Resource Allocation in Computer Networks: Fundamental Principles and Practical

Strategies

A Thesis
Submitted to the Faculty
of
Drexel University
by
Yunkai Zhou
in partial fulfillment of the
requirements for the degree
of
Doctor of Philosophy
May 2003

https://core.ac.uk/display/190333757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dedications

This thesis is dedicated to my family, especially to my wife, Dr. Shan Cheng, and my
parents, Mr. Guanghua Zhou and Mrs. Honggen Shi, for their sincere support, encourage-

ment and love.

Acknowledgments

In retrospect as | approach the completion of my doctorate, | realize that | am deeply
indebted to many people’s assistance and support. | would like to express my genuine
gratitude to each of them, although it would be impossible for me to name all.

First of all, | would like to sincerely thank my advisor, Dr. Harish Sethu, for his tremen-
dous time and effort spent in leading, supporting and encouraging me during the last five
years. His passion for challenges has given me inspiration; his knowledge of engineering
has given me guidance; his perseverance in research has given me confidence. Without his
help and effort, it would be impossible for me to even get close to this point. | am also
grateful to him for being not only a mentor in my professional life but also a friend in my
personal life.

| want to express my gratitude to all committee members in my candidacy examination
and/or my dissertation defense, Dr. Maja Bystrom, Dr. Athina Petropulu, Dr. William
Regli, Dr. Warren Rosen and Dr. Oleh Tretiak, for their time and valuable suggestions.

Many thanks are due to my friends in the Department of Electrical and Computer En-
gineering, who make my life here memorable. | thank Haiguang Cheng and Xueshi Yang
for discussions on traffic modeling. | thank Salil Kanhere, Alpa Parekh, Hongyuan Shi,
Madhusudan Hosaagrahara, Harpreet Arora, Adam O’Donnell and Kunal Shah from our
lab for their collaboration, discussions and help during these years. | also want to thank all
the professors, staff and students in ECE for making the Department such a joyful working
and studying environment.

| am greatly grateful to my parents, Mr. Guanghua Zhou and Mrs. Honggen Shi,
for their continuous encouragement and support. Finally, my special gratitude is due to
my wife, Dr. Shan Cheng, who has always provided me unconditional love and endless

support. She is the person who is the happiest for me when | make progress, little or great;

she is the person who believes in me and encourages me when | am frustrated; she is the
person who keeps me focused when | am in doubt; she is the person who makes me realize

that life is so beautiful.

Table of Contents

Listof Tables IX
Listof Figures e X
Abstract e Xii
Chapter 1. Introduction 1
1.1 Motivation: Resource Allocation and Fairness 1
1.2 Fairness Criteria and Notionsof Fairness 4
121 Max-MinFairness 5
1.2.2 Utility Max-Min Fairness 7
1.2.3 Proportional Fairness o 8
1.2.4 GeneralNotionofFairness 9
1.3 FairnessinScheduling 12
1.3.1 Generalized Processor Sharing 12
1.3.2 MeasuresofFairness 12
1.3.3 Weighted FairQueueing 14
1.3.4 Self-Clocked FairQueueing 15
1.3.5 Worst-case Fair Weighted Fair Queueing 15
1.3.6 DeficitRoundRobin 16
1.4 Allocation of Multiple Resources 17
1.4.1 Prioritized and Essential Resources 18
1.5 Contributions 19

1.6 Organization. e 22

Vi

Chapter 2. The Joint Allocation of Buffer and Bandwidth Resources 23
2.1 Introduction 23
2.1.1 Motivation 23
2.1.2 Buffer Allocation Algorithms, 24
2.1.3 Contributions 29
2.1.4 Organization 30
2.2 SystemModel e 31
2.3 The Principle of Fair Prioritized Resource Allocation 33
2.3.1 Resource DividendsandDemands 33
2.3.2 TheFPRAPrinciple 35
2.4 Application to Buffer-Link System Model 39
241 WhatisFair? 39
2.4.2 Anldeally Fair Allocation Strategy 40
2.5 Packet-by-packet Fair Buffering 42
2.5.1 ThePFBAlgorithm 42
2.5.2 FairnessAnalysis 45
2.5.3 Computational Efficiency 48
2.6 Measure of Fairness and SimulationResults 48
2.6.1 MeasureofFairness 49
2.6.2 SimulationSetup 50
2.6.3 Gateway TrafficTraces 52
2.6.4 VideoTrafficTraces 55
Chapter 3. The Joint Allocation of Processing and Bandwidth Resources 58

3.1

Introduction 58

vii

3.1.1 Background and Motivation, 58
3.1.2 EssentialResources. 59
3.1.3 Difference from Prioritized Resource Allocation 61
3.1.4 Contributions 62
3.1.5 Organization 63
3.2 SystemModel 63
3.3 The Principle of Fair Essential Resource Allocation 64
3.3.1 NotionofFairness 64
3.3.2 The Concept of the Prime Resource 65
3.33 TheFERAPrinciple 66
3.3.4 Fair Work-Conserving Allocation Policy 72
3.4 Fair Joint Allocation of Processing and Bandwidth Resources 75
3.4.1 SystemModel 76
3.4.2 Fluid-flow Processor and Link Sharing 76
3.4.3 Packet-by-packet Processor and Link Sharing 77
3.4.4 Fairness Analysisof PPLS 82
3.5 Simulation Resultsand Analysis 87
3.5.1 SyntheticTraffic 88
3.5.2 Gateway TrafficTraces 91
3.5.3 Effect of Maximum DeficitCounter 92
3.6 Discussions on Implementationof PPLS 93
Chapter 4. A Discussion on Extensions to Multiple Output Link Systems 95
4.1 IntroducCtion 95

4.1.1 MotivationandChallenges 95

viii

4.1.2 Contributions 97
4.1.3 Organization e e e e 98
4.2 Multiple Output Link SystemModel 99
42.1 SystemModel 99
4.2.2 System Decompositiono o0 102
4.3 Fairness in Multiple Output Link Systems 104
4.3.1 Fairnessin Shared Link Subsystems 105
4.3.2 Fairness in an Unshared Link Subsystem 106
4.3.3 Fairness in Buffer Allocation 112
4.4 AMeasureof Fairness 112
441 Definitions 112
4.4.2 Relationship to Fairness within Component Subsystems 115
4.5 Allocation of ProcessingResource, 119
Chapter 5. Conclusion e e 122
5.1 Summary e e e e e 122
5.2 Concluding Remarks and FutureWork 124
Bibliography 128
Appendix A. Relationship between AFBandRFB 133

2.1
2.2

3.1

3.2

List of Tables

Entry policiesevaluated. 51
Exit policiesevaluated. 52
Examples illustrating what is a fair allocation in a system with a shared
processol’ and a shared link.. In all of these examples, the total amounts

of the shared resources are, respectively, 100 MHZfand 100 Mbps for

L. e e 67

89

11

1.2

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

4.1

4.2

List of Figures

Pseudo-code of max-min fairshare. 6

Examples of utility functions for: (a) elastic traffic; (b) real-time traffic; (c)

rate-adaptive traffic. L 8
The systemmodel. 32
Pseudo-code of Packet-by-packet Fair Buffering. 43
Pseudo-code of tHeushoutprocedure in PFB algorithm. 44

Observed maximum (over &l of nAFM®4(¢,¢ + 7) vs. 7, with input

traffic from a gateway trace: (a) the entry policy is RED or FB-RED, and

the exit policy is LQF, FCFS, or DRR; (b) the entry policy is DFLQ, ST, or

PFB, and the exit policy is LQF, FCFS, or DRR; (c) the logarithmic plot of
several selected combinations. L. 53

Observed maximum (over all of nAFMS9(¢,t + 7) vs. 7, with input
traffic from video traces: (a) the entry policy is RED or FB-RED, and the
exit policy is LQF, FCFS, or DRR; (b) the entry policy is DFLQ, ST, or
PFB, and the exit policy is LQF, FCFS, or DRR; (c) the logarithmic plot of

several selected combinations. 56
Ageneralsystemmodel. 64
The system model with a shared proceg3and a shared link. 76

Pseudo-code of the Packet-by-packet Processor and Link Sharing (PPLS)
algorithm. e 79

The simulation results, using (a) synthetic traffic, (b) gateway traffic traces.
(c) The effect ofmaxDCin the PPLS algorithm. In these plots, a curve
closer to a straight horizontal line implies a better fairness achieved by an
allocation policy. 90

The multiple output link system model. (a) The entire system; (b) An ex-
ample of one session with flows 1 and 2 headed tohlink 100

The unshared link subsystest;.. The number of sessions is equal to the
number of outputlinks. o 102

Xi

4.3 Sharedlinksubsysterfi;. Lo 103

Xii

Abstract

Resource Allocation in Computer Networks: Fundamental Principles and Practical
Strategies
Yunkai Zhou
Harish Sethu, Ph.D.

Fairness in the allocation of resources in a network shared among multiple flows of
traffic is an intuitively desirable property with many practical benefits. Fairness in traffic
management can improve the isolation between traffic streams, offer a more predictable
performance, eliminate certain kinds of transient bottlenecks and may serve as a critical
component of a strategy to achieve certain guaranteed services such as delay bounds and
minimum bandwidths. Fairness in bandwidth allocation over a shared link has been exten-
sively researched over the last decade. However, as flows of traffic traverse the computer
network, they share not only bandwidth resources, but also multiple other types of re-
sources such as processor, buffer, and power in mobile systems. If the network is not fair in
allocating any of the shared resources, denial of service attacks based on an excessive use
of this resource becomes possible. Therefore, the desired eventual goal is overall fairness
in the use of all the resources in the network.

This dissertation is concerned with achieving fairness in the joint allocation of multiple
heterogeneous resources. We consider resources as either prioritized (such as bandwidth
and buffer resources) or essential (such as processing and bandwidth resources). For each
type of these systems, we present a simple but powerful general principle for defining
fairness in such systems based on any of the classic notions of fairness such as max-min
fairness, proportional fairness and utility max-min fairness defined for a single resource.
Using max-min fairness as an example, we apply the principles to a system with a shared
buffer and a shared link, and a system with a shared processor and a shared link, and pro-

pose practical and provably fair algorithms for the joint allocation of buffer and bandwidth

Xiii

resources, and the joint allocation of processing and bandwidth resources. We demonstrate
the fairness achieved by our algorithms through simulation results using both synthetic
traffic and real traffic traces. The principles and the algorithms detailed in this dissertation

may also be applied in a variety of other contexts involving resource sharing.

Chapter 1. Introduction

1.1 Motivation: Resource Allocation and Fairness

Fairness is an intuitively desirable property in the allocation of shared resources in a
variety of contexts. In sociology and economics, fairness metrics and strategies have been
exhaustively studied in the distribution of wealth and welfare [1]; in operating systems,
they have been studied in task scheduling and the allocation of access to resources such as
memory, bus and I/0O [2,3]; in computer networks, they have been extensively studied in the
allocation of available bandwidth among competing flows [4-10]. Besides being intuitively
desirable, fairness in the allocation of shared resources has many practical benefits. In this
section, we discuss the motivation behind the research presented in this dissertation within
the context of computer networks.

In a computer network, flows of traffic share multiple types of resources such as band-
width, buffers, and router processors. Congestion occurs when the available capacity of
any resource is insufficient to satisfy the requirements of all competing flows. For ex-
ample, when the total bandwidth demand of all flows headed to an output link is greater
than the peak bandwidth rate of the link, packets have to be either buffered or dropped
causing either delays or packet losses and consequently, a degradation in performance. A
proper and fair management of each congested resource tends to improve the overall system
performance, just as a police officer directing traffic at a congested intersection typically
results in smoother traffic, shorter delays and faster congestion relief. The following are

among the most important advantages of fair allocation of a shared resource in networks:

e Fair resource allocation improves performance by eliminating some transient bot-
tlenecks.In a network with multiple hops, fair allocation policies in early hops can

create balanced traffic loads and thus reduce the probability of traffic flows causing

congestion in later hops.

e Fair resource allocation enables QoS guarantees.scheduler that allocates re-
sources fairly generates output traffic that has a more predictable pattern than the
input traffic. In fact, fair allocation algorithms have been shown to be able to provide
certain quality-of-service guarantees. For example, a fair bandwidth scheduling pol-
icy can be used to provide minimum bandwidths and guaranteed delay bounds [5].
Multimedia sources such as video and audio streaming applications generate traffic
requiring not only a minimum bandwidth for stable transmission, but a guaranteed
delay and delay jitter for smooth playback as well. Fair scheduling algorithms in net-
work devices, therefore, are often a critical component of Quality-of-Service (QoS)

mechanisms proposed to satisfy the requirements of such applications.

e Fair resource allocation provides isolation between traffic strea®isice fair allo-
cation policies ensure certain QoS guarantees, well-behaved flows can be protected
from other misbehaving flows triggered by malicious users, malfunctioning software,
or just heavy users. Such isolation is essential in a large-scale public network such

as the Internet even if the resources are not likely to be congested most of the time.

e Fair resource allocation enhances system security by countering certain kinds of
denial-of-service attackslf any given resource is not allocated fairly, a denial-of-
service (DoS) attack based on an excessive use of the given resource becomes pos-
sible. For example, if the router processor cycles are not allocated fairly, the router
may be vulnerable to a DoS attack based on the processing resource (such as by using

unnecessary or malicious optional headers in packets).

For all of these reasons, fair schedulers for the allocation of avaitaydwidthhave
now found widespread implementation in switches and Internet routers [11,12]. However,

bandwidth on a link is only one among several kinds of resources shared by multiple flows

in a typical network. As flows of traffic traverse through a network, they share with other

flows a variety of resources that include the following:

e Bandwidth Fair allocation of bandwidth on a link has been studied extensively in the
literature. In the edge networks of the Internet or in wireless networks, bandwidth
tends to be one of the most critical resources that should ideally be allocated fair

amongst all the competing users.

e Buffer. Buffers in networks are used to improve throughput at output links. In the
absence of a buffer, packets that arrive at a busy link have to be discarded, leading
to packet losses and therefore, a loss in throughput. With a buffer resource available,
an arriving packet can be temporarily stored in the buffer while the output link is
busy transmitting another packet. When the link later becomes idle and available to
transmit the next packet, the temporarily stored traffic can be transmitted onto the

link, thus avoiding packet losses and improving the overall throughput.

e Processor In packet-switched computer networks, for each arriving packet, switches
and routers have to retrieve necessary information from the packet header, determine
the destination of the packet and the forwarding interface corresponding to the des-
tination, maintain and update certain information such as average arriving rate for
the flow to which the packet belongs, and in many cases, modify the packet itself for
the purpose of network or traffic management. Each of these tasks requires a certain
number of processing cycles from the CPU, and therefore, the processing resource
is another important resource shared by all traffic flows. With the current pervasive-
ness of high-bandwidth long-haul optical links in the Internet backbone, and with the
occasional trend toward using over-provisioning as the solution to congestion in the
edge networks, a router’s processor is often also a critical resource to which, ideally

speaking, all competing flows should have fair access.

e Power Normally powered by batteries, mobile devices such as laptops, PDAs, and
cellular phones have a finite power lifetime. A fair allocation of power amongst
competing users becomes especially critical in certain kinds of networks such as
mobile ad hoc networks and sensor networks, where power is the bottleneck resource

given today'’s technological constraints [13].

Given these various types of resources, more than one of which could be congested at
any given time, the allocation policy with respect to any one of these resources can have
a significant impact on the overall performance and QoS achieved by flows. Even though
fair scheduling of bandwidth over a link has received the most attention, the most desirable
goal is overall fairness in theint allocation of all resources shared by the flows of traffic
and not just one specific kind of resource such as the link bandwidth. However, a rigorous
theoretical framework that may be universally employed as a guide in the design of practical
algorithmic strategies for the joint allocation of such heterogeneous sets of resources does
not exist. This dissertation tries to establish such a theoretical foundation, and based on
this foundation, develop practical strategies for achieving fairness in the joint allocation of

such resources.

1.2 Fairness Criteria and Notions of Fairness

In attempting the design of a fair resource allocation policy, one has to first define a
notion of fairness that determines the criteria by which one can judge the fairness achieved
by an allocation policy. To solve the problem of what is fair if multiple entities compete
for a single shared resource, many fairness criteria have been proposed in the literature.
The most popular ones among them are max-min fairness, proportional fairness, and utility
max-min fairness, which are described below. Without loss of generality, throughout this

dissertation, we assume that the competing entities are network flows.

1.2.1 Max-Min Fairness

The max-min fair share policy of allocating a shared resource among multiple flows
with equal rights to the resource but unequal demands, follows the following principles

[14,15]:
e The shared resource is allocated in order of increasing demand.
e No flow receives a share of the resource larger than its demand.
¢ Flows with unsatisfied demands receive equal shares of the resource.

The notion of max-min fairness can also be defined in the following equivalent way: no
flow can increase its allocation without reducing the allocation of another flow with less or
equal demand. Under max-min fairness, given no additional resources, an unsatisfied flow
cannot increase its allocation by merely demanding more.

When there are weights associated with the entities demanding a share of the resource,
the max-min fair procedure is based on resource allocations that are normalized by the
corresponding weight. Considé¥ sources, labeled,2,..., N, and with a weightw;
associated with source Let d; be the demand corresponding to souiceGiven R as
the size of the resource shared among th€ssurces, the max-min fair share algorithm
uniquely defines a fair allocation. For the sake of convenience, throughout this dissertation
we use vectors to indicate values belonging to a set of sources. We denote a vector by
the indexed value in a pair of square brackets, and when the context requires it, with a
specification of the boundaries of the index values. For instance, we denote the weight
vector asw; : 1 < i < N] or just[w,], and the demand vector && : 1 < i < N] or just
[d;]. Given the demand vector, the weight vector and the total available resource amount,

R, the max-min fair share allocation is given by

[ai] = fMMF(R, [di], [wz]) (1.1)

1 ./TMMF(R, d, w):

2 N « LengtHl(d);

3 Source— {1,2,...,N};

4 Resource— R;

5 Weight— SN w(i);

6 for eachi, 1 <i< N

7 d, (i) «— d(i)/w(i);

8 end for;

9 while (Source# ¢)

10 Find sourceé with minimumd,, in Source

11 if (d.(i) < ResourcANVeighj then

12 a(i) «— d(i);

13 Remove sourcefrom Source

14 Resource— Resource- a(i);

15 Weight— Weight— w(7);

16 else

17 for eachj, 1 <j < N

18 if (j € Sourcé then

19 a(j) < w(j)x ResourcANeight

20 end if;

21 end for;

22 Source— ¢;

23 end if;

24 end while;

25 return a;
Notation:
R total resource amount input variable
d source demand input vector
w source weight input vector
N total number of sources constant value
Source set of unallocated sources variable
Resource amount of unallocated resource variable
Weight total weight of unallocated sources variable
d,, normalized demand vector
a allocation output vector

Figure 1.1: Pseudo-code of max-min fair share.

wherea; is the max-min fair allocation for flow, and Fyr, the max-min fair procedure,

is a function of the available amount of the resource, the demand vector and the weight
vector. For the sake of completeness in our definitions of fairness, Fig. 1.1 provides a
pseudo-code of thé&yr procedure, which returns an allocation vedigr: 1 < i < NJ.

In defining this function formally, we assume, of course, that vector elements in the same

positions in their respective vectors always correspond to the same source.

1.2.2 Utility Max-Min Fairness

The notion of utility max-min fairness is similar to that of max-min fairness, except that
under utility max-min fairness each flow is associated with a utility function [16] and it is
the utility achieved by each flow that needs to be allocated fairly. The utility function of a
flow under an allocated amount of resource indicates the level of performance (or “satisfac-
tion”) this flow achieves when given this amount of resource, and the utility functions for
different flows can be different [17]. The following are a few examples for some common

types of traffic.

e Elastic traffic such as E-mail, Telnet and FTP applications may have a convex utility.
In other words, the utility increases rapidly with the allocated amount of resource
when the amount is relatively small, and it saturates above a certain point. Fig. 1.2(a)

illustrates this type of utility functions.

e Real-time traffic such as video and audio streams has a minimum requirement on
the amount of allocated resources. The utility achieved by this type of traffic be-
comes substantial only when this minimum requirement has been satisfied. On the
other side, overprovisioning would not further increase the utility significantly. As
a summary, the utility function of real-time traffic normally has a threshold point

corresponding to the minimum requirement, as shown in Fig. 1.2(b).

o Rate-adaptive traffic has a similar utility function as real-time traffic, except that the

(@) (b) (€)

Utility
Utility
Utility

Resource

Resource Resource

Figure 1.2: Examples of utility functions for: (a) elastic traffic; (b) real-time traffic; (c)

rate-adaptive traffic.

utility differentiation at the point of minimum requirement is more smooth. In other

words, the utility function of rate-adaptive traffic has a “knee point”, as illustrated in

Fig. 1.2(c).

Note that for a set of flows given the total amount of resourég the demand vector

[d;], the weight vectofw;| and the utility function of each flow, the allocation veciay]

under utility max-min fairness is given by

[ai] = «FUMMF(Ry [di]> [wz]) (1.2)

where the utility function of each flow is implicitly included in the functi@fy .

Max-min fairness can be considered as a special case of utility max-min fairness in the

sense that in max-min fairness, all flows have the same linear utility function.

1.2.3 Proportional Fairness
Some researchers argue that max-min fairness gives higher priority to flows with small
demands [18]. As an alternative, the notion of proportional fairness emphasizes less on

flows with small demands. An allocation vectar] is said to be proportionally fair if

and only if for any other feasible allocatiga], the aggregate of proportional changes is

non-positive, i.e.,

/
a; — a;
>t <o
i Qi

Here we refer to an allocation as a feasible one, if and only if, the shared resource is not
overallocated under this allocation. This fairness criterion implies a logarithmic utility
function.

Similar to the cases of max-min fairness and utility max-min fairness, proportional
fairness also determines how to allocate the shared resource, given the resource/dmount

the demand vectdr;] and the weight vectdiv;]. In other words, proportional fairness can

be also represented as follows:

[ai] = fPF(Ra [di]7 [wz]) (1.3)
1.2.4 General Notion of Fairness

Note that each of the above mentioned fairness criteria determines, in its own distinctive
fashion, how a single resource should be allocated to competing flows with respect to their
demands. Therefore, for the sake of convenience, we introduce a notation that allows a
representation of any of these notions of fairness.

Consider a set ofV flows, 1 < ¢ < N, competing for a single shared resource of
amountR.! Denote byw; the weight of flow, indicating the flow’s relative rightful share
of the resources. For a flow under a Differentiated Services framework [19], its weight
is determined by its traffic class among the 64 possible classes; for a flow in a best-effort
network, its weight is typically the same as that of all other flows. d;die the demand

corresponding to flow. Therefore, given the demand vectdy], the weight vectofw,],

'Depending upon the property of the shared resource, the anibonaly be measured either by the total
capacity or the peak consumption rate. For example, in the case of buffer resource, the resource amount
is measured in terms of the total capacity (i.e., in bytes); while in the case of link resource, the amount is
measured in terms of the peak bandwidth rate (i.e., in bps). Similar situations occur for resource demands
and allocations. Therefore, in the rest of this dissertation, we will not explicitly distinguish how the resources
are measured, and generally refer to the term “resource amount”.

10

and the total available resource amoiany given notion of fairness may be represented

as

la;] = F(R, [di], [wi]) (1.4)

whereq; is the allocation for flowi based on the notion of fairness defined by the function
F. The functionF is different for different notions of fairness such as max-min fairness,
proportional fairness or utility max-min fairness.

One may notice that the utility functions are not explicitly presented in (1.4). However,
the notion of fairness in (1.4) represents a general notation to describe how, given a certain
vector of demands, one may determine the allocation of the resource for each flow, in
order that the utilities corresponding to the allocations satisfy the given fairness notion
with respect to the demands for utility. In other words, the notation of (1.4) implicitly
incorporates utility functions into the notion of fairness. For example, max-min fairness
implies a linear utility function, proportional fairness uses a logarithmic utility function,
and in utility max-min, each flow determines its own utility function. The only constraint
is that the utility functions are non-decreasing functions with respect to quantity of the
allocated resource.

An equivalent representation of any notion of fairness uses normalized demands and

allocations. Define the normalized demand of fligw;, for the resource as follows:

The normalized demand of floiwindicates the fractional share of the resource demanded

by the flow. Define the normalized allocation of flew:;, as follows:

The normalized allocation of flowindicates the fractional share of the resource allocated

to flow s.

11

Therefore, given the normalized demand vedthr and the weight vectofw,], any

given notion of fairness may be represented as a function as follows:
(@] = F(C, [dy], [wi])- (1.5)

Here C is the constraint, described later in greater detail, imposed on the system. Note
that the notion of fairness in (1.5) imposes no dimension on any variable, thus making it
applicable to systems with multiple heterogeneous resources.

The constrainC is used as a parameter in the functirbecause, given the same de-
mand and weight vector, the fair allocation is different under different constraints imposed
on the system. The constraifitcan be used to indicate the performance level achieved by
the allocation. For example, an allocation of no resource to any flow may also be consid-
ered a fair allocation by the max-min fair criterion albeit one that leads to very poor perfor-
mance. In general, this parameter allows us to define the fairness of non-work-conserving
allocation strategies by not imposing a specific level of performance achieved by the allo-
cation in the definition of fairness. As a simple example, the constfaitdan be just the
sum of the utilities achieved by all flows.

Note that the resource amouRtin (1.4) can be also considered as a simple constraint
on the allocation policy: the total amount of allocated resources cannot exceed the resource
amountR, i.e.,>; a; < R. Therefore, the notion of fairness in (1.4) is just a special case
of the notion of fairness in (1.5). Based on the context, we may use any one of these two
notions of fairness. For example, in this dissertation, (1.4) is used when normalization is not
necessary such as in considering buffer resources, while (1.5) is used when normalization
is necessary such as in considering processing resources.

Given a systend and a notion of fairnes&, an ideal scheduling policy, denoted by
Gx(9), is one that exactly achieves this notion of fairness in systenfror example, if
F represents the function corresponding to the max-min fair policy with respect to the

bandwidth [14, 15], and. represents a work-conserving system with a single shared link,

12

Gx(L) will denote theGeneralized Processor Sharing (GRS)licy [6], the ideally fair
scheduling policy for max-min fairness. Next we further discuss scheduling policies in

bandwidth allocation under the notion of max-min fairness.

1.3 Fairness in Scheduling

1.3.1 Generalized Processor Sharing

The GPS scheduler, in the scheduling of bandwidth over a link, is an unimplementable
but ideally fair scheduler that exactly achieves the max-min fair distribution of the band-
widths among the various flows [6, 15]. During each infinitesimal interval of time, the
GPS scheduler visits each backlogged flow once and schedules an equal and infinitesimal
amount of data for transmission over the output link. If different weights are imposed on
network flows, the amount of data transmitted from each flow by the GPS scheduler is pro-
portional to its weight during each infinitesimal interval of time. By this means, the GPS

scheduler achieves max-min fairness.

It is apparent that the GPS scheduler is an ideal policy and cannot be implemented
in real systems, where network traffic is packetized and flow packets have different sizes.
Many practical scheduling algorithms have been proposed to approximate the ideal GPS
scheduler, such as Weighted Fair Queueing (WFQ) [5], Self-Clocked Fair Queueing (SCFQ)
[7], Worst-case Fair Weighted Fair Queueing (Y [9], Deficit Round Robin (DRR) [8]
and Elastic Round Robin (ERR) [10]. Before describing these practical scheduling algo-

rithms, we first present two measures of fairness based on GPS.

1.3.2 Measures of Fairness

Since GPS is the ideally fair scheduling algorithm which achieves max-min fairness,
for any other scheduling policyapproximating GPS, the discrepancy between the service

achieved by GPS and that by the practical polican be used as a measure of fairness. The

13

absolute fairness bound (AFB)llows this concept [7]. Consider a floiwvhich is always
backlogged. Denote by“(t,,t,) andS{(t,,t,) the service received by flowduring time
intervallt, to) under the GPS policy and under poligyrespectively. Thabsolute fairness

(AF) of policy ¢ with respect to flow during time intervalt,, t,) is defined as

G q
ATty 1) = | S Unta) Sl) (1.6)

w; wy

wherew; is the weight of flow:. The absolute fairness bound of poligys the maximum

absolute fairness for all possible flows and all possible time intervals, i.e.,

AFB? = max AF;](tl, tg) (17)

Vi,t1,t2

The absolute fairness bound may be difficult to determine for some scheduling algo-
rithms such as SCFQ, since it requires the emulation of GPS. Another measure of fairness,
relative fairness bound (RFB), simplifies the computation by comparing the service re-
ceived by different flows. The relative fairness (RF) of policwith respect to a pair of

flows (i, j) during time intervalt, ¢5) is defined as

a Sty t
N R a9

W; W

Similar to the definition of AFB, the relative fairness bound of policis the maximum

relative fairness for all possible pairs of flows and all possible time intervals, i.e.,

RFBY = max RF? .

