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Abstract
Semantic Annotation and Summarization of Biomedie{t
Lawrence H. Reeve
Hyoil Han, Ph.D.

Advancements in the biomedical community are Iargelcumented and published in
text format in scientific forums such as conferepapers and journals. To address the
scalability of utilizing the large volume of texafed information generated by
continuing advances in the biomedical field, twonptementary areas are studied. The
first area is Semantic Annotation, which is a mdthar providing machine-
understandable information based on domain-spae§iources. A novel semantic
annotator, CONANN, is implemented for online matghof concepts defined by a
biomedical metathesaurus. CONANN uses a multi-l&itet based on both information
retrieval and shallow natural language processngrtiques. CONANN is evaluated
against a state-of-the-art biomedical annotatorgiie performance measures of time
(e.g. number of milliseconds per noun phrase) aadigion/recall of the resulting
concept matches. CONANN shows that annotation egpelformed online, rather than
offline, without a significant loss of precisiondarecall as compared to current offline
systems. The second area of study is Text Sumntanzahich is used as a way to
perform data reduction of clinical trial texts watill describing the main themes of a
biomedical document. The text summarization wonkngue in that it focuses
exclusively on summarizing biomedical full-text soes as opposed to abstracts, and also
exclusively uses domain-specific concepts, rathan terms, to identify important
information within a biomedical text. Two novel tesummarization algorithms are

implemented: one using a concept chaining methsddan existing work in lexical



Xii
chaining (BioChain), and the other using concesitritiution to match important
sentences between a source text and a generatetesyii-regDist). The BioChain and
FregDist summarizers are evaluated using the gydiailable ROUGE summary
evaluation tool. ROUGE compares n-gram co-occuggihetween a system summary

and one or more model summaries. The text sumntiatizavaluation shows that the two

approaches outperform nearly all of the existimgtbased approaches.






1. INTRODUCTION

The output of biomedical research is largely docutee as findings in the form
of literature written in free-form text format (Na&tic, Mima, Spasic, Ananiadou, &
Tsujii, 2002). The written texts are then accunadan large online databases made
readily accessible due to recent advances in sgterad communications. For example,
the PUBMED database provided by the United StatdgoNal Library of Medicine
contains over 16 million publications from over@Jgournals (United States National
Library of Medicine, 2006a). The United States Na#l Institutes of Health clinical
trials database contains information on over 13@&cal trials (United States National
Library of Medicine, 2005a). To use such resourpeagticing physicians and
biomedical researchers are faced with the taskazfting, reading and evaluating
relevant biomedical literature. For example, ongats must find the clinical trial
information related to their cancer specialty, aa# the study for its strength, and then
possibly incorporate the new study information ititeir patient treatment efforts
(Brooks & Sulimanoff, 2002), (Jaques, 2002). Thrgdanumber of clinical trials
conducted and the data produced by them make fibenation assimilation process time
consuming. This research builds several novel ggbres for semantic annotation and
text summarization, and is an effort to help redireetime to assimilate the textual data
resulting from large collections of literature retbiomedical domain by reducing the
amount of data that must be manually read and pseck In this research, document and
text are used interchangeably.

There are two complementary components to thisarese Semantic Annotation

and Text Summarization. Semantic Annotation, sameicalled concept matching in



the biomedical literature, is the process of maghrases within a source text to
distinct concepts defined by domain experts. Texh@arization is a method for
reducing the amount of text data which must be weaite retaining the key ideas of the
source text. A system for producing summaries ofmadical text using biomedical
concepts as the unit for identifying key informatis constructed. This system is
expected to allow physicians and researchers ttkiyuieview biomedical documents
without requiring a reading of the full source tekihe corpus of biomedical text used in
this research is from randomized controlled tnalsncology.

The first component, Semantic Annotation, takesn@dical source text as input
and then identifies domain concepts within the sedext. In semantic annotation, a
domain-specific thesaurus can be used to find quaceithin free-form texts. A
thesaurus is organized by concept, with one or mgmenymous words and/or phrases
expressing the concept. Using the thesaurus caceptds take on meaning rather than
being a surface feature. A benefit of semantic tatiam in the biomedical domain is
merging different ways of expressing the same qan@®ssibly using different words,

into a single concept.

A key issue with semantic annotation is the valigbof human language, which
makes the concept mapping process non-trivialekample, the biomedical concept
Lung Cancelhas many possible expressions, sucBGacer of the LungndPulmonary
Carcinoma While much research has been done in biomedérahstic annotation, its
use is largely designed for indexing documents dbasethe concepts identified in the
text. Such systems are designed to be used irflareanvironment, where speed is not

critical. In some systems, such as MetaMap (Aron2001a), efforts are made to find a



best-matching concept, while in other systems, siscimdexFinder (Zou, Chu, Morioka,
Leazer, & Kangarloo, 2003), all possible concepésfaund. The difference is usually
determined by the application in which the annotaiwill be used. For example, finding
all concepts within a source text is useful in skand retrieval indexing, while best-
matching annotations are useful in applicationg@gtext summarization. Existing
concept annotators are slow performing, preclutieg use in online applications,
where the text is annotated dynamically, rathen tatically. In typical search and
retrieval applications, static annotation is fi&ce neither the text nor the concept
resource is expected to change. However, in soplg&apons, dynamic annotation is
needed to allow for changing concept resourcesiseen texts. For example, a user may
want to find concept annotations from multiple ogpicresources, such as UMLS and
NCI Thesaurus. A text’s concept annotations inpfesence of changing concept
resources, requiring new or modified concept artiostg, can lead to concept annotation
maintenance issues (Dingli, Ciravegna, & Wilks, 20&n annotation system designed
for online use can avoid concept annotation maartea issues by providing annotations
dynamically (at runtime). However, in order to piderdynamic annotations, the system
must perform at a level of acceptable end-usemnresptime. Our research focuses on
constructing and evaluating a biomedical annotatach can be used in an online

environment with accuracy competitive with statetred-art offline annotators.

The second component of the research is Text Suiratian, where the use of
domain-specific concepts to find important inforraatwithin a text is examined. The
use of domain-specific concepts is hypothesizgutdoide a better method for

identifying important textual information than thee of terms, which have not been



annotated for meaning. Text summarization exprdssgsdeas using fewer sentences
than the source text. The benefit of having fevemtances while retaining key ideas is
potentially faster assimilation of content. The Igafatext summarization is to present a
subset of the source text which contains the nmgbrtant points within a source text
with minimal redundancy. The summary can then el Uy the reader to (a) make a
determination if the source text should be reaitsientirety, or (b) act as a surrogate for
the source text to obtain information without reeygihe entire source text. The use of
text summarization allows a user to get a sensleeotontent of a source text, or to know
its information content, without reading all serges within the source text. The
reduction of data afforded by text summarizatiacreases scale by (a) allowing users to
find relevant source texts more quickly, and (limdating only essential information
from many texts with reduced effort. Much work laé®ady been done by the text
summarization community, largely in the general donwith genres such as news.
While some research work has been done for donpesoHsc summarization in restricted
domains such as legal and medical, the work isnmtete. For example, the use of
domain-specific resources in text summarizationhsas vocabularies, ontologies and so
forth, is largely ignored.

It is sometimes the case an author’s abstractadadle as a summary of the
paper. For example, in the biomedical domain, ghield clinical trial results usually
have an abstract to supplement the full-text. Besavhere an abstract is available, any
system-generated summary competes with the authlessact. While system-generated

summaries may seem like a duplication of effortheaser is likely to have a unique



information need, different background, differerdtivations, and so forth, and a single
summary, even the author’'s own summary, does rdread this issue.

Our research implements an end-to-end system vehlei@medical source is first
annotated with biomedical concepts, the discoveoetept output is then directed into a
summarizer stage, and a finally a summary is géegtzased on a user-defined size.
Both the semantic annotation and resulting sumrasg\yenvisioned to be used in an
online environment, where expected response timekaer than in a state-of-the-art
offline system. Although our research is focusedhenbiomedical domain, the resulting
system is expected to be useful within other dosaihich have domain-specific
resources available.

The remainder of this chapter identifies the ctttions of our research, presents
some background on semantic annotation and textnsuization, and describes the

organization of this dissertation.

1.1 Research Questions

The goal of this research is to construct a systeperform semantic annotation
and summarization of biomedical texts which hasgoerance competitive with, or better
than, existing systems. The identification and efsgomain-specific concepts is used to
produce summaries. The methods developed, whilérieg input from domain
resources, are domain-independent, and could Hedpp other domains, such as
summarizing legal texts. The long-term result of tlesearch is to reduce the amount of
work required by practicing physicians and reseaixko assimilate new knowledge

from continuing advancements in biomedicine. Thsearch may also be helpful for



future researchers performing multiple-documentrsanization where concepts, rather
than terms, can reduce the variability of languaig@ng documents.

For the Semantic Annotation component, methodgédoforming faster
annotation of biomedical texts are examined. Tea id to improve the performance of
annotation so that it can be used in an onlinerenment. For the Text Summarization
component, concepts are used in place of terngetdify important areas within the
source text which should be extracted into a surpnidre idea is to determine if the use
of domain-specific concepts improves the perforreasfcsummarization. In addition,
since the research on the characteristics of biarakgxts is largely absent from
existing literature, two important characterisiiddiomedical texts are examined: (a)
finding an optimal size of a biomedical summaryléaist for randomized controlled
trials), and (b) finding the locations within textfiere sentences are extracted from when
constructing model summaries. Biomedical textsuarelly written with a definite
structure, such as Introductiel Methods> Results> Discussion> Appendix.
Knowing which sections human summarizers are likelgxtract sentences from is
expected to be useful in improving summarizatioriggenance by weighting sections
differently, instead of giving equal weight to aéictions.

The following research questions are addressdusirésearch:

1. Does the use of language modeling methods imprmreddical semantic

annotation performance over existing methods whgsdsimple word

metrics?



2. How well does a concept-based approach for biomaéthgt summarization

perform as opposed to term-based summarizatioroappes?

2.1. Does adapting a lexical chaining approach for uisle domain-specific
concepts improve text summarization performance existing

approaches?

3. Does the use of frequency distribution of termd/anconcepts in a source

text improve text summarization performance?

1.2 Contributions
The primary contributions of the research areodews:
1. An ontology-based biomedical annotator for anmogabiomedical texts
which can be used in an online environment is aeglgimplemented and

evaluated.

2. Single document text summarizers which use domameepts to identify
salient sentences within a source to produce aaaite summary are

designed, implemented and evaluated.

3. Several characteristics of biomedical texts, Spmadly concept distribution

and summary size, are studied.



1.3 Dissertation Organization

This dissertation is organized into six chaptets first chapter, this chapter,
introduces annotation and text summarization, dessthe contributions of our research,
and presents background information. Chapter 2iges\a literature review, broken
down into two major areas. The first area is semamnotation, and it is reviewed in the
large (i.e., not domain specific) as well as inb@medical domain. The second area is
text summarization, which has a rich history extegdback approximately 60 years.
Chapter 3 describes the approaches for producsggnantic annotation and text
summarization system for the biomedical domain.d&scribe the design of our phrase-
unit concept annotator called CONANN. CONANN itéraly filters out potential
matches of a source phrase with ontology concepamaes. Filtering is accomplished by
measuring the words in common between a sources@larzd ontology concept instances
using coverage (word overlap) and coherence (watdrp The final selection of a
concept instance is done using language modeliphm@se counting. The annotated
phrases of a source text are passed to a text sumemaWNe described two new methods
for using concepts to find the most important secgewith a text. The BioChain method
links related concepts together and then usedithiegest linkages to identify important
sentences. The FregDist method matches the fregulstcibution of a summary with
the frequency distribution of the source text. Adhg summarizer which combines both
approaches is also described. Chapter 4 discussevaluation methodology for
annotation and text summarization. The CONANN aatuotis evaluated using both
intrinsic and extrinsic evaluation approaches. @dtnimsic evaluation compares

CONANN'’s concept output to the concept output gatezt by a state-of-the-art concept



annotator. The extrinsic evaluation measures theotithe generated concept annotations
in a text-summarization task. Chapter 5 presemsdhults of the evaluation. We first
present the concept distribution and ideal sumreagy characteristics of the biomedical
texts within our corpus. The performance of CONADNSNg different filtering

combination and mapping methods is also presefteziresults of the performance of
BioChain, FregDist, and the hybrid summarizerspaiesented. In addition, the
performance of these summarizers is compared &ralesther publicly-available
summarizers. Significance testing of ROUGE scaedd0 described. Chapter 6

concludes and presents some areas for future work.

1.4 Background of Semantic Annotation

Semantic annotation is the process of identifyareydefined concepts and entities
within a text. One or more domain-specific resograee used to annotate the text with
the concepts and entities found. For example, Eigushows the annotation of a
biomedical sentence using the Unified Medical LaggiSystem (UMLS) (United States
National Library of Medicine, 2005c). The sentepbeases are shown as text within
rectangles, while the corresponding UMLS concepthvkthe text maps to is shown as
text contained in ovals. Directed lines indicatelationship between concepts.
Undirected lines indicate a link between a conoegtince and a concept. In Figure 1,
concept Myeloma is related to concepts_rogressive, CanceandHaematologic
Diseasé. Further, the concept{aematologic Disea$es related to Plasma Celf in
addition to Myeloma. From this relationship graph, it can be seen tha concept

{Myeloma is indirectly related to the concepPfasma Cell. The use of Semantic
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Annotation allows for such relationships to be digred in text, and so is more powerful

than the use of surface terms alone.

Multiple myeloma acancerof theplasma cellis ablood diseas#hich isprogressive

Ontology + Knowledge base @

; blood
e B &5
Myeloma

Plasma
. Cell
Progressive

progressive plasma cell

Figure 1: A graphical view of semantic annotatiém sentence. Ovals
represent biomedical concepts and rectangles mpuresstances of the
biomedical concepts from the sentence. Directesklindicate
relationships between the concepts, while undicelites link a concept
instance to a concept.

Once the text has been annotated with conceptsgtitence phrases have
meaning which is more easily processed by a mac¢hareraw text alone. There are two
expected advantages of using biomedical concemttations, rather than raw biomedical
text, in this research: (a) synonym merging, andgémantic filtering. Synonym merging

is the process of using synonyms identified byoaasimedical vocabularies and
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collapsing them into a single concept. This is inguat for identifying salient

information for text summarization. If only raw texere used, different expressions of
the same concept would be identified as distintties. For example, the phrakeart
attackcan be expressed in several ways, suclthearf attackcoronary attack
myocardial infarctiof. If raw text is used and the author used multgi@ressions,
these three phrases would be considered distimzte $eiteration is a strong component
of identifying important information within text ffarck Jones, 1999), it is better to
collapse these three synonymous phrases to a siogéept, such asyocardial
Infarction}, to help identify reiteration and thus the maspiortant parts of the text as
expressed by an author.

The second major use of annotations in this rebaario use them to filter out
concepts which are not important to a user of ansanzation system. Semantic filtering
allows customizing a summary for a user’s informatneed. For example, an
experienced physician may not need much backgrofadnation on a clinical trial, and
instead want to focus more heavily on the resultsraethodology of the clinical trial. In
this case, the physician can customize the sumtodiyer out qualitative concepts,
which express primarily opinion and background infation. The user can be presented
a list of concepts which are not important, as &slh list of concepts which are
important. One example filtering method is conaeeighting. In concept weighting, the
unimportant concepts selected by the user are inefyatveighted, while the important
concepts selected by the user are given increasgghtrover neutral or unimportant

concepts.
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1.5 Background of Text Summarization

While the result of the research work could be usesimmarize abstracts, the
goal is not to summarize abstracts (summarizingtimemary), but instead to use the full
source text to produce a summary. There are seneasbns for wanting to generate text
summaries from a full-text source even in the presef the author’s abstract:

1. There exists no ideal summary. An ideal sumrisadependent on each user,
including factors such as information need and dorbackground. An author’s abstract
is one view of an ideal summary, but users may \aHatnative summaries.

2. The abstract may be missing content from thetéut (Cohen & Hersh, 2005),
(National Institute of Health, 2005).

3. Customized summaries can be useful in questismxaring systems where
they provide personalized information. Such sumesahniave been described in the
literature asuser-focusedMani & Bloedorn, 1998) anduery-relevan{Carbonell &
Goldstein, 1998) summaries.

4. The use of automatic or semi-automatic summangration by commercial
abstract services may allow them to scale the nuwofiqgublished texts they can
evaluate.

5. The generation and evaluation of summaries alf@vevaluation of sentence
selection methods that may be useful for use irtirdocument summarization. The idea
is that if sentence selection methods do not wagk for single-document

summarization, it is unlikely they will identify iportant data across multiple documents.



13

Figures 2 and 3 below motivate the need for textraarization even in the
presence of the author's summary (the paper’'sadistiFigure 2 shows an abstract from
a biomedical text. While the text itself is relaly short (as compared to the original
source text), if the reader wishes to quickly krtbe outcome of the research described
in the abstract, the abstract must be read pgrbaltompletely, or skimmed at the very
least, to find the information. In contrast, Fig@rehows a summary which automatically

identified the result information and displayed it.

Adjuvant Chemotherapy for Adult Soft Tissue Sarcemfthe Extremities and Girdles:
Results of the Italian Randomized Cooperative Trial

Adjuvant chemotherapy for soft tissue sarcoma rgrowersial because previous trials
reported conflicting results. The present study designed with restricted selection criteria
and high dose-intensities of the two most activencbtherapeutic agents.

Patients and Methods: Patients between 18 and&5 wé age with grade 3 to 4 spindle-cell
sarcomas (primary diameter >= 5 cm or any sizerrentitumor) in extremities or girdles
were eligible. Stratification was by primary versasurrent tumors and by tumor diameter
greater than or equal to 10 cm versus less thamil@ne hundred four patients were
randomized, 51 to the control group and 53 to ithatinent group (five cycles of 4'-
epidoxorubicin 60 mg/m2 days 1 and 2 and ifosfamideg/m2 days 1 through 5, with
hydration, mesna, and granulocyte colony-stimu¢ptactor).

Results: After a median follow-up of 59 months,g@ients had relapsed and 48 died (28 and
20 in the treatment arm and 32 and 28 in the cbatro, respectively)The median disease-
free survival (DFS) was 48 monthsin the treatment group and 16 monthsin the control
group (P =.04); and the median overall survival (OS) was 75 monthsfor treated and 46
months for untreated patients (P = .03). For OS, the absolute benefit deriving from
chemotherapy was 13% at 2 years and increasedtcal @ years (P = .04).

Conclusion: Intensified adjuvant chemotherapy hadsitive impact on the DFS and OS of
patients with high risk extremity soft tissue sanas at a median follow-up of 59 months.
Therefore, our data favor an intensified treatmesimilar cases. Although cure is still
difficult to achieve, a significant delay in deashworthwhile, also considering the short
duration of treatment and the absence of toxictdeat

Figure 2: Sample biomedical document abstract (&cust al., 2001)
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The median disease-free survival (DFS) was 48 nsointthe treatment group and 16 month
in the control group (P = .04); and the median aNeurvival (OS) was 75 months for treate
and 46 months for untreated patients (P = .03).

o wn

Figure 3: Summarized version of the abstract shiowhgure 2
(Frustaci et al., 2001)

There are two different approaches for generatimgnsaries from text: extractive

and abstractive (Afantenos, Karkaletsis, & Stamatitgss, 2005). Thextractive
approach extracts sentences or parts of senteedasgtivn from text and uses them to
generate a summary. The extractive approach isids common way to perform
summarization, and is the method used in this reee&xtractive approaches for text
summarization usually follow a model of scoringtesces based on a set of features,
such as term frequency, keyphrase identificatiod,sentence location. A set of highest-
scoring sentences from the source text is usearto & final summary. The task of
sentence selection can be considered an informegtaeval task, where the set of all
sentences within a text are evaluated (scored)ttentighest scoring sentences are
selected as being the most relevant to a usertofae highest-scoring sentences in a text
are extracted, usingas an upper bound on the number of sentencesett.sEhe
extraction summarization task, then, is to iderdgifjninimal subset of sentences from the
source text which are relevant to the user andwmimimize redundancy. This research
uses the extractive approach.

The second and significantly more difficult apprioas calledabstractive summary
generation and involves generating summary text using natanguage processing and

generation techniqueBor example, the template method of abstractivensaim
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generatioruses a predefined template where the fields ineimplate are filled-in from
information contained in the source text. A differenethod for abstraction uses a
syntactical analysis of the source text to iderkdy components of each candidate

sentence, and this analysis is used to form netesees from existing sentences.

1.6 Background of Biomedical Concepts

One way to provide meaning to biomedical documenitsy creating ontologies,
and then linking information within each documemspecifications contained in the
ontology using a markup language (Berners-Lee, ldend Lassila, 2001). Ontologies
are conceptualizations of a domain that typically/r@presented using domain
vocabulary (Chandrasekaran, Josephson, & Benjah@®8). Automated semantic
annotation is the process of mapping instancetdada ontology (S. Handschuh, Staab,
& Volz, 2003), (Reeve & Han, 2006). The resultimpatations from the semantic
annotation processing are what provide the linkvbet information stored within a
document and the ontology (Berners-Lee et al., 2dA%his work, the annotations are
then used to identify important areas of a texthsas phrases, sentences, paragraphs, and
sections useful for generating a text summaryhéntiomedical domain, the National
Library of Medicine (http://www.nlm.nih.gov/) prodes resources for identifying
concepts and their relationships under the framkewbthe Unified Medical Language
System (UMLS) (United States National Library of dfi@ne, 2005c¢). UMLS contains
many sub-components, but three are used for thésareh: Metathesaurus, Semantic
Network and MetaMap Transfer.

The UMLS Metathesaurus contains concepts and redtwnstances of the

concepts, including a concept name and its synopaxisal variants, and translations
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(United States National Library of Medicine, 2006bhe Metathesaurus is derived from
over 100 different vocabulary sources resultinguar one million biomedical concepts.
Table 1 shows the example conckpiltiple Myelomataken from the Metathesaurus, and
displays several of the concept instances (i.eQmsymous words and phrases) associated
with the concept. The instances are derived frognvtbtabulary sources. The key idea is
that a single concept may have multiple ways ofidpeixpressed (instances). The

Metathesaurus organizes the concept instances.

Table 1: UMLS concept and its concept instances

Concept Name Concept Instances
Multiple Myeloma Multiple Myeloma
Myeloma

Plasma Cell Myeloma
Myelomatosis
Plasmacytic myeloma

The UMLS Semantic Network organizes the Metathesaaoncepts into
categories called semantic types (United StatemnltLibrary of Medicine, 2004).
There are currently 135 semantic types.

The MetaMap Transfer (MetaMap) application (Unigtdtes National Library of
Medicine, 2005b) maps biomedical text to concefused in the Metathesaurus as
follows. The text-to-concept mapping in the MetaMsggplication is done through a
natural language processing approach. Sentencéssardentified, and then noun
phrases are extracted from each sentence. MetaMapquls through several stages to

map a noun phrase to one or more concepts. Telant@of the phrase are generated,
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candidate concepts are generated, and a scoringgs@s done for each candidate
concept. The highest scoring concept is then sslead the concept for the phrase. It is
possible a noun phrase can map to more than oreeebrn this case, no disambiguation
step is performed, and MetaMap returns multiplecepts. Figure 4 shows an example of
MetaMap mapping of the phrapeotein kinase CK2 The output shows the phrase, the
concept candidates preceded by their score (“Mataddates”), and the final mapping

of the phrase (“Meta Mapping”). In the example réhare six candidate mappings,
shown in descending score order. The final mapfaikgs the highest scoring candidate,
shown as “Meta Candidate (1000)” in Figure 4. lsgsawhere a phrase cannot be
successfully disambiguated, it is possible for Mé&dp to generate a final mapping
consisting of more than one concept. Finally, Meaghhdicates the semantic type for
the selected concept, shown as a text descriptisguare brackets next to the concept

text description in Figure 4.

Phrase: "protein kinase CK2."
Meta Candidates (6)
1000 protein kinase CK2 (casein kinase II) [Amino Acid, Peptide, or Protein,Enzyme]
901 PROTEIN KINASE [Amino Acid, Peptide, or Protein,Enzyme]
827 Kinase (Phosphotransferases) [Amino Acid, Peptide, or Protein,Enzyme]
827 protein (Proteins) [Amino Acid, Peptide, or Protein,Biologically Active S
ubstance]
827 Protein NOS (Protein measurement) [Laboratory Procedure]
827 k2 [Laboratory Procedure]
Meta Mapping (1000)
1000 protein kinase (K2 (casein kinase II) [Awino Acid, Peptide, or Protein,Enzyme]

Figure 4. MetaMap Transfer mapping of the phrase
protein kinase CK2
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2. LITERATURE REVIEW
The review of literature is divided into four sects. The first two sections
describe semantic annotation. Domain-independenasigc annotation is first described
followed by semantic annotation for biomedical sexthe last two sections describe two
recent text summarization methods: lexical chaimhtgrms and term frequency. These
two methods are adapted in this research to usseptsirather than terms. In addition,
recent work in biomedical text summarization andsijion-answering systems is

presented.

