identifier does not already
exist in theActivelList it is added to the list and itSurplus Counts reset to zero and the
SizeOfActiveLiss incremented by one. THeequeueaoutine is the heart of the algorithm
which schedules packets from the queues corresponding to different flows. As long as there
are packets queued for an output link, this process is active. Thus, the work to process a
packet involves two parts: enqueuing and dequeuing.

Consider the instant of time,, when the scheduler is first initialized. We defReund
1 as one round robin iteration starting at timeand consisting of visits to all the flows that
were in theActiveListat timet;. We illustrate this definition of a round using Figure 2.3.
Assume that flowsi, B andC are the only flows active at the beginningldund 1 The
visits of the scheduler to the flow$, B andC', compriseRound 1 Let flow D become
active after the time instarit, but before the completion of Round 1 at time instant
The scheduler does not visit flow in Round 1since D was not in theActiveListat the
start of Round 1 Round 2is now defined as consisting of the visits to all of the flows
that are in theActiveListat timet,. Assuming that flowsd, B andC' are still active at
time t,, Round 2will consist of visits to the flows4, B, C' andD. In general, we define
round: recursively as the set of visits to all the flows in thetiveListat the instant round
(1 — 1) is completed. In order that the scheduler knows the number of flows it has to visit
in any given round, we introduce the quantRpundRobinVisitCounthich denotes the
number of flows that are in th&ctiveListat the start of a round. This is done by setting
RoundRobinVisitCourib the SizeOfActiveLisat the start of each round. After a visit to
each flow,RoundRobinVisitCouris decremented by one. This means that at any given
time, RoundRobinVisitCounndicates the number of flows that are yet to be visited by
the scheduler in the current round. WHeaundRobinVisitCourgventually equals zero, it

implies the end of a round.

33

time

—_—

1)
<~— Round1 —==—— Round 2

Flows Served: A, B, C Flows Served: A, B, C, D
A

FlowD
Becomes Active

Figure 2.3: Definition of a round

In each round, the scheduling algorithm determines the number of flits that a flow is
allowed to send. We call this quantity tiadlowancefor the flow during that round. The
allowance assigned to floinduring rounds is denoted by4;(s). This allowance, however,
is not a rigid one and is actualslastic in that a flow may be allowed to send more flits
in a round than its allowance. We allow a flow to exceealtswancebecause, as already
explained, in a wormhole switch, once the scheduler starts serving a packet, it will have to
serve that packet in its entirety before it schedules packets from other flows for the output
link. Let Sent;(s) be the number of flits that are transmitted from the queue of flow
rounds. Each time a packet is successfully transmitted, this quantity in incremented by
the length of the packet in flits. The ERR scheduler will keep serving the packets from the
gueue, if the total number of flits transmitted by the flow so far in the current round is less
than its allowance. The ERR scheduler, thus, makes the scheduling decision without any
knowledge about the packet length.

Note that the last packet transmitted by a flow may cause it to exceed its allowance,
as can happen when the allowance is smaller than the size of the packet at the head of the
corresponding queue. The following example will help make this point clear. Consider

a flow 7, with allowance equal to 11 flits. Let the queue of flowwave two packets, and

34

assume that the length of the packet at the head and the one following it be 10 and 20 flits,
respectively. Now, the ERR scheduler will transmit the packet at the head. Since the total
number of flits transmitted by the flomso far in the current round is less than its allowance,
ERR scheduler will schedule the 20-flit packet (now at the head of the queue), letting flow
1 to exceed its allowance by 19 flits. Note that every time a scheduler visits a certain flow,
it transmits at least as many flits as its allowance from the queue of that flow. When a flow
ends up sending more than its allowance, it is interpreted as having obtained more than its
fair share of the bandwidth. The scheduler records this unfairness iButpus Count
(SC) associated with each flow. The surplus count, during any round, is the number of flits
the flow sent in addition to its allowance.

Let SC;(s) denote the surplus count of floinin roundr. Then after serving flow in

rounds, the scheduler computeg’;(s) as

SC;i(s) = Sent;(s) — Ai(s) (2.1)

We introduce a quantity/azSC (s) which denotes the largest surplus count among all

the flows served during round In other words,

MazSC(s) = max {SC;(s)},Vj served in round (2.2)

When the ERR scheduler is first initialized this quantity is set to zero. In any given round,
after a flow has been visited by the scheduler, its surplus count is computed using Equa-
tion (2.1). The ERR scheduler then checks if this surplus count is greater then the current
value of MazSC(s) and if it is, it sets the value al/azSC(s) to this new surplus count.

In a given round, after the scheduler has visited all the flows, letfloe/the one that has

the largest value of the surplus count. In the following round, the scheduler ensures that
each flow is allowed to send at least as many flits as fl@aestually sent in excess of its

allowance in the previous round/axzSC (s) is used, as follows, to recursively compute the

35

allowances for each of the flows in the next round.

Ai(s) =1+ MazSC(s — 1) — SC;i(s — 1) (2.3)

Note that, for flow:i, which had the largest surplus count in the previous round, the new
allowance is 1. This is ensured by the addition of 1 in (2.3) so that the scheduler will
transmit at least one packet from this flow during the next round.

The allowance given to each of the flows in a given round is not fixed and is computed
depending on the behavior of the flows in the previous round. After the ERR scheduler
serves flowi, if the queue of flowi is empty, its surplus count is reset to zero and it is
removed from thé\ctiveListand theSizeOfActiveList decremented by one. Otherwise if
flow i has packets in its queue that are ready for transmission, it is added back at the tail
end of the list and we store its surplus count for use in the next round.

Figure 2.4 illustrates the first three rounds in an execution of the ERR scheduling disci-
pline. In this figure, at the beginning of the first of these rounds, the surplus counts for all
the three flows and th&/azSC' are all initialized to 0. Thus, from Equation (2.3), the al-
lowance during round 1 is equal to 1 for all the flows. The sizes of the packets actually sent
by the flow during this round are shown by the vertical bars, and the new allowances for
the next round are again computed using Equations (2.1) and (2.3). The valie:6¢’
used in each round to compute the allowance is also shown. In round 1Afteansmits
a packet of length of 32 flits, thus exceeding its allowance by 31 flits. Fdnansmits a
packet of length 16 flits andCz(1) is computed as 15. The scheduler schedules a packet
of length 24 flits from flowC' andSC¢(1) is computed as 23 flits. Thus, at the end of round
1, MazSC(1) equalsSC4(1) and this is used to calculate the allowances for all the flows in
the next round in accordance with Equation (2.3). In round 2, the allowance forAfliew
minimum, while the allowances for the other flows have been increased, thus compensating
for the past unfairness. It is easily observed from Figure 2.4 that, in general, flows which

receive very little service in a round are given an opportunity to receive proportionately

36

—
™
I
™
AN
I
. o
(90]
1 — 32
%) h
™
(q\]
11 8
8 24
Ln
—
é'% o | 16
1
32| N~
1 8
16 gll 12 é‘g 20
8| 8
4 4
N~ N~ —
— — — — — ()} — — N
Il 1l 1 1 Il 1l 11 I Il
< € € € < « €« <« <
O 4 & o 4 o o «H
8 8 8 8 8 8 8 8 8
‘LL LL LLHLL (T LLHLL L LL‘
Round 1 Round 2 Round 3

MaxSC=0 MaxSC=31 MaxSC=23

Figure 2.4: An illustration of 3 rounds in an ERR execution

more service in the next round.

Figure 2.5 shows a block diagram of a portion of ERR to illustrate the various operations
used to determine when the scheduler should stop service of one flow and begin service for
another. In the diagranRreviousMaxSGnd RoundRobinVisitCourdre abbreviated as

PMaxSCandRRVC The thin lines in the figure indicate single-bit signals, while the thick

37

Size of packet servt

Begin service of flow i
Last flit of a packet transmitted I
ActiveList Size
0 1] Load| [Clear Load| Load <> Clear Load
~ Selec { 00— Register PMaxS ‘ Register MaxSC Register A Register Sent
Multiplexer

L L
\ 4 \ 4 v
Load 1 A B A B A B
Register RRVC Adder Comparator Adder
0 A<B A+B

A+B ‘
) v ¥ =3
v & A B v v

Comparator v
A=B A B
v Comparator A B
Subtractor

A<=B Subtractor
A-B
A-B
\
Queue of flow i is empty Clear Load

Subtractor
A-B

Register S Stop service of flow i

Figure 2.5: A block diagram illustration of the ERR scheduler

dark lines indicate multi-bit buses carrying quantities such as packet sizes and values of

various counters.

2.2 Guaranteed-Rate Scheduling using ERR

In this section, we show that ERR can be easily adapted for scheduling guaranteed rate
connections. We present a weighted version of ERR for guaranteed-rate services. Consider
an output link of transmission rate access to which is controlled by the ERR scheduler.
Letn be the total number of flows and letbe the reserved rate for floivLet p,,;, be the

smallest of the reserved rates. Note that since all the flows share the same output link, a

38

necessary constraint is that the sum of the reserved rates be no more than the transmission

rate of the output link. In other words,

n
Zpi <r
i—1

In order that each flow receives service proportional to its guaranteed rate, the ERR sched-

uler assigns a weight to each flow. The weight assigned todlaw; is given by,

w; = (2.4)

Note that for any flowi, w; > 1.

The weighted version of ERR is exactly similar to the ERR algorithm described in
the preceding section. The only difference is in the calculation o”All@vanceand the
MazSC(r). MaxSC|(s) is defined as the largest weighted surplus count among all the flows
served in round. In other words,

MaxSC(s) = max {%(S)} ,Vj served in round (2.5)
j
The allowance for each flow is calculated using MezSC value in the previous round, as

follows:

Ai(s) = w;(1 + MazSC(s — 1)) — SCi(s — 1) (2.6)

39

Chapter 3. Performance Analysis of ERR

In this chapter we present a detailed analysis of the performance characteristics of the
ERR scheduling discipline. We evaluate the performance of ERR based on the following

important properties:

e Efficiency The efficiency of a scheduling discipline is measured in terms of the order
of work complexity associated with the enqueuing and dequeuing operations, with
respect tar, the number of active flows. In high-speed networks with large numbers
of active flows, the time available for a scheduler to make its scheduling decision
is very small. Hence, it is desirable that the time to enqueue a received packet or to
dequeue a packet for transmission is as independent as possible of the number of flows

sharing the output link. A per-packet work complexity(®f1) is most desirable.

e Fairness: The available link bandwidth must be distributed among the flows sharing
the link in a fair manner. This ensures that the performance achieved by a flow is not
affected when a possibly misbehaving flow tries to transmit packets at a rate faster
than its fair share. We measure fairness using a well-known and widely used metric,

known as the relative fairness bound [24].

e Latency: An appropriate measure of packet schedulers in this regard, especially for
schedulers seeking to provide guaranteed services is the upper bound on the length of
time it takes a new flow to begin receiving service at the guaranteed rate [38]. The
latency bound is directly related to the amount of playback buffering required at the
receiver.

The results in this chapter present an analytical proof that the ERR algorithm has better

fairness properties as well as better performance characteristics than other fair scheduling

disciplines of comparable efficiency such as DRR and SRR.

40

The rest of this chapter is organized as follows. In Section 3.1, we prove that the work
complexity of ERR i0(1), equal or better than other scheduling disciplines. Section 3.2
presents the fairness analysis of ERR. We prove that the relative fairness bound of ERR is
3m, wherem is the size of the largest packet tlattually arrives during the execution of
the ERR scheduler. Section 3.3 briefly describes the concept of latency:rajesérvers,

a general class of schedulers proposed by Stiliadis and Verma in [38]. In Section 3.4, we
evaluate the latency bound of ERR and prove that it belongs to the cld$8 sérvers. In

addition, we also show that the latency bound derived in this section is a tight one.

3.1 Work Complexity

The work complexity of a scheduling discipline is defined as follows,

Definition 3.1.1 Consider an execution of a scheduling discipline avdéiows. We define
the work complexity of the scheduler as the order of the time complexity, with respect to

of enqueuing and then dequeuing a packet for transmission.

Note that, this definition of work complexity does not include the transmission time of the

packet.

Theorem 3.1.1 The work complexity of an ERR scheduler is O(1).

Proof: We prove the theorem by showing that enqueuing and dequeuing a packet are
each of time complexity O(1).

The time complexity of enqueuing a packet is the same as the time complexity of the
Enqueueprocedure in Figure 2.2, which is executed whenever a new packet arrives at a
flow. Determining the flow at which the packet arrives is an O(1) operation. Once, we
figure out the queue to enqueue, the packet is appended to the end of the queue. The flow at
which the new packet arrives is added to AwtiveList if it is not already in the list. This

addition of an item to the tail of a linked list data structure is also an O(1) operation.

41

We now consider the time complexity of dequeuing a packet. During each service
opportunity, the ERR scheduler transmits at least one packet. Thus, the time complexity
of dequeuing a packet is equal to or less than the time complexity of all the operations
performed during each service opportunity. Each execution of the set of operations inside
the while loop of thebequeugrocedure in Figure 3.2, represents all operations performed
during each service opportunity given to a flow. These operations include determining the
next flow to be served, removing this flow from the head of AetiveListand possibly
adding it back at the tail. All of these operations on a linked list data structure can be
executed in O(1) time. Additionally, each service opportunity includes updating the values
of surplus count and allowance corresponding to the flow being served, and also updating
the values oMaxSC PreviousMaxSCSizeOfActiveListndRoundRobinVisitCounall of
these can be done in constant time, as represented by the constant number of operations in

the dequeue procedure in Figure 2.

3.2 Fairness Analysis

The fairness of a scheduling discipline is best measured in comparison to the GPS
scheduling algorithm. The quantity, known as thiesolute Fairness Bound (AFBY a
schedulel§ is defined as the upper bound on the difference between the service received
by a flow undeiSand that under GPS over all possible intervals of time. This bound is often
difficult to derive analytically. Also it has been shown in [43] that &i€B is related by a
simple equation to another popular fairness measure known ðgve Fairness Bound
(RFB)first proposed in [24]. Th&®FBis also much easier to evaluate as compared to the
AFB. In our fairness analysis, we therefore make use ofRR& Our metric is identical
to the one used in [21]. . ThRFBIis defined as the maximum difference in the service
received by any two flows over all possible intervals of time. The following provides a

more rigorous definition. In the following, a flow is considesttive during an interval

42

of time, if, during this interval, its queue is never empty of packets awaiting transmission.
We consider only the active flows to measure the fairness because it makes no sense in
comparing a flow that is not active with the one that is, since the former does not receive

any service when it is not active.

Definition 3.2.1 Let Sent;(t1,t>) be the number of flits transmitted by flavduring the
time interval between, andt,. Given an intervalt,, t,), we define the Relative Fairness,
RF(t1,t2) for this interval as the maximum value [&fent; (1, t2) — Sent;(t1,t2)| over all
pairs of flows and; that are active during this interval. Define the relative fairness bound

(RFB) as the maximum of RF, t,) for all possible time intervaléty, t5).

It is desirable thaRFBbe a small constant. The smaller fREB, the closer the sched-

uler emulates the GPS scheduler which is considered an ideal fair scheduling algorithm.

Definition 3.2.2 Definem as the size in flits of the largest packet that is actually served

during the execution of a scheduling algorithm.

Definition 3.2.3 Define M as the size in flits of the largest packet that may potentially

arrive during the execution of a scheduling algorithm. Note that> m.

Lemma 3.2.1 For any flowi and roundr in the execution of an ERR scheduling discipline,
0<SCi(r)<m-—1 (3.1)

Proof: The lower bound orbC;(r) in the expression of the lemma is obvious since
the ERR algorithm always schedules at least as many flit$;@9 during roundr. The
only exception is when the queue for flabecomes empty in round in which case the
surplus count of the flow is reset to 0.
The ERR algorithm never begins dequeuing a new packet in a flow after the number of

flits sent in a round is equal to or more than the allowandg(r). Thus, the lowest value

43

of the allowance at which the ERR scheduler may select a new packet for transmission is
1, and this will be the last packet transmitted by the flow during this round. Since the
size of this packet can be no greater thanfrom Equation (2.1), the upper bound in the
expression of the lemma is provdll.

The following corollary follows directly from Lemma 3.2.1.
Corollary 3.2.1 In any roundr, MazSC(r) is bounded as follows,
0 < MazxSC(r) <m —1 (3.2)

The next theorem gives the upper and the lower bounds on the number of flits that any flow

can transmit im consecutive rounds during which it is active.

Theorem 3.2.1 Givenn consecutive rounds starting from roukdduring which flowi is

active, the bounds on the total number of flit§, transmitted by flow are given by,
k+n—2 k+n—2
n+ Z MazSC(r) —(m—1) < N <n+ Z MazSC(r) + (m — 1)
r=k—1 r=k—1
Proof: Substituting forA;(r) using Equation (2.3) into Equation (2.1), we get,
Sent;(r) =14 MazSC(r — 1) — SC;(r — 1) + SC;(r) (3.3)

Now, sinceN is the total number of flits transmitted by flaifrom roundr = ktor =

k+n_]~!

Overn rounds of servicing of flow, starting form round:, we get the following values of

Sent;(r):

Sent;(k) = 1+ MazSC(k — 1) — SCi(k — 1) + SC;(k)

Senti(k + 1) = 1+ MazSC (k) — SCi(k) + SCi(k + 1)

44

Sent;(k+n—2) =14+ MazSC(k+n—3) —SCi(k+n—3)+ SCi(k +n —2)

Sent;(k+n—1) =14+ MazSC(k+n—2)—SCi(k+n—2)+ SCi(k+n—1)
Summing up the above Equations, we get:

Sent;(k) + Sent;(k+1)+--- + Sent;(k+n—1) =
k+n—2
n+ Y MazSC(r) + SCi(k +n — 1) — SCi(k — 1)

r=k—1
Recall that:

N = Sent;(k) + Sent;(k+ 1) + -+ Sent;(k +mn — 1)

Therefore, we get:

k+n—2
N=n+ Y MazSC(r)+ SCi(k+n—1) — SCi(k — 1) (3.4)

r=k—1
Using Lemma 3.2.10 < SCi(k+n—1) <m —1,and0 < SC;(k — 1) < m — 1. The

result of the theorem is readily obtained by substituting for these bound&’git — 1)
andSC;(k +n — 1) in Equation (3.4)H

We now proceed to prove the bound on the fairness measure of the ERR scheduling
discipline. Note that, the relative fairness bound, RFB, is defined taking into consideration
all possible intervals of timét,,¢;). In the following, we prove that a tight upper bound
can be obtained considering only a subset of all possible time intervals. This subset is the
set of all time intervals bounded by time instants that coincide with the beginning or the

end of the service opportunity of flows.

Definition 3.2.4 LetT be the set of all time instants during an execution of the ERR algo-
rithm. DefineT, as the set of all time instants at which the scheduler ends serving one flow
and begins serving another. Define byt), for ¢t ¢ T, the flow which is being served at

time instant. Fort € T, we defineg(¢) as the flow just about to begin service.

45

The following lemma allows us to prove an upper bound on the fairness measure, stated

in Theorem 3.2.2, considering only the time intervalst,), wheret,,t, € T.

Lemma 3.2.2 RFB = max RF(¢y,1,).

t1 7t2 ETS

Proof: This lemma is proved if for any;, ¢, € T, we can findt|, t, € T, such that

RF(t),t,) > RF(ty,ts).

Consider any two active flowsand j during the interval betweety andt,, where
t1,ts € T. Without loss of generality, assume that during this interval, more flits have been
scheduled from flow than from flow;. By appropriately choosing as the time instant
at either the beginning or the end of the service opportunity givery(tp) at timet;, one
may verify that RF¢}, ts) > RF(t1,t2). Similarly, an appropriate choice df as either the
beginning or the ending instant of the service opportunity giveA(#) att,, can lead to

RF(t,,,) > RF(t;, ;). W

Theorem 3.2.2 For any execution of the ERR scheduling discipline, ENAm.

Proof: By the statement of Lemma 3.2.2, we need to only consider all time intervals
bounded by time instants that coincide with the starting or ending of service to a flow. We
therefore prove the statement of the theorem using the time interval between instants
ta, where botht; andt, belong toT..

Consider any two flows and j that are active in the time interval betwegnandi,.
From the algorithm in Figure 2.2, it follows that after flaweceives service, it is added to
the tail end of théActiveList Since flow; is in theActiveList the ERR scheduler will visit
flow j, before flow: receives service again. Thus, in between any two consecutive service
opportunities given to flow, flow j receives exactly one service opportunity. Hence, if
andn; denote the total round robin opportunities received by floasdj respectively in

the time intervalt,, t2) then,

46

Y tx

Flow | | Flowi Flow j . Flowi
|

=— Roundr(t,)—=1=— Round r(t,) —=

Figure 3.1: Explanation fgr; — ;| <1

Let r(¢) denote the round in progress at time instanAlso note that the time instant
t; may be such that the service opportunity received by one of the two flows in r¢tind
may not be a part of intervdt,, ¢,). Thus, the first time that the scheduler visits this flow
in the interval under consideration would be in the round followifYyg). Consequently, if
r; andr;, denote the rounds in which flowsand; receive service for the first time in the
interval (¢, t,) respectively, thefr; — r;| < 1. This is illustrated in Figure 3.1

Sincet; andt, both belong to seT',, assume that the time instantcoincides with the
time when the scheduler has finished serving fjoiw roundr(¢,). Hence, the scheduler
now visits flow:. Let the time instanty mark the end of the service opportunity of flow
i and the round-(t¢;). Thus, in the time interval under consideration, the ERR scheduler
visits flow for the first time in the round(¢,) and flow; in the roundr(¢,).

Without loss of generality, we can assume that in the inteftal,), flow i starts

receiving service before floy. Thus,

] S T + 1,
(3.5)
and n; <n;+1
From Theorem 3.2.1, for flow
rit+n;—2
Senti(t,t2) <ni+ > MazSC(k)+ (m — 1) (3.6)

k:’l’i -1

a7

For flow 7,

ri+n;—2
n; + Z MazSC (k) — (m — 1) < Sent;(ti,t2) (3.7)

k:Tj -1

Combining Equations (3.6) and (3.7), and using (3.5), we get,

7‘7;—"-717;—2
Sent;(t1,t) — Sent;(t, 1) < 1+ Y MaxSC(k)
k=r;—1
ri+n;—2
— Y MazSC(k) +2(m —1) (3.8)
k=r;—1
Let us now consider the quantify given by,
ri+n;—2 Tjtn; -2
D= Z MazSC (k) — Z MazSC(k)
k:'l‘i—l k:’l‘]‘—l

We now computeD for each of the four possible cases.

Case].(Ti =T n; = nj):

Case Ar; =rj,n;, = n; + 1):
D = MazSC(r; +n; — 2)
Case Jr; =r; — 1, n; = n;):
D = MaxSC(r; — 1) — MazSC(r; +n; — 1)
Case4r;=r; —1,n;, =n; + 1):
D = MazSC(r; — 1)

Using Corollary 3.2.1, in each of the above four cadesy< m. Substituting in (3.8),

the statement of the theorem is provill.

48

It can be easily verified that Theorem 3.2.2 can also be proved for the weighted ERR
scheduler using Equations (2.6) and (2.5) in place of Equation (2.3) and (2.2) in the proof

above.