Vigitity (0

(t1, t2)- (1.9)

We have proved in [20] that for any work-conserving scheduling paljdhe absolute

and relative fairness bounds have the following relationship:
L RPBY < AFBY < (1 - wm) RFBY.
2 - - w

In this relationshipiu,, is the smallest weight of all flows, aitl is the sum of all weights.

In addition, for many scheduling algorithms, the upper bound on the absolute fairness

14

bound is actually the true bound. Since these two fairness bounds are closely related,
we can use one of them if the other is difficult to determine. The fairness bounds of some
scheduling policies described below are determined using this relationship, and therefore,

the proof of this relationship is presented in Appendix A.

1.3.3 Weighted Fair Queueing

The Weighted Fair Queueing (WFQ) policy approximates the GPS scheduler in the
sense that WFQ tends to serve packets in the order of their finishing time under GPS [5].
The system maintains a variable referred@asd numberindicating the time under GPS
by increasing inversely as the number of active flows. Each packet upon arrival is associated
with a tag referred afinish number Assuming thek-th packet of flowi, p¥, arrives at time

7, its finish numbet(p¥) is computed as

L(p})

F(ph) = max{F(p} ™), RN (r)} + 2

where RN (1) is the round number at time, L(p}) is the size of packet!, andw; is the

weight of flowi. In other words, the finish number of packétdepends on the round
number at its arrival time if the previous packet from flowp? !, has finished service
whenp? arrives, or on the finish number pf ! otherwise. When a packet finishes service,

the WFQ scheduler selects the packet with the smallest finish number in the system as the
packet to be served next. It has been shown that the WFQ discipline can lag GPS by a finite

constant [21], i.e.,

Sér) _ SMLT) L

Wi W; Wi
where L is the maximum packet size. However it is possible that a flow can receive a

substantial service lead under WFQ than under GPS. The WFQ has the following RFB:

L
RFBW'? = 3—.
Wm

It is not trivial to accurately track the round number since it is related to the number

15

of active flows under the emulated GPS system. The round number is updated when a
packet finishes service under the WFQ scheduler. By this time, it is possible that some flow
has finished service under GPS, and it needs to be removed from the list of active flows.
This removal leads to an increase in the incrementing rate of the round number, and thus
a larger round number. Again it is possible that by this larger round number, another flow

has finished service under GPS and needs to be removed from the list of active flows. This

is known agterated deletiorj22].

1.3.4 Self-Clocked Fair Queueing

Self-Clocked Fair Queueing (SCFQ) relaxes the WFQ scheduling policy by not strictly
emulating the GPS system and not accurately maintaining the round number [7]. Instead,
the finish number of the packet currently under service is used as the current round number,

i.e.,
L(pF)

wy

F(pf) = max{F(p;"),CF(r)} +

whereC'F'(7) is the finish number of the packet being served at tm8CFQ has a finite

relative fairness as follows:

RFBSCFQ — 2i

Wy
1.3.5 Worst-case Fair Weighted Fair Queueing

It is shown in [9] that under WFQ, a flow can receive a substantial lead than under GPS.
For example, a flow with a large weight has a sequence of packets awaiting service while
the weights of other flows are significantly smaller. In this case, the sequence of packets
from flow ¢ may each have a smaller finish number than the head-of-line packet of any
other flow, due to the relatively large weight of flowTherefore, under WFQ, this entire
sequence of packets from flawwnay be scheduled before any packet from other flows can

begin service, thus leading to significantly bursty service for flower short time periods.

16

Worst-case Fair Weighted Fair Queueing (Y@ solves this problem by selecting the
packet to be served only from among tlkgible ones, which means they have begun
service under GPS [9]. Specifically, under ¥, each packet is associated with not only a
finish number but atart numbeias well. The start number of a packet from flows either
the finish number of the previous packet from flgvor the round number upon its arrival,

whichever is larger, i.e.,
S(pf) = max{S(pi "), RN(7)}

where S(pF) is the start number of thie-th packet from flowi and 7 is its arrival time.
When the WEQ scheduler finishes the service of a packet, it selects the packet with the
smallest finish number among all the packets that have a start time smaller than the current

round number. The absolute fairness of ¥@Fs

AFBVF*Q — (2 = w’”) =
W) wp,

wherelV is the sum of the weights of all flows.

1.3.6 Deficit Round Robin

When a packet finishes service, WFQ and all its variants need to search for the packet
with the smallest finish number among all flows. Therefore, the per-packet computational
complexity of these algorithms i9(log N) where N is the number of flows. This may
impose significant overhead in large scale networks.

Deficit Round Robin (DRR) is a fair scheduling algorithm with a per-packet work com-
plexity of O(1) [8]. For each flow, two variables are maintained in DRRIgdicit counter
and aquantum The DRR scheduler serves edwdckloggedlow in a round robin fashion.
When visiting a flow in each round, the scheduler first increments the deficit counter of this
flow by its quantum, and transmits a maximum possible sequence of packets from this flow
with the total length less than the deficit counter. The deficit counter is then decremented

by the total size of all packets scheduled.

17

In each round, the service received by each backlogged flow under DRR is, on average,
equal to its quantum. Therefore, if the quantum value of a flow is assigned proportional
to its weight, the DRR scheduler can allocate to each flow the bandwidth resource with an
amount, on average, proportional to its weight. It is shown that the DRR algorithm provides

a finite RFB as follows:

L
RFBPM = 3—.
W

1.4 Allocation of Multiple Resources

As summarized in the previous section, the research on fairness in resource allocation
over the last decade or two has primarily focused on the allocation of the bandwidth re-
source on a link [4-10]. It has also been shown that concepts and algorithms for achieving
fairness in the allocation of a single resource can be extended to the case with multiple
resource®f the same kin§R3]. However, as previously discussed, bandwidth is only one
among several kinds of resources shared by multiple flows in a typical network. As flows
of traffic traverse a computer network, they share many different kinds of resources such
as link bandwidth, buffer space, time on the router processors and also electrical power,
a critical resource in mobile systems. The ultimate goal, therefore, should be the overall
fairness in thgoint allocation of all resources shared by the flows of traffic and not just one

specific kind of resource such as the link bandwidth.

The need for fairness in the joint allocation of multiple heterogeneous resources has
also been recognized in other contexts. For example, it has been recognized that fair al-
location of both the channel bandwidth and the power consumed needs to be achieved
simultaneously in mobile networks where power and bandwidth are both critically impor-
tant and scarce resources [24]. In addition, others have also recognized the importance of

joint allocation of buffer and bandwidth resources [25-28].

18

1.4.1 Prioritized and Essential Resources

Network systems with multiple types of shared resources can be generally categorized
into two different groups: those witprioritized resourcesand those withessential re-
sources In this dissertation we investigate the joint allocation in both types of systems,
establish fundamental principles for defining fairness in such systems, and propose practi-
cal algorithms for realizing these principles. We first describe these types of resources in
detail.

In many situations, the flows competing for a set of multiple heterogeneous resources
have a preference toward using one of these resources over another. For example, at a
switch or a router with a shared buffer and a shared output link, flows prefer to be allocated
the output link resource, and only when the output link is not available do they choose to use
the buffer resources. Even in the allocation of multiple resources of the same type, a certain
resource may be preferred over another such as when, under certain conditions, terrestrial
links are preferred over satellite links, for the sake of shorter transmission delay. We refer
to the resources in these types of systemgrawitized resourcesi.e., a shared set of
resources of the same or different types, but ordered by preference. In this dissertation, we
use systems with shared buffer and link resources as an example to establish the principles
of fairness in such systems.

The other type of systems includes those va#isential resourcesWe define ares-
sentialresource as one for which a flow’s demand does not reduce with an increase in the
allocation of other resources to the flow. A number of resources such as the link bandwidth,
processor and power, in most contexts, are essential resources. In this dissertation we in-
vestigate a system with a shared processor and a shared link as an example of systems with

essential resources.

19

1.5 Contributions

The primary contributions of this dissertation are general theoretical frameworks for
defining and measuring fairness when a set of traffic flows share multiple resources in the
network, either prioritized or essential. We make no assumptions on the notion of fairness
defined for the allocation of a single shared resource; in fact, our frameworks may be
applied to any of several notions of fairness such as max-min fairness, proportional fairness

or utility max-min.

With respect to systems with prioritized resources, we introduce two concept&uthe
mulative Resource Dividen@©RDIV) of a flow under a certain resource allocation policy
represents the benefit accrued to the flow due to the portion of the shared set of resources
allocated to it under the policy; tlt@umulative Resource Dema(@RDEM) of a flow is the
benefit accrued to the flow when all of the shared set of resources is exclusively allocated
to the flow. These two concepts are generic in the sense that we make no assumptions on
what is the shared set of resources and how one may compute the desired benefit to a flow.
One may now use one’s favorite notion of fairness in the distribution of a single shared
resource, and state that a fair allocation policy among a set of competing flows is one that
achieves a fair distribution of the cumulative resource dividends with respect to the cumu-
lative resource demands of the flows. This is referred to aBtimeiple of Fair Prioritized
Resource Allocatioor theFPRA principle However, just as the notions of fairness in the
allocation of a single shared resource can be applied only over certain specific intervals of
time (intervals during which the number of actively competing flows stays constant) [29],
this generalized principle also applies only over certain specific intervals of time depending
on the properties of the traffic flows. A significant contribution of this dissertation is the
formal definition of these intervals of time in the context of multiple prioritized resources

shared by competing flows.

The concepts of cumulative resource dividend and demand cannot be readily extended

20

to systems with essential resources, since it may not be straightforward to determine the
ultimate benefit flows receive from an allocation of multiple non-prioritized resources.
Through illustrative examples, we claim that in these systems, at each instant of time, it
is the maximum of a flow’s normalized demand for the various essential resources that
should count in the decisions made by a fair resource allocation algorithm. We then de-
velop the fundamental principles of fairness for systems with multiple essential heteroge-
neous resources and propose Braciple of Fair Essential Resource Allocatiar the

FERA principle expressed within a rigorous theoretical framework. We also prove that,
under certain generic conditions, there exists a unique, fair, and work-conserving resource
allocation policy which satisfies the FERA principle.

Given these principles of fairness, we proceed to apply them to a system with a shared
buffer and a shared link, and a system with a shared processor and a shared link, both
using max-min fairness as the notion of fairness. For the system with the shared buffer
and link, we propose an ideally fair policy, called tRuid-flow Fair Buffering (FFB)
algorithm, for the joint allocation of buffer and bandwidth resources. We then present
the practicalPacket-by-packet Fair Buffering (PFBan approximation of the ideal FFB
algorithm. We analytically prove that PFB achieves a close bounded approximation to the
FFB algorithm. We use real gateway traffic and video traffic traces to compare the fairness
of PFB against several combinations of popular entry and exit policies and demonstrate
the improved fairness with PFB. Our results show that the entry policy used in PFB can
significantly improve fairness even in combination with an unfair exit policy such as First-
Come-First-Served (FCFS). Our results reveal that when buffer resources are constrained,
a fair entry policy is more critical than a fair exit policy to the overall fairness goal.

For the system with a shared processor and a shared link, we also propose an ideally
fair policy, called theFluid-flow Processor and Link Sharing (FPL8)gorithm, for the
joint allocation of processing and bandwidth resources. We then develop a practical and

provably fair packet-by-packet approximation of the FPLS algorithm, cabadket-by-

21

packet Processor and Link Sharing (PPL3he PPLS algorithm, based on an extension
of the Deficit Round Robin algorithm [8], has a per-packet work complexi@f). We
illustrate the fairness of the PPLS algorithm using both synthetic traffic and real gateway
traffic traces.

Another major contribution is the method proposed in this dissertation for the extension
of these principles to the systems with multiple output links. Consider the allocation of a
shared buffer in a multiple output link system as an example. The approach used in this
extension is to decompose the multiple output link system \itbutput links into two
classes of subsystems. The first subsystem, referred to asygihared link subsystem
consists off integrated flows, osessionsEach session consists of all the flows headed to
a particular output link. In this unshared link subsystem, only the buffer is shared among
all sessions, thus allowing the application of the FPRA principle with a common set of
shared resources. The decomposition of the system also créabéshe other class of
subsystems, referred to as tsieared link subsystemsach corresponding to one session.
Flows within each of these subsystems share both the link and the buffer, and thus each
shared link subsystem is identical to the single output link system considered in the study
of multiple prioritized resource allocation. After investigating the question of what is fair
in the unshared link subsystem, we define the fairness in the entire system based on the
definition of fairness in each subsystem. We then present a measure of fairness for multiple
output link systems, an extension of the absolute fairness bound in bandwidth scheduling on
a link. The analysis of this fairness measure shows that achieving fairness in the unshared
link subsystem is critically important to achieving fairness in the overall system. This
method of decomposition can also be applied in other context of resource allocation in

multiple output link systems such as the processing allocation in such systems.

22

1.6 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes how to define
fairness in systems with prioritized resources, using a system of a shared buffer and a
shared link as an example. Chapter 3, on the other hand, investigates fairness in a system
with a shared processor and a shared link, an example of systems with essential resources.
A detailed discussion on the extension of these results to multiple link systems is presented

in Chapter 4. Finally, Chapter 5 concludes this dissertation.

23

Chapter 2. The Joint Allocation of Buffer and Bandwidth Resources

2.1 Introduction

2.1.1 Motivation

As discussed in Chapter 1, buffers in switches and routers are among the most important
kinds of resources shared by flows of traffic in a typical network. The primary purpose of
a buffer is to improve bandwidth utilization through a reduced rate of packet loss. In the
absence of a buffer, when packets from more than one flow contend for the same output link
in a switch, one of the packets succeeds while the others are dropped. At a later time, if no
new packets arrive for transmission through the output link, the link is idle and bandwidth
is wasted. Using a buffer at the output link, however, packets could be saved instead of
dropped in the presence of contention, and then transmitted later when there is no further
contention for the output link. On the other hand, the buffer is less preferred by traffic
flows as compared to the output link for the same reason. In other words, flows prefer the
link resource if the output link is available and only when the output link is congested, do
they require the buffer resource. Therefore, a system with a shared buffer and a shared link
is one with prioritized resources. In this chapter, we investigate the problem of achieving
fairness in the joint allocation of such resources, using the joint allocation of buffer and
bandwidth resources as an example.

Even though researchers have primarily focused on the fair allocation of bandwidth
resources during the last two decades, some have already recognized the importance of
joint allocation of buffer and bandwidth resources [25-28]. Buffer allocation policies in
switches and routers are directly related to congestion avoidance and flow control policies
with a direct impact on end-user applications. Fair allocation of buffer resources in routers

and switches takes on additional significance with the increasing prevalence of multime-

24

dia applications that use UDP instead of TCP and choose to avoid end-to-end congestion

avoidance policies.

This chapter is concerned with achieving fairness in the joint allocation of buffer and
bandwidth resources in a network. A management policy for a shared buffer consists of two
components. Thentry scheduledetermines which data from which flows are permitted
into the buffer and which are not. The entry scheduler is also responsible for pushout, i.e.,
the discarding of data from the shared buffer in order to accommodate new arriving traffic.
The exit scheduledequeues traffic from the shared buffer and transmits them onto the
output link. It is the combination of both the entry and the exit schedulers that determines
the overall fairness in the allocation of the buffer and bandwidth resources. Since the exit
schedulers have already been described in Chapter 1, next we present a brief introduction

to popular entry policies.

2.1.2 Buffer Allocation Algorithms

The majority of buffer allocation strategies proposed and analyzed over the last cou-
ple of decades have focused on maximizing performance as measured by the throughput
achieved or the cell loss rate [30—40]. The simplest allocation policy, still common in many
hardware switching devices, @mplete Sharing (C3$30], in which the shared buffer ac-
cepts every packet as long as there is space available, and drops them otherwise. Another
alternative, typically used when the number of flows is small, isGbenplete Partition-
ing (CP)[30, 31] or theStatic Threshold (STpolicy, which statically partitions the buffer
among the multiple flows. It is shown in [30] that the CS strategy achieves better aggre-
gate throughput than the ST strategy. However, the CS strategy is biased in favor of flows
with heavy or bursty traffic, since such flows can easily fill up the shared buffer and leave
little or no buffer space to flows with light traffic. This can cause an overall degradation

in throughput with an unacceptable rate of packet loss for the low-traffic flows. The ST

25

strategy with equal partitions can protect the performance of low-traffic flows, but only at
the expense of potentially wasting buffer capacity.

An improvement in performance can be obtained by combining the properties of CS
and ST, such as iBharing with Maximum Queue Length (SMX&haring with Minimum
Allocation (SMA)and Sharing with Maximum Queue and Minimum Allocation (SMQMA)
[30]. In SMXQ, each flow has a maximum queue length, i.e., a threshold, but unlike
ST, the sum of all the thresholds is larger than the entire shared buffer space, in order
to improve the utilization of the shared buffer. In SMA, a small portion of the shared
buffer is reserved for each flow and the rest is completely shared by all flows. Finally
SMQMA combines SMXQ and SMA, by reserving some buffer space for each flow and
sharing the rest with a maximum queue length constraint for each flow. Yet another variant
is Buffer Admission Control (BAG)lgorithm [32], which dynamically groups flows into
underloaded and overloaded categories, and uses different thresholds to accept packets,
based on the flow’s current categorization.

Note that none of the above buffer allocation policies implenpersthout whereby a
packet in the buffer is discarded and its place in the buffer is taken by a newly arrived
packet. Pushouts are necessary to correct past unfairness in the allocation, and can be
accomplished using théirtual Partitioning (VP)strategy [33, 34]. In this class of buffer
sharing algorithms, the buffer is divided into virtual partitions among the flows. When the
buffer is not full, all packets are accepted into the buffer as in the CS strategy. However,
when the buffer is full, packets belonging to a flow with a buffer occupancy lower than
its assigned virtual partition size may push out packets belonging to a flow with a buffer
occupancy higher than its assigned virtual partition size. It is proved in [35-37] that VP
strategies can achieve optimal performance measured in terms of the packet loss rates.

Note that an equal distribution of the buffer space can be achieved using the VP strat-
egy by dropping packets, whenever necessary, from the longest queue. Another algorithm

that seeks to achieve fairness and protection through apportioning the buffer space approx-

26

imately equally among the flows was proposed in [41,42]. In this algorithm, an incoming
packet is dropped if its flow’s queue is greater than a certain minimum length and is also
greater than a certain quantity which is a pre-defined function of its own queue length and
the average among the queue lengths of all the flows. A review of this algorithm and its
variants may be found in [43].

A majority of buffer allocation algorithms have attempted to be fair through apportion-
ing the buffer space approximately equally among all the flows. Note that when all the
flows have the same demand and the same weight assigned to them, the max-min fair dis-
tribution of the buffer space is the same as an equal distribution of the buffer space. While
attempting to apportion the buffer space evenly among all the flows has often been de-
scribed as fair and is intuitively appealing, this ignores the fact that different flows require
different amounts of buffer space at different times depending on the arrival pattern of each
flow. Most such buffer allocation strategies determine a flow’s share of the buffer space
based on the number of active flows or traffic profile parameters, but have no monitoring
and feedback mechanisms on traffic arrival patterns. This weakness is somewhat addressed
by theDynamic Threshold (DT3trategies, which dynamically assign the threshold values
based on the past traffic arrival and buffer occupancy patterns [38—40]. The DT strategies
achieve a better utilization of the buffer space, and therefore, a better overall throughput
since they can consider the instantaneous needs of each flow. While various DT strategies
have been proposed for bursty or Poisson traffic patterns to achieve optimal performance,
no allocation strategy has been proposed that seeks to achieve fairness while also consider-
ing the traffic patterns and the instantaneous needs of each flow.

In some buffer management algorithms, especially in those intended for use in Internet
routers with traffic from TCP sources, a probabilistic determination is made on whether or
not to drop a packet [44-50]. These algorithms seek to achieve multiple goals of congestion
avoidance, protection and fairness in addition to performandeahdom Drop (RDpM4],

when the shared buffer is full, one packet in the buffer is randomly selected to be replaced

27

by the packet that just arrive&arly Random Drop (ERD}4], on the other hand, specifies

a fixeddrop probabilityfor each arriving packet whenever the aggregate length of the queue

in the shared buffer exceeds a certdrap level The intent of this algorithm is to punish
misbehaving sources based on the assumption that dropped packets are more likely to be
from misbehaving sources since they send more packets.

A smoother increase in the drop probability as a function of the queue size is provided
by the Random Early Detection (RER)gorithm [45] and thé~uzzy Threshold (FTap-
proach [46]. In FT, a dropping probability distribution function is defined. Each possible
buffer occupancy is associated with a certain dropping probability of a new arriving packet,
and this dropping probability increases as the buffer occupancy until it reaches 1 at some
certain threshold. Unlike FT which uses the exact queue lengths, RED monitors the queue
lengths and maintains an exponential average value of the queue length. In addition, it
maintains two thresholds on the queue length. The RED algorithm specifies that incom-
ing packets be dropped with a certain probability which is a function of the average queue
length and the two thresholds. When the average queue length is below the lower thresh-
old, incoming packets are always accepted. When the average queue length is above the
upper threshold, incoming packets are always dropped. When the average queue length
is between the lower and the upper thresholds, the incoming packets are dropped with a
certain probability that is proportional to the average queue length. Instead of dropping
packets, the RED algorithm also allows a marking of the packets such as in the DECbit al-
gorithm [51]. In this paper, we focus on the buffer management aspects of these algorithms
and therefore, we only consider the version of RED that drops incoming packets.

The fraction of dropped packets belonging to a flow in the RED algorithm has been
shown to be roughly proportional to that flow’s share of the total bandwidth. The RED
algorithm, however, does not achieve or attempt to achieve fairness in terms of equal
throughput for all the best-effort flows. The RED algorithm also does not explicitly con-

trol misbehaving flows. To address this problem, several enhancements to RED have been

28

proposed [47-50]. Ifcarly Fair Drop (EFD) [49], each flow is associated with a nomi-

nal allocated occupancy. The EFD algorithm uses the same method as RED to determine
when to drop a packet, but instead of dropping the arriving packet, it searches, in a round-
robin fashion, for a flow with a buffer occupancy larger than its nominal value and drops
the packet at the head of the queue corresponding to this @6DKe[50] randomly se-

lects one packet from the queue when the average queue length is greater than the lower
threshold. If the arriving packet and the selected packet are from the same flow, both are
dropped. Otherwise, the algorithm’s subsequent actions are similar to those in the original
RED algorithm. Fair-Buffering Random Early Detection (FB-RE)8], uses the same

basic algorithm as RED but weighs the drop probabilities assigned to a packet in a flow
by the bandwidth-delay product of the flow. To provide better flow isolatiean; Ran-

dom Early Detection (FRED)ses per-flow variables [47]. It guarantees a minimum buffer
space to each flow, and every packet from a flow is accepted when the queue length of the
flow is below this minimum. It also uses a maximum per-flow queue length, above which
all packets from the flow are dropped. When the flow’s queue length is between these min-
imum and maximum thresholds, the average queue length of the entire buffer is calculated,
and the arriving packet is either dropped or accepted, based on the same algorithm as in the
original RED algorithm.

None of these variants of the RED algorithm addresses the issue of the policy to employ
when an incoming packet encounters a full buffer; they merely seek to avoid the situation
altogether since their primary goal is congestion avoidance rather than fairness in buffer
allocation. However, these algorithms do manage buffer space, and one can judge them
for how fairly they allow various flows to use and gain benefit from the buffer and link
resources in the router.

As summarized above, most of the existing buffer allocation algorithms have attempted
to maximize performance or achieve congestion avoidance although several of them have

also tried to be fair by one measure or another. A precise and formal notion of fairness in

29

buffer allocation, however, has not yet been developed. Thus, there is currently no theoreti-
cal framework around which one can design practical and fair buffer allocation algorithms,
and there also are no formal means of evaluating the various buffer allocation policies al-
ready proposed. This chapter seeks to provide such a framework to define fairness in the
joint allocation of buffer and bandwidth resources, and to facilitate the design of provably

fair buffer management strategies.

2.1.3 Contributions

The primary contribution of this chapter is a general theoretical framework for defining
fairness when a set of traffic flows share more than one resource, such as a buffer and a
link. The framework developed in this chapter provides a simple but powerful generaliza-
tion of any of several notions of fairness previously defined for the allocation of a single
shared resource or a set of resources viewed as a single entity. In this chapter, we intro-
duce two concepts: theumulative Resource Dividef{@RDIV) of a flow under a certain
resource allocation policy represents the benefit accrued to the flow due to the portion of
the shared set of resources allocated to it under the policyCtimeulative Resource De-
mand(CRDEM) of a flow is the benefit accrued to the flow when all of the shared set of
resources is exclusively allocated to the flow. These two concepts are generic in the sense
that we make no assumptions on what is the shared set of resources and how one may
compute the desired benefit to a flow. One may now use one’s favorite notion of fairness
in the distribution of a single shared resource, and state that a fair allocation policy among
a set of competing flows is one that achieves a fair distribution of the cumulative resource
dividends with respect to the cumulative resource demands of the flows. However, just as
the notions of fairness in the allocation of a single shared resource can be applied only over
certain specific intervals of time (intervals during which the set of flows competing actively

does not change), this principle applies only over certain specific intervals of time depend-

30

ing on the properties of the traffic arrival pattern. The formal definition of these intervals
of time, calledstationary intervalsforms an important component of our contributions in

this chapter.

We illustrate the above framework with max-min fairness as the notion of fairness and
proceed to define an ideally fair stratedituid-flow Fair Buffering (FFB) for the joint
allocation of buffer and bandwidth resources. FFB is an ideally fair but unimplementable
resource allocation strategy, just as the Generalized Processor Sharing (GPS) [6] is an ide-
ally fair but unimplementable scheduling discipline for allocating bandwidth among flows
sharing a link. FFB is intended to serve research efforts in the design of practical and fair
buffer allocation strategies in a manner analogous to the role served by GPS for almost
a decade in the design, analysis and measurement of scheduling disciplines for allocating

bandwidth on a shared link.

This chapter also presenBacket-by-packet Fair Buffering (PFBan implementable
approximation of the FFB algorithm. We analytically prove that PFB achieves a close
bounded approximation to the FFB algorithm. We use real gateway traffic and video traffic
traces to compare the fairness of PFB against several combinations of popular entry and
exit policies and demonstrate the improved fairness with PFB. Our results show that the
entry policy used in PFB can significantly improve fairness even in combination with an
unfair exit policy such as First-Come-First-Served (FCFS). Our results reveal that when
buffer resources are constrained, a fair entry policy is more critical than a fair exit policy to

the overall fairness goal.

2.1.4 Organization

This chapter is organized as follows. In Section 2.2, we introduce the system model
considered in this chapter. In Section 2.3, we define the concepts of cumulative resource

dividends and demands, and also the concept of stationary intervals of time over which

31

one can apply notions of fairness in a system with multiple resources. We conclude the
section with the statement of the Principle of Fair Prioritized Resource Allocation (the
FPRA principle) for use in systems with more than one shared resource. In Section 2.4, we
illustrate the application of the FPRA principle and define what is fair in the joint allocation
of buffer and bandwidth resources based on the max-min notion of fairness. In this section,
we also present the ideally fair but unimplementable FFB strategy. In Section 2.5, we
present the PFB strategy, a novel and practical buffer allocation strategy and prove that it
closely approximates FFB. In Section 2.6, we present simulation results using real gateway
traffic and video traffic to demonstrate the improved fairness of PFB in comparison to

popular combinations of buffer and bandwidth management strategies.

2.2 System Model

In the system model considered here, a shared buffer is fel lfipws, labeled as
1,2,..., N, all destined to the same output link. LBtt) be the maximum link speed at
time instant and letC'(¢) be the capacity of the shared buffer at time instaioth values
are defined to be functions of time in order to accommodate general situations, such as a
higher-level allocation scheme that may change the available capacity of the link or the
buffer. We assume that all flows belong to the same service priority classy;asdhe
weight associated with flov In reservation-based networks, the reserved rate of a flow
may be used as its weight. Fig. 2.1 illustrates our system model and some of the notation

used in this chapter.

