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Abstract  

Three Essays on Modeling Stock Returns: Empirical Analysis of the Residual 
Distribution, Risk-Return Relation, and Stock-Bond Dynamic Correlation. 

Jiandong Li 
Thomas C. Chiang Ph.D. (Supervisor) 

 
 

This dissertation studies the following issues: the presence of non-normal distribution 

features and the significance of higher order moments, the tradeoff between risk and 

return, and the dynamic conditional correlation between stock returns and bond returns. 

These issues are structured into three essays. 

Essay #1 tackles the non-normal features by employing the exponential generalized 

beta distribution of the second kind (EGB2) to model 30 Dow Jones industrial stock 

returns. The evidence suggests that the model with the EGB2 distribution assumption is 

capable of taking care of stock return characteristics, including fat tails, peakedness 

(leptokurtosis), skewness, clustered conditional variance, and leverage effect, therefore, is 

capable of making a good prediction on the happenings of extreme values. The goodness 

of fit statistic provides supporting evidence in favor of the EGB2 distribution in modeling 

stock returns. Evidence also suggests that the leverage effect is diminished when higher 

order moments are considered.  

Essay #2 examines the risk-return relation by applying high frequency data of 30 

Dow Jones industrial stocks. I find some supportive evidence in favor of the positive 

relation between the expected excess return and expected risk. However, this positive 

relation is not revealed for all 30 stocks using a standard weighted least squares 

regression (WLS) method. Using a quantile regression method, I find that the risk-return 



 

 

x
 
relation evolves from negative to positive as the returns’ quantile increases. This essay 

also finds interesting evidence that the intraday skewness coefficient explains a great deal 

of the variation in the excess returns. 

Essay #3 mainly focuses on the analysis of the time-varying correlations between 

stock and bond returns using the asymmetric dynamic conditional correlation (ADCC) 

model (Cappiello et al., 2004). The estimated coefficients show some volatile behavior 

and display some degree of persistence over time. Testing the asymmetric dynamic 

correlations by using a set of macroeconomic information, I find that the federal funds 

rate, the relative volatility between the stock and bond markets, the yield spread, and oil 

price shocks are the significant factors for the coefficients’ time varying. 
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Chapter 1: Overview 

 

1.1 Motivations 

1.1.1 Essay #1 - The Significance of Higher Order Moments and Non-normal Distributions  

Why should I be concerned about higher order moments and non-normal distributions in 

modeling stock returns? This is the central issue of essay #1. In illustrating the capital asset 

pricing model (CAPM), standard finance textbooks highlight only the first two moments: the 

mean and the variance. Despite the CAPM’s contributions to academic research and its guidance 

for investment, its validity has been subject to criticism. In practice, investors do not behave as 

described by the mean-variance framework. In the literature, other factors, such as liquidity and 

skewness, are found to be priced in empirical studies (for example, Harvey and Siddque, 2000). 

The first essay aims to improve stock return modeling by including skewness and kurtosis in the 

test equation.  

In his early research, Fama (1965) found that stock return series are characterized by non-

normal distribution. Current research suggests that the non-normality is reflected in the non-zero 

skewness coefficient, the positive excess kurtosis, and the lower inter-percentile range around the 

median. Studying the higher order moments is meaningful for several reasons. First, from an 

econometrics point of view, Hansen (1994) notes that empirical specifications of asset pricing 

model are incomplete unless higher order moments are specified. Estimation and forecasting 

accuracy depends on the full specification of the distribution moments. Second, from the 

perspective of empirical finance studies, higher order moments have particular economic 

meaning. Johnson and Schill (2006) suggest that the Fama-French factors (SMB and HML) can 
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be viewed as proxies for higher order co-skewness and co-kurtosis. Third, and more important, 

for portfolio management, higher order moments are considered additional risk instruments in 

constructing “new” portfolio theory, as argued by Jurczenko and Maillet (2002) and the papers 

cited therein. As a result, ignorance of higher order moments, which may be used to capture 

extreme values, in modeling financial data can lead to deceiving investment decisions. 

One of the key reasons for the popularity of using the generalized autoregressive 

heteroskedasticity (GARCH) models in financial analysis is that it is capable of  handling the 

second order moment, namely, the volatility clustering, in which large changes tend to follow 

large changes, and small changes tend to follow small changes. In either case, disturbances, 

positive or negative, become part of the information set being used to construct the variance 

forecast of the subsequent period's disturbance.  

To tackle higher order moments, researchers have developed models based on GARCH-type 

models (see Engle, 1995). A further extension is to allow the asymmetric effect of the 

innovations being considered in modeling the conditional variance. Specifically, negative shocks 

have a greater impact on conditional volatility than positive shocks do.  

Different approaches are considered to model higher order moments. The first one is to let 

the higher order moments be priced factors. For instance, Harvey and Siddique (2000) report that 

the co-skewness of portfolio returns is a determinant of expected returns. Patton (2004) shows 

that accounting for skewness improves performance of optimal asset allocation. Ranaldo and 

Favre (2003) discover that both co-skewness and co-kurtosis affect the risk-return characteristics 

in hedge funds. 

The second approach is to model higher order moments using a similar method to model the 

conditional variance. Harvey and Siddique (1999) and Lambert and Laurent (2000) add an extra 
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conditional skewness process based on a GARCH model. Brooks et al. (2005) follow the same 

approach to specify the conditional kurtosis autoregression.  

The third approach is to use non-Gaussian distributions to replace the normal distribution 

assumption, as in Mandelbot (1963), Fama (1965), Officer (1972), Clark (1973), McCulloch 

(1985), Bollerslev (1987), Nelson (1991), Hansen (1994), Liu and Brorsen (1995) and Mittnik et 

al. (1998), among many others. Specifically, these studies propose the t-distribution, skewed t-

distribution, general error distribution (GED, also known as the exponential power distribution), 

and α-stable Levy distributions.  

Briefly speaking, the t-distribution is symmetric so that it inherently fails to address the issue 

of skewness. The GED is not flexible enough to allow for larger innovations. The α-stable 

distribution has theoretical appeal on account of the generalized central limit theorem; however, 

its moments are not defined for an order greater than α. In particular, the variance is not defined 

except for one special case: normal distribution; skewness and kurtosis are always indefinable. 

Finally, the skewed t-distribution used in Hansen (1994) is far from being parsimonious, and it is 

hard to interpret its parameters due to the transformations imposed. 

Recognizing the weakness of the above distributions, it is necessary to have a model that 

encompasses the features of asymmetry, high peak, and fat tails. I find that the exponential 

generalized beta distribution of the second kind (EGB2) is able to meet the above diverse criteria. 

Current application of the EGB2 distribution is not satisfactory in that the goodness of fit test 

rejects the EGB2 distribution (Wang et al., 2001). I shall use the EGB2 distribution in modeling 

stock returns and verify its validity. Put more precisely, I would like to construct a model that is 

capable of capturing general stock return features such as autocorrelation, volatility clustering, 

skewness, and fat tails. 
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1.1.2 Essay #2 - Relation between Return and Expected Risk 

The risk-return trade-off plays a central role in the portfolio theory of financial economics. 

Since Merton’s (1973) pioneer research on an intertemporal CAPM that postulates a positive 

relation between expected excess return and conditional variance, there has been a large amount 

of empirical research devoted to investigating this risk-return hypothesis. However, the results 

are conflicting. French et al. (1987), Baillie and DeGennaro (1990), Campbell and Hentschel 

(1992), Scruggs (1998), and Ghysels et al. (2005) find evidence in favor of the hypothesis for the 

positive relation. However, Campbell (1987), Breen et al. (1989), Nelson (1991), Glosten et al. 

(1993), and Lettau and Ludvigson (2002) do not find supportive evidence.  

The research in this essay is motivated by the puzzle of inconclusive evidence when 

Merton’s hypothesis is tested. To see how risk and return related on individual stocks, I test the 

relation between daily excess returns and expected risk on 30 Dow Jones Industrial Average 

(DJIA) stocks. The results are very interesting. I observe both a positive relation and a zero 

relation. One stock even shows a weak negative relation. In this essay, I use high frequency data 

to construct the daily variance and intraday skewness that appear to be able to control 

idiosyncratic risk. 

As my research shows, the inconclusive results are based on the weighted least squares 

regression methodology that models the relationship between explanatory variables and the mean 

of the dependent variable. As a result, the estimation fails to highlight the impact of the extreme 

movements of the series under study. To address this issue, I employ the quantile regression, 

which is capable of examining the relation between explanatory variables and conditional 

quantiles of the dependent variables (Koenker, 2005; Chen, 2006).  This essay shows that the 

risk-return relation evolves from negative to positive as the return’s quantile increases. 
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1.1.3 Essay #3 - Dynamic Stock-Bond Return Relation 

The study of the return correlation between stock market and bond market is one of the most 

significant topics in analyzing financial asset movements since the correlations between different 

assets are important inputs for asset allocation, portfolio selection, and risk management. In 

reviewing the current literature, however, two points are worth noting. 

The first is the measurement of the two markets’ returns. For the stock market, researchers 

often use the P/E ratio or dividend yields; for the bond market, some researchers use negative 

change of yield to maturity (YTM). These measures need to be redefined, since they are unable 

to cover a broad category of investment instruments. Thus, I use market index funds to proxy for 

returns in the two markets in studying the stock-bond market relation. In particular, this essay 

explores the stock-bond market return relation by investigating two Vanguard index funds.  

The relationship between two asset returns is not without controversy. Both positive and 

negative correlations are found in the empirical studies, and they also offer good economic 

explanations.  Papers by Keim and Stambaugh (1986), Campbell and Ammer (1993), and Kwan 

(1996) argue that both asset returns are subject to common economic fundamentals. Economic 

forces and contagion effect tend to move returns on both assets in the same direction. Thus, they 

support the argument for a positive correlation. However, the “flight to/from quality” argument 

presented by Gulko (2002), Connolly et al. (2005), and Baur and Lucey (2006) contends that 

there is a negative correlation. Hartmann et al. (2001) show that stock-bond contagion is about as 

frequent as flight to quality. The empirical analyses derived from the above arguments may be 

based on piecemeal regression results or confined to special sample periods.  

In fact, the correlation coefficients may shift over time due to changing market conditions 

triggered by different external shocks. For this reason, it is more convincing to construct a time-
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varying model and search for appropriate economic factors that explain the dynamic relation. For 

this reason, this essay follows a two-step approach. In the first step, I employ the asymmetric 

dynamic conditional correlation (ADCC) model (Engle, 2002; Cappiello et al., 2004) to generate 

time-varying correlations. In the second step, I search for a set of macro variables or indicators to 

explain the time-varying behavior of the correlation coefficient.  

1.2 Contributions  

The contributions of this dissertation can be summarized as follows.  

For the first essay: 

• I find that the EGB2 distribution is superior to alternative distributions such as normal 

distribution and t-distribution in handling skewness and kurtosis. The evidence applies to 

30 individual stocks in the Dow Jones Industrial Average. The evidence is supported by 

the good of fit statistics for the EGB2 distribution.  

• This study has significant implications for evaluating the probability that a big loss on 

stock returns will occur. This research provides a valuable instrument for risk 

management. 

• Using the EGB2 distribution in modeling stock returns can alleviate the asymmetric 

effect (leverage effect). It suggests that the so-called leverage effect is, at least, partially 

attributable to the model’s misspecification due to the imposition of a normal distribution.  

For the second essay: 

• I systematically test the risk-return relation by using high frequency data on stock returns. 

Standard regression results suggest that some stocks show a positive relation, that some 



 

 

7
 

stocks don’t show any significant relation, and that one stock shows a weak negative 

relation. 

• I resolve the puzzling relation between excess stock returns and risk by using quantile 

regression method. Estimated results indicate that the sign of the risk-return relation 

varies from low quantile to high quantile. At low quantile, the sign is negative; at high 

quantile, the sign is positive. The median quantile regression result is around zero. 

Quantile regression gives a full picture of the risk-return relation. 

• While using intraday variance as a proxy for risk, I found that it is highly correlated with 

realized volatility. 

• I find that the intraday skewness coefficient is a very powerful explanatory variable for 

explaining the variation in the stocks’ excess return.  

For the third essay: 

• This study uses a rolling window method to measure the unconditional correlation and an 

asymmetric dynamic conditional correlation (ADCC) model to measure the dynamic 

correlation. The rolling correlation coefficients from 22 trading day window, from a 

bivariate BEKK method and from the ADCC method are close to each other. 

• The average correlation coefficient over the sample is negative but close to zero. 

• This study investigates the underlying economic factors that drive the correlation 

between two asset returns to change over time. I find that factors such as the federal 

funds rate, the relative return volatility between the stock and bond markets, the yield 

spread, and oil price shocks are highly significant. 
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1.3 Samples 

The first essay uses daily returns on 30 Dow Jones Industrial Average stocks. The sample 

period is 1986-2005. In addition, returns on the Standard & Poor’s 500 (S&P500) index are used 

to measure market return. Both daily returns on the S&P500 index and daily returns on 30 Dow 

Jones firms are taken from CRSP database. To calculate the excess returns, 3-month Treasury 

bill rate is used and is obtained from the Federal Reserve database. 

The second essay uses the excess returns on the 30 stocks from the first essay plus some new 

variables generated from high frequency data. The 5-minute trading information of these 30 

stocks is taken from the Trade and Quotation (TAQ) database. The sample period is 1998-2005, 

owing to the availability of high frequency data. 

The third essay uses two index funds: VBMFX and VTSMX. VBMFX is Vanguard’s Total 

Bond Market Index fund, which tracks Lehman Brothers’ Aggregate Bond Index. VTSMX is 

Vanguard’s Total Stock Market Index fund, which tracks the overall equity market index. The 

historical prices are taken from http://finance.yahoo.com. The sample period is 1996-2006. 

Besides these two index funds, oil prices are taken from the U.S. Department of Energy, and a 

variety of interest rates are taken from the Federal Reserve. 

1.4 Dissertation Structure 

This dissertation consists of 5 chapters. The three essays are divided among Chapters 2, 3 

and 4; each chapter constitutes one essay. Chapter 5 contains an overall summary for the 

dissertation. To maintain the integrity of the dissertation, I have placed all references, tables, and 

figures at the end of the dissertation. 
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Chapter 2: Empirical Analysis of Asset Returns with Skewness, 
Kurtosis, and Outliers – Evidence from 30 Dow Jones Industrial 

Stocks 
 

Abstract 

This paper uses the exponential generalized beta distribution of the second kind (EGB2) to 

model returns on 30 Dow Jones industrial stocks. The model accounts for stock return 

characteristics including fat tails, peakedness (leptokurtosis), skewness, clustered conditional 

variance, and leverage effect. The evidence suggests that the error assumption based on the 

EGB2 distribution is capable of accounting for skewness, kurtosis, and peakedness and, therefore 

is capable of making a good prediction about extreme values. The goodness of fit statistic 

provides supporting evidence in favor of the EGB2 distribution in modeling stock returns. This 

paper also finds evidence that the leverage effect is diminished when higher moments are 

considered.  

JEL classification: C16; C22; C46; G11 

Keywords: Stock return modeling, Higher moments, EGB2 distribution, Risk management 

 

2.1 Introduction 

Focusing on economic rationales, financial economists have identified a set of fundamental 

variables to predict stock returns over time, including market risk, change in interest rate, 

inflation rate, real activities, default risk, term premium, dividend yields, and earning yields, 

among other variables. In the cross-section analysis, Fama and French (1993) further emphasize 

a size factor (SMB) and a value factor (HML). Depending on the frequency of the data being 
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studied, the Monday effect or the January effect is usually added to the model to highlight 

calendar anomalies. The empirical evidence of statistical significance that justifies these 

variables is rather diverse. The mixed results have been attributed to variations in sample size, 

frequency, country, market, and/or model specification. As Avramov (2002) argues, the lack of 

consensus in choosing the “correct” variables may stem from model uncertainty, since 

equilibrium asset pricing theories are not explicit about which variables should be included in the 

predictive regression. 

To deal with this uncertainty, researchers occasionally resort to a missing variable, a proxy 

for risk. It becomes more apparent as GARCH-type models show that financial data demonstrate 

some sort of volatility clustering phenomenon. Incorporating the conditional variance into the 

mean equation is definitely helpful in tying stock returns to volatility (see French et al., 1987; 

Akgiray, 1989; Baillie and DeGennaro, 1990; and Bollerslev et al., 1992, among others). 

However, the GARCH-type specification based on normal distribution cannot account for the 

presence of extreme values. Recent financial market developments show that significant daily 

loss occurs more frequently and volatility cannot reasonably be predicted from normal 

distribution. The popularity of using a normal distribution assumption lies in the fact that the 

statistical analysis of stock returns can be simplified, allowing the analyst to focus on the first 

two moments. This simplification, however, misses the information contained in higher moments. 

Accounting for higher order moments is important in modeling stock return series for the 

following reasons. First, from an econometrics point of view, Hansen (1994) notes that empirical 

specifications of asset pricing model are incomplete unless higher order moments are specified. 

Estimation and forecasting accuracy depends on the full specification of the distribution 

moments. Many authors have found that higher order moments (and co-moments) can serve as 
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explanatory variables for modeling stock returns (Harvey and Siddique, 2000; Patton, 2004; 

Ranaldo and Favre, 2003). Excluding information from higher order moments in modeling asset 

returns is bound to result in missing variable and misspecification problems. 

Second, from the perspective of empirical finance studies, higher order moments have 

particular economic meaning. Johnson and Schill (2006) suggest that the Fama-French factors 

(SMB and HML) can be viewed as proxies for higher order co-skewness and co-kurtosis. They 

show that the Fama-French loadings generally become insignificant when higher order 

systematic co-moments are included in cross-sectional regressions of portfolio returns.  

Third, for portfolio management, higher order moments are considered additional risk 

instruments in constructing “new” portfolio theory, as argued by Jurczenko and Maillet (2002) 

and the papers cited therein. Further, the underlying theory of stochastic dominance (Vinod, 

2004) suggests that portfolio selection is determined not only by the conditional mean and 

variance but also by the skewness and kurtosis. The evidence provided by Harvey et al. (2006) 

and Cvitanic et al. (2005) substantiates the validity of the new portfolio theory. Moreover, in 

their recent studies, Andersen and Sornette (2001) and Malevergne and Sornette (2006) find that 

by incorporating higher order moments risk, it is possible to increase the expected return of the 

portfolio while lowering its risks. Similarly, in his study of the Hong Kong stock market, Tang 

(1998) finds that diversification reduces the standard deviation but worsens the negative 

skewness and fat tails. The evidence thus points to the fact that pricing risk based exclusively on 

the second moment may be very misleading. In light of this consideration, existing risk 

management techniques ought to be revised as well. 

The significance of higher order moments has been revealed in a series of dramatic market 

events such as the market crash in 1987, the Asian crisis in 1997, and the financial collapse of 
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Long Term Capital Management (LTCM) and Orange County. To address excess risk, both 

financial institutions and regulators demand risk management techniques to deal with 

occurrences of extreme values. Although Value at Risk (VaR) has been used to predict the 

maximum loss of a portfolio over a target horizon in a given confidence interval, the standard 

VaR models based on normal distribution often underestimate the potential risk.   

Three approaches have been developed to deal with higher order moments in the literature. 

The first approach is to treat higher order moments as explanatory variables in the stock return 

equation. The four-moment CAPM by Jurczenko and Maillet (2002) and Ranaldo and Favre 

(2003) is an example. The difficulty of this approach lies in how to generate the explanatory 

variables. It usually relies on higher frequency data or a rolling sample method. The second 

method is to apply a GARCH approach to higher conditional moments. Harvey and Siddique 

(1999) consider the conditional skewness, while Brooks et al. (2005) tackle the autoregressive 

conditional kurtosis. Although the two approaches are capable of extracting information from the 

higher order moments and useing them to explain the conditional mean, they have not 

completely resolved the fundamental issue that the dependent variable frequently violates the 

assumption of normal distribution.1 This leads to the third approach: applying non-Gaussian 

distributions to model stock returns so that higher order moments are naturally incorporated.  

This paper falls into the third category.   

The knowledge that stock returns do not follow a Gaussian distribution dates back to the 

papers by Mandelbrot (1963) and Fama (1965). Subsequent research includes Officer (1972), 

Clark (1973), McCulloch (1985), Bollerslev (1987), Nelson (1991), Hansen (1994), Liu and 

Brorsen (1995), and Mittnik et al. (1999), among many others. The studies in these papers 

                                                 
1 Both Harvey and Siddque (1999) and Brooks et al. (2005) use a t-distribution. As shown in this paper, a t-
distribution has long tails but it is not fit for stock return data on its peakedness. 
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propose the t-distribution, skewed t-distribution, general error distribution (GED, also known as 

the exponential power distribution), and α-stable Levy distributions. Briefly speaking, the t-

distribution is symmetric so that it inherently fails to address the issue of skewness. The GED is 

not flexible enough to allow for larger innovations. The stable distribution has theoretical appeal 

because of the generalized central limit theorem (CLT); however, its moments are not defined 

for an order greater than α. In particular, the variance is not defined except for one special case: 

normal distribution; skewness and kurtosis are always indefinable. Finally, the skewed t-

distribution used in Hansen (1994) is far from being parsimonious, and it is hard to interpret its 

parameters because of the transformations imposed. 

Recognizing the weakness of the above distributions, it is necessary to have a model that 

encompasses the features of asymmetry, high peak, and fat tails. I find that the exponential 

generalized beta distribution of the second kind (EGB2) 2 is able to meet the diverse criteria, 

which forms the research foundation of this paper.  

Results emerging from this study show that the EGB2 distribution works very well in dealing 

with high order moments of individual stock returns. The evidence indicates that an AR(1)-GJR-

GARCH(1,1) model based on the EGB2 distribution provides a unique specification in handling 

the stylized facts of stock return behavior: autocorrelation, conditional heteroskedasticity, the 

leverage effect, skewness, excess kurtosis, and peakedness.  

This study contributes to the literature in the following ways. First, I find that the EGB2 

distribution is superior to models based on normal distribution and t-distribution in handling 

skewness and kurtosis as evidenced by the goodness of fit statistics. Second, the prevalent risk 

                                                 
2 There are different names for the EGB2 distribution in non-financial fields or in non-American journals; for 
example, generalized logistic distribution is used in Wu et al. (2000), z-distribution in Barndorff-Nielsen et al. 
(1982), the Burr type distribution in actuarial science in Hogg and Klugman (1983), and four parameter Kappa 
distribution in geology in Hosking (1994).  
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management tool: Value at Risk (VaR) can be updated via the EGB2 distribution. It informs 

investors that omitting higher moments “leads to a systematic underestimate of the true riskiness 

of a portfolio, where risk is measured as the likelihood of achieving a loss greater than some 

threshold” (Brooks et al., 2005, page 400). Third, this paper systematically examines all 30 

stocks in the Dow Jones industrial index. The individual stocks cover a broad range of assets and 

reveal a variety of fat tail characteristics. The model encompasses a rich spectrum of asset 

features that help to guide portfolio decisions. Fourth, I find that the asymmetric effect (the 

leverage effect) is diminished when the EGB2 distribution is applied. This implies that the so-

called leverage effect is, at least, partially attributable to the model’s misspecification because of 

the imposition of normal distribution on the return series.  

The remainder of the chapter is organized as follows. Section 2.2 describes the methodology 

of the EGB2-GARCH model. Section 2.3 discusses the data. Section 2.4 presents the empirical 

results on the stock returns by applying different distributions. Section 2.5 reports the goodness 

of fit tests. Section 2.6 contains the probability evaluation using the EGB2 distribution. Section 

2.7 contains conclusions. 

2.2 The GARCH-Type Model Based on the EGB2 Distribution  

2.2.1 General Specification 

The AR(1)-GARCH(1,1)-GJR-EGB2 stock return model can be represented by a system 

given below: 

tttmt Drrr εδφφφ ++++= − 8712,10      (2.1.a) 

ttt zh=ε         (2.1.b) 
2

111
2

1 )0( −−−− <+++= ttttt Ihwh εεγβαε     (2.1.c) 

tε |ℑ ),,0(~1 λtt hD−       (2.1.d) 
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Equation (2.1.a) is the mean equation, where rt is the individual stock’s excess return (stock 

return minus the risk-free rate) at time t; εt is an error term. The inclusion of an AR(1) term in the 

mean equation accounts for autocorrelation arising from non-synchronous trading or slow price 

adjustments (Lo and MacKinlay, 1990; Amihud and Mendelson, 1987).3 The market’s equity 

premium (stock market return minus the risk-free rate), rm,t, at time t is included in the equation 

to capture market risk as suggested by the CAPM. The dummy variable, D87, takes the value of 

unity in the week of October 19, 1987, and 0 otherwise. The series, zt, in equation (2.1.b) is a 

standardized error by conditional variance.  

The conditional variance, ht, is assumed to follow a GARCH(1,1) process; 0 nd , , >βα aw  to 

ensure a strictly positive conditional variance; I is an indicative function that takes the value of 1 

only when the error term is negative. γ is used to capture the asymmetric effect of the 

extraordinary shock to the variance: bad news usually has a larger effect than does good news. In 

this study, I adopt the asymmetric GARCH approach suggested by Glosten, Jagannathan and 

Runkle (1993) for its simplicity and effectiveness. The distribution of εt is assumed to be a 

general specification conditional on the distribution captured by the parameterλ . For the normal 

distribution, the error follows that tε | 1−ℑt ),0(~ thN . In a variant of a normal distribution, in this 

paper, I consider two alternatives: t- and EGB2 distributions.  

2.2.2 Modeling Financial Time Series Based on Non-normal Distributions 

                                                 
3 Depending on the significance test of the AR(1) coefficient in the AR(1)-GARCH(1,1) model, the AR(1) term is 
then dropped for some stocks. The following stocks do not have an AR(1) variable: MSFT, HON, DD, GM, IBM, 
MO, CAT, BA, PFE, AA, DIS, MCD, JPM, and INTC. Stock PG, which is the only one that shows Q(30) is 
significant, adds an AR(4) variable to ensure that autocorrelation is removed. The rest of this paper follows this 
pattern. The recent literature suggests that the sign of the AR(1) coefficient, 2φ , can be used  to detect feedback 
trading behavior (Sentana and Wadhwani, 1992; Antoniou et al., 2005). My results show that the coefficient of 
AR(1) is negative. 
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Student’s t-distribution is well known for its capacity to capture the fat-tail phenomenon. 

Bollerslev (1987), Bollerslev et al. (1994), and Hueng and Yau (2006) incorporated t-distribution 

into the GARCH model specification. The probability density function (pdf) of a normalized 

Student’s t-distribution takes the form of:  
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where x is a random variable; v is the degree of freedom of the t-distribution (v>2); and Γ is the 

Gamma function. The excess kurtosis coefficient of t-distribution is given by 
4

6
−v

 for v>4. In 

light of system (2.1.a - 2.1.d), the only change is the error distribution, which is given by: 

),,0(~| 1 vht ttt −ℑε . From this perspective, both the coefficients and the degree of freedom of the 

t-distribution are estimated simultaneously by maximizing the following log-likelihood function: 

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+++−

⎥⎦
⎤

⎢⎣
⎡ −−Γ−

+
Γ=

)
)2(

1log()1()log(5.0

))2(log(5.0)
2

(log()
2

1(log(log

2

vh
vh

vvvTL

t

t
t

ε

π
   (2.3) 

Although the t-distribution is good at modeling fat tails for time data, its shortcoming is its 

built-in symmetrical nature. The distribution, however, is unable to take care of the skewness 

characteristic present in the financial time series. Thus, I turn to the exponential generalized beta 

distribution of the second kind (EGB2) developed by McDonald (1984; 1991) and McDonald 

and Xu (1995). 



 

 

17
 

EGB2 is attractive because of its simplicity and the ease with which it can be used to 

estimate the parameters. 4 There is a closed-form density function for the EGB2 distribution; its 

higher order moments are finite and explicitly expressed by its parameters. Moreover, it is 

flexible and able to accommodate a wider range of data characteristics, such as thick tails and 

skewness, than commonly used normal and log-normal distributions.  

The EGB2 distribution has the probability density function (pdf) given by: 
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where x is a random variable; δ is a location parameter that affects the mean of the distribution; σ 

reflects the scale of the density function; p and q ( )0 and  0 >> qp  are shape parameters that 

together determine the skewness and kurtosis of the distribution of the excess return series; and 

B(p, q) is the beta function.5  As suggested by McDonald (1991), the EGB2 is suitable to 

coefficient of skewness values between -2 and 2 and coefficient of excess kurtosis values up to 6.  

                                                 
4 It is not my intention to exhaust all the non-Gaussian models in this study, which is infeasible. Rather, my strategy 
is to adopt a distribution rich enough to accommodate the features of financial data. To my knowledge, there are 
different types of flexible parametric distributions parallel to the EGB2 distribution to model both third and fourth 
moments in the literature. One family of such distributions is a skewed generalized t-distribution (SGT) (Thedossiou, 
1998); Hueng and Yau, 2006). Special cases of SGT include a generalized t-distribution (McDonald and Newey, 
1988), a skewed t-distribution (Hansen, 1994), and a skewed generalized error distribution (SGED) (Nelson, 1991). 
The skewness and excess kurtosis of SGT are in the range (-∞, ∞) and (1.8, ∞), respectively. Another family is the 
inverse hyperbolic sine distribution (IHS) (Johnson, 1949; Johnson et al., 1994). The skewness and excess kurtosis 
of IHS is in the range (3, ∞) and (-∞, ∞).  EGB2 has less coverage for skewness and excess kurtosis than SGT and 
IHS. However, it covers many skewness-kurtosis combinations encountered in practice and its performance is 
“impressive” in estimating the slope coefficient in a simulation (Hansen et al., 2006). Other families of flexible 
distributions are also available in the literature. But there isn’t any comparison with the EGB2 distribution.  
5 It should be noted that beta function here has nothing to do with the stock’s beta. 
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The distribution is capable of accommodating fat-tails and skewed error features pertinent to 

stock return modeling.6  

For the standardized EGB2 distribution with shape parameters p and q, the univariate 

GARCH-EGB2 log-likelihood function is:7  
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where )()( qp ψψ −=∆ , )(')(' qp ψψ +=Ω  and ψ and ψ’ represent digamma and trigamma 

functions, respectively. 8  The BFGS algorithm is used in RATS® to conduct the maximize 

likelihood estimation. The skewness and excess kurtosis for EGB2 distribution are given 

respectively by: 
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and ψ’’ and ψ’’’  represent tetragamma and pentagamma functions.  

Since the skewness and kurtosis coefficients are based on parameters p and q, the standard 

deviation of skewness and kurtosis coefficients can be drawn by using the standard delta method 

(see the appendix for details). By using these measures, I can judge if the EGB2 distribution 

correctly handles skewness and kurtosis. 

                                                 
6 Many distributions are nested in the EGB2 distribution. Wang et al. (2001) show that the EGB2 distribution is very 
powerful in modeling exchange rates that have fat tails and leptokurtosis features. The EGB2 converges to normal 
distribution as p = q approaches infinity, to log-normal distribution when only p approaches infinity, to the Weibull 
distribution when p=1 and q approaches infinity, and to the standard logistic distribution when p=q=1. It is 
symmetric (called Gumbel distribution) for p = q. The EGB2 is positively (negatively) skewed as p > q (p < q) for 
σ>0. 
7 This can be obtained in the appendix of Wang et al. (2001). 
8 The digamma function is the logarithmic derivative of the gamma function; the trigamma function is the derivative 
of the digamma function. See details in the appendix. 
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2.3 Data and Summary Statistics 

In analyzing asset returns, movements in the Dow Jones Industrial Average (DJIA) are often 

considered one of the most important pieces of news that indicate the health of the financial 

market and investment performance. This paper uses the DJIA 30 stocks as the sample, which 

represents a group of well-established and diverse companies. The sample covers the period from 

October 29, 1986, through December 31, 2005. One of the reasons for using this period is its 

completeness. I can employ and assess information on all 30 stocks in the sample period.9 This 

time period also captures the recent, very vigorous stock market while covering several major 

market crashes and financial crises.  