In comparison to a relative fairness bound3ei for ERR, both DRR and SRR have
a relative fairness bound a@ff + 2m, whereM is the size of the largest packet that may
potentiallyarrive during the lifetime of the execution of the scheduling discipline. Recall
that m is the size of the largest packet thattually arrives during the execution of the
scheduler. In most networks, including the Internet, the vast majority of the packets in the
traffic are of much smaller size than the maximum possible size of a packet [44,45]. The
value ofm in the expression for the relative fairness, especially over short intervals of time,
is likely to be much smaller tham/. The fairness achieved by ERR, thus, is always equal

to or better than that achieved by DRR or SRR.

3.3 Latency Rate Servers

In this section we present a brief overview of the conceptaténcy Rateervers, first
introduced in [38]. The theory dfatency Rat€LR) servers provides a means to describe
the worst-case behavior of a broad range of scheduling algorithms in a simple manner. The
two key parameters that determine the behavior @f/a server are théatencyand the
reserved ratef each flow. The latency of AR server is a measure of the cumulative time
that a flow has to wait until it begins receiving service at its guaranteed rate. The latency
of a particular scheduling algorithm may depend on a number of factors such as internal
parameters of the scheduling discipline, the reserved rates of the other flows multiplexed
on the same output link and the transmission rate of the flow on the output link. It has
been shown in [38] that several well-known scheduling disciplines such as Weighted Fair
Queuing (WFQ), Self-Clocked Fair Queuing (SCFQ), Virtual Clock and Deficit Round

Robin (DRR) belong to the class gfR servers.

49

We first present some definitions and notations which will be useful in understanding

the concept ofCR servers.

Definition 3.3.1 Asystem busy period defined as the maximal time interval during which

the server is continuously transmitting packets.

Definition 3.3.2 We define a flow aactiveduring an interval of time, if at all instants of

time during this interval, it has at least one packet awaiting service or being served.

We now define define the notionbaisy period an essential component of the concept

of LR servers.

Definition 3.3.3 A busy periodof a flow is defined as the maximal time interval during

which the flow is active if it served at exactly its reserved rate.

Let p; be the reserved rate for flow Also let Arrived;(t;, t2) denote the total number
of bits of flow i that arrive at the scheduler during the time interi¢al ;). Consider an
interval of time(r, 7o) which represents a busy period for flowT hen for any time interval
(11,t) suchthat € (ry, 7»), the number of bits that arrive during this interval is greater than
or equal to the number of bits that would exit the scheduler if the flow received service at

its reserved ratey;. In other words, for alt € (1,),
Arrived;(Ty,t) > pi(t — 1)

A graph of Arrived;(r, t) against time is plotted in Figure 3.2. Figure 3.2 illustrates

two busy periods(t;,t,) and (t3,t4) for flow 4. It is important to understand the basic

difference between a session busy period and a session active period. The definition of

the busy period supposes that flows served at the constant reserved rate, and therefore,

depends only on the reserved rate of the flow and the packet arrival pattern of the flow. An

active period of a flow, however, reflects the actual behavior of the scheduler where the

50

Arrived i

T T T T time

Figure 3.2: Two busy periods for flow

instantaneous service offered to flewaries according to the number of active flows. If
during a busy period of flow, the instantaneous service rate offered to fiow greater

than the allocated rate, then the flow may cease to be active. Thus, a busy period of a flow
may include multiple active periods for that flow. The start of a busy period of a flow is
always caused by the arrival of a packet belonging to the flow.

Note that, when the same traffic distribution is applied to two different schedulers with
identical reserved rates, the ensuing active periods of the flows can be quite different. This
makes it difficult to make use of active periods to analyze a broad class of schedulers. On
the other hand, the busy period of a flow depends only on the arrival rate of the flow and
its reserved rate. Therefore, the busy period can be used as an invariant in the analysis of
different schedulers. It is because of this important property that the definition 6Ran
server is based on the service received by a flow during a busy period.

The following definitions lead to a formal notion of latency in the case of guaranteed-

rate servers. The reader is referred to [38] for a more detailed discussion.

Definition 3.3.4 DefineSent;(t1,t2) as the amount of service received by floduring the

51

interval (¢4, t).

Definition 3.3.5 Let time instanty; represent the start of a certain busy period for flaw
Lett > «; be such that the flow is continuously busy during the time intérvat). Define
Si(«;, t) as the number of bits belonging to packets in fictvat arrive after timen; and

are scheduled during the time interval,, t).

Note that,Sent;(«a;, t) is not necessarily equal t8(«;, t). This is because, during this
interval of time, the scheduler may still be serving packets that arrived during a previous
busy period. S;(«;, t), therefore, is not necessarily the same as the total number of bits
scheduled from flow in this interval. We are now prepared to present the definition of

latency inL R servers.

Definition 3.3.6 The latency of a flow is defined as the minimum non-negative cortant

that satisfies the following for all possible busy periods of the flow,

Si(ag, t) > max{0, pi(t — a; — ©;)} (3.9)

As defined in [38], a scheduler which satisfies Equation (3.9) for some non-negative
constant value 08, is said to belong to the class bhtency RatdLR) servers. The
above definition captures the fact that the latency of a guaranteed-rate scheduler should not
merely be the time it takes for the first packet of a flow to get scheduled, but should be a
measure of the cumulative time that a flow has to wait until it begins receiving service at
its guaranteed rate. A graph 6f(«;,t) against time is plotted in Figure 3.3. The RHS
of the above equation defines an envelop which bounds the minimum service received by
a flow i during the busy periodw;,). The dashed line in Figure 3.3 corresponds to this
envelop. For a particular scheduling algorithm several parameters such as its transmission
rate on the output link, the number of the other flows sharing the link and their reserved rate

may influence the latency. It has been proved in [38] that the maximum end-to-end delay

52

time

Figure 3.3: An example of the behavior of 4R server

experienced by a packet in a network of schedulers can be calculated from only the latencies
of the individual schedulers on the path of the connection and the traffic parameters on
the connection that generated the packet. Since the end-to-end delay increases directly in
proportion to the latency of the schedulers, the model highlights the significance of using

low-latency schedulers for achieving low end-to-end delays.

3.4 Latency Analysis

The analysis of the latency of ERR is facilitated by the following result, stated below
as Lemma 3.4.1 and proved in [38]. This result allows one to obtain a bound on the latency
achieved by a flow as given by Definition 3.3.6 by considering only the active periods of a

flow.

Lemma 3.4.1 Let ; be an instant of time when flowbecomes active. Leét> 7, be some

instant of time such that the flow is continuously active during the time intérya). Let

53

©’ be the smallest non-negative number such that the following is satisfied for all

Sent;(;,t) > maz{0, p;(t — 7, — ©))} (3.10)

7

Even thoughr;, t) may not be a continuously busy period for flowhe latency as defined

by Definition 3.3.6 is bounded I8y,.

We now proceed to derive a bound on the latency of the ERR scheduler, using the
lemma above. Note that, the instant of time when a fildgcomes active;;, may or may
not coincide with the start of the round robin service opportunity of some other flow. In
the following, we prove that a tight upper bound on the latency of the ERR scheduler can
be obtained by considering belonging to only a subset of all possible time instants. This
subset is the set of all time instants that coincide with the beginning or the end of the service

opportunity of flows.

Definition 3.4.1 DefineT as the set of all time instants, during an execution of the ERR
algorithm, at which the scheduler ends serving one flow and begins serving another. Define
T, as the set of all time instants at which the scheduler begins serving.fidate that, the

setT is the union ofT; for all flows<, that are served during the execution of the scheduler.

Lemma 3.4.2 The latency experienced by flawn an ERR scheduler will reach its upper

bound,©’, only if the time instant;, at which flowi becomes active, belongs to the et

Proof: Assume that flowi becomes active at time instant Let (¢1,%2),t1 < 7; < t3
be the time interval during which some flgw£ i receives its round robin service opportu-
nity. Consider the case whendoes not coincide with the start of the service opportunity
of flow ¢, i.e.,7; > t;. Now, the time intervalt,, 7;), which is a part of the round robin
service opportunity of flow, will not contribute to the latency experienced by flowOn
the other hand, consider the case wheroincides witht,, the start of the service opportu-

nity of flow 5. Now, the time for which flow has to wait before receiving any service will

54

include the entire time intervat,, t5) during which flow; receives its round robin service
opportunity. Clearly, the latency experienced by floww always greater when coincides
with the start of the service opportunity of some other flow. The statement of the lemma
follows from this observatiorill

From Lemma 3.4.2, in deriving an upper bound on the latency experienced by, flow
therefore, one needs to only considersuch thatr; € T. The following lemma further
limits the cases we need to consider in deriving the upper bound. Note that, in proving the
upper bound, we need to only consider the intervals of time over which Equation (3.10)
is an equality. In fact, the upper bound on the latency is achieved at time instahen
Sent;(t;,t) = p;i(t — 7, — ©}). The following lemma provides a simple condition bm

order to achieve the equality in Equation (3.10).

Lemma 3.4.3 If flow i becomes active at time instanfthen there exists somes T; such

that the flow remains active during the interval, ¢), and

(2

Proof: Note that, ifSent;(7;,t) = p;(t — 7, — ©Y), then the flow experiences the worst-

case latency at time instaht Consider any two consecutive time instantand¢, which
both belong tdI';. Consider an instant of timgt; < t < ts.
Case 1:Lett be such that flow is receiving service at time instant

During the interval(t,,t), the amount of service received by the flowrig — t;),
wherer is the rate of the link. Clearly, during this time, the flow is receiving service at the
guaranteed rate or higher. Therefore, the worst-case latency experienced by the flow until
any time in the intervalt,, ¢) is no worse than that experienced by it until timec T'.
Case 2:Lett be such that some flow other thais receiving service at time instant

During the interval(t, t,), flow i receives no service at all. Therefore, the latency

experienced by the flow increases after titi®it only until timet,. Thus, the worst-case

55

latency experienced by the flow until any time in the interi¢at,) is no worse than that
experienced by it until time, € T,.

The above two cases illustrate that the worst-case latency experienced by a flow during
aninterval(ty, t5) is equal to the latency experienced by the flow until either tijrer time
to. Extrapolating to all intervals between consecutive time instants that beldhig the

statement of the lemma is provdll.

Theorem 3.4.1 The ERR scheduler belongs to the classC& servers, with an upper

bound on the latenc®; for flowi given by,

< (W —w)m+ (n—1)(m—1)

0, < (3.11)

r

wheren is the total number of active flowH; is the sum of the weights of all the flows and

r is the transmission rate of the output link.

Proof: From Lemma 3.4.1, we know that the latency of the ERR scheduler as defined

by Equation 3.3.6 is bounded I63/. Hence, we will prove the theorem by showing that,

(W —=w)m+ (n—1)(m —1))

o <

(2

Let time instantr; represent the time instant at which flawbecomes active. To prove

the statement of the theorem we must consider a time intérya) wheret > 7;, during
which flow i is continuously active. We first obtain the lower bound on the total service
received by flowi during the time interval under consideration. Then we express the lower
bound in the form of Equation (3.10) to derive the latency bound. By the statement of
Lemma 3.4.2, this upper bound on the latency is reached only if the time instant at which
flow ¢ becomes activer;, belongs toT. Therefore, in seeking the upper bound on the
latency, we may assume that flavbecomes active at exactly the instant that some other
flow begins receiving service. Lef be the time instant marking the start of th¢h service

opportunity of flow: after it becomes active at time instant Note that,7* belongs to