2.1 Semantic Annotation

Semantic Annotation is a method for providing maehiinderstandable
information based on meaning. One way to providamrgy by creating ontologies, and
then linking information within a document to sgexations contained in the ontology
using a markup language (Berners-Lee et al., 2@xifplogies are conceptualizations of
a domain that typically are represented using domacabulary (Chandrasekaran et al.,
1999). Semantic annotation is the process of mgppstance data to an ontology.
Benefits of adding meaning to the Web include: gyeocessing using concept-
searching rather than keyword-searching (Berneesdtal., 2001); custom Web page
generation for the visually-impaired (Yesilada, ptar, Goble, & Stevens, 2004); using
information in different contexts, depending on tieeds and viewpoint of the user (Dill

et al., 2003); and question-answering (Kogut & Hedm2001).
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2.1.1 Semantic Annotation for General Text-basedubtents

Manual annotation can be done using tools sucleam8Btic Word (Tallis, 2003),
which provides an environment for authoring as \@slmarking up documents from
within a single interface. However, manual apprescsuffer from several drawbacks.
Human annotators can provide unreliable annotddomany reasons: complex ontology
schemas, unfamiliarity with subject material, anatiration, to name a few (Bayerl,
Lingen, Gut, & Paul, 2003). It is expensive to haueman annotators markup documents
(Cimiano, Handschuh, & Staab, 2004). A human anaotaay not consider using
multiple ontologies (Dingli et al., 2003). Documemind ontologies can change, requiring
new or modified markup, leading to document mangntenance issues (Dingli et al.,
2003). Finally, the volume of existing of existidgcuments on the Web can lead to an
overwhelming task for humans to manually compl&iesg@la & Blockeel, 2000). For all
these reasons, manual efforts have been idenéified“knowledge acquisition
bottleneck” (Maedche & Staab, 2001).

Semantic Annotation Platforms (SAPs) are systempddorming semi-
automatic semantic annotation. Semi-automatic systeather than completely
automatic systems, are used because it is noogsilge to automatically identify and
classify all entities within source documents witimplete accuracy (Popov et al., 2003).
There are many advantages of semi-automatic ammotatich as providing document
volume scalability by reducing or potentially elmating the human workload (Dill et al.,
2003), and providing annotation services wheresthece document is stored separately
from its corresponding annotations (Dill et al.03D SAPs vary in their architecture,

information extraction tools and methods, initiat@ogy, amount of manual work
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required to perform annotation, performance aneroshipporting features, such as
storage management of ontologies, knowledge basdsannotations. Some SAPs were
designed for a specific domain, but usually caadbegpted to fit new domains.

Figure 5 shows the general abstraction layer oARa.S he Application layer is
responsible for providing an end-user interfacth&oannotation services provided by a
SAP. Examples include facilities for (a) annotatendocument or document set and then
potentially confirming the annotations before cortimg them; (b) providing a query
interface for searching annotations; and (c) prioga user interface for configuring the
information extraction component. The Upper Integilayer is primarily the application
programming interface (API) layer. A set of prograatic interfaces are described in this
layer. Applications call the defined APIs in ordemperform actions on behalf of an
application. The APIs can be quite numerous, cogesinnotation, information
extraction, search, storage management, and mhaey mtovided services. The Upper
Interface APIs are designed to shield the appbeatirom changes in the Lower
Interface. The Lower Interface contains the acteahponents that perform work for an
application. The Upper Interface will remain cotesms to an application, but the Lower
Interface is expected to change based on the wdomponents used. For example, the
Information Extraction component may switch frorpadtern-based tool to a statistical
tool, and it is unlikely the programmatic interfase¢he same for both. The Upper
Interface implementation will need to change tooacmodate the various Lower
Interface components. Finally, the Storage Layelesigned to provide storage and
storage management facilities for storing long-telata such as annotations and

knowledge bases.
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Examples of existing annotation platforms inclucs@DAML (Kogut &
Holmes, 2001), Armadillo (Dingli et al., 2003), Mn{Wargas-Vera et al., 2002), MUSE
(Maynard, 2003), Ont-O-Mat (S. Handschuh, Staaki&vegna, 2002), and
SemTag/Seeker (Dill et al., 2003). The platformes@imarily distinguished by (a) the
features offered, (b) the information extractiontimoel used to find entities within
documents, and (c) whether or not they are extendteatures offered by SAPs include
ontology and knowledgebase management (storager®diaccess APIs, annotation
storage to allow multiple ontologies/annotations giecument, and information

extraction methods.

Application

Upper Interfaces

Lower interfaces ) ) )
Entity Entity Relation
Information Extractio Identification Identification

Storage

Document Domain Ontology &
Annotations Knowledgebase

Figure 5: General architecture of a semantic atioot@latform
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Semantic annotation requires an ontology in ordgrerform concept instance
mapping. Ontologies are usually architected usnwglk, such as upper and lower. The
upper ontology consists of general concepts, whadower ontology has a deeper
specialization of the upper ontology concepts (M=, Navigli, & Velardi, 2002).
Some semantic annotation platforms place the ressipility on the user for constructing
an initial ontology. Examples include MUSE (Mayna2003) and Ont-O-Mat (S.
Handschuh et al., 2002). Other platforms providendial ontology as part of their
development. The KIM platform provides an ontolagyled KIMO that is designed to
provide a minimal open-domain ontology, and is dase OpenCyc, WordNet,
DOLCHE and other upper-level resources (Popov.e2@03). KIMO is composed of
approximately 250 classes and 100 attributes datiaes, and the specialization of
classes is derived from an analysis of a corpwgenéral news (Popov et al., 2003). The
Seeker platform uses TAP, which is a shallow kndgédbase that contains information
about a broad range of popular culture subjectd) ag movies, sports, and so forth (Dill
et al., 2003). The TAP knowledgebase has abouD®Zddbels that are used to tag
instances found in documents. The MnM platform @skand-crafted ontology called
KMi (Knowledge Management Institute) (Vargas-Vetale, 2002). The AeroDAML
platform uses the commercial product Aerotext, atilizes an upper-level ontology
based on WordNet, while the lower-level ontologgsithe common knowledgebase of
AeroText (Kogut & Holmes, 2001). Armadillo providas example of a platform where
the initial ontology is very light weight, consisty of an address-book type of ontology
where members of a computer science departmendistevered and populate address

information, such as name, phone number, addredss@aforth (Dingli et al., 2003).
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2.1.1.1 Classification of Platforms

Current semantic annotation platforms use sevee#thods for information
extraction (IE) from Web documents. Figure 6 shawserarchical classification of
annotation platforms, and this classification carubed to organize the platforms
performing semantic annotation. While semantic gaman platforms have many
aspects, the information extraction approach ctigrersed to find entities within text has
the most impact on the effectiveness of the platfdfor this reason, the IE approach of
each platform is used to organize the platformssémantic platforms develop, it is

anticipated that the classification structure adhpt to newer approaches as well.

Multistrateqgy
Pattern-based Machine Learning-based
Rules - _
Patter Probabilistic Wrapper Inductio

-JAPE _
-HTML -Hidden Markov o
structure -Taxonomy Models -Linguistic
analysis label

matching -N-gram analysis -Structural

-Bayes classifier

Figure 6: Classification of semantic annotatiortfplans
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The top-level approach is multi-strategy, whichsuge&ombination of the lower
level approaches. A platform using a multi-stratagproach is able to adapt its IE
methods based on the text it is processing in dadebtain the best results. The multi-
strategy approach uses a high-level identificatibtext genre, and then executes the
appropriate IE methods. This is in contrast to Ielegel approaches using newer IE
algorithms such as I?RCiravegna, 2001) in platforms such as KIM (Popbale 2003),
which are able to use machine-learning to perfari® induction using both structural
and linguistic information. No semantic annotatmatform to date is using a complete
multi-strategy approach incorporating both patend machine-learning approaches. The
MUSE system comes the closest by using text fesiamd then conditionally executing
rules based on the text features (Maynard, 2003).

The two primary lower levels are pattern-based owthand machine-learning
methods. Pattern-based methods are systems compfaseahual rules. The rules are
typically hand-crafted rules that define how easittan be found in text (Maynard,
2003). Examples of such systems are AeroDAML (Kdyttolmes, 2001), MUSE
(Maynard, 2003) and SemTag/Seeker (Dill et al. 3}0A limiting factor on the
scalability of such systems is that the manual geleeration process can be maintenance
intensive. Each time a data source changes, thegfireed rules may also need to be
changed. Machine-learning approaches use pre-aedaaamples to learn how to
identify entities. Rules are learned automaticallyd this type of rule learning is
currently used in platforms using the Amilcare kap{University of Sheffield, 2002),
which implements the L4algorithm (Ciravegna, 2001). Examples of systegisgirule

learning are Ont-O-Mat (S. Handschuh et al., 2@0@2) MnM (Vargas-Vera et al., 2002).
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Hidden Markov Model (HMM) is an example of anotheachine-learning approach that
can also be used. HMM is not currently being usedry of the semantic annotation

platforms as an information extraction method.

2.1.1.1.1 Pattern Discovery

Patterns are also a widely-used technique in secnambotation platforms.
Pattern discovery works by taking a few seed samfileding entities based on the
patterns, expanding the seed samples with pathenmsthe new entities found, and
repeating the process until no more instancesocanedf or the user stops the iterative
process (Brin, 1998). Patterns can exploit knangulistic patterns, such as Hearst
patterns (Hearst, 1992), to find entities, as isedim the Ont-O-Mat using PANKOW
platform (Cimiano et al., 2004). The Ont-O-Mat fdain has been updated to replace the
Amilcare component with a pattern-based comporeatied PANKOW. The Ont-O-Mat
platform (S. Handschuh et al., 2002) demonstrétesisefulness of an extensible
semantic annotation platform, where componentseareplaced without losing or
duplicating the features already available (Cimiahal., 2004). The Armadillo platform
is also example of a platform that uses a smalbfsigtitial seeds to begin a pattern

discovery process.

2.1.1.1.2 Rules
Rules can be manually-generated, as MUSE (May2&@B) does with the JAPE
grammar (Cunningham, Maynard, & Tablan, 2000) heytcan be generated with

machine-learning techniques. In this case, rulesansidered the rules that are a subset
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of the pattern classification in Figure 6. The eliince is the rules are initially manually
specified by the user. Rules can take many formthd Seeker platform, the rules are
labels (Dill et al., 2003). SemTag, the semantygilag component of Seeker, uses the
labels stored in the knowledgebase to find instaimé®ntology concepts, and then uses
statistical likelihood to determine where in theadogy tree an instance is most likely to
be contained (Dill et al., 2003). The process isaompletely automatic, however, as an
initial set of training data must be provided. Ehghors report 700 entries as the initial
size of the training set (Dill et al., 2003). hetMUSE platform, rules are written using
the JAPE grammar (Maynard, 2003). The MUSE platferian interesting rule-based
system because it can adapt the rules used iy afdittification depending on text
attributes, such as language, document type, dauusoerce, and so forth (Maynard,
2003). The result is a rule-based platform thatgoers competitively with machine-

learning based platforms (Maynard, 2003).

2.1.1.1.3 Machine Learning

Platforms based on machine learning are dividedgusie machine-learning
method, which are currently two approaches: prdisticiand wrapper induction. The
more common of the two approaches is wrapper inaluck is anticipated that future
research in semantic annotation will take advantdgeachine-learning based
approaches, because they help to relieve the maffodi required in building rules,
which is the primary drawback of pattern-based epgines. For example, the Rainbow
system is a domain-specific annotation system ogeel for aggregating product
information from multiple web sites, and then pdirg search over the aggregated

information (Svab Ondrej, Labsky Martin, Svatek ¥aj, 2004).
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2.1.1.1.3.1 Probabilistic

Probabilistic methods use algorithms such as Hiddarkov Models (HMMs) to
perform information extraction. For example, the D¥WOLD tool (Borkar,
Deshmukhy, & Sarawagiz, 2001) uses HMMs for infaiioraextraction, but it has not
yet been integrated into a semantic annotatiorigoiat The Seeker platform uses a
probabilistic approach to help eliminate mis-clsation caused by its simple tagging
approach within the SemTag component (Dill et2003). SemTag has a pool of
approximately 72,000 labels that it uses to fintitgmstances within text. It is likely
that some of the labels will be duplicated but eored in different parts of the ontology.
SemTag incorporates an algorithm as part of itgitegprocess to determine the
probability of a particular label belonging to atpaular class in the ontology. In the
Rainbow project, where product catalog informafim@m a specific domain is extracted
from multiple sites, the information extraction pon project uses Hidden Markov
Models as its primary method. While the performaisagompetitive with other
approaches, the resulting system developed frombRai has not yet been incorporated
into a general purpose semantic annotation platf@dtme most likely reason is that the

generated model is domain-specific (Svab Ondrdyskg Martin, Svatek Vojtech, 2004).

2.1.1.1.3.2 Wrapper Induction

A wrapper is a function from a page to the setupfds it contains (Kushmerick,
Weld, & Doorenbos, 1997). Wrappers are used whepeatable structure exists to
extract information from. Many web sites have paggserated using from a back-end

database, and the pages generated follow a comamidte. The purpose of wrappers is
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to reverse the page generation process in ordetrieve the original database tuples.
Wrappers can be hand-crafted, or they can be ldak@nual wrappers require the user
to mark areas of interest within a document. Thehime can then extract entities from
documents with a similar structural format as trenoally marked-up document
(Vargas-Vera et al., 2002). Kushmerick (1997) dadia method for performing wrapper
induction, where the wrappers are automaticallynled from example query responses
from a data source. Wrappers are most effectiventie data is presented in a structured
format, such as product catalogs (Dingli et alQ30

Wrappers can also be linguistic-based, where tla@par induction process
discovers linguistic rules for identifying entiti@gargas-Vera et al., 2002). Amilcare
implements the LPalgorithm (Ciravegna, 2001), which performs ruldtiction using
both linguistic and structural information (Ciraveg 2001). It is intended to provide a
combination of IE approaches such as wrapper inolu¢Kushmerick et al., 1997) and
linguistic approaches from the natural languagegssing community. The Amilcare
toolkit is used by several platforms, such as MMdr@as-Vera et al., 2002), and Ont-O-

Mat (S. Handschuh et al., 2002).

2.1.1.1.4 Multi-strategy

A multi-strategy approach uses a combination ol im&chine-learning and
pattern-based approaches. No surveyed SAP usesulliestrategy approach. However,
this approach could be used by a platform whiclptsdiés processing based on the
document genre or specific text features. Suchtaagaprocessing would apply the most
effective processing for each type of document. dibsest SAP that performs adaptive

processing is the MUSE system (Maynard, 2003). MUS&S a pipeline approach to
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identify text features that can be used to perfoomditional processing. MUSE uses the
JAPE grammar (Cunningham et al., 2000) to defihesrto perform semantic annotation,
and the JAPE rules are fire conditionally, basedeshfeatures. The conditional
processing approach used by MUSE makes it cometitith machine-learning based
approaches (Maynard, 2003).

Table 2 shows the author-reported performance bws platforms, with the
exception of AeroDAML, Ont-O-Mat using Amilcare aB&mTag, whose authors did
not provide complete performance information. $tendard measures of Precision,
Recall, and F-measure, taken from the informatetnaval field, were used by the
remaining SAP authors in determining annotatioraiveness. In the general definition
of recall and precision shown beloagcurateandinaccuraterefer to annotations
generated semi-automatically by a SAP, whllerefers to all annotations generated by a

human annotator.

accurate
all

Annotation Recalk

accurate
accurate + inaccurate

Annotation PrecisiorF

F-measure is the harmonic mean of precision aralréde highest performing

machine learning-based platform is MnM. For pateased platforms, MUSE is best.
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The worst performing is Ont-O-Mat using PANKOW. PRAW is a recent effort to use
unsupervised learning in a pattern-based systewmh, p@nformance improvements are

expected as the system develops further (Cimiaab,e2004).

Table 2: Semantic annotation platform informatiatra&ction methods and
performance measurements

Platform IE Method Precision Recall F-Measure

Armadillo Pattern Discovery 91 74 87
KIM Manual Rules 86 82 84
MnM Wrapper Induction 95 90 n/a
MUSE Manual Rules 93 92 93
Ont-O-Mat using Pattern Discovery 65 28 25
PANKOW

SemTag Semi-automatic Rules 82 n/a n/a

Semantic Annotation Platforms were developed toipgeoa level of automation
to the semantic identification of text within docents, and to also overcome the
limitations of manual annotation, such as annotatotivation and domain knowledge
(Bayerl et al., 2003), changing and multiple ongi¢s, and providing multiple
perspectives (Dill et al., 2003).

Several semantic annotation platforms currentlgtegistinguished primarily by
their annotation method, as that component haktgest impact on the effectiveness of
semantic annotation. The two primary approachepaitern-based and machine
learning-based. Machine learning algorithms ofteriggm more effectively than pattern-
based methods, but the MUSE system shows thaedagded system using conditional

processing can perform as well as a machine leggystem (Maynard, 2003).
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Applications making use of annotations generateddogantic annotation
platforms are beginning to appear. These applicataze information retrieval by
semantic entity rather than by keyword, custom wa@e generation based on different

user needs and perspectives, question-answeritensy;sand visualization of a domain.

2.1.2 Semantic Annotation for Biomedical Text-baBetuments

Most work in semantic annotation for biomedicalttex performed to support
semantic indexing/retrieval and data mining of béaical texts (Aronson, 2001a).
Concepts are identified in the text and then indexdsers can then retrieve the
biomedical texts using the biomedical concept rathan searching by terms. Indexing
biomedical text can be done in an offline mode.r&he no requirement to index a text
while the user is waiting for a response. Indexiegt is also primarily interested in
finding all possible concepts within a text. Foample, the phradeing cancercan map
to three concepts:lyng, cancer, lung cancgr Some biomedical annotation systems,
such as MetaMap (Aronson, 2001a), find a singlé medch for phrases within a source
text in order to understand the author’s intentidree examplelung cancemaps to the
single concept lung cancef rather than the three distinct concepts listedvab The
example phrase is describing the single concet damcer. If the two terms were split
and mapped to two different conceptlng} and {cance} the meaning would change.
Instead of the single concegufig cancef the meaning would change to lung and any
type of cancer. While most of the work identifiedré has been designed for semantic
indexing, the methods used to find concepts in@otext, as well as the methods used to

evaluate the resulting system, are important tevev
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2.1.2.1 General Approach
A common approach to most systems is to use tleviog method:

1. Construct a unit of analysis by generating subsietgords in the source
text (e.g., phrase, sentence).

2. (Optional) Normalize the source text unit using UM({National Library
of Medicine, United States, 2006b) by (a) remopogsessives, (b)
replacing punctuation with spaces, (c) removing stords, (d)
converting words to lower-case, (e) breaking angtimto constituent
words, and (f) sorting words into alphabetical orde

3. For each word in the input phrase, build a setllafancepts containing
the word.

4. Find the intersection of the concept sets.

5. (Optional) Find the best matching concept basethertommon word

membership between the source text and concept text

The unit of analysis is usually a phrase. Noun ghiae typically used because
they have more content information (Elkin et a@88). Other unit of analysis include
sentences (W. R. Hersh & Greenes, 1990), and urestderms (Zou et al., 2003). Each
unit of analysis has pros and cons. Phrases logexdoal value when a single concept is
spread across multiple phrases (P. Nadkarni, Gh&mandt, 2001), (Zou et al., 2003).
Sentences overcome the loss of context when usirages, but suffer from several new

problems (P. Nadkarni et al., 2001): (a) findingald concepts when using all
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permutations of words in the sentence, and (besiare words are in a sentence than in
a phrase, concept identification becomes more ctatipoally complex. It is also
possible to eliminate natural language processmbtieeat the entire text as a set of
independent terms. The IndexFinder system (Zol,2@03) is an example of this
approach, which overcomes the computational limoitat of the sentence approach. A
problem with this approach is that concept canediriked back to their source (e.g.,
phrase or sentence), since the words are permuteaghout the text. Another problem
is the over-generation of concepts, which the asthontrol with various filters, such as
semantic types and term ranges. The unit of arsafgsieach of the reviewed systems, as
well as the method used to identify the unit oflgsig, is shown in Table 3. Table 4
identifies the methods used to score candidatesphra

Four types of matches between the terms of a saesteand UMLS concept
phrase have been defined in the literature (Aron$886):

- None there is no match of terms.

- Simple there is an exact match between the terms inetkteof the source and

the UMLS concept text.

- Partial: one or more terms do not match exactly.

- Complex the original source phrase is divided into twonwore sets of terms

which are then mapped to distinct concepts.

The most common types of matches are Simple antcaPaihe last column in
Table 3 lists for each system whether the systgpats Simple, Partial or both.

Typically the match types form a simple hierarchl.systems support None and
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Simple. Systems which support Partial also supgdorte and Simple, and systems
supporting Complex support None, Simple, and Ratavell.

The identification of a phrase is typically donéngsnatural language processing
(NLP), where a part-of-speech tagger is first exetwver a sentence, and then using
parts of speech to build a noun phrase. Other appes include using NLP Heuristics
which do not use strict NLP processing (P. M. Nadkd 997), moving window where
all combinations of a sentence words are genetatbdild a phrase (Wollersheim,

Rahayu, & Reeve, 2002), and using pre-defined blexksizes (W. R. Hersh & Greenes,

1990).

Table 3: Attributes of several biomedical annotasgstems

: Phrase Mapping

System nglgis Identification

Method
SAPHIRE Sentence Text block Simple, Partial
(W. R. Hersh, 1990)
MetaMap Transfer Phrase NLP Simple, Partial,
(Aronson, 1996, 2001) Complex
SENSE Phrase User-specified Simple
(Zieman & Bleich, 1997) Query
Concept Locator Phrase NLP Heuristics Simple, Partial
(P. Nadkarni et al., 2001)
Dynamic Taxonomy Phrase Moving Window | Simple
(Wollersheim et al., 2002)
PhraseX Phrase NLP Simple
(Srinivasan et al., 2002)
KnowledgeMap NLP Simple, Partial
(J. C. Denny et al., 2003) | Phrase
IndexFinder Unordered Al \;V%r.ds’ Simple, Partial
(Zou et al., 2003) Terms excluding stop

words
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Table 4: Phrase scoring methods of several biorakdimotation systems

System

Phrase Scoring Method

SAPHIRE
(W. R. Hersh, 1990)

Combines measures of term overlap, term proximity
and length of term matches

MetaMap Transfer
(Aronson, 1996, 2001)

Combines several measures:

Centrality— is source phrase head term used in con
phrase

Variation— how far the source phrase’s term variant
from the concept phrase’s term

cept

S

Coverage- overlap between source phrase and congcept

phrase terms, ignoring gaps
Coherence- find term sequence overlaps between
source phrase and concept phrase

SENSE
(Zieman & Bleich, 1997)

Translates source and concept phrase to low-level
semantic factors, then performs exact matchingef t
semantic factors

Concept Locator
(P. Nadkarni et al., 2001)

Sub-divide phrase & look for exact match

Dynamic Taxonomy
(Wollersheim et al., 2002)

Normalize source phrase using UMLS tools; find éx
match

acC

PhraseX
(Srinivasan et al., 2002)

Exact match

KnowledgeMap
(J. C. Denny et al., 2003)

Exact match, followed by variant-generation and re-
match

IndexFinder
(Zou et al., 2003)

Find all matching words, regardless of location

2.1.2.2 Biomedical Semantic Annotation Platforms

Multiple systems have been previously built to iempént various ways to

perform concept annotation of biomedical textshimfollowing subsections, several

existing systems which perform mapping from a seutext to UMLS concepts are

reviewed. The focus is on the algorithmic approaefaJuation method, and failure

analysis, when provided, for each system.
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2.1.2.2.1 Concept Locator

The Concept Locator (P. Nadkarni et al., 2001)esystises a phrase-based
approach to identify concepts for indexing andiegtl.

Algorithm Input phrases from the source text are identifisitig the IBM
Intelligent Text Miner’s Feature Extraction Tooloept Locator uses a subset of
UMLS. The subset removes redundant concepts, ctsaapelated to clinical medicine,
concepts having eight or more terms, and suppiessyponyms (synonyms which result
in ambiguity, such asomplicationsbeing a synonym d€omplications Specific to
Antepartum or PostpartuifAronson, 2001a)). To match concepts to the ipbuase, the
algorithm steps are as follows: 1. The input phiadist stripped of stop words and
words which do not appear in the UMLS. Any resigtphrase over five words is
rejected. 2. An exact match of concept words toitighrase words is then attempted by
using all words in the input phrase to match atla@pts having the same set of words,
regardless of word order. If the match results apping the input phrase to a distinct
concept, the concept is output and the mappingighgo stops. 3. If no exact match is
found, two cases are handled. In the first caplrase consists of a single word. If the
word is defined as ambiguous by UMLS, no furthetahimg is attempted. In the second
case, a phrase consists of two or more words. 8ibsw/ords in the phrase matching is
performed by finding complete concept word matdbesll combinations of wordsN-
1,N-2,...2} where N is the total number of words in g#wirce phrase and the word
subset concept matching results in a single distioecept. Words which are not
matched are sent back to algorithm step #2. I6theset matching does not result in any

concept matches, individual words in the input parare matched to single-word
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concepts. 4. If an input phrase from step 2 or &h&s several concepts, concept
disambiguation is performed by stemming both thedsan the concept and the input
phrase, and then comparing each for an exact noattle stemmed words. The
disambiguation step is on a best-effort basis;ifhat is possible for disambiguation to
fail and still result in mapping an input phrasertoltiple concepts.

Evaluation A manual evaluation of the concept mapping outpas performed
using a corpus of 24 biomedical documents (12 e&discharge summaries and surgery
notes). A domain expert manually identified UMLShcepts in the corpus texts, and then
compared the Concept Locator concept mappingsmaraially-annotated corpus. It was
found Concept Locator matched concepts correctly 3% of the phrases.

