
Resource Allocation in Computer Networks: Fundamental Principles and Practical

Strategies

A Thesis

Submitted to the Faculty

of

Drexel University

by

Yunkai Zhou

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

May 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190333757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Dedications

This thesis is dedicated to my family, especially to my wife, Dr. Shan Cheng, and my

parents, Mr. Guanghua Zhou and Mrs. Honggen Shi, for their sincere support, encourage-

ment and love.

iii

Acknowledgments

In retrospect as I approach the completion of my doctorate, I realize that I am deeply

indebted to many people’s assistance and support. I would like to express my genuine

gratitude to each of them, although it would be impossible for me to name all.

First of all, I would like to sincerely thank my advisor, Dr. Harish Sethu, for his tremen-

dous time and effort spent in leading, supporting and encouraging me during the last five

years. His passion for challenges has given me inspiration; his knowledge of engineering

has given me guidance; his perseverance in research has given me confidence. Without his

help and effort, it would be impossible for me to even get close to this point. I am also

grateful to him for being not only a mentor in my professional life but also a friend in my

personal life.

I want to express my gratitude to all committee members in my candidacy examination

and/or my dissertation defense, Dr. Maja Bystrom, Dr. Athina Petropulu, Dr. William

Regli, Dr. Warren Rosen and Dr. Oleh Tretiak, for their time and valuable suggestions.

Many thanks are due to my friends in the Department of Electrical and Computer En-

gineering, who make my life here memorable. I thank Haiguang Cheng and Xueshi Yang

for discussions on traffic modeling. I thank Salil Kanhere, Alpa Parekh, Hongyuan Shi,

Madhusudan Hosaagrahara, Harpreet Arora, Adam O’Donnell and Kunal Shah from our

lab for their collaboration, discussions and help during these years. I also want to thank all

the professors, staff and students in ECE for making the Department such a joyful working

and studying environment.

I am greatly grateful to my parents, Mr. Guanghua Zhou and Mrs. Honggen Shi,

for their continuous encouragement and support. Finally, my special gratitude is due to

my wife, Dr. Shan Cheng, who has always provided me unconditional love and endless

support. She is the person who is the happiest for me when I make progress, little or great;

iv

she is the person who believes in me and encourages me when I am frustrated; she is the

person who keeps me focused when I am in doubt; she is the person who makes me realize

that life is so beautiful.

v

Table of Contents

List of Tables . ix

List of Figures . x

Abstract . xii

Chapter 1. Introduction . 1

1.1 Motivation: Resource Allocation and Fairness 1

1.2 Fairness Criteria and Notions of Fairness 4

1.2.1 Max-Min Fairness . 5

1.2.2 Utility Max-Min Fairness . 7

1.2.3 Proportional Fairness . 8

1.2.4 General Notion of Fairness . 9

1.3 Fairness in Scheduling . 12

1.3.1 Generalized Processor Sharing . 12

1.3.2 Measures of Fairness . 12

1.3.3 Weighted Fair Queueing . 14

1.3.4 Self-Clocked Fair Queueing . 15

1.3.5 Worst-case Fair Weighted Fair Queueing 15

1.3.6 Deficit Round Robin . 16

1.4 Allocation of Multiple Resources . 17

1.4.1 Prioritized and Essential Resources 18

1.5 Contributions . 19

1.6 Organization . 22

vi

Chapter 2. The Joint Allocation of Buffer and Bandwidth Resources 23

2.1 Introduction . 23

2.1.1 Motivation . 23

2.1.2 Buffer Allocation Algorithms . 24

2.1.3 Contributions . 29

2.1.4 Organization . 30

2.2 System Model . 31

2.3 The Principle of Fair Prioritized Resource Allocation 33

2.3.1 Resource Dividends and Demands 33

2.3.2 The FPRA Principle . 35

2.4 Application to Buffer-Link System Model 39

2.4.1 What is Fair? . 39

2.4.2 An Ideally Fair Allocation Strategy 40

2.5 Packet-by-packet Fair Buffering . 42

2.5.1 The PFB Algorithm . 42

2.5.2 Fairness Analysis . 45

2.5.3 Computational Efficiency . 48

2.6 Measure of Fairness and Simulation Results 48

2.6.1 Measure of Fairness . 49

2.6.2 Simulation Setup . 50

2.6.3 Gateway Traffic Traces . 52

2.6.4 Video Traffic Traces . 55

Chapter 3. The Joint Allocation of Processing and Bandwidth Resources 58

3.1 Introduction . 58

vii

3.1.1 Background and Motivation . 58

3.1.2 Essential Resources . 59

3.1.3 Difference from Prioritized Resource Allocation 61

3.1.4 Contributions . 62

3.1.5 Organization . 63

3.2 System Model . 63

3.3 The Principle of Fair Essential Resource Allocation 64

3.3.1 Notion of Fairness . 64

3.3.2 The Concept of the Prime Resource 65

3.3.3 The FERA Principle . 66

3.3.4 Fair Work-Conserving Allocation Policy 72

3.4 Fair Joint Allocation of Processing and Bandwidth Resources 75

3.4.1 System Model . 76

3.4.2 Fluid-flow Processor and Link Sharing 76

3.4.3 Packet-by-packet Processor and Link Sharing 77

3.4.4 Fairness Analysis of PPLS . 82

3.5 Simulation Results and Analysis . 87

3.5.1 Synthetic Traffic . 88

3.5.2 Gateway Traffic Traces . 91

3.5.3 Effect of Maximum Deficit Counter 92

3.6 Discussions on Implementation of PPLS 93

Chapter 4. A Discussion on Extensions to Multiple Output Link Systems 95

4.1 Introduction . 95

4.1.1 Motivation and Challenges . 95

viii

4.1.2 Contributions . 97

4.1.3 Organization . 98

4.2 Multiple Output Link System Model . 99

4.2.1 System Model . 99

4.2.2 System Decomposition . 102

4.3 Fairness in Multiple Output Link Systems 104

4.3.1 Fairness in Shared Link Subsystems 105

4.3.2 Fairness in an Unshared Link Subsystem 106

4.3.3 Fairness in Buffer Allocation . 112

4.4 A Measure of Fairness . 112

4.4.1 Definitions . 112

4.4.2 Relationship to Fairness within Component Subsystems 115

4.5 Allocation of Processing Resource . 119

Chapter 5. Conclusion . 122

5.1 Summary . 122

5.2 Concluding Remarks and Future Work . 124

Bibliography . 128

Appendix A. Relationship between AFB and RFB 133

Vita . 139

ix

List of Tables

2.1 Entry policies evaluated. 51

2.2 Exit policies evaluated. 52

3.1 Examples illustrating what is a fair allocation in a system with a shared
processorP and a shared linkL. In all of these examples, the total amounts
of the shared resources are, respectively, 100 MHz forP and 100 Mbps for
L. 67

3.2 The ratio of the processing resource to the link resource required by each
flow. 89

x

List of Figures

1.1 Pseudo-code of max-min fair share. 6

1.2 Examples of utility functions for: (a) elastic traffic; (b) real-time traffic; (c)
rate-adaptive traffic. 8

2.1 The system model. 32

2.2 Pseudo-code of Packet-by-packet Fair Buffering. 43

2.3 Pseudo-code of thePushoutprocedure in PFB algorithm. 44

2.4 Observed maximum (over allt) of nAFMS,q(t, t + τ) vs. τ , with input
traffic from a gateway trace: (a) the entry policy is RED or FB-RED, and
the exit policy is LQF, FCFS, or DRR; (b) the entry policy is DFLQ, ST, or
PFB, and the exit policy is LQF, FCFS, or DRR; (c) the logarithmic plot of
several selected combinations. 53

2.5 Observed maximum (over allt) of nAFMS,q(t, t + τ) vs. τ , with input
traffic from video traces: (a) the entry policy is RED or FB-RED, and the
exit policy is LQF, FCFS, or DRR; (b) the entry policy is DFLQ, ST, or
PFB, and the exit policy is LQF, FCFS, or DRR; (c) the logarithmic plot of
several selected combinations. 56

3.1 A general system model. 64

3.2 The system model with a shared processorP and a shared linkL. 76

3.3 Pseudo-code of the Packet-by-packet Processor and Link Sharing (PPLS)
algorithm. 79

3.4 The simulation results, using (a) synthetic traffic, (b) gateway traffic traces.
(c) The effect ofmaxDC in the PPLS algorithm. In these plots, a curve
closer to a straight horizontal line implies a better fairness achieved by an
allocation policy. 90

4.1 The multiple output link system model. (a) The entire system; (b) An ex-
ample of one session with flows 1 and 2 headed to linkH. 100

4.2 The unshared link subsystem,Su. The number of sessions is equal to the
number of output links. 102

xi

4.3 Shared link subsystem,Ss
h. 103

xii

Abstract

Resource Allocation in Computer Networks: Fundamental Principles and Practical
Strategies

Yunkai Zhou
Harish Sethu, Ph.D.

Fairness in the allocation of resources in a network shared among multiple flows of

traffic is an intuitively desirable property with many practical benefits. Fairness in traffic

management can improve the isolation between traffic streams, offer a more predictable

performance, eliminate certain kinds of transient bottlenecks and may serve as a critical

component of a strategy to achieve certain guaranteed services such as delay bounds and

minimum bandwidths. Fairness in bandwidth allocation over a shared link has been exten-

sively researched over the last decade. However, as flows of traffic traverse the computer

network, they share not only bandwidth resources, but also multiple other types of re-

sources such as processor, buffer, and power in mobile systems. If the network is not fair in

allocating any of the shared resources, denial of service attacks based on an excessive use

of this resource becomes possible. Therefore, the desired eventual goal is overall fairness

in the use of all the resources in the network.

This dissertation is concerned with achieving fairness in the joint allocation of multiple

heterogeneous resources. We consider resources as either prioritized (such as bandwidth

and buffer resources) or essential (such as processing and bandwidth resources). For each

type of these systems, we present a simple but powerful general principle for defining

fairness in such systems based on any of the classic notions of fairness such as max-min

fairness, proportional fairness and utility max-min fairness defined for a single resource.

Using max-min fairness as an example, we apply the principles to a system with a shared

buffer and a shared link, and a system with a shared processor and a shared link, and pro-

pose practical and provably fair algorithms for the joint allocation of buffer and bandwidth

xiii

resources, and the joint allocation of processing and bandwidth resources. We demonstrate

the fairness achieved by our algorithms through simulation results using both synthetic

traffic and real traffic traces. The principles and the algorithms detailed in this dissertation

may also be applied in a variety of other contexts involving resource sharing.

1

Chapter 1. Introduction

1.1 Motivation: Resource Allocation and Fairness

Fairness is an intuitively desirable property in the allocation of shared resources in a

variety of contexts. In sociology and economics, fairness metrics and strategies have been

exhaustively studied in the distribution of wealth and welfare [1]; in operating systems,

they have been studied in task scheduling and the allocation of access to resources such as

memory, bus and I/O [2,3]; in computer networks, they have been extensively studied in the

allocation of available bandwidth among competing flows [4–10]. Besides being intuitively

desirable, fairness in the allocation of shared resources has many practical benefits. In this

section, we discuss the motivation behind the research presented in this dissertation within

the context of computer networks.

In a computer network, flows of traffic share multiple types of resources such as band-

width, buffers, and router processors. Congestion occurs when the available capacity of

any resource is insufficient to satisfy the requirements of all competing flows. For ex-

ample, when the total bandwidth demand of all flows headed to an output link is greater

than the peak bandwidth rate of the link, packets have to be either buffered or dropped

causing either delays or packet losses and consequently, a degradation in performance. A

proper and fair management of each congested resource tends to improve the overall system

performance, just as a police officer directing traffic at a congested intersection typically

results in smoother traffic, shorter delays and faster congestion relief. The following are

among the most important advantages of fair allocation of a shared resource in networks:

• Fair resource allocation improves performance by eliminating some transient bot-

tlenecks.In a network with multiple hops, fair allocation policies in early hops can

create balanced traffic loads and thus reduce the probability of traffic flows causing

2

congestion in later hops.

• Fair resource allocation enables QoS guarantees.A scheduler that allocates re-

sources fairly generates output traffic that has a more predictable pattern than the

input traffic. In fact, fair allocation algorithms have been shown to be able to provide

certain quality-of-service guarantees. For example, a fair bandwidth scheduling pol-

icy can be used to provide minimum bandwidths and guaranteed delay bounds [5].

Multimedia sources such as video and audio streaming applications generate traffic

requiring not only a minimum bandwidth for stable transmission, but a guaranteed

delay and delay jitter for smooth playback as well. Fair scheduling algorithms in net-

work devices, therefore, are often a critical component of Quality-of-Service (QoS)

mechanisms proposed to satisfy the requirements of such applications.

• Fair resource allocation provides isolation between traffic streams.Since fair allo-

cation policies ensure certain QoS guarantees, well-behaved flows can be protected

from other misbehaving flows triggered by malicious users, malfunctioning software,

or just heavy users. Such isolation is essential in a large-scale public network such

as the Internet even if the resources are not likely to be congested most of the time.

• Fair resource allocation enhances system security by countering certain kinds of

denial-of-service attacks.If any given resource is not allocated fairly, a denial-of-

service (DoS) attack based on an excessive use of the given resource becomes pos-

sible. For example, if the router processor cycles are not allocated fairly, the router

may be vulnerable to a DoS attack based on the processing resource (such as by using

unnecessary or malicious optional headers in packets).

For all of these reasons, fair schedulers for the allocation of availablebandwidthhave

now found widespread implementation in switches and Internet routers [11,12]. However,

bandwidth on a link is only one among several kinds of resources shared by multiple flows

3

in a typical network. As flows of traffic traverse through a network, they share with other

flows a variety of resources that include the following:

• Bandwidth. Fair allocation of bandwidth on a link has been studied extensively in the

literature. In the edge networks of the Internet or in wireless networks, bandwidth

tends to be one of the most critical resources that should ideally be allocated fair

amongst all the competing users.

• Buffer. Buffers in networks are used to improve throughput at output links. In the

absence of a buffer, packets that arrive at a busy link have to be discarded, leading

to packet losses and therefore, a loss in throughput. With a buffer resource available,

an arriving packet can be temporarily stored in the buffer while the output link is

busy transmitting another packet. When the link later becomes idle and available to

transmit the next packet, the temporarily stored traffic can be transmitted onto the

link, thus avoiding packet losses and improving the overall throughput.

• Processor. In packet-switched computer networks, for each arriving packet, switches

and routers have to retrieve necessary information from the packet header, determine

the destination of the packet and the forwarding interface corresponding to the des-

tination, maintain and update certain information such as average arriving rate for

the flow to which the packet belongs, and in many cases, modify the packet itself for

the purpose of network or traffic management. Each of these tasks requires a certain

number of processing cycles from the CPU, and therefore, the processing resource

is another important resource shared by all traffic flows. With the current pervasive-

ness of high-bandwidth long-haul optical links in the Internet backbone, and with the

occasional trend toward using over-provisioning as the solution to congestion in the

edge networks, a router’s processor is often also a critical resource to which, ideally

speaking, all competing flows should have fair access.

4

• Power. Normally powered by batteries, mobile devices such as laptops, PDA’s, and

cellular phones have a finite power lifetime. A fair allocation of power amongst

competing users becomes especially critical in certain kinds of networks such as

mobile ad hoc networks and sensor networks, where power is the bottleneck resource

given today’s technological constraints [13].

Given these various types of resources, more than one of which could be congested at

any given time, the allocation policy with respect to any one of these resources can have

a significant impact on the overall performance and QoS achieved by flows. Even though

fair scheduling of bandwidth over a link has received the most attention, the most desirable

goal is overall fairness in thejoint allocation of all resources shared by the flows of traffic

and not just one specific kind of resource such as the link bandwidth. However, a rigorous

theoretical framework that may be universally employed as a guide in the design of practical

algorithmic strategies for the joint allocation of such heterogeneous sets of resources does

not exist. This dissertation tries to establish such a theoretical foundation, and based on

this foundation, develop practical strategies for achieving fairness in the joint allocation of

such resources.

1.2 Fairness Criteria and Notions of Fairness

In attempting the design of a fair resource allocation policy, one has to first define a

notion of fairness that determines the criteria by which one can judge the fairness achieved

by an allocation policy. To solve the problem of what is fair if multiple entities compete

for a single shared resource, many fairness criteria have been proposed in the literature.

The most popular ones among them are max-min fairness, proportional fairness, and utility

max-min fairness, which are described below. Without loss of generality, throughout this

dissertation, we assume that the competing entities are network flows.

5

1.2.1 Max-Min Fairness

The max-min fair share policy of allocating a shared resource among multiple flows

with equal rights to the resource but unequal demands, follows the following principles

[14,15]:

• The shared resource is allocated in order of increasing demand.

• No flow receives a share of the resource larger than its demand.

• Flows with unsatisfied demands receive equal shares of the resource.

The notion of max-min fairness can also be defined in the following equivalent way: no

flow can increase its allocation without reducing the allocation of another flow with less or

equal demand. Under max-min fairness, given no additional resources, an unsatisfied flow

cannot increase its allocation by merely demanding more.

When there are weights associated with the entities demanding a share of the resource,

the max-min fair procedure is based on resource allocations that are normalized by the

corresponding weight. ConsiderN sources, labeled1, 2, . . . , N , and with a weightwi

associated with sourcei. Let di be the demand corresponding to sourcei. Given R as

the size of the resource shared among theseN sources, the max-min fair share algorithm

uniquely defines a fair allocation. For the sake of convenience, throughout this dissertation

we use vectors to indicate values belonging to a set of sources. We denote a vector by

the indexed value in a pair of square brackets, and when the context requires it, with a

specification of the boundaries of the index values. For instance, we denote the weight

vector as[wi : 1 ≤ i ≤ N] or just [wi], and the demand vector as[di : 1 ≤ i ≤ N] or just

[di]. Given the demand vector, the weight vector and the total available resource amount,

R, the max-min fair share allocation is given by

[ai] = FMMF(R, [di], [wi]) (1.1)

6

1 FMMF(R, d, w):
2 N ← Length(d);
3 Source← {1, 2, . . . , N};
4 Resource← R;
5 Weight← ∑N

i=1 w(i);
6 for eachi, 1 ≤ i ≤ N
7 dn(i) ← d(i)/w(i);
8 end for;
9 while (Source6= φ)
10 Find sourcei with minimumdn in Source;
11 if (dn(i) < Resource/Weight) then
12 a(i) ← d(i);
13 Remove sourcei from Source;
14 Resource← Resource− a(i);
15 Weight← Weight− w(i);
16 else
17 for eachj, 1 ≤ j ≤ N
18 if (j ∈ Source) then
19 a(j) ← w(j)× Resource/Weight;
20 end if;
21 end for;
22 Source← φ;
23 end if;
24 end while;
25 return a;

Notation:
R total resource amount input variable
d source demand input vector
w source weight input vector
N total number of sources constant value
Source set of unallocated sources variable
Resource amount of unallocated resource variable
Weight total weight of unallocated sources variable
dn normalized demand vector
a allocation output vector

Figure 1.1: Pseudo-code of max-min fair share.

7

whereai is the max-min fair allocation for flowi, andFMMF, the max-min fair procedure,

is a function of the available amount of the resource, the demand vector and the weight

vector. For the sake of completeness in our definitions of fairness, Fig. 1.1 provides a

pseudo-code of theFMMF procedure, which returns an allocation vector[ai : 1 ≤ i ≤ N].

In defining this function formally, we assume, of course, that vector elements in the same

positions in their respective vectors always correspond to the same source.

1.2.2 Utility Max-Min Fairness

The notion of utility max-min fairness is similar to that of max-min fairness, except that

under utility max-min fairness each flow is associated with a utility function [16] and it is

the utility achieved by each flow that needs to be allocated fairly. The utility function of a

flow under an allocated amount of resource indicates the level of performance (or “satisfac-

tion”) this flow achieves when given this amount of resource, and the utility functions for

different flows can be different [17]. The following are a few examples for some common

types of traffic.

• Elastic traffic such as E-mail, Telnet and FTP applications may have a convex utility.

In other words, the utility increases rapidly with the allocated amount of resource

when the amount is relatively small, and it saturates above a certain point. Fig. 1.2(a)

illustrates this type of utility functions.

• Real-time traffic such as video and audio streams has a minimum requirement on

the amount of allocated resources. The utility achieved by this type of traffic be-

comes substantial only when this minimum requirement has been satisfied. On the

other side, overprovisioning would not further increase the utility significantly. As

a summary, the utility function of real-time traffic normally has a threshold point

corresponding to the minimum requirement, as shown in Fig. 1.2(b).

• Rate-adaptive traffic has a similar utility function as real-time traffic, except that the

8

(a) (b) (c)

U
til

ity

Resource

U
til

ity

Resource

U
til

ity

Resource

Figure 1.2: Examples of utility functions for: (a) elastic traffic; (b) real-time traffic; (c)
rate-adaptive traffic.

utility differentiation at the point of minimum requirement is more smooth. In other

words, the utility function of rate-adaptive traffic has a “knee point”, as illustrated in

Fig. 1.2(c).

Note that for a set of flowsi, given the total amount of resourceR, the demand vector

[di], the weight vector[wi] and the utility function of each flow, the allocation vector[ai]

under utility max-min fairness is given by

[ai] = FUMMF(R, [di], [wi]) (1.2)

where the utility function of each flow is implicitly included in the functionFUMMF.

Max-min fairness can be considered as a special case of utility max-min fairness in the

sense that in max-min fairness, all flows have the same linear utility function.

1.2.3 Proportional Fairness

Some researchers argue that max-min fairness gives higher priority to flows with small

demands [18]. As an alternative, the notion of proportional fairness emphasizes less on

flows with small demands. An allocation vector[ai] is said to be proportionally fair if

and only if for any other feasible allocation[a′i], the aggregate of proportional changes is

9

non-positive, i.e.,
∑

i

a′i − ai

ai

≤ 0.

Here we refer to an allocation as a feasible one, if and only if, the shared resource is not

overallocated under this allocation. This fairness criterion implies a logarithmic utility

function.

Similar to the cases of max-min fairness and utility max-min fairness, proportional

fairness also determines how to allocate the shared resource, given the resource amountR,

the demand vector[di] and the weight vector[wi]. In other words, proportional fairness can

be also represented as follows:

[ai] = FPF(R, [di], [wi]). (1.3)

1.2.4 General Notion of Fairness

Note that each of the above mentioned fairness criteria determines, in its own distinctive

fashion, how a single resource should be allocated to competing flows with respect to their

demands. Therefore, for the sake of convenience, we introduce a notation that allows a

representation of any of these notions of fairness.

Consider a set ofN flows, 1 ≤ i ≤ N , competing for a single shared resource of

amountR.1 Denote bywi the weight of flowi, indicating the flow’s relative rightful share

of the resources. For a flow under a Differentiated Services framework [19], its weight

is determined by its traffic class among the 64 possible classes; for a flow in a best-effort

network, its weight is typically the same as that of all other flows. Letdi be the demand

corresponding to flowi. Therefore, given the demand vector[di], the weight vector[wi],

1Depending upon the property of the shared resource, the amountR may be measured either by the total
capacity or the peak consumption rate. For example, in the case of buffer resource, the resource amount
is measured in terms of the total capacity (i.e., in bytes); while in the case of link resource, the amount is
measured in terms of the peak bandwidth rate (i.e., in bps). Similar situations occur for resource demands
and allocations. Therefore, in the rest of this dissertation, we will not explicitly distinguish how the resources
are measured, and generally refer to the term “resource amount”.

10

and the total available resource amountR, any given notion of fairness may be represented

as

[ai] = F(R, [di], [wi]) (1.4)

whereai is the allocation for flowi based on the notion of fairness defined by the function

F . The functionF is different for different notions of fairness such as max-min fairness,

proportional fairness or utility max-min fairness.

One may notice that the utility functions are not explicitly presented in (1.4). However,

the notion of fairness in (1.4) represents a general notation to describe how, given a certain

vector of demands, one may determine the allocation of the resource for each flow, in

order that the utilities corresponding to the allocations satisfy the given fairness notion

with respect to the demands for utility. In other words, the notation of (1.4) implicitly

incorporates utility functions into the notion of fairness. For example, max-min fairness

implies a linear utility function, proportional fairness uses a logarithmic utility function,

and in utility max-min, each flow determines its own utility function. The only constraint

is that the utility functions are non-decreasing functions with respect to quantity of the

allocated resource.

An equivalent representation of any notion of fairness uses normalized demands and

allocations. Define the normalized demand of flowi, d̃i, for the resource as follows:

d̃i =
di

R
.

The normalized demand of flowi indicates the fractional share of the resource demanded

by the flow. Define the normalized allocation of flowi, ãi, as follows:

ãi =
ai

R
.

The normalized allocation of flowi indicates the fractional share of the resource allocated

to flow i.

11

Therefore, given the normalized demand vector[d̃i] and the weight vector[wi], any

given notion of fairness may be represented as a function as follows:

[ãi] = F(C, [d̃i], [wi]). (1.5)

HereC is the constraint, described later in greater detail, imposed on the system. Note

that the notion of fairness in (1.5) imposes no dimension on any variable, thus making it

applicable to systems with multiple heterogeneous resources.

The constraintC is used as a parameter in the functionF because, given the same de-

mand and weight vector, the fair allocation is different under different constraints imposed

on the system. The constraintC can be used to indicate the performance level achieved by

the allocation. For example, an allocation of no resource to any flow may also be consid-

ered a fair allocation by the max-min fair criterion albeit one that leads to very poor perfor-

mance. In general, this parameter allows us to define the fairness of non-work-conserving

allocation strategies by not imposing a specific level of performance achieved by the allo-

cation in the definition of fairness. As a simple example, the constraintC can be just the

sum of the utilities achieved by all flows.

Note that the resource amountR in (1.4) can be also considered as a simple constraint

on the allocation policy: the total amount of allocated resources cannot exceed the resource

amountR, i.e.,
∑

i ai ≤ R. Therefore, the notion of fairness in (1.4) is just a special case

of the notion of fairness in (1.5). Based on the context, we may use any one of these two

notions of fairness. For example, in this dissertation, (1.4) is used when normalization is not

necessary such as in considering buffer resources, while (1.5) is used when normalization

is necessary such as in considering processing resources.

Given a systemS and a notion of fairnessF , an ideal scheduling policy, denoted by

GF(S), is one that exactly achieves this notion of fairness in systemS. For example, if

F represents the function corresponding to the max-min fair policy with respect to the

bandwidth [14, 15], andL represents a work-conserving system with a single shared link,

12

GF(L) will denote theGeneralized Processor Sharing (GPS)policy [6], the ideally fair

scheduling policy for max-min fairness. Next we further discuss scheduling policies in

bandwidth allocation under the notion of max-min fairness.

1.3 Fairness in Scheduling

1.3.1 Generalized Processor Sharing

The GPS scheduler, in the scheduling of bandwidth over a link, is an unimplementable

but ideally fair scheduler that exactly achieves the max-min fair distribution of the band-

widths among the various flows [6, 15]. During each infinitesimal interval of time, the

GPS scheduler visits each backlogged flow once and schedules an equal and infinitesimal

amount of data for transmission over the output link. If different weights are imposed on

network flows, the amount of data transmitted from each flow by the GPS scheduler is pro-

portional to its weight during each infinitesimal interval of time. By this means, the GPS

scheduler achieves max-min fairness.

It is apparent that the GPS scheduler is an ideal policy and cannot be implemented

in real systems, where network traffic is packetized and flow packets have different sizes.

Many practical scheduling algorithms have been proposed to approximate the ideal GPS

scheduler, such as Weighted Fair Queueing (WFQ) [5], Self-Clocked Fair Queueing (SCFQ)

[7], Worst-case Fair Weighted Fair Queueing (WF2Q) [9], Deficit Round Robin (DRR) [8]

and Elastic Round Robin (ERR) [10]. Before describing these practical scheduling algo-

rithms, we first present two measures of fairness based on GPS.

1.3.2 Measures of Fairness

Since GPS is the ideally fair scheduling algorithm which achieves max-min fairness,

for any other scheduling policyq approximating GPS, the discrepancy between the service

achieved by GPS and that by the practical policyq can be used as a measure of fairness. The

13

absolute fairness bound (AFB)follows this concept [7]. Consider a flowi which is always

backlogged. Denote bySG
i (t1, t2) andSq

i (t1, t2) the service received by flowi during time

interval[t1, t2) under the GPS policy and under policyq, respectively. Theabsolute fairness

(AF) of policy q with respect to flowi during time interval[t1, t2) is defined as

AFq
i (t1, t2) =

∣∣∣∣∣
SG

i (t1, t2)

wi

− Sq
i (t1, t2)

wi

∣∣∣∣∣ (1.6)

wherewi is the weight of flowi. The absolute fairness bound of policyq is the maximum

absolute fairness for all possible flows and all possible time intervals, i.e.,

AFBq = max
∀i,t1,t2

AFq
i (t1, t2). (1.7)

The absolute fairness bound may be difficult to determine for some scheduling algo-

rithms such as SCFQ, since it requires the emulation of GPS. Another measure of fairness,

relative fairness bound (RFB), simplifies the computation by comparing the service re-

ceived by different flows. The relative fairness (RF) of policyq with respect to a pair of

flows (i, j) during time interval[t1, t2) is defined as

RFq
(i,j)(t1, t2) =

∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
j (t1, t2)

wj

∣∣∣∣∣ . (1.8)

Similar to the definition of AFB, the relative fairness bound of policyq is the maximum

relative fairness for all possible pairs of flows and all possible time intervals, i.e.,

RFBq = max
∀i,j,t1,t2

RFq
(i,j)(t1, t2). (1.9)

We have proved in [20] that for any work-conserving scheduling policyq, the absolute

and relative fairness bounds have the following relationship:

1

2
RFBq ≤ AFBq ≤

(
1− wm

W

)
RFBq.