56

time
ty t, [P L
<— Round kg Round k + 1 Round k j+ k————=
12 u 1] 2 i n 1]2 i u . n
~~~~~~~ e

; ; timeinterval -

i 1 under consideration ‘

T 15 T«

. I

Flow i

becomes active

Figure 3.4: An illustration of the time interval under consideration for the analysis of the
latency bound of ERR

T,. Therefore, from Lemma 3.4.3, in order to determine the latency bound as defined by
Equation 3.10, one needs to only consider intervals of time-*) for all k. Figure 3.4
illustrates the time interval under consideration for a gi¥en

The first step toward analyzing the latency bound involves determining the upper bound
on the time interval under consideration. Note that, the time instamiay or may not
coincide with the end of a round and the start of the subsequent roung; hetthe round
which is in progress at time instantor which ends exactly at time instant Let the time
instantt;, mark the end of roungk, + ~ — 1) and the start of the subsequent round. For any

flow j during a rounds in the interval under consideration, using (2.1) and (2.6), we have,
Sent(s) = w;(1 + MazSC(s — 1)) + SC;(s) — SC;(s — 1) (3.12)

As illustrated in Figure 3.4, assume that the time instant when flbecomes active
coincides with the time instant when some flgus about to start its service opportunity
during theky-th round. LetG, denote the set of flows which receive service during the

time interval(r;, t,), i.e., after flow i becomes active and during roukg Similarly, let



57

G, denote the set of flows which are served by the ERR scheduler during the time interval
(to,7:), i.e., beforeflow i becomes active and during rouig. Note that, flow: is not
included in either of these two sets since flowvill receive its first service opportunity
only in the(ky + 1)-th round. If the time instant; coincides with the end of a round, then

the setG, will be empty and all ther{ — 1) flows will belong to the seG,. Note that, the

union of the set&,, G, and flow: results in the set ot active flows. In other words,
G, UGy U{i} = {n} (3.13)

Consider the time intervdl;, 7¥) during which flow: receivesk round robin service

opportunities. This time interval can be split into three sub-intervals:

1. (13, t1): This sub-interval includes the part of tlg-th round during which all the
flows belonging to the s&, will be served by the ERR scheduler. Summing Equation
(3.12) over all these flows,

=7 < % > {w;(1 4+ MazSC (ko — 1)) + SCj(ko) — SCj(ko — 1)} (3.14)

Jj€Gq

2. (t1,tx): This sub-interval includes — 1 rounds of execution of the ERR scheduler
starting at roundk, + 1). Consider the time intervat(, ¢,.1) when roundky + h)

is in progress. Summing Equation (3.12) overaflows,

44
th-i—l — th S 7(1 + MG,ZESCU{?Q + h — 1))

+ %i{scj(ko +h) = 8Cj(ko+h —1)}

J=1

Summing the above ovék — 1) rounds beginning with round:¢ + 1),

W W k—1
t — < —(k-1 — M h—1
k tl < , (k’ ) + , hz:; CLSESC(k’O + )

+ % S {SC ko +  — 1) — SC;(ho)} (3.15)

j=1



58

3. (tx,7F): This sub-interval includes the part of tiig, + k)-th round during which
all the flows belonging to the s&; will be served by the ERR scheduler. Summing

Equation (3.12) over all these flows,

1
-t < . Z w;i(1 4+ MazSC (ko + k — 1))

JEGY

+% > {SCylko + k) — SC;j(ko + k — 1)} (3.16)

JEGy
Combining Equations (3.14), (3.15) and (3.16) we have,

1 1
-1 < . Z w;(1+ MazSC (ko — 1)) + - Z w;(1+ MazSC (ko + k — 1))

j€G, J€GY
k—1
020+ WS MawsO(h + b — 1)
T T he1
1
+o Z{Soj(ko) — SCj(ko — 1)}
J€Ga
1
+ =) {SCi(ko + k) — SCy(ko + k — 1)}
T
JEGy
1 n
+ - > {SCy(ko + k — 1) — SC;(ko) } (3.17)

j=1

Simplifying Equation (3.17) using Equation (3.13) results in,

1 1
g < . > wj(1 + MazSC (ko — 1)) + . > wi(1+ MazSC (ko + k — 1))

j€G, J€Gh
W W k—1

+—(k=1)+ 7;Max80(k:o +h—1)
1

+= > {SCi(ko + k — 1) — SCj(ko — 1)}
" JEGq

+ % S T{SCy (ko + k) — SC; (ko) }

JEGy

4 {SCulho + k — 1) — SCulko))



59

Using the bounds on the surplus count from Equation (2.1) in the above equation, we have,

k
T =T <

%4 W —w; 1
—(k—1 L R MaxSC (kg — 1
r( )+ . +r2w] axSC (kg — 1)

Jj€Ga

k 1
Ll
+— Z MazSC (ko +h—1) + > w;MazSC(ko + k — 1)
h=1

T ‘
JEGy

Loz Dlm 1) + 150tk + k- 1) (3.18)
T T
Solving for (k — 1),
r W — w; 1
(k=1 > (7} - h e Z w; MazSC (ko — 1)

J€Ga

k—1
1

—>  MazSC(ko+h—1) — T > wi(MazSC(ko + k — 1)

h=1 JEGy

1
no )( —1)— =8Ci(ko+k—1) (3.19)

w w

Note that, the total data transmitted by flowuring the time interval under considera-

tion, (r;, ) can be expressed as the following summation,
Sent;(1;, 7F) = Z Sent;(z)

Substituting Equation (3.12) in the above equation,

k
Sent; (15, 7F) = wi(k — 1) + wiz MazSC (ko +h — 1)+ SCi(ko + k — 1) — SC;(ko)

h=1
Note that, in ERR the surplus count of a newly active flow is initialized to zero. As a result,

since flow: becomes active at time instant SC; (ko) is equal to zero. Substituting this in

the above equation, we get,

k
Sent;(1i, 7F) = w;(k — 1) + w; Z MazSC (ko +h —1)+ SCi(ko + k — 1)

h=1

(3.20)



60

Using Equation (3.19) to substitute for — 1) in Equation (3.20), we have,

Sent;(ri,7F) > “V“VT(Tf ) - %(W —w) — WWZ 3w, MazSC (ko — 1)
jeGa
k
—w; Y MazSC(ko +h — 1) — — Z w; MazSC (ko + k — 1)
h=1 ]GGb
Ww; Ww;
— gy (n = D(m = 1) = 2SCilko + k= 1)

k
+w; Y MazSC (ko + h— 1) + SC;i(ko + k — 1)
h=1

Simplifying the above equation,

w;r i 1 1
Sent;(r;, 7F) > T ((n —7i) = —(W —wi) = ;]EZG w; MazSC (ko — 1)

1 1
— ;j% w;MazSC (ko +k — 1) — ;(n —1)(m— 1))
—SCy(ko + k — 1) <W - 1) (3.21)

Using Equation (3.18), it can be easily verified that,

I A . ~
(7 =7) = ~(W —w;) = — ¥ w;MazSC (ko — 1)

Jj€Gq

—%ijMaxSC'(ko+k—1)—%(n—l)(m—l) >0 (3.22)

J€Gy

Now, since the reserved rates are proportional to the weights assigned to the flows as

given by Equation (2.4), and since the sum of the reserved rates is no more than the link

rater, we have,

pi < =iy (3.23)



61

Using Equations (3.22) and (3.23) in Equation (3.21), we get,

Sent;(1;, 7F) > max{O,pi<(Tf —T) — (W w;) Z w;jMaxSC(ko — 1)

jeG

— % Z wjMaxSC(ko +k — 1) — l(n —1)(m — 1)>

T
JE€GH

— SCiko + k — 1) <W - 1) } (3.24)

Comparing the Equation (3.24) with Equation (3.10) and using Lemma 3.4.1, the latency
bound is given by,
0, < 1(W —w;) + ! Z w; MazSC (ko — 1)
A r [ r 5 J 0

1 1
+o Z wjMaxSC(ko +k — 1) + ;(n —1)(m—1)

JE€Gh

+ SCi(ko + Kk — 1) (W . 1) (3.25)

From the above equation it is readily seen that the upper bound on the latency will be

reached under the following conditions:

o MazSC (ko — 1) for each flow; in the setG, is equal to it upper boundin — 1).
( From Corollary 3.2.1)

o MaxSC(ko + k — 1) for each flow;j in the setG, is equal to it upper boundm — 1).
( From Corollary 3.2.1)

o SC;i(ko+ k — 1) is equal to its lowest possible value,( From Equation (2.1) )

Substituting these bounds in Equation (3.25), we get,

W —w;)m+ (n—1)(m —1)

@z‘S(

As discussed earlier, based on Lemmas 3.4.2 and 3.4.3; flolvexperience its worst
latency during an intervdlr;, 7%) for somek. Therefore, from (3.20) and Lemma 3.4.1, the

statement of the theorem is provdll.



62

We now proceed to show that the latency bound given by Theorem 3.4.1 is tight by
illustrating a case where the bound is actually met. Assume that a fil@gomes active
at time instantr;, which also coincides with the end of a certain rougdand the start of
the round(k, + 1). Since other flows in théctiveListwill be served first, floni becomes
backlogged instantly. Assume that for any time instaht> 7;, a total ofn flows, including
flow i, are active. Also, assume that the summation of the reserved rates ofalffltives
equals the output link transmission rate,Hence,p; = f:r. Since flowi became active
at time 7;, its surplus count at the start of rouky + 1) is 0. Let the surplus count of
all the other flows at the start of rour{d, + 1) be equal to 0. Assume that, a flgw
which is not active after time; and hence is not included in theflows, was active during
the ko-th round. Also assume that flowexceeded its allowance kyn — 1) during its
service opportunity in rounél,, leading to a value oMazSC (ko) equal to(m — 1). From
Equations (2.1) and (3.12) and Corollary 3.2.1, any given fla&n transmit a maximum
of w;m + (m — 1) bits during a round robin service opportunity. In the worst case, before
flow i is served by the ERR scheduler, each of the other 1) flows will receive this
maximum service. Hence, the cumulative delay until fia@wceives service is given by,

O “wj)m+ (n—1)(m - 1)
D — JF#

(W —w;)m+ (n—1)(m — 1)

Noting thatS;(a;, a; + D) equals zero, it is readily verified that the bound is exactly

met attimet = o; + D.



63

Chapter 4. Prioritized Elastic Round Robin

As explained in Chapter 1, in the frame-based schemes, the scheduler provides service
opportunities to the backlogged flows in a particular order and, during each service oppor-
tunity, the intent is to provide the flow an amount of service proportional to its fair share
of the bandwidth. Examples of such schedulers are Deficit Round Robin (DRR) [21], Sur-
plus Round Robin (SRR) [34—-36] and Elastic Round Robin (ERR) [46]. The frame-based
schedulers do not maintain a global virtual time function and also do not require any sorting
among the packets available for transmission. This reduces the implementation complexity
of frame-based scheduling disciplines¢1 ), making them attractive for implementation
in routers and, especially so, in hardware switches. However, these frame-based schedulers

suffer from the following disadvantages:

e High Start-Up LatencyThe above frame-based schedulers operate in a round-robin
fashion, with each active flow receiving exactly one opportunity to transmit in each
round. When a new flow becomes active, it has to wait until all other previously
active flows receive their service opportunity before it can receive service from the
scheduler. With large numbers of flows, this time period can be very large, especially

in comparison to sorted-priority schedulers such as WFQ antQVF

e Bursty output:Each flow is served over a continuous time interval during its round
robin service opportunity leading to a bursty packet stream at the output of the sched-
uler for any given flow. This is not an ideal situation for real-time multimedia traffic

since even smooth flows are rendered bursty as they exit the scheduler.

e Delayed correction of unfairnesst a flow receives very little service in a particular

round, it is compensated with proportionately more service in the next round. While



64

this disadvantaged flow waits for its compensation in the next round, other flows which
have already received more service than their fair share in the previous round continue

to receive yet more service before the disadvantaged flow receives its opportunity.

e Compounded JitterWhen a flow's arrival pattern at the scheduler has high jitter, it
can frequently happen that the flow runs out of packets even before it has received
its fair share of service during its service opportunity. At this point, the scheduler
moves on to serve other currently active flows in a round-robin fashion. Our flow with
high jitter will receive its next opportunity only in the next round after all the other
active flows have completed their transmissions. This further increases the jitter in the
output of the scheduler since a delayed packet that just misses its service opportunity
in a certain round ends up experiencing significant additional delay because of having

to wait for all the other active flows to complete their transmissions.

These weaknesses of frame-based schedulers discussed above are caused by the same fea-

tures that are common to these schedulers:
1. The round robin nature of the service order.

2. Each flow receives its entire share of service in the round at once in one service op-

portunity.

Overcoming these weaknesses while preserving the low complexity of frame-based sched-
ulers forms the primary motivation behind this chapter.

At least a few proposals have been made in the last few years to overcome the limi-
tations of frame-based schedulers discussed above. The Nested-DRR scheduler proposed
in [40] tries to eliminate some of these limitations of the DRR scheduler [21]. For each
flow ¢, the DRR scheduler maintainsguantum @;, which represents the ideal service
that the flow should receive in each round of service. If the entire quantum is not used in

a given round, the deficit is recorded and used to compensate the flow in the next round.



65

Nested-DRR splits each DRR round, referred to aswgar round into one or more smaller

inner roundsand executes a modified version of the DRR algorithm within each of these
inner rounds. 11Q,,;, is the quantum assigned to the flow with the lowest reserved rate, the
Nested-DRR scheduler tries to seye,;, worth of data from each flow during each inner
round. During an outer round, a flow is considered to be eligible for service in as many
inner rounds as are required by the scheduler to exhaust its quantum. The Nested-DRR
scheduler, just like the DRR scheduler, has a per-packet work complexitylgfas long

as the largest packet that may potentially arrive in flagrsmaller tharg;.

The technique of nesting smaller rounds within a round as in the Nested-DRR scheduler
may be adapted for use with oth@(1) schedulers such as ERR and SRR. The Nested-
DRR scheduler results in a significant improvement in the latency in comparison to DRR,
but only in those cases in which there is a significant difference between the quanta assigned
to the flows. If all flows are of the same weight, the behavior of the Nested-DRR scheduler
is identical to that of DRR. Further, the improvement gained in fairness or latency is again
limited by the fact that, within each inner round, the nested scheduler still serves the active
flows in a round robin manner.

The Pre-order DRR algorithm proposed in [42] combines the nesting technique ex-
plained above with a scaled down version of the sorting of packets used in the sorted-
priority schedulers and thus, succeeds in overcoming some of the drawbacks of the DRR
scheduler. The Pre-order DRR scheduler adds a limited number of priority queues in which
packets wait before being actually scheduled for transmission. The packets that are trans-
mitted in a DRR round from each flow are now classified into these queues depending
on the percentage of the flow’s quantum that each packet will utilize following its trans-
mission. Thus, the transmission sequence of the packets in a round in DB&tdsred
allowing certain packets to receive priority over others, resulting in an improvement in the
latency and fairness properties. The rest of the chapter is organized as follows. Section 4.1

highlights the important contributions of the our solution. In Section 4.2 we present a de-



66

tailed description of our new scheme, Prioritized Elastic Round Robin (PERR) which aims

at overcoming the drawbacks of ERR.

4.1 Contributions

In this chapter, we propose a novel packet schedBigoyitized Elastic Round Robin
(PERR) which exhibits improved fairness and latency characteristics in comparison to
other known schedulers of equivalent complexity, including Pre-order DRR discussed ear-
lier. The total service received by a flow in a round in PERR is identical to the service
received by the flow in the corresponding round in ERR. However, in PERR, this service
received by a flow is split into several parts over the course of the round. The PERR sched-
uler, borrowing the principle used in Pre-order DRR, re-orders the transmission sequence
within each round of the ERR scheduler. The transmission sequence of the packets in a
round is reordered to allow the flows that have received less service in the previous round
to gain precedence over the other flows in the current round. The exact manner in which the
transmission sequence is re-ordered depends on a certain per-flow state that indicates how
far ahead or behind a flow is in consuming its share of bandwidth. As in the Pre-order DRR,
the scheduler maintains a limited numberpf priority queues which serve to implement

the re-ordered transmission sequence.

The PERR scheduler achieves a significant improvement in the fairness, latency, and
delay jitter characteristics and addresses several of the weaknesses (such as burstiness of
output traffic) of round-robin schedulers. In addition to its superior fairness and latency
characteristics, the PERR scheduler holds several advantages over other schedulers, such
as Pre-order DRR, that have attempted to address these weakness of round-robin sched-
ulers. For example, at the start of a round, the Pre-order DRR scheduler has to classify all
the packets that will be transmitted by the active flows in that round into the priority queues

prior to the beginning of the transmission of the packets. On the contrary, the PERR sched-



67

uler simply has to classify the flows (as opposed to packets) present ActiveL.istinto

its priority queues before the start of the round. This reduces the buffering requirements
and the delay through the finite state machines managing the transmission scheduling, since
classifying all the packets in the round into priority queues requires considerably more time
than simply sorting the flow identifiers. In addition, in comparison to Pre-order DRR, this
allows a more dynamic re-ordering of the transmission sequence based on the latest state

of the flows, leading to improved fairness at all instants of time.

As shown in [46,47], the ERR scheduler has a couple of important advantages in com-
parison to DRR. Since PERR is based on the ERR scheduler, PERR inherits some of these
advantages as well. For example, unlike DRR or Pre-order DRR, the PERR scheduler does
not require the knowledge of the transmission time of each packet prior to the scheduling
operation. As a result, the scheduler can be used in other networks such as wormhole net-
works, where the transmission time of a packet depends not only on the size of the packet
but also the downstream congestion. For the same reasons, PERR—but not DRR or Pre-
order DRR—may be used in ATM networks transmitting IP packets over AAL5, where the
end of the packet is not known until the arrival of the last ATM cell corresponding to the

packet.

4.2 Algorithm Description

The basic principle of the PERR scheduler involves modifying the transmission se-
guence of the packets that are scheduled within each round in ERR. This re-ordering is
performed upon the transmission of each packet, and is carried out based on the amount of
each active flow’s allowance for the round that is actually consumed until the instant that
the re-ordering is executed. This allows each flow to utilize its allowance in pieces over the
duration of each round. The reordering is implemented through the use of priority queues,

which are nothing but linked lists of flow identifiers. The scheduler transmits packets from



68

the flows in the highest priority queue first, and begins serving a flow in another priority
gueue only after all higher priority queues are empty. The core aspect of the PERR algo-
rithm is how it manages these priority queues and rearranges flows amongst these priority
queues.

In this section, we present a detailed description of the PERR algorithm. We begin our
discussion by introducing certain important definitions that are essential to understanding
the rationale behind the design of the PERR scheduler.

As in ERR, letSent;(s) represent the total service received by floim the s-th round
of service. Assume that a total gfpackets are transmitted from floinin rounds. The
packets are labeled as 1,.2, , y, indicating their position in the transmission sequence of
flow i. Let Sent¥(s) represent the total data transmitted by floafter completion of the
transmission of the first packets of the flow during theth round. Note that, the service
received by flow: in rounds prior to the transmission of its first packet in that round is
equal to zero, i.eSent)(s) = 0. Also, note thaSent? (s) = Sent,(s), since both represent

the total service received by floinn rounds. In general, of course,
0 < Sentl(s) < Senty(s), 0 <k <y

The following defines a quantity that tracks the unused portion of a flow’'s allowance,
and thus serves to help in determining the priority queue into which the flow should be

placed.

Definition 4.2.1 Define theUnserved Allowanceof a flow at any given instant of time
during a certain round as the flow’s allowance for the round minus the amount of traffic

transmitted by the flow during the round until that instant.

Let UA¥(s) represent the unserved allowance of floafter the transmission of itsth

packet during the-th round. In general/A¥(s) is computed as follows:

UAF(s) = Ai(s) — SentF(s) 4.1)



69

At the start of rounds, before service for flow begins, UA(s) is exactly equal to the
flow’s allowance for the round4;(s). Note that, the last packet transmitted from floua
rounds may cause the flow to exceed its allowance. This may result in a negative value of

UAE(s).

Definition 4.2.2 Define UA"**(s) as the maximum possible value of the unserved al-

lowance of flowi in rounds.

At the start of each round, the unserved allowance of a flow is initialized to its allowance
for the round, as defined in Equation (2.6). Therefdrel"**(s) equals the maximum

possible value of the right-hand side of Equation (2.6). Using Equation (3.1), we have,
UAT(s) = w;(1 + MazSC(s — 1)) 4.2)

The ratio of the unserved allowance of a flow at a given instant and the allowance of the
flow for the entire round represents the fraction of the allowance of a flow that is not yet
consumed until the given instant. This ratio accurately captures how far ahead or behind a
flow is in comparison to other flows in obtaining its fair share of service, and may therefore
be used in placing flows in specific priority queues. However, an approximation to this
quantity is necessary to ensure a per-packet work complexity( bf for PERR.

Normalizing the unserved allowance of a flow with respect to its maximum possible
value (instead of the actual allowance of the flow for the round) represents one measure,
though not necessarily the most accurate measure, of the fraction of its allowance that is
not yet consumed. The PERR scheduler uses this approximation which is necessary for the
efficient implementation of the scheduler. It will be shown in later sections of this chapter
that, in spite of this approximation, the PERR scheduler achieves better fairness than other

knownO(1) schedulers.

Definition 4.2.3 TheUnserved Allowance Quotieof a flow at any given instant is defined

as the ratio of the unserved allowance of the flow at that instant and its maximum possible



70

unserved allowancelJA7**(s). Let Q¥(s) represent the unserved allowance quotient of

flow: after the transmission of thieth packet of flow during thes-th round.

Q¥ (s) is given by,

b UAs) UAi(s)
Qi (s) = UA™(s) — wi(1 + MazSC(s — 1))

(4.3)
For purposes of brevity, in the rest of this chapter, the unserved allowance quotient will be
simply referred to as thguotient

The quotient of a flow at any given instant during a round represents the approximate
fraction of its unserved allowance that can be used by the flow in the remainder of the
round. The ERR scheduler never begins dequeuing the new packet fromiaffigwut” (s)
is equal to or more than the allowancg(s). Thus, the next packet of a flow is transmitted
in the same round as the previous packet if and onl§/Af*(s) is positive. This in turn

implies that a flows, after the transmission of itsth packet in round, is eligible for more

service in the same round if and only if,
0<Qf(s), 0<k<y (4.4)

wherey is the number of packets of flowserved during round.
The quotient for flowi at the start of round is equal toQ?(s). Using Equations (2.6),

(4.1), (4.2) and (4.3) we have,

 UAT™(s) — SCis — 1)

Q?(S) - UAmax(S)
Simplifying further, we get,
SCi(s — 1) = (1 — Q)(s)) UAP™ (s) (4.5)

This indicates that flow has already used ug — QY(s))-th fraction of its UAT***(s) in
the excess service that it received in the previous rqunrél). If the quotient for a flow at

the start of a round is equal to unity, it implies that the surplus count of the flow following



71

its service in the previous round is zero, i.e., the flow did not receive any excess service in
the previous round.
In general, the larger the quotient of a flow, the lesser the proportion dhgervedAl-

lowancethat has been expended in the current round.

Definition 4.2.4 Define@Q™*(s) as the maximum of the quotients among all active flows

at the start of round.

Since theUnserved Allowancéor each flow at the start of a round is equal to its al-

lowance, using Equations (2.6), (4.2) and (4.3), we have,

w;(1 4+ MazSC(s — 1)) — SCi(s — 1)

Qi (s) = wi(1 + MazSC(s — 1))

This implies that the flow with the least value of“*~1, which is the normalized
surplus count at the end of the previous roysd- 1), will be the one with the maximum
value of the quotient among all active flows at the start of round

Ideally the scheduler should serve a packet from the flow with the largest quotient
among all the active flows since it has received the least service in the current round. How-
ever, the complexity of maintaining a sorted list of active flows based on their quotients,
and the complexity of computing the maximum in this list prior to each packet transmission
is high. Givenn flows, the work complexity of the scheduler prior to each packet trans-
mission would b&)(logn). The PERR scheduler avoids this by grouping the flows into a
limited number of priority queues.

Figure 4.1(a) illustrates a block diagram of a generic scheduler.Stheduling Deci-
sion Modulewhich determines the order in which packets are served from the flow queues
is the heart of the scheduler. Figure 4.1(b) details the architecture &dmeduling De-
cision Moduleof the PERR scheduler which is responsible for selecting the next flow for
service. As can be seen from Figure 4.1(b)Caganizer p priority queues and &elector

are appended to the originBtheduling Decision Modul#f ERR. LetP(Q,, P(Q,, ... and



72

{Sﬁheduling Decision Modul e}

Flow Queues
v LTI ]
2 [T TTTT] Sheduler | o
: / Output Link
n [T TTT T]
@
Scheduling Decision Module

Flow State Variables Priority Queues

=] Organizer

ActiveList

Selected Flow

(b)