Failure Analysis The authors identify three categories of coneeapping
failures: (a) use of noun phrases, (b) UMLS contand (c) matching algorithm. The use
of noun phrases cannot locate concepts spreadsagror more noun phrases, resulting
in matching two or more concepts rather than aiSpetngle concept. Also, spelling,
grammatical errors, and proper names can confuseahéanguage parsers. UMLS
content influences performance because it is indet@mpUMLS does not list all possible
term variations, may have missing biomedical cotssegnd has redundant concepts. The
matching algorithm has built-in limitations, suchfeve-word maximum phrase length,

which causes some phrases not to be mapped.
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2.1.2.2.2 Dynamic Taxonomy

The Dynamic Taxonomy system (Wollersheim et alQ2Z)@vas designed to
automate the construction of indexes to be combividgdontologies for biomedical text
retrieval.

Algorithm The Dynamic Taxonomy (DT) uses two different nogkh for
extracting phrase: NLP and moving window. The Nppraach uses part-of-speech
taggers to construct phrases. DT studied threeréifit part-of-speech taggers. The
moving window approach is an algorithm the autlpropose which produces input
phrases by taking a combinationdtonsecutive words. A word is considered to be a
text string with more than three characters. Thbams studied window sizes b1 to
6. UMLS concept matching was performed by normagjzhe input phrase text using the
UMLS lexical tool LVG (National Library of MedicindJnited States, 2006b). The
UMLS concept phrase list is then scanned to finéyact match with the normalized
input phrase.

Evaluation The DT system was evaluated by first having mao expert
identify all possible concepts found in a six-pagemedical text having 2,982 words.
The domain expert’'s annotations were then compagathst the output of the DT
matching process. Nine variations of the systemewealuated based on the phrase
selection method used: three variations used pgaap@ech taggers, and six variations
used sliding window sizes of one to six words. Rien and recall were measured. The
best-performing variation using part-of-speech tagdad a precision of 28% and recall
of 19.5%. The recall for the six variations usitiding windows was approximately 11%

while precision ranged from approximately 47% t&61
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Failure Analysis The authors believe that UMLS contains words Wido not
contain much medical content, and therefore if elated would result in better
precision/recall scores by eliminating false pesitmappings. In addition, they found
that the domain expert made maximum use of theximaled in doing so suggested
multiple correct concepts for a single phrase. Miodtiple correct concepts identified by
the domain expert went from highly-general concéptsighly-specific, and often did
not include words from the original source texhdfly, the authors suggested using

meaning from previous paragraphs to identify megummnsubsequent paragraphs.

2.1.2.2.3 KnowledgeMap

The KnowledgeMap system (J. C. Denny, Irani, Welmithers, & Spickard,
2003) is designed to identify concepts in biomedeckcational texts for indexing.

Algorithm KnowledgeMap’s concept identification componenkmown as
KnowledgeMap Concept Identifier (KMCI) and consistghree phases: sentence
identification, concept identification, and concdambiguation. Sentence and noun
phrase identification is done by using a natunadjieage parser. Concept identification is
done by taking a noun phrase and finding a setME® concepts which match the noun
phrase. If no concept match is found, then variahthe terms in the noun phrase are
generated and the matching process retried. Nesmoy phrases linked by grammar
(such as conjunctions and prepositions) are ateipt match concepts with the current
noun phrase. This overcomes the phrase-based prablelentifying concepts occurring
over two or more noun phrases. In addition, KMl distribute modifying adjectives.

For example, “large and small intestine” is coneértio “large intestine and small
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intestine” (J. C. Denny et al., 2003). If multimencepts for a phrase are located,
disambiguation is attempted. Two resources are tospdrform disambiguation. The
first resource is an externally-maintained listohcept co-occurrences which occur in
MEDLINE abstracts. The second resource is a dynéistiof concepts with an exact
match to a source text noun phrase. Disambigu#&iperformed by discarding concepts
which are not similar to either the text’s dynaist of exact-match concepts or which
do not co-occur with concepts in MEDLINE abstracts.

Evaluation Evaluation of KnowledgeMap was done by first imaviwo domain
experts manually annotate five biomedical educatitexts with important terms and
phrases. Each text was then split into its compbsentences, and each sentence was
then submitted to KMCI and MetaMap, a state-of-dheconcept matching system
produced by the National Library of Medicine (seet®ns 2.1.2.2.5 and 4.1.2.2.3). The
domain experts then determined if the concepthidentified terms and phrases were
accurate or not. Precision and recall are the atialn measures. Recall is defined as the
number of important terms and phrases identifieeciBion is defined as the number of
correctly identified concepts. The recall is meaduat 86% and precision at 92%, which
outperforms MetaMap, which has a recall of 81% ampdecision of 89% (J. C. Denny,
Smithers, Miller, & Spickard, 2003).

Failure Analysis The authors identified nine primary reasond&iure. The
biggest failure of concept matching (62% of faik)raen KMCI is the lack of a
corresponding concept in UMLS. Other sources d@ifaiinclude
acronym/abbreviation/hyphen handling, and overmatciOvermatching occurs when

no exact match exists between the input phraséJMidS phrases, and additional words
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in UMLS concept phrases are used to find a matth tie input phrase. The
disambiguation stage was responsible for only 2%aibires, while accounting for 18%

of successful matches.

2.1.2.2.4 IndexFinder

IndexFinder (Zou et al., 2003) is a concept maiglsiystem designed for real-
time indexing applications.

Algorithm IndexFinder uses a series of in-memory tablecsitres to find all
possible concepts by using all combinations of wondthe text. IndexFinder treats the
terms within a text independently regardless otar@he terms in a text are first
normalized by (a) lowercasing them, (b) removingnown acronyms/abbreviations,
stop terms, and terms unknown to UMLS, and (c) nmappemaining terms to their base
form. Next, for each unique term, all UMLS concpptases containing the term are
retrieved. Each retrieved phrase maintains itstteagd the count of terms matched so
far. After all terms have been evaluated, theee&u phrases are then evaluated based on
their counts. Concepts are extracted for indexihgn& concept phrases have all
matching terms with the source phrase.

Evaluation The authors used a corpus of 5,783 patient repotdling 10.8MB in
size and report a text processing speed of 42.8#¢Bfed. No evaluation was reported on
the accuracy of the concepts extracted, althoughn@s planned to evaluate the number
of false positives and false negatives.

Failure Analysis No failure analysis was reported. However, dbeffs are

available to restrict the output. The filters foamstwo aspects: (a) restricting the
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location of text, and (b) restricting the numbercohcepts generated. In order to generate
concepts based on smaller units (i.e., not thedul), the term length can be restricted to
less than six terms or less than 11 terms, asasdll terms. In addition, the range filter
restricts terms to a certain distance, such atetems. Terms outside of the range are not
counted in concept matching. The effect is to indiely concepts occurring with terms a
certain distance from each other. To restrict teegation of concepts, concept subsets
can be removed if they are contained within a lacgacept. In addition, concepts can be

included only if they appear within certain UMLSsntic types.

2.1.2.2.5 MetaMap

MetaMap (Aronson, 2001a) is a concept matchingesysiroduced by the
National Library of Medicine. MetaMap is consideedtate-of-the-art system for
concept matching (J. C. Denny et al., 2003). MetaMas originally developed to
support indexing applications, but has also beed us data mining, decision support,
and patient record applications.

Algorithm  The MetaMap algorithm consists of five steparsihg of the source
text by a natural language parser is first dofetm noun phrases. Variant generation
on each noun phrase is done to find a term’s aonsngbbreviations, synonyms,
inflectional and spelling variants. UMLS conceptgdes containing the term or its
variants are then identified. Each concept phraglean evaluated to find the concept
phrase which best matches the noun phrase frosotiree text. Concept phrase
evaluation uses four metrics to measure similavitit a source phrase: centrality,

variation, coverage, and cohesiveness (Aronsorf)1@®ntrality measures if the phrase
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head term is used in the concept phrase. Vari&giardistance value that determines how
far the term variant is from the term, based onvéimeant type. Coverage measures how
much the terms between the concept phrase andesooun phrase overlap, ignoring
term gaps. Cohesiveness measures similarly to ageebut factors in sequences of
terms which co-occur in the concept phrase andahiece noun phrase. The four scores
are computed into a weighted average. The covemage&ohesiveness scores are
weighted twice as heavily as centrality and vaoiatiThe final stage forms a final
mapping of the source text, which may result in piiag a source text into one or more
concepts. The final mappings are shown on a sé¢&léa1000, with 1000 being an exact
mapping. No explicit disambiguation step is perfedn

Evaluation Several evaluations of MetaMap have been perfdrtoelate. The
National Library of Medicine (NLM) performed a fare analysis of MetaMap by using a
short evaluation (Divita, Tse, & Roth, 2004). Farenotators without domain expertise
annotated two documents from genetic informatiorb\&fee. Two documents were
chosen as the evaluation corpus size due to (dabloe intensive activity of annotating
documents, and (b) mediating conflicting concepppirags between annotators. The two
documents were processed by MetaMap and the Metabtagept output was then
compared to the manually-generated annotationsrédadl score for the two documents
was measured at 53%; precision was not calculated.

The University of Washington (UW) also performedevaluation of MetaMap
(Pratt & Yetisgen-Yildiz, 2003). They used six damexperts to identify concepts

within a corpus of 60 texts. The study used prenisind recall as measures, reporting a



44

recall of 53% for exact matches and 93% for pariatches. Precision is reported as
28% for exact matches and 55% for partial matches.

Failure Analysis The NLM and UW evaluations also concluded witfaiture
analysis. The NLM study identified thirteen souroésailure. The most common failures
resulted from (a) needing implicit knowledge to naaierm, (b) the use of broader
concepts by annotators because the UMLS Metathes@&imcomplete, and (c) co-
reference resolution. The UW study identified foypes of failures: incorrect splitting of
a noun phrase, concept ranking and identificatzled, and noun phrase breaking which

changed the meaning of the phrase.

2.1.2.2.6 PhraseX

The PhraseX program performs noun extraction (Matitibrary of Medicine,
United States, 2004). A study of UMLS phrases inMBENE abstracts used the output
of PhraseX to perform simple concept matching (@asan, Rindflesch, Hole, Aronson,
& Mork, 2002). A newer application uses PhraseXxa asmponent of a larger biomedical
text indexing application (National Library of Methe, United States, 2006a).

Algorithm Noun phrase identification is done by first texgga sentence’s words
with their part-of-speech, and then using the bamiord method (Tersmette, Scott,
Moore, Matheson, & Miller, 1988) to delimit a phea$n this case, tagger output delimits
a phrase based on its part-of-speech. For examplkerb ends one phrase and begins
another. PhraseX defines three types of succegsiveiplex phrases: (a) simp — phrases
with a head noun, (b) macro — phrases with a prepodo the right, and (c) mega —

using a finite word to divide the sentence into ptwases: one phrase before the verb
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and one phrase after the verb. Once a phrasensfidd, the mapping is done in one of
three ways: (a) exact match, (b) exact match weibvel casing done to all terms in the
phrase, and (c) exact matching done after UMLS abmattion (lower casing, possessive
removal, inflectional variation, and term sortiagnong others).

Evaluation The PhraseX evaluation was performed by downtaadil
MEDLINE abstracts from PubMed as of the Fall of 200he noun phrases were
extracted resulting in approximately 175 millionique phrases. The authors report that
63% of the phrases were simp phrases, 16% wereomacases, and 21% were mega
phrases. Each unique phrase was then attemptedn@pped with one of the three
matching methods. The result is 6.5% for exact m&2.5% for lower case match, and
30% for normalized match.

Failure Analysis Five types of failures were identified.

1. The UMLS Metathesaurus contains strings which ateuseful for
mapping. Examples are long descriptive stringssindgs containing
codes for what are known as Logical Observatiopstifiers, Names and
Codes (LOINC).

2. Syntactic analysis of text cannot address ambiglug/to grammar and
writing style.

3. Trade names are not always included in the UMLSaliheisaurus.

4. Conservative constraints on the definition of a rmghrase.

5. There were exact matches only; partial matches exrkided.
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2.1.2.2.7 SAPHIRE

The SAPHIRE system (W. R. Hersh & Greenes, 1993 ariginally developed
to support biomedical text indexing, but was lateed to support other applications, such
as extraction of concepts from patient medical isgdW. R. Hersh & Donohoe, 1998).

Algorithm The original SAPHIRE algorithm is substantiadiyjferent from the
current version. The original algorithm is basedsbitt pattern matching. All terms in
the source text phrase must be present and irathe srder as the UMLS phrase for a
successful match (W. R. Hersh & Greenes, 1990).Idtest algorithm (W. Hersh &
Leone, 1995) relaxes the strict requirements alogvalfor partial matches and out of
sequence terms. The algorithm takes a sourcentéxeiform of a phrase or sentence as
input and extracts individual terms using the lgaword method (Tersmette et al.,
1988). Barrier words are high-frequency words cdergd to be common. For each term
found, a list of UMLS concepts containing the wixdetrieved. UMLS concepts having
high-frequency terms must also have low frequerons$ as well or the concepts are
excluded. This is to eliminate concepts contairavg content terms. The individual term
concept lists are merged, and any concept havaggthan one-half the number of terms
from the input text is excluded. The resulting@det)MLS concepts is then scored. The
highest score occurs if all terms in the concepeap in the source text. Term order is
ignored. If there is no exact term match, a werghtormula scores the concept based on
proportion of words between source text and condept proximity, and length of term
matches between source text and concept (W. RhHelalhot, Arnott-Smith, & Lowe,

2001).
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Evaluation SAPHIRE has been evaluated in the context otéffeness as an
information retrieval system (W. Hersh, Hickam, Hayg, & McKibbon, 1991), but a
more recent evaluation focusing on finding bestcepits rather than all concepts was
completed using radiology reports (W. R. Hershl.e2801). Fifty radiology reports
were processed using SAPHIRE to extract UMLS cotscérecision and Recall were
the evaluation measures. Precision was definedimber of correctly mapped concepts
divided by number of total concepts. Recall wasnaef as the number of correctly
mapped concepts divided by total number of cormentepts. Precision was measured at
30% and Recall at 63%.

Failure Analysis A failure analysis of the radiology report contcematching was
performed. The failures affecting recall were duedoring errors, where the correct
concept was scored lower than other concepts, tbriggues regarding the barrier
method of phrase identification. Failures affectongcision include negation in the
phrase which was not identified, and disambiguatmmpeting concepts. A key problem
with SAPHIRE's algorithm is that it may return mple matching concepts for a text
segment which, due to partial matching, are in@rcencept mappings (P. Nadkarni et
al., 2001). The disambiguation problem was hantdieddding a semantic type filter,

which filters out concepts belonging to a partic@mantic type.

2.1.2.2.8 SENSE
The SENSE (SEarch with New Semantics) system (ZmegnBleich, 1997) is
designed to map user queries to the National LybwéMedicine’s Medical Subject

Heading (MeSH) terms. The system addresses theatthrbetween user’s natural
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language queries and MeSH index terms. The idansp user queries to MeSH terms,
which are indexed by biomedical information retaksystems.

Algorithm In order to translate source text into concepENSE translates a
user query (a short phrase) into what the authalfsemantic factorsSemantic factors
are base concepts which cannot be decomposedriUBtBRISE defines 3,400 semantic
factors. Semantic factors are constructed frormpatiphrase by having the Semantic
Analyzer component look up phrase terms in a kndggebase, which handles variants,
such as spelling and plural forms, and producetidainsemantic factors for all input
phrases having the same meaning. The output iggested list of MeSH terms which
can be used to perform a search.

Evaluation No evaluation was performed.

Failure Analysis No failure analysis was performed because nauatiain was
done. However, it should be noted that the purpdSENSE is to build a list of
suggested MeSH terms. No effort is made to idemtié/best matching concept.
Therefore, SENSE needs a disambiguation stagidndut concepts which are not the

best match for a phrase.

2.2 Text Summarization

Text summarization is a data reduction method asdrbots dating back to the
1950s with the work initially done using statistiaaalysis of terms (Luhn, 1958). Text
summarization has been defined as “the processtifidg the most important
information from a source (or sources) to produtalaidged version for a particular

user (or users) and task (or tasks)” (Mani & Mayhd©999), and “a reductive
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transformation of source text to summary text tigfoaontent reduction by selection
and/or generalization on what is important in therse” (Sparck Jones, 1999). In this
paper, text summarization and document summarizatie used interchangeably. Text
summarization is generally a three-phase modedrpn¢tation, Transformation and
Generation (Sparck Jones, 1999). Interpretatiomiges some analysis of the source text
(such as removing insignificant words) and putstit an intermediate form.
Transformation takes the interpreted form and Isusldummary form through methods
such as content selection and concept generaliz&ieneration then takes the summary
form and generates output appropriate for the @eneration includes, for example,

how to order the highest-ranking sentences wherguamn extractive approach.

Summaries are designed to serve one of two purp(@esdicative summaries
give some idea of what the source text is abouthabthe user can determine whether
the source text should be read completely, anthfb)mative summaries are intended as
surrogates for the source text, where the mairsidea captured and presented (Mani &
Maybury, 1999). Summaries are generated from tiggnait source text using one of two
approaches: extractive or abstractive. Extractpm@aches reuse sentences from the
source text in the generated summary. Abstracpypeaaches rely on natural language
generation to summarize a text.

There are several methods for producing text sunesig8urface-level, Entity-
level, and Discourse-level as well as hybrid corabons of these approaches (Mani &
Maybury, 1999). Surface-level approaches use statisnformation about term
occurrences (Luhn, 1958), (A. Nenkova & Vanderwer2@5), (Vanderwende &

Suzuki, 2005), term locations (Edmundson, 1999)Té&fel & Moens, 1999), and
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important, known phrases (Kupiec, Pedersen, & Ch889) Entity-level approaches
typically rely on graph-based structures to idgntifiportant information. Such structures
are built from and typically rely on external infieation sources, such as thesaural
relationships (Barzilay & Elhadad, 1997). Discodleseel approaches derive important
information based on the structure of the textz8kowski, Stein, & Wang, ). In terms
of performance, Hovy reports that frequency-basgat@aches typically have 15%-35%
precision and recall, while cohesive approaches) sas Entity-level and Discourse-level
approaches, typically range from 30%-60% precisiod recall(E. H. Hovy, 2005). The
precision and recall scores in Hovy's work are gategl by comparing sentences
extracted by a machine to the set of sentenceaaatt by a person for the same
document.

In text summarization, a key goal is to identifypontant text which should be
presented to the user. This subset of the origioiafce text is considered to contain the
main ideas of a text. In either single documennattiple document summarization, the
top-n-sentences approach is the most common.dragiproach, the summarization
system identifies the sentences that most likegbyuze the main idea of a document or
set of documents. The top sentences are then ouiptt some limit either on the
number of sentences or the number of charactesder to produce a summary.

The first research work done in summarization usea frequency to identify
important words in a text (Luhn, 1958). The senésnmontaining one or more high-
frequency words are considered more important tither sentences which do not
contain high-frequency words, or fewer of them. Tdea is that frequently repeated

terms are due to the author reiterating the maa.iéurther research in text
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summarization confirms frequency (reiteration) srang feature (Rath, Resnick, &
Savage, 1961), (Pollock & Zamora, 1975), (Edmund&6A9), (A. Nenkova &
Vanderwende, 2005). Another method for finding im@ot text is recent work done
lexical chaining (Morris & Hirst, 1991). Lexical aming finds common links between
words. For example, the worllsng andpulmonaryare related by the common concept
lung. A text is analyzed to find all chains of wordedéahe strongest chains of words are
then assumed to represent the main idea of a text.

Our research applies both approaches to biomegixasummarization, using
concept chaining rather than term chaining, andgusoncept frequency rather than term
frequency. The research covers all three summasizapproaches: surface (concept
frequency summarizer), entity (concept chaining mamzer), and discourse (to be
integrated with the concept frequency summariZérg subsections below review the

literature for the frequency and lexical chainingthods.

2.2.1 Text Summarization Using Lexical Chaining

Lexical chaining has been used for many yearseidrdummarization. Lexical
chaining is a method for determining lexical cobasamong terms in a text (Barzilay &
Elhadad, 1997). Lexical cohesion is a propertyeat that causes a discourse segment to
“hang together” as a unit (Morris & Hirst, 1991)ical cohesion is important in
computational text understanding for two major ogas 1) providing term ambiguity
resolution, and 2) providing information for deténmg the meaning of text (Morris &
Hirst, 1991). Lexical chaining is useful for deténing theaboutnes®f a discourse

segment, without fully understanding the discoufsea basic assumption, the text must
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explicitly contain semantically related terms idgmhg the main concept. For example,
if a text is about a political candidate and doessaontain terms signifying the person is
a candidate, lexical chaining cannot identify thetthe person is a political candidate.
Lexical chains for text summarization were firdraduced by Morris and Hirst
(Morris & Hirst, 1991). Their initial work descridehe approach, but did not implement
it because electronic versions of a thesaurus n@ravailable at the time. A thesaurus is
used to relate words semantically; for exampleugh synonymy and
hypernym/hyponym semantic relationships. A hypermgtime word with the more
general meaning among a set of related words. &imyon relationship moves from a
specific concept to a general concept. For exangplen two related words
{flower,plant}, plantis a hypernym oflower becausglantis more general thatower.
A hyponym relationship is the opposite of hypernymuyd moves from a general concept
to a specific concept. For examdlewer is a hyponym oplantbecauséloweris more
specific tharplant. A machine implementation of lexical chaining bgrBilay and
Elhadad (Barzilay & Elhadad, 1997) showed the tbgcal work by Morris/Hirst could
be practically realized for document summarizatidile Barzilay/Elhadad proved the
feasibility of computing lexical chains, their ingphentation ran in exponential time,
making its mainstream use unlikely. A linear tinhgoaithm was later defined and
implemented by (Silber & McCoy, 2002). A more recenplementation by Galley and
McKeown (Galley & McKeown, 2003) focused on impnogiword sense disambiguation
based on the idea of one sense per discoursef thiése implementations use WordNet
(Fellbaum, 1998) as the knowledge source for ifi@ng semantic relationships between

terms. WordNet is a freely-available lexical datd#or the English language which
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organizes nouns, verbs, adjectives and adverbsymonym sets (known asgnseL
These synsets are then linked to one another ffexett relations to form semantic
relations between lexical concepts. WordNet is@goang research project developed at
the Cognitive Science Laboratory of Princeton Ursitg.

The SUMMARIST system (E. Hovy & Lin, 1999) uses WHNet (Fellbaum,

1998) concept counting not for identifying salisehtences, but for topic interpretation.
In topic interpretation, concept frequency counismgsed to find a node in the concept
hierarchy which sufficiently generalizes more sfiecdoncepts (e.g., {pear, apple}

fruit). The SUMMARIST authors cite the lack of dam-specific resources as a serious
drawback to this approach. BioChain uses domaigispeesources exclusively for
important sentence identification (see Sectionl3}.2.

Lexical chains are an intermediate representatiGowrce text, and are not used
directly by an end-user. Instead, lexical chairsapplied within a specific application.
For example, lexical chaining has been used foeggimg hypertext links in newspaper
articles (Green, 1998), indexing videoconferenaadcriptions (Kazman, Al-Halimi,
Hunt, & Mantei, 1996), generating news story headli(Wang et al., 2005), detecting
and correcting of malapropisms (Hirst, Graeme an@®ye, David, 1998), and
summarizing documents (Barzilay & Elhadad, 199W), Doran, Stokes, Carthy, &

Dunnion, 2004).

2.2.2 Text Summarization Using Frequency
The use of frequency as a feature in locating ingmbrareas of a text has been

proven useful in the literature (Luhn, 1958) (Retlal., 1961) (Pollock & Zamora, 1975)
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(Edmundson, 1999). This is most likely due to raitien, where authors state important
information in several different ways, in order&inforce main points (Sparck Jones,
1999).

Term frequency was first used in extractive texhsiarization in the late 1950’s
(Luhn, 1958). Luhn justified the use of word fregag as a measure of word significance
on the observation that authors typically reitethBemain points of a text. Luhn then
extended the idea of word significance to identifysignificant sentences. The sentences
containing one or more high-frequency words arescared more important than other
sentences which do not contain high-frequency wardgewer of them. The idea is that
frequently repeated terms within close proximityte another are due to the author
reiterating one of the main ideas of a text. Theng performance of subsequent work in
text summarization which utilizes frequency asdeatonfirms that word frequency
(reiteration) is a strong feature (Rath et al.,1)9@Pollock & Zamora, 1975),
(Edmundson, 1999), (A. Nenkova & Vanderwende, 2085pllow-up study to Luhn’s
work used five different methods for scoring senesnto compare against the scoring
method proposed by Luhn. The five methods consiteigh-frequency words, word
gaps within a sentence, and sentence length. Ttheraufound the five methods showed
high agreement in sentence selection, indicatiagattiual scoring method was less
effective for identifying important sentences thhea base frequency measure (Rath et al.,
1961). Rath et al. also suggested that features tthn frequency be consider. For
example, cue phrases, statistically-generated kegdsytitle words, and word location
were used as features to help identify importantesees. (Pollock & Zamora, 1975)

(Edmundson, 1999). Cue phrases are well-known phrdst positively or negatively
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suggest a sentences relevance, such as ‘significgrasitive) or ‘incredibly’ (negative
— too subjective). Title words are words foundha title of a text. Keywords are non-cue
words found in a source text which have a highdesgry. Keywords are considered to
be topic indicators. The successful use of multipétures to identify sentences suggests
that semantic and syntactic features need to songplethe statistical approach of word
frequency (Edmundson, 1999).