An entry scheduleregulates the entry of traffic from theé flows into the shared buffer.
The entry scheduler determines which data from which flows are permitted into the buffer
and which are not. The entry scheduler is also responsible for pushout, i.e., the discarding
of data from the shared buffer in order to accommodate new arriving traffic from another

flow. An exit scheduledequeues traffic from the shared buffer and transmits them onto the

32

l(t
1-() A_q(T)\Buffer Capacity C(t) D:l(t)

I(t) A Di(t) —R()
: E y DE (t)
|N(t) AN() Bi(t) N

Figure 2.1: The system model.

output link. The exit scheduler, as in scheduling algorithms for the allocation of bandwidth
on a link, determines the sequence in which traffic from various flows will exit through the
output link.

Let S denote the system under consideration. L&) be the rate at which data arrives
in flow 7 at time instant seeking entry into the shared buffer. This is the only input into
the systemS. Consider a buffer allocation poliay, a combination of the entry and the
exit scheduler’s policies. Define the admission rafé (¢), at time instant, as the rate at
which data from flows get accepted into the shared buffer of systeomder the allocation
policy ¢. Traffic that is not admitted into the shared buffer is dropped. NoteAﬁé(t)
can be negative, such as when the net rate of acceptance into the buffer is negative due to
pushouts A>(t) < I;(t) holds for alli andt.

Define the departure raté),f’q(t), as the actual rate at which traffic belonging to flow
i departs the shared buffer through the output link of systemmder the allocation policy
¢. At time instant;, let B>/(¢) be the queue length or the buffer occupancy of flawthe
shared buffer in systerfi under the allocation policy. At any given time instant > ¢,

BSU(t) = BS4(t,) + t: (A54(r) = D39(7)) dr. (2.1)

Throughout this chapter, the sum of a quantity oakrflows is denoted by dropping
the subscript for the flow in the notation. For examplé,) is the sum of the input rates
of all of the N flows, i.e.,/(t) = N | I(t). AS4(t), BS4(t), andD%(t) are also defined

similarly. Of course D%4(t) < R(t), andB>4(t) < C(t).

33

Note that, as mentioned before, the buffer allocation strategy is completely determined
by the actions of the entry and the exit schedulers, which together deteﬂfrﬂwie) and
Df’q(t). Also note that the queue length of a flow in the shared buffer is completely de-
termined by the admission rate, the departure rate and the initial queue length, as given by
(2.1). Defining what is fair in buffer allocation in systethover a certain interval of time
[t1,t,), therefore, is the same as defining tmnditionson A7/(t) and D;(t) for all ¢ in

[t1,12), such thay is fair.

2.3 The Principle of Fair Prioritized Resource Allocation

2.3.1 Resource Dividends and Demands

Consider a set of flows using a shared set of prioritized resources in a certain system
S. Each flow in the system, depending upon the application that generates the flow, has a
certain desired goal, which we generically refer to asutiléy sought by the flow. Over
any given interval of time, theumulative utilityis merely the utility considered over that
interval of time. Note that the definitions of utility and cumulative utility may be very
different in different contexts. For example, in the scheduling of bandwidth over a single
shared link as accomplished by fair scheduling algorithms such as DRR [8], the utility
may be defined as the bandwidth achieved by a flow; the cumulative utility achieved by
a flow over an interval of time would be defined as the amount of its data transmitted
through the shared link during the interval. For real-time applications with guaranteed
delay requirements, one may define the cumulative utility over an interval as the fraction
of packets that are successfully delivered within the specified guaranteed delay over this

interval of time.

It is important to note that, in this chapter, we do not impose any particular notion of
how cumulative utility over an interval should be defined. Our only assumption in this

regard is that the cumulative utility over any interval achieved by a flow is always non-

34

negative and does not decrease with an increase in the amount of any resource allocated to
it.

Consider a policy; for the allocation of the shared set of resources. Over time interval
[t1, 1), denote by7(¢,, t,) the cumulative utility achieved by flowunder allocation pol-
icy ¢ in systemS. Consider an allocation policone(i), which grants none of the shared
resources to flow. By our notation/7>"*"®” (¢, t,) is the cumulative utility achieved by
flow i during time interval;, ¢,) with the allocation policyNone(i). The difference in the
cumulative utilities achieved by a flow with and without the use of the allocated portion of
the shared set of resources, i.e., the difference betwéél(]tl,tQ) and UiS’NO”e(i) (t1,12),

represents the benefit accrued to the flow due to this shared set of resources. The following

formally defines this concept.

Definition 1 The Cumulative Resource Dividendenoted by CRIV (¢4, t,), of flow
i in systemS under the allocation policy over an interval of timét,, ;) is defined as
follows:

CRDIVI (11, t5) = UP(t1, ts) — USN O (11, 1,). (2.2)

Now, a notion of fairness in the allocation of the shared resources should specify a
distribution of these cumulative resource dividends among the flows. However, such a
notion of fairness cannot be developed without also defining a notion of the demands placed
on the shared set of resources by the flows. For example, it is only sensible that flows which
have no need for the shared set of resources, i.e., with no demand for them, should not
unnecessarily be allocated any of these resources. This principle is a trivial generalization
of already existing notions of fairness in the allocation of a single resource.

The demand of a flow for the shared set of resources can be expressed in terms of the
benefit or the cumulative resource dividend that the flow desires from an allocation of the
shared set of resources. Any flow would like a biased allocation policy that grants all of

the shared set of resources exclusively to it. Therefore, the demand of a flow is really the

35

benefit accrued to the flow, i.e., the cumulative resource dividend of the flow, when all of
the shared set of resources is allocated exclusively to the flowAlgt) be an allocation
policy that allocates all of the shared resources, in entirety and exclusively, to. fibine

notion of the demand of a flow can now be formally defined as follows.

Definition 2 The Cumulative Resource Demardknoted by CREMf(tl,tg), of flow ¢

in systemS over an interval of timet,, t,) is defined as follows:

CRDEM? (t1, t5) = UZ M (11, 15) — UPN O (1, 1,). (2.3)

7

Note that the cumulative resource demand is independent of the allocation qaohinte
also that the cumulative resource demand of a flow is no less than the cumulative resource
dividend of the flow under any allocation policy.

In scheduling of bandwidth over a single shared link, a flow gets no throughput at all
with policy None(7) since the link is the only resource contributing to the utility. Thus, over
any time interval, all of the bandwidth allocated to a flow represents the benefit accrued to
the flow from the shared resource. In this case, the cumulative resource dividend of a flow
over a given interval of time with a scheduling policy is the same as the total amount of
data from the flow scheduled for transmission by the policy during this interval. Similarly,
the cumulative resource demand of a flow over a certain interval of time is just the total
amount of data that the flow could transmit during the interval if it did not have to compete

with any other flow.

2.3.2 The FPRA Principle

Based on the definition of the cumulative resource demand and the cumulative resource
dividend over any given interval of time, the shared resources can now be allocated accord-
ing to any given notion of fairnesg applied to the cumulative resource dividends with
respect to the cumulative resource demands. This would ensure that each flow receives, as

per the notion of fairnes$, a fair share of the dividend from the shared set of resources.

36

However, one cannot apply such a notion of fairness overaabirary interval of time,
and this significantly hinders a simple extension of the notion of fairness from the single-
resource case to that for a system with a link and a buffer resource. For example, a notion of
fairness such as the principle of max-min fairness also cannot be applied to any arbitrary in-
terval of time in the allocation of bandwidth on a link among competing flows. In this case,
a flow is consideredctiveat any given instant of time if and only if it is backlogged [8];
and active over a given interval of time if and only if it is active at each instant of time
during this interval. The principle of max-min fairness may only be applied over intervals
of time during which no flow changes its state from being active to not being active, or
vice-versa. In our study, we refer to such an interval of time over which one can apply a
notion of fairness as stationaryinterval. In extending a notion of fairness to the system
modelS discussed in Section 2.2, we will have to extend the concept of the active/inactive
state of a flow and the concept of a stationary interval.

Consider a system with two distinct resources, one of which is the preferred resource.
In the system under consideration, the link is the preferred resource; flows use the buffer
resource only if the link resource is not available for immediate use. Our framework for the
definition of fairness in the system under consideration is based on a simple common-sense
and therefore, axiomatic approach whereby we allocate the preferred resource fairly, and
then allocate the non-preferred resource fairly among the flows with unsatisfied demands.
As per any given notion of fairness, a fair allocation in a system with two distinct resources
is one which, firstly, fairly allocates the preferred resource among all the competing flows
and then, fairly allocates the other resource among the flows that still have unsatisfied
demands.

Denote byS~, an identical system as the one under consideration, but without the
buffer resource. This is a system with just a single shared output link. We assume that,
as per any given notion of fairness, the ideally fair allocation strategy is known for

systemS~—. Based on the earlier discussion, only when the demand of a flow in system

37

S~ cannot be satisfied does it compete with other flows for the buffer resource. In other
words, a flow should be considered in competition for the buffer resource, if and only if,
in the absence of the buffer resource, the flow is not satisfied with a fair allocation of the
link resource. Therefore, an active flow with respect to the buffer resource is one whose
demand, in syster—, would not be met under the ideally fair allocation poli€(S™).

The following definitions formalize this thought.

Definition 3 With respect to the buffer resource, a flows activeduring an interval of
time [t1, ;) as per the notion of fairness, if and only if, overeachsubinterval of time
(71, 72) such that, < 7, < 7 < ¢y, the cumulative resource demand of flovm systemS
is greater than the cumulative resource dividend it would achieve in systeamder the
ideally fair allocation policyG #(S™). In other words, flow is active with respect to the

buffer resource over time intervgl, ¢,), if and only if,
CRDEM? (71, 75) > CRDIVY %7057 (7, 1)
for all time intervalsr, 75) such that; < 7 < 75 < ts.

Definition 4 With respect to the buffer resource, a flows inactiveduring an interval of
time [t1, ;) as per the notion of fairness, if and only if, overeachsubinterval of time
[11,72) such that; < 7 < 7 < t,, the cumulative resource demand of flown system
S is equal to the cumulative resource dividend it would achieve in systerander the
ideally fair allocation policyG #(S™). In other words, flow is active with respect to the

buffer resource over a time intervial, t,), if and only if,
CRDEMZS(EE) = CRD'V;.S_’GF(S_)<T17T2)

for all time intervalsr, 75) such that; < 7, < 75 < to.
Note that it is possible that a flow is neither active nor inactive with respect to the

buffer resource over a certain interval of time, since the above definitions are based on

38

conditions that require to be satisfiedaachsubinterval of time within the given interval.

For example, consider two contiguous intervals of time. In the first interval, assume that
a certain flow is active with respect to the buffer resource while in the second interval the
flow is inactive with respect to it. Then, in the combined interval of time consisting of both
the above two intervals, the flow is neither active nor inactive with respect to the buffer
resource.

Thus, during any given interval, a flow may be said to be in one of three states with
respect to the buffer resource: active, inactive or neither. In our case of a system with more
than one resource, if a flow does not need the less preferred resource, then it implies that the
flow is satisfied and is not in active competition with other flows. Generalizing the concept
used in the allocation of a single resource, one may define fairness with respect to a resource
over an interval only when the set of flows competing for the resource stays constant during
the interval. We are now ready to present the concept of a stationary interval in our system,

and the Generalized Principle of Fairness.

Definition 5 In a systemS with two distinct sets of resources, one of which is the pre-
ferred resource set, a certain interval of time istaionary interval if and only if, each
flow is either active or inactive (but not neither) with respect to the non-preferred resource
set over this entire interval.

Now we are ready to present tReinciple of Fair Prioritized Resource Allocatioor

the FPRA principle as follows.

Principle 1 Principle of Fair Prioritized Resource AllocatiorConsider a syster with

two sets of prioritized resources and an allocation pajicipolicy q is fair as per a notion

of fairnessF, if and only if, over all stationary intervals of time, the cumulative resource
dividends achieved by the flows are distributed fairly, as per the notion of faiffiesgth
respect to the cumulative resource demands requested by the flows.

Note that, if a flowi is neither active nor inactive over a certain time interjvalt,),

39

this interval can be divided into a contiguous sequence of subintervals, during each of
which flow i is either active or inactive. Thus, even though the FPRA principle defines
fairness only over stationary intervals, any given interval of time may be broken down into
a sequence of contiguous stationary intervals. Thus, the FPRA principle may be used to

define a fair allocation over any given interval.

2.4 Application to Buffer-Link System Model

2.4.1 Whatis Fair?

In this section, we illustrate the application of the FPRA principle to the system model
described in Section 2.2 under specific notions of fairness and the cumulative utility achieved
by a flow. We will use max-min fairness as the notion of fairness. Throughout the rest of
this chapter, we also use the total amount of data from a flow transmitted over the output
link during any given interval of time as the cumulative utility achieved by the flow over
this interval.

Thus, for any allocation policy, the cumulative utility of a flowi in systemS over any
interval of time is given by

S 2 g
Ui ’q(tl, tg) = Dz ’q(T)dT. (24)

t1

Consider the allocation polic¥one(i). In the absence of this set of shared resources (both
the link and the buffer), the cumulative utility is obviously 0. With an allocation policy
q, therefore, the cumulative resource dividend over an interval for each flow is exactly the
cumulative utility achieved by the flow over the interval. The cumulative resource demand
of flow i is the cumulative utility it gets using the allocation poligyi (i), which allocates

the entire buffer and the output link exclusively to this flow. Thus, applying (2.4) into (2.2)
and (2.3), we have,

s 2 s
CRDIVS4 (¢, t,) = / DS(r)dr (2.5)

t1

40

t .
CRDEMS (t,,t,) = /QDSvAll(Z)(T)dT (2.6)

(2
Jiq

for any flow: and any allocation policy.

Recall that to define the state of a flow as active or inactive with respect to the buffer
resource, we need to consider the system without the buffer resSurc@&lote that the
ideally fair allocation policy in systens— defined earlier, given the max-min notion of
fairness, is GPS [6]. Now, a flowis said to be active with respect to the buffer resource,
or simply active, over an interval of tinjé, ¢,) if and only if, over each subintervat, 7,)

suchthat; < 7 < 7 < t9,
/ i Df’A”(i)<T)dT > / ’ D;Si’GPS(T)CZT. (2.7)
T1 T1

Similarly, a flow: is said to be inactive with respect to the buffer resource, or simply
inactive, over an interval of timg, ¢,) if and only if, during each subintervat,, 1),

[DPM O yar = [DF O (7 (2.8)
T1 T

1

A stationary interval is one during which each flow is either active or inactive, and an

allocation policyg is fair if and only if, over all stationary intervals,, t,),
[CRDIVY(t1,1)] = Fanr (CRDIVE (8, 1), [CRDEM? (1, £2)| , [wy]) (2.9)
whereFy\r represents the policy of max-min fairness.

2.4.2 An ldeally Fair Allocation Strategy

Based on the framework developed above and the notion of max-min fairness, we now
discussFluid-flow Fair Buffering (FFB) an ideally fair work-conserving strategy for the
joint allocation of buffer and bandwidth resources. As in the ideally fair GPS scheduler, the
FFB algorithm also assumes that traffic can be divided into infinitesimally small quantities

and is schedulable at this granularity. With fluid flow traffic, a protocol where traffic may

41

be allowed to bypass the buffer if the buffer is empty is equivalent to one in which traffic
has to always pass through the buffer. This is because traffic that is forced to pass through
the buffer even though the buffer may be empty spends only an infinitesimal amount of
time in the buffer in such a hypothetical system.

Recall that a buffer allocation policy contains two parts: an entry policy and an exit
policy. It can be readily verified that the FFB has to use GPS as the exit policy in order
for it to achieve max-min fairness. This is because FFB is the fair algorithm for the joint
allocation of buffer and bandwidth resources, and therefore, it still needs to provide fairness
in bandwidth allocation when buffer allocation is not an issue (such as if the buffer is of
infinite capacity). With an infinite buffer, FFB is fair if and only if its exit policy is fair,
implying that its exit should be GPS. We now proceed to discuss the entry policy in FFB.

In the FFB algorithm, we maintain for each flavanacceptance countdAC;) which
indicates the amount of data accepted into the shared buffer fromi fliMhen a packet
from flow i is accepted into the buffed C; is incremented by the size of the packet; when
some data from flow are pushed out from the shared buftar;; is decremented by the
amount of data pushed out. Note thit; is not decremented when some data from flow
1 exit the buffer and get transmitted through the shared output link; othendiSgwould
be just the buffer occupancy of floiv Therefore, it is possible that a flow has a large value
of the acceptance counter in comparison to other flows even while its buffer occupancy is
relatively low.

Denote byAC;(t) the value of the acceptance counter of flbat time instant. If
at time instantr, the input rates for all flows become 0, thdid’;(7) indicates the total
amount of data transmitted from floinafter all of its data in the buffer at time are also
transmitted. Thus, the acceptance counter of a flow represents its potential cumulative
dividend and therefore, represents the quantity that the entry policy should attempt to be
fair about in order to achieve fair distribution of the cumulative dividends with respect to the

demands. By the max-min fair notion of fairness, therefore, the FFB strategy should ensure

42

that the acceptance counters of all flows conform to the weighted max-min fair allocation

with respect to the demands.

In summary, the ideally fair FFB algorithm as per the max-min notion of fairness uses
the GPS server as the exit policy and ensures a weighted max-min distribution of the ac-

ceptance counters as the entry policy during each stationary interval of time.

2.5 Packet-by-packet Fair Buffering

It is obvious that the FFB scheduler that assumes fluid flow behavior is not imple-
mentable with real traffic that is packetized. In this section, we preRacket-by-packet
Fair Buffering (PFB) a practical and implementable approximation to the ideally fair FFB

scheduler.

2.5.1 The PFB Algorithm

The pseudo-code of the PFB algorithm is presented in Figs. 2.2 and 2.3. The PFB
algorithm maintains a linked list, calle@lowList, which consists of all the flows with
packets waiting in the shared buffer. When a flow has no packets waiting in the shared
buffer, itis removed from th&lowList (accomplished by lines 22—-24 and 50-52) and other

flows are not affected.

In the Dequeueprocedure, an implementable fair scheduling algorithm such as SCFQ
[7], SPFQ [52] or DRR [8] may be used that can achieve long-term fairness with a bounded

value of the relative fairness bound as defined in [7, 15].

The Enqueueprocedure (lines 3-16) is invoked whenever a packet arrives at an input
port of the shared buffer. Assume that a pagk&tom flow ¢ arrives. If flow: does not
already exist inFlowList, it is appended to the tail of thElowList and its normalized
acceptance counter is set to the current minimum of the normalized acceptance counters of

the active flows (lines 6—10). This is similar to the idea of the potential function in [52]

43

[EEN

Initialize: /* Invoked when the system starts */
FlowList«+ NULL

N

3 Enqueue/* Invoked whenever a packet arrives */
4 p < ArrivingPacket
5 1 < Flow(p); /* Flow of packetp */
6 if (ExistsInFlowLis{i) = FALSE) then
7 Find flow & with minimum AC; /w;, V5 € FlowList,
8 AC; — wiACk/wk;

9 Append flowi to FlowList;

10 endif;

11 if (EmptySpacelnBuffer Siz€p)) then

12 Acceptp into buffer;

13 AC; — AC; + Sizép);

14 else
15 Pushoutp); /* Pushout packets to accommodat¥
16 endif;

17 Dequeue/* Always running */
18 Use any real approximation of GPS, except that
19 after each packetis transmitted, invokdransmi{p)

20 Transmifp): /* Invoked whenever a packet departs */
21 i < Flow(p); /* Flow of packetp */

22 if (QueuelsEmpty) = TRUB then

23 Remove flowi from FlowList

24 endif;

Figure 2.2: Pseudo-code of Packet-by-packet Fair Buffering.

where a newly backlogged flow has an initial potential equal to the system potential, which

is no more than the minimum of the potentials of all existing flows.

The algorithm subsequently checks if there is enough empty space in the shared buffer
to accommodate packgt(lines 11-16). If so, packetis accepted into the shared buffer,
and the acceptance counter of floig incremented by the size of packetf there does not

exist enough buffer space for packethe Pushoutprocedure shown in Fig. 2.3 is invoked

44

25 Pushoufp):

26 i <« Flow(p); /* Flow of packetp */

27 SpaceNeeded- Siz€p) — EmptySpacelnBuffer
28 Accepted— FALSE

29 while(Accepted# TRUB

30 Among all unmarked flows, find flovw with
31 the largesiC; /w;, V;j € FlowList,

32 if (ACk/wy, = AC;/w;) then

33 Discardp;

34 Unmark all marked flows and data;

35 return;

36 end if;

37 if (Occupancyk) < SpaceNeedgdhen

38 Mark flowk and all data from flow;

39 SpaceNeeded- SpaceNeeded Occupancik);
40 else

41 Mark flowk and at leasEpaceNeededorth
42 of data from flowk;

43 Accepted— TRUE

44 end if;

45 end while

46 for each marked flowy

47 Unmark flowy;

48 Pushout all marked data from flgiy

49 DecrementiC; by the amount of data pushed out;
50 if (QueuelsEmpty) = TRUB then

51 Remove flowj from FlowList;

52 end if;

53 end for;

54 Acceptp into buffer;

55 AC; « AC; + Sizdp);

Figure 2.3: Pseudo-code of tReishoutprocedure in PFB algorithm.

to push out some packets from other flows to accommodate packet

In order to achieve a max-min distribution of the acceptance counters that is as close
as possible to the ideal, based on the sizes of the packets involved, one may need to push

out packets from more than one flow. In our approximation of the ideally fair algorithm,

45

however, for the sake of computational efficiency, we select exactflow and attempt
to pushout as much data from this flow as necessary to accommodate the newly arrived
packet. Pushout from another flow occurs only when the flow that is selected first does not
have sufficient data that can be pushed out to accommodate the arriving packet.

When thePushouprocedure is invoked, it first finds a flow, skywith the largest value
of the normalized acceptance counter. If the normalized values of the acceptance counters
are maintained in a sorted linked list, this can be don@ (g V) time with respect to
the number of flows. If flows and % have the same value of the normalized acceptance
counter, i.e., AC;/w; = ACy/wyg, packetp is discarded (lines 32—-36). Otherwise, the
Pushoutprocedure attempts to push out some data from fidevaccommodate packgt
If flow &£ has enough data, tHeushoutprocedure returns after packeis accepted, and
AC; and ACY, are appropriately updated (lines 41-43). When the buffer occupancy of flow
k is not large enough, all data from floware pushed out, and tiRushoutprocedure will
continue with the next flow with the largest value of the normalized acceptance counter.
Note that in PFB, data to be pushed out are only marked first (lines 38 and 41), and the
true pushout is executed only if packetan be accepted (lines 46-53), thus making PFB

a work-conserving algorithm.

2.5.2 Fairness Analysis

With packetized traffic, as opposed to fluid-flow traffic, short-term fairness may be
degraded but the algorithm will still achieve long-term fairness. The following theorem
proves an upper bound on the lag of the PFB algorithm with respect to the ideally fair FFB

algorithm.

Theorem 1 Consider a certain stationary interVal, ;). Consider two identical systems
with the same initial conditions and the same input traffic sequence, except that one uses

the FFB entry policy and the other uses the PFB entry policy. For anyifed for any

46

time instant € [t;,t5), we have
ACE(t) — ACF(t) < M

where ACY (t) and ACP (t) are the acceptance counters corresponding to FFB and PFB
respectively, and/ is the maximum packet size.

Proof: Note that sincet,, t,) is a stationary interval, no flow changes state during this
interval, and therefore, durinig;, ¢;) no flow becomes empty in the shared buffer due to
pushout.

Note that a difference in the actions by the entry policies of PFB and FFB occurs
only when the buffer is full. Therefore, we only need to consider the situation when a
buffered packet is pushed out or an arriving packet is discarded. Consider a certain flow
i. For the sake of convenience, denote®¥(t) the set of flows with the largest normal-
ized acceptance counter at time instannder FFB, i.e., the set with the largest value of
ACT (t)/w;,Vj. The set ”(t) is similarly defined for the PFB algorithm.

Assume time instart, is the first time thatiCY'(t) and ACY (¢) differ from each other,

i.e., ACF(t) = ACF(t), Vt < ty. Lett] be the instant of time that the execution of
the pushout or the discard completes in response to an event ait{assume negligible
length of time to complete such an execution). It can be verified Aldgt (¢;) becomes

larger thanAC? (¢§) in only one of the two following situations:

e A packetp from flow i arrives at time,,. At this instant, there exists a certain amount
of space available in the shared buffer but it is not large enough to accommodate all
of p. If flow i belongs to botl 7' (¢,) and7 ?(t;), part of the packep is accepted
under FFB, while under PFB, the entire packes discarded. In this case, <
ACE(t$) — ACP(t§) < M. Note that after FFB accepts part of packeflow i
belongs ta7 7' (7).

e Attime instantty, a packep from a flow other than arrives and the buffer does not

have enough space. Assume b@th(t;) and7*(¢,) contain more than one flow,

a7

and flow: belongs to both sets. Thus, the amount pushed out fromiflovder FFB

is less than the size of packetsince data from multiple flows are pushed out. In
the case of PFB, however, only one flow is selected for pushout, and it is possible
that flow: is chosen. In this case,< ACT (t;) — ACT(tJ) < M. Note that, again

we have: € T (t]), while in the case of PFB, there is another flow with a larger

normalized acceptance counter, iiez, 77 (1{).

Note that in both the above situations, we haee7 7 (). Next, we proceed to show

that, for any time instant within a stationary interval, if flow belongs ta7 ' (7-),
ACE (%) — ACF (%) < ACT (17) — ACF (7). (2.10)

It is sufficient to consider only the time instants when acceptance counters change, i.e.,
when new packets arrive.

Assume a packet arrives at timer and the flow under consideratiore 77 (77).

e If packetp is from flow ¢, it will be discarded under FFB, and thukCf' (7+) =
ACF (7). On the other hand, under PFB, packewill either be accepted or dis-
carded, i.e., the acceptance counter of fiowill not decrease. Therefore, (2.10) is

satisfied.

o If packetp comes from another flow other thansome data from flow will be
pushed out under FFB, sinéec 7 (7+). While in PFB,ACP(r%) = ACP(77),

since as mentioned aboviez 77 (7). Again, (2.10) is satisfied.

Note that in both cases, it is always true that 77 (7). Therefore, by induction, we
may conclude that once the differend€'/ (t) — ACP(t) becomes greater than 0, it only
decreases with increasing time at least until it becomes negative. In addition, as shown
above, wheACY (t) — ACF (t) becomes positive, its maximum possible valud/sthe
size of the largest packet. Therefore, for any time instanft,, t,), ACF(t) — ACF(t) <

M, thus bounding the difference between the practical and the ideally fair schedilers.

48

2.5.3 Computational Efficiency

Theorem 2 The Enqueueprocedure in PFB can be implemented with a computational
complexity ofO(log V), whereN is the number of flows in the system.
Proof: Note that PFB can maintain tiidowListusing a heap, based on the normalized

value of the acceptance counter. To maintain such a heap, the work compléxitydsV).
In addition, to accommodate a packet, at msf/m| packets need to be marked and
pushed out, wherd/ andm are the maximum and minimum packet sizes, respectively.
Therefore, thavhile loop (lines 29—-45) and thier loop (lines 46-53) will be executed, in
the worst case,M/m| times.

Furthermore, when marking a flow(line 38), we can remove flowfrom theFlowList,
and insert it into another linked lisklarkedFlowList This takesO(log N) of time since
deletion from a heap tak&3(log V') and insertion into a linked list tak&3(1). In addition,
while traversing thévlarkedFlowListas in thefor loop (lines 46-53), unmarking a flok
can be implemented by removing flowfrom the MarkedFlowListand inserting it back
into theFlowList Again, this take$)(log N) of time.

The complexity of thePushoutprocedure, therefore, i9([M/m]log N) or simply,
O(logN). R

Note that the computational complexity of tbequeugrocedure is simply the com-
plexity of the fair scheduler used to implement the exit policy. For example, if DRR [8]
is used, the per-packet dequeuing complexity willlx@) with respect to the number of

flows.

2.6 Measure of Fairness and Simulation Results

In this section, we present a measure of fairness in the joint allocation of buffer and
bandwidth resources, and using this measure we compare the fairness of PFB against some

representative entry and exit policies using real gateway traffic traces and video traffic

49
traces.