Figure 4.1: Block diagram of (a) PERR scheduler and (b) scheduling decision module of
PERR

PQ, denote the priority queues in the descending order of priority With representing

the queue with the highest priority. Unlike the priority queues in Pre-order DRR which
have to buffer the packets that will be transmitted in the round in progress, these queues
in PERR simply contain the flow identifiers. As in ERR, the PERR scheduler maintains a
linked list, called theActiveList of flows which are active. However, the flows in the-
tiveListare not served in a round robin manner as in ERR. This is a list of the active flows

that have exhausted their allowance in the current round but, will be eligible for receiving



73

service in the subsequent round. It is the task of@nganizerto determine the order in
which the flows will receive service in a round. At the start of the round Qlganizer
module classifies the active flows present inAogivelListinto several classes according to
their Unserved Allowance Quotieand places them into the corresponding priority queue.
Since there are priority queues, thé®rganizercan classify the flows intg classes. In

general, class of flow i after serving thé:-th packet of thes-th round is derived as,

z=(p+1)— ’Vpx%%—‘ (4.6)

Note that, at the start of theth round,k = 0 for all the flows in the above equation.

Note that, the quotient of a flow is a monotonically decreasing function of time over
the duration of a round. Using this fact and the definitior(3f**(s), we can conclude
that during round;, the quotients of all the active flows will always be less than or equal to
Q™™ (s), and thus: is always a non-negative quantity. By the above method, the flow with
the maximum quotient at the start of the rounid initially added into the highest priority
queue,PQ,.

Note that)™*(s) is computed only at the start of the round and need not be updated as
the round progresses. The computatio®6f (s) simply requires the scheduler to record
the least value of the normalized surplus count amongst all the flows ActingeList This
can be easily accomplished @n(1) time by carrying out a simple comparison operation
as the flows are added into tAetivelistafter exhausting their allowance in the previous
round.

Consider a situation where a flalnecomes active for the first time while some round
s isin progress. It may be possible that the the initial value of the quotient ofiflQ#( s)
is greater thard)™*(s). Using Equation (4.6), it is seen that the priority class for fide/
less thanl, the highest priority class. One possible solution would be to delay the service
of flow 7 until the next round as is done in ERR. However, this would result in an increased

latency for flow: since it would then have to wait until all the active flows have exhausted



74

their allowance before receiving any service. The PERR scheduler instead simply adds flow
¢ into the highest priority queug(@),. This eliminates the increased latency that would be
otherwise experienced by flow

When the scheduler is ready to transmit, 8edectormodule selects the highest non-
empty priority queue, say’(), and chooses the flow at the headrd),, say flows, for
service. The scheduler serves the packet at the head of the queue corresponding to flow
and following the service of this packet recalculates the priority clas® which flow+
belongs using Equation(4.6). The scheduler will continue to serve the next packet from the

gueue of flow: until the occurrence of at least one of the following events:

1. A newly active flow is added to a higher priority queu#n:this case, the scheduler
stops the service of flowand begins serving the newly active flow since it belongs to

a higher priority class than flow

2. Queue of flowi is empty :In this case, flowi is removed from the head of priority
queueP(Q,. Also, the Served flag for flow i is set to indicate that it has received

service in the current round.

3. The newly computed priority class of flawf, does not match its current priority
class,e : In this case flow is removed from the head of priority queur), and is
added to the tail of priority queuB@ ;. Note that, the only exception is when> p.

In this case no further packets are to be scheduled from #ldwring the current
round since it has exhausted its allowance. Flaw/instead added to the tail of the

ActiveList

At any given instant of time each active flow can either be present in at most one of
the p priority queues or in théctiveList Over the course of the round, as the flow con-
sumes more and more of its allowance, it will gradually move down from the higher prior-

ity queues into lower priority queues until it completely exhausts its allowance following



75

which it is added into théctiveList However, during a round it is not necessary that a
flow will pass through each of the priority queues. In fact it may be possible that the
only priority queue which a flow visits is the initial queue into which it is classified at the
start of the round. As a result of the categorization brought about by the priority queue
module in PERR, each flow uses its allowance in pieces over the course of the round. The
Organizerreorders the sequence of transmissions to enable the flows that have not utilized
a large portion of theinservedAllowance get precedence over the other flows.

The PERR scheduler also maintains two flagsrvedand Activefor each flow. The
Activeflag indicates whether a flow is active or not. Thervedlag is set when the sched-
uler serves the first packet from a flow in the current round and remains set for the entire
duration of the round indicating that the flow has been served at least once during the cur-
rent round. TheServedflags for all the flows are reset at the start of a new round. The
Servedlag prevents a flow which frequently oscillates between active and inactive periods
to receive excessive service. Consider a flow which runs out of packets in the middle of a
round before utilizing its entire allowance in that round. Since this flow is no longer active
its Active flag will be reset. Assume that a new packet arrives at the flow at some time
before the end of the current round. In the absence oStdreediag this flow would be
treated as a newly active flow and its per-flow states would be reset. This would allow the
flow to receive service in excess of what it would have received if it were active during
the entire duration of the current round. However, in PERR Seredlag will be set for
the flow under consideration indicating that the per-flow states for that flow are still valid
for the current round. When the flow becomes active it will be added into the appropriate
priority queue using Equation (4.6) depending on how much afitservedAllowanceas
utilized when it was last active in the current round, and thus, the flow will not receive any
excess service. Note that, since Bervediags for all the flows are reset at the end of a
round, accumulation of service credits from a previous round is prevented.

A psuedo-code implementation of the PERR scheduling algorithm is shown in Fig-



76

ure 4.2, consisting of thiitialize, Enqueueand Dequeueaoutines. TheEnqueueoutine

is called when a new packet arrives at a flow. Tegqueueroutine is the heart of the
algorithm which schedules packets from the queues corresponding to different flows. Fig-
ure 4.3-4.6 illustrate the pseudo-code of four routines that are used in the execution of the
EnqueueandDequeuegoutines. All of these routines can be easily implemented as simple

hardware modules.



Initialize: (Invoked when the scheduler isinitialized)
MaxSC = 0;
CurrentPriority = 0,
QmeT = 1;
MinNormalizedSC = M AX;
for(z=0;e<m;i=1:+1)
Active; = FALSE;
Served; = FALSE;

Engueue: (Invoked when a packet arrives)
1 = Queuel nWhichPacketArrives,
if (Active; == FALSE) then
if (Served; ==FALSE) then
SC; =0;
Sent; = 0;
end if;
InitializeFlow(z);
NewPriority = ComputeNewPriority(z);
AddToPriorityQueue(N ew Priority, );
if (NewPriority > CurrentPriority) then
ObtainHighestActivePriority == TRUE;
end if
end if;

Degqueue:
while (TRUE) do
if (AllPriorityQueuesEmpty == TRUE) then
InitializeRound();
end if;
if(ObtainHighestActivePriority == TRUE) then
CurrentPriority = GetHighestActivePriorityQueue;
end if;
1 = HeadOfPriorityQueug(CurrentPriority);
do
TransmitPacketFromQueue(z);
Increase Sent; by LengthlnFlitsOfTransmittedPacket;
Served; == TRUE;
NewPriority == ComputeNewPriority(z);
while ( (NewPriority == CurrentPriority) and
(IsEmpty(Queue; ) == FALSE) and
(ObtainHighestActivePriority == FALSE) )
if ((NewPriority > CurrentPriority) or
(IsEmpty(Queue;) == TRUE) ) then
RemoveHeadOfPriorityQueug(Current Priority);
if (IsEmpty(Queue;) == FALSE) then
AddToPriorityQueue(N ew Priority, 1);
end if
if (ISEmpty(CurrentPriority) == TRUE) then
ObtainHighestActivePriority = TRUE;
end if
end if
end while

Figure 4.2: Pseudo-code for PERR

77



InitializeRound()
for (¢ =0;¢<m;i=1+1)
Served; = FALSE;
PreviousMaxSC = MaxSC;
MaxSC = 0;
MinNormalizedSC = M AX;
InitializeFlom(min);

Qmaac — Am‘in -
— UA™az

Obtai nHighestT:&icTtLivePriority == TRUE;

while (IsEmpty(ActiveList) == FALSE) do
flow = HeadOfActiveList;
RemoveHeadOfActiveL.ist;
Sentfiow = 0;
InitializeFlow( flow);
NewPriority = ComputeNewPriority( flow);
AddToPriorityQueue(N ew Priority, flow);
SCflaw =0;

end while;

Figure 4.3:InitializeRound) routine

InitializeFlow(z)
Active; = TRUE;
UAT® = w;(1+ PreviousMaxC) ;
Ay =UAP*™ — SCy;

Figure 4.4:InitializeFlow() routine

78



AddToPriorityQueue(z, 7);
if (z > p) then
AddFlowToActiveList(z);
SC; = Sent; — Aj;;
if (2% > MaxsC) then
wi
MaxsC = 5%,
end if
if (2% < MinNormalizedSC ) then
n;in =1,
MinNormalizedSC = %
end if '
else

AddFlowToPriorityQueue(Pq. , );
end if

Figure 4.5:AddToPriorityQueu@ routine

ComputeNewPriority(z)
Qi _ A;—Sent; .

Amaz

z=(p+1)— IV—g:ni(l]m]-I ;
return z;

Figure 4.6:ComputeNewPrioritf) routine

79



80

Chapter 5. Performance Analysis of PERR

This chapter focuses on the performance analysis of the PERR scheduler. We analyti-
cally prove the fairness and latency properties of PERR, using a novel approach based on
interpreting the PERR scheduler as an instance of the Nested Deficit Round Robin (Nested-
DRR) discipline discussed in [40]. We prove that the latency bound obtained in this paper
using this approach is tight. We also show that the per-packet work complexity of the
PERR scheduler i©(1) with respect to the number of flows antlog p) with respect to
the number of priority queue, It is important to note thap << n, wheren are the
total number of flows being serviced by the scheduler. As a result, the work complexity
of the PERR scheduler is much lower than the sorted-priority schedulers such as WFQ
which have a work complexity ab(logn). This low work complexity of PERR makes it
attractive for implementation in high speed switches and routers.

The rest of this chapter is organized as follows. Section 5.1 discusses the interpretation
of PERR bandwidth allocations as an instance of allocations in a nested version of ERR. In
Section 5.2, we evaluate the latency bound of ERR and prove that it belongs to the general
class of Latency Rate(R) servers [38]. In addition we also show that the latency bound
derived in this section is tight. Section 5.3 analyzes the relative fairness bound of PERR.
In Section 5.4, we prove that the worst-case work complexity of PERRIisz p), where

p denotes the number of priority queues in the PERR scheduler.

5.1 Nested Round Robin Interpretation

The primary goal of the PERR scheduler is to distribute iimservedAllowancef a
flow in an ERR round into several parts, so that it can be utilized in pieces over the course

of the round. The Nested-DRR algorithm proposed in [40], modifies the DRR scheduler



81

by creating a nested set of multiple rounds inside each DRR round. The Nested-DRR
scheduler serves the active flows in a round robin order in these nested rounds by executing
a modified version of the DRR algorithm.

We can hypothetically interpret the operation of the PERR schedulanested/ersion
of ERR which is similar to Nested-DRR. This interpretation proves useful in the analysis
of the latency bound of the PERR scheduler. Each round in ERR can be referred to as an
outer round The time interval during which the PERR scheduler serves the flows present
in priority queueP(Q,, during thes-th outer round is referred to asner round(s, u). In
effect, each outer round is split into as many inner rounds as the number of priority queues,
p. Since the PERR scheduler serves the priority queues in a descending order starting at the
higher priority queue”(,,, the first inner round during outer rousdwill be (s, 1), while
(s, p) will denote the last inner round.

From Equation (4.5), we know that the excess service, if any, received by each flow
i in the previous outer rounts — 1) is equal to(1 — QY(s)) UA"**(s). Since@Q™*(s)
represents the maximum quotient among all the flows at the start of rquihds guar-
anteed that each active flawhas already utilized at leagt — Q™**(s))-th fraction of its
(UA™?(s)) during its last service opportunity in the previous roysd- 1). The goal of
the PERR scheduler is to distribute the remaining portion of each flow’s maximum pos-
sible UnservedAllowanceQ™ (s)(UA"**(s)), equally among the inner rounds. Let
IdealServed;(s) represent the ideal service received by floduring each inner round of

the s-th outer round/dealServed;(s) is computed as follows,

IdealServed;(s) = Q" (s) (AT () (5.1)

D

Ideally, therefore, each flowwill receive exactlyldealServed;(s) amount of service in
each of they inner rounds of outer round In reality, however, the last packet served in an
inner round from a flow may cause it to exceed its ideal service in that inner round. Just as

in ERR, aSurplus Count (Sd$ maintained for each flow which records any excess service



82

received by the flow. The flow is penalized for this excess transmission in the subsequent
inner round. When the scheduler selects a fldar service in an inner rounts, u), its

SC is incremented bydealServed;(s). The scheduler will serve the packet at the head

of flow ¢ as long as its SC value is positive. Following the transmission of a packet, the
SC corresponding to that flow is decremented by the size of the transmitted packet. Let
SC,(s,u) represent the surplus count of flavat the end of inner roungs, «). Further, let
Served;(s,u) denote the actual service received by floim inner round(s, u). SC;(s,u)

is calculated as follows,
SC;i(s,u) = Served;(s,u) — (IdealServed;(s) + SC;i(s,u — 1)) (5.2)

Note that, if/dealServed;(s) is less than or equal to the; (s, u — 1), then flow: will not
receive any service in inner rours, «). Thus, a flow does not necessarily receive service

in each inner round. However, the surplus count for fiosw updated at the end of each
inner round using Equation (5.2), irrespective of whether the flow receives service in that
inner round or not. In fact, it may be possible that none of the active flows receive service
in an inner round. Hence, if the PERR scheduler followed a round robin service order
as in Nested-DRR, then the scheduler would have a prohibitively large work complexity.
However, theOrganizermodule of the PERR scheduler decides which priority queues each
active flow is added into over the course of each outer round. This, in turn, determines the
inner rounds in which each flow will be served. The PERR scheduler does not need to
query all the active flows in a round robin order, thus leading to a low implementation
complexity.

Note that, the surplus count of a flow at the end of the last inner round of an outer round
is the same as its surplus count at the end of the corresponding round in ERR. In other
words, SC;(s, p) is the same asC,(s). Also, note thatSC,(s,0) represents the surplus
count of flow: at the start of the first inner rounds, 1), in outer rounds. As explained

earlier, we know that flow should ideally transmi€)™*" (s)( UA***(s)) worth of data in



83

outer rounds. The remaining fraction(l — Q™" (s))-th of the quantityUA***(s), has
already been utilized in the excess service received by flmaouter round(s — 1) and,
therefore, is a part of C;(s — 1). To account for this already utilized portion 6¥47*““ (),

SC,(s,0) is computed as:
5Ci(s,0) = SCi(s = 1) = (1 = Q™ (s))(UA (s)) (5.3)

It can be easily proved that Equation (3.1), which expresses the bounds on the surplus

count, SC,(s), also holds true foiSC;(s,u). Therefore, for any flowi and inner round

(s,u),

0<SCi(s,u) <m-—1 (5.4)

Definition 5.1.1 Let Sent;(s,u) represent the total service received by flowince the
start of thes-th outer round until the PERR scheduler has finished serving the flows in the

priority queue,P(@,,.

Note that, it is not necessary that flewvas present in priority queu(),, during outer

rounds. From Equation (5.2), the total data served from fiaw inner round(s, u) is,
Served;(s,u) = IdealServed;(s) + SC;(s,u) — SCi(s,u — 1) (5.5)
Sent;(s, ) is calculated as follows:
Sent;(s,u) = “’z:f‘ Served; (s, w) (5.6)
w=1
Substituting forServed;(s, w) from Equation (5.5) in Equation (5.6), we have,
Sent;(s,u) = u(IdealServed;(s)) + SC;(s,u) — SC;(s,0) (5.7)

Sent;(s,u) will be positive only ifu(IdealServed;(s)) is greater thasC,; (s, 0). Otherwise

it indicates that flow has not received any service until the end of(the:)-th inner round.



84

However, flow: is guaranteed to receive service in at least one inner round duringtthe

outer round. Using Equations (5.1), (5.3) and (5.7) we have,
Senti(s, u) = (%) QM () UA™ (5) + SC,(s,u) — SC(s — 1) (5.8)
Definition 5.1.2 DefineSent;(s) as the total service received by flawn outer rounds.

Note that,Sent;(s, p) represents the service received by flowhen the scheduler has
finished serving the flows in priority queu&), which in fact equalsent;(s). Substituting

u = p in Equation (5.8) and using Equation(4.2), we get,
Sent;(s) = w;(1 + MazSC(s — 1)) + SC;(s) — SCi(s — 1) (5.9)

Hence, the total service received by floim an outer round in PERR is identical to the
service received by flowin the corresponding round in ERR.

Ideally, during the normal operation of the PERR schedulerpiheer rounds in outer
rounds follow a strictly sequential order starting at inner rousd1) and ending at round
(s,p). However, in certain situations, it is possible to interrupt the sequential ordering. Let
us assume that a flojvbecomes active for the first time in outer roundhile the PERR
scheduler is serving a flow at the head of priority queuf@),. Since the quotient for
flow j is equal to 1, it will be added into priority queu&), which has the highest priority
among all the priority queues. Upon finishing the transmission of the current packet from
flow £, the PERR scheduler temporarily suspends the service ofifland starts serving
flow j which is at the head of queu@,. The PERR scheduler will keep serving flow
J until it is added either into priority queuBq), or some other queue with lower priority
than PQ,. The scheduler will then resume service of thth flow. Note that, the service
received by flow:i while it is present in queu®@,, is part of the inner rounds, p) even
though it is not contiguous with the time interval during which the PERR scheduler served
the flows presentin queue(), at the start of the outer round Also, the inner rounds, d)

will not extend over a continuous time interval because it will be interposed by the entire



85

‘\ 0 [ 5] 10 | 10 [ 10 | 10 \4\‘FlowA,wa:5

‘ \4\5\5\6\5\3\2\5\‘Flow5,wb=3

[6 [ 1 || Fowc w=1

d

‘ [ 6] s \5\4\‘FI0WD,W=2

Round 2 Round1 ——=

Db D C B B B B B BB A A A A c B A A

6 | 8 [ 5] 6 [a]s5][5]6[s5]3] 10 [5] 10 10 10 [4] 10 [ 5] 10 [4

Transmission Sequence of Packetsin ERR

Round 2 Round1l —=

B B A A C D B A D B A D B BB A c B A
4] 5] 10 [s5]6[6]5] 10 8 [ 6] 10 [ 5] 53] 1 10 [4] 10 [5]4

pq 4 pa3 Pq 2 pql pg 4= pql

Transmission Sequence of Packetsin PERR

Figure 5.1: Comparison of the transmission sequence of packets in ERR and PERR over
two rounds of execution

service received by flow since the time it became active until its addition into priority
queueP(@), or a lower priority queue. It is, therefore, not necessary that the inner rounds
in an outer round should sequentially follow one another and that the flows which receive
service in an inner round should be served in succession. However, note that this disruption
of the otherwise sequential service can only be caused due to a new flow becoming active

during the execution of that outer round.

Figure 5.1 compares the transmission sequence in the first two rounds of execution of
the ERR and PERR schedulers for the given input pattern and flow weights. In the PERR
scheduler, the flows are classified into 4 classes corresponding to the 4 priority queues.
At the start of inner round1, 1) all the flows are present in priority queus),. After

receiving service in this inner round, flawvis added intaP@,. However, the other 3 flows



86

exceed their allowance in this inner round and are therefore added inatilveList Note
that, in the second outer round, unlike the ERR scheduler where theHamsl D have to
wait for their turn in the round robin order to receive service, flévand D start receiving
service in the inner roun@, 1). However, note that flow' is served for the first time only
ininner round(2, 4). This is because its surplus count in the previous outer round was very
large resulting in a very low value of the quotient.

In the following sections we present analytical results on the fairness, latency properties

and the work complexity of PERR.

5.2 Latency Analysis

A detailed description on the concept of the Latency-RA#®R) servers was presented
in Section 3.3. In this section we derive an upper bound on the latency of the PERR
scheduler and prove that it belongs to the general clas®egervers. In addition, we also
prove that this bound is tight by illustrating a case where the bound is actually met. Our
approach here is similar to the one used in Section 3.4 while analyzing the latency of the

ERR scheduler.

Theorem 5.2.1 The PERR scheduler belongs to the clas€&f servers, with an upper

bound on the latenc®; for flowi given by,

(W—w;)m
— 4+ (n— 1)(m—1
0, < —2* (= 1)( ) (5.10)

- T

wheren is the total number of active flows,is the number of priority queues,is the

transmission rate of the output link antl is the sum of the weights of all the flows.

Proof: Since the latency of &R server can be estimated based on its behavior in the
flow active periods, we will prove the theorem by showing that,

Wmwdm 4 (5 — 1) (m — 1)

O; <
T




87

Let7; be the time instant when flowbecomes active. To prove the statement of the theorem
we consider a time intervdlr;, t), wheret > 7;, during which flow: is continuously
active. We first obtain the lower bound on the total service received by #ldwing
the time interval under consideration. Then we express the lower bound in the form of
Equation (3.10) to derive the latency bound.

In Section 3.4 and [47] it has been proved that to obtain a tight upper bound on the la-
tency of the ERR scheduler, we must consider an active pérjog such that; coincides
with the beginning of the service opportunity of a flow antdelongs to the set of time
instants at which the scheduler begins serving floWe can easily prove that the same
conditions apply for proving the upper bound on the latency of the PERR scheduler. Let
Ti(e’f) be the time instant marking the start of the service of flevhen flow: is at the head
of priority queueP @, in rounde. In other words, this time instant represents the start of
the service opportunity of flowin inner round(e, f). Therefore, in trying to determine the
latency bound of the PERR, we need to only consider time intémaii(e’f)) for all (e, f).

The first step in proving the latency bound involves determining the upper bound on
the size of the time interval under consideration. Note that, the time instardy or may
not coincide with the start of a new round. Let be the round which is in progress at
time instantr; or which starts exactly at time instant Let ¢, mark the start of the round
(ko + h). In either case, flow will be able to transmit at least;(k,) worth of data over
the course of thé,-th round. If flowi becomes active when the roukglis in progress,
i.e. whenr; < t, then the service received during the interval 7;) will be excluded
from the time interval under consideration. The time intel(valri(e’f)) will be maximal
only if the time instant; coincides witht,, the start of the-th round. Hence, we assume
that 7; coincides with the start of the thig-th round. Figure 5.2 illustrates the interval
under consideration assuming tifat /) is equal to(k, + k,v). Note that, in Figure 5.2,
OR(e) represents the-th outer round in the execution of the PERR scheduler/dtd, f)

denotes the inner rourd, f).



88

time
—_—

ty ‘ ‘ Fl ) Fk ‘ tear
< IR(k, 1) == IRy, 2) > = IR(k,*1,1)= =—IR(k,+k, 1) = <—IR(k, K, V)=
i g | hiio 2] ji2 14 120 i
! - : - R - : E R . LR N N /\ .
~——— ORky) —— = OR(Ky+ k) \
: timeinterval
: under consideration :
T (kgtkv)

Flowi T,
becomes active

Figure 5.2: An illustration of the time interval under consideration for the analysis of the
latency bound of PERR

The time interval under consideratidm;, Ti('“‘)*k’”)), can be split into two sub-intervals:

1. (7, tx): This sub-interval includek rounds of execution of the PERR scheduler start-
ing at roundk,. Consider the time interval(, t,.1) when round ko+h) is in progress.

Summing Equation (5.9) over afl flows,
w
th+1 — th = 7(1 + M(L]}SO(ko + h — 1))

1 n
+ - ;{scj(kg +h) = SCi(ko+h—1)}

Summing the above ovérrounds beginning with rounkt,,

k—1
w w
= — E M —1
tk Ti , (k) + , £ CLJ}SCUfQ +h )
1 n
=Y {SCy(ko + k= 1) = SCy(ko — 1)} (5.11)

Jj=1

2. (g, 7FT*)): This sub-interval includes the part of tiig, + k)-th round prior to
the start of the service of flowwhen it is at the head of priority queug?),. In the

worst-case flows will be the the last flow to receive service among all other flows



89

which are present in priority queueq, . In this case, during the sub-interval under
consideration, the service received by floequalsSent; (ko + k,v — 1) whereas the
service received by each flonamong the other — 1 flows equalsSent; (ko + k, v).