Following the conventional approach, I use returns on the Standard & Poor’s 500 (S&P500) 

index to measure the market return. Both the daily returns on S&P500 index and data on the 30 

Dow Jones firms are taken from the CRSP database. The short-term interest rate is measured by 

the 3-month Treasury bill rate, which is taken from the Federal Reserve’s website.10 The daily 

risk-free rate is measured using the annual rate divided by 360. Excess stock returns are the 

difference between actual stock returns and the short-term interest rate. 

Weekly data are used in order to be consistent with industrial practice. For example, Value 

Line, Bloomberg and Baseline all use weekly data to calculate the stock’s beta. Daily stock 

                                                 
9 Trading data on stock C (Citi Group) starts on Oct 29, 1986. Within this period, only one stock has one missing 
value. Stock MO (Philips-Morris Co.) was not traded on May 25, 1994, due to “pending news which could affect the 
stock price”. On May 25, 1994, Philip Morris’s board was meeting to announce if the company would split its food 
and tobacco units. In this sample period, the most striking event is the market crash on October 19, 1987. This paper 
considers the 1987 market crash as an outlier in later parts. The week of the 9/11 terrorist attacks has only one day of 
trading information and is incorporated into next week.  
10 http://www.federalreserve.gov/releases/H15/data.htm#top. Treasury bill secondary market rates (serial: tbsm3m) 
are the averages of the bid rates quoted on a bank discount basis by a sample of primary dealers who report to the 
Federal Reserve Bank of New York. The rates reported are based on quotes at the official close of the U.S. 
government securities market for each business day. During this sample period, there are 47 observations that the 
S&P500 has trading information while the tbsm3m series has missing values. The lagged values of tbsm3m were 
taken for these 47 days. 
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returns are seldom used in the industry. It is also helpful to smooth out the volatility for a single-

date outlier. An additional advantage of using weekly observations is that some calendar effects 

such as the Monday effect, can be avoided. Excess returns are measured on a weekly basis. Table 

2.1 reports summarized statistics for weekly excess returns.  

<Table 2.1> 

Looking at Table 2.1, we see that six stocks have a positive value for the skewness 

coefficient and two are significant at the 1% level, while the remaining 24 stocks show negative 

values and 13 of them are significant at the 1% level.11  A negative skewness coefficient means 

that there are more negative extreme values than positive extreme values in the sample period.12  

With respect to the excess kurtosis (kurtosis coefficient minus 3), all of the estimated values are 

statistically significant at the 1% level, suggesting a serious fat-tail problem. The range of the 

excess kurtosis coefficient is between 1.08 and 24.13. By checking the range of peakedness 

measured by the inter-quartile range (i.e. 0.75 fractile minus 0.25 fractile), we see that it lies 

between 1.01 and 1.26. This range is much lower than the referenced figure, 1.35, indicating the 

presence of a high peak in the probability density function for all of the stocks under 

investigation. Testing for dependency, Ljung-Box Q statistics show that 10 stocks are serially 

autocorrelated, and 27 of 30 stocks are autocorrelated in the squared term as shown by the Q2 test. 

The latter suggests a volatility clustering phenomenon and is consistent with a GARCH-type 

                                                 
11 The sign of the skewness coefficient is related to data frequency. The skewness of the weekly returns has nothing 
to do with the skewness of the daily returns. For example, the stock HON (index=2) shows significant positive 
skewness in its daily returns but significant negative skewness in its weekly returns. 
12 The skewness coefficient is the relation between the second order moment and the third order moment. It is 
calculated by: ∑ −

−−
3

3
)(

)2)(1(
µ

σ ix
TT
T where µ is the mean of the sample. The literature on positive and 

negative values of the distribution skewness is confusing. I follow the definition of the skewness by the 
distribution’s moments (Kenney and Keeping, 1962). 
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specification. By inspecting the Jarque-Bera statistics, the normality for all 30 stocks is 

uniformly rejected.13 

The preliminary statistical results from Table 2.1 clearly indicate that the popular normality 

assumption does not conform to the weekly returns. The individual stock returns often show 

positive excess kurtosis (fat tails), accompanied by skewness. The evidence of peakedness is not 

in agreement with the normal distribution either. Besides the non-Gaussian features, some 

weekly stock returns show autocorrelation and almost all of them feature volatility clustering. 

2.4 Empirical Evidence 

In this section, I estimate the system of equations from (2.1.a) through (2.1.d) and present 

evidence of the GARCH(1,1) model based on different distributions. I also analyze the impact of 

outliers on the EGB2 distribution.   

2.4.1 GARCH(1,1) Model Based on the Normal Distribution 

Table 2.2 reports the estimates of a GARCH(1,1) model based on the assumption that the 

error series follows a normal distribution, tε | 1−ℑt ).,0(~ thN 14  Looking at the t-statistics, the 

null hypothesis of the absence of skewness is rejected at the 1% level for 11 out of 30 cases (4 

positive and 7 negative), while the null hypothesis of the absence of excess kurtosis is rejected 

for all of the cases. Moreover, the Jarque-Bera tests show that all of the return residuals are 

rejected by assuming Gaussian distribution. Further checking into the measure of peakedness, the 

estimate values range from 1.06 to 1.30. All of these figures are lower than the reference point of 

                                                 
13 All the non-normality features are more remarkable in the daily data and less so in the monthly data. This is 
consistent with Brown and Warner (1985), who reported that the non-normal features tend to vanish in low 
frequency data, such as monthly observations. Even so, subject to the individual monthly stock returns, the Jarque-
Bera test rejects the normality for 23 of 30 stocks at the 1% level. 
14 The standardized residuals are obtained by dividing the estimated regression residual by its conditional standard 
deviation. Standardizing the error term makes the distribution comparison feasible.  Mean and variance are not 
reported in the table due to the use of normalization. 
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the standard normal distribution, 1.35, indicating that all of the returns are leptokurtic. It is 

apparent that assuming that residuals for the estimated financial data are normally distributed is 

invalid. 

<Table 2.2> 

2.4.2 GARCH(1,1) Model Based on the Student’s t-Distribution 

Estimating the model by using a t-distribution indicates that the excess kurtosis has been 

substantially removed from the estimated residuals. As shown in Table 2.3, 29 stocks show that 

the coefficients of excess kurtosis are insignificant. This demonstrates the effectiveness of a t-

distribution in modeling the excess kurtosis. However, the problem of skewness has not been 

resolved at all. The evidence shows that 18 out of 30 stocks are significant at the 5% level or 

higher. There are 4 significant positive and 8 significant negative skewness coefficients in the 

standardized residuals at the 1% level.15 

Another problem emerging from this model is the insufficient peakedness of the distribution. 

The range of the estimated degree of freedom is (3.9-11.1), which corresponds to the range of 

peakedness (1.53-1.39). Note that the actual peakedness measurement from Table 2.3 is in the 

range of (1.02-1.29), indicating the presence of leptokurtosis. The t-distribution is worse than the 

normal distribution in modeling the peakedness. (Please refer to Figure 2.1.) 

<Table 2.3><Figure 2.1> 

2.4.3 GARCH(1,1) Model Based on the  EGB2 Distribution 

To advance the study, I re-estimate the GARCH(1,1) model by employing the EGB2 

distribution. Table 2.4 reports the comparable statistics based on the standardized residuals from 
                                                 
15 To deal with the skewness, a number of skewed t-distributions have been proposed (Thedossiou, 1998); Hueng 
and Yau, 2006). One obvious drawback of a skewed t-distribution in my study is the outcome of its peakedness 
measurement, which displays platykurtosis (flat-topped density). This appears to be the opposite of the leptokurtic 
stock returns. For this reason, I do not report results from a GARCH model based on a skewed t-distribution in order 
to focus on the EGB2 distribution. 
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GARCH(1,1) cum EGB2 distribution: ),,,0(2~| 1 qphEGB ttt −ℑε . The results show that the 

skewness problem for most cases has been alleviated by using the EGB2 distribution. The 

evidence indicates that only 5 stocks show the presence of skewness. Turning to the statistics of 

excess kurtosis, I find that the EGB2 distribution works well for some stocks’ kurtosis but not for 

all of them. The evidence in Table 2.4 indicates that 9 stocks still show excess kurtosis.  

Table 2.4 also contains the range of p, (0.334-1.776), and of q, (0.348-1.669). The reported p 

and q values suggest that the residuals’ distributions are far from the normal distribution that 

requires that values for both p and q approach infinity. Based on the estimated shape parameters, 

the expected peakedness for the 30 stocks is in the range of (1.07-1.26). The peakedness obtained 

from residuals of the mean equation is in the range of (1.06-1.30), conforming to the existence of 

a high peak implied by the EGB2 distribution.   

With respect to the beta coefficients, I find that the estimated values are highly significant, 

ranging from 0.69 to 1.32. The evidence suggests that the market risk is still one of the most 

influential factors for predicting individual stocks. It is of interest to compare the beta values and 

the associated standard errors across different distributions. As may be seen from Figure 2.2, 

where the figures are mainly reproduced from Table 2.2 to Table 2.4, I find no significant 

difference among them for the estimated betas.  This is not surprising since the estimations of the 

betas are obtained from the average effect based on the whole probability space. My finding is 

consistent with the results from Nelson (1991) and Hansen (1994). 

<Table 2.4><Figure 2.2> 

Inspecting the lagged individual stock return variable, I find that about half of them have a 

negative sign and are statistically significant, indicating that a mean reversion process is present 

in the weekly data. Turning to the 1987 market crash dummy, the testing results show that 20 out 
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of 30 stocks are significant at the 5% level, although the signs are mixed. The diverse 

movements signify the profound impact of an influential observation. Consistent with most 

financial data, with a few exceptions, the coefficients of the GARCH equation for each stock are 

found to be highly significant. 

One of most striking results emerging from the estimations is that while testing the leverage 

effect, only 4 stocks are found to be statistically significant at the 5% level. The number of 

stocks that show asymmetric effects has been reduced dramatically, as compared with the 

statistics reported in Table 2.2, where 15 stocks show a significant asymmetric effect. It can be 

argued that the so-called asymmetric effect may result from the fact that the empirical analysis 

was built on a misleading assumption by imposing a normal distribution on financial data.  

A disturbing fact in Table 2.4 is that three stocks show a kurtosis coefficient greater than 6, 

which is beyond the scope of the EGB2 distribution. Despite this shortcoming and the above- 

mentioned 9 stocks that have significant kurtosis, I find a significant improvement compared 

with the model that assumes a normal distribution or a t-distribution. The predicted skewness and 

excess kurtosis of the EGB2 distribution are much closer to the observed skewness and kurtosis. 

Thus, the EGB2 distribution has a good fit, although the results are not perfect.16 Finally, I check 

the independence for both return level and return squares. I find that in only three cases can the 

null hypothesis be rejected by either Q test or Q2 test at the 5% level, but none at the 1% level. In 

general, the models are adequate.  

2.4.4 The Impact of Outliers  

Theoretically, the EGB2 distribution is feasible for coefficients of skewness in a range of (-2, 

2) and the coefficients of excess kurtosis in a range of (0, 6). However, the statistics in Table 2.4 

                                                 
16 Some refinement of the model is contained in the following section.  
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do not fall in these desired ranges. Two possible reasons might contribute to this problem.  First, 

the residual series was contaminated by the presence of outliers. As pointed out by an~Pe  et al. 

(2001), an outlier can have very serious effects on the properties of the observed time series and 

it can affect the estimated residuals and the parameter values. Second, the mean equation and/or 

the variance equation may be mis-specified, although an asymmetric effect has been 

considered.17 To address this issue, I further investigate the stock return series on which outliers 

might more seriously impinge.   

Investigating the 9 stocks with excess kurtosis, I find a common phenomenon: multiple 

outliers are present. This means that a 1987 market crash dummy is incapable of accommodating 

multiple extreme values in the data series. For instance, stock UTX (index =10) has an extreme 

value of -38% in the week of the 9/11 terrorist attacks in 2001. To address the issue, I identify 

the outliers and use intervention analysis, as in the study by Box and Tiao (1975), and the 

extension of the analysis in Tsay et al. (2000) and an~Pe  et al. (2001). Table 2.5 reports the 

statistics of the residual analysis for these 9 stocks by adding different dummies in the mean 

equation. This result is rather encouraging as seen by the evidence that it reduces the significance 

of the kurtosis coefficient. It reveals that the kurtosis problem is somehow related to the failure 

to take into account extraordinary events that disturb the data structure, rather than the failure of 

the EGB2 distribution. It is evident that after removing the effect of outliers in a given time 

series, the EGB2 distribution is capable of addressing the financial data with skewness and 

kurtosis in an appropriate range.18  

                                                 
17 Engle et al. (1987) suggest putting a conditional volatility variable in the mean equation, which is called a 
GARCH-M model. However, the expected sign of the conditional variance variable is uncertain, according to 
literature surveys. There is another reason that it is not finally adopted. I cannot find the significance of the 
conditional volatility variable. 
18 Longin (1996) proposes the use of a Frechet distribution, which is able to highlight those extreme price 
movements. However, his model is not for whole return distribution but only for extreme values. 
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<Table 2.5>  

2.5 Distributional Fit Test 

Previous sections emphasized estimates of parameters pertinent to modeling the skewness 

and kurtosis of the standardized residuals by applying non-Gaussian distributions. As part of the 

modeling process, model checking in terms of goodness of fit is also important. Table 2.6 and 

Figure 2.3 compare a GARCH(1,1) model based on three distributions: normal, Student’s t, and 

EGB2. The reported log-likelihood function values (negative) clearly show that the EGB2 

distribution outperforms the rival distributions: the normal distribution and the t-distribution. 

However, as noted by Boothe and Glassman (1987), making non-nested distribution comparisons 

based on log-likelihood values can lead to spurious conclusions.19 Consequently, I calculate the 

goodness of fit test statistics20 to compare differences between the observed distribution of 

standardized residuals and the theoretical distribution based on estimated shape parameters 

following Snedecor and Cochran (1989). 

The null hypothesis tested by the goodness of fit test statistic is that the observed and 

predicted distribution functions are identical. The test statistic is calculated by:  
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where Oi is the observed count of actual standardized residuals in the ith data class (interval), Ei is 

the expected count derived from the estimated values for the distribution parameters, and k is the 

number of data intervals used in distributional comparisons. This test statistic has an asymptotic 
                                                 
19 Normal distribution is a special case of the EGB2 distribution. Likelihood Ratio Test suggests that there is 
significant improvement in the fit of the EGB2 distribution than that of the normal distribution. 
20 The chi-square test is an alternative to the Anderson-Darling and Kolmogorov-Smirnov goodness of fit tests. The 
chi-square test and Anderson-Darling test make use of the specific distribution in calculating critical values. This has 
the advantage of allowing a more sensitive test and the disadvantage that critical values must be calculated for each 
distribution. 
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chi-squared distribution with degrees of freedom equal to the number of intervals minus the 

number of estimated distribution parameters minus one. For the EGB2 distribution, 2 parameters 

are estimated; for the Student’s t distribution, one parameter is estimated; for the normal 

distribution, no parameter is required, since the error term has been standardized.  

Table 2.6 reports the results of the 2χ  test for three distributions used in the GARCH(1,1) 

model. The test power is maximized by choosing a data class equiprobably (equal probability). 

The rule of thumb of a 2χ test is to choose the number of groups starting at 4.02T . 21 The test 

results show that the null hypothesis is rejected by 12 stocks on the normal distribution at the 1% 

level, 28 stocks on the t-distribution, and only 3 stocks on the EGB2 distribution. Furthermore, 

the 2χ  test statistic also shows that the EGB2 distribution yields lower absolute values. We can 

conclude that the residuals in the model based on the EGB2 distribution deviate the least from 

the theoretical distribution. The evidence suggests that the Student’s t-distribution is able to solve 

the kurtosis problem, but it could not fit the whole error distributions due to peakedness. Putting 

the evidence together, it is clear that the EGB2 distribution is superior to the t-distribution and 

normal distribution in my empirical analysis.  

<Table 2.6><Figure 2.3> 

2.6 Implication of the EGB2 Distribution 

One of the main objectives of analyzing financial data for risk management purposes is to 

provide an answer to the question: how do we evaluate the probability of extreme values by 

using statistical distributions? According to normal distribution, the 1987 market crash with 

                                                 
21  My sample contains 999 observations; 40 intervals are used. Each group (data class) has 25 observations 
theoretically. The degrees of freedom are 37, 38 and 39 for the EGB2 distribution, t-distribution, and normal 
distribution, respectively. (The chi-squared critical values are given in the notes to Table 2.6.) 
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more than -17σ (daily data) would have never happened. However, recent market crashes 

indicate that big market swings or significant declines in asset prices happen more frequently 

than expected. Although VaR is one of the most prevalent risk measures used under normal 

conditions, it cannot deal with extreme values, since extreme values are not normal. From this 

perspective, the EGB2 distribution provides a management tool for calculating risk.  

Table 2.7 reports the probability of the semi-volatility of shocks. Here, I concentrate on the 

probability of the error term having negative shocks. From this table, I see that the predicted 

probability for extreme values (beyond -2σ) is greater than that of the normal distribution. For 

instance, probabilities of -5σ and -7σ shocks for MSFT (index =1) are 4.9E-5 and 8.4E-7 and are 

much greater than 2.8E-7 and 1.3E-12 based on the normal distribution. 

Yet, the probabilities for the EGB2 distribution under a moderate range (within ±2σ) are less 

than that of the normal distribution. This is an alternative way to tell the peakedness and fat tails 

of portfolio returns. Notice that the crossing point between the EGB2 distribution and the normal 

distribution is in the neighborhood of ±2σ, where the probabilities of both distributions are about 

the same value. This feature implies that a VaR at the 95% confidence level based on the normal 

distribution is by chance consistent with reality. However, beyond this critical level, the VaR 

method based on the normal distribution leads to underestimated forecasts of losses. 

Nevertheless, the EGB2 distribution in this regard provides a broader spectrum of risk 

information for guiding risk management. 

<Table 2.7> 
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2.7 Conclusion 

In this paper, I present empirical evidence on the stock return equation based on market risk, 

time series pattern, and asymmetric conditional variance for the 30 Dow Jones stocks. Special 

attention is given to the issue of skewness, kurtosis, and outlier effects. Although I find no 

significant difference over the estimated betas and the corresponding standard errors of the 

distributions, the evidence shows that the exponential generalized beta distribution of the second 

kind (EGB2) is superior to the Student’s t-distribution and normal distribution in dealing with 

data that demonstrate skewness and excess kurtosis simultaneously. The superiority of the EBG2 

distribution in modeling financial data is not only due to its flexibility but also to its closed-form 

density function for the distribution. Its higher order moments are finite and explicitly expressed 

by its parameters. Thus, the EGB2 model provides a useful tool for forecasting variances 

involving extreme values. As a result, this model can be practically used for risk management.  

Consistent with the finding in the literature, the asymmetric effects are highly significant in 

the standard GJR-GARCH specification by assuming normal distributions. However, 

incorporating the heavy tail information into the distributions reduces the asymmetric effects. 

My study confirms that the EGB2 distribution has the capacity to deal with the asymmetric 

effects. Since the excess kurtosis is often caused by outliers, my finding suggests that removing 

the contamination of outliers from the residuals enhances the performance of the EGB2 

distribution. In short, the GJR-GARCH-type model based on the EGB2 distribution provides a 

richer framework for modeling stock return volatility. It accommodates several special stock 

return features, including fat tail, skewness, peakedness, autocorrelation, volatility clustering, 
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and the leverage effect. As a result, this model is effective for empirical estimation and is 

suitable to risk management. 

Appendix 1 to Chapter 2: Moments of the EGB2 Distribution 

The pdf of the EGB2 distribution22 is: 
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22 The quantile function of the EGB2 distribution is exactly the regularized incomplete beta function. 
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where Ψ’ is the trigamma function. 

In the same vein as the above two moment calculation but with higher order differences, we 

get the next two central moments as: 
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where Ψ’’ and Ψ’’’ are the tetragamma function and pentagamma function respectively. 
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Appendix 2 to Chapter 2: Delta Method and Standard Errors of the 

Skewness and Kurtosis Coefficients of the EGB2 Distribution 

The delta method, in its essence, expands a function of a random variable about its mean, 

usually with a one-step Taylor approximation, and then takes the variance. For example, if we 

want to approximate the variance of G(X) where X is a random variable with mean µ and G(X) is 

differentiable, we can try  

)(')()()( µµµ GxGxG −+≈  

so that  

)()('))(( 2 xVarGxGVar µ≈  

where G'() = dG/dX. This is a good approximation only if X has a high probability of being close 

enough to its mean so that the Taylor approximation is still good.  

The nth central moments of the EGB2 distribution is given by: 
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where ψn is an nth order polygamma function. Correspondingly, the skewness coefficient is given 

by: 
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Similarly, the excess kurtosis coefficient is given by:  
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The variance of the kurtosis coefficient by the delta method is given by: 
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Note: This appendix refers to Wang et al. (2001). However, there are typos and errors in that paper. The standard 
deviation formula for skewness used by Wang et al. (2001) is incorrect (see ),(' qpgq  equation at  
http://www.econ.queensu.ca/jae/2001-v16.4/wang-fawson-barrett-mcdonald/Appendix4_delta_derivations.pdf). 
Therefore, I provide such an appendix. Accordingly, as I reviewed and replicated that paper using the data supplied 
by the Journal of Applied Econometrics, the EGB2 distribution did not remove the skewness problem completely as 
shown in their table 2.3. In addition, there is a computational error in the JPY series, so that its kurtosis has not been 
resolved either. 

 

Appendix 3 to Chapter 2: Beta Function and Polygamma Functions 

The beta function is defined as a definite integral: 
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let zeu ≡  then we get what is used in the EGB2 distribution: 
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By changing to a polar coordinate, we can get the important relation between the beta 

function and the gamma function: 

)(
)()(),(

qp
qpqp

+Γ
ΓΓ

=Β  

Taking the first order difference of B(p, q) with respect to p, we get: 
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where Ψ is the digamma function. According to the beta function’s symmetry, we get: 
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The gamma function can be defined as a definite integral for 0][ >zR  
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Taking the first order normal derivative of the digamma, we get trigamma; taking the first 

order derivative of the trigamma, we get tetragamma, and so on. The polygamma function is the 

nth normal derivative of the logarithmic derivative of Γ(z). 
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which is used to calculate polygamma functions in this paper.  
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Chapter 3: Empirical Evidence on the Risk-Return Relation Based 
on the Quantile Regression 

 

Abstract 

This paper examines the risk-return relation by applying high frequency data from 30 Dow 

Jones industrial stocks. I find some supportive evidence in favor of the positive relation between 

the mean of the excess returns and expected risk. However, such a positive relation is not 

revealed on all sample stocks. By using a quantile regression, I find that the risk-return relation 

evolves from negative to positive as the return’s quantile increases. Quantile regression gives a 

uniform picture on the risk-return relation for all 30 stocks. In this paper I also document that the 

intraday skewness coefficient explains a great deal of the variation in the excess returns. 

JEL classification: C14; C33; G12; C22 

Keywords: Risk-return tradeoff; High frequency data; Intraday skewness coefficient; Quantile 

regression  

 

3.1 Introduction 

The risk-return trade-off plays a central role in the portfolio theory of financial economics. 

Merton’s (1973) pioneer research on the intertemporal CAPM postulates a positive relation 

between expected excess returns and conditional variance. Following Merton’s theoretical 

prediction, there are voluminous studies devoted to investigating this risk-return hypothesis. 

French et al. (1987), Baillie and DeGennaro (1990), Campbell and Hentschel (1992), Campbell 

(1993), Scruggs (1998), and Ghysels et al. (2005) find a positive but mostly insignificant relation. 
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However, Campbell (1987), Breen et al. (1989), Nelson (1991), Glosten et al. (1993), and Lettau 

and Ludvigson (2002) report a negative relation.  

Other research papers, such as Turner et al. (1989), Backus and Gregory (1993), Gennotte 

and Marsh (1993), Whitelaw (1994), and Harvey (2001), argue that the contemporaneous 

relation between expected returns and volatility is nonstationary and that the relation can be 

increasing, decreasing, flat, or nonmonotonic.  They suggest that the sign of the test relation is 

conditioned on the methods (models and exogenous variables) being used. For instance, 

Koopman and Uspensky (1999) find evidence of a weak negative relationship with a stochastic-

variance-in-mean model, but a weak positive relationship with an ARCH-based volatility-in-

mean model. Harrison and Zhang (1999) report that the return-risk relationship is positive at long 

horizons. However, they find no significant correlation at short horizons. Brandt and Kang (2004) 

argue that the conditional correlation between the mean and volatility is negative, and the 

unconditional correlation is positive. Thus, the empirical evidence on the risk-return trade-off is 

inconclusive. 

The risk-return relation studies have been circumscribed in using market index such as 

Standard & Poor’s 500 since the portfolio theory states that individual stocks’ risk contains 

idiosyncratic risk that can be diversified off. However, two reasons make the risk-return relation 

study on individual stocks meaningful. First, the capital asset pricing model (CAPM) is built on 

several restricted assumptions, including that all investors are homogenous and rational, the 

capital market is perfect, variance is an adequate measurement of risk, and the S&P500 is an 

index to proxy the market portfolio. These assumptions are not solid and leave the CAPM 

impractical. In practice, investors are trading individual stocks. The relation between the 

individual stocks’ returns and variance deserves further attention. Second, the lack of attention 
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on individual stocks with respect to the risk-return relation may result from the ignorance of the 

idiosyncratic risk. After I use a control variable for the idiosyncratic risk in the regression model, 

the relation between individual excess returns and risk is similar to that of aggregate market 

approach. Since the literature on risk-return trade-off using Standard & Poor’s 500 is 

inconclusive, the individual stocks’ risk-return trade-off study will provide us with a broader 

spectrum of asset analysis and enrich our understanding of investor behaviors.  

In this paper, I use Dow Jones industrial 30 stocks to examine risk-return relation. I employ 

intra-day data and the risk is measured using intraday variance. This approach is appealing 

because using high frequency data allows me to derive the trading behavior presenting in daily 

activity, including market reaction to instant news, order placing, and program trading. This 

activity and information may not be predicted by the aggregated daily, weekly, and monthly data 

in constructing conditional variance. 

Owing to this more effective information content, I find direct evidence that there is a 

positive relation between the expected daily excess stock return and its expected standard 

deviation. However, the positive relation between the excess return and expected risk is revealed 

only in part of my sample stocks. Some stocks in my sample are inclined to show a non-

significant relation. One even shows a weak negative relation.  

To explain this phenomenon, I use a quantile regression method to illustrate the full picture 

of the relation between excess returns and expected risk. Instead of modeling the expected value 

of the excess returns, a quantile regression models the whole distribution of excess returns. The 

quantile regression is superior to the least squares regression in the following two respects. First, 

the results derived from least squares regression methods lack robustness, producing either a 

positive or a negative relation that may change due to extreme values. Stock return series is 
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notoriously known having many extreme values. The information on fat tails or unexpected 

variations has been exaggerated by employing the least squares regression method in the test 

equation. Second, the quantile regression covers the entire spectrum of dependent variable. It 

shows the changing of the impact of the explanatory variables on the dependent variable. This 

information has been left out using the least squares regression method, since it gives only one 

average value.  

Results from quantile regressions show that the risk-return relation evolves from negative to 

positive as the return’s quantile increases. Generally, I find evidence that with quantiles below 

the median, the excess return is negatively related to the expected risk; however, for quantiles 

above the median, I find that the excess return is positively related to the expected risk. In the 

median regression, the relation between excess return and expected risk is usually not 

significantly different from zero.  

This paper contributes to the literature in several respects. First, this paper finds a way to 

study individual stocks’ risk-return relation. Unexpected intraday volatility and intraday 

skewness coefficient work as control variables in the regression model. They both are powerful 

in explaining the variation in excess returns. Unexpected intraday volatility is the difference 

between actual intraday volatility and its expected part by ARMA process. The actual intraday 

volatility and the intraday skewness coefficient are calculated based on 5-minute returns’ 

information.  

The rationales of using unexpected volatility and intraday skewness coefficient as a way of 

controlling idiosyncratic risk come from the efficient market hypothesis (EMH). In many 

empirical studies, news variables such as earning announcements or changes in analysts’ grading 

are used to explain the variation in the individual stocks’ returns. The news variables represent 
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the idiosyncratic risk. According to the EMH, any news will be quickly incorporated in the 5-

minute return series. As a result, news has an impact on the unexpected intraday volatility and 

intraday skewness coefficient. In reverse, the unexpected intraday volatility and intraday 

skewness coefficient will reflect the news shock effect (idiosyncratic risk23), both in the scale 

and the sign. My evidence shows that the unexpected intraday volatility and the intraday 

skewness coefficient explain much bigger part of the variation in the excess returns than does the 

expected risk variable. 

Second, the hypothesis that excess return is positively related to expected risk is tested using 

30 Dow Jones industrial stocks. The findings provide concrete evidence of the relation between 

return and risk for large, diverse stocks. My results show that almost half of my sample stocks 

show a positive relation, while another half stocks show a zero relation.  

Third, by using quantile regression analysis, this paper provides a full spectrum investigation 

of the relation between excess return and expected risk. I demonstrate that the sign varies from 

low quantiles to high quantiles, and the result for the median quantile is consistent with that of 

the conventional regression procedure, which is based on mean values. My results are consistent 

and robust across all 30 stocks under investigation. 

The rest of the chapter is organized as follows: section 3.2 describes the model, the sample 

data, and variable measurements. Section 3.3 presents the empirical evidence on the risk-return 

relation using traditional least squares regression. Section 3.4 introduces quantile regression and 

presents results. Section 3.5 offers conclusions. 

                                                 
23 An argument against my approach is that the news that moves market definitely affects individual stocks’ intraday 
skewness coefficient as well. This is true. The intraday skewness coefficient reflects the news impact including 
broad market news and firm level news. However, since news that affects the market needs to be controlled in the 
regression as well, this paper only emphasizes its capability to control idiosyncratic risk in the individual stocks’ 
regression. 
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3.2 Model, Sample Data Description, and Variable Measurements 

3.2.1 Model 

Market rationality suggests that investors will make a portfolio decision based on the choice 

of expected return and expected volatility. The hypothesis in Merton’s notion is that there will be 

a positive relation between excess stock return and a predictable volatility component. In 

addition to the risk compensation factor, the literature suggests that news variables, such as 

unexpected changes in economic indicators, changes in Federal Reserve policy, earning and 

profit announcements, litigation, natural disasters, and the breakout of war, also play significant 

roles in determining excess return. Instead of collecting news variables for each stock, it can be 

assumed that unexpected news and its impact on economic agents’ decision will be reflected in 

unexpected volatility (French et al., 1987). The regression model can be written as:  

t
u
t

e
ttr εσδσδδ +++= 210      (3.1.a) 

With the availability of high frequency data, I introduce a new variable, the intraday 

skewness coefficient of the stock’s 5-minute returns, to reflect the news’ impact on trading 

activity. To incorporate the information and to adjust for first order autocorrelation of stock 

returns, I write the following regression: 

ttt
u
t

e
tt rSkewr εδδσδσδδ +++++= −143210    (3.1.b) 

where the dependent variable is stocks’ excess return ( fraw rrr −= ) at day t; the regressors are 

expected volatility measured by the expected intraday standard deviation,24 unexpected volatility 

measured by the unexpected intraday standard deviation, and the intraday skewness coefficient. 