2.6.1 Measure of Fairness

In measuring fairness in the joint allocation of buffer and bandwidth resources, we ex-
tend the basic premise of the Absolute Fairness Bound (AFB) defined in the context of
allocating bandwidth on a link [15, 20]. The AFB captures the upper bound on the differ-
ence between the normalized service received by a flow under the policy being measured
and that received by the same flow under the ideally fair policy.

Let G£(S, q) be an ideally fair buffer allocation policy for systeshdue to the notion

of fairnessF, such that its total cumulative utility is identical to thatefi.e.,

to to
D59(7)dr = DC#S9) (1)dr.

t t
Note that in our study of fairness in buffer allocation, we make no assumption about
whether or not the allocation policy being measured is work-conserving with respect to
the shared set of resources. Therefore, a normalizing quantity based on performance is
necessary in extending the notion of the fairness measure to our case of buffer allocation.
This normalization should allow us to use our fairness measure in a valid comparison be-
tween various buffer allocation strategies. We now defin@titenalized Absolute Fairness

Measureover an interval of time as follows:

Definition 6 In a systemS with a shared buffer, a shared output link and a given input
traffic arrival pattern, theormalized Absolute Fairness Measure\FM>4(¢,, ¢,), of an

allocation policyg over an interval of timét,, t5) is defined as follows:

s D>(r)dr B Py DD (1) qr

)

max
vi w; wj

Ji2 D3a(r)dr

nAFMS9(t,,t,) = (2.11)

Note that the above measure depends on the input traffic arrival pattern, and therefore,

an algorithm will naturally have different upper bounds, nAFB, for different input traffic

50

patterns. Also note that the fairness measured as above will approach 1.0 with any real
algorithm when the size of the time interval,— ¢4, is extremely small. At the same time,

for most real buffer allocation strategies, the fairness measured as above will approach
0 when the size of the time interval considered is very large. Thus, a valid comparison
between various allocation algorithms can be made using the above measure only if the
sizes of the time intervals being considered are identical. Therefore, a meaningful measure
of the fairness for a given input pattern is not a single number but a functiontbé size

of the time interval over which fairness is measured. In our simulation study, we use the
observed maximum of AFM®(¢, t 4 7) over allt to indicate the fairness of the allocation

policy ¢ for each interval of size.

2.6.2 Simulation Setup

Our simulation model consists of a shared buffer fed by 8 input traffic sources. Traffic
from these 8 flows is headed to the same shared output link via the shared buffer. In our
first set of simulation experiments, we use real gateway traffic traces. In our second set of

simulation experiments, we use video traffic traces.

In our study, we have implemented five different entry policies including the PFB entry
policy and three different exit policies, as summarized in Tables 2.1 and 2.2. Note that the
PFB algorithm for buffer and bandwidth management uses the PFB entry policy and a fair

packet scheduler such as DRR as the exit policy.

The entry policies we simulate are chosen to be representative and include the follow-
ing: (i) Drop From Longest Queue (DFLQYvhich pushes out packets belonging to the
flow with the longest queue in the buffer whenever the shared buffer is full, and accepts
all packets, otherwise; (iiptatic Threshold (STwhich assigns an equal fixed buffer oc-
cupancy threshold to each flow and no flow is allowed to occupy more than this threshold,;

(i) Random Early Detection (REI}5], which drops arriving packets with a probability

51

Table 2.1: Entry policies evaluated.

Policy Description

DFLQ | Pushes out packets from the flow with the longest queue|

ST Assigns each flow with an equal queue occupancy threshold.

RED | Drops arriving packets with a probability [45].

FB-RED | A variant of RED [48].

PFB | The fair entry policy proposed in this dissertation.

that is a dynamic function of the average buffer occupancy;Raij Buffering Random

Early Detection (FB-RED)48], which is a variant of RED that uses the bandwidth-delay
product of a flow to determine the probability with which a packet from the flow is dropped;
and finally, (v) the PFB entry policy. These five entry policies can be categorized into two
groups: one including DFLQ, ST, and PFB, and the other including RED and FB-RED.
This is because both RED and FB-RED are intended to be congestion avoidance algo-
rithms, and therefore, assumed to work in situations where the shared buffer is never full
(packets are dropped before the buffer gets full). In our simulation studies, all parameters
of the RED algorithm follow the recommendations in [53].

Three exit policies are also implemented: Kijst-Come First-Served (FCFSyvhich
dequeues packets in the order of their arrival timesLpngest Queue First (LQFvhich
schedules packets from the flow with the longest queue in the shared buffer; aDef{iix
Round-Robin (DRHB], a simple and popular fair round-robin scheduler. In our implemen-
tation, the DRR quantum is set to be equal to the maximum packet size. In the scheduling
of bandwidth over a link, both FCFS and LQF have an absolute fairness bound of infinity,

i.e., both are unfair given the max-min fair notion of fairness. DRR, on the other hand, is

52

Table 2.2: Exit policies evaluated.

Policy Description

FCFS | Dequeues packets in the order of arrival.

LQF | Schedules packets from the flow with the longest queue.

DRR | A fair round-robin scheduler [8].

the representative fair algorithm used here.

2.6.3 Gateway Traffic Traces

In this study, we use real traffic recorded at Internet gateways as the input traffic [54]
Fig. 2.4 plots the observed maximum valuedfF M4 (¢, t+7) against- for different pairs
of entry and exit scheduling policies. Specifically, Fig. 2.4(a) plots the observed maximum
value ol AFM®(t, t+7) against- when the entry scheduling policy is RED and FB-RED,
while Fig. 2.4(b) plots the same for DFLQ, ST, and PFB entry policies. From Fig. 2.4(b) it
is seen that among all examined combinations of entry and exit policies, five have a fairness
measure approaching zerozascreases. These five combinations that are able to provide
long-term fairness are ST with DRR, DFLQ with DRR and all three combinations with
PFB. To better illustrate the differences between these five combinations, a logarithmic
plot is also presented in Fig. 2.4(c).

From Fig. 2.4(b), it is readily observed that the combinations with DRR as the exit

scheduler are better in terms of fairness than those without. The fact that DRR is already

2The traces are obtained from the Passive Measurement and Analysis project at the National Laboratory
for Applied Network Research (NLANR).

53

@

0.9

-+- RED + LQF

0sl -o- FB-RED + LQF ||
| + RED + FCFS
) s FB-RED + FCFS
L I
= 07 —— RED + DRR
k4 o6l 0 —— FB-RED + DRR
g
9]
S 05
(TR
<
% 0.4f &
E o03f
0.2¢
0.1F
0 .
0 100 200 300 400 500 600
T (in cvcles)
-+- DFLQ + LQF
-e- ST+LQF
- - PFB + LQF
. * DFLQ + FCFS ||
= s ST +FCFS
ko 4. PFB+FCFS ||
£= —— DFLQ + DRR
7 —— ST+DRR
Z —>— PFB +DRR
<
S
3
£
B it S
F
> ‘] & 8
300 400 500 600
T (in cvcles)
10° ‘ . :
-v- PFB +LQF
& PFB+FCFS
—— DFLQ + DRR
\ —— ST +DRR
N R \ —— PFB + DRR
g 10
&
1]
=
TR
<
=
3 107F
£
10’3 L L L L L
0 100 200 300 400 500 600

T (in cycles)

Figure 2.4: Observed maximum (over gllof nAFM®9(¢, ¢ + 7) vs. 7, with input traffic
from a gateway trace: (a) the entry policy is RED or FB-RED, and the exit policy is LQF,
FCFS, or DRR; (b) the entry policy is DFLQ, ST, or PFB, and the exit policy is LQF, FCFS,
or DRR; (c) the logarithmic plot of several selected combinations.

54

fair with respect to bandwidth allocation on a link certainly helps in improving the overall
fairness achieved with DRR as exit policy. However, having DRR as the exit policy does
not by itself guarantee good fairness as is apparent in the case of RED and FB-RED. This is
explained as follows. With PFB, DFLQ, or ST as an entry policy, whenever a flow is active,
the shared buffer is guaranteed to contain packets belonging to this flow. Now, DRR serves
all backlogged flows in a fair manner, and the situation becomes a close approximation
to the case of scheduling bandwidth on a link. Therefore, DRR appears promising as an
exit scheduler when an entry scheduler such as PFB, DFLQ, or ST is used. If, however,
the entry scheduler is such that each active flow does not necessarily have packets waiting
in the shared buffer (such as in the case of RED and FB-RED), using DRR as the exit
scheduler is insufficient to guarantee good fairness, as shown exactly in Fig. 2.4(a). For
example, with RED or FB-RED, an active flow may frequently end up without any data
in the shared buffer when the size of the average queue length in the buffer is above the
maximum threshold and all arriving packets are dropped.

Note that, as shown in Fig 2.4(a), buffer allocation strategies with RED and FB-RED as
the entry policy fail to achieve fairness, while those with PFB succeed, shown in Fig 2.4(b)
and (c). One interesting observation is that, when PFB is used in combination with unfair
exit schedulers such as LQF and FCFS, the fairness achieved is actually very close to that
with DRR as the exit scheduler. FCFS and LQF have traditionally been understood to be
unfair policies, since under both policies bursty flows can easily end up being rewarded
at the expense of more steady flows. In the traditional scheduling of bandwidth over a
shared link, both FCFS and LQF are considered to have an absolute fairness bound of
infinity. However, this is strictly true only if the size of each burst that is accepted into the
shared buffer is unlimited. The PFB entry scheduling policy guarantees to accept balanced
amount of traffic from each flow into the shared buffer, thus leading to a similar level of
overall fairness independent of the fairness characteristics of the exit scheduler.

In addition, a study of Figs. 2.4(a) reveals that there is very little difference between

55

RED and FB-RED in terms of fairness achieved. This tends to be true independent of the
exit policy used. The RED algorithm was primarily proposed to avoid congestion in as fair

a manner as possible, and not as a buffer management strategy. The unfairness in buffer
management with the RED strategy arises since it does not distinguish between different
flows and all flows will lose some bandwidth when one flow dominates the queue. A fair
solution would have required that only the flow that is dominating the network resources
should lose bandwidth. The FB-RED algorithm refines RED in the sense that, to differen-
tiate between flows, it uses a per-flow quantity cateakProbability which is determined

by the bandwidth-delay product. This modification, however, does not help fairness in
buffer allocation since the average queue length is still calculated for the aggregated set
of flows sharing the buffer. For example, consider the case when one flow experiences
a sudden burst and transmits a large amount of data, causing the average queue length
to increase. After the average queue length is larger thaxThresholdevery packet is
dropped, no matter which flow it belongs to. This continues until the average queue length
falls back within the range betweemnThresholdandmaxThresholdThus, the throughput

achieved by a flow with a small demand can be adversely affected by another flow.

In summary, a fair entry policy in combination with a highly unfair exit policy leads
to acceptable overall fairness; however, an unfair entry policy even with a fair exit policy
cannot guarantee overall fairness. This conclusion that emerges from our simulation study
is significant in that it stresses the importance of the entry policy as opposed to the exit
policy when buffer resources are constrained, even though the exit policy has received

almost all of the attention in the research literature.

2.6.4 Video Traffic Traces

Multimedia traffic is emerging as the dominant component of Internet traffic and such

traffic typically does not use end-to-end congestion control. Therefore, it is important to

56

@

-+- RED + LQF

0.95, -e- FB-RED +LQF ||
i + RED + FCFS
0.8d = FB-RED + FCFS fi
—— RED + DRR
= 0718 —— FB-RED +DRR_ |
A b
£ 060§
g !
Z 057N
:(5 0.4F
3
e 03r
0.21
0.1F
0 .
0 100 200 300 400 500 600
T (in cycles)
-+- DFLQ + LQF
-o- ST+LQF
-v- PFB +LQF
. * DFLQ + FCFS ||
= s ST+FCFS
ko 4. PFB+FCFS ||
& —— DFLQ + DRR
@ —— ST+DRR
Z —>— PFB +DRR
< s
% TR R
T
£ o T
O --"C---06-__4
[S g k- 1
300 400 500 600
T (in cvcles)
10° ‘ . :
-v- PFB +LQF
& PFB+FCFS
) —— DFLQ + DRR
8 —— ST +DRR
. i —— PFB +DRR
g 10
&
1]
=
TR
<
Z -2
3 10°F
£
10’3 L L L L L
0 100 200 300 400 500 600

T (in cycles)

Figure 2.5: Observed maximum (over gllof nAFM®9(¢, ¢ + 7) vs. 7, with input traffic
from video traces: (a) the entry policy is RED or FB-RED, and the exit policy is LQF,
FCFS, or DRR; (b) the entry policy is DFLQ, ST, or PFB, and the exit policy is LQF,
FCFS, or DRR; (c) the logarithmic plot of several selected combinations.

57

understand the fairness achieved by the various combinations of allocation policies with
multimedia input traffic. We use video traces coded using MPEG-4 with high qualit$. [55]
For each input, one distinct video stream is used, and the starting point within the video
stream is randomly selected.

The results obtained and the conclusions drawn with the video traces are similar to

those obtained with gateway traffic traces. Fig. 2.5 shows these results.

3The traces are collected from the Telecommunication Networks Group at Technical University of Berlin,
Germany. The eight video streams selectedlarassic Park |, Silence of the Lambs, Star Wars IV, Mr. Bean,
Star Trek, Die Hard Ill, AladdinandThe Firm The categories covered are diverse, including drama, action
and animation.

58

Chapter 3. The Joint Allocation of Processing and Bandwidth Resources

3.1 Introduction

3.1.1 Background and Motivation

As discussed in Section 1.2, to define fairness in the allocation of a single resource, var-
ious formal notions of fairness [5, 6,14-16, 18] have been proposed in the literature. Based
on these notions of fairness—most commonly, based on the notion of max-min fairness—
much research over the last decade or two has focused on the allocation of the bandwidth
resource on a link [4-10].

The significance of considering the fair allocation of more than just the link bandwidth
is increasingly becoming apparent today, since the link bandwidth is often not the only criti-
cal resource. With the current pervasiveness of optical networking in the Internet backbone,
and with the occasional trend toward using over-provisioning as the solution to congestion
in the edge networks, a router’s processor is often also a critical resource to which, ideally
speaking, all competing flows should have fair access. If the network is not fair in allocat-
ing processing resources, denial of service attacks based on an excessive use of the router
processor (such as by using unnecessary optional headers) become possible.

Given the fact that processing requirements of different packets vary widely, the issue
of fairness in the allocation of the processing resources gains significance. In addition,
besides the fact that packet lengths can vary widely, the presence of optional headers and the
various kinds of control information carried by packets create a wide variation in the ratio
of a packet’s demand for bandwidth and its demand for processing cycles. Thus, packets
of the same length cannot be guaranteed to have similar requirements for the processing
resources on a router. In fact, the processing delay plotted as a function of the packet

length shows that the processing requirements of packets vary across a wide range even for

59

packets of the same length [56].

Thus, one cannot achieve overall fairness merely with the fair allocation of link band-
width alone, or merely through the fair allocation of the processing resources alone, since
different flows—and different packets within the same flow—may have very different de-
mands for these two kinds of resources. All of this begs the question that this chapter seeks
to address: how does one achieve fairness injdhe allocation of the processing and

bandwidth resources?

The need for fairness in the joint allocation of multiple heterogeneous resources has
also been recognized in other contexts besides the one discussed here. For example, it has
been recognized that fair allocation of both the channel bandwidth and the power consumed
needs to be achieved simultaneously in mobile networks where power and bandwidth are
both critically important and scarce resources [24]. However, a rigorous theoretical frame-
work that may be universally employed as a guide in the design of practical algorithmic

strategies for the joint allocation of such heterogeneous sets of resources does not exist.

In this chapter, we investigate the issue of fairness in such systems and develop a general
principle that forms the foundation for the design of practical fair strategies for use in
routers. We also present an evaluation of the practical strategies proposed in this chapter

using both synthetic and real gateway traces.

3.1.2 Essential Resources

In the joint allocation of the processor and bandwidth resources, if a certain resource
is never the bottleneck, then the fair allocation strategy degenerates to the fair allocation
of just the other resource. For example, if the available bandwidth is large enough that no
flow experiences congestion due to lack of bandwidth alone, one only needs to worry about
the allocation of the processing resources. Fair allocation of a single bottleneck resource

has been studied extensively in the literature and has led to a large number of practical

60

algorithms that are in use today in Internet routers, operating systems, and transport-level
protocols. This chapter, on the other hand, answers the question of what is a fair allocation
when more than one resource is congested and extends the notions of fairness applied to a
single resource to systems with multiple heterogeneous resources.

We define aressentialesource as one for which a flow’s demand does not reduce with
an increase in the allocation of other resources to the flow. A number of resources such as
the link bandwidth, processor or power, in most contexts, are essential resources. On the
other hand, buffer resources in a network are often non-essential resources; for example, in
a system with a buffer and a link, a flow uses the buffer only if the link resource is currently
unavailable to it, and thus a flow’s demand for the buffer resource reduces as more of the
link bandwidth is allocated to it. In the system model used in this chapter, we assume that
the flows are in competition for resources that are all essential.

We define a pair of resourcesratatedto each other if a flow’s demand for one resource
uniquely determines its demand for the other resource. Resources in a set are said to be
relatedif each resource is related to every other resource in the set. Resources in real
scenarios are almost always related since the demands of a flow for different individual
resources are often related to each other. For example, since each packet is associated with
certain processing and bandwidth requirements, a specific increase in a flow’s demand for
link bandwidth is typically associated with a specific increase in its demand for processing
resources. A simpler example, involving multiple resources of the same kind, is a tandem
network with multiple links where the demand of a flow for bandwidth is the same on all
the links. In the system model used in this chapter, we assume multiple resources that
are related, although we make no assumptions on the specific nature of the relationship
between a flow’s demand for different resources. The existence of a relationship between
the demands of a flow for various resources calls foljaire allocation of these resources,

as opposed to an independent and separate allocation of the resources.

61

3.1.3 Difference from Prioritized Resource Allocation

One may expect that the concepts of resource dividends and demands established in
Chapter 2 for allocation of multiple prioritized resources can be readily applied in systems
with multiple essential resources, and the fairness in such systems can be similarly defined.
Unfortunately, this is not the case. In systems with multiple prioritized resources as dis-
cussed in Chapter 2, the resources can be ordered based on the preference of competing
flows. In other words, the benefits different flows achieve by using the shared resources
can be readily determined and directly compared. Therefore, for each flow it is straightfor-
ward to compute the utility of an allocation policy, and to define the concepts of resource
dividends and demands. This feature, however, is no longer valid in systems with multiple
essential resources. For example, in a system with a shared processor and a shared link,
it is not straightforward to determine the benefit a flow receives by utilizing a portion of
processing and bandwidth resources. It is also not easy to compare the benefit of a flow
with a large amount of processing resource but a small amount of bandwidth resource, and
that of another flow with the a small amount of processing resource but a large amount of
bandwidth resource. Therefore, the premise in the framework for allocation of prioritized

resources cannot be directly used in the case of multiple essential resources.

On the other hand, the allocation of essential resources also gives rise to some ad-
vantages over the allocation of prioritized resources. Recall that, to define fairness in the
allocation of prioritized resources, we have to formally define the concept of stationary
intervals, during which the notion of fairness can be applied, due to the state of each flow
being active or inactive with respect to the resources. In systems with resources that are es-
sential and related, any given flow will be always active with respect to any given resource.
Otherwise the given flow will have no demand for the given resource, which implies that
this resource is either not essential to this flow or not related to other resources, or both.

Therefore, in this study, we do not need to worry about the validity of a time interval within

62

which the fairness principle can be applied.

3.1.4 Contributions

The primary contribution of this chapter is a theoretical framework based on which
one can define fairness in the joint allocation of multiple heterogeneous resources that are
essential and related. Similar to the framework in the joint allocation of multiple priori-
tized resources presented in Chapter 2, we make no assumptions on the notion of fairness;
in fact, this framework may also be applied to any of several notions of fairness such as
max-min fairness, proportional fairness or utility max-min. Through illustrative examples,
we claim that, at each instant of time, it is the maximum of a flow’s normalized demand
for the various resources that should count in the decisions made by a fair resource allo-
cation algorithm. We then develop the fundamental principles of fairness for systems with
multiple essential and related heterogeneous resources and prop&sethgle of Fair
Essential Resource Allocatianm theFERA principle expressed within a rigorous theoreti-
cal framework. We also prove that, under certain conditions, there exists a unique, fair, and

work-conserving resource allocation policy which satisfies the FERA principle.

Given the FERA principle, we proceed to apply it to a system with a shared processor
and a shared link, using max-min fairness as the notion of fairness. We propose an ideally
fair policy, called theFluid-flow Processor and Link Sharing (FPL8)gorithm, for the
joint allocation of processing and bandwidth resources. We then develop a practical and
provably fair packet-by-packet approximation of the FPLS algorithm, caRadket-by-
packet Processor and Link Sharing (PPL$he PPLS algorithm, based on an extension
of the Deficit Round Robin algorithm [8], has a per-packet work complexi@f). We
illustrate the fairness of the PPLS algorithm using both synthetic traffic and real gateway

traffic traces.

Even though this chapter primarily focuses on the joint allocation of the processing and

63

bandwidth resources, the FERA principle may be readily applied to a variety of contexts

beyond those discussed in this chapter.

3.1.5 Organization

The rest of this chapter is organized as follows. Section 3.2 describes the general sys-
tem model with multiple shared resources considered in this study, along with our notation.
Section 3.3 presents the Principle of Fair Essential Resource Allocation, or the FERA prin-
ciple, for the system model under consideration. Section 3.4 applies the FERA principle
to a system with a shared processor and a shared link, and proposes a practical and fair
scheduling algorithm for the joint allocation of the processing and bandwidth resources,
called the Packet-by-packet Processor and Link Sharing (PPLS) policy. The fairness prop-
erties of the PPLS strategy are demonstrated by simulation experiments using real gateway
traffic in Section 3.5. Finally, Section 3.6 concludes the chapter with further discussions on

implementation issues of the PPLS algorithm.

3.2 System Model

In our system model, a set of flows, 1 < i < N, compete for a set ok related and
essential resources, < j < K, as shown in Fig. 3.1. As also described in Section 3.1.2,
we define an essential resource as one for which a flow’s demand does not reduce with an
increase in the allocation of other resources to it. Since a buffer is often not an essential
resource, our assumption that flows only compete for essential resources implies that if
there are buffers in the network shared by the flows, these buffers are of infinite capacity
so that the flows never compete for the buffer resource. In developing our fundamental
principles of fairness, we make no assumptions on the specific actions of the scheduler or

the specific order in which the packets use theesources.

Note that in this general model, we also make no assumptions on the internal architec-

64

Fowt T
Aow2 [- R

FowN [T

Figure 3.1: A general system model.

ture of the set of shared resources. It can be a simple sequence of resources such as in a
tandem network with multiple links, a parallel structure such as the resources of electric
power and bandwidth in a wireless sensor network, or a more complex hybrid.

Denote byR; the peak rate at which resourgemay be consumed. For example, in
the case of a link resourde, R, is the peak bandwidth available on the link. As before,
denote byw; the weight of flow:. Letd; ; be the consumption rate demanded by fidar
the shared resourge Our assumption of related resources implies that, giygnone can
determined; ; for all j # k. Denote by ;, the consumption rate of the shared resoyrce

allocated to flowi under the allocation policy.

3.3 The Principle of Fair Essential Resource Allocation

3.3.1 Notion of Fairness

As mentioned in Section 1.2.4, the normalized notion of fairness as in (1.5) is used
in this chapter, unlike in Chapter 2 where (1.4) is used as the notion of fairness. This is
because in a system with multiple essential resources, for each flow, the demands for dif-
ferent resources are typically in different dimensions, and so be the allocations. Therefore,
normalization of the demands and allocations is needed in the notion of fairness used. In
addition, in the presence of multiple essential resources, it is not straightforward to com-
pute a unique resource dividend for each flow, based on which the benefits achieved by
different flows can be readily compared, as in the case of prioritized resources shown in

Chapter 2.

65

Note that, in the research literature, notions of fairness have not been defined for multi-
ple heterogeneous resourt.ed/e use the notation in (1.5) that specifies a notion of fairness
for a single resource and extend the notion to multiple heterogeneous resources in subse-

guent sections.

3.3.2 The Concept of the Prime Resource

As mentioned above, the normalization of the demands and the allocations is needed in

this study. Therefore, we begin with a few preliminary definitions.

Definition 7 Define the normalized demand of flavior resourcej, d; ;, as follows:
di,j

d; i = :
Define thelargest normalized demaraf flow i, D;, as the maximum amongst the normal-

ized demands of flowfor all resources. That is,
Di = max CZZ,]
J
Definition 8 Defined; ; as the normalized allocation of resource flow i under alloca-

tion policy g, i.e.,

5] Rj
Definition 9 The largest normalized allocatioof a flow i under allocation policyy,
denoted byA?, is defined as the maximum amongst the normalized allocations ta féw
all resources. That is,

A! = maxal ..
j 7]

4Some notions of fairness such as max-min fairness and proportional fairness can be defined for multiple
resources of the same kind (e.g., a network of links), under the assumption that, if a flow receives allocations
of several resources, the allocations it receives of these resources are identical [14, 18]. However, it is not
straightforward to extend these notions of fairness to systems with multiple heterogeneous resources. On the
other hand, it can be readily verified that our framework is the same as these notions of fairness if the shared
resources are of the same kind.

66

Definition 10 Under an allocation policy, a resource is said to bepaime resourceof
flow 7, denoted by3?, if and only if, the normalized allocation of this resource to flois

its largest normalized allocation. In other words,

q

al .

~ i,

B! = argmaxa! . = arg max -2
J 5] J

j i R

wherearg max, f(x) indicates the value of the argumentorresponding to the maximum

value of functionf(z). In other words, we have
~4q _ ~q __ q
G g = MAX 0y ; = Al

In networking terminology, a bottleneck resource is one that is the most congested
resource. It is critical to note that neither the resource for which a flow has the largest
normalized demand nor its prime resource under an allocation policy is necessarily the
same as the bottleneck resource in the system. In addition, a flow may have more than one
prime resource. The prime resource is defined based on the actual allocations and not on
the demand of the flows for the resources.

Note that for each flow, the extent to which the demand for resource share gets satisfied
can be used as an indication of the extent to which the overall demand of this flow gets
satisfied. In addition, the largest normalized allocation of a flow in fact represents the
extent to which the demand of this flow for resource share gets satisfied. Therefore, we
claim that the fairness of an allocation poligyis determined by the largest normalized
demands, the prime resources under this policy, and the associated normalized allocations,

which is further explored in the following.

3.3.3 The FERA Principle

We introduce our principle with a few illustrative examples shown in Table 3.1. In these
examples, two flows with equal weights, labeled as 1 and 2, share two different resources:

a processol” for packet processing, and a link The system model in these examples

67

Table 3.1: Examples illustrating what is a fair allocation in a system with a shared processor
P and a shared link.. In all of these examples, the total amounts of the shared resources
are, respectively, 100 MHz fd? and 100 Mbps fol_.

Flow Demand Allocation
ID || P(MHz) | L (Mbps) || P (MHz) | L (Mbps)

1 75 25 75 25
2 25 75 25 75
1 225 75 75 25
2 50 150 25 75
1 100 20 50 10
2 100 10 50 5

is the same as the one we will discuss later in Fig. 3.2. The peak processing rate is 100
million processor cycles per second, i.e., 100 MHz, and the peak link rate is 100 Mbps. Let
us assume linear utility functions and max-min as the notion of fairness. In addition, for the
sake of convenience, we also assume in these examples a proportional relationship between
a flow's demands for these resources and therefore, a proportional relationship between the
allocations. In other words, the ratio of a flow’s demand for one resource and its demand
for another resource is always a constant.

In example A, assume that packets in flow 1 are all small, and therefore, its demand
for bandwidth is small relative to its demand for processing time. In contrast, assume that
packets in flow 2 are large, and therefore, its demand for bandwidth is large relative to its
demand for processing time. To better illustrate the concept, we exaggerate the difference
between their demands as follows: Flow 1 has a demand of 75 MHz for processing time and

25 Mbps for bandwidth, while flow 2’s demands are, respectively, 25 MHz and 75 Mbps.

68

If a work-conserving allocation policy is used, there is enough of both resources to satisfy
the demands of both the flows and so the allocations are exactly the same as the demands
for each of the resources. Note that for flow 1, the prime resourBevghile for flow 2, it

isL.

