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Abstract 

Nutritional modulation of the innate immune response to influenza infection 
Barry W. Ritz, MS 

Elizabeth M. Gardner, PhD 
 
 
 
Natural killer (NK) cells play an important role in controlling virus infections and 

provide a potential target for nutritional modulations that may alter the innate immune 

response to viruses.  Data presented here provide direct evidence that 1) NK cells limit 

influenza virus in the lung early following infection, 2) an age-associated defect in 

inducible NK cell cytotoxicity contributes to the increased susceptibility of aged mice to 

primary influenza infection, and 3) NK cells respond, both positively and negatively, to 

nutritional interventions.  Caloric restriction (CR) is a nutritional intervention that has 

been shown to extend lifespan in mice and postpone age-related changes in immunity.  

However, in our studies, aged (22 mo) CR mice exhibited increased mortality, impaired 

viral clearance, and reduced natural killer (NK) cell activity following influenza infection 

compared to aged ad-libitum (AL) mice.  To determine if these detrimental effects of CR 

occur independently of advanced age, young adult (6 mo) CR and AL C57BL/6 mice 

were infected with 104 TCID50/100 HAU of influenza A virus (H1N1, PR8).  The CR 

mice exhibited increased mortality (P<0.05), weight loss (P<0.01), lung virus titers 

(P<0.05), and lung pathology (P<0.001) compared to young AL controls.  Also, CR mice 

exhibited a decrease in total (P<0.001) and NK1.1+ lymphocytes (P<0.05) compared to 

AL in response to infection, as well as a reduction in influenza-induced NK cell 

cytotoxicity in both lung (P<0.01) and spleen (P<0.05).  These data are the first to 

describe an age-independent and detrimental effect of CR on the innate immune response 

to influenza infection.  In a separate study, young (6-8wk) C57BL/6 mice were 



 xiii
supplemented with 1g/kg body weight of active hexose correlated compound (AHCC), a 

fermented mushroom extract, for 7 days prior to and throughout infection with 100 HAU 

of influenza A virus (H1N1, PR8).  Supplementation increased survival and decreased 

weight loss (P<0.001) in response to influenza infection.  Further, supplementation 

increased NK cell activity in lung at 1 day p.i. (P<0.05) and 4 days p.i. (P<0.01) and in 

spleen at 2 days p.i. (P<0.01).  In conclusion, NK cells are important in controlling 

primary influenza infection, and both aging and nutritional status alter this response. 
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CHAPTER 1: SCOPE OF THE RESEARCH 

 
 

Influenza and related secondary pneumonias represent a leading cause of death in persons 

over the age of 65 in the United States, and it has been proposed that the increased 

incidence of infectious disease in the elderly is related to an overall dysregulation in 

immune function.  The elderly demonstrate a reduced ability to mount a protective 

antibody response to influenza vaccination, illustrating an age-associated decline in 

immunity that has been studied extensively in both humans and rodents.  Influenza virus 

also provides a useful, albeit underutilized, model for the study of the immune response 

to primary virus infection, meaning viruses to which we have had little or no previous 

exposure.   

The study of primary virus infection is particularly relevant in this era of newly 

emerging influenza strains, such as highly-virulent H5N1 avian influenza, and the threat 

of using influenza as an agent of bioterrorism.  Therefore, a major focus of our 

laboratory’s research has been to characterize the age-related decline in the immune 

response to primary influenza infection using a mouse model.  An age-related defect in 

adaptive immunity, characterized by a delay in the expansion of influenza-specific CD8+ 

T cells in lung that is paralleled by a decrease and delay in maximal cytotoxic T 

lymphocyte (CTL) activity and lung virus clearance, has been demonstrated.  However, 

there remains a paucity of data on the innate immune response to primary influenza 

infection and, specifically, the role of natural killer (NK) cells in controlling virus 

replication at the site of infection, i.e., the lungs.  Interest in the innate immune response 

to influenza infection was prompted by two observations that suggest an important role of 
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NK cells in controlling virus burden prior to a CTL response and the potential for an age-

associated defect in this process:  1) aged mice exhibited a decrease in inducible NK 

activity, and 2) aged mice that were subjected to 40% caloric restriction (CR) succumbed 

quickly to intranasal (i.n.) influenza infection.  The latter observation was in contrast to 

myriad reports in which CR, in the absence of malnutrition, extended lifespan in mice 

and maintained various aspects of immune function with increased age, including the 

antibody response to influenza vaccination.   Importantly, these previous studies that 

suggested an increase in immunity in aged CR mice did not expose mice to primary virus 

infection.   

 In Chapter 3 of this thesis, three independent but related studies are described that 

provide examples of how age and nutrition influence the innate immune response to 

influenza infection.  The first study establishes the critical importance of NK cells in 

controlling lung virus and the severity of influenza infection in both young and aged 

mice.  The next series of experiments clearly demonstrate that there is an age-

independent and detrimental effect of CR on the innate immune response during primary 

influenza infection.  This is followed by a final study showing an increase in the innate 

immune response to influenza infection in young mice supplemented with active hexose 

correlated compound (AHCC), a fermented mushroom extract of Japanese origin that is 

commercially available in the U.S. and promoted as a nutraceutical for immune 

enhancement.  To our knowledge, this thesis is the first to concurrently evaluate the 

effects of age and nutrition on the innate immune response to primary influenza infection 

and to provide both positive and negative examples of how nutritional interventions can 

influence innate immunity. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

 

2.1   Influenza virus 

Influenza was about to become interesting.  For the virus 

had not disappeared.  It had only gone underground, like a 

forest fire left burning in the roots, swarming, and 

mutating, adapting, honing itself, watching and waiting, 

waiting to burst into flames… 

Over the next year it flourished… It killed more people in 

twenty-four weeks than AIDS has killed in twenty-four 

years, more people in a year than the Black Death of the 

Middle Ages killed in a century. 

John M. Barry, The Great Influenza, 2004 

 

Influenza virus infects the epithelial cells of the respiratory tract, resulting in acute and 

contagious respiratory infections known collectively as influenza or the flu.  Influenza 

viruses are responsible for seasonal epidemics, as well as occasional pandemics.  

Epidemics of acute respiratory illness have been documented throughout history, 

including an early recording made by Hippocrates in 413 BC (Wright 2001).  The name 

influenza comes from the ancient Greek for influence, because the epidemics were 

thought to result from astrological or supernatural influences.  Influenza virus itself was 

not identified as the causative agent of influenza until the 20th century.  An influenza 

pandemic, known as the Spanish Flu, killed as many as 50 million people worldwide 



 4
between the years of 1918-1919, described in the citation above.  The severity of this 

outbreak accelerated influenza research and resulted in the isolation and identification of 

influenza virus as the causative agent of influenza infections (Wright 2001).  A number 

of species serve as natural reservoirs for influenza virus, including birds, swine, seals, 

whales, mink, dogs, and equine species.  Among these, birds and swine have been linked 

to human infection (Wright 2001, Beigel 2005), and aquatic birds, like ducks, may be the 

ancestral source of all influenza viruses. 

The influenza viruses belong to the orthomyxoviridae family, which are defined 

as enveloped viruses with a segmented, negative single-stranded RNA (ssRNA) genome.  

The orthomyxoviridae are so named because of their ability to bind to sialic acid residues 

in mucus (from the Greek myxa) and are designated as ortho (meaning standard or 

correct) to distinguish them from a related group of negative-stranded RNA viruses called 

the paramyxoviridae (from para meaning alternate), a family which includes Sendai virus 

and Newcastle disease virus.  The orthomyxoviridae family includes influenza A, B, and 

C viruses, as well as the genus Thogotovirus, tick-borne viruses that are genetically and 

structurally similar to the influenza viruses (Lamb 2001).  Influenza A viruses are further 

differentiated by their surface phenotype, which is comprised of a combination of one of 

16 known hemagglutinin (HA) glycoprotein subgroups and one of nine neuraminidase 

(NA) subgroups (Briedis 2007).  Utilizing this nomenclature, for example, the common 

circulating H1N1 subtype is differentiated from newly-emergent, highly-virulent H5N1 

avian influenza virus.  Finally, individual strains are conventionally identified by the 

geographic location where they were first identified, the strain number, and the year of 
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isolation.  Accordingly, influenza A/PR/8/34 was the eighth A strain isolated in Puerto 

Rico in 1934.   

 

 

 

Figure 1. The structure of influenza A virus.  

 

The influenza A and B viral genomes each contain eight ssRNA segments, which 

encode 10 known proteins responsible for virion structure, infectivity, or transcription.  

Influenza C virus, which does not cause illness in humans, does not express NA on its 

surface, and therefore contains only seven ssRNA segments (Lamb 2001).  Influenza A 

viruses encode HA, NA, viral matrix protein (M1), integral membrane protein (M2), 

nucleocapsid protein (NP), the RNA polymerase complex (PA, PB1, and PB2), and non-

structural proteins (NS1 and NS2) (Figure 1).  Hemagglutinin and NA are the major 
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surface glycoproteins responsible for antigenic determination and are encoded by RNA 

segments 4 and 6, respectively.  Hemagglutinin outnumbers NA on the virus surface by 

approximately 4:1 to 5:1 and is the major virus antigen against which neutralizing 

antibodies are produced (Lamb 2001).  The M1 protein is the most abundant protein in 

the virion and is believed to lie interior to the lipid envelope to provide structure to the 

virion.  The M1 protein appears to associate with the cytoplasmic tails of HA and NA, as 

well as interact with the ribonucleoprotein (RNP) complexes.  Following replication, M1 

is necessary for nuclear export of RNPs (Boulo 2007).  The use of M1 protein expression 

as a means of quantifying virus replication is described in Chapter 3.1.  The M2 protein 

forms an ion channel essential for the uncoating of the virus and the release of NPs from 

the virion.  Both M1 and M2 are encoded by RNA segment 7.  Nucleocapsid protein, 

encoded by RNA segment 5, is a major structural protein and interacts with the RNA 

segments and the RNA polymerase complex (RNA segments 1-3) to form each RNP.  

The NS1 and NS2 proteins are encoded by RNA segment 8.  NS1 expression has only 

been identified in infected cells, while NS2 is present in purified virions.  The NS2 

protein is also referred to as a nuclear export protein (NEP), because it is thought to be 

important for export of the RNP from the nucleus (Boulo 2007).  

Briefly, the viral life cycle begins with the binding of HA to the sialic acid-

containing receptors on the epithelial cell surface (Lamb 2001).  The virion then enters 

the cell via receptor-mediated endocytosis, and acidification of the endosome results in 

two essential steps necessary for transport of RNPs from the virus into the cellular 

cytoplasm.  First, protonation of the HA results in a conformational change in which the 

viral membrane becomes irreversibly fused to the endosomal membrane.  Secondly, the 
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interior of the virion becomes acidified, which allows for the disassociation of M1 from 

the RNPs.  The M2 H+ ion channel is then able to mediate cleavage of the viral RNPs 

into the cellular cytoplasm (Boulo 2007).  Unlike most RNA viruses, influenza virus 

replicates in the nucleus and utilizes host RNA primers to synthesize positive-stranded 

copies of the virus RNA.  The RNA polymerase complex then generates a complete set of 

eight virus negative-stranded ssRNA segments.  From this, virus HA, NA, and M2 

proteins are then synthesized, inserted in the cellular endoplasmic reticulum, and 

transported to the cell surface via the Golgi apparatus.  Although the role of NA in virus 

replication remains unclear, this protein may be responsible for cleaving the sialic acid-

HA interactions to allow virion export (Lamb 2001).  Virus assembly occurs at the cell 

surface in association with lipid rafts where virion budding takes place, attaining its lipid 

envelope from the host membrane.   

Influenza A viruses undergo continuous genetic variations that periodically result 

in the emergence of new strains.  New strains result from either antigenic drift (the 

accumulation of point mutations) or antigenic shift (re-assortment of the viral genome 

resulting from the mixing of two or more viral subtypes).  Antigenic drift occurs in both 

the HA and NA glycoproteins and is principally responsible for yearly variations in 

circulating strains of influenza virus.  Examples of antigenic shift include the emergence 

of H2N2 in 1957 (Asian Flu), the emergence of H3N2 in 1968 (Hong Kong Flu), and the 

re-emergence of H1N1 in 1977 (Russian Flu) (Wright 2001).  More recently, an H5N1 

influenza A virus subtype emerged in poultry.  The first cases of human infection with 

H5N1 virus were reported in Hong Kong in 1997, following direct contact with infected 

poultry. Eighteen confirmed influenza infections resulted in six deaths (Beigel 2005).  An 
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outbreak of H5N1 among poultry followed in Asia in late 2003-2004, killing 

approximately 150 million birds.  Since 2004, confirmed human infections with highly 

virulent H5N1 avian influenza virus have totaled 266, with a combined mortality rate of 

over 50% (Table 1).  In addition to countries reporting human infections, poultry 

infections have occurred in Malaysia, Nigeria, Iran, India, Greece, Italy, Austria, 

Germany, and France (www.who.int).   

 

Table 1. Confirmed human H5N1 avian influenza infections  

and fatalities since 2004. 

 

 Compiled from data available at www.who.int. 

Country 
Number of 

confirmed cases 

Number of       

deaths (%) 

Azerbaijan 8 5 (63%) 

Cambodia 7 7 (100%) 

China 24 15 (63%) 

Egypt 34 14 (41%) 

Indonesia 79 61 (77%) 

Iraq 2 2 (100%) 

Thailand 25 17 (68%) 

Turkey 21 4 (19%) 

Vietnam 66 22 (33%) 

TOTAL 266 147 (55%) 
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The emergence of new viruses, like H5N1 avian influenza virus, underscores the 

need for a comprehensive understanding of the immune response to primary virus 

infection.  It is unknown whether traditional vaccine strategies will be effective against 

H5N1 avian influenza virus or if effective vaccines can be produced quickly enough to 

respond to a pandemic threat.  Further, analysis of H5N1 viruses isolated from both 

poultry and human samples have demonstrated some resistance against currently 

available antiviral drugs (www.cdc.gov).  While neutralizing antibodies to HA and NA 

surface glycoproteins are generated during the immune response to influenza viruses and 

protect against subsequent exposure to the same virus, CD8+ T cells are essential for the 

eradication of a primary virus infection (Murasko 2005).  Prior to the adaptive immune 

response, however, natural killer (NK) cell-mediated innate immunity plays an important, 

yet under-studied, role in controlling virus early during the immune response to primary 

virus infection, including influenza.   
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2.2 The innate immune response to influenza infection 

Originally described as “null” lymphoid cells, natural killer (NK) cells were later 

discovered as a distinct population of lymphocytes with spontaneous cytolytic activity 

against tumor cells that could be further induced with interferon (Herberman 1981, 

DiSanto 2006, O’Connor 2005).  Natural killer cells are now recognized as potent innate 

effector cells with not only anti-tumor, but also anti-microbial and anti-viral activities 

(Andoniou 2006, DiSanto 2006).  These important lymphocytes are typically identified in 

mice as CD3-NK1.1+ and comprise approximately 5-20% of total lymphocytes in 

secondary lymphoid organs.  NK cell-mediated innate immunity appears to play a 

significant role in controlling virus burden early in infection until an antigen-specific T 

cell response can be achieved (Biron 2001a, Neff-La Ford 2003, Solana 2000, Janeway 

2005).  Most NK cells confer direct cytolysis upon target cells and secrete a variety of 

cytokines, while a minority may function as an immunoregulatory subset mediating 

effects exclusively through the production of cytokines (Ferlazzo 2004). Upon activation, 

NK cells respond rapidly, peaking within hours to the first few days of infection, and 

produce interferon (IFN)-γ (Biron 2001a, Nguyen 2002, Hunter 1997).  In turn, IFN-γ 

induces increased MHC class I and II expression on a wide variety of cells and further 

increases the cytotoxicity of both NK cells and cytotoxic T lymphocytes (CTLs) (Biron 

2001b).  These CTLs are principally responsible for killing virus-infected cells, 

culminating in recovery from infection (Neff-La Ford 2003, Bender 1995, Bender 1992, 

Moskophidis 1998).  Thus, although NK cells alone are unlikely to mediate recovery 

from virus infection, they actively participate in the induction of adaptive immunity and 

may be critical in controlling infection prior to an antigen-specific response.   
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The importance of NK cells in controlling virus infections has long been 

demonstrated (Bukowski 1983).  According to a recent review (Andionou 2006), NK 

cells limit the replication of viruses, including hepatitis C virus, human 

immunodeficiency virus (HIV), dengue virus, and yellow fever virus.  Further, NK cells 

are important in controlling the severity of certain viral infections, such as herpes simplex 

virus (HSV), hepatitis C virus, HIV, and cytomegalovirus (CMV) in humans and HSV, 

murine CMV (MCMV), lymphocytic choriomeningitis virus (LCMV), Sendai virus, and 

Kunjin virus in mice.  However, early studies did not clearly identify a role for NK cells 

in controlling influenza virus (Stein-Streilein 1988, Suttles 1986, Bot 1996).  As a result 

of these inconsistent data and an emphasis on immunization, the potential role of NK 

cells in the immune response to primary influenza infection has been largely ignored.  

Experiments described in Chapter 3.1 of this thesis examine primary influenza infection 

and virus titers in the lungs of immunocompetent mice following confirmed NK cell-

specific depletion.  These data provide direct evidence linking NK cells with resistance to 

influenza infection and suggest that NK cells are important for controlling virus titer in 

the lung in response to influenza infection. 

In lieu of antigen-specific receptors, NK cells express a combination of activating 

and inhibitory receptors that function to allow NK cells to directly identify pathogens 

without prior recognition.  Predominantly, these receptors are classified as CD94/NKG2 

or killer immunoglobulin-like receptors (KIR) in mice and humans, or Ly-49 receptors in 

mice.  Members of all three receptor families can function as activating or inhibitory 

receptors (Andoniou 2006, O’Connor 2005, Gasser 2006).  In general, NK inhibitory 

receptors recognize MHC class I on the surface of healthy host cells, delivering an 
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inhibitory signal that overrides signals provided by activating receptors.  As virally-

infected cells or tumor cells express altered or reduced levels of MHC class I, the 

inhibitor signal ceases, resulting in NK cell activation.   

Additionally, NK cell activation may occur indirectly, following pathogen 

recognition by accessory cells (Newman 2007).  Natural killer cells form receptor-

mediated interactions with accessory cells, such as macrophages and dendritic cells 

(DCs), resulting in NK cell activation through the transmission of activating signals and 

the exchange of cytokines.  Both direct and indirect NK cell activation result in NK cell 

cytotoxicity and cytokine production, as well as regulatory functions mediated by NK 

cell-accessory cell interactions.  The relative importance of direct and accessory cell-

dependent activation of NK cells in response to influenza infection remains under 

investigation.  Some evidence suggests that influenza infection may actually increase NK 

cell inhibitory receptor binding as an evasion tactic, which may increase dependence on 

DC-mediated activation (Achdout 2003). 

Initially, the immune response to primary influenza infection is mediated by non-

cellular components, such as proinflammatory cytokines and chemokines (Figure 1).  

These soluble factors are produced by infected macrophages and endothelial cells and are 

involved in host defense both systemically and at the site of infection by initiating 

inflammation, activating NK cells, or recruiting leukocytes to the site of infection (Neuzil 

1996, Price 2000, Conn 1995, Hennet 1992, Dawson 2000).  In vitro studies, as well as in 

vivo human and animal studies, suggest that Type I interferon (IFN-α/β), tumor necrosis 

factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-12, IL-18, MCP-1 (CCL2), and MIP-1α/β 

(CCL3/4) are among the major cytokines and chemokines produced in response to 
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influenza infection (Brydon 2005, Biron 2001b, Julkenen 2001, Van Reeth 2000, Neuzil 

1996, Hennet 1992, Liu 2004, Pirhonen 1999, Saraneva 1998).  These cytokines are 

produced rapidly in lung following influenza infection, and pulmonary cytokines 

generally exceed systemic cytokine levels, suggesting a predominantly local response 

(Van Reeth 2000, Orange 1996).  The cytokines TNF-α, IL-1β, and IL-6 act as 

proinflammatory, endogenous pyrogens and upregulate MHC I expression, DC 

migration, and IFN-γ production in reponse to viral infection (Biron 2001b).  Interferon-

α/β, IL-12, and IL-18 activate cells of innate immunity, as described in detail below.  

Cytokines and chemotactic proteins, such as MCP-1 and MIP-1α/β, produced by 

macrophages and activated NK cells, promote the activation of resident macrophages and 

recruit neutrophils (polymorphonuclear cells), dendritic cells, and additional 

macrophages and NK cells to the lung to amplify the immune response (Brydon 2005, 

McKenna 2005).   
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Figure 1.  The innate immune response to influenza infection in mouse lung. 
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Although the exact mechanism of increased NK cell cytotoxicity in response to 

individual cytokines has not yet been elucidated, there is considerable information 

regarding the roles of IFN-α/β, IL-12, IL-15, and IL-18 as endogenous regulators of NK 

cell responses early after virus infections (Biron 2001a, Biron 2001b, Julkenen 2001, 

Nguyen 2002, Cousens 1997, Pien 2000).  Interleukin-12 and IL-18 are sometimes 

referred to as NK cell stimulating factor and IFN-γ inducing factor, respectively, and both 

cytokines are produced by virus-infected macrophages and dendritic cells (Trinchieri 

2003, Pirhonen 1999, Saraneva 1998).   

 

 

α/β

portant 

link to adaptive immunity by stimulating the activity of CTLs (Nguyen 2002, Cousens 

1997, Pien 2000, Orange 1996).  Although neither cytokine appears to be essential for 

NK cell activation, receptors for IL-12 and IL-18 are constitutively expressed by NK 

cells (Hyodo 1999, French 2006), and IL-12 and IL-18 independently and synergistically 

NK cell
IFN-α/β

IL-12 
IL-18

IFN-γ
TNF-α

Cytotoxicity
Perforin/GranzymeNK cell

IFN-α/β

IL-12 
IL-18

IFN-γ
TNF-α

Cytotoxicity
Perforin/Granzyme

Figure 2.  Natural killer cell activating cytokines and their effector functions. 

Kinetic studies in mice infected with MCMV have shown that, in addition to IFN-

, the endogenous production of  IL-12 and IL-18 acts to induce NK cell activity and 

contributes to peak IFN-γ production by NK cells (Figure 2), thus providing an im
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augment perforin-mediated NK cell cytotoxicity and induce NK cells to produce IFN-γ 

(Hyodo 1999, Walzer 2005).     

The significance of IL-18 in the immune response to influenza infection is still 

under investigation.  Interleukin-18 is structurally related to IL-1β and, like IL-1β, it is 

produced by activated macrophages in response to influenza virus infection by a caspase-

1-dependent mechanism (Pirhonen 1999, Saraneva 1998).  In one study, IL-18 deficient 

mice exhibited increased virus, increased IL-12, and decreased IFN-γ in lung following 

intranasal infection with influenza virus (103 plaque-forming units, PR8) (Liu 2004).  

However, in a separate study, IL-18 deficient mice exhibited increased viral titer but 

normal IFN-γ production when infected with a low dose of influenza A virus (10 TCID50, 

PR8) (Van der Sluijs 2005).   

Interleukin-15, described as an NK cell survival factor, enhances NK cell function 

in vitro and enhances the proliferation response (Ferlazzo 2004).  Also, IL-15 may be 

required for NK cell development and for survival of mature NK cells in vivo, a process 

which appears to require expression of the IL-15Rα by accessory cells (Prlic 2007, Koka 

2007, DiSanto 2006).  While IL-18 alone does not appear to stimulate the proliferation or 

cytotoxicity of isolated NK cells in vitro, IL-18 augmented IL-15-dependent NK cell 

proliferation in culture (French 2006) and increased both proliferation and cytotoxicity in 

combination with IL-2 (Son 2001).   

Interferon-α/β has also demonstrated critical importance in host defense to virus 

infection (Biron 2001b).  It induces an antiviral state, inhibits virus replication in host 

cells, increases major histocompatibility complex (MHC) class I expression and antigen 

presentation in all cells, and activates NK cells during virus infection (Garcia-Sastre 
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2006, Nguyen 2002, Samuel 1991).  Briefly, IFN-α and IFN-β bind to transmembrane 

Type I IFN receptors on target cells, resulting in the activation of Janus-activated kinase 

1 (Jak1) and tyrosine kinase 2 (Tyk2) (Figure 3).  Phosphorylation follows and drives the 

formation of the Stat1:Stat2 heterodimer, which translocates to the nucleus and activates 

the transcription of greater than 100 IFN-stimulated genes (ISGs) (Garcia-Sastre 2006).  

Gene products with antiviral activities include Mx1 protein in mice and MxA protein in 

humans, which inhibit the replication of multiple viruses, including influenza virus 

part by stimulating the upregulation of perforin and granzyme B (Van Dommelen 2006, 

Johnson 2003, Liang 2003, Wright 1983).  Conversely, IFN-α/β may inhibit the 

expression of IL-12, as well as IL-12-mediated IFN-γ production by NK cells (Biron 

(Julkenen 2001).   

 

Figure 3.  The induction of antiviral effects by IFN-α/β. 
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2001b, Garcia-Sastre 2006).  IFN-α/β may also control the production of 

proinflammatory cytokines, as Stat1-/- mice unable to produce IFN-α/β exhibited 

increased pulmonary inflammation and increased pathology following infection with 

influenza virus (Durbin 2000).  On a clinical note, specific IFN-α and IFN-β subtypes are 

under investigation as potential adjuvants to improve the efficacy of influenza 

vaccination (James 2007). 

Innate accessory cells, in particular DCs, are also key components of the innate 

immune response by way of cytokine production and NK cell activation.  Dendritic cells 

act as the sentinels of the innate immune system, continuously sampling antigens in the 

periphery and delivering them slowly to the lymph nodes.  Upon activation and 

maturation, DCs migrate more quickly to the lymph nodes and express high levels of 

MHC and costimulatory molecules, a process described as licensing, in preparation for 

increased antigen presentation (Walzer 2005).  A naïve T cell, upon identification of its 

rare cognate antigen, is then believed to form a stable interaction with the DC, at which 

point the T cell receives activating signals.  In contrast, NK cells appear to form longer-

lasting interactions with DCs, even in the absence of antigen, during which the NK cells 

receive survival signals from the DCs in the form of IL-15 (Bajenoff 2006) (Figure 4).   

In 1999, Fernandez and colleagues first described NK cell activation mediated by 

direct contact with DCs, as in vitro co-culture of NK cells and DCs resulted in increased 

NK cell cytotoxicity and IFN-γ production (Fernandez 1999).  Further, In vitro studies 

clearly demonstrate that DCs activate NK cells through a combination of direct cell-to-

cell contact and cytokine production.  Receptor-mediated NK cell-DC interactions might 

enhance NK cell activation, in part, by improving the delivery of NK cell-activating 
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cytokines from the DC to the NK cell (Newman 2007).  Moreover, recent evidence 

suggests that NK cell-DC interactions actually perform bi-directional functions.  In other 

words, in addition to DC-mediated NK cell activation, receptor-mediated signaling 

between an NK cell and a DC may also result in either NK cell-mediated DC lysis or DC 

maturation. A low ratio of activated NK cells to immature DCs appears to result in DC 

maturation, including upregulation of MHC class I, thereby conferring protection against 

autologous NK cell-mediated cytolysis (Piccioli 2002, Walzer 2005).  In vitro evidence 

suggests that DC maturation is also dependent on IFN-γ and TNF-α, which are produced 

by activated NK cells (Ferlazzo 2002) (Figure 4).  In vivo, NK cell-DC interactions are 

important for controlling viral replication and resistance to infection, as demonstrated in 

multiple models (Walzer 2005, Andrews 2002).  For example, DC depletion resulted in 

impaired NK cell activation and increased susceptibility to HSV-1 infection in mice 

(Kassim 2006).  To date, however, the role of DCs in NK cell activation in response to 

influenza infection has not been clearly described. 

 

Figure 4.  NK cell-DC interactions. 
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The ability of NK cells and accessory cells to recognize virus infection is 

mediated, in part, by toll-like receptors (TLRs), which are innate pattern recognition 

receptors that recognize conserved pathogen-associated molecular patterns (PAMPs) 

common to bacteria or viruses (Table 1).  The interaction between a TLR and its ligand 

signals such events as the production of antiviral Type I IFN and pro-inflammatory 

cytokines, such as IL-6 and TNF-α.  Natural killer cells, as well as accessory DCs and 

macrophages, express a number of TLRs important in the identification of influenza virus 

and its products.   

 

Table 1.  Toll-like receptors and their ligands. 

TLR Ligand 

1 Gram + bacteria, yeast cell wall components 

2 Gram + bacteria, yeast cell wall components 

3 dsRNA, bacterial flagellin 

4 LPS, Gram - bacteria 

5 dsRNA, bacterial flagellin 

6 Gram + bacteria, yeast cell wall components 

7 ssRNA, dsRNA 

8 ssRNA 

9 dsRNA 

LPS, lipopolysaccharide; ds, double-stranded; ss, single-stranded. 