                                                 
24 Using a variance other than the standard deviation to proxy expected risk in regressions leads to a very similar 
conclusion. Results are not reported here. 
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δ1>0 is expected to verify the hypothesis that there is a trade-off between excess return and 

expected risk. 

The unexpected volatility variable is essentially uncorrelated with the expected volatility 

variable. Including it in the regression doesn’t affect the estimates of the expected volatility 

variable coefficient. But it helps to explain more variation in the excess return, thereby reducing 

the standard errors, which leads to more reliable estimates for the expected volatility variable. 

δ2<0 is expected according to the literature. I also include an AR(1) process to ameliorate 

autocorrelation in the daily return series, but I cannot predict the sign of δ4 in the regression..  

Using intraday skewness besides unexpected volatility variable as a control variable for 

idiosyncratic risk is based on the efficient market hypothesis (EMH). There are studies that 

explore the relation between returns and news such as a company’s earnings, M&A activity 

announcements, and changes in analyst’s grading. It is impossible to list all the firm level news 

variables, which implies the inevitable existence of the idiosyncratic risk for individual stocks in 

the regression. However, according to the EMH, the market is efficient; investors will react to 

any news quickly. So, all news will affect the 5-minute return series and, sequentially the 

skewness coefficient of the 5-minute return series. Should the news be good, there is a tendency 

toward a positive skewness coefficient; should the news be bad, there is a tendency toward a 

negative skewness coefficient. Any types of news will leave footstep on the intraday skewness 

coefficient. Therefore, I use the intraday skewness coefficient to reflect the idiosyncratic risk. 

δ3>0 is expected in the regression. In addition, using the skewness coefficient avoids the model 

uncertainty problem (Avramov, 2002) because of the EMH, by which no news won’t affect the 

intraday skewness coefficient.  
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The time series property analysis of the intraday skewness shows that the intraday skewness 

is a martingale process. Since intraday skewness is unpredictable, it is qualified to work as a 

control variable for innovations in the daily interval series. There are some skewness variables in 

the finance literature. It is noteworthy that the intraday skewness coefficient variable doesn’t 

describe daily returns’ skewness. Rather, it describes 5-minute returns’ skewness within a day. 25 

3.2.2 Sample Data 

The data set consists of 5-minute trading information on the 30 component stocks of Dow 

Jones Industrial Average (DJIA) index during 1998-2005. The data source is the Trade and 

Quotation (TAQ) database, which provides continuously recorded information on the trade and 

quotations of securities. The data are manually checked and cleaned up for stock splits and 

dividend transaction within a day.26 The 30 DJIA stocks are the blue chip stocks, which are very 

liquid in the market and consist of different industry sectors. 

Table 3.1 provides general daily excess return information and related statistics for the 30 

stocks under investigation.27 In the whole sample period, most stocks show a positive value. The 

distribution of the daily return is typical: it has fat tails and usually a non-zero skewness 

coefficient. The normality is rejected for all 30 stocks using a Jarque-Bera (JB) test. Portmanteau 

Q test of order 10 indicates autocorrelation and a Lagrange multiplier (LM) test of order 10 

indicates heteroskedasticity in the daily return series. 
                                                 
25 There are traditionally three ways to address stock returns’ skewness. 1) Use co-skewness as a risk factor to 
explain return variation. 2) Similar to GARCH-type modeling, use an autoregressive process to describe skewness. 3) 
Use non-Gaussian distributions to model stock returns. The rationale for the above approaches is that skewness is a 
risk factor, and investors prefer positive skewness. 
26 The sample contains 8 years of data (2013 day observations, 156,040 5-minute observations) for 30 stocks. 
However, stock XOM has 1 year less data than the other stocks; stock VZ has 2 years less. Overall, there are a total 
of 237 stock-years. In addition, stocks WMT and SBC have several missing values in the 5-minute trading data 
series. 
27 The excess stock return is the difference between the actual stock return and the short-term interest rate. The risk 
free rate is measured by the 3-month Treasury bill secondary market rate, which is retrieved from the Federal 
Reserve’s website: http://www.federalreserve.gov/releases/H15/data.htm#top (serial: tbsm3m). The daily risk free 
rate is measured by using the annual rate divided by 360.  
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<Table 3.1> 

Now I investigate the 5-minute return series. Overall, the 5-minute return series severely 

deviates from the normal distribution. Taking stock HD’s 5-minute return series in 1998 as an 

example, I find that the majority (71.73%) of 5-minute returns are within ±0.002. There are 

21.88% and 5.49% 5-minute return observations in the range of ±(0.002-0.005) and ±(0.005-

0.01), respectively. The 5-minute returns beyond ±0.01% are 0.90%. Figure 3.1 shows a 

histogram of stock HD’s 5-minute return in 1998, in which the high peakedness is remarkable.  

Figure 3.1 also contains a probability density function (pdf) of the normal distribution with 

the same mean and variance as those of the 5-minute return’s distribution. By comparison, the 

center pdf value of the 5-minute return is 0.50, while the corresponding normal distribution value 

is just less than 0.36. In addition, there is a slight negative skewness in the 5-minute returns. The 

whole sample (8 years) of 5-minute return series’ distribution shows more severe fat and long 

tails. The descriptive statistics and normality test for the 5-minute return are not reported to save 

space. 

<Figure 3.1> 

3.2.3 Intraday Variance, Intraday Skewness, and Volatility Decomposition 

The stocks’ daily volatility is measured by using the intraday variance method. It is defined 

as the variance of the 5-minute returns within that day: 

 2
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where c1 is an adjusting constant for freedom (equal to 78/77=1.012987); rit is the 5-minute 

return on day t. µ is the estimated mean value of 5-minute returns. I rely on 5-minute equally 

spaced returns for all of my calculations. The market operates from 9:30 a.m. EST to 4:00 p.m. 

EST generally so that there are 78 observations on each trading day.  
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Compared with the realized volatility measurement 28  (Bollerslev and Wright, 2001; 

Anderson et al., 2003) that is common in research using high frequency data, the intraday 

variance measurement takes into consideration the mean value of 5-minute returns. As shown in 

Figure 3.1, the mean value, the standard deviation, and the number of observations for 5-minute 

returns is 7.7E-6, 0.27%, and 19526 respectively, indicating that it is reasonable to assume a zero 

mean value. So both intraday variance and realized volatility measurements are almost linearly 

related. (Pearson’s correlation coefficient between two measurements is always greater than 

0.995 for all 30 stocks.) The results of the analysis in the following sections are not changed if I 

switch the intraday variance to realized volatility. 

However, I advocate the intraday approach in this paper because it fits the framework of the 

intraday moment statistics. There are natural breaks in the high frequency (HF) data (market 

opens and closes). The 5-minute returns typically have big price movements at the beginning of 

the trading day and somehow slow down around lunch hours. I should take that information into 

account. If I analyze HF data without considering such breaks, I lose information. The realized 

volatility method (Anderson et al., 2003) considers the break, but it can also be used in a period 

not within a day. That is its disadvantage in defining daily variance. The method of the intraday 

variance is more scalable, as becomes clear when I define intraday skewness.  

                                                 
28 The daily return realized volatility is the summation of squared one-period returns (for example, 5-minute returns) 
from t0 to t1 (t0 and t1 are the two ends of the day). Other related volatility measurements include the summation of 
squared one-period returns plus products of adjacent returns due to non-synchronous trading (French et al., 1987), 
and MIDAS measurement by Ghysels et al. (2005), which puts different weights on past daily returns when 
calculating monthly variance. The scheme of the weights is estimated spontaneously with the mean equation. 
Other volatility measurements include implied volatility from the Black-Scholes option pricing model and other 
stochastic volatility models. Implied volatility is not accurate because of the “smile” and “smirk” phenomenon for 
options at different strike prices. Different from GARCH-type models, stochastic volatility models let variance 
follow a stochastic process. 
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I have 78 observations of 5-minute returns so that I will have intraday skewness and intraday 

kurtosis. This paper will show that the intraday skewness coefficient is important to explain the 

variation in daily returns. It is defined as: 
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where c2 is an adjusting constant for freedom (equal to 78/(77*76)=0.013329); ri,t is the 5-minute 

return on day t. µ is the estimated mean value of 5-minute returns within day t. σintraday is the 

square root of the intraday variance as defined in the equation (3.2).  

Market rationality suggests that rational traders usually explicitly incorporate expected risk 

into excess returns. It follows that unexpected volatility may produce a surprise impact on the 

test equation. Therefore, I decompose the volatility into expected and unexpected components. 

The expected volatility is derived from optimal forecast of an ARIMA process (The method is 

described in French et al., 1987.) The unexpected component of volatility is obtained by 

subtracting expected variance from actual variance.  

Table 3.2 summarizes the descriptive statistics for three variables: expected volatility, 

unexpected volatility, and the intraday skewness coefficient. It also contains Pearson’s 

correlation coefficients for these three variables. I find that they have a very low correlation to 

each other, so that including them together in the regression won’t cause a multicollinearity 

problem. 

<Table 3.2> 

Figure 3.2 gives an example of these intraday moment variables for stock HD. It has three 

panels. Panel A depicts the intraday standard deviation; Panel B is its decomposition of predicted 

volatility and unexpected volatility. I find the predicted value tracks the actual standard deviation 
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closely but in a smoother fashion. Panel C gives the intraday skewness coefficient in the sample 

period.  

<Figure 3.2> 

3.3 Empirical Results 

The regression results of equation (3.1.a) and equation (3.1.b) using weighted least squares 

(WLS) are shown in Table 3.3. The weights are just the inverse of the intraday standard 

deviation. WLS is adopted to correct heteroskedasticity. Table 3.3 also contains a simple 

regression where only the expected volatility variable exists in the right side of the equation. 

<Table 3.3> 

From Table 3.3, I find that the expected volatility is significantly positive at traditional 

significance levels for 15 stocks in the simple regression. Six stocks show significance at the 1% 

level; an additional 4 stocks show significance at the 5% level; and an additional 5 stocks show 

significance at the 10% level. A total 15 stocks out of 30 support the hypothesis that excess 

returns are positively related to expected volatility. However, there is one count-evidence in my 

sample. Stock PG (index=11) shows that there is a significant negative relation between excess 

returns and expected risk at the 5% level. The rest of the 14 stocks generally show positive signs 

(except that stock DIS, index=19 and stock MCD, index=21, show a negative sign) but no 

significance. 

In the multiple regression of equation (3.1.a), nineteen out of 30 stocks show significant 

support for the hypothesis that there is a positive relation. In addition, the rest of the stocks 

support a zero relation. The stock PG shows a negative but insignificant coefficient because of 

the inclusion of the control variable: unexpected volatility. Only stock PG (index=11) and stock 
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MCD (index=21) out of 30 stocks show a negative coefficient of the expected risk variable in the 

regression model (3.1.a). In the multiple regression of equation (3.1.b), the estimates of the 

expected risk variable are very similar to those of the regression of equation (3.1.a). I can 

conclude that I find a positive relation between excess returns and expected risk for big 

capitalized stocks overall. 

Turning to other explanatory variables, I find that excess returns are negatively related to 

unexpected volatility. Twenty-seven out of 30 stocks show negative significance on the 

unexpected volatility variable. The rest of the 3 stocks show no significance. That there is a 

negative relation between excess returns and unpredicted volatility is indirect evidence that 

supports the risk-return trade-off.29  

I see from Table 3.3 that the intraday skewness coefficient variable has a very high t-value. 

This is the case for all 30 stocks. This indicates that the excess return is strongly positively 

related to the intraday skewness coefficient. 30 Comparing the adjusted R2 of three regression 

models, I find that the intraday skewness coefficient variable explains a bigger portion of the 

variation in excess returns than do other variables. The average adjusted R2 of the regression 

model (3.1.b) among these 30 stocks is 8.53% while the adjusted R2 of the model without the 

intraday skewness variable is 2.54%.  

The adjusted R2 of the model that contains only the expected risk variable is mere 0.15%, and 

the maximum among 30 stocks is 0.94%. The small adjusted R2 of the regression model tells one 

                                                 
29 When I do an ARMA process for the standard deviation, I find that the standard deviation generally follows a 
positive coefficient moving average process. When the unexpected standard deviation increases, all predicted 
standard deviations will be revised upward for all future time periods. If the hypothesis that the risk premium is 
positively related to the predicted standard deviation is true, then the discount rate for future cash flows increases. If 
the cash flows are unaffected, the current stock price will be reduced. Thus, I observe a negative relation between 
excess returns and the unexpected standard deviation (French et al., 1987). 
30 I also regress the daily stock return on the daily market return and the stock’s intraday skewness coefficient. The 
intraday skewness coefficient is still very significant for all 30 stocks. That indicates that the intraday skewness 
coefficient contains shocks to the individual stock. (Results are not reported here.) 
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thing: the expected risk really explains very little about excess returns, even though almost two 

third of the sample stocks show a significant coefficient in the regression equation. This result 

strengthens the claim that investors consider some other risk measure to be more important than 

the standard deviation of portfolio returns (Baillie and DeGennaro, 1990). Comparing with the 

explanatory power of the skewness variable, I conclude that the intraday skewness coefficient 

works as a good control variable. It reflects overall impact from individual stocks’ news shocks. 

Since it explains the variation in excess returns incrementally, the model has smaller standard 

errors of the regression. Adding such a variable in the regression is where my model is different 

from the models used in French et al. (1987), Campbell (1987), and Ghysels et al. (2005).  

There might be a missing variable problem in equation (3.1.b). Nonetheless, since I already 

included the ex ante part risk and innovation part risk, I can expect that any missing variables 

will mainly affect the coefficients of the innovation part risk variables and the coefficient of the 

expected volatility variable will be affected only marginally. Moreover, any missing variables 

will affect the intraday skewness coefficient according to the efficient market hypothesis (EMH). 

Including the intraday skewness coefficient in the regression partially solves the missing variable 

problem.  

The AR(1) variable is significant for 13 out of the 30 stocks. The signs, however, are mixed. 

The residual checks reveal that problems of autocorrelation still exist in the residual series from 

adopting only one lag dependent variable. However, accurate identification of the ARMA 

process for all 30 stocks makes the model more complicated and distracts from the focus on the 

risk-return relation. The existence of the autocorrelation can be understood as the result of a mis-

specification problem (Greene, 2003). As mentioned before, the mis-specification problem 
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should affect the expected volatility variable only marginally, since I include the unexpected 

volatility variable and the intraday skewness coefficient variable in the regression.  

Since I have 30 stocks in the sample, panel data analysis is feasible. However, the Hausman 

test for random effects and the F Test for fixed effects point out that a pooled regression is best. 

On the bottom of Table 3.3, I report the pooled regression results, which indicate that there is a 

significant positive relation between excess returns and expected volatility. The adjusted R2 is 

6.54%. Still, the skewness variable explains the most part. The adjusted R2 of the model that 

doesn’t include the skewness variable is 1.33%, while the expected standard deviation alone only 

contributes 0.08%. 

Now, I can conclude that there is evidence to support a positive relationship between excess 

returns and expected risk for big capitalized stocks at the daily level.31 Stock PG shows a 

negative relation in the whole sample but it becomes insignificant after controlling unexpected 

risk. The pooled regression also supports a positive relation. The unanswered question is why 

some stocks support an argument that excess returns statistically have nothing to do with 

expected risk. 

3.4 Quantile Regression on the Relation Between Returns and Risk 

In the previous section, I find evidence of a positive relation between excess returns and 

expected risk, measured by the intraday standard deviation; I also find evidence that there is no 

relation between excess returns and expected risk. This conflicting conclusion doesn’t change 

with model specification selection (WLS or the GARCH-type model) or with sample selection 

                                                 
31 I also apply a GARCH-M model (Engle et al., 1987) to solidify my conclusion about the relation between excess 
returns and expected risk. The major results are not changed. Results are not reported here. 
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(either in the whole sample or in the sub-samples). This section tries to answer the question: why 

isn’t positive relation with significance revealed in some stocks? 

The source of the problem is that employing the weighted least squares (WLS) method 

focuses on the mean as a measure of location. Information about the tails of a distribution is lost. 

In addition, WLS is sensitive to extreme outliers that can significantly distort the results. To 

address this issue, it is informative to focus on different segments of the data and investigate the 

underlying functional relation. For this reason, I re-examine the equation (3.1.b) using a quantile 

regression. 

Unlike the WLS regression, which models the relation between explanatory variables and the 

mean of the dependent variable, the quantile regression models the relation between explanatory 

variables and the conditional quantiles of the dependent variables (Koenker 2005; Chen, 2006). 

In a specific case of the quantile regression, the median regression models the 0.5 quantile (or the 

50th percentile) of the dependent variable.32  

A quantile regression is more appropriate when extreme values are present. It has two 

advantages: (1) it can be used in various distributions especially skewed distributions; (2) if the 

extreme values change, the quantile regression coefficient doesn’t change its value and standard 

error. This is especially true for stock returns that present fat tails and skew distribution (see 

Table 3.1). The existence of the fat tails seriously affects the inference of the least squares 

regression. For example, stock PG has an astounding extreme value of daily returns of -31% in 

my sample period. This explains why stock PG reveals a negative relation between risk and 

return using only one explanatory variable in the regression. The daily return of -31% is, of 

                                                 
32 Quantiles are a set of 'cut points' that divide a sample of data into groups containing (as far as possible) equal 
numbers of observations. Specifically, Percentiles are values that divide a sample of data into one hundred groups 
containing equal numbers of observations. For example, 50% of the data values lie below the median. I call the 
median the 50th percentile or 0.5 quantile.  
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course, an influential outlier in the least squares regression analysis. Similarly, those stocks don’t 

show significance on the expected risk variable because there are too many extreme values. 

However, I cannot just remove outliers from my analysis because of the lack of publicly 

accepted criteria for selecting outliers.  

As stated earlier, I estimate β through WLS regression by minimizing the weighted square of 

deviations from the conditional mean of the sample as follows: 
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where x’β is the conditional mean of the sample of the dependent variable given x; wi is the 

weighting factor. Analogously, I can obtain a quantile regression estimate by minimizing 

weighted deviations from the conditional quantile: 
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where x’β is the conditional τth quantile of the sample of the dependent variable given x (Koenker, 

2005). ρτ is a weighting factor called a check function (Yu et al., 2003), which can be shown in 

Figure 3.3. It has the form: 
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When τ =0.5, ρτ becomes the absolute value function and the quantile regression becomes the 

median regression. In other words, estimation here is based on a weighted sum (with weights 

depending on the quantile values) of absolute values of residuals. The quantile regression is 

solvable if the quantile is expressed as linear functions of the parameters.33  

                                                 
33  This paper uses a SAS® QuantReg procedure to conduct the quantile regression for equation (3.1.b). The 
QuantReg procedure is experimental and is available in http://support.sas.com/techsup/ (Chen, 2006). 
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<Figure 3.3> 

Figure 3.4 depicts the coefficient of the expected volatility variable with a range of quantiles 

from 0.05 to 0.95 for three stocks (PG, KO, and UTX) running the regression model (3.1.b).34 

The charts clearly show that the coefficient of the quantile regression (in red) is an upward 

function of the quantiles (of the excess returns). The relation between excess returns and 

expected risk evolves from negative to positive as the quantile increases. At lower quantiles (less 

than 0.50), the excess return is negatively related to expected risk; at higher quantiles, the excess 

return is positively related to expected risk; at the median, the excess return is not correlated with 

expected risk generally. Correspondingly, the t-value is usually insignificant for the median 

regression. There are 4 stocks show significant coefficients, and 2 stocks show significant 

negative coefficients at the median regression. 

If I focus on the below-median quantiles --- for example, when I consider the value at risk 

(VaR) using a 0.05 quantile --- the coefficient is negative. It implies that given other 

conditioning variables, the higher the expected risk, the lower the quantile of the excess returns. 

In other words, under more volatile market conditions, the excess return is more likely to have a 

big loss. In contrast, when I focus on the above-median quantiles, the coefficient is positive. The 

economic meaning is that the higher the risk the higher the gain. This is actually the 

interpretation of the risk-return trade-off. But, I add into this trade-off a dimension of quantiles. 

<Figure 3.4> 

The charts also show the WLS regression results. For stocks KO and PG, the coefficients are 

both insignificant; for stock UTX, the coefficient is 5% significantly positive. As stated earlier, 

the WLS regression focuses on the mean of the dependent variable (excess return). The mean of 
                                                 
34 Stock PG is the only stock that has a negative coefficient in the WLS regression. Stock KO has the worst Sharpe 
ratio and stock UTX has the highest Sharpe ratio among the 30 stocks. Therefore, I present these 3 stocks. Needless 
to say, other stocks have similar results. 
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the return is an important input for portfolio management. However, the relation is very fragile, 

depending on the extreme values in the sample selection. Moreover, the WLS regression has 

only one estimate; it provides very limited information about the risk-return relation, as shown 

by the quantile regression. A collection of conditional quantile regressions provides a much more 

complete statistical analysis of the stochastic relationships among variables and a more robust 

result against possible outliers. 

Figure 3.4 also shows the coefficients for the other two explanatory variables. Just like that 

of the expected standard deviation, the coefficient of the unexpected standard deviation moves 

upward as the quantile increases, and evolving from the negative zone to the positive zone. I find 

that the coefficients are in the range (-20, 10). At quantiles lower than 0.7 or so, the coefficients 

are negative; at quantiles higher than 0.75 or so, the coefficients are positive. However, I 

generally find a negative coefficient in the WLS regression. 

Turning to the intraday skewness variable, I find that the coefficients are quite constant in the 

whole spectrum of quantiles. The coefficients are always positive no matter what quantile is used. 

This strengthens my conclusion that the intraday skewness coefficient is positively related to 

excess returns. In addition, the WLS regression estimates are greater than those of the quantile 

regression. 

Table 3.4 reports the coefficients for all 30 stocks at 5 different quantiles (0.05, 0.25, 0.5, 

0.75, and 0.95). Among all 30 stocks, the coefficient for the median is statistically zero (except 

for 6 stocks: MSFT, PFE, JNJ, and C with positive significance, and stocks DD and CAT with 

negative significance). This implies that there is no correlation between the median of excess 

returns and expected risk generally.  

<Table 3.4> 
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Figure 3.5 gives an example in which only the expected standard deviation is included in the 

regression. I compare the predicted value of excess returns at two quantiles (0.25, 0.75) and at 

the mean level using WLS. The stock is HD, and the WLS predicted value line is different from 

a horizontal line at the 10% significance level (t-value of the slope is 1.76). The predicted value 

line for the 25th percentile is downward and the predicted value line for the 75th percentile is 

upward. More importantly, Figure 3.5 shows the scatter plot between risk and return variables. It 

has a cone or comet shape with a horizontal axis. As risk increases, return has a bigger range. 

This scatter plot explains the quantile regression results very easily.  

Figure 3.6 is another way to show that the relation between excess returns and expected risk 

varies in 11 quantiles (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99). It is easy to see 

that the relation evolves from negative to positive as the quantile increases. 

<Figure 3.5><Figure 3.6> 

3.5 Conclusion 

This paper systematically investigates the risk-return relation by exploring the information 

derived from high frequency data. I adopt an ARIMA process to forecast expected risk proxied 

by the expected intraday standard deviation. I find that the daily excess returns are positively 

related to expected risk in some stocks, but there is no significant relation between excess returns 

and expected risk for other stocks. There is one case of a weak negative relation. The pooled 

regression indicates that there is a positive relation overall among the 30 stocks. I find that 

excess returns are negatively related to unexpected volatility for almost all 30 stocks, which is 

indirect evidence of a positive risk-return relation.  
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I use a quantile regression to investigate why some stocks show a risk-return trade-off while 

other stocks show a zero correlation between excess returns and expected risk. My analysis is 

one of a few studies that apply high frequency data and quantile regression to study the risk-

return relation. I find that the extreme values are the reason for the variation in the relationship 

between return and risk. More importantly, I show that the WLS regression results are not so rich 

as those from the quantile regression. As the quantile of interest increases, the relation between 

excess returns and expected risk evolves from negative to positive. At the median, the relation is 

generally a zero relation. 

My analysis of risk-return relation makes use of an important variable: intraday skewness 

coefficient. I find that a positive relation between excess returns and the intraday skewness 

coefficient always exists. The intraday skewness coefficient is a useful explanatory variable for 

the variation in the daily returns. According to the efficient market hypothesis, the intraday 

skewness coefficient is used as a control variable in the regression models. In particular, it 

explains a much bigger part than the unexpected risk variable does, leaving only a small part of 

the variation to be explained by expected risk. The fact that expected volatility explains very 

little of the variation in excess returns is the primary reason why empirical studies often find 

mixed results about the risk-return relation. 

 



 

 

59
 

Chapter 4: The Dynamic Correlation between Stock and Bond 
Returns 

 

Abstract 

To analyze the correlation between stock and bond markets, this paper uses the asymmetric 

dynamic conditional correlation (ADCC) model proposed by Cappiello et al. (2004) to examine 

two market index funds. The correlations between the two markets are very volatile, although the 

average correlation coefficient over the sample is negative. Testing the dynamic correlations by 

using a set of macroeconomic information, the evidence shows that relative volatility between 

stock and bond markets, the yield spread, oil price shocks, and the federal funds rate are the 

significant factors. 

JEL Classification: E42, E44, G12, G18 

Keywords: Stock-bond market correlation, Dynamic Conditional Correlation, Monetary policy 

 

4.1 Introduction 

The investigation of the correlation between returns on the stock and bond markets is one of 

the most significant topics in analyzing financial return series because the empirical correlations 

between different assets provide inputs for guiding asset allocation, portfolio selection, and risk 

management. There are good reasons for the many studies that analyze these two asset returns, 

since these two types of assets constitute the major categories in the daily investment menu. A 

standard investment textbook suggests that holding diverse assets in a portfolio is a good 

investment strategy. Since the returns on bonds provide investors with fixed incomes while 
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returns on stocks are the reward for investing in risky assets, holding combined assets in the 

investment portfolio allows investors to reduce risk. Owing to their inherent difference in 

hedging risk, stocks and bonds are considered to be substitutes in a general equilibrium 

framework (Tobin, 1982). However, the wealth effect suggests that stocks and bonds are 

complements, especially during boom periods. These ambiguous relationships lead to uncertainty 

about the sign of the correlation between stock returns and bond returns.   

  The study of the stock-bond correlation has been popularized recently by the so-called Fed 

model. The Fed model is based on the idea that investors view stocks and bonds as competing 

assets in their portfolio.35 It states that whenever a yield differential is created, investors will 

reallocate assets from lower return investments to higher return ones. Thus, equilibrium is 

achieved as earnings yields (E/P) equal bond yields. This idea seems to provide practitioners a 

parity condition for arbitrage between stock and bond investments. However, this model is 

oversimplified, and its implications can be misleading. Because of this shortcoming, 

reassessment of the Fed model has provoked a substantial amount of research on the relation 

between stock and bond returns.   

This essay examines the aggregate correlation between returns of these two assets. This paper 

enhances current knowledge of the stock-bond market correlation in the following respects. First, 

I use returns on the total bond market index fund to proxy for the bond market’s returns, instead 

of using yield to maturity (YTM) of the long-term bond. For the stock market, I use returns on 

the total stock market index fund to proxy for the stock market’s returns, rather than using 

                                                 
35 The Fed model describes the stock-bond market relation (Yardeni 1997; Abbott 2000). This model states that the 
stock’s P/E ratio should be the reciprocal of the bond market’s yield to maturity. In other words, there is a negative 
relationship between the stock market’s P/E ratio and bond yields. 
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changes in P/E ratios. This approach provides a direct and more comprehensive measure of the 

broad category assets in the two markets.   

Second, I provide different methods to generate unconditional correlations and conditional 

correlations. This paper uses a rolling window to measure unconditional correlation and a 

BEKK-GARCH model (Engle and Kroner, 1995) and an asymmetric dynamic conditional 

correlation (ADCC) model to generate dynamic correlations, as proposed by Engle (2002) and 

extended by Cappiello et al. (2004). The conditional correlation is superior to unconditional 

correlation in that the estimated coefficients are conditional on econometric refinement. 

Third, in addition to exploring the correlation between the two markets, I also explain the 

dynamic movements of the conditional correlations by using macro factors. This paper provides 

insights that explain the time-varying correlations. Specifically, evidence shows that the relative 

volatility between the stock and bond markets, the yield spread in the bond market, oil price 

shocks, and the federal funds rate are the significant factors. Higher relative volatility in the 

stock market, higher yield spread, and oil price shocks will lead to a negative correlation 

between returns in the two markets; a higher federal funds rate will lead to a positive stock-bond 

correlation. In sum, this study not only pioneers research to explain the dynamic conditional 

correlation, 36  but also provides financial implications for practitioners on dynamic asset 

allocation reacting to changes in the state variables.  

This chapter is structured as follows. Section 4.2 provides a literature review of studies on 

the stock-bond market return correlation. Section 4.3 describes the sample data. Section 4.4 

                                                 
36 There are some proposals on the Internet that try to explain the conditional correlations. Such proposals include, 
for example, Urga and Cajigas (2006) and Baele et al. (2006). This paper has been independently developed by the 
author. Regarding unconditional correlations, there are some explanations such as uncertainty about expected 
inflation, unexpected inflation, and the real interest rate (Li, 2002) and stock market volatility (Connolly et al., 
2005). 
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estimates different correlation models. Section 4.5 investigates the factors that influence dynamic 

correlation coefficients. Section 4.6 contains concluding remarks. 

4.2 Literature Review 

4.2.1. Definition 

 Studies on the relation between the stock and bond returns are complex and voluminous.  The 

topics in the literature are often differentiated from each other by varying definitions of assets 

returns (Shiller and Beltratti; 1992),  lead and lag relation (Downing et al., 2006), 37 econometric 

methods, sample periods (Lander et al., 1997), and markets/countries under study (Durre and 

Giot, 2005), among others.   

The prevalent approach developed from the Fed model in testing the return correlation 

usually uses the E/P ratio to measure stock returns and the yield on the 10-year government bond 

to measure bond returns.38  Using the E/P ratio as a measure of stock returns obviously is 

oversimplified if I compare it with a constant dividend growth model as in equation (4.1.a). It 

states that stock price is the present value of future cash flows by using variables of risk free rate, 

the risk premium, δ , and dividend growth rate, g. Similarly, I can derive the price of bonds 

represented in equation (4.1.b). In expression:  

gr
gDp
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s −+

+
=

δ
)1(       (4.1.a) 
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b r

Cp
δ+

=       (4.1.b) 

                                                 
37 This paper focuses on the contemporaneous correlation between the two markets’ returns. By using a VAR model, 
I cannot find any leading and/or lagging relation between the two return series. 
38 Besides using the P/E ratio and the bond yield, Shiller and Beltratti (1992) use forecasted values of discount rates 
and dividend growth rates to infer “theoretical” prices of stocks and bonds. They find that the theoretical correlation 
between returns on stocks and long-term bonds is a mere 0.06. 
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where the subscript s indicates stock; the subscript b indicates bond; p stands for price; D 

(dividend) and C (coupon) stand for future cash flows per period for stocks and bonds, 

respectively; rf is the risk free rate; δ represents the risk premium; and g represents the expected 

growth rate. To derive the Fed model, we need to assume that g=0 (no dividend growth), 

bs δδ =  (no risk premium difference between stocks and bonds), and D = E (all the earnings are 

paid out as dividends). The above assumptions are, of course, too strong to set the Fed model on 

solid ground. 39  

Using (4.1.1) and (4.1.b) allows us to write the constant correlation coefficient between stock 

return and bond return as:  

22

),(

bs

bs
sb

rrCov

σσ
ρ

⋅
=       (4.1.c) 

where r stands for returns; σ  stands for the returns’ standard deviation. With the help of these 

equations, I can find different scenarios about the sign of the correlation coefficient as follows. 