Next, consider what happens when both flows proportionally increase their demands for
both resources. In example B, in comparison to example A, flow 1 increases its demands
by a factor of three while flow 2 doubles its demands. Specifically, the demands for flow 1
become 225 MHz for® and 75 Mbps forL, while those for flow 2 become 50 MHz and
150 Mbps, respectively. A fundamental principle behind the max-min notion of fairness
is that, given no additional resources, a flow should not be able to increase its allocation
by merely demanding more. Thus, the fair allocation should be as shown in example B.
Again, the prime resource for either flow remains the same as in the previous example.

We discuss example B further. Obviously, in this case, neither flow is satisfied by the
allocated resources. Is the allocation actually fair?

One might argue that both flows should get equal bandwidth from a fair allocation, since
ultimately both flows will depart from this system and the processor is only an intermediate
resource before the flow’s packets reach the link resource. Denatéhieybandwidth rate
allocated to each flow, in units of Mbps. Since the resouf¢esid L are related for these
flows, we know that the allocations of the processor resourcgdi@ flow 1, andzx/3 for
flow 2, both in units of MHz. Note that the allocations have to be feasible, and therefore,

we can compute the allocations as follows:

3r+x/3 < 100
2¢ < 100.
It can be readily verified that, under a work-conserving allocation policy, flow 1 gets
90 MHz of processing time and flow 2 gets only 10 MHz, while both flows get 30 Mbps of
bandwidth. While this allocation underutilizes the link resources, that is not an argument

against its fairness. The unfairness arises from the fact that it unnecessarily favors the flow

69

whose prime resource is the “intermediate resource”, which turns out to be flow 1 in this
case. Another argument against this notion is that, even though it is true that the processor
in this case is positioned ahead of the link, it does not necessarily mean that the process-
ing resource becomes less important, or less preferred, as compared to the link, which is
positioned as the “final” resource.

Another allocation philosophy may be to allocate resources based on a fair allocation
of the most congested resource as measured by the sum of the normalized demands for
the resource. In this example, the processing resobriethe most congested resource.
Denote byy as the processing resources allocated to either flow, in units of MHz. Again,

to make the allocation feasible, one may allocate resoHrfzrly as follows:

2y < 100
y/3+3y < 100.
Under a work-conserving allocation policy, flow 2 gets 90 Mbps of bandwidth and flow 1
gets only 10 Mbps, while both flows get 30 MHz of processing resources. Note that this
allocation philosophy has a similar weakness as the one based on the fair allocation of the
link resource. It unnecessarily favors the flow whose largest normalized demand is not
for the most congested resource. A flow can trigger a change in the allocation policy by
merely increasing its demand for a given resource, while that would actually be against the
max-min notion of fairness.

Note that the previous analysis also implies that the fairness in the allocation of both
processing and bandwidth resources should not be defined in terms of the fairness in the al-
location of any single resource. This is because both resources are essential, and therefore,
no resource should be treated as if it is more important than the other.

One may suggest the following slight modification to the allocation strategy: to fairly
allocate the most congested resource as measured by the sum of the noratllcagbns

for the resource. However, it can be shown that such an allocation may not exist. Assume

a certain resourceis the most congested resource. bealenote the flow with the smaller

70

demand for resourceand let denote the other flow. Assume that the normalized alloca-
tions of resource arez, andz; for the two flows. It can be verified that the normalized
allocations of the other resource &g, andz;/3, independent of whether the resource

is the processing resour@e or the bandwidth resourck. Since resource is the most

congested resource as measured by the sum of the normalized allocations, we have
32a + 28/3 < za + 23

which leads t3z, < zg. Since both flows have a high demand, under the max-min notion,
this condition cannot lead to a fair allocation except for the trivial case whetezs = 0.

Thus, it may not be possible to achieve a fair allocation of the most congested resource as
measured by the sum of the normalized allocations of the resource.

Based on the discussions above, we claim that in a network where no explicit preference
of one resource over another exists (i.e., each resource is essential), fairness should not be
defined based only on a single resource, no matter how this single resource is determined
and whether it is determined before allocation (i.e., based on demand) or after allocation
(i.e., based on allocation). Instead, the fairness in such a system should be defined with
overall consideration of various resources involved in the system and the relationships be-
tween the demands for the various resources.

Given this observation, one may propose yet another scheme to define fairness: the sum
of the normalized allocations of the resources computed for each flow should be max-min
fair. In the previous example B, this leads to an allocation of 75 MHz of processing time
and 25 Mbps of bandwidth for flow 1, and 25 MHz of processing time and 75 Mbps of
bandwidth for flow 2. In this case, for both flows, the sum of the normalized allocations of
the two resources i85/100 4+ 25/100 = 1. While this appears to be a reasonable strategy
for fair allocation, this scheme of fairness cannot, in fact, be extended to other situations.
This is illustrated by example C described below.

Assume that both flows have a demand of 100 MHz for resoBraghile the demands

71

for resourcel, are 20 Mbps and 10 Mbps for flows 1 and 2, respectively. Note that in this
example, there is sufficient link bandwidth available for the demands of both flows, i.e., the
flows are not in competition for resourde In other words, the system regresses into an
allocation of a single resource. Applying the max-min notion of fairness on the single
resourceP, we know that the fair allocation would be 50 MHz of processing time for each
flow, leading to 10 Mbps and 5 Mbps of bandwidth for flows 1 and 2, respectively. Thus,
the ideally fair allocation leads to 0.6 and 0.55 as the sum of the normalized allocations.
Clearly, if we were to be max-min fair in the sum of the normalized allocations of the
resources to each flow, we would not get this result. This illustrates that the strategy of
achieving max-min fair distribution in the sum of the normalized allocations fails to serve
as the basis to define fairness in the allocation of multiple resources.

The fair allocation strategies in the three examples do have one property in common:
the largest normalized allocations of the flows are distributed in a max-min fair manner
among the flows. In our case with equal weights for the flows, the largest normalized
allocations are equal for the two flows. In the first two examples in Table 3.1, resBurce
is the prime resource for flow 1, while the prime resource for flow 2 is resaurée both
examples, the largest normalized allocation equals 0.9. In the third example, the processor
P is the prime resource for both flows, and this time the largest normalized allocation is
0.5 for both flows.

The observations from the above examples lead to the significance of incorporating
the largest normalized allocation for each flow into a strategy for extending a notion of
fairness to the allocation of multiple resources. In our examples, the fair allocation policy
is to simply equalize the largest normalized allocations for different flows. In more general
situations, different notions of fairness may be used and flows may have different weights
and different largest normalized demands. We now preserRriheiple of Fair Essential

Resource Allocationr theFERA principle

72

Principle 2 Principle of Fair Essential Resource Allocationn a system with multiple
related and essential resources, an allocation pglisysaid to be fair as per the notion of
fairnessF, if and only if, the largest normalized allocations are distributed fairly, as per
the notion of fairnessr, with respect to the largest normalized demands. In other words,

allocation policyy is fair as perF if and only if,

[A}] = F (C,[Di], [wi])

where(C' is some constraint imposed on the system.

3.3.4 Fair Work-Conserving Allocation Policy

Recall that we make no assumption on whether or not the allocation policy is work-
conserving, and under different constraints, a single system can have more than one fair
allocation policy as per the same normalized notion of fairness. Given a constraint, how-
ever, there exists a unique work-conserving fair allocation policy in most situations, as will
be proved in this section.

First, we formally define a work-conserving policy in the allocation of multiple re-
sources. Recall thatin allocation of a single resource, an allocation policy is work-conserving

if and only if one of the following two situations occurs.
1. All flows’ demands are satisfied.
2. The shared resource is completely allocated.

In other words, no more of the resource can be further allocated to the flows. The same idea
to allocation of multiple resources, except that now it is possible that only one resource is

fully utilized.

Definition 11 In the allocation of multiple resources, an allocation policy is said to be

work-conservingif and only if, upon completion of the allocation, no more of any re-

73

source can be further allocated to a flow without also reducing the amount of some resource
allocated to another flow.
Next we introduce two general classes of fairness notions which describe the conditions

under which the uniqueness of the fair work-conserving allocation policy will hold.

Definition 12 A notion of fairnessF is said to beuniquely deterministicif and only if,
given the constraint’, the normalized demand vectpk] and the weight vectow,], the

normalized allocation vectad#;] as given in (1.5) can be uniquely determined.

Definition 13 A notion of fairnessF is said to benon-decreasingif and only if, given
the normalized demand vectik] and the weight vectdiv;], the normalized allocatiofa,]

is such that, for any two different constrairdts andC’, one of the following holds true:

F ((]1, [d,], [wz]) < F (Cz, (], [wz])

F (02, [CZZ], [wz]) < F (Clv [CL], [wZD :

Here< is a relational operator between two vectors of identical dimensiongudnd [v;]
impliesVi, u; < v;. This definition of non-decreasing fairness notion can be also expressed
as follows: when allocating a single resource under a non-decreasing fairness notion, no
flow will get a lesser amount of the resource if the total amount of the shared resource
increases.

These classes of fairness notions are actually very broad; it may be readily verified
that many popular notions of fairness are both non-decreasing and uniquely deterministic.
These include max-min fairness [5, 6, 15], proportional fairness [57], and utility max-min

fairness [16] if the utility functions are non-decreasing.

Lemmal In a system with multiple essential and related resources, the normalized allo-

cations received by a floware identical under two allocation policiesnds if A7 = A?.

74

Proof: Let B andB; be one of the prime resources of flamnder policies; ands,

respectively. We have

~q
@; B

IN

~9q
a; s
~S ~S
Qg S s

In addition, we have ., = a; 5. since A} = A;. Thereforeg;s. < a;z. which means
flow i receives less allocation of resourBg¢ under policyq than under policys. Also,
since the resources are essential, flawceives no more allocation of any other resource

including B under policyq than under policy, i.e.,
df’lgg Z dfisg — diBf - Af

This meand3! is also one of the prime resources of flownder policys. It may be simi-
larly deduced thaB; is one of the prime resources of flowunder policyg. In summary,

if A7 = A7, the sets of prime resources of flavare identical under policiegpands, and
the allocations of these prime resources to ficave also identical under policigsands.
Since the resources are related, floveceives identical allocations of all resources from

both policiesy ands. &

Theorem 3 If the applied notion of fairness is both non-decreasing and uniquely de-
terministic, there exists a unique fair work-conserving allocation policy that satisfies the
FERA principle as stated in Section 3.3.3.

Proof: We will prove this theorem by contradiction.

Assume that in the considered system, when applying the FERA principle, two different
policies ¢ and s are both fair work-conserving allocation policies corresponding to the
notion of fairnessF. Denote the constraints corresponding to these two allocation policies
by C? andC?, respectively.

Note that for these two allocation policiggnds, the vectors of the largest normalized

allocations, i.e.[A!] and[.4?], cannot be equal. This is because if that is the case, from

75

Lemma 1, the allocated amount of each resource for each flow will be the same under
policiesq ands, and policies; ands will be identical.

Since the system under consideration remains the same, we know that both the vector
of the largest normalized deman@] and the vector of the flow weights,] are the same.
From the definition of a uniquely deterministic notion of fairness, we knowdlag C*
since, otherwise, the two vectors of largest normalized allocatiotj$,and [.A?], will be
equal.

Since the notion of fairnes§ is non-decreasing, from the definition, we have either

[A?] < [A3] or [A5] < [Af]. Without loss of generality, we assume thdf] < [A3], i.e.,
AT < A2 Vi (3.1)

Therefore, for all flows, the allocated amount of each resource under polscgo more
than that under policy, since the resources are related and essential.

In addition, there must exist at least one flow, for which (3.1) is not an equality. In other
words, there exists at least one flow, which gets more resources under pthiey under
policy q.

Hence, under policy, as opposed to policy, no flow gets less allocation for any
resource, and at least one flow is allocated more of some resources. This violates the

assumption that policy is work-conserving and completes the prdiif.

3.4 Fair Joint Allocation of Processing and Bandwidth Resources

In this section, we apply the framework established in the previous section into an
important context of special interest: the fair joint allocation of a shared procgssod a

shared linkZ, under the max-min notion of fairness and linear utility functions.

76

Scheduler

Figure 3.2: The system model with a shared processand a shared link.

3.4.1 System Model

In this system model, a set &f flows share a processét and a linkZ, as shown in
Fig. 3.2. Packets from each flow are processed by procéssiost and then transmitted
onto the output linkL. Denote byR; the peak bandwidth rate of link and by Rp the
peak processing rate of processgbrPackets of each flow await processing by the processor
in an input buffer of infinite capacity, and then upon completion of the processing, await
transmission on the output link in another buffer of infinite capacity. The joint allocation of
the processing and bandwidth resources is accomplished by the scheduler which acts on the
packets in the input buffers and appropriately orders them for processing by the processor.
No scheduling action takes place after the processing; processed packets are received in the
buffer between the processor and the link and are transmitted in a first-come-first-served

fashion.

Denote byw; the weight of flowi, 1 < ¢ < N, indicating the flow’s relative rightful

share of the resources.

3.4.2 Fluid-flow Processor and Link Sharing

Denote byS the system illustrated in Fig. 3.2. We first consider fluid-flow traffic
through systentS, and describe an ideally fair allocation strategy called Fhed-flow
Processor and Link Sharing (FPL&)gorithm. FPLS is intended to serve the same pur-

pose for systend' as that served by GPS for a system with just a single shared link or a

77

single shared processor [6, 15].

In GPS, it is assumed that traffic from each flow can be divided into infinitesimally
small chunks, and each chunk has its demand for access to thediegending on the size
of the chunk. The GPS scheduler visits each active flow’s queue in a round-robin fashion,
and serves an infinitesimally small amount of data from each queue in such a way that
during any infinitesimal interval of time, it can visit each queue at least once. In our study,
this assumption is still valid, and we further assume that each infinitesimal chunk also has

its demand for the processing time on the shared procéssor

At each time instant, the prime resource for each flow, according to Definition 10, can
be determined based on its instantaneous demands for processing time and bandwidth. In
addition, we assume that during each infinitesimal interval of time, + A7), the prime

resource for each flow does not change.

Note that in GPS, it is guaranteed that during each infinitesimal interval of time, the
chunks of each flow are scheduled in such a way that, for each flow, the total demand for
bandwidth corresponding to the chunks of the flow scheduled in this period is proportional
to the weight of the flow. Extending GPS to our case leads to the following: Under the
ideally fair allocation policy for systeny, it is guaranteed that, during each infinitesimal
interval of time, the chunks of each flow are scheduled in such a way that, for each flow,
the totalnormalizeddemand for itrime resourceorresponding to the chunks of the flow
scheduled in this period is proportional to the weight of the flow. We refer to thuad-
flow Processor and Link Sharing (FPL3) can be readily verified that the FPLS strategy
meets the FERA principle described in Section 3.3.3.

3.4.3 Packet-by-packet Processor and Link Sharing

Itis apparent that FPLS is an ideally fair but unimplementable policy, in the same sense

as GPS. In reality, network traffic is always packetized, and therefore, we next present

78

a practical approximation of FPLS, call&dcket-by-packet Processor and Link Sharing
(PPLS) The PPLS algorithm extends one of the most practical and simple scheduling
strategies, Deficit Round Robin (DRR) [8], used in the allocation of bandwidth on a link.
Please refer to Section 1.3.6 for a brief description of DRR. The pseudo-code of PPLS is
shown in Fig. 3.3.

The PPLS algorithm approximates the ideal FPLS in a very similar fashion as DRR
achieves an approximation of GPS. The PPLS scheduler maintains a linear list of the back-
logged flows FlowList When the scheduler is initialize&JowListis set to an empty list
(line 2). For each flow, two variables, instead of one as in DRR, are maintained in the
PPLS algorithm: grocessor deficit counter (PD@nd alink deficit counter (LDC)The
link deficit counter is exactly the same as the deficit counter in DRR, which represents the
deviation of the bandwidth received by the flow from its ideally fair share. The processor
deficit counter, on the other hand, represents the deviation of the processing time allocated
to the flow from its ideally fair share. Thus, each flow in PPLS is assigned two quantum
values, gprocessor quantum (P@nd alink quantum (LQ)

When a new packet arrives, tlienqueueprocedure is invoked (lines 3-10). If this
packet comes from a new flow, tignqueugorocedure appends this flow to the end of the
FlowList (line 7) and initializes both of its deficit counters to O (lines 8-9).

The Dequeueprocedure (lines 11-38) functions as follows. It serves all flows in the
FlowList in a round-robin fashion. When the scheduler visits flvit first increments
each of the two deficit counters of this flow by the value of the corresponding quantum
(lines 16-17). It then verifies whether or not these two deficit counters exceed their upper
bounds respectively, and if they do, it resets them to the maximum possible values (lines
18-23). The rationale behind this bounding process will be discussed later in detail. After
the deficit counters of floware updated, a sequence of packets from flave scheduled as
long as the total length of these packets is smaller than the link deficit counter, and the total

processing cost is smaller than the processing deficit counter, aswhtleeloop in lines

79

[EEN

Initialize:
FlowList«+ NULL

N

Enqueue?* Invoked whenever a packet arrives */
p < ArrivingPacket
1 < Flow(p); /* Flow of packetp */
if (ExistsInFlowLis{i) = FALSE) then
Append flowi to FlowList;
PDC; — 0;
LDCZ' — 0;
10 endif;

© o0o~NOOULh~ W

11 Dequeue’* Always running */
12 while (TRUB do
13 if (FlowList# NULL) then

14 i «+— HeadOfFlowList

15 Remove from FlowList

17 LDC; — LDC; + LQy;

18 if (PDC; > maxPDC;) then

20 end if;

21 if (LDC; > max.DC;) then

22 LDC; — maxLDCj;

23 end if;

24 while (QueuelsEmpty) = FALSE) do
25 p «— HeadOfLinePacketinQue(ig;
26 if (Sizép) > LDC; OR

27 ProcessingCos¢p) > PDC;) then
28 break; /* escape from the inner while loop */
29 end if;

30 PDC; — PDC;— ProcessingCosp);
31 LDC; — LDC;— Sizdp);

32 Schedule;

33 end while;

34 if (QueuelsEmpty) = FALSE) then

35 Append queuéto FlowList,

36 end if;

37 end if;

38 end while

Figure 3.3: Pseudo-code of the Packet-by-packet Processor and Link Sharing (PPLS) algo-
rithm.

80

24-33. In the meantime, when a packet is scheduled, both deficit counters are decremented
by the corresponding cost of this packet (lines 30-31). Finally, when the scheduler finishes
serving a flow and the flow still remains backlogged, the scheduler places the flow back at
the end of thé-lowList (lines 34-36).

Recall that in DRR, for each flow, the quantum is set to be proportional to its weight,
therefore, each flow receives in each round, on average, a service with total amount propor-
tional to its weight. In this chapter, the sum of a certain quantity alldiows is denoted
by dropping the subscript for the flow in the notation. For examplés the sum of the

weights for all flows, i.e.w = Y, w;. Therefore, in DRR we have

%_a .,
w

w;

Similarly, in PPLS, the quantum values of each flow are also proportional to its weight, i.e.,

Vi,
Po. _ FQ (3.2)
w; w
Lo. _ L@ (3.3)
w; w

Thus the amount of the shared resources each flow is entitled to utilize in each round is
guaranteed to be, on average, proportional to its weight. In addition, the ratio of the sum
of processing quanta for all flow®, to the sum of link quanta for all flowg,(), should

also be equal to the ratio of the total amount of processing resource to the total amount of

link resource in each round, i.e.,
PQ Rp

0" Ry (3.4)
From (3.2), (3.3) and (3.4), it is apparent that,

PQ; Rp

10, " R, (3.5)

In other words, for each flow, the quantum value corresponding to a resource is proportional

to the total amount of that resource.

81

Note that in PPLS, it is possible that the prime resource for fleamains the same
for a long period, and therefore, without the bounding procedure in lines 18-21, the deficit
counter for the non-prime resource would reach a large value. For example, consider a
case in which the prime resource for flovinas been the processing resouftéor a long
time and, as a result, the link deficit counfebC; is very large. Assume that at this point,
the prime resource for flowswitches to the link resourck and, in addition, flowi now
consumes almost no processing resource. In such a situation; fiWbe able to have
a long sequence of packets scheduled because of its large link deficit countér This
would significantly degrade the short-term fairness of the PPLS scheduler. For this reason,
we choose to set a maximum threshold on the deficit counter for each resource, in case
any specific resource has not been fully utilized for a long time. In cases where short-term
fairness is not important, these thresholds may simply be set to infinity. A similar rationale
may also be found in the context of fair scheduling in wireless networks where a maximum
lag is applied when a flow has not fully utilized its share of the bandwidth [58].

It can be readily verified that if the processor resouras sufficient for all flows, i.e.,
the processor resouréenever becomes the prime resource for any flow, the PPLS strategy
regresses into the DRR policy. It can also be readily verified that, like DRR, the per-packet

computing complexity of the PPLS algorithm@¥1), under the following conditions.

Theorem 4 The per-packet computing complexity of the PPLS algorithi®($), if for

each flow,
LQ; > Mj,

PQ; > Mp
whereM;, andMp are the maximum packet size and the maximum packet processing cost,
respectively.
Proof: The proof of this work complexity is simple and similar to that for DRR [8].
Note that when the PPLS scheduler visits a flow first increments each of the two

deficit counters of flow by the value of the corresponding quantum (lines 16-17). There-

82

fore, it is guaranteed that when flovgets served, its precessor deficit courtérC’; is no

less than its processor quantun);, and

PDC; > PQ; > Mp > ProcessingCost(p)

wherep is the first packet of flow at this moment. Similarly the link deficit countéDC;

is no less than the maximum packet size, and

LDC; > LQ; > My, > Size(p).

Therefore, PPLS guarantees to transmit at least the first pac{dtow i. In addition, to
transmit each packet, PPLS only updates the deficit counters and checks the resource costs
of the packet. The execution time of all these task®($), and therefore, PPLS has a

per-packet work complexity ab(1). B

3.4.4 Fairness Analysis of PPLS

Our fairness analysis of PPLS is an extension of that in [8], and considers only the time
intervals where all flows are backlogged.

The cumulative processor allocatioof flow i during time intervalt,, t2), denoted by
CPA,(t,t2), is defined as the total amount of the processing resource allocated to flow
i during interval(ty, t5), i.e., the sum of the processing costs associated with the packets
scheduled duringt,, t2). Thenormalized cumulative processor allocatjorCPA; (¢, ts),
is defined as the cumulative processor alloca€idtd;(¢,, ¢,) normalized by the peak pro-
cessing ratdip, i.e.,

CPA;(t1,t2)

DCPAi(tl, tg) = Ri
P

The cumulative link allocationrand thenormalized cumulative link allocatioof flow ¢
during time interval(t, t,), denoted byCLA,(¢,t,) andnCLA,(t;,t,) respectively, are

similarly defined, except that the resource considered is the link bandwidth.

83

Note that both the normalized cumulative link allocation and the normalized cumulative
processor allocation are in units of time. Therefore, we are able to proceed to define the
normalized cumulative resource allocatiohflow i during time intervalt,, t,), denoted
by nCRA,(t1,t2), as the larger of the normalized cumulative processor and link allocations

of flow i during (¢4, t2). In other words,
HCRAZ (tl, tz) = max{nCPAZ- (tl, tg), HCLAl (tl, tg)}
Now we can extend the definition of the fairness measure [7] as follows:

Definition 14 Thenormalized fairness measurd'M(t,, t,) is defined as the maximum
value, amongst all pairs of flows, j) that are backlogged during time interva, ¢,), of
the normalized cumulative resource allocatidtiR A; (¢, t2). That is,

A;(t,t Ai(ty,t
nFM(ty,ts) = max nCRA(f, 1) nCRA; (1,) :
v(i,5) W; W;

The normalized fairness boundF'B is defined as the maximum value of the normalized
fairness measunel'M(¢,, t2) over all possible interval&;, ts).

Analogous to the case of a single shared resource, if a scheduling algorithm for the
joint allocation of processing and bandwidth resources leads to a finite normalized fairness
bound, one can conclude that this algorithm approximates the ideally fair allocation and

achieves long-term fairness. The following theorem states this about the PPLS algorithm.

Theorem 5 The normalized fairness bound of PPLS is a finite constant.
Proof: Without loss of generality, we assume that the flow weights are normalized in
such a way that the smallest of the weights assigned to a flow is 1.

In the rest of this proof, we will consider the situations where lines 19 and 22 in Fig. 3.3
are never executed, i.e., the deficit counters of any flow are never above the thresholds. The
reason of this assumption is similar to the one used in the design of IWFQ, where fairness
in bandwidth cannot be guaranteed if any flow lags more than the maximum lag allowed

by the wireless packet scheduler [59].

84

Lemma?2 Let

maxPDC = mvax maxPDC;
marLDC = max maxLDC;

and denote bW/ and M, respectively, the maximum processing cost of a packet and the
maximum link cost of a packet. In an execution of the PPLS strategy, at the end of each

roundk, for any flows,

1. The following two statements are always satisfied:
0 < PDC;(k) < maxPDC
0 < LDC;(k) < mazLDC,
2. At least one of the following statements is always satisfied:
0 < PDC;i(k) < Mp
0 < LDCy(k) < My,.

Proof: First it can be readily verified that the deficit counters can never be negative.
The first half of Lemma 2 can be directly derived from the assumption that lines 19 and 22
are never executed.

Next we prove the second half of Lemma 2 by contradiction. Assume that both state-
ments are not true, then we hai*DC;(k) > Mp and LDC;(k) > M. Note that at
this moment, flow still has packets in the queue waiting to be scheduled. Otherwise both
deficit counters of flowi should be reset to 0. Consider the head-of-line packet of fjlow
sayp. Apparently its processing cost is no more thidp and its link cost is no more than
M. In other words, its processing cost is less tanC; (k) and its link cost is less than
LDC;(k), and therefore, based on the PPLS algorithm, paglgtould be scheduled in
roundk. This violates the assumption that packes the head-of-line packet from flow

at the end of round, and completes the prodii

85

Lemma 2 readily leads to the following Corollary.

Corollary 1 In an execution of the PPLS strategy, at the end of each réufar any

flow 1,

_(PDCi(k) LDCi(k)\ _
max a
Rr ' R,)"

_ (PDCi(k) LDCi(k)
mm(R R,)Sﬁ

where constants andg are defined as follows:

maxy; maxrPDC; maxy; marLDC;
= max < , > (3.6)
Rp Ry
. (Mp LP)
= —). 3.7
g =min (2.5 @7
According to (3.5), we also define constaras follows:

Rp Ry,

Lemma 3 During an execution of the PPLS strategy over anyounds, for any flow,
mw;y — 6 < nCRA;(m) < mw;y + «

whereq, 3, v are constants defined in (3.6), (3.7) and (3.8), respectively.
Proof: Denote bySCPA; (k) the cumulative processor allocation of flewn a single

roundk. From the algorithm we have
SCPA;(k) = PQ; + PDC;(k — 1) — PDC;(k).

This leads to

" SCPA,(k)
k=1

CPA;(m)

and

86

nCPA,(m) = CrAilm)
Rp
= m Rp —+ Rp .
From (3.2) we have

RP - minvj w; Rp — W
and therefore,
Rp '

nCPA;(m) = mw;y +

Since bothP DC;(0) and PDC;(m) are non-negative,

mw;y — M < nCPA;(m) < mwyy + ﬂ
Rp Rp
Similarly we have
LDC, LDC;
muw;y — M < nCLA;(m) < mw;y + ﬂ
RL RL

Applying into the definition of normalized cumulative resource allocation leads to the

following:

Rp ' Ry
PDCy(m) LDCi(m)
Rp ' Rg '

PDC, LDC.

nCRA;(m) > muw;y — min (

Applying Corollary 1 into the above inequalities completes the priliof.

Consider a certain time intervg, ¢,) during which all flows remain backlogged. Con-
sider any pair of flows andj. Assume that duringt,, t,), flow i receivesm; rounds of
service while flow; receivesn; rounds of service. Since both flowand; are backlogged
during time interval(¢,, ¢t5), and the scheduler serves the flows in a round-robin fashion,

we havelm; —m;| < 1.

87

Applying Lemma 3 we have

nCRAi<t1, t2) S mey X g
w; w;
HCR,Aj(tl,tQ) Z mj,y . ﬂ
Wj Wj
Therefore,
HCRAZ'(tl,tQ) . HCRAj<t1,t2) (m _m> 4 g 4 ﬁ
W; U)j o ! J " w; wj

< a+pB+7.

