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Abstract

Statistical Static Timing Analysis of Nonzero Clock Skew Circuits
Shannon Michael Kurtas

Baris Taskin, Ph.D.

As microprocessor and ASIC manufacturers continue to push the limits of transistor sizing into

the sub-100nm regime, variations in the manufacturing process lead to increased uncertainty about

the exact geometry and performance of the resulting devices. Traditional corner-based Static Timing

Analysis (STA) assumes worst-case values for process parameters such as transistor channel length

and threshold voltage when verifying integrated circuit timing performance. This has become unrea-

sonably pessimistic and causes over-design that degrades full-chip performance, wastes engineering

effort, and erodes profits while providing negligible yield improvement. Recently, Statistical Static

Timing Analysis (SSTA) methods, which model process variations statistically as probability dis-

tribution functions (PDFs) rather than deterministically, have emerged to more accurately portray

integrated circuit performance. This analysis has been thoroughly performed on traditional zero

clock skew circuits where the synchronizing clock signal is assumed to arrive in phase with respect

to each register. However, designers will often schedule the clock skew to different registers in order

to decrease the minimum clock period of the entire circuit. Clock skew scheduling (CSS) imparts

very different timing constraints that are based, in part, on the topology of the circuit. In this the-

sis, SSTA is applied to nonzero clock skew circuits in order to determine the accuracy improvement

relative to their zero skew counterparts, and also to assess how the results of skew scheduling might

be impacted with more accurate statistical modeling. For 99.7% timing yield (3σ variation), SSTA

is observed to improve the accuracy, and therefore increase the timing margin, of nonzero clock skew

circuits by up to 2.5x, and on average by 1.3x, the amount seen by zero skew circuits.
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Chapter 1. Introduction

1.1 Background

Microprocessor and ASIC designers constantly weigh the tradeoffs of area, delay, and power in

state of the art IC design. Although all of these criteria are highly critical, the performance of IC

chips is traditionally correlated to the maximum frequency at which they can be operated. The

physical design steps of IC development, whether completed by automated tools or through designer

interaction, are formulated to meet a desired operating frequency. Despite this vast amount of

emphasis and planning, the final product can still be far from the targeted timing budget due

to simulatenously increasing product requirements and manufacturing variability. Variations in

the geometry and electronic properties of the transistors within the chip inevitably occur during

fabrication and significantly impact their timing. In order to compensate for these variations in

process parameters, designs go through static timing analysis (STA) as part of a post-processing

performance verification CAD flow. This timing analysis establishes a safety factor such that, even

with this unavoidable process variation, the chips manufactured will function as desired. Because of

worsening variation in deep sub-micron (DSM) design, the safety factors introduced by STA have

become unreasonably pessimistic and, as a result, statistical techniques such as statistical static

timing analysis (SSTA) are emerging in order to more accurately portray circuit performance.

1.1.1 Sources of Variation

A typical Si-based semiconductor process begins with Silicon ingots being sliced into a “lot” of

thin “wafers,” which are then processed into tiny “die” with generally identical functionality. Process

parameters vary on each die and wafer due to imprecisions in the manufacturing process. Process

variations are typically characterizated as either being inter-die or intra-die. Inter-die variations
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occur in devices between multiple die on a wafer. Intra-die variations, conversely, occur between

multiple devices on the same die, as shown in Figure 1.1.

Figure 1.1: Classification of Process Variation

Intra-die variation is further broken down in to systematic and random variation. Systematic

variation implies spatial correlation between devices, whereas random variation is independent for

each device regardless of location [1]. Lithographic optics, for instance, are known to produce

systematic variation in MOSFET (Figure 1.2) channel length (Le) across a die. Random dopant

fluctuations are responsible for varying transistor threshold gate voltage (VT ). Although this is not

an exhaustive list of the parameters which vary, channel length and threshold voltage have the most

significant impact on transistor performance and, as is common, are the two sources of variation

that will be considered in this study. As will be described later in Chapter 3, the framework used is

easily extensible for any number of systematic and random parameters.

1.1.2 Future Implications of Variation for Microprocessors & ASICs

As the minimum feature size of VLSI circuits continues to shrink, process variations become

significantly worse. The amount of variation in channel length and threshold voltage can be rep-

resented as a growing percentage of their nominal values. For example, a ±.1V variation in VT is
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Figure 1.2: MOSFET Cross Section

less problematic in a process where VT is nominally 1V(10%) as opposed to one where VT is nom-

inally .7V(14.3%). Although worst case variation has previously corresponded to less than a 10%

deviation from the nominal value of most process parameters, it is known to be worse than 15% for

most sources of variation in deep sub-micron circuits [2]. As it has been succinctly put, “critical

dimensions are scaling faster than our control of them, and the variability of these dimensions is

proportionately increasing [3].” These variations greatly complicate the design and verfication of IC

designs in DSM technologies. The accelerated time-to-market demands in both the microprocessor

and ASIC markets have exacerbated the need for efficient and reliable timing analysis that can ac-

curately deal with process variability. For approximately 20 years static timing analysis (STA) has

been able to meet that need. However, as a result of worsening variation, the deterministic guard-

banding of STA has resulted in undesireable degrees of pessimism. STA does not take into account

the known probabilities of different types of variation, and therefore does not give designers a reliable

picture of what percentage of the manufactured chips will operate at which clock frequencies. STA

is also considered “risky” because, although the worst case figures in deterministic guardbanding

are meant to ensure guaranteed operation at the target frequency, it is not practical to conduct this

deterministic bounding for all variation corners. In order to address these pitfalls, statistical static

timing analysis (SSTA) [4, 5] has been proposed. In SSTA, variations are represented by random

variables rather than deterministic best and worst case values. Statistical modeling and computation

therefore provide a more accurate assessment of circuit performance which includes the probabil-
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ity of the circuit performing at any given frequency. The widespread use of statistical design and

analysis will be essential within the next decade in addressing Design for Manufacturability (DFM)

concerns of deep sub-micron technologies.

The information provided by SSTA is of importance to both microprocessor and ASIC designers,

despite their different profit functions as depicted in Figure 1.3. Across a wafer of microprocessors,

some of the manufactured chips are able to operate at “b1” while others may have to operate at “a1,”

due to process variations. The chips at a1, although slower, can be still be sold at a lower profit; that

is, they can be speed binned at a lower frequency. Statistical yield information provides a picture of

how a chip would be speed binned prior to manufacturing, and thereby enables informed decision

making regarding changes in design or chip specification [6]. Similarly, ASIC manufacturers need

to know the probability of a design having a clock period at > b2, as such a chip could not be sold

and would simply be discarded. SSTA therefore enables high-performance targeting simultaneously

with precise risk management [3, 7].

Minimum Clock Period Minimum Clock Period

M
ic

ro
pr

oc
es

so
r 

Pr
of

it

A
SI

C
 P

ro
fi

t

a1b1 b2 a2

Figure 1.3: Microprocessor vs. ASIC Profit

1.2 Problem Statement & Thesis Contributions

Within the last decade, SSTA methods have been discovered and have reached a certain level of

maturity. Researchers are focusing on utilizing these methods in performing circuit optimization and

simulatenously analyzing timing, power, and area constraints [8, 9, 10]. SSTA has been thoroughly

applied to the timing analysis and characterization of zero clock skew (ZCS) circuits. ZCS circuits



CHAPTER 1. INTRODUCTION 5

work on the assumption that the synchronizing clock signal arriving at all of the registers throughout

the circuit is in phase at each of these points. In other words, they have “zero skew” where skew

is defined as the relative difference in clock arrival time between registers. Uncertainty in this

assumption is traditionally handled by further deterministic guardbanding. However, a significant

post-processing step for both microprocessors and ASICs is nonzero clock skew scheduling (CSS).

In nonzero clock skew (NZCS) circuits, clock signal delays are intentionally manipulated in order

to further improve the circuit’s maximum operating frequency [11, 12]. The factors which limit the

maximum operating frequency fMax (or minimum clock period Tmin) are quite different between

ZCS and NZCS circuits.

In this thesis, SSTA is applied to nonzero clock skew circuits in order to determine their relative

improvement in Tmin that can be uncovered with statistical analysis. The results will demonstrate

whether the benefits of skew scheduling are enhanced or lessened by more accurate modeling, and

if the NZCS clock period is limited by different gates or paths in the statistical vs. deteministic

domain.

1.3 Organization of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, traditional static timing

analysis (STA) for zero clock skew circuits is reviewed. In order to help the SSTA discussion, are

the differences between path-based and block-based analysis are presented and the timing limits for

the minimum clock period are defined. In Chapter 3, statistical static timing analysis (SSTA) and

the relevant underlying mathematics are introduced. Also, the accuracy improvement of statistical

modeling is highlighted by examples. In Chapter 4, nonzero clock skew circuits are discussed and the

timing limits that they introduce are examined. Chapter 5 summarizes the experimental setup for

this work including the 90nm cell library generation and characterization. In Chapter 6, statistical

timing results are presented for both zero and nonzero clock skew circuits. Finally in Chapter 7, these

results are discussed thoroughly, conclusions are drawn, and future improvements and extensions to

this work are proposed.
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Chapter 2. Static Timing Analysis

Determining the clock frequency at which a circuit can operate requires being able to measure

propagation delays at different points within that circuit. Although transient analysis simulations

with Spice can provide extremely accurate measurements by taking in to account all of the physical

intracacies of the underlying transistors, the amount of computation time needed to perform these

simulations on an entire circuit quickly becomes impractical for larger circuits. By using simplified

delay models for logic gates and graph representation, static timing analysis aims to efficiently

compute the slowest, frequency limiting path throughout a circuit ( the critical path ) [13].

2.1 Corner Based Cell Delay Models

Static timing analysis (STA) guardbands against process variations by assuming best and worst

case values for the process parameters in question. This is shown graphically in Figure 2.1 for two

process parameters X1 and X2 [14] ( any number of random variables can be included in the same

manner ). The “nominal” corner occurs when both parameters assume their mean values. The worst

case “slow” or “ss” and best case “fast” or “ff” corners, conversely, occur when both parameters

assume their worst and best case values, respectively [15].