Summarization using units of text larger than gleinvord has also been
researched. The LAKE system uses keyphrases famanzation (D’Avanzo, Magnini,
& Vallin, 2004). A keyphrase is a phrase which gales one of the topics within a text.
The LAKE system used over 200 part-of-speech psiter identify phrases in a source
text. Keyphrases were selected from among thefliall possible phrases in the source
document by a classifier which used two featurgsa(term frequency weighting, and (b)
the position of the phrase from the start of theushoent. Other attempts to use more than
one word include the SUMMARIST system (E. Hovy &11999). The SUMMARIST
system uses WordNet (Fellbaum, 1998) to find cotscdphe concepts are then counted
to determine frequency and therefore importanceMBIBRIST is unique from other
systems in that the concept counting is used foegdizing concepts for topic
interpretation rather than for identifying saliseintences. For example, the words {pear,
apple, strawberry} might be rewritten in the outputnmary to use the more general term
{fruit}.

Most recently, the SumBasic algorithm used worduency as part of a context-
sensitive approach to identifying important sengsnehile reducing information

redundancy (A. Nenkova & Vanderwende, 2005). SuntBases a probability
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distribution of terms in a source text, and reduees probability as sentences
containing the terms are selected. The idea ofaiaduerm probability is to reduce
information redundancy by finding sentences whiatiude words not already in the
summary. There are four steps in the algorithm. fireeis to determine the probability
distribution of all words found within a source tdé» computing the number of times a
word appears in the text and dividing it by thetotumber of words found in the text.
The second step is to score each sentence by sgntmeiprobabilities of all words
within a sentence. The third step determines theesee to be extracted by finding the
highest-scoring sentence. The fourth step theniphiek the probability value of each
word in the last extracted sentence by itself. Tiais the effect of reducing the chance

that the same words will be selected again fronréhgaining source sentences.

2.2.3 Document Understanding Conferences

There has been much work done in the Document Wtateting Conferences
(DUC) (http://duc.nist.gov/). DUC provides an anhi@aum (or competition) for
researchers to extend text summarization technolaggcent DUC conferences, several
approaches for identifying sentences for extractene used, and several of the
approaches are surveyed here. The News Story systesra pattern extraction algorithm
(C5.0) to generate a decision tree to predict thedsin the source text that should be
part of summary (W. Doran et al., 2004). The Newsy5system uses eight text features:
(a) term frequency (TF) of words in the documeln},iiverse document frequency (IDF)
of words in external news corpus, (c) position ofas from start of document, (d)

lexical cohesion score between words and the docyr(e a Boolean noun flag for
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each word, (f) a Boolean verb flag for each wog),& Boolean adjective flag for each
word, and (h) a noun or proper noun phrase flagirftmdings are that TF, word
position and IDF have the greatest impact on summaality. In addition, they
concluded that lexical cohesion adds little asadifes in decision tree classification.

The LAKE system uses a keyphrase extraction apprtveat is used to identify
candidate sentences (D’Avanzo et al., 2004). LAKEes on word N-grams, which is a
way to group sequences of words together. For ebagrtie phrasking cancermhas
unigrams {lung, cancer}, a single bigram {lung carjcand no further N-grams where N
has value greater than two (that is, three or reras). LAKE begins by extracting all
unigrams, bigrams, trigrams, and four-grams anerélthem with part-of-speech
patterns. A Naive Bayes classifier trained usinguafkeyphrases is then used to
identify relevant keyphrases. The resulting keyplsaare scored using two features: (a)
keyphrase TF*IDF, and (b) distance of keyphrasmftbe start of document. Their
results scored in the middle of all 2004 DUC sulsmiss. The authors feel their system
can be improved by finding additional features tegiture the semantic properties of
keyphrases. One possibility mentioned is to comfaxieal chains and then use
membership of a keyphrase within a chain as affeatu

The KMS system describes a system where a telddemposed into a parse tree
format (Litkowski, 2004). The parse tree is theaduto identify noun phrases and score
them based on a frequency analysis of terms imd@ phrases in addition to the
occurrence of words in a DUC topic specificatioheif performance fell in an
acceptable range, and the authors observe thahergl their frequency-based approach

performs better than systems based on other agpm@sac
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Finally, the GISTexter system uses a frequency+basethod to identify sentences to
extract (Lacatusu, Hickl, Harabagiu, & Nezda, 20@l5 Texter computes a weight for
each term in a collection based on term frequen@yrelevant set of documents. This
weight is then used to score each sentence. Thectong sentences are then extracted.
GISTexter used the following method to generaterarsary:

1. The highest ranking sentence is used as the isii@mary.

2. If the summary length is less than the 665-chardicté imposed by DUC, then
the next highest-scoring sentence containing mdgmation than the summary
currently has is selected.

3. Step 2 is to iterate until the maximum summary teraf 665 characters is
exceeded or no more sentences are available.

4. Summary compression is performed, using severf@rdiit approaches: (a) if
(summary length - last sentence length) > 600 chers, the last sentence is
removed; and (b) if the summary length > 665-chterddUC limit, the summary
is truncated at the last word prior to the 665-ab#ar limit, resulting in an

incomplete sentence.

GISTexter performed among the top systems. Theoaaifound the best approach for
summary compression is truncation (4b listed ahoMes approach rated the second

highest score of all systems that competed in DOQA2
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2.2.4 Text Summarization in the Biomedical Domain

In this section, previous work related to sumnatran of biomedical texts is
discussed. The first subsection describes efforistivers to characterize biomedical texts
and construct a corpus for use in generating aathating summaries. The second
subsection describes some recent biomedical textnswization and question-answering

systems.

2.2.4.1 Characterization and Corpora

A recent survey of medical document summarizatmmsered summarization
approaches not only from text-based documentsalbatfrom multimedia formats
(Afantenos et al., 2005). The authors identifyftiieowing methods currently used to
perform medical text summarization:

Extractive Extractive approaches, as previously mentiorsd sentences from the
source text and re-use them in the generated suynitiagre are two approaches used in
this technique: statistical and graph. The staas@approach ranks each sentence and
extracts the highest ranking sentence. The sc@idgne in many ways, such as term
frequency, keyphrase identification, and noun pifesquency. The graph approach
generates a tree representation of a text, anchdisé salient nodes in the tree are
identified. The tree representation can be basgqehoagraph similarity, cohesion
relationships between terms, and rhetorical streatelationships.

Abstractive The abstractive approaches rely on natural laggg&neration to
summarize a text. The first abstractive approaés aspredefined template and the fields

in the template are filled-in from information camted in the source text. The second
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approach uses a syntactical analysis of the saext¢o identify key components of each
candidate sentence to form new sentences fromrexiséntences.

Multimedia Many forms of medical communication include vidaadio, and
graphics presentations. These forms of communitcdizve been analyzed to perform
summarization on each type of multimedia, but fhygreaches are not directly usable for
text processing, and are not discussed further.

Cognitive model base€ognitive-based approaches try to simulate thiénous of
human summarizers to produce a summary of a seextelhe authors mention a
system which uses 79 agents based on over onedduhdman strategies to produce a
summary. The agents work in combination with a kieolge base, a domain-specific
ontology, and rhetorical structure information toguce a summary.

The use of full-text sources as compared to tmiresponding abstracts was
found to be more beneficial for resolving gene-sghambiguity (Schuemie et al., 2004).
The corpus was a set of 3,900 biomedical articliés full-text and abstract sources
available. Keywords in the text sources were idieatiusing five different methods,
including MeSH terms and high-ranking TF*IDF word#isormation content was
measured using twelve different measures. Sectibtie paper were identified using the
author’s section headings. The recognized headiregsbstract Background
Introduction Methods Results andDiscussion

Key related findings reported by the authors arfobews:

1. Full-text is not as easy to process as abstrdotse full-text is not always

publicly-available and requires more computing atatage capacity.
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2. The information density is highest in the abstradtile the information
coverage is highest in the full-text.

3. The highest information coverage is in the Resétdion.

4. The amount of information in each section is unitu#hat section is 30%
to 40%.

5. The use of abstracts alone for information exteacis likely to result in
information loss.

Building a corpus for use in summary generatiowel as summary evaluation
is a large effort. Typically a multi-step processequired to first identify domain-
specific sources of full-text articles, acquirertheand then process them linguistically to
identify text units such as sections, paragrapgiesices, and phrases. In addition,
semantic processing may also be performed to igestimain-specific concepts. An
example of such a corpus-building effort was dampart of the PERSIVAL project (K.
R. McKeown et al., 2001). The PERSIVAL corpus foe tardiology domain was
constructed by first sampling journals in the damaiownloading full-text article source,
and then identifying medical terms in the textT8ufel & Moens, 2002). There were 22
journals sample from an estimated 700 journalkéndomain. The journals were selected
based on (a) ISI citation analysis, (b) domain expmiew, and (c) electronic
availability. Crawlers were then implemented fag &2 journals to download the full-
text sources, resulting in a corpus of approxinya®él,000 full-text articles. Each of the
downloaded texts is then linguistically processefirtd sentence boundaries and noun
phrases. The noun phrases are then used as inputedical terminology finder. The

medical terminology finder uses two methods to fimeldical terms in the full text: (a)
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the UMLS vocabularies, and (b) a statistical metimbecch compares general English text
and medical text. The output of the medical terdagyp finder is not evaluated for
accuracy. Each full-text article crawled and prgeekis stored in an XML-encoded
format which contains elements to identify artiséetions, sentences, and medical terms,
among other items. PERSIVAL uses the XML-encodethéd to identify sections to
extract sentences from and to fill information extron templates with medical terms

and findings.

2.2.4.2 Biomedical Text Summarization Systems
In this section, several recent systems desigmeldidmedical text summarization

are discussed.

2.2.4.2.1 PERSIVAL

PERSIVAL (PErsonalized Retrieval and Summarizabbimages, Video and
Language) is a medical digital library which prossdpersonalized information to
physicians as well as laypeople (N. Elhadad & Mokep2001) (K. R. McKeown et al.,
2001) (K. McKeown, Elhadad, & Hatzivassiloglou, 3DOPERSIVAL incorporates
guery generation, search, presentation and sumatianzo provide a complete system.
The original summarization component incorporates different methods, depending on
the target audience (medical professional or lagg®: For medical professionals, the
summarizer uses clinical trial study articles asittput source. The format of the articles
follows a common section format. Sentences araeted from the Results section and

then categorized as to whether or not they proredalt information based on cue words
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and pattern matching. For patient summaries, rates@sumer health texts are
identified, similar sentences from the consumeftheeaxts are clustered, and then a
representative sentence from each cluster is otadotm a summary. A tree structure of
the topics discussed by all selected consumertesadt is also formed and used to
identify common themes, differences, and topicitl€fae layperson summarizer also
identifies medical terms and provides a referenaxplain them. The system evaluation
focuses on the medical professional summarizerrevbleysicians were asked to select
sentences from the clinical trial articles theyrfduelevant. Although exact agreement
was not specified, the authors report differen@set on individual interests and level of
experience. The Technical Article Summarizer, dbedrbelow, has a more complete

evaluation of summarization within PERSIVAL.

2.2.4.2.2 Technical Article Summarizer

The Technical Article Summarizer (TAS) is a newemponent of the
PERSIVAL digital medical library (N. Elhadad, 200@\. Elhadad, McKeown,
Kaufman, & Jordan, 2005), (N. Elhadad, Kan, KlayaasicKeown, 2005). The TAS
component is designed to generate a personalipagediical summary based on a patient
record. Clinical trial articles are first locatesing query results submitted to the PubMed
resource based on several patient-specific crjtedeh as the patient record. The patient
record is used to identify characteristics of thégnt, such as symptoms and diagnoses.
The clinical trial articles are then processed gisirpipeline architecture which performs
content selection, content organization, and cdrgeneration. The content selection

stage identifies text from the clinical trial aléis based on patient characteristics



64

generated from the patient record. The contentizgtion stage clusters semantically-
related text from the clinical trial articles. Eadhster is prioritized based on its content,
and is output as a single paragraph during theeobigieneration stage. The content
generation stage aggregates sentences within kethrand uses phrasal generation to
build the paragraph to be output. The TAS componast evaluated by asking eleven
study participants to use the summarization owdfnrig with knowledge of a patient in
three different medical scenarios. The participavese given a general summary, a list
of articles returned by a search engine, and theopalized summary produced by TAS.
The results show that the personalized summaries tlwe preferred format to provide
patient-related information. The major problemgwite general summary which are
addressed by the personalized summary are irrdl@anmation and lack of continuity

in the sentences.

2.2.4.2.3 Medical Text Indexer

Medical Text Indexer (MTI) (National Library of Medne, United States, 2006a)
is part of an indexing initiative at the United 8&National Library of Medicine that
uses concept-based algorithms to index text. Atéxit biomedical source can contain
many concepts. Some concepts are more importalgsicribing the text than other
concepts. The use of summarization allows MTI ttelnthe most important areas of a
text. The most important concepts useful for indgxare contained in the summarized
text (National Institute of Health, 2005). MTI ugbe MetaMap (Aronson, 1996)
concept finder to identify concepts in the texteTitlentified concepts are linked to each

sentence in the text. A concept-by-sentence matformed. This set of vectors is then
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dimension-reduced using latent semantic analystexArelationship map is built which
links the various sentences in the text togethachHink in the map is assigned a weight
based on the similarity between two sentencesté&iiesentences are scored based on the
sum of outgoing link weights. The highest scoriegtences are considered the most
important. The evaluation compares the generateuhguies against a section model,
which extracts sentences for indexing based osebgon of the text they belong to. The
authors find that the optimal summary size forlibst indexing performance is
approximately 90 sentences. Summary sizes rangedXi7 and doubled at each interval
until all sentences were included. In addition, s@maller summary ranges from 68-102
sentences were evaluated. The authors also conttlatlesing the section model (that is,
using sections of a text, such as Methods or R&snilitperforms the use of summaries

for MTI indexing purposes.

2.2.4.2.4 Medical Information Summarizer

The Medical Information Summarizer (MIS) providesgle-document
summaries as part of the results returned fromesygagainst online medical document
repositories (Chen & Verma, 2006). Starting witlywerds provided from the paper’s
author, the system expands the set of keywordsimgWMLS resources to perform
variant generation on the original keywords, firgdabbreviations of the keywords, and
finding semantically-related keywords. Sentenceslaen scored based on keyword
membership. Three different scoring mechanisms weaéuated: (a) using original
keywords only, (b) using UMLS expanded keywordsl @) using UMLS expanded

keywords normalized for sentence length. Each keguwsoweighted so that the original
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keywords have a value of 1.0, while UMLS expandegords have a value of 0.5. The
evaluation measured standard precision and recatiparing the extracted sentences to
sentences from the abstract plus conclusion seckiom authors found that the expanded
keywords outperformed both the paper keywords hadhbormalized expanded keyword

scoring approaches.

2.2.4.2.5 BIOSQUASH

BioSquash is an effort to provide a summary froaitiple documents in
response to a question (Shi et al., 2007). BioSyisaan adaption of the Squash
summarizer (Melli et al., 2005). It uses UMLS as ttomain-specific ontology and
WordNet as the general ontology. BioSquash usesrastage pipeline approach. The
Annotator stage tags the multiple input documestwell as the input question with
named-entities and semantic roles of syntactictdoests. The Concept Similarity stage
identifies concepts using UMLS and WordNet. Ther&otor stage takes the output of
the Annotator and Concept Similarity stages andtrants a semantic graph of the
sentences in the texts. Sentences are scored dasled number of edges in the graph.
The Editor stage takes the highest-scoring sumaaalyconstructs a fluent summary.
Sentences are given an importance score basedtamese overlap with the question and
first and last sentences in the document. The seeseare then ordered by their
importance score. BioSquash was evaluated usirzgfidah the Ad-hoc Retrieval task of
Genomics Track at the 2005 Text Retrieval ConfeedA&REC). TREC provided
abstracts and summaries for 18 questions. There Sveuman summaries and 50

ROUGE reference summaries. The set of abstradte smmmarized came from (a)
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human selected relevant summaries, and (b) systkroted summaries. Thirty abstracts
for each question were summarized. ROUGE-2 and ®53U4 scores were generated
using the output of BioSquash and compared todfegegnce summaries. The findings
are that the human selected summaries outperfotimeeslystem-selected summaries of
the abstracts. The BioSquash work is still prelemn further evaluation is planned using
full-texts rather than abstracts, and using hunemnnsaries of the full-text as the source

for ROUGE references.

2.2.4.2.6 MITRE Text and Audio Processing

The MITRE Text and Audio Processing (MiTAP) is atgyn for monitoring
biological threats by assimilating information franultiple textual sources (Damianos et
al., 2002). MiTAP incorporates single- and multidiecument summarization
components. Single document summarization is geebrssing statistical and rule-based
classifiers. The classifiers are trained on therabts of text. The features generated
include TF*IDF measures and synonym links betwesmences. The multiple document
summarizers use externally-provided summarizej\éavsBlaster clusters related
articles and produces a summary of them (K. McKeetwal., 2002), and (b) LingPipe
extracts sentences referencing known entities @dep & Baldwin, 2007). No specific
evaluation was done on the summarization componkeuatngoing user-studies have
been done on the entire system to find usability @ity of the overall system. The
findings are that the system provides more utilign general Web-based searching and

result presentation.
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2.2.4.2.7 Clinical Question-Answering

Biomedical text summarization has also been usgadf larger clinical
guestion-answering system (CQA) (D. Demner-Fush&am, 2006) (D. Demner-
Fushman & Lin, 2007). The CQA system combines efgmef question answering,
information retrieval and summarization. It usetril-down approach to provide
answers to practicing physicians of the form ‘Wisahe best drug for treatment &’
The first level provides categories of drugs. Edialg category is associated with a
cluster of MEDLINE abstracts related to the drutegary, which is the second level.
The third level is an extractive summary of eackhefabstracts. The fourth level is to
view the original abstract. Each generated summanyains three main elements: (a) the
main intervention described in the paper, (b) thpep title, and (c) the top-scoring
outcome sentence. The outcome sentence makeemestatabout the quality of the drug
for treating a particular condition. The outcomatsace is determined using a
supervised machine learning classifier (D. Demneshkifhan & Lin, 2005). The classifier
is actually composed of several other classifiefg-based, unigram, n-gram classifier,
position, document length, and semantic. The raleed classifier uses cue phrases; the
unigram and n-gram classifiers use Naive Bayedstract terms; position determines
how far away from the end of the abstract a seeteyaocument length classifier
determines probability of an abstract having arcane sentence based on its length; and
the semantic classifier uses UMLS concepts higbtyetated with outcome statements.
The classifier scores are then weighted and cordbnesulting in score for each
sentence. An evaluation shows that the classifieectly predicts outcome sentences

75% of the time when a two-sentence cutoff is uaad,95% of the time when a three-
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sentence cutoff is used. Abstracts may have mae dhe outcome statement, and the

cutoffs are used to match at least one of the owcgentences.
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3. APPROACH AND METHODS

This chapter describes an integrated semantic atioiotand text summarization
system which forms the basis of our research. Tgifellevel structure of the annotation
and summarization system is shown in Figure 7.skiséem takes a biomedical source
text and performs analysis in several stages reguft a final output of a text summary
of the original source text. The two primary stagisch are part of this research are
Semantic Annotation and Text Summarization. Twep#tages, Lexical Processing and
User Presentation, are constructed as part ofytera, but are not the focus of the
research. The Lexical Processing stage is thestiagte and is responsible for finding
sentence boundaries within a source text, andgheases within each discovered
sentence. Lexical Processing is performed usingvaoé components from third-party
sources. The final stage is the User Presentataye swhich presents to the user the
generated summary. The user presentation congigeerating a simple text file
containing the extracted sentences.

The two stages which are the focus of the rese&smantic Annotation and Text
Summarization, are between the Lexical Processiddser Presentation stages. Once a
source text has been decomposed into sentencgmheases in the Lexical Processing
stage, the sentence phrases are fed into the SerAanbtation stage, and the output is
an annotated version of the source text contaiseémjences, sentence phrases, and
sentence phrases annotated with one or more dapamific concepts (a best mapping is
attempted, but in cases of ambiguity more thanmapping may be returned.) The
annotated source text from the Semantic Annotatiage is then directed into the Text

Summarization stage. The Text Summarization stage the concept mapping
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information to identify the most important cont@mthe source text, and then extract
sentences from the source text which are mostseptative of the content. The output
of the Text Summarization stage is an ordered suisentences from the source text. In
this research, only single document summarizasaonsidered. In the following
sections, the details of each of the two primaagess, Semantic Annotation and Text

Summarization, are presented.
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(sentence boundary and phrase detectign)

Semantic Annotation

l (Annotated Source Text)

Extractive Text Summarization

l (Extractive Summan

User

Presentation

Figure 7: High-level overview of the annotation
and text summarization system. The dashed box
indicates the parts of the system the research
focuses on.

The annotation system assumes the source phraséréady been determined
from prior analysis. Source phrases can be deteied a variety of methods, such as

natural language parsing and sliding windows (Wsheim et al., 2002) and barrier
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words (Tersmette et al., 1988). The annotationesyshakes no assumptions on the
selection of source phrases, other than the inpitiimwist be a phrase. The goal of the
Semantic Annotation stage is to find the best UMbS8cept match for each phrase in the
source text using surface-level features.

There are several types of phrases. 3dhace phrasés a phrase from the source
text which the system will attempt to annotate veithiomedical concept. UMLS
concepts are composed of one or more synonymoasgsrwhich are known asncept
phrasesA single UMLS concept may have more than one epthphrase associated
with it. Candidate phraseare concept phrases having words in common wélstlurce
phrase. Acandidate conceptlentifies the UMLS concept a candidate phraserigs to.

A concept nameés the name given to a particular UMLS concept.

The multi-level filtering approach of the systerkda a source phrase from the
source text, retrieves a list of concept phrasesdban the overlap of words from the
source phrase and concept phrases, forming a sahdfdate phrases. If only a single
candidate phrase exists, its associated concegtiuisied. If there is more than one
candidate phrase generated, an iterative procdggeahg out candidate phrases begins.
The candidate phrase filters are based on n-graotcarrences between the source
phrase and the candidate phrases. The multi-létezirig is done to improve
computational efficiency by applying successivelgrexcomputationally complex filters,
rather than scoring a candidate phrase with diffem@easures at once. This approach is
different than existing approaches, which typicaltpre a candidate phrase completely in
one pass and then rank the set of resulting coa¢@phtHersh & Leone, 1995),

(Aronson, 2001a). The idea is to successivelyrfitg concepts using basic techniques,
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and compute more complex candidate phrase scaressfoall subset of possible
candidate phrase matches. Two different typedtefdiare used, although other filters
can be added: Coverage and Coherence. Coverdgensiiber of words in common
between the source phrase and a candidate phrakeplaerence measures the common
word ordering between the source phrase and adaedbhrase (Aronson, 1996). The
Coverage and Coherence filters were chosen betaeygeffer a complete approach to
measuring word-membership and word-order betwesruece phrase and a candidate
phrase.

Our research uses two methods for measuring bettrage and coherence: term
weighting and skip-bigrams. The two methods arethas existing approaches and are
novel in that they have not been applied to theasgim annotation task in previous work
described in the literature. The coverage filtesugerm weights. Previous approaches for
measuring word coverage use binary weighting. tatyi weighting, the weight of each
word in a candidate phrase is zero to indicateratesef a word or one to indicate
presence of a word in common with the source phi@asmson, 2001a), (W. Hersh &
Leone, 1995). The coherence filter utilizes skigrdms, which have proven effective for
measuring term order in machine translation antgemmarization evaluation (C. Y.

Lin & Och, 2004a), (Lavie, Sagae, & Jayaraman, 20Bdth the coverage and

coherence methods used in this research are dedénlonore detail below.
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Figure 8: Stages in the multi-level annotator

The annotation system has advantages over existimgept mapping approaches.
Systems such as MetaMap (Aronson, 1996) and SAPKNRHEersh & Leone, 1995)

score candidate phrases completely in one pass hélsithe disadvantage of computing
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more complex scores, such as coherence, whentipdesicoverage score may have
rejected the candidate phrase alone. In additipmddeling the mapping as a series of
filtering stages, the number of candidate phrasesduced at each stage, reducing the
number of complex calculations which must be pentt. The MetaMap system also
generates word variants and inflections at run-tifiee annotation system maps the
concept phrase words to their base form in a ppegssing stage (done once for each
UMLS version of the data, not at each run-time). &ample, the variantejeseyed
eying are all mapped to the base warge This allows concept phrases to map to base
words so that variant generation is not requirgdréglucing the number of candidate
phrases which have to be scored, using in-memaoig tructures, and eliminating time-
consuming variant generation, CONANN is expecteduiperform the state-of-the-art
MetaMap system in terms of time to annotate a sophcase.
The overall CONANN annotation strategy for a singpeirce phrase is as follows:
1. Construct a list of candidate phrases based owadings in common
between all concept phrases and the source phfasdy one candidate
phrase remains, return its associated candidatepbon
2. Filter the list of candidate phrases based on ghted coverage score
given to each candidate phrase. If only one camgliglarase remains,
return its associated candidate concept.
3. Filter the list of candidate phrases based on ghted coherence score
given to each candidate phrase. If only one camgliglarase remains,

return its associated candidate concept.
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4. If more than one candidate phrase remains, rehatist of candidate

concepts associated with each candidate phrase.

The following subsections explain in more detattte of the annotation stages:

3.1.1 Domain Resource Preparation (pre-processing)

Preprocessing of UMLS data is done before CONABINsed to perform
annotation. Preprocessing organizes the words, waments, phrases, and concepts
stored in UMLS text files into a format which isstar for CONANN to process. For
example, words are mapped to unique integer iderdifo reduce storage space and
increase word comparison speed. Also, concept phvasds are mapped to their base
form so that variant generation does not have ¢oioat run-time, as is the case for
systems such as MetaMap (Aronson, 1996). For examlrd variants within UMLS
concept phrases are all mapped to a single bade asumappingdye, oculus,
ophthalmig to the base formdcular}.