In this relationship,wm is the smallest weight of all flows, andW is the sum of all weights.

In addition, for many scheduling algorithms, the upper bound on the absolute fairness

14

bound is actually the true bound. Since these two fairness bounds are closely related,

we can use one of them if the other is difficult to determine. The fairness bounds of some

scheduling policies described below are determined using this relationship, and therefore,

the proof of this relationship is presented in Appendix A.

1.3.3 Weighted Fair Queueing

The Weighted Fair Queueing (WFQ) policy approximates the GPS scheduler in the

sense that WFQ tends to serve packets in the order of their finishing time under GPS [5].

The system maintains a variable referred asround number, indicating the time under GPS

by increasing inversely as the number of active flows. Each packet upon arrival is associated

with a tag referred asfinish number. Assuming thek-th packet of flowi, pk
i , arrives at time

τ , its finish numberF (pk
i) is computed as

F (pk
i) = max{F (pk−1

i), RN(τ)}+
L(pk

i)

wi

whereRN(τ) is the round number at timeτ , L(pk
i) is the size of packetpk

i , andwi is the

weight of flow i. In other words, the finish number of packetpk
i depends on the round

number at its arrival time if the previous packet from flowi, pk−1
i , has finished service

whenpk
i arrives, or on the finish number ofpk−1

i otherwise. When a packet finishes service,

the WFQ scheduler selects the packet with the smallest finish number in the system as the

packet to be served next. It has been shown that the WFQ discipline can lag GPS by a finite

constant [21], i.e.,
SG

i (t, τ)

wi

− SWFQ
i (t, τ)

wi

≤ L

wi

whereL is the maximum packet size. However it is possible that a flow can receive a

substantial service lead under WFQ than under GPS. The WFQ has the following RFB:

RFBWFQ = 3
L

wm

.

It is not trivial to accurately track the round number since it is related to the number

15

of active flows under the emulated GPS system. The round number is updated when a

packet finishes service under the WFQ scheduler. By this time, it is possible that some flow

has finished service under GPS, and it needs to be removed from the list of active flows.

This removal leads to an increase in the incrementing rate of the round number, and thus

a larger round number. Again it is possible that by this larger round number, another flow

has finished service under GPS and needs to be removed from the list of active flows. This

is known asiterated deletion[22].

1.3.4 Self-Clocked Fair Queueing

Self-Clocked Fair Queueing (SCFQ) relaxes the WFQ scheduling policy by not strictly

emulating the GPS system and not accurately maintaining the round number [7]. Instead,

the finish number of the packet currently under service is used as the current round number,

i.e.,

F (pk
i) = max{F (pk−1

i), CF (τ)}+
L(pk

i)

wi

whereCF (τ) is the finish number of the packet being served at timeτ . SCFQ has a finite

relative fairness as follows:

RFBSCFQ = 2
L

wm

.

1.3.5 Worst-case Fair Weighted Fair Queueing

It is shown in [9] that under WFQ, a flow can receive a substantial lead than under GPS.

For example, a flowi with a large weight has a sequence of packets awaiting service while

the weights of other flows are significantly smaller. In this case, the sequence of packets

from flow i may each have a smaller finish number than the head-of-line packet of any

other flow, due to the relatively large weight of flowi. Therefore, under WFQ, this entire

sequence of packets from flowi may be scheduled before any packet from other flows can

begin service, thus leading to significantly bursty service for flowi over short time periods.

16

Worst-case Fair Weighted Fair Queueing (WF2Q) solves this problem by selecting the

packet to be served only from among theeligible ones, which means they have begun

service under GPS [9]. Specifically, under WF2Q, each packet is associated with not only a

finish number but astart numberas well. The start number of a packet from flowi is either

the finish number of the previous packet from flowi, or the round number upon its arrival,

whichever is larger, i.e.,

S(pk
i) = max{S(pk−1

i), RN(τ)}

whereS(pk
i) is the start number of thek-th packet from flowi andτ is its arrival time.

When the WF2Q scheduler finishes the service of a packet, it selects the packet with the

smallest finish number among all the packets that have a start time smaller than the current

round number. The absolute fairness of WF2Q is

AFBWF2Q =
(
2− wm

W

)
L

wm

whereW is the sum of the weights of all flows.

1.3.6 Deficit Round Robin

When a packet finishes service, WFQ and all its variants need to search for the packet

with the smallest finish number among all flows. Therefore, the per-packet computational

complexity of these algorithms isO(log N) whereN is the number of flows. This may

impose significant overhead in large scale networks.

Deficit Round Robin (DRR) is a fair scheduling algorithm with a per-packet work com-

plexity of O(1) [8]. For each flow, two variables are maintained in DRR, adeficit counter

and aquantum. The DRR scheduler serves eachbackloggedflow in a round robin fashion.

When visiting a flow in each round, the scheduler first increments the deficit counter of this

flow by its quantum, and transmits a maximum possible sequence of packets from this flow

with the total length less than the deficit counter. The deficit counter is then decremented

by the total size of all packets scheduled.

17

In each round, the service received by each backlogged flow under DRR is, on average,

equal to its quantum. Therefore, if the quantum value of a flow is assigned proportional

to its weight, the DRR scheduler can allocate to each flow the bandwidth resource with an

amount, on average, proportional to its weight. It is shown that the DRR algorithm provides

a finite RFB as follows:

RFBDRR = 3
L

wm

.

1.4 Allocation of Multiple Resources

As summarized in the previous section, the research on fairness in resource allocation

over the last decade or two has primarily focused on the allocation of the bandwidth re-

source on a link [4–10]. It has also been shown that concepts and algorithms for achieving

fairness in the allocation of a single resource can be extended to the case with multiple

resourcesof the same kind[23]. However, as previously discussed, bandwidth is only one

among several kinds of resources shared by multiple flows in a typical network. As flows

of traffic traverse a computer network, they share many different kinds of resources such

as link bandwidth, buffer space, time on the router processors and also electrical power,

a critical resource in mobile systems. The ultimate goal, therefore, should be the overall

fairness in thejoint allocation of all resources shared by the flows of traffic and not just one

specific kind of resource such as the link bandwidth.

The need for fairness in the joint allocation of multiple heterogeneous resources has

also been recognized in other contexts. For example, it has been recognized that fair al-

location of both the channel bandwidth and the power consumed needs to be achieved

simultaneously in mobile networks where power and bandwidth are both critically impor-

tant and scarce resources [24]. In addition, others have also recognized the importance of

joint allocation of buffer and bandwidth resources [25–28].

18

1.4.1 Prioritized and Essential Resources

Network systems with multiple types of shared resources can be generally categorized

into two different groups: those withprioritized resourcesand those withessential re-

sources. In this dissertation we investigate the joint allocation in both types of systems,

establish fundamental principles for defining fairness in such systems, and propose practi-

cal algorithms for realizing these principles. We first describe these types of resources in

detail.

In many situations, the flows competing for a set of multiple heterogeneous resources

have a preference toward using one of these resources over another. For example, at a

switch or a router with a shared buffer and a shared output link, flows prefer to be allocated

the output link resource, and only when the output link is not available do they choose to use

the buffer resources. Even in the allocation of multiple resources of the same type, a certain

resource may be preferred over another such as when, under certain conditions, terrestrial

links are preferred over satellite links, for the sake of shorter transmission delay. We refer

to the resources in these types of systems asprioritized resources, i.e., a shared set of

resources of the same or different types, but ordered by preference. In this dissertation, we

use systems with shared buffer and link resources as an example to establish the principles

of fairness in such systems.

The other type of systems includes those withessential resources. We define anes-

sentialresource as one for which a flow’s demand does not reduce with an increase in the

allocation of other resources to the flow. A number of resources such as the link bandwidth,

processor and power, in most contexts, are essential resources. In this dissertation we in-

vestigate a system with a shared processor and a shared link as an example of systems with

essential resources.

19

1.5 Contributions

The primary contributions of this dissertation are general theoretical frameworks for

defining and measuring fairness when a set of traffic flows share multiple resources in the

network, either prioritized or essential. We make no assumptions on the notion of fairness

defined for the allocation of a single shared resource; in fact, our frameworks may be

applied to any of several notions of fairness such as max-min fairness, proportional fairness

or utility max-min.

With respect to systems with prioritized resources, we introduce two concepts—theCu-

mulative Resource Dividend(CRDIV) of a flow under a certain resource allocation policy

represents the benefit accrued to the flow due to the portion of the shared set of resources

allocated to it under the policy; theCumulative Resource Demand(CRDEM) of a flow is the

benefit accrued to the flow when all of the shared set of resources is exclusively allocated

to the flow. These two concepts are generic in the sense that we make no assumptions on

what is the shared set of resources and how one may compute the desired benefit to a flow.

One may now use one’s favorite notion of fairness in the distribution of a single shared

resource, and state that a fair allocation policy among a set of competing flows is one that

achieves a fair distribution of the cumulative resource dividends with respect to the cumu-

lative resource demands of the flows. This is referred to as thePrinciple of Fair Prioritized

Resource Allocationor theFPRA principle. However, just as the notions of fairness in the

allocation of a single shared resource can be applied only over certain specific intervals of

time (intervals during which the number of actively competing flows stays constant) [29],

this generalized principle also applies only over certain specific intervals of time depending

on the properties of the traffic flows. A significant contribution of this dissertation is the

formal definition of these intervals of time in the context of multiple prioritized resources

shared by competing flows.

The concepts of cumulative resource dividend and demand cannot be readily extended

20

to systems with essential resources, since it may not be straightforward to determine the

ultimate benefit flows receive from an allocation of multiple non-prioritized resources.

Through illustrative examples, we claim that in these systems, at each instant of time, it

is the maximum of a flow’s normalized demand for the various essential resources that

should count in the decisions made by a fair resource allocation algorithm. We then de-

velop the fundamental principles of fairness for systems with multiple essential heteroge-

neous resources and propose thePrinciple of Fair Essential Resource Allocationor the

FERA principle, expressed within a rigorous theoretical framework. We also prove that,

under certain generic conditions, there exists a unique, fair, and work-conserving resource

allocation policy which satisfies the FERA principle.

Given these principles of fairness, we proceed to apply them to a system with a shared

buffer and a shared link, and a system with a shared processor and a shared link, both

using max-min fairness as the notion of fairness. For the system with the shared buffer

and link, we propose an ideally fair policy, called theFluid-flow Fair Buffering (FFB)

algorithm, for the joint allocation of buffer and bandwidth resources. We then present

the practicalPacket-by-packet Fair Buffering (PFB), an approximation of the ideal FFB

algorithm. We analytically prove that PFB achieves a close bounded approximation to the

FFB algorithm. We use real gateway traffic and video traffic traces to compare the fairness

of PFB against several combinations of popular entry and exit policies and demonstrate

the improved fairness with PFB. Our results show that the entry policy used in PFB can

significantly improve fairness even in combination with an unfair exit policy such as First-

Come-First-Served (FCFS). Our results reveal that when buffer resources are constrained,

a fair entry policy is more critical than a fair exit policy to the overall fairness goal.

For the system with a shared processor and a shared link, we also propose an ideally

fair policy, called theFluid-flow Processor and Link Sharing (FPLS)algorithm, for the

joint allocation of processing and bandwidth resources. We then develop a practical and

provably fair packet-by-packet approximation of the FPLS algorithm, calledPacket-by-

21

packet Processor and Link Sharing (PPLS). The PPLS algorithm, based on an extension

of the Deficit Round Robin algorithm [8], has a per-packet work complexity ofO(1). We

illustrate the fairness of the PPLS algorithm using both synthetic traffic and real gateway

traffic traces.

Another major contribution is the method proposed in this dissertation for the extension

of these principles to the systems with multiple output links. Consider the allocation of a

shared buffer in a multiple output link system as an example. The approach used in this

extension is to decompose the multiple output link system withH output links into two

classes of subsystems. The first subsystem, referred to as theunshared link subsystem,

consists ofH integrated flows, orsessions. Each session consists of all the flows headed to

a particular output link. In this unshared link subsystem, only the buffer is shared among

all sessions, thus allowing the application of the FPRA principle with a common set of

shared resources. The decomposition of the system also createsH of the other class of

subsystems, referred to as theshared link subsystems, each corresponding to one session.

Flows within each of these subsystems share both the link and the buffer, and thus each

shared link subsystem is identical to the single output link system considered in the study

of multiple prioritized resource allocation. After investigating the question of what is fair

in the unshared link subsystem, we define the fairness in the entire system based on the

definition of fairness in each subsystem. We then present a measure of fairness for multiple

output link systems, an extension of the absolute fairness bound in bandwidth scheduling on

a link. The analysis of this fairness measure shows that achieving fairness in the unshared

link subsystem is critically important to achieving fairness in the overall system. This

method of decomposition can also be applied in other context of resource allocation in

multiple output link systems such as the processing allocation in such systems.

22

1.6 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes how to define

fairness in systems with prioritized resources, using a system of a shared buffer and a

shared link as an example. Chapter 3, on the other hand, investigates fairness in a system

with a shared processor and a shared link, an example of systems with essential resources.

A detailed discussion on the extension of these results to multiple link systems is presented

in Chapter 4. Finally, Chapter 5 concludes this dissertation.

23

Chapter 2. The Joint Allocation of Buffer and Bandwidth Resources

2.1 Introduction

2.1.1 Motivation

As discussed in Chapter 1, buffers in switches and routers are among the most important

kinds of resources shared by flows of traffic in a typical network. The primary purpose of

a buffer is to improve bandwidth utilization through a reduced rate of packet loss. In the

absence of a buffer, when packets from more than one flow contend for the same output link

in a switch, one of the packets succeeds while the others are dropped. At a later time, if no

new packets arrive for transmission through the output link, the link is idle and bandwidth

is wasted. Using a buffer at the output link, however, packets could be saved instead of

dropped in the presence of contention, and then transmitted later when there is no further

contention for the output link. On the other hand, the buffer is less preferred by traffic

flows as compared to the output link for the same reason. In other words, flows prefer the

link resource if the output link is available and only when the output link is congested, do

they require the buffer resource. Therefore, a system with a shared buffer and a shared link

is one with prioritized resources. In this chapter, we investigate the problem of achieving

fairness in the joint allocation of such resources, using the joint allocation of buffer and

bandwidth resources as an example.

Even though researchers have primarily focused on the fair allocation of bandwidth

resources during the last two decades, some have already recognized the importance of

joint allocation of buffer and bandwidth resources [25–28]. Buffer allocation policies in

switches and routers are directly related to congestion avoidance and flow control policies

with a direct impact on end-user applications. Fair allocation of buffer resources in routers

and switches takes on additional significance with the increasing prevalence of multime-

24

dia applications that use UDP instead of TCP and choose to avoid end-to-end congestion

avoidance policies.

This chapter is concerned with achieving fairness in the joint allocation of buffer and

bandwidth resources in a network. A management policy for a shared buffer consists of two

components. Theentry schedulerdetermines which data from which flows are permitted

into the buffer and which are not. The entry scheduler is also responsible for pushout, i.e.,

the discarding of data from the shared buffer in order to accommodate new arriving traffic.

The exit schedulerdequeues traffic from the shared buffer and transmits them onto the

output link. It is the combination of both the entry and the exit schedulers that determines

the overall fairness in the allocation of the buffer and bandwidth resources. Since the exit

schedulers have already been described in Chapter 1, next we present a brief introduction

to popular entry policies.

2.1.2 Buffer Allocation Algorithms

The majority of buffer allocation strategies proposed and analyzed over the last cou-

ple of decades have focused on maximizing performance as measured by the throughput

achieved or the cell loss rate [30–40]. The simplest allocation policy, still common in many

hardware switching devices, isComplete Sharing (CS)[30], in which the shared buffer ac-

cepts every packet as long as there is space available, and drops them otherwise. Another

alternative, typically used when the number of flows is small, is theComplete Partition-

ing (CP) [30, 31] or theStatic Threshold (ST)policy, which statically partitions the buffer

among the multiple flows. It is shown in [30] that the CS strategy achieves better aggre-

gate throughput than the ST strategy. However, the CS strategy is biased in favor of flows

with heavy or bursty traffic, since such flows can easily fill up the shared buffer and leave

little or no buffer space to flows with light traffic. This can cause an overall degradation

in throughput with an unacceptable rate of packet loss for the low-traffic flows. The ST

25

strategy with equal partitions can protect the performance of low-traffic flows, but only at

the expense of potentially wasting buffer capacity.

An improvement in performance can be obtained by combining the properties of CS

and ST, such as inSharing with Maximum Queue Length (SMXQ), Sharing with Minimum

Allocation (SMA)andSharing with Maximum Queue and Minimum Allocation (SMQMA)

[30]. In SMXQ, each flow has a maximum queue length, i.e., a threshold, but unlike

ST, the sum of all the thresholds is larger than the entire shared buffer space, in order

to improve the utilization of the shared buffer. In SMA, a small portion of the shared

buffer is reserved for each flow and the rest is completely shared by all flows. Finally

SMQMA combines SMXQ and SMA, by reserving some buffer space for each flow and

sharing the rest with a maximum queue length constraint for each flow. Yet another variant

is Buffer Admission Control (BAC)algorithm [32], which dynamically groups flows into

underloaded and overloaded categories, and uses different thresholds to accept packets,

based on the flow’s current categorization.

Note that none of the above buffer allocation policies implementpushout, whereby a

packet in the buffer is discarded and its place in the buffer is taken by a newly arrived

packet. Pushouts are necessary to correct past unfairness in the allocation, and can be

accomplished using theVirtual Partitioning (VP)strategy [33, 34]. In this class of buffer

sharing algorithms, the buffer is divided into virtual partitions among the flows. When the

buffer is not full, all packets are accepted into the buffer as in the CS strategy. However,

when the buffer is full, packets belonging to a flow with a buffer occupancy lower than

its assigned virtual partition size may push out packets belonging to a flow with a buffer

occupancy higher than its assigned virtual partition size. It is proved in [35–37] that VP

strategies can achieve optimal performance measured in terms of the packet loss rates.

Note that an equal distribution of the buffer space can be achieved using the VP strat-

egy by dropping packets, whenever necessary, from the longest queue. Another algorithm

that seeks to achieve fairness and protection through apportioning the buffer space approx-

26

imately equally among the flows was proposed in [41, 42]. In this algorithm, an incoming

packet is dropped if its flow’s queue is greater than a certain minimum length and is also

greater than a certain quantity which is a pre-defined function of its own queue length and

the average among the queue lengths of all the flows. A review of this algorithm and its

variants may be found in [43].

A majority of buffer allocation algorithms have attempted to be fair through apportion-

ing the buffer space approximately equally among all the flows. Note that when all the

flows have the same demand and the same weight assigned to them, the max-min fair dis-

tribution of the buffer space is the same as an equal distribution of the buffer space. While

attempting to apportion the buffer space evenly among all the flows has often been de-

scribed as fair and is intuitively appealing, this ignores the fact that different flows require

different amounts of buffer space at different times depending on the arrival pattern of each

flow. Most such buffer allocation strategies determine a flow’s share of the buffer space

based on the number of active flows or traffic profile parameters, but have no monitoring

and feedback mechanisms on traffic arrival patterns. This weakness is somewhat addressed

by theDynamic Threshold (DT)strategies, which dynamically assign the threshold values

based on the past traffic arrival and buffer occupancy patterns [38–40]. The DT strategies

achieve a better utilization of the buffer space, and therefore, a better overall throughput

since they can consider the instantaneous needs of each flow. While various DT strategies

have been proposed for bursty or Poisson traffic patterns to achieve optimal performance,

no allocation strategy has been proposed that seeks to achieve fairness while also consider-

ing the traffic patterns and the instantaneous needs of each flow.

In some buffer management algorithms, especially in those intended for use in Internet

routers with traffic from TCP sources, a probabilistic determination is made on whether or

not to drop a packet [44–50]. These algorithms seek to achieve multiple goals of congestion

avoidance, protection and fairness in addition to performance. InRandom Drop (RD)[44],

when the shared buffer is full, one packet in the buffer is randomly selected to be replaced

27

by the packet that just arrived.Early Random Drop (ERD)[44], on the other hand, specifies

a fixeddrop probabilityfor each arriving packet whenever the aggregate length of the queue

in the shared buffer exceeds a certaindrop level. The intent of this algorithm is to punish

misbehaving sources based on the assumption that dropped packets are more likely to be

from misbehaving sources since they send more packets.

A smoother increase in the drop probability as a function of the queue size is provided

by theRandom Early Detection (RED)algorithm [45] and theFuzzy Threshold (FT)ap-

proach [46]. In FT, a dropping probability distribution function is defined. Each possible

buffer occupancy is associated with a certain dropping probability of a new arriving packet,

and this dropping probability increases as the buffer occupancy until it reaches 1 at some

certain threshold. Unlike FT which uses the exact queue lengths, RED monitors the queue

lengths and maintains an exponential average value of the queue length. In addition, it

maintains two thresholds on the queue length. The RED algorithm specifies that incom-

ing packets be dropped with a certain probability which is a function of the average queue

length and the two thresholds. When the average queue length is below the lower thresh-

old, incoming packets are always accepted. When the average queue length is above the

upper threshold, incoming packets are always dropped. When the average queue length

is between the lower and the upper thresholds, the incoming packets are dropped with a

certain probability that is proportional to the average queue length. Instead of dropping

packets, the RED algorithm also allows a marking of the packets such as in the DECbit al-

gorithm [51]. In this paper, we focus on the buffer management aspects of these algorithms

and therefore, we only consider the version of RED that drops incoming packets.

The fraction of dropped packets belonging to a flow in the RED algorithm has been

shown to be roughly proportional to that flow’s share of the total bandwidth. The RED

algorithm, however, does not achieve or attempt to achieve fairness in terms of equal

throughput for all the best-effort flows. The RED algorithm also does not explicitly con-

trol misbehaving flows. To address this problem, several enhancements to RED have been

28

proposed [47–50]. InEarly Fair Drop (EFD) [49], each flow is associated with a nomi-

nal allocated occupancy. The EFD algorithm uses the same method as RED to determine

when to drop a packet, but instead of dropping the arriving packet, it searches, in a round-

robin fashion, for a flow with a buffer occupancy larger than its nominal value and drops

the packet at the head of the queue corresponding to this flow.CHOKe[50] randomly se-

lects one packet from the queue when the average queue length is greater than the lower

threshold. If the arriving packet and the selected packet are from the same flow, both are

dropped. Otherwise, the algorithm’s subsequent actions are similar to those in the original

RED algorithm. Fair-Buffering Random Early Detection (FB-RED)[48], uses the same

basic algorithm as RED but weighs the drop probabilities assigned to a packet in a flow

by the bandwidth-delay product of the flow. To provide better flow isolation,Fair Ran-

dom Early Detection (FRED)uses per-flow variables [47]. It guarantees a minimum buffer

space to each flow, and every packet from a flow is accepted when the queue length of the

flow is below this minimum. It also uses a maximum per-flow queue length, above which

all packets from the flow are dropped. When the flow’s queue length is between these min-

imum and maximum thresholds, the average queue length of the entire buffer is calculated,

and the arriving packet is either dropped or accepted, based on the same algorithm as in the

original RED algorithm.

None of these variants of the RED algorithm addresses the issue of the policy to employ

when an incoming packet encounters a full buffer; they merely seek to avoid the situation

altogether since their primary goal is congestion avoidance rather than fairness in buffer

allocation. However, these algorithms do manage buffer space, and one can judge them

for how fairly they allow various flows to use and gain benefit from the buffer and link

resources in the router.

As summarized above, most of the existing buffer allocation algorithms have attempted

to maximize performance or achieve congestion avoidance although several of them have

also tried to be fair by one measure or another. A precise and formal notion of fairness in

29

buffer allocation, however, has not yet been developed. Thus, there is currently no theoreti-

cal framework around which one can design practical and fair buffer allocation algorithms,

and there also are no formal means of evaluating the various buffer allocation policies al-

ready proposed. This chapter seeks to provide such a framework to define fairness in the

joint allocation of buffer and bandwidth resources, and to facilitate the design of provably

fair buffer management strategies.

2.1.3 Contributions

The primary contribution of this chapter is a general theoretical framework for defining

fairness when a set of traffic flows share more than one resource, such as a buffer and a

link. The framework developed in this chapter provides a simple but powerful generaliza-

tion of any of several notions of fairness previously defined for the allocation of a single

shared resource or a set of resources viewed as a single entity. In this chapter, we intro-

duce two concepts: theCumulative Resource Dividend(CRDIV) of a flow under a certain

resource allocation policy represents the benefit accrued to the flow due to the portion of

the shared set of resources allocated to it under the policy; theCumulative Resource De-

mand(CRDEM) of a flow is the benefit accrued to the flow when all of the shared set of

resources is exclusively allocated to the flow. These two concepts are generic in the sense

that we make no assumptions on what is the shared set of resources and how one may

compute the desired benefit to a flow. One may now use one’s favorite notion of fairness

in the distribution of a single shared resource, and state that a fair allocation policy among

a set of competing flows is one that achieves a fair distribution of the cumulative resource

dividends with respect to the cumulative resource demands of the flows. However, just as

the notions of fairness in the allocation of a single shared resource can be applied only over

certain specific intervals of time (intervals during which the set of flows competing actively

does not change), this principle applies only over certain specific intervals of time depend-

30

ing on the properties of the traffic arrival pattern. The formal definition of these intervals

of time, calledstationary intervals, forms an important component of our contributions in

this chapter.

We illustrate the above framework with max-min fairness as the notion of fairness and

proceed to define an ideally fair strategy,Fluid-flow Fair Buffering (FFB), for the joint

allocation of buffer and bandwidth resources. FFB is an ideally fair but unimplementable

resource allocation strategy, just as the Generalized Processor Sharing (GPS) [6] is an ide-

ally fair but unimplementable scheduling discipline for allocating bandwidth among flows

sharing a link. FFB is intended to serve research efforts in the design of practical and fair

buffer allocation strategies in a manner analogous to the role served by GPS for almost

a decade in the design, analysis and measurement of scheduling disciplines for allocating

bandwidth on a shared link.

This chapter also presentsPacket-by-packet Fair Buffering (PFB), an implementable

approximation of the FFB algorithm. We analytically prove that PFB achieves a close

bounded approximation to the FFB algorithm. We use real gateway traffic and video traffic

traces to compare the fairness of PFB against several combinations of popular entry and

exit policies and demonstrate the improved fairness with PFB. Our results show that the

entry policy used in PFB can significantly improve fairness even in combination with an

unfair exit policy such as First-Come-First-Served (FCFS). Our results reveal that when

buffer resources are constrained, a fair entry policy is more critical than a fair exit policy to

the overall fairness goal.

2.1.4 Organization

This chapter is organized as follows. In Section 2.2, we introduce the system model

considered in this chapter. In Section 2.3, we define the concepts of cumulative resource

dividends and demands, and also the concept of stationary intervals of time over which

31

one can apply notions of fairness in a system with multiple resources. We conclude the

section with the statement of the Principle of Fair Prioritized Resource Allocation (the

FPRA principle) for use in systems with more than one shared resource. In Section 2.4, we

illustrate the application of the FPRA principle and define what is fair in the joint allocation

of buffer and bandwidth resources based on the max-min notion of fairness. In this section,

we also present the ideally fair but unimplementable FFB strategy. In Section 2.5, we

present the PFB strategy, a novel and practical buffer allocation strategy and prove that it

closely approximates FFB. In Section 2.6, we present simulation results using real gateway

traffic and video traffic to demonstrate the improved fairness of PFB in comparison to

popular combinations of buffer and bandwidth management strategies.

2.2 System Model

In the system model considered here, a shared buffer is fed byN flows, labeled as

1, 2, . . . , N , all destined to the same output link. LetR(t) be the maximum link speed at

time instantt and letC(t) be the capacity of the shared buffer at time instantt. Both values

are defined to be functions of time in order to accommodate general situations, such as a

higher-level allocation scheme that may change the available capacity of the link or the

buffer. We assume that all flows belong to the same service priority class, andwi is the

weight associated with flowi. In reservation-based networks, the reserved rate of a flow

may be used as its weight. Fig. 2.1 illustrates our system model and some of the notation

used in this chapter.

An entry schedulerregulates the entry of traffic from theN flows into the shared buffer.

The entry scheduler determines which data from which flows are permitted into the buffer

and which are not. The entry scheduler is also responsible for pushout, i.e., the discarding

of data from the shared buffer in order to accommodate new arriving traffic from another

flow. An exit schedulerdequeues traffic from the shared buffer and transmits them onto the

32

(t)iB
(t)NA

...
(t)1A

...
(t)iA Exit

...

...

(t)1D

(t)iD

(t)ND

(t)C
(t)I1

(t)IN

(t)iI

...

...
(t)REntry

Buffer Capacity

Figure 2.1: The system model.

output link. The exit scheduler, as in scheduling algorithms for the allocation of bandwidth

on a link, determines the sequence in which traffic from various flows will exit through the

output link.

Let S denote the system under consideration. LetIi(t) be the rate at which data arrives

in flow i at time instantt seeking entry into the shared buffer. This is the only input into

the systemS. Consider a buffer allocation policyq, a combination of the entry and the

exit scheduler’s policies. Define the admission rateAS,q
i (t), at time instantt, as the rate at

which data from flowi get accepted into the shared buffer of systemS under the allocation

policy q. Traffic that is not admitted into the shared buffer is dropped. Note thatAS,q
i (t)

can be negative, such as when the net rate of acceptance into the buffer is negative due to

pushouts.AS,q
i (t) ≤ Ii(t) holds for alli andt.