Figure 2.1: Worst Case Corner Analysis
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Table 2.1: Example 90nm Process Corner Values

ff nom ss

Le 81nm 90nm 99nm
VT 270mV 300mV 330mV

For example, assuming 10% threshold voltage VT and channel length Le variation in a 90nm

process, these corners would correspond to the values listed in Table 2.1.

Each combinational logic gate within a cell library is characterized using this corner analysis

method. Simulations are performed for each gate at a range of output load capacitances (CL)

and input transition slopes (ttin) in order to find the minimum and maximum propagation delay

[τPmin, τPmax] of the gate at this particular (CL, ttin) combination at the appropriate corner. These

values typically go in to a table or database such that once a circuit configuration is known, the

exact loading and slope can be used to interpolate the exact τPmin and τPmax for each instantiation

of a cell as in [16].

2.2 Circuit Representation

Synchronous circuits consist of combinational logic gates and sequential gates (simply called

registers). For simplicity, all registers in this study are assumed to be edge-triggered flip flops, which

are the most common type of registers. A local data path is formed between any two sequentially

adjacent registers Ri and Rf connected by some collection of combinational logic gates. This is

shown in Figure 2.2, where the combinational gates are lumped into a single combinational block.

Register Ri Register R f

D

C

D

C

Q
Qi

Data
Q

X f

DataLogic

Clock Ci Clock C f

Xi

Data In

Q f

Data Out

Figure 2.2: Local Data Path

A circuit is typically represented in directed graph form where each gate or register is represented

by a vertex and each wire by an edge. In a typical circuit, several local data paths between a register
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pair Ri and Rf will exist, each with their own minimum and maximum total propagation delays,

i.e.
[

d
ifx

Pm, d
ifx

PM

]

for a local data path pifx , where x is used to differentiate between these multiple

local data paths. This is depicted in Figure 2.3.

R1 R2

[d12a
Pm ,d12a

PM ] = [1.0,1.2]

→ p12a

[d12b
Pm ,d12b

PM ] = [0.6,0.7]

→ p12b

Figure 2.3: Multiple Local Data Paths

A reduced graph is defined as a directed graph where each register is represented by a vertex,

and local data paths as a whole are represented by an edge, as shown in Figure 2.4. In this manner,

an edge labeled pif corresonds to a particular local data path from register Ri to register Rf [17].

When several local data paths between a register pair exist, the minimum and maximum data prop-

agation time
[

d
if
Pm, d

if
PM

]

between registers Ri and Rf is defined as the minimum and maximum

data propagation times of all such paths as seen in Equations 2.1 and 2.2. For example,
[

d
if
Pm, d

if
PM

]

for all of the local data paths between registers Ri and Rf from Figure 2.3 would evaluate to be

[0.6, 1.2] as see in Figure 2.3.

R1 R2

[d12
Pm,d12

PM] = [0.6,1.2]

→ p12

Figure 2.4: Reduced Graph of Local Data Path
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d
if
Pm = min

∀pif

[

d
ifx

Pm

]

(2.1)

d
if
PM = max

∀pif

[

d
ifx

PM

]

(2.2)

2.3 Calculating Local Path Delays: MAX, MIN, & ADD Operations

For deterministic static timing analysis, calculating local path delays is a straightforward process.

Minimum and maximum total data propagation delays
[

d
if
Pm, d

if
PM

]

for a specific path pifx between

registers Ri and Rf are the sum of the “ss” and “ff” corner logic gate propagation delays (τPmin,

τPMax) along that path, respectively, as seen in Equations 2.3 and 2.4.

d
ifx

Pm =
∑

τPmin

∀gates⊂pifx

(2.3)

d
ifx

PM =
∑

τPMax

∀gates⊂pifx

(2.4)

Rather than enumerating all of the possible data paths and adding cell propagation delays repeti-

tively for gates that exist in multiple paths, a topological sort of the intermediate logic gates between

registers can be found for acyclic circuits. This topological sort is an ordering of gates to visit in

the circuit graph that can be used to calculate the minimum and maximum arrival time (ATmin,

ATMax) at each gate in the circuit, such that no gate is visited before all of its predecessors have

been visited. The procedure for finding a topological sort is displayed in Figure 2.5.

This topological sort is traversed in order to find the arrival times [AT
g
min, AT

g
Max] for each gate

in the circuit network. These calculations require the use of three essential static timing analysis

functions, ADD(), MIN(), and MAX(). For a two input logic gate g = f(a, b) with inputs a

and b, the minimum and maximum arrival times [AT
g
min, AT

g
Max] are calculated as in Equations 2.5

and 2.6. Any number of inputs can be handled by using nested calls to the MIN() and MAX()

functions.
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findTopsort(gate g) {

for each gate o in g.outputs {

if o has not been visited {

findTopsort(o);

push g on to topsortStack;

mark g as visited;

}

}

}

Figure 2.5: Finding a Topological Sort

AT
g
min = ADD

(

τ
g
Pmin, MIN

(

AT a
min, AT b

min

))

(2.5)

AT
g
Max = ADD

(

τ
g
PMax, MAX

(

AT a
Max, AT b

Max

))

(2.6)

2.4 Zero Clock Skew Timing Limitations

Since zero clock skew (ZCS) circuits presume that the synchronizing clock signal arrives in phase

at all of the registers, the minimum period T zcs
min at which the clock must be operated depends on

the slowest local data path in the circuit. The internal delays of the registers, the setup time δS of

Rf and the clock-to-output time dRi

CQM of Rf , are also considered. This is defined mathematically

in Equation 2.7, both in terms of the worst case “ss” corner local data path delays among all register

pairs as well as simply the maximum arrival time among all registers.

T zcs
min = max

∀(Ri,Rf )

[

dRi

CQM + d
if
PM + δ

Rf

S

]

= max
∀Rf

[

AT
Rf
Max + δ

Rf

S

]

(2.7)

Once this limitation is calculated, certain paths in the circuit may need modification in order

to reduce the worst case clock period to meet the desired clock frequency of the product. If such

modifications are not possible due to other constraints, the specifications of the chip will need to be

relaxed and profits will be lost.



11

Chapter 3. Statistical Static Timing Analysis

Statistical static timing analysis has recently emerged in order to mitigate the pessimism of

traditional deterministic static timing analysis that has become severely problematic in deep sub-

micron technologies. Statistical models are used to represent process variations and delays in order

to improve the accuracy of timing analysis while still maintaining its efficiency and speed relative to

ciruit simulation.

3.1 Statistical Delay Models & Sensitivities

Instead of the deterministic worst case corner models used by STA described in Chapter 2, statis-

tical static timing analysis (SSTA) methods model delays and arrival times as random variables with

mean µ and standard deviation σ. Statistical process information from fabrication facilities includes

information on the distribution of parameters such as Le and VT that can now be represented as

random variables for the purposes of timing analysis. Revisiting Figure 3.1 from Chapter 2, it is

seen that the worst case corner values for process parameters actually corresponded to points along

these statistical distributions.

Figure 3.1: Statistical Analysis
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Instead of evaluating these distributions at a given point (typically µ ± 3σ) and using those

deterministic values throughout the static timing analysis flow, statistical static timing analysis

propagates the statistical distributions and performs mathematical operations on the distributions

themselves in order to improve accuracy.

3.1.1 Gaussian Random Variables

For this study in particular, variations, delays and the results of all statistical operations are

modeled as Gaussian random variables. Although methods to efficiently handle non-Gaussian dis-

tributions are currently being investigated [18, 19], Gaussian modeling has been the most popular

in statistical static timing analysis research. A sample definition of a Gaussian random variable is

shown in Equation 3.1. The probability density function (PDF) of such a Gaussian random variable

X is given by Equation 3.2.

X ∼ N(µ, σ2) (3.1)

f(x; σ, µ) =
1

σ
√

2π
exp [− (x− µ)

2

2σ2
] (3.2)

In order capture variation sensitivity, these random variables can be put into a canonical form, as

in Equation 3.3, that captures their nominal value as well as the effects of different types of process

variation [5].

A = ao +

n
∑

i=1

ai∆Xi + an+1∆Ra ≡ N

(

ao,

n+1
∑

i=1

a2
i

)

(3.3)

Here, ao is the mean value of a random variable A. ∆Xi−n and ∆Ra correspond to systematic

global and random local sources of variation, respectively, and ai−n and an+1 are the sensitivities

of random variable A to these sources of variation. The sensitivity sX
A of a random variable A to

variation in a random variable X is defined as in Equation 3.4 [20].

sX
A =

∂A

∂X
(3.4)
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3.2 Statistical MIN, MAX, & ADD Operations

SSTA methods use canonical forms of logic gate propagation delays as well as arrival times in

order to perform the MAX(), MIN(), and ADD() functions. Unlike with deterministic modeling,

these operations are no longer straightforward. Rather than simply comparing real numbers for a

MAX() operation, random variables must be compared. When examining two random variables A

and B, the tightness probability of A, TA, is the probability that the random variable A is greater

than, or dominates, B as defined in Equation 3.5 [21, 5]. The probability that B dominates A, then,

is simply (1− TA).

TA = Φ

(

ao − bo

θ

)

, TB = (1− TA) (3.5)

This tightness probability is defined in terms of the cumulative distribution function (CDF)

Φ(y) (Equation 3.7), using the mean values of A and B (ao and bo), the standard normal PDF φ(x)

(Equation 3.6), the correlation coefficient ρ (Equation 3.9), and the expression for θ as defined by

[22] (Equation 3.8).