Each word in the UMLS is also weighted based onsege in all concept
phrases. In contrast to existing systems such @aaNé&p (Aronson, 2001a), SAPHIRE
(W. Hersh & Leone, 1995), and IndexFinder (ZoulgtZz®03) which consider the count
of words in common between a source phrase anddidzde phrase, the scoring of
coverage and coherence in CONANN considers theibatibn of each word in the
source phrase by using a weighting mechanism.rrdton retrieval research uses a
family of algorithms called TF*IDF, which uses tfrequency of a term (TF) within a

document and the frequency of a term across alldeats (IDF) to find a similarity
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value between a user query and a document. A frelyusccurring term within a
document better indicates the content of the doowméhile a frequently occurring term
across all documents is thought to give little dmmatory power, since a high
proportion of documents contain the term (Baezae¥ & Ribeiro-Neto, 1999). The
inverse document frequency value (IDF) uses thguiacy of a word across all
documents as a way to identify words which are sgicelly focused (Manning &
Schutze, 1999). Semantically-focused words arsetiweords which do not frequently
occur across all documents within a collection, #m are more likely to have more
discrimination power than words which frequentlgwc To apply the ideas of TF*IDF
from information retrieval to CONANN, each concgpirase is substituted for document.
The weight of each unique word in all concept pésas calculated using the inverse
document frequency idea from information retrief&parck Jones, 1972), substituting

concept phrase for document, as shown in Figure 9:

Inversd’hrasd-requency Iogﬂ
N

Figure 9: Inverse Phrase Frequency (IPF) valuis.the total number of phrases
in UMLS andn; is the total number of phrases a particular waacles in.

Each uniqgue UMLS wordis assigned a weight based on its inverse phrase
frequency (IPF) value. The importance (or weightdf a wordi is represented by its

IPF value. Words which are more semantically fodus#@l be given a higher weight
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than words which are not semantically focused.gxample, assume there are 1,000
concept phrases, the waothsmaoccurs in 200 of the phrases, and the woygloma
occurs in 50 of the phrases. The IPF valuplasmawill be 0.70 (log 1000/200) and the
IPF value ofmyelomawill be 1.30 (log 1000/50). Therefore, if the weplasmaand
myelomaoccur in the same phrase, the word myeloma isiderexd a more
discriminative word thaplasma The idea is to give some indication of the impnde

of a word based on its usage within all concepagds. Term frequency, which is
typically combined with inverse document frequefarydocument information retrieval,
is not considered since it is highly likely theduency for each word will be one because
the input unit of CONANN is a phrase, which usuabes not include the same word
multiple times in it. Eliminating term frequencyfn scoring reduces computational
complexity.

Table 5 shows the list of tables generated in teeggpocessing stage. The tables
are all simple key-value lookup tables which mammue key to a scalar or list value.
The unique keys are generally known as identifiéos.example, a concept is uniquely
identified by its concept identifier. The advantajereating in-memory lookup tables is
to speed access to key information, such as thdsanmelonging to concept phrases, and
to pre-calculate key information used in the stagesh as the Inverse Phrase Frequency
weight for each word, in order to increase runtpegormance. Each mapping table is
useful for getting additional information about ard/, phrase or concept. For example,
given a word in the source text, its unique woehtifier can be retrieved using the
WordToWordldable, and the list of concept phrases the wopdars in can then be

obtained usinyVordldToPhraseldListable. To get the concept name a phrase belongs
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to, thePhraseldToConceptlthble can be used to find the concept identifiehe
phrase, and then ti@&onceptldToConceptNantable is used to find the concept name.
To account for word variation, thA@ordToUninflectedWor used to normalize a word
to its base form. For example, the word ‘cancess the base word ‘cancer.’ The
WordToWordVariantss used to find all UMLS-defined variants of a woFor example,
the wordpulmonaryhas the following set of word variants: { lungngs, pneumal,

pneumonic, pulmonic, pulmonal, pneumonias, pneua®hi

Table 5: Mapping tables generated during pre-psicgs

Table Name Purpose

WordToWordId Get the unique identifier of a word
WordIldToWordIPF Get the inverse phrase frequendghdor a word
WordIldToPhraseldList Retrieve all concept instarm@daining a given word

WordToUninflectedWord Get the uninflected form ofvard

WordToWordVariants Retrieve all known variants afard

ConceptldToConceptNamg  Get the concept name fovea goncept identifier

ConceptldToPhraselds Retrieve UMLS phrases assedoirdgth a concept
ConceptLanguageModel Get the language model oheegqt
PhraseldToConceptlds Retrieve the concepts assdamth a UMLS phrase
PhraseldToWordldList Retrieve all words belongia@tparticular concept

phrase
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To generate each of the mapping tables, UMLS sdiiles from the MetaMap
Transfer were used. Table 6 shows the sourcedieenused for each mapping table. The
MetaMap versions of the files rather than the ¢dMLS files are used since MetaMap
Transfer has already pre-processed the core UMé&Sdnd removed concepts which are
known to be ambiguous or otherwise not useful emabncept identification task. The
files used from MetaMap Transfer are as follows:

1. sui_nmstr_str.txprovides UMLS string identifiers and the corresgiog text
strings. (b)infl.txt provides UMLS words and their uninflected form.

2. fullvars.txtprovides UMLS words and all known variations o thords.

3. cui_concept.txprovides a UMLS concept identifier and its cor@sging name.

4. sui_cui.txtprovides mappings between UMLS string identifiensl UMLS

concept identifiers.

Table 6: MetaMap Transfer source files for mappaiges

Generated Table Name MetaMap Transfer Source File(s)
WordToWordld Sui_nmstr_str.txt
WordIldToWordIPF Sui_nmstr_str.txt
WordldToPhraseldList Sui_nmstr_str.txt
WordToUninflectedWord infl.txt

WordToWordVariants fullvars.txt
ConceptldToConceptNamg  cui_concept.txt
ConceptldToPhraselds Sui_cui.txt
ConceptLanguageModel Sui_cui.txt, sui_nmstr_gtr.tx
PhraseldToConceptlds Sui_cui.txt
PhraseldToWordldList Sui_nmstr_str.txt
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3.1.2 Candidate list generation

When a source phrase is presented to be annoitatetirst processed to remove
all words which do not appear in UMLS, as well anoval of stop words. The words in
the source phrase are mapped to their UMLS base fonis is done to eliminate word
variation, and to allow exact matching of concdmtage words, which had the same
base-form mapping done in the pre-processing stdipt of candidate phrases is then
generated by finding all concept phrases whichaiardne or more of the base-form
words in the source phrase. For example, the plluagecancewill find all candidate
phrases having the wortisng or cancer which will return candidate phrases such as
{lung, chronic obstructive lung disease, lung cantieer cance} and so forth. Table 7
shows a partial list of candidate concepts genétdadésed on the concept phrases having
words in common with the source phraseg cancer The table shows the concept
phrase which matched at least one word from thecequhrase, as well as the
corresponding concept’s name and identifier. itasrequired that a candidate phrase
have all words in common, since exact mappings éetva source phrase and concept

phrases are expected to be rare.

Table 7: Example candidate phrase list generation

Source Phraséung cancer

Concept Id| Concept Name Concept Phrase
0024109 Lung Lung
0024117| Chronic Obstructive Airway Disease Chronic Obstructive

Lung Disease

0242379| Malignant Neoplasm of the Lung Lung Cancer
0684249| Carcinoma of the Lung Cancer of the Lung
0279000| Liver and Intrahepatic Biliary Tract CarcinompLiver Cancer
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If the source phrase is less than five words, #ilewords in the source phrase are
used to find candidate phrases, as described alidlkie.source phrase is long (defined
as consisting of five or more words), the numbecasfdidate phrases generated by the
words in the source phrase may be very large. Gryetavovercome this is to select only
the most important words in the source phraselagn use these words to select
candidate phrases. The method of finding the rmogbrtant words is to find the IPF
weight of each word in the source phrase, calcuteestandard deviation of the retrieved
IPF weights, and then use all source phrase wohds&/IPF weight is greater than a
threshold to find candidate phrases. The chos@sltloid is one standard deviation of the
mean IPF weight. Selecting greater than or equah&ostandard deviation allows
approximately 32% (Kiess, 2002)of the words indbarce phrase to be used to retrieve
candidate phrases. Figure 10 shows an example dbrig source phrasdronic
obstructive pulmonary disease findingving word IPF weights of {1.5, 2, 2, 1, 1}. The
mean is 1.5, the standard deviation is 0.5, andninenum IPF weight is therefore 2.0.
To generate candidate phrases in this example tbalwords pbstructive pulmonary
are used since they are the most discriminativelsvbased on their IPF weight. In the
example, all concept phrases having either the swadtructiveor pulmonarywill be
passed to the next filter (i.e., Coverage filtéhe idea is to use the only the most
important words in the source phrase to limit thenber of candidate phrases retrieved.
Each stage of the filter should seek to find algifigst matching candidate phrase, and if
not possible, reduce the number of candidate pheassed to the next filter stage, which

is assumed to be more computationally complex.
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chronic obstructive pulmonary disease finding

\ 4 h 4 \ 4 A 4 \ 4

15 2.0 2.0 1 1

Mean IPF weight = 1.5
StdDev IPF weight =0.5

Chosen Threshold = Mean + 1 StdDev = 2.0
(i.e., use only words having 2.0 or higher IPF w&ig

Figure 10: Example of long source phrase usingwiights
to find significant words

3.1.3 Coverage Filter

Once a list of candidate phrases is retrieved, remee(overlap of words in
common) is measured to filter out less importanta@ate phrases. The idea is to find
the list of candidate phrases having the best egesof the source phrase words, based
on the IPF weight of each word in common betweersthurce phrase and each
candidate phrase. The Coverage score for eachdaaghrase can be computed quickly
using table lookup operations. In existing worko&erage score for a candidate phrase is
measured using a count of the number of words mmneon (Aronson, 1996), (Zou et al.,
2003). In our research, weighted unigram filtensigsed to measure coverage. The
combined IPF weights of all words in common betwaeource phrase and a candidate
phrase is used as the coverage score for eachdedmgihrase and is called the

PhraseCoveragelPF weight, defined in Figure 11 as:
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i=1 i

PhraseCovwagelPF= ZN IPF

Figure 11: Phrase Coverage Weight (PhraseCoverap&NRs

the total number of words in common between thecphrase
and the candidate phrasi®F is the Inverse Phrase Frequency
weight of a word in common between the source phrase and the
candidate phrase.

Once the PhraseCoveragelPF weights are computedl frandidate phrases, the
standard deviation of the PhraseCoveragelPF weightbe set of candidate phrases is
calculated. A threshold value is chosen as the rifelanveight plus two standard
deviations, which captures the top 5% (Kiess, 2@2he highest-weighted candidate
phrases. All candidate phrases whose PhraseCoVeFageight is greater than or equal
to the threshold value are passed to the next {ilie, Coherence filter). There are two
exceptions to consider: (a) if there is an exadcmhetween a source phrase and one of
the candidate phrases, the candidate concept assbeiith the candidate phrase is
returned; and (b) if no candidate phrase has asB@@eragelPF weight greater than or
eqgual to the threshold, the candidate phrasestiatiighest PhraseCoveragelPF weight
are passed to the next stage (if there is onlysoch candidate phrase with the highest
PhraseCoveragelPF weight, its corresponding cated@acept is returned).

Examples of each case are shown in Tables 8 thrbdgim each case, the
threshold value is shown using one standard dewiati order to demonstrate the
algorithm with a small dataset. In the actual cagerfilter implementation, it was found

that the threshold of two standard deviations wettebat reducing the large number of
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candidate phrases generated during the initialgehliat generation stage. Table 8 shows
an example of the coverage filter processing ferdurce phradang cancemhere

there is an exact matchhe IPF weights for each word in the source phaasdirst
retrieved. Each candidate phrase from the candgateration step is scored by
summing the IPF weights fewung andcancerwhen they exist in the candidate phrase.
After all candidate phrases are scored with thimgdCoveragelPF weight, exact
candidate phrase matches with source phrase Plese@elPF weight and source
phrase word ordering are returned. Although thegdicoverage filter is not concerned
with word order, exact matches are checked sireg dhe considered the best matches
possible. Exact matches are immediately accepteécianot required to meet the
minimum coverage weighting threshold. In the TabkxampleLung Cancelis returned
because it is an exact match both with the souncase PhraseCoveragelPF weight and
with the source phradeng cancerCancer of the Lungs not returned because it is not
an exact match with the source phrase, even thibdngis the same PhraseCoveragelPF
weight as the source phrase. In Table 8, the mbeasPCoveragelPF weight is 0.90, the
standard deviation is 0.34, and the threshold vaheemean plus one standard deviation,

is 1.24. Since an exact match was found, the tbftdskalue is not used in this case.
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Table 8: Example of Coverage filtering for exactchawith source phrase

Source Phrasdéung cancer
(IPF weights: lung=0.75, cancer=0.50, tolal§

Candidate Phrase PhraseCoveragelPF weight

Lung 0.75

Chronic Obstructive Lung Disease 0.75

Lung Cancer 1.25 < Exact Weight & String
Cancer (of the)Lung 1.25 < Exact Weight

Liver Cancer 0.50

Scoring Details:
Mean PhraseCoveragelPF weight = 0.90
StdDev of PhraseCoveragelPF weights = 0.34
Chosen threshold = Mean PhraseCoveragelPF weifjigtdDev = 1.24
There is an exact match between the source phraseandidate phrase in
PhraseCoveragelPF weight and also in the sqim@se string foLung
Cancer.

Table 9 shows the case where there is no exactrbateeen the source phrase
and the candidate phrases. In this case, the timotithe Coverage filter is to reduce the
size of the candidate list. This is accomplisheddtgining all candidate phrases whose
PhraseCoveragelPF weight is greater than or equattireshold weight. The mean
PhraseCoveragelPF weight is 0.90, the standarati@viis 0.16, and the threshold
weight, the mean plus one standard deviation58.0 herefore, any candidate phrase
which has a PhraseCoveragelPF weight greater thagual to 0.58 is passed to the next
filter. In Table 9 there are two candidate phrdsesng a PhraseCoveragelPF weight of
0.60, so both of these candidate phrases (showold) are passed to the next filter (e.g.,

coherence filter). If only one candidate phrase &a&hraseCoveragelPF weight equal to
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or greater than 0.60, its candidate concept ismetland no candidate phrases are passed

to the next filter.

Table 9: Example of Coverage filter with no exaettoh for source phrase

Source Phrasdung cancer disease
(IPF weights: lung=0.30, cancer=0.30, dise@s¥3; total9.90

Candidate Phrase PhraseCoveragelPF weight
Lung 0.30

Chronic Obstructive Lung Disease 0.60 >=(0.58
Liver Cancer 0.30

Lung Cancer 0.60 >=0.58
Cancer 0.30

Scoring Details:
Mean PhraseCoveragelPF weight = 0.42
StdDev of PhraseCoveragelPF weights = 0.16
Chosen threshold = Mean PhraseCoveragelPF weitjlgtdDev = 0.58
Two PhraseCoveragelPF weights >= 0.58 are gded@e next filter:
Chronic Obstructive Lung Disease
Lung Cancer

Table 10 shows a variation of the no-exact-matsie sliown in Table 9, where
there is no exact match between the source phrastha candidate phrases, and none of
the candidate phrases have a PhraseCoveragelPkt\gsegter than or equal to the
threshold value. If the strict logic shown in Taf@is followed, then no candidate
phrases will be passed to the next filter. To nesthis, the approach used is to find the
candidate phrases with the highest PhraseCoveragetijht. If only one such candidate

phrase exists, its corresponding candidate consepturned. In Table 10, the mean
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PhraseCoveragelPF weight is 0.68, the standarati@viis 0.26, and the threshold
weight, the mean plus one standard deviation 94.0 herefore, any candidate phrase
which has a PhraseCoveragelPF weight greater thagual to 0.94 is passed to the next
filter. As Table 10 shows, no candidate phraseah@kraseCoveragelPF weight greater
than or equal to 0.94. In this case, the highbsaseCoveragelPF weight is found, which
is 0.90. There are two candidate phrases havingasBCoveragelPF weight equal to
0.90, so the two corresponding candidate phrasegaamsed to the next filter (e.qg.,
coherence filter). If only one candidate phrase thachighest PhraseCoveragelPF
weight, its corresponding candidate concept is'neil and no candidate phrases are

passed to the next filter.

Table 10: Example of Coverage filter with highestres used

Source Phraséung cancer disease
(IPF weights: lung=0.50, cancer=0.40, dise@s#3; total=1.30)

Candidate Phrase PhraseCoveragelPF weight
Lung 0.50

Chronic Obstructive Lung Disease 0.90 < Highest Weight
Liver Cancer 0.40

Lung Cancer 0.90 < Highest Weight

Scoring Details:
Mean PhraseCoveragelPF weight = 0.68
StdDev of PhraseCoveragelPF weights = 0.26
Chosen threshold = Mean PhraseCoveragelPF tgeigh StdDev = 0.94
(No PhraseCoveragelPF weight is >= 0.94, sdidate phrases with highest
weights are passed to the next filter:
Chronic Obstructive Lung Disease
Lung Cancer
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3.1.3.1 Extensions of the Coverage Filter

The base coverage filter can be extended to promg@eovements in annotation
precision. Figure 12 shows an extension of the m@esfilter which incorporates two
heuristics. The heuristics are designed to addidatedphrases to the list of top candidate
phrases returned by the original Coverage filtehaut requiring the phrases to meet the
minimum threshold value. The first heuristic iscttmpare the PhraseCoveragelPF
weight of the candidate phrase to the summed IBFesaf the source phrase. If the two
weights are equal, a check is performed to seehghéte two phrases are an exact
match. If the two phrases match exactly, the catdighrase is automatically added to
the list of returned phrases. This first heurigi@entical to the base coverage filter,
except that it does not enforce the minimum thriestaalue for exact candidate phrase
matches with the source phrase.

The second heuristic is to add a candidate phoatdeetlist of phrases returned by
the original Coverage filter if (a) it consistsasingle word, and (b) the single candidate
phrase word also appears in the list of sourcesghnards. During development of
CONANN, it was discovered that single-word conceptse being filtered out, resulting
in lower precision scores. The idea of maximallyghiéng a single-word candidate
phrase is that the candidate phrase has no patysibiextra noise words, since the
candidate phrase has only one word to descrilm®itesponding concept. Therefore, the
single-word candidate phrase should always be dereil. The inclusion of a single-
word candidate phrases is particularly useful eaghrase-counting final mapper, which

relies on counting the number of candidate phraggsh map to the same concept.
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Input :
Source phrase words

Candidate phrases

Output:
Candidate phrases (filtered subset)

Procedure
Score Candidate Phrases
for each candidatePhrase
for each candidatePhrase word contained in sqiraese
if candidatePhrase has only one word then
set candidatePhrase score to MAX_VALUE
else
add word’s IPF value to candidatePhraseScore

Check for Exact Matches
for each candidate phrases whose candidatedSuae =
PhraseCoveragelPF(sourcePhrase )
if exactMatch(sourcePhrase, candidatePhrase
add candidatePhrase to returnedCandibede®s

Filter:
if no exact matches then
add all candidate phrases to returnedCarefdaiases whose
minimum score is >= (averageScore + (2 * sidfverageScore))

if no returnedCandidatePhrases
add all candidate phrases to returnedCarefdeiases whose minimum score is 3
highest candidatePhraseScore

Return:
output returnedCandidatePhrases

Figure 12: CoverageFilterExtended: An extended Gme Filter algorithm
utilizing the exact match and single-word candigatease maximal weighting
heuristics.
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3.1.4 Coherence Filter

A filter to measure coherence is introduced, whetgerence is a measure of the
order of terms in the phrase. Coherence is medsyréooking at the order of the words
in common between the source phrase and each eaagidrase. The idea is that the
common syntactic ordering of the source and cameliplarases will remove candidate
phrases which have some words in common but aalifferent order, indicating the
candidate phrase may be expressing a differentepdrnican the source phrase. The
Coherence filter uses, pairs of ordered words whltdw for intervening words, known
as skip-bigrams (C. Y. Lin & Och, 2004a). The skigrams are generated by walking
the candidate phrase words from beginning to exdpairing each word with the word
that follows it. For example, the phrgseripheral plasma cell myelontas the set of

complete skip-bigrams as shown in Figure 13:

peripheral plasma
peripheral cell
peripheral myeloma
plasma cell
plasma myeloma
cell myeloma

Figure 13: Complete skip-bigram (i.e., no gap dedinfor
phraseperipheral plasma cell myeloma
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The number of intervening words, called a gap,lmahmited. The skip-bigram
gap can be set from 0 to any specified numberjraidates the number of allowed
intervening words. The lower the gap size, theanestrictive the order of words is
enforced. For a given gap sizethe skip-bigrams generated include all skip-bggdor
lower levels oin. For example, a gap size of two will include skigrams with gap sizes

zero, one and two. Figure 14 shows the skip-bigrgemerated for a gap size of zero:

peripheral plasma
plasma cell
cell myeloma

Figure 14: Skip-bigrams with gap zero for phrase
peripheral plasma cell myeloma
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A gap size of one produces the list shown in Figir¢which includes skip-bigrams of

gap size zero as well as skip-bigrams of gap sieg:o

peripheral plasma
peripheral cell
plasma cell
plasma myeloma
cell myeloma

Figure 15: Skip-bigrams with gap one for phrase
peripheral plasma cell myeloma

The skip-bigram statistic can be computed as pmecend recall measures (C. Y.
Lin & Och, 2004a), as shown in Figure 16. In bothasures, the number of common
skip-bigrams between the source phrase and a arditirase within a specified gap is
computed. For precision, this common skip-bigramntas divided by the total number
of skip-bigrams of the source phrase within a dptgap. For recall, the common skip-
bigram count is divided by the total number of skigrams of the candidate phrase
within a specified gap. The skip-bigram precisiopasures the degree of skip-bigram
matching with the correct phrase (i.e., source s#jravhile the skip-bigram recall
measures the degree of skip-bigram overlap withdtreeved phrase (i.e., the candidate

phrase).
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CommonSkiBigramsWihinGap(SortcePhras&; andidateRrast
CountSkipByramsWitlinGap(SowePhrase)

Precisiorr

CommonSkipigramsWihinGap(SorcePhras&€;andidateRrase)
CountSkipByramsWitinGap(CanulatePhras)

Recall=

Figure 16: Skip-bigram Precision and Recall metrics
CommonSkipBigramsWithinGap(SourcePhrase, Candidiaeste)is the
number of the bigrams in common between the squincase and the
candidate phrase within the specified gap, and the
CountSkipBigramsWithinGap(somePhrasethe number of skip-bigrams
within the specified gap distancestimePhrase (C. Y. Lin & Och, 2004a)

For example, the source phrasencer of the lunglemonstrates how the skip-
bigram filter works. According to a Metathesauraarsh of the UMLS Knowledge
Source Server (http://umisks.nim.nih.gov), theeetaro potential UMLS concepts for
this phrase with concept identifiers and conceptesC0242379: Malignant Neoplasm
of the LungandC0684249: Carcinoma of the Lunip this example, each concept has
several concept instances but we assume only are@pbinstance is chosen as the
candidate phrase for each concept. The candidassefor concept C0242379Liang
Cancer The candidate phrase for concept C068424iscer of the Lungyhich
becomesCancer Lungafter stop word removal. The source phrase afitgr\sord
removal iscancer lung The skip-bigrams with a gap of zero for C0242&n8ng
cancer for C0684249 igancer lungand for the source phrasecancer lung The skip-
bigram recall score for C0242379 is 0 (0/1) while skip-bigram recall score for

C0684249 is 1 (1/1). Therefore, the returned UMbS8aept is C068424%arcinoma of



the Lung Figure 17 shows an example of how the skip-bigiiter works using the

source phraseancer of the lung

‘cancer of the lung’

A 4

cancer lung

C0242379: Maligna
Neoplasm of the Lu

nt C0684249: Carcinomd
of the Lung

ng

A 4
Lung Cancer

\ 4

y

Cancer of the Lung

y

lung cancer cancer lung
A 4 A 4 A 4
lung cancer cancer lung cancer lung
0/1=0 1/1=1

A 4

C0684249: Carcinomg
of the Lung

Source
Phrase

Normalized
Source
Phrase

Candidate
Concepts

Concept
Phrase

Normalized
Concept
Phrase

Skip-
Bigrams

Skip-Bigran
Recall Score

Selected
Concept

Figure 17: Example skip-bigram filtering
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The performance of skip-bigrams has been evaluatethchine translation
evaluation and summary evaluation, and has beemrstwperform at or above state-of-
the-art measures with less complexity (C. Y. Li®&h, 2004b). CONANN uses the
Recall measure, since it has been shown in matfanslation evaluation research that
n-gram recall is the biggest factor in evaluatiosmg n-gram measures (Lavie et al.,
2004). In addition, the original SAPHIRE systemdiaehigh-precision approach to
match all words in the source phrase in their aagorder, and found that this resulted in
missed concept mappings (W. Hersh & Leone, 19983.driginal SAPHIRE system
used exact word order to try and eliminate falssip@ matches where all words
appeared in a phrase but in a different order tieguh finding a different meaning than
the source phrase intended. In the current implésien, CONANN calculates the skip-
bigram recall scores for all candidate phrasesgusioomplete skip-bigram that is less
restrictive than the high-precision approach of SiFE. Whereas the original
SAPHIRE system required exact word order, CONANINves for gaps between words.
Allowing for gaps between words imposes word oaea requirement, but does not
completely require all words to match between @nededate phrase and the source
phrase. This enforcement of word order while allayintervening words is the primary
advantage of using the skip-bigram approach. Theeyt associated with the highest-
scoring candidate phrase is returned. If therdi@sdn candidate phrase scores, the

concepts associated with the tied candidate phease®turned.
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3.1.5 Additional Filters

The annotation system is not limited to the tWieifs presented above. The
coverage and coherence filters were designed tsumeaord membership and word
order. Additional filters can be added, and mayevedify the coverage and/or
coherence filters with additional heuristics. Arample of an additional filter is concept
disambiguation. The concept disambiguation filmuld be implemented by using
UMLS-provided concept co-occurrence informatione General idea would be to make
two passes over the source text, annotating firshambiguous concepts, and then using
the unambiguous discovered concepts along with Ukh-Sccurrence metrics to

disambiguate remaining concepts.