Similarly we can also derive that,

HCRA]' (tl, t2> _ DCRAi(tl, t2>

wj W;

<a+p+7.

Since flows: and j can be any pair of flows, based on the definition of the normalized
fairness measure, we have

HFM(tl,tg) S o+ ﬁ + Y-

Note thata, 5 and~y are all finite constants. Therefore['M(¢4,¢2) is bounded by
a finite constant over any time interval during which all flows are backlogged, i.e., the
fairness boundFB exists for the PPLS strategy and it is finite. This proves the statement

of Theorem 51

3.5 Simulation Results and Analysis

Our simulation model consists of 8 flows with equal weights sharing a procéssor
and a linkL, as shown in Fig. 3.2. Five different scheduling policies including the PPLS

algorithm are implemented.

e FCFS (First-Come First-Served): A simple FCFS scheme is used. The scheduling

order is only determined by the packet timestamps.

88

e PPLS: When the PPLS algorithm is implemented, a FCFS strategy is used on the
buffer between the processér and the linkL, since the order of the packets has

already been determined by the PPLS algorithm.

e LDRR (Link Deficit Round Robin): A DRR algorithm in the allocation of only the

link bandwidth is implemented (i.e., the original DRR).

e PDRR (Processor Deficit Round Robin): A DRR algorithm in the allocation of only

the processing resources is implemented.

e DDRR (Double Deficit Round Robin): Two DRR schedulers are used. PDRR is used
before the processdt and LDRR is used before the link Note that this is the only

scheme in which a scheduler is implemented between the processor and the link.

Two sets of simulation experiments have been tested. In the first set of experiments, a
synthetic traffic sequence is used, while the second set uses real gateway traffic traces as

the traffic sources.

3.5.1 Synthetic Traffic

In our first study, we use synthetic traffic to test the fairness properties of the PPLS
algorithm under some extreme situations. In this study, all packets are randomly generated.
For each flow, the ratio of the amount of the processing resource required to the amount
of the bandwidth resource required is a fixed value. Note that in the definition of the
normalized fairness measun@'M(t,, t5), if both the Rp and R, are multiplied by the
same value, the normalized fairness measure will also be multiplied by this value, in other
words, the fact of whether or not the normalized fairness measure is bounded does not
change except that the bound itself may vary. Therefore, for better illustration and easier
comparison, in our study, we normalize the resource amount in such a way that the average

processor cycles needed per packet (in units of cycles) is numerically equal to the average

89

Table 3.2: The ratio of the processing resource to the link resource required by each flow.

Flow ID 112,345 6| 7| 8

P/L Ratio (incycle/byte) 1|23 |4|1|1/2|1/3|1/4

size per packet (in units of bytes). Table 3.2 shows the ratios used. Note that flows 1 and
5 have equal normalized demand for both resources, while the prime resource for flows 2,
3 and 4 is the processor, and for flows 6, 7 and 8 is the link. For flows 1 to 4, the sizes of
packets generated is uniformly distributed between 1 and 1,600 bytes, while for flows 5 to
8, the processing cost is uniformly distributed between 1 and 1,600 cycles. Therefore, the
maximum packet size is 6,400 bytes and the maximum processing cost is 6,400 cycles, and

these are also the quantum values assigned to each flow.

Fig. 3.4(a) shows the normalized cumulative resource allocation after a long run in the
simulations. It is apparent that using the PPLS algorithm, in the time int&iva) under
consideration, the normalized cumulative resource allocatioRA;(0, 7) for all flows i
are very close, thus illustrating that fairness is achieved under the PPLS scheduling policy.
Note that, as expected, the FCFS scheme is the worst among all in terms of fairness. Re-
garding LDRR and PDRR, each can achieve fair distribution of the normalized cumulative
allocation with respect to a certain resource, but not the overall normalized cumulative re-
source allocation. Take LDRR as an example. It achieves fair distribution of the normalized
cumulative link allocation for all flows. Therefore, those flows with the processor as the
prime resource, namely flows 2 to 4 in this case, result in a large value of the normalized
cumulative processor allocation, thus failing to achieve fairness. PDRR functions exactly
in the opposite way: it fairly distributes the normalized cumulative processor allocation

among all flows, but those flows with the link as the prime resource (flows 5 to 8) receive a

90

7
g)(10) .
-- FCFS
gll = LDRR
-+- PDRR °
. || —— DDRR N
87— PPLS \ P
3 7
g8 o 0
o ,
/
=] , \\ /d‘/
0.4 ® ! <
I / \
23
e e R
25 e
1 . .
1 2 3 4 5 6 7 8
Flow ID
x 10"
9 T
-©o- FCFS
gll = LDRR J
-+- PDRR P
. || - DDRR)
87| —=— PPLS
< /
»6F o - e /
Q 4 ~ !
14 S8 K
S5r » i
£ .
/
Oar; : ;
£ et
S 2 8 x
Z3f + o
- —+-
2 B e e
1 . .
1 2 3 4 5 6 7 8
Flow ID
(€)
g0t :
-o- maxDC =50
« maxDC = 100 o
4.8 -+ - maxDC = 150 r T
) —— maxDC = 200 !
§4.6* —=— maxDC =«
<
7
waar
E
S54.2
@]
13
S 4
P4
3.8¢
3.6 ¢ :
1 2 3 6 7 8

4
Flow ID

Figure 3.4: The simulation results, using (a) synthetic traffic, (b) gateway traffic traces. (c)
The effect ofmaxDCin the PPLS algorithm. In these plots, a curve closer to a straight
horizontal line implies a better fairness achieved by an allocation policy.

91

large normalized cumulative link allocation, also failing to achieve fairness.

One interesting observation is the DDRR scheme. Intuitively one may expect DDRR to
serve as a fair scheduler for allocation of processing and bandwidth resources, since it has
two schedulers, one fair with respect to the processor and the other fair with respect to the
link. However, Fig. 3.4(a) shows that this is not the case. This is because the DDRR scheme
implements the two fair schedulers in different stages. Note that the PDRR scheduler before
the processoP is responsible for fairly allocating the normalized cumulative processor
allocation to all flows. That means, at this point, more packets (in bytes) from those flows
with the link as the prime resource (flows 6 to 8) will be scheduled from the proc&ssor
On the other hand, those flows with the processor as the prime resource (flows 2 to 4) will
not have enough packets to remain backlogged in the buffer before thé.lihke LDRR
scheduler then takes advantage of this from flows 2 to 4 and transmits more packets from
flows 6 to 8, thus causing a higher normalized cumulative resource allocation for flows 6
to 8. In fact, the DDRR scheme allocates resources fairly to all flows with the same prime

resource, but favors the flows with the “final” resource as the prime resource.

3.5.2 Gateway Traffic Traces

In this study, we use real traffic recorded at an Internet gateway as the input traffic
[56,60]° The traffic traces include the processing delay (in milliseconds) for each packet,
along with the packet size (in bytes). For our experiments, we assume a fixed processing

rate, and correspondingly convert the processing delay of each packet into processor cycles.

5Global Positioning System technology was used to precisely record the timestamp of each packet at each
node. In the trace data, filtered IP headers were examined to track the same packet at different nodes. The
difference between the timestamps of the same packet at adjacent nodes was computed as the delay. The
link speed connecting these nodes was taken into consideration so that the transmission delay of each packet
was removed from the recorded delay. Note that this delay was still the sum of the processing delay and
the queueing delay. However, it was noticed that for traffic in a specific direction, the queue occupancy was
never above 1 packet, and this eliminates the queueing delay and validates the use of this delay as the pure
processing delay.

92

Again, we convert the processing delay of each packet in such a way that the average
number of processor cycles needed per packet (in units of cycles) is numerically equal to
the average size per packet (in units of bytes). For better comparison to the previous study,
the flows have been ordered in such way that the overall prime resource for flows 1 to 4 is

the processor, and the link for flows 5 to 8.

Fig. 3.4(b) illustrates the normalized cumulative resource allocation for the five schedul-
ing schemes in this experiment. Again, the PPLS algorithm performs very well in terms of
fairness. It is observed that all other conclusions drawn from study with synthetic traffic

are still valid.

Note that in this study, the DDRR scheme performs closer to the PPLS algorithm than
in the previous study. This can be attributed to the fact that in real traces, the demands
of each flow for the processing and bandwidth resources are more balanced than those
in the synthetic traffic. However, the PPLS algorithm only needs one scheduler in real

implementation while the DDRR needs two.

3.5.3 Effect of Maximum Deficit Counter

Note that in the synthetic study, no flow changes its prime resource during the experi-
ment. Therefore, the setting of the maximum deficit counters in the PPLS algorithm has no
effect on the outcome of the simulations. Next, using the real gateway traces, we focus on

the effect of maximum deficit counters on the PPLS algorithm. This is shown in Fig. 3.4(c).

It is apparent that the prime resource of a flow changes in this study, since the normal-
ized cumulative resource allocation begins to show differences under the PPLS algorithm.
However, it should be noticed that the normalized cumulative resource allocations for the
flows are still reasonably close to each other, due to the long-term fairness achieved by the

PPLS algorithm.

From Fig. 3.4(c), it is observed that, as expected, the long-term fairness among normal-

93

ized cumulative resource allocation degrades as the maximum deficit counter decreases.
For example, when the maximum deficit counter is set to be 10 times as large as the quan-
tum value, the normalized cumulative resource allocation exhibits a 10% variation from the

ideal.

It is also observed from Fig. 3.4(c) that, flows with more balanced normalized cumu-
lative allocations between the two resources over a long run, such as flows 1, 2 and 5, are
likely to receive less normalized cumulative resource allocation. This may be attributed
to the fact that these flows are more likely to temporarily change the prime resource, and
therefore, setting the deficit counter for the current non-prime resource to the maximum
value may reduce the future usage of this resource when it later becomes prime resource.
On the other hand, the unbalanced flows are less likely to temporarily change the prime
resource, and therefore, the effect on these flows of setting the deficit counter for the non-
prime resource to the maximum value is limited. A similar scenario may also be found in
other situations, such as bandwidth sharing. For example, in DRR, a flow that frequently
changes its status of being backlogged or not will be sacrificed in a long run, since each
time it becomes non-backlogged its unused deficit counter is reset to 0, thus causing it to

lose bandwidth share.

Based on the above discussion, the maximum deficit counter can be used to tune the
trade-off between the long-term and the short-term fairness of the PPLS algorithm. This is

similar to the function of the maximum lag in wireless scheduling [58].

3.6 Discussions on Implementation of PPLS

In this chapter, we select DRR [8] as the starting point of the design of the fair allocation
policy for a shared processor and a shared link, because of the relatively simple implemen-
tation of DRR. Other fair scheduling algorithms can be also used, such as Weighted Fair

Queueing (WFQ) [5], Worst-case Fair Weighted Fair Queueing? @], Surplus Round

94

Robin (SRR) [61] and Elastic Round Robin (ERR) [10].

Note that in many situations, the processing cost of a packet cannot be determined
before it is actually processed. If this is the case, one can have the following choices to
modify the PPLS algorithm. The first way is to let the scheduler predict the processing cost,
and make scheduling decisions. In the second choice, the scheduler serves the packet first,
then updates the deficit counters accordingly. In this way, it is possible that after serving a
packet, its processing deficit counter becomes negative, thus breaking the fairness property
of the PPLS algorithm. Therefore, the scheduler needs an additional counter to record
the minimum normalized deficit counter for all flows, and if this value becomes negative,
at the beginning of next round, it needs to add a proper amount to the deficit counter of
each flow to make it non-negative. Note that using prediction before scheduling still needs
this protection from negative deficit counter, and therefore, one can combine these two
approaches: predict first, and then correct if not accurate. If these changes are applied,
the PPLS algorithm becomes closer to ERR [10] where packet sizes are unknown when
scheduling.

In our study, it is assumed that each flow has a unique weight which determines its
relative rightful share for each resource. One might claim that this assumption might not
be true in all situations. If instead, for each flow, a different weight is associated with each
individual resource, the premise of this work can still be applied. The only difference would
be that when defining the prime resource for each flow, the weight for each individual
resource needs to be taken into consideration, and an additional concept, prime weight,
needs to be defined as the weight associated with the prime resource. Also, if that is the
case, the quantum values for a flow in the PPLS algorithm need to be assigned proportional

to its corresponding weight.

95

Chapter 4. A Discussion on Extensions to Multiple Output Link Systems

4.1 Introduction

4.1.1 Motivation and Challenges

In building the theoretical foundation for fair allocation of multiple resources, the stud-
ies in the previous two chapters consider the situations where only one output link is present
in the system. In the investigated systems, all flows are headed to the same shared output
link via a common shared resource (being either a buffer as in Chapter 2 or a processor as
in Chapter 3). In a multiple output link system, however, several flows may share the same
buffer or processor but different flows may be headed to different output links. Both the sin-
gle and multiple output link systems arise in various real situations in switches and routers
serving traffic from a multitude of flows [62—66]. In this chapter, we focus on the multiple
output link systems, and using the principles developed in previous chapters, answer the
guestion of what is fair in resource allocation in such systems. Note that the challenges
imposed on multiple output link systems with either a shared buffer or a shared processor
are very similar to each other, and the methods used to define fairness in one system can
be readily applied to the other. Therefore, we will use the buffer allocation as an example
in the rest of this chapter to develop the principle for fairness in such systems. Discussions
on the processor allocation in multiple output link systems are presented at the end of this
chapter.

The question of what is fair in the multiple output link systems offers a unique scenario
that cannot be readily analyzed and understood by extrapolation from the single output link
cases discussed in Chapter 2. Each link in the multiple output link system is a separate
resource that is not necessarily shared by all the flows. For example, consider a flow that

has an input rate into the buffer that is larger than the peak rate of its destination output

96

link. While this flow does not get its demand for throughput, unused bandwidth on other
links may not be allocated to it. Thus, bandwidth wasted on one link is not necessarily
available to other flows with unsatisfied demands for bandwidth. Therefore, one cannot
treat the multiple output links as one, and operate an exit strategy from the buffer based on
it. The exit policy has to recognize that various output links may have different peak rates,

and that the buffer occupancies of the flows depend on it.

Exit schedulers at each output link can achieve a fair distribution of the throughput
among all the flows headed to the output link, and may also achieve a fair allocation of
the buffer space as in the shared link system shown in Chapter 2. However, unless the exit
schedulers coordinate their actions, it is not trivial to achieve fairness or to even define what
is fair among the various flows headed to different output links. If the size of the shared
buffer is infinity and all arriving data is always accepted into the buffer, fair schedulers at
each output link can readily lead to perfect fairness among the various flows. However,
in real situations with finite buffers, fair schedulers at the output links cannot guarantee
overall fairness since each scheduler only achieves fairness among the flows headed to its

output link.

The following are two of the important properties that differentiate a multiple output
link system from single output link systems such as those considered in Chapter 2. These
differences illustrate the issues and the conceptual difficulties involved in defining fairness

in a multiple output link system.

e No common set of shared resourcds. single output link systems, all the flows
share both the buffer and the output link. In multiple output link systems, however,
flows headed to two different output links share only the buffer. Thus, some sets of
flows share both the buffer and the link, while all others share only the buffer. This
presents a significant conceptual difficulty in applying the Principle of Fair Priori-

tized Resource Allocation (the FPRA principle) among all the flows since the shared

97

set of resources is not common among all the flows. For example, the cumulative re-
source dividends and demands cannot be readily compared between flows since the

shared set of resources is different for different flows.

e Non-transferable resource dividendi single output link systems, or in the case

of scheduling bandwidth on a link, when one flow temporarily has a small demand,
other flows with larger demands can take advantage and achieve higher throughputs.
Fair allocation, therefore, ends up being a matter of dividing up a certain total amount
of the dividend from the shared resources in a fair manner among the flows. In a
multiple output link system, however, there is no such thing as a fixed amount of
the total dividend from a resource. When one flow has a small demand, other flows
headed to a different output link may not be able to take advantage and increase their
benefits from resource utilization. Thus, the total dividend available for distribution
among the flows is itself a variable quantity, and poses a unique challenge to the task

of defining fairness in such a system.

The above challenges, and the fact that many real switch and router architectures can
be described using the multiple output link system model, explains the motivation for this
study. In this chapter, we present a thorough study of fairness in such systems, and adapt

the FPRA principle to exactly define what is fair.

4.1.2 Contributions

The approach used in this study is to decompose the multiple output link systerf with
output links into two classes of subsystems. The first subsystem, referred taiasiaged
link subsystenrconsists offf integrated flows, osessionsEach session consists of all the
flows headed to a particular output link. In this unshared link subsystem, only the buffer
is shared among all sessions, thus allowing the application of the FPRA principle with a

common set of shared resources. The decomposition of the system also éfeztdse

98

other class of subsystems, referred asshared link subsystemeach corresponding to

one session. Flows within each of these subsystems share both the link and the buffer, and
thus each shared link subsystem is identical to the system discussed in Chapter 2. The
total buffer capacity in thes& subsystems is determined by the allocation policy in the

unshared link subsystem.

While the shared link subsystems are already studied in Chapter 2 for fairness, this
chapter investigates the question of what is fair in the unshared link subsystem. We then
base our definition of fairness in the entire system on the definitions of fairness in these
subsystems. We subsequently present a method of measuring fairness in buffer allocation in
multiple output link systems. Our measure of fairness is based on the same premise used in
the definition of the absolute fairness bound (AFB) in the context of scheduling bandwidth
on a link [15]. We present an analysis of this measure in the multiple output link system
and its relationships with the corresponding measures in its subsystem components. This
relationship suggests that achieving fairness in the unshared link subsystem is critically

important to achieving fairness in the overall system.

While our presentation in this chapter is primarily based on buffer allocation, the method
used and the majority of the concepts and principles developed in this study can also be ap-
plied in the allocation of other resources, such as the processing resource, within multiple

output link systems.

4.1.3 Organization

The organization of this chapter is as follows. Section 4.2 describes the system model
used in this chapter. This section also describes the decomposition of the system model
into component subsystems. Section 4.3 discusses what is fair in buffer allocation in a
multiple output link system. Section 4.3.1 presents an overview of those results obtained

in Chapter 2 that are relevant to the question of what is fair in the shared link subsystems.

99

Section 4.3.2 tackles the question of what is fair in the unshared link subsystem, and Sec-
tion 4.3.3 concludes the section with a definition of what is fair in the multiple output link
system. Section 4.4 proposes a measure of fairness for use in the study of the fairness prop-
erties of real buffer allocation algorithms. Finally, Section 4.5 concludes the chapter with

a discussion on the fairness in processor allocation with multiple output links.

4.2 Multiple Output Link System Model

Subsection 4.2.1 presents the multiple output link system model. Subsection 4.2.2 de-
scribes a decomposition of this system model into component models that can be more

easily analyzed and understood for a study of fairness.

4.2.1 System Model

Our multiple output link system model consists of a shared buffer, a set of output links
h,1 < h < H,andasetofflows 1 <i < N.WhenH = 1, this system model reduces to

that considered in Chapter 2. Fig. 4.1(a) illustrates the multiple output link system model.

Letw; be the weight associated with flowTraffic from each flow is destined to one of
the H output links, and several flows may share the same output link. Thus, the number of
links, H, may be smaller than the number of flows, The set of flows headed to the same
output link are said to belong to the sas®ssion Note that each session corresponds to
exactly one link and vice-versa. The session corresponding to the outputisndtenoted

by F,. Fig. 4.1(b) shows one session with flows 1 and 2 headed to the same outpit link

Similar to the the single output link system in Chapter 2(1ét) be the total capacity of
the shared buffer at time instantThe capacity of the buffer is a function of time since the
buffer considered here may actually be a dynamically apportioned piece of a larger buffer.
Let Ry, (t) be the maximum possible transmission rate on lirdt time instant. Note that

this transmission rate is also a function of time, to accommodate flow control algorithms

100

(a)
I1(t) .
: At)\B uffer Capacity C(t) ~ Dat) R:l(t)
Ii(t) At) Di(t) — Ryt)
: A N4 DA() Ru(®)
In() Bi(t) N
(b)
t
HO A) DAt
T~
12(t) Alt) Dt)

Ru(t)

Figure 4.1: The multiple output link system model. (a) The entire system; (b) An example
of one session with flows 1 and 2 headed to lfifk

that may dynamically limit the rate on the link.

The buffer allocation policy is completely determined by the actions oéttieysched-
uler and theexitscheduler, just as in the single output link system model in Chapter 2. The
entry scheduler chooses the traffic it will admit into the shared buffer. The entry scheduler,
when necessary, also chooses which data to discard from the shared buffer in order to admit
newly arriving traffic. The exit scheduler chooses the order in which it will transmit data

from the shared buffer on to the output links.

Consider a multiple output link system, denotedas shown in Fig. 4.1(a). Lét(¢) be
the input rate of flow, i.e., the rate at which traffic from flowseeks to enter the shared
buffer at time instant. Denote by4:/(¢) the admission rate of floiunder allocation pol-
icy ¢ in systemS at time instant, i.e., the rate at which traffic from flowis accepted into
the shared buffer by the entry scheduler at time instafiraffic that is not admitted into
the shared buffer is dropped. Note tmeﬁq (t) can be negative such as when some packets
from flow i are pushed out from the shared buffer to make room for arriving packets. As in
the single output link case{*(¢) is less than or equal tf(t). Let D(t) be the depar-

ture rate of flowi in systemS under the allocation policy at time instant, i.e., the rate at

101

which the exit scheduler dequeues the packets from#lowto the destined output link at

time instantt. Denote bny’q(t), the buffer occupancy or the queue length of flomnder

policy ¢ in systemS at time instant. Note that, while the admission rate, buffer occupancy

and the departure rates are dependent upon the system and the allocation policy, the input
rate, I;(t) is not. As in the case of a single output link system, the following relationship
holds fort > ¢:

BE(t) = BI(to) + [(A%9(r) — DY*(r))dr. (4.1)

to

Again in this chapter, the sum of a quantity oadir flows is denoted by dropping the
subscript. Thus/(t) is the sum of input rates of all the flows, add?(¢), D4(t) and

B34(t) are defined similarly. Note that at any time instant

Similar relationships hold fort4(t), D54(t) and B%4(t). Also note that at any time in-
stantt, the total buffer occupancy of all flows is less than the buffer capacityA:&.(t) <
C(t).

In all of this chapter, the sum of a per-flow quantity over all flows belonging to the same
session is denoted by using the session label as the subscript. For exgm(gledenotes
the aggregate input rate, at time instanof all flows that belong to the sessiéh,. The
quantitiesAg?(t), Dg(t) and By () are similarly defined. Note thabp?(t) < Ry (1),
that is, the total departure rate of all flows headed to outputdirsdess than the maximum
possible transmission rate on this link at time instant

Recall that the buffer allocation is completely determined by the actions of the entry and
the exit schedulers, which together determine both the per-flow and per-session admission
and departure rates, i.e4;/(t) and D;}(t), 1 < i < N, andAg’(t) andDg’(t), 1 <
h < H. Note that the queue length of a flow in the shared buffer is completely determined

by the admission rate, the departure rate and the initial queue length, as given by (4.1).

102

H0)

: Ar(t) Buffer Capacity C(t) Dr(t) R:l(t)
i ey a0 | {11 [T/ 0p04 e -

; \ / : :
gyt Lo Br(t) Dryt Ru(t)

Figure 4.2: The unshared link subsystefif, The number of sessions is equal to the
number of output links.

Therefore, a buffer allocation policy over an interval of time is completely specified by the

admission and departure rates at all instants during the interval.

4.2.2 System Decomposition

By definition, all flows which belong to the sessiby, are headed to the same output
link h. Now, consider this set of flows as one aggregate flow headed to outpui.link
This session, i.e., the aggregate flow, has an input ratg,@¢t) = >, .p, /;(t) at time
instantt. Under the allocation policy, at time instant, this aggregated flow has an arrival
rate equal toAif(t), a departure rate equal i@,ﬁf(t), and occupies space in the buffer
equal toBﬁ’f(t). A subsystem model can now be defined where each of tHesessions
or aggregated flows is treated as a single individual flow. The sessions do not share an
output link, but they do share the buffer. We can define a component model of the system
S, consisting of thesé/ sessions each treated as a single separate flow. We call this the
unshared link subsystemodel, denoted bg“, since there is exactly one session headed to
each output link, and thus no link is shared among sessions. Fig. 4.2 shows this unshared
link subsystemS™.

For each of thef links and the session corresponding to it in systgnone can also
create ashared link subsystemodel in which flows share both the buffer and the link.
The size of the shared buffer in this shared link subsystem model for:lgtkany given

instant is the buffer occupancy of the session or the aggregat&flamder system model

103

li(t) Buffer Capacity
Ii(t) A,—(t)/ Di(t) R{(1)
At) D(t)

I(t) Bi(t)

Figure 4.3: Shared link subsystesy,.

S at that instant. Note that this value of the shared buffer capacity under this component
model is a function of time since the total space occupied by a session is always changing.
This is part of the reason the capacity of the buffer in Chapter 2 is defined as a function of
t. Each of thesd! shared link subsystems is an instance of the single output link system
model presented in Chapter 2, and includes a shared link as well as a shared buffer. Denote
the shared link subsystem corresponding to output irds S;, 1 < h < H. Fig. 4.3
illustrates the shared link subsystefh where flowsi, j andk belong to the sessioH,,.

The distribution of the available buffer capacity among various sessions changes with time,
and therefore, the capacity allocated to ses&igns a function of time. This capacity is

the total capacity available to all the flows in this shared link subsystem, as shown in the

figure.

In subsystent™, the only shared resource among the sessions is the shared buffer. In
subsystems;, 1 < h < H, the set of shared resources includes both the buffer and the
output link h. In this chapter, we proceed to define fairness in sysidoy defining what
is fair in subsystenmb™ and in subsystemS;. The condition on the allocation policy,
for fairness in subsysterfi* can be defined over the sessions, that is, we define what is
fair with respect to each session. The conditionydar fairness in subsystents can be
defined for each of the flows that belong to the ses&ignas in Chapter 2 for the single
output link case. The condition anfor fairness in systeny is completely defined when

the conditions for fairness are defined for each of these component subsystems.

104

4.3 Fairness in Multiple Output Link Systems

In this section, we define the necessary and sufficient conditions under which a buffer
allocation policy in the system model discussed in Section 4.2 can be said to be fair. Based
on results derived in Chapter 2, Section 4.3.1 defines what is fair in the shared link subsys-
tems,S;, 1 < h < H, followed by Section 4.3.2 which defines what is fair in the unshared
link subsystemS“. Section 4.3.3 integrates the definitions of fairness in the component
subsystems and answers the central question of what is fair in buffer allocation in the mul-
tiple output link case.

For the sake of convenience and clarity, in this study we assume that max-min fairness
is the notion of fairness, and in addition, the cumulative utility of a flow achieved over an
interval of time is just the cumulative throughput the flow receives over this time interval,
similar to the single output link case in Section 2.4. The framework established in this
chapter can be readily extended to incorporate any other notion of fairness and any generic
way of computing flow utilities.

As defined in Chapter 2, thmumulative resource divideraf a flow over an interval of
time under an allocation policy represents the benefit the flow gains from the portion of
shared resources allocated to itgoyMore formally, the cumulative resource dividend of a
flow i over a time intervalt,, to) under any systeri’” and allocation policy; is defined as
the difference between the cumulative utilities achieved by tlomder policyg with and

without the use of the allocated portion of the shared resource. That is,

CRDIVII(ty,85) = Uty 1) — UMD (¢, 1)

)

l2 ' ' ;
= [“{p7n) = DO)} ar (4.2)
Jt1

(2

whereNon€?) is an allocation policy that allocates none of the shared resources in system
S’ to flow ¢ during the intervalty, t2). In this chapter, when the shared buffer is the only
shared resource, we sometimes refer to the cumulative resource dividenadasithiiative

buffer dividend

105

The cumulative resource demardd a flow over an interval of time is the benefit the
flow gains from having all of the shared set of resources exclusively allocated to it during

this interval. More formally,

CRDEMf/ (t ts) = UiS’,All(i)(tl’ t) — UZS’,None(i) (t1,ts)

to f . , .
_ / (D51 (7) = DN (1)} dr (4.3)
t1

whereAll(7) is an allocation policy that allocatedl of the shared resources in the system

S’ exclusively to flow: during the time intervalt,, ¢,).