φ(x) ≡ 1√
2π

exp

(

−x2

2

)

(3.6)

Φ(y) ≡
∫ y

−∞

φ(x)dx (3.7)

θ ≡ (σ2
A + σ2

B − 2ρσAσB)1/2 (3.8)

ρ =

∑n
i=1 aibi

σAσB
(3.9)

The addition of two random variables in canonical form results in a new random variable as

defined in Equation 3.10.
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add(A, B) = (ao + bo) +
∑n

i=1(ai + bi)∆Xi +
(√

a2
n+1 + b2

n+1

)

∆Ra

= co +
∑n

i=1 ci∆Xi + cn+1∆Ra

(3.10)

The subtraction operator is defined similarly by 3.11.

sub(A, B) = (ao − bo) +
∑n

i=1(ai + bi)∆Xi +
(√

a2
n+1 + b2

n+1

)

∆Ra

= do +
∑n

i=1 di∆Xi + dn+1∆Ra

(3.11)

For the MAX() operation, the resulting random variable has a mean and variance as shown in

Equations 3.12 and 3.13, respectively.

µmax(a,b) = E[max(A, B)]

= aoTA + boTB + θφ
[

ao−bo

θ

]

(3.12)

σ2
max(a,b) = var[max(A, B)]

= (σ2
A + a2

o)TA + (σ2
B + b2

o)TB + (ao + bo)θφ
(

ao−bo

θ

)

− µ2
max(a,b)

(3.13)

Where G = MAX(A, B), G can be put back in to canonical form as shown in Equations 3.14, 3.15,

and 3.16.

go = µmax(a,b) = E[max(A, B)] (3.14)

gi = TAai + TBbi (3.15)

gn+1 =

√

√

√

√σ2
max(a,b) −

n
∑

i=1

g2
i (3.16)

One very important difference between the statistical version of the MAX() function and the

deterministic version is that with SSTA, the result of the MAX() operation is a new random variable
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with its own mean and variance, rather than being identical to one of the operands. Furthermore,

when taking the MAX() of more than two random variables by using nested MAX() calls, it has

been shown that these calls need to be in order of the operands with increasing mean values [21].

The statistical MIN() operation is very similar to the MAX() operation. The mean and variance

of the resulting random variable is defined as in Equations 3.17 and 3.18, respectively. Nested calls

to the MIN() operation must also be made in order of the operands with increasing mean values.

µmin(a,b) = E[min(A, B)]

= aoTB + boTA − θφ
[

ao−bo

θ

]

(3.17)

σ2
min(a,b) = var[min(A, B)]

= (σ2
A + a2

o)TB + (σ2
B + b2

o)TA − (ao + bo)θφ
(

ao−bo

θ

)

− µ2
min(a,b)

(3.18)

Where H = MIN(A, B), H can be put back in to canonical form as shown in Equations 3.19, 3.20,

and 3.21.

ho = µmin(a,b) = E[min(A, B)] (3.19)

hi = TBai + TAbi (3.20)

hn+1 =

√

√

√

√σ2
min(a,b) −

n
∑

i=1

h2
i (3.21)

3.3 Statistical Zero Clock Skew Timing Limitations

Remember from Section 2.4 that the clock frequency of zero clock skew circuits depends on the

maximum arrival time to all registers within a circuit. In statistical analysis, this limitation still

holds true; however, that maximum is now represented as the probability density function of a

random variable rather than a deterministic number.
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T zcs
min = MAX

∀Rf

(

AT
Rf

Max

)

∼ X(µAT , σ2
AT ) (3.22)

As Equation 3.22 implies, designers can see the probability of a circuit being able to function at

a specific clock frequency, i.e. the timing yield at each frequency. For microprocessor manufacturers

this means a much more accurate method of realizing how a design will be speed binned prior to

manufacturing [6]. For ASIC manufacturers, it means a clear picture of the yield vs. design effort

tradeoff and quicker timing sign-off.

3.3.1 Pessimism of STA

The main reason why deterministic static timing analysis is so pessimistic is that it presumes

worst case (µ+3σ) values for all variation sources and uses those values at each gate to determine the

overall performance impact on the circuit. Although it is known that the probability of a particular

random variable falling within a (µ+/-3σ) window is 99.73% as in equation 3.23, the probability of

the sum (i.e. after performing the ADD() operation for an entire circuit) of several random variables

falling within this window grows as in Equation 3.24 with n random variables [23].

Φ(3)− Φ(−3) = 99.73% (3.23)

Φ(3
√

n)− Φ(−3
√

n) (3.24)

The result of the pessimism in deterministic STA, and the improvement in Tmin seen by SSTA

is portrayed graphically in Figure 3.2 for an example circuit s13207 from the ISCAS’89 suite of

benchmark circuits.

In Figure 3.2, the nominal and worst cast corner minimum clock period Tmin are computed with

STA, while the 99.73% yield clock period is computed with SSTA. Deterministic STA analysis would

suggest a performance limit of ∼1740ps that could be met by 100% of manufactured chips. SSTA

analysis, however, reveals the exact distribution of performance and indicates that 99.73% of chips

manufactured would be able to operate with a clock period of ∼1570ps.
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Figure 3.2: Probability Density Function of Tmin for s13207 Circuit Compared to Corner Analysis

Unlike with the deterministic minimum clock period calculated with STA, the minimum clock

period probability distribution provided by SSTA allows designers to assess the profitability and

functionality of a chip prior to manufacturing, to accurately determine which paths in a chip might

need modification, as well as exactly what impact any such modifications will have on the timing

yield of a design.
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Chapter 4. Nonzero Clock Skew Circuits

In previous chapters, circuits were assumed to have zero clock skew between all registers in a

circuit; that is, the the synchronizing clock signal arrives in phase with respect to all register pairs

as seen in Figure 4.1. This assumption implies that each local data path in a circuit has an equal

amount of time in which to propagate its signal between registers, regardless of whether or not each

path needs that much time. As was defined in Chapter 2, the minimum clock period Tmin of a

circuit is set by the worst (slowest) local data path. The remainder of the local data paths may

actually require less time, and therefore have some slack as defined by Equation 4.1 for a local data

path between registers Ri and Rf .

slackpif = Tmin −
[

dRi

CQM + d
if
PM + δ

Rf

S

]

(4.1)

Delay i = Delay f

Zero skew

Clock i

Clock f

Delay i < Delay f

Negative skew

Clock i

Clock f

Delay i > Delay f

Positive skew

Clock i

Clock f

Figure 4.1: Different Clock Skews

In nonzero clock skew systems, the clock skews between register pairs are manipulated in order

to make use of the slack on faster paths and to thereby provide additional time to the slower paths

as seen in Figure 4.1. Such systematic assignment of positive or negative skew to local data paths

effectively decreases the Tmin of the overall circuit [17]. The registers and local data paths of a
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circuit form a large, interconnected graph. Any positive or negative skew assignment, therefore,

affects the timing constraints of other registers and paths. The set of clock delays to each register is

called the clock skew schedule. The process of finding this clock skew schedule in order to minimize

Tmin of the circuit is called clock skew scheduling [11].

4.1 Clock Frequency Limitations

An important distinction must be drawn between T zcs
min, the minimum clock period for zero clock

skew circuits as defined in Equation 2.7, and T NZCS
min , the minimum clock period for nonzero clock

skew circuits. Whereas T zcs
min depends solely on the slowest local data path of a circuit, the maximum

frequency gain achievable with clock skew schedule (T NZCS
min ) depends on three new and very unique

limitations based in part on the topology of registers within the circuit as presented in Reference [17].

These three limitations, listed below, are discussed in detail in Sections 4.1.1, 4.1.2, and 4.5.

I. T
NZCS,I
min : Uncertainty of local data path propagation delays

II. T
NZCS,II
min : Data path cycle propagation delays

III. T
NZCS,III
min : Difference in propagation delays among reconvergent paths

The resulting T NZCS
min is set by the worst of these three limits, as in Equation 4.2.

T NZCS
min = max

[

T
NZCS,I
min , T

NZCS,II
min , T

NZCS,III
min

]

(4.2)

The first of these limits occurs on every single local data path, while the second and third

limits only occur for circuits where the circuit topology includes cycles and reconvergent paths,

respectively [17].

4.1.1 Uncertainty of local data path propagation delays

Nonzero clock skew circuits depend not only on the slowest local path delay, but also on the

difference between the maximum and minimum delays on a local data path between any register

pair Ri and Rf , as seen in Figure 4.2. As defined by [17], the clock period cannot be minimized by

clock skew scheduling any further than seen in Equation 4.3.
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R1 R2

[d12
Pm,d12

PM] = [0.6,1.2]

→ p12

Figure 4.2: Local Data Path

T
NZCS,I
min = max

∀Ri;Rf

[

d
if
PM + δS − (dif

Pm + δH)
]

(4.3)

For instance in Figure 4.2, assuming negligible register delays (δS = δH = 0), the minimum clock

period limit imposed by this local data path would be T
NZCS,I
min = (1.2− 0.6) = .6.

4.1.2 Data path cycle propagation delays

In nonzero clock skew circuits, however, the timing relationships between registers in a data path

cycle, as seen in Figure 4.3, limit the clock period achievable by clock skew scheduling.

→

→

Rn−1 R2

Rk

R1

← ←

→ →

Figure 4.3: Data Path Cycle with n Registers

The limitation imposed on the clock period by data path cycles is dependent upon the maximum

local data path delays between registers on the cycle as well as the number of registers on the cycle,

as defined in Equation 4.4.

T
NZCS,II
min = max

∀cycles







∑

∀Ri;Rf oncycle

(dRi

CQM + d
if
PM + δS)

n






(4.4)
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For instance in Figure 4.3, assume negligible register delays (δS = dCQM = 0), and

(

d12
PM = 3, d23

PM = 5, d34
PM = 2, d41

PM = 10
)

. The limit that this cycle imposes on the minimum clock

period would be T
NZCS,II
min =

(

3 + 5 + 2 + 10

4

)

= 5.