3.1.6 Final Concept Mapping

The selection of the concept(s) which best matelstiurce text phrase is the final
step in CONNANN. The core problem is to take tls¢ ¢if candidate phrases remaining
after all filters have been applied, and pick tlstbmatching concept(s) based on the
remaining candidate phrases. Two different appresc@re currently implemented and
have been evaluated in CONANN:

Candidate Phrase Counting: If more than one candidate phrase remains itighe
of candidate phrases after all filters have begaiegh, the candidate phrases are passed
to a final stage to perform text-to-concept mapgorgsimply concept mapping). Final
concept mapping finds the best matching candidatase among the remaining
candidate phrases. The Candidate Phrase Countomgaagh is to sum the number of

candidate phrases belonging to each UMLS concegtiten choose the concept(s) with
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the largest number of candidate phrases. Therag@lping of a source phrase to a UMLS
concept is performed after the coverage and coberiters have been applied to a list
of candidate phrases. The remaining candidate ghi@® then grouped by the concepts
they belong to. Each candidate concept is thereddoaised on the number of candidate
phrases it contains. The highest scoring candidateept is then output as the concept
for the source phrase. In the event of tie scanestiple candidate concepts can be
output. The idea is that the number of candidatag#s per concept after filtering gives
an indication of the matching likelihood of a saiphrase to a concept.

Language Model: CONANN uses a multinomial unigram language maddind
the concept most likely to have generated the gopincase. A list of candidate phrases is
first retrieved from the output of the coverageefil(see Section 3.4). Each candidate
phrase belongs to one or more concepts. A lisbon€epts is generated from the
candidate phrases to form a set of candidate ctsicep

Each candidate concept is assigned a score basedpvabability of generating
the source phrase. The probability score is caledlas shown in Figure 18, which is a
standard unigram language mixture model (ManniragRRvan, & Schitze, 2007) which
combines a source phrase wond probability within the concept language model
(Mconcep) With the source phrase word probability of th&relJMLS phrase collection
(Mconceptcatiectiop We initially seth=0.5 to balance the concept language model with the
collection model. The extreme valuesieD.1 and\=0.9 were also evaluated, but did not
notice any change in the final concept annotatiaipwat. To allow for more word
variation, the source phrase words were expandettiaode all source phrase word

variants (provided by the UMLS resources) of eamiree phrase word. For example, the
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source phrase wotdng would be expanded to include the word varaumonary Any
concept instance including the wgrdimonarywould then be added to the candidate list.

MconceptcoliectiodS calculated as part of pre-processing and cosithie probability
of UMLS words occurring across all UMLS phraségencepis the language model for a
particular concept based on the concept instamreakld particular concept. For example,
the concepLung Cancemight contain the concept instancésng canceypulmonary
carcinomg. Mconcepfor the conceptung Canceiis the language model constructed from
these two concept instances.

Each candidate concept is assigned a score bgvieigitheMconcep and
MconceptcollectioProbabilities of each source phrase word and applthe retrieved
probability values as shown in Figure 18. The ide@ get the probability that the
concept generated the source phrase, using eachpttanlanguage model which is
composed of one or more concept instances defipedinain experts. The highest-
probability candidate concept is then output asdist-matching concept for the source

phrase. In the case of ties, all of the highestisgaconcepts are output.

P(SrcPhrasd Mconcep) = (1= A)P(w | Mconcep) + AP(W | MconceptCdection))
wlSrcPhrase

Figure 18: Multinomial Unigram Language Mixture Mddw denotes a
word of the source phras@tcPhraseincluding the word variants of each
source phrase word; d¥hceptS the language model for a specified concept,
and MonceptcoliectionS the language model for all UMLS concepts)
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3.2 Biomedical Text Summarization

For biomedical text summarization, two differeppeoaches are proposed,
designed, and implemented to use concepts rataertéinms to identify salient portions
of text within a source text. The first is concepaining, which uses ideas from existing
research work done in lexical chaining and appieediomedical text summarization
applications. The basic idea is to link together¢bncepts found in a text based on
semantic types. The semantic types with the stisingeains are then representative of
the text’s main topics. The second approach usegl#a of reiteration, where an author
repeats important points. Reiteration is refleatethe frequency of content terms used.
Instead of using terms, the use of frequently ategrconcepts is chosen. The novel
contributions of the text summarization compondrthe system are as follows: (a) the
use of concepts and an associated semantic netavohain concepts together to find
text themes (BioChain); (b) the use of concephearathan term, frequency to identify
text themes; (c) the development of a text sumratae algorithm which matches the
concept or term distribution of the source texthi generated summary (FregDist
algorithm); (d) the determination of the optimaid¢h of a summary; and (e) the

identification of the location within texts humamnsmarizers draw text.

3.2.1 Biomedical Text Summarization Using Concelpai@ing (BioChain)

This section describes a novel summarization systdledBioChainSumm
which utilizes the concept chaining approach (celeChain. BioChain applies the
concepts and methods of lexical chaining to biomwedext using concepts rather than

terms.
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BioChain uses identified biomedical concepts ingberce text and chains them
based on their biomedical semantic type(s) (seed®et.6). Figure 19 shows the flow
of the BioChainSumm text summarizer utilizing the®hain concept chaining method.
The basic idea is to first identify the strongdstios (as indicated by the number and
type of concepts found in the source text), and #wore each sentence in the source text
by counting the number of strong chain conceptl saatence contains. The highest-

scoring sentences are then extracted to form a suynm

Ahstract
ot ‘ UMLS Metalvlap Transfer
Full text
i}
Noun phrases,
Concepts,

Semnantic Types,
Location Information

]!

BioChan Snm

Chain Concepts by Semantic Type
(Bio Chain Process)

0
‘ Identifyy Strong Chains ‘

s
‘ Identify frequent concepts within chains ‘

{1

Extract sentences based on nureber of
strong chain concepts they cortain

Figure 19: Text summarization process for BioChamg

A concept chain is created for each semantic tgheed in the UMLS Semantic

Network (135 total). A concept chain is also ahllesemantic type chain or a semantic
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chain. Each entry in a semantic type chain contailist of concepts belonging to the
semantic type. Each concept entry in a semantin coetains a concept name, a concept
identifier, a sentence number, a section numbegfrty paragraph), and a source noun
phrase. A concept entry is constructed for eadfame® of a concept found in the source
text. If a concept belongs to multiple semanticety/fi.e., multiple concept chains), the
concept appears in multiple chains.

Once all concepts within a source text have beentified and linked into
semantic type chains, the chains are then score@mtify the strongest chains. Each
chain is scored by multiplying the frequency of thest frequent concept in the chain by
the number of distinct concepts in the chain. Toisula incorporates a combination of
features as proposed by (W. P. Doran, Stokes, Dan&i Carthy, 2004) and
Barzilay/Elhadad (Barzilay & Elhadad, 1997).

Once all chains are scored, strong chains, whiehtify the semantic types
occurring most often, are determined. Lexical cilgmesearch generally uses two
standard deviations above the mean of all chairesq®arzilay & Elhadad, 1997), and
that method is also used in BioChainSumm. The gtobtrains are sorted into descending
order based on their score. Strong concepts wikl@rstrongest chains are then identified
using two different methods: (a) most frequent emavithin each chain (multiple
concepts having the same frequency count are anesickqual) (abbreviated as
MostFrequentStrongChainConcept), and (b) all cotscefthin a chain (abbreviated
AllIStrongChainConcepts). Sentences from the sotérdeare then scored based on the
number of strong concepts they contain. After sezge have been scored, sentences are

sorted into descending order based on their sGtietopn sentences in the sorted list
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are extracted, re-sorted into their order of apgeae in the original text, and presented to
the user. Figure 20 presents the pseudo-coded@uimmarization algorithm, which
consists of several stages: concept mapping, coobeming, strong chain identification,
and sentence scoring and extraction. Each majge stethe process is detailed in the

following sections.
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BioChain(source-sentences, summary-size)

Concept Chaining
FOR EACH concept and semantic type found
APPEND the concept to the semantic type chain

Strong Chain Identificatian
/I Score each chain
FOR each semantic type chain
FIND the concept with the highest frequency
FIND the number of distinct concepts within theimn
SET the chain score to concept frequency coumirfiber of distinct concepts

// Find minimum score required to be a strong chain

COMPUTE ChainScoreAvg = Avg(all chain scores)

COMPUTE ChainScoreStdDev = StdDev(all chain scores)

COMPUTE StrongChainMinScore = ChainScoreAvg + @htainScoreStdDev)

/l Find all strong chains
FOR EACH semantic type chain
IF (chain score >= StrongChainMinScore) THEN @haia strong chain

Sentence Scoring and Extraction
/I Score sentences

I Two variations
I Variation #1: use most frequent conceptmm $trong chain
I Variation #2: use all concepts in the strahgin

FOR EACH sentence
IF (sentence CONTAINS strong chain concept) THEN
INCREMENT sentence score by number of
strong chain concept instances in sentence

/I Sentence Extraction

I Note: N is the number of sentences to output
SORT sentences into descending order by sentence s
EXTRACT top N sentences

SORT top N sentences into original appearancer orde
PRESENT top N sentences as summary

Figure 20: BioChainSumm summarization algorithm
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3.2.1.1 Concept Chaining (BioChain)

Concepts are identified using the UMLS MetaMap $fan application (United
States National Library of Medicine, 2005b), andrttchained based on their semantic
type(s). A concept chain is created for each semayge defined in the UMLS Semantic
Network (135 total). Each concept chain containkstaof concepts belonging to the
semantic type. Each concept entry in a conceptncf@ semantic chain) contains a
concept name, concept identifier, sentence nungsatjon number (roughly paragraph
number), and source text noun phrase. If a congejoings to multiple semantic types

(i.e., multiple concept chains), the concept appeamultiple chains.

3.2.1.2 Identification of Strong Chains

There has been no definitive measuredorisg chains, and the literature suggests
changes in scoring methodology do not adverselyaanhphaining results (W. P. Doran et
al., 2004). There are three types of strong cheatures: (a) reiteration, (b) density, and
(c) length (Morris & Hirst, 1991). Reiteration ispetition of concepts throughout a text.
Density is physical proximity of concepts; thataencepts closer together are more
likely to be related. Length is the number of cgiaastances within a chain. The chosen
scoring method, shown in Figure 21, includes a doatlon of features as proposed in
(W. P. Doran et al., 2004) and (Barzilay & Elhadd®97). Once all chains are scored,
strong chains, which identify the semantic typesuogng most often in the source text,
are computed. Lexical chaining research generalyg two standard deviations above the

mean of all chain scores (Barzilay & Elhadad, 198%)shown in Figure 22.
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Score(Chain) = Frequency of most frequer
concept * number of distinct concepts

Figure 21: Chain scoring

Strong(Chain) = Score(Chain) > (Average(Scores) +
2 * StandardDeviation(Scores))

Figure 22: Strong chain identification

3.2.1.3 Identification of Frequent Concepts and Bwamization

Summarization identifies sentences most likelytwagpthe main ideas of a text.
BioChainSumm uses concept chaining to first idgritie main themes of a biomedical
text and then the sentence extraction method tergena summary. Sentence extraction
begins by first sorting the strong chains into @esting order based on chain score
explained in Section 3.2.1.3. In each strong chather the most frequent concept in the
chain (MostFrequentStrongChainConcept) or all efdbncepts
(AllStrongChainConcepts) are used to score sensel@h sentence is assigned a score
based on how many concepts it contains from eaohgthain.

For MostFrequentStrongChainConcept, a sentersmied higher if it contains the
most frequent concept from a strong chain. Multg@acepts having the same frequency
count are considered equal. When using AllStrong@ancepts, a sentence receives a
higher score if it contains any of the conceptsifi@strong chain. Each strong chain
concept found increases the sentence score valorebyOnce all sentences have been

scored, the sentence list is sorted into desceratiohgy based on the computed sentence
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score. The toprsentences are then extracted, wineisea user-defined upper bound on
the number of sentences to select for a summatheadriginal text. After the specified
number of sentences has been extracted to forrmmaty, the sentences in the
summary are re-sorted into their order of appea&amthe original text, and presented to

the user.

3.2.2 Biomedical Text Summarization Using Conceaggbency Distribution (FregDist)

A new summarizer based on the FregDist concepuémecy distribution
algorithm, FreqDistSumm, is proposed, designed,iaptemented. FregDist is a
frequency-based and redundancy-sensitive algorititma.FreqDistSumm summarizer
creates a summary of a source text which has appately the same frequency
distribution of concepts as the source text. Fiiiashows an outline of tHgeqgDist
algorithm to generate a summary given the full-tshdome source (source text) using a
frequency distribution approach. The basic idetheffrequency distribution approach is
that the frequency distribution of terms or conseptthe source text and the generated
summary should be as similar as possible. Therenarstages in the summary
generation process: Initialization and Summary @ren. In the initialization stage, the
unit items (terms, concepts, etc.) of the sourgedee counted to form a frequency
distribution model of the source text. In our resbathe focus is on concepts as unit
items. Concepts are identified using the UMLS MedaM ransfer application (United
States National Library of Medicine, 2005b). A pobkentences from the source text is
also created. A summary frequency distribution nhagdduplicated from the source

text’s frequency distribution model. The frequencyhe unit items in the summary
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frequency distribution model are initially set tera because the summary is initially
empty. In the Summary Generation stage, new seegeare selected to be added to the
summary. ldentifying the next sentence to be addé¢kde summary is accomplished by
finding the sentence which most closely alignsfteguency distribution of the summary
to the frequency distribution of the original sautext. A candidate summary is first
initialized to the summary generated so far. Fehesentence in the sentence pool, the
sentence is added to the candidate summary tooseenich it contributes to the
candidate summary. To determine the sentence’silbotibn, the candidate summary
frequency distribution is compared for similaritythe source text’s frequency
distribution. The comparison generates a similayre. This similarity score is
assigned to the sentence as the sentence scageal\fsentences from the sentence pool
have been scored (evaluated for their contributiaime candidate summary), the highest
scoring sentence is added to the summary and rehfowa the sentence pool. This

process is iterative, and repeats until the desaegth of the summary is reached.



FregDist(source-text, important-sentences, sumrsiag)
Initialization:
/I Note: -model' means 'frequency distributiondeld
INITIALIZE source-model to unit-items in source-tex
INITIALIZE summary-model,
candidate-model from source-model
SET all frequency values to O

INITIALIZE sentence-pool to source-text sentences

Summary Generation:
REPEAT
INITIALIZE sentence-pool scores to 0
INITIALIZE best-score to 0
INITIALIZE best-sentence to first sentence in poo

FOR each sentence-entry in sentence-pool
INITIALIZE candidate-model from summary-model

ADD sentence unit-item frequencies to candidabelel

SET sentence-entry.score =
similarity(source-model, candidate-model)

IF sentence-entry.scorescore > best-score
SET best-score to sentence-entry.score
SET best-sentence to sentence-entry

ENDIF

ENDFOR

ADD unit-items from best-scoring sentence
to summary-model

REMOVE best-sentence from sentence-pool

UNTIL desired summary size reached or
sentence-pool exhausted

Figure 23: FregDist - an algorithm for generatinghgnaries using a
frequency distribution approach.
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Five similarity functions were compared to find wiitype of function worked
best to evaluate a candidate summary’s frequerstsitmition to the original source text
frequency distribution. Each frequency distribut{candidate summary and original
source text) is modeled as a vector of unit iteBnslarity functions are then applied to
the two vectors. Figure 24 shows the five simiafiinctions used. The notations are as
follows: ui is unit item;srcUlsandsumuUlsis all unit items in source text and candidate
summary, respectivelgrc(ui) andsum(ui)is indexed unit item in the source text and
candidate summary, respectively. Cosine similgBigeza-Yates & Ribeiro-Neto, 1999),
Dice’s coefficient (Dice, 1945), Euclidean distararc®l vector subtraction (Subhash,
1996) are all well-known vector comparison methdasddition, an approach to vector
model comparison considering only unit item frequewas tried (D. L. Lee, Chuang, &
Seamons, 1997). Cosine similarity uses the cosigkeasalue between the vectors for
similarity. Dice’s coefficient looks at the numb&Ercommon terms between the two
vectors. Euclidean distance measures the distaeteebn the vectors in Euclidean
space. For vector subtraction, the absolute vdltieecdifference of each unit item in
each vector is summed to form a distance scoreumtiétem frequency approach
attempts to simulate cosine similarity without doenputational complexity by only

considering unit item frequency (D. L. Lee et 4D97).



ij's sum(ui) x src(ui)

Sscore =

srcUls N2 srcUls SN2
\/Zuizl sum(ui)? x " "~ " src(ui)

(a) Cosine similarity

score =

2* count (srcUls n sumUls)

count (srcUIs ) + count (sumUls)

(b) Dice’s coefficient

score = () (sum(ui) - src(ui))?)*'?

srcUls

ui=1

(c) Euclidean distance

score = Y |(src(ui) x sum(ui)) |

srcUls

ui=1

(d) Unit item frequency

score = Y |(src(ui) - sum(ui)) |

srcUls

ui=1

(e) Vector subtraction
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Figure 24: Similarity functions to evaluate a calade summary’s frequency
distribution to the original source text frequemnltstribution. (a) cosine similarity,
(b) Dice’s coefficient, (c) Euclidean distance, (aijt item frequency, and e)
vector subtraction. Notations usedlis unit item;srcUlsandsumuUlsis all unit
items in source text and candidate summary, reispdgctsrc(ui) andsum(ui)is

indexed unit item in the source text and candidatamary, respectively.

3.2.3 Biomedical Text Summarization Combining Bie@hand FregDist (ChainFreq)

The BioChain and FregDist algorithms use differgoproaches for identifying

relevant sentences for building an extractive surgmfaproblem not addressed in the

current BioChainSumm summarizer is reducing infdramaredundancy. Sentences

containing the strongest concepts in the text si@eted without a complimentary

method for reducing redundancy from sentencesarselected. To overcome this
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limitation, the BioChain and FreqDist algorithme @aombined to form a hybrid
algorithm, called ChainFreq. The hybrid ChainFrigpathm first uses the BioChain
algorithm to identify candidate sentences cont@rsitnong concepts. The candidate
sentencesSqg and their corresponding concep®X) are then passed to the FregDist
algorithm, which produces a set of summary sentefroen the candidate sentences. A
summary frequency distribution model is then crédétem theCc, and the frequency
counts are initialized to zero. The FregDist altion then selects sentences containing
concepts in the same distribution as the originalae text with respect 8¢ which
reduces redundancy to the same proportion it exigtsee source text.

Figure 25 shows how the two summarization methBasChain and FreqDist,
are combined to form the new hybrid summarizer,idfFr@qSumm. First, all source
sentences with their corresponding concept anoistre collected and passed to the
BioChain algorithm. Concepts are identified using UMLS MetaMap Transfer
application (United States National Library of Mede, 2005b), The BioChain
algorithm takes advantage of domain-specific kndgée specifically UMLS semantic
types, to find sentences which are important indibyi@ain. There is no limit on the
number of sentences generated by the BioChainitligorThe subset of source-text
sentences identified by the BioChain algorithmthen passed to the FreqDist method.
The FregDist method then finds a further subseeatences whose concept distribution
best aligns with the concept distribution of therse text. A user-defined summary size
limits the number of sentences output at this stBgéh the BioChain algorithm and the
FreqgDist algorithm work together to (a) find thepiontant sentences according to the

domain (using the BioChain algorithm), and (b) m&ltedundancy by further reducing
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the number of important sentences based on howtletl concept distribution aligns
with the source text’s concept distribution (usthg FregDist algorithm), which has the

effect of reducing redundancy.

Initialization:
INITIALIZE source-sentences to source-text seogsn
INITIALIZE important-sentences to NULL;

Summary Generation
important-sentences = BioChain(source-senterd€sy;

important-sentences = FregDist(source-text,
important-sentences,
summary-size);

RETURN important-sentences as final summary;

Figure 25: Hybrid summarization methG@thainFreqSumnaising the
BioChainmethod to identify sentences, and BreqDistmethod to
remove redundancy.

3.2.4 Update Task in DUC 2007

In this subsection the FreqDistUpdate system usédel DUC 2007 update task
is described. FregDistUpdate is a first entry m EHJC evaluations. FreqDistUpdate uses
ideas from the FregDist text summarizer (FregDistB1). FregDistSumm has been
shown to perform well in biomedical text summaiiaat and this is a first adaptation to
use it within a general domain. While FreqDistUgddid not perform well in the
automated evaluation scores, it did perform battéhe manual evaluation. The

frequency distribution method is a promising applofor the update task. Improvements
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in implementation and approach will likely leaddetter performance in future DUC

evaluations of the update task.

In the DUC 2007 update task, systems are askemtiupe short summaries of
newswire articles, assuming a user has read d pe¢\dous, related article texts. The
idea is to present new information that the userriwd already read from the set of
preceding article texts. This task is an appropnéce to test the existing FregDist
algorithm in a new way and in a new domain. Thediaea behind FregDistSumm is to
create a summary which has approximately the saegeéncy distribution of unit items
(i.e., terms or concepts) as the source text.ifwvtlay, the summary captures the
expressions of a text in the same degree theyxgressed in the source text. This

approach has worked well in biomedical text sumnadion work (Reeve et al., 2006).

For the update summarization task, three summeaees generated for each
topic. The summaries are based on three documesnabeled A, B, and C. Summary
generation is done by (a) reading the sentences dtbdocuments in a document set, (b)
determining the frequency distribution of all termishin the document set, and then (c)
building a summary so that the summary term frequelistribution is as close as
possible to the current document set’s term frequelmstribution. To account for
information accumulated from a previous summarg,shmmary term frequency
distribution is initialized to the previous summarterm frequency distribution.
Sentences from the current document set are tleeadsbased on how well they

presented new information (terms) as comparedg@tlvious summary.

The update summarization task required the gewoarafithree 100-word multi-

document summaries for each of ten topics. Withitheopic, there are three document
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clusters labeled A, B, and C. Each document clusteinronologically ordered and
contains approximately ten documents related tpet The task is to generate three
summaries from the contents of each document geh@i topic statement (information
need). Summary A summarizes the texts in docunester A. Summary B summarizes
the texts in document cluster B assuming the realdeady has the information from the
documents in document cluster A. Summary C proctezlsame way, assuming the
reader has already read the documents in docurhestéis B and C. There will be

approximately 10 topics in the test data, with @6udnents per topic.

FregDistSumm began by first constructing a lisingbortant words from the
topic statement. The topic statement words weremgged with a simple method which
first replaced a known set of delimiters, defined@), ;, :}, with spaces. The topic
sentence was then split into words based on a specacter as the delimiter.
Semantically unimportant words, such as ‘a’ and‘;ttvere removed from the list. The
words remaining in the important word list servedbost the scores of these words if

they were found in the texts within a documentteus

For Document Clusters A, B, and C, all documenthiwieach cluster were read
and parsed into sentences using the LingPipe semtdnunker (Carpenter & Baldwin,
2007). The sentence chunker was initialized tothiséndo-European sentence model,
which was provided as part of the LingPipe toolkite sentences from all documents in
the cluster were combined to form a single listespnting all sentences within the
cluster. The result of the reading and parsingteee lists of sentences, one for each

cluster.
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For Document Cluster A, the summarizer was thesgzhthe list of sentences
and the list of important words. The first steghe summarizer was to initialize all of the
sentences with a score of zero. A hash table agntaall words in the sentence list and
their frequency counts was generated. The basd®istalgorithm shown in Figure 23
was then applied. Several modifications to the raigm were done to account for
important words from the topic statement and atgo1i00-word maximum summary
length requirement. Important words within eachiteece were counted. If a sentence
did not contain one or more important words, it waralized so that it chance of being
selected was very low. The idea was to select seasewhich had words in common
with the topic statement. For summary length, desee was not selected unless its
length plus the length of the summary generatddrseas less than 100 words. The
result is that a lower-scoring sentence would lbecsed if a higher-scoring sentence
caused the summary length to exceed 100 words. &@hsentences were selected, they

were sorted into their original order of appearamog a summary was generated.

In Document Cluster B, the same basic approachagplsed, but with Document
Cluster A being passed as a parameter to the sumenan addition to the set of cluster
B sentences and important words. The words fronbDtiument Cluster A sentences
were used to prime the frequency distribution efshmmary to be generated. The idea is
to account for frequencies of words have alreadnls=en and selected, so that the
likelihood of words from the Document Cluster A suary being selected again in the

Document Cluster B summary will decrease.
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Finally the summary for Document Cluster C was dideatically to the
summary for Document Cluster B, except for usingeseces from cluster C as the

source text input.
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4. EVALUATION
This chapter provides information about the semamtnotation and text
summarization evaluation methodologies. The evalnatare done in an automated
fashion. Text summarization is evaluated by meagunigram overlap of a system-
generated summary to several model summaries deddrg domain experts. The
CONANN semantic annotator is evaluated againsttimeept output of a state-of-the-art
biomedical concept annotator as well as its perémee in identifying salient sentences

for text summarization.