Note that, ifv equalsl then flow: does not receive service in this sub-interval. Hence,
summingSent; (ko + k,v — 1) andSent ; (ko + k, v) for each flow; such thatl < j <

n,j # i, we have,

; 1 -
Ti(kﬁk’ ) _ ty = — | Sent;(ko + k,v—1)+ E Sent;(ko + k,v)
r

j=1

i

Using Equation (5.8) in the above, we have,

v 1 -
Ti(k0+k’ ) t =~ Z (%) Qmm(k‘o + k‘) UAj(ko + k)

r
J#i

+ % (” ; 1) Q™ (ko + k) UA; (ko + k)

1 n
+ = Z;(Scj(ko +k,0) = SC;(ko + k — 1))
J#i

+%(S@(ko+k,v— 1) — SCi(ko + k — 1)) (5.12)

To simplify the analysis we introduce a new variaflesuch that,

Q= Q" (ko + k)(1 4+ MazSC (ko + k — 1)) (5.13)

Using Equation (3.2) in Equation (5.13), we get,

0<Q<m (5.14)



90

Combining Equations (5.11) and Equations (5.12) and using Equations (4.2) and (5.13),

we have,

n

k—1 1 v
TP < Skt N MawSCko+h—1) + = ) <—)wm
T T T = D
h=0 j=1
J#i

1 /v—-1 1
+;( - )wiQ+;Z(SCj(l€0+k,v)—SOj(ko—1))

j=1
i

1
+ ;(Scl(kig + ]’C,U — 1) — SCl(ko + k— 1))
Using the bounds on the surplus count from Equation (3.1) in the above equation, we have,

Wt 1< (v
(ko-+k,) 3 3
T; 0 —T; S Tk—l—Th:O M(lZL’SC(kQ‘l—h—l)"‘; - (1—?) UJjQ
e

1 —1 1 1
+ = (Up )wiQ+;(n—1)(m—1)+;SCi(ko+k,v—1) (5.15)

Solving fork and using the fact that’” is the sum of the weights of all theflows,

k—1
(Ko-+k,v) r I (v
> (7 )= > M - — (2 — w,)Q
k > (7 Tl)W 2 axSC(ko+h —1) % (p) (W — wy)
1 fv—-1 1 1

Note that, the total data transmitted by flowuring the time interval under consideration

can be expressed as the following summation,

Sent;(r;, Ti(k°+k’v)) = Sent;(;, ty) + Sent;(ty, Tl-(k°+k’v)) (5.17)

As explained, earlieSenti(tk,Ti(k‘)*k’”)) is the same aSent;(k,v — 1). Sent;(;,t;) can

be obtained by summing Equation (5.9) okaounds starting at round,. Substituting the

result and Equation (5.8) in Equation (5.17), we get,

k—1
Sent;(T;, Ti(kﬁk’v)) = w;k + w; Z MazSC (ko +h —1)
h=0

—1
+ (“ . ) UA;i(ko + k) + SCy(ko + k,v — 1) — SCy(k)




91

Note that, in PERR, the surplus count of a newly active flow is initialized to zero. As a
result, since flowi becomes active at time instant SC; (k) is equal to zero. Substituting

this and using Equations (4.2) and (5.13) in the above equation, we get,

k—1
Sent; (7, Tl-(kOJrk’U)) = w;k + w; Z MazSC (ko + h —1)
h=0
v—1
+ < . >wiQ+SC’i(kJU+k,v—1) (5.18)

Using Equation (5.16) to substitute fbiin Equation (5.18), we get,

v 7 v —1 W - Wy
Senti(ﬂ'ﬂ'i(kﬁk’ )) > E(Tz’(kﬁk’ - 7i) + <U ) widl ( Ww )

> b .
() v - - - - 1)
— SCy(ko + kyv—1) (% — 1)

Simplifying further we get,

1 v 1 W - Wy
Sent; (T, Ti(k()Jrk’U)) > L ((Ti(k°+k’ ) _ ;) — = ( d ) Q
W r P

- %(n —1)(m — 1)) — SCi(ko + k,v—1) (% - 1) (5.19)

Using Equation (5.15), it can be easily verified that,

1 (W —w, 1
Ti(ko—f—k:,v) s (W wz) Q——(n—1)(m—1) (5.20)

7
T P T

Now, since the reserved rates are proportional to the weights assigned to the flows as given

by Equation (2.4), and since the sum of the reserved rates is no more than the link rate

we have,

pi < =iy (5.21)



92

Substituting forg;- from Equation (5.21) in Equation (5.19) and using Equation (5.20)

we have,

v v 1 W — )
Sent,-(Ti,Ti(kOJrk’ )) > i ((Ti(kﬁk’ ) ;) — — ( o > Q
r p

_ l(n —1)(m — 1)) — SCi(ko + k,v—1) (% - 1) (5.22)

r

Comparing the above equation with Equation (3.10), the latency bound is given by,

@i§%<wgwi)ﬂ+%(n—l)(m—l)

+ SCy (ko + kv — 1) (% - 1) (5.23)

From the above equation it is readily seen that the latency reaches the upper bound under

the following conditions:
e () is equal to its upper bound;. ( From Equation (5.14) )
o SC;(ko+ k,v—1)is equal to its lower bound, 0. ( From Equation (3.1) )

Substituting these bounds in Equation (5.23), we get,

@i§1<(W_wi>m+(n—l)(m—1)) (5.24)

r p

As discussed earlier, flowwill experience its worst latency during an interya, Ti(e’f))
for some inner rounde, f). Therefore, from Equation (5.24), the statement of the theorem
is proved .l

We now proceed to show that the latency bound given by Theorem (5.2.1) is tight by
illustrating a case where the bound is actually met. Assume that a thewomes active at
time instantr;, which also coincides with the start of a certain rodgd Assume that for
any time instant, ¢t > 7;, a total ofn flows, including flow:, are active. Also, assume that
the summation of the reserved rates of all thBows equals the output link transmission

rate,r. Hence,p; = ir. Since flowi became active at time, its surplus count at the



93

start of roundk, is 0. Let the surplus count of all the other flows at the start of round
ko be equal to 0. Assume that, a fldwvhich is not active after time; and hence is not
included in then flows, was active during thie,-th round. Assume that flowexceeded its
allowance by(m — 1) in its last service opportunity in round, — 1), leading to a value

of MazSC (ko — 1) equal to(m — 1). Since the surplus counts of all theactive flows are
equal to 0, thé&Jnserved Allowance Quotiefdr all the flows at the start of thie,-th round

will be equal to unity. Hence)™** (k,) will be equal to 1 and all the flows will be added
into the priority queueP@, at the start of the round. Assume that flous the last flow

to be added into this queue. From Equations (5.4), (3.2) and (5.5), any giver ttaw
transmit a maximum ofv;(*) + (m — 1) bits during its service opportunity in an inner
round. In the worst case, before flavis served by the PERR scheduler, each of the other
(n — 1) flows will receive this maximum service. Hence, the cumulative delay until flow

receives service is given by,

<ij><%> +(n—1)(m—1)

D= J#i

r

(%)m +(n—1)(m—1)

r

Noting thatS;(r;, ; + D) equals zero, it is readily verified that the bound is exactly met at

timet =1, + D.
5.3 Fairness Analysis

In our fairness analysis, we use the popular meR&ative Fairness Bound (RFBjst
proposed in [24] and defined in Section 3.2. The RFB is defined as the maximum difference

in the normalized service received by any two flows over all possible intervals of time.
Theorem 5.3.1 For any execution of the PERR scheduling discipliR€B < 2m + 27’”

Proof: In [46] and Section 3.2, while analyzing the fairness properties of ERR, we

have proved that a tight upper bound on the the RFB of ERR can be obtained by considering



94

only a subset of all possible time intervals. This subset is the set of all time intervals
bounded by time instants that coincide with the start of the service opportunities of flows.
It can be easily verified that to prove the RFB of the PERR scheduler we need to consider
a time interval(¢,, t5) such that both the time instantsandt, coincide with the start of a
service opportunity of a flow in an inner round.

Consider any two flows andj that are active in the time interval between the time
instantst; andt,. Let (ko, f) and (ko + k, g) be the inner rounds which are in progress
at time instantg; andt, respectively. Let time instartf;, ., mark the start of inner round
(ko + h,v). In other wordsf i, 5y < t1 < Ly, r+1) ALk, g < to < tyg11)- It May be
possible that, if flowj receives service in the inner rouf¥d, f), then it does so in the time
interval (t(,,5), t1). Unlike the ERR scheduler, in PERR if flojis served before flowin
a certain inner round then, it is not necessary that the same order of service is followed in
each of the following inner rounds. Hence, on a similar note, it may be possible that if flow
j receives service in the inner routid, + &, ¢), then that service is also not included in the
time interval under consideration. Henégnt; (1, t2) andSent;(t1,t2) can be evaluated
as follows:

Sent;(t1,ty) = Sent;(ko) — Sent;(ko, f — 1)
h=k—1
+ ) Senti(ko + h) + Sent;(ko + k, g)
h=1
Sentj(tl,tg) = S@nt]’(ko) — Sent]‘(k’o, f)
h=k—1

+ Z Sent (ko + h) + Sent;(ko + k,g — 1)

h=1

Using Equations (4.2), (5.8) and (5.9) in the above and simplifying, we get,

)
p

h=k—1

Senty(t, ts) = < Qm‘””(ko)) UAT“ (ko) +k S UAT™ (ko + h)
h=1

+ (%Qm”(ko + k)) UA™ (ko + k)



95

h=k—-1

Qm”(ko)) UAP™ (ko) +k Y UAT* (ko + h)

h=1

—1
—+ <gTQmaI(k‘0 + k)) UA;nllz(kO + ]f)

fo1

Sent]-(tl, tz) = (—
p

+ SC;(ko + k, g — 1) — SC;(ko, f) (5.26)

Without loss of generality, we can assume that in the intgivat,) flow i receives more
service as compared to flgiw The normalized service for each of the flows can be obtained
by dividing the above two equations by their respective weights. Subtracting the normalized

service of flow; from that of flow: using Equations (5.25) and (5.26) we have,
S@’ﬂti(tl,t2> . Sentj<t1,t2) . UA;nax(ko)Qmax(k}o)

W (o w; p
n UAT (ko + k)Q™* (ko + k) N SCi(ko+ k., g)
wj p Wi
_ SCi(ke, f = 1) n SCj(ko +k,g—1) SC;i(ko, f)
w; w; w;

Simplifying the above using Equations (3.2), (4.2), (5.4) and Corollary 1, the statement of

the theorem is provedll

5.4 Work Complexity

Consider an execution of the PERR scheduler ovdlows. The work involved in
processing each packet at the scheduler involves two parts: enqueuing and dequeuing.
Hence, the work complexity of a scheduler is defined as the order of time complexity, with
respect tow of enqueuing and then dequeuing a packet for transmission [21,46]. Note that,
n, the number of flows competing for a link can be of the order of tens of thousands of
flows in backbone routers. Hence, it is desirable that the work complexity should be as

independent as possible of
Theorem 5.4.1 The worst-case work complexity of the PERR scheduleflisg p).

Proof: The time complexity of enqueuing a packet is the same as the time complexity

of the Enqueueaoutine in Figure 4.2, which is executed whenever a new packet arrives at



96

a flow. ldentifying the flow at which the packet arrives is@fl) operation. If theActive

flag is not set for the flow, theldeal Allowance Utilizatiorfor the flow is calculated which

in turn determines the priority queue into which the flow should be added. Also, if this
priority queue is of a higher priority than the priority queue which the PERR scheduler is
serving, a flag is set to indicate that after completing the transmission of the current packet,
the scheduler should start serving packets from the newly active flow. The addition of an
item to the tail of a linked-list data structure and conditionally setting a flag are(®gth
operations.

Let us now consider the time complexity of dequeuing a packet. Assume that the PERR
scheduler is serving flows from the priority queti€),. Note that, at least one packet is
transmitted from each of the flows that are presettd). The operations involved in serv-
ing flows in this priority queue include determining the next flow to be served, removing
this flow from the head of the priority queue and possibly adding it into some other priority
queue or the ActiveList. All these operations can be executéd in time. Additionally
the PERR scheduler may need to update certain per-flow variables which can be easily
done in constant time. However, once the quédg, is empty the PERR scheduler needs
to determine the highest non-empty priority queue. To aid in this, the PERR scheduler
maintains a linked list of the identifiers of all the non-empty priority queues. This linked
list is sorted in descending order of priority with the head of the list pointing to the high-
est non-empty priority queue. The complexity of inserting a new identifier into this sorted
linked list isO(log p) wherep represents the total number of priority queues. To select the
highest non-empty priority queue, the PERR scheduler simply has to read the identifier at
the head of this sorted list which can be doneifi) time. Hence, the overall time com-
plexity of this operation i€)(logp). A similar situation arises when a flow is added into
a priority queue which has a higher priority than the current priority queue being served
by the PERR scheduler. However, if all the priority queues are empty it is an indication

that the current round has come to an end. In this case, prior to the start of the subsequent



97

round, theOrganizermodule has to classify all the flows present in AaiveL.istinto thep
priority queues which requirgs(n) time. However, since each of thelows is guaranteed
to transmit at least one packet, the overall complexity of this operatiorlis

Note that, the PERR scheduler needs to sort the non-empty priority queues only in
the two special cases discussed above, unlike the sorted-priority algorithms like WFQ and
SCFQ where these sorting operations need to be executed prior to each packet transmission
resulting in aD(log n) work complexity wherex is the number of active flows. Also, since
n > p, the work complexity of the PERR scheduler is always lower than that of the
sorted-priority schedulers. Hence, the worst-case work complexity of the PERR scheduler

is O(log p) resulting in an efficient hardware implementatidih.



98

Chapter 6. Simulation Analysis

In this chapter we present a detailed simulation-based evaluation of both the ERR and
PERR schedulers in comparison with other schedulers of comparable efficiency. We first
present a brief discussion on a recently proposed new measure of fairness which captures
the instantaneoudehavior of a scheduler. A more detailed presentation of this measure
may be found in [41]. We then present some simulation results using real gateway traffic
traces which compare the fairness characteristics of ERR and PERR based on this new
metric with other efficient schedulers. In addition, we also compare the latency bounds of
our schemes with these schedulers.

The rest of this chapter is organized as follows. Section 6.1 presents arguments for the
need of a new measure of fairness which captures the instantaneous fairness of a scheduler.
In Section 6.2 we describe the new fairness measure kno@magdex A more detailed
description can be found in [41]. Section 6.3 presents a simulation-based evaluation of
the Elastic Round Robin (ERR) and Prioritized Elastic Round Robin (PERR) schedulers
with other guaranteed-rate schedulers of comparable efficiency. This section also presents

a qualitative analysis of the observed results.

6.1 The Need for a New Measure of Fairness

As explained in earlier chapters of this dissertation, the fairness of scheduling algo-
rithms is most commonly judged by thelative fairness bound (RFHR4]. The RFB
captures the maximum possible difference between the normalized service received by any
two backlogged flows and therefore serves as a measure of fairness. The RFB of the ide-
ally fair GPS scheduler, of course is zero. A related measure of fairness calkdosiviate

fairness bound (AFB)aptures the upper bound on the difference between the normalized



99

service received by a flow under the current scheduler being analyzed and that it would
receive with the ideal GPS scheduler [6]. It has been shown in [43], that the AFB and
RFB are related to each other by a simple relationship. Another fairness measure known
as theworst-case fair indexis defined in [48]. It is used to analyze the Worst-Case Fair
Weighted Fair Queuing (WAR) scheduler in [27]. However, all these fairness measures
including the RFB simply capture the worst-case behavior of any scheduler. They do not
provide any insight into the actual quality of a fair scheduler. This is because a scheduler
that rarely reaches the upper bound of relative fairness will achieve the same measure of
fairness as another scheduler that frequently or almost always operates at the same upper
bound. Hence, we also neediastantaneousneasure of fairness that captures the fairness
achieved by the scheduler at any given instant of time.

Note that, the RFB also fails to inform us of how a scheduler treats packets of one flow
in comparison to those of another. Fairness, after all, is expected to be based on a compar-
ison among the levels of service received by all the flows and not merely on the maximum
difference in the normalized service received by flows. Figure 6.1(a) and (b) illustrate an
example where the bars represent the service received by flows under two different sched-
ulers A and B, during a certain interval of time in which all flows are backlogged. Assuming
the weights associated with the flows are identical, the service received by each of the flows
under the ideally fair GPS scheduler is illustrated as a separate bar. One may observe from
the figures that scheduler B leads to a greater disparity in the levels of service received by
the flows since scheduler A allows more flows to achieve service close to the ideally fair
level. If the absolute and relative fairness bounds are exactly reached in this interval of
time, note that both schedulers would lead to the same values for the RFB and the AFB,
even though, the levels of service received by flows under scheduler A are closer to each
other than with scheduler B.

Thus, measures of fairness based on an upper bound serve the excellent purpose of

capturing the fairness characteristics of a scheduler in a single number. However, they do



100

Flows ¢

d

e e

(a (b)

Figure 6.1: An illustration of the difference in the disparity in service received while the
upper bounds of the relative fairness and absolute fairness measures are identical

not capture the overall behavior of the scheduler at all instants of time and also do not
quite capture the characteristics of the distribution of the service among all the flows (the
AFB only reports the maximum deviation from GPS for any flow while the RFB reports
the maximum difference in service received by two different flows, but neither capture the
overall fairness of the allocation among all the flows). This is addressed by the measure of
instantaneoufairness described below based on measures of inequality used in the field of

economics.

To measure the fairness at any instant of time, we also need to consider situations in
real applications. The RFB is defined under the assumption that queues are continuously
backlogged in the interval of interest. Such an assumption is rarely true in real networks.
In networks with real traffic, flow states can change frequently from active state to idle
state, or vice versa. However, existing measures of fairness have not taken this factor into
account. To effectively guide the design of a fair scheduler, a fairness measure should

also be able to capture the performance under the situation where flows change their states



101

unpredictably.

6.2 Gini Index: A New Measure of Fairness

A recently proposed measure of fairness described in [41] addresses all of the above
issues. There are two components to this measure: one of how to handle real traffic where
flows are not always backlogged and the other of how to measure inequality in service
received by the flows. We review these components briefly in this section; a detailed treat-

ment and a more extensive rationale behind the approach may be found in [41].

6.2.1 Handling a Newly Backlogged Flow

In order to evaluate the fairness of a scheduler in its treatment of a newly backlogged
flow, we need to first define the ideally fair way of doing this. We begin with an examination
of the ideal but unimplementable GPS scheduling discipline.

Let B(t) represent the set of backlogged flows at timAssume that the system starts

at timet = 0.

Definition 6.2.1 Let V (¢) represent the virtual time function [18, 49] (also known as the
system potential) at time The virtual time is used to track the progress of the GPS sched-

uler and is computed as follows:

-1

Vit)=—1-=| ) w (6.1)

i€ B(t)
Hence, the service received by a backlogged flow under the GPS server in the time interval
(0,t) is given byw;V'(t). Intuitively, the virtual time represents the ideal fair normalized
service that each flow should have received by time

Let us now consider a set afflows served by a scheduling poli¢y, Consider a case in
which then flows have been backlogged since timeOne of these flows, flow, changes

its status from being backlogged to idle at titne> ¢; and later becomes backlogged again



102

at timets > t,. In order to accurately and meaningfully compare the service received by
all the flows at time instants aftes, it is necessary to assign an appropriate value of the
normalized service received by flowntil ¢3 so that the comparison is over the entire time
interval (1, t3). As mentioned earlier, a newly backlogged flow should neither be favored
nor be punished for its idle period in the interyal, t3). Therefore, based on the discussion

of the virtual time, the service received by flavat timet should bew; V' (¢). However, if

flow i has already received more service than the above amount of service before time
while it was backlogged, then the total assumed service shoulsthg(0,t,). This is
because a flow that receives excess service should not be able to become idle and then
immediately become backlogged again without being disadvantaged later for the excess
service it received earlier. These concepts and similar arguments have also been made
in [24, 26, 38,41].

In evaluating the fairness of a specific scheduler it is necessary to keep track of the
amount of service allocated by the above method. We borrow the method used in [41]
where a per-flow state known as teession utilityis defined for this purpose. This vari-
able is independent of the scheduling discipline used by the scheduler and is defined as a
function of time. Letu,(t) represent the session utility for flowat time instant. As-
sume that the system starts at time 0. During the peliigd,) that a flow is continuously
backlogged, its session utility is updated as follows:

Senti (tl y tg)

(6.2)

We now discuss how to update the session utility of a flow that just becomes back-
logged. Let flowi become newly backlogged or backlogged again at timeet B(t—)
represent the set of flows that are backlogged just prior to the time that fi@meomes
backlogged. Our goal in assigning a session utility value to flattimet is to ensure that
the comparison between session utilities of all the flows is being made as though the flows

have all been backlogged for the same length of time. Accordingly flsaassigned the



103

following session utility value:
w;(t) = max{u;(t—),V(t)} (6.3)

With the above definition of the session utility, a newly backlogged flow can be treated as
if it had been backlogged for the same length of time as all other flows. Therefore, with a
measure which is based on session utility, it is possible to capture the fairness of a scheduler

in its treatment of flows that are not always continuously backlogged.

6.2.2 The Gini Index

Various measures of inequality have been used in the field of economics for several
decades in the study of social wealth distribution and many other economic issues of inter-
est [50]. Some of these methods are related to the theory of majorization used in mathe-
matics as a measure of inequality [51]. This theory has occasionally found use in research
in computer networks in the fairness analysis of protocols [52]. The fairness measure
proposed in [41] and adopted in this paper borrows from a related measure of inequality
developed in the field of economics based on the concept ofdhenz curveand Gini
index[50].

Consider the problem of measuring the inequality amboggantitiesg; < g, < --- <
gx. Definedy = 0, andd; = d;_1 + g;, for 1 < i < k. Now, a plot ofd; against; is
a concave curve, known as therenz curvg53], as shown in Figure 6.2(a). Note that,
if there is perfect equality in these quantities, the Lorenz curve will be a straight line
starting from the origin. The Gini index measures the area between the Lorenz curve and
this straight line, and thus measures the inequality amongét gu@ntities [50].

In our case, we wish to measure the inequality in the session utilities of the backlogged
flows at any given instant of time. The Gini index in our case, therefore, is the area be-
tween the Lorenz curve of the actual normalized service received and the Lorenz curve

corresponding to the ideally fair GPS scheduler.



104

d; F(i; U()

Figure 6.2: Anillustration of the lorenz curve and Gini index in the measure of inequalities
among (a) income distribution (b) session utilities in a packet scheduler

When the sum of thé quantities is the same as the sum in the case of perfect equality,
the Lorenz curve always lies below the straight line corresponding to the Lorenz curve of
the ideal equal case, as shown in Figure 6.2(a). However, the sum of the session utilities
with a real scheduler is almost never exactly identical to the sum of the session utilities
with the ideally fair GPS scheduler. Note that, in a work-conserving scheduler, only the
sum of the total service delivered is identical to that in the ideally fair GPS scheduler; the
sum of the session utilities is not identical to that in the GPS system. In the Lorenz curve
for a work-conserving scheduler, when the sum of Ahguantities is not the same as the
sum in the case of perfect equality as with the GPS scheduler, a portion of the curve for the
actual scheduler will lie below and another portion will lie above the straight line Lorenz
curve for the GPS scheduler. This is illustrated in Figure 6.2(b). The sum of the shaded

areas in the figure is the Gini index.

The computation of the Gini index is described formally as follows:

Definition 6.2.2 LetU(¢) represent the set of the session utilities of the flows at time instant

t when served by a real scheduler and@ft) denote a similar set which is obtained when



105

the flows are served with the ideal GPS scheduler.u.gtu,,, . . ., u., be the elements of
the setU(¢), such thatu., < u., < --- < u.,. TheLorenz Curveof the set of session

utilities U(¢) is the functionF'(i; U(¢)), given by,
F(i;U(t) = ue,,0<i<k
j=1
The Gini index over thé elements ilJ(¢) is computed as:

k
D[P UW®) ~ F(i:G) (6.4)

As defined above, the closer the Lorenz curvelit) is to the curve of GPS, the
smaller the Gini index is, and thus, the fairer the distribution of the session utilities. From
the definition of the virtual time function, we know that the normalized service received by
each flow at time in the GPS system is equal to the virtual tim&t). Hence, the Gini

index can be computed as :

k
D |F@EUW) - Fi V)| (6.5)
=1
With the Gini index, the fairness of a scheduler can be evaluated at each instant during the

execution of the scheduler. A comparison of schedulers based on their Gini indices allows