Define the departure rate,DS,q
i (t), as the actual rate at which traffic belonging to flow

i departs the shared buffer through the output link of systemS under the allocation policy

q. At time instantt, let BS,q
i (t) be the queue length or the buffer occupancy of flowi in the

shared buffer in systemS under the allocation policyq. At any given time instantt ≥ t0,

BS,q
i (t) = BS,q

i (t0) +
∫ t

t0

(
AS,q

i (τ)−DS,q
i (τ)

)
dτ. (2.1)

Throughout this chapter, the sum of a quantity overall flows is denoted by dropping

the subscript for the flow in the notation. For example,I(t) is the sum of the input rates

of all of theN flows, i.e.,I(t) =
∑N

i=1 Ii(t). AS,q(t), BS,q(t), andDS,q(t) are also defined

similarly. Of course,DS,q(t) ≤ R(t), andBS,q(t) ≤ C(t).

33

Note that, as mentioned before, the buffer allocation strategy is completely determined

by the actions of the entry and the exit schedulers, which together determineAS,q
i (t) and

DS,q
i (t). Also note that the queue length of a flow in the shared buffer is completely de-

termined by the admission rate, the departure rate and the initial queue length, as given by

(2.1). Defining what is fair in buffer allocation in systemS over a certain interval of time

[t1, t2), therefore, is the same as defining theconditionson AS,q
i (t) andDS,q

i (t) for all t in

[t1, t2), such thatq is fair.

2.3 The Principle of Fair Prioritized Resource Allocation

2.3.1 Resource Dividends and Demands

Consider a set of flows using a shared set of prioritized resources in a certain system

S. Each flow in the system, depending upon the application that generates the flow, has a

certain desired goal, which we generically refer to as theutility sought by the flow. Over

any given interval of time, thecumulative utilityis merely the utility considered over that

interval of time. Note that the definitions of utility and cumulative utility may be very

different in different contexts. For example, in the scheduling of bandwidth over a single

shared link as accomplished by fair scheduling algorithms such as DRR [8], the utility

may be defined as the bandwidth achieved by a flow; the cumulative utility achieved by

a flow over an interval of time would be defined as the amount of its data transmitted

through the shared link during the interval. For real-time applications with guaranteed

delay requirements, one may define the cumulative utility over an interval as the fraction

of packets that are successfully delivered within the specified guaranteed delay over this

interval of time.

It is important to note that, in this chapter, we do not impose any particular notion of

how cumulative utility over an interval should be defined. Our only assumption in this

regard is that the cumulative utility over any interval achieved by a flow is always non-

34

negative and does not decrease with an increase in the amount of any resource allocated to

it.

Consider a policyq for the allocation of the shared set of resources. Over time interval

[t1, t2), denote byUS,q
i (t1, t2) the cumulative utility achieved by flowi under allocation pol-

icy q in systemS. Consider an allocation policy,None(i), which grants none of the shared

resources to flowi. By our notation,US,None(i)
i (t1, t2) is the cumulative utility achieved by

flow i during time interval[1, t2) with the allocation policyNone(i). The difference in the

cumulative utilities achieved by a flow with and without the use of the allocated portion of

the shared set of resources, i.e., the difference betweenUS,q
i (t1, t2) andU

S,None(i)
i (t1, t2),

represents the benefit accrued to the flow due to this shared set of resources. The following

formally defines this concept.

Definition 1 The Cumulative Resource Dividend, denoted by CRDIVS,q
i (t1, t2), of flow

i in systemS under the allocation policyq over an interval of time[t1, t2) is defined as

follows:

CRDIVS,q
i (t1, t2) = US,q

i (t1, t2)− U
S,None(i)
i (t1, t2). (2.2)

Now, a notion of fairness in the allocation of the shared resources should specify a

distribution of these cumulative resource dividends among the flows. However, such a

notion of fairness cannot be developed without also defining a notion of the demands placed

on the shared set of resources by the flows. For example, it is only sensible that flows which

have no need for the shared set of resources, i.e., with no demand for them, should not

unnecessarily be allocated any of these resources. This principle is a trivial generalization

of already existing notions of fairness in the allocation of a single resource.

The demand of a flow for the shared set of resources can be expressed in terms of the

benefit or the cumulative resource dividend that the flow desires from an allocation of the

shared set of resources. Any flow would like a biased allocation policy that grants all of

the shared set of resources exclusively to it. Therefore, the demand of a flow is really the

35

benefit accrued to the flow, i.e., the cumulative resource dividend of the flow, when all of

the shared set of resources is allocated exclusively to the flow. LetAll(i) be an allocation

policy that allocates all of the shared resources, in entirety and exclusively, to flowi. The

notion of the demand of a flow can now be formally defined as follows.

Definition 2 TheCumulative Resource Demand, denoted by CRDEMS
i (t1, t2), of flow i

in systemS over an interval of time[t1, t2) is defined as follows:

CRDEMS
i (t1, t2) = U

S,All(i)
i (t1, t2)− U

S,None(i)
i (t1, t2). (2.3)

Note that the cumulative resource demand is independent of the allocation policyq. Note

also that the cumulative resource demand of a flow is no less than the cumulative resource

dividend of the flow under any allocation policy.

In scheduling of bandwidth over a single shared link, a flow gets no throughput at all

with policyNone(i) since the link is the only resource contributing to the utility. Thus, over

any time interval, all of the bandwidth allocated to a flow represents the benefit accrued to

the flow from the shared resource. In this case, the cumulative resource dividend of a flow

over a given interval of time with a scheduling policy is the same as the total amount of

data from the flow scheduled for transmission by the policy during this interval. Similarly,

the cumulative resource demand of a flow over a certain interval of time is just the total

amount of data that the flow could transmit during the interval if it did not have to compete

with any other flow.

2.3.2 The FPRA Principle

Based on the definition of the cumulative resource demand and the cumulative resource

dividend over any given interval of time, the shared resources can now be allocated accord-

ing to any given notion of fairnessF applied to the cumulative resource dividends with

respect to the cumulative resource demands. This would ensure that each flow receives, as

per the notion of fairnessF , a fair share of the dividend from the shared set of resources.

36

However, one cannot apply such a notion of fairness over anyarbitrary interval of time,

and this significantly hinders a simple extension of the notion of fairness from the single-

resource case to that for a system with a link and a buffer resource. For example, a notion of

fairness such as the principle of max-min fairness also cannot be applied to any arbitrary in-

terval of time in the allocation of bandwidth on a link among competing flows. In this case,

a flow is consideredactiveat any given instant of time if and only if it is backlogged [8];

and active over a given interval of time if and only if it is active at each instant of time

during this interval. The principle of max-min fairness may only be applied over intervals

of time during which no flow changes its state from being active to not being active, or

vice-versa. In our study, we refer to such an interval of time over which one can apply a

notion of fairness as astationaryinterval. In extending a notion of fairness to the system

modelS discussed in Section 2.2, we will have to extend the concept of the active/inactive

state of a flow and the concept of a stationary interval.

Consider a system with two distinct resources, one of which is the preferred resource.

In the system under consideration, the link is the preferred resource; flows use the buffer

resource only if the link resource is not available for immediate use. Our framework for the

definition of fairness in the system under consideration is based on a simple common-sense

and therefore, axiomatic approach whereby we allocate the preferred resource fairly, and

then allocate the non-preferred resource fairly among the flows with unsatisfied demands.

As per any given notion of fairness, a fair allocation in a system with two distinct resources

is one which, firstly, fairly allocates the preferred resource among all the competing flows

and then, fairly allocates the other resource among the flows that still have unsatisfied

demands.

Denote byS−, an identical system as the one under consideration, but without the

buffer resource. This is a system with just a single shared output link. We assume that,

as per any given notion of fairnessF , the ideally fair allocation strategy is known for

systemS−. Based on the earlier discussion, only when the demand of a flow in system

37

S− cannot be satisfied does it compete with other flows for the buffer resource. In other

words, a flow should be considered in competition for the buffer resource, if and only if,

in the absence of the buffer resource, the flow is not satisfied with a fair allocation of the

link resource. Therefore, an active flow with respect to the buffer resource is one whose

demand, in systemS−, would not be met under the ideally fair allocation policy,GF(S−).

The following definitions formalize this thought.

Definition 3 With respect to the buffer resource, a flowi is activeduring an interval of

time [t1, t2) as per the notion of fairnessF , if and only if, overeachsubinterval of time

[τ1, τ2) such thatt1 ≤ τ1 < τ2 ≤ t2, the cumulative resource demand of flowi in systemS

is greater than the cumulative resource dividend it would achieve in systemS− under the

ideally fair allocation policy,GF(S−). In other words, flowi is active with respect to the

buffer resource over time interval[t1, t2), if and only if,

CRDEMS
i (τ1, τ2) > CRDIV

S−,GF (S−)
i (τ1, τ2)

for all time intervals[τ1, τ2) such thatt1 ≤ τ1 < τ2 ≤ t2.

Definition 4 With respect to the buffer resource, a flowi is inactiveduring an interval of

time [t1, t2) as per the notion of fairnessF , if and only if, overeachsubinterval of time

[τ1, τ2) such thatt1 ≤ τ1 < τ2 ≤ t2, the cumulative resource demand of flowi in system

S is equal to the cumulative resource dividend it would achieve in systemS− under the

ideally fair allocation policy,GF(S−). In other words, flowi is active with respect to the

buffer resource over a time interval[t1, t2), if and only if,

CRDEMS
i (τ1, τ2) = CRDIV

S−,GF (S−)
i (τ1, τ2)

for all time intervals[τ1, τ2) such thatt1 ≤ τ1 < τ2 ≤ t2.

Note that it is possible that a flow is neither active nor inactive with respect to the

buffer resource over a certain interval of time, since the above definitions are based on

38

conditions that require to be satisfied ineachsubinterval of time within the given interval.

For example, consider two contiguous intervals of time. In the first interval, assume that

a certain flow is active with respect to the buffer resource while in the second interval the

flow is inactive with respect to it. Then, in the combined interval of time consisting of both

the above two intervals, the flow is neither active nor inactive with respect to the buffer

resource.

Thus, during any given interval, a flow may be said to be in one of three states with

respect to the buffer resource: active, inactive or neither. In our case of a system with more

than one resource, if a flow does not need the less preferred resource, then it implies that the

flow is satisfied and is not in active competition with other flows. Generalizing the concept

used in the allocation of a single resource, one may define fairness with respect to a resource

over an interval only when the set of flows competing for the resource stays constant during

the interval. We are now ready to present the concept of a stationary interval in our system,

and the Generalized Principle of Fairness.

Definition 5 In a systemS with two distinct sets of resources, one of which is the pre-

ferred resource set, a certain interval of time is astationary interval, if and only if, each

flow is either active or inactive (but not neither) with respect to the non-preferred resource

set over this entire interval.

Now we are ready to present thePrinciple of Fair Prioritized Resource Allocationor

the FPRA principle as follows.

Principle 1 Principle of Fair Prioritized Resource Allocation.Consider a systemS with

two sets of prioritized resources and an allocation policyq. Policyq is fair as per a notion

of fairnessF , if and only if, over all stationary intervals of time, the cumulative resource

dividends achieved by the flows are distributed fairly, as per the notion of fairnessF , with

respect to the cumulative resource demands requested by the flows.

Note that, if a flowi is neither active nor inactive over a certain time interval[t1, t2),

39

this interval can be divided into a contiguous sequence of subintervals, during each of

which flow i is either active or inactive. Thus, even though the FPRA principle defines

fairness only over stationary intervals, any given interval of time may be broken down into

a sequence of contiguous stationary intervals. Thus, the FPRA principle may be used to

define a fair allocation over any given interval.

2.4 Application to Buffer-Link System Model

2.4.1 What is Fair?

In this section, we illustrate the application of the FPRA principle to the system model

described in Section 2.2 under specific notions of fairness and the cumulative utility achieved

by a flow. We will use max-min fairness as the notion of fairness. Throughout the rest of

this chapter, we also use the total amount of data from a flow transmitted over the output

link during any given interval of time as the cumulative utility achieved by the flow over

this interval.

Thus, for any allocation policyq, the cumulative utility of a flowi in systemS over any

interval of time is given by

US,q
i (t1, t2) =

∫ t2

t1
DS,q

i (τ)dτ. (2.4)

Consider the allocation policyNone(i). In the absence of this set of shared resources (both

the link and the buffer), the cumulative utility is obviously 0. With an allocation policy

q, therefore, the cumulative resource dividend over an interval for each flow is exactly the

cumulative utility achieved by the flow over the interval. The cumulative resource demand

of flow i is the cumulative utility it gets using the allocation policyAll(i), which allocates

the entire buffer and the output link exclusively to this flow. Thus, applying (2.4) into (2.2)

and (2.3), we have,

CRDIVS,q
i (t1, t2) =

∫ t2

t1
DS,q

i (τ)dτ (2.5)

40

CRDEMS
i (t1, t2) =

∫ t2

t1
D

S,All(i)
i (τ)dτ (2.6)

for any flowi and any allocation policyq.

Recall that to define the state of a flow as active or inactive with respect to the buffer

resource, we need to consider the system without the buffer resourceS−. Note that the

ideally fair allocation policy in systemS− defined earlier, given the max-min notion of

fairness, is GPS [6]. Now, a flowi is said to be active with respect to the buffer resource,

or simply active, over an interval of time[t1, t2) if and only if, over each subinterval[τ1, τ2)

such thatt1 ≤ τ1 < τ2 ≤ t2,

∫ τ2

τ1
D

S,All(i)
i (τ)dτ >

∫ τ2

τ1
DS−,GPS

i (τ)dτ. (2.7)

Similarly, a flow i is said to be inactive with respect to the buffer resource, or simply

inactive, over an interval of time[t1, t2) if and only if, during each subinterval[τ1, τ2),

∫ τ2

τ1
D

S,All(i)
i (τ)dτ =

∫ τ2

τ1
DS−,GPS

i (τ)dτ. (2.8)

A stationary interval is one during which each flow is either active or inactive, and an

allocation policyq is fair if and only if, over all stationary intervals[t1, t2),

[
CRDIVS,q

i (t1, t2)
]

= FMMF

(
CRDIVS,q(t1, t2),

[
CRDEMS

i (t1, t2)
]
, [wi]

)
(2.9)

whereFMMF represents the policy of max-min fairness.

2.4.2 An Ideally Fair Allocation Strategy

Based on the framework developed above and the notion of max-min fairness, we now

discussFluid-flow Fair Buffering (FFB), an ideally fair work-conserving strategy for the

joint allocation of buffer and bandwidth resources. As in the ideally fair GPS scheduler, the

FFB algorithm also assumes that traffic can be divided into infinitesimally small quantities

and is schedulable at this granularity. With fluid flow traffic, a protocol where traffic may

41

be allowed to bypass the buffer if the buffer is empty is equivalent to one in which traffic

has to always pass through the buffer. This is because traffic that is forced to pass through

the buffer even though the buffer may be empty spends only an infinitesimal amount of

time in the buffer in such a hypothetical system.

Recall that a buffer allocation policy contains two parts: an entry policy and an exit

policy. It can be readily verified that the FFB has to use GPS as the exit policy in order

for it to achieve max-min fairness. This is because FFB is the fair algorithm for the joint

allocation of buffer and bandwidth resources, and therefore, it still needs to provide fairness

in bandwidth allocation when buffer allocation is not an issue (such as if the buffer is of

infinite capacity). With an infinite buffer, FFB is fair if and only if its exit policy is fair,

implying that its exit should be GPS. We now proceed to discuss the entry policy in FFB.

In the FFB algorithm, we maintain for each flowi anacceptance counter(ACi) which

indicates the amount of data accepted into the shared buffer from flowi. When a packet

from flow i is accepted into the buffer,ACi is incremented by the size of the packet; when

some data from flowi are pushed out from the shared buffer,ACi is decremented by the

amount of data pushed out. Note thatACi is not decremented when some data from flow

i exit the buffer and get transmitted through the shared output link; otherwise,ACi would

be just the buffer occupancy of flowi. Therefore, it is possible that a flow has a large value

of the acceptance counter in comparison to other flows even while its buffer occupancy is

relatively low.

Denote byACi(t) the value of the acceptance counter of flowi at time instantt. If

at time instantτ , the input rates for all flows become 0, thenACi(τ) indicates the total

amount of data transmitted from flowi after all of its data in the buffer at timeτ are also

transmitted. Thus, the acceptance counter of a flow represents its potential cumulative

dividend and therefore, represents the quantity that the entry policy should attempt to be

fair about in order to achieve fair distribution of the cumulative dividends with respect to the

demands. By the max-min fair notion of fairness, therefore, the FFB strategy should ensure

42

that the acceptance counters of all flows conform to the weighted max-min fair allocation

with respect to the demands.

In summary, the ideally fair FFB algorithm as per the max-min notion of fairness uses

the GPS server as the exit policy and ensures a weighted max-min distribution of the ac-

ceptance counters as the entry policy during each stationary interval of time.

2.5 Packet-by-packet Fair Buffering

It is obvious that the FFB scheduler that assumes fluid flow behavior is not imple-

mentable with real traffic that is packetized. In this section, we presentPacket-by-packet

Fair Buffering (PFB), a practical and implementable approximation to the ideally fair FFB

scheduler.

2.5.1 The PFB Algorithm

The pseudo-code of the PFB algorithm is presented in Figs. 2.2 and 2.3. The PFB

algorithm maintains a linked list, calledFlowList, which consists of all the flows with

packets waiting in the shared buffer. When a flow has no packets waiting in the shared

buffer, it is removed from theFlowList (accomplished by lines 22–24 and 50–52) and other

flows are not affected.

In theDequeueprocedure, an implementable fair scheduling algorithm such as SCFQ

[7], SPFQ [52] or DRR [8] may be used that can achieve long-term fairness with a bounded

value of the relative fairness bound as defined in [7,15].

TheEnqueueprocedure (lines 3–16) is invoked whenever a packet arrives at an input

port of the shared buffer. Assume that a packetp from flow i arrives. If flow i does not

already exist inFlowList, it is appended to the tail of theFlowList and its normalized

acceptance counter is set to the current minimum of the normalized acceptance counters of

the active flows (lines 6–10). This is similar to the idea of the potential function in [52]

43

1 Initialize: /* Invoked when the system starts */
2 FlowList← NULL;

3 Enqueue: /* Invoked whenever a packet arrives */
4 p ← ArrivingPacket;
5 i ← Flow(p); /* Flow of packetp */
6 if (ExistsInFlowList(i) = FALSE) then
7 Find flowk with minimumACj/wj , ∀j ∈ FlowList;
8 ACi ← wiACk/wk;
9 Append flowi to FlowList;
10 end if;
11 if (EmptySpaceInBuffer≥ Size(p)) then
12 Acceptp into buffer;
13 ACi ← ACi + Size(p);
14 else
15 Pushout(p); /* Pushout packets to accommodatep */
16 end if;

17 Dequeue: /* Always running */
18 Use any real approximation of GPS, except that
19 after each packetp is transmitted, invokeTransmit(p)

20 Transmit(p): /* Invoked whenever a packet departs */
21 i ← Flow(p); /* Flow of packetp */
22 if (QueueIsEmpty(i) = TRUE) then
23 Remove flowi from FlowList;
24 end if;

Figure 2.2: Pseudo-code of Packet-by-packet Fair Buffering.

where a newly backlogged flow has an initial potential equal to the system potential, which

is no more than the minimum of the potentials of all existing flows.

The algorithm subsequently checks if there is enough empty space in the shared buffer

to accommodate packetp (lines 11–16). If so, packetp is accepted into the shared buffer,

and the acceptance counter of flowi is incremented by the size of packetp. If there does not

exist enough buffer space for packetp, thePushoutprocedure shown in Fig. 2.3 is invoked

44

25 Pushout(p):
26 i ← Flow(p); /* Flow of packetp */
27 SpaceNeeded← Size(p) − EmptySpaceInBuffer;
28 Accepted← FALSE;
29 while(Accepted6= TRUE)
30 Among all unmarked flows, find flowk with
31 the largestACj/wj , ∀j ∈ FlowList;
32 if (ACk/wk = ACi/wi) then
33 Discardp;
34 Unmark all marked flows and data;
35 return ;
36 end if;
37 if (Occupancy(k) < SpaceNeeded) then
38 Mark flowk and all data from flowk;
39 SpaceNeeded← SpaceNeeded− Occupancy(k);
40 else
41 Mark flowk and at leastSpaceNeededworth
42 of data from flowk;
43 Accepted← TRUE;
44 end if;
45 end while;
46 for each marked flowj
47 Unmark flowj;
48 Pushout all marked data from flowj;
49 DecrementACj by the amount of data pushed out;
50 if (QueueIsEmpty(j) = TRUE) then
51 Remove flowj from FlowList;
52 end if;
53 end for;
54 Acceptp into buffer;
55 ACi ← ACi + Size(p);

Figure 2.3: Pseudo-code of thePushoutprocedure in PFB algorithm.

to push out some packets from other flows to accommodate packetp.

In order to achieve a max-min distribution of the acceptance counters that is as close

as possible to the ideal, based on the sizes of the packets involved, one may need to push

out packets from more than one flow. In our approximation of the ideally fair algorithm,

45

however, for the sake of computational efficiency, we select exactlyoneflow and attempt

to pushout as much data from this flow as necessary to accommodate the newly arrived

packet. Pushout from another flow occurs only when the flow that is selected first does not

have sufficient data that can be pushed out to accommodate the arriving packet.

When thePushoutprocedure is invoked, it first finds a flow, sayk, with the largest value

of the normalized acceptance counter. If the normalized values of the acceptance counters

are maintained in a sorted linked list, this can be done inO(log N) time with respect to

the number of flows. If flowsi andk have the same value of the normalized acceptance

counter, i.e.,ACi/wi = ACk/wk, packetp is discarded (lines 32–36). Otherwise, the

Pushoutprocedure attempts to push out some data from flowk to accommodate packetp.

If flow k has enough data, thePushoutprocedure returns after packetp is accepted, and

ACi andACk are appropriately updated (lines 41–43). When the buffer occupancy of flow

k is not large enough, all data from flowk are pushed out, and thePushoutprocedure will

continue with the next flow with the largest value of the normalized acceptance counter.

Note that in PFB, data to be pushed out are only marked first (lines 38 and 41), and the

true pushout is executed only if packetp can be accepted (lines 46–53), thus making PFB

a work-conserving algorithm.

2.5.2 Fairness Analysis

With packetized traffic, as opposed to fluid-flow traffic, short-term fairness may be

degraded but the algorithm will still achieve long-term fairness. The following theorem

proves an upper bound on the lag of the PFB algorithm with respect to the ideally fair FFB

algorithm.

Theorem 1 Consider a certain stationary interval[t1, t2). Consider two identical systems

with the same initial conditions and the same input traffic sequence, except that one uses

the FFB entry policy and the other uses the PFB entry policy. For any flowi and for any

46

time instantt ∈ [t1, t2), we have

ACF
i (t)− ACP

i (t) ≤ M

whereACF
i (t) andACP

i (t) are the acceptance counters corresponding to FFB and PFB

respectively, andM is the maximum packet size.

Proof: Note that since[t1, t2) is a stationary interval, no flow changes state during this

interval, and therefore, during[t1, t2) no flow becomes empty in the shared buffer due to

pushout.

Note that a difference in the actions by the entry policies of PFB and FFB occurs

only when the buffer is full. Therefore, we only need to consider the situation when a

buffered packet is pushed out or an arriving packet is discarded. Consider a certain flow

i. For the sake of convenience, denote byT F (t) the set of flows with the largest normal-

ized acceptance counter at time instantt under FFB, i.e., the set with the largest value of

ACF
j (t)/wj,∀j. The setT P (t) is similarly defined for the PFB algorithm.

Assume time instantt0 is the first time thatACF
i (t) andACP

i (t) differ from each other,

i.e., ACF
i (t) = ACP

i (t), ∀t < t0. Let t+0 be the instant of time that the execution of

the pushout or the discard completes in response to an event at timet0 (assume negligible

length of time to complete such an execution). It can be verified thatACF
i (t+0) becomes

larger thanACP
i (t+0) in only one of the two following situations:

• A packetp from flow i arrives at timet0. At this instant, there exists a certain amount

of space available in the shared buffer but it is not large enough to accommodate all

of p. If flow i belongs to bothT F (t−0) andT P (t−0), part of the packetp is accepted

under FFB, while under PFB, the entire packetp is discarded. In this case,0 ≤
ACF

i (t+0) − ACP
i (t+0) ≤ M . Note that after FFB accepts part of packetp, flow i

belongs toT F (t+0).

• At time instantt0, a packetp from a flow other thani arrives and the buffer does not

have enough space. Assume bothT F (t−0) andT P (t−0) contain more than one flow,

47

and flowi belongs to both sets. Thus, the amount pushed out from flowi under FFB

is less than the size of packetp, since data from multiple flows are pushed out. In

the case of PFB, however, only one flow is selected for pushout, and it is possible

that flowi is chosen. In this case,0 ≤ ACF
i (t+0)− ACP (t+0) ≤ M . Note that, again

we havei ∈ T F (t+0), while in the case of PFB, there is another flow with a larger

normalized acceptance counter, i.e.,i /∈ T P (t+0).

Note that in both the above situations, we havei ∈ T F (t+0). Next, we proceed to show

that, for any time instantτ within a stationary interval, if flowi belongs toT F (τ−),

ACF
i (τ+)− ACP

i (τ+) ≤ ACF
i (τ−)− ACP

i (τ−). (2.10)

It is sufficient to consider only the time instants when acceptance counters change, i.e.,

when new packets arrive.

Assume a packetp arrives at timeτ and the flow under considerationi ∈ T F (τ−).

• If packetp is from flow i, it will be discarded under FFB, and thusACF
i (τ+) =

ACF
i (τ−). On the other hand, under PFB, packetp will either be accepted or dis-

carded, i.e., the acceptance counter of flowi will not decrease. Therefore, (2.10) is

satisfied.

• If packet p comes from another flow other thani, some data from flowi will be

pushed out under FFB, sincei ∈ T F (τ+). While in PFB,ACP
i (τ+) = ACP

i (τ−),

since as mentioned above,i /∈ T P (τ+). Again, (2.10) is satisfied.

Note that in both cases, it is always true thati ∈ T F (τ+). Therefore, by induction, we

may conclude that once the differenceACF
i (t) − ACP

i (t) becomes greater than 0, it only

decreases with increasing time at least until it becomes negative. In addition, as shown

above, whenACF
i (t) − ACP

i (t) becomes positive, its maximum possible value isM , the

size of the largest packet. Therefore, for any time instantt ∈ [t1, t2), ACF
i (t)−ACP

i (t) ≤
M , thus bounding the difference between the practical and the ideally fair schedulers.

48

2.5.3 Computational Efficiency

Theorem 2 The Enqueueprocedure in PFB can be implemented with a computational

complexity ofO(log N), whereN is the number of flows in the system.

Proof: Note that PFB can maintain theFlowListusing a heap, based on the normalized

value of the acceptance counter. To maintain such a heap, the work complexity isO(log N).

In addition, to accommodate a packet, at mostdM/me packets need to be marked and

pushed out, whereM andm are the maximum and minimum packet sizes, respectively.

Therefore, thewhile loop (lines 29–45) and thefor loop (lines 46–53) will be executed, in

the worst case,dM/me times.

Furthermore, when marking a flowk (line 38), we can remove flowk from theFlowList,

and insert it into another linked list,MarkedFlowList. This takesO(log N) of time since

deletion from a heap takesO(log N) and insertion into a linked list takesO(1). In addition,

while traversing theMarkedFlowListas in thefor loop (lines 46–53), unmarking a flowk

can be implemented by removing flowk from theMarkedFlowListand inserting it back

into theFlowList. Again, this takesO(log N) of time.

The complexity of thePushoutprocedure, therefore, isO(dM/me log N) or simply,

O(log N).

Note that the computational complexity of theDequeueprocedure is simply the com-

plexity of the fair scheduler used to implement the exit policy. For example, if DRR [8]

is used, the per-packet dequeuing complexity will beO(1) with respect to the number of

flows.

2.6 Measure of Fairness and Simulation Results

In this section, we present a measure of fairness in the joint allocation of buffer and

bandwidth resources, and using this measure we compare the fairness of PFB against some

representative entry and exit policies using real gateway traffic traces and video traffic

49

traces.

2.6.1 Measure of Fairness

In measuring fairness in the joint allocation of buffer and bandwidth resources, we ex-

tend the basic premise of the Absolute Fairness Bound (AFB) defined in the context of

allocating bandwidth on a link [15, 20]. The AFB captures the upper bound on the differ-

ence between the normalized service received by a flow under the policy being measured

and that received by the same flow under the ideally fair policy.

Let GF(S, q) be an ideally fair buffer allocation policy for systemS due to the notion

of fairnessF , such that its total cumulative utility is identical to that ofq, i.e.,

∫ t2

t1
DS,q(τ)dτ =

∫ t2

t1
DS,GF (S,q)(τ)dτ.

Note that in our study of fairness in buffer allocation, we make no assumption about

whether or not the allocation policy being measured is work-conserving with respect to

the shared set of resources. Therefore, a normalizing quantity based on performance is

necessary in extending the notion of the fairness measure to our case of buffer allocation.