(O’Connor 2005, Renshaw 2002) 
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Toll-like receptor 3 is perhaps the best characterized TLR regarding NK cell 

activation.  The consensus among immunologists is that NK cells express TLR3, which 

recognizes dsRNA motifs common to viral replication (O’Connor 2005).  Activation of 

NK cells, as well as DCs, by polyinosinic-polycytidylic acid (Poly I:C), a dsRNA 

analogue, is mediated by this receptor (Verdijk 1999).   

Toll-like receptors 7, 8, and 9 are intracellular TLRs expressed on the phagocytic 

endosome that recognize ssRNA or dsRNA viral patterns.  In addition to TLR3, recent 

data suggest that NK cells may also express TLR7 and TLR8 (O’Connor 2005, Moretta 

2006).  Although human NK cells have also been observed to express TLR9, evidence at 

this time does not support the expression of TLR9 by murine NK cells.   

Plasmacytoid dendritic cells (pDCs), identified as CD11b-CD11c+B220+, are the 

major producers of IFN-α/β after virus infection (Walzer 2005, Garcia-Sastre 2006, 

McKenna 2005).  Type I IFN production in response to influenza infection appears to 

follow the recognition of ssRNA by TLR7 (Diebold 2004), which is predominantly 

expressed on pDCs.  Virus particles from HSV and MCMV may be predominantly 

recognized by TLR9, while influenza virus and vesicular stomatitis virus (VSV) are 

recognized by TLR7 (Lee 2007, Honda 2006).  Interestingly, both UV-irradiated and live 

influenza virus or HSV infections induce Type I IFN production by the pDCs, whereas 

the introduction of heat- or UV-killed VSV or respiratory syncytial virus (RSV) do not 

generate such a response (Lee 2007).    

As outlined above, the innate immune response to primary virus infections 

involves a complex interaction of cellular and soluble mediators.  An understanding of 

the coordinated activities of NK cells and accessory cells in recognizing and controlling 
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virus infection is only beginning to emerge.  Given the role of innate immunity in 

controlling virus infection prior to the initiation of an antigen-specific adaptive response, 

innate immunity may be a particularly important defense against newly emergent viruses.  

As such, the innate immune response to primary influenza infection requires further 

exploration, especially in the context of those at an increased risk for morbidity and 

mortality from infectious disease, such as the elderly. 
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2.3 Aging and the immune response to influenza infection 

“Old age isn’t so bad when you consider the alternative.” 

Maurice Chevalier, New York Times, October 9, 1960 

 

The elderly, defined as those individuals aged 65 years and older, represent the fastest 

growing segment of the U.S. population and are the major users of our health care 

resources.  Predominant health conditions within this population include cancer, heart 

disease, diabetes, Alzheimer’s disease, autoimmune disease, and an increased incidence 

of infectious disease.  The elderly demonstrate increased rates of infection, as well as 

increased morbidity and mortality in response to infectious diseases, such as RSV (Han 

1999), severe acute respiratory syndrome (SARS) (Donnelly 2003), and influenza virus 

(MMWR 2004).  It is estimated that influenza is related to greater than 200,000 

hospitalizations and as many as 36,000 deaths annually, 90% of which occur in the 

elderly (Thompson 2003, Thompson 2004).  Despite a substantial increase in vaccination 

rates, influenza-related hospitalizations and deaths have continued to rise over the past 

two decades, and thus, influenza infection is recognized as a major ongoing public health 

burden (Simonsen 2005, Jefferson 2006). 

It has been hypothesized that the increased incidence of infectious disease in the 

elderly is related to an overall dysregulation in immune function, although a limited 

number of studies have directly assessed the relationship between age-associated changes 

in immunity and increased infectious disease (Murasko 2005, Meyer 2001).  The 

reduction in the immune response to influenza vaccination in the elderly is corroborated 

by numerous studies demonstrating an inability to mount effective antibody titers, 
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decreased T cell proliferative response, reduced cytotoxic T cell (CTL) activity, and 

altered cytokine production following immunization (Murasko 2003, Murasko 2002, 

Murasko 1990, Murasko 1987, Bernstein 1999, Webster 2000, Govaert 1994, Gardner 

2002).  Fewer studies, however, have investigated age-related changes in the immune 

response to influenza infection, and it has been suggested that immunization studies can 

no longer remain the cornerstone of aging immunology research (Murasko 2005).  The 

pandemic threat of H5N1 avian influenza virus, the emergence of relatively new viruses, 

such as Ebloa virus and SARS, as well as the recognition that new or adapted viruses 

could be used as agents of bioterrorism, mandate the need for a comprehensive 

understanding of the immune response to primary viral infections, meaning those viruses 

to which we as humans have had no previous exposure.   

Influenza virus is well studied, and thus, has been instrumental in elucidating age-

related changes in the immune response to primary viral infections.  Of course, studies 

involving the infection of elderly humans with live virus are not ethical because of the 

lack of adequate antiviral therapies.  Instead, the investigation of age-related changes in 

the immune response to viral infections must be conducted in animal models, such as 

mice (Mestas 2004).  Studies in aged mice have demonstrated reduced antibody 

responses, impaired CTL responses, and increased lung virus titers after infection with 

influenza A virus (Murasko 2005).  Impaired CD8+ T cell function was associated with 

increased lung virus and prolonged virus shedding, indicating the importance of CTLs in 

the recovery from influenza infection (Po 2002, Moskophidis 1998, Bender 1991, Bender 

1995, Effros 1983).  Following influenza infection, aged mice exhibited a decreased and 

delayed expansion of influenza-specific CD8+ T cells that was paralleled by a decrease in 
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the magnitude and kinetics of the CTL response, resulting in delayed virus clearance 

from lung and suggesting that the adaptive immune response is not entirely absent in 

aged mice, but functioning at a lower level than in young mice (Po 2002).     

While it is clear that antigen-specific CTLs are principally responsible for killing 

virus-infected cells and, therefore, are critical for recovery from a variety of virus 

infections, including influenza, MCMV, and HSV, NK cell-mediated innate immunity 

may also play a significant role in controlling virus burden early in infection to prevent 

mortality until an antigen-specific T cell response can be achieved (Andoniou 2006, 

Biron 2001a, Solana 2000, Janeway 2005).  Upon activation, NK cells respond rapidly, 

peaking within hours to the first few days of infection, and produce IFN-γ, which further 

increases the cytotoxicity of both NK cells and CTLs (Biron 2001a, Nguyen 2002, Liu 

2004).   

The increased incidence of cancers and infectious diseases in the elderly and the 

importance of NK cells in the eradication of tumors and in eliminating virus-infected 

cells prompted the examination of age-related changes in NK cells.  Although most 

evidence from humans (Kutza 1996) and animal models (Plett 1999, Plett 2000, Albright 

2004) indicates no change in the percentage or number of NK cells with advancing age,  

age-related changes in both basal and inducible NK cell activity have been observed.  

Basal NK cell activity measured ex vivo in peripheral blood samples gathered from 

elderly donors does not decrease, and possibly increases, with age (Kutza 1995).  In mice, 

however, there is a developmental change in NK cell activity, such that young (6-8 week) 

mice demonstrate higher basal NK cell activity than young adult (6 month) or aged (22-

24 month) mice (Saxena 1984, Provinciali 1989).  Although basal NK activity does not 
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differ between adult and aged mice, there is an age-related decrease in cytokine-inducible 

NK cell activity.  IFN-α/β is an important inducer of NK cell cytotoxicity during virus 

infection (Garcia-Sastre 2006).  Both in vitro and in vivo IFN-α/β treatment increased the 

NK cell activity of 6 month-old mice to levels seen in 2 month-old mice, whereas there 

was no increase in the NK cell activity of 22-24 month-old mice (Plett 1999, Provinciali 

1989), reflecting an age-associated decrease in inducible NK cell cytotoxicity, which has 

also been observed in elderly humans (Solana 1999).  The mechanism behind the 

decrease in inducible NK cell activity in aging has not been determined but may include 

an alteration in IFN-α/β receptor expression, an increased rate of NK cells undergoing 

apoptosis, or a shift in the balance between NK cell stimulating and inhibiting receptors 

(Plett 2000, Lutz 2005).  Some studies also suggest that the production of IFN-α/β in 

response to virus infections decreases in aged compared to young mice, which would be 

expected to limit the ability of aged mice to induce NK cell cytotoxicity in vivo (Murasko 

2005). 

The role of NK cells in controlling influenza virus replication and limiting the 

severity of influenza infection remains largely unknown and has not been studied in the 

context of the age-associated decline in inducible NK cell activity.  However, NK cells 

are known to limit viral replication and control the severity of infections in response to 

multiple other viruses, including HSV and MCMV (Andoniou 2006).  Data presented in 

Chapter 3.1 of this thesis are the first to suggest that pulmonary NK cells play a similar 

role in response to influenza virus following intranasal infection.  Further, a reduction in 

influenza-induced NK cell cytotoxicity appears to accompany the delay in virus 

clearance, as well as the reduced and delayed CTL response that has been documented in 
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aged mice following influenza infection.  These data suggest that NK cells play an 

important role in controlling virus titers in lung in response to influenza infection and that 

an age-associated defect in inducible NK cell activity may contribute to the increased 

susceptibility to influenza infection in aging.   

The effects of aging on immunity are highly heterogeneous among humans, 

including among the healthy elderly.  For example, some elderly individuals maintain the 

ability to mount a protective antibody response to influenza vaccination, while others do 

not (Murasko 2003).  Therefore, additional variables that may influence immunity, such 

as nutritional status, may explain differences in the incidence and pathology of infection 

in the elderly (Mazari 1998, Lesourd 2004).  Indeed, malnutrition or nearly any 

nutritional deficiency, if severe enough, will negatively impact immune status.  Studies 

that have attempted to correlate micronutrient status with antibody response to influenza 

vaccination in the elderly, however, have produced conflicting results (Hara 2005, 

Gardner 2000, Pozzetto 1993).  These varied outcomes suggest that some degree of 

immune senescence occurs in the elderly independent of alterations in nutritional status.  

Perhaps some immune changes that occur with aging cannot be avoided.  For example, 

the increase in memory T cells associated with aging may result from lifelong antigenic 

stress and likely contributes to the age-associated decrease in proliferative ability 

(Lesourd 2004).  Meanwhile, innate immunity, which occurs very early in the course of 

infection and is highly variable among the elderly (Lesourd 2004), could be more closely 

related to nutritional status.  Further study into the role of innate immunity in controlling 

virus burden may reveal opportunities for the study of nutritional interventions to alter 

the immune response to primary virus infection. 
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2.4   Caloric restriction 
 
In the study of aging, caloric restriction (CR), in the absence of nutrient deficiencies, has 

emerged as the only known intervention capable of extending maximal lifespan 

(Speakman 2007, Yamaza 2002, Masoro 2005, Wanagat 2000).  The extension of 

lifespan in rodents by CR without malnutrition was first demonstrated in rats by McCay 

and colleagues in 1935 (McCay 1935).  Since then, diets ranging from 30-70% CR have 

been shown to increase median and maximal lifespan by up to approximately 65% and 

50%, respectively, over AL diets (Barger 2003).  Similar results have been obtained in 

multiple rodent species and strains, dogs, and non-mammalian species, like fish and flies 

(Masoro 2005).  Ongoing studies of rhesus and squirrel monkeys maintained at 30% CR 

indicate the likelihood of a comparable decrease in morbidity and mortality rates (Lane 

2002), although it is premature to determine the effects of CR on maximal lifespan in 

non-human primates.   

The effects of CR on metabolism and immunity, and their relationship to the 

extension of lifespan, have been studied extensively (Sohal 2002, Avula 2002, Heilbronn 

2003, Yamaza 2002).  Metabolic changes induced by CR, consistent in both rodents and 

non-human primates, include decreased weight and abdominal obesity, decreased 

oxidative stress, a decrease in body temperature, and a transient decrease in metabolic 

rate (Table 1).  Metabolic rate appears to normalize when adjusted for decreased body 

weight in CR animals.  Caloric restriction is also associated with changes clinically 

related to a decrease in age-associated disease pathology and disease-specific mortality, 

including reduced blood pressure, lowered triglycerides, and improved insulin sensitivity 

(Yamaza 2002, Speakman 2007, Heilbronn 2003, Roth 2001, Masoro 2005, Gredilla 
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Table 1. Reported effects of caloric restriction (CR) in animal models. 

 Species1 References2 

↑ Lifespan r Speakman 2007, Yamaza 2002, Goonewardene 1995, Fernandes 1976 

↓ Lean body mass r,p Speakman 2007, Heilbronn 2003, Verdery 1997 

↓ Body temperature r,p Heilbronn 2003, Lane 1996 

↓ Energy expenditure r,p Speakman 2007, Lane 1996 

↓ Metabolic rate3 r,p Speakman 2007, Heilbronn 2003 

↑ Immune function r,p Nikolich-Zugich 2005, Pahlavani 2000 

 ↓ Tumor formation r,p Lane 2001, Weindruch 1989  

 ↑ T cell proliferation r,p Messaoudi 2006, Nikolich-Zugich 2005, Umezawa 1990, 

Goonewardene 1995, Tian 1995 

 ↑ Antibody 

responses 

r Nikolich-Zugich 2005, Effros 1991 

 ↓,= Antibody 

responses 

p Nikolich-Zugich 2005, Roeker 1996 
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↑ Insulin sensitivity r,p Heilbronn 2003, Lane 2001 

↓ Cardiovascular risk 

factors 

r,p Roth 2001, Guo 2002, Verdery 1997 

 ↓ Blood pressure r,p Roth 2001 

 ↓ Total cholesterol r Roth 2001, Choi 1988, Masoro 1983 

 ↓,= Total cholesterol p Roth 2001, Verdery 1997 

 ↑ HDL r,p Lane 2001, Verdery 1997 

 ↓ Triglycerides r,p Lane 2001, Verdery 1997, Choi 1988, Masoro 1983 

↑ Stress (corticosterone) r Masoro 2005 

↓ Oxidative stress r,p Gredilla 2005, Masoro 2005, Heilbronn 2003, Guo 2002, Tian 1995 

1 Species: r, rodents; p, primates. 

2 Scientific reviews were included when available and are indicated in bold. 

3 CR animals may experience an absolute decrease in metabolic rate; however, when adjusted for decreased body mass, 

the decrease in metabolic rate is not significant (Masoro 2005). 
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It is likely that a combination of mechanisms contribute to life extension in CR 

animals (Masoro 2005).  Leading hypotheses include a reduction in oxidative damage, 

alterations in stress response, decreased body temperature, and increased insulin 

sensitivity.  Each of these mechanisms may be associated with alterations in gene 

expression in CR (Han 2005, Warner 2005). 

The broad anti-aging effects of CR align well with the oxidative stress hypothesis 

of aging, which suggests that the accrual of oxidative damage, induced by reactive 

oxygen species (ROS), promotes the aging process and results in the loss of physiological 

functions (Sohal 2002, Yu 1996).  Caloric restriction is associated with both a decrease in 

metabolic rate and, according to most reports, an increase in antioxidant defenses.  The 

restriction of calories results in a shift away from pro-oxidative mitochondrial activity 

with advanced age, reduced production of reactive oxygen species, less protein and DNA 

oxidative damage, and decreased H2O2-induced lymphocytosis (Gredilla 2005, Rebrin 

2003, Sohal 2002, Avula 2002, Merry 2004). 

Aging is associated with an increase in glucocorticoids and a decrease in stress 

responses that have been implicated in the age-associated impairment in immunity and 

loss of cognition (Berner 2004, Patel 2002, Yu 2001).  The hypothesis that CR may yield 

anti-aging effects by attenuating age-related hyperadrenocorticism was dismissed with 

the recognition that CR results in a prolonged, mild increase in free plasma corticosterone 

levels (Sabatino 1991).  It was then proposed that CR might extend lifespan by inducing a 

chronic state of low-level stress, thus increasing the preparedness of rodents to respond to 

acute stress and immune challenge (Masoro 1998).  The term hormesis has been applied 

to a protective low-level stress that would be expected to yield detrimental effects at a 
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higher level.  It has further been suggested that despite an increase in corticosterone, 

positive effects of CR, such as decreased plasma glucose, attenuated oxidative stress, and 

increased expression of stress-response genes, may result in a net protective state (Berner 

2004, de Cabo 2003, Patel 2002, Yu 2001).   

Similarly, there is some debate over whether body temperature may have an 

impact on lifespan, as a reduction in core body temperature is consistently observed in 

CR (Lane 1996).  Recent data generated in transgenic mice suggest that a modest, 

sustained reduction in core body temperature prolongs life, independent of any dietary 

alterations (Conti 2006).   

Finally, CR is associated with a decrease in fat mass, an increase in insulin 

sensitivity, and altered neuroendocrine function.  A decrease in fat mass, independent of 

CR, may have a potent anti-aging effect, as demonstrated in long-lived, fat-specific 

insulin receptor knockout mice (Bluher 2003).  Recent evidence suggests that positive 

alterations in insulin and glucose metabolism associated with longevity in CR may be 

mediated by activation of the SIRT1 gene in adipose tissue and its effects on peroxisome 

proliferator-activated receptor (PPAR)-γ (Bordone 2005).   

While the majority of studies have assessed the effects of lifelong CR, some 

studies of short-term CR have also demonstrated increased lifespan and changes in 

metabolic and immune parameters.  Adult-onset of CR in rodents (12 months of age) 

resulted in an increase in mean and maximal lifespan of 10-20%, as well as a decrease in 

spontaneous tumor formation and an increase in mitogen-stimulated T cell proliferation 

(Weindruch 1995, Weindruch 1982).  Adult male rhesus monkeys subjected to 30% CR 

demonstrated decreased triglycerides and improved insulin sensitivity in as little as 6 
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months (Lane 2000).  These data suggest that lifelong restriction is not required to 

demonstrate positive effects and, therefore, may be more relevant to the potential use of 

CR in humans.   

The attraction of CR in humans is understandable, as up to a 50% increase in 

maximal lifespan has been demonstrated in rodents (Barger 2003).  If a similar 50% 

increase in lifespan could be achieved in humans, this would translate into an increase in 

human life expectancy from 78 to 117 years in men and from 83 to 124 years in women 

(Speakman 2007).  However, lifelong restriction of 40% of total caloric intake, as 

implemented in animal trials, may not be possible in humans, and while adult onset of 

restriction is expected to confer some of the reported benefits of CR, the degree of such 

benefits would be proportionately reduced.  Further, most estimates conclude that the 

extension of human lifespan by CR would be relatively small (Phelan 2005).  

Mathematical modeling suggests that a 30% reduction in energy intake implemented by a 

male at age 40, for example, might be expected to increase lifespan by 4.8 years.  If 30% 

CR is begun at age 48, the same person might expect to increase lifespan by a modest 2.4 

years (Speakman 2007).   

No evaluations have been made on the expectation of quality of life, nor are the 

potentially adverse effects of CR in humans adequately addressed in the current literature 

(Dirks 2006).  Nonetheless, groups of humans have voluntarily initiated CR in an effort 

to extend lifespan (www.calorierestriction.org).  Those following voluntary CR diets 

were reported to consume approximately 1200-2000 kcal per day or roughly half the 

caloric intake of age-matched controls (Fontana 2004).  Such a regimen is generally 

maintained by a repetitive diet composed primarily of raw vegetables, fruits, nuts, dairy 
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products, egg whites, wheat and soy proteins, and some lean meat, along with careful 

attention to micronutrient intake in order to avoid potential deficiencies.   

One of the earliest and most comprehensive studies of CR in healthy adults 

occurred by happenstance in Biosphere 2, a 3.15 acre, enclosed ecological chamber in 

which 4 men and 4 women were expected to subsist for 2 years without outside influence.  

Due to a crop shortage, food availability was decreased, and the subjects consumed a CR 

diet of approximately 1750-2100 kcal, despite a high level of physical requirements.  The 

diet consisted mostly of vegetables, fruits, nuts, grains, and legumes, with some dairy, 

eggs, and meat, providing 77% of energy as carbohydrate, 12% as protein, and 11% as 

fat.  During this time, several physiological changes were observed that agreed with 

observations made in CR rodents, including significant weight loss, decreased blood 

pressure, decreased total cholesterol (although decreased HDL, as well), and increased 

cortisol (Walford 2002).  Prior to this study, work by Keys and colleagues in the 1950s 

suggested that healthy, lean men subjected to a 50% reduction in food intake for 24 

weeks demonstrated a decrease in weight, metabolic rate, and energy expenditure 

(Heilbronn 2003).  More recently, studies of CR in healthy, non-obese humans have 

indicated a decrease in body weight; a decrease in cardiovascular risk factors, such as 

decreased blood pressure, decreased total cholesterol, and increased HDL; a decrease in 

fasting insulin; decreased metabolic rate; reduced energy expenditure; and a reduction in 

oxidative stress (Fontana 2004, Heilbronn 2006, Civitarese 2007, Mendoza-Nunez 2005).   

To understand the potential benefits and limitations of CR, the National Institute 

on Aging initiated the Comprehensive Assessment of Long-term Effects of Reducing 

Intake of Energy (CALERIE), a series of human clinical trials to assess body 
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composition, metabolic adaptations, oxidative damage, and biomarkers of aging, but not 

lifespan per se, in response to interventions consisting of 10-30% CR with or without 

exercise.  The trials began in 2002, and early reports suggest a decrease in body weight, 

as expected, loss of fat mass, a decrease in fasting insulin, decreased core body 

temperature, and decreased oxidative stress in CR subjects with and without exercise, as 

compared to controls (Heilbronn 2006). 

Thus far, human studies have not provided any direct insight into the effects of 

CR on the susceptibility to infectious disease.  Mice are housed in pathogen-free cages, 

and the response of CR mice to infection had not been the focus of previous 

investigations.  However, recent evidence of an increased susceptibility of aged CR mice 

to influenza infection (Gardner 2005) warrants a detailed investigation into the effects of 

CR on the immune response to primary virus infection.  Data presented in Chapters 3.1 

and 3.2 of this thesis confirm that both aging and CR independently increase 

susceptibility to influenza infection. This is of particular interest, because the elderly 

exhibit increased morbidity and mortality from infectious diseases, including influenza, 

and are also at high risk for CR or malnutrition resulting from social, physical, economic, 

and emotional obstacles to eating.   
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2.5 Malnutrition and energy restriction differentially affect viral immunity 

(Published as Ritz 2006a) 

 

Barry W. Ritz and Elizabeth M. Gardner 

 

Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA  19104 

 

ABSTRACT  Protein-energy malnutrition (PEM) is associated with a decrease in 

immunity and an increase in infectious disease.  Both of these effects are exacerbated in 

aging.  Conversely, energy restriction (ER) without malnutrition extends lifespan in 

animals and retards the age-related decline in various parameters of immune function.  

Recent evidence suggests, however, that aged ER mice exhibit an increased mortality in 

response to primary influenza infection compared to age-matched controls.  Underweight 

may contribute to this outcome due to an inability to meet the energy demands associated 

with the immune response to primary viral infection.  The energetic costs of immune 

responsiveness must be considered in the undernourished aging population and emerging 

studies of ER in humans. 

 

KEY WORDS:  protein-energy malnutrition, caloric restriction, influenza, underweight, 

aging 

Abbreviations used:  AL, ad-libitum; BMI, body mass index; CTL, cytotoxic T 

lymphocyte; DTH, delayed-type hypersensitivity; ER, energy restriction; NK, natural 
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The observed interaction between nutrition and immunity predates both nutrition science 

and immunology as fields of study.  Interest in the influence of undernutrition on the 

susceptibility to viral infection emerged over 200 years ago with the observation that 

malnutrition appeared to lead to increased infection in some instances and increased 

resistance to infection in others (Sprunt 1956).  In time, it was generally accepted that 

nutritional adequacy in the host could fuel viral replication, while any nutritional 

limitation to the host would interfere with the metabolism of the virus itself (Sprunt 

1956).  More recent studies have further explored this host-pathogen interaction, 

confirming that host nutritional status not only influences host immunity and viral 

replication, but in doing so also directs the viral genome and, thus, can influence selective 

virulence (Beck 2004).  Attention to nutritional status, therefore, is relevant to all aspects 

of infectious disease: from infection, through the course of disease and recovery, and on 

to subsequent infections. 

Fifty years ago, Sprunt and Flanigan concluded that “…the effect of malnutrition 

on the resistance of an animal is dependent upon the state of the animal’s nutritional 

reserves at the time of infection.” (Sprunt 1956)  According to their data, an increase in 

the duration and severity of nutritional depletion, as well as a decrease in fat stores, were 

correlated with an increase in the susceptibility of mice to influenza infection.  Indeed, 

nearly any experimental deficiency, if severe enough, will result in impaired immunity 

and an increased incidence of infection (Scrimshaw 1997).   

The focus here is on the role of reduced energy intake on immunocompetence, 

which is a poorly understood process due, in part, to inconsistent definitions.  Table 1 

provides a list of relevant terms, typically applied to both the nutritional disturbance and 
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results.  Although protein-energy malnutrition (PEM) and 

 associated with a decrease in immunity and an increased 

ce of infectious disease, moderate undernutrition may have less or even an 

cts of immune function.  For example, energy restriction 

alnutrition reduces body weight, extends lifespan in animals, and retards 

-related decline in a number of general indices of immune function (Pahlavani 

influenza vaccination (Effros 1991).   

This review emphasizes the paucity of data regarding the effect of ER on the 
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 greater detail.   
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Table 1 

Comparative definitions of terms that are often misused in the literature1 

Undernutrition Inadequate intake of energy, protein, or other nutrients resulting in weight loss, 

usually associated with poor health 

Malnutrition Failure to meet nutrient requirements due to alterations in intake, digestion and/or 

absorption, metabolism, excretion, and/or the metabolic requirements of dietary 

energy, protein, or other nutrients; characterized by unintentional weight loss and 

poor long-term protein status, always associated with poor health 

Protein-energy (calorie) malnutrition         Long-term inadequate intake of protein and energy 

Starvation Long-term inadequate intake of protein, energy, or both 

Energy Restriction 

(Caloric Restriction) 

Long-term inadequate intake of energy while maintaining adequate intake of 

protein, vitamins, and minerals; “undernutrition without malnutrition” 

Food restriction Non-specific restriction of food intake 

Dietary restriction Non-specific restriction of any dietary component(s) 

 

1Definitions adapted from (Insel 2002) and (Shils 2005). 
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 A proper examination of the effects of PEM and ER on the immune response to 

brief review of the changes in immunity that are associated

ko 2005), since aging has been the focus 

ost consistent and extensive studies on immune dysfunction, and because studies 

the context of age-matched controls (Table 2).  

mans exhibit a decrease in antibody titers 

 (Gardner 2001).  Aging is associated with a slight decrease in 

phocyte number and an age-associated shift from naïve (CD45RA+) to memory

 CD4+ and CD8+ T cells, likely to limit the inducible T cell response 

mice, basal natural killer (NK) cell 

ain intact with advanced age, while the inducible NK response 

effect is not consistently observed in humans (Murasko 

 that decreased immunity is the reason for the observed 

ase in morbidity and mortality resulting from infectious agents in the elderly (Meyer 

unity are highly 

ong humans, including among the healthy elderly.  For example, some 

aintain the ability to mount a protective antibody response to 

accination, while others do not (Murasko 2003).  Therefore, additional 
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ection in the elderly (Lesourd 2004).   
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Table 2 

Reported effects of aging, protein-energy malnutrition, and energy restriction on immune function1 

Variable Species2 Aging PEM (wasting) ER References3 

Lifespan r NA ↓ ↑ Gavazzi 2004 
Masoro 2005 
Barger 2003 
Yamaza 2002  

Infection h,r ↑ ↑ - Murasko 2005 
Gavazzi 2004 

Lymphocyte  h,r ↓ or = ↓  Murasko 2003 
Ingram 1995 

number or % r   ↓ Nikolich-Zugich 
2005 

 p =  ↓ or = Lane 2002 
Nikolich-Zugich 

2005 
Lymphocyte  h,r ↓ ↓  Pahlavani 2000 

Lesourd 2004 
Ingram 1995 

Webster 2000 
proliferation r ↓  ↓ Pahlavani 2000 

Nikolich-Zugich 
2005 

 p   ↑ or ↓ Pahlavani 2000 
Nikolich-Zugich 

2005  
Cytokine production h,r altered (↓IL-2) altered (↓IL-2)  Pahlavani 2000 

Lesourd 2004 
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Murasko 2003 
Lesourd 1997 
Webster 2000 

 r,p                        altered (↑ or = IL-2)   Pahlavani 2000 
Lane 2002 

Nikolich-Zugich 
2005 

Antibody response  h,r ↓ ↓  Pahlavani 2000 
Lesourd 2004 
Murasko 2003 
Gardner 2001 
Lesourd 1997 

to vaccination r   ↑ Pahlavani 2000 
Effros 1991 

 p   - Nikolich-Zugich 
2005 

CTL activity r ↓ ↓ ↑  Pahlavani 2000 
Murasko 2003 
Murasko 2005 
Lesourd 1997 

Antigen presentation           r ↓ or = ↓ or = ↑ or = Pahlavani 2000 
Murasko 2003 
Redmond 1995 

Zhang 2002 
Naïve:memory T cells       h,r ↓ ↑  Lesourd 2004 

Murasko 2003 
Murasko 2005 

Miller 1997 
Lesourd 1997 

Woodward 1999 
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 r,p ↓  ↑ Nikolich-Zugich 
2005         

Spaulding 1997 
NK activity: basal h,r = ↓  Lesourd 2004 

Murasko 2003 
Murasko 2005 

Plett 2000    
Ingram 1995 

 r   ↓ Weindruch 1983 

NK activity: inducible        r ↓ 

 

↓ ↑ (Poly I:C) 

↓ (Influenza) 

Pahlavani 2000 
Gardner 2005 

Murasko 2005 
Plett 2000    

Ingram 1995 
Weindruch 1983 

 h ↓ or = ↓  Lesourd 2004 
Murasko 2003 
Murasko 2005 

 

1Effects of PEM and ER are compared to age-matched controls.   