In order to account for this limitation, the reduced circuit graph must be searched for all existing

cycles. This search can be performed using a depth first search (DFS) including a numbering scheme

for labeling nodes (registers) as they are first visited and completed, as in the algorithm defined by

Figure 4.4. Any “backedge” seen during this search implies that a cycle exists. Upon detection, a

vector listing the registers on the cycle is pushed on to a list for future analysis.

for each register r in circuit {

findCycles(r,0);

}

findCycles(register r, int val) {

if r has not been visited {

push r on to pathStack;

r.visitValue1 = val;

for each register o in r.connectedRegisters {

if(o.visitValue1 is NULL) {

if(r.visitValue2 is NULL) {

r.visitValue2 = findCycles(o, val1+1); } else {

r.visitValue2 = findCycles(o, g.visitValue2+1); }

}

if(o.visitValue1 is not NULL AND o.visitValue2 is NULL) {

# detected cycle

push o on to cycleStack;

do ( push ( pop pathStack ) on to cycleStack )

while top of cycleStack is not o;

}

}

return ( r.visitValue2 + 1 )

}

}

Figure 4.4: Detecting Cycles in a Directed Graph
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4.1.3 Difference in propagation delays among reconvergent paths

As discovered fairly recently [12], the topology of reconvergent data paths, as depicted in Fig-

ure 4.5, imposes a limitation similar to that of data path cycles. The minimum clock period possible

with clock skew scheduling depends on the differences in data propagation times between parallel

reconvergent paths as well their relative lengths as defined by Equation 4.5.

Rd Rc

Ri1 Rim

R j1 R jn

→ →

→ →

[

pdd{ j1... jn}c
m , pdd{ j1... jn}c

M

]

pd{ j1... jn}c = p j

[

pdd{i1...im}c
m , pdd{i1...im}c

M

]

pd{i1...im}c = pi

Figure 4.5: Reconvergent Register-to-Register Paths

T
NZCS,III
min = max

∀(Rd,Rc)

[

max
∀(pi,pj)

(

pd
pi

M − pdpj

m + δS + δH

|m− n + 1|

)]

(4.5)

This limit depends on minimum and maximum reconvergent path propagation delays, [pdm, pdM ]

as defined by Equations 4.6 and 4.7, as well as the number of registers along each path. Furthermore,

as Equation 4.5 indicates, all possible pairs of paths between a divergent and reconvergent register

must be examined.

pdpi

m =
n−2
∑

i=1

d
i,i+1
PM + d

n−1,n
Pm (4.6)
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pd
pi

M =

n−1
∑

i=1

d
i,i+1
PM (4.7)

The thorough detection of reconvergent data paths is somewhat challenging in cyclic sequential

circuits. Algorithms for detection have been proposed [24], though they are unable to detect all

possible reconvergent paths in the presence of data path cycles. This work defines an algorithm

for this detection by Figure 4.6 that is relatively inefficient since its time complexity grows with n

registers as O(n2). This is suitable for research performed in this thesis on relatively small academic

benchmark circuits; however, a more robust algorithm should be investigated in order to apply these

concepts to larger industrial designs.

for each register r in circuit {

findReconvergence(r,0);

}

findReconvergence(register r, int val) {

push r on to pathStack;

r.visitValue1 = val;

for each register o in r.connectedRegisters {

if(o.visitValue1 is NULL) {

if(r.visitValue2 is NULL) {

r.visitValue2 = findReconvergence(o, val1+1); } else {

r.visitValue2 = findReconvergence(o, g.visitValue2+1); }

}

if(o.visitValue1 is not NULL AND o.visitValue2 is not NULL) {

# detected reconvergent register

reconvRegister = o;

do ( push ( pop pathStack ) on to reconvPathStack )

while top of reconvPathStack is not o;

diverRegister = reconvPathStack.top;

DFS to find all paths from diverRegister to reconvRegister;

}

}

return ( r.visitValue2 + 1 )

}

Figure 4.6: Detecting Reconvergent Paths
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4.2 Statistical Representation & Analysis of NZCS Limits

In order to perform statistical timing analysis of nonzero clock skew circuits, the three new timing

limits must be represented in random variable form. For each of T
NZCS,I
min , T

NZCS,II
min , and T

NZCS,III
min ,

an additional subscript of “ssta” denotes that the limit is a Gaussian random variable rather than a

deterministic number. Similarly, capital letters used for local path delays and reconvergent branch

delays also indicate random variables (e.g. DPM instead of dpm).

The statistical limit imposed by uncertainty in all local data paths can be calculated relatively

easily using the operations that were defined in Chapter 3, as shown in Equation 4.8.

T
NZCS,I
min,ssta = MAX

∀Ri;Rf

[

SUB
(

D
if
PM , D

if
Pm

)]

(4.8)

For simplicity, negligible internal register delays (δS=δH=dCQ=0) are assumed in this study,

although these delays could incorporated in either a deterministic or statistical manner. It is im-

portant to note that the Gaussian result SUB
(

D
if
PM , D

if
Pm

)

is first calculated for each local data

path in the system, and then these results are compared by nested calls to the MAX() function

in order of increasing mean value. The minimum and maximum local path delays [DPm, DPM ] are

calculated in the same manner as performed in Chapter 3.

The statistical limit imposed by local data path cycles can be calculated as shown by Equation 4.9.

T
NZCS,II
min,ssta = MAX

∀cycles







ADD
∀Ri;Rf oncycle

(

D
if
PM , D

cycle
PM

)

n






(4.9)

The summation of all maximum local data path delays must first be calculated for each cycle

and scaled by n. The results for each cycle are then compared using nested calls to the MAX()

function in the proper order. The scaling of a Gaussian random variable by an integer is performed

as shown in Equation 4.10 and in Equation 4.11 for a random variable in canonical form [25].

N
(

µ, σ2
)

c
= N

(

µ

c
,
(σ

c

)2
)

(4.10)
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A

c
=

ao

c
+

n
∑

i=1

ai

c
∆Xi +

an+1

c
∆Ra (4.11)

The statistical limit imposed by reconvergent local data paths can be calculated as shown by

Equation 4.12.

T
NZCS,III
min,ssta = MAX

∀(Rd,Rc)



MAX
∀(pi,pj)





SUB
(

PD
pi

M , PDpj

m

)

|m− n + 1|







 (4.12)

All possible pairs of reconvergent branches
[

pi, pj
]

between a divergent and reconvergent register

pair [Rd, Rc] must first be compared using the MAX() function in the proper order. Finally, the

MAX() of this result for each divergent and reconvergent register pair [Rd, Rc] in the circuit is

calculated.

By applying SSTA to the different timing limitations of nonzero clock skew circuits, an accurate

picture is developed as to how aggressively these circuits can be clocked without noticeably affecting

the timing yield of a design. This more accurate modeling, along with clock skew scheduling, allows

the highest level of performance to be achieved.
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Chapter 5. Experimental Setup

In order to assess the efficacy of SSTA on NZCS circuits, experiments are performed on academ-

ically available benchmark circuits ISCAS’85 (combinational) and ISCAS’89 (sequential). Physical

implementations of these circuits are generated by technology mapping to a 90nm cell library. Spice

modeling and simulation are performed to characterize delays and process sensitivities.

5.1 Predictive Technology Models

Predictive Technology Models (PTM) [26, 27] are used in order to model MOSFETs in future

nanoscale CMOS technologies, where fabrication data is not yet available. Arizona State University

researchers have created and maintained a new generation of these models, originally from UC

Berkeley, which have proven to be reasonably accurate and thus have become popular in circuit

design and automation research. The PTM team has also created a tool that generates corner-case

models for channel length (Le) and threshold voltage variation (VT ). In this work, 90nm models are

used where 3σ variation corresponds to 10% deviation from nominal values for both Le and VT , in

accordance with the International Technology Roadmap for Semiconductors (ITRS). Below 90nm,

this variation worsens and 3σ variation is over 15% [2].

5.2 Cell Library & Technology Mapping

MVSIS, another UC Berkeley software package modeled after the original SIS, is comprised of

a number of different circuit analysis tools for circuit synthesis, combinational optimization, verfi-

cation, and technology mapping. Included in the package are a number of cell libraries in .genlib

format, the most popular of which are the MCNC and Lib2 libraries. The .genlib format defines

a number of logic gates by their boolean function and by technology independent delay and area

numbers. This ensures that when MVSIS technology maps a particular circuit on to a library, the
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Table 5.1: Lib2 Cell Library Gates

inv nor2 aoi33 oai22
xor nor3 aoi211 oai32
xnor aoi21 aoi221 oai33

nand2 aoi31 aoi222 oai211
nand3 aoi22 oai21 oai221
nand4 aoi32 oai31 oai222

result is a netlist with realistic gate choice and gate output loading. The Lib2 library is chosen for

this work because of its rich collection of gates, as seen in Table 5.1.

The ISCAS benchmark circuit netlists used in this study are provided in the .BENCH format

that defines the primary inputs, primary outputs, intermediate nodes and the logic functions of a

circuit. These logic functions are only in terms of AND, OR, NOT, NAND, and NOR, and provide

no information as to the circuit implementation, nor do they limit the number of inputs or output

loading to a physically feasible configuration. As in [28], MVSIS is used to map these boolean

functions to the Lib2 library and provides a new netlist in the Berkeley Logic Interchange Format

(.BLIF ). The final .BLIF format provides a final physical netlist of the ISCAS circuit using the

gates in the selected library. A typical run of this procedure is shown in Figure 5.1.