4.1 Background of Evaluation Corpus

To provide a set of data for evaluating semantiwgations as well as summary
performance, a corpus of 24 biomedical texts waegged from a citation database of
oncology clinical trial papers. The database costapproximately 1,200 papers
physicians feel are important to the field (Bro&kSulimanoff, 2002). Of the 1,200
papers cited, 24 were randomly selected. The nuofepers chosen (24) was based on
the minimum requirements of the ROUGE summary ataln tool (C. Lin, 2004) as
well as the resources available to complete theuadgmrocessing of each paper. The
PDF versions of these 24 papers were then obtanédonverted to plain-text format.
The papers were then manually processed to rentaphigs, tables, figures, captions,
citation references, and the bibliography secfidre resulting texts were further split

into an abstract text and a full-text source taithout the abstract).



120

A corpus of model summaries was provided by thex@lr&niversity College of
Medicine. Each of the 24 texts was summarized Betlifferent domain experts,
resulting in three model summaries for each of2héexts. The domain experts are
medical students in their final year of study. Adebsummary is a summary written by a
person representing that person’s version of aa slemmary of the full-text source. The
task presented to each human summarizer was t 26l of the sentences within each
full-text source to form a general summary of thi-text source. In effect, the human
summarizers are performing the same extractivedatke system summarizer. An
automated evaluation can then be done to compsystam-generated summary of a full-

text source to the model summaries of the samadutlsource.

Three human summaries of each text were also gedesiha 20% compression
rate using sentences from the original source Téhe.sentences are identified by their
section location in the source text (e.qg., Intrdaug Methods, Results, Discussion and
Appendix). In addition, each sentence is rankedtéamportance in contributing to the
manual summary.

To develop a corpus for semantic annotation, thpdpkrs are processed by
MetaMap to find all noun phrases in the 24 papesylting in a corpus of 4,410 unique
phrases. The corpus was pruned to retain only thlosseses which MetaMap annotated
with a single concept, allowing for meaningful maggpcomparisons between the two
systems, MetaMap and CONANN. There were 1,628 plragth a single MetaMap
concept annotation. This set of phrases was uspertorm the evaluation. As a baseline,

the precision of MetaMap concept annotation is m&slito be 100%.
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4.2 Biomedical Semantic Annotation Evaluation

Evaluation of the annotation system is done usitignisic and extrinsic
evaluations. The intrinsic evaluation is done bsnparing CONANN'’s concept output to
the concept output of the MetaMap system (Aron2001a), and determining precision
and recall values. The extrinsic measure evaluhteperformance of CONANN'’s

concept output on a text summarization task.

4.2.1 Intrinsic Annotation Evaluation

The MetaMap system output is used as baseline &sune against. MetaMap
takes a phrase as input and generates the bestingatédMLS concept(s). CONANN'’s
annotator output for the same phrase is then getkaad compared to the concept(s)
generated by MetaMap. To measure the amount ofititakes for MetaMap to annotate
the test corpus of phrases, MetaMap was executred tie 1,628 phrases as input. The
MetaMap API (Devita, 2006) is used to annotate gdohse. MetaMap provides various
APIs to annotate different text chunk sizes, incigddocument, document section,
sentence, or term. The term method is used sivteaMap does not need to expend
effort finding phrase boundaries, as it would dpatsed a document, document section,
or sentence to annotate. CONANN is then executathsigthe same set of 1,628 phrases
and its annotation time measured. CONANN also predwconcept annotations for the
list of phrases. These mappings are then comparktétaMap, producing the annotation
precision metric. Three runs of each system werlmpeed, and the system restarted
after each run to remove variations caused by pleeating environment, such as file

system caching.
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Accuracy is measured by comparing CONANN'’s annotatif each phrase to the
MetaMap’s annotation output for each phrase. Thesdwo measures for the intrinsic
evaluation: (a) precision, and (b) phrase annatdtioe. The first measure looks at the
accuracy of the concept annotation, and the seswasbure looks at the speed of the
concept annotation. The Annotation Precision measses the same idea as in the
precision measure in information retrieval, butf@dd to fit concept mapping (W. R.
Hersh et al., 2001). Annotation Precision is defias the fraction of mapped concepts
which are correct, as shown in Figure 26. In thl@ation, two types of matching are
used.Single Conceptnatching counts a correct match only if CONANNedity
generates a single concept which exactly matcleeM#taMap single concept. In
Relaxed MatchingcONANN generates five top concepts. A correct maatounted if
any of the five concepts generated by CONANN mé#étehMetaMap single concept. The
idea is to see if the correct MetaMap concept isragrthe highest-scoring CONANN
concepts. Recall is not considered because theesplwrase corpus that is correctly
annotated by MetaMap is only provided to CONANNatmotate, and so recall is not
meaningful for this evaluation. For measuring spé¢leel average time to annotate a
phrase is used. This measure is calculated bygdkmtotal annotation time divided by
the total number of phrases annotated. Annotatie is defined as the time it takes to
annotate a single phrase, and does not includanhetator initialization. Total
annotation time is the time it takes to annotdtplalases in the corpus, excluding

annotator initialization.
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#of correctconcepts
total# of conceptsnapped

Precisiorn=

Figure 26: Annotation Precision metric

For the coverage filter, two different candidategsie scoring approaches are
used: Naive and Involvement. The Naive approaabwishn Figure 27) simply sums the
word weights and assigns the resulting sum asahdidate phrase score. The word
weights are either zero or one for binary weightmgthe Inverse Phrase Frequency
(IPF) values if using the IPF approach. The ussvofdifferent word weights allows for
contrasting the performance of using Inverse Phrasguency weighting with binary

weighting in the scoring of candidate phrases.

NaiveCandiateScore Zi'\ilWordWeight

Figure 27 Naive candidate scoring methadlis

the number of words in common between a source
phrase and a candidate phraserdWeighis either

0 or 1 for binary weighting or the inverse phrase
frequency value for IPF weighting.

A second method for scoring candidate phrases ctnoresthe MetaMap
Transfer system and is called Involvement (Aron28®1b). Involvement first computes
the normalized word weights of words in common lestwva source phrase and a

candidate phrase in both directions (phrase invoérg), and then averages the two
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phrase involvement values to determine the cangliplatase score. For example,
consider the source phrase words {A, B, C} and c#atd phrase words {A, B} and
assume binary word weights. The candidate phrasdvement is 2/2, since candidate
phrase words {A,B} are contained in the source pard he source phrase involvement is
2/3 since the source phrase words {A,B} are alsithécandidate phrase words, but
source phrase word {C} is not. The candidate phsasee is then the average of (2/2 +
2/3)/2, or 0.83. As in the Naive scoring methoe, lilvolvement score is calculated using
binary values (as in the example), and also ugtigvalues. The formal calculation for

the involvement score is shown in Figure 28.

Z,NCWordWeigh; Z,NSWordWeigh;

i=1 + i=1

| CandidatefhraseWordg | SourcePhraeWordg
2

Involvemen =

Figure 28: Involvement ScorBIC is the number ofvords

in the candidate phrase that are in the sourcesphiSSis

the number of words in source phrase that arendidate

phrase, andVordWeights either: 0 or 1 for binary weighting,

or inverse phrase frequency value for IPF weight{Aronson, 2001b)

4.2.2 Extrinsic Annotation Evaluation

The output of a concept annotator is a list of pesaand their associated domain-
specific concepts. This output is an intermediatengt, not directly useable by an end-
user. The extrinsic evaluation is a complimentaglgation to the intrinsic, designed to
show the usefulness of the concept output in sasle Text summarization was selected

as the end-user task. The use of text summarizaidhe end-user task leverages our
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work done in text summarization using MetaMap,ls&ré is a good baseline and a
working system in place to compare the performaric@ONANN with. Two

probabilistic summarizers are used: (a) FreqMsiefe et al., 2006), and (b) a version of
SumBasic (A. Nenkova & Vanderwende, 2005) modifeedse concepts rather than
terms. Both summarizers only use concept frequasdhe sole feature to select salient
sentences. The output of a concept annotator tfos¢he input to the summarizers.

Both summarizers’ performance is entirely relianttioe frequency of concepts identified
in the texts. It is expected if the concept annorais accurate, summarization
performance will improve because the conceptshvaille identified important areas

within a text. Conversely, if the concept annotai® not accurate, text summarization

performance will degrade.

The biomedical text corpus is annotated using GEINANN and MetaMap. The
FregDist and modified version of the SumBasic sunwaes are then used to generate a
summary of each of the 24 texts using the conceijpiud from both annotators. The
summary output from both summarizers is evaluag@angt manual summaries
generated from domain experts using the ROUGE(Betall-Oriented Understudy for
Gisting Evaluation) (C. Lin & Hovy, 2003). ROUGE& an automated evaluation tool
which compares a system-generated summary fromtamated system with one or
more ideal summaries produced by people, calledeirmadnmaries. ROUGE uses n-
gram co-occurrence to determine the overlap betwesemqmmary and its corresponding
model summaries. An n-gram can be considered asrom@re consecutive words. The
ROUGE parameters from the DUC 2005 conference @Natilnstitute of Standards and

Technology (NIST), 2005) are used to evaluate systi@mmarizer performance. Two
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recall scores are extracted from the output of REBUW&measure each summarizer:
ROUGE-2 and ROUGE-SU4, which are also the measises by DUC 2005. ROUGE-
2 evaluates bigram co-occurrence while ROUGE-Slduaies skip-bigrams with a
maximum distance of four words. The ROUGE scordgate the n-gram overlap
between the source text and the model summariesrartye of ROUGE scores is 0.0 to
1.0. If a system-generated summary and a singleehsotnmary overlap exactly, the

ROUGE score is 1.0. If there is no overlap, the REEBXscore is 0.0.

4.3 Biomedical Text Summarization Evaluation

Summarization evaluation is typically done by conmgpa system-generated
summary to summaries generated by people (C. Lio&y, 2003), (Harnly, Nenkova,
Passonneau, & Rambow, 2005). The 2005 Documentrshaaeling Conference
(National Institute of Standards and Technology§ N\ 2005) was reviewed for its
approaches for evaluating system-generated sunmsn&i$¢C2005 used two different
approaches: NIST and ISI/Columbia. Both approachgsire the use of model
summaries, which are manually created summariassotirce text. The system-
generated summary and the model summaries aretngpared to form an evaluation of
the system-generated summary.

The NIST approach uses two manual methods for atialuand one automated
method. The manual evaluation methods are subgeoieasures afuality and
responsivenessind no comparison is done with the model summafiee quality
evaluation method is implemented by asking an etafuo read the system-generated

summary, and then answer a series of five queséibast it which inquire about
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grammaticality, information redundancy, anaphosahgion, focus, and structure and
coherence (National Institute of Standards and ii@clyy, 2005b). The responsiveness
evaluation (National Institute of Standards andhhetogy, 2005a) looks at the quality of
information in the system-generated summary, aadjthnularity of the information
supplied. The idea is to understand how well tletesy-generated summary responded to
a specified information need. The automated metises a tool called ROUGE (Recall
Oriented Understudy for Gisting Evaluation) (C. L2®05) for comparing a system-
generated summary to a set of model summaries.

The ISI/Columbia approach uses a manual methodcctie Pyramid method (A.
Nenkova & Passonneau, 2004). The Pyramid methddates the common information
content between a system-generated summary aridbreedel summaries produced by
people. Information content is defined as an exgioasof an idea without regard to the
terms used to express it. This analysis is diffitido automatically, and so human
annotators are used to annotate all summariestethinformation content, and the
overlap of the information content between a sysgemerated summary and its model
summary is measured using frequency of occurrddath systems generate a score
indicating how well the system-generated summaryetates with the summaries
produced by people for the same text.

In order to evaluate a system-generated summag\gutput of the system
summarizer is compared to several model summasieg @n automated tool. The
ROUGE evaluation method is used because (a) dngpetely automated as compared
to Pyramid, which requires at least some manuabtation, and (b) requires fewer

model summaries as compared to Pyramid, which regjabout five model summaries
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(Harnly et al., 2005). The ROUGE (Recall-Orienteaderstudy for Gisting Evaluation )
tool (version 1.5.5) (C. Lin & Hovy, 2003) develapky the Information Science
Institute at the University of Southern Califormsaan automated tool which compares a
system-generated summary from an automated systitnome or more ideal summaries
produced by people. ROUGE uses n-gram co-occurtengdetermine the overlap
between a summary and the models. An n-gram caorsdered as 1 or more
consecutive words. ROUGE was used in the 2004 888 Pocument Understanding
Conferences (DUC) (National Institute of Standaadd Technology (NIST), 2005) as
the evaluation tool. The ROUGE parameters fronDb€ 2005 conference (National
Institute of Standards and Technology (NIST), 208®)used to evaluate system
summarizer performance. Two recall scores are eetlsfrom the output of ROUGE to
measure each summarizer: ROUGE-2 and ROUGE-SU4 .Gt evaluates bigram
co-occurrence while ROUGE-SU4 evaluagkgp-bigramswith a maximum distance of
four words. ROUGE-2 and ROUGE-SU4 are also the areasused by DUC 2005. The
recall scores indicate the n-gram overlap betwkersburce text and the model
summaries. It is difficult to compare ROUGE resuwits¢side of the corpus and model
summaries used in the evaluation. For this reasmreral summarizers from publicly-
available sources are also used in order to prasadee meaningful comparison among
them using the same corpus and set of model suresnari

The Pyramid method (A. Nenkova & Passonneau, 280#pstly a manual
evaluation effort, although there has been somentegork done to automate part of the
evaluation (Harnly et al., 2005). Pyramid evaluati@gins by identifying all units of

model summary text no bigger than a clause whignesses an idea. These clauses are
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called contributors. The contributors all expregdime same idea are gathered together
into a Semantic Content Unit (SCU). An SCU is cosgmbof a unique index (i.e., SCUL1,
SCU2, etc.), a weight which is the number of m@idehmaries it appears in, and a label
which expresses the idea of the contributors (Mkdega & Passonneau, 2004). After all
SCUs have been identified, a pyramid is formed thasethe SCU weights, where each
level of the pyramid has SCUs of the same weiglth the highest weighted SCU at the
top of the pyramid and descending weighted SCUnsifay lower levels of the pyramid.
A system-generated summary is then also annotatée isame way as the model
summaries. The pyramid expresses the content vghichld be in the summary, with the
top level expressing the most important contené 3ystem-generated summary is given
a score computed by first counting the SCU ovebkepveen the model summary SCUs
and the system-generated SCUs at each level piytfaenid, multiplying the overlap
count by the tier in the pyramid where the SCUuogscand summing the overlap scores

for each level of the pyramid (A. Nenkova & Passmn 2004).

4.3.1 Summarizers Used for Evaluation

Eight extractive summarizers are used in the etalusé compare the
performance of our summarization approaches. TlselBae and SumBasic
summarizers were implemented for this evaluatiod, @ach has multiple variations. The
Lemur MMR, MEAD, AutoSummarize in Microsoft Word, TS, and SWESUM
summarizers are publicly available. The eight etiva summarizers were selected
based on the type of summarization method andadubti. There are roughly four

categories of summarizers selected: baseline, érequbased, multiple feature, and
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redundancy-sensitive. Two summarizers in each ogyegere selected. The two baseline
summarizers are Baseline-Lead, which sequentialcss the first 20% of sentences in
the source text, and Baseline-Random, which rangigeiects 20% of the sentences in
the source text. The frequency-based summarizer&@oSummarize in Microsoft
Word (Microsoft Coporation, 2002)and Open Text Suwanger (OTS) (Rotem, 2003).
AutoSummarize is a feature of the Microsoft WorddiMsoft Coporation, 2002) word
processing software, and although exact detailseo&lgorithm are not documented,
online help for the product indicates sentencesgusequently-used words are given a
higher score than sentences containing low frequeseds. OTS is an open source
project where stemming can also be performed toiedite word variations. The two
summarizers using multiple features to identifyteenes are SweSum (Dalianis, 2000)
and MEAD (Radev et al., 2004). SweSum is a mutigiial summarizer for Swedish and
English text using features such as sentence postid numerical data identification.
MEAD is a single and multi-document summarizer gdgatures such as position of
sentence within the text, overlap of each sententtethe first sentence, sentence length,
and a centroid method based on a cluster of retbdedments. Finally, the two
summarizers which reduce information redundancy.areur Maximal Marginal
Relevance (MMR) (The Lemur Project, 2006)and SundB@s Nenkova &
Vanderwende, 2005). Lemur MMR iteratively sele@stences having a high query
similarity to an automatically-generated query, ardch are also maximally dissimilar
to sentences already included in the summary. SsioBaes a probability distribution

of terms in the text, and reduces term probabédgysentences containing the terms are
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selected. SumBasic was also adapted to use coraefite input source, rather than
terms.

Each summarizer generated a summary that was &R@% of the length of the
source text. For example, if a source text consisi90 sentences, then 20 sentences are
selected and extracted by each summarizer andnpeelsas the summary. Selecting a
summary size was problematic. The news summarizdomain typically selects a size
of less than five sentences. This represents &fi®atof the size of a typical news story
(Goldstein, Kantrowitz, Mittal, & Carbonell, 1999).has been generally thought that a
summary should be no shorter than 15% and no Idhger35% of the source text (E. H.
Hovy, 2005). The following is a brief descriptiohtbe approaches used by each
summarizer.

In addition to the FregDistSumm summarizer, we alggemented several
variations of BioChainSumm. BioChainSumm is divideid two primary approaches
based on the concept selection criteria in strdvagns for the sentence scoring: (a) using
the most frequent concept in the strongest chiosiFrequentStrongChainConcept),
and (b) using all of the concepts within the stestghains (AllStrongChainConcepts).
Each of these primary approaches also implemenmiatieas by providing each sentence
(or each chain) with a certain weight. The firstiagon is adding a sentence position
heuristic where each sentence is initially scored/al, where N is the number of
sentences in the source text. The concept charme ssthen added to this base score. The
idea is that sentences in the beginning of theaeximore important than sentences at the
end of a text (Dalianis, 2000). A second variai®to filter out semantic types. The idea

is that not all semantic types are important taufoon for a particular user’s information



132

needs. Our domain expert identified the semangiesymportant within the oncology
clinical trial domain. A chain is scored as zeradf in the list shown in Table 11. The

final variation is to combine the sentence positienristic with semantic type filtering.

Table 11: Important UMLS semantic types for oncglofinical trials

UMLS Semantic Type UMLS Semantic Type Name
T37 Injury or Poisoning

T51 Event

T52 Activity

T61 Therapeutic or Preventative Procedure
T62 Research Activity

T67 Phenomena or Process

T81 Quantitative Concept

T169 Functional Concept

T170 Intellectual Product

T191 Neoplastic Process

4.3.1.1 Baseline

The purpose of the baseline summarizers is togpvee indication of the level of
performance of a naive summarization implementafioro baseline summarizers were
implemented. The first baseline summarizer is dallaseline-Lead, and it sequentially
selects the first 20% of sentences in the sousde T@e second baseline summarizer is

called Baseline-Random, and it randomly selects 80%e sentences in the source text.

4.3.1.2 Lemur MMR
The Lemur MMR application (The Lemur Project, 2086a summarizer built

using the idea of Maximal Marginal Relevance (MMRarbonell & Goldstein, 1998).



133

Carbonell describes marginal relevance as findétgvant sentences which contain
minimal similarity to previously selected sentenddaximal marginal relevance in text
summarization attempts to maximize the dissimyasitthe information content between
sentences within a summary. Lemur MMR iterativalests sentences based on
similarity to a query, and then selects sentenagsg a high query similarity which are
also maximally dissimilar to sentences alreadyudet in the summary. In the
evaluation no query was specified, so Lemur MMPomaétically generated a query
based on the source text. No domain specific kndgdesources were provided to the

summarizer.

4.3.1.3 MEAD

MEAD (Radev et al., 2004) is a single- and multigleeument summarizer using
multiple features to score sentences. Some ofeidueifes include position of sentence
within the text, overlap of sentence with the fgshtence, sentence length, and a centroid
method based on a cluster of related documentghEa@valuation, the MEAD Demo
located at http://tangra.si.umich.edu/clair/md/deasgowas used. No domain specific

knowledge sources were provided to the summarizer.

4.3.1.4 AutoSummarize

The AutoSummarize is a feature of the Microsoft W(Microsoft Coporation,
2002) word processing software. AutoSummarize setlan a word frequency
algorithm. Each sentence in a document is givesoeeshased on the words the sentence

contains. Although the exact details of the ald¢ponitare not documented, the online help
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for the product states that sentences using frelyaesed words are given a higher score
than sentences containing low frequency words. doain specific knowledge sources

were provided to the summarizer.

4.3.1.5 Open Text Summarizer (OTS)

The Open Text Summarizer (OTS) is an open souedgirwhich provides a
library for summarizing arbitrary texts (Rotem, 3P0t is based on a frequency-based
approach, where the most frequently occurring wardsassumed to be indicators of the
text theme. Stemming can also be performed to Béteiword variations, so that for
exampleyearis not distinguished from the plungkars Users can provide their own set
of stemming rules. For the evaluation, the pretlmuimmarization library was used with

no change to the stemming rules. No domain-spe@ource is used.

4.3.1.6 SumBasic

The SumBasic algorithm (A. Nenkova & Vanderwendi#)3) is a recent
frequency-based algorithm. The original algorithiorksé using terms as the unit item to
count. For this evaluation, is has been modifiethab the unit items can be terms or
concepts. SumBasic incorporates a component farigigscoverage of weaker concepts
within a text. There are four steps in the algonitiThe first is to determine the
probability distribution of all concepts found witha source text by computing the
number of times a unit item appears in the texided it by the total number of unit
items found in the text. The second step is toeseach sentence by summing the

probabilities of all unit items within a senten@ée third step determines the sentence to
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be extracted by finding the highest-scoring sergembe fourth step then reduces the

probability of each unit item appearing in futusgracted sentences by multiplying each
probability of each unit item in the last extracgsshtence by itself. The implementation
using terms as unit items first had a stop wortdcdlpplied. For the implementation using
concepts, the UMLS Metathesaurus was used as thaidespecific resource (the same

as the BioChainSumm summarizer).

4.3.1.7SWESUM

SweSum (Dalianis, 2000) is a multi-lingual summarritor Swedish and English
text. SweSum uses multiple features for scoringesees, such as sentence position and
numerical data identification. Sentences locatetieean a text are scored higher than
sentences at the end of the text. Sentences cmgtainmerical data are given additional
weight. User-specified keywords can also be pravideboost sentence scores for those
sentences containing the keywords. For the evaluathe online version located at
http://swesum.nada.kth.se/index-eng-adv.html wasl .uBhe text type was set to
Academicand the summarization size was to 20%. No othexrpeters were set, and no

domain specific knowledge sources were providegtiécssummarizer.

4.3.2Biomedical Text Characterization
To explore the text structure of biomedical te#tsee studies are completed. The
first study looks at the distribution of biomedicalncepts within a set of biomedical full-

text sources, as well as the biomedical conceptimihe author abstracts of the same
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set of texts. The idea is to see if the distributsd concepts mirrored the well-known
Zipf distribution of terms in text (Zipf, 1949).

The second study tries to define a minimum compyagstio which can be used
for biomedical text. This is important, becausenaler summary size results in less data
which must be processed by a person to acquirsaime amount of information as a
larger summary. System summaries are generateceatifferent compression ratios:
1%, 5%, 10%, 15% and 20%. The system summariesvataated against model
summaries produced by domain experts. The modeisuias match the compression
size of the system-generated summaries. Compresg®is the percentage of the
sentences from the source text.

The third study looks at the sections within papengere human summarizers
draw their sentences. The idea is to see if soateoss are considered more important
than others. This information can be used to weilfferent sections of a text more
heavily than others if people draw sentences framsection more than another section.
Using this information about the section locatidextracted sentences, the study will
see if there are any commonalities between humiamsuizers in the sections they pull
summary sentences from.

The second and third studies uses the corpus ofdadical texts annotated by
domain experts with the sentences they would extram the source text to form a
summary. The sentences are selected from one serniprio 20% of the number of
sentences in the text, as well as the major seofitimle paper each selected sentence

appears in.
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4.3.2.1 Concept Distribution

The concept distribution study is done to gainghsinto (a) the most frequent
concepts within oncology texts, and (b) determiribe there is any relationship between
the frequency of concepts in the abstract andrdguéncy of concepts within the
corresponding full text. The study data is generatefirst annotating all text within the
evaluation corpus with biomedical concepts. Theotation is done separately for the
full-text and the abstract so that an analysisashdas done. The concepts are then
aggregated across (a) the set of full-text soursed,(b) the set of corresponding

abstracts.

4.3.2.2 Biomedical Summary Size

A primary goal of text summarization is to redulse &mount of data which must
be processed by the human reader. In news sumtianizéoe ideal size of a summary is
approximately 20 percent (Goldstein et al., 1998 ideal size of a biomedical text
summary has not been studied in the literaturedéitermine the ideal size of a
biomedical text (specifically, clinical trials imoology), the approach is to (a) generate
summaries using two summarizers, SumBasic and FsegDcompression rates of 1%,
5%, 10%, 15% and 20%, (b) generate model summasiag the same compression rate,

and (c) evaluate the generated summaries using@¢GE tool.
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5. EVALUATION RESULTS AND DISCUSSION

This chapter presents the evaluation results baiselde evaluation
methodologies described in Section 4. Sectiond&clides on the characteristics of
biomedical text. It describes (a) the distributadiJMLS concepts within biomedical
text, (b) the size of an ideal biomedical summang (c) the sections of a biomedical
text where human summarizers select sentences 8eations 5.2 and 5.3 present an
intrinsic and an extrinsic evaluation of two sen@ahnotation methods. Sections 5.4
and 5.5 discuss text summarization evaluationghes®R OUGE tool on two novel text
summarization algorithms (concept chaining anduesgy distribution). Section 5.6
presents significance testing results of variousrearizers. Finally, Section 5.7 presents
the results of the FregDistUpdate summarizer irR0@7 Document Understanding

Conference.