us to determine which scheduler achieves better fairness than others at each instant of time.

6.3 Simulation Results

In our simulation experiments, we compare the Gini index and latency bound of PERR
with those of other efficient and fair schedulers such as DRR, ERR, Nested-DRR and Pre-
order DRR. We also include the WFQ as a representative sorted-priority scheduler in our

comparisons. We shall first present our simulation model.

6.3.1 Simulation Model

Figure 6.3 illustrates our simulation model. We model each flowtsafiic generator

module. Each of these modules generates a packet stream with the packet length distribu-



106

Switch
Gggrrgt%rs Qﬁ D]j

Figure 6.3: Simulation model

Table 6.1: Settings for traffic sources from router traces

Source 1 2 3 4 5

Router Abbr.2 | ANL | APN | BUF | MEM | TXS

Interface oc3 | oc3 | oc3| oc3 | oc3
L (bytes) || 28 | 29 | 28 | 32 | 32

Lunax (bytes) || 9,180| 1,500| 1,560 | 4,470 | 9,180
ravg (10°Bps) | 063 | 1.4 | 1.45 | 039 | 2.1
Weight (v;) 16 | 35 | 37| 1 | 55

Link Capacity 6 x 10° Bps

Total Time 50 seconds

tion obtained from backbone router traces.

We used the traces provided by the National Laboratory for Applied Network Research

2The long names of routers are: Argonne National Laboratory(ANL), APAN(APN), University of Buf-
falo(BUF), University of Memphis(MEM) and Rice University(TXS)



107

[54]. Each generator is fed by a router trace with a random starting time. Table 6.1 shows
the settings for this set of input traffic. The flow weights are set based on the average
rate of each flow. Here we the set the weight of the slowest flow as 1, and weights of

other flows are equal to the ratios of their average rate to the smallest rate. The switch
maintains separate input queues for packets arriving from different sources. We assume
that the packets arriving at all the input queues wish to leave the switch through the same
output port, say port 0, thus creating a contention for the bandwidth on that link. The

scheduling discipline employed by the switch for serving these input queues is varied.

In our simulation we compare the instantaneous fairness of ERR and PERR with other
efficient schedulers such as DRR, SRR, Nested-DRR and Pre-order DRR. We also include
the popular WFQ scheduler, as a representative sorted-priority scheduler. The number of

prioriy queuesp for the Pre-order DRR and PERR schedulers have both beenget to

6.3.2 Results with Backlogged Traffic

In our first set of experiments we extract the length of each packet from the router traces
and simulate a scheduling system with continuously backlogged queues. Figure 6.4 shows
the Gini index at periodic instants of time for the schedulers under consideration. Recall
that the lower the Gini index, the more fair the algorithm. As is readily seen from the
graph, ERR outperforms SRR and DRR by a huge margin. In fact ERR has substantially
better fairness properties as compared to the Nested DRR scheduler. This illustrates that
ERR has the best fairness properties among all exigifig scheduling disciplines. PERR
improves upon the fairness properties of ERR as illustrated by the extremely low value of
its Giniindex. Figure 6.4 shows that PERR displays better fairness than all other schedulers

of equivalent complexity.

Figure 6.5 compares the Gini indices of the WFQ and PERR schedulers. The WFQ

scheduler achieves slightly better fairness than PERR. However, note that WFQ is a sorted-



108

T
— - DRR
—-©- SRR
—- ERR
¢ Nested DRR
A Pre-order DRR
— PERR

Gini Index

0 5 10 15 20 25 30 35 40 45 50
Time(in seconds)

Figure 6.4: Gini indices of various efficient schedulers with backlogged traffic

45r

Gini Index

L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Time(in seconds)

Figure 6.5: Gini indices of PERR and WFQ with backlogged traffic



109

priority scheduler and has a large work complexity which is proportional to the number of

flows being served.

6.3.3 Results with Real Router Traces

In our next set of experiments, we allow that the flows are not always backlogged, while

still using real router traces. Since we are more interested in the performance when the link

is close to fully utilized, we set the link capacity such that the sum of average rates of all

the flows is 98% of the link capacity. Figure 6.6 shows the average

length of arriving packets among all sessions during the simulation interval.

Average Length of Arriving Packets (in Bytes)

680

660 -

640 -

@

N

=]
T

520

L L L L L L L L L
5 10 15 20 25 30 35 40 45 50
Time(in cycles)

Figure 6.6: Average length of arriving packets

In Figures 6.7 to 6.10 we compare the Gini index of ERR with those of DRR, SRR,

Nested-DRR and Pre-order DRR. For the sake of clarity, we plot each scheduler’s Gini

index on a separate graph, with that of the ERR scheduler plotted on each of the graphs.

Once again, we find that ERR exhibits better fairness than DRR, SRR and Nested-DRR.



110

Gini Index

0 5 10 15 20 25 30 35 40 45 50
Time (in seconds)

Figure 6.7: Comparison of Gini indices of DRR and ERR

Note that, in both SRR and DRR the quantum for each flo@); is w;Q .., whereQ i,
represents the quantum for the flow with the lowest reserved rate. Not&Xhathas to

be greater than or equal to the size of the largest packet that may potentially afrive,

As a result, irrespective of the actual size of the arriving packets both these schedulers
on an average serve a quantum’s worth of data from each flow in its round robin service
opportunity. However, in reality a large percentage of the arriving packets are much smaller
thanM. As aresult, these schedulers are unfair over short periods of time . On the contrary
the ERR scheduler calculates the allowance of a flow based on the maximum normalized
surplus count in the previous round. As a result, for the most part the allowance of a flow
in ERR is much lower than the flow's quantum in DRR and SRR resulting in better fairness

for the ERR scheduler.



111

Gini Index

0 5 10 15 20 25 30 35 40 45 50
Time (in seconds)

Figure 6.8: Comparison of Gini indices of SRR and ERR

0.18
Nested DRR
ERR

Gini Index

0 5 10 15 20 25 30 35 40 45 50
Time (in seconds)

Figure 6.9: Comparison of Gini indices of Nested DRR and ERR



112

0.06 T T
— — Pre—order DRR
— ERR
0.05 b
l
004} ; ! i
! |
‘I H]I
!
3 | ' I“\ \
e I\ 1|/ i I N
2 003 v V| ' /RN
.5 | , | I i Vo
R " P | i ( ! ! YRIVARY
I
! Lo ,‘\’ | “, | 1‘ | ’: SRR Al ",
! 1 | ! no I\
002 e 1 R 1| R L
AN | | " [ 1 A R I
! | / I Frad !
I [ I | W 1
I \ | I I Pt
1" i X Wi | PR
\ \ l1 | | Lt
ol ATV IINEAH | 4 "
0.01F |\ 1 il I H“ I \‘V/\‘ / ! ! ) by i
[ y i ) /1 Vol
N v | \
i
0 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

Time (in seconds)

Figure 6.10: Comparison of Gini indices of Pre-order DRR and ERR

Since the quantum assigned to each flow in DRR is proportional to its reserved rate,
flows with large reserved rates tend to have a very large quantum. As a result, DRR can be
extremely unfair to flows with lower reserved rates over short durations of time. The Nested
DRR eliminates some of the drawbacks of DRR by spliting each DRR round into multiple
inner rounds and then scheduling the minimum quant@p,, from each eligible flow
in the inner rounds. Even though this succeeds in alleviating the unfairness experienced
by the low-rate flows it has an adverse effect on the fairness properties of the flows with
higher reserved rates. Hence, the Gini index for Nested DRR is widely varying as seen in
Figure 6.9. Finally, in Figure 6.10 we compare the Gini indices of ERR and Pre-order DRR.
As seen from the plot, for a small percentage of the time Gini index of ERR is lower than
that of Pre-order DRR. Also for the other time instants Pre-order DRR is only marginally

better than ERR.



113

0.18

0.16 -

Gini Index
o

o o
@ [
T T

o
=}
&

o
o
=
=

o
o
o
% ‘

o

0 5 10 15 20 25 30 35 40 45 50
Time (in seconds)

Figure 6.11: Comparison of Gini indices of DRR and PERR

Figures 6.11 to 6.15 illustrate the comparison of the Gini index of PERR with those
of DRR, SRR, Nested-DRR and Pre-order DRR. As before, we plot each scheduler’s Gini
index on a separate graph, with that of the ERR scheduler plotted on each of the graphs.
Once again, we find that the PERR scheduler displays a lower Gini index than any of the
other schedulers of equivalent complexity at almost all instants of time. Finally, Figure 6.16
compares the Gini indices of the PERR and WFQ schedulers. It is seen PERR is almost
as fair as the WFQ scheduler. However, WFQ is a sorted-priority scheduler and hence
suffers from a large implementation complexity. PERR on the higher hand has a low work

complexity which is independent of the number of flows.



114

0.25
3
i
L
0.2+ B i
r |
[N |
| | I 1f
| o by NHV' !
< (I W M h I
1 o (]
0.15F . Iy : [ ("'<H~v,/\uﬂ(
t/
5 i iy [ ;UH Wy T 1
° I ! | | |
2 | My ey ‘ [ ! |
= ! [ I
I " )
& | et U o by
[T 1 Lo I [
! [ 1 | [ I
01F | ! - 0\ | | I Bl
| | [
! | | I [
| by ! ! [
I I | | [
| "y | o Lo
[ | | 1
| | | y\‘. I ' Vo
\,"‘1 | 1‘” ! o " i
005 Loy et i iy 4
il Ce Al I I i
1 ! L Vi ! 1
‘l[\| yl.‘ | \”1‘\ MR l I ‘l |
n" ey “‘ AR | ' !
MMW
O L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time (in seconds)

Figure 6.12: Comparison of Gini indices of SRR and PERR

Gini Index

0 5 10 15 20 25 30 35 40 45 50
Time (in seconds)

Figure 6.13: Comparison of Gini indices of DRR and PERR



115

0.18
Nested DRR
J PERR
0.16 - | ; Iy Il 7
| I | on
I I
| ‘ g Ion
0.14F | "I L AT
I
! | | bty [ |
I I iy L
o (L ! by
012 i LT I ! I h
| - | ) | (I ‘l [
H ! b I HIRRERT
i Y T B ey
x 0.1f ! pot TN | [ [T T
5] | | | | [ By
° Il | e byt | I l 1 |
£ v ey R R R I (O
z by ! I TR oy Ui
£ | I [N | I el o]
0 0.08 frphy | [ P [ T T
T | | [SENT | [ | T
Y | [ L I !
| {1 I | (R | . I I |
| ] { (T T Iy
0.06 - I [ Iy I [ TR A T B B I v Il 4
| W U | f
" | | | T 1 oY
[ - | | [ v I
I N ! o [ 1 N
e | | | [ Iy I
0.04F I | [ [y [l I I B
[N | | b Hh
o PRt N T !
ol ‘/1/ it ",, N R o 0 :
\ V0 | N
002 1" ) S RATEL N ! v ‘ 4
Mttt g o
|
0 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time (in seconds)

Figure 6.14: Comparison of Gini indices of SRR and PERR

0.045

— — Pre-order DRR
— PERR

0.04 I 7
ol
It
0.035 i 4

Iyl

| | I
I . 1 . \
0.03[ I ! | I

.
I
1 |

Gini Index
o
o
N
(52}
T

o
Q
N}

I
|
|
I
I
|
[ IR
| !
|
|
|

0.015

0.01

0.005

0 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50
Time (in seconds)

Figure 6.15: Comparison of Gini indices of Pre-order DRR and PERR



116

0.02 T

0.018 7

0.016 - q

0.014 I B

0.012-

Gini Index

=3

o

=
T

0.008 - [ K A

0.006 NB

|
[
0.004 - | 1 ‘H i 1 '\U‘ o
|

0.002 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time (in seconds)

Figure 6.16: Comparison of Gini indices of WFQ and PERR

6.3.4 Comparison of Latency Bounds

We now compare the latency bounds of the router traces in Table 6.1 for the PERR and
ERR schedulers with that of the other efficient schedulers such as DRR, SRR, Nested-DRR
and Pre-order DRR. As before we include the WFQ scheduler as a representative sorted-
priority scheduler. Note that the latency bounds of all these schedulers are summarized in
Table 7.1.

Figure 6.17 illustrates the latency bounds of these schedulers for the five router traces
that we use in our simulations. As is readily seen from the graph, the latency bound of ERR
is much lower that that of the DRR and SRR schedulers. In addition, ERR even outperforms
the Nested-DRR and Pre-order DRR schedulers. It is also evident that the latency bound
of the PERR scheduler is significantly lower that all the other efficient schedulers. In fact,

the bound for PERR is almost equal to that of éh@og n) WFQ scheduler.



117

6 - - ] ODRR

B ~ ERR
5 : g ~ 3 SRR

= 2 : 2 @ Nested-DRR
Pre-order DRR
B PERR
WFQ

MEM ANL APN BUF TXS

Router Traces

Figure 6.17: Comparison of latency bounds of various schedulers



118

Chapter 7. Concluding Remarks

In the emerging integrated-services packet-switched networks, fair packet scheduling
algorithms in switches and routers play a critical role in providing the Quality-of-Service
(Qo0S) guarantees required by real-time applications. In this dissertation, we have consid-
ered the problem of fair and efficient scheduling of packets to meet these QoS objectives.
We have also addressed the requirements and the constraints imposed on a scheduling dis-
cipline used in wormhole switches, popular in the interconnection networks for parallel
systems. In this dissertation, we first presented a new fair, efficient, simple and low-latency
scheduling discipline called Elastic Round Robin (ERR). ERR was originally designed to
satisfy the unique requirements of wormhole switching. We have shown that ERR can be
easily adapted for scheduling best-effort and guaranteed-rate traffic in the Internet. We
have also provided a detailed analysis of the performance and fairness properties of the
ERR scheduler. We have shown that the work complexity of ERR is O(1) and therefore,
ERR can be easily implemented in networks such as the Internet, with large number of
flows. We have proved analytically the fairness properties of ERR. In particular, we show
that ERR satisfies Golestani’s [24] definition of throughput fairness, i.e., the difference in
the bandwidths allocated to any two backlogged flows in any time interval is bounded by
a small constant. The relative fairness bound of ERR has an upper boand wiherem
is the size of the largest packet that actually arrives during the execution of ERR. While
fairness is an intuitively desirable goal, its practical relevance is in the bound on the la-
tency that fair schedulers are able to provide. This latency, as defined for Latencg Rate
servers in [38], has a direct bearing on the size of the playback buffers needed at the re-
ceivers for real-time communications. We have shown that ERR belongs to the the class of
LR-servers and have also evaluated the upper bound on the latency experienced by a flow

served by the ERR scheduler. Our analysis reveals that ERR has better fairness character-



119

istics and a significantly better latency bound in comparison to other scheduling disciplines
of equivalent complexity such as DRR and SRR.

We also identified the problems associated with the frame-based schedulers. Since ERR
is inherently a frame-based scheduling algorithm, it suffers from the limitations of all round
robin schedulers such as (i) bursty transmission and (ii) the inability of the flows lagging
in service to receive precedence over the flows that have received excess service. In the
latter part of this dissertation, we have presented a novel scheduling discipline called Pri-
oritized Elastic Round Robin (PERR) which rearranges the sequence in which packets are
transmitted in each round of the ERR scheduler. This is achieved through the addition of a
priority queue module consisting pfpriority queues. ArOrganizermodule dynamically
classifies the active flows into these priority queues. We have analytically shown that PERR
has a low work complexity of)(log p) which is independent of the total number of flows,
resulting in a simple and efficient implementation. We also prove that PERR belongs to
the class ofLR servers and also evaluate an upper bound on its latency using a novel tech-
nigue based on interpreting the PERR scheduler as an instance of the Nested Deficit Round
Robin algorithm. Our analysis also reveals that PERR has better fairness characteristics
and a significantly lower latency bound in comparison to other scheduling disciplines of
equivalent work complexity such as DRR, SRR, ERR, Nested-DRR and Pre-order DRR.

We further study the fairness properties of ERR and PERR using a recently proposed
measure of instantaneous fairness known as the Gini index that seeks to more accurately
capture the fairness of a scheduler. Using real router traffic traces, we present simula-
tion results that demonstrate that ERR achieves better fairness characteristics than other
scheduling disciplines of equivalent complexity such as DRR and SRR. In fact, the Gini
index of ERR is lower than that of Nested-DRR and almost equal to that of the Pre-order
DRR scheduler. PERR improves upon ERR and has better fairness properties than all other
efficient scheduling algorithms. In fact, our results show that PERR is almost as fair as

WFQ, a popular sorted-priority scheduler.



120

The rest of the section is organized as follows. Section 7.1 presents a detailed com-
parison of the fairness and performance characteristics of the ERR and PERR scheduler in
comparison with other popular guaranteed-rate scheduling disciplines. A tabulated sum-
mary of the properties is provided. Section 7.2 discusses various other situations where the

ERR and PERR scheduling disciplines can be utilized.

7.1 Comparison of ERR and PERR with Other Schedulers

In this section we present a detailed comparison of the the fairness and performance
characteristics of the ERR and PERR scheduler which were evaluated in Chapters 3 and 5

with other well-known guaranteed-rate schedulers.

Table 7.1 summarizes the work complexity, fairness and latency bounds of several
guaranteed-rate scheduling disciplines that belong to the clagsR)f gervers. It is im-
portant to note that not all of these schedulers satisfy the unique requirement imposed by
wormhole switching. Table 7.1 makes this distinction by providing a column which in-
dicates the applicability of a scheduling discipline to workhole networks. In this table,
represents the number of active flows arépresents the number of priority queues in Pre-
order DRR and PERR. The peak rate of the output link is denoted b is the size of the
largest packet that may potentially arrive during the execution of a scheduling algorithm.
Recall thatm is the size of the largest packet tlzttually arrives during the execution of
the scheduler. Usually, in most networks including the Interhety m since the majority
of packets are much smaller than the largest possible packet [44,45]. The properties of all
the frame-based scheduling disciplines are derived in [49]. The latency bounds of DRR
and Pre-order DRR have been analyzed in [55] and [56,57]. The appendix at the end of
the dissertation includes the latency analysis of both these scheduling disciplines. Note
that, the latency bounds evaluated in the appendix are tighter than the previously known

bounds of DRR and Pre-order DRR. The expression for the latency bound of Nested-DRR,



121

as stated in [40], is extremely complex and hence does not allow for an easy comparison
with the other schedulers under consideration. Hence, in order to gain a quick understand-
ing of the differences in the latency bounds of Nested-DRR and the other schedulers, in our
comparison we include the latency bound of Nested-DRR at two boundary conditions. In
the first case, we consider the latency bound of a flow whose reserved rate is much lower
than that of the other flows sharing the same output Ik p;,Vj € n,j # i). In

the second case, we consider the opposite end of the spectrum, i.e., the latency bound of a
flow whose reserved rate is much greater than the other flows multiplexed on the same link
(pi > p;j,Vj € n,j#1). In[40], an expression for the latency of a low-rate flow has been
derived and it has also been shown that the latency of a high-rate flow is marginally lower

than that of the DRR scheduler. For simplicity, we assume the latter to be equal to DRR.



122

0] a|qeoljddy

d o4 d
s (T—uw)(1—w)+ wim— ) 1 wg + wg (d3o1)0 [6€] ¥y3 paznuond
T a—— : 1L | (@sop [2y]
— z—u+— (1—w - - wg, o laplo-al
M wuey (i — A1) T e O 21 4dQ 18p. d
0w+ el — 1) L ejeryB
i—u+— (T—w uBL oy (4, — — :9el-ybi
m Mg ubiH
— wg 4+ (Mo [ov] yya-perseN
T R S
Z—u+— (I—w wwey (1 —u)  — :9yel-Mo
M 1 L
P
~ {G—w)(1 —w) +wm— m)} T wg (Mo [t '9v] uigoy punoy onse|3
A4
— {(1 —w)(1 —w) + wup(*m — p)} T wg 4+ v (Mo [9e—v€] uigoy punoy snidins
m A
— z—u+ m (1 —w) +“y(tm — M) T wg 4+ (Mo [T2] wigoy punoy woiea
*d 4
_ ”m + ”m w4+ T (u8o1)0 [9g] Buinand ireq paseq-awel
[20) £ 3
— TR 0 (usor)o [6T]1%9010 [enuIA
d A 3
— ot (i wg (uSop)O  [ve] Buinand dreq paxo0I0 YoS
A 6 6
— =zt wg (wo [97] Buinand Jred paiyBiam
— 0 0 — [8T] SdD
SYI0MIBN S|OYWIOMN
P0J} 10} punog Aoduaje] ssauleq Aixaidwo)d swiyioby bulnpayoss

souljdiosip Bulnpayos arel-pasaluelend 1aylo yum YH3d pue Y43 Jo uosiredwo) :T°/ a|gel




123

The GPS scheduler visits each active flow in a round-robin fashion, and serves an in-
finitesimally small amount of data proportional to the reserved rate of the flow [18]. Using
this fluid model, the GPS scheduler is able to ensure that over any interval of time how-
ever small, the normalized difference between the service received by any two active flows
is exactly zero. The RFB of GPS, therefore, is zero. The latency of GPS is also zero
since a newly active flow begins receiving service instantaneously at the guaranteed rate.
Recall that GPS is an ideal but not an implementable scheduler. The sorted priority sched-
ulers such as Weighted Fair Queuing (WFQ) [16], Self-clocked Fair Queuing (SCFQ) [24],
Frame-based Fair Queuing (FBFQ) [26] and Virtual Clock [19] all have a low value of the
latency bound. Virtual Clock has an RFB of infinity and therefore, cannot be considered
to be a fair scheduler. The RFB of the WFQ schedul&mnisand thus, has better fairness
However, WFQ requires the simulation of the ideal GPS scheduler on the side and hence
has a very large work complexity @¥(n). SCFQ does not require simulation of GPS in
parallel and also has a lower value of the RFB. However, the latency bound of SCFQ is
much greater than that of WFQ. FBFQ achieves the same latency bound as that of WFQ
and is also more efficient. The price paid is in the slightly higher RFB. In addition, FBFQ
also requires periodic re-calibration of the virtual time, and also has a work complexity of
O(log n) rendering it less efficient than ERR or DRR. In fact, the work complexity of all
these sorted priority schedulers is a function of the number of the active flow&s a
result, these schedulers are inefficient to implement in high-speed hardware switches.

In fact, only ERR, DRR, SRR and Nested-DRR have a work complexify(af. How-
ever, as explained earlier, excluding ERR, none of these schedulers are ideally suitable for
use in wormhole networks, where the length of time a packet occupies the link is not known
before a decision to transmit the packet is made. On the other hand ERR can be readily used
in wormhole networks, in addition to being perfectly suitable for achieving fair scheduling
in Internet routers. In addition, Table 7.1 shows that ERR has better fairness properties and

a lower latency bound as compared to other scheduling disciplines of equivalent complex-



124

ity, especially considering that/ is typically much greater thai.

As discussed earlier in Chapter 4, ERR, DRR, SRR and Nested-DRR are all round-
robin schedulers and hence suffer from the characteristic limitations of all round robin
schedulers. Both Pre-order DRR and PERR overcome these drawbacks in the DRR and
ERR schedulers respectively and also have a low work complexity(bfg p) which is
independent of the number of flows. As explained earlier, the basic principle of the PERR
algorithm is similar to the Pre-order DRR algorithm [42]. The Pre-order DRR scheduler
alters the transmission sequence of the packets in each DRR round based on the quantum
utilization of each flow. The PERR scheduler similarly changes the sequence in which
packets are transmitted in an ERR round depending on the utilization of the maximum
possible allowance of each flow in that round.

There is however an important difference between these two schedulers. At the start of
around, the Pre-order DRR scheduler has to classify all the packets that will be transmitted
by the active flows in that round into the priority queues prior to starting the transmission of
the packets. On the contrary, the PERR scheduler simply has to classify the flows present
in the ActivelListinto its priority queues before the start of the round. It has been shown
in [47] that ERR has a couple of important advantages over DRR. Now since the PERR and
Pre-order DRR algorithms are modifications of ERR and DRR, respectively, PERR inherits

those advantages over Pre-order DRR. The following lists these advantages:

¢ Lower Buffer RequirementSince the priority queues in PERR simply need to contain
the flow identifiers they can be much smaller in size as compared to those in Pre-order

DRR which have to buffer all the packets that will be transmitted in the current round.

e Reduced Round Start DelayClassifying all the packets that are to be transmitted in
the round into the priority queues requires considerably more time than simply sorting
the flow identifiers. Thus, the delay incurred by the PERR scheduler at the start of the

round is much less in comparison to that incurred by the Pre-order DRR scheduler.



125

e Improved Latency and Fairness Characteristidgable 7.1 illustrates that PERR has
better fairness properties and a lower latency bound than Pre-order DRR, especially

considering thatl/ is typically much greater tham.

e Adaptability in other contextdJnlike DRR and Pre-order DRR, the PERR scheduler
does not require the knowledge of the transmission time of each packet. As a result,
the scheduler can be used in other networks such as wormhole networks, where the
transmission time of a packet depends not only on the size of the packet but also the

downstream congestion.

Note that, the latency bound of&R server is an extremely important QoS parameter
since it has a direct influence of the the size of the playback buffers needed at the receiver
for real-time communication applications. In order that the reader can fully appreciate
the improvement in the latency characteristics of PERR, we compare the latency bound
of PERR with other efficient scheduling disciplines of equivalent work complexity such
as DRR, ERR, SRR, Nested-DRR and Pre-order DRR within the context of an example.
Note that, for this comparison we use the actual latency bound for Nested-DRR as proved
in [40].

Let us assume that a total of 100 flows are multiplexed on an output link with a trans-
mission ratey of 150 Mbps. Assume that/ is equal to 576 bytes, equal to the minimum