Mvsis> Read_library Lib2.genlib

Mvsis> Read_bench c432.bench

Mvsis> Map -s

Mvsis> Write_gate .n c432.blif

Figure 5.1: MVSIS Technology Mapping

5.3 Physical Cell Definition, Delay & Sensitivity Characterization

In order to characterize the actual nominal delays, worst case delays, and variation sensitivities

of the logic cells in the Lib2 library for 90nm technology, Spice simulations is performed. For these

simulations, physical Spice .subckt definitions are created for minimum size devices with a beta ratio

designed for near equal rise and fall times. Using the nominal and corner-case predictive models,

four versions of each cell are produced to correspond to each corner of VT and Le variation:
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• nominal VT , nominal Le

• slow VT , nominal Le

• nominal VT , slow Le

• slow VT , slow Le

For brevity, these corners are abbreviated as “NN”, “SN”, “NS”, and “SS”, respectively. The

different corners are used to calculate each cell’s sensitivity to both types of variation, as well their

nominal and worst case propagation delays. Cell sensitivites are calculated as in Equations 5.1

and 5.2. Since this is block based timing analysis, particular slews are ignored and the worst value

for sensitivity is used.

sVT
τP

=
∂τP

∂VT
= max

∀slews

[

τP,SN − τP,NN

∆VT

]

(5.1)

sLe
τP

=
∂τP

∂Le
= max

∀slews

[

τP,NS − τP,NN

∆Le

]

(5.2)

As in [16], 2-D tables are constructed to record propagation delays and variation sensitivities for

each cell at different output capacitances (CL) and input slopes (ttin). Once the circuit is parsed

and the loading capacitances are known, bilinear interpolation is used to calculate precise values

for nominal and worst case propagation delays as well as delay sensitivities. These delays and

sensitivities are the values used in the canonical delay form dicussed in Chapter 3 for all timing

analysis calculations.

For simplicity of library creation and characterization, internal register delays (δH , δS , and dCQ)

are assumed to be negligible in this study, although they could easily be incorporated in to future

work. Futhermore, the variations in the clock distribution networks themselves are also ignored,

although future accuracy improvements should include these variations as well. This is justified since

there is much greater control over the delay to different points in the clock distribution network,

both during design and after fabrication, than there is in local data paths. A number of techniques
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to exercise such control include regional active deskew (RAD) feedback, second level clock buffers

(SLCBs), and post-Silicon tuning (PST) as discussed in [29].

5.4 System Configuration

All programming and analysis is conducted on a 3GHz Intel Pentium 4 machine with 1GB of

RAM running Fedora Core 6, linux 2.6.18, gcc 4.1.1 and Perl 5.8.8. Simulations are performed

with Ngspice [30], a derivative of Berkeley Spice3f5 [31], compiled with BSIM4.6.0 Spice model

support [32]. As mentioned in Section 5.1, the 90nm Predictive Technology Model V1.0 model cards

are used for all simulations [26].
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Chapter 6. Experimental Results & Discussion

A number of experiments are first carried out to examine the 90nm cell library created for this

work, and to verify the implementation of the mathematics relevant to statistical static timing

analysis and nonzero clock skew circuits. In Section 6.1, the sensitivities of the 90nm logic gates

to process variations are calculated to confirm that they follow the linear assumption made in

Chapter 3. The nonzero clock skew circuit timing limits are applied in Section 6.2 in order to

compare the minimum clock period calculations in this work with other published results. Similarly,

statistical static timing analysis of the benchmark circuits assuming zero clock skew is conducted

in Section 6.3 to verify the proper handling of random variables in finding the statistical (µ+3σ)

minimum clock period Tmin. In Section 6.4, the improvements in the minimum clock period seen by

zero clock skew circuits are compared with those seen by nonzero clock skew circuits. Clock period

improvements with both clock skew scheduling and statistical static timing analysis are shown in

Section 6.5. A discussion comparing nonzero clock skew timing limits in the determinisitc and

statistical domains is presented in Section 6.6 and, lastly, CPU run times are compared for zero

clock skew and nonzero clock skew statistical static timing analysis in Section 6.7.

6.1 90nm Cell Sensitivity Analysis

As discussed in Chapter 5, the sensitivities of logic gate propagation delay to process variations

are linear with respect to the nominal delay of the gate, i.e. sd ∼ cf(CL, ttin). Such linearity enables

the interpolation of sensitivities for fast analysis. This work characterizes the propagation delays

and process variation sensitivities for the 90nm cell library used with Spice simulation, and confirms

this linear relationship experimentally as shown Figures 6.1 and 6.2.
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Figure 6.1: 90nm Inverter Propagation Delay VT Sensitivity vs. Nominal Delay
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Figure 6.2: 90nm Inverter Propagation Delay Le Sensitivity vs. Nominal Delay

In Figures 6.1 and 6.2, the data points correspond to an inverter characterized at different sizes,

output loads (CL), and input slopes (ttin).
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6.2 CSS Improvement with Deterministic Models

In order to confirm the experimental setup, deterministic corner-based timing analysis is first

carried out at both the nominal corner and worst case “ss” corner, assuming zero clock skew. The

deterministic “ss” corner results for the minimum clock period Tmin are the pessimistic baseline

results that the techniques outlined in this thesis aim to improve.

The limitations of clock skew scheduling are assessed in order to determine CSS improvements

for this implementation, and to validate that the calculation of these limits was carried out properly.

As shown in Table 6.1, an average improvement of 29.67% is achieved, which agrees with [11].

The number of gates, number of registers, minimum deterministic zero skew clock period T zcs
min,ss,

minimum deterministic nonzero skew clock period T NZCS
min,ss , the percentage improvement in Tmin with

clock skew scheduling as defined by Equation 6.1, and the limiting factor are shown in Table 6.1.

% ImprovementCSS =
T zcs

min,ss − T NZCS
min,ss

T zcs
min,ss

× 100% (6.1)

6.3 ZCS Circuit SSTA Improvement

Statistical static timing analysis is performed on each benchmark circuit assuming zero clock

skew operation in order to see a baseline performance increase possible with SSTA alone, and to

validate the implementation of the underlying SSTA computations. Results and improvements can

be seen in Table 6.2 which agree with those reported in [4]. In particular, the number of inputs,

number of gates, nominal corner minimum clock period T zcs
min,nom, worst case corner minimum clock

period T zcs
min,ss, statistical (µ+3σ) minimum clock period T zcs

min,ssta, and the improvement between

T zcs
min,ss and T zcs

min,ssta as defined by Equation 6.2 are shown in Table 6.2.

% ImprovementzcsSSTA =
T zcs

min,ss − T zcs
min,ssta

T zcs
min,ss

× 100% (6.2)

6.4 SSTA Improvement for ZCS Limit vs. NCZS Limit

The objective of this thesis is to determine the relative importance of statistical static timing

analysis (SSTA) for nonzero clock skew circuits. Since clock skew scheduling introduces new, unique,
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Table 6.1: Summary of Corner-Based Clock Skew Scheduling Improvement

Circuit # Gates # Registers T zcs
min,ss[ps] T NZCS

min,ss [ps] NZCS Limit % Improvement

c17 8 0 71.033 36.70 1 48.33%
c432 152 0 940.45 478.23 1 49.15%
c499 405 0 868.33 535.87 1 38.29%
c880 241 0 675.30 606.73 1 10.15%
c1355 412 0 830.98 546.67 1 34.21%
c1908 430 0 1050.20 739.00 1 29.63%
c2670 701 0 772.68 286.32 1 62.95%
c3540 844 0 1401.30 742.83 1 46.99%
c5315 1204 0 1073.90 280.47 1 73.89%
c6288 3090 0 3241.60 2151.60 1 33.62%
c7552 1624 0 2394.40 2168.50 1 9.43%
s27 12 3 103.31 88.618 2 14.22%
s208 71 8 283.43 137.26 3 51.57%
s298 85 14 442.61 389.86 1 11.92%
s349 109 15 548.09 273.77 1 50.05%
s382 113 21 397.93 261.93 2 34.18%
s386 106 6 374.66 309.10 1 17.50%
s400 118 21 363.82 236.60 2 34.97%
s420 143 16 503.97 141.50 1 71.92%
s444 142 21 471.30 292.69 1 37.90%
s510 163 6 443.56 350.58 1 20.96%
s526 156 21 436.62 383.88 1 12.08%
s641 140 19 788.12 635.62 1 19.35%
s713 146 19 818.67 666.17 1 18.63%
s820 214 5 670.07 593.32 1 11.45%
s832 219 5 656.60 579.85 1 11.69%
s838 287 32 934.57 198.37 1 78.77%
s953 316 29 453.71 389.91 2 14.06%
s1196 358 18 694.15 574.09 1 17.30%
s1238 387 18 788.32 405.84 1 48.52%
s1423 432 74 2609.30 2233.10 1 14.42%
s1488 389 6 1053.00 979.82 1 6.95%
s1494 395 6 1095.10 1021.90 1 6.69%
s13207 2900 511 1738.00 1508.80 3 13.19%
s35932 13278 1728 17958.00 17921.00 1 0.20%
s38417 8917 1535 6207.30 5405.10 1 12.92%

Average 29.67%

and topologically dependent timing limitations, the impact of statistical modeling and analysis is

projected to be significant. Futhermore, it is desirable to determine which circuit topologies benefit

the most from the SSTA, if any.