4.2.2. Relation Between Stock Returns and Bond Returns 

Theoretically, it is has been argued that stock and bond returns are positively correlated.  

Basically, stock and bond markets are exposed to common macroeconomic conditions. When 

economic prospects are good, optimistic investors tend to purchase stocks, even though the bond 

                                                 
39 The Fed model has been criticized by Estrada (2006) from both a theoretic viewpoint and on the basis of empirical 
tests. First, the required return for stock is in real term while the required return for bond is expressed in nominal 
term (Modigliani, 1997). Second, since stocks and bonds have different risk levels, it is implausible to assume that 
both risk premiums are equal. Third, the Fed model is absolutely groundless when the interest rate is very low, and 
one cannot judge equilibrium from the model, since neither P/E ratio nor interest rate can serve as a benchmark for 
one another. Fourth, the phenomenon of the co-movement of the P/E ratio and the reciprocal of the interest rate is 
valid only in the period 1968-2005 for U.S. markets. It is invalid in the longer period from 1871 to 2005 in U.S. 
markets.  
However, Ritter (2002) argues that it is a conceptual mistake to think stocks are riskier than bonds. Contrary to the 
prevailing notion of a 7% risk premium, there is only a 1% risk premium between stocks and bonds if considering 
the holding period (stock returns show mean reversion), inflation, and geometric average method. By and large, 
Ritter (2002) thinks that the Fed model has practical validity. 
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coupon rates are high. Experience in the late 1990s suggests that the wealth effect may be a 

dominant factor that encourages investors to hold both types of assets. Empirical studies by 

Keim and Stambaugh (1986), Campbell and Ammer (1993), and Kwan (1996) provide some 

supportive evidence.  

The literature also suggests a negative correlation between returns on the two assets. This 

occurs when the stock market is in a down period or during a market crash.  In the latter case, the 

stock risk premium sδ  and the bond premium bδ  diverge. In fact, when the stock market falls, 

investors may become more risk-averse. Under this circumstance, bonds become more attractive 

to investors, and investors move funds to the bond market from the stock market, a phenomenon 

called “flight to quality” (Hartmann et al., 2001). On the other hand, when the stock market 

rallies (that is, investors become less risk-averse), investors are induced to go back to those high 

returns, a phenomenon called “flight from quality.” The correlation between stock returns and 

bond returns is therefore negative due to these two “flights.” Empirically, this phenomenon is 

supported by Gulko (2002), Connolly et al. (2005) and Baur and Lucey (2006). 

Besides investors’ different perspectives on the market, regulators play a role as well in the 

stock-bond relation. When the economy is overheating, the Federal Reserve may change its 

targeted rate in an attempt to slow down the economy. The Fed may raise its interest rate, an 

action that drags down bond prices. However, market momentum and the expectations of 

increasing profits may continually drive stock prices upward. From this perspective, it is likely to 

be the case that the stock returns and bond returns are negatively correlated. 

Putting the above-mentioned arguments together, it is not clear whether stock returns are 

positively or negatively correlated with bond returns or even if there is any correlation. Some 

researchers, such as Alexander et al. (2000), have tried to reconcile the issue of the correlation’s 
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mixed signs. They find a significant positive correlation between daily stock returns and high 

yield bond returns at the individual firm level. They also detect a negative co-movement around 

wealth-transferring events. Thus, the sign issue is unsettled. This paper is devoted to examining 

the correlations between returns on the stock and bond markets and inquiring whether the sign is 

time-varying. 

With respect to the methodology in the correlation studies, the traditional approach relies on 

a simple regression analysis or takes an unconditional correlation based on a specific sample 

period. In light of the recent advancement of time-series analysis, Scheicher (2003) uses a 

bivariate GARCH model to estimate the conditional correlation of stock returns and spread 

changes at the firm level. He finds a weak linkage between the stock market and the corporate 

bond market. DeGoeij and Marquering (2004) also apply a multivariate GARCH model to 

examine the stock-bond relation by using BEW estimation method.40 My paper further advances 

the econometric techniques by using both BEKK and asymmetric dynamic conditional 

correlation (ADCC) models. The representation of ADCC model not only has econometric 

appeal in modeling time-varying correlations, but also better specifies the dynamic process with 

risk- averse behavior. 

 

4.3 Data 

To provide a direct and consistent measure for stock market returns and bond market returns, 

this essay employs data provided by Vanguard: Vanguard Total Bond Market Index Fund 

(VBMFX) and Vanguard Total Stock Market Index Fund (VTSMX).41 VBMFX was incepted on 

                                                 
40 Of course, GARCH-type models are not always used to study the time-varying correlation. For example, Pelletier 
(2006) adopts a regime-switching approach, where the transitions between regimes are modeled by a Markov chain. 
41 The information about the two funds is taken from http://flagship.vanguard.com.  
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12/11/1986; it is the earliest fund to track Lehman Brothers’ Aggregate Bond Index. The 

Lehman Aggregate Bond Index comprises government securities (Treasury and agency), 

mortgage-backed securities, asset-backed securities, corporate securities, and international 

dollar-denominated issues to simulate the universe of bonds in the market (market capitalized 

weighted). All are investment grade.42 Municipal bonds and Treasury inflation protected issues 

are excluded. The maturities of the bonds in the index are more than one year. The average 

weighted maturity is around 7 years (intermediate-term bond).  

VTSMX is Vanguard’s Total Stock Market Index fund that tracks the overall equity market 

index. It tracks the Dow Jones Wilshire 5000 composite index through 4/22/2005, and the MSCI 

U.S. Broad market index thereafter. VTSMX was incepted in 4/27/1992 and is a blend of value 

and growth stocks of large capitalized firms.  

The two funds’ data are obtained from historical prices at http://finance.yahoo.com. The 

VBMFX series begins on 6/4/1990 and the VTSMX series begins on 6/20/1996; the data sample 

ends on 12/29/2006. To construct a balanced dataset, I truncate the VBMFX series and set 

6/20/1996 as the starting point. Figure 4.1 gives a visual comparison of these series. It can be 

seen that VBMFX is less volatile than VTSMX. The VBMFX series shows gradual upward 

movement while the VTSMX series shows remarkable ups and downs. Both index funds show 

non-stationarity and are characterized by an increasing time trend during this sample period. The 

correlation coefficient of these two funds is 0.558 for the whole sample period. 

<Figure 4.1> 

Dividing the sample according to the bull-bear market (VTSMX series), I find that the whole 

sample consists of two bull markets (6/20/1996-3/24/2000 and 10/9/2002-12/29/2006) and one 

                                                 
42 Basically, this paper researches the relation between stocks and investment grade bonds. Regarding speculative 
grade bonds, Blume et al. (1991) show that low grade bonds behave like both bonds and stocks. 
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bear market (3/25/2000-10/8/2002). The unconditional correlation coefficients for the three 

periods are 0.91, -0.93, and 0.94, respectively. 

Table 4.1 contains statistical descriptions of these series including the unconditional 

correlation coefficient between these two funds. An augmented Dickey-Fuller test (ADF) 

indicates that both fund series are not stationary. That implies that correlation is not the 

appropriate statistic to describe the two fund series. According to Engle and Granger’s (1987) 

method, the residual from a single equation is not stationary, suggesting the absence of a co-

integration relation between these two fund series. Using Stock and Watson’s (1988) approach, 

there is more than one common trend in the VAR system, further confirming the absence of co-

integration. (Co-integration test results are not reported here). 

Taking log-difference and looking at the returns of the two index funds, I find that both 

return series are stationary as shown by the ADF test. Pearson’s correlation coefficient is -0.088 

for the whole sample period. The return correlation coefficients in the sub-samples are 0.09 

(6/20/1996-3/24-2000), -0.22 (3/24/2000-10/9/2002), and -0.15 (10/9/2002-12/29/2006), 

respectively.43 By comparing the correlation coefficient of the two fund series, although they are 

positively correlated in bull markets (as shown by the 0.91 in the first period 3/24/2000- 

10/9/2002 and 0.94 in the third periods 10/9/2002-12/29/2006), the return correlation coefficients 

move in opposite direction (0.09 vs. -0.15). This is evidence that measuring correlation using 

index levels and index returns can give different pictures of the relation between the stock and 

bond markets. 

<Table 4.1> 

                                                 
43 The Pearson’s correlation coefficient between VTSMX return and 20 year bond minus YTM change is -0.108 in 
the whole sample, 0.12, -0.26, and -0.20 in the three sub-samples. These numbers are close to the correlation 
coefficients between two index fund returns but are not the same.  
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4.4 Correlation Coefficients Between Stock and Bond Markets 

4.4.1 Rolling Correlation 

The simple calculation of correlation coefficients in the above section indicates that the 

correlation coefficient changes dramatically across different sample periods. This leads us to 

believe that a constant correlation coefficient is misleading, since it fails to reflect on-going 

market conditions in response to external shocks. A simple method to derive a time-varying 

correlation coefficient is to use a rolling correlation coefficient for returns on these two funds.  

There are two approaches for constructing a rolling correlation coefficient. One is to use a 

rolling fixed window, that is, using a fixed window size (number of observations in the window) 

and rolling the window ahead along the timeline. Thus, I use 22, 250 and 1250 trading days as 

window sizes, which correspond approximately to 1 month (see, for example, Connolly et al., 

2005), 1 year, and 5 years of observations. The second method is to expand the window. This 

method assumes that the starting point is fixed (6/20/1996); the correlation coefficients are 

calculated as the number of observations increases over time.  Specifically, I define: 
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where tmsb,ρ is the correlation coefficient by using a rolling estimate; tmsr ,  and tmbr , are stock 

and bond returns at time t with the window length of m days; and 2
,tmsσ  and 2

,tmbσ are the 

corresponding variances. 

Table 4.2 reports rolling correlations between the two return series for various measures. I 

shall discuss different correlation coefficients at a later point. 

<Table 4.2> 
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4.4.2 GARCH-BEKK Estimation 

The rolling correlation coefficient is appealing, since it is easy to construct and simple to 

understand. The main drawback of this approach is that it gives an equal weight to all of the 

sample points under a fixed window. However, within each window length, structural changes 

with different degrees of volatility are often found. Moreover, the choice of window length may 

be arbitrary. Thus, it is necessary to construct the time-varying correlation coefficient, which is 

able to weight the variance conditional on empirical regularity. The generalized autoregressive 

heteroskedasticity (GARCH) type models can achieve this goal. 

 There are two representations of a multivariate GARCH model. DeGoeij and Marquering 

(2004) apply a GARCH-BEW model (Bollerslev et al., 1988) to examine the stock-bond relation. 

However, the BEW representation has three shortcomings. The most noticeable one is that it 

cannot ensure the positive definiteness of the covariance matrix. Another one is that the 

covariance is independent of conditional variances. This conflicts with the fact that correlation 

tends to increase as variability increases. Third, it could lead to over-parameterization. These 

shortcomings can be overcome by another representation: GARCH-BEKK, which is described in 

Engle and Kroner (1995). 

The BEKK model in GARCH(1,1) can be written as: 
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     (4.2.a) 

where rt is the asset return vector; µt is the mean vector of returns; εt is an error term vector, 

which follows conditional multi-normal distribution with zero mean but with heteroskedasticity; 

ℑ t-1 is the information set available at t-1; Ht is the conditional variance/covariance matrix. In an 

expansion form for representing stock and bond returns, the variables are expressed as: 
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The covariance matrix Ht is modeled directly as a GARCH(1,1) process. I can write Ht in the 

form:  

BHBAACCH tttt 111 '''' −−− ++= εε    (4.2.b) 

where C, A, B are 2x2 matrices and C is a low triangular matrix. The conditional correlation 

coefficient is then defined as: 
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, =ρ      (4.2.c) 

4.4.3. GARCH-DCC Estimation 

The BEKK method in modeling a multivariate GARCH approach often involves 

computational complexity, especially when the variables involved get larger. Engle (2002) 

proposes a dynamic conditional correlation coefficient (DCC) model by parameterizing the 

conditional correlation directly. In particular, the procedure is divided into two steps. The first 

step is to estimate a series of univariate GARCH estimates, and the second step is to calculate 

correlation coefficients. Thus, parameters to be estimated in the correlation process are 

independent of the number of series to be correlated. It follows that very large correlation 

matrices can be estimated. In addition, the DCC method provides a mechanism to correct the 

heteroskedasticity problem, since the residuals of the returns are standardized by the conditional 

standard deviation based on a GARCH(1,1) process.  
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While Engle’s (2002) paper has a computational advantage, it ignores the asymmetric effect 

of news impact on asset returns.44  The follow-up paper by Cappiello et al. (2004) fills in this gap. 

To provide an updated research method, the research procedure in this essay shall follow 

Cappiello et al. (2004) by incorporating the GJR-type asymmetric effect. The model thus is 

labeled as an ADCC in GARCH(1,1) process.   

In particular, in the first stage, I specify two asset returns in a univariate asymmetric 

GARCH(1,1) process as follows: 
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   (4.3.a) 

where r is the return and h is the conditional variance; subscript s and b stand for stock and bond, 

respectively; ε is an error term following heteroskedastic normal distribution. 

In the second stage, I model the correlation coefficients based on the residuals that have been 

normalized from the first stage as follows: 
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44 Different ways have been suggested for specifying asymmetric effects. The first one is to allow the conditional 
variance to respond differently to positive and negative innovations. The second type is to allow shocks to enter the 
variance equation non-linearly. The last type is to allow re-centering of “new impact curve” so that the point of no 
change in the variance is not necessarily centered at zero. Hentschell (1995) provides an overview of the three types 
of asymmetric effect. 
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where z is the normalized residual; q is the conditional variance for the normalized residual; and 

sbρ  is the unconditional correlation coefficients between the two return series. Then, the 

dynamic conditional correlation coefficient between the two markets is defined as: 

tbts
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tDCC qq

q

,,

,
, =ρ      (4.3.c) 

4.4.4. Estimated Results 

Table 4.3 reports the estimates of tBEKK ,ρ  and tADCC ,ρ  from equations (4.2.c) and (4.3.c), 

respectively. Both estimations are conducted in RATS® program. As may be seen from the 

reported statistics on the lagged conditional variance and the lagged shock terms, most of these 

coefficients are statistically significant, indicating that the GARCH-type model is relevant. 

However, one special feature emerging from the ADCC model is the estimates of asymmetric 

coefficients. The evidence suggests that the bs asymmetric effect for the VTSMX return series is 

significant; however, bb, the similar coefficient for the VBMFX return series is not. This finding 

is consistent with the results in Cappiello et al. (2004) in that the equity market shows a 

remarkable asymmetric effect, while there is little supportive evidence for an asymmetric effect 

in the bond market.  

<Table 4.3> 

To show the special feature associated with different models, the correlation coefficients are 

incorporated into Table 4.2 for comparison. Table 4.2 now contains the correlation coefficients 

from the rolling methods, the GARCH-BEKK method, and the GARCH-ADCC method. For the 

rolling methods, the derived correlation coefficients apparently depend on the window length. 

The longer the window length the smoother the coefficient will be. However, a longer window 
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length will lead to fewer results. It also suggests that the rolling window leads to more volatile 

coefficients than does the expanding window.  

In addition, some short-period rolling window coefficients have a unit root. An ADF test 

indicates that the rolling correlation coefficient with a window length of 1-year is not stationary 

(p-value is 0.148), while the correlation coefficients for a window length of 22 days and 5 years 

are stationary (p-value is zero).  

The correlation coefficients from the BEKK and ADCC methods are close to the rolling 

correlation coefficients with 22 trading days. But the rolling correlation coefficient with 22 

trading days has a bigger standard deviation. Another difference is that conditional correlation 

coefficients have more observation values than do rolling correlation coefficients. To visualize 

the movements and comparison of the estimated coefficients, Figure 4.2 depicts five estimated 

correlation coefficient series, including rolling coefficients from a moving window with 22 days 

and 250 days, a rolling coefficient from an expanding window, BEKK,  and ADCC. With the 

exception of the one derived from the expanding window method, the other four coefficient 

series display very similar patterns, positing some common turning points.   

If I focus on the ADCC series, the correlation between returns in the two markets is positive 

at the beginning of the sample; then it falls to negative; and there is positive movement in the 

middle followed by negative movement. The negative movement drags the correlation into a 

negative regime for most of the time at the end of the sample period. However, overall, I do 

observe that the correlation coefficients display some degree of persistence. 

<Figure 4.2> 

Since estimated coefficients show both positive and negative relations, I am unable to clearly 

claim that the relation is positive or negative. For the rolling window coefficient with 22 trading 
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days, the average correlation coefficient is -0.03; for the rolling window coefficient with 250 

trading days, the average correlation coefficient is -0.08; for the ADCC coefficient, the average 

coefficient is -0.02. Considering the standard deviation of 0.37, 0.22, and 0.25, respectively, the 

average coefficients are all statistically different from zero. To get more insight on the estimated 

coefficients, Figure 4.3 shows a histogram of all ADCC coefficients. Basically, the correlation 

coefficients between the stock and bond markets are quite symmetrical and span a big range, 

swinging between the positive zone and the negative zone. The average correlation coefficient 

over the entire sample is negative but close to zero.  

<Figure 4.3> 

4.5 Explaining Correlation Coefficients 

The question that needs to be answered now is: what factors might contribute to making the 

correlation coefficients time-varying? Some researchers (David and Veronesi, 2004) suggest that 

state variables that are able to proxy future uncertainty, such as real interest rates, the inflation 

rate, and earning growth, should be considered. In this study, I examine the significance of the 

relative conditional volatility of the stock and bond markets, the yield spread, oil price shocks 

and federal funds rate (expected inflation rate) to explain the time-varying correlations between 

returns on the stock and bond markets.  The regression model is written as:45 

tttoilttbstADCC FFRDSPREADVR νφφφφφρ +++++= 4,32,,10,   (4.4) 

where ρ is the asymmetric dynamic conditional correlation between the stock and bond markets; 

VRs,b is the variance ratio computed by the conditional volatility of the stock market divided by 

the conditional volatility of the bond market; SPREAD is the difference between the YTM of 

                                                 
45 Since the paper is using daily data, other macroeconomic variables such as economic growth and real interest rates 
are not available. This might lead to a mis-specification problem.  
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long-term and short-term bonds, which reflects the expected change in future yield as implied by 

the expectations hypothesis. However, this spread may also reflect changes in the expected 

inflation rate as argued by Mishkin (1990); Doil,t is an oil dummy variable that takes a value of 1 

if there is a 5% price jump/reduction on those days and zero otherwise.46 This variable captures 

the impact from the oil market; FFR is the federal funds rate, which captures the impact from the 

money market; it also represents the stance of the Federal Reserve’s monetary policy. In addition, 

as popularized by Fama (1975), the federal funds rate could also serve as a proxy for inflation 

expectations. The estimates of equation (4.4) are reported in Panel A, Table 4.4. 

<Table 4.4> 

The asymmetric dynamic conditional correlation coefficients between the stock and bond 

markets are negatively related to the relative volatility of the stock and bond markets.47 The 

negative correlation suggests that a greater uncertainty in the stock market will reduce the 

correlation between these two markets. Note that the source of uncertainty associated with the 

stock returns does not have to originate from economic fundamentals per se. It could be a 

spillover from a shock in the bond market. My evidence suggests that as long as there is an 

external shock that creates a greater variance in the stock market relative to the bond market, the 

correlation of returns on the two assets will decline. This can be seen in Figure 4.4: the low 

values of the ADCC correlation coefficients are often associated with the higher conditional 

variances in the stock market. This phenomenon is consistent with the notion of a “flight to 

quality”.  

                                                 
46 I am using Spot Prices for Crude Oil and Petroleum Products from U.S. Department of Energy. 
47 Connolly et al. (2005) report that a negative relation between the uncertainty measures of stock market and the 
future correlation of stock and bond returns. However, they use 22 trading day rolling correlation instead of 
conditional correlation. Their bond return is measured from 10-year bond return. 
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The asymmetric dynamic conditional correlation coefficients between the stock and bond 

markets are also negatively correlated with the term structure spread. Since the SPREAD is 

calculated as the difference between the 20-year bond return and the 10-year bond return,48 a rise 

in the yield spread signifies that the future interest rate is anticipated to be higher, putting selling 

pressure on stock market investors. This market reaction can lead to stock return volatility. Note 

that stock return volatility could also come through the channel of a change in inflation rate 

expectations, since a larger yield spread may also mean higher inflation expectations, as 

suggested by Mishkin (1990). The impact on the correlation coefficient can be further 

exacerbated if stock market prices are more sensitive to the yield spread than bond prices, a 

situation will create a wedge in the covariance term. 

An oil price shock affects the correlation between the stock and the bond markets negatively. 

This implies that on days when there are shocks, the ways that stock prices and bond prices react 

to the shocks and their speeds in adjusting to the new equilibrium are somewhat different, so that 

the coefficient is reduced. 

The evidence from the federal funds rate (FFR) is seen to have a positive effect on the 

correlation coefficient. This finding is consistent with the scenario that both stock and bond 

market returns are affected in the same directions by the prevailing liquidity, both in high FFR 

periods and in low FFR periods. My interpretation of this positive relation is that during periods 

with a high FFR, which are usually associated with a booming economy, the “wealth effect” 

generates positive returns for both the stock and the bond markets. However, low FFR periods 

are more likely associated with an economy in recession. Correspondingly, I observe that both 

bond returns and stock returns are relatively low. As may be seen in Figure 4.4, the federal funds 
                                                 
48 I don’t use very short-term bond returns such as the 3 month T-bill returns because those returns are very highly 
correlated with another independent variable, the federal funds rate. Both bond return series are obtained from the 
Federal Reserve Board. 
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rate has patterns similar to those seen in the rolling correlation coefficient and the asymmetric 

dynamic conditional correlation coefficient. 

To provide a robustness check, I also estimate equation (4.4) using other measures of 

correlation coefficients, including 22,sbρ (22-day rolling correlation coefficient), 250,sbρ (250-day 

rolling correlation coefficient), and BEKKsb,ρ (BEKK correlation coefficient). The evidence in 

Panel A shows that both signs and statistical significances are similar. In fact, the explanatory 

power in terms of R2 is even higher; it increases from 0.36 to 0.65.  

I further estimate the models by replacing the oil shock dummy variable with the conditional 

variance of oil returns obtained by running a GARCH(1,1) model on the oil price change. With 

one exception--- the case of 250,sbρ ---I find no change in the estimated results.  

<Figure 4.4> 

The regression analysis stresses the marginal effect of each variable on the correlation 

coefficient. However, if interest focuses mainly on the signs of the coefficient, it would be 

appropriate to use a standard logistic regression to investigate the relationship between the 

dependent variable dichotomous outcomes (positive, negative) and a set of explanatory variables. 

I run a logistic regression and the results are shown in Table 4.5. The model is: 

)( 4,32,,101

1)0(
tttoilttbs FFRDSPREADVRADCC

e
P

νφφφφφ
ρ

+++++−+
=>   (4.5) 

where the dependent variable is the probability that the correlation coefficient is positive. The 

independent variables are the same as those in the OLS regression equation (4.4). The results are 

consistent with OLS regression results and suggest that higher stock market volatility, higher 

inflation expectations, and oil price shocks will make the stock-bond correlation negative, while 

the federal funds rate makes the correlation positive.   
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<Table 4.5> 

Generally, the regression results show that the correlation coefficient varies over time 

because of macroeconomic state variables. When there is more risk in the equity market and the 

oil market, or when additional expected risk is reflected in the term structure, a “flight to quality” 

phenomenon prevails; the correlation coefficient has a propensity to be negative. When there is 

no change in the risk profile of the asset markets, both the equity and bond markets move 

together. Common economic factors reflected in the money market and in monetary policy will 

lead to positive correlation coefficients. 

4.6 Conclusion 

The relationship between the stock and the bond markets is an important factor in asset 

allocation and risk management. The extant literature shows no consensus on the direction of the 

correlation. This paper investigates the correlation between the U.S. stock and bond markets 

using two index fund proxies and a more advanced econometric model---the asymmetric 

dynamic conditional correlation (ADCC) model---to measure the time-varying correlation 

coefficients. 

Results show that all types of correlation coefficient depend on the sample periods under 

investigation. The rolling correlation coefficient depends also on the chosen window size. All 

types of correlation coefficients are time-varying and very volatile, swinging between positive 

regime and negative regime. It is therefore inappropriate to claim the sign of the stock-bond 

return correlation without indication of the sample period. My sample period (1996-2006) 

observes an average negative stock-bond correlation although it is very close to zero.  
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The asymmetric dynamic conditional correlation between stock and bond market returns 

depends on a few key economic factors. My evidence concludes that the correlation is negatively 

correlated with stock market volatility, the yield spread, and oil price shocks; however, the 

correlation is positively correlated with the level of the federal funds rate. In my study, the 

“flight to/from quality,” inflation concerns, and common macroeconomic conditions all play a 

role in determining the signs of the correlation coefficient of the stock and bond markets. 
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Chapter 5: Summary 

 

This dissertation concentrates on three aspects of modeling stock returns: the error term 

distribution, the risk-return relation when high frequency data are applied, and the asymmetric 

dynamic conditional correlation of stock-bond returns. 

 In chapter 2 (essay #1), I adopt the exponential generalized beta of the second distribution 

(EGB2) as the error term’s distribution. An AR(1)-GARCH-GJR model effectively reduces the 

problems of the error term including autocorrelation, volatility clustering, skewness, and fat tails. 

The goodness of fit test proves that the empirical application of the EGB2 distribution is superior 

to the normal distribution and t-distribution. In addition, I find that the EGB2 distribution can be 

helpful when using value at risk (VaR) method and is significant in explaining the asymmetric 

effect (the leverage effect). It implies that the so-called leverage effect is at least partially 

attributable to the model’s mis-specification due to the imposition of a normal distribution on the 

return series. 

In chapter 3 (essay #2), high frequency data are used to construct daily variance variables. 

Using a conventional regression model to examine the risk-return relation at the daily level is 

inconclusive. I find evidence of a positive risk-return relation. I also find evidence that there isn’t 

any relation between expected returns and risk. To analyze the issue, I employ a quantile 

regression to investigate the possibility of a risk-return trade-off.  The evidence shows that as the 

quantile increases, the relation between excess returns and expected risk evolves from negative 

to positive. Another finding derived from this study is that the daily returns are positively related 

to intraday skewness. Using intraday skewness as an input variable for the daily excess return 

equation increases the explanatory power significantly.  
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In chapter 4 (essay #3), I explore the correlation between stock market returns and bond 

market returns. Using the ADCC model to derive the asymmetric dynamic conditional 

correlation between the stock market and bond markets reveals a time-varying character. The 

dynamic conditional correlation depends on stock market volatility, the yield spread, and oil 

price shocks. This set of variables has a negative relation with the conditional correlation. My 

study also finds that the conditional correlation is positively correlated with the level of the 

federal funds rate.  