This normalization should allow us to use our fairness measure in a valid comparison be-

tween various buffer allocation strategies. We now define thenormalized Absolute Fairness

Measureover an interval of time as follows:

Definition 6 In a systemS with a shared buffer, a shared output link and a given input

traffic arrival pattern, thenormalized Absolute Fairness Measure, nAFMS,q(t1, t2), of an

allocation policyq over an interval of time[t1, t2) is defined as follows:

nAFMS,q(t1, t2) =

max
∀i

∣∣∣∣∣∣

∫ t2
t1

DS,q
i (τ)dτ

wi

−
∫ t2
t1

D
S,GF (S,q)
i (τ)dτ

wi

∣∣∣∣∣∣
∫ t2
t1

DS,q(τ)dτ
. (2.11)

Note that the above measure depends on the input traffic arrival pattern, and therefore,

an algorithm will naturally have different upper bounds, nAFB, for different input traffic

50

patterns. Also note that the fairness measured as above will approach 1.0 with any real

algorithm when the size of the time interval,t2 − t1, is extremely small. At the same time,

for most real buffer allocation strategies, the fairness measured as above will approach

0 when the size of the time interval considered is very large. Thus, a valid comparison

between various allocation algorithms can be made using the above measure only if the

sizes of the time intervals being considered are identical. Therefore, a meaningful measure

of the fairness for a given input pattern is not a single number but a function ofτ , the size

of the time interval over which fairness is measured. In our simulation study, we use the

observed maximum ofnAFMS,q(t, t+ τ) over allt to indicate the fairness of the allocation

policy q for each interval of sizeτ .

2.6.2 Simulation Setup

Our simulation model consists of a shared buffer fed by 8 input traffic sources. Traffic

from these 8 flows is headed to the same shared output link via the shared buffer. In our

first set of simulation experiments, we use real gateway traffic traces. In our second set of

simulation experiments, we use video traffic traces.

In our study, we have implemented five different entry policies including the PFB entry

policy and three different exit policies, as summarized in Tables 2.1 and 2.2. Note that the

PFB algorithm for buffer and bandwidth management uses the PFB entry policy and a fair

packet scheduler such as DRR as the exit policy.

The entry policies we simulate are chosen to be representative and include the follow-

ing: (i) Drop From Longest Queue (DFLQ), which pushes out packets belonging to the

flow with the longest queue in the buffer whenever the shared buffer is full, and accepts

all packets, otherwise; (ii)Static Threshold (ST), which assigns an equal fixed buffer oc-

cupancy threshold to each flow and no flow is allowed to occupy more than this threshold;

(iii) Random Early Detection (RED)[45], which drops arriving packets with a probability

51

Table 2.1: Entry policies evaluated.

Policy Description

DFLQ Pushes out packets from the flow with the longest queue.

ST Assigns each flow with an equal queue occupancy threshold.

RED Drops arriving packets with a probability [45].

FB-RED A variant of RED [48].

PFB The fair entry policy proposed in this dissertation.

that is a dynamic function of the average buffer occupancy; (iv)Fair Buffering Random

Early Detection (FB-RED)[48], which is a variant of RED that uses the bandwidth-delay

product of a flow to determine the probability with which a packet from the flow is dropped;

and finally, (v) the PFB entry policy. These five entry policies can be categorized into two

groups: one including DFLQ, ST, and PFB, and the other including RED and FB-RED.

This is because both RED and FB-RED are intended to be congestion avoidance algo-

rithms, and therefore, assumed to work in situations where the shared buffer is never full

(packets are dropped before the buffer gets full). In our simulation studies, all parameters

of the RED algorithm follow the recommendations in [53].

Three exit policies are also implemented: (i)First-Come First-Served (FCFS), which

dequeues packets in the order of their arrival times; (ii)Longest Queue First (LQF), which

schedules packets from the flow with the longest queue in the shared buffer; and (iii)Deficit

Round-Robin (DRR)[8], a simple and popular fair round-robin scheduler. In our implemen-

tation, the DRR quantum is set to be equal to the maximum packet size. In the scheduling

of bandwidth over a link, both FCFS and LQF have an absolute fairness bound of infinity,

i.e., both are unfair given the max-min fair notion of fairness. DRR, on the other hand, is

52

Table 2.2: Exit policies evaluated.

Policy Description

FCFS Dequeues packets in the order of arrival.

LQF Schedules packets from the flow with the longest queue.

DRR A fair round-robin scheduler [8].

the representative fair algorithm used here.

2.6.3 Gateway Traffic Traces

In this study, we use real traffic recorded at Internet gateways as the input traffic [54]2.

Fig. 2.4 plots the observed maximum value ofnAFMS,q(t, t+τ) againstτ for different pairs

of entry and exit scheduling policies. Specifically, Fig. 2.4(a) plots the observed maximum

value ofnAFMS,q(t, t+τ) againstτ when the entry scheduling policy is RED and FB-RED,

while Fig. 2.4(b) plots the same for DFLQ, ST, and PFB entry policies. From Fig. 2.4(b) it

is seen that among all examined combinations of entry and exit policies, five have a fairness

measure approaching zero asτ increases. These five combinations that are able to provide

long-term fairness are ST with DRR, DFLQ with DRR and all three combinations with

PFB. To better illustrate the differences between these five combinations, a logarithmic

plot is also presented in Fig. 2.4(c).

From Fig. 2.4(b), it is readily observed that the combinations with DRR as the exit

scheduler are better in terms of fairness than those without. The fact that DRR is already

2The traces are obtained from the Passive Measurement and Analysis project at the National Laboratory
for Applied Network Research (NLANR).

53

(a)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ (in cycles)
m

ax
{n

A
F

M
S

,q
(t

,t+
τ)

}

RED + LQF
FB−RED + LQF
RED + FCFS
FB−RED + FCFS
RED + DRR
FB−RED + DRR

(b)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ (in cycles)

m
ax

{n
A

F
M

S
,q

(t
,t+

τ)
}

DFLQ + LQF
ST + LQF
PFB + LQF
DFLQ + FCFS
ST + FCFS
PFB + FCFS
DFLQ + DRR
ST + DRR
PFB + DRR

(c)

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

τ (in cycles)

m
ax

{n
A

F
M

S
,q

(t
,t+

τ)
}

PFB + LQF
PFB + FCFS
DFLQ + DRR
ST + DRR
PFB + DRR

Figure 2.4: Observed maximum (over allt) of nAFMS,q(t, t + τ) vs. τ , with input traffic
from a gateway trace: (a) the entry policy is RED or FB-RED, and the exit policy is LQF,
FCFS, or DRR; (b) the entry policy is DFLQ, ST, or PFB, and the exit policy is LQF, FCFS,
or DRR; (c) the logarithmic plot of several selected combinations.

54

fair with respect to bandwidth allocation on a link certainly helps in improving the overall

fairness achieved with DRR as exit policy. However, having DRR as the exit policy does

not by itself guarantee good fairness as is apparent in the case of RED and FB-RED. This is

explained as follows. With PFB, DFLQ, or ST as an entry policy, whenever a flow is active,

the shared buffer is guaranteed to contain packets belonging to this flow. Now, DRR serves

all backlogged flows in a fair manner, and the situation becomes a close approximation

to the case of scheduling bandwidth on a link. Therefore, DRR appears promising as an

exit scheduler when an entry scheduler such as PFB, DFLQ, or ST is used. If, however,

the entry scheduler is such that each active flow does not necessarily have packets waiting

in the shared buffer (such as in the case of RED and FB-RED), using DRR as the exit

scheduler is insufficient to guarantee good fairness, as shown exactly in Fig. 2.4(a). For

example, with RED or FB-RED, an active flow may frequently end up without any data

in the shared buffer when the size of the average queue length in the buffer is above the

maximum threshold and all arriving packets are dropped.

Note that, as shown in Fig 2.4(a), buffer allocation strategies with RED and FB-RED as

the entry policy fail to achieve fairness, while those with PFB succeed, shown in Fig 2.4(b)

and (c). One interesting observation is that, when PFB is used in combination with unfair

exit schedulers such as LQF and FCFS, the fairness achieved is actually very close to that

with DRR as the exit scheduler. FCFS and LQF have traditionally been understood to be

unfair policies, since under both policies bursty flows can easily end up being rewarded

at the expense of more steady flows. In the traditional scheduling of bandwidth over a

shared link, both FCFS and LQF are considered to have an absolute fairness bound of

infinity. However, this is strictly true only if the size of each burst that is accepted into the

shared buffer is unlimited. The PFB entry scheduling policy guarantees to accept balanced

amount of traffic from each flow into the shared buffer, thus leading to a similar level of

overall fairness independent of the fairness characteristics of the exit scheduler.

In addition, a study of Figs. 2.4(a) reveals that there is very little difference between

55

RED and FB-RED in terms of fairness achieved. This tends to be true independent of the

exit policy used. The RED algorithm was primarily proposed to avoid congestion in as fair

a manner as possible, and not as a buffer management strategy. The unfairness in buffer

management with the RED strategy arises since it does not distinguish between different

flows and all flows will lose some bandwidth when one flow dominates the queue. A fair

solution would have required that only the flow that is dominating the network resources

should lose bandwidth. The FB-RED algorithm refines RED in the sense that, to differen-

tiate between flows, it uses a per-flow quantity calledmaxProbability, which is determined

by the bandwidth-delay product. This modification, however, does not help fairness in

buffer allocation since the average queue length is still calculated for the aggregated set

of flows sharing the buffer. For example, consider the case when one flow experiences

a sudden burst and transmits a large amount of data, causing the average queue length

to increase. After the average queue length is larger thanmaxThreshold, every packet is

dropped, no matter which flow it belongs to. This continues until the average queue length

falls back within the range betweenminThresholdandmaxThreshold. Thus, the throughput

achieved by a flow with a small demand can be adversely affected by another flow.

In summary, a fair entry policy in combination with a highly unfair exit policy leads

to acceptable overall fairness; however, an unfair entry policy even with a fair exit policy

cannot guarantee overall fairness. This conclusion that emerges from our simulation study

is significant in that it stresses the importance of the entry policy as opposed to the exit

policy when buffer resources are constrained, even though the exit policy has received

almost all of the attention in the research literature.

2.6.4 Video Traffic Traces

Multimedia traffic is emerging as the dominant component of Internet traffic and such

traffic typically does not use end-to-end congestion control. Therefore, it is important to

56

(a)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ (in cycles)
m

ax
{n

A
F

M
S

,q
(t

,t+
τ)

}

RED + LQF
FB−RED + LQF
RED + FCFS
FB−RED + FCFS
RED + DRR
FB−RED + DRR

(b)

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ (in cycles)

m
ax

{n
A

F
M

S
,q

(t
,t+

τ)
}

DFLQ + LQF
ST + LQF
PFB + LQF
DFLQ + FCFS
ST + FCFS
PFB + FCFS
DFLQ + DRR
ST + DRR
PFB + DRR

(c)

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

τ (in cycles)

m
ax

{n
A

F
M

S
,q

(t
,t+

τ)
}

PFB + LQF
PFB + FCFS
DFLQ + DRR
ST + DRR
PFB + DRR

Figure 2.5: Observed maximum (over allt) of nAFMS,q(t, t + τ) vs. τ , with input traffic
from video traces: (a) the entry policy is RED or FB-RED, and the exit policy is LQF,
FCFS, or DRR; (b) the entry policy is DFLQ, ST, or PFB, and the exit policy is LQF,
FCFS, or DRR; (c) the logarithmic plot of several selected combinations.

57

understand the fairness achieved by the various combinations of allocation policies with

multimedia input traffic. We use video traces coded using MPEG-4 with high quality [55]3.

For each input, one distinct video stream is used, and the starting point within the video

stream is randomly selected.

The results obtained and the conclusions drawn with the video traces are similar to

those obtained with gateway traffic traces. Fig. 2.5 shows these results.

3The traces are collected from the Telecommunication Networks Group at Technical University of Berlin,
Germany. The eight video streams selected areJurassic Park I, Silence of the Lambs, Star Wars IV, Mr. Bean,
Star Trek, Die Hard III, Aladdin,andThe Firm. The categories covered are diverse, including drama, action
and animation.

58

Chapter 3. The Joint Allocation of Processing and Bandwidth Resources

3.1 Introduction

3.1.1 Background and Motivation

As discussed in Section 1.2, to define fairness in the allocation of a single resource, var-

ious formal notions of fairness [5,6,14–16,18] have been proposed in the literature. Based

on these notions of fairness—most commonly, based on the notion of max-min fairness—

much research over the last decade or two has focused on the allocation of the bandwidth

resource on a link [4–10].

The significance of considering the fair allocation of more than just the link bandwidth

is increasingly becoming apparent today, since the link bandwidth is often not the only criti-

cal resource. With the current pervasiveness of optical networking in the Internet backbone,

and with the occasional trend toward using over-provisioning as the solution to congestion

in the edge networks, a router’s processor is often also a critical resource to which, ideally

speaking, all competing flows should have fair access. If the network is not fair in allocat-

ing processing resources, denial of service attacks based on an excessive use of the router

processor (such as by using unnecessary optional headers) become possible.

Given the fact that processing requirements of different packets vary widely, the issue

of fairness in the allocation of the processing resources gains significance. In addition,

besides the fact that packet lengths can vary widely, the presence of optional headers and the

various kinds of control information carried by packets create a wide variation in the ratio

of a packet’s demand for bandwidth and its demand for processing cycles. Thus, packets

of the same length cannot be guaranteed to have similar requirements for the processing

resources on a router. In fact, the processing delay plotted as a function of the packet

length shows that the processing requirements of packets vary across a wide range even for

59

packets of the same length [56].

Thus, one cannot achieve overall fairness merely with the fair allocation of link band-

width alone, or merely through the fair allocation of the processing resources alone, since

different flows—and different packets within the same flow—may have very different de-

mands for these two kinds of resources. All of this begs the question that this chapter seeks

to address: how does one achieve fairness in thejoint allocation of the processing and

bandwidth resources?

The need for fairness in the joint allocation of multiple heterogeneous resources has

also been recognized in other contexts besides the one discussed here. For example, it has

been recognized that fair allocation of both the channel bandwidth and the power consumed

needs to be achieved simultaneously in mobile networks where power and bandwidth are

both critically important and scarce resources [24]. However, a rigorous theoretical frame-

work that may be universally employed as a guide in the design of practical algorithmic

strategies for the joint allocation of such heterogeneous sets of resources does not exist.

In this chapter, we investigate the issue of fairness in such systems and develop a general

principle that forms the foundation for the design of practical fair strategies for use in

routers. We also present an evaluation of the practical strategies proposed in this chapter

using both synthetic and real gateway traces.

3.1.2 Essential Resources

In the joint allocation of the processor and bandwidth resources, if a certain resource

is never the bottleneck, then the fair allocation strategy degenerates to the fair allocation

of just the other resource. For example, if the available bandwidth is large enough that no

flow experiences congestion due to lack of bandwidth alone, one only needs to worry about

the allocation of the processing resources. Fair allocation of a single bottleneck resource

has been studied extensively in the literature and has led to a large number of practical

60

algorithms that are in use today in Internet routers, operating systems, and transport-level

protocols. This chapter, on the other hand, answers the question of what is a fair allocation

when more than one resource is congested and extends the notions of fairness applied to a

single resource to systems with multiple heterogeneous resources.

We define anessentialresource as one for which a flow’s demand does not reduce with

an increase in the allocation of other resources to the flow. A number of resources such as

the link bandwidth, processor or power, in most contexts, are essential resources. On the

other hand, buffer resources in a network are often non-essential resources; for example, in

a system with a buffer and a link, a flow uses the buffer only if the link resource is currently

unavailable to it, and thus a flow’s demand for the buffer resource reduces as more of the

link bandwidth is allocated to it. In the system model used in this chapter, we assume that

the flows are in competition for resources that are all essential.

We define a pair of resources asrelatedto each other if a flow’s demand for one resource

uniquely determines its demand for the other resource. Resources in a set are said to be

related if each resource is related to every other resource in the set. Resources in real

scenarios are almost always related since the demands of a flow for different individual

resources are often related to each other. For example, since each packet is associated with

certain processing and bandwidth requirements, a specific increase in a flow’s demand for

link bandwidth is typically associated with a specific increase in its demand for processing

resources. A simpler example, involving multiple resources of the same kind, is a tandem

network with multiple links where the demand of a flow for bandwidth is the same on all

the links. In the system model used in this chapter, we assume multiple resources that

are related, although we make no assumptions on the specific nature of the relationship

between a flow’s demand for different resources. The existence of a relationship between

the demands of a flow for various resources calls for thejoint allocation of these resources,

as opposed to an independent and separate allocation of the resources.

61

3.1.3 Difference from Prioritized Resource Allocation

One may expect that the concepts of resource dividends and demands established in

Chapter 2 for allocation of multiple prioritized resources can be readily applied in systems

with multiple essential resources, and the fairness in such systems can be similarly defined.

Unfortunately, this is not the case. In systems with multiple prioritized resources as dis-

cussed in Chapter 2, the resources can be ordered based on the preference of competing

flows. In other words, the benefits different flows achieve by using the shared resources

can be readily determined and directly compared. Therefore, for each flow it is straightfor-

ward to compute the utility of an allocation policy, and to define the concepts of resource

dividends and demands. This feature, however, is no longer valid in systems with multiple

essential resources. For example, in a system with a shared processor and a shared link,

it is not straightforward to determine the benefit a flow receives by utilizing a portion of

processing and bandwidth resources. It is also not easy to compare the benefit of a flow

with a large amount of processing resource but a small amount of bandwidth resource, and

that of another flow with the a small amount of processing resource but a large amount of

bandwidth resource. Therefore, the premise in the framework for allocation of prioritized

resources cannot be directly used in the case of multiple essential resources.

On the other hand, the allocation of essential resources also gives rise to some ad-

vantages over the allocation of prioritized resources. Recall that, to define fairness in the

allocation of prioritized resources, we have to formally define the concept of stationary

intervals, during which the notion of fairness can be applied, due to the state of each flow

being active or inactive with respect to the resources. In systems with resources that are es-

sential and related, any given flow will be always active with respect to any given resource.

Otherwise the given flow will have no demand for the given resource, which implies that

this resource is either not essential to this flow or not related to other resources, or both.

Therefore, in this study, we do not need to worry about the validity of a time interval within

62

which the fairness principle can be applied.

3.1.4 Contributions

The primary contribution of this chapter is a theoretical framework based on which

one can define fairness in the joint allocation of multiple heterogeneous resources that are

essential and related. Similar to the framework in the joint allocation of multiple priori-

tized resources presented in Chapter 2, we make no assumptions on the notion of fairness;

in fact, this framework may also be applied to any of several notions of fairness such as

max-min fairness, proportional fairness or utility max-min. Through illustrative examples,

we claim that, at each instant of time, it is the maximum of a flow’s normalized demand

for the various resources that should count in the decisions made by a fair resource allo-

cation algorithm. We then develop the fundamental principles of fairness for systems with

multiple essential and related heterogeneous resources and propose thePrinciple of Fair

Essential Resource Allocationor theFERA principle, expressed within a rigorous theoreti-

cal framework. We also prove that, under certain conditions, there exists a unique, fair, and

work-conserving resource allocation policy which satisfies the FERA principle.

Given the FERA principle, we proceed to apply it to a system with a shared processor

and a shared link, using max-min fairness as the notion of fairness. We propose an ideally

fair policy, called theFluid-flow Processor and Link Sharing (FPLS)algorithm, for the

joint allocation of processing and bandwidth resources. We then develop a practical and

provably fair packet-by-packet approximation of the FPLS algorithm, calledPacket-by-

packet Processor and Link Sharing (PPLS). The PPLS algorithm, based on an extension

of the Deficit Round Robin algorithm [8], has a per-packet work complexity ofO(1). We

illustrate the fairness of the PPLS algorithm using both synthetic traffic and real gateway

traffic traces.

Even though this chapter primarily focuses on the joint allocation of the processing and

63

bandwidth resources, the FERA principle may be readily applied to a variety of contexts

beyond those discussed in this chapter.

3.1.5 Organization

The rest of this chapter is organized as follows. Section 3.2 describes the general sys-

tem model with multiple shared resources considered in this study, along with our notation.

Section 3.3 presents the Principle of Fair Essential Resource Allocation, or the FERA prin-

ciple, for the system model under consideration. Section 3.4 applies the FERA principle

to a system with a shared processor and a shared link, and proposes a practical and fair

scheduling algorithm for the joint allocation of the processing and bandwidth resources,

called the Packet-by-packet Processor and Link Sharing (PPLS) policy. The fairness prop-

erties of the PPLS strategy are demonstrated by simulation experiments using real gateway

traffic in Section 3.5. Finally, Section 3.6 concludes the chapter with further discussions on

implementation issues of the PPLS algorithm.

3.2 System Model

In our system model, a set ofN flows,1 ≤ i ≤ N , compete for a set ofK related and

essential resources,1 ≤ j ≤ K, as shown in Fig. 3.1. As also described in Section 3.1.2,

we define an essential resource as one for which a flow’s demand does not reduce with an

increase in the allocation of other resources to it. Since a buffer is often not an essential

resource, our assumption that flows only compete for essential resources implies that if

there are buffers in the network shared by the flows, these buffers are of infinite capacity

so that the flows never compete for the buffer resource. In developing our fundamental

principles of fairness, we make no assumptions on the specific actions of the scheduler or

the specific order in which the packets use theK resources.

Note that in this general model, we also make no assumptions on the internal architec-

64

Flow N

R1 RK
R2

Flow 2

Flow 1

Figure 3.1: A general system model.

ture of the set of shared resources. It can be a simple sequence of resources such as in a

tandem network with multiple links, a parallel structure such as the resources of electric

power and bandwidth in a wireless sensor network, or a more complex hybrid.

Denote byRj the peak rate at which resourcej may be consumed. For example, in

the case of a link resourceL, RL is the peak bandwidth available on the link. As before,

denote bywi the weight of flowi. Let di,j be the consumption rate demanded by flowi for

the shared resourcej. Our assumption of related resources implies that, givendi,k, one can

determinedi,j for all j 6= k. Denote byaq
i,j, the consumption rate of the shared resourcej

allocated to flowi under the allocation policyq.

3.3 The Principle of Fair Essential Resource Allocation

3.3.1 Notion of Fairness

As mentioned in Section 1.2.4, the normalized notion of fairness as in (1.5) is used

in this chapter, unlike in Chapter 2 where (1.4) is used as the notion of fairness. This is

because in a system with multiple essential resources, for each flow, the demands for dif-

ferent resources are typically in different dimensions, and so be the allocations. Therefore,

normalization of the demands and allocations is needed in the notion of fairness used. In

addition, in the presence of multiple essential resources, it is not straightforward to com-

pute a unique resource dividend for each flow, based on which the benefits achieved by

different flows can be readily compared, as in the case of prioritized resources shown in

Chapter 2.

65

Note that, in the research literature, notions of fairness have not been defined for multi-

ple heterogeneous resources4. We use the notation in (1.5) that specifies a notion of fairness

for a single resource and extend the notion to multiple heterogeneous resources in subse-

quent sections.

3.3.2 The Concept of the Prime Resource

As mentioned above, the normalization of the demands and the allocations is needed in

this study. Therefore, we begin with a few preliminary definitions.

Definition 7 Define the normalized demand of flowi for resourcej, d̃i,j, as follows:

d̃i,j =
di,j

Rj

.

Define thelargest normalized demandof flow i,Di, as the maximum amongst the normal-

ized demands of flowi for all resources. That is,

Di = max
j

d̃i,j.

Definition 8 Defineãq
i,j as the normalized allocation of resourcej to flow i under alloca-

tion policy q, i.e.,

ãq
i,j =

aq
i,j

Rj

.

Definition 9 The largest normalized allocationof a flow i under allocation policyq,

denoted byAq
i , is defined as the maximum amongst the normalized allocations to flowi of

all resources. That is,

Aq
i = max

j
ãq

i,j.

4Some notions of fairness such as max-min fairness and proportional fairness can be defined for multiple
resources of the same kind (e.g., a network of links), under the assumption that, if a flow receives allocations
of several resources, the allocations it receives of these resources are identical [14, 18]. However, it is not
straightforward to extend these notions of fairness to systems with multiple heterogeneous resources. On the
other hand, it can be readily verified that our framework is the same as these notions of fairness if the shared
resources are of the same kind.

66

Definition 10 Under an allocation policyq, a resource is said to be aprime resourceof

flow i, denoted byBq
i , if and only if, the normalized allocation of this resource to flowi is

its largest normalized allocation. In other words,

Bq
i = arg max

j
ãq

i,j = arg max
j

aq
i,j

Rj

wherearg maxx f(x) indicates the value of the argumentx corresponding to the maximum

value of functionf(x). In other words, we have

ãq
i,Bq

i
= max

j
ãq

i,j = Aq
i .

In networking terminology, a bottleneck resource is one that is the most congested

resource. It is critical to note that neither the resource for which a flow has the largest

normalized demand nor its prime resource under an allocation policy is necessarily the

same as the bottleneck resource in the system. In addition, a flow may have more than one

prime resource. The prime resource is defined based on the actual allocations and not on

the demand of the flows for the resources.

Note that for each flow, the extent to which the demand for resource share gets satisfied

can be used as an indication of the extent to which the overall demand of this flow gets

satisfied. In addition, the largest normalized allocation of a flow in fact represents the

extent to which the demand of this flow for resource share gets satisfied. Therefore, we

claim that the fairness of an allocation policyq is determined by the largest normalized

demands, the prime resources under this policy, and the associated normalized allocations,

which is further explored in the following.

3.3.3 The FERA Principle

We introduce our principle with a few illustrative examples shown in Table 3.1. In these

examples, two flows with equal weights, labeled as 1 and 2, share two different resources:

a processorP for packet processing, and a linkL. The system model in these examples

67

Table 3.1: Examples illustrating what is a fair allocation in a system with a shared processor
P and a shared linkL. In all of these examples, the total amounts of the shared resources
are, respectively, 100 MHz forP and 100 Mbps forL.

Flow Demand Allocation

ID P (MHz) L (Mbps) P (MHz) L (Mbps)

1 75 25 75 25
A

2 25 75 25 75

1 225 75 75 25
B

2 50 150 25 75

1 100 20 50 10
C

2 100 10 50 5

is the same as the one we will discuss later in Fig. 3.2. The peak processing rate is 100

million processor cycles per second, i.e., 100 MHz, and the peak link rate is 100 Mbps. Let

us assume linear utility functions and max-min as the notion of fairness. In addition, for the

sake of convenience, we also assume in these examples a proportional relationship between

a flow’s demands for these resources and therefore, a proportional relationship between the

allocations. In other words, the ratio of a flow’s demand for one resource and its demand

for another resource is always a constant.

In example A, assume that packets in flow 1 are all small, and therefore, its demand

for bandwidth is small relative to its demand for processing time. In contrast, assume that

packets in flow 2 are large, and therefore, its demand for bandwidth is large relative to its

demand for processing time. To better illustrate the concept, we exaggerate the difference

between their demands as follows: Flow 1 has a demand of 75 MHz for processing time and

25 Mbps for bandwidth, while flow 2’s demands are, respectively, 25 MHz and 75 Mbps.

68

If a work-conserving allocation policy is used, there is enough of both resources to satisfy

the demands of both the flows and so the allocations are exactly the same as the demands

for each of the resources. Note that for flow 1, the prime resource isP , while for flow 2, it

is L.

Next, consider what happens when both flows proportionally increase their demands for

both resources. In example B, in comparison to example A, flow 1 increases its demands

by a factor of three while flow 2 doubles its demands. Specifically, the demands for flow 1

become 225 MHz forP and 75 Mbps forL, while those for flow 2 become 50 MHz and

150 Mbps, respectively. A fundamental principle behind the max-min notion of fairness

is that, given no additional resources, a flow should not be able to increase its allocation

by merely demanding more. Thus, the fair allocation should be as shown in example B.

Again, the prime resource for either flow remains the same as in the previous example.

We discuss example B further. Obviously, in this case, neither flow is satisfied by the

allocated resources. Is the allocation actually fair?

One might argue that both flows should get equal bandwidth from a fair allocation, since

ultimately both flows will depart from this system and the processor is only an intermediate

resource before the flow’s packets reach the link resource. Denote byx the bandwidth rate

allocated to each flow, in units of Mbps. Since the resourcesP andL are related for these

flows, we know that the allocations of the processor resource are3x for flow 1, andx/3 for

flow 2, both in units of MHz. Note that the allocations have to be feasible, and therefore,

we can compute the allocations as follows:




3x + x/3 ≤ 100

2x ≤ 100.

It can be readily verified that, under a work-conserving allocation policy, flow 1 gets

90 MHz of processing time and flow 2 gets only 10 MHz, while both flows get 30 Mbps of

bandwidth. While this allocation underutilizes the link resources, that is not an argument

against its fairness. The unfairness arises from the fact that it unnecessarily favors the flow

69

whose prime resource is the “intermediate resource”, which turns out to be flow 1 in this

case. Another argument against this notion is that, even though it is true that the processor

in this case is positioned ahead of the link, it does not necessarily mean that the process-

ing resource becomes less important, or less preferred, as compared to the link, which is

positioned as the “final” resource.

Another allocation philosophy may be to allocate resources based on a fair allocation

of the most congested resource as measured by the sum of the normalized demands for

the resource. In this example, the processing resourceP is the most congested resource.

Denote byy as the processing resources allocated to either flow, in units of MHz. Again,

to make the allocation feasible, one may allocate resourceP fairly as follows:




2y ≤ 100

y/3 + 3y ≤ 100.

Under a work-conserving allocation policy, flow 2 gets 90 Mbps of bandwidth and flow 1

gets only 10 Mbps, while both flows get 30 MHz of processing resources. Note that this

allocation philosophy has a similar weakness as the one based on the fair allocation of the

link resource. It unnecessarily favors the flow whose largest normalized demand is not

for the most congested resource. A flow can trigger a change in the allocation policy by

merely increasing its demand for a given resource, while that would actually be against the

max-min notion of fairness.

Note that the previous analysis also implies that the fairness in the allocation of both

processing and bandwidth resources should not be defined in terms of the fairness in the al-

location of any single resource. This is because both resources are essential, and therefore,

no resource should be treated as if it is more important than the other.