The results for relative improvement (Equation 6.4) in the minimum clock period for zero clock

skew and nonzero clock skew (Equation 6.3) circuits are shown in Table 6.3. On average, this
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Table 6.2: Summary of Zero Clock Skew Circuit SSTA Improvement

Circuit # In # Out # Gates T zcs
min,nom[ps] T zcs

min,ss[ps] T zcs
min,ssta[ps] % Impr.

c17 5 2 8 61.43 71.03 62.32 12.26%
c432 36 7 152 811.55 940.45 835.40 11.17%
c499 41 32 405 748.57 868.33 775.70 10.67%
c880 60 26 241 581.38 675.30 595.23 11.86%
c1355 41 32 412 717.40 830.98 743.00 10.59%
c1908 33 25 430 907.23 1050.20 928.58 11.58%
c2670 233 130 701 666.85 772.68 687.87 10.98%
c3540 50 22 844 1214.60 1401.30 1251.00 10.73%
c5315 178 109 1204 925.32 1073.90 948.92 11.64%
c6288 32 32 3090 2799.90 3241.60 2889.10 10.87%
c7552 207 95 1624 2078.00 2394.40 2190.40 8.52%
s27 4 1 12 90.31 103.31 93.92 9.09%
s208 11 2 71 244.17 283.43 250.49 11.62%
s298 3 6 85 382.15 442.61 392.90 11.23%
s349 9 11 109 475.84 548.09 489.19 10.75%
s382 3 6 113 343.69 397.93 352.36 11.45%
s386 7 7 106 324.33 374.66 334.00 10.85%
s400 3 6 118 315.13 363.82 323.39 11.11%
s420 19 2 143 435.85 503.97 448.16 11.07%
s444 3 6 142 408.19 471.30 420.74 10.73%
s510 19 7 163 383.36 443.56 394.95 10.96%
s526 3 6 156 376.91 436.62 387.38 11.28%
s641 35 22 140 678.78 788.12 697.35 11.52%
s713 35 21 146 706.48 818.67 728.35 11.03%
s820 18 19 214 581.96 670.07 606.92 9.42%
s832 18 19 219 570.23 656.60 594.58 9.45%
s838 35 2 287 809.73 934.57 833.45 10.82%
s953 16 23 316 393.73 453.71 404.57 10.83%
s1196 14 14 358 600.55 694.15 614.65 11.45%
s1238 14 14 387 685.86 788.32 709.00 10.06%
s1423 17 5 432 2268.20 2609.30 2340.40 10.31%
s1488 8 19 389 914.21 1053.00 945.43 10.22%
s1494 8 19 395 950.88 1095.10 983.81 10.16%
s9234 36 19 1759 1431.30 1644.40 1513.00 7.99%
s13207 62 246 2900 1504.30 1738.00 1571.60 9.57%
s35932 35 320 13278 15647.00 17958.00 17302.00 3.65%
s38417 28 19 8917 5402.30 6207.30 5892.20 5.08%

Average 10.34%

relative improvement of the minimum clock period Tmin is 1.3x fold for nonzero clock skew circuits.

Up to a 2.5x fold is seen in some circuits, although no particular topology tends to have more of an

improvement than another.

% ImprovementNZCS
SSTA =

T NZCS
min,ss − T NZCS

min,ssta

T NZCS
min,ss

× 100% (6.3)



CHAPTER 6. EXPERIMENTAL RESULTS & DISCUSSION 35

Table 6.3: Summary of Relative Tmin Improvement from SSTA for ZS vs. NZS Circuits

Circuit # Gates # Registers % Improvementzcs
ssta % ImprovementNZCS

ssta Rel. Improv.

c17 8 0 12.26% 27.34% 2.23x
c432 152 0 11.17% 14.39% 1.29x
c499 405 0 10.67% 13.27% 1.24x
c880 241 0 11.86% 12.44% 1.05x
c1355 412 0 10.59% 13.23% 1.25x
c1908 430 0 11.58% 11.20% 0.97x
c2670 701 0 10.98% 10.37% 0.94x
c3540 844 0 10.73% 11.66% 1.09x
c5315 1204 0 11.64% 9.11% 0.78x
c6288 3090 0 10.87% 10.92% 1.00x
c7552 1624 0 8.52% 9.19% 1.08x
s27 12 3 9.09% 9.63% 1.06x
s208 71 8 11.62% 24.25% 2.09x
s298 85 14 11.23% 12.33% 1.10x
s349 109 15 10.75% 13.36% 1.24x
s382 113 21 11.45% 10.38% 0.91x
s386 106 6 10.85% 10.85% 1.00x
s400 118 21 11.11% 10.71% 0.96x
s420 143 16 11.07% 24.50% 2.21x
s444 142 21 10.73% 21.53% 2.01x
s510 163 6 10.96% 15.43% 1.41x
s526 156 21 11.28% 12.39% 1.10x
s641 140 19 11.52% 13.06% 1.13x
s713 146 19 11.03% 12.77% 1.16x
s820 214 5 9.42% 10.03% 1.06x
s832 219 5 9.45% 5.91% 0.63x
s838 287 32 10.82% 21.13% 1.95x
s953 316 29 10.83% 10.76% 0.99x
s1196 358 18 11.45% 11.86% 1.04x
s1238 387 18 10.06% 13.02% 1.29x
s1423 432 74 10.31% 10.50% 1.02x
s1488 389 6 10.22% 10.89% 1.07x
s1494 395 6 10.16% 10.81% 1.06x
s9234 1759 192 7.99% 10.84% 1.36x
s13207 2900 511 9.57% 8.46% 0.88x
s35932 13278 1728 3.65% 9.00% 2.46x
s38417 8917 1535 5.08% 9.67% 1.90x

Average 1.27x

Relative Improvement =
% ImprovementNZCS

SSTA

% ImprovementzcsSSTA

(6.4)
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6.5 CSS & SSTA Combined Improvement from Deterministic Models

For a comprehensive analysis, the potential combined improvement using clock skew scheduling

and statistical timing analysis over the baseline worst case corner analysis is assessed. Results are

shown in Table 6.4. The performance improvement, as defined by Equation 6.5, and flexibility

possible with applying both of these strategies is rather compelling with an average of a ∼38%

improvement in the minimum clock period Tmin.

% ImprovementCSS&SSTA =
T zcs

min,ss − T NZCS
min,ssta

T zcs
min,ss

× 100% (6.5)

6.6 CSS Improvement with Deterministic Models vs. Statistical Models

Although the improvement in the minimum clock period Tmin observed with clock skew schedul-

ing is approximately the same for circuits using deterministic and statistical modeling, as expected,

the limiting topology (i.e. local data path, cycle, or reconvergent paths) is found to be different in

∼11% of the circuits. However, there is no distinguishable pattern as to which types of circuits would

see such a change. It can only be concluded, then, that this may be the case for when multiple paths,

cycles, or reconvergent branches are near critical. This reinforces the fact that statistical modeling

is essential in accurately determining which portions of the circuit are limiting Tmin.

6.7 SSTA Run Time for ZCS vs. NZCS Circuits

The CPU time required to perform statistical static timing analysis on nonzero clock skew circuits

is compared with that required for zero clock skew circuits in Table 6.5. The slowdown in NZCS

analysis is measured as shown in Equation 6.6. The added performance uncovered by applying SSTA

to nonzero clock skew circuits comes at a modest 2.16x increase in analysis time on average, although

this slowdown is up to ∼5.5x for some larger circuits with highly connected graphs. This can be

attributed to the numerous computations needed for nonzero clock skew timing limitations, as well

as the topological complexity of sequential circuits that impacts the time required for graph traversal

& analysis algorithms. In particular, algorithmic improvements for the detection of reconvergent

paths should be investigated.
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Table 6.4: Summary of Overall Tmin Improvement Using SSTA & Skew Scheduling

Circuit # Gates # Registers % Impr.zcs
ssta % Impr.det

CSS % Impr.CSS&SSTA

c17 8 0 12.26% 48.33% 62.46%
c432 152 0 11.17% 49.15% 56.46%
c499 405 0 10.67% 38.29% 46.48%
c880 241 0 11.86% 10.15% 21.33%
c1355 412 0 10.59% 34.21% 42.92%
c1908 430 0 11.58% 29.63% 37.52%
c2670 701 0 10.98% 62.95% 66.79%
c3540 844 0 10.73% 46.99% 53.17%
c5315 1204 0 11.64% 73.89% 76.26%
c6288 3090 0 10.87% 33.62% 40.88%
c7552 1624 0 8.52% 9.43% 17.76%
s27 12 3 9.09% 14.22% 22.48%
s208 71 8 11.62% 51.57% 63.32%
s298 85 14 11.23% 11.92% 22.78%
s349 109 15 10.75% 50.05% 56.73%
s382 113 21 11.45% 34.18% 41.01%
s386 106 6 10.85% 17.50% 26.45%
s400 118 21 11.11% 34.97% 41.93%
s420 143 16 11.07% 71.92% 78.80%
s444 142 21 10.73% 37.90% 51.27%
s510 163 6 10.96% 20.96% 33.16%
s526 156 21 11.28% 12.08% 22.98%
s641 140 19 11.52% 19.35% 29.88%
s713 146 19 11.03% 18.63% 29.02%
s820 214 5 9.42% 11.45% 20.33%
s832 219 5 9.45% 11.69% 16.91%
s838 287 32 10.82% 78.77% 83.26%
s953 316 29 10.83% 14.06% 23.31%
s1196 358 18 11.45% 17.30% 27.11%
s1238 387 18 10.06% 48.52% 55.22%
s1423 432 74 10.31% 14.42% 23.41%
s1488 389 6 10.22% 6.95% 17.09%
s1494 395 6 10.16% 6.69% 16.77%
s13207 2900 511 9.57% 13.19% 20.53%
s35932 13278 1728 3.65% 0.20% 9.18%
s38417 8917 1535 5.08% 12.92% 21.34%

Average 38.23%

Slowdown =
Run TimeNZCS

ssta

Run Timezcs
ssta

(6.6)
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Table 6.5: SSTA CPU Run Time & Nonzero Clock Skew Circuit Slowdown

Circuit # Gates # Registers Run Timezcs
ssta[s] Run TimeNZCS

ssta [s] Slowdown

c17 8 0 0.012 0.016 1.33x
c432 152 0 0.188 0.196 1.04x
c499 405 0 0.516 0.576 1.12x
c880 241 0 0.296 0.332 1.12x
c1355 412 0 0.520 0.588 1.13x
c1908 430 0 0.556 0.580 1.04x
c2670 701 0 0.932 1.092 1.17x
c3540 844 0 1.104 1.152 1.04x
c5315 1204 0 1.692 1.800 1.06x
c6288 3090 0 5.128 5.224 1.02x
c7552 1624 0 2.396 2.476 1.03x
s27 12 3 0.020 0.028 1.40x
s208 71 8 0.088 0.168 1.91x
s298 85 14 0.104 0.252 2.42x
s349 109 15 0.136 0.312 2.29x
s382 113 21 0.144 0.484 3.36x
s386 106 6 0.132 0.292 2.21x
s400 118 21 0.152 0.516 3.39x
s420 143 16 0.184 0.368 2.00x
s444 142 21 0.180 0.708 3.93x
s510 163 6 0.200 0.508 2.54x
s526 156 21 0.200 0.544 2.72x
s641 140 19 0.180 0.608 3.38x
s713 146 19 0.188 0.620 3.30x
s820 214 5 0.268 0.464 1.73x
s832 219 5 0.272 0.460 1.69x
s838 287 32 0.384 0.804 2.09x
s953 316 29 0.408 1.260 3.09x
s1196 358 18 0.448 0.676 1.51x
s1238 387 18 0.488 0.708 1.45x
s1423 432 74 0.632 3.501 5.54x
s1488 389 6 0.488 0.944 1.93x
s1494 395 6 0.496 1.000 2.02x
s9234 1759 192 2.948 14.969 5.08x
s13207 2900 511 6.532 12.905 1.98x
s35932 13278 1728 66.824 133.664 2.00x
s38417 8917 1535 40.138 110.463 2.75x