2Species: r, rodents; h, humans; p, primates. 

3Scientific reviews were included when available and are indicated in bold.   

NA, not applicable;  -, insufficient data; =, no change; ns, this result was not statistically significant (P>0.05).
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Protein energy malnutrition (PEM).  PEM is a precipitating factor in the incidence of 

infectious disease, including influenza infection, and infection, in turn, has an adverse 

bearing on nutritional status (Scrimshaw 1997).  PEM is the most common cause of 

immunosuppression worldwide, and the increase in infectious disease associated with 

malnutrition is believed to be related to decreased immunity (Gavazzi 2004, Redmond 

1995, Ingram 1995).  Like in aging, PEM is characterized by a lymphopenia, reduced 

lymphocyte proliferation in response to mitogenic or antigenic stimulation, decreased 

cytotoxic T lymphocyte (CTL) activity, altered cytokine production, and reduced 

antibody response to vaccination (Scrimshaw 1997, Lesourd 2004, Lesourd 1997, Zhang 

2002) (Table 2).  PEM is associated with a shift toward increased naïve CD4+ and CD8+ 

T cells (Woodward 1999).  PEM also has a strong negative influence on innate immunity 

that is exacerbated in elderly humans (Lesourd 2004) and aged mice (Ingram 1995).   

Protein restriction can lead to compromised immunity, decreased viral clearance 

from the lungs, and increased mortality in influenza infected mice (Jakab 1981).  PEM 

often results in wasting (involuntary weight, muscle, and tissue losses), associated with a 

decrease in NK activity in both humans and mice (Ingram 1995).  However, NK activity 

appears to be somewhat resistant to PEM if wasting is avoided (Ingram 1995).  Likewise, 

in a study of experimental PEM without wasting, mice exhibited normal lymphocyte 

proliferation and antigen presentation (Redmond 1995).  These observations suggest the 

possibility that weight loss is a critical aspect in PEM-related immune dysfunction.  

Refeeding, with an emphasis on protein and/or micronutrients, has produced favorable 

results in terms of T cell proliferation, IL-2 production, DTH, antibody response, NK 
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activity, and most important, a decreased rate of infection (Meyer 2001, Lesourd 2004, 

Lesourd 1997).   

 

Energy restriction (ER).  ER, the phenomenon described as “undernutrition without 

malnutrition,” (Mendoza-Nunez 2005) retards aging and extends average and maximal 

lifespan, as first demonstrated in rats by McCay, et al., in 1935 (McCay 1935).  While 

this extension in lifespan has been correlated to total energy intake regardless of 

nutritional composition (Masoro 2005), it is important to note that ER diets are 

nutritionally enhanced to avoid malnutrition or deficiency.  An ER diet (typically 40% 

restricted in mice) is gradually achieved by underfeeding an isocaloric diet supplemented 

with protein, vitamins, minerals, and salts, usually at the expense of carbohydrate.  

Lifelong ER was shown to increase the mean and maximal lifespan of mice by up to 

approximately 65% and 50%, respectively, compared with a diet consumed ad libitum 

(AL) (Barger 2003).  Ongoing studies of non-human primates predict a comparable 

decrease in morbidity and mortality rates (Lane 2002, Nikolich-Zugich 2005), although it 

is premature to determine the effects on long-term disease outcome and lifespan. 

The extension of lifespan and a reduced incidence of spontaneous tumors in ER 

rodents promulgated early interest in the potential preservation of immune function by 

ER (Weindruch 1989).  ER is generally acknowledged to delay the development of 

immunity and maintain its function later in life (Pahlavani 2000).  Most studies suggest 

that ER rodents maintain mitogen-stimulated T cell proliferation, cytokine production, 

antibody response, and inducible NK cell activity at an advanced age (Pahlavani 2000, 

Gardner 2005) (Table 2).  Certain outcomes, such as the lymphopenia and enhanced 
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antibody response to vaccination that are observed in mice subjected to ER (Effros 1991, 

Miller 1997), have not been confirmed in non-human primates (Nikolich-Zugich 2005).  

ER results in a consistent increase in naïve:memory T cell subpopulations, possibly 

related to an increased proportion of functional T cells (Miller 1997, Woodward 1999, 

Nikolich-Zugich, Spaulding 1997). 

ER has been described as an effective modality for increasing the immune 

response to influenza (Meyer 2001, Webster 1989); until recently, however, studies were 

limited to challenge by influenza vaccine (Effros 1991).  We discovered an anomaly in 

which aged ER mice were unable to withstand primary influenza infection and died 

within 4-7 days post-infection (Gardner 2005) (Figure 1).  Due to the early time course 

and an observed decrease in NK activity in aged ER mice when infected with influenza 

(Gardner 2005), we suspect that ER mice do not possess the innate immunity to control 

primary infection while mounting a specific CD8+ T cell response, a possible effect of 

ER masked by the limitations of vaccine studies.  Previously, ER was shown to diminish 

basal splenic NK cell activity in mice by about 50%, although NK response to Poly I:C 

injection was increased to a percentage of cytotoxicity comparable to that in young 

controls (Weindruch 1983).   

 

Underweight.  Infection generates a significant energy demand (Scrimshaw 1997); 

therefore, the availability of energy is likely to play a critical role in the immune response 

to infection.  Infections are associated with the catabolism of protein for the production of 

energy via gluconeogenesis (Scrimshaw 1997).  The activation of cell-mediated 

immunity includes an increase in glucose uptake, glycolysis, and protein synthesis by T 
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cells in order to support proliferation, differentiation, cytokine production, and effector 

function (Matarese 2004).  However, while ER has been reported to promote 

gluconeogenesis and decrease glycolysis (Yamaza), ER studies to date have ignored the 

metabolic costs of infection.   

Influenza infection results in an anorexia that is believed to be mediated, at least 

in part, by the cytokine and chemokine milieu (Van Reeth 2000).  As such, weight loss 

and recovery serve as useful indicators of the severity and course of infection.  Our 

observations suggest that young and aged mice can lose up to 35% of baseline body 

weight and still recover from influenza infection.  Any additional weight loss is not 

compatible with recovery.  Kinetic analyses of weight loss during sub-lethal influenza 

infection indicate that the recovery of weight is concomitant with a maximal CD8+ T cell 

response and viral clearance (Murasko 2005).   

There are clearly stated health risks associated with underweight in humans (BMI 

<18.5 kg/m2), including compromised immunity (Dirks 2006).  Indeed, a history of 

weight loss is associated with a poor clinical prognosis in hospitalized elderly, including 

increased infections (Sullivan 1990).  Prospective and retrospective studies suggest that 

low or even normal body weight predicts mortality in the elderly, while increased weight 

may have a protective effect (Mendoza-Nunez 2005).  If underweight when infected with 

influenza virus, energy stores might not be sufficient to withstand the combined reduction 

in energy intake and increased energy demand associated with the infection.  Aged ER 

mice are underweight compared to AL mice, such that weight loss during the first four 

days of influenza infection resulted in an average body weight equal to the critical weight 

that predicts mortality in aged AL mice (Gardner 2005) (Figure 1).  Voluntary ER in 
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humans also results in underweight in some cases (Fontana 2004), although the potential 

influence of ER on the immune response to viral infection in humans remains entirely 

unknown.   
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Figure 1.  Weight loss occurs in mice with influenza infection due to a decrease in 

energy intake and an increase in energy demands.  Young and aged mice can lose up 

to 35% of their body weight and recover from infection, which suggests a critical weight 

indicative of sufficient energy reserves to recover from infection.  Lifelong ER results in 

a 30% decrease in starting weight that may be only marginally above this critical 

threshold.  In the case of aged ER mice, 100% mortality was observed by day 7 (X), prior 

to an adaptive T cell response, suggesting a primary influence of underweight on innate 

immunity.  
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Summary.  Aging and PEM with wasting are associated with similar and cumulative 

defects in innate and cell-mediated immunity and an increased incidence of infection.  

Although the preponderance of evidence suggests that ER maintains immune function at 

an advanced age, including in response to immunization, more recent data indicate 

impairment in the immune function of aged ER mice following primary influenza 

infection.  This observation supports the notion that immunization can no longer serve as 

the sole indicator of the immune response to viruses (Murasko 2005).  Further, if 

applicable to the human circumstance, these data have clear implications for elderly 

individuals at high risk for reduced energy intake resulting from social, physical, 

economic, and emotional obstacles to eating (Pirlich 2001).  Infection is associated with 

both an increase in energy demands and an anorexia that decreases energy intake.  

Underweight, therefore, may contribute to a poor prognosis in infection by exacerbating 

this energy deficit, thus negating the spectrum of health benefits attributed to ER and the 

maintenance of a low body weight.  The potential consequences of underweight in 

response to infection must be addressed in future proposals on the therapeutic benefits of 

ER in humans (Sullivan 1990, Heilbronn 2003) and in consideration of the 

Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy 

(CALERIE), a series of human clinical trials initiated by the National Institute on Aging 

in 2002.  Immediate action is warranted to determine the metabolic, physiologic, and 

immune changes associated with ER that may affect the outcome to primary viral 

infection.  Future studies should evaluate the kinetics of innate and cell-mediated 

immunity, viral clearance, and recovery in ER mice and investigate the effects of 
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refeeding prior to infection to delineate the roles of weight and energy status on the 

immune response to primary viral infection. 
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CHAPTER 3: EXPERIMENTAL DATA 

 

3.1 Natural killer cells control lung virus in young and aged mice during 

influenza infection 
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3.1.1 Abstract 

The importance of Natural killer (NK) cells in controlling influenza infection, before the 

initiation of an antigen-specific response, has not been clearly illustrated, nor has the role 

of altered NK cell activity in the age-associated decline in immunity been investigated in 

the context of a primary virus infection.  Young and aged C57BL/6 mice were infected 

intranasally with influenza A virus (PR8), and NK cell-mediated cytotoxicity was 

determined in lung and spleen by 51Cr-release in YAC-1 target cells.  Young mice 

exhibited an increase in influenza-inducible NK activity not seen in aged mice, as well as 

an increase in the percentage and number of NK1.1+ cells in response to infection.  

Young mice depleted of NK cells by rabbit anit-NK1.1 (PK136) exhibited increased 

weight loss and lung virus titers, determined by MDCK assay and M1 expression by RT-

qPCR.  Natural killer cells are important for controlling influenza virus infection, and this 

process is negatively influenced by aging. 
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3.1.2 Introduction 

Influenza infection and related secondary pneumonias represent the 4th leading cause of 

death in persons over the age of 65 in the U.S. (MMWR 2004, Gross 1995, Thompson 

2003).  It has been proposed that increased infectious disease in the elderly is related to 

an overall dysregulation in immune function (Meyer 2001).  While the age-associated 

decline in the immune response to influenza vaccination has been well studied, 

information regarding age-associated changes in the immune response to influenza 

infection is lacking.  Further, the study of primary viral infections, meaning those viruses 

to which we have had little or no previous exposure, is relevant in this era of threats from 

highly virulent (hv) H5N1 avian influenza and bioterrorism (Murasko 2005).   

Natural killer cell-mediated innate immunity provides the first line of defense against 

virus infection, before the engagement of an antigen-specific response.  Our lab (Po 

2002) and others (Bender 1995, Effros 1983) have previously demonstrated the 

importance of CTL activity in recovery from influenza virus infection and an age-related 

impairment in CD8+ T cell function that is associated with increased lung virus and 

prolonged virus shedding.  However, less is known regarding the potential association 

between altered NK cell activity in aged lungs and lung virus early following influenza 

infection, before the generation of an influenza-specific CTL response. 

Although basal NK cell activity does not differ between adult (6 months) and aged 

(22 months) mice (Provinciali 1989), an age-related decrease in cytokine-inducible NK 

cell activity has been demonstrated (Plett 2000).  Both in vitro and in vivo IFN-α/β 

treatment increased the NK cell activity of adult mice to levels seen in young (6-8 weeks) 

mice, whereas there was no increase in the NK cell activity of aged mice (Provinciali 
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1989).  These data reflect an age-associated decrease in inducible NK cell cytotoxicity, 

which has also been observed in aging humans (Solana 1999, Kutza 1996).   

The importance of NK cells in controlling virus infections has long been 

acknowledged.  Natural killer cell depletion has resulted in increased virus titer and 

pathology in C3H/St mice infected with MCMV, MHV, and vaccinia virus, but not 

LCMV, suggesting that the relative importance of NK cells in the immune response 

varies by virus (Bukowski 1983).  Mice of the E26 strain, deficient in both NK and T 

cells, has demonstrated an increase in virus in lung 3 days post-infection (p.i.) and an 

increase in virus in brain 10 days p.i. with HSV-1 compared to T cell knockout and 

C57BL/6 controls (Adler 1999).  This study suggested that NK cells are able to limit 

HSV-1 infection, without T cell involvement.   

In contrast, early studies did not clearly identify a role for NK cells in controlling 

influenza virus infection.  Intravenous treatment with rabbit anti-Asialo GM1 24 hours 

prior to intranasal (i.n.) infection with a 50% lethal dose of influenza A (PR8) increased 

lung virus and mortality in B6D2F1 and nude (nu/nu) mice (Stein-Streilein 1988).  

However, GM1 is expressed by NK cells, CTLs, and macrophages, resulting in 

indiscriminate depletion (Suttles 1986, Keller 1983) and limiting its use in more recent 

studies.  Influenza infection resulted in an increase in NK cell percentage and number in 

the lungs of scid mice (NK cells, but no B or T lymphocytes) when mice were 

immunized and then infected by aerosol with a lethal dose of PR8.  However, in the same 

study, depletion of NK1.1+ cells, confirmed only in spleen, did not alter survival 

following immunization and secondary influenza challenge (Bot 1996).  As a result of 
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these inconsistent data and an emphasis on immunization, the potential role of NK cells 

in the immune response to primary influenza infection has been largely ignored. 

To our knowledge, the current study is the first to examine primary influenza 

infection in the lungs of immunocompetent mice following confirmed NK cell-specific 

depletion.  We further demonstrate a decrease in NK cell cytotoxicity in response to 

primary influenza infection and an increase in virus titers as determined by both MDCK 

assay and real-time quantitative PCR (RT-qPCR) analysis of M1 gene expression in the 

lungs of aged compared to young mice.  These data provide direct evidence linking NK 

cells with resistance to influenza infection.  Natural killer cells appear to play an 

important role in controlling virus titer in the lung in response to influenza infection, and 

an age-associated defect in inducible NK cell activity contributes to the increased 

susceptibility to influenza infection in aging.   
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3.1.3 Materials and Methods 

Mice and influenza infection 

The protocol was approved by the Drexel University Institutional Animal Care and Use 

Committee.  Young (6-8 week) and aged (22 month) male C57BL/6 mice were purchased 

from the National Institute on Aging colony of Charles River Laboratories (Wilmington, 

MA).  Mice were housed in micro-isolator cages in the AAALAC-accredited barrier 

facility at Drexel University and acclimated for at least 1 week before use.  Mice with 

tumors were eliminated from the study.  Influenza A/Puerto Rico/8/34 (H1N1, PR8) was 

propagated in specific pathogen-free eggs (B & E Eggs) and cell-free supernatants were 

stored at -36°C until use.  At baseline (Day 0), mice were anesthetized by i.p. injection 

with Avertin (2,2,2-tribromoethanol, Sigma) and infected i.n. with 104 TCID50/100 HAU 

of PR8.   

Lymphocyte isolation 

Briefly, mice were asphyxiated by CO2, and spleens and lungs were aseptically removed.  

As previously described (Po 2002), spleens were homogenized and resuspended in 

RPMI-1640 (Mediatech).  A lobe of each lung was frozen in TRI reagent (Molecular 

Research Center) and saved for RNA extraction.  Remaining lungs were minced, 

incubated at 37°C for 2 h in 3mg/mL Collagenase A and 80 Kuntz units of DNAse I/mL 

(Roche) in IMDM (Mediatech), passed through a 40 μm nylon mesh (Fisher), and 

centrifuged at 500 x g for 5 min.  Supernatants were aliquoted and stored at -36°C for 

analysis of lung virus by MDCK assay.  Pellets were washed, and mononuclear cells 

were isolated from cell suspensions layered on Histopaque-1083 (Sigma) gradient and 

centrifuged at 1400 x g for 20 min.   
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NK cell cytotoxicity 

A standard 51Cr-release assay with YAC-1 target cells was employed to assess NK 

cytotoxicity, as previously described (Plett 2000).  Briefly, Yac-1 cells were incubated 

with 200 μCi Na51CrO4 (PerkinElmer) for 2 h, washed in RPMI-1640, and plated in 

triplicate in v-bottom 96-well plates with lung and spleen cell preparations at an E:T of 

50:1.  Following a 4-h incubation at 37°C, supernatants were harvested onto UniFilter 

microplates (PerkinElmer), and radioactivity was quantitated by a γ-counter (Packard 

TopCount) and reported as counts per minute (CPM).  Spontaneous release was 

determined in medium alone, and maximum release in 5% Triton X-100 (Sigma).  

Spontaneous release was always <5% of maximum release.  Percent cytotoxicity was 

then calculated as follows:  

(Experimental CPM – Spontaneous CPM) 

% =       ----------------------------------------------------       x 100 

(Maximum CPM – Spontaneous CPM) 

Flow cytometry 

Following multiple washes, 5 x 105 cells from lung and spleen were resuspended in PBS 

(Mediatech) containing fluorochrome-conjugated antibodies (eBioscience) to CD8 (APC 

or PE-Cy5.5) and NK1.1 (PE or PE-Cy7) and incubated on ice in the dark for 30 min.  

Cells were washed 3 times, resuspended in 1% paraformaldehyde (Sigma).  Samples 

were acquired on a FACSCanto flow cytometer (BD) and analyzed using FlowJo 

software (Tree Star). 
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NK cell depletion 

Young mice were injected i.p. with a total of 600μL/mouse of rabbit anti-NK1.1 IgG 

antibody (PK136) or saline vehicle control, administered 2 days and 1 day prior to 

infection with influenza virus, adapted from a published protocol (Carroll 2001).  NK cell 

depletion was confirmed by FACS analysis as the absence of NK1.1+ lymphocytes in 

lungs and spleens prior to and during infection. 

MDCK assay 

Supernatants from lung homogenates were serially diluted and used to infect Madin-

Darby canine kidney (MDCK) cells.  After incubation at 37°C for 24 h, 0.002% TPCK-

treated trypsin (Sigma) was added, followed by a 72-h incubation.  Chicken red blood 

cells (B&E Eggs) were prepared at 0.05% in PBS and added to the cultures.  Virus titer 

was determined as hemagglutination, as previously described (Po 2002), and reported as 

the 50% tissue culture infectious dose (TCID50). 

RT-qPCR 

Viral load in lungs was also determined as M1 protein mRNA expression using real-time 

quantitative PCR (RT-qPCR) as previously described (Ward 2004).  Briefly, viral RNA 

was isolated from harvested lung tissues using a QIAamp viral RNA kit and reverse 

transcribed using an Omniscript RT kit, according to manufacturer’s instructions 

(Qiagen).  Reactions were primed with 1μM random hexamers, 10 units of RNAse 

inhibitor, and 10μM of M1-specific primer in a total volume of 20μL in nuclease-free 

water (Gibco).  Reactions were incubated at 42°C for 60 min, heated at 95°C for 5 min, 

and cooled to 4°C in a 2720 Thermal Cycler (Applied Biosystems).  The PCR reaction 

mixture contained 2μL of cDNA, 1X TaqMan Universal Master Mix (Applied 
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Biosystems), 900 nM of each primer, 225 nM of probe in a total volume of 25 μL.   

Forward and reverse primers and probe, tagged with FAM (6-carboxyfluorescencein) 

reporter dye on the 5’ end and TAMRA (6-carboxytetramethylrhodamine) quencher dye 

on the 3’ end, were purchased from IDT.  The matrix protein gene sequence used in 

Reverse Transcription reactions was 5’ TCT AAC CGA GGT CGA AAC GTA 3’.  The 

sense and anti-sense primer sequences used in amplification of cDNA were sense: 5’ 

AAG ACC AAT CCT GTC ACC TCT GA 3’ and antisense: 5’ CAA AGC GTC TAC 

GCT GCA GTC C 3’.  The M1 influenza A specific probe sequence was 5’ TTT GTG 

TTC ACG CTC ACC GT 3’.  Virus titer was calculated by comparing M1 expression in 

samples to a standard curve of M1 expression in PR8 stock and reported as ng of virus 

per lung. 

Statistics 

Statistical analyses were performed using GraphPad InStat 3 software.  Comparisons 

between and within groups were analyzed by ANOVA with Tukey-Kramer multiple 

comparisons.  Mann-Whitney U-tests were used when data was not normally distributed.  

Pearson’s correlation was used to investigate the relationship between weight loss and 

M1 expression.  Statistical significance was accepted at P<0.05. 
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3.1.4 Results and Discussion 

Aged mice demonstrate reduced influenza-induced NK cell cytotoxicity 

Young and aged C57BL/6 mice were infected i.n. with 104 TCID50/100 HAU of 

influenza A virus (H1N1, PR8).  NK cell cytotoxicity was determined in lungs and 

spleens of young and aged mice from baseline (Day 0) through 3 days p.i. (Figure 1).  

Basal NK cell activity in lungs and spleens did not differ between young and aged mice, 

as recently reported (Gardner 2005).  Although there was a small decrease in basal NK 

cell activity in aged splenocytes compared to young, this difference was not significant 

(Figure 1B).  These observations are in contrast with earlier reports in which young (8 

week) mice demonstrated higher basal splenic NK cell activity than young adult (6 

month) or aged (22 month) mice (Saxena 1984, Provinciali 1989).  Following infection, 

influenza-induced NK cell activity in lungs from young mice was increased at 2 days p.i. 

and was approximately 4-fold higher than NK cell activity in aged mice on the same day 

(Figure 1A).  Importantly, NK cell activity in aged mice did not increase over baseline 

following influenza infection, in agreement with earlier studies demonstrating an age-

associated impairment in cytokine-inducible NK cell activity (Plett 2000).  Similar results 

were generated in the spleens of the same young and aged mice following influenza 

infection (Figure 1B).   

 

Aged mice exhibit decreased NK cell percentage and number following influenza 

infection 

The role of increased NK cell number in response to viral infection has previously been 

demonstrated (Po 2002, Biron 1983, Dokun 2001).  The percentage of NK1.1+ in total 
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lymphocytes in the lungs and spleens of young and aged mice were assessed by flow 

cytometry on days 0-3 p.i. (Figure 2).  The number of NK1.1+ lymphocytes in young 

and aged lungs was then calculated based on the total number of pulmonary lymphocytes 

isolated from each animal.  There were no differences in the percentage or number of NK 

cells in the lungs or spleens of young and aged mice at baseline.  In response to i.n. 

infection with influenza virus, both the percentage and the number of NK1.1+ cells in 

lungs of young mice increased significantly at 2 days p.i. (Table I), which corresponded 

with maximal NK cell cytotoxicity in lung.  In contrast, there was no significant increase 

in either the percentage or number of NK cells in the lungs of aged mice.  Further, both 

the percentage and the total number of NK1.1+ cells in the lungs of young mice were 

significantly higher than aged mice at 2 days p.i.  Similarly, the percentage (Figure 2B) 

and number (7.4x105 ± 0.7x105 vs. 1.8x105 ± 0.1x105, mean ± SEM, P<0.001) of NK1.1+ 

splenocytes were increased in young compared to aged mice at 2 days p.i., again 

corresponding to peak NK cell cytotoxicity in spleen.  These data suggest that reduced 

NK cell activity in aged mice may reflect an inability to expand the NK cell population in 

response to influenza infection. 
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Figure 1.  Natural killer cell cytotoxicity in young and aged mice.  Young (6-8 week) 

and aged (22 month) C57BL/6 mice were infected i.n. with 104 TCID50/100 HAU of 

mouse-adapted PR8 influenza A virus, and lymphocytes were isolated at days 0-3 post-

infection (p.i.).  Lymphocytes were incubated with 51Cr-labeled Yac-1 cells at an E:T of 

50:1, and % cytotoxicity was determined by Cr release.  Influenza-induced NK cell 

cytotoxicity peaked in young mice and was higher than in aged mice at 2 days p.i. in both 

lung (A) and spleen (B).  Values represent mean ± SEM, n = 4 mice per day per group, 

*P<0.05, **P<0.01, ***P<0.001.  Repeated a total of 3 times. 
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Figure 2A.  Percent of NK cells in young and aged mice.  The percentage of 

NK1.1+CD8- lymphocytes was determined in young and aged mice from days 0-3 p.i. 

with PR8.  Young mice exhibited an increase in the percent of NK1.1+ cells on day 2 

post-infection in lung, corresponding with increased NK cell cytotoxicity.  Representative 

data with mean values are shown, n = 4 mice per day per group.  Repeated a total of 3 

times. 
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Figure 2B.  Percent of NK cells in young and aged mice.  The percentage of 

NK1.1+CD8- lymphocytes was determined in young and aged mice from days 0-3 p.i. 

with PR8.  Young mice exhibited an increase in the percent of NK1.1+ cells on day 2 

post-infection in spleen, corresponding with increased NK cell cytotoxicity.  

Representative data with mean values are shown, n = 4 mice per day per group.  Repeated 

a total of 3 times. 
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Table I. Percent and number of NK1.1+ lymphocytes in young and aged lungs following 

influenza infection. 

Days post-infection  

 0 1 2 3 

Young 10.6±0.7a 14.8±0.2a,*** 16.7±1.8b,*** 11.8±0.7a,*** 
Percent 

Aged 6.0±1.8 6.1±1.2 6.9±0.5 3.4±0.7 

Young 4.3±0.8a 9.2±2.4a 14.3±1.8b,** 8.6±1.6a Number 

(x105) Aged 3.3±0.5 7.6±2.5 4.4±0.4 5.7±1.5 

 

Analysis by ANOVA with Tukey’s multiple comparisons; Values represent mean ± 

SEM, n = 4 mice per day per group. 

Different letters indicate significant differences between days within the same age 

group, P<0.05.  

Asterisks indicate significant differences between young and aged mice on the same 

day, **P<0.01, ***P<0.001.  Repeated a total of 3 times. 
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NK cell depletion and aging increase lung virus following influenza infection 

A group of young mice was injected i.p. with two divided doses of anti-NK1.1 antibody 

(PK136) at both 2 days and 1 day before infection.  Young, aged, and young NK cell-

depleted (NK-) mice were then infected i.n. with 104 TCID50/100 HAU of PR8 and 

assessed from days 0 through 4 p.i.  Natural killer cell depletion (Figure 3A) and a loss 

of NK cell cytotoxicity (Figure 3B) were confirmed in the lung and spleen of young NK- 

mice at baseline and 2 days p.i..   

To determine if the absence of NK cells (young NK- mice) or altered NK cell 

activity (aged mice) increased susceptibility to influenza virus infection, weight loss and 

lung virus titers were measured through 4 days p.i.  Although mice in all 3 groups lost 

weight during the course of infection, weight loss was most dramatic in young NK cell-

depleted mice (Figure 4A).  Also, daily food intake was less for NK- mice, and these 

mice showed more severe signs of infection, including lack of grooming and lethargy, as 

compared to young or aged mice (data not shown).   

Next, to further assess susceptibility to influenza infection, lung virus titers were 

determined in lung homogenates from young, aged, and young NK- mice from days 0-4 

p.i. using an MDCK infectivity assay.  Virus was detected in the lungs of aged and young 

NK- mice by day 1 p.i., but not until day 2 in young controls (Table II).  Lung virus 

titers appeared to remain elevated in aged and young NK- mice compared to young mice 

at 4 days P.I, although these differences were not significant.   

A limitation of the MDCK infectivity assay in this and previous studies has been 

low sensitivity, and therefore, it was not possible to clearly determine the relationship 

between NK cell activity and lung virus utilizing MDCK infectivity alone.  To address 
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this problem, RT-qPCR was employed to measure mRNA expression of M1 protein 

using a modification of a previously published method (Ward 2004).  Since M1 protein is 

conserved among mouse-adapted influenza A viruses and is an internal protein within the 

viral envelope, M1 gene expression is expected to correlate with virus levels in infected 

tissues.  Further, we have validated this methodology by assessing intra- and inter-assay 

variation and directly comparing results obtained by RT-qPCR with those from the 

standard MDCK assay in the same animals (Unpublished data, Nogusa & Gardner 2007).  