One may suggest the following slight modification to the allocation strategy: to fairly

allocate the most congested resource as measured by the sum of the normalizedallocations

for the resource. However, it can be shown that such an allocation may not exist. Assume

a certain resourcer is the most congested resource. Letα denote the flow with the smaller

70

demand for resourcer and letβ denote the other flow. Assume that the normalized alloca-

tions of resourcer arezα andzβ for the two flows. It can be verified that the normalized

allocations of the other resource are3zα andzβ/3, independent of whether the resourcer

is the processing resourceP or the bandwidth resourceL. Since resourcer is the most

congested resource as measured by the sum of the normalized allocations, we have

3zα + zβ/3 ≤ zα + zβ

which leads to3zα ≤ zβ. Since both flows have a high demand, under the max-min notion,

this condition cannot lead to a fair allocation except for the trivial case wherezα = zβ = 0.

Thus, it may not be possible to achieve a fair allocation of the most congested resource as

measured by the sum of the normalized allocations of the resource.

Based on the discussions above, we claim that in a network where no explicit preference

of one resource over another exists (i.e., each resource is essential), fairness should not be

defined based only on a single resource, no matter how this single resource is determined

and whether it is determined before allocation (i.e., based on demand) or after allocation

(i.e., based on allocation). Instead, the fairness in such a system should be defined with

overall consideration of various resources involved in the system and the relationships be-

tween the demands for the various resources.

Given this observation, one may propose yet another scheme to define fairness: the sum

of the normalized allocations of the resources computed for each flow should be max-min

fair. In the previous example B, this leads to an allocation of 75 MHz of processing time

and 25 Mbps of bandwidth for flow 1, and 25 MHz of processing time and 75 Mbps of

bandwidth for flow 2. In this case, for both flows, the sum of the normalized allocations of

the two resources is75/100 + 25/100 = 1. While this appears to be a reasonable strategy

for fair allocation, this scheme of fairness cannot, in fact, be extended to other situations.

This is illustrated by example C described below.

Assume that both flows have a demand of 100 MHz for resourceP , while the demands

71

for resourceL are 20 Mbps and 10 Mbps for flows 1 and 2, respectively. Note that in this

example, there is sufficient link bandwidth available for the demands of both flows, i.e., the

flows are not in competition for resourceL. In other words, the system regresses into an

allocation of a single resourceP . Applying the max-min notion of fairness on the single

resourceP , we know that the fair allocation would be 50 MHz of processing time for each

flow, leading to 10 Mbps and 5 Mbps of bandwidth for flows 1 and 2, respectively. Thus,

the ideally fair allocation leads to 0.6 and 0.55 as the sum of the normalized allocations.

Clearly, if we were to be max-min fair in the sum of the normalized allocations of the

resources to each flow, we would not get this result. This illustrates that the strategy of

achieving max-min fair distribution in the sum of the normalized allocations fails to serve

as the basis to define fairness in the allocation of multiple resources.

The fair allocation strategies in the three examples do have one property in common:

the largest normalized allocations of the flows are distributed in a max-min fair manner

among the flows. In our case with equal weights for the flows, the largest normalized

allocations are equal for the two flows. In the first two examples in Table 3.1, resourceP

is the prime resource for flow 1, while the prime resource for flow 2 is resourceL. In both

examples, the largest normalized allocation equals 0.9. In the third example, the processor

P is the prime resource for both flows, and this time the largest normalized allocation is

0.5 for both flows.

The observations from the above examples lead to the significance of incorporating

the largest normalized allocation for each flow into a strategy for extending a notion of

fairness to the allocation of multiple resources. In our examples, the fair allocation policy

is to simply equalize the largest normalized allocations for different flows. In more general

situations, different notions of fairness may be used and flows may have different weights

and different largest normalized demands. We now present thePrinciple of Fair Essential

Resource Allocationor theFERA principle.

72

Principle 2 Principle of Fair Essential Resource Allocation.In a system with multiple

related and essential resources, an allocation policyq is said to be fair as per the notion of

fairnessF , if and only if, the largest normalized allocations are distributed fairly, as per

the notion of fairnessF , with respect to the largest normalized demands. In other words,

allocation policyq is fair as perF if and only if,

[Aq
i] = F (C, [Di], [wi])

whereC is some constraint imposed on the system.

3.3.4 Fair Work-Conserving Allocation Policy

Recall that we make no assumption on whether or not the allocation policy is work-

conserving, and under different constraints, a single system can have more than one fair

allocation policy as per the same normalized notion of fairness. Given a constraint, how-

ever, there exists a unique work-conserving fair allocation policy in most situations, as will

be proved in this section.

First, we formally define a work-conserving policy in the allocation of multiple re-

sources. Recall that in allocation of a single resource, an allocation policy is work-conserving

if and only if one of the following two situations occurs.

1. All flows’ demands are satisfied.

2. The shared resource is completely allocated.

In other words, no more of the resource can be further allocated to the flows. The same idea

to allocation of multiple resources, except that now it is possible that only one resource is

fully utilized.

Definition 11 In the allocation of multiple resources, an allocation policy is said to be

work-conserving, if and only if, upon completion of the allocation, no more of any re-

73

source can be further allocated to a flow without also reducing the amount of some resource

allocated to another flow.

Next we introduce two general classes of fairness notions which describe the conditions

under which the uniqueness of the fair work-conserving allocation policy will hold.

Definition 12 A notion of fairnessF is said to beuniquely deterministic, if and only if,

given the constraintC, the normalized demand vector[d̃i] and the weight vector[wi], the

normalized allocation vector[ãi] as given in (1.5) can be uniquely determined.

Definition 13 A notion of fairnessF is said to benon-decreasing, if and only if, given

the normalized demand vector[d̃i] and the weight vector[wi], the normalized allocation[ãi]

is such that, for any two different constraintsC1 andC2, one of the following holds true:

F
(
C1, [d̃i], [wi]

)
≺ F

(
C2, [d̃i], [wi]

)

F
(
C2, [d̃i], [wi]

)
≺ F

(
C1, [d̃i], [wi]

)
.

Here≺ is a relational operator between two vectors of identical dimensions, and[ui] ≺ [vi]

implies∀i, ui ≤ vi. This definition of non-decreasing fairness notion can be also expressed

as follows: when allocating a single resource under a non-decreasing fairness notion, no

flow will get a lesser amount of the resource if the total amount of the shared resource

increases.

These classes of fairness notions are actually very broad; it may be readily verified

that many popular notions of fairness are both non-decreasing and uniquely deterministic.

These include max-min fairness [5, 6, 15], proportional fairness [57], and utility max-min

fairness [16] if the utility functions are non-decreasing.

Lemma 1 In a system with multiple essential and related resources, the normalized allo-

cations received by a flowi are identical under two allocation policiesq ands if Aq
i = As

i .

74

Proof: Let Bq
i andBs

i be one of the prime resources of flowi under policiesq ands,

respectively. We have

ãq
i,Bs

i
≤ ãq

i,Bq
i

ãs
i,Bq

i
≤ ãs

i,Bs
i
.

In addition, we havẽaq
i,Bq

i
= ãs

i,Bs
i

sinceAq
i = As

i . Therefore,̃aq
i,Bs

i
≤ ãs

i,Bs
i

which means

flow i receives less allocation of resourceBs
i under policyq than under policys. Also,

since the resources are essential, flowi receives no more allocation of any other resource

includingBq
i under policyq than under policys, i.e.,

ãs
i,Bq

i
≥ ãq

i,Bq
i

= ãs
i,Bs

i
= As

i .

This meansBq
i is also one of the prime resources of flowi under policys. It may be simi-

larly deduced thatBs
i is one of the prime resources of flowi under policyq. In summary,

if Aq
i = As

i , the sets of prime resources of flowi are identical under policiesq ands, and

the allocations of these prime resources to flowi are also identical under policiesq ands.

Since the resources are related, flowi receives identical allocations of all resources from

both policiesq ands.

Theorem 3 If the applied notion of fairness is both non-decreasing and uniquely de-

terministic, there exists a unique fair work-conserving allocation policy that satisfies the

FERA principle as stated in Section 3.3.3.

Proof: We will prove this theorem by contradiction.

Assume that in the considered system, when applying the FERA principle, two different

policies q and s are both fair work-conserving allocation policies corresponding to the

notion of fairnessF . Denote the constraints corresponding to these two allocation policies

by Cq andCs, respectively.

Note that for these two allocation policiesq ands, the vectors of the largest normalized

allocations, i.e.,[Aq
i] and [As

i], cannot be equal. This is because if that is the case, from

75

Lemma 1, the allocated amount of each resource for each flow will be the same under

policiesq ands, and policiesq ands will be identical.

Since the system under consideration remains the same, we know that both the vector

of the largest normalized demands[Di] and the vector of the flow weights[wi] are the same.

From the definition of a uniquely deterministic notion of fairness, we know thatCq 6= Cs

since, otherwise, the two vectors of largest normalized allocations,[Aq
i] and[As

i], will be

equal.

Since the notion of fairnessF is non-decreasing, from the definition, we have either

[Aq
i] ≺ [As

i] or [As
i] ≺ [Aq

i]. Without loss of generality, we assume that[Aq
i] ≺ [As

i], i.e.,

Aq
i ≤ As

i ,∀i. (3.1)

Therefore, for all flows, the allocated amount of each resource under policyq is no more

than that under policys, since the resources are related and essential.

In addition, there must exist at least one flow, for which (3.1) is not an equality. In other

words, there exists at least one flow, which gets more resources under policys than under

policy q.

Hence, under policys, as opposed to policyq, no flow gets less allocation for any

resource, and at least one flow is allocated more of some resources. This violates the

assumption that policyq is work-conserving and completes the proof.

3.4 Fair Joint Allocation of Processing and Bandwidth Resources

In this section, we apply the framework established in the previous section into an

important context of special interest: the fair joint allocation of a shared processorP and a

shared linkL under the max-min notion of fairness and linear utility functions.

76

Scheduler P L

Flow N

Flow 2

Flow 1

Figure 3.2: The system model with a shared processorP and a shared linkL.

3.4.1 System Model

In this system model, a set ofN flows share a processorP and a linkL, as shown in

Fig. 3.2. Packets from each flow are processed by processorP first and then transmitted

onto the output linkL. Denote byRL the peak bandwidth rate of linkL and byRP the

peak processing rate of processorP . Packets of each flow await processing by the processor

in an input buffer of infinite capacity, and then upon completion of the processing, await

transmission on the output link in another buffer of infinite capacity. The joint allocation of

the processing and bandwidth resources is accomplished by the scheduler which acts on the

packets in the input buffers and appropriately orders them for processing by the processor.

No scheduling action takes place after the processing; processed packets are received in the

buffer between the processor and the link and are transmitted in a first-come-first-served

fashion.

Denote bywi the weight of flowi, 1 ≤ i ≤ N , indicating the flow’s relative rightful

share of the resources.

3.4.2 Fluid-flow Processor and Link Sharing

Denote byS the system illustrated in Fig. 3.2. We first consider fluid-flow traffic

through systemS, and describe an ideally fair allocation strategy called theFluid-flow

Processor and Link Sharing (FPLS)algorithm. FPLS is intended to serve the same pur-

pose for systemS as that served by GPS for a system with just a single shared link or a

77

single shared processor [6,15].

In GPS, it is assumed that traffic from each flow can be divided into infinitesimally

small chunks, and each chunk has its demand for access to the linkL depending on the size

of the chunk. The GPS scheduler visits each active flow’s queue in a round-robin fashion,

and serves an infinitesimally small amount of data from each queue in such a way that

during any infinitesimal interval of time, it can visit each queue at least once. In our study,

this assumption is still valid, and we further assume that each infinitesimal chunk also has

its demand for the processing time on the shared processorP .

At each time instantτ , the prime resource for each flow, according to Definition 10, can

be determined based on its instantaneous demands for processing time and bandwidth. In

addition, we assume that during each infinitesimal interval of time,[τ, τ + ∆τ), the prime

resource for each flow does not change.

Note that in GPS, it is guaranteed that during each infinitesimal interval of time, the

chunks of each flow are scheduled in such a way that, for each flow, the total demand for

bandwidth corresponding to the chunks of the flow scheduled in this period is proportional

to the weight of the flow. Extending GPS to our case leads to the following: Under the

ideally fair allocation policy for systemS, it is guaranteed that, during each infinitesimal

interval of time, the chunks of each flow are scheduled in such a way that, for each flow,

the totalnormalizeddemand for itsprime resourcecorresponding to the chunks of the flow

scheduled in this period is proportional to the weight of the flow. We refer to this asFluid-

flow Processor and Link Sharing (FPLS). It can be readily verified that the FPLS strategy

meets the FERA principle described in Section 3.3.3.

3.4.3 Packet-by-packet Processor and Link Sharing

It is apparent that FPLS is an ideally fair but unimplementable policy, in the same sense

as GPS. In reality, network traffic is always packetized, and therefore, we next present

78

a practical approximation of FPLS, calledPacket-by-packet Processor and Link Sharing

(PPLS). The PPLS algorithm extends one of the most practical and simple scheduling

strategies, Deficit Round Robin (DRR) [8], used in the allocation of bandwidth on a link.

Please refer to Section 1.3.6 for a brief description of DRR. The pseudo-code of PPLS is

shown in Fig. 3.3.

The PPLS algorithm approximates the ideal FPLS in a very similar fashion as DRR

achieves an approximation of GPS. The PPLS scheduler maintains a linear list of the back-

logged flows,FlowList. When the scheduler is initialized,FlowList is set to an empty list

(line 2). For each flow, two variables, instead of one as in DRR, are maintained in the

PPLS algorithm: aprocessor deficit counter (PDC)and alink deficit counter (LDC). The

link deficit counter is exactly the same as the deficit counter in DRR, which represents the

deviation of the bandwidth received by the flow from its ideally fair share. The processor

deficit counter, on the other hand, represents the deviation of the processing time allocated

to the flow from its ideally fair share. Thus, each flow in PPLS is assigned two quantum

values, aprocessor quantum (PQ)and alink quantum (LQ).

When a new packet arrives, theEnqueueprocedure is invoked (lines 3-10). If this

packet comes from a new flow, theEnqueueprocedure appends this flow to the end of the

FlowList (line 7) and initializes both of its deficit counters to 0 (lines 8-9).

The Dequeueprocedure (lines 11-38) functions as follows. It serves all flows in the

FlowList in a round-robin fashion. When the scheduler visits flowi, it first increments

each of the two deficit counters of this flow by the value of the corresponding quantum

(lines 16-17). It then verifies whether or not these two deficit counters exceed their upper

bounds respectively, and if they do, it resets them to the maximum possible values (lines

18-23). The rationale behind this bounding process will be discussed later in detail. After

the deficit counters of flowi are updated, a sequence of packets from flowi are scheduled as

long as the total length of these packets is smaller than the link deficit counter, and the total

processing cost is smaller than the processing deficit counter, as in thewhile loop in lines

79

1 Initialize:
2 FlowList← NULL;

3 Enqueue:/* Invoked whenever a packet arrives */
4 p ← ArrivingPacket;
5 i ← Flow(p); /* Flow of packetp */
6 if (ExistsInFlowList(i) = FALSE) then
7 Append flowi to FlowList;
8 PDCi ← 0;
9 LDCi ← 0;
10 end if;

11 Dequeue:/* Always running */
12 while (TRUE) do
13 if (FlowList 6= NULL) then
14 i ← HeadOfFlowList;
15 Removei from FlowList;
16 PDCi ← PDCi + PQi;
17 LDCi ← LDCi + LQi;
18 if (PDCi > maxPDCi) then
19 PDCi ← maxPDCi;
20 end if;
21 if (LDCi > maxLDCi) then
22 LDCi ← maxLDCi;
23 end if;
24 while (QueueIsEmpty(i) = FALSE) do
25 p ← HeadOfLinePacketInQueue(i);
26 if (Size(p) > LDCi OR
27 ProcessingCost(p) > PDCi) then
28 break; /* escape from the inner while loop */
29 end if;
30 PDCi ← PDCi− ProcessingCost(p);
31 LDCi ← LDCi− Size(p);
32 Schedulep;
33 end while;
34 if (QueueIsEmpty(i) = FALSE) then
35 Append queuei to FlowList;
36 end if;
37 end if;
38 end while;

Figure 3.3: Pseudo-code of the Packet-by-packet Processor and Link Sharing (PPLS) algo-
rithm.

80

24-33. In the meantime, when a packet is scheduled, both deficit counters are decremented

by the corresponding cost of this packet (lines 30-31). Finally, when the scheduler finishes

serving a flow and the flow still remains backlogged, the scheduler places the flow back at

the end of theFlowList (lines 34-36).

Recall that in DRR, for each flow, the quantum is set to be proportional to its weight,

therefore, each flow receives in each round, on average, a service with total amount propor-

tional to its weight. In this chapter, the sum of a certain quantity overall flows is denoted

by dropping the subscript for the flow in the notation. For example,w is the sum of the

weights for all flows, i.e.,w =
∑

i wi. Therefore, in DRR we have

Qi

wi

=
Q

w
,∀i.

Similarly, in PPLS, the quantum values of each flow are also proportional to its weight, i.e.,

∀i,

PQi

wi

=
PQ

w
(3.2)

LQi

wi

=
LQ

w
. (3.3)

Thus the amount of the shared resources each flow is entitled to utilize in each round is

guaranteed to be, on average, proportional to its weight. In addition, the ratio of the sum

of processing quanta for all flows,PQ, to the sum of link quanta for all flows,LQ, should

also be equal to the ratio of the total amount of processing resource to the total amount of

link resource in each round, i.e.,
PQ

LQ
=

RP

RL

. (3.4)

From (3.2), (3.3) and (3.4), it is apparent that,

PQi

LQi

=
RP

RL

. (3.5)

In other words, for each flow, the quantum value corresponding to a resource is proportional

to the total amount of that resource.

81

Note that in PPLS, it is possible that the prime resource for flowi remains the same

for a long period, and therefore, without the bounding procedure in lines 18-21, the deficit

counter for the non-prime resource would reach a large value. For example, consider a

case in which the prime resource for flowi has been the processing resourceP for a long

time and, as a result, the link deficit counterLDCi is very large. Assume that at this point,

the prime resource for flowi switches to the link resourceL and, in addition, flowi now

consumes almost no processing resource. In such a situation, flowi will be able to have

a long sequence of packets scheduled because of its large link deficit counterLDCi. This

would significantly degrade the short-term fairness of the PPLS scheduler. For this reason,

we choose to set a maximum threshold on the deficit counter for each resource, in case

any specific resource has not been fully utilized for a long time. In cases where short-term

fairness is not important, these thresholds may simply be set to infinity. A similar rationale

may also be found in the context of fair scheduling in wireless networks where a maximum

lag is applied when a flow has not fully utilized its share of the bandwidth [58].

It can be readily verified that if the processor resourceP is sufficient for all flows, i.e.,

the processor resourceP never becomes the prime resource for any flow, the PPLS strategy

regresses into the DRR policy. It can also be readily verified that, like DRR, the per-packet

computing complexity of the PPLS algorithm isO(1), under the following conditions.

Theorem 4 The per-packet computing complexity of the PPLS algorithm isO(1), if for

each flowi, 



LQi ≥ ML

PQi ≥ MP

whereML andMP are the maximum packet size and the maximum packet processing cost,

respectively.

Proof: The proof of this work complexity is simple and similar to that for DRR [8].

Note that when the PPLS scheduler visits a flowi, it first increments each of the two

deficit counters of flowi by the value of the corresponding quantum (lines 16–17). There-

82

fore, it is guaranteed that when flowi gets served, its precessor deficit counterPDCi is no

less than its processor quantumPQi, and

PDCi ≥ PQi ≥ MP ≥ ProcessingCost(p)

wherep is the first packet of flowi at this moment. Similarly the link deficit counterLDCi

is no less than the maximum packet sizeML, and

LDCi ≥ LQi ≥ ML ≥ Size(p).

Therefore, PPLS guarantees to transmit at least the first packetp of flow i. In addition, to

transmit each packet, PPLS only updates the deficit counters and checks the resource costs

of the packet. The execution time of all these tasks isO(1), and therefore, PPLS has a

per-packet work complexity ofO(1).

3.4.4 Fairness Analysis of PPLS

Our fairness analysis of PPLS is an extension of that in [8], and considers only the time

intervals where all flows are backlogged.

Thecumulative processor allocationof flow i during time interval(t1, t2), denoted by

CPAi(t1, t2), is defined as the total amount of the processing resource allocated to flow

i during interval(t1, t2), i.e., the sum of the processing costs associated with the packets

scheduled during(t1, t2). Thenormalized cumulative processor allocation, nCPAi(t1, t2),

is defined as the cumulative processor allocationCPAi(t1, t2) normalized by the peak pro-

cessing rateRP , i.e.,

nCPAi(t1, t2) =
CPAi(t1, t2)

RP

.

The cumulative link allocationand thenormalized cumulative link allocationof flow i

during time interval(t1, t2), denoted byCLAi(t1, t2) andnCLAi(t1, t2) respectively, are

similarly defined, except that the resource considered is the link bandwidth.

83

Note that both the normalized cumulative link allocation and the normalized cumulative

processor allocation are in units of time. Therefore, we are able to proceed to define the

normalized cumulative resource allocationof flow i during time interval(t1, t2), denoted

by nCRAi(t1, t2), as the larger of the normalized cumulative processor and link allocations

of flow i during(t1, t2). In other words,

nCRAi(t1, t2) = max{nCPAi(t1, t2), nCLAi(t1, t2)}.

Now we can extend the definition of the fairness measure [7] as follows:

Definition 14 Thenormalized fairness measurenFM(t1, t2) is defined as the maximum

value, amongst all pairs of flows(i, j) that are backlogged during time interval(t1, t2), of

the normalized cumulative resource allocationnCRAi(t1, t2). That is,

nFM(t1, t2) = max
∀(i,j)

∣∣∣∣∣
nCRAi(t1, t2)

wi

− nCRAj(t1, t2)

wj

∣∣∣∣∣ .

The normalized fairness boundnFB is defined as the maximum value of the normalized

fairness measurenFM(t1, t2) over all possible intervals(t1, t2).

Analogous to the case of a single shared resource, if a scheduling algorithm for the

joint allocation of processing and bandwidth resources leads to a finite normalized fairness

bound, one can conclude that this algorithm approximates the ideally fair allocation and

achieves long-term fairness. The following theorem states this about the PPLS algorithm.

Theorem 5 The normalized fairness bound of PPLS is a finite constant.

Proof: Without loss of generality, we assume that the flow weights are normalized in

such a way that the smallest of the weights assigned to a flow is 1.

In the rest of this proof, we will consider the situations where lines 19 and 22 in Fig. 3.3

are never executed, i.e., the deficit counters of any flow are never above the thresholds. The

reason of this assumption is similar to the one used in the design of IWFQ, where fairness

in bandwidth cannot be guaranteed if any flow lags more than the maximum lag allowed

by the wireless packet scheduler [59].

84

Lemma 2 Let

maxPDC = max
∀i

maxPDCi

maxLDC = max
∀i

maxLDCi

and denote byMP andML, respectively, the maximum processing cost of a packet and the

maximum link cost of a packet. In an execution of the PPLS strategy, at the end of each

roundk, for any flowi,

1. The following two statements are always satisfied:

0 ≤ PDCi(k) ≤ maxPDC

0 ≤ LDCi(k) ≤ maxLDC;

2. At least one of the following statements is always satisfied:

0 ≤ PDCi(k) ≤ MP

0 ≤ LDCi(k) ≤ ML.

Proof: First it can be readily verified that the deficit counters can never be negative.

The first half of Lemma 2 can be directly derived from the assumption that lines 19 and 22

are never executed.

Next we prove the second half of Lemma 2 by contradiction. Assume that both state-

ments are not true, then we havePDCi(k) > MP andLDCi(k) > ML. Note that at

this moment, flowi still has packets in the queue waiting to be scheduled. Otherwise both

deficit counters of flowi should be reset to 0. Consider the head-of-line packet of flowi,

sayp. Apparently its processing cost is no more thanMP and its link cost is no more than

ML. In other words, its processing cost is less thanPDCi(k) and its link cost is less than

LDCi(k), and therefore, based on the PPLS algorithm, packetp should be scheduled in

roundk. This violates the assumption that packetp is the head-of-line packet from flowi

at the end of roundk, and completes the proof.

85

Lemma 2 readily leads to the following Corollary.

Corollary 1 In an execution of the PPLS strategy, at the end of each roundk, for any

flow i,

max

(
PDCi(k)

RP

,
LDCi(k)

RL

)
≤ α

min

(
PDCi(k)

RP

,
LDCi(k)

RL

)
≤ β

where constantsα andβ are defined as follows:

α = max
(

max∀i maxPDCi

RP

,
max∀i maxLDCi

RL

)
(3.6)

β = min
(

MP

RP

,
LP

RL

)
. (3.7)

According to (3.5), we also define constantγ as follows:

γ =
min∀i PQi

RP

=
min∀i LQi

RL

. (3.8)

Lemma 3 During an execution of the PPLS strategy over anym rounds, for any flowi,

mwiγ − β ≤ nCRAi(m) ≤ mwiγ + α

whereα, β, γ are constants defined in (3.6), (3.7) and (3.8), respectively.

Proof: Denote bySCPAi(k) the cumulative processor allocation of flowi in a single

roundk. From the algorithm we have

SCPAi(k) = PQi + PDCi(k − 1)− PDCi(k).

This leads to

CPAi(m) =
m∑

k=1

SCPAi(k)

= mPQi + PDCi(0)− PDCi(m)

and

86

nCPAi(m) =
CPAi(m)

RP

= m
PQi

RP

+
PDCi(0)− PDCi(m)

RP

.

From (3.2) we have

PQi

RP

=
wi

min∀j wj

min∀j PQj

RP

= wiγ

and therefore,

nCPAi(m) = mwiγ +
PDCi(0)− PDCi(m)

RP

.

Since bothPDCi(0) andPDCi(m) are non-negative,

mwiγ − PDCi(m)

RP

≤ nCPAi(m) ≤ mwiγ +
PDCi(0)

RP

.

Similarly we have

mwiγ − LDCi(m)

RL

≤ nCLAi(m) ≤ mwiγ +
LDCi(0)

RL

.

Applying into the definition of normalized cumulative resource allocation leads to the

following:

nCRAi(m) ≤ mwiγ + max

(
PDCi(0)

RP

,
LDCi(0)

RL

)

nCRAi(m) ≥ mwiγ −min

(
PDCi(m)

RP

,
LDCi(m)

RL

)
.

Applying Corollary 1 into the above inequalities completes the proof.

Consider a certain time interval(t1, t2) during which all flows remain backlogged. Con-

sider any pair of flowsi andj. Assume that during(t1, t2), flow i receivesmi rounds of

service while flowj receivesmj rounds of service. Since both flowsi andj are backlogged

during time interval(t1, t2), and the scheduler serves the flows in a round-robin fashion,

we have|mi −mj| ≤ 1.

87

Applying Lemma 3 we have

nCRAi(t1, t2)

wi

≤ miγ +
α

wi

nCRAj(t1, t2)

wj

≥ mjγ − β

wj

.

Therefore,

nCRAi(t1, t2)

wi

− nCRAj(t1, t2)

wj

≤ (mi −mj)γ +
α

wi

+
β

wj

≤ α + β + γ.

Similarly we can also derive that,

nCRAj(t1, t2)

wj

− nCRAi(t1, t2)

wi

≤ α + β + γ.

Since flowsi and j can be any pair of flows, based on the definition of the normalized

fairness measure, we have

nFM(t1, t2) ≤ α + β + γ.

Note thatα, β andγ are all finite constants. Therefore,nFM(t1, t2) is bounded by

a finite constant over any time interval during which all flows are backlogged, i.e., the

fairness boundnFB exists for the PPLS strategy and it is finite. This proves the statement

of Theorem 5.

3.5 Simulation Results and Analysis

Our simulation model consists of 8 flows with equal weights sharing a processorP

and a linkL, as shown in Fig. 3.2. Five different scheduling policies including the PPLS

algorithm are implemented.

• FCFS (First-Come First-Served): A simple FCFS scheme is used. The scheduling

order is only determined by the packet timestamps.

88

• PPLS: When the PPLS algorithm is implemented, a FCFS strategy is used on the

buffer between the processorP and the linkL, since the order of the packets has

already been determined by the PPLS algorithm.

• LDRR (Link Deficit Round Robin): A DRR algorithm in the allocation of only the

link bandwidth is implemented (i.e., the original DRR).

• PDRR (Processor Deficit Round Robin): A DRR algorithm in the allocation of only

the processing resources is implemented.

• DDRR (Double Deficit Round Robin): Two DRR schedulers are used. PDRR is used

before the processorP and LDRR is used before the linkL. Note that this is the only

scheme in which a scheduler is implemented between the processor and the link.

Two sets of simulation experiments have been tested. In the first set of experiments, a

synthetic traffic sequence is used, while the second set uses real gateway traffic traces as

the traffic sources.

3.5.1 Synthetic Traffic

In our first study, we use synthetic traffic to test the fairness properties of the PPLS

algorithm under some extreme situations. In this study, all packets are randomly generated.

For each flow, the ratio of the amount of the processing resource required to the amount

of the bandwidth resource required is a fixed value. Note that in the definition of the

normalized fairness measurenFM(t1, t2), if both theRP and RL are multiplied by the

same value, the normalized fairness measure will also be multiplied by this value, in other

words, the fact of whether or not the normalized fairness measure is bounded does not

change except that the bound itself may vary. Therefore, for better illustration and easier

comparison, in our study, we normalize the resource amount in such a way that the average

processor cycles needed per packet (in units of cycles) is numerically equal to the average

89

Table 3.2: The ratio of the processing resource to the link resource required by each flow.