Average 2.16x
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Chapter 7. Conclusions & Future Work

This thesis has shown statistical static timing analysis (SSTA) to be of particular importance in

discovering the maximum performance gain possible with clock skew scheduling. Nonzero clock skew

circuits suffer from the pessimism of traditional deterministic corner based static timing analysis in

three separate timing limitations. This pessimism is compounded because the frequency limits of

skew scheduled circuits depend not only on the slowest paths in the circuit, but also on the quickest

paths and the relative speeds between paths. Nonzero clock skew circuits are seen to benefit from

SSTA by up to 2.5x (1.3x on average) the amount seen by their zero skew counterparts, and by

mitigating pessimism with SSTA, the minimum clock period Tmin is seen to improve, on average,

an additional 8.5% above what clock skew scheduling alone can achieve. An average clock period

improvement of 38.25% is seen by applying both strategies, assuming a target yield of 99.73%.

Futhermore, it has been found that the frequency limiting local data path, cycle, or reconvergent

register pair in such circuits may change with more accurate statistical modeling, which would

impact optimization applications as well as the results of skew scheduling itself.

The additional circuit performance uncovered by applying SSTA to nonzero clock skew circuits

required twice the computation time, on average. This slowdown could likely be lessened by more

efficient graph algorithms for locating and keeping track of graph cycles and reconvergent paths.

Although a linear increase in run time would be acceptable given the performance benefit of applying

SSTA to nonzero clock skew circuits, this slowdown is expected to be exacerbated in larger industrial

circuits. Furthermore, criticality heuristics could be used in order to identify a subset of the entire

circuit that requires the most accurate (i.e. time consuming) analysis. Such methods are presently

being investigated in order to prune circuit graphs for in-depth path-based SSTA and higher order

accuracy SSTA operations [33].
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Future directions for this work can broadly be classified as those that improve accuracy (e.g.

wire analysis, correlation analysis, non-gaussian methods) and those that involve the applications of

statistical analysis (e.g. yield optimization, variation aware skew scheduling & delay insertion).

7.1 Wire & Clock Network Delay

Interconnect wire parasitics within integrated circuits are becoming responsible for a larger por-

tion of the overall propagation delay of a signal, and the delays along longer wires are worsened

by crosstalk with neighboring wire tracks [20]. Variations in wire dimensions can easily be handled

using the same canonical form discussed in this thesis. With commercial layout synthesis, placement

and routing tools, wire parasitics and more precise output loading capacitances can be extracted.

These data could be incorporated in to this study along with variation information on the wires

constituting the clock distribution network in order to achieve a higher order accuracy. Further-

more, recent studies which attempt to account for crosstalk in a statistical manner should also be

investigated for analysis of both local data paths as well as clock networks [34, 35].

7.2 Correlation Analysis, Optimization, Variation Aware Scheduling &

Delay Insertion

The concept of criticality is rather simple in static timing analysis since for each MAX() oper-

ation performed, there is one operand that dominates 100% (is critical). This notion changes with

SSTA as operands to the MAX() function assume a non-integer tightness probability representing

their criticality. Keeping track of these tightness probabilities as well as spatial correlations between

paths that share gates [14, 33] is very important for optimizing a circuit for timing, power, and/or

area [8, 36, 37]. Recent research has investigated efficient ways of finding statistical criticalities

without full path-based analysis [38] such that algorithms can quickly find which gates or paths to

modify in order for the circuit to meet these different constraints. These concepts could be extended

to this work in order to perform intelligent clock skew scheduling and delay insertion in nonzero

clock skew circuits [12, 39].
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7.3 Non-Gaussian Variation, Non-Linear Sensitivity

The statistical MAX() function discussed in this thesis is slightly pessimistic itself and introduces

minor inaccuracies in assuming the results of a statistical MAX(), MIN(), ADD(), or SUB() to

have a perfect Gaussian distribution. As both the complexity and dimensionality of performance-

impacting process variations are growing, inclusion of more variations is bound to exacerbate these

inaccuracies. Similarly, some of these variations impose non-linear performance changes unlike Le

and VT as discussed in this work. This study should be later extended to utilize non-Gaussian

mathematics and non-linear sensitivites that are currently under investigation [40, 18, 19].
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Appendix A. List of Symbols

Le MOSFET channel length
VT MOSFET threshold voltage
CL Output load capacitance
ttin Input transition slope
fMax Maximum operating frequency
Tmin Minimum clock period
τP Logic gate propagation delay.
τPmin Minimum deterministic logic gate propagation delay
τPMax Maximum deterministic logic gate propagation delay

δRi

S Setup time of a register Ri

δRi

H Hold time of a register Ri

dRi

CQm Minimum deterministic clock-to-output time of a register Ri

dRi

CQM Maximum deterministic clock-to-output time of a register Ri

pifx A particular local data path “x” between registers Ri and Rf

d
ifx

Pm Minimum total deterministic propagation delay between registers Ri and Rf

on a local data path pifx

d
ifx

PM Maximum total deterministic propagation delay between registers Ri and Rf

on a local data path pifx

D
ifx

Pm Random variable for minimum total propagation delay between registers Ri and Rf

on a local data path pifx

D
ifx

PM Random variable for maximum total propagation delay between registers Ri and Rf

on a local data path pifx

AT
g
min Minimum deterministic arrival time at a gate or register g

AT
g
Max Maximum deterministic arrival time at a gate or register g

pif The local data paths between registers Ri and Rf

d
if
Pm Minimum total deterministic propagation delay among all local data paths

between registers Ri and Rf

d
if
PM Maximum total deterministic propagation delay among all local data paths

between registers Ri and Rf

D
if
Pm Random variable for minimum total propagation delay among all local data paths

between registers Ri and Rf

D
if
PM Random variable for maximum total propagation delay among all local data paths

between registers Ri and Rf
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pdpi

m Minimum total deterministic propagation delay between reconvergent

registers Rd and Rc on reconvergent path pi

pd
pi

M Maximum total deterministic propagation delay between reconvergent

registers Rd and Rc on reconvergent path pi

PDpi

m Random variable for minimum total propagation delay between reconvergent

registers Rd and Rc on reconvergent path pi

PD
pi

M Random variable for maximum total propagation delay between reconvergent

registers Rd and Rc on reconvergent path pi

µ Mean
σ Standard deviation

σ2 Variance

sX
A Sensitivity of a random variable A to variation in a random variable X

sLe
τP

Logic gate propagation delay sensitivity to Le variation

sVT
τP

Logic gate propagation delay sensitivity to VT variation
TA Tightness probability of A for use in the MAX() or MIN() function
T zcs

min Minimum deterministic clock period of a zero clock skew circuit

T NZCS
min Minimum deterministic clock period of a nonzero clock skew circuit

T
NZCS,I
min Minimum deterministic clock period of a nonzero clock skew circuit (limit I)

T
NZCS,II
min Minimum deterministic clock period of a nonzero clock skew circuit (limit II)

T
NZCS,III
min Minimum deterministic clock period of a nonzero clock skew circuit (limit III)

T zcs
min,ssta Minimum statistical (µ+3σ) clock period of a zero clock skew circuit)

T NZCS
min,ssta Minimum statistical (µ+3σ) clock period of a nonzero clock skew circuit)

T
NZCS,I
min,ssta Minimum statistical (µ+3σ) clock period of a nonzero clock skew circuit (limit I)

T
NZCS,II
min,ssta Minimum statistical (µ+3σ) clock period of a nonzero clock skew circuit (limit II)

T
NZCS,III
min,ssta Minimum statistical (µ+3σ) clock period of a nonzero clock skew circuit (limit III)
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Appendix B. Example Cell Spice Definition

*********************************

* OAI21

*********************************

.subckt oai21_a a1 a2 b O VDD VSS

mp1 1 a1 vdd vdd pmos L=.090u W=.48u

mp2 O a2 1 vdd pmos L=.090u W=.48u

mp3 O b vdd vdd pmos L=.090u W=.24u

mn1 2 a1 vss vss nmos L=.090u W=.24u

mn2 2 a2 vss vss nmos L=.090u W=.24u

mn3 O b 2 vss nmos L=.090u W=.24u

.ends

.subckt oai21_b a1 a2 b O VDD VSS

mp1 1 a1 vdd vdd pmos L=.090u W=.96u

mp2 O a2 1 vdd pmos L=.090u W=.96u

mp3 O b vdd vdd pmos L=.090u W=.48u

mn1 2 a1 vss vss nmos L=.090u W=.48u

mn2 2 a2 vss vss nmos L=.090u W=.48u

mn3 O b 2 vss nmos L=.090u W=.48u

.ends

.subckt oai21_c a1 a2 b O VDD VSS

mp1 1 a1 vdd vdd pmos L=.090u W=1.92u

mp2 O a2 1 vdd pmos L=.090u W=1.92u

mp3 O b vdd vdd pmos L=.090u W=.96u

mn1 2 a1 vss vss nmos L=.090u W=.96u

mn2 2 a2 vss vss nmos L=.090u W=.96u

mn3 O b 2 vss nmos L=.090u W=.96u

.ends

.subckt oai21_d a1 a2 b O VDD VSS

mp1 1 a1 vdd vdd pmos L=.090u W=3.84u

mp2 O a2 1 vdd pmos L=.090u W=3.84u

mp3 O b vdd vdd pmos L=.090u W=1.92u

mn1 2 a1 vss vss nmos L=.090u W=1.92u

mn2 2 a2 vss vss nmos L=.090u W=1.92u

mn3 O b 2 vss nmos L=.090u W=1.92u

.ends
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Appendix C. Example Cell Characterization Data