value of the Maximum Transmission Unit (MTU) required of all networks. Assume that
Pmin 1S €qual to 0.1Mbps and that the output link is completely utilized Y& , p; = .

Note that, this implies that the sum of all the weighis, is equal to150/0.1 = 1500. Let
the number of priority queues in the priority queue module of Pre-order DRR and PERR
be equal to 10, i.ep = 10. We compare the latency bounds of the afore-mentioned sched-
ulers for flow: as a function of its reserved ratg, for two values ofm : (&) m = M,
(b) m = M/2. Figure 7.1 illustrates a plot of these latency bounds of fidar both the

values ofm. Note that, latency bounds of all the schedulers under consideration depend



126

(CY

55 T T T
-~ DRR
- SRR
50 — - ERR M
~ Nested—-DRR
—— Pre-order DRR
45+ — PERR H
40

w
al
T

Latency Bound (in msec)
N w
(4] o
T T

N
o
T

I

-
13
T

I

10—\M ]

1 1 1 1 1
50 10 20 30 40 50 60 70 80
Reserved Rate of flow i (in Mbps)
(b)

50 T T T
-~ DRR
— SRR

451 - - ERR H

Nested-DRR

—— Pre-order DRR

40 — PERR H

35

w
o

Latency Bound (in msec)
nN N
o (43}

15

10

1
0 10 20 30 40 50 60 70 80
Reserved Rate of flow i (in Mbps)

Figure 7.1: Comparison of the latency bound of PERR and ERR with other schedulers of
equivalent complexity



127

on the sum of the weights of all the flows but not on the distribution of the weights among
all the flows other than flow. Therefore, the weights of the flows other than floware

not discussed in the context of this illustration. From Figure 7.1, it can be easily seen
that PERR has the lowest latency bound among all the scheduler under consideration. The

improvement in the latency of PERR is even more apparent when\/.

7.2 Other Applications of ERR and PERR

Even though ERR was originally designed for wormhole networks, it can be used in

a wide variety of contexts whenever there is a shared resource that needs to be allocated
fairly among multiple requesting entities. In some of these contexts its unique properties
relevant to wormhole switching are critical, and in some others, its advantages derive from
its simplicity, better fairness and better performance characteristics. Note that, since PERR
is based on the ERR scheduling discipline it too inherits these advantages of ERR. In this
section we present a few scenarios where the ERR and PERR schedulers can be put to use to
achieve improved performance. Note that, in the rest of this section we list several possible
applications of ERR. However, the ERR scheduler can be readily replaced by PERR in all

of these instances.

For example, in wormhole networks one may define a flow as the stream of packets
belonging to the same virtual channel, in which case, ERR can be used to achieve fairness
among virtual channels in the forwarding of flits to the output link. ERR can also be
used in the forwarding of packets from the input buffers to the output buffers of switching
elements in networks. Further, the fact that ERR does not require the knowledge of the
length of a packet before making a scheduling decision makes it a suitable candidate in
an ATM network transmitting IP packets over AAL5, where the end of the packet is not

known until the last ATM cell of the packet arrives.

Fair scheduling deals with the problem of partitioning the bandwidth on a single output



128

Quae1| 10 | 8] 2 \\ N
ez [4 8] 16 | 16 ‘/ Algorithm 4 0]s] 1 [8] 135 | 2

Chamnel 1
gﬁ:ltle Yo [s] 5 [ 1 | 2 — Alsj()%‘rjit‘h%\ v ® |

Figure 7.2: Example of load sharing using ERR

channel equally from a set of input queues which feed that channel. On the other hand,
load sharing deals with the problem of partitioning the traffic arriving on a single input
gueue equally among a set of output channels [58]. Intuitively, one can see that the above
mentioned two problems are complementary in nature. Figure 7.2 helps make this idea
clear. The ERR algorithm works in the same way in the load sharing context as in the case
of fair scheduling. This is explained with the help of Figure 7.2. Initially the surplus counts
of the channels 1 and 2 are both initialized to zero. Channel 1 is first selected for service,
i.e. for transmitting packets and its allowance is calculated using Equation (2.3). The ERR
load sharing algorithm will keep transmitting packets on this channel, if the total number
of flits transmitted so far in the current round is less than its allowance. A packet of length
32 flits is transmitted on channel 1, at the end of which the surplus count is calculated as 31
flits using Equation (2.1). Channel 2 is then selected for service. The operation continues
to proceed in a similar manner. It is easy to see that the ERR allocates the bandwidth fairly
among the output channels.

ERR can also be a solution in token ring networks where the bandwidth of the ring has

to be shared among multiple sources. ERR, similarly, can be used to efficiently arbitrate



129

access to a busy shared bus. The lower start-up latency of ERR among similarly efficient
algorithms is especially useful here in improving the latency of short control messages.
Finally, ERR is particularly relevant to the problem of job scheduling in operating systems,

where multiple processes are competing for limited CPU cycles.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

130

Bibliography

P. Baran, “On distributed communication networkkEEE Transactions on Commu-
nication Systemdviarch 1964.

D. Bertsekas and R. Gallagddata Networks Prentice Hall, Upper Saddle River, NJ,
2nd edition, 1991.

V. P. Kumar, T. V. Lakshman, and D. Stiliads, “Beyond best effort: Router architec-
tures for the differentiated services of tomorrow’s internéEEE Communications
Magazine vol. 36, no. 5, pp. 152-164, May 1998.

D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing scheduling algorithms
in high-speed networks,IEEE Journal on Selected Areas in Communicatjora.
17, no. 6, pp. 1145-1158, June 1999.

Cisco Systems Inc., “Cisco 12016 Gigabit Switch Router: Application Note,” 1999.

S. Keshav,An Engineering Approach to Computer Netwgrkgldison-Wesley Pub-
lishing Company, Reading, MA, 1997.

R. Cruz, “A calculus for network delay. i. network elements in isolationZEE
Transactions on Information Theqryol. 37, pp. 114-131, January 1991.

H. Sethu, C. B. Stunkel, and R. F. Stucke, “IBM RS/6000 SP large system inter-
connection network topologies,” iAroceedings of the International Conference on
Parallel ProcessingMinnesota, MN, August 1998.

C. B. Stunkel, “The SP2 high-performance switchBM Systems Journal/ol. 34,
no. 2, pp. 185-204, February 1995.

W. J. Dally and C. L. Seitz, “The torus routing chiglburnal of Distributed Comput-
ing, vol. 1, no. 3, pp. 187-196, October 1986.

J. Duato, S. Yalamanchili, and L. Nijnterconnection Networks: An Engineering
Approach IEEE Computer Society Press, Los Alamitos, CA, 1997.

J. Ding and L. N. Bhuyan, “Evaluation of multi-queue buffered multistage inter-
connection networks under uniform and non-uniform traffic patternggrnational
Journal of Systems Scienae®l. 28, no. 11, 1997.

M. Katevenis, P. Vatsolaki, and A. Efthymiou, “Pipelined memory shared buffer for
VLSI switches,” inProceedings of ACM SIGCOMMambridge, MA, August 1995,
pp. 39-48.



131

[14] W. J. Dally, “Virtual channel flow control,” IEEE Transactions on Parallel and
Distributed Systemsol. 3, no. 3, pp. 194-205, March 1992.

[15] H. Sethu, H. Shi, S. S. Kanhere, and A. B. Parekh, “A round-robin scheduling strategy
for reduced delays in wormhole switches with virtual lanes,”Pmceedings of the
International Conference on Communications in Compytinas Vegas, NV, June
2000, pp. 275-278.

[16] A. Demers, S. Keshav, and S. Shenker, “Design and analysis of a fair queuing algo-
rithm,” in Proceedings of ACM SIGCOMMustin, September 1989, pp. 1-12.

[17] D. Verma, D. Ferrari, and H. Zhang, “Guaranteeing delay jitter bounds in packet
switched networks,” ifProceedings of TricomyA\pril 1991, pp. 35-43.

[18] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control—the single node case,” Rroceedings of IEEE INFOCOMrlorence, ltaly,
May 1992, pp. 915-924.

[19] L. Zhang, “Virtual clock: A new traffic control algorithm for packet switching net-
works,” in Proceedings of ACM SIGCOMNPhiladelphia, PA, September 1990, pp.
19-29.

[20] N. Figueira and J. Pasquale, “An upper bound on delay for the virtual clock ser-
vice discipline,”IEEE/ACM Transactions on Networkingol. 3, no. 4, pp. 399-408,
August 1995.

[21] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,”
IEEE Transactions on Networkingol. 4, no. 3, pp. 375—-385, June 1996.

[22] A. Kumar and J. Kleinberg, “Fairness measures for resource allocatioRforeed-
ings of the Symposium on Foundations of Computer Sciddaeember 2000, pp.
75-78.

[23] S. Golestani, “A framing straregy for congestion managemelEEE Journal on
Selected Areas in Communicatiomsl. 9, pp. 1064—-1077, September 1991.

[24] S. J. Golestani, “A self-clocked fair queuing scheme for broadband applications,” in
Proceedings of IEEE INFOCOMoronto, Canada, June 1994, pp. 636—646.

[25] J. A. Cobb, M. G. Gouda, and A. ElI-Nahas, “Time-shift scheduling—fair scheduling
of flows in high-speed networks,JEEE Transactions on Networkingol. 6, no. 3,
pp. 274-285, June 1998.

[26] D. Stiliadis and A. Varma, “Efficient fair queuing algorithms for packet-switched
networks,”IEEE Transactions on Networkingol. 6, no. 2, pp. 175-185, April 1998.

[27] J. C. R. Bennett and H. Zhang, “W® : Worst-case fair weighted fair queueing,” in
Proceedings of IEEE INFOCOMsan Francisco, CA, March 1996, pp. 120-128.



132

[28] J. Nagle, “On packet switches with infinite storaglfEE Transactions on Commu-
nications vol. 35, no. 4, April 1987.

[29] M. Shreedhar, “Efficient fair queuing using deficit round-robin,” M.S. thesis, Depart-
ment of Computer Science, Washington University, St. Louis, 1996.

[30] Hui Zhang, “Service disciplines for guaranteed performance service in packet-
switched networks,” irProceedings of the IEEEDctober 1995, vol. 8, pp. 1374—
1396.

[31] M. Pirvu, L. Bhuyan, and N. Ni, “The impact of link arbitration on switch per-
formance,” inProceedings of the Fifth Symposium on High-Performance Computer
Architecture Orlando, FL, January 1999.

[32] S. Keshav, “On the efficient implementation of fair queuinggurnal of Internet-
working Research and Experiena®l. 2, no. 3, pp. 3—-26, September 1990.

[33] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” in
Proceedings of ACM SIGCOMNBoston, MA, September 1995.

[34] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet
networks,” IEEE Transactions on Networkingol. 3, no. 4, pp. 365-386, August
1995.

[35] S. Floyd, “Notes on class-based-queueing and guaranteed senlcgublished
Notes: http://www.aciri.org/floyd/cbq.htpduly 1995.

[36] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and scalable striping protocol,”
in Proceedings of ACM SIGCOMNralo Alto, CA, August 1996, pp. 131-141.

[37] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: A scheduling al-
gorithm for integrated services packet switching network&EE Transactions on
Networking vol. 5, no. 5, pp. 690-704, October 1997.

[38] D. Stiliadis and A. Verma, “Latency-rate servers: A general model for analysis of
traffic scheduling algorithms,IEEE Transactions on Networkingol. 6, no. 3, pp.
611-624, October 1996.

[39] S. S. Kanhere and H. Sethu, “Prioritized elastic round robin: An efficient and low-
latency packet scheduler with improved fairnessjbmitted to Computer Networks
March 2003.

[40] S. S. Kanhere and H. Sethu, “Fair, efficient and low-latency packet scheduling using
nested deficit round robin,” iRroceedings of the IEEE Workshop on High Perfor-
mance Switching and RoutinBallas, TX, May 2001, pp. 6-10.

[41] H. Shi and H. Sethu, “An evaluation of timestamp-based packet schedulers using
a novel measure of instantaneous fairness,”Piaceedings of IEEE International
Performance, Computing and Communicatiddsoenix, AZ, April 2003.



133

[42] S. Tsao and Y. Lin, “Pre-order deficit round robin: a new scheduling algorithm
for packet-switched networks,Computer Networksvol. 35, no. 2-3, pp. 287-305,
February 2001.

[43] Y. Zhou and H. Sethu, “On the relationship between absolute and relative fairness
bounds,”IEEE Communication Lettersol. 6, no. 1, pp. 37-39, January 2002.

[44] K. Thompson, G. J. Miller, and R. Wilder, “Wide-area internet traffic patterns and
characteristics,JEEE Networkvol. 11, no. 6, pp. 10-23, November/December 1997.

[45] I. Widjaja and A. I. Elwalid, “Performance issues in vc-merge capable switches for
multiprotocol label switching,JEEE Journal on Selected Areas in Communicatjons
vol. 17, no. 6, pp. 1178-1189, June 1999.

[46] S.S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet scheduling using
elastic round robin,IEEE Transactions on Parallel and Distributed Systewu. 13,
no. 3, pp. 324-326, March 2002.

[47] S. S. Kanhere and H. Sethu, “Low-latency guaranteed-rate scheduling using elastic
round robin,” Computer Communicatiowol. 25, no. 14, pp. 1315-1322, September
2002.

[48] A. K. Parekh, A Generalized Processor Sharing Approach to Flow Control in Inte-
grated Services NetworkPh.D. thesis, Massachusetts Institute of Technology, Cam-
bridge, February 1992.

[49] D. Stiliadis, Traffic Scheduling in Packet-Switched Networks: Analysis, Design and
Implementation Ph.D. thesis, University of California, Santa Cruz, 1996.

[50] F. A. Cowell,Measuring Inequalities: Techniques for the Social Sciendeisn Wiley
and Sons, New York, NY, 1977.

[51] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applica-
tions Academic Press, New York, NY, 1979.

[52] A. Kumar and J. Kleinberg, “Fairness measures for resource allocatioRfoteed-
ings of the Symposium on Foundations of Computer Scidaeember 2000, pp.
75-78.

[53] J. E. Stiglitz,Economics W. W. Norton and Co, 1993.

[54] National Laboratory for Applied Network Research, “’Passive Measurement and
Analysis”,” http://pma.nlanr.net/PMA/

[55] S.S.Kanhere and H. Sethu, “On the latency bound of deficit round robiRfbiceed-
ings of the International Conference on Computer Communications and Networks
Miami, FL, October 2002.



134

[56] S. S. Kanhere and H. Sethu, “On the latency bound of pre-order deficit round robin,”
in Proceedings of the IEEE Conference on Local Computer Netwdddspa, FL,
November 2002.

[57] S. S. Kanhere and H. Sethu, “On the latency and fairness characteristics of pre-order
drr,” submitted to Computer Communicatipdanuary 2003.

[58] H. Adisheshu, G. Parulkar, and G. Varghese, “Reliable fifo load balancing over mul-
tiple fifo channels,” Tech. Rep., Washington University, 1995.

[59] S. S. Kanhere, A. B. Parekh, and H. Sethu, “Fair and efficient packet scheduling in
wormhole networks,” inProceedings of the International Parallel and Distributed
Processing Symposiy@ancun, Mexico, May 2000, pp. 623—-632.



135

Appendix A. Latency Analysis of DRR and Pre-order DRR

In this appendix we present the latency analysis of the Deficit Round Robin (DRR) and
Pre-order DRR schedulers. DRR is one of the most popular frame-based fair scheduling
disciplines that is now employed in a number of real environments involving fair schedul-
ing, including Cisco routers and Microsoft's Windows NT. It is shown in [49] that the DRR
scheduler belongs to the classiiR servers. Stiliadis and Varma report an upper bound on
the latency of DRR [38], and its derivation is detailed in [49]. In this appendix, however,
we obtain a significantly lower value of the upper bound on the latency of DRR and show
that the DRR scheduler has better performance characteristics than previously believed.
We also show that our upper bound on the DRR latency is tight.

In [42], Tsao and Lin have proposed a new scheduling discipline called Pre-order
Deficit Round Robin (Pre-order DRR) which aims at overcoming the aforementioned draw-
backs. In Pre-order DRR a limited number of priority queygsare added to the DRR
scheduler. These queues reorder the transmission sequence of the packets in each DRR
round and thus eliminate the strict round-robin nature of service order. It is shown in [42]
that Pre-order DRR belongs to the general class of Latency-Rat@ ¢ervers [38] and
the authors derive an upper bound on its latency. In this appendix, we use a different,
unique, and novel approach to analytically re-derive the latency bound of Pre-order DRR
and we prove that our bound is a tight one. Our approach is based on interpreting the
Pre-order DRR bandwidth allocations as an instance of the Nested Deficit Round Robin
(Nested DRR) discipline discussed in [40]. Note that, a similar interpretation was used
for while evaluating the latency bound of the PERR scheduler in Section 5.1. The latency
bound of Pre-order DRR derived in this appendix is significantly lower than the bound
derived by Tsao and Lin, demonstrating that Pre-order DRR has even better performance

characteristics than previously argued by its own authors.



136

The rest of the appendix is organized as follows. Section A.1 presents a brief overview
of the DRR scheduler. In Section A.2 we present our analysis of the latency bound of
Pre-order DRR. Section A.3 presents a brief overview of the Pre-order DRR. Section A.4
discusses the interpretation of Pre-order DRR bandwidth allocations as an instance of al-
locations in Nested DRR. Finally, in Section A.5, we present our analysis of the latency

bound of Pre-order DRR.

A.1 Overview of DRR

In this section, we present a brief overview of the DRR scheduler, a detailed description
of which can be found in [21].

Letr be the transmission rate of the output link, the access to which is controlled by a
DRR scheduler. Assume that there are a totat dbws multiplexed on this link. Lep;
be the reserved rate for floinand letp,,;, be the minimum reserved rate among all the
flows. Since all these flows share the same output link;" , p; < r. In order that the
flows receive service proportional to their reserved rates, each floassigned a weight,

w;, given by,

w; = P (A.1)

Pmin
Note that, for any flow, w; > 1.

A flow is said to beactiveduring a certain time interval, if it always has packets awaiting
service during this interval. The DRR scheduler maintains a linked list of the active flows,
called theActiveList At the start of an active period of a flow, the flow is added to the tall
of the ActiveList A roundis defined as one round robin iteration during which the DRR
scheduler serves all the flows that are present irAitteveListat the outset of the round.
Each active flow is assignedg@antumby the DRR scheduler. The quantum allocated to a
flow is defined as the service that the flow should receive during each round robin service

opportunity. Let(); represent the quantum assigned to ficand let@,,.;, be the quantum



137

assigned to the flow with the lowest reserved rate. The quantum assigned o f)pvs

given byw; Q... Thus, the quanta assigned to the flows are in proportion of their reserved
rates. In order that the work complexity of the DRR scheduler is O(1), it is necessary that
Qmin Should be greater than or equal to the size of the largest packet that may potentially
arrive during the execution of the scheduler. Note that, during some service opportunity, a
flow may not be able to transmit a packet because doing so would cause the flow to exceed
its allocated quantum. The scheduler maintains a per-flow statelefiwt count which
records the difference between the amount of data actually sent thus far, and the amount
that should have been sent. This deficit is added to the value of the quantum in the next
round, as the amount of data the scheduler should try to schedule in the next round. Thus,
a flow that received very little service in a certain round is given an opportunity to receive
more service in the next round.

A frame is defined as the sum of the quanta allocated to all the active flows in a DRR
round. LetF denote the size in bits of a DRR frame. The upper bound of the latency of
DRR is derived in [49] ag3F — 2¢;)/r, wherer represents the transmission rate of the
output link. This, however, is a loose bound borne of the incorrect assumption that the

upper bound on the deficit count of a flow is equal to its quantum.

A.2 Latency Analysis of DRR

In this section we analyze the latency analysis of the DRR scheduler. Our approach is

similar to the approach employed in Section 3.4 in deriving the latency bound of ERR.

Theorem A.2.1 The DRR scheduler belongs to the classC& servers, with an upper
bound on the latenc®; for flowi given by,

0; < % ((W — W) Qmin + (M — 1) (K +n— 2)) (A.2)

W
wheren is the total number of active flowH; is the sum of the weights of all the flows and

r is the transmission rate of the output link.



138

Proof: Since the latency of ad’R server can be estimated based on its behavior in

the flow active period, we will prove the theorem by showing that,

6] < % (<W—wi)Qmm+(m_1) (KHLJ))

wy

Let flow i become active at time instant For deriving an upper bound on the latency
of DRR we consider a time intervét;, t) during which flow: is continuously active. Then
we obtain the lower bound on the total service received by fldwring the time interval
under consideration. Lastly we express the lower bound in the form of Equation (3.10) to
derive the latency bound. In Section 3.4, it has been proved that for deriving a tight upper
bound on the latency of the ERR scheduling discipline, we must consider an active period
(7;,t) such thatr; coincides with the beginning of the service opportunity of a flow and

belongs to the set of time instants at which the scheduler begins serving floean be

time
e
t, t, 4 Lo
<— Roundk, Round k + 1 Round k + k——=
120 1l20  ijul o n 1i2 ijul
"""" A o B}
3 A timeinterval =
: 1 under consideration ‘
T . -

Flowi
becomes active

Figure A.1: An illustration of the time interval under consideration for the analysis of the
latency bound of DRR

easily verified that these conditions are applicable in the analysis of the latency bound of
all round robin schedulers including DRR. L€t be the time instant marking the start of
the k-th service opportunity of flow. From the above, to determine a tight upper bound

on the latency of the DRR scheduler we need to only consider time intghyat$) for



139

all k. Figure A.1 illustrates the time interval under consideration for a giveNote that,
the time instant; may or may not coincide with the end of a round and the start of the
subsequent round. L&t be the round which is in progress at time instardar which ends
exactly at time instant;. Let the time instant, mark the end of rounék, + » — 1) and

the start of the subsequent round.

Let Sent;(s) represent the total data transmitted from flow the s-th round of service
of the DRR scheduler. Also 1eDC;(s) represent the deficit count of floifollowing its

service in round. It has been proved in [21] that for any flavin any rounds,

0 < DCi(s) <m-—1 (A.3)

Senti(s) = W;Quin + DCi(s — 1) — DCi(s) (A.4)

Note that, while analyzing the latency bound of the DRR scheduler in [49], it has been
assumed that the upper bound b;(s) is ;. It is easily verified that this assumption
will be true only if Q; = M = m. In all other situations, the upper bound on the deficit

count as specified by Equation (A.3) is a much tighter bound.

As illustrated in Figure A.1, assume that the time instant when floecomes active
coincides with the time instant when some flovis about to start its service opportunity
during thek,-th round. LetG, denote the set of flows which receive service during the
time interval(r;, t,), i.e., after flow i becomes active. Similarly, |&, denote the set of
flows which are served by the DRR scheduler during the time intétyat;), i.e., before
flow i becomes active. Note that, floinis not included in either of these two sets since
flow ¢ will receive its first service opportunity only in thg, + 1)-th round. If the time
instantr; coincides with the time instamt, which marks the end of thig-th round and the
start of the(ky + 1)-th round, then the s&, will be empty and all the: — 1 flows will be
included in the se®;. Note that, in this case, flowwill be the last to receive service in the

(ko + 1)-th round and all subsequent rounds during the time interval under consideration.



140

The first step towards analyzing the latency bound involves obtaining an upper bound
on the size of the time intervét;, 7). This time interval can be split into the following

three sub-intervals:

1. (1;,t1): This sub-interval includes the part of tlg-th round during which all the
flows belonging to the s&, will be served by the DRR scheduler. Summing Equation

(A.4) over all these flows,

tl — T; = % Z {U}ijm + DC](IC() — 1) — DCJU{?())} (A5)

J€Ga

2. (t1,tx): This sub-interval includes — 1 rounds of execution of the DRR scheduler
starting at roundk, + 1). Consider the time interval(, ¢, 1) when round ko + h) is
in progress. Summing Equation (A.4) over alflows and sincéV’ is the sum of the

weights of all then flows, we have,

w 1 o
bt = th = = Qmin + > {DC;(ko + h — 1) — DC;(ko + h)}

Jj=1

Summing the above ovék — 1) rounds beginning with rounk, + 1,

W 1 <
k=t = 7(’5 — 1)Qumin + - Z{DCj(k?O) — DCj(ko +k —1)} (A.6)
j=1
3. (tx, 7F): This sub-interval includes the part of tive, + k)-th round during which all
the flows belonging to the s&, will be served by the DRR scheduler. Summing

Equation (A.4) over all these flows,

1
Tik - tk = ; Z{w]’Qmm + DCJUCO + k — 1) - DC](ko + /C)} (A?)

JEGY



141

Combining Equations (A.5), (A.6) and (A.7) and sinééis the sum of the weights of all

then flows, we have,

Tf - T = K(kj - I)Qmm + (W — wz) Qmin
T

r

4 % Z(DCj(kO —1) = DCj(ko +k —1))

Jj€Ga
+ %J%(ch(ko) — DCj(ko + k))
+ 2(DCu(ko) — DCulko + 1) (A8)

Now since flow: becomes active during rourid, its deficit count at the end of thig-th
round, DC; (ko) is equal to zero. Using this fact and the bounds on the deficit count from

Equation (A.3) in Equation (A.8), we have,

I 1)£m - _ %DCi(ko k1)

Solving for (k — 1),

W — w;
k1) > E_r) i
( ) o WQmin(T’L T> w WQmm

DCi(ko + k — 1) (A.9)

(n—1)(m—1)

- WQmm
Note that, during the time interval under consideration,7*), flow i receives service in
(k — 1) rounds starting at roungk, + 1). Hence, using Equation (A.4) over thege— 1)

rounds of service for flow, and since the deficit count of a newly active flow is 0, we get,