Using the same samples, we observed that aged mice accumulated influenza virus in 

lungs earlier than young mice, as indicated by elevated M1 expression at day 1 p.i. 

(Table III).  Further, young NK- mice exhibited elevated M1 protein expression in lungs 

compared to young mice at 3 and 4 p.i.   

Finally, across all three groups, weight loss was weakly but significantly 

correlated with lung virus, as determined by M1 mRNA expression (Figure 4B, r = 0.76, 

r2 = 0.58, 95% CI 0.33-0.93, P = 0.004).  The correlation was strengthened by the 

omission of aged mice (Figure 4C, r = 0.85, r2 = 0.73, 95% CI 0.37-0.97, P = 0.007).  

These data clearly suggest that NK cells are important in controlling influenza virus early 

in the course of infection.   

Taken together, these data provide conclusive evidence that NK cells limit 

influenza virus at the site of infection, i.e., the lungs, early during the course of infection, 

such that a loss of NK cell-mediated killing was associated with an increase in virus and 

the severity of infection, determined as increased weight loss.  A failure to expand the 

NK cell population in response to infection and impaired NK cell cytotoxicity both 

contributed to the age-associated increase in the susceptibility to influenza infection. 
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Figure 3.  Confirmed NK cell depletion and loss of cytotoxicity in anti-NK1.1 

antibody-treated young mice.  Young mice were depleted of NK1.1+ lymphocytes by 

i.p. injection with anti-NK1.1 antibody (PK136).  Depletion was confirmed in lung and 

spleen at baseline and at 2 days p.i.  Representative data with mean values are shown (A).  

Loss of influenza-induced NK cell cytotoxicity was confirmed in lung and spleen at 2 

days p.i. (B), n = 4 mice per day per group, **P<0.01, ***P<0.001.  Repeated a total of 2 

times. 
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infected with PR8, and weight loss was evaluated from 0-4 days p.i. as an indicator of the 

severity of infection.  A) Young mice (diamond) stopped losing weight by day 2, while 

aged (square) and young NK- (triangle) continued to lose weight through 4 days p.i.  

Data points represent the mean body weight ± SEM, n = 3 mice per day per group, 

*P<0.05, **P<0.01 compared to young on the same day.  Percent of weight loss from 

baseline is also indicated. Repeated a total of 2 times.  B) Mean weight loss was 

significantly correlated with mean M1 expression across all three groups from 1 through 

3 days p.i., r = 0.76, r2 = 0.58, P = 0.004.  C)  Mean weight loss was significantly 

correlated with mean M1 expression in young and young NK- mice from 1 through 3 

days p.i., r = 0.85, r2 = 0.73, P = 0.007. 

 

Figure 4.  Weight loss.  Young, aged, and young NK cell-depleted (NK-) mice were 
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Table II.  Lung virus titer (TCID50) in young, aged, and young NK cell-depleted mice 

during influenza infection. 

 Lung virus (TCID50 per lung)1 

Days post-

infection 

Young Aged Young NK- 

0 ND ND ND 

1 ND 2.92 ± 0.22 3.67 ± 0.80 

2 3.25 ± 0.46 3.08 ± 0.38 1.58 ± 1.52 

3 2.25 ± 0.85 2.63 ± 1.05 2.17 ± 0.58 

4 0.58 ± 1.5 4.082 2.58 ± 0.14 

 

1 TCID50 was calculated per mL in lung homogenates using an MDCK infectivity 

assay. 

2 One independent value shown.  Statistical analysis was not performed due to a 

limited number of mice. 

Analysis by ANOVA with Tukey’s multiple comparisons; Values represent mean ± 

SEM, n = 3 mice per day per group; ND, not detected.  Repeated a total of 2 times. 
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Table III.  Lung virus titer (ng/lung) in young, aged, and young NK cell-depleted mice 

during influenza infection. 

 Lung virus (ng per lung)1 

Days post-

infection 

Young Aged Young NK- 

0 ND ND ND 

1 16.242 *123.68 ± 14.67 146.16 ± 133.47 

2 135.94 ± 64.75 147.90 ± 84.13 116.02 ± 68.06 

3 59.38 ± 24.24 86.05 ± 74.08 *168.68 ± 39.58 

4 11.28 ± 10.38 193.62 *245.29 ± 39.64 

 

1 M1 protein mRNA expression was calculated per lung in each animal using RT-

qPCR.  Lung virus titer was then determined by comparison of M1 expression in samples 

to a standard curve of M1 expression in PR8 virus stock and reported as ng per lung. 

2 One independent value shown.  Statistical analysis was not performed due to a 

limited number of mice expressing a detectable level of M1. 

Analysis by ANOVA with Tukey’s multiple comparisons; Values represent mean ± 

SEM, n = 3 mice per day per group; ND, not detected. 

Asterisks indicate significant differences compared to young on the same day, 

*P<0.05.  Repeated a total of 2 times. 
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3.2 Caloric restriction increases early severity of influenza infection in young 

adult C57BL/6 mice 

 

3.2.1 Abstract 

Caloric restriction (CR) without malnutrition extends lifespan in mice and postpones age-

related changes in immunity.  However, in our previous study, aged (22 month) CR mice 

exhibited increased mortality, impaired viral clearance, and reduced natural killer (NK) 

cell cytotoxicity following influenza infection compared to aged ad-libitum (AL) mice.  

To determine if the detrimental effects of CR in response to influenza infection occur 

independently of advanced age, young adult (6 month) CR and AL C57BL/6 mice were 

infected with 104 TCID50/100 HAU of influenza A virus (H1N1, PR8).  Young adult CR 

mice exhibited increased mortality (P<0.05), weight loss (P<0.01), and lung virus titers 

(P<0.05) and pathology (P<0.001) compared to young AL controls.  Also, CR mice 

exhibited a decrease in total (P<0.001) and NK1.1+ lymphocytes (P<0.05) in response to 

infection, as well as a reduction in influenza-induced NK cell cytotoxicity in both lung 

(P<0.01) and spleen (P<0.05).  A decrease in the percentage of NK1.1+ cells in the 

mixed lymphocyte population can result in a decrease in NK cell cytotoxicity; therefore, 

NK cell-activating cytokines in lung, as well NK cell activation and function, were 

further evaluated.  In response to influenza, expression of IFN-α/β mRNA (PCR, 

P<0.001) and production of IL-12 (ELISA, P<0.05) were reduced in the lungs of CR 

mice compared to AL mice.  Natural killer cells from AL mice exhibited a 2-fold 

induction in the mean fluorescence intensity of intracellular perforin and granzyme B at 2 

days p.i. (P<0.001).  Importantly, CR mice demonstrated an increase in granzyme B, but 
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no induction in perforin, resulting in a decrease in perforin in the NK cells of  CR mice 

compared to AL (P<0.01).  Late in the innate immune response to influenza infection 

(days 3 and 4 p.i.), the percentage of NK cells expressing activation markers B220 and 

CD25 in CR mice, as well as the intracellular production of IFN-γ, exceeded that in AL 

mice (P<0.001).  Further, increased CD11b+ cellular infiltration in the lung (P<0.05) and 

IL-6 in the serum in CR mice suggest the possibility of a hyper-inflammatory response to 

influenza infection.  These data are the first to describe an age-independent and 

detrimental effect of CR on the innate immune response to influenza infection. 

 

3.2.2 Introduction 

The study of aging in multiple species has revealed that dietary caloric restriction (CR) is 

the only known intervention capable of extending maximal lifespan (Speakman 2007, 

Masoro 2005, Yamaza 2002, Wanagat 2000).  Extension of both median and maximal 

lifespan in rodents by CR without malnutrition, was first demonstrated by McCay and 

colleagues in 1935 (McCay 1935).  Since then, diets ranging from 30-70% CR have been 

shown to increase median and maximal lifespan by up to approximately 65% and 50%, 

respectively, over AL diet (Barger 2003).  Caloric restriction has also been shown to 

reduce the incidence of spontaneous tumors and cancers in rodents, suggesting positive 

effects on immune function (Effros 1991, Weindruch 1986, Weindruch 1989).  Caloric 

restriction is now generally acknowledged to delay the development of immunity, as well 

as to preserve various aspects of immune function with advanced age, including T cell 

proliferation, cytokine production, and cytotoxic T lymphocyte activity (Ritz 2006, 

Messaoudi 2006, Nikolich-Zugich 2005, Pahlavani 2000).  Further, the decreased 
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incidence of spontaneous tumors, abrogation of the age-related decline in mitogen-

stimulated T cell proliferation, and moderately increased lifespan were observed even 

when CR was induced in previously AL-fed rodents in late adult or in old age 

(Weindruch 1982, Weindruch 1995), suggesting that lifelong restriction is not required to 

demonstrate positive effects on immunity.   

Improvement in general indices of immune responsiveness prompted the examination 

of the effects of CR on age-related changes in the response to antigen-specific 

stimulation, such as influenza.  Multiple investigators have clearly demonstrated positive 

effects of CR on cell-mediated and antibody responses of aged mice to influenza 

vaccination, including an increase in memory T cell proliferation and cytotoxicity, 

relative to aged AL-fed mice (Effros 1991, Fernandes 1990, Weindruch 1983).  

Importantly, in these studies live virus was given intraperitoneally (i.p.), a protocol which 

induces immunization, and influenza-specific responses were assessed in the spleen.  

However, the effects of CR on age-related changes in the immune response to 

immunization may not necessarily reflect those seen during a primary virus infection, 

particularly at the site of infection, the lung.    

Thus, although the preponderance of evidence suggests that CR maintains immune 

function at an advanced age, the effect of CR on the immune response to a primary virus 

infection has not been adequately considered.  Such studies are warranted because 

influenza infection remains a significant public health treat, despite vaccination, infecting 

approximately 20% of the U.S. population annually (Simonsen 2005, Jefferson 2006).  

Influenza infection accounts for approximately 200,000 hospitalizations and as many as 

36,000 deaths, 90% of which occur in the elderly (Thompson 2004, Thompson 2005).  
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Further, the elderly are also at an increased risk for reduced energy intake resulting from 

social, physical, economic, and emotional obstacles to eating (Pirlich 2001).  Finally, the 

study of primary virus infections is relevant among all ages in this era of threats from 

highly-virulent H5N1 avian influenza and the potential use of new or adapted viruses as 

agents of bioterrorism (Murasko 2005). 

Our laboratory has previously observed an increase in the severity of influenza 

infection in aged CR mice following intranasal (i.n.) inoculation, which produces 

infection in the lung (Garnder 2005).  Aged CR mice exhibited a reduction in influenza-

induced NK cell cytotoxicity, as well as an increase in lung virus.  However, since the 

study did not include young CR mice, it could not be determined whether or not CR 

alone, or CR in combination with advanced age, accounted for the inability to mount an 

effective innate immune response against influenza virus infection.  Therefore, in the 

current study, young AL and young CR mice were challenged i.n. with influenza virus to 

determine the effects of CR alone, independent of advanced age, on the innate immune 

response to influenza virus infection. 

 

3.2.3 Materials and Methods 

Animals and diets 

The protocol was approved by the Drexel University Institutional Animal Care and Use 

Committee.  Specific pathogen-free young adult (6 month) AL and CR male C57BL/6 

mice were purchased from the National Institute on Aging colony maintained by Charles 

River Laboratories (Wilmington, MA).  Calorically-restricted mice from the colony are 

weaned and fed an increasingly restricted diet beginning at age 14 weeks and reaching 
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40% CR at age 17 weeks, according to published protocols (Turturro 1999).  Mice 

achieve energy balance within 30 days, comparable to approximately 2.5 years in 

humans, such that 6-month old CR mice are weight stable (Speakman 2007).  Mice were 

housed in micro-isolator cages in the AAALAC-accredited barrier facility at Drexel 

University and acclimated for at least 1 week before use, during which time mice were 

weighed daily to monitor energy balance.  The AL mice were fed an NIH-31 diet and 

consumed an average of 4.3 g of food daily, providing an average energy intake of 17.3 

kcal/d.  The CR mice were fed an isocaloric NIH-31/NIA-fortified diet and received a 

single 2.7g “cookie,” providing 10.7 kcal/d (Figure 1).  As a result, CR mice were 

maintained on a diet sufficient in micronutrients, but restricted in total energy intake by 

approximately 40%.  (See Appendix I for more information on the composition of each 

diet.) 

 

 

 

 

 

 

 

 
Figure 1.  Animal diets.  Young adult (6 month) CR mice were fed one 2.7g “cookie” 

daily (left).  Age-matched control mice were fed ad-libitum (AL, right). 
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Influenza infection 

Mouse-adapted influenza A/Puerto Rico/8/34 (H1N1, PR8) was propagated in specific 

pathogen-free eggs (B & E Eggs) and cell-free supernatants were stored at -36°C until 

use.  At baseline (Day 0), mice were anesthetized by intraperitoneal (i.p.) injection with 

Avertin (2,2,2-tribromoethanol, Sigma) and infected intranasally (i.n.) with 104 

TCID50/100 HAU of PR8 (Figure 2).  All mice were weighed daily to monitor their 

ability to control infection. 

 

 

 

 

 

 

 

Figure 2.  Intranasal infection.  Young adult AL and CR mice were infected i.n. with 

104 TCID50/100 HAU of mouse-adapted influenza A virus (H1N1, PR8) in saline. 

 

Lymphocyte isolation 

The isolation of mononuclear cells from spleens and lungs has been described in detail 

(Po 2002).  Briefly, mice were asphyxiated by CO2, and spleens and lungs were 

aseptically removed.  Spleens were homogenized by dounce and resuspended in RPMI-

1640 (Mediatech).  A lobe of each lung was frozen in TRI reagent (Molecular Research 

Center) and saved for RNA extraction.  Remaining lungs were minced and incubated at 
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37°C for 2 h in 3mg/mL Collagenase A and 80 Kuntz units of DNAse I/mL (Roche) in 

Iscove’s Modified Dulbecco’s Medium (IMDM, Mediatech).  Digested lungs were 

passed through a 40 μm nylon mesh (Fisher), and centrifuged at 500 x g for 5 min.  

Supernatants were aliquoted and stored at -36°C for analysis of lung virus by MDCK 

assay and cytokine analysis by ELISA.  The pellets were washed twice with 5% FBS in 

IMDM.  Cell suspensions from spleens and lungs were layered on Histopaque-1083 

(Sigma) and subjected to density gradient centrifugation at 1400 x g for 20 min.  Cells 

from each tissue were resuspended at appropriate concentrations for either NK cell 

cytotoxicity assay or antibody staining for analysis by flow cytometry. 

NK cell cytotoxicity 

A standard 51Cr-release assay with YAC-1 target cells was employed to assess NK 

cytotoxicity, as previously described (Plett 2000).  Briefly, YAC-1 cells were incubated 

with 200 μCi Na51CrO4 (PerkinElmer) for 2 h, washed in RPMI-1640, and plated in 

triplicate in v-bottom 96-well plates with lung and spleen cell preparations at an E:T of 

50:1.  Following a 4-h incubation at 37°C, supernatants were harvested onto UniFilter 

microplates (PerkinElmer), and radioactivity was quantitated by a γ-counter (Packard 

TopCount) and reported as counts per minute (CPM).  Spontaneous release was 

determined in medium alone, and maximum release in 5% Triton X-100 (Sigma).  

Spontaneous release was <10% of maximum release.  Percent cytotoxicity was then 

calculated as follows:  

(Experimental CPM – Spontaneous CPM) 

  % =     ---------------------------------------------------  x 100  

                   (Maximum CPM – Spontaneous CPM)   
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Figure 3.  Schematic of flow cytometry methods.  Total live events in samples from lung or spleen were analyzed for high side-

scatter (SSC) events and lymphocyte populations, as shown. 
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Lung virus titer by MDCK assay 

As previously described (Ritz 2006b), supernatants from lung homogenates were serially 

diluted and used to infect Madin-Darby canine kidney (MDCK) cells.  After incubation at 

37°C for 24 h, 0.002% TPCK-treated trypsin (Sigma) was added, followed by a 72-h 

incubation.  Chicken red blood cells (B&E Eggs) were prepared at a concentration of 

0.05% in PBS and added to the cultures.  Virus titers were then determined based on the 

presence or absence of hemagglutination, as previously described (Po 2002), and reported 

as the 50% tissue culture infectious dose (TCID50). 

Lung virus titer by RT-qPCR 

Viral load in lungs was also determined as M1 protein mRNA expression using real-time 

quantitative PCR (RT-qPCR), as previously described (Ward 2004).  Briefly, viral RNA 

was isolated from harvested lung tissues using a QIAamp viral RNA kit and reverse 

transcribed using an Omniscript RT kit, according to manufacturer’s instructions 

(Qiagen).  Reactions were primed with 1μM random hexamers, 10 units of RNAse 

inhibitor, and 10μM of M1-specific primer in a total volume of 20μL in nuclease-free 

water (Gibco).  Reactions were incubated at 42°C for 60 min, heated at 95°C for 5 min, 

and cooled to 4°C in a 2720 Thermal Cycler (Applied Biosystems).  The PCR reaction 

mixture contained 2μL of cDNA, 1X TaqMan Universal Master Mix (Applied 

Biosystems), 900 nM of each primer, and 225 nM of probe in a total volume of 25 μL.   

Forward and reverse primers and probe, tagged with FAM (6-carboxyfluorescencein) 

reporter dye on the 5’ end and TAMRA (6-carboxytetramethylrhodamine) quencher dye 

on the 3’ end, were purchased from IDT.  The matrix protein gene sequence used in 

Reverse Transcription reactions was 5’ TCT AAC CGA GGT CGA AAC GTA 3’.  The 
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forward (sense) and reverse (antisense) primer sequences used in amplification of cDNA 

were forward: 5’ AAG ACC AAT CCT GTC ACC TCT GA 3’ and reverse: 5’ CAA 

AGC GTC TAC GCT GCA GTC C 3’.  The M1 influenza A specific probe sequence was 

5’ TTT GTG TTC ACG CTC ACC GT 3’.  Virus titer was calculated by comparing M1 

expression in samples to a standard curve of M1 expression in PR8 virus stock and 

reported as ng of virus per lung. 

Cytokine analysis by RT-qPCR 

Changes in the expression of IFN-α/β due to infection were determined using RT-qPCR, 

as previously described (Hunzeker 2004), due to a lack of available reagents for the 

reproducible analysis of Type I IFN by other methods, such as ELISA.  Briefly, RNA 

was isolated from harvested lung tissues using a QIAamp viral RNA kit and reverse 

transcribed using an Omniscript RT kit, according to manufacturer’s instructions 

(Qiagen).  Reverse transcription reactions were primed with 1μM random hexamers and 

incubated at 42°C for 60 min, heated at 95°C for 5 min, and cooled to 4°C in a 2720 

Thermal Cycler (Applied Biosystems).  The PCR reaction mixtures contained 2μL of 

cDNA, 1X Taqman Universal Master Mix (Applied Biosystems), 900 nM of each primer, 

and 100 nM of probe, and brought to a final volume of 25 μL in nuclease-free water 

(Gibco).   Forward and reverse primers and probe, tagged with FAM (6-

carboxyfluorescencein) reporter dye on the 5’ end and TAMRA (6-

carboxytetramethylrhodamine) quencher dye on the 3’ end, were purchased from IDT.  

Primers and probe sequences were as follows:   

IFN-α, forward primer: 5’ TGC AAC CCT CCT AGA CTC ATT CT 3’ 

IFN-α, reverse primer: 5’ CCA GCA GGG CGT CTT CCT 3’ 
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IFN-α, probe: 5’ CTG CAT CAG ACA GCC TTG CAG GTC ATT 3’ 

IFN-β, forward primer: 5’ TGA ATG GAA AGA TCA ACC TCA CCT A 3’ 

IFN-β, reverse primer: 5’ CTC TTC TGC ATC TTC TCC GTC A 3’ 

IFN-β, probe: 5’ AGG GCG GAC TTC AAG ATC CCT ATG GA 3’ 

As IFN-α contains more than 20 isoforms, primer and probe sequences were chosen 

based on a published consensus (Hunzeker 2004).  The levels of mRNA for GAPDH 

were also determined for each sample and were used to normalize gene expression during 

influenza infection.  Forward and reverse primer sequences were forward: 5’ GCA GTG 

GCA AAA GTG GAG ATT G 3’ and reverse: 5’ CCA TTC TCG GCC TTG CTG T 3’.  

The probe sequence was 5’ TGA CTC CAC TCA CGG CAA ATT CAA CG 3’.  (See 

Appendix II for a reference of additional primer and probe sequences.)   

Data are expressed in each group as a fold induction over day 0.  Fold increase is 

calculated as follows, where CT refers to the threshold count: 

ΔCT = CT [target] - CT [reference] 

ΔΔCT = ΔCT - ΔCT [day 0] 

Fold increase = 2 -ΔΔCT 

There were no significant differences in IFN-α/β mRNA expression between young AL 

and CR mice at baseline. 

Cytokine analysis by ELISA 

Cytokines, including IL-12 (p40) and IFN-γ in lungs, as well as IL-6 in plasma, were 

quantitated by enzyme linked immunosorbent assay (ELISA) according to the 

manufacturer’s protocols (eBioscience).  Briefly, 96-well plates were coated with the 

appropriate capture antibody (purified anti-mouse), sealed, and incubated overnight at 
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4°C.  Following multiple washes in PBS/1%FBS (Mediatech), lung homogenates or 

plasma samples were added, and the plates were again sealed and incubated overnight at 

4°C.  Standards were prepared using the appropriate recombinant cytokine.  Samples 

were then discarded, and plates were thoroughly washed before adding a biotin-

conjugated primary antibody for 1 hr.  Following multiple washes, an avidin horse radish 

peroxidase-conjugated secondary antibody with fluorescent probe was added for 30 min.  

Again the plates were washed, and 1X TMB substrate solution was added for 15 min to 

induce the color change.  Finally, 1M H3PO4 (Sigma) was added to stop the reaction, and 

results were read at an emission wavelength of 450nm, normalized to 570nm (Multiskan 

Spectra).  The concentration of each cytokine was determined against a standard curve 

and reported as ng/mL or pg/mL.     

Antiviral bioassay 

Serum was obtained from mice at baseline and during influenza infection for the analysis 

of IFN antiviral activity, as previously described (Jiang 2005).  Murine epithelial L929 

cells (ATCC) were grown to confluence in Dulbecco’s modified eagle’s medium 

(DMEM, Mediatech), supplemented with 10% FBS, 1% non-essential amino acids 

(100X, CellGro), 1% gentamicin (Sigma), and 1% sodium pyruvate (Sigma).  Serum 

samples and murine IFN standard (WHO International) were serially diluted in 96-well 

plates, 1.0x105 cells/mL were added to each well, and plates were incubated overnight at 

37°C with 5% CO2 and humidity.  At 24 hr, encephalomyocarditis virus (EMC, 1:2000, 

kind gift of Donna M. Murasko) was added to each well.  Plates were again incubated 

overnight, and the cytopathic effect of the virus was determined at the time point when 

the serial dilution of the standard demonstrated 50% protection from the virus, defined as 
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1 unit.  Results for each sample were then reported as units, which were determined as 

the inverse of the dilution of the sample that resulted in 50% protection against the 

cytopathic effect of the virus and corrected for the standard.   

Lung pathology 

Formalin-fixed lung tissue was paraffin embedded, cut into 4μm sections, and stained 

using the hematoxylin-eosin Y (H&E) method, as previously described (Ritz 2006b).  

Briefly, slides were baked at 65oC for 30 min and deparrafinized by xylene wash. 

Rehydration of tissue was carried out through a graded alcohol series (100%, 95%, and 

80%).  Slides were then stained with hematoxylin (Harleco), rinsed, and counterstained 

with eosin Y (1% alcoholic, Harleco).  Pathology was scored on a semi-quantitative scale 

from 0 (no pathology) to 4 (100% pathology), as described by (Smith 2007, Nelson 

2001).  Scoring criteria were as follows: 

 0 = no infiltration (0%) 

 1 = infiltration of alveoli, bronchioles clear (<25%) 

 2 = increased infiltration of alveoli, some infiltration of bronchioles (50%) 

 3 = Bronchioles infiltrated (75%) 

 4 = Total infiltration of alveoli and bronchioles (100%) 

Two to three slides were prepared from the lung tissue obtained from each mouse, and 

the slides were scored blindly by three different people.  All scores were combined for 

final analysis.   

These scoring methods were validated in a preliminary experiment in which lung 

tissue was obtained from young uninfected mice (0 HAU) or mice infected i.n. with 10 or 

100 HAU of PR8 and evaluated at 7 days p.i.  Lung pathology scores (mean ± SEM) 
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increased in a virus dose-dependent fashion from 0-100 HAU as follows: 0.96 ± 0.2, 1.65 

± 0.1, and 2.55 ± 0.4. 

Statistics 

Statistical analyses were performed using GraphPad InStat 3 software.  Survival data 

were analyzed using the Kaplan-Meier test with censoring.  Comparisons between and 

within groups were analyzed by ANOVA with Tukey-Kramer multiple comparisons.  

Only where noted, Student’s t-tests were used to compare mean values between two 

groups at a single time point.  Mann-Whitney U-tests were used when data was not 

normally distributed.    Statistical significance was accepted at P<0.05. 
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3.2.4 Results 

Decreased survival in young adult CR mice during influenza virus infection 

The initial objective of this study was to determine the susceptibility of CR mice to 

influenza infection, independent of advanced age.  Therefore, young adult AL and CR 

mice were infected i.n. with 104 TCID50/100 HAU of PR8 and monitored for 7 days post-

infection (p.i.) or until mice were moribund.  Based on preliminary studies, moribund 

was defined as weight loss greater than 30% from baseline in AL mice and greater than 

15% from baseline in CR mice (Ritz 2006a).  Additional weight loss was not compatible 

with recovery from infection in these animals, and therefore, mice were euthanized 

accordingly.  Following infection, CR mice exhibited increased mortality by 7 days p.i. 

(P<0.05, Kaplan-Meier test), with a median survival of 5 days (Figure 4).  Median 

survival could not be determined in AL mice, as greater than 50% of young AL mice 

survived until 7 days p.i.   

 

 

 

 

 

 

 

 

Figure 4.  Decreased survival in young adult CR mice during influenza infection.  

Median survival of CR mice was 5 days, n=15 mice per group, P<0.05 at day 7. 
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Increased weight loss and anorexia in CR mice during influenza virus infection 

Body weights were recorded daily throughout the course of infection, as weight loss is an 

important indicator of the severity of infection.  Conversely, restoration of body weight is 

indicative of recovery from infection.  As expected, AL mice weighed significantly more 

than CR mice at baseline (means ± SEM, 23.8g ± 0.2 vs. 17.7g ± 0.3, n = 15 mice per 

group, t-test, P<0.0001).  Following infection, AL mice began to lose weight 

immediately, and lost more weight, as a percentage of baseline weight, than age-matched 

CR mice at 2 days p.i. (P<0.05) (Figure 5).  In contrast to AL mice, CR mice maintained 

a constant body weight through 2 days p.i.  However, by 4 days p.i., CR mice 

demonstrated increased weight loss, while AL mice began to recover body weight 

(P<0.01).   

 Weight loss is associated with the total or partial cessation of feeding, which is 

believed to be mediated, at least in part, by cytokines produced during the immune 

response to infection (Van Reeth 2000, Swiergiel 1997).  Calorically-restricted mice were 

fed a controlled, 40%-restricted diet at baseline (P<0.05) (Figure 6).  Following 

infection, both AL and CR mice exhibited a decrease in food intake through 2 days p.i. 

(P<0.01); however, the AL mice then began to recover, consistent with weight loss data.  

Interestingly, CR mice consumed 100% of their diet through the first day p.i.  Food 

intake, in grams, was similar between AL and CR mice on days 1 through 3 p.i.  

However, unlike AL mice that began to recover intake at 4 days p.i., CR mice continued 

to consume approximately 60% less food than they did at baseline.  As a result, CR mice 

consumed significantly less food than AL mice at 4 days p.i. (P<0.05). 
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Figure 5.  Increased weight loss in CR mice during influenza infection.  AL mice 

exhibited an increased loss of body weight at 2 days p.i., but then began to recover.  

Young adult CR mice exhibited no weight loss through 2 days p.i.  At 4 days p.i., CR 

mice demonstrated increased weight loss compared to AL controls, n=8 mice per group 

per day, *P<0.05, **P<0.01.  Repeated a total of 3 times. 
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Figure 6.  Decreased food intake in CR mice at baseline and during influenza 

infection.  The CR mice were fed a 40% restricted diet at baseline.  Following infection, 

young adult CR mice maintained 100% food intake through day 1 p.i.  At 4 days p.i., CR 

mice consumed less food than AL controls, n=8 mice per group per day, *P<0.05.  