4.3.1 Fairness in Shared Link Subsystems

Each of theH shared link subsystems§;, 1 < h < H, is a single output link system
such as the one considered in Chapter 2. Therefore, using the results in Chapter 2, we
can define the cumulative resource demand and dividend for each of these subsystems as
follows.

For each flowi € Fy,

S _ (" psa
CRD'Vl (tl,tg) DZ (T)dT. (44)

t1

The total cumulative resource dividend of the ses&igis the sum of cumulative resource
dividends of each of the flows H,, i.e.,

CRDIV “(t1,t5) = . CRDIVI™(t, t,)

i€Fy,

to
= /t1 Dg’f(r)dr (4.5)

Recall that the size of the shared buffer in subsys$émt time instant is equal toBﬁf(t).
The cumulative resource demand of a flow F,,, over an interval of timét,, ¢,), is given
by

CRDEM" (), t,) = / ® DSLAIG (1) (4.6)

t1

106

whereAll(7) is an allocation policy that, at all time instant® the intervalt,, ¢5), allocates
the shared buffer with capaciBﬁf (t) and the output link exclusively to flow.

In Chapter 2, we define the concept of active and inactive flows for any given interval of
time, based on whether or not the flow seeks some buffer space. In other words, an active
flow is one that is in competition with other flows to gain some buffer space, or is already
occupying some buffer space. An active flow within a shared link subsystem is also active
in the overall multiple link system. We define a stationary interval as one during which
each flow is either active or inactive, i.e., no flow is neither active nor inactive. Using the
definition of the fairness in single output link systems, we can now define fairness in each
of the subsystemS;, 1 < h < H.

In a shared link subsysterf;, a buffer allocation policyy, is max-min fair if and only

if, over all stationary intervals of timg,),

[CRDIV (1, 1,) : i € Fy]

= Fuur (CRDV (11, 15), [CRDEM; " (t1, 1) 1 i € Fy| [w; - € Fy]) (4.7)

whereFynr is the notion of max-min fairness for the allocation of a single resource which,
given the total resource amount, the demand vector and the weight vector, determines the

allocation vector for each flow.

4.3.2 Fairness in an Unshared Link Subsystem

In seeking to apply the fairness principle to the unshared link subsystem ns¢dele
begin with defining the cumulative resource dividend and cumulative resource demand in
this system.

Consider the sessions in subsystétn traffic in each of which is headed to a separate
output link. The only shared resource among these sessions is the buffer. Let us begin
with computing the cumulative resource dividend for sesdignby first evaluating the

dividend under a policyNone(F},), that allocates no buffer space to this session. Recall

107

that a session does not share its output link with any other session, and therefore, all of
the output link’s bandwidth is available to it, which means the utility of sesBipander

policy None(F;) may not be 0. In fact, in the absence of the buffer, the departure rate of
sessiorF', at time instant is the minimum of the peak rate of the likk R, (¢), and the

session input ratdg, . In other words,
D ME (1) = min {Ig, (t), Ru(t)} .

Therefore, using (4.2), under an allocation strategthe cumulative buffer dividend for

the sessio¥';, over an interval of timét,, ¢,), is given by

u l2 "
CRDIVE (), 1) = /t (D3r(r) — min{Ig, (1), Ru(r)}) dr

= /: (Dgf(r) — min{ I, (7), Rh(T)}) dr. (4.8)

The cumulative buffer dividend summed over all the sessions is given by
H to
CRDVS“I(t, 1) = 3 / (D#(r) — min{Ig, (1), Ru(r)}) dr
h=1"t

— /: <DS"1(7-) — hf:lmin{lph (1), Rh(T)}> dr. (4.9)

From (4.3), the cumulative resource demand of a sessipnover an interval of time

[t1,12), IS given by
w t2 w .
CRDEMg, (t1,12) = /t (Dp, "W (7) — min{Ig, (7), Ra()}) d7 (4.10)

where DS“AUF¥r) (1) is the session departure rate under an allocation stratbggE,),
which grants the entire shared buffer to the sesBipn
A couple of examples below illustrate the concepts of the cumulative resource dividends
and demands in the context of the multiple output link system under consideration.
Example 1Consider a sessidf, with an input rate of g, (¢), which is smaller than the
peak link rateR,(t) at all time instants in the intervé,, t;). Also assume that the initial

buffer occupancy of this session is O, i.éiﬁ’hq(tl) = 0. Since the input rate is always

108

smaller than the maximum possible link rate, the capacity of the outputhliisknever
completely used up during the time interyal ¢). In this situation, even under allocation
policy All(F}), the sessiorF;, gains no benefit at all from the presence of the buffer.
Therefore, the allocation policie$!!(F;,) and None(F},) result in the same departure rate

of sessiorF, at all time instants iri¢;, t2). This yields
S* All(Fy, S* None(Fp,
Dy, MM () = Dg, M I (1) = I, (7)

for all possibler satisfyingt; < 7 < t,. From the above and from (4.10), it is readily
derived that the cumulative resource demand of sedsjoover this interval is equal to 0.

Note that, in this case, it is always true that no allocation policy can accept or transfer
more packets thafy, (¢) at time instant, and therefore, the cumulative resource dividend
cannot be greater than 0. Actually, by definition, the cumulative resource dividend is no
more than the cumulative resource demand over any time interval. In fact, the cumulative
resource dividend of this session may be negative. This could occur if the allocation policy,
q, discards some packets from sesskynand the resulting throughput under allocation
policy ¢ is smaller than that under allocation poligine(F},).

Example 2Consider a sessiof;,, with an input rately, (¢) which is greater than or
equal to the peak link rat&),(¢) at all time instants in the intervéd,, ¢,). In this case, the
maximum possible departure rateRg(t), and no allocation policy can achieve a higher
departure rate. Thus, from (4.8), the cumulative resource dividendj‘(ﬁ%ﬂ)(tl, ts),is 0.
Similarly, from (4.10), the cumulative resource demand, (EM@: (t1,t2) is also 0. This
example illustrates that, over a certain interval of time, a session with a very high input rate
can actually have a resource demand of 0. This appears to be against our common intuition
which tends to presume that a session with an input rate higher than the maximum possible
departure rate actually has a higher demand for buffer space. This apparent conflict is
resolved by noting two points. Firstly, the cumulative resource demand as defined in this

chapter, is not the demand for buffer space but rather a demand for a dividend from the

109

buffer space. Secondly, the cumulative resource demand is specified only over a certain
interval of time. If one considers a larger interval of time than justty), and if after
time ¢, the input rate reduces to 0, the session certainly has a cumulative resource demand
greater than 0. This is because, the session’s packets can now be stored in the buffer during
the interval[t,, t5), and transmitted after timg to give it some benefit from the use of
the buffer. In general, in the component subsystem the cumulative buffer demand
over a time intervalt,, t,) is positive, if and only if, under the allocation policli/(F},),
during any subinterval in the intervéth, ¢5), the input rate is smaller than the maximum
possible output link rate, while the buffer occupancy is greater than 0. Then, during this
subinterval, the allocation policytil(F},) can use the packets in the shared buffer to better
fill the capacity of the output link, and thus schedule more packets of the session than the
allocation policyNone(F},).

Having determined the dividends and the demands in the context of the subsystem
model,S*, we now proceed to incorporate the timescale by definingttigeandinactive
flows and sessions over any given interval of time. As in the case of a single output link
system, such a categorization of the flows during each interval is necessary to determine
the applicable intervals over which we can apply the FPRA principle. In the case of the
unshared link subsysterfi¥, the only shared resource is the shared buffer since the output
links are not shared among sessions. Thus, whether or not a session should be considered
active during an interval may be based on whether or not the session has a positive cumu-
lative resource demand, which would imply that the session is in competition with other
sessions for the shared buffer. In the following, we now present formal definitions of these

flow categories.

Definition 15 A sessionF', in an unshared link subsystefi¥ is said to beactive over
time interval(t,, t,), if and only if, overeachpossible subinterval of timér,), t; <

71 < o < to, the cumulative resource demand of the session is positive, i.e.,

110

CRDEMg. (1, 72) > 0.

Definition 16 A sessionF', in an unshared link subsystefft is said to banactiveover
an interval of timefty, t2), if and only if, overeachsubinterval of timdr;,), 11 < 7 <

5 < to, the cumulative resource demand is zero, i.e.,
S _
CRDEMFh(Tl, 7'2) = 0.

Note that the above flow categories are defined over an interval, and do not describe the
properties of a session at any given instant of time. Thus, as in the definition of active and
inactive flows in the case of a single output link system, a session may be neither active nor
inactive over a certain interval of time. A session, however, may be defined to be active or
inactive at any given instant of time based on the above definitions considered over an
infinitesimal interval of timdt, ¢ + §t).

As described in Chapter 2, the notion of fairness cannot be extended to an interval of
time unless none of the sessions changes its category from being active to inactive, or vice
versa. This leads us to the following definition adtationary intervabnly over which one

can apply the FPRA principle.

Definition 17 In an unshared link subsystem, a certain interval of time is callstd-a
tionary interval if and only if, each session is either active or inactive over this interval,
i.e., no session is neither active nor inactive.

Note that any given interval can be broken down into a contiguous sequence of station-
ary intervals, the boundaries being the instants of time when some session changes from
being active to inactive, or vice-versa. The stationary intervals aregpkcableintervals
over which we can apply the FPRA principle.

Note that only the active flows within each session are the ones competing for the shared

buffer. Since an inactive flow gains no dividend from the buffer, and therefore, demands

111

no buffer space, only an active flow is to be considered in the issue of fairness in buffer

allocation. Therefore, the weight of a session in the issue of buffer allocation should be the

sum of only the active flows within the session. This makes intuitive sense, since a session

with just one active flow and many inactive flows should not end up with a large weight,

and therefore, an unfairly large share of the buffer space for the only active flow in it. The

definition below of what is fair in the unshared link subsystem incorporates this thought.
Let the intervalt,, ¢,) be a stationary interval. L&;"(t,, t,) denote the set of flows in

the sessio¥"; which are all active over the intervél,, t5) in subsystenst; under policyg.

Note that if a flow is active within subsystefi, it is also active within the overall system

S. Therefore F54(t,, t,) is the same set &8, (t,, t,). Let wis denote the sum of

’q(tl,tQ)’

the weights of all the flows that belong ®*(t,, 1,), i.e.,

wfi’q(thh) = Z W;. (411)

=8,
ZGFh q(t1 ,tz)

Definition 18 Consider a buffer allocation policy, operating on an unshared link sub-

systemS™. ¢ is max-min fair, if and only if, over all stationary intervals of tirfte, ¢-),

CRDIV, “(t1,t2)| = Fanur (CRDIVS" (11, 15), [CRDEMg, (t1, 1)), [wﬁi,q(tm)})
(4.12)
where each of the three vectoté;RDlVﬁZ’q(tl, tg)}, {CRDEM;?: (t1, tg):| and [wi‘i’q(tl:@)}
is of length H with each vector element corresponding to the valug of the rangel <
h < H.

The above definition, as in the definition of fairness in a single output link system, seeks
to distribute the cumulative resource dividends in a max-min fair manner with respect to
the cumulative resource demands. Note that the above definition computes the cumulative
resource demands and dividends for all the sessions and not just the active sessions over
the stationary interval under consideration. However, since sessions that are inactive over
a stationary interval have cumulative resource demands and dividends of 0 with respect to

the buffer, their inclusion does not change the above definition of what is fair.

112

4.3.3 Fairness in Buffer Allocation

Given the definition of fairness in each of the component subsystems, we can now
define fairness in buffer allocation in the multiple output link syst8nt-irstly, we wish to
be fair in the unshared link subsystem among each of the different sessions. Secondly, we
wish to be fair in each of the shared link subsystems among the flows which make up each
session. A fair policy is one that is fair in each of the component subsystems. Therefore,
the definition of the stationary intervals over which we define fairness for the multiple
output link systen®, and the definition of the fairness itself, would have to integrate these
definitions within the respective subsystems. The following defines the stationary interval

in the entire multiple output link systes

Definition 19 In the multiple output link systersi, a certain interval of time is said to be
stationary, if and only if, this interval is a stationary interval within each of the component
subsystems$™ andS;, 1 < h < H.

It is worthwhile to note that any given interval of time can be divided into a sequence
of contiguous stationary intervals. Fairness in the systetan now be defined based on

the concept of stationary intervals defined above.

Definition 20 In a multiple output link systeny, a buffer allocation policyy, is max-min
fair, if and only if, over all stationary intervals of time , ¢2) in S, ¢ is max-min fair among
the sessions in the unshared link component subsySterandq is max-min fair among

the flows in each of the shared link component subsystgms < h < H.

4.4 A Measure of Fairness

4.4.1 Definitions

We base our measure of fairness on the same premise as in the definition of the absolute

fairness bound (AFB) in the context of scheduling bandwidth on a link [15]. The AFB in the

113

scheduling of bandwidth over a link attempts to capture the maximum possible difference
between the service received by a flow under the ideally fair policy, GPS, and that under
the scheduling policy being measured. This is similar to the measure of fairness defined in
the single output link case discussed in Chapter 2.

To define an absolute fairness bound to measure the fairness of buffer allocation poli-
cies, we need to consider a hypothetical scheduling policy that is exactly fair. Since the
throughput achieved by a flow is the basis for our judgment on the service received by a
flow in the system, we base our measure of fairness on the throughputs achieved by the
flows. Now, an ideally fair allocation policy would be one that achieves the ideal distri-
bution of throughputs through an ideal distribution of the dividends with respect to the
demands. As also discussed in Section 2.6.1, we wish to compare the fairness of a policy
only with an ideally fair policy at the same performance level. Thus, the ideal policy to use
in our measure of fairness depends on the system model and the policy being measured.
Let G(S, q) be an ideally fair allocation policy in the multiple output link systémand
which delivers exactly the same performance ai other wordsG(S, q) is exactly fair
and the sum of the cumulative throughputs achieved by the flows ahder) is the same
asing. Thatis,

t t
| psaryar = [7 DG (ryar. (4.13)
t1

t
Our measure of fairness can now be based on the difference in the cumulative through-
puts achieved by a flow under the fair poliGy.S, ¢) and under the policy being measured.
However, since we wish to be able to compare the fairness characteristics of two different
policies at different performance levels, as in Section 2.6.1, we normalize this difference
by the total cumulative throughput achieved by the flows under the policy being measured.

Our measure of fairness can now be defined as follows.

Definition 21 Given a systent5, an allocation policyy and a certain input traffic ar-

rival pattern, thenormalized Absolute Fairness Measweer an interval of timet,, t,),

114

nAFM?®4(t,, t,), is defined as follows:

fs D>(r)dr B P D) (1)dr

1

max

2 DSa(t)dr

HAFMS’q (tl, tg) = (4 14)

For most real algorithms, the value of the above fairness measure ranges from 0 to 1
depending on the size of the time interval,— t;, over which the measure is computed.
A valid comparison between various allocation algorithms, therefore, can only be made
using the above measure if the sizes of the time intervals being considered are identical. In
addition, the more unfair an algorithm, the larger the timescales over which it apportions
unfair amounts of throughput among the various flows. Thus, to compare two allocation
policies, it is more convenient to compare the trend as the length of time interval over which
the fairness measure is computed approaches infinity. Therefore, we now define a bound

on the above measure of fairness as a function of the size of the time interval, as follows.

Definition 22 Define thenormalized Absolute Fairness Boynd\FB*(7), of an alloca-
tion policy ¢ in systemS for time intervals of size- as the upper bound on the normalized
absolute fairness measure over an interval of simgth any possible input traffic arrival
pattern. In other wordsyAFB®(7) is the smallest value a¢d(7) such that, for any input
traffic,

o(r) > rr@x{nAFMS’q(t, t+7)}

The bound defined above is independent of the input traffic arrival pattern and is, there-
fore, a property of the allocation policy and the system. The normalized absolute fairness
measures defined in this chapter are dependent on the input traffic pattern. We do not in-
dicate this dependence in our notations since the input traffic pattern assumed is almost
always obvious from the context. It is worthwhile to note that the above fairness mea-
sures and the related bounds are unique to each system, and two allocation policies can be

compared using these measures only if they are both operating on the identical systems.

115

4.4.2 Relationship to Fairness within Component Subsystems

The relationships between the fairness measure in the multiple output link system and
its component subsystems, offer unique insights into what is fair in such a system. We
begin the definition of a fairness measure in the shared link subsystent/(5¢tq) be
an ideal allocation policy that yields the same cumulative throughput for seBgiaa the
policy ¢ being measured over the interval under consideration. In other words, over an

interval of timelt,, t5), let G(S;, ¢) be an ideally fair policy such that,
to s
/ Dﬁf(r)df = DS S q)(T)dT. (4.15)

Now, we can define the fairness of the policwithin the shared link subsystem based on

a comparison with the policg (S5, q).

Definition 23 Given the shared link subsystesy;, an allocation policy; and a certain
input traffic arrival pattern, theormalized Absolute Fairness Measureer an interval of

time[t,,t;), nAFM®4(t,, ,), is defined as follows:

ttf Dis’q(T)dT ttf Df’G(S’SL’Q) (1)dr
max —

VieFy, w; w;

Ji? Dl (r)dr

nAFM 9ty ty) = (4.16)

Thenormalized absolute fairness boufwd an interval of length, nAFB»9(7), is defined
as the upper bound aPAFM® (¢, ¢ + 7) over allt and input traffic arrival patterns.

We now define our fairness measure within the unshared link subsystem. The definition
of the measure in the case of the unshared link subsystem is not exactly similar to that in
the shared link subsystem or the overall multiple output link system, since the fairness is
over sessions rather than over flows. However, our ultimate goal is fairness among flows,
and therefore, in our definition of a fairness measure, each session needs to be weighted
appropriately by the sum of the weights of all the active flows within it.

Recall thatF; (¢, t,) is the set of flows in the sessidfy, which are all active over

the intervallt, t5) in systemS under policyq. Thus,wﬁs,q(t1) is the sum of the weights
h b

116

of all the flows that belong to this set of flows. These quantities can be defined at any
given instant of time as well, based on the actions of the policy and the system over an
infinitesimal interval of time since the instant under consideration. D&ih&¢) as the

set of flows in the sessidf;, which are all active over the infinitesimal interyalt + o6t),
andwﬁi,q(t) is the sum of the weights of all the flows that belong to theFggt(¢). Only

flows that are active at any given instant of time should be considered in the total weight of
the session at that time instant. The measure of fairness in the unshared link subsystem can

now be defined as follows.

Definition 24 Given the unshared link subsystefit, an allocation policy; and a certain
input traffic arrival pattern, theormalized Absolute Fairness Measureer an interval of

time [t1, ts), nAFMSu’q(tl, ts), is defined as follows:

max
1<h<H

S, S,G(S",
/tQ DF:(T) dr /t2 DFh (8*.9) (7_)
t1 wﬁi,q(,r) t1 w]‘;\§7Q(T)

Ji D3a(r)dr

dr

nAFM" (¢, t5) = (4.17)

Thenormalized absolute fairness boufm an interval of lengthr, nAFB®"%(7), is defined
as the upper bound aPAFM®" (¢, t 4+ 7) over allt and input traffic arrival patterns.

The relationships between the ideal allocation policies used in the overall system and its
component subsystems in the computation of the fairness measures within these systems,
reveals insights into the relationships between the fairness measures of a policy in these
systems. The ideal allocation policy in the shared link subsyst&ist;, ¢), only fairly allo-
cates the cumulative throughputs (same as cumulative resource dividends) of flows in each
shared link subsystem; the ideal allocation policy in the unshared link subsys{étn,q),
fairly allocates the cumulative resource dividends with respect to the shared buffer; and the
ideal allocation policyG(S, g) in the multiple output link system has to be fair in both
shared and unshared link subsystems. {(&t ¢)}, {(S“, q)} and{(S;,q)}, respectively,
denote the set of ideal allocation policies that may be used in the computation of the fair-

ness measures in the overall systé€nthe unshared link subsystestt and the shared link

117

subsystent; for1 < h < H.

Let G be an ideally fair policy in the overall systelfi, yielding the same overall per-
formance ag. Now, by definition(is also fair within the unshared link subsystem, and in
addition, the overall performance delivered®@yn the unshared link subsystem is also the

same ag. Thus, ifG € {(5,¢)}, thenG € {(S*,q)}. Thus,

{(S,0)} € {(5", 0} (4.18)

The converse, however, is not true since each policy which is fair in the unshared link
subsystem cannot be guaranteed to be fair in the entire system.

It is not possible, however, to establish any particular relationship betj\éen)} and
{(S5,q)}. As before, letG € {(S,q)}. Now, it is not necessarily true that andq will
yield the same throughputs for each of the sessions, although the sum of the cumulative
throughputs will be the same by definition @f Thus, policies in{(S;, ¢)} will not nec-
essarily yield the same throughput for sesdignas policyG, although by definition, they
will yield the same throughput for the session as poljcyThus, there does not exist a
trivial relationship such as in (4.18) betweg(®, ¢) } and{(S;, ¢)}.

The above lack of a relationship betwefb, ¢)} and{(S;, ¢)} suggests that the fair-
ness measure of the overall system cannot be derived based on the fairness measures of the
component subsystems. However, over any inteftyal,) in which all flows are active,
one can prove that the normalized absolute fairness measure under a policy in the multiple
output link system is greater than the normalized absolute fairness measure of the policy
in the unshared link subsystem. This is proved next, and it suggests that achieving fairness
in the unshared link subsystem is critically important to achieving fairness in the overall

system.

Theorem 6 If all flows are active over atime intervil, ¢,), then the normalized absolute

fairness measure of an allocation poligyin a multiple output link systemg, is no less

118

than the normalized absolute fairness measure in the unshared link subsysteer the

interval. That is, if all flows are active ovén, t5),
HAFMS’q(tl, t2> > HAFMSu’q(tl, tg), (419)

Proof: The relationship in (4.18) allows us to redefine the normalized absolute fairness
measure in the unshared link subsyst&n nAFM®“4(¢,, t,), by substituting(S*, q) by
(S,q)in (4.17). Thus,

S,G(S,
/t2 Dgf(T) dr — /t2 DFh(‘I)(T)
t t

WS, WS,
1 Fh '1(7.) 1 th(T)

Ji D3a(r)dr

dr

max
1<h<H

nAFMS ™4 (t,t,) = (4.20)

Note that the denominators in (4.14) and (4.20) are identical and equal to the total sum
of the cumulative throughputs of all the flows. Denote this quantityAby

Without loss of generality, assume that the right hand side of (4.20) reaches its maxi-
mum value for somé& = A. Also, since all the flows are active over time interj¢al),
the weight of sessioilry, WSy is equal to the sum of weights of all flows belonging
to the sessioiF"',, i.e., a constant for all during the entire interval,, ;). Denote this
constant bywy, , to indicate that it does not depend gn.e.,

Wg, = Z W; .
i€Fy,

Now in (4.20), this constant can be taken outside the integration operators. Thus, we have

., 1 to DS,q d to stG(S7q) d
HAFMS ,q<t17 t2) — Z t1 F (7—) T _Ju F (7—) T
Wr WF
S, S,G(S,
1 o <DF5(T) — Dy, (q><7')) dr
N A Wy,

2 Sier, (DP(r) = DP9 (r)) dr

L[=
S
o

i (D7) = DY (r)) dr

7

>

i€Fy

B> =

’LUFA

119

1| S (D) = DY)) dr
A iEFy, Wr w;
to S,q _ S7G(S7q)
B N L o e)
A ieTy WFy w;
S,G(S,
1 w ttf (Df’q(T) — D; (q><7‘)> dr
< — Z max
AiEF)\ wF)\ Vi w]
s, S,G(S,
1 /2 (D(r) = DYB(r)) dr
= —max
A Y W;
1 22 Df’q(T)dT L2 Df’G(S’q)(T)dT
= —max -
A Y W wj
= nAFM(ty,t,). (4.21)

4.5 Allocation of Processing Resource

A system with a shared processor and multiple output links may be similarly decom-
posed into several shared link subsystems and an unshared link subsystem. Each shared
link subsystem is also associated with an output link, and all flows headed to this link
comprise a session. The set of shared resources among all flows in each session includes
both the processor and the corresponding output link. On the other hand, the unshared link
subsystem consists of all sessions, sharing only the processor.

First consider the fairness in the unshared link subsystem. In this system, there is only
one shared resource, the processor, which is essential. In other words, one does not need
to worry about the concept of stationary intervals since all sessions are always active with
respect to the processing resource as long as they are backlogged. In addition, the fact that
the processing resource is essential also simplifies the problem into the fair allocation of a
single resource, which has been extensively studiedF}, & the session headed to output
link h, andwg, be the aggregate weight of this session. Denotédyy- the demand for

resourceP from sessior¥;,, and byay, » the allocation of resource from sessiorF'),

120

under policyg. The normalized demand and the normalized allocation in the unshared link

subsystem can be defined as follows:

d o th,P

F,,P —

h RP
q

~q ay,.p

F;,P RP

HereRp is the amount of resource.

An allocation policyg is fair in the unshared link subsystem, if and only if,

@) = F (C.[dr, p] [wr,))

where(C' is some constraint as described in Section 3.3.

Note that in each shared link subsystem, the total amount of processing resource is
actually determined by the allocation in the unshared link subsystem, in the same sense
that, in buffer allocation, the total amount of buffer resource in the shared link subsystem
S} is determined by the allocation policy in the unshared link subsystemrherefore,
in the shared link subsystesy, the normalized demand for resour£eof each flows,

i € Fy,, is given by
- dip

dip = —
ag, p

and similarly the corresponding normalized allocation is

q
a; p

~q
a’i,P_ q .
ag, p

On the other hand, the normalized demand and allocation for bandwidth resource of each
flow in the shared link subsystem can be simply computed by normalization over the

amount of link resource, i.e.,

Ci dith
i7Lh
RLh
q
~q ai»Lh

whereR;, is the amount of resourck on link h.

121

After these normalized allocations of each flow the shared link subsysteff have
been determined, the prime resource of each flawder policyq, BY, can be defined in

the same way as described in Chapter 3. That s,

q __ ~4q ~4d
B} = argp;, max {aLP, ai,Lh}

of,
ELZB{Z = max {ELZP, dzq,Lh} .
Using the results from Chapter 3, the fairness in each shared link subsystem can now be
readily defined.
Finally, as in the case of buffer allocation, a policy is said to be fair in the allocation of

processing resource in the multiple output link system if and only if it is fair in the unshared

link subsystem and also in each of the shared link subsystems.

122

Chapter 5. Conclusion

5.1 Summary

Fairness is an intuitively desirable property in the allocation of resources in a network
shared among multiple flows of traffic from different users. During the last decade or
two, research on achieving fairness in networks has primarily focused on the allocation of
bandwidth. As flows of traffic traverse a network, however, they share various types of
network resources such as buffer, processor and power as in mobile systems. A framework
based on which one can define fairness in allocation of multiple resources has not yet been
established.

In this dissertation, we investigate the challenge of achieving fairness in the joint allo-
cation of multiple heterogeneous resources. We generally categorize the systems with mul-
tiple resources into two groups: those wghoritized resources such as the system with a
shared buffer and a shared link, and those wihentiafesources such as the system with
a shared processor and a shared link. For both types of systems, we have established fun-
damental principles to define and measure the fairness in the joint allocation of the shared
resources within the system under consideration. These principles, ham@&lyirthiple
of Fair Prioritized Resource Allocatioor the FPRA principle and thBrinciple of Fair
Essential Resource Allocatiar the FERA principle, are simple but powerful generaliza-
tions of any given notion of fairness defined on a single shared resource, such as max-min
fairness, proportional fairness and utility max-min fairness.

We further apply the FPRA principle to the system with a shared buffer and a shared
link, and apply the FERA principle to the system with a shared processor and a shared
link. Using the notion of max-min fairness as an example, we have developed ideally

fair, though unimplementable, allocation strategies in both systems, i.eElufeflow

123

Fair Buffering (FFB)and theFluid-flow Processor and Link Sharing (FPLSYhich may

be used as benchmarks in the evaluation of the fairness of various practical and imple-
mentable allocation schemes in such systems. We anticipate that these algorithms will
serve the same purpose as GPS does in research studies on the allocation strategies of a sin-
gle shared resource. We have presentedPtiuiet-by-packet Fair Buffering (PFR)Nd the
Packet-by-packet Processor and Link Sharing (PRE&Eh of which is an implementable,
computationally feasible angrovably fairapproximation of the corresponding ideally fair
strategy. We have demonstrated the fairness of PFB and PPLS through extensive simulation
experiments using real traffic traces.