In sum, this dissertation provides a pioneer approach to the above three areas of empirical 

research on stock returns. By using cutting-edge econometric techniques and high frequency data, 

this dissertation advances our knowledge by presenting new evidence that describes the market 

behavior in the modern economic environment. 
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Appendix of Tables 

Table 2.1 Descriptive Statistics of Weekly Excess Returns: 1986-2005 
index company name ticker nobs mean variance skewness kurtosis peakedness Jarque-Bera Q(30) Q2(30) 
1 Microsoft Corp. MSFT 999 0.00623 0.00243 0.1054 1.7434 1.1322 128.3609 40.0341 210.3496 
            [1.36 ] [11.25]***   0*** 0.1 0*** 
2 Honeywell International HON 999 0.00234 0.00189 -0.7458 10.4318 1.0107 4622.3848 66.6923 138.3476 
            [-9.62]*** [67.30]***   0*** 0*** 0*** 
3 Coca-Cola Co. KO 999 0.00264 0.00122 -0.2049 1.5426 1.0786 106.0431 35.541 222.6358 
            [-2.64]*** [9.95 ] ***   0*** 0.22 0*** 
4 E.I. DuPont de Nemours DD 999 0.00186 0.00141 -0.1613 1.4728 1.0986 94.6198 51.4363 278.872 
            [-2.08]** [9.50 ] ***   0*** 0.01*** 0*** 
5 Exxon Mobil Corp. XOM 999 0.00253 7.84E-04 -0.1485 1.3036 1.1647 74.4108 119.402 208.3203 
            [-1.92]* [8.41 ] ***   0*** 0*** 0*** 
6 General Electric Co. GE 999 0.00297 0.00119 -0.1052 3.2818 1.1407 450.1587 50.5722 197.9357 
            [-1.36] [21.17] ***   0*** 0.01** 0*** 
7 General Motors Corp. GM 999 8.57E-04 0.00176 -0.1895 2.192 1.1856 205.9881 35.2411 26.7299 
            [-2.45]** [14.14] ***   0*** 0.23 0.64 
8 International Business IBM 999 0.00168 0.00159 0.0399 2.3767 1.0927 235.388 40.55 198.6334 
            [0.51 ] [15.33] ***   0*** 0.09* 0*** 
9 Altria Group Inc. MO 999 0.00361 0.00157 -0.3389 3.9432 1.0472 666.3313 37.7432 79.336 
            [-4.37]*** [25.44] ***   0*** 0.16 0*** 
10 United Technologies UTX 999 0.00296 0.00147 -1.4454 12.8243 1.0301 7193.6328 76.4998 43.2729 
            [-18.6]*** [82.74] ***   0*** 0*** 0.06* 
11 Procter & Gamble Co. PG 999 0.00304 0.00125 -2.09 24.1258 1.055 24955.353 99.2438 45.9705 
            [-26.9]*** [155.6] ***   0*** 0*** 0.03** 
12 Caterpillar Inc. CAT 999 0.00319 0.00187 0.1223 3.4189 1.1005 489.0329 49.6413 63.4811 
            [1.58 ] [22.06] ***   0*** 0.01** 0*** 
13 Boeing Co. BA 999 0.00243 0.00175 -0.9363 8.9094 1.0939 3450.0172 26.1619 85.6471 
            [-12.0]*** [57.48] ***   0*** 0.67 0*** 
14 Pfizer Inc. PFE 999 0.00292 0.00151 -0.2471 1.6742 1.2616 126.8375 46.246 95.4955 
            [-3.19]*** [10.80] ***   0*** 0.03** 0*** 
15 Johnson & Johnson JNJ 999 0.00299 0.00109 -0.0269 2.3118 1.18 222.5903 51.99 123.6244 
            [-0.35] [14.92] ***   0*** 0.01** 0*** 
16 3M Co. MMM 999 0.00229 9.87E-04 -0.0023 2.3585 1.0821 231.5415 43.9957 202.3982 
            [-0.03] [15.22] ***   0*** 0.05** 0*** 
17 Merck & Co. Inc. MRK 999 0.00238 0.00145 -0.3045 2.4453 1.1817 264.3375 34.283 58.3937 
            [-3.93]*** [15.78] ***   0*** 0.27 0*** 
18 Alcoa Inc. AA 999 0.00279 0.00208 -0.4607 6.0484 1.1334 1558.134 56.6534 73.5826 
            [-5.95]*** [39.02] ***   0*** 0*** 0*** 
19 Walt Disney Co. DIS 999 0.00246 0.00166 -0.2527 2.9907 1.2043 382.9379 38.326 77.1463 
            [-3.26]*** [19.30] ***   0*** 0.14 0*** 
20 Hewlett-Packard Co. HPQ 999 0.00322 0.00285 -0.1841 2.1588 1.1304 199.6392 51.4856 186.6745 
            [-2.38]** [13.93] ***   0*** 0.01*** 0*** 
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Table 2.1 (Continued) 

index company name ticker nobs mean variance skewness kurtosis peakedness Jarque-Bera Q(30) Q2(30) 
21 McDonald's Corp. MCD 999 0.0022 0.00123 -0.0701 1.085 1.2158 49.8201 36.5428 140.4038 
            [-0.90] [7.00 ] ***   0*** 0.19 0*** 
22 JPMorgan Chase & Co. JPM 999 0.00252 0.00239 -0.0532 1.9238 1.079 154.5247 42.948 353.6849 
            [-0.69] [12.41] ***   0*** 0.06* 0*** 
23 Wal-Mart Stores Inc. WMT 999 0.00324 0.00161 0.0414 1.3849 1.1689 80.1245 47.2936 333.5604 
            [0.53 ] [8.94 ] ***   0*** 0.02** 0*** 
24 American Express Co. AXP 999 0.00284 0.0018 -0.2135 2.7292 1.2052 317.6268 45.6515 148.3075 
            [-2.75]*** [17.61] ***   0*** 0.03** 0*** 
25 Intel Corp. INTC 999 0.0055 0.00342 -0.632 3.8506 1.2007 683.6673 29.5866 87.1171 
            [-8.15]*** [24.84] ***   0*** 0.49 0*** 
26 Verizon Communications VZ 999 0.00152 0.00116 0.1909 1.8996 1.2103 156.263 55.9734 254.7223 
            [2.46 ]** [12.26] ***   0*** 0*** 0*** 
27 AT&T T 999 0.00196 0.00133 0.2295 3.1149 1.1904 412.6303 51.7092 300.738 
            [2.96 ]*** [20.10] ***   0*** 0.01*** 0*** 
28 Home Depot Inc. HD 999 0.00539 0.0023 -0.4238 4.5083 1.1297 875.9315 36.4251 165.8335 
            [-5.47]*** [29.09] ***   0*** 0.19 0*** 
29 American International AIG 999 0.00278 0.00139 0.3886 2.8457 1.2107 362.2258 44.6777 112.3984 
            [5.01 ]*** [18.36] ***   0*** 0.04** 0*** 
30 Citigroup Inc. C 999 0.00422 0.00208 0.1921 2.9292 1.1439 363.2863 42.9245 93.5565 
            [2.48 ]** [18.90] ***   0*** 0.06* 0*** 
31 S&P500 (Market)   999 0.00133 4.62E-04 -0.5292 2.8903 1.173 394.3576 58.9947 238.3201 
            [-6.83]*** [18.65]***   0*** 0*** 0*** 

 

Note: The 30 stocks are sorted by permanent CRSP number. nobs is the number of observations. The last row Market is measured by the S&P500. Numbers 
below coefficients are t-values (with brackets). Numbers below tests are p-values. *** indicates 1% significance, ** 5%, * 10%. The standard deviations of 
skewness and excess kurtosis coefficients are given approximately by (6/T)0.5 and (24/T)0.5,  respectively. The peakedness is measured by f0.75-f0.25, the distance 
between the values of the standardized variable at which the cumulative distribution function equals 0.75 and the value at which the cumulative distribution 
function equals 0.25. The reference value of the standard normal distribution is 1.35. A number of peakedness less than 1.35 means there is high peak in the 
probability density function. A normality test is conducted by the Jarque-Bera statistic. An independence test is conducted by a Ljung-Box Q test up to the order 
of 30. The Q2 test up to the order of 30 is to show volatility clustering.  
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Table 2.2 Statistics of the Standardized Errors on the GARCH(1,1)-Normal Distribution: Weekly Data, 1986-2005 

index skewness kurtosis peakedness JB           Q(30) Q2(30) 
0φ  1φ  2φ  δ  w  α  

β  γ  

1 0.325 1.7464 1.2393 144.3966 33.8396 23.6315 0.0038 1.1478  -0.1035 0.000012 0.043 0.947 0.0064 
 [4.19 ] *** [11.25] ***  0*** 0.29 0.79 [3.26 ]*** [19.60]*** [NA   ] [-1.92]* [1.46 ] [3.75 ]*** [68.46]*** [0.30 ] 

2 -0.1386 3.7809 1.1149 597.6384 40.1232 18.262 0.0002 1.1546  0.1514 0.000007 0.0251 0.9483 0.0475 
 [-1.79]* [24.36] ***  0*** 0.1 0.95 [0.20 ] [23.30]*** [NA   ] [4.72 ]*** [2.01 ]** [2.73 ]*** [110.4]*** [2.47 ]** 
3 -0.0996 1.7435 1.1815 128.0553 34.0617 19.7525 0.0019 0.9433 -0.043 0.1308 0.000024 0.0772 0.89 0.0115 
 [-1.28] [11.23] ***  0*** 0.28 0.92 [2.29 ]** [21.38]*** [-1.69]* [5.26 ]*** [2.00 ]** [3.29 ]*** [25.35]*** [0.35 ] 
4 0.1178 0.8954 1.1559 35.6498 30.6938 34.7945 0.0007 1.0984  0.0174 0.000008 0.0523 0.9403 -0.0022 
 [1.52 ] [5.77 ] ***  0*** 0.43 0.25 [0.84 ] [28.66]*** [NA   ] [0.63 ] [1.90 ]* [3.13 ]*** [69.26]*** [-0.10] 
5 0.1453 0.9415 1.2957 40.3688 36.0064 18.1299 0.0021 0.6815 -0.172 0.1284 0.000004 0.0407 0.968 -0.0334 
 [1.87 ]* [6.06 ] ***  0*** 0.21 0.96 [3.51 ]*** [24.05]*** [-7.18]*** [0.00 ] [8.01 ]*** [32.48]*** [857.7]*** [-14.1]*** 
6 0.2082 1.2395 1.226 71.1013 44.0888 28.2673 0.0015 1.1891 -0.0662 0.0525 0.000005 0.0284 0.9557 0.0097 
 [2.68 ]*** [7.99 ] ***  0*** 0.05** 0.56 [2.50 ]** [39.18]*** [-3.05]*** [2.91 ]*** [2.10 ]** [3.24 ]*** [90.24]*** [0.52 ] 
7 0.0232 1.7674 1.191 129.9834 37.1809 19.0182 -0.0006 1.0286  0.0042 0.000024 0.008 0.9443 0.0652 
 [0.30 ] [11.39] ***  0*** 0.17 0.94 [-0.58] [22.84]*** [NA   ] [0.14 ] [1.77 ]* [0.81 ] [49.51]*** [3.10 ]*** 
8 -0.2299 2.4445 1.0648 257.2865 34.2906 28.8303 -0.0008 0.9271  0.0206 0.00001 0.0217 0.9296 0.0956 
 [-2.96]*** [15.75] ***  0*** 0.27 0.53 [-0.87] [20.08]*** [NA   ] [0.93 ] [1.99 ]** [2.10 ]** [66.45]*** [3.41 ]*** 
9 -0.6695 4.1205 1.0558 780.568 22.7618 23.094 0.0027 0.8083  -0.0296 0.000011 -0.007 6   0.9666 0.0615 
 [-8.63]*** [26.54] ***  0*** 0.82 0.81 [2.87 ]*** [15.71]*** [NA   ] [-1.09] [3.62 ]*** [-0.92] [127.9]*** [5.18 ]*** 
10 -0.4853 3.8586 1.1821 658.2901 36.9234 9.2842 0.0019 1.0402 -0.0725 -0.1718 0.000002 0.0439 0.9599 -0.0111 
 [-6.25]*** [24.86] ***  0*** 0.18 1 [2.31 ]** [25.05]*** [-2.97]*** [-5.12]*** [1.07 ] [3.93 ]*** [158.7]*** [-0.67] 
11 -0.4783 3.587 1.13 573.0948 46.8546 31.4136 0.0014 0.8322 -0.0987 0.1153 0.000029 0.0764 0.8365 0.14 
 [-6.16]*** [23.08] ***  0*** 0.03** 0.4 [1.84 ]* [21.56]*** [-4.11]*** [3.54 ]*** [2.84 ]*** [2.69 ]*** [26.21]*** [3.42 ]*** 
12 0.2028 3.7273 1.1323 584.5448 33.3369 16.408 0.0022 1.0168  -0.1516 0.000016 0.0019 0.9663 0.042 
 [2.61 ]*** [24.01] ***  0*** 0.31 0.98 [1.94 ]* [18.30]*** [NA   ] [-4.42]*** [2.66 ]*** [0.27 ] [113.5]*** [3.56 ]*** 

13 -0.0969 1.7346 1.1864 126.6834 26.0719 44.0327 0.0018 0.9425  0.0029 0.000011 0.0143 0.9523 0.0491 
 [-1.25] [11.17] ***  0*** 0.67 0.05** [1.90 ]* [17.05]*** [NA   ] [0.09 ] [2.00 ]** [1.45 ] [98.07]*** [2.37 ]** 
14 -0.2625 1.7829 1.2095 143.6545 41.7312 32.5686 0.0014 0.9127  -0.0347 0.00005 0.0189 0.9101 0.0545 
 [-3.38]*** [11.49] ***  0*** 0.08* 0.34 [1.39 ] [17.52]*** [NA   ] [-1.20] [2.77 ]*** [1.17 ] [36.57]*** [2.38 ]** 
15 0.0521 1.0313 1.2023 44.682 39.197 23.4614 0.0021 0.827 -0.0929 0.0214 0.000028 0.0157 0.9135 0.0717 
 [0.67 ] [6.64 ] ***  0*** 0.12 0.8 [2.59 ]*** [18.58]*** [-3.50]*** [0.55 ] [2.48 ]** [0.82 ] [34.30]*** [2.76 ]*** 
16 0.1481 1.6954 1.1093 123.1715 32.113 43.3573 0.0011 0.8627 -0.0839 -0.0368 0.000003 0.0095 0.9704 0.031 
 [1.91 ]* [10.92] ***  0*** 0.36 0.05** [1.59 ] [23.05]*** [-3.39]*** [-1.22] [1.50 ] [1.04 ] [117.5]*** [2.37 ]** 
17 -0.5395 5.5791 1.1373 1342.749 35.2725 13.3108 0.002 0.8975 -0.0696 -0.0272 0.000014 -0.0052     0.9651 0.0536 
 [-6.95]*** [35.94] ***  0*** 0.23 1 [2.04 ]** [19.70]*** [-2.47]** [-0.94] [2.54 ]** [-0.65] [106.2]*** [3.74 ]*** 
18 0.1916 1.3209 1.2232 78.6646 48.917 37.3444 0.0008 1.129  -0.2635 0.00002 0.0399 0.9382 0.0151 
 [2.47 ]** [8.51 ] ***  0*** 0.02** 0.17 [0.76 ] [19.86]*** [NA   ] [-4.00]*** [2.14 ]** [2.99 ]*** [66.10]*** [0.68 ] 
19 0.0434 1.8057 1.1739 135.8917 31.3465 34.4645 0.0011 1.12  -0.0509 0.000009 0.0236 0.9627 0.0111 
 [0.56 ] [11.63] ***  0*** 0.4 0.26 [1.10 ] [22.25]*** [NA   ] [-1.75]* [2.01 ]** [1.99 ]** [111.4]*** [0.64 ] 
20 -0.0463 2.9953 1.1578 373.4356 37.8005 31.4578 0.0017 1.3192 -0.0634 -0.1321 0.000019 0.0214 0.9659 0.0053 
 [-0.60] [19.30] ***  0*** 0.15 0.39 [1.31 ] [19.80]*** [-2.53]** [-3.67]*** [1.86 ]* [2.25 ]** [108.9]*** [0.34 ] 

 



 

 

96
 
Table 2.2 (Continued) 

index skewness kurtosis peakedness JB           Q(30) Q2(30) 
0φ  1φ  2φ  δ  w  α  β  γ  

21 0.0039 1.413 1.2017 83.0282 34.6267 27.0469 0.0009 0.8581  0.1522 0.000013 0.0158 0.9529 0.0344 

 [0.05 ] [9.10 ] ***  0*** 0.26 0.62 [0.97 ] [17.25]*** [NA   ] [5.58 ]*** [2.41 ]** [1.39 ] [80.21]*** [1.79 ]* 

22 -0.1535 1.5692 1.1886 106.3135 38.6063 25.3614 -0.0001 1.28  -0.0775 0.000003 0.0212 0.9427 0.0764 

 [-1.98]** [10.11] ***  0*** 0.13 0.71 [-0.13] [26.27]*** [NA   ] [-1.74]* [0.75 ] [1.61 ] [81.87]*** [3.51 ]*** 

23 0.11 1.0494 1.2199 47.807 33.1966 20.3827 0.0017 1.1453 -0.0764 0.0414 0.000013 0.0357 0.9436 0.0147 

 [1.42 ] [6.76 ] ***  0*** 0.31 0.91 [2.15 ]** [24.08]*** [-2.97]*** [0.94 ] [2.02 ]** [2.86 ]*** [67.03]*** [0.85 ] 

24 -0.0935 1.2285 1.2377 64.2169 38.8477 28.2932 0.0008 1.3293 -0.0455 0.0361 0.000004 0.0123 0.9607 0.0468 

 [-1.20] [7.91 ] ***  0*** 0.13 0.55 [0.92 ] [33.18]*** [-2.12]** [1.25 ] [1.37 ] [1.13 ] [139.4]*** [2.26 ]** 

25 -0.1157 1.1022 1.1877 52.7396 39.102 18.3382 0.0034 1.4716  -0.3448 0.000139 0.0918 0.8552 -0.0131 

 [-1.49] [7.10 ] ***  0*** 0.12 0.95 [2.43 ]** [22.73]*** [NA   ] [-19.6]*** [1.63 ] [2.58 ]*** [15.05]*** [-0.38] 

26 0.1525 1.4721 1.1727 93.9842 18.7153 25.0171 0.0004 0.7143 -0.1018 0.114 0.00002 0.0151 0.915 0.1031 

 [1.97 ]** [9.48 ] ***  0*** 0.95 0.72 [0.43 ] [16.06]*** [-3.38]*** [4.37 ]*** [2.31 ]** [1.02 ] [42.86]*** [2.93 ]*** 

27 0.1414 1.7771 1.1934 134.6485 28.2358 46.9571 0.0011 0.8291 -0.0536 0.1442 0.000005 0.0527 0.9445 -0.0015 

 [1.82 ]* [11.45] ***  0*** 0.56 0.03** [1.25 ] [18.36]*** [-1.94]* [5.09 ]*** [1.48 ] [3.83 ]*** [96.88]*** [-0.08] 

28 -0.24 1.7515 1.2185 137.1534 35.0204 49.3694 0.0039 1.328 -0.0679 -0.1298 0.000022 0.0583 0.9209 0.0117 

 [-3.09]*** [11.28] ***  0*** 0.24 0.01** [3.83 ]*** [24.83]*** [-2.93]*** [-3.15]*** [2.29 ]** [3.74 ]*** [65.73]*** [0.62 ] 

29 0.1677 2.281 1.1977 221.0298 21.721 34.2298 0.0018 1.1269 -0.0865 0.0229 0.000022 0.0359 0.9123 0.0516 

 [2.16 ]** [14.69] ***  0*** 0.86 0.27 [2.19 ]** [24.40]*** [-3.53]*** [0.72 ] [2.33 ]** [2.68 ]*** [36.49]*** [1.60 ] 

30 0.741 7.2363 1.1258 2268.791 32.4082 15.2051 0.0024 1.4348 -0.0655 -0.0534 0.000096 0.0605 0.837 0.0388 

 [9.55 ]*** [46.62] ***  0*** 0.35 0.99 [2.44 ]** [29.36]*** [-2.77]*** [-1.36] [2.43 ]** [2.01 ]** [15.74]*** [0.90 ] 

 

Note: The 30 stocks are sorted by permanent CRSP number. Numbers below coefficients are t-values (with brackets). Numbers below tests are p-values. *** 
indicates 1% significance, ** 5%, * 10%. The standard deviations of skewness and excess kurtosis coefficients are given approximately by (6/T)0.5 and (24/T)0.5,  
respectively. The peakedness is measured by f0.75-f0.25, the distance between the values of standardized variable at which the cumulative distribution function 
equals 0.75 and the value at which the cumulative distribution function equals 0.25. The reference value of the standard normal distribution is 1.35. A number of 
peakedness less than 1.35 means there is high peak in the probability density function. A normality test is conducted by the Jarque-Bera (JB) statistics. An 
independence test is conducted by a Ljung-Box Q test up to the order of 30. The Q2 test up to the order of 30 is to show volatility clustering. The model is: 
(2.1.a) itttmt Drrr εδφφφ ++++= − 8712,10      

(2.1.b) ttt zh=ε          

(2.1.c) 2
111

2
1 )0( −−−− <+++= ttttt Ihwh εεγβαε     

(2.1.d)   tε |ℑ ),0(~1 tt hN− . The following stocks do not have an AR(1) variable: MSFT, HON, DD, GM, IBM, MO, CAT, BA, PFE, AA, DIS, MCD, JPM, INTC.  
Stock PG is the only one to have an AR(4) variable in the mean equation to ensure that autocorrelation is removed. 
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Table 2.3 Statistics of the Standardized Errors on the GARCH(1,1)-t Distribution: Weekly Data, 1986-2005 

index skewness kurtosis peakedness Q(30) Q2(30) 
0φ  1φ  2φ  δ  w  α  β  γ  v  

1 0.343 1.7838 1.2436 33.2195 23.0715 0.0025 1.1206  -0.1049 1.1E-05 0.0476 0.942 0.0103 6.4635 
 [4.42 ]*** [-0.53] (1.44) 0.31 0.81 [2.37 ]** [20.40]*** [NA   ] [-2.37]** [1.04 ] [3.09 ]*** [44.63]*** [0.37 ]  
2 -0.2319 4.7297 1.1348 40.0766 21.0042 0 1.0971  0.1458 1.9E-05 0.0298 0.939 0.0277 4.5243 
 [-2.99]*** [-0.50] (1.48) 0.1 0.89 [-0.00] [23.66]*** [NA   ] [7.48 ]*** [2.36 ]** [2.30 ]** [62.86]*** [1.21 ]  
3 -0.1337 1.994 1.1909 33.3153 20.5154 0.0019 0.9345 -0.0596 0.1281 9E-06 0.0687 0.9273 -0.0097 6.7609 
 [-1.72]* [-0.17] (1.44) 0.31 0.9 [2.49 ]** [23.49]*** [-2.41]** [6.46 ]*** [0.99 ] [3.12 ]*** [28.16]*** [-0.30]  
4 0.1218 0.9512 1.1426 30.255 33.7479 0.0004 1.0819  0.016 9E-06 0.0598 0.929 0.0065 6.7749 
 [1.57 ] [-1.02] (1.44) 0.45 0.29 [0.55 ] [27.61]*** [NA   ] [0.84 ] [1.60 ] [2.55 ]** [49.02]*** [0.22 ]  
5 0.1278 1.0005 1.2934 34.3873 16.7991 0.002 0.6895 -0.1679 0.1297 6E-06 0.0501 0.9537 -0.0284 11.1396 
 [1.65 ]* [0.44 ] (1.39) 0.27 0.97 [3.09 ]*** [22.69]*** [-6.81]*** [0.00 ] [5.48 ]*** [20.20]** [425.1]*** [-6.14]***  
6 0.2187 1.3807 1.2375 45.1364 27.5533 0.0012 1.1779 -0.061 0.0524 4E-06 0.0295 0.9515 0.0224 8.6249 
 [2.82 ]*** [0.14 ] (1.41) 0.04** 0.59 [2.04 ]** [38.69]*** [-3.49]*** [2.98 ]*** [1.49 ] [2.43 ]** [79.40]*** [0.97 ]  
7 0.0013 2.0779 1.1981 36.1023 18.2453 -0.001 1.0089  0.0026 1.1E-05 0.0154 0.9586 0.0433 6.2797 
 [0.02 ] [-0.39] (1.44) 0.2 0.95 [-1.01] [21.65]*** [NA   ] [0.10 ] [1.23 ] [1.31 ] [78.94]*** [2.03 ]**  
8 -0.2701 2.8559 1.0195 34.8834 28.569 -0.001 0.9383  0.0218 5E-06 0.0297 0.9489 0.0491 3.9057 
 [-3.48]*** NA (1.53) 0.25 0.54 [-1.20] [24.54]*** [NA   ] [1.35 ] [1.06 ] [2.05 ]** [72.36]*** [1.89 ]*  
9 -0.706 4.5322 1.0486 22.5016 21.7429 0.0035 0.804  -0.0309 1.4E-05 0.0176 0.9518 0.0397 4.0701 
 [-9.10]*** [-0.12] (1.48) 0.84 0.86 [3.79 ]*** [16.44]*** [NA   ] [-1.61] [2.07 ]** [0.81 ] [57.86]*** [1.75 ]*  
10 -0.8208 6.9991 1.1804 33.9934 7.8299 0.0021 1.0041 -0.0877 -0.1768 1.5E-05 0.0539 0.9273 0.001 5.9383 
 [-10.5]*** [2.28 ]** (1.45) 0.28 1 [2.69 ]*** [26.12]*** [-3.61]*** [-7.95]*** [1.58 ] [2.17 ]** [31.36]*** [0.04 ]  
11 -0.8627 8.5655 1.1322 48.1859 21.2743 0.0022 0.8264 -0.1159 0.1119 0.000015 0.0492 0.9235 0.0176 5.1337 
 [-11.1]*** [0.88 ] (1.45) 0.02** 0.88 [3.01 ]*** [21.67]*** [-4.51]*** [5.75 ]*** [2.88 ]*** [2.69 ]*** [61.63]*** [0.65 ]  
12 0.1705 4.2164 1.1414 34.2222 14.6933 0.0017 1.0317  -0.1496 1.4E-05 0.0201 0.9592 0.0231 4.8239 
 [2.20 ]** [-0.53] (1.48) 0.27 0.99 [1.69 ]* [21.07]*** [NA   ] [-5.66]*** [1.48 ] [1.34 ] [65.73]*** [1.30 ]  
13 -0.1782 2.0983 1.1979 26.1595 46.3158 0.0015 0.9043  -0.0005 1.9E-05 0.0132 0.9502 0.0414 6.4902 
 [-2.30]** [-0.25] (1.44) 0.67 0.03** [1.50 ] [18.78]*** [NA   ] [-0.02] [2.23 ]** [1.03 ] [72.45]*** [1.70 ]*  
14 -0.2855 2.0056 1.1918 40.2125 30.7673 0.0018 0.92  -0.0344 2.9E-05 0.03 0.9247 0.044 6.1476 
 [-3.68]*** [-0.52] (1.44) 0.1 0.43 [1.94 ]* [20.01]*** [NA   ] [-1.64]* [1.81 ]* [1.56 ] [36.67]*** [1.55 ]  
15 0.0652 1.0808 1.1834 39.0689 25.1389 0.0018 0.8325 -0.0783 0.0243 2.3E-05 0.0226 0.9211 0.059 6.828 
 [0.84 ] [-0.94] (1.44) 0.12 0.72 [2.34 ]** [21.67]*** [-3.08]*** [0.98 ] [2.06 ]** [1.02 ] [32.82]*** [2.15 ]**  
16 0.1556 1.6957 1.0909 32.1196 42.3807 0.0011 0.8569 -0.0758 -0.0366 4E-06 0.0121 0.9688 0.0277 4.863 
 [2.00 ]** [-0.86] (1.48) 0.36 0.07* [1.60 ] [24.26]*** [-3.35]*** [-2.23]** [1.47 ] [0.79 ] [106.0]*** [1.81]*  
17 -0.8697 10.312 1.1498 31.9551 7.3149 0.0019 0.9572 -0.0651 -0.0208 2.6E-05 0.0285 0.9234 0.0484 5.5646 
 [-11.2]*** [2.80 ]*** (1.45) 0.37 1 [2.16 ]** [21.44]*** [-2.47]** [-0.96] [2.27 ]** [1.57 ] [44.28]*** [1.69 ]*  
18 0.1839 1.3727 1.2229 49.1214 37.5822 0.0004 1.1146  -0.2645 1.6E-05 0.0326 0.9427 0.0282 7.4977 
 [2.37 ]** [-0.43] (1.42) 0.02** 0.16 [0.43 ] [22.39]*** [NA   ] [-7.62]*** [1.50 ] [2.23 ]** [58.66]*** [1.14 ]  
19 0.0404 1.8821 1.1772 30.5184 31.6679 0.0011 1.1197  -0.0509 1.2E-05 0.0295 0.9512 0.0162 5.9915 
 [0.52 ] [-0.69] (1.45) 0.44 0.38 [1.19 ] [26.38]*** [NA   ] [-2.38]** [1.57 ] [1.90 ]* [62.59]*** [0.70 ]  
20 -0.0672 3.2296 1.1420 37.5776 30.4423 0.0017 1.2807 -0.0657 -0.1361 1.6E-05 0.0294 0.9602 0.0057 4.8937 
 [-0.87] [-0.69] (1.48) 0.16 0.44 [1.39 ] [22.11]*** [-2.79]*** [-4.78]*** [1.42 ] [2.29 ]** [85.02]*** [0.28 ]  
21 -0.0207 1.6059 1.2007 34.3777 27.0955 0.0005 0.865  0.1532 9E-06 0.0179 0.955 0.0394 6.6886 
 [-0.27] [-0.55] (1.44) 0.27 0.62 [0.55 ] [20.89]*** [NA   ] [6.54 ]*** [1.51 ] [1.39 ] [73.68]*** [1.61 ]  
22 -0.1468 1.6039 1.1651 38.9648 25.0082 0.0001 1.3264  -0.0731 4E-06 0.0217 0.9422 0.0748 6.3138 
 [-1.89]* [-0.72] (1.44) 0.13 0.72 [0.12 ] [27.83]*** [NA   ] [-2.56]** [0.81 ] [1.28 ] [63.96]*** [2.90 ]***  
23 0.1166 1.0596 1.2152 33.3934 21.1235 0.0014 1.1359 -0.0768 0.0406 1.3E-05 0.0379 0.9393 0.0202 7.765 
 [1.50 ] [-0.71] (1.42) 0.31 0.88 [1.71 ]* [26.23]*** [-3.28]*** [1.28 ] [1.30 ] [2.49 ]** [46.50]*** [0.92 ]  
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Table 2.3 (Continued) 

index skewness kurtosis peakedness Q(30) Q2(30) 0φ  1φ  2φ  
δ  w  α  β  

γ
 v  

24 -0.1277 1.3495 1.2377 37.6296 28.6486 0.0006 1.3136 -0.0494 0.0342 8E-06 0.0138 0.952 0.0545 8.2353 
 [-1.65]* [-0.10] (1.41) 0.16 0.54 [0.71 ] [30.37]*** [-1.99]** [1.35 ] [1.59 ] [0.98 ] [82.43]*** [2.10 ]**  
25 -0.1312 1.2702 1.1790 39.0144 28.3397 0.0038 1.45  -0.2712 9E-06 0.0514 0.9609 -0.0311 6.8554 
 [-1.69]* [-0.82] (1.44) 0.13 0.55 [2.90 ]*** [20.87]*** [NA   ] [-7.00]*** [0.53 ] [16.39]** [60.67]*** [-1.56]  
26 0.2108 1.9665 1.1407 19.1298 26.7937 0.0002 0.7986 -0.0871 0.1231 1.9E-05 0.0515 0.8996 0.0672 5.8863 
 [2.72 ]*** [-0.67] (1.45) 0.94 0.63 [0.23 ] [19.30]*** [-3.28]*** [5.48 ]*** [1.94 ]* [2.05 ]** [36.66]*** [1.60 ]  
27 0.1706 1.9752 1.1781 27.9549 46.7514 0.0009 0.8697 -0.05 0.1487 8E-06 0.0621 0.9383 -0.015 6.2806 
 [2.20 ]** [-0.48] (1.44) 0.57 0.03** [1.20 ] [20.74]*** [-1.97]** [6.38 ]*** [1.51 ] [3.27 ]*** [68.32]*** [-0.51]  
28 -0.2452 1.9163 1.2308 34.7149 53.8793 0.004 1.2955 -0.067 -0.1331 2.5E-05 0.0515 0.9275 0.0041 6.8976 
 [-3.16]*** [-0.16] (1.44) 0.25 0*** [3.78 ]*** [24.05]*** [-2.83]*** [-4.47]*** [1.94 ]* [3.10 ]*** [54.01]*** [0.18 ]  
29 0.1626 2.4257 1.1944 21.4156 31.1321 0.0012 1.1447 -0.0772 0.0254 0.00002 0.0403 0.9188 0.0332 6.849 
 [2.10 ]** [0.33 ] (1.44) 0.87 0.41 [1.55 ] [26.33]*** [-3.46]*** [1.07 ] [1.84 ]* [2.29 ]** [33.77]*** [1.10 ]  
30 0.7595 10.0335 1.1622 31.9395 10.6979 0.0016 1.406 -0.0759 -0.0565 1.1E-05 0.0189 0.9579 0.0278 5.316 
 [9.79 ]*** [1.90 ]* (1.45) 0.37 1 [1.85 ]* [30.66]*** [-3.58]*** [-1.87]* [1.16 ] [1.82 ]* [59.90]*** [1.27 ]  

 

Note: The 30 stocks are sorted by permanent CRSP number. Numbers below coefficients are t-values (with brackets). Numbers below tests are p-values. *** 
indicates 1% significance, ** 5%, * 10%. The standard deviation of skewness coefficients is given approximately by (6/T)0.5. The excess kurtosis coefficient of 
the t-distribution is given by 

4
6
−v

 for v>4. Its standard deviation is obtained from the delta method. The peakedness is measured by f0.75-f0.25, the distance 

between the values of standardized variable at which the cumulative distribution function equals 0.75 and the value at which the cumulative distribution function 
equals 0.25. The reference value of the standard normal distribution is 1.35. The reference value for the estimated t-distribution is reported below actual 
peakedness (with parenthesis), which is in the range (1.39, 1.53). A number of peakedness less than reference value means there is a high peak in the probability 
density function. A normality test is omitted since the assumption is Student’s t-distribution. An independence test is conducted by a Ljung-Box Q test up to the 
order of 30. The Q2 test up to the order of 30 is to show volatility clustering. The model is: 
(2.1.a) itttmt Drrr εδφφφ ++++= − 8712,10      