Repeated a total of 3 times. 
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Increased lung virus in CR mice 

To further assess the susceptibility of CR mice to influenza infection, lung virus burden 

was determined by two methods.  First, lung virus titers were determined in lung 

homogenates from young adult AL and CR from days 0 through 4 p.i. using an MDCK 

cell infectivity assay.  Virus was detected by the MDCK assay on day 1 p.i. in the lungs 

of CR mice, but not until 2 days p.i. in AL mice (Table 1A).  Lung virus titers, as 

assessed by the MDCK method, did not differ from 2 through 4 days p.i.   

      Table 1A.  Lung virus determined by MDCK (TCID50/mL). 

Days p.i. AL CR 

0 ND ND 

1 ND 7.69 ± 0.2 

2 6.50 ± 0.5 8.31 ± 0.2 

3 8.34 ± 1.0 9.16 ± 0.2 

4 6.75 ± 0.6 8.73 ± 0.3 

      ND, not detectable. 

      Table 1B.  Lung virus determined by real-time qPCR (ng per lung). 

Days p.i. AL CR 

0 ND ND 

1 ND 663.8 ± 149.6 

2 128.2 ± 30.5 *282.6 ± 14.0 

3 691.8 ± 690.6 3094.4 ± 716.5 

4 ND 608.8 ± 97.6 

      n=4 mice per group per day, *P<0.05 compared to AL on the same   
day; ND, not detectable.  Repeated a total of 3 times. 
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A limitation of the MDCK infectivity assay is low sensitivity; therefore, a second 

method using RT-qPCR was employed to measure lung mRNA expression of M1 protein 

using a modification of a previously published method (Ward 2004).  Since M1 protein is 

conserved among mouse-adapted influenza A viruses and is an abundant internal protein 

within the viral envelope, M1 expression is expected to correlate with virus levels in 

infected tissues.  Further, we have validated this method by assessing intra- and inter-

assay variation and directly comparing results obtained by RT-qPCR with those from the 

standard MDCK assay in the same animals (unpublished data, Nogusa & Gardner 2007).  

We have further found that weight loss significantly correlates with lung virus, as 

determined by M1 gene expression in lung (Chapter 3.1).  In the current study, 

evaluation of M1 expression by RT-qPCR supported lung virus titers determined by 

MDCK assay.  The expression of M1 mRNA was detected in the lungs of CR mice on 

day 1 p.i., but not until 2 days p.i. in AL mice (Table 1B).  Gene expression of M1 was 

elevated in CR mice at 1 and 2 days p.i. compared to AL mice (P<0.05), and appeared to 

remain elevated through 4 days p.i., although this difference was not significant due to 

large variability in M1 expression in AL lungs on day 3.  Finally, M1 mRNA expression 

was not detected in the lungs of AL mice at 4 days p.i., but remained elevated in CR 

mice.  Combined data from the MDCK infectivity assay and M1 expression clearly 

suggest that lung virus is detected earlier and is increased in the lungs of young adult CR 

mice following influenza virus infection. 
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Increased lung pathology in CR mice 

Virus replication during influenza infection occurs primarily in the respiratory epithelial 

cells, and morphologic changes, including destruction of lung tissue, are readily observed 

during the course of influenza infection (Bender 1995).  Such changes are apparent even 

to the naked eye.  This increased lung pathology is indicative of inflammation and 

contributes to increased mortality in influenza-infected mice (Smith 2007).  In the current 

study, lung pathology was determined by a semi-quantitative assessment of epithelial 

erosion and cellular infiltration of lung tissue as indicated by H&E staining.  Samples of 

lung tissue from AL and CR mice were compared at baseline and 4 days p.i. (Figure 7).  

As expected, lung pathology scores increased in AL (P<0.05) and CR mice (P<0.001) in 

response to influenza infection (Figure 8).  However, CR mice exhibited increased lung 

pathology relative to AL mice both at baseline (P<0.05) and at 4 days p.i. (P<0.001).  

These data suggest that young adult CR mice exhibit increased inflammation in the lungs 

prior to and during influenza infection, as compared to AL mice.  The increased lung 

pathology in young adult CR mice at baseline may also reflect morphological changes in 

lung associated with the onset of CR, as previously reported (Massaro 2004).  The current 

study is the first to evaluate lung histology in 40% CR mice at an age of 6 months. 
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Figure 7.  Representative H&E staining of lung tissues at baseline and 4 days 

following infection with influenza virus in AL and CR mice.  Values indicate mean 

pathology scores. Repeated a total of 3 times. 
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Figure 8.  Increased lung pathology in CR mice at baseline and during influenza 

virus infection.  Lung pathology scores increased from baseline to 4 days p.i. in both AL 

and CR mice.  Further, CR mice exhibited increased pathology at both baseline and 4 

days p.i. compared to AL controls, n=4 mice per group per day, *P<0.05, ***P<0.001.  

Repeated a total of 3 times. 
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Impaired influenza-induced NK cell cytotoxicity in CR mice 

During infection, young adult CR mice exhibited increased mortality and weight loss, as 

well as elevated lung virus burden and pathology, compared to AL-fed controls.  As 

previously demonstrated in aged CR mice, the increased susceptibility of young adult CR 

mice to influenza infection occurred early in the immune response, suggestive of an 

impairment in NK cell-mediated innate immunity (Gardner 2005).   

To evaluate the ability of CR mice to mount an effective innate immune response 

to influenza virus infection, independent of the effects of advanced age, NK cell 

cytotoxicity was examined in young adult AL and CR mice.  Cytotoxicity was 

concurrently assessed in lungs and spleens to determine if a change in the induction of 

NK cell cytotoxicity in the lung was also reflected in the spleen.  Young AL mice 

demonstrated increased NK cell cytotoxicity during influenza virus infection in both the 

lung and spleen (Figure 9).  In contrast, CR mice did not exhibit an increase in NK cell 

cytoxicity in either lung or spleen during infection.  As a result, influenza-induced NK 

cell cytotoxicity was significantly elevated in young AL mice compared to CR mice at 

day 1 p.i. in lung (P<0.01) and at day 2 p.i. in spleen (P<0.05).  NK cell cytotoxicity was 

not significantly different in CR mice compared to AL mice at baseline.   
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Figure 9.  Decreased influenza-induced NK cell cytotoxicity in the lungs and spleens 

of CR mice.  Influenza-induced NK cell cytotoxicity was increased in the lungs of AL 

mice at day 1 p.i. (top) and in the spleens of AL mice at day 2 p.i. (bottom).  Young adult 

CR mice did not exhibit an increase in NK cell cytotoxicity in lung or spleen at any time 

point during influenza infection, n=4 mice per group per day, *P<0.05, **P<0.01.  

Repeated a total of 2 times. 
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Decreased total and NK1.1+ lymphocytes in the lungs and spleens of CR mice 

It is important to assess changes in the lymphocyte population during infection as both a 

percentage of the total population and a total number per tissue, since a change in one 

may not be reflected by a change in the other.  Therefore, the percentage and number of 

total lymphocytes, NK1.1+ lymphocytes, and CD8+ lymphocytes in the lungs and 

spleens of young adult AL and CR mice were determined by flow cytometry.  The 

percentage (P<0.001) and number (P<0.01) of total lymphocytes in the lungs of CR mice 

were reduced compared to AL controls at baseline (Table 2).  During infection, the 

percentage of total lymphocytes in the lungs of CR mice remained significantly less than 

AL controls at 2, 3, and 4 days p.i. (P<0.001).  While the number of total pulmonary 

lymphocytes appeared less in CR mice than AL mice at all time points following 

infection, these differences were not significant.  Similarly, the number of total 

lymphocytes in the spleens of CR mice was less than in the spleens of AL mice at 

baseline and throughout infection, significant only at 3 days p.i. (Table 3). 

The assay to determine NK cell cytotoxicity utilizes a fixed ratio of effector cells 

from a mixed lymphocyte sample to YAC-1 target cells, such that a decrease in 

influenza-induced NK cell cytotoxicity can reflect either a decrease in activity or a 

relative decrease in the percentage or total number of NK cells in the sample.  Therefore, 

it is important to consider NK cell cytotoxicity during an infection in the context of 

changes in the percentage and number of NK cells.  Importantly, while there was no 

difference in the percentage of NK1.1+ lymphocytes in the lungs of CR mice compared 

to AL controls at baseline, there was a decrease in the percentage of NK1.1+ 

lymphocytes in the lungs of CR mice during infection, which reached significance at 3 
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P<0.05) (Table 2, Figure 10).  There was also a decrease in the number of 

 CR mice compared to AL mice, which parallels the 

phocytes.  However, as observed in the evaluation of total 

phocyte number, the decrease in NK1.1+ cell number in the lungs of CR mice

ignificance only at baseline (P<0.01).  The percentage (P<0.05) and number 

P<0.01) of NK1.1+ lymphocytes in the spleens of CR mice was less than in the spleens 

ice at baseline (Table 3, Figure 11).  During infection, the percentage and 

ber of NK1.1+ cells in the spleens of CR mice were less than in AL, significant only 

ber on day 3 p.i. (P<0.05).  The number of CD8+ lymphocytes in the spleens of 

ice was less than in AL mice at baseline (P<0.05), while the percentage of CD8+ 

ed in the spleens of CR mice, but not AL mice, during infection (P<0.01). 

Overall, there was a decrease in total and NK1.1+ lymphocytes in the lungs and 

ice compared to AL mice during influenza infection.  These 

nduced NK cell cytotoxicity in CR mice may be 

e decrease in the percentage and number of NK cells in the 

ice compared to AL controls. 
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Table 2.   Percent and number of total, NK1.1+, and CD8+ lymphocytes in the lungs of AL and CR mice. 

Lymphocytes1 NK1.1+2 CD8+ Days 

p.i. 
Group 

% # (x104) % # (x104) % # (x104) 

0 AL 62.0±2.7 38.6±10.9 11.5±1.6 4.6±1.8 8.9±0.8 3.8±0.6 

 CR ***36.1±1.7 **4.3±2.0 10.0±1.3 **0.4±0.1 6.1±1.0 3.6±0.1 

1 AL 48.3±3.3 23.7±5.5 15.4±1.1 3.8±1.1 6.0±0.7 2.1±0.3 

 CR 39.7±1.2 19.6±2.8 6.5±0.5 1.3±0.2 8.6±1.5 3.1±1.2 

2 AL 53.9±4.4 18.6±2.1 12.7±2.3 2.5±0.7 8.6±1.9 2.0±0.3 

 CR ***35.6±2.1 8.4±2.4 5.8±0.7 0.4±0.1 6.4±0.4 1.0±0.1 

3 AL 65.3±2.6 30.1±9.5 13.8±3.0 3.3±0.3 8.8±0.4 3.1±1.0 

 CR ***30.7±1.5 10.0±0.6 *4.7±0.7 0.5±0.1 4.6±0.6 0.8±0.2 

4 AL 62.0±1.9 11.0±2.7 16.7±3.0 1.7±0.4 8.5±0.4 1.4±0.2 

 CR ***40.0±2.1 2.3±1.2 8.2±2.3 0.1±0.03 4.73 0.33 

 
1Lymphocytes gated on total white blood cells. 2NK1.1 and CD8 gated on lymphocytes.  Values are means ± SEM, n=4 
mice per group per day.  Asterisks indicate differences between groups on that day, *P<0.05, **P<0.01, ***P<0.001.  
3Insufficient data to determine SEM.  Repeated a total of 2 times. 



 102

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Representative flow cytometry data of the percentage of NK1.1+ and CD8+ lymphocytes in the lungs of AL and CR 

mice.  Values indicate means ± SEM, n=4 mice per group per day.  Repeated a total of 2 times. 
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Table 3.   Percent and number of total, NK1.1+, and CD8+ lymphocytes in the spleens of AL and CR mice. 

Lymphocytes NK1.1+ CD8+ Days 

p.i. 
Group 

% # (x105) % # (x104) % # (x104) 

0 AL 91.3±0.1 20.0±6.0 3.4±0.5 6.1±1.3 5.5±0.9 10.6±2.9 

 CR 90.6±1.1 5.4±1.7 *1.8±0.2 **0.9±0.2 6.3±0.6 *3.2±0.8 

1 AL 91.6±0.5 19.1±7.5 2.5±0.5 4.7±1.9 2.1±0.7 4.6±2.4 

 CR 91.8±0.4 9.3±0.7 1.4±0.1 1.3±0.1 3.5±0.5 3.2±0.5 

2 AL 87.8±1.5 13.2±0.6 4.1±0.5 3.2±0.8 3.1±0.5 2.2±0.5 

 CR 86.4±0.3 2.2±0.4 2.8±0.3 0.6±0.1 **7.5±1.2 1.6±0.4 

3 AL 90.9±0.4 18.2±3.4 2.7±0.2 4.8±0.7 3.9±0.5 7.4±2.2 

 CR 88.3±0.8 *2.0±0.2 1.5±0.2 *0.3±0.05 **8.3±0.6 1.7±0.2 

4 AL 89.3±1.2 14.1±1.5 3.1±0.2 4.4±0.6 3.6±0.5 5.3±1.2 

 CR 86.4±1.1 2.9±0.7 1.9±0.3 0.6±0.2 5.1±1.1 1.4±0.2 

 
Values are means ± SEM, n=4 mice per group per day.  Asterisks indicate differences between groups on that day, 
*P<0.05, **P<0.05.  Repeated a total of 2 times. 
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Figure 11.  Representative flow cytometry data of the percentage of NK1.1+ and CD8+ lymphocytes in the spleens of AL and 

CR mice.  Values indicate means ± SEM, n=4 mice per group per day.  Repeated a total of 2 times. 
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Decreased perforin production by NK1.1+ cells in the lungs of CR mice 

The cytotoxic effect of NK cells is mediated by the production and release of perforin 

and granzymes.  The production of perforin and granzymes increases in response to virus 

infection and is associated with controlling virus replication, the production of IFN-γ, and 

host survival (van Dommelen 2006, Johnson 2003).  Intracellular staining of perforin and 

granzyme B in NK1.1+ cells provides information on the cytotoxic potential of NK cells 

on a per cell basis.  Therefore, the production of perforin and granzyme B by pulmonary 

NK cells was evaluated by intracellular staining in AL and CR mice in response to 

influenza virus infection.  The intracellular production of perforin and granzyme B, as a 

fold increase in MFI, increased in AL mice in response to influenza virus infection, 

peaking at 2 days p.i. (P<0.001) (Figure 12).  In CR mice, there was a similar increase in 

granzyme B-producing NK cells (P<0.001), but no change in perforin during the 

infection.  As a result, perforin was decreased in NK cells of CR versus AL mice at 2 

days p.i. (P<0.01).  These data suggest a loss in NK cell cytotoxic function in CR mice 

on a per cell basis. 
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Figure 12.  Intracellular perforin and granzyme B production by NK1.1+ 

lymphocytes in the lungs of AL and CR mice in response to influenza infection.  The 

intracellular staining of NK1.1+ cells from CR mice demonstrated a decrease in the 

induction of perforin during infection, as compared to AL controls, n=4 mice per group 

per day, **P<0.01.  Repeated a total of 2 times. 
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Decreased IFN-α/β expression in the lungs of CR mice 

The activation of NK cell effector functions, including the production of perforin and NK 

cell cytotoxicity, is mediated by cytokines, such as Type I IFN and IL-12 (Cousens 1997, 

Nguyen 2002, Liang 2003).  Interferon-α/β expression was determined in the lungs of AL 

and CR mice at baseline and through 3 days p.i., and changes in IFN-α/β expression were 

reported as a fold increase over uninfected, normalized to the expression of GAPDH 

(Figure 13).  There were no differences in IFN-α/β expression in the lungs of AL and CR 

mice at baseline.  In contrast, however, the expression of both IFN-α (P<0.01) and IFN-β 

(P<0.05) were decreased in the lungs of CR mice compared to AL controls at 2 days p.i.  

IFN-α/β was then measured in the periphery by bioassay, and CR mice exhibited an 

increase in systemic antiviral activity (P<0.01) (Figure 14).  These data suggest a local 

deficit in IFN-α/β expression in the lung and an increased systemic response to influenza 

infection in young adult CR mice.    

 

Altered IL-12 production in the lungs of CR mice 

Interleukin-12 production was quantitated by ELISA in the lungs of AL and CR mice at 

baseline and during influenza infection by ELISA.  Calorically-restricted mice exhibited 

a decrease in IL-12 production compared to AL controls when evaluated at baseline 

(P<0.001, t-test) and at 2 days p.i. (P<0.05, t-test) (Figure 15).  However, there was no 

difference in the production of IL-12 in the lungs of CR mice compared to AL mice at 

days 3 and 4 p.i.  These data suggest a defect in the availability of the NK cell-activating 

cytokine IL-12 in the lungs of CR mice early during the innate immune response to 

influenza infection, jut prior to and following maximal NK cytotoxicity in AL mice.   
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Figure 13.  Decreased IFN-α/β expression in the lungs of CR mice during influenza 

infection.  Young adult CR mice exhibited a decrease in the gene expression of IFN-α 

(top) and IFN-β (bottom) in lungs compared to AL controls in response to influenza 

infection, n=4 mice per group per day, *P<0.05, **P<0.01.  Repeated a total of 2 times. 
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Figure 14.  Increased systemic antiviral activity in CR mice during influenza 

infection.  The antiviral activity of IFN-α/β was assessed in serum by bioassay.  Young 

adult CR mice exhibited an increase in antiviral activity, n=8 mice per group per day, 

**P<0.01; ND, not detected.  Repeated a total of 3 times. 
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Figure 15.  Altered IL-12 production in the lungs of CR mice during influenza 

infection.  Young adult CR mice exhibited a decrease in the production of IL-12, as 

determined by ELISA, at baseline and at 2 days p.i., n=8 mice per group per day, 

*P<0.05 (t-test), ***P<0.001 (t-test).  Repeated a total of 2 times. 
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Increased activation marker expression on NK1.1+ lymphocytes in the lungs and 

spleens of CR mice 

NK cell activation is associated with the increased expression of surface markers, 

including CD25 and B220.  The surface expression of CD25 (IL-2Rα) is associated with 

the proliferative response of activated NK cells (Son 2001); B220 (CD45R) is associated 

with NK cell cytotoxicity and is a marker of non-MHC restricted killing (Kassim 2006, 

Ballas 1990).  Lymphocytes from the lungs of AL and CR mice were isolated at baseline 

through 4 days p.i., and the percentage, number, and mean fluorescence intensity (MFI) 

of NK1.1+ cells expressing activation markers were assessed by flow cytometry.  MFI 

provides additional information regarding the number of surface antigens expressed per 

cell.  The percentage of NK1.1+ lymphocytes expressing CD25 in lungs was increased in 

CR mice relative to AL controls on days 1 (P<0.01, t-test) and 4 p.i. (P<0.001, t-test) 

(Figure 16).  The percentage of NK1.1+ lymphocytes expressing CD25 in spleens was 

increased in CR mice on days 3 and 4 p.i. (P<0.05, t-test).  The percentage of NK1.1+ 

cells expressing B220 increased in CR mice in response to influenza infection (P<0.001) 

(Figure 17).  The percentage of NK1.1+ cells expressing B220 was significantly 

increased in CR mice compared to AL controls at 3 days p.i. (P<0.001).  Similarly, MFI 

increased in CR mice in response to influenza infection on days 2 (P<0.001) and 3 p.i. 

(P<0.01).  The MFI of NK1.1+ cells expressing B220 was significantly increased in CR 

mice compared to AL controls on days 2 (P<0.01) and 3 p.i. (P<0.05).  Despite the 

increased percentage of NK1.1 cells expressing activation markers in CR mice in 

response to influenza infection, there were no differences in the number of activated 

NK1.1+ cells in AL and CR mice at any time point.   
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Figure 16.  Increased expression of CD25 on NK1.1+CD8- lymphocytes in CR mice 

during influenza infection.  Young adult CR mice demonstrated increased expression of 

CD25 on NK cells in the lung (top) and spleen (bottom) compared to AL controls in 

response to influenza infection, n=4 mice per group per day, *P<0.05, **P<0.01, 

***P<0.001.  Repeated a total of 2 times. 
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Figure 17.  Increased expression of B220 on NK1.1+CD8- lymphocytes in the lungs 

of CR mice during influenza infection.  Young adult CR mice demonstrated an 

increased expression of B220 on the surface of NK cells, as assessed by both percentage 

(top) and MFI (bottom), n=4 mice per group per day, *P<0.05, **P<0.01, ***P<0.001.  

Repeated a total of 2 times. 
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ary cell type responsible for producing IFN-γ during the 

infection, thus providing an important link to adaptive

 of NK1.1+ lymphocytes producing IFN-γ was 

nd CR mice by intracellular staining.  We have 

ate 10-fold increase in the percentage of NK1.1+

phocytes producing IFN-γ in the lungs of AL mice that corresponds with NK cell 

ection with this dose of influenza virus.  The percent of 

γ in the lungs of CR mice was significantly elevated 

pared to AL mice beginning at 2 days p.i. (P<0.01) and continuing through 4 days 

P<0.001) (Figure 18).  Further, CR mice exhibited a 20- to 25-fold increase in the

cells producing IFN-γ over baseline at 3 and 4 days p.i. (Figure 19).  

ice demonstrated a maximal 10-fold induction of IFN-γ production in 

ice at day 1, consistent with the peak induction of NK cell cytotoxicity 

ese mice.  Again, despite the increased percentage of IFN-γ-producing NK cells in 

ice, there were no significant differences in cell number between the

e point.  Interferon-γ was then measured in lung homogenates from AL 

ice.  Interferon-γ was detected in the lungs of CR mice at all time points p.i., 

ited number samples from AL mice on days 2 and 3 p.i. 

Table 4).  The percentage of NK1.1+ cells producing IFN-γ in spleens was always less 

 AL and CR mice during infection. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Representative flow cytometry data of the percentage of NK1.1+CD8- lymphocytes producing IFN-γ in the lungs of 

AL and CR mice during influenza infection.  Values indicate means, n=4 mice per group per day.  Repeated a total of 2 times. 

115

0 102 103 104 105

<PE-Cy7-A>

0

102

103

104

105

0 102 103 104 105

<PE-Cy7-A>

0

102

103

104

105

<A
PC

-A
>

0 102 103 104 105 0 102 103 104 105 0 102 103 104 105

7.61.0 14.2 25.1

5.70.5 3.5 2.8

Day 0 Day 1 Day 2 Day 3
NK1.1+

CR

AL

IF
N

-γ

0 102 103 104 105

Day 4

23.7

1.9

0 102 103 104 105

<PE-Cy7-A>

0

102

103

104

105

0 102 103 104 105

<PE-Cy7-A>

0

102

103

104

105

<A
PC

-A
>

0 102 103 104 105 0 102 103 104 105 0 102 103 104 105 0 102 103 104 105

Day 4

23.7

1.9

7.61.0 14.2 25.1

5.70.5 3.5 2.8

Day 0 Day 1 Day 2 Day 3
NK1.1+

CR

AL

IF
N

-γ



 116
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Increased percentage of IFN-γ-producing NK1.1+CD8- lymphocytes in 

the lungs of CR mice during influenza infection.  Young adult CR mice exhibited a 20- 

to 25-fold increase in the percentage of NK cells producing IFN-γ in response to 

infection.  The percentage of NK cells producing IFN-γ was increased in the lungs of CR 

mice compared to AL controls at 2 through 4 days p.i., n=4 mice per group per day, 

**P<0.01, ***P<0.001.  Repeated a total of 2 times. 
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Table 4.  IFN-γ in the lung homogenates of AL and CR mice 

during influenza infection. 

 IFN-γ (pg/mL)1 

Days p.i. YAL YCR 

0 ND ND 

1 ND 75.3 ± 25.5 

2 4.82 59.2 ± 27.6 

3 69.12 212.6 ± 23.8 

4 ND 100.8 ± 68.8 

 1Determined by ELISA 

 2Statistical analysis was not performed due to a limited 

number of mice with detectable IFN-γ in lung homogenates 

at these time points.  Otherwise, n=4 per group per day.  

Repeated a total of 2 times. 
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mpared to AL controls (day 2, P<0.01; days 0, 3, and 4, P<0.001) (Table 5).  
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ice may exhibit an increase in the recruitment of inflammatory cells to 

nza infection.   
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Figure 20).  In contrast, CR mice exhibited an 

mpared to AL mice at day 1 p.i. (P<0.05).  Further, 

 the lungs of CR mice remained elevated compared to 
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Percent and number of high side-scatter events, CD11b+, and CD11c+ cells in the lungs of AL and CR mice. 

High SSC Events CD11b+ CD11c+CD11b- Days 

p.i. 
Group 

% # (x104) % # (x104) % # (x104) 

0 AL 30.0±2.3 20.2±6.7 12.4±1.1 2.5±0.9 12.1±2.4 2.2±0.7 

 CR ***50.0±1.8 6.0±3.0 4.8±0.4 0.3±0.2 14.5±3.2 0.7±0.3 

1 AL 42.3±2.7 20.2±3.2 17.5±2.6 3.6±1.0 8.9±0.9 1.8±0.3 

 CR 46.2±0.5 22.6±2.7 15.5±4.6 3.9±1.5 5.8±1.5 1.2±0.2 

2 AL 37.7±3.6 13.5±2.9 15.0±0.8 2.1±0.5 13.6±2.2 1.7±0.2 

 CR **50.8±2.6 11.6±3.2 19.0±3.5 2.2±0.7 5.1±0.4† 0.6±0.2 

3 AL 27.6±2.1 11.8±2.3 18.1±2.5 2.3±0.8 10.5±0.5 1.2±0.2 

 CR ***52.8±2.2 17.2±1.4 23.5±3.0† 4.2±0.8 3.1±0.2† 0.5±0.1 

4 AL 29.3±1.3 5.1±1.3 20.9±5.0 1.2±0.6 14.8±2.2 0.7±0.2 

 CR ***45.3±1.6 2.7±1.7 17.4±5.9 0.7±0.5 11.6±2.9 0.2±0.1 

 
Values are means ± SEM, n=4 mice per group per day.  Asterisks indicate differences between groups on that day, 

**P<0.01, ***P<0.001.  † indicates differences within the same group over time, P<0.05. Repeated a total of 2 times.

 

Table 5.   
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Figure 20.  Increased percentage of CD11b+ cells in the lungs of CR mice during 

influenza infection.  Young adult CR mice demonstrated an increase in CD11b+ cellular 

infiltration in lungs compared to AL controls at day 1 p.i.  The percentage of CD11b+ 

cells in CR mice remained elevated over baseline through 4 days p.i. (P<0.05), n=4 mice 

per group per day, *P<0.05.  Repeated a total of 2 times. 
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Increased systemic IL-6 production in CR mice 

The production of cytokines IL-1β, IL-6, and TNF-α were examined by ELISA in both 

lung homogenates and plasma samples from baseline through 4 days p.i.  Of these, only 

IL-6 in plasma could be detected (Table 6).  Systemic IL-6 was detected in the plasma of 

AL mice on days 2 and 3 p.i., but was detected in CR mice at all days p.i., suggesting the 

possibility of prolonged systemic inflammation in young CR mice following influenza 

infection. 

 

Increased percentage and number of CD11c+ cells expressing B220 in the lungs of CR 

mice 

Plasmacytoid dendritic cells (pDCs), determined as CD11c+CD11b- cells expressing 

B220, are the major producers of IFN-α/β in response to virus infection, and thus, are 

important accessory cells in the activation of NK cell cytotoxicity (Garcia-Sastre 2006, 

Walzer 2005, McKenna 2005).  The percentage and number of CD11c+CD11b- cells 

expressing B220 were increased in the lungs of CR mice compared to AL mice at 3 days 

p.i. (P<0.05) (Table 7).  The expression of B220 on CD11c+ cells was also assessed as 

MFI and confirmed an increase over baseline (P<0.001), as well as an increase in the 

lungs of CR mice compared to AL controls (P<0.01) (Figure 21).  Importantly, the 

kinetics of this increase in NK cell-activating pDCs followed both the inability to mount 

an effective NK cell cytotoxic response and the observed increase in lung virus burden in 

CR compared to AL mice.  These kinetics were in agreement with the observed increase 

in NK cell activation and IFN-γ production in the lungs of CR mice late in the innate 

immune response to primary influenza infection. 
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Table 6.  IL-6 in the plasma of AL and CR mice during 

influenza infection. 

 IL-6 (pg/mL)1 

Days p.i. YAL YCR 

0 ND ND 

1 ND 159.0 ± 45.4 

2 175.1 ± 63.2 138.5 ± 58.8 

3 61.62 77.0 ± 31.0 

4 ND 104.5 ± 52.3 

1Determined by ELISA 

2Statistical analysis was not performed due to a limited 

number of mice with detectable IL-6 in lung homogenates at 

this time point.  Otherwise, n=4 per group per day.  

Repeated a total of 2 times. 
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Table 7.   Percent and number CD11c+ cells 

expressing B220 in the lungs of AL and CR mice. 

 

 
Values are means ± SEM, n=4 mice per group per 

day.  Asterisks indicate differences between 

groups on that day, *P<0.05.  † indicates 

differences within the same group over time, 

P<0.05.  Repeated a total of 2 times. 