Flow ID 1 2 3 4 5 6 7 8

P/L Ratio (in cycle/byte) 1 2 3 4 1 1/2 1/3 1/4

size per packet (in units of bytes). Table 3.2 shows the ratios used. Note that flows 1 and

5 have equal normalized demand for both resources, while the prime resource for flows 2,

3 and 4 is the processor, and for flows 6, 7 and 8 is the link. For flows 1 to 4, the sizes of

packets generated is uniformly distributed between 1 and 1,600 bytes, while for flows 5 to

8, the processing cost is uniformly distributed between 1 and 1,600 cycles. Therefore, the

maximum packet size is 6,400 bytes and the maximum processing cost is 6,400 cycles, and

these are also the quantum values assigned to each flow.

Fig. 3.4(a) shows the normalized cumulative resource allocation after a long run in the

simulations. It is apparent that using the PPLS algorithm, in the time interval(0, τ) under

consideration, the normalized cumulative resource allocationnCRAi(0, τ) for all flows i

are very close, thus illustrating that fairness is achieved under the PPLS scheduling policy.

Note that, as expected, the FCFS scheme is the worst among all in terms of fairness. Re-

garding LDRR and PDRR, each can achieve fair distribution of the normalized cumulative

allocation with respect to a certain resource, but not the overall normalized cumulative re-

source allocation. Take LDRR as an example. It achieves fair distribution of the normalized

cumulative link allocation for all flows. Therefore, those flows with the processor as the

prime resource, namely flows 2 to 4 in this case, result in a large value of the normalized

cumulative processor allocation, thus failing to achieve fairness. PDRR functions exactly

in the opposite way: it fairly distributes the normalized cumulative processor allocation

among all flows, but those flows with the link as the prime resource (flows 5 to 8) receive a

90

(a)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
x 10

7

Flow ID
N

or
m

. C
um

u.
 R

es
. A

llo
c.

FCFS
LDRR
PDRR
DDRR
PPLS

(b)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
x 10

7

Flow ID

N
or

m
. C

um
u.

 R
es

. A
llo

c.

FCFS
LDRR
PDRR
DDRR
PPLS

(c)

1 2 3 4 5 6 7 8
3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

7

Flow ID

N
or

m
. C

um
u.

 R
es

. A
llo

c.

maxDC = 50
maxDC = 100
maxDC = 150
maxDC = 200
maxDC = ∞

Figure 3.4: The simulation results, using (a) synthetic traffic, (b) gateway traffic traces. (c)
The effect ofmaxDCin the PPLS algorithm. In these plots, a curve closer to a straight
horizontal line implies a better fairness achieved by an allocation policy.

91

large normalized cumulative link allocation, also failing to achieve fairness.

One interesting observation is the DDRR scheme. Intuitively one may expect DDRR to

serve as a fair scheduler for allocation of processing and bandwidth resources, since it has

two schedulers, one fair with respect to the processor and the other fair with respect to the

link. However, Fig. 3.4(a) shows that this is not the case. This is because the DDRR scheme

implements the two fair schedulers in different stages. Note that the PDRR scheduler before

the processorP is responsible for fairly allocating the normalized cumulative processor

allocation to all flows. That means, at this point, more packets (in bytes) from those flows

with the link as the prime resource (flows 6 to 8) will be scheduled from the processorP .

On the other hand, those flows with the processor as the prime resource (flows 2 to 4) will

not have enough packets to remain backlogged in the buffer before the linkL. The LDRR

scheduler then takes advantage of this from flows 2 to 4 and transmits more packets from

flows 6 to 8, thus causing a higher normalized cumulative resource allocation for flows 6

to 8. In fact, the DDRR scheme allocates resources fairly to all flows with the same prime

resource, but favors the flows with the “final” resource as the prime resource.

3.5.2 Gateway Traffic Traces

In this study, we use real traffic recorded at an Internet gateway as the input traffic

[56,60].5 The traffic traces include the processing delay (in milliseconds) for each packet,

along with the packet size (in bytes). For our experiments, we assume a fixed processing

rate, and correspondingly convert the processing delay of each packet into processor cycles.

5Global Positioning System technology was used to precisely record the timestamp of each packet at each
node. In the trace data, filtered IP headers were examined to track the same packet at different nodes. The
difference between the timestamps of the same packet at adjacent nodes was computed as the delay. The
link speed connecting these nodes was taken into consideration so that the transmission delay of each packet
was removed from the recorded delay. Note that this delay was still the sum of the processing delay and
the queueing delay. However, it was noticed that for traffic in a specific direction, the queue occupancy was
never above 1 packet, and this eliminates the queueing delay and validates the use of this delay as the pure
processing delay.

92

Again, we convert the processing delay of each packet in such a way that the average

number of processor cycles needed per packet (in units of cycles) is numerically equal to

the average size per packet (in units of bytes). For better comparison to the previous study,

the flows have been ordered in such way that the overall prime resource for flows 1 to 4 is

the processor, and the link for flows 5 to 8.

Fig. 3.4(b) illustrates the normalized cumulative resource allocation for the five schedul-

ing schemes in this experiment. Again, the PPLS algorithm performs very well in terms of

fairness. It is observed that all other conclusions drawn from study with synthetic traffic

are still valid.

Note that in this study, the DDRR scheme performs closer to the PPLS algorithm than

in the previous study. This can be attributed to the fact that in real traces, the demands

of each flow for the processing and bandwidth resources are more balanced than those

in the synthetic traffic. However, the PPLS algorithm only needs one scheduler in real

implementation while the DDRR needs two.

3.5.3 Effect of Maximum Deficit Counter

Note that in the synthetic study, no flow changes its prime resource during the experi-

ment. Therefore, the setting of the maximum deficit counters in the PPLS algorithm has no

effect on the outcome of the simulations. Next, using the real gateway traces, we focus on

the effect of maximum deficit counters on the PPLS algorithm. This is shown in Fig. 3.4(c).

It is apparent that the prime resource of a flow changes in this study, since the normal-

ized cumulative resource allocation begins to show differences under the PPLS algorithm.

However, it should be noticed that the normalized cumulative resource allocations for the

flows are still reasonably close to each other, due to the long-term fairness achieved by the

PPLS algorithm.

From Fig. 3.4(c), it is observed that, as expected, the long-term fairness among normal-

93

ized cumulative resource allocation degrades as the maximum deficit counter decreases.

For example, when the maximum deficit counter is set to be 10 times as large as the quan-

tum value, the normalized cumulative resource allocation exhibits a 10% variation from the

ideal.

It is also observed from Fig. 3.4(c) that, flows with more balanced normalized cumu-

lative allocations between the two resources over a long run, such as flows 1, 2 and 5, are

likely to receive less normalized cumulative resource allocation. This may be attributed

to the fact that these flows are more likely to temporarily change the prime resource, and

therefore, setting the deficit counter for the current non-prime resource to the maximum

value may reduce the future usage of this resource when it later becomes prime resource.

On the other hand, the unbalanced flows are less likely to temporarily change the prime

resource, and therefore, the effect on these flows of setting the deficit counter for the non-

prime resource to the maximum value is limited. A similar scenario may also be found in

other situations, such as bandwidth sharing. For example, in DRR, a flow that frequently

changes its status of being backlogged or not will be sacrificed in a long run, since each

time it becomes non-backlogged its unused deficit counter is reset to 0, thus causing it to

lose bandwidth share.

Based on the above discussion, the maximum deficit counter can be used to tune the

trade-off between the long-term and the short-term fairness of the PPLS algorithm. This is

similar to the function of the maximum lag in wireless scheduling [58].

3.6 Discussions on Implementation of PPLS

In this chapter, we select DRR [8] as the starting point of the design of the fair allocation

policy for a shared processor and a shared link, because of the relatively simple implemen-

tation of DRR. Other fair scheduling algorithms can be also used, such as Weighted Fair

Queueing (WFQ) [5], Worst-case Fair Weighted Fair Queueing (WF2Q) [9], Surplus Round

94

Robin (SRR) [61] and Elastic Round Robin (ERR) [10].

Note that in many situations, the processing cost of a packet cannot be determined

before it is actually processed. If this is the case, one can have the following choices to

modify the PPLS algorithm. The first way is to let the scheduler predict the processing cost,

and make scheduling decisions. In the second choice, the scheduler serves the packet first,

then updates the deficit counters accordingly. In this way, it is possible that after serving a

packet, its processing deficit counter becomes negative, thus breaking the fairness property

of the PPLS algorithm. Therefore, the scheduler needs an additional counter to record

the minimum normalized deficit counter for all flows, and if this value becomes negative,

at the beginning of next round, it needs to add a proper amount to the deficit counter of

each flow to make it non-negative. Note that using prediction before scheduling still needs

this protection from negative deficit counter, and therefore, one can combine these two

approaches: predict first, and then correct if not accurate. If these changes are applied,

the PPLS algorithm becomes closer to ERR [10] where packet sizes are unknown when

scheduling.

In our study, it is assumed that each flow has a unique weight which determines its

relative rightful share for each resource. One might claim that this assumption might not

be true in all situations. If instead, for each flow, a different weight is associated with each

individual resource, the premise of this work can still be applied. The only difference would

be that when defining the prime resource for each flow, the weight for each individual

resource needs to be taken into consideration, and an additional concept, prime weight,

needs to be defined as the weight associated with the prime resource. Also, if that is the

case, the quantum values for a flow in the PPLS algorithm need to be assigned proportional

to its corresponding weight.

95

Chapter 4. A Discussion on Extensions to Multiple Output Link Systems

4.1 Introduction

4.1.1 Motivation and Challenges

In building the theoretical foundation for fair allocation of multiple resources, the stud-

ies in the previous two chapters consider the situations where only one output link is present

in the system. In the investigated systems, all flows are headed to the same shared output

link via a common shared resource (being either a buffer as in Chapter 2 or a processor as

in Chapter 3). In a multiple output link system, however, several flows may share the same

buffer or processor but different flows may be headed to different output links. Both the sin-

gle and multiple output link systems arise in various real situations in switches and routers

serving traffic from a multitude of flows [62–66]. In this chapter, we focus on the multiple

output link systems, and using the principles developed in previous chapters, answer the

question of what is fair in resource allocation in such systems. Note that the challenges

imposed on multiple output link systems with either a shared buffer or a shared processor

are very similar to each other, and the methods used to define fairness in one system can

be readily applied to the other. Therefore, we will use the buffer allocation as an example

in the rest of this chapter to develop the principle for fairness in such systems. Discussions

on the processor allocation in multiple output link systems are presented at the end of this

chapter.

The question of what is fair in the multiple output link systems offers a unique scenario

that cannot be readily analyzed and understood by extrapolation from the single output link

cases discussed in Chapter 2. Each link in the multiple output link system is a separate

resource that is not necessarily shared by all the flows. For example, consider a flow that

has an input rate into the buffer that is larger than the peak rate of its destination output

96

link. While this flow does not get its demand for throughput, unused bandwidth on other

links may not be allocated to it. Thus, bandwidth wasted on one link is not necessarily

available to other flows with unsatisfied demands for bandwidth. Therefore, one cannot

treat the multiple output links as one, and operate an exit strategy from the buffer based on

it. The exit policy has to recognize that various output links may have different peak rates,

and that the buffer occupancies of the flows depend on it.

Exit schedulers at each output link can achieve a fair distribution of the throughput

among all the flows headed to the output link, and may also achieve a fair allocation of

the buffer space as in the shared link system shown in Chapter 2. However, unless the exit

schedulers coordinate their actions, it is not trivial to achieve fairness or to even define what

is fair among the various flows headed to different output links. If the size of the shared

buffer is infinity and all arriving data is always accepted into the buffer, fair schedulers at

each output link can readily lead to perfect fairness among the various flows. However,

in real situations with finite buffers, fair schedulers at the output links cannot guarantee

overall fairness since each scheduler only achieves fairness among the flows headed to its

output link.

The following are two of the important properties that differentiate a multiple output

link system from single output link systems such as those considered in Chapter 2. These

differences illustrate the issues and the conceptual difficulties involved in defining fairness

in a multiple output link system.

• No common set of shared resources.In single output link systems, all the flows

share both the buffer and the output link. In multiple output link systems, however,

flows headed to two different output links share only the buffer. Thus, some sets of

flows share both the buffer and the link, while all others share only the buffer. This

presents a significant conceptual difficulty in applying the Principle of Fair Priori-

tized Resource Allocation (the FPRA principle) among all the flows since the shared

97

set of resources is not common among all the flows. For example, the cumulative re-

source dividends and demands cannot be readily compared between flows since the

shared set of resources is different for different flows.

• Non-transferable resource dividends.In single output link systems, or in the case

of scheduling bandwidth on a link, when one flow temporarily has a small demand,

other flows with larger demands can take advantage and achieve higher throughputs.

Fair allocation, therefore, ends up being a matter of dividing up a certain total amount

of the dividend from the shared resources in a fair manner among the flows. In a

multiple output link system, however, there is no such thing as a fixed amount of

the total dividend from a resource. When one flow has a small demand, other flows

headed to a different output link may not be able to take advantage and increase their

benefits from resource utilization. Thus, the total dividend available for distribution

among the flows is itself a variable quantity, and poses a unique challenge to the task

of defining fairness in such a system.

The above challenges, and the fact that many real switch and router architectures can

be described using the multiple output link system model, explains the motivation for this

study. In this chapter, we present a thorough study of fairness in such systems, and adapt

the FPRA principle to exactly define what is fair.

4.1.2 Contributions

The approach used in this study is to decompose the multiple output link system withH

output links into two classes of subsystems. The first subsystem, referred to as theunshared

link subsystem, consists ofH integrated flows, orsessions. Each session consists of all the

flows headed to a particular output link. In this unshared link subsystem, only the buffer

is shared among all sessions, thus allowing the application of the FPRA principle with a

common set of shared resources. The decomposition of the system also createsH of the

98

other class of subsystems, referred as theshared link subsystems, each corresponding to

one session. Flows within each of these subsystems share both the link and the buffer, and

thus each shared link subsystem is identical to the system discussed in Chapter 2. The

total buffer capacity in theseH subsystems is determined by the allocation policy in the

unshared link subsystem.

While the shared link subsystems are already studied in Chapter 2 for fairness, this

chapter investigates the question of what is fair in the unshared link subsystem. We then

base our definition of fairness in the entire system on the definitions of fairness in these

subsystems. We subsequently present a method of measuring fairness in buffer allocation in

multiple output link systems. Our measure of fairness is based on the same premise used in

the definition of the absolute fairness bound (AFB) in the context of scheduling bandwidth

on a link [15]. We present an analysis of this measure in the multiple output link system

and its relationships with the corresponding measures in its subsystem components. This

relationship suggests that achieving fairness in the unshared link subsystem is critically

important to achieving fairness in the overall system.

While our presentation in this chapter is primarily based on buffer allocation, the method

used and the majority of the concepts and principles developed in this study can also be ap-

plied in the allocation of other resources, such as the processing resource, within multiple

output link systems.

4.1.3 Organization

The organization of this chapter is as follows. Section 4.2 describes the system model

used in this chapter. This section also describes the decomposition of the system model

into component subsystems. Section 4.3 discusses what is fair in buffer allocation in a

multiple output link system. Section 4.3.1 presents an overview of those results obtained

in Chapter 2 that are relevant to the question of what is fair in the shared link subsystems.

99

Section 4.3.2 tackles the question of what is fair in the unshared link subsystem, and Sec-

tion 4.3.3 concludes the section with a definition of what is fair in the multiple output link

system. Section 4.4 proposes a measure of fairness for use in the study of the fairness prop-

erties of real buffer allocation algorithms. Finally, Section 4.5 concludes the chapter with

a discussion on the fairness in processor allocation with multiple output links.

4.2 Multiple Output Link System Model

Subsection 4.2.1 presents the multiple output link system model. Subsection 4.2.2 de-

scribes a decomposition of this system model into component models that can be more

easily analyzed and understood for a study of fairness.

4.2.1 System Model

Our multiple output link system model consists of a shared buffer, a set of output links

h, 1 ≤ h ≤ H, and a set of flowsi, 1 ≤ i ≤ N . WhenH = 1, this system model reduces to

that considered in Chapter 2. Fig. 4.1(a) illustrates the multiple output link system model.

Let wi be the weight associated with flowi. Traffic from each flow is destined to one of

theH output links, and several flows may share the same output link. Thus, the number of

links, H, may be smaller than the number of flows,N . The set of flows headed to the same

output link are said to belong to the samesession. Note that each session corresponds to

exactly one link and vice-versa. The session corresponding to the output linkh is denoted

by Fh. Fig. 4.1(b) shows one session with flows 1 and 2 headed to the same output linkH.

Similar to the the single output link system in Chapter 2, letC(t) be the total capacity of

the shared buffer at time instantt. The capacity of the buffer is a function of time since the

buffer considered here may actually be a dynamically apportioned piece of a larger buffer.

Let Rh(t) be the maximum possible transmission rate on linkh at time instantt. Note that

this transmission rate is also a function of time, to accommodate flow control algorithms

100

(a)

(t)iB
(t)NA

...
(t)1A

...
(t)iA Exit

...

...

(t)1D

(t)iD

(t)ND

(t)C
(t)I1

(t)IN

(t)iI

...

...

...
(t)R1

(t)Rh

(t)
...

Entry

Buffer Capacity

HR

(b)

Exit

(t)I1
(t)1D(t)1A

(t)I2 (t)2A (t)2D

(t)

Entry

HR

Figure 4.1: The multiple output link system model. (a) The entire system; (b) An example
of one session with flows 1 and 2 headed to linkH.

that may dynamically limit the rate on the link.

The buffer allocation policy is completely determined by the actions of theentrysched-

uler and theexitscheduler, just as in the single output link system model in Chapter 2. The

entry scheduler chooses the traffic it will admit into the shared buffer. The entry scheduler,

when necessary, also chooses which data to discard from the shared buffer in order to admit

newly arriving traffic. The exit scheduler chooses the order in which it will transmit data

from the shared buffer on to the output links.

Consider a multiple output link system, denotedS, as shown in Fig. 4.1(a). LetIi(t) be

the input rate of flowi, i.e., the rate at which traffic from flowi seeks to enter the shared

buffer at time instantt. Denote byAS,q
i (t) the admission rate of flowi under allocation pol-

icy q in systemS at time instantt, i.e., the rate at which traffic from flowi is accepted into

the shared buffer by the entry scheduler at time instantt. Traffic that is not admitted into

the shared buffer is dropped. Note thatAS,q
i (t) can be negative such as when some packets

from flow i are pushed out from the shared buffer to make room for arriving packets. As in

the single output link case,AS,q
i (t) is less than or equal toIi(t). Let DS,q

i (t) be the depar-

ture rate of flowi in systemS under the allocation policyq at time instantt, i.e., the rate at

101

which the exit scheduler dequeues the packets from flowi on to the destined output link at

time instantt. Denote byBS,q
i (t), the buffer occupancy or the queue length of flowi under

policy q in systemS at time instantt. Note that, while the admission rate, buffer occupancy

and the departure rates are dependent upon the system and the allocation policy, the input

rate,Ii(t) is not. As in the case of a single output link system, the following relationship

holds fort ≥ t0:

BS,q
i (t) = BS,q

i (t0) +
∫ t

t0

(
AS,q

i (τ)−DS,q
i (τ)

)
dτ. (4.1)

Again in this chapter, the sum of a quantity overall flows is denoted by dropping the

subscript. Thus,I(t) is the sum of input rates of all the flows, andAS,q(t), DS,q(t) and

BS,q(t) are defined similarly. Note that at any time instantt,

I(t) =
N∑

i=1

Ii(t).

Similar relationships hold forAS,q(t), DS,q(t) andBS,q(t). Also note that at any time in-

stantt, the total buffer occupancy of all flows is less than the buffer capacity, i.e.,BS,q(t) ≤
C(t).

In all of this chapter, the sum of a per-flow quantity over all flows belonging to the same

session is denoted by using the session label as the subscript. For example,IFh
(t) denotes

the aggregate input rate, at time instantt, of all flows that belong to the sessionFh. The

quantitiesAS,q
Fh

(t), DS,q
Fh

(t) andBS,q
Fh

(t) are similarly defined. Note thatDS,q
Fh

(t) ≤ Rh(t),

that is, the total departure rate of all flows headed to output linkh is less than the maximum

possible transmission rate on this link at time instantt.

Recall that the buffer allocation is completely determined by the actions of the entry and

the exit schedulers, which together determine both the per-flow and per-session admission

and departure rates, i.e.,AS,q
i (t) andDS,q

i (t), 1 ≤ i ≤ N , andAS,q
Fh

(t) andDS,q
Fh

(t), 1 ≤
h ≤ H. Note that the queue length of a flow in the shared buffer is completely determined

by the admission rate, the departure rate and the initial queue length, as given by (4.1).

102

Exit

(t)C

...
...

...
F1

(t)I

...
F1(t)A ...

...
(t)Rh

(t)R1F1(t)D

(t)

...

...
Fh

(t)

FHFH

Fh(t)

FH

Fh
(t)

(t)
(t) (t)

Fh(t)

Entry

Buffer Capacity

HR

D

DA

A

I

I

B

Figure 4.2: The unshared link subsystem,Su. The number of sessions is equal to the
number of output links.

Therefore, a buffer allocation policy over an interval of time is completely specified by the

admission and departure rates at all instants during the interval.

4.2.2 System Decomposition

By definition, all flows which belong to the sessionFh, are headed to the same output

link h. Now, consider this set of flows as one aggregate flow headed to output linkh.

This session, i.e., the aggregate flow, has an input rate ofIFh
(t) =

∑
i∈Fh

Ii(t) at time

instantt. Under the allocation policyq, at time instantt, this aggregated flow has an arrival

rate equal toAS,q
Fh

(t), a departure rate equal toDS,q
Fh

(t), and occupies space in the buffer

equal toBS,q
Fh

(t). A subsystem model can now be defined where each of theseH sessions

or aggregated flows is treated as a single individual flow. The sessions do not share an

output link, but they do share the buffer. We can define a component model of the system

S, consisting of theseH sessions each treated as a single separate flow. We call this the

unshared link subsystemmodel, denoted bySu, since there is exactly one session headed to

each output link, and thus no link is shared among sessions. Fig. 4.2 shows this unshared

link subsystem,Su.

For each of theH links and the session corresponding to it in systemS, one can also

create ashared link subsystemmodel in which flows share both the buffer and the link.

The size of the shared buffer in this shared link subsystem model for linkh at any given

instant is the buffer occupancy of the session or the aggregate flowFh under system model

103

(t)jI

(t)iI

(t)kI

(t)Ai

(t)Aj

(t)Ak (t)iB

Exit

(t)Di

(t)Dk

(t)Dj (t)
hF (t)

Entry

Buffer Capacity

Rh

B

Figure 4.3: Shared link subsystem,Ss
h.

S at that instant. Note that this value of the shared buffer capacity under this component

model is a function of time since the total space occupied by a session is always changing.

This is part of the reason the capacity of the buffer in Chapter 2 is defined as a function of

t. Each of theseH shared link subsystems is an instance of the single output link system

model presented in Chapter 2, and includes a shared link as well as a shared buffer. Denote

the shared link subsystem corresponding to output linkh asSs
h, 1 ≤ h ≤ H. Fig. 4.3

illustrates the shared link subsystemSs
h where flowsi, j andk belong to the sessionFh.

The distribution of the available buffer capacity among various sessions changes with time,

and therefore, the capacity allocated to sessionFh is a function of time. This capacity is

the total capacity available to all the flows in this shared link subsystem, as shown in the

figure.

In subsystemSu, the only shared resource among the sessions is the shared buffer. In

subsystemsSs
h, 1 ≤ h ≤ H, the set of shared resources includes both the buffer and the

output linkh. In this chapter, we proceed to define fairness in systemS by defining what

is fair in subsystemSu and in subsystemsSs
h. The condition on the allocation policy,q,

for fairness in subsystemSu can be defined over the sessions, that is, we define what is

fair with respect to each session. The condition onq for fairness in subsystemsSs
h can be

defined for each of the flows that belong to the sessionFh, as in Chapter 2 for the single

output link case. The condition onq for fairness in systemS is completely defined when

the conditions for fairness are defined for each of these component subsystems.

104

4.3 Fairness in Multiple Output Link Systems

In this section, we define the necessary and sufficient conditions under which a buffer

allocation policy in the system model discussed in Section 4.2 can be said to be fair. Based

on results derived in Chapter 2, Section 4.3.1 defines what is fair in the shared link subsys-

tems,Ss
h, 1 ≤ h ≤ H, followed by Section 4.3.2 which defines what is fair in the unshared

link subsystem,Su. Section 4.3.3 integrates the definitions of fairness in the component

subsystems and answers the central question of what is fair in buffer allocation in the mul-

tiple output link case.

For the sake of convenience and clarity, in this study we assume that max-min fairness

is the notion of fairness, and in addition, the cumulative utility of a flow achieved over an

interval of time is just the cumulative throughput the flow receives over this time interval,

similar to the single output link case in Section 2.4. The framework established in this

chapter can be readily extended to incorporate any other notion of fairness and any generic

way of computing flow utilities.

As defined in Chapter 2, thecumulative resource dividendof a flow over an interval of

time under an allocation policyq represents the benefit the flow gains from the portion of

shared resources allocated to it byq. More formally, the cumulative resource dividend of a

flow i over a time interval[t1, t2) under any systemS ′ and allocation policyq is defined as

the difference between the cumulative utilities achieved by flowi under policyq with and

without the use of the allocated portion of the shared resource. That is,

CRDIVS′,q
i (t1, t2) = US′,q

i (t1, t2)− U
S′,None(i)
i (t1, t2)

=
∫ t2

t1

{
DS′,q

i (τ)−D
S′,None(i)
i (τ)

}
dτ (4.2)

whereNone(i) is an allocation policy that allocates none of the shared resources in system

S ′ to flow i during the interval[t1, t2). In this chapter, when the shared buffer is the only

shared resource, we sometimes refer to the cumulative resource dividend as thecumulative

buffer dividend.

105

The cumulative resource demandof a flow over an interval of time is the benefit the

flow gains from having all of the shared set of resources exclusively allocated to it during

this interval. More formally,

CRDEMS′
i (t1, t2) = U

S′,All(i)
i (t1, t2)− U

S′,None(i)
i (t1, t2)

=
∫ t2

t1

{
D

S′,All(i)
i (τ)−D

S′,None(i)
i (τ)

}
dτ (4.3)

whereAll(i) is an allocation policy that allocatesall of the shared resources in the system

S ′ exclusively to flowi during the time interval[t1, t2).

4.3.1 Fairness in Shared Link Subsystems

Each of theH shared link subsystems,Ss
h, 1 ≤ h ≤ H, is a single output link system

such as the one considered in Chapter 2. Therefore, using the results in Chapter 2, we

can define the cumulative resource demand and dividend for each of these subsystems as

follows.

For each flowi ∈ Fh,

CRDIV
Ss

h,q
i (t1, t2) =

∫ t2

t1
DS,q

i (τ)dτ. (4.4)

The total cumulative resource dividend of the sessionFh is the sum of cumulative resource

dividends of each of the flows inFh, i.e.,

CRDIV
Ss

h,q

Fh
(t1, t2) =

∑

i∈Fh

CRDIV
Ss

h,q
i (t1, t2)

=
∫ t2

t1
DS,q

Fh
(τ)dτ. (4.5)

Recall that the size of the shared buffer in subsystemSs
h at time instantt is equal toBS,q

Fh
(t).

The cumulative resource demand of a flowi ∈ Fh, over an interval of time[t1, t2), is given

by

CRDEM
Ss

h
i (t1, t2) =

∫ t2

t1
DSs

h,All(i)(τ)dτ (4.6)

106

whereAll(i) is an allocation policy that, at all time instantst in the interval[t1, t2), allocates

the shared buffer with capacityBS,q
Fh

(t) and the output linkh exclusively to flowi.

In Chapter 2, we define the concept of active and inactive flows for any given interval of

time, based on whether or not the flow seeks some buffer space. In other words, an active

flow is one that is in competition with other flows to gain some buffer space, or is already

occupying some buffer space. An active flow within a shared link subsystem is also active

in the overall multiple link system. We define a stationary interval as one during which

each flow is either active or inactive, i.e., no flow is neither active nor inactive. Using the

definition of the fairness in single output link systems, we can now define fairness in each

of the subsystemsSs
h, 1 ≤ h ≤ H.

In a shared link subsystem,Ss
h, a buffer allocation policy,q, is max-min fair if and only

if, over all stationary intervals of time[t1, t2),

[
CRDIV

Ss
h,q

i (t1, t2) : i ∈ Fh

]

= FMMF

(
CRDIV

Ss
h,q

Fh
(t1, t2),

[
CRDEM

Ss
h

i (t1, t2) : i ∈ Fh

]
, [wi : i ∈ Fh]

)
(4.7)

whereFMMF is the notion of max-min fairness for the allocation of a single resource which,

given the total resource amount, the demand vector and the weight vector, determines the

allocation vector for each flow.

4.3.2 Fairness in an Unshared Link Subsystem

In seeking to apply the fairness principle to the unshared link subsystem model,Su, we

begin with defining the cumulative resource dividend and cumulative resource demand in

this system.

Consider the sessions in subsystemSu, traffic in each of which is headed to a separate

output link. The only shared resource among these sessions is the buffer. Let us begin

with computing the cumulative resource dividend for sessionFh, by first evaluating the

dividend under a policy,None(Fh), that allocates no buffer space to this session. Recall

107

that a session does not share its output link with any other session, and therefore, all of

the output link’s bandwidth is available to it, which means the utility of sessionFh under

policy None(Fh) may not be 0. In fact, in the absence of the buffer, the departure rate of

sessionFh at time instantt is the minimum of the peak rate of the linkh, Rh(t), and the

session input rate,IFh
. In other words,

D
Su,None(Fh)
Fh

(t) = min {IFh
(t), Rh(t)} .