(2.1.b) ttt zh=ε          

(2.1.c) 2
111

2
1 )0( −−−− <+++= ttttt Ihwh εεγβαε     

(2.1.d)    tε |ℑ ),,0(~1 vht tt− .  
The following stocks do not have an AR(1) variable: MSFT, HON, DD, GM, IBM, MO, CAT, BA, PFE, AA, DIS, MCD, JPM, INTC.  
Stock PG is the only one to have an AR(4) variable in the mean equation to ensure that autocorrelation is removed. 
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Table 2.4 Statistics of the Standardized Errors on the GARCH(1,1)-EGB2 Estimates: Weekly Data, 1986-2005 

index skewness kurtosis peakedness Q(30) Q2(30) 
0φ  1φ  2φ  δ  w  α  β  γ  p q 

1 0.3412 1.7765 1.2455 33.4102 22.9306 0.0034 1.1176  -0.101 1.1E-05 0.0473 0.9435 0.0045 1.0233 0.7971 
 [0.43 ] [1.18 ] (1.20) 0.31 0.82 [3.23 ]*** [21.84]*** [NA   ] [-2.27]** [1.08 ] [3.23 ]*** [45.21]*** [0.17 ]   
2 -0.2048 4.4376 1.1664 40.0458 19.8209 0 1.1021  0.1467 1.4E-05 0.0269 0.9437 0.029 0.5436 0.5274 
 [-1.87]* [9.86 ]*** (1.13) 0.1 0.92 [-0.01] [26.13]*** [NA   ] [7.30 ]*** [2.67 ]*** [2.49 ]** [79.79]*** [1.50 ]   
3 -0.1272 1.9475 1.1934 33.3921 20.4258 0.002 0.9353 -0.056 0.1291 1.1E-05 0.0694 0.9241 -0.0101 0.8898 0.8338 
 [-1.65]* [1.70 ]* (1.19) 0.31 0.9 [2.94 ]*** [21.09]*** [-2.19]** [6.63 ]*** [0.97 ] [2.89 ]** [23.65]*** [-0.29]   
4 0.1248 0.953 1.1425 30.344 33.8905 0.0008 1.0782  0.0169 9E-06 0.0642 0.9277 -0.0007 0.7613 0.6589 
 [-0.49] [-1.75]* (1.17) 0.45 0.29 [0.95 ] [28.14]*** [NA   ] [0.91 ] [1.45 ] [2.61 ]*** [44.76]*** [-0.02]   
5 0.1341 0.9897 1.2981 34.7639 17.1257 0.0021 0.6903 -0.1673 0.1301 5E-06 0.0481 0.9584 -0.0317 1.776 1.6686 
 [0.72 ] [1.18 ] (1.26) 0.25 0.97 [2.95 ]*** [19.25]*** [-6.31]*** [6.99 ]*** [1.00 ] [2.81 ]*** [32.60]*** [-1.26]   
6 0.2233 1.3534 1.2350 45.1204 27.1924 0.0014 1.1795 -0.0632 0.0532 4E-06 0.032 0.9529 0.0141 1.378 1.1263 
 [0.28 ] [1.06 ] (1.23) 0.04** 0.61 [2.13 ]** [39.92]*** [-3.10]*** [3.53 ]*** [1.49 ] [2.42 ]** [81.42]*** [0.58 ]   
7 0.0048 1.9897 1.2069 36.3661 18.4223 -0.0007 1.0121  0.0036 1.3E-05 0.0136 0.956 0.0463 0.8337 0.7498 
 [-0.98] [1.52 ] (1.18) 0.2 0.95 [-0.65] [21.31]*** [NA   ] [0.15 ] [1.33 ] [1.28 ] [69.88]*** [2.16 ]**   
8 -0.257 2.7399 1.0606 34.8276 28.5692 -0.0012 0.9455  0.0223 6E-06 0.0262 0.944 0.056 0.3342 0.3477 
 [-1.22] [1.48 ] (1.08) 0.25 0.54 [-1.35] [23.95]*** [NA   ] [1.61 ] [1.24 ] [1.96 ]** [64.61]*** [2.13 ]**   
9 -0.6971 4.3728 1.0869 22.6857 21.929 0.0026 0.8023  -0.0322 1.3E-05 0.0054 0.9573 0.0486 0.3736 0.4322 
 [-3.07]*** [7.39 ]*** (1.09) 0.83 0.86 [2.64 ]*** [18.33]*** [NA   ] [-1.97]** [2.46 ]** [0.35 ] [71.58]*** [2.73 ]***   
10 -0.7098 5.8553 1.1884 34.6538 8.0929 0.0017 1.009 -0.087 -0.1769 0.00001 0.0458 0.9423 -0.003 0.6849 0.7425 
 [-4.88]*** [12.84]*** (1.17) 0.26 1 [2.23 ]** [27.68]*** [-3.83]*** [-8.36]*** [1.72 ]* [2.60 ]*** [54.62]*** [-0.13]   
11 -0.6741 6.0631 1.1326 46.4982 26.043 0.0017 0.8242 -0.1203 0.11 1.9E-05 0.0518 0.9004 0.0504 0.5305 0.6015 
 [-3.52]*** [12.84]*** (1.14) 0.03** 0.67 [2.32 ]** [22.70]*** [-4.71]*** [6.16 ]*** [2.44 ]** [2.32 ]** [34.82]*** [1.31 ]   
12 0.1834 4.1096 1.1571 34.3886 15.0915 0.0024 1.0259  -0.1484 1.6E-05 0.017 0.9585 0.0245 0.609 0.5251 
 [-0.26] [7.69 ]*** (1.14) 0.27 0.99 [2.18 ]** [20.40]*** [NA   ] [-6.07]*** [1.68 ]* [1.22 ] [64.75]*** [1.45 ]   
13 -0.1586 2.0019 1.2016 26.1503 45.7982 0.0016 0.912  0.0008 1.7E-05 0.0128 0.9503 0.0442 0.866 0.8183 
 [-1.67]* [2.05 ]** (1.19) 0.67 0.03** [1.70 ]* [17.47]*** [NA   ] [0.03 ] [2.22 ]** [1.00 ] [74.53]*** [1.84 ]*   
14 -0.2815 1.9679 1.2027 40.3874 30.9281 0.0013 0.9224  -0.0352 3.2E-05 0.0276 0.9212 0.0483 0.748 0.8582 
 [-0.80] [1.47 ] (1.18) 0.1 0.42 [1.38 ] [18.75]*** [NA   ] [-1.67]* [2.04 ]** [1.52 ] [37.57]*** [1.63 ]   
15 0.0796 1.0827 1.1947 39.075 24.6498 0.0021 0.8394 -0.0769 0.0268 2.4E-05 0.0306 0.9128 0.0564 0.8794 0.7645 
 [-0.74] [-1.16] (1.19) 0.12 0.74 [2.53 ]** [21.19]*** [-3.00]*** [1.03 ] [2.08 ]** [1.14 ] [30.49]*** [1.92 ]*   
16 0.1496 1.703 1.1076 32.4643 43.0084 0.0011 0.8548 -0.074 -0.0368 3E-06 0.0089 0.9711 0.0299 0.4835 0.4921 
 [1.29 ] [-1.12] (1.12) 0.35 0.06* [1.57 ] [25.54]*** [-3.22]*** [-2.62]*** [1.42 ] [0.82 ] [105.5]*** [1.88 ]*   
17 -0.799 9.2326 1.1596 32.7319 8.4127 0.0019 0.9539 -0.0652 -0.021 2.4E-05 0.0206 0.9335 0.0452 0.5532 0.5478 
 [-5.64]*** [21.66]*** (1.14) 0.33 1 [2.01 ]** [23.75]*** [-2.52]** [-1.07] [2.20 ]** [1.25 ] [46.75]*** [1.68 ]*   
18 0.2006 1.3321 1.2287 49.0945 38.2149 0.0009 1.1161  -0.262 1.9E-05 0.0349 0.9417 0.0183 1.1292 0.9509 
 [0.15 ] [0.43 ] (1.21) 0.02** 0.14 [0.87 ] [20.81]*** [NA   ] [-8.05]*** [1.67 ]* [2.31 ]** [56.20]*** [0.72 ]   
19 0.0419 1.8661 1.1842 30.6913 32.2694 0.0012 1.1209  -0.0504 1.1E-05 0.0287 0.9535 0.014 0.7224 0.6921 
 [-0.11] [0.85 ] (1.17) 0.43 0.36 [1.26 ] [25.84]*** [NA   ] [-2.66]*** [1.59 ] [1.67 ]* [69.68]*** [0.55 ]   
20 -0.0622 3.1716 1.1715 37.46 30.6583 0.0017 1.277 -0.0667 -0.1363 1.7E-05 0.0261 0.9614 0.0057 0.6121 0.5983 
 [-0.66] [5.14 ]*** (1.15) 0.16 0.43 [1.30 ] [20.89]*** [-2.69]*** [-5.28]*** [1.62 ] [2.14 ]** [96.11]*** [0.30 ]   
21 -0.0083 1.5496 1.2055 34.3959 27.1835 0.0008 0.8637  0.1543 9E-06 0.0194 0.9549 0.0332 0.8679 0.7485 
 [-1.47] [0.21 ] (1.18) 0.27 0.61 [0.88 ] [21.01]*** [NA   ] [7.51 ]*** [1.66 ]* [1.45 ] [75.20]*** [1.57 ]   
22 -0.1528 1.6012 1.1773 38.8848 24.9758 -0.0001 1.322  -0.0747 4E-06 0.0197 0.9422 0.0788 0.7846 0.8586 
 [-0.31] [0.50 ] (1.19) 0.13 0.73 [-0.12] [29.64]*** [NA   ] [-2.45]** [0.75 ] [1.24 ] [66.75]*** [2.76 ]***   
23 0.122 1.0602 1.2103 33.3633 21.3757 0.0018 1.135 -0.0739 0.043 1.5E-05 0.0397 0.936 0.0198 1.0471 0.879 
 [-0.53] [-0.68] (1.20) 0.31 0.88 [1.98 ]** [26.40]*** [-2.96]*** [1.47 ] [1.63 ] [2.48 ]** [47.76]*** [0.88 ]   



 

 

100
 
Table 2.4 (Continued) 

index skewness kurtosis peakedness Q(30) Q2(30) 0φ  1φ  2φ  
δ  w  α  β  

γ
 p q 

24 -0.1166 1.321 1.2361 37.8084 28.7249 0.0007 1.3141 -0.0483 0.0357 7E-06 0.0151 0.9543 0.0485 1.1216 0.9945 
 [-1.86]* [0.48 ] (1.22) 0.15 0.53 [0.84 ] [33.10]*** [-2.29]** [1.45 ] [1.36 ] [1.07 ] [86.97]*** [1.84 ]*   
25 -0.1305 1.2595 1.1869 39.0536 28.8414 0.0032 1.4509  -0.2732 8E-06 0.0493 0.9632 -0.0312 0.7835 0.9016 
 [0.30 ] [-0.52] (1.19) 0.12 0.53 [2.37 ]** [23.06]*** [NA   ] [-6.75]*** [0.44 ] [2.99 ]*** [50.58]*** [-1.42]   
26 0.2048 1.9035 1.1586 19.1195 26.5286 0.0004 0.7923 -0.0884 0.1229 1.8E-05 0.0454 0.9039 0.0669 0.7541 0.7163 
 [0.99 ] [1.20 ] (1.17) 0.94 0.65 [0.44 ] [20.62]*** [-3.31]*** [6.16 ]*** [1.86 ]* [1.99 ]** [37.62]*** [1.67 ]*   
27 0.1627 1.9351 1.1779 27.9691 46.5729 0.001 0.873 -0.0499 0.149 7E-06 0.0595 0.9396 -0.0114 0.724 0.7236 
 [1.19 ] [1.01 ] (1.17) 0.57 0.03** [1.09 ] [19.65]*** [-1.82]* [6.82 ]*** [1.51 ] [3.19 ]*** [69.05]*** [-0.40]   
28 -0.2448 1.873 1.2342 34.7132 52.5435 0.0037 1.3029 -0.0683 -0.1334 2.4E-05 0.0531 0.9257 0.0055 0.8967 0.9744 
 [-1.27] [2.01 ]** (1.20) 0.25 0.01** [3.47 ]*** [26.02]*** [-2.77]*** [-4.64]*** [1.86 ]* [3.16 ]*** [51.93]*** [0.25 ]   
29 0.1727 2.3833 1.2032 21.5452 32.2833 0.0016 1.1419 -0.0754 0.0273 2.2E-05 0.0409 0.9138 0.0348 0.9941 0.8369 
 [-0.21] [3.43 ]*** (1.20) 0.87 0.35 [1.90 ]* [27.31]*** [-3.26]*** [1.04 ] [1.91 ]* [2.28 ]** [30.42]*** [1.10 ]   
30 0.754 9.3273 1.1708 33.0307 11.0894 0.0023 1.4123 -0.0674 -0.0517 1.9E-05 0.0271 0.9441 0.02 0.6879 0.5446 
 [3.64 ]*** [29.70]*** (1.15) 0.32 1 [2.43 ]** [31.60]*** [-3.11]*** [-2.13]** [1.17 ] [1.67 ]* [34.58]*** [0.86 ]   

 

Note: The 30 stocks are sorted by permanent CRSP number. Numbers below coefficients are t-values (with brackets). Numbers below Q test and Q2 test are p-
values. *** indicates 1% significance, ** 5%, * 10%. The predicted higher moments are given by the formula:
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Their standard deviations are obtained using the delta method. The peakedness is measured by f0.75-f0.25, the distance between the values of standardized variable 
at which the cumulative distribution function equals 0.75 and the value at which the cumulative distribution function equals 0.25. The reference value of the 
standard normal distribution is 1.35. A number of peakedness less than 1.35 means there is a high peak in the probability density function. The reference value of 
the EGB2 distribution is reported below peakedness with parenthesis and is in the range of (1.07, 1.26). A normality test is omitted since the assumption is the 
EGB2 distribution. An independence test is conducted by a Ljung-Box Q test up to the order of 30. The Q2 test up to the order of 30 is to show volatility 
clustering. The estimated model is: 
(2.1.a) itttmt Drrr εδφφφ ++++= − 8712,10      

(2.1.b) ttt zh=ε          

(2.1.c) 2
111

2
1 )0( −−−− <+++= ttttt Ihwh εεγβαε     

(2.1.d)    tε |ℑ ),,,0(2~1 qphEGB tt−    
The following stocks do not have an AR(1) variable: MSFT, HON, DD, GM, IBM, MO, CAT, BA, PFE, AA, DIS, MCD, JPM, INTC.  
Stock PG is the only one to have an AR(4) variable in the mean equation to ensure that autocorrelation is removed. 
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Table 2.5 Statistics of the 9 Stocks’ Standardized Errors on the GARCH(1,1)-EGB2 Estimates: Weekly Data, 1986-2005 

index ticker skewness kurtosis peakedness Q(30) Q2(30) 
0φ  1φ  2φ  w  α  β  γ  p q N 

2 HON 0.1578 2.3953 1.2182 50.5229 30.1429 0.0006 1.0566  1.3E-05 0.0408 0.935 0.0211 0.9103 0.7813 10 
  [-0.20] [3.25 ]*** (1.19) 0.01** 0.46 [0.77 ] [27.88]*** [NA   ] [1.93 ]* [2.20 ]** [55.37]*** [0.80 ]    
9 MO -0.5069 2.7862 1.1174 22.8401 27.9385 0.0027 0.8159  1.3E-05 0.0407 0.9407 0.0142 0.4568 0.5192 3 
  [-2.07]** [2.28 ]** (1.12) 0.82 0.57 [2.88 ]*** [18.11]*** [NA   ] [1.76 ]* [2.24 ]** [58.26]*** [0.64 ]    
10 UTX -0.1411 1.2787 1.2052 32.3131 29.7857 0.0021 0.9843 -0.0853 1.1E-05 0.0414 0.9334 0.0221 0.8765 0.8795 2 
  [-1.02] [-0.19] (1.20) 0.35 0.48 [2.64 ]*** [25.53]*** [-4.20]*** [1.65 ]* [2.03 ]** [42.05]*** [0.92 ]    
11 PG -0.0746 1.5127 1.1577 44.1755 25.669 0.0021 0.7953 -0.1211 1.7E-05 0.0561 0.8984 0.0527 0.6161 0.6576 1 
  [0.13 ] [-0.66] (1.16) 0.05* 0.69 [2.57 ]*** [22.15]*** [-4.74]*** [1.92 ]* [2.20 ]** [31.66]*** [1.45 ]    
12 CAT 0.2477 2.0579 1.1768 32.5068 19.5369 0.0022 1.0234  1.7E-05 0.0198 0.9527 0.0284 0.7285 0.6271 3 
  [0.32 ] [1.17 ] (1.16) 0.34 0.93 [2.07 ]** [21.42]*** [NA   ] [1.50 ] [1.07 ] [47.31]*** [1.44 ]    
17 MRK -0.0976 1.905 1.1634 34.2624 29.7861 0.002 0.9621 -0.0609 0.00002 0.0183 0.9364 0.0532 0.6352 0.6109 1 
  [-1.09] [0.43 ] (1.15) 0.27 0.48 [2.13 ]** [22.28]*** [-2.49]** [2.34 ]** [1.17 ] [53.32]*** [2.28 ]**    
20 HPQ 0.0938 1.8507 1.2149 38.0405 51.1062 0.0019 1.2568 -0.0687 1.3E-05 0.0219 0.9602 0.0199 0.8271 0.7859 9 
  [0.21 ] [1.33 ] (1.19) 0.15 0.01** [1.71 ]* [22.32]*** [-3.00]*** [1.44 ] [1.71 ]* [87.05]*** [0.96 ]    
29 AIG 0.0815 1.777 1.232 20.983 28.3133 0.0016 1.1323 -0.0779 2.1E-05 0.0434 0.9149 0.0283 1.2246 1.0228 2 
  [-0.81] [2.09 ]** (1.22) 0.89 0.55 [2.08 ]** [30.66]*** [-3.69]*** [1.88 ]* [2.31 ]** [31.32]*** [0.95 ]    
30 C 0.2551 1.3999 1.1966 30.3054 29.5047 0.0024 1.4095 -0.0761 1.1E-05 0.0374 0.9496 0.002 1.0202 0.7612 3 
  [-0.65] [-0.22] (1.19) 0.45 0.49 [2.43 ]** [32.79]*** [-3.62]*** [1.18 ] [2.24 ]** [50.63]*** [0.09 ]    

 

Note: The 9 stocks have significant excess coefficients in Table 2.4. Numbers below coefficients are t-values (with brackets). Numbers below tests are p-values. 
*** indicates 1% significance, ** 5%, * 10%. The predicted higher moments are given by the formula:
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standard deviations are obtained using the delta method. The peakedness is measured by f0.75-f0.25, the distance between the values of standardized variable at 
which the cumulative distribution function equals 0.75 and the value at which the cumulative distribution function equals 0.25. The reference value of the 
standard normal distribution is 1.35. A number of peakedness less than 1.35 means there is high peak in the probability density function. The reference value of 
the EGB2 distribution is reported below peakedness with parenthesis and is in the range of (1.12, 1.22). A normality test is omitted since the assumption is the 
EGB2 distribution. An independence test is conducted by a Ljung-Box Q test up to order 30. The Q2 test of order of 30 is to show volatility clustering. The model 
is: 
(2.1.a)   itextrementtmt Drrr εφφφ +∆+++= −12,10      

(2.1.b)  ttt zh=ε          

(2.1.c)   2
111

2
1 )0( −−−− <+++= ttttt Ihwh εεγβαε     

(2.1.d)   tε |ℑ ),,,0(2~1 qphEGB tt−  
N in the table represents the number of dummies in the mean equation (at most 10). Those dummies represent the extreme values in the individual stock’s return series.  
The following stocks do not have an AR(1) variable: MSFT, HON, DD, GM, IBM, MO, CAT, BA, PFE, AA, DIS, MCD, JPM, INTC.  
Stock PG is the only one to have an AR(4) variable in the mean equation to ensure that autocorrelation is removed. 
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Table 2.6 Fitness Comparisons among Alternative Distributions 

Likelihood (-lnL) Chi Square Test Statistic Index ticker 
Normal t EGB2 Normal t EGB2 

1 MSFT 2727.663 2405.698 1836.975 56.32** 70*** 38.6 
2 HON 2939.66 2655.106 2078.661 77.76*** 129.92*** 60.12*** 
3 KO 3070.488 2747.057 2175.794 45.6 89.76*** 30.2 
4 DD 3080.986 2748.706 2180.607 50.32 70.88*** 41.04 
5 XOM 3286.659 2949.103 2378.235 46.24 49.6* 38 
6 GE 3330.797 2998.795 2428.805 33.36 54.72** 23.32 
7 GM 2851.589 2529.761 1958.933 40.56 78.32*** 36.4 
8 IBM 2940.611 2646.765 2076.628 87.84*** 151.04*** 128.68*** 
9 MO 2870.27 2589.11 2016.484 76.56*** 138.72*** 49* 
10 UTX 3086.131 2777.7 2204.927 56.24** 86.4*** 42.64 
11 PG 3099.136 2798.107 2226.256 77.6*** 106.4*** 47.92 
12 CAT 2808.847 2515.001 1941.912 71.04*** 110.88*** 50.52* 
13 BA 2869.513 2546.216 1974.935 54.72** 77.36*** 44.12 
14 PFE 2906.508 2585.459 2014.814 66*** 84.08*** 31.2 
15 JNJ 3094.648 2764.042 2194.88 68.72*** 86.72*** 53** 
16 MMM 3213.133 2899.268 2330.127 69.92*** 99.68*** 54.88** 
17 MRK 2921.886 2622.322 2049.385 54.88** 91.52*** 54.68** 
18 AA 2820.431 2491.263 1921.461 43.92 69.84*** 34 
19 DIS 2947.914 2628.138 2057.377 45.84 76.56*** 47.64 
20 HPQ 2640.579 2341.888 1768.097 68.56*** 117.92*** 67.28*** 
21 MCD 3021.621 2694.789 2125.111 65.36*** 117.12*** 45.52 
22 JPM 2851.61 2527.93 1957.228 54.72** 78.32*** 48.72* 
23 WMT 2993.255 2660.808 2091.682 48.64 64.48*** 36.68 
24 AXP 3013.207 2681.583 2111.124 42.32 72.8*** 40.72 
25 INTC 2560.727 2232.273 1663.033 58.8** 63.04*** 26.32 
26 VZ 3055.394 2733.302 2162.317 64.4*** 106.32*** 50.28* 
27 T 3023.173 2700.77 2129.957 51.84* 85.84*** 45.16 
28 HD 2838.915 2515.001 1943.85 50.24 77.92*** 42.24 
29 AIG 3097.629 2777.491 2206.573 56** 63.28*** 39.72 
30 C 2918.77 2633.718 2060.1 75.44*** 91.04*** 39.76 

 

Note: This table compares the GARCH(1,1) model based on three distributions: Normal, Student’s t (t), and EGB2 
based on a negative logarithm of the likelihood function value (Left) and the 2χ  goodness of fit test statistic value 
(Right). The quantiles are computed via 40 intervals. The degree of freedom (d.f.) is 37 for EGB2, 38 for t-
distribution, 39 for normal distribution. The chi square critical values at 1%, 5% and 10% levels are 59.89, 52.19, 
and 48.36, respectively with d.f. being 37;  61.16, 53.39, and 49.51 with d.f. being 38; 62.43, 54.57, and 50.66 with 
d.f. being 39. *** indicates 1% significance, ** 5%, * 10%.  
Results show that the EGB2 distribution has the lowest negative log-likelihood function value. Results also show 
that 12 stocks reject the normal distribution assumption; 28 stocks reject the Student’s t distribution; only 3 stocks 
reject the EGB2 distribution at the 1% significance level. 
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Table 2.7 The Probability of Negative Extreme Shocks in the Error Term  

Shocks 
Stock 

-7σ -6σ -5σ -4σ -3σ -2σ -1σ 

1 MSFT 8.41E-07 6.42E-06 4.90E-05 0.000373 0.002832 0.021062 0.137138 
2 HON 7.31E-06 3.76E-05 0.000193 0.000984 0.005031 0.025703 0.12933 
3 KO 3.42E-06 2.03E-05 0.00012 0.000708 0.004177 0.024489 0.135087 
4 DD 2.83E-06 1.73E-05 0.000105 0.000642 0.003902 0.023582 0.134136 
5 XOM 1.05E-06 8.00E-06 6.07E-05 0.000459 0.003429 0.024407 0.143861 
6 GE 4.52E-07 3.96E-06 3.47E-05 0.000303 0.002615 0.021451 0.141932 
7 GM 3.30E-06 1.96E-05 0.000117 0.000693 0.004112 0.024242 0.134684 
8 IBM 1.83E-05 8.05E-05 0.000352 0.001534 0.006686 0.029148 0.126866 
9 MO 2.35E-05 9.97E-05 0.00042 0.001761 0.007391 0.031013 0.129726 
10 UTX 1.17E-05 5.64E-05 0.000269 0.001287 0.006139 0.029219 0.135227 
11 PG 1.53E-05 7.00E-05 0.000318 0.00144 0.006526 0.029553 0.132183 
12 CAT 5.00E-06 2.74E-05 0.00015 0.000818 0.004465 0.024337 0.129658 
13 BA 3.28E-06 1.97E-05 0.000118 0.000708 0.004233 0.025055 0.137264 
14 PFE 9.08E-06 4.58E-05 0.00023 0.001154 0.00578 0.028808 0.137298 
15 JNJ 1.90E-06 1.25E-05 8.18E-05 0.000536 0.003512 0.022751 0.135477 
16 MMM 1.07E-05 5.16E-05 0.000248 0.001193 0.005729 0.027508 0.130414 
17 MRK 9.13E-06 4.53E-05 0.000224 0.001105 0.005452 0.026874 0.130475 
18 AA 2.66E-06 1.66E-05 0.000103 0.00064 0.00397 0.024331 0.137113 
19 DIS 4.92E-06 2.74E-05 0.000152 0.000842 0.004664 0.025708 0.134949 
20 HPQ 7.93E-06 4.05E-05 0.000206 0.001045 0.005301 0.02685 0.132606 
21 MCD 2.13E-06 1.36E-05 8.67E-05 0.000552 0.003515 0.022249 0.132611 
22 JPM 5.72E-06 3.12E-05 0.00017 0.00092 0.004991 0.026883 0.136911 
23 WMT 1.21E-06 8.74E-06 6.28E-05 0.000451 0.003228 0.022585 0.138697 
24 AXP 1.09E-06 8.05E-06 5.92E-05 0.000435 0.003184 0.022668 0.139658 
25 INTC 1.14E-05 5.56E-05 0.000269 0.0013 0.006275 0.030129 0.138371 
26 VZ 3.65E-06 2.13E-05 0.000124 0.00072 0.004185 0.024206 0.133382 
27 T 6.62E-06 3.50E-05 0.000184 0.000964 0.005062 0.026487 0.133843 
28 HD 6.65E-06 3.56E-05 0.00019 0.00101 0.005372 0.028274 0.139248 
29 AIG 1.35E-06 9.52E-06 6.69E-05 0.000469 0.003282 0.022544 0.137761 
30 C 1.91E-06 1.24E-05 7.97E-05 0.000514 0.003315 0.021299 0.13028 
         
if normal 1.28E-12 9.87E-10 2.87E-07 3.17E-05 0.00135 0.02275 0.158655 

 

Note: The probability is calculated based on estimated p and q values of the EGB2 distribution. It tells how often the error 
terms have negative extreme values. The probability values based on the normal distribution are the same for all 30 stocks. 
Results show the EGB2 distribution will forecast a much higher probability for extreme values’ happening than does the 
normal distribution. 
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Table 3.1 Descriptive Statistics of DJIA Stock Daily Excess Returns, 1998-2005  

 index company name ticker  nobs mean std skew kurt min max JB Q(10) LM(10) 

1 Microsoft Corp. MSFT 2013 0.000503 0.023546 0.130445 5.681048 -0.15613 0.195482 2696.455*** 161.863*** 94.73237*** 
2 Honeywell International Inc. HON 2013 0.000278 0.024783 0.25227 13.19121 -0.17799 0.28206 14537.3*** 81.94801*** 61.06852*** 
3 Coca-Cola Co. KO 2013 -0.00012 0.017234 -0.00469 4.074388 -0.10494 0.096384 1383.452*** 271.4599*** 150.8816*** 
4 E.I. DuPont de Nemours & Co. DD 2013 5.51E-05 0.019716 0.207581 2.792277 -0.11054 0.098654 663.7593*** 175.1704*** 95.4759*** 
5 Exxon Mobil Corp. XOM 1531 0.000371 0.015818 0.19371 3.805517 -0.08465 0.110382 925.4711*** 291.5026*** 145.0795*** 
6 General Electric Co. GE 2013 0.000355 0.019413 0.213081 3.467643 -0.1068 0.124536 1017.041*** 370.5333*** 183.5689*** 
7 General Motors Corp. GM 2013 -0.00014 0.022664 0.176485 4.54178 -0.13976 0.181053 1729.746*** 88.78324*** 60.32376*** 
8 International Business Machines IBM 2013 0.000393 0.021594 0.156433 6.457098 -0.15559 0.131517 3484.735*** 110.4*** 70.82625*** 
9 Altria Group Inc. MO 2013 0.000584 0.021229 0.069473 6.877293 -0.13847 0.162509 3945.569*** 132.7556*** 91.72635*** 
10 United Technologies Corp. UTX 2013 0.000732 0.020507 -1.29541 19.41357 -0.28255 0.098252 32007.13*** 87.53195*** 78.23402*** 
11 Procter & Gamble Co. PG 2013 0.000344 0.018081 -2.73268 48.15209 -0.31395 0.095081 195987.9*** 20.9732** 17.73081* 
12 Caterpillar Inc. CAT 2013 0.000679 0.021667 0.098367 2.335853 -0.12175 0.108331 457.4485*** 92.65071*** 67.92374*** 
13 Boeing Co. BA 2013 0.000393 0.022071 -0.39714 5.790625 -0.17632 0.099714 2848.446*** 126.2502*** 94.25249*** 
14 Pfizer Inc. PFE 2013 0.000156 0.020485 -0.10403 2.479312 -0.11152 0.097034 515.4123*** 224.2497*** 116.9226*** 
15 Johnson & Johnson JNJ 2013 0.000395 0.015801 -0.3584 7.408399 -0.1585 0.082077 4619.942*** 181.1015*** 115.4939*** 
16 3M Co. MMM 2013 0.000456 0.016788 0.394831 2.940267 -0.06709 0.11055 772.2771*** 145.9565*** 97.78238*** 
17 Merck & Co. Inc. MRK 2013 1.66E-06 0.019815 -1.17774 19.5089 -0.26785 0.130258 32219.25*** 3.541215 3.302876 
18 Alcoa Inc. AA 2013 0.000548 0.023844 0.417723 2.621266 -0.11013 0.140446 630.6*** 162.2479*** 109.6327*** 
19 Walt Disney Co. DIS 2013 7.66E-05 0.023469 0.064115 6.084492 -0.1837 0.152465 3088.089*** 95.56756*** 65.65652*** 
20 Hewlett-Packard Co. HPQ 2013 0.000472 0.029646 0.223947 5.125707 -0.18708 0.208993 2206.958*** 55.42822*** 43.79064*** 
21 McDonald's Corp. MCD 2013 0.000322 0.019548 0.11199 3.851494 -0.12822 0.10847 1240.316*** 104.7887*** 89.8757*** 
22 JPMorgan Chase & Co. JPM 2013 0.000397 0.024764 0.363823 4.946213 -0.18112 0.160312 2083.708*** 411.7909*** 202.5261*** 
23 Wal-Mart Stores Inc. WMT 2008 0.000577 0.020747 0.264275 2.41056 -0.09765 0.094187 505.8914*** 389.8928*** 182.9029*** 
24 American Express Co. AXP 2013 0.000546 0.022854 0.082029 2.794868 -0.13603 0.127566 652.7848*** 723.6375*** 315.889*** 
25 Intel Corp. INTC 2013 0.000601 0.031007 -0.11323 4.421846 -0.2205 0.201123 1633.945*** 217.8026*** 120.7392*** 
26 Verizon Communications Inc. VZ 1383 -0.0001 0.019139 0.110876 4.432338 -0.11851 0.092669 1124.538*** 228.9461*** 114.3922*** 
27 AT&T T 1989 9.1E-05 0.021337 0.065333 2.427628 -0.12677 0.092203 486.1663*** 185.7254*** 102.4186*** 
28 Home Depot Inc. HD 2013 0.000641 0.024684 -0.66873 11.58655 -0.28752 0.12879 11348.27*** 43.41298*** 31.49115*** 
29 American International Group AIG 2013 0.000403 0.020112 0.237391 2.839079 -0.10439 0.110157 690.1758*** 381.5119*** 170.7491*** 
30 Citigroup Inc. C 2013 0.000582 0.02269 0.326174 5.776039 -0.15735 0.183246 2817.178*** 351.7571*** 182.4678*** 