 

 

B220 on CD11c+ Days 

p.i. 
Group

% # (x104) 

0 AL 5.4±0.7 1.0±0.3 

 CR 6.5±0.5 0.3±0.1 

1 AL 8.4±1.4 1.8±0.5 

 CR 9.7±2.9 2.4±1.0 

2 AL 9.0±3.7 1.5±0.9 

 CR 18.4±1.4 2.2±0.7 

3 AL 10.4±1.6 1.3±0.4 

 CR *25.2±2.0† *4.4±0.7† 

4 AL 16.0±3.7 0.7±0.2 

 CR 17.2±4.9 0.6±0.5 
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Figure 21.  Increased percentage and MFI of CD11c+ cells expressing B220 in the 

lungs of CR mice during influenza infection.  Young adult CR mice exhibited an 

increase in B220 expression on CD11c+ cells over baseline, assessed as both a 

percentage of high side-scatter cells (top) and a fold-increase in MFI (bottom), n=4 mice 

per group per day, *P<0.05, **P<0.01, ***P<0.001.  Repeated a total of 2 times. 
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3.2.5 Discussion 

The purpose of this study was to determine the effects of CR, independent of advanced 

age, on the susceptibility to primary influenza infection.  Young adult CR mice exhibited 

an increase in mortality, weight loss, lung virus titers, and lung pathology in response to 

influenza infection that was associated with an inability to mount an effective NK cell-

mediated innate immune response to influenza infection.  These data clearly demonstrate 

an age-independent increase in the severity of influenza infection in young adult CR 

mice, as compared to young adult AL-fed controls. 

The anorectic response to infection is believed to be mediated, at least in part, by 

the inflammatory cytokine and chemokine milieu (Van Reeth 2000, Swiergiel 1997).  

Young adult CR mice demonstrated increased weight loss in response to influenza 

infection, which was consistent with increased lung pathology and CD11b+ cellular 

infiltration in lung.  The AL mice ceased eating immediately, lost more weight than CR 

mice through 2 days p.i., and then began to recover.  Interestingly, CR mice maintained 

100% of their baseline food intake at 1 day p.i. and 100% of their baseline body weight 

through 2 days p.i.  This delay in anorexia and associated weight loss in CR mice might 

be explained by a recent report that CR mice maintain hunger signals throughout life, 

despite long-term energy balance (Speakman 2007).  In these studies, re-feeding an AL 

diet to mice previously fed a chronic CR diet resulted in a transient hyperphagic 

response, followed by normal AL food intake and the re-establishment of energy balance 

at an increased body weight.  This suggests that neuroendocrine signaling in response to 

long-term CR might allow CR mice to maintain food intake, despite infection, for a 

period of time.   
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  In our previous study, aged CR mice appeared to exhibit a decrease in influenza-

induced NK cell cytotoxicity in lung.  Additional information on the effects of CR on NK 

cell cytotoxicity is limited, but an early study demonstrated a decrease in basal NK cell 

cytotoxicity and an increase in PolyI:C-stimulated NK cell cytotoxicity in splenocytes 

from aged CR mice compared to aged AL mice (Weindruch 1983).  The effects of CR on 

NK cell cytotoxicity, however, have not been studied in young mice or in response to 

infection.  Our data are the first to demonstrate a defect in influenza-induced NK cell 

cytotoxicity in young adult CR mice that is associated with an increased susceptibility to 

infection. 

While findings in non-human primates have been contradictory to date, studies in 

aged CR rodents have shown a clear decrease in the total number of lymphocytes in 

spleens, but no change in total circulating peripheral blood mononuclear cells (Nikolich-

Zugich 2005).  Total lymphocytes in young adult CR mice have not been examined 

compared to young adult AL mice, nor have differences in the pulmonary lymphocyte 

compartment been considered in response to infection.  We observed a consistent 

decrease in total lymphocytes in the lungs and spleens of young adult CR mice, both at 

baseline and in response to infection.  There was no difference in the percentage of NK 

cells in the lungs of AL and CR mice at baseline; however, as a result of the decrease in 

total lymphocytes, the absolute number of NK cells in the lungs of CR mice was reduced 

compared to AL at baseline.  Further, both the percentage and number of NK cells in the 

lungs of CR mice were decreased compared to AL mice during infection.  A decrease in 

the percentage of NK cells in the mixed lymphocyte population can result in a decrease in 

NK cell cytotoxicity as determined by the 51Cr-release assay.  Therefore, it was important 
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to consider other aspects of NK cell activation and determine NK cell function on a per 

cell basis. 

Natural killer cells induce cytotolysis by the production and release of perforin 

and granzymes (van Dommelen 2006).  In response to primary influenza infection, NK 

cells from AL mice exhibited a 2-fold increase in both perforin and granzyme B.  

Importantly, CR mice demonstrated an increase in granzyme B, but no induction in the 

production of perforin.  The essential role of perforin in the innate immune response to 

influenza has been demonstrated, as mice deficient in the perforin gene demonstrate no 

NK cell-mediated killing and increased mortality and lung virus titers in response to 

influenza infection (Liu 2003).  Therefore, our data suggest that the loss of influenza-

induced NK cytotoxicity in CR mice may be due to both a decrease in total NK cells in 

lung and an inability to induce the production of perforin in response to infection. 

The endogenous production of IFN-α/β is critically important to host defense to 

viruses, as IFN-α/β activates NK cells, induces an antiviral state, inhibits virus 

replication, and increases MHC class I expression and antigen presentation in all cells 

(Garcia-Sastre 2006, Nguyen 2002, Samuel 1991).  Importantly, the induction of perforin 

and NK cell-mediated cytolysis by Type I IFN has been demonstrated (Liang 2003).  

Therefore, IFN-α/β gene expression was assessed by RT-qPCR in the lungs of AL and 

CR mice during primary influenza infection.  The expression of IFN-α/β in the lungs of 

young CR mice was lower than AL throughout the time examined (1-3 days p.i.) and was 

significantly decreased at 2 days p.i.  These data have clear implications for the ability of 

CR mice to mount an antiviral response to influenza virus at the site of infection, the 

lung, as well as to induce perforin production and NK cell cytotoxicity.  In contrast, 
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however, there was an increase in systemic Type I antiviral activity as assessed by 

bioassay in the serum of CR compared to AL mice, suggesting that the effects of CR on 

the antiviral response to influenza infection in young adult mice may differ by tissue.  

Further study is required to determine if virus might leave the lung in CR mice, resulting 

in systemic antiviral activity. 

The cytokine IL-12 (NK cell stimulating factor) is produced by macrophages and 

dendritic cells in response to virus infections and mediates early NK cell responses 

(Trinchieri 2003, Biron 2001a, Biron 2001b, Julkenen 2001).  Kinetic studies in mice 

infected with MCMV have shown that, in addition to IFN-α/β, the endogenous 

production of  IL-12 acts to induce NK cell activity and contributes to peak IFN-γ 

production by NK cells, thus providing an important link to adaptive immunity (Nguyen 

2002, Cousens 1997, Pien 2000, Orange 1996).   The in vitro production of IL-12 by DCs 

from young (8 wk) CR mice was recently reported to be decreased compared to IL-12 

production by DCs from AL mice (Niiya 2007).  Our in vivo data suggest a defect in the 

availability of IL-12 in the lungs of CR mice early in the innate immune response to 

influenza infection, at the time when maximal NK cytotoxicity was induced in AL mice.  

However, later in the innate immune response, at days 3 and 4 p.i., there was a trend 

towards increased IL-12 production in the lungs of CR mice.  This late increase in IL-12 

production may represent a compensatory mechanism in which CR mice attempt to 

increase NK cell activity and the production of IFN-γ in an effort to stimulate adaptive 

immunity after innate immunity has failed to control the influenza virus.   

 Consistent with this hypothesis was an increase in NK cell activation, as 

determined by increased CD25 and B220 surface expression, and an increase in the 
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intracellular production of IFN-γ.  The overall increase in these activities occurred late in 

the innate immune response to infection, however, after the observation of maximal NK 

cell cytotoxicity in young AL mice.   

Given the differential effects of CR on NK cell activation and cytotoxicity, as 

well as observed alterations in the availability of NK cell-activating cytokines, it is 

important to consider the contribution of accessory and inflammatory cells to the innate 

immune response to influenza infection in AL and CR mice.  The observed increase in 

cellular infiltration of CD11b+ cells in the lungs of young adult CR mice in response to 

influenza infection, along with the increase in pro-inflammatory cytokines, suggest that 

CR mice might mount a hyper-inflammatory response as a secondary effort to control 

influenza infection, which although indicative of an increased immune response in young 

adult CR mice, could also contribute to the observed increase in lung pathology and 

mortality.   

The cellular infiltrate in the lungs of CR mice also included an increased 

percentage and number of CD11c+CD11b-B220+ pDCs, which are largely responsible 

for the production of NK cell-activating cytokines in response to multiple virus infections 

(Walzer 2005, Garcia-Sastre 2006, McKenna 2005).  The kinetics of this increase in 

pDCs was in accord with the observed increase in NK cell activation, as assessed by 

CD25 and B220 surface expression on NK cells, as well as increased intracellular NK 

cell production of IFN-γ.  However, these events may have been insufficient or occurred 

too late to alter the course of the infection.   
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3.3 Supplementation with active hexose correlated compound increases the 

innate immune response of young mice to primary influenza infection  

(Published as Ritz 2006b) 
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3.3.1 Abstract 

The emergence of H5N1 avian influenza and the threat of new or adapted viruses in 

bioterrorism have created an urgent interest in identifying agents to enhance the immune 

response to primary virus infection.  Active hexose correlated compound (AHCC) is a 

natural mushroom extract reported to increase natural killer (NK) cell activity, survival, 

and bacterial clearance in young mice.  However, the effects of AHCC on the response to 

viral infections have not been studied.  In the current study, young C57BL/6 mice were 

supplemented with 1g AHCC/(kg body weight · d) for 1 wk prior to and throughout 

infection with influenza A (H1N1, PR8).  Supplementation increased survival, decreased 

the severity of infection, and shortened recovery time following intranasal infection with 

FLU, as determined by the recovery of body weight and epithelial integrity in lung.  

AHCC increased NK activity in the lungs at d 1 (P<0.05) and d 4 (P<0.01) and in the 

spleen at d 2 post-infection (P<0.01).  Supplementation increased the percentage 

(P<0.05) and number (P<0.01) of NK1.1+ cells in the lung and reduced the infiltration of 

lymphocytes and macrophages compared to controls (P<0.01).  These data suggest that 

AHCC supplementation boosts NK activity, improves survival, and reduces the severity 

of influenza infection in young mice.  Bolstering innate immunity with dietary bioactives 

may be one avenue for improving the immune response to primary flu infection. 
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3.3.2 Introduction 

Influenza virus is a public health concern in the United States, causing disease among all 

age groups.  Although children demonstrate the highest rates of infection, rates of serious 

illness and death are highest among persons aged >65 years, young children aged <2 

years, and persons of any age with medical conditions putting them at increased risk for 

complications from influenza.  Among children aged 0-4 years, hospitalization rates have 

ranged from approximately 1 in 1000 for children without high-risk medical conditions to 

1 in 200 for those with high-risk medical conditions (ACIP 2005).  Within the 0-4 year 

age group, hospitalization rates are highest among children aged 0-1 years and are 

comparable to rates reported among persons aged >65 years (ACIP 2005).  Thus, in 

2004-05 the Advisory Committee on Immunization Practices (ACIP) recommended that 

all children aged 6-23 months receive yearly influenza vaccinations (ACIP 2005). 

The highest rates of infection with influenza virus occur in young children, in part, 

because of a lack of prior immunity from previous exposure to the virus.  Immature 

immune systems rely heavily on innate defenses.  Natural killer (NK) cells require neither 

prior exposure to virus nor antigen presentation in order to target and kill virus infected 

cells, and thus, provide one of the first lines of defense against many different viral 

infections, including influenza.   NK cell-mediated killing controls viral replication until 

the virus is cleared by the adaptive immune response.  However, in some cases a 

sufficient NK cell response may eliminate an infection completely (Goldsby 2003).  The 

roles of NK cells in controlling influenza infection at the site of infection, i.e. the lung, 

and in activating adaptive, antigen-specific immunity in response to primary influenza 

infection have not been fully characterized (Biron 2001a, Solana 2000, Neff-La Ford 
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2003).  We (Plett 2000, Gardner 2005) and others (Hunzeker 2004, Tamura 2004) have 

demonstrated an increase in NK activity in the lungs of young mice following influenza 

infection.  Young mice subjected to restraint stress and infected with intranasal (i.n.) 

influenza virus demonstrated suppressed NK cell activation and function that was 

followed by enhanced viral replication (Hunzeker 2004).  Depletion of pulmonary NK 

cells has been shown to increase the mortality of mice infected with influenza and delay 

the initiation of a virus-specific CD8+ T cell response (Neff-La Ford 2003).  In our 

previous studies, a reduction in NK response to influenza infection in aged calorie-

restricted mice was associated with an increase in viral titer in lung and early mortality at 

4 days P.I., before the initiation of a CTL response could be generated (Gardner 2005).  

Although basal NK activity does not differ between young and aged mice, there is an 

age-associated decline in cytokine-inducible NK activity that is associated with a delay in 

viral clearance and a decreased and delayed adaptive response (Biron 2001a, Neff-La 

Ford 2003, Plett 2000).  A decrease in inducible NK activity has also been observed in 

aging humans (Solana 2000).  These data clearly indicate that NK cells are important in 

maintaining both the innate and adaptive immune responses and in controlling virus 

burden during primary influenza infection.  Efforts to enhance the activation of NK cells 

involved in innate immunity, then, would also be expected to lead to the subsequent 

enhancement of adaptive immune responses.  As a result, inducible NK activity is a 

potential therapeutic target of current interest (Tamura 2004).  

In the current study, we examined the effect of a dietary supplement known as active 

hexose correlated compound (AHCC) on the influenza-induced NK cell response during 

primary influenza infection in young mice. This compound is an enzyme-fermented 
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extract of the mycelia of Basidiomycetes mushrooms and is marketed in the U.S. as a 

dietary supplement, or nutraceutical, containing a mixture of polysaccharides, amino 

acids, lipids, and minerals.  The predominant components of AHCC are oligosaccharides, 

totaling approximately 74% of the mixture.  Of these, nearly 20% are partially acetyated 

α-1,4-glucans with an average molecular weight of 5000.  These oligosaccharides are 

believed to account for the biological activities of AHCC.  Supplementation with AHCC 

has shown a generalized positive effect on the immune systems of both rodents (Aviles 

2004, Matsushita 1998, Burikhanov 2000, Wang 2001, Gao 2005) and humans (Matsui 

2002, Ghoneum 1995), as well as antioxidant effects (Ye 2003, Wang 2001), and is well-

tolerated by both rodents and humans, with no reported adverse effects.  Studies to date 

have suggested that AHCC may increase NK activity in humans (Ghoneum 1995) and 

rodents (Matsushita 1998, Matsui 2002) with malignancies.  In response to infection, 

AHCC supplementation increased percent survival, mean time until death, and bacterial 

clearance (Klebsiella pneumoniae) in young mice stressed by 15-20% head-down tilt 

(Aviles 2004).  However, no studies have previously examined the effect of AHCC 

supplementation on the immune response to influenza infection or viral clearance.   

 

3.3.3 Materials and Methods 

Animals.  The protocol was approved by the Drexel University Institutional Animal Care 

and Use Committee.  Specific pathogen-free young (6-8 wk old) male C57BL/6 mice 

were obtained from Jackson Laboratories.  Mice were housed in microisolator cages in a 

barrier room of the AAALAC-accredited animal facility at Drexel University and 
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acclimated for at least 1 wk before the initiation of experiments.  Mice were monitored 

and weighed daily.     

Supplementation with AHCC.  AHCC (Amino Up Chemical Company, Sapporo, Japan) 

was administered orally by pipette at a concentration 1g AHCC/(kg of body weight · d) in 

20μL distilled water.  Control mice received 20μL distilled water per d.  Mice were 

supplemented for 7 d prior to and throughout the course of infection with influenza.  This 

dose of AHCC has been used previously and does not produce toxic effects in young 

mice (Aviles 2004). 

Virus.  Influenza A/Puerto Rico/8/34 (PR8, H1N1; a kind gift from  Dr. Walter Gerhardt, 

University of Pennsylvania) was propagated in specific pathogen-free eggs (B & E Eggs), 

and cell-free supernatants were stored at -70°C for subsequent use.  At baseline (d 0), 

mice were anesthetized by intraperitoneal (i.p.) injection with Avertin (2,2,2-

tribromoethanol, Sigma) and were infected intranasally (i.n.) with 100 hemagglutination 

units (HAU) of PR8.   

Isolation of mononuclear cells from spleens and lungs.  The procedure for the isolation 

of mononuclear cells from spleens and lungs has been described in detail previously (Po 

2002).  Briefly, mice were euthanized by CO2 asphyxiation, and spleens and lungs were 

aseptically removed.   Spleens were homogenized by dounce and resuspended in RPMI-

1640 (Mediatech).  Lungs were minced with dissecting scissors and incubated at 37°C for 

1.5 h in a cocktail containing 3mg/ml Collagenase A and 80 Kuntz units of DNAse I/ml 

(Roche) with 5% fetal bovine serum [(FBS) Mediatech] in Iscove’s Modified Dulbecco’s 

Medium [(IMDM) Mediatech].  The digested lung samples were passed through a 40μm 

nylon mesh (Fisher) and centrifuged.  Lung homogenates were centrifuged, and 
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supernatants were aliquoted and stored at -70°C for subsequent analysis of virus titers.  

The pellets were resuspended and washed twice with 5% FBS in IMDM.  The cell 

suspensions from spleens and lungs were layered on Histopaque-1083 (Sigma) and 

subjected to density gradient centrifugation.   Cells from each tissue were resuspended to 

the appropriate concentration for use in subsequent assays.  

Lung virus titers.  Supernatants from lung homogenates were serially diluted and used to 

infect Madin-Darby canine kidney (MDCK) cells. After incubation at 37oC for 24 h, 

0.02% TPCK-treated trypsin (Sigma) was added, followed by an additional 48 h 

incubation.  Chicken red blood cells (B & E Eggs) were resuspended at 0.05% in PBS 

and added to the cultures.  Virus titers were then determined based on the presence or 

absence of hemagglutination, as previously described (Po 2002), and reported as the 50% 

tissue culture infectious dose (TCID50). 

NK cell activity in lungs.   A standard 4 h 51Cr-release assay with YAC-1 target cells 

was utilized to assess NK activity as previously described (Plett 2000).  Briefly, 1x106 

YAC-1 cells were incubated with 200 μCi Na51CrO4 (PerkinElmer) for 2 h at 37°C.  

During this incubation, cells were mixed every 20 min to ensure maximal uptake of 

Na51CrO4.  The cells were then washed twice with RPMI-1640, resuspended in RPMI-

1640 complete medium containing 10% FBS and rotated for 1 h at room temperature.  

After the final wash, YAC-1 cells were resuspended at 1x105 cells/ml in complete 

medium and plated in round bottom 96-well microtiter plates (VWR).  Cell preparations 

were then added to wells at an effector to target (E:T) ratio of 50:1.  All samples were 

assayed in triplicate.  Target cells were incubated in medium alone to assess spontaneous 

release or with 5% Triton X-100 (Sigma) to quantitate maximum release.  After a 4 h 
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incubation at 37°C, supernatants were harvested onto UniFilter microplates 

(PerkinElmer), and radioactivity in supernatants was quantitated using a γ-counter 

(Packard TopCount).  Percent cytotoxicity was calculated as follows:  % Cytotoxicity = 

(Experimental CPM – Spontaneous CPM) / (Maximum CPM- Spontaneous CPM) x 100.  

Spontaneous release was always < 5% of maximal release.  

Immunophenotyping.  Following multiple washes, 5x105 mononuclear cells from spleen 

or lung were resuspended in PBS containing fluorochrome-conjugated antibodies 

(eBioscience) to CD4 (Pe-Cy7), CD8 (APC), NK1.1 (PE), and CD11b (Fitc) and 

incubated on ice in the dark for 30 min.  Cells were then washed three times in HBSS 

(Mediatech) containing 1% FBS, resuspended in PBS containing 1% paraformaldehyde 

(Sigma), and stored at 4°C until analysis.  Samples were acquired on a FACSCanto flow 

cytometer (Becton Dickinson) and analyzed using FACSDiva software. 

Tissue staining.  Formalin-fixed lung tissue was paraffin embedded, sliced, and mounted 

onto glass slides.  Slides were baked at 65oC for 30 min and deparrafinized by xylene 

wash. Rehydration of tissue was carried out through a graded alcohol series (100%, 95%, 

and 80%).  Slides were then washed and either stained for histology using the 

hematoxylin-eosin (H & E) method or macrophages were stained by 

immunohistochemistry (IHC) using a Vector kit (Vector Labs), following the 

manufacturer’s instructions.  H & E slides were stained with hematoxylin (Harleco) for 8 

min.  Slides were rinsed in tap water, dipped in acid alcohol, and rinsed again.  Slides 

were then dipped in ammonia water and rinsed in tap water for 4 min.  Following 

multiple dips in 95% alcohol, slides were counterstained in eosin Y (1% alcoholic, 

Harleco).  For IHC staining, antigen retrieval was achieved using trypsin digestion at 
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37oC for 30 min.  Endogenous peroxidase activity was quenched by addition of 3% 

hydrogen peroxide for 10 min and washed in 1X PBS.  Non-specific binding was blocked 

using normal rabbit serum (Vector) for 30 min.  Macrophages were then stained using 

F4/80 rat anti-mouse primary antibody (eBioscience) for 30 min and washed in 1X PBS.  

An isotype control slide was also stained with mouse IgG2a (DakoCytomation).  A 

secondary rabbit anti-rat biotinylated antibody was diluted in 1X PBS (containing 1.5% 

blocking serum) and then added to slides (Vector), followed by a wash in 1X PBS.  Next, 

avidin-biotin complex [(ABC) Vector] reagent was added to slides and incubated for 30 

min.  Slides were then washed in 1X PBS, incubated with diaminobenzidine [(DAB) 

Pierce] solution diluted 1:10, and washed in tap water.  Slides were counterstained in 

hematoxylin (Harleco) for 10 min and rinsed in running tap water for 5 min.  All slides 

were then dehydrated in a graded alcohol series, washed in xylene, and mounted with 

coverslips.  

Statistics.  All statistics were performed using GraphPad InStat 3 software.  Survival data 

were analyzed by Kaplan-Meier test, whereas comparisons between and within groups 

were analyzed using 1-way ANOVA with Tukey-Kramer multiple comparisons.  Mann-

Whitney U-tests were used when data were not normally distributed.  Statistical 

significance was accepted at P<0.05. 
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3.3.4 Results 

Active Hexose-Correlated Compound (AHCC) increased survival and maintained 

weight of young mice after primary influenza infection.  Mice supplemented with 

AHCC exhibited 95% survival compared to 75% survival in control mice through 10 d 

post-infection (Figure 1).  Importantly, there were no differences in the mean body 

weights of control or AHCC supplemented mice at d -7 (25.6g and 25.0g, respectively) or 

at d 0 (26.0g each).  However, AHCC-supplemented mice lost significantly less weight 

(P<0.001) and also recovered weight more quickly than control mice following infection 

(Figure 2).  AHCC-supplemented mice exhibited a maximal weight loss of 1.8g (7% of 

initial body weight) at d 4, while control mice exhibited a maximal loss of 5.9g (23%) at 

6-7 d post-infection.  

 

Lung virus titers were reduced in mice supplemented with AHCC.  Virus was 

undetectable at baseline, and values post-infection were adjusted for background.  Viral 

load in the lungs of control mice was significantly higher in AHCC-supplemented mice at 

5, 7, and 10 d post-infection (Table 1, P<0.05).   
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Figure 1.  Percent survival of control and AHCC-supplemented young mice (6-8 wk) 

from infection with 100 HAU influenza A/PR8 through 10 d post-infection, n = 20 

mice per group. 
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Figure 2.  Weight loss in g in control and AHCC-supplemented young mice 

following infection with 100 HAU influenza A/PR8 through 10 d post-infection.  

Values are means ± SEM, n  = 20 mice per group.  ***Different from AHCC, P<0.001.  

Repeated a total of 2 times. 
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Table 1 reated mice following influenza 

infection1 

 
 d 3 d 5 d 7 d 10 

. Lung virus titers in control and AHCC-t

TCID50, log10 

Control 1.83 ± 0.3 4.25 ± 0.5*** 4.50 ± 0*** 2.50 ± 0.6* 

AHCC 2.50 ± 0 1.50 ± 0.6 0.17 ± 0.3 0.5 ± 0 

 

1Values are means ± SEM, n=3 mice per group p  Asterisks indicate different from 

AHCC at that time: *P<0.05, ***P<0.001.  Repeated a total of 2 times. 

er d. 
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Supplementation with AHCC improved lung epithelial integrity following influenza 

infection.  At d 10, lungs from control mice exhibited erosion of the epithelium, while 

recovery was apparent in lungs from AHCC-supplemented mice (Figure 3).  Lung tissue 

from both control and supplemented mice showed cellular infiltration at d 10. 

 

Mice supplemented with AHCC demonstrated enhanced NK cell activity in the lung 

and spleen and increased NK cell percentage and number in lungs during influenza 

infection.  The kinetics of NK activity in response to influenza infection was altered in 

the lungs of AHCC-supplemented mice compared to controls (Table 2).  While both 

groups demonstrated a peak in NK activity at d 3 post-infection (P<0.001), supplemented 

mice exhibited a significant increase in NK cytotoxicity at d 1 (P<0.05) and maintained a 

significantly elevated activity at d 4 compared to controls (P<0.01).  Similarly, NK 

activity was increased in the spleens of supplemented mice at d 2 (Table 3, P<0.01).  

Alterations in NK activity were associated with an increase in both the percentage 

(P<0.05) and absolute number (P<0.01) of NK1.1+ lymphocytes at d 2 in the lungs of 

AHCC-supplemented mice compared to controls (Table 4).  No changes in the percent or 

number of NK cells were apparent in the spleens of mice from either group throughout 

the course of infection (data not shown).   
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Figure 3.  Representative H & E staining of lung tissue from control and AHCC-

supplemented young mice at baseline and 10 d post-infection with 100 HAU 

influenza A/PR8.  Healthy columnar epithelial cells (a) and clear alveoli (b) are 

illustrated in uninfected tissue in contrast to eroded epithelium (c) and cellular infiltration 

(d) in control mice at d 10.  Lung tissue from AHCC-supplemented mice demonstrated 

cellular infiltration and a recovery of epithelial integrity (e) at d 10. 
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Table 2. NK cell activity in control and AHCC-treated mice lungs following influenza 

infection1 

 
 d 0 d 1 d 2 d 3 d 4 

% cytotoxicity 

Control 3.1 ± 1.1ab 1.8 ± 0.3a 10.1 ± 1.3b 20.2 ± 0.7c 4.8 ± 2.5ab 

AHCC 2.4 ± 1.4a 6.9 ± 0.1a** 12.1 ± 0.9a 21.2 ± 1.0b 8.8 ± 1.0a** 

 

1Values are means ± SEM, n=3 mice per group per d.  Means for a group without a 

common letter differ, P<0.05.  Asterisks indicate different from control at that time: 

**P<0.01.  Repeated a total of 2 times. 
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Table 3. NK cell activity in control and AHCC-treated mice spleens following influenza 

infection1 

 
 d 0 d 1 d 2 d 3 

% cytotoxicity 

Control 5.6 ± 1.0 14.2 ± 3.2 10.4 ± 1.6 6.3 ± 1.2 

AHCC 5.3 ± 0.7a 13.6 ± 2.5ab 20.4 ± 3.6b** 6.7 ± 0.5a 

 

1Values are means ± SEM, n=3 mice per group per d.  Means for a group without a 

common letter differ, P<0.05.  Asterisks indicate different from control at that time: 

**P<0.01.  Repeated a total of 2 times. 
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Table 4. Percent and number of NK cells in control and AHCC-treated mice lungs 

following influenza infection1 

 
 d 0 d 1 d 2 d 3 

% 

Control 13.6 ± 0.91 17.5 ± 1.4 18.2 ± 1.7 13.8 ± 0.8 

AHCC 11.2 ± 5.1 18.0 ± 2.8 29.2 ± 5.6* 18.9 ± 0.7 

n x 10-5 

Control 2.7 ± 0.62 3.9 ± 0.5 3.6 ± 0.3 4.5 ± 0.7 

AHCC 2.2 ± 0.4 3.7 ± 1.6 6.5 ± 0.03** 3.3 ± 0.6 

 

1Values are means ± SEM, n=3 mice per group per d.  Asterisks indicate different from 

control at that time: *P<0.05, **P<0.01.  Repeated a total of 2 times. 
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Mice supplemented with AHCC exhibited reduced lymphocyte and macrophage 

infiltration in lung during influenza infection.  The number of total lymphocytes 

(P<0.01), as well as the number of CD4+ and CD8+ T cells (P<0.05), was significantly 

elevated in the lungs of control mice at d 7 post-infection (Table 5).  Control mice also 

demonstrated a significant increase in the number of macrophages infiltrating the lung at 

d 7, determined as CD11b+ cells (Table 6, P<0.05).  Macrophage infiltration in lung was 

confirmed by IHC staining against F4/80 primary antibody (Figure 4).  The peak in 

lymphocyte and macrophage infiltration at 7 d post-infection corresponded with the 

height in the severity of infection in control mice, as indicated by maximal weight loss. 
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Table 5. Number of lymphocytes and T cells in control and AHCC-treated mice lungs 

following influenza infection1 

 
 d 0 d 3 d 5 d 7 d 10 

n x 10-5 

Total lymphocytes 

Control 12.7 ± 1.0a 10.9 ± 2.6a 137 ± 44a 274 ± 43b 100 ± 35a 

AHCC 8.5 ± 0.8 8.3 ± 1.2 123 ± 30 123 ± 67 62 ± 11 

CD4+ 

Control 1.5 ± 0.2a 1.9 ± 0.4a 19.1 ± 8.7a 49.2 ± 8.8b 21.2 ± 8.4a 

AHCC 0.9 ± 0.1 1.5 ± 0.3 15.9 ± 4.1 27.1 ± 12 11.6 ± 3.3 

CD8+ 

Control 0.8 ± 0.1a 0.8 ± 0.2a 23.7 ± 11a 66.9 ± 20b 19.9 ± 13a 

AHCC 0.6 ± 0.1 0.8 ± 0.3 13.7 ± 4.1 20.9 ± 13 7.3 ± 2.8 

 

1Values are means ± SEM, n=3 mice per group per d.  Means for a group with 

superscripts without a common letter differ, P<0.05.  Repeated a total of 2 times. 
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Table 6. Number of CD11b+ macrophages in control and AHCC-treated mice lungs 

following influenza infection1 

 
 d 0 d 3 d 5 d 7 d 10 

n x 10-5 

Control 0.5 ± 0.02a 1.5 ± 0.8a 43.5 ± 20.3a 166.2 ± 17.8b** 4.9 ± 2.8a 

AHCC 0.4 ± 0.01 1.7 ± 1.2 63.7 ± 29.6 50.9 ± 45.6 2.0 ± 0.4 

 

1Values are means ± SEM, n=3 mice per group per d.  Means for a group with 

superscripts without a common letter differ, P<0.05.  Asterisks indicate different from 

AHCC at that time: **P<0.01.  Repeated a total of 2 times. 
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Figure 4.  Representative IHC staining of macrophages in lung tissue from young 

control mice at baseline and 7 d post-infection with 100 HAU influenza A/PR8.  