Therefore, using (4.2), under an allocation strategyq, the cumulative buffer dividend for

the sessionFh over an interval of time[t1, t2), is given by

CRDIVSu,q
Fh

(t1, t2) =
∫ t2

t1

(
DSu,q

Fh
(τ)−min{IFh

(τ), Rh(τ)}
)
dτ

=
∫ t2

t1

(
DS,q

Fh
(τ)−min{IFh

(τ), Rh(τ)}
)
dτ. (4.8)

The cumulative buffer dividend summed over all the sessions is given by

CRDIVSu,q(t1, t2) =
H∑

h=1

∫ t2

t1

(
DS,q

Fh
(τ)−min{IFh

(τ), Rh(τ)}
)
dτ

=
∫ t2

t1

(
DS,q(τ)−

H∑

h=1

min{IFh
(τ), Rh(τ)}

)
dτ. (4.9)

From (4.3), the cumulative resource demand of a session,Fh, over an interval of time

[t1, t2), is given by

CRDEMSu

Fh
(t1, t2) =

∫ t2

t1

(
D

Su,All(Fh)
Fh

(τ)−min{IFh
(τ), Rh(τ)}

)
dτ (4.10)

whereDSu,All(Fh)(t) is the session departure rate under an allocation strategy,All(Fh),

which grants the entire shared buffer to the sessionFh.

A couple of examples below illustrate the concepts of the cumulative resource dividends

and demands in the context of the multiple output link system under consideration.

Example 1:Consider a sessionFh with an input rate ofIFh
(t), which is smaller than the

peak link rateRh(t) at all time instants in the interval[t1, t2). Also assume that the initial

buffer occupancy of this session is 0, i.e.,BS,q
Fh

(t1) = 0. Since the input rate is always

108

smaller than the maximum possible link rate, the capacity of the output linkh is never

completely used up during the time interval[t1, t2). In this situation, even under allocation

policy All(Fh), the sessionFh gains no benefit at all from the presence of the buffer.

Therefore, the allocation policiesAll(Fh) andNone(Fh) result in the same departure rate

of sessionFh at all time instants in[t1, t2). This yields

D
Su,All(Fh)
Fh

(τ) = D
Su,None(Fh)
Fh

(τ) = IFh
(τ)

for all possibleτ satisfyingt1 ≤ τ < t2. From the above and from (4.10), it is readily

derived that the cumulative resource demand of sessionFh over this interval is equal to 0.

Note that, in this case, it is always true that no allocation policy can accept or transfer

more packets thanIFh
(t) at time instantt, and therefore, the cumulative resource dividend

cannot be greater than 0. Actually, by definition, the cumulative resource dividend is no

more than the cumulative resource demand over any time interval. In fact, the cumulative

resource dividend of this session may be negative. This could occur if the allocation policy,

q, discards some packets from sessionFh and the resulting throughput under allocation

policy q is smaller than that under allocation policyNone(Fh).

Example 2.Consider a session,Fh, with an input rateIFh
(t) which is greater than or

equal to the peak link rateRh(t) at all time instants in the interval[t1, t2). In this case, the

maximum possible departure rate isRh(t), and no allocation policy can achieve a higher

departure rate. Thus, from (4.8), the cumulative resource dividend, CRDIVSu,q
Fh

(t1, t2), is 0.

Similarly, from (4.10), the cumulative resource demand, CRDEMSu

Fh
(t1, t2) is also 0. This

example illustrates that, over a certain interval of time, a session with a very high input rate

can actually have a resource demand of 0. This appears to be against our common intuition

which tends to presume that a session with an input rate higher than the maximum possible

departure rate actually has a higher demand for buffer space. This apparent conflict is

resolved by noting two points. Firstly, the cumulative resource demand as defined in this

chapter, is not the demand for buffer space but rather a demand for a dividend from the

109

buffer space. Secondly, the cumulative resource demand is specified only over a certain

interval of time. If one considers a larger interval of time than just[t1, t2), and if after

time t2 the input rate reduces to 0, the session certainly has a cumulative resource demand

greater than 0. This is because, the session’s packets can now be stored in the buffer during

the interval[t1, t2), and transmitted after timet2 to give it some benefit from the use of

the buffer. In general, in the component subsystemSu, the cumulative buffer demand

over a time interval[t1, t2) is positive, if and only if, under the allocation policyAll(Fh),

during any subinterval in the interval[t1, t2), the input rate is smaller than the maximum

possible output link rate, while the buffer occupancy is greater than 0. Then, during this

subinterval, the allocation policyAll(Fh) can use the packets in the shared buffer to better

fill the capacity of the output link, and thus schedule more packets of the session than the

allocation policyNone(Fh).

Having determined the dividends and the demands in the context of the subsystem

model,Su, we now proceed to incorporate the timescale by defining theactiveandinactive

flows and sessions over any given interval of time. As in the case of a single output link

system, such a categorization of the flows during each interval is necessary to determine

the applicable intervals over which we can apply the FPRA principle. In the case of the

unshared link subsystem,Su, the only shared resource is the shared buffer since the output

links are not shared among sessions. Thus, whether or not a session should be considered

active during an interval may be based on whether or not the session has a positive cumu-

lative resource demand, which would imply that the session is in competition with other

sessions for the shared buffer. In the following, we now present formal definitions of these

flow categories.

Definition 15 A sessionFh in an unshared link subsystemSu is said to beactiveover

time interval[t1, t2), if and only if, overeachpossible subinterval of time[τ1, τ2), t1 ≤
τ1 < τ2 ≤ t2, the cumulative resource demand of the session is positive, i.e.,

110

CRDEMSu

Fh
(τ1, τ2) > 0.

Definition 16 A sessionFh in an unshared link subsystemSu is said to beinactiveover

an interval of time[t1, t2), if and only if, overeachsubinterval of time[τ1, τ2), t1 ≤ τ1 <

τ2 ≤ t2, the cumulative resource demand is zero, i.e.,

CRDEMSu

Fh
(τ1, τ2) = 0.

Note that the above flow categories are defined over an interval, and do not describe the

properties of a session at any given instant of time. Thus, as in the definition of active and

inactive flows in the case of a single output link system, a session may be neither active nor

inactive over a certain interval of time. A session, however, may be defined to be active or

inactive at any given instant of timet, based on the above definitions considered over an

infinitesimal interval of time[t, t + δt).

As described in Chapter 2, the notion of fairness cannot be extended to an interval of

time unless none of the sessions changes its category from being active to inactive, or vice

versa. This leads us to the following definition of astationary intervalonly over which one

can apply the FPRA principle.

Definition 17 In an unshared link subsystem, a certain interval of time is called asta-

tionary interval, if and only if, each session is either active or inactive over this interval,

i.e., no session is neither active nor inactive.

Note that any given interval can be broken down into a contiguous sequence of station-

ary intervals, the boundaries being the instants of time when some session changes from

being active to inactive, or vice-versa. The stationary intervals are theapplicableintervals

over which we can apply the FPRA principle.

Note that only the active flows within each session are the ones competing for the shared

buffer. Since an inactive flow gains no dividend from the buffer, and therefore, demands

111

no buffer space, only an active flow is to be considered in the issue of fairness in buffer

allocation. Therefore, the weight of a session in the issue of buffer allocation should be the

sum of only the active flows within the session. This makes intuitive sense, since a session

with just one active flow and many inactive flows should not end up with a large weight,

and therefore, an unfairly large share of the buffer space for the only active flow in it. The

definition below of what is fair in the unshared link subsystem incorporates this thought.

Let the interval[t1, t2) be a stationary interval. Let̃FS,q
h (t1, t2) denote the set of flows in

the sessionFl which are all active over the interval(t1, t2) in subsystemSs
h under policyq.

Note that if a flow is active within subsystemSs
h, it is also active within the overall system

S. Therefore,̃FS,q
h (t1, t2) is the same set as̃F

Ss
h,q

h (t1, t2). Let wF̃S,q
h

(t1,t2), denote the sum of

the weights of all the flows that belong tõFS,q
h (t1, t2), i.e.,

wF̃S,q
h

(t1,t2) =
∑

i∈F̃S,q
h

(t1,t2)

wi. (4.11)

Definition 18 Consider a buffer allocation policy,q, operating on an unshared link sub-

systemSu. q is max-min fair, if and only if, over all stationary intervals of time[t1, t2),

[
CRDIVSu,q

Fh
(t1, t2)

]
= FMMF

(
CRDIVSu,q(t1, t2),

[
CRDEMSu

Fh
(t1, t2)

]
,
[
wF̃S,q

h
(t1,t2)

])

(4.12)

where each of the three vectors,
[
CRDIVSu,q

Fh
(t1, t2)

]
,
[
CRDEMSu

Fh
(t1, t2)

]
and

[
wF̃S,q

h (t1,t2)

]

is of lengthH with each vector element corresponding to the value ofh in the range1 ≤
h ≤ H.

The above definition, as in the definition of fairness in a single output link system, seeks

to distribute the cumulative resource dividends in a max-min fair manner with respect to

the cumulative resource demands. Note that the above definition computes the cumulative

resource demands and dividends for all the sessions and not just the active sessions over

the stationary interval under consideration. However, since sessions that are inactive over

a stationary interval have cumulative resource demands and dividends of 0 with respect to

the buffer, their inclusion does not change the above definition of what is fair.

112

4.3.3 Fairness in Buffer Allocation

Given the definition of fairness in each of the component subsystems, we can now

define fairness in buffer allocation in the multiple output link system,S. Firstly, we wish to

be fair in the unshared link subsystem among each of the different sessions. Secondly, we

wish to be fair in each of the shared link subsystems among the flows which make up each

session. A fair policy is one that is fair in each of the component subsystems. Therefore,

the definition of the stationary intervals over which we define fairness for the multiple

output link systemS, and the definition of the fairness itself, would have to integrate these

definitions within the respective subsystems. The following defines the stationary interval

in the entire multiple output link systemS.

Definition 19 In the multiple output link systemS, a certain interval of time is said to be

stationary, if and only if, this interval is a stationary interval within each of the component

subsystems,Su andSs
h, 1 ≤ h ≤ H.

It is worthwhile to note that any given interval of time can be divided into a sequence

of contiguous stationary intervals. Fairness in the systemS can now be defined based on

the concept of stationary intervals defined above.

Definition 20 In a multiple output link systemS, a buffer allocation policy,q, is max-min

fair, if and only if, over all stationary intervals of time[t1, t2) in S, q is max-min fair among

the sessions in the unshared link component subsystemSu, andq is max-min fair among

the flows in each of the shared link component subsystemsSs
h, 1 ≤ h ≤ H.

4.4 A Measure of Fairness

4.4.1 Definitions

We base our measure of fairness on the same premise as in the definition of the absolute

fairness bound (AFB) in the context of scheduling bandwidth on a link [15]. The AFB in the

113

scheduling of bandwidth over a link attempts to capture the maximum possible difference

between the service received by a flow under the ideally fair policy, GPS, and that under

the scheduling policy being measured. This is similar to the measure of fairness defined in

the single output link case discussed in Chapter 2.

To define an absolute fairness bound to measure the fairness of buffer allocation poli-

cies, we need to consider a hypothetical scheduling policy that is exactly fair. Since the

throughput achieved by a flow is the basis for our judgment on the service received by a

flow in the system, we base our measure of fairness on the throughputs achieved by the

flows. Now, an ideally fair allocation policy would be one that achieves the ideal distri-

bution of throughputs through an ideal distribution of the dividends with respect to the

demands. As also discussed in Section 2.6.1, we wish to compare the fairness of a policy

only with an ideally fair policy at the same performance level. Thus, the ideal policy to use

in our measure of fairness depends on the system model and the policy being measured.

Let G(S, q) be an ideally fair allocation policy in the multiple output link systemS, and

which delivers exactly the same performance asq. In other words,G(S, q) is exactly fair

and the sum of the cumulative throughputs achieved by the flows underG(S, q) is the same

as inq. That is,
∫ t2

t1
DS,q(τ)dτ =

∫ t2

t1
DS,G(S,q)(τ)dτ. (4.13)

Our measure of fairness can now be based on the difference in the cumulative through-

puts achieved by a flow under the fair policyG(S, q) and under the policyq being measured.

However, since we wish to be able to compare the fairness characteristics of two different

policies at different performance levels, as in Section 2.6.1, we normalize this difference

by the total cumulative throughput achieved by the flows under the policy being measured.

Our measure of fairness can now be defined as follows.

Definition 21 Given a systemS, an allocation policyq and a certain input traffic ar-

rival pattern, thenormalized Absolute Fairness Measureover an interval of time[t1, t2),

114

nAFMS,q(t1, t2), is defined as follows:

nAFMS,q(t1, t2) =

max
∀i

∣∣∣∣∣∣

∫ t2
t1

DS,q
i (τ)dτ

wi

−
∫ t2
t1

D
S,G(S,q)
i (τ)dτ

wi

∣∣∣∣∣∣
∫ t2
t1

DS,q(τ)dτ
. (4.14)

For most real algorithms, the value of the above fairness measure ranges from 0 to 1

depending on the size of the time interval,t2 − t1, over which the measure is computed.

A valid comparison between various allocation algorithms, therefore, can only be made

using the above measure if the sizes of the time intervals being considered are identical. In

addition, the more unfair an algorithm, the larger the timescales over which it apportions

unfair amounts of throughput among the various flows. Thus, to compare two allocation

policies, it is more convenient to compare the trend as the length of time interval over which

the fairness measure is computed approaches infinity. Therefore, we now define a bound

on the above measure of fairness as a function of the size of the time interval, as follows.

Definition 22 Define thenormalized Absolute Fairness Bound, nAFBS,q(τ), of an alloca-

tion policy q in systemS for time intervals of sizeτ as the upper bound on the normalized

absolute fairness measure over an interval of sizeτ with any possible input traffic arrival

pattern. In other words,nAFBS,q(τ) is the smallest value ofΘ(τ) such that, for any input

traffic,

Θ(τ) ≥ max
∀t
{nAFMS,q(t, t + τ)}.

The bound defined above is independent of the input traffic arrival pattern and is, there-

fore, a property of the allocation policy and the system. The normalized absolute fairness

measures defined in this chapter are dependent on the input traffic pattern. We do not in-

dicate this dependence in our notations since the input traffic pattern assumed is almost

always obvious from the context. It is worthwhile to note that the above fairness mea-

sures and the related bounds are unique to each system, and two allocation policies can be

compared using these measures only if they are both operating on the identical systems.

115

4.4.2 Relationship to Fairness within Component Subsystems

The relationships between the fairness measure in the multiple output link system and

its component subsystems, offer unique insights into what is fair in such a system. We

begin the definition of a fairness measure in the shared link subsystem. LetG(Ss
h, q) be

an ideal allocation policy that yields the same cumulative throughput for sessionFh as the

policy q being measured over the interval under consideration. In other words, over an

interval of time[t1, t2), let G(Ss
h, q) be an ideally fair policy such that,

∫ t2

t1
DS,q

Fh
(τ)dτ =

∫ t2

t1
D

S,G(Ss
h,q)

Fh
(τ)dτ. (4.15)

Now, we can define the fairness of the policyq within the shared link subsystem based on

a comparison with the policyG(Ss
h, q).

Definition 23 Given the shared link subsystem,Ss
h, an allocation policyq and a certain

input traffic arrival pattern, thenormalized Absolute Fairness Measureover an interval of

time [t1, t2), nAFMSs
h,q(t1, t2), is defined as follows:

nAFMSs
h,q(t1, t2) =

max
∀i∈Fh

∣∣∣∣∣∣

∫ t2
t1

DS,q
i (τ)dτ

wi

−
∫ t2
t1

D
S,G(Ss

h,q)
i (τ)dτ

wi

∣∣∣∣∣∣
∫ t2
t1

DS,q
Fh

(τ)dτ
. (4.16)

Thenormalized absolute fairness boundfor an interval of lengthτ , nAFBSs
h,q(τ), is defined

as the upper bound onnAFMSs
l ,q(t, t + τ) over allt and input traffic arrival patterns.

We now define our fairness measure within the unshared link subsystem. The definition

of the measure in the case of the unshared link subsystem is not exactly similar to that in

the shared link subsystem or the overall multiple output link system, since the fairness is

over sessions rather than over flows. However, our ultimate goal is fairness among flows,

and therefore, in our definition of a fairness measure, each session needs to be weighted

appropriately by the sum of the weights of all the active flows within it.

Recall thatF̃S,q
h (t1, t2) is the set of flows in the sessionFh which are all active over

the interval[t1, t2) in systemS under policyq. Thus,wF̃S,q
h

(t1,t2) is the sum of the weights

116

of all the flows that belong to this set of flows. These quantities can be defined at any

given instant of time as well, based on the actions of the policy and the system over an

infinitesimal interval of time since the instant under consideration. DefineF̃S,q
h (t) as the

set of flows in the sessionFh which are all active over the infinitesimal interval[t, t + δt),

andwF̃S,q
h

(t) is the sum of the weights of all the flows that belong to the setF̃S,q
h (t). Only

flows that are active at any given instant of time should be considered in the total weight of

the session at that time instant. The measure of fairness in the unshared link subsystem can

now be defined as follows.

Definition 24 Given the unshared link subsystem,Su, an allocation policyq and a certain

input traffic arrival pattern, thenormalized Absolute Fairness Measureover an interval of

time [t1, t2), nAFMSu,q(t1, t2), is defined as follows:

nAFMSu,q(t1, t2) =

max
1≤h≤H

∣∣∣∣∣∣

∫ t2

t1

DS,q
Fh

(τ)

wF̃S,q
h

(τ)

dτ −
∫ t2

t1

D
S,G(Su,q)
Fh

(τ)

wF̃S,q
h

(τ)

dτ

∣∣∣∣∣∣
∫ t2
t1

DS,q(τ)dτ
. (4.17)

Thenormalized absolute fairness boundfor an interval of lengthτ , nAFBSu,q(τ), is defined

as the upper bound onnAFMSu,q(t, t + τ) over allt and input traffic arrival patterns.

The relationships between the ideal allocation policies used in the overall system and its

component subsystems in the computation of the fairness measures within these systems,

reveals insights into the relationships between the fairness measures of a policy in these

systems. The ideal allocation policy in the shared link subsystem,G(Ss
h, q), only fairly allo-

cates the cumulative throughputs (same as cumulative resource dividends) of flows in each

shared link subsystem; the ideal allocation policy in the unshared link subsystem,G(Su, q),

fairly allocates the cumulative resource dividends with respect to the shared buffer; and the

ideal allocation policyG(S, q) in the multiple output link system has to be fair in both

shared and unshared link subsystems. Let{(S, q)}, {(Su, q)} and{(Ss
h, q)}, respectively,

denote the set of ideal allocation policies that may be used in the computation of the fair-

ness measures in the overall systemS, the unshared link subsystemSu and the shared link

117

subsystemSs
h for 1 ≤ h ≤ H.

Let G be an ideally fair policy in the overall system,S, yielding the same overall per-

formance asq. Now, by definitionG is also fair within the unshared link subsystem, and in

addition, the overall performance delivered byG in the unshared link subsystem is also the

same asq. Thus, ifG ∈ {(S, q)}, thenG ∈ {(Su, q)}. Thus,

{(S, q)} ⊆ {(Su, q)}. (4.18)

The converse, however, is not true since each policy which is fair in the unshared link

subsystem cannot be guaranteed to be fair in the entire system.

It is not possible, however, to establish any particular relationship between{(S, q)} and

{(Ss
h, q)}. As before, letG ∈ {(S, q)}. Now, it is not necessarily true thatG andq will

yield the same throughputs for each of the sessions, although the sum of the cumulative

throughputs will be the same by definition ofG. Thus, policies in{(Ss
h, q)} will not nec-

essarily yield the same throughput for sessionFh as policyG, although by definition, they

will yield the same throughput for the session as policyq. Thus, there does not exist a

trivial relationship such as in (4.18) between{(S, q)} and{(Ss
h, q)}.

The above lack of a relationship between{(S, q)} and{(Ss
h, q)} suggests that the fair-

ness measure of the overall system cannot be derived based on the fairness measures of the

component subsystems. However, over any interval[t1, t2) in which all flows are active,

one can prove that the normalized absolute fairness measure under a policy in the multiple

output link system is greater than the normalized absolute fairness measure of the policy

in the unshared link subsystem. This is proved next, and it suggests that achieving fairness

in the unshared link subsystem is critically important to achieving fairness in the overall

system.

Theorem 6 If all flows are active over a time interval[t1, t2), then the normalized absolute

fairness measure of an allocation policy,q, in a multiple output link system,S, is no less

118

than the normalized absolute fairness measure in the unshared link subsystemSu over the

interval. That is, if all flows are active over[t1, t2),

nAFMS,q(t1, t2) ≥ nAFMSu,q(t1, t2), (4.19)

Proof: The relationship in (4.18) allows us to redefine the normalized absolute fairness

measure in the unshared link subsystemSu, nAFMSu,q(t1, t2), by substituting(Su, q) by

(S, q) in (4.17). Thus,

nAFMSu,q(t1, t2) =

max
1≤h≤H

∣∣∣∣∣∣

∫ t2

t1

DS,q
Fh

(τ)

wF̃S,q
h (τ)

dτ −
∫ t2

t1

D
S,G(S,q)
Fh

(τ)

wF̃S,q
h (τ)

dτ

∣∣∣∣∣∣
∫ t2
t1

DS,q(τ)dτ
. (4.20)

Note that the denominators in (4.14) and (4.20) are identical and equal to the total sum

of the cumulative throughputs of all the flows. Denote this quantity by∆.

Without loss of generality, assume that the right hand side of (4.20) reaches its maxi-

mum value for someh = λ. Also, since all the flows are active over time interval[t1, t2),

the weight of sessionFλ, wF̃S,q
λ

(t), is equal to the sum of weights of all flows belonging

to the sessionFλ, i.e., a constant for allt during the entire interval[t1, t2). Denote this

constant bywFλ
, to indicate that it does not depend ont, i.e.,

wFλ
=

∑

i∈Fλ

wi.

Now in (4.20), this constant can be taken outside the integration operators. Thus, we have

nAFMSu,q(t1, t2) =
1

∆

∣∣∣∣∣∣

∫ t2
t1

DS,q
Fλ

(τ)dτ

wFλ

−
∫ t2
t1

D
S,G(S,q)
Fλ

(τ)dτ

wFλ

∣∣∣∣∣∣

=
1

∆

∣∣∣∣∣∣

∫ t2
t1

(
DS,q

Fλ
(τ)−D

S,G(S,q)
Fλ

(τ)
)
dτ

wFλ

∣∣∣∣∣∣

=
1

∆

∣∣∣∣∣∣

∫ t2
t1

∑
i∈Fλ

(
DS,q

i (τ)−D
S,G(S,q)
i (τ)

)
dτ

wFλ

∣∣∣∣∣∣

=
1

∆

∣∣∣∣∣∣
∑

i∈Fλ

∫ t2
t1

(
DS,q

i (τ)−D
S,G(S,q)
i (τ)

)
dτ

wFλ

∣∣∣∣∣∣

119

=
1

∆

∣∣∣∣∣∣
∑

i∈Fλ

wi

wFλ

∫ t2
t1

(
DS,q

i (τ)−D
S,G(S,q)
i (τ)

)
dτ

wi

∣∣∣∣∣∣

≤ 1

∆

∑

i∈Fλ

wi

wFλ

∣∣∣∣∣∣

∫ t2
t1

(
DS,q

i (τ)−D
S,G(S,q)
i (τ)

)
dτ

wi

∣∣∣∣∣∣

≤ 1

∆

∑

i∈Fλ

wi

wFλ

max
∀j

∣∣∣∣∣∣

∫ t2
t1

(
DS,q

j (τ)−D
S,G(S,q)
j (τ)

)
dτ

wj

∣∣∣∣∣∣

=
1

∆
max
∀j

∣∣∣∣∣∣

∫ t2
t1

(
DS,q

j (τ)−D
S,G(S,q)
j (τ)

)
dτ

wj

∣∣∣∣∣∣

=
1

∆
max
∀j

∣∣∣∣∣∣

∫ t2
t1

DS,q
j (τ)dτ

wj

−
∫ t2
t1

D
S,G(S,q)
j (τ)dτ

wj

∣∣∣∣∣∣
= nAFMS,q(t1, t2). (4.21)

4.5 Allocation of Processing Resource

A system with a shared processor and multiple output links may be similarly decom-

posed into several shared link subsystems and an unshared link subsystem. Each shared

link subsystem is also associated with an output link, and all flows headed to this link

comprise a session. The set of shared resources among all flows in each session includes

both the processor and the corresponding output link. On the other hand, the unshared link

subsystem consists of all sessions, sharing only the processor.

First consider the fairness in the unshared link subsystem. In this system, there is only

one shared resource, the processor, which is essential. In other words, one does not need

to worry about the concept of stationary intervals since all sessions are always active with

respect to the processing resource as long as they are backlogged. In addition, the fact that

the processing resource is essential also simplifies the problem into the fair allocation of a

single resource, which has been extensively studied. LetFh be the session headed to output

link h, andwFh
be the aggregate weight of this session. Denote bydFh,P the demand for

resourceP from sessionFh, and byaq
Fh,P the allocation of resourceP from sessionFh

120

under policyq. The normalized demand and the normalized allocation in the unshared link

subsystem can be defined as follows:

d̃Fh,P =
dFh,P

RP

ãq
Fh,P =

aq
Fh,P

RP

.

HereRP is the amount of resourceP .

An allocation policyq is fair in the unshared link subsystem, if and only if,

[
ãq
Fh,P

]
= F

(
C,

[
d̃Fh,P

]
, [wFh

]
)

whereC is some constraint as described in Section 3.3.

Note that in each shared link subsystem, the total amount of processing resource is

actually determined by the allocation in the unshared link subsystem, in the same sense

that, in buffer allocation, the total amount of buffer resource in the shared link subsystem

Ss
h is determined by the allocation policy in the unshared link subsystemSu. Therefore,

in the shared link subsystemSs
h, the normalized demand for resourceP of each flowi,

i ∈ Fh, is given by

d̃i,P =
di,P

aq
Fh,P

and similarly the corresponding normalized allocation is

ãq
i,P =

aq
i,P

aq
Fh,P

.

On the other hand, the normalized demand and allocation for bandwidth resource of each

flow in the shared link subsystem can be simply computed by normalization over the

amount of link resource, i.e.,

d̃i,Lh
=

di,Lh

RLh

ãq
i,Lh

=
aq

i,Lh

RLh

whereRLh
is the amount of resourceL on link h.

121

After these normalized allocations of each flowi in the shared link subsystemSs
h have

been determined, the prime resource of each flowi under policyq, Bq
i , can be defined in

the same way as described in Chapter 3. That is,

Bq
i = argP,Lh

max
{
ãq

i,P , ãq
i,Lh

}

or,

ãq
i,Bq

i
= max

{
ãq

i,P , ãq
i,Lh

}
.

Using the results from Chapter 3, the fairness in each shared link subsystem can now be

readily defined.

Finally, as in the case of buffer allocation, a policy is said to be fair in the allocation of

processing resource in the multiple output link system if and only if it is fair in the unshared

link subsystem and also in each of the shared link subsystems.

122

Chapter 5. Conclusion

5.1 Summary

Fairness is an intuitively desirable property in the allocation of resources in a network

shared among multiple flows of traffic from different users. During the last decade or

two, research on achieving fairness in networks has primarily focused on the allocation of

bandwidth. As flows of traffic traverse a network, however, they share various types of

network resources such as buffer, processor and power as in mobile systems. A framework

based on which one can define fairness in allocation of multiple resources has not yet been

established.

In this dissertation, we investigate the challenge of achieving fairness in the joint allo-

cation of multiple heterogeneous resources. We generally categorize the systems with mul-

tiple resources into two groups: those withprioritized resources such as the system with a

shared buffer and a shared link, and those withessentialresources such as the system with

a shared processor and a shared link. For both types of systems, we have established fun-

damental principles to define and measure the fairness in the joint allocation of the shared

resources within the system under consideration. These principles, namely thePrinciple

of Fair Prioritized Resource Allocationor the FPRA principle and thePrinciple of Fair

Essential Resource Allocationor the FERA principle, are simple but powerful generaliza-

tions of any given notion of fairness defined on a single shared resource, such as max-min

fairness, proportional fairness and utility max-min fairness.

We further apply the FPRA principle to the system with a shared buffer and a shared

link, and apply the FERA principle to the system with a shared processor and a shared

link. Using the notion of max-min fairness as an example, we have developed ideally

fair, though unimplementable, allocation strategies in both systems, i.e., theFluid-flow

123

Fair Buffering (FFB)and theFluid-flow Processor and Link Sharing (FPLS), which may

be used as benchmarks in the evaluation of the fairness of various practical and imple-

mentable allocation schemes in such systems. We anticipate that these algorithms will

serve the same purpose as GPS does in research studies on the allocation strategies of a sin-

gle shared resource. We have presented thePacket-by-packet Fair Buffering (PFB)and the

Packet-by-packet Processor and Link Sharing (PPLS), each of which is an implementable,

computationally feasible andprovably fairapproximation of the corresponding ideally fair

strategy. We have demonstrated the fairness of PFB and PPLS through extensive simulation

experiments using real traffic traces.

Our study in the joint allocation of buffer and bandwidth resources shows that overall

fairness is not determined by the exit scheduler alone, but instead by the combination of the

entry and the exit policies. This work reveals that use of a fair exit policy such as DRR does

not ensure overall fairness when buffer resources are constrained or when packet dropping

is used as a congestion control policy. In fact, our study shows that, even though the fairness

of exit policies has received far greater attention in the research literature, the entry policy

is more critical to overall fairness than the exit policy.