gate&sz, ttCl, nom[ps], ssss[ps], s(vt)[ps/mV], s(le)[ps/nm], Cin(um), SlOut[ps]

nand2_a, fo2_tt1, 1.96e+01, 2.29e+01, 8.80e-03, 9.26e-02, 0.48, 3.31e+01,

nand2_a, fo2_tt2, 2.10e+01, 2.43e+01, 9.35e-03, 9.44e-02, 0.48, 3.31e+01,

nand2_a, fo4_tt1, 2.73e+01, 3.18e+01, 1.10e-02, 1.39e-01, 0.48, 5.35e+01,

nand2_a, fo4_tt2, 2.87e+01, 3.32e+01, 1.21e-02, 1.43e-01, 0.48, 5.35e+01,

nand2_b, fo2_tt1, 1.57e+01, 1.84e+01, 7.70e-03, 7.04e-02, 0.96, 2.26e+01,

nand2_b, fo2_tt2, 1.71e+01, 1.98e+01, 8.25e-03, 7.04e-02, 0.96, 2.26e+01,

nand2_b, fo4_tt1, 1.96e+01, 2.30e+01, 9.35e-03, 9.44e-02, 0.96, 3.33e+01,

nand2_b, fo4_tt2, 2.10e+01, 2.43e+01, 9.35e-03, 9.44e-02, 0.96, 3.32e+01,

nand2_c, fo2_tt1, 1.38e+01, 1.62e+01, 7.15e-03, 6.30e-02, 1.92, 1.68e+01,

nand2_c, fo2_tt2, 1.52e+01, 1.76e+01, 7.15e-03, 6.11e-02, 1.92, 1.69e+01,

nand2_c, fo4_tt1, 1.58e+01, 1.86e+01, 7.70e-03, 7.04e-02, 1.92, 2.28e+01,

nand2_c, fo4_tt2, 1.72e+01, 1.99e+01, 8.25e-03, 6.85e-02, 1.92, 2.28e+01,

nand2_d, fo2_tt1, 1.29e+01, 1.52e+01, 6.60e-03, 5.74e-02, 3.84, 1.41e+01,

nand2_d, fo2_tt2, 1.44e+01, 1.66e+01, 7.15e-03, 6.30e-02, 3.84, 1.42e+01,

nand2_d, fo4_tt1, 1.39e+01, 1.64e+01, 7.15e-03, 6.48e-02, 3.84, 1.72e+01,

nand2_d, fo4_tt2, 1.54e+01, 1.78e+01, 7.15e-03, 6.11e-02, 3.84, 1.72e+01,

nor4_a, fo4_tt2, 1.57e+01, 1.76e+01, 3.03e-02, 4.78e-01, 1.08, 1.13e+02,

nor4_b, fo2_tt1, 1.02e+01, 1.14e+01, 1.87e-02, 2.93e-01, 2.16, 7.22e+01,

nor4_b, fo2_tt2, 1.19e+01, 1.33e+01, 1.87e-02, 2.87e-01, 2.16, 7.27e+01,

nor4_b, fo4_tt1, 1.15e+01, 1.29e+01, 2.20e-02, 3.57e-01, 2.16, 8.60e+01,

nor4_b, fo4_tt2, 1.32e+01, 1.48e+01, 2.26e-02, 3.52e-01, 2.16, 8.64e+01,

nor4_c, fo2_tt1, 9.50e+00, 1.07e+01, 1.65e-02, 2.59e-01, 4.32, 6.63e+01,

nor4_c, fo2_tt2, 1.13e+01, 1.26e+01, 1.71e-02, 2.56e-01, 4.32, 6.68e+01,

nor4_c, fo4_tt1, 1.02e+01, 1.14e+01, 1.87e-02, 2.94e-01, 4.32, 7.32e+01,

nor4_c, fo4_tt2, 1.19e+01, 1.33e+01, 1.87e-02, 2.87e-01, 4.32, 7.37e+01,

nor4_d, fo2_tt1, 8.95e+00, 1.01e+01, 1.60e-02, 2.46e-01, 8.34, 6.50e+01,

nor4_d, fo2_tt2, 1.08e+01, 1.20e+01, 1.65e-02, 2.43e-01, 8.34, 6.53e+01,

nor4_d, fo4_tt1, 9.25e+00, 1.04e+01, 1.65e-02, 2.63e-01, 8.34, 6.86e+01,

nor4_d, fo4_tt2, 1.11e+01, 1.24e+01, 1.71e-02, 2.59e-01, 8.34, 6.90e+01,

oai21_a, fo2_tt1, 1.94e+01, 2.26e+01, 9.35e-03, 1.39e-01, 1.44, 2.92e+01,

oai21_a, fo2_tt2, 2.06e+01, 2.38e+01, 9.90e-03, 1.39e-01, 1.44, 2.91e+01,

oai21_a, fo4_tt1, 2.57e+01, 2.98e+01, 1.27e-02, 2.00e-01, 1.44, 4.40e+01,

oai21_a, fo4_tt2, 2.69e+01, 3.11e+01, 1.38e-02, 2.02e-01, 1.44, 4.38e+01,

oai21_b, fo2_tt1, 1.62e+01, 1.89e+01, 7.70e-03, 1.09e-01, 2.88, 2.18e+01,

oai21_b, fo2_tt2, 1.73e+01, 2.01e+01, 8.25e-03, 1.09e-01, 2.88, 2.18e+01,

oai21_b, fo4_tt1, 1.94e+01, 2.26e+01, 9.90e-03, 1.41e-01, 2.88, 2.93e+01,

oai21_b, fo4_tt2, 2.06e+01, 2.39e+01, 1.05e-02, 1.41e-01, 2.88, 2.92e+01,

oai21_c, fo2_tt1, 1.45e+01, 1.70e+01, 7.15e-03, 9.44e-02, 5.76, 1.78e+01,

oai21_c, fo2_tt2, 1.58e+01, 1.82e+01, 7.70e-03, 9.26e-02, 5.76, 1.80e+01,

oai21_c, fo4_tt1, 1.62e+01, 1.90e+01, 7.70e-03, 1.09e-01, 5.76, 2.18e+01,

oai21_c, fo4_tt2, 1.74e+01, 2.02e+01, 8.25e-03, 1.09e-01, 5.76, 2.19e+01,
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Appendix D. Example 90nm MOSFET Predictive Modelcard

* Predictive Technology Model Beta Version

* 90nm NMOS SPICE Parameters

.model NMOS NMOS +Level = 49

+Lint = 1.5e-08 Tox = 2.5e-09

+Vth0 = 0.2607 Rdsw = 180

+lmin=1.0e-7 lmax=1.0e-7 wmin=1.0e-7 wmax=1.0e-4

+Tref=27.0 version =3.1

+Xj= 4.0000000E-08 Nch= 9.7000000E+17

+lln= 1.0000000 lwn= 1.0000000 wln= 0.00

+wwn= 0.00 ll= 0.00

+lw= 0.00 lwl= 0.00 wint= 0.00

+wl= 0.00 ww= 0.00 wwl= 0.00

+Mobmod= 1 binunit= 2 xl= 0.00

+xw= 0.00 binflag= 0

+Dwg= 0.00 Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00

+rsh= 7 rd= 0 rs= 0

+rsc= 0 rdc= 0

+K1= 0.3950000 K2= 1.0000000E-02 K3= 0.00

+Dvt0= 1.0000000 Dvt1= 0.4000000 Dvt2= 0.1500000

+Dvt0w= 0.00 Dvt1w= 0.00 Dvt2w= 0.00

+Nlx= 4.8000000E-08 W0= 0.00 K3b= 0.00

+Ngate= 5.0000000E+20

+Vsat= 1.1000000E+05 Ua= -6.0000000E-10 Ub= 8.0000000E-19

+Uc= -2.9999999E-11

+Prwb= 0.00 Prwg= 0.00 Wr= 1.0000000

+U0= 1.7999999E-02 A0= 1.1000000 Keta= 4.0000000E-02

+A1= 0.00 A2= 1.0000000 Ags= -1.0000000E-02

+B0= 0.00 B1= 0.00

+Voff= -2.9999999E-02 NFactor= 1.5000000 Cit= 0.00

+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00

+Eta0= 0.1500000 Etab= 0.00 Dsub= 0.6000000

+Pclm= 0.1000000 Pdiblc1= 1.2000000E-02 Pdiblc2= 7.5000000E-03

+Pdiblcb= -1.3500000E-02 Drout= 2.0000000 Pscbe1= 8.6600000E+08

+Pscbe2= 1.0000000E-20 Pvag= -0.2800000 Delta= 1.0000000E-02

+Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At= 5.5000000E+04

+Ute= -1.4800000 Ua1= 9.5829000E-10 Ub1= -3.3473000E-19

+Uc1= 0.00 Kt1l= 4.0000000E-09 Prt= 0.00



APPENDIX D. EXAMPLE 90NM MOSFET PREDICTIVE MODELCARD 51

+Cj= 0.0015 Mj= 0.72 Pb= 1.25

+Cjsw= 2E-10 Mjsw= 0.37 Php= 0.773

+Cjgate= 2E-14 Cta= 0 Ctp= 0

+Pta= 0 Ptp= 0 JS=1.50E-08

+JSW=2.50E-13 N=1.0 Xti=3.0

+Cgdo=3.493E-10 Cgso=3.493E-10 Cgbo=0.0E+00

+Capmod= 2 NQSMOD= 0 Elm= 5

+Xpart= 1 cgsl= 0.582E-10 cgdl= 0.582E-10

+ckappa= 0.28 cf= 1.177e-10 clc= 1.0000000E-07

+cle= 0.6000000 Dlc= 2E-08 Dwc= 0