Sent (7—27 ) = ( - 1)Qmm - (kO + k — 1) (AlO)

Using Equation (A.9) to substitute fok ( 1) in Equation (A.10), we get,

MZ/ (Tk - Tl) - W(W wl)@mm - W(n - 1)(m - 1)

+ WiD(JZ-(kO +k—1) = DCi(ko+ k — 1) (A.11)

Sent;(T;, Z) >



142

Simplifying the above, we have,

) W [
_ DCi(ky +k—1) (W—wi)> (A12)

T w;

Sent;(t;, 1) > T (T-k -7 — %(W — W) Qumin — 1(n —1)(m—1)
r

Using Equation (A.8) it can be easily verified that,

T w;

Now, since the reserved rates are proportional to the weights assigned to the flows as given
by Equation (A.1), and since the sum of the reserved rates is no more than the link rate

we have,

o < %T (A.14)

Substituting forg;- from Equation (A.14) in Equation (A.12) and using Equation (A.13)

we have,

Senti(mi ) = pilr = 7) = PV — 0)(Qunn)

~Lm-1)m-1)

P (W_“’Z) DCi(ko + k — 1) (A.15)

T w;

Comparing the above equation with Equation (3.10), the latency bound of the DRR sched-

uler is given by,

o, < CV‘W)@M+§W—UW—D

r
+_

r

) DCi(ko + k — 1) (A.16)

Wi
From the above equation it is readily seen that the latency reaches the upper bound if the

deficit count,DC;(ko+k—1) is equal to its upper boune:—1) as given by Equation (A.3).



143

Service W . : !
received : q“'_(m ) . WQumin —=
by flow i I» W"L_ r /
: w.Qm.n: e
: Vg 1
w,Q —(m ) / /
'[i 1 ‘[ + e 2 .
| T time
! X :éY m|n 5 (m-1 )'
X ei : | p |

Figure A.2: Plot of the service received by flowith DRR

Substituting this in Equation (A.16), we get,
1
0, < ;{(W—wi)Qmm—F(m— 1) (g+n—2) } (A.17)

As discussed earlier, flowwill experience its worst latency during an interyal, 7*)
for somek. Therefore, from Equation (A.17), the statement of the theorem is pr@ed.

We now proceed to show that the latency bound given by the above is tight by illus-
trating a case when the bound is actually achieved. Assume that leaomes busy at a
certain time instant;, which also coincides with the start of a certain rodhgH-1). Since
the other flows in théctiveListwill be served first, flowi becomes backlogged instantly
and; is also the start of its active period. Assume that for any time ingtant- 7;, a
total of n flows, including flowi, are active. LetF represent the set of all flows. Also,
assume that the summation of the reserved rates of all flevs equals the output link
transmission rate;. Hence,p; = 3ir. Since flowi became active at time, its deficit

count at the start of roungk, + 1) is 0. Let the deficit count of all the other flows at the



144

start of round(k, + 1) be equal to (m-1). From Equations (A.3) and (A.4), a flpwan
transmit a maximum ofv;@),,.., + (m — 1) bits during a round robin service opportunity.
In the worst case, before floivs served by the DRR scheduler, each of the ofher 1)
flows will receive this maximum service. Hence, the cumulative delay until fleeives

service,X, is given by,

(2 ier wi)(Qmin) + (n = 1)(m — 1)
X = J#i .

(V= 0)(Quin) + (2= D — 1) A18)

Even though X represents the time for which flowas to wait until its first packet is
scheduled, Equation (3.10) does not hold true wieis substituted a®);. This is because
in the time interval 7;, 7; + X) flow i has not yet started receiving service at its guaranteed

rate. We assume that the laten@y,is given by,
0, =X+Y (A.19)

A plot of the service received by floinagainst time is illustrated in Figure A.2. Assume
that the total service received by flainduring its first service opportunity i&;Q,,.i, —
(m — 1). Note that, from Equations (A.3) and (A.4), this equals the minimum service that
flow i can receive during any service opportunity. At the end of(the+ 1)-th round,
the deficit count for flowi is (m — 1) whereas the deficit count for all the other flows is
zero. In the worst case, during tli, + 2)-th round, each floy from amongst the other
(n — 1) flows will transmit a maximum ofv;Q,,;, bits before flow: receives its second
service opportunity. During this service opportunity, flowvill be able to transmit at-
least a minimum ofv;Q,,.;, bits, and will thus start receiving service at its guaranteed rate.

Referring to Figure A.2, we have,

Pi Pi r r




145

Now sincep; = y;:r, simplifying further, we have,

y = (m=1 (W_wZ) (A.20)

r w;

Substituting forX andY from Equations (A.18) and (A.20) in Equation (A.19), it can be

easily verified that the latency bound is exactly met.

A.3 Overview of Pre-Order DRR

However, note that DRR is a frame-based scheduler and hence suffers from all of its
associated problems as discussed in Chapter 4. In [42], Tsao and Lin have proposed a new
scheduling discipline called Pre-order DRR which aims to eliminate the above weaknesses
of the DRR scheduler while trying to preserve its good properties such as its low work
complexity. The assignment of the weights and the quanta in Pre-order DRR are identical to
those in DRR. In fact, the Pre-order DRR scheduler also works in rounds. However, unlike
the DRR scheduler which serves the active flows in a round robin fashion, the Pre-order
DRR scheduler reorders the transmission sequence of the packets within each DRR round.
In this section, we present a brief overview of the Pre-order DRR scheduling discipline. A
significantly more detailed treatment may be found in [42].

Let us assume that a total gfpackets are transmitted from floinin the s-th round
of service. The packets are labeled as 1,.2,y indicating their position in the stream of
packets that are scheduled from flou rounds. Note thaty represents the last packet that
is served in round from flow i. As in DRR, the deficit count serves as a measure of past
unfairness. LeDC}"(s) represent the deficit count of floifollowing the transmission of

them-th packet of thes-th round.

Definition A.3.1 Define theQuantum Availability denoted by) A" (s), of flowi after the
transmission of then-th packet from flow in round s as follows:

QA (s) = _ch &) (A.21)



146

The Quantum Availabilityof a flow keeps track of the unused quantum of the flow in the
current round.

In Pre-order DRR a priority queue module consisting glieues and elassifiermod-
ule are appended to the original DRR architecture.B@, PQ, ... , PQ, represent the
priority queues in the descending order of priority witk)); as the highest priority queue
andP@Q), denoting the lowest priority queue. Just as in DRR, the Pre-order DRR maintains
a linked list of active flows called thactiveList However, the flows in théctiveListare
not served in a round robin manner as in DRR. This is a list of the active flows that have
already received their fair share of service in the current round. These flows are, however,
eligible for receiving service in the subsequent round. At the start of a roun@léssi-
fier module classifies the packets that will be served in the current round from each flow
present in théActiveListaccording to itQuantum Availabilityinto thep priority queues.
In general, the priority queue;*(s) into which them-th packet served from flowin the

s-th round is added is calculated as follows,
z"(s) =p — [QA]"(s) x p] (A.22)

Once all the packets that can be scheduled in the current round from thawe been
transferred from the flow buffers into the priority queues, if floiw still active, it is added
to the tail of theActiveList

When the scheduler is ready to transmit, it begins serving the packet at the head of the
highest non-empty priority queue. Note that, if a packet is added to a priority queue that has
a higher priority than the queue from which the scheduler is currently serving a packet, then
following the current transmission, the scheduler will first serve the packet added into the
higher priority queue. The round in progress ends when all the priority queues are empty. It
has been proved in [42] that Pre-order DRR has a low worst-case work complegity pf
with respect to the number of flows adg{log p) with respect to the number of priority

queues.



147
A.4 The Nested DRR Interpretation

In this section we present the interpretation of PERR bandwidth allocations as an in-
stance of allocations in the Nested-DRR scheduler. Note that, a similar approach was
adopted in Section 5.1 while analyzing the latency bound on the PERR scheduling disci-

pline.

The primary goal of the Pre-order DRR scheduler is to break the quantum allocated
to a flow in a DRR round into several pieces so that it can be utilized in pieces over the
course of the round. The Nested DRR scheduler proposed in [40] tries to eliminate the
drawbacks of the DRR scheduler by creating a set of multiple rounds inside each DRR
round and executes a modified version of the DRR algorithm within each of these inner
rounds. The Nested DRR scheduler tries to s€lyg, worth of data from each flow during
each inner round. During an outer round, a flow is considered to be eligible for service in
as many inner rounds as are required by the scheduler to exhaust its quantum. This results
in a significantly lower latency bound, while preserving é@ ) work complexity and the
fairness characteristics of DRR. We can hypothetically interpret the operation of the Pre-
order DRR scheduler ag@stedrersion of DRR similar to Nested DRR. This interpretation
is useful in analyzing the latency bound of the Pre-order DRR scheduler. Each round in
DRR can be referred to as amter round The time period during which the Pre-order
DRR scheduler serves the flows present in the priority que@e during thes-th outer
round is referred to asner round(s, «). Thus, each outer round can be split into as many
inner rounds as the number of priority queyesSince the Pre-order DRR scheduler visits
the priority queues in a descending order of priority starting at priority quége and
ending with queud’(),, the first and last inner rounds in outer roundre(s, 1) and(s, p)

respectively.

The quantum assigned to each flow is divided equally among thwority queues.

Thus, the quantum allocated to floiMn each of its inner rounds is equal % Let



148

Served;(s,u) represent the total data scheduled from floim inner round(s, u). Also

let DC;(s,u) denote the deficit round of flowat the end of thés, «)-th inner round. Note

that, the deficit count of a flow at the end of the last inner round of an outer round is the
same as its deficit count at the end of the corresponding round in DRR. Also, this deficit

count is carried over to the first inner round of the subsequent outer round. Hence,
DC;(s,p) = DC;(s) = DC;(s + 1,0)

Note that,DC;(s + 1,0) is used to represent the deficit count of flowt the start of the

inner round(s + 1, 1). As in DRR, the deficit count is calculated as follows,

DC;(s,u) = @ + DCy(s,u — 1) — Served;(s,u) (A.23)
p

It can be easily proved that Equation (A.3) which represents the bounds on the deficit count,

DC;(s), also holds true foDC;(s,u). Hence, for any flow and inner rounds, u),
0 < DCi(s,u) <m-—1 (A.24)

In DRR, since the quantum of each flow is greater than or equal to the size of the largest
packet that may potentially arrive during its execution, the scheduler is guaranteed to serve
at least one packet from each of the active flows in each round. However, in Pre-order DRR,
it may be possible that the sum %f andDC;(s,u — 1) is less than the size of the packet

at the head of flow. In this case, flow will not receive any service in inner rourid, u).

Thus, a flow need not necessarily receive service in each inner round. If the Pre-order DRR
scheduler was serving flows in an exact round robin manner as in Nested DRR then, in the
worst-case, it may be possible that none of the active flows will be able to transmit a packet
in an inner round resulting in a work complexity ©fn) or greater, where represents the

total number of active flows. Th&lassifiermodule in the Pre-order DRR scheduler avoids
this large work complexity by classifying the packets into ph@riority queues at the start

of each outer round. This classification determines which inner rounds each flow will be

served in and the scheduler does not need to query all the flows in a round robin order.



149

Note that, the deficit count of a flow is updated at the end of each inner round using
Equation (A.23) irrespective of whether it receives service in that inner round. From Equa-

tion (A.23), the service received by floinn inner round(s, u) is,

Served;(s,u) = @ + DCy(s,u—1) — DCy(s,u) (A.25)

p

Definition A.4.1 Let Sent;(s,u) represent the total service received by flowince the
start of thes-th outer round until the time instant when the scheduler finishes serving the

packets in the priority queugq,.

Sent;(s,u) is computed as follows:

Sent;(s,u) = Z Served; (s, w)

w=1
Substituting forServed; (s, w) from Equation (A.25) in the above, we have,
Sent:(s,u) = (2)Q; + DC;i(s — 1) — DCi(s,u) (A.26)
p

Sent;(s,u) will be positive only if the the sum of*)Q; and DC;(s — 1) is greater than

or equal to the size of the packet at the head of flowf this condition is not satisfied

then it implies that flow has not received any service in the fitshner rounds. However,

each flow is guaranteed to receive service during at least one inner round within each outer

round.
Definition A.4.2 DefineSent;(s) as the total service received by fléaw outer rounds.

Note that,Sent;(s) is equal toSent,(s, p). Therefore, substituting = p in Equation
(A.26), we get,



150

A.5 Latency Analysis of Pre-Order DRR

In this section we analyze the latency analysis of the DRR scheduler and also prove
that it belongs to the general class®R-servers. Our approach is similar to the approach

employed in Section 3.4 in deriving the latency bound of PERR.

Theorem A.5.1 The Pre-order DRR scheduler belongs to the clas8R®fservers, with an

upper bound on the latengy; for flow: given by,

@igl{(w_wi)%mﬂm—m (K—I—n—Z)} (A.28)

r p Wi
wheren is the total number of active flows represents the number of priority queués,

is the sum of the weights of all the flows andenotes the transmission rate of the output

link.

Proof: Since the latency of adR server can be estimated based on its behavior in
the flow active periods, we will prove the theorem by showing that,

@;<1{(W_wi)Qmm+(m—1) (K—i-n—Q)}

- P w;

r

Let7; be the time instant when floibecomes active. To prove the statement of the theorem
we must consider an active peri¢d, ¢) of flow i. We then obtain the lower bound on the
total service received by flowduring the time interval under consideration. Lastly, we
express the lower bound in the form of Equation (3.10) to derive the latency bound.

In [47] and Section 3.4 it has been proved that to obtain a tight upper bound on the
latency of the Elastic Round Robin scheduler [46, 59], we need to consider only those

active periodgr;, t) which satisfy the following two requirements:
1. 7; coincides with the start of a service opportunity of some flow.

2. Time instant belongs to a subset of all possible time instants at which the scheduler

begins serving flow.



151

It can be easily verified that these two conditions are applicable for proving the upper bound
on the latency of the Pre-order DRR scheduler. 1',.(&{) be the time instant marking the
start of the service of flowwhen flow: is at the head of priority queug(q ; in rounde. In

other words, this time instant represents the start of the service opportunity éfifiamwer
round(e, f). Note that,ri(e’f) belongs to the set of time instants when the scheduler begins
serving flowi. Therefore, in order to determine the latency bound of the Pre-order DRR
we need to only consider time intervals, “)) for all (e, f) in which flow i receives
service.

The first step towards analyzing the latency bound involves choosing a suitable time

interval (7;, 7.°7))

such that the size of this time interval is the maximum possible. Note
that, the time instant; may or may not coincide with the start of a new outer round. Let
ko be the outer round which is in progress at time instaor which starts exactly at time
instantr;. In either case, flow will receive an opportunity to transmig; worth of data in

the ko-th round. Let the time instam} mark the start of the outer rouriél, + ~). Consider

the case when; does not coincide with the time instafyt the start of outer round,
i.e.,7; > to. In this case, the time intervét,, 7;) will be excluded from the time interval
under consideration. On the other hand, whenoincides witht,, the size of the time
interval (7;, 7)) is maximal. We, therefore, assume that theoincides with the start of
the ky-th outer round. Figure A.3 illustrates the time interval under consideration assuming
that (e, f) is equal to(ko + k, v). Note that, in Figure A.3D R(a) represents the-th outer
round and/ R(a, b) denotes the inner roun@, b) in the execution of the Pre-order DRR

scheduler.

k0+k,’u))

The time interval under consideratidm;, Ti( , can be split into two sub-intervals:

1. (7;,tx): This sub-interval includes outer rounds of execution of the Pre-order DRR

scheduler starting at outer rougl Consider the time intervaty, ¢,.1) when outer



152

time
—

t t t

0 k e
= IR(K,» 1) =i<IR(ky,2) =i =1 R(k,+1, 1) = =IR(k,+k, 1) —= =—IR(k,*+k, V)=

e

1

1 iigg hiii 2] j 2 19 12 il

- OR(kg) ——— =————— OR(Ky+ k)
time interval
under consideration :
| (k)
Flowi T
becomes active

T

Figure A.3: An illustration of the time interval under consideration for the analysis of the
latency bound of Pre-order DRR

round(ky + h) is in progress. Summing Equation (A.27) overraflows,

w 1 —
thy1 — th = TQmin + " Z{ch(kfo +h—1) = DCj(ko + h)} (A.29)

j=1
Summing the above ovérrounds beginning with rounkt,,

n

be— i = ?(/{Qmm) + % S {DCy(hy—1) = DC(ky + k= 1)} (A30)

j=1

2. (tk,ri(k”k’”)): This sub-interval includes the part of tlig, + k)-th round prior to
the start of the service of flowwwhen it is at the head of priority queue®,. In the
worst-case, flow will be the last flow to receive service among all the flows which
may be present in priority queuBq),. In this case, during the sub-interval under
consideration, the service received by floequalsSent; (ko + k,v — 1) whereas the
service received by each flojvamong the othefn — 1) flows equalsSent (ko +
k,v). Note that, ifv equalsl then flow: does not receive service in this sub-interval.

SummingSent; (ko + k, v — 1) andSent (ko + k, v) for each flow;j such thatl < j <



153

n,j # ¢ and using Equation (A.26), we have,

. 1w v 1v—1
TR e = 2 ()W Qi + = (
T p T

1 n
+ - > (DCj(ko + k — 1) — DC;(ko + k., v))

j=1
i

S| =

Combining Equations (A.30) and (A.31), we have,

_ W 1 e v 1 v—1
Ti( o+ )_Ti — _(kazn)+_ E (‘)ijmin+_( )wszm
r resp r
i

+ %Z(DCj(ko — 1) = DC;(ko + k, v))
i

S| =

_|_

Now since flow: becomes active at the start of outer roundits deficit count at the start
of the k,-th outer round,DC; (ko — 1) is equal to zero. Using this fact and the bounds on

the deficit count from Equations (A.3) and (A.24) in Equation (A.32), we have,

'(k0+k,v)_v<Wk‘ | e, ~ Lo-1
T, T > ( Qmm) + r Z(p)ijmm + ( )wszm

a S
’ r

. r
=1
i

L= bhm=b) %D@(ko Y ko—1)

”
Solving fork,
- —1
ko> (photho) oy T TNy, o DY )
- (7—7, T ) WQm'Ln W — (p)w] W( p )w
J#i
1
WO (n—1)(m—1)+ o DC;i(ky + k,v—1) (A.33)

Note that, the total data transmitted by flowuring the time interval under consideration

can be expressed as the following summation.

(k)

Sent;(;, Ti(k’v)) = Sent;(7;, tx) + Sent;(tr, ;") (A.34)



154

As explained earlierSenti(tk,Ti(’“’”)) is the same asent;(k,v — 1). Sent;(7;,t;) can

be obtained by summing Equation (A.27) oveouter rounds starting at outer roukgl
Substituting the result of this summation and Equation (A.26) in Equation (A.34) and using
the fact that the deficit count of a newly active flow is equal to zero, we have,

-1
Sent;(1;, 7; Bty — 4 (K Qomin) + (U

J0iQuin — DCi(ko + kv —1)  (A.35)

Using Equation (A.33) to substitute farin Equation (A.35), we get,

Sent; (Tu Z(ko-i-k v)) > %(Ti(ko-l-k,v) _ 7_2_) . %(%)(W . wi)Qmin
w; UV — 1 Wy
S O . — -1 -1
W( JWi Qmin W(n )(m )
; —1
+ %DCZ»(ICO o — 1)+ ()0, Qi
— DCi(ko + k,v—1)
Simplifying the above we get,
(k0+kv k0+kv 1 v
Sent;(7;, 7, — T — ;(};)(W W; ) Qmin
1 U 1
- = W ) min -1 -1
= ) Qin — —(n = 1)(m — 1)
1
—=DCi(ko + k,v—1) (K — 1) ) (A.36)
T W;
Using Equation (A.32) it can be easily verified that,
(ko+kv) _ 1 v W
T > r(p)( W;) Qmin
1 v—1 1
() =) Qi+ (= 1)m 1)
1
D¢k + kv — 1) (E - 1) (A37)
r w;

Now, since the reserved rates are proportional to the weights assigned to the flows as
given by Equation (A.1), and since the sum of the reserved rates is no more than the link

rater, we have,

pi < T (A.38)



155

Substituting forg;~ from Equation (A.38) in Equation (A.36) and using Equation (A.37),

we have,
Sent;(r;, Ti(k°+k’v)) > pi(Ti(kOJrk’U) —T) — % (W ]_) wi) Qmin — %(n —1)(m—1)
—PDCy (ko + Ky v — 1) (K - 1) (A.39)
T w;

Comparing the above equation with Equation (3.10), the latency bound of the Pre-order

DRR scheduler is given by,

r D
+DC¢(/€0+I€,U—1) (W )

0; < 1(W_w") sz‘n"‘%(n_l)(m_l)

— =1
Wy

(A.40)
"

From the above equation it is readily seen that the latency reaches the upper bound if
the deficit countDC; (ko + k,v — 1) is equal to its upper boun@n — 1) as given by
Equation (A.24). Substituting this in Equation (A.40), we get,

r p Wy

As discussed earlier in Section 3.4, flewvill experience its worst latency during an

interval (r;, 7* %))

for some inner roundk, + k,v). Therefore, from Equation (A.41),
the statement of the theorem is proviltl.

We now proceed to show that the above latency bound is tight by illustrating a case
when the bound is actually achieved. [etrepresent the set of all flows. Assume that
flow i becomes active at a certain time instantvhich also coincides with the start of
certain outer round,. Since the arrival of a packet into the empty buffer of a flow signals
the start of a busy period of the flow, is also the start of its busy period. Assume that for
any time instant, ¢t > 7;, a total ofn flows, including flowi, are active. Also, assume that
the summation of the reserved rates of all thibows is equal to the transmission rate of

the output link,r. Therefore, we havey; = fir. Since flow: became active at time, its

deficit count at the start of outer rousglis 0. Let the deficit count of all the othén — 1)



156

flows be equal to the maximum value (@f — 1). Using Equations (A.24) and (A.25), itis
seen that the maximum service received by a ffoguring an inner round5?™** is given

by,

maz Wi Q min
S = , + (m —1) (A.42)

On a similar note, the minimum service received by flpwuring an inner roundS;m",

provided it is present in the priority queue being served, is given by,

S]mm =———(m-1) (A.43)
p
Flows "4Qu; - Smax — = : max : : max : max
: P = 1 : =— S, —= =S, == Sy =
(O [ | PQ, | [ — ] [T [T T T 1
]
2| [ o ———— | w_Q : wQ LowQ min |
1 n-1 ! 2°°mi 1 min
I == T = i
. - . . 1
‘ P | CL [ [ F[CL T ITT [ T[T [[]
T s s B
: : : PQ T I —
w_Q 3
g 3 | —

(b)

(a)

Figure A.4: (a) Input pattern (b) Packet classification in the priority queues

Figure A.4(a) illustrates a part of the input traffic present in the queues offlbevs at
the start of outer rounk,,. Figure A.4(b) shows how th€lassifiermodule of the Pre-order
DRR scheduler classifies these packets into the priority queues using Equation (A.22).
From Figure A.4(b) it can be seen that, except for fiowll the other(n — 1) flows have

packets classified into the highest priority quét@,. Prior to the service of the first packet



157

of flow 4, each flowy, j € F, j # i, transmitsS7"** worth of data. Hence, the cumulative
delay until flow: receives serviceX, is given by,

mazx
Z S’
- r
JjEF
J#i

Substituting forS7*** from Equation (A.42), we have,

r p

+(n—1)(m— 1)) (A.44)

Also the total flow: data that is served frolRQ, equalsS™".

Even thoughX represents the time for which floihas to wait until it starts receiving
service, Equation (3.10) does not hold true if we substifis©;. This is because in time
interval (7;, ; + X) flow ¢ has not yet started receiving at its guaranteed rate. We assume

that the latency®; is given by,
0, =X+Y (A.45)

A plot of the service received by floiagainst time is illustrated in Figure A.5. In order
to determine the value d&f we shall consider the time intervet;, Ti(kO’Q)) which satisfies
the aforementioned requirements for deriving a tight upper bound on the latency. Referring

to Figure A.5, we have,

Smm 1 Smin
Y + : = - w Qmm + !
Pi r ]EZF ! T
JF#i
Substituting forS™" from Equation (A.43), we have,
Y + wi%mm B m — 1 _ W%min B m — 1
Pi Pi r r
Now, sincep; = 3, simplifying further, we have,
-1 (W
y = (m=1 <_ _ 1) (A.46)
T w;

Substituting forX andY from Equations (A.44) and (A.46) in Equation (A.45), it can be

readily verified that the latency bound is exactly met.



158

Serylce L Wew)Q min
received <- P —
by flow i : R
I Loy
: WiQmiQ/p: _,' :P.
o VT
L |
Si\y | _11 :
T. k) T. + 0 Kg:2 -
.l T(i ol) T . 6 _ T(i 02) time
i X :éY i Srimn 9:
I e | :é p !
I I !

Figure A.5: Plot of the service received by flewvith Pre-order DRR



159

Vita

Salil Subhash Kanhere was born in Bombay, India and is a citizen of India. He gradu-
ated from VJTI (Bombay, India) in 1998 with a bachelor’s degree in electrical engineering.
Subsequently, he joined the Department of ECE as a graduate student and in 1999, became
a member of the Computer Communications Laboratory. He is currently pursuing a PhD
in electrical engineering and expects to graduate in June of 2003. Salil's current research
interests are in quality of service in computer networks, interconnection networks of paral-
lel and distributed systems, switch and router design, mobile computing and systems, and
computer architecture. His PhD dissertation is in the area of fair, efficient, and low-latency
scheduling in high-speed networks with a particular focus on achieving low implemen-
tation complexity for practical use in switches and routers. During his years at Drexel,
Salil has served as a teaching assistant in physics as well as several computer engineering
courses. Salil was a recepient of the Teaching Assitance Excellence Award in 1999 and a
Special Recognition in Teaching Assistance Award in 2001. He also received the Graduate
Student Research Award from the College of Engineering and the Allen Rothworf Out-
standing Graduate Student of the Year Award from the ECE Department, both in 2003. He
has submitted six journal papers (of which two have already been published) and authored

six conference papers.