Our study in the joint allocation of processing and bandwidth resources also leads to

a similar conclusion. It is illustrated that, in a system with multiple essential resources,

achieving fairness with respect to each resource alone does not guarantee the overall fair-

ness in the entire system. In fact, neither the fair allocation of processing resource alone

nor the fair allocation of bandwidth resource alone achieves the fair allocation in the overall

system with a shared processor and a shared link. Only when these resources are allocated

in a coordinated manner, does the allocation strategy such as PPLS provide overall fairness.

In addition, in order to extend our work to systems with multiple output links, an ap-

proach based on system decomposition is also presented in this dissertation. In this method,

we decompose a multiple output link system withH output links into two types of subsys-

tems: anunshared link subsystemandH shared link subsystems. Consider a system with

124

a shared buffer and a shared link as an example. The unshared link subsystem consists

of H sessions, each of which contains all flows headed to the same output link, and cor-

responds to a shared link subsystem associated with the output link. In the unshared link

subsystem, the only shared resource is the buffer; in each shared link subsystem, the set

of shared resources includes both the buffer and the corresponding link. Therefore, the

principles developed in the study of single output link systems can be applied into each of

these subsystems, and the fairness in the entire system can be defined based on the fairness

in each subsystem.

5.2 Concluding Remarks and Future Work

The Random Early Detection (RED) algorithm has been widely employed in Internet

routers to cooperate with TCP end users as a congestion avoidance strategy. The end-

to-end congestion control algorithms, implemented in various versions of TCP protocol,

depend not only on the bandwidth allocation in the network but also on the packet loss

rate as the indication of congestion. Therefore, an unfair management of buffers can cause

biased packet loss rates for different flows, and thus lead to a failure in providing end-to-

end fairness. It has been shown in Chapter 2 that RED and its variants fail to provide a

fair buffer management. Incorporating the principles developed in this dissertation in the

design of enhancements to RED-like algorithms for congestion avoidance will likely lead

to true fairness in resource allocation as well as an overall improvement in the utilization

of the network resources.

Countering denial-of-service (DoS) attacks has become one of the most critical chal-

lenges in network security today. In packet flooding, the most common type of DoS attacks,

innumerable malicious packets from attackers overwhelm the victim by causing congestion

on its resources such as bandwidth, processors and TCP/UDP ports, and thus make the re-

sources unavailable for normal flows. More secure operating systems may help avoid DoS

125

attacks, but only with limited effectiveness due to the considerable number of computers

(i.e., potential attackers when compromised) in the current Internet. An alternative defense

is to prevent DoS attacks from significantly impairing system performance, through fair

resource allocation [67, 68]. Even in the presence of a DoS attack, fair resource alloca-

tion guarantees that malicious packets cannot occupy more system resources than a certain

amount, thus making service to normal flows unaffected, or minimally affected. It has been

shown in Chapter 3 that the PPLS algorithm can achieve a fair allocation of the processing

and bandwidth resources, and therefore, minimize the impact of a DoS attack based on

excessive use of either the bandwidth or the processing resource. Furthermore, PPLS-like

algorithms based on other contexts of resources can be designed for defending DoS attacks

on other resources.

This dissertation has primarily focused on the joint allocation of buffer and bandwidth

resources, and that of processing and bandwidth resources. However the principles and

algorithms developed in this dissertation can be applied to a variety of contexts in com-

munication networks and operating systems design. A few examples are the resources of

CPU, I/O, and memory access in operating systems, and the resources of bandwidth and

power in mobile systems.

Take the joint allocation of processor, link and power resources in a wireless system

as an example. It has already been recognized that these resources need to be fairly allo-

cated, especially in wireless ad hoc networks and wireless sensor networks. Applying the

FERA principle, one may implement a fair allocation policy similar to the PPLS algorithm.

Specifically, for each flow, three quanta and three deficit counters are needed, each corre-

sponding to one resource. The basis of the algorithm, however, remains the same, i.e., a

packet from a flow can be scheduled only if all three deficit counters of this flow are large

enough. By this means, it can be guaranteed that each flow receives a fair share of process-

ing, bandwidth and power resources, if the quantum values are appropriately assigned.

The allocation of storage resources in operating systems is another example where our

126

principles can be applied. For example, first level cache, second level cache, main memory

and disk comprise a storage system with ordered preference. Applying the FPRA princi-

ple, one may define the cumulative resource dividends and demands with respect to each

resource, the stationary intervals, and then the fairness in resource allocation in such a sys-

tem. A PFB-like algorithm can also be implemented in such systems as a practical strategy

for fair allocation of these resources.

Quality-of-service is often an end-to-end issue, of which end-to-end fairness is a criti-

cally important piece. Fair bandwidth allocation algorithm such as Weighted Fair Queueing

(WFQ) have frequently been used as a component of an overall mechanism that ensures

end-to-end delay guarantees. Similarly, mechanisms to achieve end-to-end fairness in the

use of all the resources in the network will play a significant role in achieving true end-

to-end quality-of-service guarantees. This dissertation focuses on the principles and the

design of such mechanisms, serving as the basis for achieving end-to-end fairness.

This dissertation is the first attempt to develop theoretical frameworks to define fairness

in the allocation of multiple resources. While this work has established a foundation for

achieving this goal, it also raises many other possibilities for further investigation.

In this dissertation, we have defined the fairness in systems with multiple output links

by using system decomposition, as shown in Chapter 4. A fair allocation policy, which

can achieve fairness in such systems according to the definition, is still unknown. Consider

buffer allocation in multiple link systems. As one can observe from the fairness definition,

the fair allocation policy needs to implement a PFB-like algorithm for each shared link

subsystem. In addition, for the unshared link subsystem, the fair allocation policy has to be

able to take into consideration the different peak rates of all output links, and achieve a fair

distribution of resource dividends among sessions.

While we have defined in this dissertation the fairness in the joint allocation of multiple

prioritized resources and in the joint allocation of multiple essential resources, a more

complicated system may consist of both prioritized and essential resources. One example

127

is a system with a shared processor, a shared buffer, and a shared link, similar to the model

used in Fig. 3.2, except that the buffer between the processorP and the linkL has a finite

capacity. Therefore, in this system, flows compete for all three shared resources, and both

prioritized and essential resources exist. Specifically, the shared buffer and the shared

link comprise a subsystem with two prioritized resources, while this subsystem and the

processorP are both essential to all flows. A future research goal is to develop a definition

of fairness for such a system, potentially using the principles proposed in this dissertation.

Given that most switches and routers have both prioritized and essential resources, it will

be worthwhile to also develop practical strategies for resource allocation in such systems.

It is our hope that this dissertation will facilitate future research in the design ofprov-

ably fair strategies for achievingoverall fairness injoint resource allocation.

128

Bibliography

[1] F. A. Cowell, Measuring Inequality: Techniques for the Social Sciences, John Wiley
& Sons, New York, NY, 1977.

[2] W. Stallings, Operating Systems: Internals and Design Principles, Prentice Hall,
Upper Saddle River, NJ, 3rd edition, 1995.

[3] A. Silberschatz and P. Galvin,Operating System Concepts, John Wiley & Sons, New
York, NY, 5th edition, 1997.

[4] L. Kleinrock, Queueing System, vol. 2, Computer Applications, John Wiley & Sons,
New York, NY, 1976.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing
algorithm,” inProc. ACM SIGCOMM, Austin, TX, Sep. 1989, pp. 1–12.

[6] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated service networks – the single node case,” inProc. IEEE INFO-
COM, Florence, Italy, May 1992, pp. 915–924.

[7] S. J. Golestani, “A self-clocked fair queueing scheme for broadband application,” in
Proc. IEEE INFOCOM, Toronto, Canada, Jun. 1994, pp. 636–646.

[8] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round-robin,”
IEEE/ACM Trans. Networking, vol. 4, no. 3, pp. 375–385, Jun. 1996.

[9] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair queueing,” in
Proc. IEEE INFOCOM, San Francisco, CA, Mar. 1996, pp. 120–128.

[10] S. S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet scheduling using
elastic round robin,”IEEE Trans. Parall. Distr. Syst., vol. 13, no. 3, pp. 324–336, Mar.
2002.

[11] D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing scheduling algorithms
in high-speed networks,”IEEE J. Select. Areas Commun., vol. 17, no. 6, pp. 1145–
1158, Jun. 1999.

[12] Cisco Systems Inc., “Cisco 12016 gigabit switch router: Application note,” 1999.

[13] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networks,”IEEE J.
Select. Area Commun., vol. 17, no. 8, pp. 1333–1344, Aug. 1999.

129

[14] D. P. Bertsekas and R. Gallager,Data Networks, Prentice Hall, Upper Saddle River,
NJ, 2nd edition, 1991.

[15] S. Keshav,An Engineering Approach to Computer Networking: ATM Networks, the
Internet, and the Telephone Network, Addison-Wesley, Reading, MA, 1997.

[16] Z. Cao and E. W. Zegura, “Utility max-min: An application-oriented bandwidth
allocation scheme,” inProc. IEEE INFOCOM, New York, NY, Mar. 1999, pp. 793–
801.

[17] S. Shenker, “Fundamental design issues for the future Internet,”IEEE J. Select. Areas
Commun., vol. 13, no. 7, pp. 1176–1188, Sep. 1995.

[18] F. Kelly, “Charging and rate control for elastic traffic,”Europ. Trans. Telecom., vol.
8, no. 1, pp. 33–37, Jan. 1997.

[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An architecture for differentiated services,” Dec. 1998, IETF RFC 2475,
http://www.ietf.org/rfc/rfc2475.txt.

[20] Y. Zhou and H. Sethu, “On the relationship between absolute and relative fairness
bounds,”IEEE Commun. Lett., vol. 6, no. 1, pp. 37–39, Jan. 2002.

[21] A. G. Greenberg and N. Madras, “How fair is fair queuing?,”J. ACM, vol. 39, no. 3,
pp. 568–598, Jul. 1992.

[22] S. Keshav, “On the efficient implementation of fair queueing,”J. Internetworking
Research and Experience, vol. 2, no. 3, pp. 157–173, Sep. 1991.

[23] J. M. Blanquer and B.̈Ozden, “Fair queuing for aggregated multiple links,” inProc.
ACM SIGCOMM, San Diego, CA, Aug. 2001, pp. 189–197.

[24] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivastava, “E2WFQ: An energy
efficient fair scheduling policy for wireless systems,” inProc. Int. Symp. Low Power
Electr. Design, Monterey, CA, Aug. 2002, pp. 30–35.

[25] A. Elwalid, D. Mitra, and R. H. Wentworth, “A new approach for allocating buffers
and bandwidth to heterogeneous, regulated traffic in an ATM node,”IEEE J. Select.
Areas Commun., vol. 13, no. 6, pp. 1115–1127, Aug. 1995.

[26] R. Gúerin, S. Kamat, V. Peris, and R. Rajan, “Scalable QoS provision through buffer
management,” inProc. ACM SIGCOMM, Vancouver, Canada, Aug. 1998, pp. 29–40.

[27] F. Lo Presti, Z.-L. Zhang, J. Kurose, and D. Towsley, “Source time scale and opti-
mal buffer/bandwidth tradeoff for heterogeneous regulated traffic in a network node,”
IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 490–501, Aug. 1999.

[28] S. H. Low, “Equilibrium bandwidth and buffer allocations for elastic traffics,”
IEEE/ACM Trans. Networking, vol. 8, no. 3, pp. 373–383, Jun. 2000.

130

[29] G. Fayolle, A. de La Fortelle, J.-M. Lasgouttes, L. Massoulié, and J. Roberts, “Best-
effort networks: Modeling and performance analysis via large networks asymptotics,”
in Proc. IEEE INFOCOM, Anchorage, AK, Apr. 2001, pp. 709–716.

[30] F. Kamoun and L. Kleinrock, “Analysis of shared finite storage in a computer network
node environment under general traffic,”IEEE Trans. Commun., vol. COM-28, no. 7,
pp. 992–1003, Jul. 1980.

[31] D. Tipper and M. K. Sundareshan, “Adaptive policies for optimal buffer management
in dynamic load environments,” inProc. IEEE INFOCOM, New Orleans, LA, Mar.
1988, pp. 535–544.

[32] K. Kumaran and D. Mitra, “Performance and fluid simulations of a novel shared
buffer management system,” inProc. IEEE INFOCOM, San Francisco, CA, Mar.
1998, pp. 1449–1461.

[33] A. Gupta and D. Ferrari, “Resource partitioning for real-time communication,”
IEEE/ACM Trans. Networking, vol. 3, no. 5, pp. 501–508, Aug. 1995.

[34] G.-L. Wu and J. W. Mark, “A buffer allocation scheme for ATM networks: Complete
sharing based on virtual partition,”IEEE/ACM Trans. Networking, vol. 3, no. 6, pp.
660–670, Dec. 1995.

[35] L. Tassiulas, Y. C. Hung, and S. S. Panwar, “Optimal buffer control during congestion
in an ATM network node,”IEEE/ACM Trans. Networking, vol. 2, no. 4, pp. 374–386,
Aug. 1994.

[36] I. Cidon, L. Georgiadis, R. Gúerin, and A. Khamisy, “Optimal buffer sharing,” in
Proc. IEEE INFOCOM, Boston, MA, Apr. 1995, pp. 24–31.

[37] S. Sharma and Y. Viniotis, “Optimal buffer management policies for shared-buffer
ATM switches,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 575–587, Aug.
1999.

[38] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds for shared-
memory packet switches,”IEEE/ACM Trans. Networking, vol. 6, no. 2, pp. 130–140,
Apr. 1998.

[39] R. Fan, A. Ishii, B. Mark, G. Ramamurthy, and Q. Ren, “An optimal buffer manage-
ment scheme with dynamic thresholds,” inProc. IEEE GLOBECOM, Rio de Janeiro,
Brazil, Dec. 1999, pp. 631–637.

[40] S. Krishnan, A. K. Choudhury, and F. M. Chiussi, “Dynamic partitioning: A mech-
anism for shared memory management,” inProc. IEEE INFOCOM, New York, NY,
Mar. 1999, pp. 144–152.

[41] J. Heinanen and K. Kilkki, “A fair buffer allocation scheme,”Comput. Commun., vol.
21, no. 3, pp. 220–226, Mar. 1998.

131

[42] K. Kilkki, Differentiated Services for the Internet, Addison-Wesley, Reading, MA,
1999.

[43] O. Bonaventure and J. Nelissen, “Guaranteed frame rate: A better service for TCP/IP
in ATM networks,” IEEE Network, vol. 15, no. 1, pp. 46–54, Jan./Feb. 2001.

[44] E. Hashem, “Analysis of random drop for gateway congestion control,” Tech. Rep.
LCS TR-465, Lab. for Computer Science, MIT, Cambridge, MA, 1989.

[45] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397–413, Aug. 1993.

[46] A. R. Bonde, Jr. and S. Ghosh, “A comparative study of fuzzy versus “fixed” thresh-
olds for robust queue management in cell-switching networks,”IEEE/ACM Trans.
Networking, vol. 2, no. 4, pp. 337–344, Aug. 1994.

[47] D. Lin and R. Morris, “Dynamics of random early detection,” inProc. ACM SIG-
COMM, Cannes, France, Sep. 1997, pp. 127–137.

[48] W.-J. Kim and B. G. Lee, “The FB-RED algorithm for TCP over ATM,” inProc.
IEEE GLOBECOM, Sydney, Australia, Nov. 1998, pp. 551–555.

[49] J. Bruno, B.Özden, A. Silberschatz, and H. Saran, “Early fair drop: A new buffer
management policy,” inProc. SPIE: Multimedia Comput. & Networking, San Jose,
CA, Jan. 1999, pp. 148–161.

[50] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe: A stateless active queue management
scheme for approximating fair bandwidth allocation,” inProc. IEEE INFOCOM, Tel-
Aviv, Israel, Mar. 2000, pp. 942–951.

[51] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for congestion avoid-
ance in computer networks with a connectionless network layer,” inProc. ACM SIG-
COMM, Stanford, CA, Aug. 1988, pp. 303–313.

[52] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-switched
networks,” IEEE/ACM Trans. Networking, vol. 6, no. 2, pp. 175–185, Apr. 1998.

[53] S. Floyd, “RED: Discussions of setting parameters,” Nov. 1997,
http://www.icir.org/floyd/REDparameters.txt.

[54] NLANR, “NLANR network traffic packet header traces,”
http://pma.nlanr.net/Traces/Traces.

[55] Telecommunication Networks Group, “MPEG-4 and H.263 video traces for network
performance evaluation,” http://www-tkn.ee.tu-berlin.de/research/trace/trace.html.

[56] K. Mochalski, J. Micheel, and S. Donnelly, “Packet delay and loss at the Auckland
Internet access path,” inProc. Passive Active Measure. Workshop, Fort Collins, CO,
Mar. 2002.

132

[57] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G. Plax-
ton, “A proportional share resource allocation algorithm for real-time, time-shared
systems,” inProc. IEEE Real-Time Syst. Symp., Washington, DC, Dec. 1996, pp.
288–299.

[58] S. Lu, V. Bhargavan, and R. Srikant, “Fair scheduling in wireless packet networks,”
IEEE/ACM Trans. Networking, vol. 7, no. 4, pp. 473–489, Aug. 1999.

[59] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet networks,”
in Proc. ACM SIGCOMM, Cannes, France, Sep. 1997, pp. 63–74.

[60] WAND Research Group, “Auckland-VI trace data,” http://pma.nlanr.net/Traces/long.

[61] S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet
networks,” IEEE/ACM Trans. Networking, vol. 3, no. 4, pp. 365–386, Aug. 1995.

[62] T. Kozaki, N. Endo, Y. Sakurai, O. Matsubara, M. Mizukami, and K. Asano, “32 ×
32 shared buffer type ATM switch VLSI’s for B-ISDN’s,” IEEE J. Select. Areas
Commun., vol. 9, no. 8, pp. 1239–1247, Oct. 1991.

[63] Y. Shobatake, M. Motoyama, E. Shobatake, T. Kamitake, S. Shimizu, M. Noda, and
K. Sakaue, “A one-chip scalable8 × 8 ATM switch LSI employing shared buffer
architecture,” IEEE J. Select. Areas Commun., vol. 9, no. 8, pp. 1248–1254, Oct.
1991.

[64] N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara, “Shared buffer memory
switch for an ATM exchange,”IEEE Trans. Commun., vol. 41, no. 1, pp. 237–245,
Jan. 1993.

[65] W. Denzel, A. Engbersen, and I. Iliadis, “A flexible shared-buffer switch for ATM at
Gb/s rates,”Comput. Networks & ISDN Syst., vol. 27, no. 4, pp. 611–624, January
1995.

[66] C. B. Stunkel, “The SP2 high-performance switch,”IBM Syst. J., vol. 34, no. 2, pp.
185–204, Feb. 1995.

[67] A. Miyoshi and R. Rajkumar, “Protecting resources with resource control lists,” in
Proc. IEEE Real-Time Technol. Applic. Symp., Taipei, Taiwan, May 2001, pp. 85–94.

[68] D. Cohen and K. Narayanaswamy, “A fair service approach to defending against
packet flooding attacks,” http://www.cs3-inc.com/ddos.html.

133

Appendix A. Relationship between AFB and RFB

As described in Section 1.3.2, the absolute and the relative fairness bounds are two

common measures of fairness in bandwidth allocation. Denote bySG
i (t1, t2) andSq

i (t1, t2)

the service received by flowi during time interval[t1, t2) under the GPS policy and under

a given practical policyq, respectively. Denote byW the sum of the weights of all flows,

and bywm the smallest weight of all flows.

Under any given scheduling policyq, the absolute fairness with respect to flowi over

time interval[t1, t2), denoted byAFq
i (t1, t2), is defined as,

AFq
i (t1, t2) =

∣∣∣∣∣
Sq

i (t1, t2)

wi

− SG
i (t1, t2)

wi

∣∣∣∣∣ . (A.1)

The absolute fairness over time interval[t1, t2), denoted byAFq(t1, t2), and the absolute

fairness bound,AFBq, are defined as,

AFq(t1, t2) = max
∀i

AFq
i (t1, t2) (A.2)

AFBq = max
∀(t1,t2)

AFq(t1, t2). (A.3)

Under any given scheduling policyq, the relative fairness with respect to a pair of flows

(i, j) over time interval[t1, t2), denoted byRFq
(i,j)(t1, t2) is defined as,

RFq
(i,j)(t1, t2) =

∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
j (t1, t2)

wj

∣∣∣∣∣ . (A.4)

The relative fairness with respect to a flowi over time interval[t1, t2), denoted byRFq
i (t1, t2),

is defined as,

RFq
i (t1, t2) = max

∀j
RFq

(i,j)(t1, t2). (A.5)

The relative fairness over time interval[t1, t2), RFq(t1, t2), and the relative fairness bound,

RFBq, can now be defined as,

RFq(t1, t2) = max
∀i

RFq
i (t1, t2) (A.6)

134

RFBq = max
∀(t1,t2)

RFq(t1, t2). (A.7)

Lemma 4 Under any work-conserving policyq, over any interval of time[t1, t2),

N∑

i=1

Sq
i (t1, t2) =

N∑

i=1

SG
i (t1, t2)

whereN is the number of flows. This obvious lemma is also stated in [21]. For the sake of

brevity, we denote
∑N

i=1 SG
i (t1, t2) by S(t1, t2).

Lemma 5 Over any interval of time[t1, t2) and for any pair of flows(i, j),

RFq
(i,j)(t1, t2) ≤ AFq

i (t1, t2) + AFq
j(t1, t2).

Proof: Recall that under the GPS scheduler, the service received by each backlogged

flow is exactly proportional to its weight, i.e.,

SG
i (t1, t2)

wi

=

∑N
i=1 SG

i (t1, t2)∑N
i=1 wi

=
S(t1, t2)

W
.

Thus from (A.1), we can express the absolute fairness of flowi as follows:

AFq
i (t1, t2) =

∣∣∣∣∣
Sq

i (t1, t2)

wi

− S(t1, t2)

W

∣∣∣∣∣ . (A.8)

From (A.4) and using (A.8), we get,

RFq
(i,j)(t1, t2) =

∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
j (t1, t2)

wj

∣∣∣∣∣

=

∣∣∣∣∣
Sq

i (t1, t2)

wi

− S(t1, t2)

W
+

S(t1, t2)

W
− Sq

j (t1, t2)

wj

∣∣∣∣∣

≤
∣∣∣∣∣
Sq

i (t1, t2)

wi

− S(t1, t2)

W

∣∣∣∣∣ +

∣∣∣∣∣
S(t1, t2)

W
− Sq

j (t1, t2)

wj

∣∣∣∣∣
= AFq

i (t1, t2) + AFq
j(t1, t2).

Lemma 6 Over any interval of time[t1, t2),

RFq(t1, t2) ≤ 2AFq(t1, t2).

135

Proof: Over the time interval[t1, t2), assume that the maximum of the relative fairness

with respect to any pair of flows occurs with flowsi′ andj′. Therefore,

RFq(t1, t2) = RFq
(i′,j′)(t1, t2)

≤ AFq
i′(t1, t2) + AFq

j′(t1, t2)

≤ 2AFq(t1, t2).

Lemma 7 Over any interval of time[t1, t2), for any flowi,

AFq
i (t1, t2) ≤

(
1− wi

W

)
RFq

i (t1, t2).

Proof: Denote bySq
i−(t1, t2), the sum of the service received by all the flows except

flow i during time interval[t1, t2) under policyq. From (A.8), we have,

AFq
i (t1, t2) =

∣∣∣∣∣
Sq

i (t1, t2)

wi

− S(t1, t2)

W

∣∣∣∣∣

=

∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
i (t1, t2) + Sq

i−(t1, t2)

W

∣∣∣∣∣

=

∣∣∣∣∣
(W − wi)S

q
i (t1, t2)

Wwi

− Sq
i−(t1, t2)

W

∣∣∣∣∣

=
W − wi

W

∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
i−(t1, t2)

W − wi

∣∣∣∣∣ . (A.9)

If we denote

αj =
Sq

j (t1, t2)

wj

thenSq
j (t1, t2) = wjαj, and,

Sq
i−(t1, t2)

W − wi

=

∑
j 6=i wjαj∑

j 6=i wj

which meansSq
i−(t1, t2)/(W −wi) can be considered as the weighted average ofαj, j 6= i.

Therefore,

min
j 6=i

Sq
j (t1, t2)

wj

≤ Sq
i−(t1, t2)

W − wi

≤ max
j 6=i

Sq
j (t1, t2)

wj

. (A.10)

136

Thus, we have,
∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
i−(t1, t2)

W − wi

∣∣∣∣∣ ≤ max
∀j

∣∣∣∣∣
Sq

i (t1, t2)

wi

− Sq
j (t1, t2)

wj

∣∣∣∣∣
= RFq

i (t1, t2). (A.11)

Applying the above in (A.9) completes the proof.

Note thatwi ≥ wm, and therefore, from Lemma 7,

AFq
i (t1, t2) ≤

(
1− wm

W

)
RFq

i (t1, t2). (A.12)

In the inequality above, if the RHS is no less than the LHS for any given flow, then over all

flows, the maximum possible value of the RHS is also no less than the maximum possible

value of the LHS. This leads into Lemma 8 below.

Lemma 8 Over any interval of time[t1, t2),

AFq(t1, t2) ≤
(
1− wm

W

)
RFq(t1, t2).

Combining Lemmas 6 and 8, we have,

1

2
RFq(t1, t2) ≤ AFq(t1, t2) ≤

(
1− wm

W

)
RFq(t1, t2). (A.13)

We now proceed to prove that the above relationship also holds between the absolute and

relative fairness bounds.

Theorem 7 For any work-conserving scheduling policyq,

1

2
RFBq ≤ AFBq ≤

(
1− wm

W

)
RFBq.

Proof: Without loss of generality, we assume that the maximum value of absolute

fairness is achieved over the time interval[t1, t2). Thus, from Lemma 8,

AFBq = AFq(t1, t2)

≤
(
1− wm

W

)
RFq(t1, t2)

≤
(
1− wm

W

)
RFBq.

137

Similarly, if we assume that the maximum of relative fairness is achieved over the time

interval[t3, t4), then from Lemma 6,

RFBq = RFq(t3, t4)

≤ 2AFq(t3, t4)

≤ 2AFBq.

The bounds stated in Theorem 7 can be shown to be tight. Consider a set of backlogged

flows of equal weight managed by a scheduler that behaves exactly as GPS all of the time

except during a certain short interval of time. During this interval, it gives all of the share

of flow i’s service to another flowj. All other flows receive service exactly equal to what

they would have received under GPS. During this interval, flowi receives no service at all

while flow j receives twice the service it would have received under GPS. One can readily

verify that the absolute fairness bound of this scheduler is one half of its relative fairness

bound, establishing that the lower bound in Theorem 7 is tight.

We use the Deficit Round Robin (DRR) scheduler [8] to show that the upper bound in

Theorem 7 is also tight. ConsiderN − 1 backlogged flows, each of unit weight, served

by a DRR scheduler. Assume that a newN -th flow, also of unit weight, becomes active at

time t, when all other flows are already backlogged and active. Denote byQ the quantum

size associated with each flow, and by∆ the smallest unit of service provided by the DRR

scheduler. Recall that the maximum possible value of the deficit counter isQ − ∆ at the

beginning of each round, and that an additional amount ofQ may be served from each flow

in each new round. Therefore, each of the firstN − 1 flows may receive service equal

to 2Q − ∆ before flowN receives its service opportunity. If the first packet in flowN ’s

queue is of size∆ and the second packet is of sizeQ, flow N will receive service equal to

∆ in this first service opportunity. Before flowN receives its second service opportunity,

each of the other flows may have received service equal to a maximum ofQ. Now, let t′

138

be the time instant when flown begins its second service opportunity. During the interval

[t, t′), flow N receives a service equal to∆ while each of other flows receives service equal

to 3Q − ∆. It can be shown that both absolute and relative fairness bounds of the DRR

scheduler are achieved over this time interval[t, t′). Thus, the relative fairness bound is

3Q− 2∆, while the absolute fairness bound is

(N − 1)(3Q−∆) + ∆

N
−∆ =

N − 1

N
(3Q− 2∆)

showing that the upper bound in Theorem 7 is tight.

139

Vita

Yunkai Zhou was born in Shanghai, China. He received his B.S. in Electrical Engineer-

ing from the Department of Automation, Tsinghua University, Beijing, China, in 1998,

and M.S. in Electrical Engineering from the Department of Electrical and Computer En-

gineering, Drexel University, in 2002. Since September 1998, he has been affiliated with

the Computer Communications Laboratory, Department of Electrical and Computer Engi-

neering, Drexel University, under the supervision of Dr. Harish Sethu. His research has

involved a variety of areas in computer networking, such as resource allocation, wireless

and sensor networks, switching networks, system performance evaluation, system archi-

tecture design and traffic modeling. He has also been a teaching assistant in the Depart-

ment of Electrical and Computer Engineering, Drexel University, from 1998 to 2003. His

teaching responsibilities include lecture, recitation, help sessions, and quiz/homework as-

signment/grading.

His research work has been published in or is under review with various refereed jour-

nals and conferences. He has been awarded the ACM SIGCOMM Student Travel Award

from the Association of Computing Machinery, the George Hill Jr. Fellowship from Drexel

University and the ECE Graduate Travel Award from InterDigital Communications. He is

a member of IEEE, IEEE Computer Society, IEEE Communications Society, ACM and

ACM Special Interest Group in Data Communications.