Our study in the joint allocation of buffer and bandwidth resources shows that overall
fairness is not determined by the exit scheduler alone, but instead by the combination of the
entry and the exit policies. This work reveals that use of a fair exit policy such as DRR does
not ensure overall fairness when buffer resources are constrained or when packet dropping
is used as a congestion control policy. In fact, our study shows that, even though the fairness
of exit policies has received far greater attention in the research literature, the entry policy
is more critical to overall fairness than the exit policy.

Our study in the joint allocation of processing and bandwidth resources also leads to
a similar conclusion. It is illustrated that, in a system with multiple essential resources,
achieving fairness with respect to each resource alone does not guarantee the overall fair-
ness in the entire system. In fact, neither the fair allocation of processing resource alone
nor the fair allocation of bandwidth resource alone achieves the fair allocation in the overall
system with a shared processor and a shared link. Only when these resources are allocated
in a coordinated manner, does the allocation strategy such as PPLS provide overall fairness.

In addition, in order to extend our work to systems with multiple output links, an ap-
proach based on system decomposition is also presented in this dissertation. In this method,
we decompose a multiple output link system wifhoutput links into two types of subsys-

tems: anunshared link subsysteand H shared link subsystemg€onsider a system with

124

a shared buffer and a shared link as an example. The unshared link subsystem consists
of H sessionseach of which contains all flows headed to the same output link, and cor-
responds to a shared link subsystem associated with the output link. In the unshared link
subsystem, the only shared resource is the buffer; in each shared link subsystem, the set
of shared resources includes both the buffer and the corresponding link. Therefore, the
principles developed in the study of single output link systems can be applied into each of
these subsystems, and the fairness in the entire system can be defined based on the fairness

in each subsystem.

5.2 Concluding Remarks and Future Work

The Random Early Detection (RED) algorithm has been widely employed in Internet
routers to cooperate with TCP end users as a congestion avoidance strategy. The end-
to-end congestion control algorithms, implemented in various versions of TCP protocol,
depend not only on the bandwidth allocation in the network but also on the packet loss
rate as the indication of congestion. Therefore, an unfair management of buffers can cause
biased packet loss rates for different flows, and thus lead to a failure in providing end-to-
end fairness. It has been shown in Chapter 2 that RED and its variants fail to provide a
fair buffer management. Incorporating the principles developed in this dissertation in the
design of enhancements to RED-like algorithms for congestion avoidance will likely lead
to true fairness in resource allocation as well as an overall improvement in the utilization

of the network resources.

Countering denial-of-service (DoS) attacks has become one of the most critical chal-
lenges in network security today. In packet flooding, the most common type of DoS attacks,
innumerable malicious packets from attackers overwhelm the victim by causing congestion
on its resources such as bandwidth, processors and TCP/UDP ports, and thus make the re-

sources unavailable for normal flows. More secure operating systems may help avoid DoS

125

attacks, but only with limited effectiveness due to the considerable number of computers
(i.e., potential attackers when compromised) in the current Internet. An alternative defense
is to prevent DoS attacks from significantly impairing system performance, through fair
resource allocation [67,68]. Even in the presence of a DoS attack, fair resource alloca-
tion guarantees that malicious packets cannot occupy more system resources than a certain
amount, thus making service to normal flows unaffected, or minimally affected. It has been
shown in Chapter 3 that the PPLS algorithm can achieve a fair allocation of the processing
and bandwidth resources, and therefore, minimize the impact of a DoS attack based on
excessive use of either the bandwidth or the processing resource. Furthermore, PPLS-like
algorithms based on other contexts of resources can be designed for defending DoS attacks
on other resources.

This dissertation has primarily focused on the joint allocation of buffer and bandwidth
resources, and that of processing and bandwidth resources. However the principles and
algorithms developed in this dissertation can be applied to a variety of contexts in com-
munication networks and operating systems design. A few examples are the resources of
CPU, I/0O, and memory access in operating systems, and the resources of bandwidth and
power in mobile systems.

Take the joint allocation of processor, link and power resources in a wireless system
as an example. It has already been recognized that these resources need to be fairly allo-
cated, especially in wireless ad hoc networks and wireless sensor networks. Applying the
FERA principle, one may implement a fair allocation policy similar to the PPLS algorithm.
Specifically, for each flow, three quanta and three deficit counters are needed, each corre-
sponding to one resource. The basis of the algorithm, however, remains the same, i.e., a
packet from a flow can be scheduled only if all three deficit counters of this flow are large
enough. By this means, it can be guaranteed that each flow receives a fair share of process-
ing, bandwidth and power resources, if the quantum values are appropriately assigned.

The allocation of storage resources in operating systems is another example where our

126

principles can be applied. For example, first level cache, second level cache, main memory
and disk comprise a storage system with ordered preference. Applying the FPRA princi-
ple, one may define the cumulative resource dividends and demands with respect to each
resource, the stationary intervals, and then the fairness in resource allocation in such a sys-
tem. A PFB-like algorithm can also be implemented in such systems as a practical strategy
for fair allocation of these resources.

Quiality-of-service is often an end-to-end issue, of which end-to-end fairness is a criti-
cally important piece. Fair bandwidth allocation algorithm such as Weighted Fair Queueing
(WFQ) have frequently been used as a component of an overall mechanism that ensures
end-to-end delay guarantees. Similarly, mechanisms to achieve end-to-end fairness in the
use of all the resources in the network will play a significant role in achieving true end-
to-end quality-of-service guarantees. This dissertation focuses on the principles and the
design of such mechanisms, serving as the basis for achieving end-to-end fairness.

This dissertation is the first attempt to develop theoretical frameworks to define fairness
in the allocation of multiple resources. While this work has established a foundation for
achieving this goal, it also raises many other possibilities for further investigation.

In this dissertation, we have defined the fairness in systems with multiple output links
by using system decomposition, as shown in Chapter 4. A fair allocation policy, which
can achieve fairness in such systems according to the definition, is still unknown. Consider
buffer allocation in multiple link systems. As one can observe from the fairness definition,
the fair allocation policy needs to implement a PFB-like algorithm for each shared link
subsystem. In addition, for the unshared link subsystem, the fair allocation policy has to be
able to take into consideration the different peak rates of all output links, and achieve a fair
distribution of resource dividends among sessions.

While we have defined in this dissertation the fairness in the joint allocation of multiple
prioritized resources and in the joint allocation of multiple essential resources, a more

complicated system may consist of both prioritized and essential resources. One example

127

is a system with a shared processor, a shared buffer, and a shared link, similar to the model
used in Fig. 3.2, except that the buffer between the procd3suord the linkL has a finite
capacity. Therefore, in this system, flows compete for all three shared resources, and both
prioritized and essential resources exist. Specifically, the shared buffer and the shared
link comprise a subsystem with two prioritized resources, while this subsystem and the
processol” are both essential to all flows. A future research goal is to develop a definition
of fairness for such a system, potentially using the principles proposed in this dissertation.
Given that most switches and routers have both prioritized and essential resources, it will
be worthwhile to also develop practical strategies for resource allocation in such systems.
It is our hope that this dissertation will facilitate future research in the designoot

ably fair strategies for achievingverall fairness inoint resource allocation.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

128

Bibliography

F. A. Cowell, Measuring Inequality: Techniques for the Social Sciendetin Wiley
& Sons, New York, NY, 1977.

W. Stallings, Operating Systems: Internals and Design Principldzrentice Hall,
Upper Saddle River, NJ, 3rd edition, 1995.

A. Silberschatz and P. GalvilQperating System Conceptiohn Wiley & Sons, New
York, NY, 5th edition, 1997.

L. Kleinrock, Queueing Systemol. 2, Computer Applications, John Wiley & Sons,
New York, NY, 1976.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” inProc. ACM SIGCOMMAustin, TX, Sep. 1989, pp. 1-12.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated service networks — the single node casé&tan. IEEE INFO-
COM, Florence, Italy, May 1992, pp. 915-924.

S. J. Golestani, “A self-clocked fair queueing scheme for broadband application,” in
Proc. IEEE INFOCOM Toronto, Canada, Jun. 1994, pp. 636—646.

M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round-robin,”
IEEE/ACM Trans. Networkingol. 4, no. 3, pp. 375-385, Jun. 1996.

J. C. R. Bennett and H. Zhang, “W@: Worst-case fair weighted fair queueing,” in
Proc. IEEE INFOCOM San Francisco, CA, Mar. 1996, pp. 120-128.

S. S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet scheduling using
elastic round robin,IEEE Trans. Parall. Distr. Systvol. 13, no. 3, pp. 324-336, Mar.
2002.

D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing scheduling algorithms
in high-speed networks,JEEE J. Select. Areas Communol. 17, no. 6, pp. 1145—-
1158, Jun. 1999.

Cisco Systems Inc., “Cisco 12016 gigabit switch router: Application note,” 1999.

[13] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networkEEE J.

Select. Area Communvol. 17, no. 8, pp. 1333-1344, Aug. 1999.

129

[14] D. P. Bertsekas and R. Gallag&yata Networks Prentice Hall, Upper Saddle River,
NJ, 2nd edition, 1991.

[15] S. Keshav,An Engineering Approach to Computer Networking: ATM Networks, the
Internet, and the Telephone Netwp#ddison-Wesley, Reading, MA, 1997.

[16] Z. Cao and E. W. Zegura, “Utility max-min: An application-oriented bandwidth
allocation scheme,” iProc. IEEE INFOCOM New York, NY, Mar. 1999, pp. 793—
801.

[17] S. Shenker, “Fundamental design issues for the future Intel&&E J. Select. Areas
Commun.vol. 13, no. 7, pp. 1176-1188, Sep. 1995.

[18] F. Kelly, “Charging and rate control for elastic trafficZurop. Trans. Telecomvol.
8, no. 1, pp. 33-37, Jan. 1997.

[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An architecture for differentiated services,” Dec. 1998, IETF RFC 2475,
http://www.ietf.org/rfc/rfc2475.txt.

[20] Y. Zhou and H. Sethu, “On the relationship between absolute and relative fairness
bounds,”IEEE Commun. Lettvol. 6, no. 1, pp. 37-39, Jan. 2002.

[21] A. G. Greenberg and N. Madras, “How fair is fair queuing?,ACM vol. 39, no. 3,
pp. 568-598, Jul. 1992.

[22] S. Keshav, “On the efficient implementation of fair queueing,’Internetworking
Research and Experiencel. 2, no. 3, pp. 157-173, Sep. 1991.

[23] J. M. Blanquer and BOzden, “Fair queuing for aggregated multiple links,”Hroc.
ACM SIGCOMM San Diego, CA, Aug. 2001, pp. 189-197.

[24] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivasta¥#/FB: An energy
efficient fair scheduling policy for wireless systems,”Hroc. Int. Symp. Low Power
Electr. Design Monterey, CA, Aug. 2002, pp. 30-35.

[25] A. Elwalid, D. Mitra, and R. H. Wentworth, “A new approach for allocating buffers
and bandwidth to heterogeneous, regulated traffic in an ATM ndé&E J. Select.
Areas Communvol. 13, no. 6, pp. 1115-1127, Aug. 1995.

[26] R. Glerin, S. Kamat, V. Peris, and R. Rajan, “Scalable QoS provision through buffer
management,” ifProc. ACM SIGCOMMVancouver, Canada, Aug. 1998, pp. 29-40.

[27] F. Lo Presti, Z.-L. Zhang, J. Kurose, and D. Towsley, “Source time scale and opti-
mal buffer/bandwidth tradeoff for heterogeneous regulated traffic in a network node,”
IEEE/ACM Trans. Networkingol. 7, no. 4, pp. 490-501, Aug. 1999.

[28] S. H. Low, “Equilibrium bandwidth and buffer allocations for elastic traffics,”
IEEE/ACM Trans. Networkingol. 8, no. 3, pp. 373-383, Jun. 2000.

130

[29] G. Fayolle, A. de La Fortelle, J.-M. Lasgouttes, L. Massaudind J. Roberts, “Best-
effort networks: Modeling and performance analysis via large networks asymptotics,”
in Proc. IEEE INFOCOM Anchorage, AK, Apr. 2001, pp. 709-716.

[30] F. Kamoun and L. Kleinrock, “Analysis of shared finite storage in a computer network
node environment under general traffitfEE Trans. Communvol. COM-28, no. 7,
pp. 992—-1003, Jul. 1980.

[31] D. Tipper and M. K. Sundareshan, “Adaptive policies for optimal buffer management
in dynamic load environments,” iRroc. IEEE INFOCOM New Orleans, LA, Mar.
1988, pp. 535-544.

[32] K. Kumaran and D. Mitra, “Performance and fluid simulations of a novel shared
buffer management system,” FProc. IEEE INFOCOM San Francisco, CA, Mar.
1998, pp. 1449-1461.

[33] A. Gupta and D. Ferrari, “Resource partitioning for real-time communication,”
IEEE/ACM Trans. Networkingol. 3, no. 5, pp. 501-508, Aug. 1995.

[34] G.-L. Wu and J. W. Mark, “A buffer allocation scheme for ATM networks: Complete
sharing based on virtual partitionfEEE/ACM Trans. Networkingvol. 3, no. 6, pp.
660-670, Dec. 1995.

[35] L. Tassiulas, Y. C. Hung, and S. S. Panwar, “Optimal buffer control during congestion
in an ATM network node, 1TEEE/ACM Trans. Networkingol. 2, no. 4, pp. 374-386,
Aug. 1994,

[36] I. Cidon, L. Georgiadis, R. Garin, and A. Khamisy, “Optimal buffer sharing,” in
Proc. IEEE INFOCOM Boston, MA, Apr. 1995, pp. 24-31.

[37] S. Sharma and Y. Viniotis, “Optimal buffer management policies for shared-buffer
ATM switches,” IEEE/ACM Trans. Networkingvol. 7, no. 4, pp. 575-587, Aug.
1999.

[38] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds for shared-
memory packet switches|[EEE/ACM Trans. Networking/ol. 6, no. 2, pp. 130-140,
Apr. 1998.

[39] R. Fan, A. Ishii, B. Mark, G. Ramamurthy, and Q. Ren, “An optimal buffer manage-
ment scheme with dynamic thresholds,”Rroc. IEEE GLOBECOWNRIo de Janeiro,
Brazil, Dec. 1999, pp. 631-637.

[40] S. Krishnan, A. K. Choudhury, and F. M. Chiussi, “Dynamic partitioning: A mech-
anism for shared memory management,Proc. IEEE INFOCOM New York, NY,
Mar. 1999, pp. 144-152.

[41] J. Heinanen and K. Kilkki, “A fair buffer allocation schem&bmput. Communvol.
21, no. 3, pp. 220-226, Mar. 1998.

131

[42] K. Kilkki, Differentiated Services for the InternefAddison-Wesley, Reading, MA,
1999.

[43] O. Bonaventure and J. Nelissen, “Guaranteed frame rate: A better service for TCP/IP
in ATM networks,” IEEE Networkvol. 15, no. 1, pp. 4654, Jan./Feb. 2001.

[44] E. Hashem, “Analysis of random drop for gateway congestion control,” Tech. Rep.
LCS TR-465, Lab. for Computer Science, MIT, Cambridge, MA, 1989.

[45] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,”|EEE/ACM Trans. Networkingsol. 1, no. 4, pp. 397-413, Aug. 1993.

[46] A. R. Bonde, Jr. and S. Ghosh, “A comparative study of fuzzy versus “fixed” thresh-
olds for robust queue management in cell-switching networkEEE/ACM Trans.
Networking vol. 2, no. 4, pp. 337-344, Aug. 1994.

[47] D. Lin and R. Morris, “Dynamics of random early detection,” Rmoc. ACM SIG-
COMM, Cannes, France, Sep. 1997, pp. 127-137.

[48] W.-J. Kim and B. G. Lee, “The FB-RED algorithm for TCP over ATM,” Rroc.
IEEE GLOBECOM Sydney, Australia, Nov. 1998, pp. 551-555.

[49] J. Bruno, B.Ozden, A. Silberschatz, and H. Saran, “Early fair drop: A new buffer
management policy,” ifProc. SPIE: Multimedia Comput. & Networkin&an Jose,
CA, Jan. 1999, pp. 148-161.

[50] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe: A stateless active queue management
scheme for approximating fair bandwidth allocation,Aroc. IEEE INFOCOM Tel-
Aviv, Israel, Mar. 2000, pp. 942-951.

[51] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for congestion avoid-
ance in computer networks with a connectionless network layeFrac. ACM SIG-
COMM, Stanford, CA, Aug. 1988, pp. 303-313.

[52] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-switched
networks,”IEEE/ACM Trans. Networkingrol. 6, no. 2, pp. 175-185, Apr. 1998.

[53] S. Floyd, “RED: Discussions of setting parameters,” Nov. 1997,
http://www.icir.org/floyd/REDparameters.txt.

[54] NLANR, “NLANR network traffic packet header traces,
http://[pma.nlanr.net/Traces/Traces.

[55] Telecommunication Networks Group, “MPEG-4 and H.263 video traces for network
performance evaluation,” http://www-tkn.ee.tu-berlin.de/research/trace/trace.html.

[56] K. Mochalski, J. Micheel, and S. Donnelly, “Packet delay and loss at the Auckland
Internet access path,” iroc. Passive Active Measure. Workshgprt Collins, CO,
Mar. 2002.

132

[57] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G. Plax-
ton, “A proportional share resource allocation algorithm for real-time, time-shared
systems,” inProc. IEEE Real-Time Syst. SympVashington, DC, Dec. 1996, pp.
288-299.

[58] S. Lu, V. Bhargavan, and R. Srikant, “Fair scheduling in wireless packet networks,”
IEEE/ACM Trans. Networkingrol. 7, no. 4, pp. 473-489, Aug. 1999.

[59] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet networks,”
in Proc. ACM SIGCOMMCannes, France, Sep. 1997, pp. 63—74.

[60] WAND Research Group, “Auckland-VI trace data,” http://pma.nlanr.net/Traces/long.

[61] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet
networks,”IEEE/ACM Trans. Networkingrol. 3, no. 4, pp. 365-386, Aug. 1995.

[62] T. Kozaki, N. Endo, Y. Sakurai, O. Matsubara, M. Mizukami, and K. Asarg®, X
32 shared buffer type ATM switch VLSI's for B-ISDN’s,”IEEE J. Select. Areas
Commun.vol. 9, no. 8, pp. 1239-1247, Oct. 1991.

[63] Y. Shobatake, M. Motoyama, E. Shobatake, T. Kamitake, S. Shimizu, M. Noda, and
K. Sakaue, “A one-chip scalabkex 8 ATM switch LSI employing shared buffer
architecture,” IEEE J. Select. Areas Communol. 9, no. 8, pp. 1248-1254, Oct.
1991.

[64] N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara, “Shared buffer memory
switch for an ATM exchange,1EEE Trans. Communvol. 41, no. 1, pp. 237-245,
Jan. 1993.

[65] W. Denzel, A. Engbersen, and I. lliadis, “A flexible shared-buffer switch for ATM at
Gb/s rates,” Comput. Networks & ISDN Systol. 27, no. 4, pp. 611-624, January
1995.

[66] C. B. Stunkel, “The SP2 high-performance switctBM Syst. J.vol. 34, no. 2, pp.
185-204, Feb. 1995.

[67] A. Miyoshi and R. Rajkumar, “Protecting resources with resource control lists,” in
Proc. IEEE Real-Time Technol. Applic. Symfaipei, Taiwan, May 2001, pp. 85-94.

[68] D. Cohen and K. Narayanaswamy, “A fair service approach to defending against
packet flooding attacks,” http://www.cs3-inc.com/ddos.html.

133

Appendix A. Relationship between AFB and RFB

As described in Section 1.3.2, the absolute and the relative fairness bounds are two

common measures of fairness in bandwidth allocation. Denot&ig#, t5) and S (1, t,)

the service received by flowduring time intervalt,, t;) under the GPS policy and under

a given practical policy, respectively. Denote by’ the sum of the weights of all flows,

and byw,, the smallest weight of all flows.

Under any given scheduling poliey the absolute fairness with respect to flowver

time interval(t, t5), denoted byAF?(¢4, t5), is defined as,

q G
AFY(ty 1) = Si(tta) S7(huts) | A1)

wW; W;

The absolute fairness over time interVal, ¢,), denoted byAF?(¢,,¢,), and the absolute

fairness boundAFBY, are defined as,

AFq(tl,tQ) = mvaXAFf(tl,tQ) (A2)

AFBY = max AF(ty,ts). (A.3)

V(t1,t2)

Under any given scheduling poligy the relative fairness with respect to a pair of flows

(i, 7) over time intervalt,,), denoted bYRET; ; (1, 72) is defined as,

I(ty,t Sty t
RE(,) (t,t2) = Silinty) _ 5l t) : (A.4)
W; Wy

The relative fairness with respect to a floawver time intervalt,, t5), denoted byRFY (¢4, t5),

is defined as,

RFE{(t1,t2) = max RET) (1, 2). (A.5)

The relative fairness over time intervdl, t2), RF?(t4, t2), and the relative fairness bound,

RFBY, can now be defined as,

RF(h,t2) = maxRF!(t,,) (A.6)

134
RFB? = r(rglaé) RF(t1,ts). (A.7)

Lemma4 Under any work-conserving poliey, over any interval of timet,, ¢,),

N
> St ta) Z SE(ty, ta)
i=1
whereN is the number of flows. This obvious lemma is also stated in [21]. For the sake of

brevity, we denot&" | S%(t,,t,) by S(t1,t,).
Lemma5 Over any interval of timét,, t2) and for any pair of flowg:, j),
RFY, (b1, t2) < AF!(t1,t5) + AFY(ty, 1),

Proof: Recall that under the GPS scheduler, the service received by each backlogged

flow is exactly proportional to its weight, i.e.,

St ta) LN, S (i ta) S(ty, ty)

Thus from (A.1), we can express the absolute fairness of flasvfollows:

Si(tita) S(tista)

AFZq (tl, tg) ==

(A.8)

From (A.4) and using (A.8), we get,

Si(ti,ta) Sty t2)
RF(@J)<t17t2) = e

w; w;
St te) St te) | Sltita) Si(ty, t2)
W; w W wj
< |Situts) S(tuta)| ‘S(tl,tg) St te)
- W; w w w;

- AFZq(tl, tz) —|— AF?(tl, tz)
[
Lemma 6 Over any interval of timét,, ¢,),

RE(t),) < 2AF(t1, t5).

135

Proof: Over the time interval,, t5), assume that the maximum of the relative fairness

with respect to any pair of flows occurs with flowsand;’. Therefore,

)

RF(t,ts) = REFY ,(t,t2)

IN

AFY(t1,ta) + AFY (11, 1)

< 2AF9(tq,ts).

[|
Lemma 7 Over any interval of timét,, ¢,), for any flows,
w
AF!(t1,t2) < (1 — W) RF{(t1,t2).

Proof: Denote byS? (4, 2), the sum of the service received by all the flows except

flow ¢ during time intervalt;, ;) under policyg. From (A.8), we have,

Si(ty,ta) S(ty,ts)
AF?(tl, tz) == Wi — W

Sty te) St te) + S (1, t)

(W —w;)S{(t1,t2) S (t1,ta)
- Ww, W

W — (0 Sg(tl, tg) Sg_ (tl, t2)
= TR " T o | (A.9)

If we denote
SH(t1,ts)
Cl{j = wj

thenS;’(tl, tg) = w;qy, and,

SE(ti,te) Xz wjioy

W — (1 Zﬁéi w;

which meanss;_(t1,t2)/(WW — w;) can be considered as the weighted average of # i.

Therefore,

SI(tq,t a S(ty,t
min](Lt) < Si_(t1, t2) < max 73(b 2). (A.10)
J#i wj W — w; J#i wj

136

Thus, we have,

Si(ti,ta) Si(t1,t2)

Sitity) Sj(t,ta)
Ww; w;

= RFY(t,t,). (A.11)

max
Vi

Ww; W—wi

Applying the above in (A.9) completes the proli.

Note thatw; > w,,, and therefore, from Lemma 7,

AFY(th, t5) < (1 _ W) RFY(t1, t,). (A.12)

In the inequality above, if the RHS is no less than the LHS for any given flow, then over all
flows, the maximum possible value of the RHS is also no less than the maximum possible

value of the LHS. This leads into Lemma 8 below.
Lemma 8 Over any interval of timét, ¢,),
AFY(t1, 1) < (1 - W) RF(t, £2).
Combining Lemmas 6 and 8, we have,
- RF (t1,12) < AF9(ty, 1) < <1 _ W) RFY(11, 1,). (A.13)

We now proceed to prove that the above relationship also holds between the absolute and

relative fairness bounds.

Theorem 7 For any work-conserving scheduling poligy
1
—RFB? < AFB?< (1—- — | RFB%
R < are < (1-57)

Proof: Without loss of generality, we assume that the maximum value of absolute

fairness is achieved over the time inter{al t;). Thus, from Lemma 8,
AFBY = AF9(ty,ts)
< (1——)RF(t,t
>~ (W> (1 2)

w
< (1—-=-)RFB%
< (1-5%)

137

Similarly, if we assume that the maximum of relative fairness is achieved over the time

interval[t3, t4), then from Lemma 6,

RFBY = RF%(t3,ty)
< 2AF(ts, 1)

< 2AFB%

The bounds stated in Theorem 7 can be shown to be tight. Consider a set of backlogged
flows of equal weight managed by a scheduler that behaves exactly as GPS all of the time
except during a certain short interval of time. During this interval, it gives all of the share
of flow i's service to another flow. All other flows receive service exactly equal to what
they would have received under GPS. During this interval, floaceives no service at all
while flow j receives twice the service it would have received under GPS. One can readily
verify that the absolute fairness bound of this scheduler is one half of its relative fairness
bound, establishing that the lower bound in Theorem 7 is tight.

We use the Deficit Round Robin (DRR) scheduler [8] to show that the upper bound in
Theorem 7 is also tight. Considéf — 1 backlogged flows, each of unit weight, served
by a DRR scheduler. Assume that a n&wth flow, also of unit weight, becomes active at
time ¢, when all other flows are already backlogged and active. Denofg tne quantum
size associated with each flow, and Axthe smallest unit of service provided by the DRR
scheduler. Recall that the maximum possible value of the deficit coundgHsA at the
beginning of each round, and that an additional amoun ofay be served from each flow
in each new round. Therefore, each of the fikst- 1 flows may receive service equal
to 29 — A before flowN receives its service opportunity. If the first packet in fléis
gueue is of sizé\ and the second packet is of sige flow N will receive service equal to
A in this first service opportunity. Before flow receives its second service opportunity,

each of the other flows may have received service equal to a maximam Nbw, let#’

138

be the time instant when flow begins its second service opportunity. During the interval
[t,t'), flow N receives a service equal fowhile each of other flows receives service equal

to 3¢ — A. It can be shown that both absolute and relative fairness bounds of the DRR
scheduler are achieved over this time interival’). Thus, the relative fairness bound is

3@ — 2A, while the absolute fairness bound is

(N-DBQ-A)+A . N-1
e —A =" (3Q - 24)

showing that the upper bound in Theorem 7 is tight.

139

Vita

Yunkai Zhou was born in Shanghai, China. He received his B.S. in Electrical Engineer-
ing from the Department of Automation, Tsinghua University, Beijing, China, in 1998,
and M.S. in Electrical Engineering from the Department of Electrical and Computer En-
gineering, Drexel University, in 2002. Since September 1998, he has been affiliated with
the Computer Communications Laboratory, Department of Electrical and Computer Engi-
neering, Drexel University, under the supervision of Dr. Harish Sethu. His research has
involved a variety of areas in computer networking, such as resource allocation, wireless
and sensor networks, switching networks, system performance evaluation, system archi-
tecture design and traffic modeling. He has also been a teaching assistant in the Depart-
ment of Electrical and Computer Engineering, Drexel University, from 1998 to 2003. His
teaching responsibilities include lecture, recitation, help sessions, and quiz/homework as-
signment/grading.

His research work has been published in or is under review with various refereed jour-
nals and conferences. He has been awarded the ACM SIGCOMM Student Travel Award
from the Association of Computing Machinery, the George Hill Jr. Fellowship from Drexel
University and the ECE Graduate Travel Award from InterDigital Communications. He is
a member of IEEE, IEEE Computer Society, IEEE Communications Society, ACM and

ACM Special Interest Group in Data Communications.