Cellular infiltration identified by H & E staining (top) stained positive for the 

macrophage marker F4/80 (bottom). 
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3.3.5 Discussion 

Young mice supplemented with AHCC daily before and during the course of influenza 

infection exhibited increased survival, enhanced NK activity in lung and spleen, and 

rapid virus clearance from the lung relative to young mice given a vehicle control.  The 

importance of NK cells in controlling primary influenza infection in the lung prior to the 

initiation of a virus-specific immune response has been suggested (Biron 2001a, Solana 

2000, Neff-La Ford 2003, Bender 1995).  Upon activation, NK cells respond rapidly, 

peaking within the first few days of infection.  By targeting and eliminating virus-

infected cells, NK cell-mediated cytolysis acts to eliminate the source of the replicating 

virus (Goldsby 2003).  Activated NK cells also produce IFN-γ, which further increases 

the cytotoxicity of NK cells and activates antigen-specific CD8+ cytotoxic T 

lymphocytes (CTLs) (Nguyen 2002, Bender 1991, Moskophidis 1998).  Our data 

indicated that influenza-induced NK activity in lung was enhanced by supplementation 

with AHCC, which was associated with the initiation of viral clearance and a significant 

decrease in lung virus titer compared to controls as early as 5 d post-infection.  Although 

we did not evaluate the production of antigen-specific CTLs, our previous kinetic studies 

demonstrated a peak in CTL activity and viral load at 7 d post-infection that was not 

followed by viral clearance until d 10 (Po 2002).  The adaptive immune response requires 

time to evoke antigen presentation, such as by macrophages and dendritic cells, and T 

cell proliferation, including an increase in both CD4+ and CD8+ T lymphocytes.  In the 

current study, lymphocyte and macrophage infiltration in lung following infection peaked 

at d 7 in control mice, as expected, but was less pronounced in AHCC-supplemented 

mice.  These observations suggest the possibility that the more robust NK response was 
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associated with a decreased reliance on the adaptive immune response for viral clearance.  

Future studies will aim to evaluate the effect of AHCC supplementation on adaptive 

immunity.  Taken together, however, the current data suggest that an enhanced NK cell 

response in AHCC-supplemented mice may have contributed to a decreased 

susceptibility to influenza infection.  

Although the exact mechanism by which AHCC boosts NK activity remains under 

investigation, we speculate that α-1,4-glucans are recognized by C-type lectins, such as 

Dectin-1 on NK cells, thus initiating innate immunity.  C-type lectins are also expressed 

on other cell types, including macrophages, dendritic cells, and γδ-T cells, that may 

further influence NK cells and the innate immune response through the production of 

cytokines.  IFN-α/β, for example, is a cytokine produced during infection that induces an 

antiviral state in uninfected cells, thus limiting virus replication (Nguyen 2002).  Previous 

kinetic studies of cytokine production in bronchoalveolar fluid and lung homogenates 

after influenza infection in mice have shown early production of IFN-α/β before the 

initiation of an influenza-specific adaptive immune response in lung (Van Reeth 2000).  

Along with Type I IFN, IL-12 and IL-18 are also produced early in the innate immune 

response and act synergistically to activate NK cells to produce IFN-γ (Nguyen 2002, 

Julkunen 2001, Brydon 2005, Liu 2004).  Previous reports suggest that AHCC influences 

the production of a variety of cytokines (Aviles 2004), including enhanced IL-12 (NK 

stimulatory factor) production by macrophages (Yagita 2002) and IFN-γ production by 

antigen-specific CD8+ T cells (Gao 2005).  Therefore, it is possible that the enhanced NK 

cytotoxicity in AHCC-supplemented mice was due to alterations in endogenous cytokine 

production, improving the ability of NK cells to become activated during primary 
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infection.  In addition to producing IL-12, macrophages are also potent producers of 

inflammatory cytokines in response to influenza infection, including TNF-α, IL-1β, and 

IL-6.  While these cytokines play an essential role in viral clearance, they are also 

associated with inflammation, tissue damage, and symptoms of disease (Tamura 2004, 

Van Reeth 2000, Julkunen 2001, Brydon 2005).  In the current study, AHCC-

supplemented mice exhibited both a reduction in macrophage infiltration and improved 

epithelial integrity in lung following infection compared to controls.  As such, further 

studies are required to address the potential influence of AHCC on cytokines involved in 

both NK activation and the inflammatory response to influenza infection. 

Finally, both the young and the elderly are at an increased risk for morbidity and 

mortality associated with influenza infection.  AHCC has previously been reported to 

increase the number of NK cells in aged mice (Ghoneum 1992), and future studies should 

determine if AHCC supplementation may abrogate the age-associated decline in 

inducible NK activity.  Additionally, mice and humans demonstrate multiple age-

associated impairments in immunity (Murasko 2003, Murasko 2005), including a reduced 

CTL response to influenza infection (Po 2002, Bender 1991) and a loss of antibody 

production in response to influenza vaccination (Gardner 2001).  Given the ability of 

AHCC supplementation to enhance influenza-induced NK activity in young mice and the 

clear connection between the NK cell-mediated innate immune response to influenza 

infection and the activation of adaptive immunity, future investigations should consider 

the possibility that AHCC may mitigate certain aspects of immunosenescence in response 

to influenza.  In summary, if our data can be extended to the human circumstance, we 

suggest that supplementation with AHCC, a natural bioactive dietary supplement, may 
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provide a feasible approach to improving the immune response to viral infections, such as 

influenza. 
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CHAPTER 4: DISCUSSION 

 
 

4.1 Introduction.  Seasonal influenza and related secondary pneumonias remain a 

leading cause of infectious disease morbidity and mortality among the elderly, despite 

vaccination.  While the age-associated decline in the immune response to influenza 

vaccination has been well studied, much less is known about the primary immune 

response to influenza infection, and in particular, the role of innate immunity in this 

process.  The study of primary influenza infection is especially relevant in this era of 

threats from highly-virulent H5N1 avian influenza and bioterrorism, and these 

circumstances further emphasize the need for a comprehensive understanding of the 

early, innate immune response to influenza infection in both the young and the old.  It is 

also unknown whether vaccines can be produced quickly enough to respond to such 

threats or if traditional antiviral therapies will be effective.  Therefore, additional 

parameters that may influence immunity, such as nutritional status, must be considered in 

the context of the innate immune response to primary influenza infection.  In this thesis, a 

series of studies was conducted to investigate the influence of age and nutrition on the 

innate immune response to primary influenza infection in a mouse model. Notable 

outcomes that will now be discussed in detail confirm that NK cells play an important 

role in controlling primary influenza infection in both young and aged mice and that NK 

cells respond, both positively and negatively, to nutritional interventions.  Future research 

strategies are discussed, including a detailed plan for characterizing the relationship 

between immunity and metabolism during primary influenza infection. 
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4.2 Natural killer cells control influenza infection in young and aged mice.  

Previous studies have indicated that recovery from influenza infection is dependent on 

cytotoxic T lymphocyte (CTL) activity and that aging is associated with impaired CD8+ 

T cell function and prolonged virus shedding (Po 2002).  Additional observations, 

including a decrease in cytokine-inducible NK cell activity in both aged mice (Plett 2000) 

and humans (Kutza 1996), suggested that an age-associated defect in the NK cell 

response to influenza virus might contribute to the increased susceptibility to infection.  

While the importance of NK cells in limiting virus replication before the initiation of a 

virus-specific adaptive immune response has been demonstrated in multiple virus 

infections, including HSV and MCMV (Andoniou 2006, Biron 2001a), the role of NK 

cells in controlling influenza infection has received little attention and has not been 

studied in the context of aging (Bender 1995).  Therefore, it was important to evaluate 

NK cell-mediated immunity in response to influenza infection in young and aged mice 

and to characterize the relationship between the influenza-induced NK cell cytotoxic 

response and lung virus titer following intranasal infection.   

 Young (6-8 wk) and aged (22 mo) C57BL/6 male mice were infected with 

influenza A virus (H1N1, PR8), and NK cell cytotoxicity, lung virus accumulation, and 

weight loss were monitored during the early response to infection.  Aged mice 

demonstrated a decrease in NK cell activity in response to primary influenza infection, as 

compared to young mice (Figure 3.1.1).  Also in aged mice, increased lung virus by the 

first day post-infection (p.i.) (Table 3.1.3) indicated an early increase in the severity of 

influenza infection.  Therefore, in conjunction with our previous studies, we have 

concluded that both a loss of NK cell cytotoxicity and an impaired CTL response 
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contribute to a reduced ability to control and clear influenza virus from the lungs of aged 

mice (Figure 1).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Natural killer (NK) cells and the immune response to influenza infection 

in young and aged mice.  A decrease in influenza-induced NK cell cytotoxicity in aged 

mice (dashed line) precedes an early and prolonged virus titer in lung and a reduced and 

delayed cytotoxic T lymphocyte (CTL) response, as compared to young mice (solid line). 

 

While these data demonstrate a loss of NK cell activity and an increase in lung 

virus in aged mice, they do not imply causality.  Therefore, it was important to determine 

if a decrease in influenza-induced NK cell activity was directly associated with an 

increase in lung virus and severity of infection. 
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Since a defect in CTL activity was previously shown to contribute to the age-

associated decline in the immune response to influenza, it was necessary to manipulate 

NK cell activity in young mice in order to clearly delineate the role of NK cells in 

controlling lung virus.  Therefore, NK cells were depleted from young, 

immunocompetent mice using an anti-NK1.1 antibody, and the severity of infection was 

monitored as weight loss and lung virus burden.  The depletion of NK cells from young 

mice resulted in an elimination of NK cell cytotoxicity, as expected (Figure 3.1.3), as 

well as increased weight loss (Figure 3.1.4) and lung virus titers (Tables 3.1.2 and 3.1.3), 

compared to controls.  To our knowledge, these data are the first to provide conclusive 

evidence that NK cells control influenza virus at the site of infection, i.e., the lungs, and 

limit severity early in the course of infection.   

Important and novel observations were also made in the parallel evaluation of 

young, aged, and young NK cell-depleted mice.  A reduction in NK cell number and 

function (aged mice) and the absence of NK cell number and function (young NK cell-

depleted mice) resulted in a dose-dependent increase in weight loss.  Across all three 

groups, weight loss was significantly correlated with lung virus burden (P=0.004), 

determined as M1 gene expression by RT-qPCR (Figure 3.1.4).  This correlation was 

strengthened by the elimination of data points from aged mice.  Although it is well 

known that influenza infection results in weight loss, the association between body 

weight and lung virus has not been explored in detail.  We propose that the ability to lose 

weight may be more than just an artifact of infection; instead, weight loss may be an 

important component in the immune response to influenza infection, as energy is 
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mobilized to fight the infection.  This concept is further explored in the discussion of CR 

and the immune response to influenza infection.   

Future studies.  The importance of NK cells in controlling lung virus and weight 

loss early in the course of influenza infection and the observed defect in influenza-

induced NK cell cytotoxicity in aged mice, suggest that an age-associated decline in NK 

cell-mediated innate immunity contributes to the increased susceptibility of aged mice to 

influenza infection.  This discovery underscores the need for additional studies to 

determine the mechanism for the observed decrease in influenza-induced NK cell activity 

in aged lungs.   

The age-associated decrease in NK cell activity could result from an intrinsic 

defect in the NK cell itself, an extrinsic defect in the NK cell-activating environment, or a 

combination of both.  The use of an adoptive transfer model (Figure 2), in which NK 

cells from a young mouse are transferred into an aged mouse and NK cells from an aged 

mouse are transferred into a young mouse, assessed in parallel with young and aged mice 

not receiving external NK cells (controls), would allow us to begin to delineate the 

underlying mechanism for the loss of NK cell-mediated killing in aged mice. 

 

 

 

     Figure 2.  Adoptive transfer model. 
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adoptive transfer studies suggest a defect in the NK cell itself, meaning that the transfer 

of NK cells from aged mice to a young environment does not restore function, it would 

then be necessary to identify potential mechanisms for an intrinsic defect.  An age-

associated loss in NK cell function due to increased NK cell apoptosis or a defect in NK 

cell receptor expression in aging has previously been proposed (Plett 2000).  Signaling 

events that mediate NK cell effector functions following receptor-ligand binding on the 

surface of NK cells could also be impaired in aging.  Differences in signaling events, 

such as those mediated by the JAK/STAT pathway, have not been studied in aged mice 

and warrant further attention. 

If the NK cell-activating environment is altered during the influenza-induced NK 

cell response of aged mice, such that NK cells from young mice exhibit decreased 

function when transferred to aged mice, it would be important to assess NK cell-

activating cytokines and the accessory cell types that produce them in the lungs of young 

and aged mice.  Cytokines that are important for NK cell survival, activation, and 

proliferation, include IFN-α/β, IL-12, IL-15, and IL-18 (Biron 2001a, Nguyen 2002, 

Cousens 1997).  Protocols have been established to evaluate IFN-α/β expression in lungs 

by RT-qPCR, and it was previously shown that altered IFN-α/β response may be partly 

responsible for reduced inducible NK activity in aged mice (Plett 2000).  Additional NK 

cell-activating cytokines could also be evaluated by PCR, and the appropriate sequences 

for this work are provided in Appendix II.   

Natural killer cell-activating cytokines are produced by accessory cells, including 

dendritic cells (DCs), which make crucial contributions affecting the overall magnitude 

of NK cell activation.  Specifically, in vitro evidence suggests that DCs are essential for 
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the induction of IFN-γ production, cytotoxicity, and proliferation in resting NK cells 

(Walzer 2005).  Therefore, it is likely that DCs play a role in NK cell activation in the 

lungs of young and aged mice during primary influenza infection, although this has not 

been studied.  Additionally, DC and NK cell activation is mediated, in part, via toll-like 

receptor (TLR) signaling, which is reduced in aging (Renshaw 2002, van Duin 2007).  

Alterations in TLRs, specifically TLRs 3 and 7, would be expected to influence the innate 

immune response to influenza infection, and should be considered as a potential 

mechanism in the age-associated decline in innate immunity. 

 

4.3 Caloric restriction increases severity of influenza infection.  Caloric restriction, 

without malnutrition, extends lifespan and postpones age-related changes in immunity.  

However, our laboratory observed an anomaly in which aged (22 mo) CR mice exhibited 

increased mortality, impaired virus clearance, and reduced NK cell cytotoxicity during 

influenza infection compared to aged ad-libitum (AL) controls (Gardner 2005).  To 

determine if CR alone, independent of advanced age, results in an increased susceptibility 

to influenza infection, young adult (6 mo) CR and AL C57BL/6 male mice were infected 

with 104 TCID50/ 100 HAU of influenza A virus (H1N1, PR8).  Young adult CR mice 

exhibited increased mortality (Figure 3.2.4), weight loss (Figure 3.2.5), lung virus burden 

(Table 3.2.1), and lung pathology (Figure 3.2.8) compared to age-matched ad-libitum 

(AL)-fed controls, firmly establishing an age-independent and detrimental effect of CR 

on the immune response to primary influenza infection.   

 The data presented in this thesis clearly demonstrate that young adult CR mice 

failed to induce NK cell cytotoxicity in response to influenza infection (Figure 3.2.9), in 
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agreement with our observation in aged CR mice.  The loss of NK cell cytotoxicity in CR 

mice was accompanied by an early increase in lung virus at 1 to 2 days p.i. (Table 3.2.1).  

Since the first study in this thesis established the critical importance of NK cells in 

controlling influenza virus in lung regardless of age, these data suggest that the increased 

susceptibility of CR mice to influenza infection is related to an impaired NK cell-

mediated innate immune response to primary influenza infection.  Therefore, it was 

important to further characterize innate immunity in young adult CR mice, including an 

evaluation of NK cell percentage and number, NK cell-activating cytokines, NK cell 

activation, additional NK cell effector functions, and the participation of accessory and 

inflammatory cell types in response to influenza infection (Figure 3). 
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Figure 3.  The study of innate immunity includes an evaluation of NK cell 

percentage and number, NK cell activation, NK cell effector functions, and cytokine 

production by accessory and inflammatory cells. 
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We observed a decrease in total and NK1.1+ lymphocytes in the lungs of CR 

mice, as compared to AL controls, both at baseline and in response to influenza infection 

(Table 1).  A decrease in the percentage of NK cells in the mixed lymphocyte population 

can contribute to a decrease in NK cell cytotoxicity.  Therefore, it was important to 

consider other aspects of NK cell activation and to determine NK cell effector functions 

on a per cell basis. 

 

Table 1.  Summary of flow cytometry data from the lungs of CR mice compared 

to AL at baseline and 3 days p.i.: total and NK1.1+ lymphocytes. 

Total lymphocytes NK1.1+  

% # % # 

Baseline ↓***   ↓** = ↓** 

3 days p.i. ↓*** ↓  ↓* ↓ 

*P<0.05, **P<0.01, ***P<0.001 

 

Kinetic studies in mice infected with MCMV demonstrate that the endogenous 

production of cytokines IFN-α/β and IL-12 in lung acts to activate NK cell effector 

functions, including cytotoxicity and the production of IFN-γ, thus providing an 

important link to CTL-mediated adaptive immunity (Garcia-Sastre 2006, Biron 2001b, 

Nguyen 2002).  In response to influenza virus, the expression of IFN-α/β (Figure 3.2.13) 

and the production of IL-12 (Figure 3.2.15) were reduced at 2 days p.i. in the lungs of CR 

mice compared to AL-fed controls (summarized in Figure 4).  These data have clear 
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implications for the ability of CR mice to mount an antiviral response to influenza 

infection in the lungs, as well as to induce NK cell cytotoxicity.  

 

Figure 4.  Natural killer cell-activating cytokines and effector functions in the lungs 

of young adult CR mice in response to primary influenza infection.  Initially, CR 

mice demonstrated a decrease in IFN-α/β expression and IL-12 protein levels in lungs, as 

well as a decrease in perforin and NK cell cytotoxicity compared to AL controls in 

response to infection.  However, IL-12 production normalized and IFN-γ increased in the 

lungs of CR mice later during the immune response, after maximal NK cell cytotoxicity 

in the lungs of AL mice. 

 

Upon cytokine activation, NK cells induce cytotoxicity via the production and 

release of perforin, a cell membrane disruptor, and granzymes, a series of serine proteases 

(van Dommelen 2006).  An increase in perforin was observed in pulmonary NK cells of 

AL mice, but not of CR mice, in response to influenza infection (Figure 3.2.12).  In 

studies of perforin gene knockout mice, the inability to induce a perforin response to 

infection resulted in no NK cell cytotoxicity and an elevated susceptibility to influenza 

infection (Liu 2003).  Therefore, it is reasonable to propose that the observed decrease in 
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IFN-α/β precedes reduced NK cell cytotoxicity in the lungs of young adult CR mice.  

Indeed, IFN-α/β is necessary for the induction of perforin-mediated killing (Liang 2003). 

 Despite the observed loss of influenza-induced NK cell cytotoxic function, the 

expression of activation markers CD25 and B220 was increased on pulmonary NK cells 

in CR mice compared to AL mice in response to infection (Figures 3.2.16 and 3.2.17).  

Similarly, NK cells from CR mice exhibited a dramatic increase in the percentage of NK 

cells producing IFN-γ, as determined by intracellular staining (Figure 3.2.19).  

Importantly, the overall increase in these activities occurred late in the innate immune 

response to influenza, after maximal NK cell cytotoxicity in the lungs of AL mice was 

observed.  This suggests that CR mice may try to compensate following a failure in NK 

cell activity; however, CR mice were not able to prevent mortality. 

 Accessory cells, like macrophages and DCs, produce large quantities of cytokines 

that mediate NK cell activation, inflammation, and the induction of adaptive immunity 

(Walzer 2005).  Given alterations in the availability of NK cell-activating cytokines and 

differential effects on NK cell activation and effector functions, it was important to 

evaluate the contribution of accessory and inflammatory cells to the innate immune 

response to influenza infection in AL and CR mice.   

An increase in CD11b+ (monocyte/macrophage marker) cells in the lungs of CR 

mice in response to influenza infection (Table 2), along with an increase in systemic IL-6 

(Table 3.2.6), suggest that young adult CR mice might mount a hyper-inflammatory 

response as a secondary effort to control influenza infection.  Such a response could be 

associated with the observed incresase in lung pathology and mortality in CR mice.  The 

cellular infiltrate in the lungs of CR mice also included an increased percentage and 
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number of NK cell-activating pDCs, determined as CD11c+CD11b- cells expressing 

B220, which corresponded with the increased intracellular production of IFN-γ by NK 

cells in these mice.   

Table 2.  Summary of flow cytometry data from the lungs of young CR mice 

compared to AL at baseline and 3 days p.i.: CD11b+ cells and pDCs. 

CD11b+ B220 on CD11c+  

% # % # 

Baseline ↓ ↓ = = 

3 days p.i. ↑* ↑  ↑*  ↑* 

 
*P<0.05, **P<0.01, ***P<0.001 
 

Taken together, these data provide preliminary evidence of a compensatory 

mechanism in which young adult CR mice increased NK cell activation and the 

production of IFN-γ, possibly in an effort to stimulate adaptive immunity, after innate 

immunity had failed to control the influenza virus.  Despite these efforts, CR mice were 

unable to halt the progression of infection, as indicated by a continued decrease in body 

weight and increased mortality through 7 days p.i.  An increased inflammatory response 

in young adult CR mice, although indicative of an increased immune response to 

influenza infection, could also contribute to increased lung pathology and mortality. 

Future studies.  Although the preponderance of evidence suggests that CR 

maintains immune function at an advanced age, CR had not been evaluated in the context 

of an acute infection.  Therefore, these pivotal studies are the first to demonstrate that CR 

impairs the immune response of young and aged mice when challenged with an infection.  
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Clearly, the effects of CR on immunity can no longer be viewed without considering 

the potential consequences of CR in response to infection. 

Future studies must examine young adult AL and CR mice and aged AL and CR 

mice in parallel to further determine the independent and combined effects of advanced 

age and CR on the immune response to influenza infection.  Such studies should evaluate 

the expression or production of inflammatory and regulatory cytokines, as a hyper-

inflammatory response to influenza infection may be specific to young adult CR mice.  

Indeed, there are no current data on whether aged CR mice might mount a compensatory 

or inflammatory response to influenza infection similar to the response observed in young 

adult CR mice, or whether such mechanisms might be involved in the increased severity 

of influenza infection in young adult and aged CR mice. 

An important observation was also made regarding alterations in food intake and 

weight loss in CR compared to AL mice during infection that requires an extended 

discussion and provides an opportunity for future study.  Calorically-restricted mice 

maintained normal dietary intake through the first day p.i., while AL demonstrated 

immediate anorexia and weight loss in response to infection.  This delay in the anorectic 

effect of infection in CR mice may be due to starvation signals which are maintained in 

CR mice throughout their lifetime (Speakman 2007).  Further, CR mice maintained their 

body weight for an additional day, even after the cessation of food intake.  These 

observations, in view of what is already known about alterations in the metabolism of CR 

mice, lead us to hypothesize that young adult AL and CR mice differ in their metabolic 

response to influenza infection.  For example, weight loss and recovery in AL mice is 

likely to be mediated principally through the mobilization of fat stores.  In contrast, CR 
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mice maintain a limited amount of body fat and might lose weight through protein 

catabolism, a process that requires additional time, but ultimately results in increased 

weight loss, immune suppression, and a more devastating outcome in response to 

infection.   

Therefore, the results presented thus far allow for the proposal of a metabolic 

mechanism for the decrease in the innate immune response of young adult CR mice to 

influenza infection that is mediated by a decrease in body fat and corresponding 

alterations in energy status, neuroendocrine function, and micronutrient deficiency 

(Figure 5).  The detailed discussion that follows provides a rationale for this proposed 

mechanism and highlights multiple avenues for future study. 

 

 

Figure 5.  Proposed metabolic mechanism for the decreased innate immune 

response of young adult CR mice to influenza infection.  
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  A hallmark of CR is a decrease in total body fat.  Decreased fat mass may be 

central to the life-extending benefits of CR, by promoting decreased blood glucose, 

increased insulin sensitivity, decreased core body temperature, and a reduction in energy 

metabolism and resultant oxidative stress.  However, the immune response to infection 

requires energy, and low body fat may also predispose CR mice to protein catabolism, 

which is associated with an impaired immune response to infection and an increase in 

inflammation mediated by the release of acute phase proteins (Biolo 1997).  When caloric 

intake is chronically low, elevated cortisol and low circulating insulin promote the release 

of amino acids from muscle in response to infection, which is characteristic of clinical 

marasmus, or wasting associated with protein-energy malnutrition (Shetty 2006).  A 

similar metabolic state is observed in CR mice, as CR mice demonstrate an increase in 

cortisol and a decrease in insulin, compared to AL-fed controls (Berner 2004).  In 

humans, the proportion of body weight that can be lost before death varies depending on 

the baseline weight; however, depletion of 50% or more of lean body mass is 

incompatible with survival (Hoffer 1999).  In our studies, young and aged AL mice can 

lose up to 30% of their baseline body weight in response to influenza infection and still 

recover (Ritz 2006b, reviewed in Ritz 2006a).  In contrast, CR mice, which weigh 

approximately 25% less than their age-matched controls, succumbed to infection upon 

losing 15% of their initial body weight.     

Decreased fat mass in CR mice is possibly mediated through alterations in gene 

expression.  In yeast and drosophila, the effects of CR on longevity are controlled by the 

gene Sir2 (Guarente 2005).  The mammalian orthologue for Sir2 is SIRT1, which is 

expressed throughout mammalian somatic and germline tissues.  SIRT1 promotes DNA 
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repair and cell survival (Cohen 2004) and increases the expression of peroxisome 

proliferator activating receptor (PPAR)-γ in skeletal muscle (Lee 1999, Yamaza 2002).  

PPAR-γ is an important regulator of energy metabolism and promotes insulin sensitivity 

and a reduction in blood glucose, as observed in CR mice.  However, PPAR-γ activation 

in adipose tissue increases adipogenesis and fat storage, a process that is clearly reduced 

in CR mice.  It has recently been proposed that SIRT1 expression may result in site-

specific repression of PPAR-γ in white adipose tissue and a resultant decrease in fat 

storage (Bordone 2005), although this concept has not been proven.  Alternatively, it may 

be that despite increased PPAR-γ activity and survival signals expressed in CR mice, fat 

storage in CR mice is reduced due to a simple lack of energy substrate.   