 
Note: The components of the DJIA have changed over time. This list is valid as of the end of 2005. The 30 stocks are sorted by Permanent CRSP #. Among the 
30 stocks only MSFT and INTC are primarily listed on NASDAQ; the rest are mainly listed on the NYSE. 
The columns in order are the number of observations, the average value, the standard deviation of the daily return, the skewness coefficient, the kurtosis 
coefficient, minimum value, maximum value, Jarque-Bera normality test statistic, Portmanteau Q test of order 10, Lagrange multiplier test of order 10.  
*** indicates 1% significance, ** 5%, * 10%. 
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Table 3.2 Descriptive Statistics about Three Explanatory Variables 
index ticker Expected risk (σe) Unexpected risk (σu) Intraday Skewness Coefficient (Skew) Pearson’s Correlation Coefficients 
  mean std min max mean std t-value min max mean std t-value min max σe & σu σe & skew σu & skew 
1 MSFT 0.0020 0.0008 0.0007 0.0052 -5E-07 0.0006 [-0.04] -0.0020 0.0089 0.0333 0.6772 [2.21]** -8.6734 5.6269 -0.0123 0.0308 0.0530 
2 HON 0.0022 0.0007 0.0010 0.0056 1E-05 0.0007 [0.76] -0.0027 0.0087 0.0858 0.8869 [4.34]*** -4.3901 8.4084 0.0145 -0.0403 0.0749 
3 KO 0.0017 0.0006 0.0007 0.0041 -8E-07 0.0004 [-0.09] -0.0016 0.0033 0.0250 0.7216 [1.55] -5.1095 7.2110 -0.0014 -0.0009 0.0289 
4 DD 0.0020 0.0007 0.0008 0.0044 -8E-06 0.0005 [-0.75] -0.0016 0.0032 0.0330 0.7715 [1.92]* -4.6719 7.2566 -0.0119 0.0388 0.0574 
5 XOM 0.0015 0.0005 0.0006 0.0044 -4E-06 0.0004 [-0.43] -0.0019 0.0035 0.0316 0.7230 [1.71]* -4.7911 6.3369 0.0099 0.0152 0.0162 
6 GE 0.0018 0.0007 0.0006 0.0051 -8E-07 0.0005 [-0.07] -0.0020 0.0049 0.0503 0.6682 [3.38]*** -5.5313 4.6513 0.0036 0.0087 0.0484 
7 GM 0.0019 0.0005 0.0010 0.0045 7E-06 0.0006 [0.51] -0.0016 0.0048 0.0270 0.9474 [1.28] -5.1953 6.0990 0.0138 -0.0106 0.0745 
8 IBM 0.0018 0.0007 0.0006 0.0054 -1E-06 0.0005 [-0.10] -0.0020 0.0064 0.1109 0.7340 [6.78]*** -6.5633 5.4968 0.0007 0.0004 0.1138 
9 MO 0.0019 0.0007 0.0006 0.0053 2E-06 0.0007 [0.11] -0.0027 0.0098 0.0733 0.9283 [3.54]*** -7.0750 7.7434 -0.0188 -0.0041 0.1350 
10 UTX 0.0019 0.0007 0.0008 0.0054 6E-07 0.0005 [0.05] -0.0021 0.0068 0.0266 0.8097 [1.47] -6.7797 5.8471 -0.0037 0.0395 0.0452 
11 PG 0.0016 0.0007 0.0006 0.0048 -7E-06 0.0005 [-0.68] -0.0017 0.0075 0.0529 0.7690 [3.09]*** -5.9366 5.6044 -0.0005 -0.0139 0.0788 
12 CAT 0.0020 0.0006 0.0009 0.0047 -2E-06 0.0005 [-0.14] -0.0016 0.0039 0.0270 0.8106 [1.50] -5.2645 5.7806 0.0005 0.0356 -0.0064 
13 BA 0.0021 0.0007 0.0008 0.0054 -2E-06 0.0006 [-0.18] -0.0016 0.0039 0.0685 0.8154 [3.77]*** -6.6058 5.0535 -0.0031 -0.0276 -0.0020 
14 PFE 0.0019 0.0006 0.0008 0.0045 -4E-06 0.0006 [-0.34] -0.0015 0.0073 0.0080 0.9101 [0.39] -6.8670 7.0577 -0.0094 0.0181 -0.0611 
15 JNJ 0.0015 0.0005 0.0007 0.0046 -1E-06 0.0004 [-0.11] -0.0020 0.0041 0.0454 0.8545 [2.38]** -7.5074 8.3439 0.0009 -0.0111 0.0318 
16 MMM 0.0017 0.0006 0.0007 0.0041 -2E-06 0.0005 [-0.20] -0.0016 0.0042 0.0753 0.7644 [4.42]*** -3.8780 6.3716 -0.0005 0.0663 -0.0133 
17 MRK 0.0017 0.0005 0.0009 0.0045 5E-06 0.0006 [0.44] -0.0017 0.0061 0.0175 0.9055 [0.86] -8.1441 7.4488 0.0108 0.0384 -0.0427 
18 AA 0.0021 0.0006 0.0011 0.0048 3E-06 0.0005 [0.26] -0.0015 0.0031 0.0228 0.8240 [1.24] -6.2952 5.9209 0.0112 0.0550 -0.0175 
19 DIS 0.0022 0.0008 0.0009 0.0059 1E-05 0.0006 [0.84] -0.0023 0.0095 0.0015 0.8556 [0.08] -7.1292 8.2087 -0.0084 -0.0414 -0.0283 
20 HPQ 0.0026 0.0009 0.0010 0.0065 6E-06 0.0008 [0.31] -0.0036 0.0103 0.0372 0.8318 [2.00]** -6.8651 5.5095 0.0022 0.0195 0.0727 
21 MCD 0.0020 0.0006 0.0010 0.0040 6E-06 0.0006 [0.46] -0.0017 0.0049 0.0641 0.7468 [3.85]*** -6.8217 4.0675 0.0035 -0.0519 -0.0428 
22 JPM 0.0021 0.0009 0.0007 0.0083 6E-07 0.0007 [0.04] -0.0033 0.0082 0.0315 0.7313 [1.93]* -5.5299 5.0003 0.0171 0.0351 0.0273 
23 WMT 0.0020 0.0008 0.0007 0.0044 -6E-06 0.0005 [-0.49] -0.0020 0.0045 -0.0059 0.8576 [-0.31] -6.4003 8.2325 -0.0044 -0.0487 0.0492 
24 AXP 0.0020 0.0009 0.0006 0.0057 1E-05 0.0007 [0.82] -0.0021 0.0130 0.0620 0.8292 [3.35]*** -8.7706 6.8086 -0.0132 -0.0022 -0.0635 
25 INTC 0.0026 0.0010 0.0010 0.0066 7E-06 0.0006 [0.49] -0.0028 0.0043 0.0076 0.6174 [0.56] -3.9138 3.8880 0.0074 0.0427 0.0197 
26 VZ 0.0019 0.0008 0.0007 0.0054 -2E-05 0.0005 [-1.39] -0.0018 0.0048 -0.0106 0.9376 [-0.42] -8.0829 7.5522 -0.0511 0.0266 -0.0077 
27 SBC 0.0021 0.0008 0.0008 0.0057 9E-06 0.0005 [0.71] -0.0024 0.0039 0.0303 0.7655 [1.76]* -5.2140 6.1872 -0.0004 -0.0168 -0.0454 
28 HD 0.0021 0.0008 0.0009 0.0059 4E-06 0.0006 [0.28] -0.0024 0.0084 -0.0005 0.8232 [-0.03] -6.8957 7.0865 0.0266 -0.0137 -0.0011 
29 AIG 0.0018 0.0006 0.0008 0.0056 2E-06 0.0005 [0.17] -0.0014 0.0054 0.0373 0.8143 [2.06]** -6.6749 7.2282 0.0013 0.0349 -0.0203 
30 C 0.0021 0.0010 0.0007 0.0076 6E-07 0.0007 [0.04] -0.0029 0.0070 0.0357 0.7967 [2.01]** -5.5697 7.4403 0.0036 0.0036 0.0456 

 
Note: This table describes the mean, standard deviation, minimum and maximum of the three explanatory variables: expected standard deviation, unexpected 
standard deviation, and intraday skewness coefficient. T-value tests if the mean is statistically different from zero. *** indicates 1% significance, ** 5%, * 10%. 
Unexpected standard deviation has a zero mean according to its construction. 
The table also reports the Pearson’s correlation coefficients among three variables. The three variables have very small correlation coefficients among them. 
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Table 3.3 Regression Results of Excess Returns on Expected Volatility 
  Simple regression Multiple regression (3.1.a) Multiple regression (3.1.b)

Index ticker 
0δ  1δ  

2
aR  0δ  1δ  2δ  

2
aR  0δ  1δ  2δ  3δ  4δ  

2
aR  

1 MSFT -0.003 1.268 0.09% -0.003 1.305 -2.041 0.46% -0.002 0.869 -1.976 0.005 -0.011 2.49% 
    [-1.53] [1.70]*   [-1.40] [1.75]* [-2.89]***   [-1.00] [1.18] [-2.79]*** [6.57]*** [-0.51]   
2 HON -0.003 1.048 0.02% -0.004 2.081 -8.824 8.05% -0.005 2.443 -9.29 0.007 0.045 13.27% 
    [-1.52] [1.19]   [-1.75]* [2.45]** [-13.28]***   [-2.48]** [2.96]*** [-14.15]*** [10.98]*** [2.01]**   
3 KO -0.002 0.673 -0.01% -0.002 0.837 -3.549 0.73% -0.002 0.744 -3.337 0.005 0.042 4.00% 
    [-1.16] [0.92]   [-1.13] [1.15] [-3.99]***   [-1.11] [1.04] [-3.74]*** [8.22]*** [1.86]*   
4 DD -0.003 1.16 0.08% -0.003 1.301 -3.299 0.71% -0.002 1.003 -3.842 0.006 0.012 4.81% 
    [-1.62] [1.60]   [-1.60] [1.80]* [-3.71]***   [-1.39] [1.42] [-4.39]*** [9.39]*** [0.53]   
5 XOM -0.002 0.946 0.04% -0.002 1.544 -7.548 3.79% -0.002 1.415 -8.233 0.004 -0.071 7.35% 
    [-1.37] [1.24]   [-1.66]* [2.05]** [-7.79]***   [-1.63] [1.92]* [-8.46]*** [7.30]*** [-2.77]***   
6 GE -0.004 2.082 0.39% -0.005 2.565 -4.298 2.08% -0.005 2.512 -5.236 0.006 -0.056 6.02% 
    [-2.89]*** [2.99]***   [-3.14]*** [3.69]*** [-5.96]***   [-3.33]*** [3.69]*** [-7.11]*** [8.92]*** [-2.45]**   
7 GM -0.001 0.274 -0.05% -0.001 0.18 0.935 -0.03% -0.002 0.725 -0.233 0.007 -0.045 8.03% 
    [-0.36] [0.27]   [-0.35] [0.18] [1.14]   [-0.97] [0.74] [-0.29] [13.12]*** [-2.05]**   
8 IBM -0.004 1.9 0.23% -0.004 2.056 -1.609 0.35% -0.004 1.686 -5.184 0.011 -0.071 9.85% 
    [-2.06]** [2.36]**   [-2.12]** [2.54]** [-1.87]*   [-2.33]** [2.19]** [-6.08]*** [14.27]*** [-3.17]***   
9 MO -0.001 0.418 -0.04% -0.001 0.542 -1.108 0.16% -0.002 0.776 -2.257 0.008 0.045 10.18% 
    [-0.47] [0.50]   [-0.45] [0.64] [-2.24]**   [-1.08] [0.97] [-4.74]*** [14.96]*** [2.00]**   
10 UTX -0.003 1.504 0.13% -0.003 2.305 -9.887 7.85% -0.002 1.605 -12.005 0.009 -0.09 18.25% 
    [-1.80]* [1.90]*   [-2.01]** [3.02]*** [-13.01]***   [-1.29] [2.23]** [-16.34]*** [15.66]*** [-4.11]***   
11 PG 0.002 -1.653 0.16% 0.001 -0.299 -11.049 9.95% 0.001 -0.525 -13.192 0.006 -0.077 13.77% 
    [1.35] [-2.07]**   [0.69] [-0.39] [-14.81]***   [0.89] [-0.70] [-17.2]*** [8.83]*** [-3.31]***   
12 CAT -0.002 0.865 0.01% -0.002 0.948 -1.513 0.10% 0 0.353 -1.69 0.008 -0.007 7.08% 
    [-0.79] [1.05]   [-0.79] [1.15] [-1.70]*   [-0.23] [0.44] [-1.96]** [12.34]*** [-0.32]   
13 BA -0.001 0.373 -0.04% -0.001 0.888 -7.397 3.51% -0.002 1.022 -7.244 0.009 0.021 11.63% 
    [-0.55] [0.43]   [-0.62] [1.05] [-8.66]***   [-1.09] [1.26] [-8.77]*** [13.59]*** [0.97]   
14 PFE -0.005 2.022 0.22% -0.004 2.263 -8.038 6.59% -0.004 2.037 -7.517 0.004 0.038 9.11% 
    [-2.60]*** [2.32]**   [-2.26]** [2.69]*** [-11.75]***   [-2.06]** [2.45]** [-11.07]*** [7.48]*** [1.71]*   
15 JNJ -0.003 2.105 0.35% -0.004 2.759 -6.835 4.14% -0.004 2.772 -6.766 0.004 0.049 8.06% 
    [-2.50]** [2.83]***   [-2.77]*** [3.77]*** [-8.96]***   [-3.01]*** [3.86]*** [-8.90]*** [9.23]*** [2.14]**   
16 MMM -0.003 1.906 0.28% -0.003 1.921 -0.253 0.23% -0.002 0.768 0.22 0.008 0.016 10.93% 
    [-1.99]** [2.57]***   [-1.99]** [2.59]*** [-0.34]   [-1.12] [1.09] [0.31] [15.54]*** [0.71]   
17 MRK -0.009 4.472 0.94% -0.009 4.711 -4.117 2.67% -0.007 3.776 -3.554 0.007 0.015 11.79% 
    [-4.57]*** [4.48]***   [-4.44]*** [4.75]*** [-6.07]***   [-3.81]*** [3.99]*** [-5.47]*** [14.43]*** [0.63]   
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Table 3.3 (Continued) 
  Simple regression Multiple regression (3.1.a) Multiple regression (3.1.b)

Index ticker 
0δ  1δ  

2
aR  0δ  1δ  2δ  

2
aR  0δ  1δ  2δ  3δ  4δ  

2
aR  

18 AA -0.003 1.578 0.12% -0.003 1.756 -3.791 0.77% -0.002 1.232 -3.819 0.007 0.004 5.11% 
    [-1.53] [1.82]*   [-1.50] [2.03]** [-3.78]***   [-1.05] [1.45] [-3.87]*** [9.68]*** [0.18]   
19 DIS -0.001 -0.021 -0.05% -0.001 0.711 -6.185 3.91% -0.002 0.963 -5.775 0.005 -0.021 6.42% 
    [-0.27] [-0.03]   [-0.61] [0.94] [-9.15]***   [-0.94] [1.28] [-8.59]*** [7.37]*** [-0.92]   
20 HPQ -0.001 0.436 -0.03% -0.001 0.399 0.328 -0.07% 0 -0.09 -1.431 0.014 0.008 11.41% 
    [-0.47] [0.55]   [-0.46] [0.50] [0.50]   [-0.03] [-0.12] [-2.28]** [16.18]*** [0.35]   
 21 MCD 0.001 -0.528 -0.03% 0.001 -0.225 -3.53 1.25% 0 0.086 -2.885 0.005 -0.017 4.90% 
    [0.49] [-0.59]   [0.47] [-0.25] [-5.2]***   [-0.05] [0.10] [-4.28]*** [8.87]*** [-0.75]   
 22 JPM -0.002 0.644 -0.01% -0.003 1.414 -4.006 1.53% -0.003 1.179 -4.589 0.01 -0.062 7.95% 
    [-0.93] [0.93]   [-1.52] [2.01]** [-5.68]***   [-1.47] [1.73]* [-6.70]*** [11.39]*** [-2.89]***   
 23 WMT -0.003 1.455 0.17% -0.003 1.789 -4.646 1.91% -0.004 2.101 -5.199 0.006 0.004 6.65% 
    [-1.77]* [2.08]**   [-1.84]* [2.57]*** [-6.05]***   [-2.23]** [3.09]*** [-6.82]*** [10.18]*** [0.18]   
 24 AXP -0.003 1.255 0.12% -0.003 1.297 -2.503 1.08% -0.002 0.736 -0.803 0.007 0.014 6.76% 
    [-1.76]* [1.86]*   [-1.47] [1.93]* [-4.52]***   [-1.14] [1.13] [-1.42] [11.15]*** [0.64]   
 25 INTC -0.005 1.558 0.18% -0.005 1.787 -4.16 0.87% -0.004 1.391 -5.106 0.011 -0.066 4.74% 
    [-1.97]** [2.16]**   [-1.99]** [2.47]** [-3.88]***   [-1.56] [1.96]** [-4.77]*** [8.43]*** [-2.98]***   
 26 VZ -0.002 0.894 0.04% -0.002 0.898 -6.903 4.15% -0.001 0.761 -6.356 0.005 -0.019 8.85% 
    [-1.45] [1.24]   [-0.98] [1.27] [-7.75]***   [-0.86] [1.10] [-7.19]*** [8.44]*** [-0.71]   
 27 SBC -0.002 0.575 -0.01% -0.002 0.872 -4.59 1.46% -0.003 1.105 -4.183 0.008 -0.01 7.52% 
    [-1.09] [0.87]   [-1.10] [1.33] [-5.54]***   [-1.60] [1.74]* [-5.14]*** [11.48]*** [-0.44]   
 28 HD -0.003 1.383 0.10% -0.004 1.935 -3.549 1.04% -0.003 1.675 -3.734 0.01 0 8.70% 
    [-1.72]* [1.76]*   [-2.07]** [2.44]** [-4.46]***   [-1.79]* [2.20]** [-4.69]*** [13.06]*** [0.01]   
 29 AIG -0.006 2.864 0.56% -0.006 3.339 -6.154 3.63% -0.005 2.886 -5.524 0.008 0.007 11.25% 
    [-3.34]*** [3.51]***   [-3.41]*** [4.15]*** [-8.06]***   [-3.25]*** [3.73]*** [-7.26]*** [13.2]*** [0.34]   
30 C -0.006 2.348 0.69% -0.007 3.039 -4.52 3.29% -0.006 2.813 -5.29 0.008 0.001 9.01% 
   [-3.55]*** [3.86]***   [-4.07]*** [5.01]*** [-7.41]***   [-3.97]*** [4.78]*** [-8.74]*** [11.32]*** [0.03]   

-0.00129 0.83255 0.08% -0.00129 0.83722 -4.24792 1.33% -0.00148 0.81649 -4.49782 0.00616 -0.0132 6.54% 
Pooled Regression 

[-5.21]*** [7.09]***  [-5.26]*** [7.17]*** [-27.32]***  [-6.17]*** [7.19]*** [-29.52]*** [57.32]*** [-3.30]***  

 
Note: The regression models are

t
e
ttr εσδδ ++= 10

 (left panel),  
t

u
t

e
ttr εσδσδδ +++= 210

 (middle panel), and 
ttt

u
t

e
tt rSkewr εδδσδσδδ +++++= −143210

 (right 
panel). The three explanatory variables are: expected standard deviation (σe), unexpected standard deviation (σu), and intraday skewness coefficient (Skew). 
The numbers inside brackets are t-values. The adjusted R2 is reported for each regression model. The last two rows report pooled regression results of all 30 
stocks. *** indicates 1% significance, ** 5%, * 10%. In the left panel, 15 stocks show positive significances of the σe; and 1 stock (index=11) shows negative 
significance. In the middle panel, 19 stocks show positive significances of the σe; the rest are all insignificant. In the right panel, 15 stocks show positive 
significances of the σe; the rest are all insignificant. 
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Table 3.4 Estimates of Quantile Regression at 5 Different Quantiles 

ticker quantile NAME 0δ  1δ  2δ  3δ  4δ  

MSFT 0.05 Estimate 0.006 -18.688 -14.153 0.005 -0.084 
  0.05 t-value [3.54]*** [-17.69]*** [-5.01]*** [3.51]*** [-1.54] 
  0.25 Estimate 0 -6.397 -7.851 0.006 -0.037 
  0.25 t-value [0.01] [-8.80]*** [-5.10]*** [4.89]*** [-1.26] 
  0.5 Estimate -0.002 1.149 -5.119 0.008 -0.023 
  0.5 t-value [-2.05]** [1.70]* [-4.63]*** [10.24]*** [-1.03] 
  0.75 Estimate -0.005 9.221 -2.755 0.007 -0.029 
  0.75 t-value [-4.01]*** [12.01]*** [-1.88]* [8.00]*** [-0.82] 
  0.95 Estimate -0.006 20.247 3.472 0.006 0.071 
  0.95 t-value [-2.88]*** [17.24]*** [2.19]** [5.33]*** [1.95]* 
HON 0.05 Estimate 0.005 -17.494 -15.504 0.005 0.064 
  0.05 t-value [1.77]* [-12.41]*** [-14.02]*** [4.39]*** [1.74]* 
  0.25 Estimate -0.001 -5.883 -9.703 0.004 0.019 
  0.25 t-value [-0.72] [-7.55]*** [-8.22]*** [6.34]*** [0.55] 
  0.5 Estimate 0 -0.312 -4.252 0.005 -0.014 
  0.5 t-value [-0.27] [-0.38] [-3.67]*** [10.01]*** [-0.54] 
  0.75 Estimate -0.004 7.958 0.529 0.005 -0.04 
  0.75 t-value [-1.62] [6.22]*** [0.37] [6.30]*** [-1.19] 
  0.95 Estimate -0.005 19.077 8.901 0.005 0.08 
  0.95 t-value [-1.59] [12.32]*** [3.46]*** [3.33]*** [2.32]** 
KO 0.05 Estimate 0.004 -16.69 -16.05 0.003 0.054 
  0.05 t-value [1.92]* [-13.35]*** [-10.46]*** [5.21]*** [1.19] 
  0.25 Estimate 0.001 -6.468 -6.597 0.002 0.04 
  0.25 t-value [0.56] [-8.78]*** [-5.45]*** [3.79]*** [1.36] 
  0.5 Estimate 0 -0.311 -1.682 0.003 0.017 
  0.5 t-value [-0.01] [-0.35] [-1.34] [4.26]*** [0.64] 
  0.75 Estimate -0.002 6.87 2.561 0.004 0 
  0.75 t-value [-1.49] [8.31]*** [1.68]* [5.16]*** [0.01] 
  0.95 Estimate -0.001 15.494 6.217 0.003 0.026 
  0.95 t-value [-0.32] [9.20]*** [2.49]** [2.63]*** [0.41] 
DD 0.05 Estimate -0.002 -12.83 -17.536 0.005 -0.039 
  0.05 t-value [-0.95] [-10.84]*** [-9.13]*** [4.47]*** [-0.90] 
  0.25 Estimate 0.001 -6.518 -6.518 0.005 0.031 
  0.25 t-value [0.87] [-9.63]*** [-5.85]*** [8.37]*** [1.34] 
  0.5 Estimate 0.002 -1.649 -2.724 0.005 -0.017 
  0.5 t-value [1.04] [-1.88]* [-1.78]* [7.57]*** [-0.55] 
  0.75 Estimate 0 5.598 2.018 0.005 -0.014 
  0.75 t-value [-0.06] [6.05]*** [1.34] [11.69]*** [-0.57] 
  0.95 Estimate -0.005 18.18 10.156 0.004 -0.031 
  0.95 t-value [-2.72]*** [16.80]*** [5.14]*** [5.11]*** [-0.59] 
XOM 0.05 Estimate -0.001 -13.794 -17.656 0.004 -0.06 
  0.05 t-value [-0.28] [-6.59]*** [-7.01]*** [3.77]*** [-0.91] 
  0.25 Estimate 0 -5.851 -15.092 0.003 -0.088 
  0.25 t-value [0.11] [-5.16]*** [-9.27]*** [5.48]*** [-2.58]*** 
  0.5 Estimate 0.001 -0.601 -10.186 0.004 -0.097 
  0.5 t-value [0.72] [-0.61] [-8.47]*** [5.95]*** [-3.67]*** 
  0.75 Estimate 0.001 5.325 -7.274 0.004 -0.096 
  0.75 t-value [0.63] [4.79]*** [-3.83]*** [4.60]*** [-2.29]** 
  0.95 Estimate 0.002 14.446 7.963 0.002 -0.067 
  0.95 t-value [0.70] [8.55]*** [2.85]*** [1.89]* [-0.95] 
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Table 3.4 (Continued) 

ticker quantile NAME 0δ  1δ  2δ  3δ  4δ  

GE 0.05 Estimate 0 -14.142 -15.75 0.003 0.032 
  0.05 t-value [-0.09] [-13.93]*** [-8.33]*** [3.31]*** [0.73] 
  0.25 Estimate -0.001 -5.708 -9.259 0.004 0.068 
  0.25 t-value [-1.39] [-9.73]*** [-8.26]*** [7.48]*** [2.08]** 
  0.5 Estimate -0.002 0.672 -6.68 0.005 -0.019 
  0.5 t-value [-1.45] [0.99] [-4.56]*** [5.79]*** [-0.64] 
  0.75 Estimate 0 6.347 -1.852 0.007 -0.068 
  0.75 t-value [-0.06] [7.77]*** [-1.40] [10.54]*** [-1.90]* 
  0.95 Estimate -0.002 17.261 3.777 0.004 -0.074 
  0.95 t-value [-0.81] [10.66]*** [1.48] [3.58]*** [-1.13] 
GM 0.05 Estimate 0.005 -19.328 -16.834 0.005 -0.052 
  0.05 t-value [1.58] [-10.61]*** [-8.35]*** [4.38]*** [-1.55] 
  0.25 Estimate 0.004 -9.095 -7.241 0.005 -0.065 
  0.25 t-value [1.95]* [-8.35]*** [-5.59]*** [9.77]*** [-2.76]*** 
  0.5 Estimate 0.003 -1.665 -1.832 0.007 -0.053 
  0.5 t-value [1.30] [-1.49] [-1.77]* [12.30]*** [-2.06]** 
  0.75 Estimate -0.001 7.323 5.361 0.007 -0.053 
  0.75 t-value [-0.46] [5.32]*** [3.27]*** [13.25]*** [-1.53] 
  0.95 Estimate -0.001 17.241 14.596 0.009 0.05 
  0.95 t-value [-0.26] [8.13]*** [7.14]*** [8.17]*** [0.91] 
IBM 0.05 Estimate -0.001 -15.51 -19.369 0.004 -0.038 
  0.05 t-value [-0.31] [-10.61]*** [-11.4]*** [4.27]*** [-0.57] 
  0.25 Estimate -0.002 -6.002 -11.485 0.006 -0.057 
  0.25 t-value [-1.97]** [-10.63]*** [-7.33]*** [8.58]*** [-2.35]** 
  0.5 Estimate -0.002 0.698 -3.645 0.006 -0.042 
  0.5 t-value [-1.62] [1.00] [-2.30]** [9.18]*** [-1.69]* 
  0.75 Estimate -0.004 8.709 2.127 0.006 -0.034 
  0.75 t-value [-3.41]*** [10.97]*** [1.18] [9.40]*** [-0.91] 
  0.95 Estimate -0.004 18.682 7.157 0.006 0.054 
  0.95 t-value [-1.52] [11.82]*** [2.37]** [4.10]*** [1.10] 
MO 0.05 Estimate 0.001 -14.638 -19.031 0.004 -0.036 
  0.05 t-value [0.32] [-13.63]*** [-11.04]*** [3.82]*** [-0.83] 
  0.25 Estimate 0 -6.256 -11.265 0.004 0.031 
  0.25 t-value [0.27] [-8.82]*** [-11.3]*** [7.11]*** [1.00] 
  0.5 Estimate -0.001 -0.004 -5.569 0.004 -0.019 
  0.5 t-value [-0.53] [0.00] [-3.88]*** [6.42]*** [-0.65] 
  0.75 Estimate 0 6.455 1.452 0.004 -0.029 
  0.75 t-value [-0.35] [7.58]*** [1.11] [6.82]*** [-1.09] 
  0.95 Estimate -0.001 16.119 12.429 0.004 -0.051 
  0.95 t-value [-0.27] [9.89]*** [6.38]*** [3.22]*** [-0.90] 
UTX 0.05 Estimate -0.002 -12.218 -18.216 0.006 -0.048 
  0.05 t-value [-1.62] [-13.69]*** [-9.78]*** [8.87]*** [-1.16] 
  0.25 Estimate -0.001 -5.436 -10.446 0.006 -0.085 
  0.25 t-value [-0.50] [-5.54]*** [-10.25]*** [10.77]*** [-2.73]*** 
  0.5 Estimate -0.001 0.207 -6.825 0.006 -0.108 
  0.5 t-value [-0.34] [0.24] [-3.77]*** [9.89]*** [-3.5]*** 
  0.75 Estimate -0.003 8.601 1.548 0.006 -0.034 
  0.75 t-value [-2.19]** [9.41]*** [0.79] [8.55]*** [-1.29] 
  0.95 Estimate -0.001 15.742 8.582 0.007 -0.06 
  0.95 t-value [-0.29] [10.20]*** [3.28]*** [7.72]*** [-1.27] 
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Table 3.4 (Continued) 

ticker quantile NAME 0δ  1δ  2δ  3δ  4δ  

PG 0.05 Estimate -0.001 -12.907 -20.482 0.004 -0.009 
  0.05 t-value [-0.97] [-17.11]*** [-9.60]*** [6.72]*** [-0.23] 
  0.25 Estimate 0 -5.969 -12.439 0.004 -0.027 
  0.25 t-value [-0.32] [-9.34]*** [-10.68]*** [6.94]*** [-0.89] 
  0.5 Estimate 0 0.018 -5.228 0.003 -0.053 
  0.5 t-value [-0.13] [0.02] [-3.28]*** [5.90]*** [-1.50] 
  0.75 Estimate -0.001 6.579 1.025 0.004 -0.088 
  0.75 t-value [-0.69] [7.65]*** [0.55] [5.85]*** [-2.36]** 
  0.95 Estimate -0.001 15.838 13.303 0.003 -0.139 
  0.95 t-value [-0.77] [17.81]*** [6.35]*** [4.99]*** [-3.34]*** 
CAT 0.05 Estimate -0.004 -13.472 -20.971 0.005 0.032 
  0.05 t-value [-1.66]* [-10.13]*** [-12.3]*** [5.38]*** [0.66] 
  0.25 Estimate 0.001 -6.161 -8.091 0.006 -0.034 
  0.25 t-value [0.29] [-5.61]*** [-5.75]*** [9.38]*** [-1.00] 
  0.5 Estimate 0.004 -1.996 -2.314 0.007 -0.016 
  0.5 t-value [1.73]* [-1.80]* [-1.87]* [11.26]*** [-0.67] 
  0.75 Estimate 0.006 3.127 4.793 0.008 0 
  0.75 t-value [3.18]*** [3.07]*** [2.85]*** [9.37]*** [0.02] 
  0.95 Estimate 0.001 16.313 13.63 0.008 0.045 
  0.95 t-value [0.28] [8.76]*** [6.43]*** [4.46]*** [0.82] 
BA 0.05 Estimate -0.003 -12.865 -20.059 0.005 -0.075 
  0.05 t-value [-1.77]* [-14.44]*** [-14.23]*** [5.42]*** [-2.62]*** 
  0.25 Estimate -0.002 -5.125 -8.863 0.006 -0.067 
  0.25 t-value [-1.36] [-6.60]*** [-7.02]*** [12.65]*** [-2.85]*** 
  0.5 Estimate 0 -0.511 -2.857 0.007 -0.048 
  0.5 t-value [0.18] [-0.55] [-2.45]** [10.63]*** [-1.36] 
  0.75 Estimate 0.001 5.506 2.336 0.007 -0.028 
  0.75 t-value [0.48] [4.74]*** [1.40] [8.27]*** [-0.86] 
  0.95 Estimate 0.002 15.443 18.295 0.005 0.048 
  0.95 t-value [0.87] [11.97]*** [9.96]*** [4.81]*** [0.91] 
PFE 0.05 Estimate 0 -15.316 -18.417 0.003 0.005 
  0.05 t-value [0.2] [-11.62]*** [-8.94]*** [3.00]*** [0.08] 
  0.25 Estimate -0.003 -4.534 -11.687 0.004 0.024 
  0.25 t-value [-2.18]** [-5.42]*** [-11.68]*** [7.97]*** [1.29] 
  0.5 Estimate -0.004 1.504 -7.207 0.004 0.014 
  0.5 t-value [-2.76]*** [1.98]** [-4.39]*** [6.75]*** [0.44] 
  0.75 Estimate -0.003 7.979 0.121 0.005 0.065 
  0.75 t-value [-1.50] [6.98]*** [0.08] [6.97]*** [1.62] 
  0.95 Estimate 0 15.842 11.538 0.007 0.019 
  0.95 t-value [-0.07] [11.21]*** [5.97]*** [5.40]*** [0.62] 
JNJ 0.05 Estimate -0.001 -13.064 -13.953 0.003 0.078 
  0.05 t-value [-0.68] [-10.46]*** [-7.80]*** [4.09]*** [1.82]* 
  0.25 Estimate 0 -5.568 -7.244 0.003 0.022 
  0.25 t-value [-0.42] [-7.46]*** [-7.81]*** [9.18]*** [0.86] 
  0.5 Estimate -0.004 2.348 -2.389 0.004 -0.011 
  0.5 t-value [-2.73]*** [2.41]** [-1.91]* [7.25]*** [-0.33] 
  0.75 Estimate -0.002 7.378 3.134 0.004 0.036 
  0.75 t-value [-1.61] [7.34]*** [1.76]* [7.18]*** [0.89] 
  0.95 Estimate 0 16.112 11.968 0.005 0.029 
  0.95 t-value [-0.09] [15.24]*** [5.32]*** [4.53]*** [0.76] 
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Table 3.4 (Continued) 

ticker quantile NAME 0δ  1δ  2δ  3δ  4δ  

MMM 0.05 Estimate -0.002 -12.621 -15.64 0.004 -0.013 
  0.05 t-value [-1.01] [-8.97]*** [-6.61]*** [6.05]*** [-0.27] 
  0.25 Estimate 0 -5.731 -6.014 0.006 -0.041 
  0.25 t-value [-0.40] [-7.18]*** [-6.62]*** [10.49]*** [-1.72]* 
  0.5 Estimate -0.001 0.075 -1.725 0.006 -0.055 
  0.5 t-value [-0.63] [0.10] [-1.39] [9.79]*** [-1.77]* 
  0.75 Estimate -0.001 6.619 6.617 0.006 -0.033 
  0.75 t-value [-0.59] [6.47]*** [4.13]*** [7.70]*** [-1.01] 
  0.95 Estimate 0.002 14.08 18.222 0.005 0.038 
  0.95 t-value [0.89] [8.21]*** [6.80]*** [4.70]*** [0.60] 
MRK 0.05 Estimate -0.003 -12.786 -19.587 0.005 0.017 
  0.05 t-value [-1.03] [-7.32]*** [-9.65]*** [5.11]*** [0.56] 
  0.25 Estimate 0 -6.634 -9.737 0.005 -0.005 
  0.25 t-value [0.05] [-5.93]*** [-10.46]*** [10.99]*** [-0.13] 
  0.5 Estimate -0.003 1.617 -4.157 0.005 0.041 
  0.5 t-value [-1.32] [1.13] [-2.79]*** [7.20]*** [1.28] 
  0.75 Estimate -0.006 9.61 2.468 0.005 -0.003 
  0.75 t-value [-4.61]*** [13.49]*** [2.16]** [9.14]*** [-0.09] 
  0.95 Estimate 0 16.469 15.44 0.006 0.066 
  0.95 t-value [-0.07] [7.27]*** [6.77]*** [7.96]*** [1.64] 
AA 0.05 Estimate -0.003 -13.733 -15.805 0.007 -0.031 
  0.05 t-value [-0.74] [-7.98]*** [-7.86]*** [5.14]*** [-0.6] 
  0.25 Estimate 0.001 -7.104 -9.116 0.006 0.003 
  0.25 t-value [0.27] [-7.26]*** [-8.18]*** [8.87]*** [0.12] 
  0.5 Estimate 0 -0.317 -2.603 0.006 -0.019 
  0.5 t-value [-0.20] [-0.33] [-2.18]** [10.05]*** [-0.66] 
  0.75 Estimate -0.003 7.977 4.179 0.007 -0.032 
  0.75 t-value [-1.25] [6.94]*** [2.38]** [9.38]*** [-0.89] 
  0.95 Estimate 0 17.283 20.12 0.006 0.021 
  0.95 t-value [0.07] [6.32]*** [6.79]*** [5.58]*** [0.36] 
DIS 0.05 Estimate -0.003 -12.989 -13.934 0.005 0.049 
  0.05 t-value [-1.35] [-12.89]*** [-7.92]*** [5.82]*** [1.02] 
  0.25 Estimate 0.001 -6.605 -7.448 0.004 0.012 
  0.25 t-value [0.41] [-8.46]*** [-6.43]*** [6.21]*** [0.35] 
  0.5 Estimate 0 -0.249 -3.663 0.005 -0.027 
  0.5 t-value [-0.19] [-0.32] [-2.66]*** [6.34]*** [-0.76] 
  0.75 Estimate -0.002 6.908 1.664 0.005 0.003 
  0.75 t-value [-1.29] [9.27]*** [1.25] [7.80]*** [0.10] 
  0.95 Estimate 0.001 14.982 14.101 0.005 -0.016 
  0.95 t-value [0.37] [10.59]*** [5.66]*** [4.16]*** [-0.37] 
HPQ 0.05 Estimate 0.003 -16.481 -17.153 0.006 -0.032 
  0.05 t-value [0.87] [-10.92]*** [-8.32]*** [3.92]*** [-0.9] 
  0.25 Estimate 0.001 -6.964 -8.946 0.007 -0.053 
  0.25 t-value [0.37] [-8.39]*** [-7.09]*** [8.55]*** [-1.75]* 
  0.5 Estimate -0.001 0.112 -3.116 0.008 -0.056 
  0.5 t-value [-0.33] [0.12] [-2.15]** [8.54]*** [-2.23]** 
  0.75 Estimate 0.001 5.795 2.063 0.009 -0.021 
  0.75 t-value [0.26] [6.12]*** [1.30] [9.07]*** [-0.63] 
  0.95 Estimate -0.001 17.653 13.814 0.008 -0.007 
  0.95 t-value [-0.43] [12.6]*** [8.86]*** [8.77]*** [-0.15] 
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Table 3.4 (Continued) 

ticker quantile NAME 0δ  1δ  2δ  3δ  4δ  

MCD 0.05 Estimate 0 -13.445 -13.089 0.004 -0.012 
  0.05 t-value [-0.14] [-9.77]*** [-6.87]*** [2.85]*** [-0.24] 
  0.25 Estimate 0 -5.988 -8.262 0.005 0.007 
  0.25 t-value [-0.01] [-6.41]*** [-6.97]*** [9.22]*** [0.29] 
  0.5 Estimate 0.002 -1.292 -2.65 0.004 -0.006 
  0.5 t-value [0.93] [-1.24] [-2.46]** [9.37]*** [-0.20] 
  0.75 Estimate 0.002 4.244 4.448 0.005 0.007 
  0.75 t-value [1.14] [4.14]*** [3.03]*** [6.14]*** [0.20] 
  0.95 Estimate 0.004 13.023 16.252 0.006 0.064 
  0.95 t-value [1.14] [6.76]*** [7.37]*** [4.22]*** [1.26] 
JPM 0.05 Estimate 0 -16.088 -12.613 0.004 -0.04 
  0.05 t-value [0.12] [-12.01]*** [-5.46]*** [5.02]*** [-0.79] 
  0.25 Estimate 0.002 -7.779 -10.088 0.004 -0.018 
  0.25 t-value [0.99] [-9.08]*** [-5.49]*** [4.10]*** [-0.54] 
  0.5 Estimate 0 -0.495 -5.029 0.004 -0.016 
  0.5 t-value [0.45] [-1.08] [-4.39]*** [6.09]*** [-0.77] 
  0.75 Estimate -0.001 6.745 -0.816 0.006 -0.056 
  0.75 t-value [-0.44] [7.29]*** [-0.50] [7.89]*** [-1.92]* 
  0.95 Estimate -0.004 20.07 9.709 0.006 0.114 
  0.95 t-value [-1.18] [10.45]*** [3.26]*** [3.91]*** [1.76]* 
WMT 0.05 Estimate -0.002 -13.531 -14.377 0.004 0.067 
  0.05 t-value [-1.11] [-14.24]*** [-6.29]*** [6.63]*** [1.59] 
  0.25 Estimate -0.001 -5.679 -8.31 0.004 0.018 
  0.25 t-value [-0.72] [-8.30]*** [-7.67]*** [8.39]*** [0.55] 
  0.5 Estimate -0.002 1.004 -4.307 0.004 -0.043 
  0.5 t-value [-1.45] [1.22] [-4.00]*** [5.72]*** [-1.45] 
  0.75 Estimate -0.003 7.874 -2.717 0.004 -0.058 
  0.75 t-value [-2.26]** [9.35]*** [-1.75]* [6.92]*** [-1.67]* 
  0.95 Estimate -0.004 18.678 5.863 0.006 -0.12 
  0.95 t-value [-1.71]* [12.54]*** [2.26]** [4.60]*** [-1.95]* 
AXP 0.05 Estimate -0.003 -13.054 -15.385 0.004 0.021 
  0.05 t-value [-1.80]* [-14.03]*** [-8.19]*** [6.30]*** [0.47] 
  0.25 Estimate 0 -6.709 -10.043 0.006 -0.012 
  0.25 t-value [-0.49] [-13.99]*** [-7.49]*** [9.29]*** [-0.50] 
  0.5 Estimate -0.001 0.226 -4.902 0.007 -0.036 
  0.5 t-value [-1.23] [0.37] [-2.67]*** [8.45]*** [-1.07] 
  0.75 Estimate -0.002 7.783 1.246 0.006 -0.044 
  0.75 t-value [-2.07]** [12.54]*** [0.88] [8.17]*** [-1.42] 
  0.95 Estimate -0.003 17.743 5.407 0.004 -0.015 
  0.95 t-value [-1.22] [14.55]*** [2.43]** [3.49]*** [-0.23] 
INTC 0.05 Estimate 0.004 -17.355 -13.077 0.006 -0.002 
  0.05 t-value [1.18] [-13.96]*** [-3.53]*** [4.13]*** [-0.03] 
  0.25 Estimate 0 -7.024 -9.127 0.008 -0.022 
  0.25 t-value [0.10] [-7.71]*** [-5.44]*** [6.48]*** [-0.66] 
  0.5 Estimate -0.001 0.294 -7.398 0.009 -0.036 
  0.5 t-value [-0.41] [0.27] [-3.89]*** [9.00]*** [-1.06] 
  0.75 Estimate -0.003 8.641 -4.555 0.009 -0.07 
  0.75 t-value [-1.65]* [10.47]*** [-3.33]*** [10.31]*** [-2.95]*** 
  0.95 Estimate 0 17.719 -0.727 0.007 -0.109 
  0.95 t-value [0.00] [12.62]*** [-0.48] [3.85]*** [-2.01]** 
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Table 3.4  (continued) 

ticker quantile NAME 0δ  1δ  2δ  3δ  4δ  

VZ 0.05 Estimate -0.001 -13.227 -14.912 0.004 -0.164 
  0.05 t-value [-0.41] [-13.25]*** [-11.8]*** [3.57]*** [-4.13]*** 
  0.25 Estimate 0.001 -6.874 -8.383 0.003 -0.019 
  0.25 t-value [0.35] [-6.68]*** [-6.28]*** [5.18]*** [-0.48] 
  0.5 Estimate -0.002 1.02 -3.349 0.004 -0.054 
  0.5 t-value [-1.53] [1.16] [-2.93]*** [5.05]*** [-1.32] 
  0.75 Estimate -0.004 7.855 -1.357 0.005 -0.018 
  0.75 t-value [-2.87]*** [8.46]*** [-0.89] [6.51]*** [-0.38] 
  0.95 Estimate -0.002 15.429 8.152 0.004 0.001 
  0.95 t-value [-0.87] [9.71]*** [3.23]*** [4.05]*** [0.01] 
SBC 0.05 Estimate 0 -14.25 -18.825 0.003 -0.086 
  0.05 t-value [0.12] [-9.83]*** [-11.3]*** [2.25]** [-2.01]** 
  0.25 Estimate 0 -6.275 -11.431 0.005 -0.106 
  0.25 t-value [-0.12] [-9.53]*** [-7.59]*** [8.60]*** [-3.63]*** 
  0.5 Estimate 0 -0.194 -4.081 0.006 -0.072 
  0.5 t-value [-0.37] [-0.36] [-4.07]*** [8.27]*** [-2.21]** 
  0.75 Estimate -0.001 6.292 3.336 0.006 -0.041 
  0.75 t-value [-0.55] [7.16]*** [2.31]** [7.92]*** [-1.63] 
  0.95 Estimate 0 15.893 13.346 0.006 0.053 
  0.95 t-value [-0.13] [10.36]*** [5.59]*** [8.59]*** [1.01] 
HD 0.05 Estimate 0.002 -15.311 -16.232 0.005 0.003 
  0.05 t-value [0.76] [-13.46]*** [-9.63]*** [4.94]*** [0.06] 
  0.25 Estimate 0.001 -7.027 -11.393 0.006 -0.026 
  0.25 t-value [0.75] [-7.57]*** [-8.26]*** [9.47]*** [-0.79] 
  0.5 Estimate -0.002 0.463 -6.744 0.007 0.013 
  0.5 t-value [-0.89] [0.51] [-4.64]*** [9.06]*** [0.52] 
  0.75 Estimate -0.004 8.79 -0.391 0.006 -0.01 
  0.75 t-value [-2.36]** [9.70]*** [-0.18] [7.76]*** [-0.37] 
  0.95 Estimate -0.004 18.767 11.346 0.006 0.04 
  0.95 t-value [-1.43] [12.36]*** [3.54]*** [6.07]*** [1.48] 
AIG 0.05 Estimate 0.001 -15.258 -18.004 0.005 -0.003 
  0.05 t-value [0.81] [-15.09]*** [-22.36]*** [4.88]*** [-0.09] 
  0.25 Estimate 0 -6.72 -10.173 0.005 -0.017 
  0.25 t-value [0.09] [-8.10]*** [-8.07]*** [7.86]*** [-0.60] 
  0.5 Estimate -0.001 0.247 -3.831 0.006 -0.004 
  0.5 t-value [-0.76] [0.24] [-2.98]*** [9.43]*** [-0.17] 
  0.75 Estimate -0.004 8.229 3.402 0.006 0.05 
  0.75 t-value [-2.20]** [7.90]*** [2.19]** [10.77]*** [1.55] 
  0.95 Estimate -0.006 19.681 10.439 0.005 0.087 
  0.95 t-value [-2.42]** [14.72]*** [4.47]*** [6.64]*** [1.61] 
C 0.05 Estimate 0.001 -14.471 -16.136 0.003 0.029 
  0.05 t-value [0.70] [-18.83]*** [-8.47]*** [5.19]*** [0.64] 
  0.25 Estimate -0.001 -5.629 -12.305 0.004 0.028 
  0.25 t-value [-1.12] [-10.01]*** [-7.31]*** [7.49]*** [0.83] 
  0.5 Estimate -0.002 1.033 -7.199 0.005 -0.063 
  0.5 t-value [-1.94]* [1.90]* [-5.27]*** [8.57]*** [-1.92]* 
  0.75 Estimate -0.002 7.262 -3.359 0.005 -0.061 
  0.75 t-value [-1.99]** [10.60]*** [-3.20]*** [5.89]*** [-2.11]** 
  0.95 Estimate -0.002 16.563 1.98 0.004 -0.024 
  0.95 t-value [-1.05] [15.37]*** [0.91] [4.63]*** [-0.37] 

 
Note: The regression model is 

ttt
u
t

e
tt rSkewr εδδσδσδδ +++++= −143210

.This table reports the coefficient 
estimates and t-values of four independent variables: expected risk, unexpected risk, intraday skewness 
coefficient and one period lag of dependent variable, for 0.05, 0.25, 0.5, 0.75, and 0.95 quantiles. *** 
indicates 1% significance, ** 5%, * 10%. 
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Table 4.1 Description of Variables: Daily Data, 1996-2006 

Variables vbmfx vtsmx r_vbmfx r_vtsmx 
N 2652 2652 2651 2651 
MIN 5.18 12.56 -0.0134 -0.06955 
MAX 9.98 34.31 0.01227 0.052765 
MEAN 7.658428 23.99302 0.000245 0.000351 
STD 1.400248 4.860356 0.002731 0.011226 
Correlation coefficient 0.56 -0.09 
ADF test p-value 0.83 0.59 0.00 0.00 
6/20/1996-3/24-2000 correlation coefficient 
(950 observations) 0.91 0.09 
3/24/2000- 10/9/2002 correlation coefficient 
(638 observations) -0.93 -0.22 
10/9/2002-12/29/2006 correlation coefficient 
(1064 observations) 0.94 -0.15 

 
Note: r_vbmfx is the return on VBMFX fund; r_vtsmx is the return on VTSMX fund. The augmented 
Dickey Fuller (ADF) test has the order of AR=3. ADF test indicates that both fund series have unit root.  
However, the returns on the two funds are stationary. 
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Table 4.2 Description of Correlation Coefficients Between Two Returns 
 rolling (22 trading days) rolling (1 year) rolling (5 years) BEKK ADCC 
 moving window  expanding window moving window  expanding window moving window  expanding window   
N 2630 2630 2402 2402 1402 1402 2651 2651 
MIN -0.8043821 -0.1094712 -0.56829   -0.1094712 -0.2553353 -0.1094712 -0.7585 -0.60521 
MAX 0.8217056 0.5932804 0.461269 0.4612691 0.0174841 0.0178548 0.553369 0.619481 
MEAN -0.0272538 0.0502171 -0.08414 0.0050264 -0.1645929 -0.0766577 -0.03266 -0.02019 
STD 0.3698957 0.1923168 0.220371 0.1293768 0.0728973 0.0399980 0.254185 0.2537 
ADF test 
p-value 0.00 0.06 0.148 0.00 0.00 0.00 0.00 0.00 

 
Note: The table reports the rolling correlation, BEKK correlation, ADCC correlation between two market index fund returns.  
The last row reports the augmented Dickey-Fuller (ADF) test statistic with an AR order of 3. 
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Table 4.3 Estimates of the GARCH(1,1)  Models  
______________________________________________ 

Panel A: BEKK method 
Variable Coefficient Std Error t-Stat 
µs 0.00071 0.000169 [4.20]*** 
µb 0.000254 5.24E-05 [4.84]*** 
VAR(1,1) 0.949115 0.005936 [159.88]*** 
VAR(2,1) 0.026989 0.018586 [1.45] 
VAR(1,2) 0.005513 0.001587 [3.47]*** 
VAR(2,2) 0.98128 0.004433 [221.36]*** 
VBR(1,1) 0.305132 0.017762 [17.18]*** 
VBR(2,1) -0.06524 0.054799 [-1.19] 
VBR(1,2) -0.02177 0.004468 [-4.87]*** 
VBR(2,2) 0.139299 0.012732 [10.94]*** 
VCR(1,1) 0.001045 0.000191 [5.48]*** 
VCR(2,1) -0.00028 0.000323 [-0.87] 
VCR(1,2) 0 0 [0.00] 
VCR(2,2) 0.000296 6.97E-05 [4.24]*** 

 
Panel B: ADCC method 

Variable Coefficient Std Error t-stat 
µs 3.05E-04 1.66E-04 [1.84]* 
cs 1.95E-06 4.35E-07 [4.48]*** 
as -0.00988 0.00824 [-1.20] 
bs 0.91227 0.01218 [74.89]*** 
ds 0.16234 0.01814 [8.95]*** 
µb 2.53E-04 5.83E-05 [4.34]*** 
cb 3.45E-06 1.43E-06 [2.42]** 
ab 0.06475 0.03066 [2.11]** 
bb 0.47294 0.20148 [2.35]** 
db 0.00156 0.03997 [0.04] 
α 0.04583 0.00889 [5.15]*** 
β 0.93698 0.01255 [74.67]*** 
g 0.00132 0.00582 [0.23] 

 
_____________________________________________________
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Note: The BEKK is estimated by following representations: 
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BHBAACCH tttt 111 '''' −−− ++= εε    (4.2.b) 

where C, A, B are 2x2 matrices and C is a lower triangular matrix. 
 
 
The ADCC is estimated by two separate steps. The model is as follows: 
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The numbers with brackets are t-values. *** indicates 1% significance, ** 5%, * 10%. 
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Table 4.4 Estimates of the Time-Varying Correlation Coefficients 

Panel A 

                                                 Dependent variable  
Independent 
Variable 22,sbρ (22 trading days) 250,sbρ (250 trading days) BEKKsb,ρ  ADCCsb,ρ  

0φ  0.020382 0.01742 0.111915 0.040493 
  [0.52] [10.42]*** [5.11]*** [1.56] 

1φ  -0.01024 0.000185 -0.00935 -0.00682 
  [-25.15]*** [-1.76]* [-40.21]*** [-25.35]*** 

2φ  -0.19289 0.0175 -0.17188 -0.18919 
  [-4.90]*** [-32.39]*** [-7.82]*** [-7.27]*** 

3φ  -0.07371 0.012927 -0.04209 -0.05812 
 [-2.57]*** [-2.32]** [-2.59]*** [-3.06]*** 

4φ  6.006169 0.256221 2.25785 4.082628 
  [10.60]*** [5.33]*** [7.01]*** [10.89]*** 

Adjusted R2 0.3127 0.6493 0.5252 0.3598 

Panel B 

                                             Dependent variable  
Independent 
Variable 22,sbρ (22 trading days) 250,sbρ (250 trading days) BEKKsb,ρ  ADCCsb,ρ  

0φ  0.198207 0.368446 0.042163 0.194159 
  [3.89]*** [16.50]*** [5.23]*** [5.85]*** 

1φ  -0.00893 -0.00037 -0.0017 -0.00591 
  [-21.84]*** [-2.08]** [-26.30]*** [-22.19]*** 

2φ  -0.33326 -0.69911 -0.05247 -0.30661 
  [-7.38]*** [-35.31]*** [-7.34]*** [-10.42]*** 

3φ  -0.05184 -0.06851 -0.00909 -0.04664 
 [-4.23]*** [-12.75]*** [-4.69]*** [-5.84]*** 

4φ  2.873807 -0.38265 0.444501 1.517535 
  [4.46]*** [-1.35] [4.36]*** [3.62]*** 

Adjusted R2 0.3167 0.6710 0.3608 0.3673 
 
 

Note: The dependent variables are the correlation coefficients between stock and bond markets from 
different methods. The model is: 

tttoilttbst FFRDSPREADVR νφφφφφρ +++++= 4,32,,10
. VRs,b is the variance ratio 

computed by the conditional volatility of the stock market divided by the conditional volatility of the bond 
market; SPREAD is the difference between the yields of long-term bond and short-term bond; Doil,t is an oil 
dummy variable that takes value of 1 on days when there is a 5% price jump/reduction and zero otherwise; 
FFR is the federal funds rate.  
In Panel B, the Oil dummy variable is replaced with the conditional variance of the oil returns. 
The t-values are below the parameters (with brackets). *** indicates 1% significance, ** 5%, * 10%. 
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Table 4.5 Logistic Regression of the Sign of the ADCCs 
 
 

 
Dependent variable: probability of correlation coefficient 

to be positive 
Independent variable Coefficient Std Error Wald_Chi Significance 
Intercept 0.181792 0.293783 0.382907 0.536051 
Variance Ratio -0.0738 0.005161 204.4783 2.2E-46*** 
Spread -1.17986 0.303126 15.14994 9.93E-05*** 
Oil dummy -0.39441 0.231787 2.895497 0.088827* 
Federal Funds Rate 36.82053 4.348869 71.68486 2.52E-17*** 

 

Note: The model is 
)( 4,32,,101

1)0(
tttoilttbs FFRDSPREADVRADCC

e
P

νφφφφφ
ρ

+++++−+
=> . VRs,b is the variance 

ratio that is computed by conditional volatility of stock market divided by conditional volatility of bond 
market; SPREAD is the difference of the YTM of long-term bond and short-term bond; Doil,t is an oil 
dummy variable which takes value of 1 on days when there is a 5% price jump/down and zero otherwise; 
FFR is the federal funds rate.  
The test is a Wald chi square test. *** indicates 1% significance, ** 5%, * 10%. 
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Appendix of Figures 
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Figure 2.1 Comparisons of Probability Density Function of Three Distributions 
 

Note: This chart compares the probability density function (pdf) of three distributions. The solid line is the 
EGB2 distribution; dashed line the normal distribution; and dash-dot line is the Student’s t-distribution. 
Distribution estimated parameters are from stock MSFT (index=1): p=1.0233; q=0.7971; v=6.4635. 
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Figure 2.2 Comparisons of the Beta Estimation in Different Models. 

Note: The upper figure contains the plots of beta coefficients. The lower figure presents the corresponding 
standard deviations of the beta coefficients. 
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Figure 2.3 Comparisons of Log-Likelihood Function Values in Different Models 

Note: The figure plots the negative logarithm value of the likelihood function. The greater the likelihood 
function value, the better the fit of the model is. So, roughly speaking, the EGB2 distribution is superior to 
the normal distribution and the Student’s t distribution according to the figure. 
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Curve: Normal (Mu=77E-7 Si gma=0. 0027)
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Figure 3.1 Comparison of the 5-Minute Return Histogram and Corresponding 
Normal Distribution 

 
Note: This is the distribution of the 5-minute return in 1998 for stock HD. 
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Figure 3.2 Example of Intraday Moment Variables 
 
Note: These charts are for stock HD (index=28). The top one is the intraday standard deviation. The middle 
one is the decomposition of the intraday standard deviation. The red is the unexpected intraday standard 
deviation, and the cyan is the expected intraday standard deviation. The bottom one is the intraday 
skewness coefficient variable. 
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Figure 3.3 Quantile Regression ρ Function 
 

Note: This is the check function ρτ.in the quantile regression. 
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Figure 3.4 Comparison of WLS Regression and Quantile Regression 
 

Note: The charts show the coefficient of the expected standard deviation, the unexpected standard deviation, 
and the intraday skewness variable (in red) in the quantile regression. The green lines are 95% confidence 
limits. The blue lines represent coefficient estimation and confidence limits from the WLS regression. 
The charts are for stock PG, which shows a negative relation between excess returns and expected risk, for 
stock KO, which has the worst Sharpe ratio, and for stock UTX, which has the highest Sharpe ratio. 
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Figure 3.5 Comparison of the Predicted Value Line by Using WLS Regression and 
Quantile Regression  

 
Note: The blue stars represent the scatter plot of expected risk and excess returns. 
The bold lines (red and green) represent predicted lines from quantile regressions (25th and 75th quantiles). 
The thin line (brown) represents the predicted value line from WLS regression. 
The regression model is: t

e
ttr εσδδ ++= 10  
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Figure 3.6 3-D Chart for Relation Between Excess Returns and Expected Risk 
Varying with Return Quantiles 

 
Note: The regression model is: 

t
e
ttr εσδδ ++= 10

. The chart shows the predicted lines at different 
quantiles: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.  
The vertical axis is the excess return; the two horizontal axises are expected risk and return’s quantile. The 
central line (in red) is that of the median regression (0.5 quantile). The low quantile predicted lines are 
downward (in blue). The high quantile predicted lines are upward (in green). 
Each regression has 2013 observations; for the reason of the memory size, each predicted line only contains 
one tenth observations. 
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Figure 4.1 Two Market Index Funds Series 
 

Note: This chart shows the level of the two funds: VBMFX and VTSMX. The more volatile one is the 
stock index fund VTSMX; the less volatile one is the bond index fund VBMFX. The sample period is 
6/20/1996-12/29/2006. 
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Figure 4.2 Comparisons of Different Correlation Coefficients 
 

Note: This figure depicts five correlation coefficients. The red line represents a moving window (22 trading 
days); the cyan represents a moving window (250 trading days); the green represents an expanding window; 
the blue represents the BEKK coefficient; and the black represents the ADCC coefficient. 
The correlation coefficient of a moving window of 22 trading days is similar to the BEKK and ADCC 
coefficients. 
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Cur ve: Nor mal ( Mu=- 0. 02 Si gma=0. 2537)
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Figure 4.3 Histogram of ADCC Correlation Coefficients 
 

Note: This chart is the histogram of the ADCC correlation coefficients. The mean value of the ADCC 
correlation coefficients is -0.02. The standard deviation of the ADCC correlation coefficients is 0.25. The 
observations of the ADCC is 2651. 
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Figure 4.4 Stock-Bond Correlation Coefficient, Stock Market Conditional Variance, 
and Federal Funds Rate 

 
Note: The green line is the ADCC coefficient; the cyan is a rolling correlation coefficient of 250 trading 
days. In the top chart, the red line is the stock market conditional variance. The negative values of the 
ADCC coefficients are often associated with stock market’s volatility peaks. In the bottom chart, the red 
line is the federal funds rate. The federal funds rate shows a similar pattern as does the rolling correlation 
coefficient of 250 trading days. The federal funds rate is rescaled. 
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