In addition to storing energy, adipose tissue is metabolically active, mediating 

important neuroendocrine and immune effects.  A master regulator of these effects is 

leptin, and the inability of CR mice to mount a functional innate immune response to 

influenza infection may be explained, in part, by a deficiency in leptin.  Leptin is a 

hormone produced by adipocytes that regulates appetite and energy expenditure.  Leptin 

suppresses energy intake via a feedback mechanism, and therefore, leptin deficient ob/ob 

and leptin receptor deficient db/db mice exhibit an obese phenotype.  In wild-type mice, 

plasma leptin concentrations directly correlate with adiposity.  Therefore, CR mice that 

exhibit very little body fat are likely to be leptin deficient, further supported by the 

observation that both starvation and short-term fasting are associated with a decrease in 

circulating leptin (Berner 2004).  Unlike studies involving ob/ob and db/db mice, 

however, CR mice have restricted access to food, which prevents obesity.  As the release 

of leptin in response to fat mobilization during infection in AL mice may contribute to 
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infection-induced anorexia, the observed delay in anorexia in young adult CR mice in 

response to infection could be related to a leptin deficiency.  The effects of lower leptin 

output in response to decreased body fat are designed to improve survival under hostile 

conditions, such as starvation, by shifting energy utilization towards vital processes.  This 

may limit the energy available to fight infection (Biolo 2004).   

Leptin also mediates direct effects on immunity (Table 3).  Leptin is released 

during an infection, and the leptin receptor (Ob-Rb) is expressed by immune cells, 

including hematopoietic cells, T cells, B cells, NK cells, and macrophages (Bernotiene 

2006, Tian 2002).  Leptin is structurally related to IL-6 and functions as an acute phase 

reactant (Bernotiene 2006, Biolo 2004).  Consistently, ob/ob mice demonstrate a defect in 

T cell and NK cell function, an increased susceptibility to infection, and a decreased 

susceptibility to autoimmune disease (McGillis 2005).  The effects of leptin on 

inflammation are somewhat elusive, as leptin deficiency may be associated with a pro-

inflammatory state during the innate immune response to infection, but a long-term anti-

inflammatory state during the adaptive immune response or in experimental models of 

autoimmunity (Bernotiene 2006).  In ob/ob mice, both obesity and immune impairment 

are reversed by the administration of exogenous leptin (Bernotiene 2006, Lord 1998).  

Similarly, leptin deficiency induced in wild-type mice by 48-hr fasting results in 

immunosuppression and an increase in the susceptibility to infection that can be rescued 

by leptin injection (Lord 1998, Mancuso 2006). 
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Table 3.  Effects of leptin deficiency and administration in mice. 

Leptin Effects Deficiency Admin. References1 

Energy intake ↓ ↑ Bernotiene 2006, Matarese 2004 

Energy expenditure ↑ ---2 Matarese 2004 

Susceptibility to     

infection 

↑ ↓ Bernotiene 2006, Matarese 2004, 

Mancuso 2006 

T cell #, function ↓ ↑ Bernotiene 2006, Matarese 2004, 

McGillis 2005, Lord 1998 

Thymocyte apoptosis ↑ ↓ Bernotiene 2005, Matarese 2004 

NK cell #, function ↓ ↑3 Tian 2002 

B cell function ↓ --- Bernotiene 2005 

Phagocyte function ↓ ↑ Bernotiene 2006, Mancuso 2006 

Inflammation:    

   Innate ↑ ↓ Bernotiene 2006 

   T cell-mediated ↓ ↑ Bernotiene 2006, Matarese 2004,      

Lord 1998 

Autoimmunity ↓ --- Bernotiene 2006, Matarese 2004, 

McGillis 2005 

Stress (cortisol) ↑ --- Bernotiene 2006, Berner 2004 

1 Scientific reviews were included when available and are indicated in bold; 

2 ---, result not reported; 3 in vitro. 
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The innate immune response to acute infection may be particularly susceptible to 

reduced activity due to leptin deficiency.  Leptin deficiency results in impaired 

phagocytic function, as well as impaired NK cell development and activation (Mancuso 

2006, Bernotiene 2006, Tian 2002).  Leptin receptor deficient db/db mice exhibited a 

decrease in the percentage and number of NK cells in both the spleen and lung, as well as 

a reduction in PolyI:C-induced NK cell cytotoxicity compared to controls.  Further, 

exogenous leptin was reported to increase NK cell cytotoxcity in vitro (Tian 2002).   

Leptin deficiency may also influence immunity indirectly through the stress 

response.  Starvation is a stressor, and CR is consistently associated with an increase in 

plasma corticosterone (Berner 2004).  Nearly all immune cells express glucocorticoid 

receptors, and glucocorticoids generally function as immunosuppressants.  An increase in 

glucocorticoids has been observed in humans with leptin deficiency, ob/ob mice, and in 

response to leptin deficiency induced by fasting (Bernotiene 2006).  Stress-induced 

changes in the immune response include an increase in susceptibility and severity of 

infection, decreased NK cell number and function, decreased production of NK cell-

activating IL-12 by accessory cells, and increased plasma IL-6 (Glaser 2005, Tseng 

2005).  These effects are strikingly similar to our observations in young CR mice in 

response to influenza infection.   

 In addition to altering neuroendocrine functions, a decrease in fat mass may also 

be expected to result in infection-induced deficiencies in fat-soluble micronutrients, such 

as vitamins A, D, and E.  The consensus in the literature is that stores of antioxidant 

vitamins are depleted in response to infection, including influenza (Hennet 1992, Han 

2000, Mileva 2002, Meydani 2005).  Although CR mice are maintained on a fortified diet 
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to meet normal micronutrient intake, data are not available on whether the nutritional 

status of CR mice is equivocal to that of AL-fed controls.  Further, it is likely that a 

decrease in fat mass in CR mice is associated with a decrease in the storage of fat-soluble 

nutrients, such that their availability in response to infection is limited.   

Vitamin D has received much recent attention as a modulator of immune function.  

The 1,25-(OH)2 product of vitamin D metabolism mediates neuroendocrine functions by 

engaging the vitamin D receptor (VDR), which is expressed by many cell types, 

including cells of the immune system.  Immune cells known to express the VDR include 

macrophages, dendritic cells, NK cells, activated T cells, and B cells (Bouillon 2006).  

Vitamin D appears to play a particular role in activating the innate immune response, but 

decreases adaptive immunity by decreasing antigen presentation (Bouillon 2006).  

Vitamin D deficiency is associated with increased susceptibility to infection, but has not 

been studied in influenza.  Interestingly, the regulation of vitamin D status may be related 

to leptin, as leptin deficient ob/ob mice demonstrate an increase in circulating vitamin D 

that is normalized by treatment with exogenous leptin (Matsunuma 2004). 

 The proposed mechanism of decreased innate immunity mediated by a decrease in 

fat stores and alterations in energy, leptin, and micronutrients provides multiple avenues 

for future study.  A detailed characterization of the metabolic costs of influenza infection, 

including energy expenditure and the mobilization of energy stores, is clearly warranted 

and would provide important information relevant to the general susceptibility of both 

AL and CR mice to infection.  The effects of micronutrient and leptin deficiencies in the 

innate immune response to influenza infection can be readily studied through 

micronutrient supplementation and the administration of leptin by injection.  In a recently 
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awarded grant, we proposed re-feeding studies in which CR mice will receive AL diets to 

determine whether an increase in body weight will restore immunocompentency in these 

mice.  Recent evidence confirms that mice will resume AL feeding after long-term CR, 

following a short hyperphagic response (Speakman 2007).  It has also been suggested that 

short-term re-feeding increases leptin levels in fasted mice without an increase in body 

weight (Kim 2003).  Therefore, it is of interest to determine whether CR mice can 

recover the ability to mount an innate immune response through re-feeding without 

weight gain.  If successful, short-term re-feeding in the face on an infectious challenge 

would avoid the detrimental effects of CR on the immune response without forfeiting the 

long-term benefits associated with CR and the maintenance of a low body weight, 

reminiscent of the old adage, “feed a cold.” 

If applicable to the human circumstance, these studies will have clear implications 

for elderly individuals who are at an increased risk for low energy intake resulting from 

social, physical, economic, and emotional obstacles to eating (Pirlich 2001).  Low body 

weight in the elderly, sometimes referred to as frailty, predicts all-cause mortality (Landi 

1999, Grabowski 2001), and weight loss is associated with a poor clinical prognosis, 

including an increased incidence of infectious disease (Sullivan 1990).  Numerous reports 

suggest that optimal body weight may actually be increased in the elderly compared to 

the younger adult population (Stevens 1998).  For example, according to a recent 7-yr 

prospective trial, disability-free life expectancy was highest among elderly individuals 

with a BMI of 25-30 kg/m2, generally considered overweight (Al Snih 2007). 
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4.4 Supplementation with AHCC increases the innate immune response to 

influenza infection.  Nutritional modulation can take one of two basic forms: restriction 

or supplementation.  In the CR model, calories were restricted, resulting in a negative 

outcome in response to infection.  Based on these observations, future studies are now 

planned that will elucidate the effects of re-feeding CR mice, i.e., supplementing calories, 

on the immune response to influenza infection.  While these studies will determine 

whether a supplementation strategy can rescue NK cell activity in CR, they will not 

provide insight on the application of a nutritional strategy intended to enhance the NK 

cell response to influenza infection in young, immunocompetent mice.  Therefore, it was 

important to first identify and evaluate a nutritional intervention with the potential to 

enhance the innate immune response to primary influenza infection. 

 The use of medicinal mushroom preparations for immune support has a long 

tradition in Asian cultures.  More recently, such products have gained popularity in the 

U.S. and abroad, such that the estimated world market is now over $6 billion (Lindequist 

2005).  One such product is active hexose correlated compound (AHCC), a fermented 

mushroom extract, manufactured in Sapporo, Japan, and previously reported to enhance 

NK cell activity in response to tumors and bacterial infection.  However, the effects of 

this agent on NK cell activity in response to a virus infection had never been evaluated.   

The active compound in AHCC is an α-1,4-glucan (Figure 6), a polysaccharide 

compound similar in structure to pathogen-associated molecular patterns known to induce 

immunity through recognition by immune cell receptors, such as the TLRs.  The 

activities of mushroom- and yeast cell wall-derived β-glucans are better characterized and 

appear to activate innate immunity by binding to C-type lectins, such as Dectin-1, 
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expressed on the surface of macrophages, dendritic cells, NK cells, and γ/δ-T cells 

(Brown 2003).  It has been speculated that the effects of α-1,4-glucans on innate 

immunity may also be mediated by C-type lectins (personal communication, Hajime 

Fujii, Amino Up Chemical Company). 

 

 

 

 

 

Figure 6.  The chemical structure of the active compound in AHCC. 

 

To determine if the effects of AHCC could be extended to virus infection, studies 

described in Chapter 3.3 of this thesis were conducted in young (6-8 wk) C57BL/6 male 

mice fed an AL diet supplemented with 1g of AHCC/kg body weight/ d for 1 wk prior to 

and during primary influenza infection.  The supplementation strategy, including dose, 

was based on a published protocol that demonstrated enhanced NK cell cytotoxicity and 

bacterial clearance in young mice stressed by head-down tilt and challenged with 

Klebsiella pneumoniae (Aviles 2004).  Similarly, when challenged with influenza virus, 

AHCC-supplemented mice demonstrated increased survival (Figure 3.3.1), NK cell 

cytotoxcity (Tables 3.3.2 and 3.3.3), and virus clearance (Table 3.3.1), as well as a 

decrease in weight loss during influenza infection (Figure 3.3.2).  AHCC 

supplementation resulted in an increase in the percentage and number of NK cells in the 

lungs at 2 days p.i. (Table 3.3.4), the peak of NK cell cytotoxicity in this study.  Further, 
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supplemented mice exhibited a decrease in CD11b+ cellular infiltration in lung (Table 

3.3.6) and a reduction in lung pathology (Figure 3.3.3). 

The most dramatic result from this study was the ability of AHCC supplemented 

mice to maintain body weight compared to control mice during influenza infection 

(Figure 3.3.2).  Mice supplemented with AHCC lost a maximum of 1.8g, or 7%, of their 

initial body weight, whereas control mice lost 5.9g, or 23%.  It is unlikely that AHCC 

supplementation maintained body weight during infection by providing additional dietary 

energy.  On average, supplemented mice received 25 mg of AHCC, providing 4 kcal/g, or 

approximately 0.1 kcal/d of supplemental energy from AHCC.  This accounted for less 

than 1% of the total daily caloric intake of these mice.  It is also important to note that 

supplemented mice did not gain any weight during the 7 days of supplementation before 

infection.  

Future studies.  As discussed previously, the elderly are at an increased risk for 

morbidity and mortality associated with influenza infection, as well as at increased risk 

for CR.  Dietary supplement use, however, is increasing among the nation’s elderly and 

may provide an opportunity to enhance immunity in this at-risk population.  In fact, the 

percentage of those over the age of 65 using dietary supplements is higher than for any 

other age group in the U.S. and has doubled in recent years (Kelly 2005).   

AHCC has previously been reported to increase the number of NK cells in aged 

mice (Ghoneum 1992), and preliminary studies have begun to assess the effects of AHCC 

supplementation on NK cell cytotoxicity in aged mice in response to influenza infection 

(Appendix III).  Future studies should determine whether AHCC enhances NK cell 

activity in aged mice and assess what effects AHCC supplementation may have on the 
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outcome of influenza infection in aged mice.  The ultimate application of these studies 

would be a series of human clinical trials to determine the safe and effective uses of 

AHCC in promoting immunity in at-risk and healthy populations. 

Future studies have also been proposed and funded to conduct a dose-response 

analysis to determine the lowest effective dose of AHCC and to determine the 

mechanism of action in improving the immune response to influenza infection.   

Finally, it is of interest to consider whether AHCC might rescue the innate 

immune response to influenza infection in CR mice.  Supplementation with AHCC 

improved the innate immune response to infection, increased NK cells in lung, and 

reduced inflammation.  Supplementation also maintained body weight, independent of a 

direct effect on energy intake.  Therefore, if excessive weight loss contributes to the 

increased mortality in influenza-infected CR mice due to limited energy stores, it is 

possible that preventing weight loss by increasing the innate immune response to 

influenza infection with AHCC could improve the outcome of primary influenza 

infection in these mice.   

 

4.5 Conclusions and Limitations 

Natural killer cell-mediated innate immunity is clearly important in the immune response 

to primary influenza infection and can be altered, both positively and negatively, by 

nutritional interventions.  Specifically, the studies described in this thesis, if extended to 

the human circumstance, have produced several important and novel findings: 

1. Natural killer cells are essential for controlling lung virus early during influenza 

infection. 
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2. There is an age-associated defect in the NK cell response to influenza infection 

that is marked by both an inability to expand the NK cell population a decrease in 

NK cell cytotoxicity. 

3. The loss of NK cell-mediated innate immunity results in an increase in the 

severity of influenza infection, which is associated with an increase in lung virus 

and a decrease in body weight. 

4. Caloric restriction, independent of advanced age, is associated with a decrease in 

NK cell cytotoxicity and an increased severity of influenza infection. 

5. Nutraceuticals may be a viable option for bolstering NK cell function in response 

to influenza infection. 

6. The dietary supplement AHCC increased NK cell activity in response to influenza 

infection, decreased lung virus titers, and maintained body weight, independent of 

a direct effect on energy intake. 

 

These studies provide ample opportunities for future research, including a detailed 

characterization of metabolism during influenza infection in young adult and aged AL 

and CR mice.   

An important limitation to all of the studies presented in this thesis is that they 

were conducted in only one strain of mice using only one dose of a single, highly-virulent 

strain of influenza A virus that results in an infection in the lower respiratory tract.  

Therefore, these results cannot necessarily be extended to less virulent influenza strains, 

other viruses, or additional infectious agents.  It is, however, encouraging that evidence 
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now suggests that AHCC supplementation enhances the NK cell response to at least one 

bacterial and one virus infection.   

These were the first studies conducted in CR mice in response to an acute 

infection of any kind.  Therefore, it remains entirely unknown whether CR exacerbates 

morbidity and mortality in all viruses or in response to other infectious agents.  Finally, 

young adult CR mice exhibited signs of a hyper-inflammatory response to infection that 

might not be seen at a lower dose of influenza virus.  Future studies should evaluate the 

innate immune response of CR mice to a less virulent strain or lower dose of influenza 

virus and consider the susceptibility of CR mice to other common infectious agents, 

including Norwalk virus and HSV, as well as Staphylococcus aureus and Streptococcus 

pneumoniae. 

 

4.6 Closing statement.  At the height of the Spanish flu pandemic of 1918, Dr. 

William Crawford Gorgas, Surgeon General of the United States Army, advised, “Food 

will win the war…help by choosing and chewing your food well…” (Barry 2004).  

Nearly a century later, the emergence of the H5N1 strain of influenza virus prompts us to 

revisit the role of nutrition in the immune response to primary influenza infection.  The 

threat of another highly-virulent influenza pandemic intensifies the need to characterize 

the immune response to primary virus infection and determine interventions—nutritional, 

pharmaceutical, or otherwise—that may prevent or improve the outcome of infection.   

The series of studies presented in this thesis clearly indicate that nutrition is a potent 

modulator of the innate immune response to primary influenza infection, including 

examples of how nutrition may both optimize and interfere with host defense.   
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Appendix I: Animal diets 
 

 
 

NIH-31/NIA Fortified Diet 
&  

NIH31 Average Nutrient Composition 
 
Ingredients: 
 
Ground wheat, ground corn, ground oats, wheat middlings, fish meal, soybean meal, corn 
gluten meal, dehydrated alfalfa meal, soybean oil, dicalcium phosphate, brewers dried 
yeast, salt, calcium carbonate, choline chloride, menadione sodium bisulfite complex 
(source of vitamin K activity), thiamine mononitrate, calcium pantothenate, vitamin E 
supplement, vitamin A acetate, riboflavin, vitamin B12 supplement, niacin, vitamin D3 
supplement, pyridoxine HCL, folic acid, biotin, magnesium oxide, ferrous sulfate, 
manganous oxide, copper sulfate, zinc oxide, calcium iodate, cobalt carbonate. 
 
 
Average Nutrient Composition 
      
     NIH-31/NIA Fortified  NIH-31 
 
Protein   %  18.74    18.42   
Fat   %  4.41    4.47 
Fiber   %  4.58    4.05 
Ash   %  6.51    6.64 
Nitrogen-Free Extract %  55.04    55.91 
Gross Energy  kcal/g  3.95    4.02 
Digestible Energy kcal/g  3.36      ---    
Metabolizable Energy kcal/g  3.07      ---  
Linoleic Acid  %  1.79      ---    
Moisture  %    ---    10.51 
 
Amino Acids 
     NIH-31/NIA Fortified  NIH-31 
 
 
Arginine  %  1.10    1.06 
Methionine  %  0.36    0.39 
Histidine  %  0.42    0.41 
Leucine  %  1.50    1.61   
Lysine   %  0.96    0.95 
Tryptophan  %  0.22    0.24 
Valine   %  0.88    0.96 
Cystine  %  0.26    0.28 
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Isoleucine  %  0.76    0.90 
Threonine  %  0.71    0.71 
Pherylalanine  %  1.53  Pherylalanine 0.92    
  +Tyrosine      Tyrosine 0.70 
        
Minerals 
 
     NIH-31/NIA Fortified  NIH-31 
 
Calcium  %  1.03    1.06 
Phosphorus  %  0.93    0.92 
Sodium  %  0.30    0.26 
Chlorine  %  0.48    0.42 
Potassium  %  0.59    0.59 
Magnesium  %  0.20    0.20 
Iron   mg/Kg  336.41    300.20 
Maganese  mg/Kg  156.01    152.80 
Zinc   mg/Kg  48.41    50.40 
Copper   mg/Kg  13.28    13.20 
Iodine   mg/Kg  2.01    1.94 
Cobalt   mg/Kg  0.53    0.53 
Selenium  mg/Kg  0.30      --- 
 
Vitamins 
     NIH-31/NIA Fortified  NIH-31 
 
Vitamin A  IU/g  40.49      --- 
Vitamin A3  IU/g    ---    30.73    
Vitamin D3  IU/g  7.00    4.19 
Vitamin E  mg/Kg  52.15    38.30 
Choline  mg/g  2.60    1.96 
Niacin   mg/Kg  116.16    92.20 
Pantothenic Acid mg/Kg  55.07    39.50 
Pyridoxine  mg/Kg  13.16    10.20 
Riboflavin  mg/Kg  11.04    7.80 
Thiamine  mg/Kg  123.44    77.30 
Menadione  mg/Kg  111.01    22.00 
Folic Acid  mg/Kg  2.13    1.70 
Biotin   mg/Kg  0.38    0.13 
Vitamin B12  mcg/Kg 93.80    53.00 
Vitamin C  mg/g    ---      --- 
Carotene  mg/Kg    ---      --- 
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Appendix II: PCR sequences 

 
 
 

Sequences were provided by the lab of Melinda A. Beck, University of North Carolina at 
Chapel Hill: 
 
 
Cytokine/Surface marker Amplicon Size 

IL-1α --- 
IL-1β 90 
IL-2 131 
IL-4 --- 
IL-5 83 
IL-6 80 
IL-10 73 
IL-12 (p40) 93 
IL-15 86 
IFN-γ 72 
TNF-α 88 
TGF-β 106 
MCP 78 
MIP-1α 67 
RANTES 85 
IFN-α 122 
IFN-β 76 
Influenza M1 187 
IL-18 --- 
CD3 --- 
CD4 --- 
CD8 --- 
CD25 --- 
MIP-1β 65 
GAPDH --- 
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Cytokine/Surface marker Forward Primer 

IL-1α GTCGGCAAAGAAATCAAGATGG 
IL-1β GGCCTCAAAGGAAAGAATCTATACC 
IL-2 CTCCTGAGCAGGATGGAGAATT 
IL-4 GGCATTTTGAACGAGGTCACA  
IL-5 GAGCACAGTGGTGAAAGAGACCTT 
IL-6 TATGAAGTTCCTCTCTGCAAGAGA 
IL-10 TTTGAATTCCCTGGGTGAGAA 
IL-12 (p40) AGCTAACCATCTCCTGGTTTGC 
IL-15 TCATATTGACACCACTTTATACACTGACA 
IFN-γ AGCAACAGCAAGGCGAAAA 
TNF-α CTGTCTACTGAACTTCGGGGTGAT 
TGF-β GCAACATGTGGAACTCTACCAGAA 
MCP TTGGCTCAGCCAGATGCA 
MIP-1α CAAGTCTTCTCAGCGCCATATG 
RANTES TCCAATCTTGCAGTCGTGTTTG 
IFN-α TGCAACCCTCCTAGACTCATTCT 
IFN-β TGAATGGAAAGATCAACCTCACCTA 
Influenza M1 GGACTGCAGCGTAGACGCTT 
IL-18 TCTGCAACCTCCAGCATCAG 
CD3 GACAAGATGGCAGAAGCCTACA 
CD4 TTGTGCATGTCACACATGAAGC 
CD8 AAGCAATGCCCGTTCCC 
CD25 CTTATATTGCAAATGTGGCACAATC 
MIP-1β CCG AGC AAC ACC ATG AAG C 
GAPDH GCAGTGGCAAAAGTGGAGATTG 
Cytokine/Surface marker Reverse Primer 

IL-1α TCAATGGCAGAACTGTAGTCTTCG 
IL-1β GTATTGCTTGGGATCCACACTCT 
IL-2 CGCAGAGGTCCAAGTTCATCT 
IL-4 AGGACGTTTGGCACATCCAT 
IL-5 CAGGAAGCCTCATCGTCTCATT 
IL-6 TAGGGAAGGCCGTGGTT 
IL-10 ACAGGGGAGAAATCGATGACA 
IL-12 (p40) CCACCTCTACAACATAAACGTCTTTC 
IL-15 GCAATTCCAGGAGAAAGCAGTT 
IFN-γ CTGGACCTGTGGGTTGTTGA 
TNF-α GGTCTGGGCCATAGAACTGATG 
TGF-β GACGTCAAAAGACAGCCACTCA 
MCP CCTACTCATTGGGATCATCTTGC 
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MIP-1α TCTTCCGGCTGTAGGAGAAGC 
RANTES TGATGTATTCTTGAACCCACTTCTTCT 
IFN-α CCAGCAGGGCGTCTTCCT 
IFN-β CTCTTCTGCATCTTCTCCGTCA 
Influenza M1 CATCCTGTTGTATATGAGGCCCAT 
IL-18 CCTGGGCCAAGAGGAAGTG 
CD3 CGTGCCCCTTGCCTCTC 
CD4 AGGCATCATGGGAAGCTGAG 
CD8 TGAGGGTGGTAAGGCTGCA 
CD25 GGGACAATCTGATCAAGGAGAATC 
MIP-1β CAG AAG GCA GCC ACG AGC 
GAPDH CCATTCTCGGCCTTGCTGT 

Cytokine/Surface marker Probe 

IL-1α CCTGACTTGTTTGAAGACCTAAAGAACTGTTA
CAGTGA 

IL-1β ATGAAAGACGGCACACCCACCCTG 
IL-2 CTGAAACTCCCCAGGATGCTCACCTTC 
IL-4 CTCCGTGCATGGCGTCCCTTCT 
IL-5 TGTCCGCTCACCGAGCTCTGTTGA 
IL-6 CCAGCATCAGTCCCAAGAAGGCAACT 
IL-10 TGAAGACCCTCAGGATGCGGCTG 
IL-12 (p40) TGCTGGTGTCTCCACTCATGGCCA 
IL-15 CTTTCATCCCAGTTGCAAAGTTACTGCAATG 
IFN-γ CCTCAAACTTGGCAATACTCATGAATGCATCC 
TNF-α ATGAGAAGTTCCCAAATGGCCTCCCTC 
TGF-β ACCTTGGTAACCGGCTGCTGACCC 
MCP AACGCCCCACTCACCTGCTGCTACT 
MIP-1α AGCTGACACCCCGACTGCCTGC 
RANTES TTGGCACACACTTGGCGGTTCCTT 
IFN-α CTGCATCAGACAGCCTTGCAGGTCATT 
IFN-β AGGGCGGACTTCAAGATCCCTATGGA 
Influenza M1 CTCAGTTATTCTGCTGGTGCACTTGCCA 
IL-18 CAAAGAAAGCCGCCTCAAACCTTCCA 
CD3 TGAGATCGGCACAAAAGGCGAGAGG 
CD4 AATGAAGACTGAGAGGCTGCGGGAGTC 
CD8 ACCCAGAGACCCAGAAGGGCCTGAC 
CD25 AGAGAAATCTGGGATGAGGGAACCTCAGTG 
MIP-1β CTG CGT GTC TGC CCT CTC TCT CCT CT 
GAPDH TGACTCCACTCACGGCAAATTCAACG 
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Appendix III: Supplementation of aged mice with AHCC 
 

 

 

 

 

 

 

 

 

 

Figure 1. Influenza-induced NK cell cytotoxicity in the lungs of aged mice and aged 

mice supplemented with AHCC. 

 
 

 

 

 

 

 

 

 

Figure 2. Influenza-induced NK cell cytotoxicity in the lungs of aged mice and aged 

mice supplemented with AHCC.  n=3 mice per group per day.  Not repeated. 
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Vita 
 
 

Barry William Ritz was born on March 21, 1975, the son of Barre Lee and Carol Blessing 

Ritz.  In 1993, Barry graduated as the Valedictorian of Eastern High School, 

Wrightsville, PA, and entered The Pennsylvania State University.  He served as President 

of Lion Ambassadors and as a member of Alumni Council.  He was a member of 

Omicron Delta Kappa National Honor Society and Parmi Nous.  Barry graduated with a 

B.S. in Life Science and Nutrition Science in 1997.  In 2001, after several years spent in 

the nutrition industry, he began his graduate degree at Drexel University.  Barry married 

Kendall Sinclaire Guyer of Bethlehem, PA, on May 25, 2002, and at the time of this 

writing was expecting his first child.  He earned his M.S. in 2004, and presented his 

thesis entitled Functional recovery of peripheral blood mononuclear cells in modeled 

microgravity: no effect of vitamins C and E.  Barry was the founding president of the 

Bioscience & Biotechnology Graduate Student Association.  As a graduate student, Barry 

published an invited review,1 two original manuscripts,2,3 and made multiple 

presentations at national and international meetings, including the NASA Cell Science 

Conference (Galveston, TX, 2005); Experimental Biology (San Diego, CA, 2005, San 

Francisco, CA, 2006, and Washington, DC, 2007); and the 14th International Symposium 

on AHCC Research (Sapporo, Japan, 2006).  On June 8, 2007, he orally defended his 

PhD dissertation entitled Nutritional modulation of the innate immune response to 

influenza infection.  Barry will be remaining at Drexel as a Research Associate. 

1Ritz BW,Gardner EM..Malnutrition and energy restriction differentially affect viral immunity.J Nutr 2006;136:1141-4. 
2Ritz BW, Lelkes PI, Gardner EM. Functional recovery of peripheral blood mononuclear cells in modeled 

microgravity. FASEB J 2006;20:305-7. 
3Ritz BW, Nogusa S, Ackerman EA, Gardner EM. Supplementation with active hexose correlated compound increases 

the innate immune response of young mice to primary influenza infection. J Nutr 2006;136:2868-73. 
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