5.1 Biomedical Text Characteristics

The following subsections detail the results @f $tudy on the distribution of
concepts within the corpus of biomedical texts enadideal size of a summary size. In
addition, the sections of text where human summaggigelect important sentences from

are evaluated.

5.1.1 Concept Distribution
A TreeMap visualization (Johnson & Shneiderman,1)9@as developed to
display frequency of concepts within the corpubiomedical texts. Figures 29 and 30

show two-level hierarchical TreeMap views of theuling concept frequency data. The



139

first level in the hierarchy is the UMLSemantic Typel'he semantic type is used within
UMLS to broadly organize related concepts. Eachasgimtype forms a cell. The size of
the semantic type cell gives an indication of thtalthnumber of concepts within the
semantic type cell. A larger semantic type cellgatks that the semantic type has more
concepts than a smaller semantic type cell. Witlaich semantic type cell, concepts cells
for each related concept are constructed with gerah color intensities. A lighter color
intensity within a concept cell indicates a moegfrently occurring concept than a
darker intensity cell.

Figure 29 shows that the top five semantic typessacthe set of abstracts are
Quantitative Conceptntellectual ProductTherapeutic or Preventative Procedure
Functional ConceptandTemporal ConcepiThe most frequent concepts &ervival
AspectsMethods MethodologyResult Month, Patients andContinuance of LifeThis
seems reasonable, as published oncology cliniedd papers typically evaluate methods

for extending the life of patients.



140

T021-Quantitative Concept T061-Therapeutic or Preventive Procedure TO62-Fesearch Activity | TO92-Population Group | TO20-Oualitative Concept

TO67-Phenorenon or Process | TO37-Injury or
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T170-Intellectual Product

TO52-Actrvity
T191-Meoplastic Proces | TOT73-Manufactur | TO40-Orzandsin F

Figure 29: TreeMap visualization of concept disttibn across 24 abstracts
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TO21-Cuantitative Concept T169-Functional Concept

TO62-Research Actiaty

T170-Intellectual Procuct

T0A1-Therapeutic or Preventtve Procedure
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Teglimen

TOE0-Chualitative Concept ‘7 TO47-Disease
Frittary TO79-Temporal Concept R of ||Disease
alifier alifier valne)

Drration

Figure 30: TreeMap visualization of concept disitibn across 24 full-text sources

Within the set of full-text sources, the top fivengantic types ar@uantitative
ConceptQualitative Conceptintellectual ProductTherapeutic or Preventative
Procedure andFunctional Conceptas shown in Figure 30. The most frequent concepts
are numeriqualifier values Methods Methodology Therapeutic Procedurdiscussion
Result Scientific StudyandPatients

In terms of semantic types, the primary differebetwveen the full-text source
and the corresponding abstracts is that the fomagmore qualitative concepts than the
latter. This is likely attributed to the inclusiofbackground information (e.g.,
introductory material and previous work) which @ nsually provided in an abstract. At
the concept level, the full-text sources make esitenuse of so-called qualifier values,

such as ‘one’, ‘two’, ‘effect’ and so forth, whichodify other concepts. These qualifier
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values exist both in the Quantitative and Qualisemantic types, and occur in greater
frequency than concepts which appear frequentligerabstract, such &ontinuance of
Life. The main observations made during this study{a@réhe semantic types and
concept frequency distribution between a sourceaed abstract are largely the same;
and (b) not all concepts can be treated equally,tamay make sense to weight some
concepts as more important than others. For exampleght be argued that the qualifier
conceptOneis not as important as the conc@antinuance of Lifeln addition, although

it may be useful to filter unimportant parts ofttéy ignoring concepts within a
particular semantic type, it might also be useduilter specific types of concepts. For
example, a physician wanting primarily the resurta generated summary may elect to
exclude all qualitative concepts. A more specifetinod than removing concepts by
semantic type is to remove, for example, all gieli€oncepts across all semantic types.
This may be useful for reducing the number of cptegvhich do not contribute to

identifying text themes.

5.1.2 Summary Size

This section presents the results of evaluatingdeal size of a biomedical
summary. Five different compression ratios are emachusing two different frequency-
based summarizers. The use of concepts and terarstakems to identify salient
sentences is also used within each of the two sumens. Table 12 shows the ROUGE-
2 and ROUGE-SU4 scores for the FreqDist and SuncBasnmarizers at varying

summary sizes. Term and concept versions of eaomsuizer were used.



Table 12: ROUGE Scores by summarizer at varyingnsarn sizes

Summarizer Score Type 1% 5% 10% 15% 20%
FreqgDist-Concept ROUGE-2 0.01561 | 0.05817 | 0.09063 | 0.10540 | 0.12069
FregDist-Term ROUGE-2 0.01561 | 0.05526 | 0.10289 | 0.11944 | 0.13241
SumBasic-Concept | ROUGE-2 0.02432 | 0.06128 | 0.08102 | 0.10303 | 0.11003
SumBasic-Term ROUGE-2 0.06098 | 0.08532 | 0.10909 | 0.11800 | 0.12611
FregDist-Concept ROUGE-SU4 | 0.06766 | 0.13398 | 0.18256 | 0.20260 | 0.21851
FreqgDist-Term-Dice | ROUGE-SU4 | 0.06766 | 0.12737 | 0.19341 | 0.21382 | 0.22941
SumBasic-Concept | ROUGE-SU4 | 0.07277 | 0.13387 | 0.15964 | 0.19106 | 0.19941
SumBasic-Term ROUGE-SU4 | 0.12280 | 0.16383 | 0.19802 | 0.21173 | 0.22089
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The general trend across all summarizers is armmastimprovement in ROUGE

scores as the size of the summary increases. FOIGE=R, the FregDist-Concept

summarizer improves from the 1% size to the 20% Biz87%, while the term version

improves by 88%. The SumBasic-Concept summaringlasly improves from the 1%

size to the 20% size by 78%, while the term versigoroves by 52%. Using ROUGE-

SU4 scores, FregDist-Concept improves by 69%, whieFregDist-Term summarizer

improves by 71%. The SumBasic-Concept summarizprawes by 64% from the 1%

size to the 20% size, while SumBasic-Term imprdwed4%. The chart in Figure 31

shows this trend visually. The chart uses the ayeROUGE scores of all summarizers

at each summary size level and plots them. At #hec@mpression level, the SumBasic

summarizer using terms performs very well, whilenBasic using concepts performs

above average but not at the level of terms. Tlegbist summarizer does not perform

well until the 10% level. The FregDist algorithm deds the summary after the source

text, and based on this evaluation FregDist nebdstal0% of the original source text to

provide a well-performing summary.
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Figure 31: Graph of ROUGE scores at varying sumreegs

Figure 32 plots the decreasing rate of changeQII&E scores between various
summary sizes. The ROUGE scores for all summarerer$irst averaged at each
summary size. For each successive summary size rdrmgdifference between the score
averages is obtained. The summary size rangescanelfo to 5%, 5% to 10%, 10% to
15%, and 15% to 20%. For example, the differencvefage scores at the 1% to 5%
summary size range is obtained by subtracting helerage score from the 5% average
score, resulting in Belta score. Delta ROUGE-2 measures the change in RORDGE-
scores, while Delta ROUGE-SU4 measures the chanBOUGE-4 scores. The idea is
to understand at what point the least amount onsaim improvement is obtained by
increasing summary size. Figure 32 makes it easgédhe rate of change (i.e., summary
improvement) is good at 1%-5% and also 5%-10%tHern starts to more rapidly

decline at the 10%-15% and 15% -20% summary sizges
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Figure 32: Graph of ROUGE scores rate-of-changedst varying summary sizes

The goal of this study is to find the level at whibe smallest summary can be
generated. Using Figure 32, it can be seen thatrsurper improvement tends to decline
somewhere in the 10%-15% range, and thereforadted summary size for biomedical
text is approximately 10% to 15% of the originalisze text. This is different than
general news summarization, where the ideal siappsoximately 20% (Goldstein et al.,
1999). The smaller size for biomedical text is ljkgue to the longer length of
biomedical text, which is likely to take advantagjeeiteration. The suggested summary
size of 10% to 15% is only a general guideline TAble 12 shows, at the 1% size, the
SumBasic-Term summarizer performs the best, armeif®rmance tends to increase
until about 10% summary size, where additional sanymsizes do not add significantly
to the score. This observation holds true for tb&hROUGE-2 and ROUGE-SU4 scores.
It is also notable that the FreqDist-Concept sunmeaoutperforms the FregDist-Term

summarizer until about the 10% summary size, wtieréerm version then begins to
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outperform the concept version. It can be obsetliatiwhile the optimal summary size
can be generally determined, the performance awsasummary sizes is influenced by
the summarizing method as well as the unit typadept or term.)

A similar study was also performed using two hurganerated summaries as
system summaries. The first summary is the abstratthe second is a domain expert’'s
synthesized summary. The two summary type’s peidoe is measured against the
model summaries produced by domain experts atwaugompression ratios. The idea is
to get a sense of the performance of using theadists a summary. The abstract size
was left unmodified (i.e., it was not reduced olaeged based on the compression ratio).
Similarly, the domain expert’s synthesized summsug short (typically 1-2 sentences)
that summarizes the biomedical text for other donexperts using their own
terminology and without using sentences from thgimal source text. Figure 33 shows
the performance of the text abstract (Author-Aldjrand domain expert summary
(Expert-Summary). In addition, the performanceeniit and concept variations of the
FregDist and SumBasic summarizers is shown for eoisgn. For ROUGE-2 scores,
Author-Abstract outperforms all automated summasizxcept for SumBasic-Term at
the 1% compression ratio. As the compression natieases, the performance of the
Author-Abstract decreases. For ROUGE-4 scores, égkelibstract outperforms all
summarizers at the 1% level, and then its perfoo@alecreases as the compression ratio
increases. The Author-Abstract is outperformed @IURSE-2 and ROUGE-4 beginning
at the 5% compression ratio. The reason for thk-pggformance of Author-Abstract at
the 1% level is that the size of Author-Abstradiaiger than the summaries generated the

other summarizers. The larger size allows for At#hbstract to have a better chance to
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match terms of the model summaries. Similarlypégormance decreases with larger
compression ratios because the other summarizeigeaerating larger summaries than
the Author-Abstract. In the same way, the ExpemaBary performed well at the small
compression ratios and then decreased as the cssigpreatio was increased and the
other summarizers generated text greater thanual @ysize to the Expert-Summary. If
we assume that the size of an abstract is 10%eduthtext (5000 source text words =
500 word summary), then the performance of the &wtkbstract and Expert-Summary
is the lowest using both ROUGE-2 and ROUGE-SU4s Tidicates that the Author-
Abstract and Expert-Summary do not align very el model summaries produced by

domain experts.

Summarizer acore Type 1% 5% 10% 15% 20%
Author-Abetract ROUGE-Z 005554 004363 003952 003333 002989
Expert-Summary ROUGE-Z 003013 002337 001881 001608 0.01533
FreqDist ConceptMMT %-Dice ROUGE-Z 001561 005317 009063 010540 012065
FreqDist-Term-Dice ROUGE-Z 001561 005526 010239 011944 01324
SumBasic-ConceptMMT: ROUGE-Z 002432 006123 008102 010303 0.11003
SumBasic-Term ROUGE-Z 008098 008532 010509 011800 0.126M
Author-Abetract ROUGE-SU4 014536 011100 008943 007362  0.06404
Expert-Summary ROUGE-SU4 009502 006027 004182 003257 002843
FreqDist-ConceptMMT %-Dice ROUGE-SUA4 006766 013395 018256 020260 0.21651
FreqDist-Term-Dice ROUGE-SU4 006766 012737 019341 021382 0.2294
SumBasic-ConceptMMT: ROUGE-SU4 007277 013387 015964 019106 0.1994
SumBasic-Term ROUGE-SU4 012230 016383 019302 021173 0.22089

Figure 33: Human summarization performance
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5.1.3 Human Summarizer Sentence Selection

Sentence selection was broken down into five caieg Introduction, Methods,
Results, Discussion and Appendix. The number aesees as well as the percentage of
sentences (shown in parenthesis) selected in éahbse sections by three human
summarizers is shown in Table 13. Summarizer #4 idatuded only about 8 texts,
while Summarizers #2 and #3 provided data for altexts. A visual depiction of the
same data is shown in Figure 34. There is a deadtbetween Summarizers #1 and #2
to use the same sections in the same proporticey @ppear to agree that the Results
section is the most important section to draw serge from (44% and 41%,
respectively), followed by the Methods (26% and 24#d Discussion (26% and 23%)
sections. Interestingly, neither draws informaticmm the Appendix. Summarizer #2
contrasts Summarizers #1 and #3 by selecting seggeprimarily from the Methods
(33%) and Discussion (31%) sections. At 14% ofeseces selected overall, the Results
section does not seem to hold much content for Sanmer #2, although it is possible
information in the Results are reiterated in theddssion section and Summarizer #2 has

decided to draw sentences from that section.

Table 13: Number of sentences selected in eaclosdnt summarizer using all

sentences
Summarizer Introduction Methods Results | Discussion | Appendix
Summarizer #1 8 (4%) 47 (26%) 80 (44%) 48 (26%) 0 (0%)
Summarizer #2 124 (19%) 221 (33%) 94 (14%) 205 (31%) | 17 (3%)
Summarizer #3 80 (12%) 155 (24%) 271 (41%) 149 (23%) 0 (0%)




149

300

250

200 - /\ /\
—e— Summarizer #1
150 ./ —8— Summarizer #2
\ Summarizer #3
100
50 /‘\A

Introduction  Methods Results  Discussion Appendix

Figure 34: Graph of all sentence selection byieeend summarizer

The sentences selected by each summarizer wereaalsed in decreasing order
of importance, regardless of which section of theeye drawn from. To see where the
most important sentences were drawn from, the pioeeabove was repeated using the
top one-third of sentences selected by each sumenaiihe number of sentences as well
as the percentage of sentences (shown in paresitisegected in each of these sections
by three human summarizers is shown in Table 1grafdh depicting the same data is
shown in Figure 35. Summarizers #1 and #3 are agjaiilar using the Methods, Results
and Discussion section in about the same percentdbe only difference between the
two is that Summarizer #3 selects 14% of sentefnoesthe Introduction, while
Summarizer #1 selects only 5%. Summarizer #2'celeof top sentences looks very
similar to their selection using all sentencesslaswvn in Figure 34.

The purpose of the study is to determine if paléicsections can be weighted

more heavily than other sections when extractimjesees to form a summary. It seems
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clear that the Methods and Discussion sectiongygrertant to all summarizers in the
study, although in different degrees. The Resu@lt$ien is also considered most
important by two of the summarizers, but less ingoarthan Methods and Discussion by
one of the summarizers. It is unclear, then, haRlsults section should be weighted.
The Introduction section, considered less importlaat Methods, Results, or Discussion
sections for all summarizers, is again used morevoysummarizers than the third
summarizer. The Appendix section is used only by ssmmarizer, and even then only
used to select about 3% of sentences. A possipi®agh, then, is to extract sentences by
preferring sections up to a certain size. For exangelect sentences first from the
Results section up to say 40%, then select MethndsSections up to 25% each, then
select 5% from Introduction, and the remaining 5%ld be used as wildcard to select
sentences from any section. Other approaches atadde used based on this study.
However, given the summarizer inconsistency in $hisll study, it is not possible to
come to firm conclusions about the importance chesection beyond the fact that

Methods and Discussion and important to all sumreasi

Table 14: Number of sentences across entire caglasted in each section using
top one-third of all sentences

Summarizer Introduction Methods Results Discussion | Appendix
Summarizer #1 6 (5%) 40 (30%) 65 (49%) 22 (16%) 0 (0%)
Summarizer #2 63 (14%) | 168 (37%) 75 (16%) 135 (30%) | 14 (3%)

Summarizer #3 63 (14%) | 134 (30%) | 192 (43%) 62 (13%) | 0 (0%)
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Figure 35: Graph of top one-third of sentencescsetk by section
and summarizer

5.2 Semantic Annotation

This section presents an intrinsic and an extriagaluation of the CONANN
semantic annotator. The contribution of the Coveraigd Coherence filters as well as
two final concept mappers using phrase countinglamguage models is presented. An
additional evaluation is performed on the Exten@eglerage Filter described in Chapter

4.

5.2.1 Intrinsic Evaluation

As shown in Figure 36, MetaMap initialization timas 88 seconds, while for
our CONANN, initialization time ranged from a lovi 20 seconds using the Phrase
Counting Concept Mapper (PCCM) to 40 seconds ferl tmguage Model Concept

Mapper (LMCM). The LMCM took longer to initializénan the PCCM because it



required loading the approximately 700,000 languagdels (one for each UMLS

concept).
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Figure 36: Annotator initialization time
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Figure 37 presents the total time to annotate,&28 phrases in the evaluation

corpus. MetaMap total annotation time was 5.7 na@gswivhile CONANN PCCM ran

with a high of 22 seconds using the Coverage-Iremlent filter while CONANN

LMCM ran with a high of 1.76 minutes using the Cage-NaiveBinary filter. Figure 38

shows the average time to annotate each phraseage/®hrase Annotation Time is

calculated by taking the total annotation time dnading it by 1,628, which is the total

number of phrases annotated. MetaMap average tiraertotate a phrase was 208

milliseconds, while CONANN ranged from a high of idlliseconds for the PCCM to

64 milliseconds for the LMCM.
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Table 15: CONANN precision using MetaMap as basetiystem

Map Filter Exact Match | Top 5
Phrase Coverage - Naive Binary 0.66 0.78
Counting | Coverage - Naive IPF 0.63 0.75
Concept | Coverage - Involvement Binary 0.75 0.90
Mapper

(PCCM) Coverage - Involvement IPF 0.67 0.87
Language | Coverage - Naive Binary 0.76 0.86
Model Coverage - Naive IPF 0.74 0.83
Concept | Coverage - Involvement Binary 0.85 0.93
Mapper

(LMCM) Coverage - Involvement IPF 0.81 0.91
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Table 15 shows the CONANN annotator precision &mhecoverage filter and

concept mapper combination. Two precision scorepeesented. The first is the
precision when matching CONANN'’s output exactlywietaMap’s output. The

second is the precision when matching any of tpdit@ concepts produced by

CONANN for a single phrase with the single MetaMancept. The best performing

PCCM (0.75) uses the binary involvement filter.d&s®n increases to 0.90 when using

the top five CONANN concepts, indicating that arpioved final concept mapper

method could increase precision. The best perfayraMCM (0.85) also uses the binary

involvement filter, and its precision increase$ @3 when using the top five concepts.

LMCM outperforms PCCM in exact matching from 13%@@depending on the

coverage filter. LMCM performance can be attribui@the fact LMCM considers all

concept instances of a concept, while PCCM considely those concept instances

which have passed through the coverage filter.
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The intrinsic evaluation shows the best-performirogd coverage filter for both
phrase counting and language model mapping isypinaolvement. The highest
precision final concept mapper is language modelhbs the tradeoff of longer average
annotation phrase annotation time at over threegilonger than PCCM. The precision
of LMCM is 13-20% higher than the PCCM for the exaatch. For average annotation
time, LMCM is over four times faster than MetaMahile PCCM is nearly 15 times
faster. The tradeoff CONANN makes for higher antiotaperformance is less precision
when compared to MetaMap. The impact of this precigradeoff is evaluated in the

extrinsic evaluation, discussed in the next seatiwextrinsic evaluation.

5.2.2 Extrinsic Evaluation

Tables 16 and 17 show the ROUGE-2 and ROUGE-SU#sarsing the
FregDist summarizer with both CONANN and MetaMapatation output. For the
ROUGE-2 and ROUGE-SU4 metrics, both the FregDidt@mmBasic summarizers
using any of the CONANN variations outperform Frésiland SumBasic using
MetaMap. Tables 16 and 17 show CONNAN with IPF waedghts in word coverage
filtering outperforms MetaMap annotations from 1.596.7% in the extrinsic text

summarization task (marked with * in Tables 16 amjl

For the Phrase Counting Concept Mapper (PCCM), REA2Gnd ROUGE-SU4
metrics indicate the best performing FreqDist anthBasic summarizers use the binary
involvement filter. For the Language Model Concielatpper (LMCM), the ROUGE-2
and ROUGE-SU4 metrics show for FreqDist that theecage filter used made no

difference. However, for SumBasic, the best perfognilter is Naive Binary.
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We conclude from the extrinsic evaluation resutigven in Tables 16 and 17 that even
with the lower intrinsic evaluation precision oEtRONANN variations shown in Table
15, the extrinsic summarization task is able totheeCONANN concept output to

identify important areas of text and improve systgmerated text summarization

performance as compared to human model summaries.

Table 16: ROUGE scores using Phrase Counting Concep

Mapper (PCCM)

Summarizer ROUGE- | ROUGE-
2 Score | SU4
Score

FreqgDist - MetaMap

0.12080 0.21864

FreqgDist - Coverage - Naive Binary

0.128

720.22199

FreqgDist - Coverage - Naive IPF*

0.128970.22252

FreqgDist - Coverage — Involvement Binary

0.13018.22361

FregDist - Coverage — Involvement IPF*

0.128

72.22199

SumBasic - MetaMap

0.1141

2 0.19868

SumBasic - Coverage - Naive Binary

0.1121®.20191

SumBasic - Coverage - Naive IPF*

0.117

02.20670

SumBasic - Coverage — Involvement Binary

0.11

330.21039

SumBasic - Coverage — Involvement IPF*

0.1182D.20770
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Table 17: ROUGE scores using Language Model Concept
Mapper (LMCM)

Summarizer ROUGE- | ROUGE-
2 Score | SU4
Score
FregDist - MetaMap 0.12080 0.21864
FregDist - Coverage - Naive Binary 0.128970.22252
FregDist - Coverage - Naive IPF* 0.128070.22252
FregDist - Coverage — Involvement Binary 0.12890.22292
FregDist - Coverage — Involvement IPF* 0.128970.22292
SumBasic - MetaMap 0.10920 0.19868
SumBasic - Coverage - Naive Binary 0.12028.21212
SumBasic - Coverage - Naive IPF* 0.116140.20794
SumBasic - Coverage — Involvement Binary 0.11839.21053
SumBasic - Coverage - Involvement IPF* 0.11839.21053

5.3 Semantic Annotation Using an Extended CoveFalger

This section presents an intrinsic and an extriagaduation of the CONANN
semantic annotator using phrase counting in contibmavith an extended coverage
filter. The extended coverage filter includes tveuhstics in addition to the basic
coverage filtering: (a) if an exact source and cdaue phrase match occurs, the candidate
phrase is automatically returned and does not teeeteet minimum score requirements,
and (b) if a candidate phrase consists of a siwglel and that word is in the list of
source phrase words, the candidate phrase is gineaximum score. Complete details of

the method are described in Section 4.

5.3.1 Intrinsic Evaluation
The first measurement is annotator initializatimmet, which is the time to load

domain-specific resources into memory and prepararinotation. Figure 39 shows the
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initialization time for each run of both annotatdfer MetaMap, initialization time
ranged from 1.3 to 1.6 minutes, while for our CONW¥\Nnitialization time ranged from
17 to 20 seconds. CONNAN is over four times fastenitialization time than MetaMap.

Both systems exhibit stable initialization behavior

Figure 40 presents the total time to annotate,&28 phrases in the evaluation
corpus. MetaMap total annotation time was consisteross all three runs at 5.7 minutes,
while CONANN ranged from 14.5 to 16.5 seconds dthaée runs. CONNAN is over
20 times faster in total annotation time than MeapMFigure 41 shows the average time
to annotate each phrase for each run of the ammofaterage Phrase Annotation Time is
calculated by taking the total annotation time dividing it by 1,628, which is the total
number of phrases annotated. MetaMap average tiraertotate a phrase was 208
milliseconds, while CONANN ranged from 9 to 10 nisdlconds per phrase across all
three runs. CONNAN is over 20 times faster in agerannotation time per phrase than

MetaMap.
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Figure 40: Total annotation time
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Figure 42: Intrinsic precision of CONANN using Cotece+ExtendedCoverage
method

While CONANN is over four times faster in initiaiiton and over twenty times

faster in average annotation time, the trade-offtie faster performance is less precision
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as compared to MetaMap (i.e., it is assumed tleapthacision of MetaMap concept
annotation is 100%). CONANN was measured at 90%igice for exact concept
matching, and 95% precision for relaxed conceptimag using the best performing
Coherence+ExtendedCoverage filter. The Extended@gee Coherence filter had seven
percent worse precision than Coherence+Extended@geeindicating that the filtering
order is important. The worst performing filterGe®herence alone when selecting a
single concept, but jumps significantly higher whielaxed matching is used, indicating
the correct concepts are available but candidatesplorder alone is not enough to
achieve final best mapping. The ExtendedCoverdige &lone had a precision equal to
ExtendedCoverage+Coherence, indicating the Exteéboleglage filter is a strong filter
which removes candidate phrases which would haga belected by the Coherence
filter. To counter this effect, placing the Coharefilter before the ExtendedCoverage
filter results in candidate phrases with strongeort being selected, which are then
further refined by using the semantic focusinghef ExtendedCoverage filter. Figure 42

summarizes the CONANN precision scores for eatérfil

5.3.2 Extrinsic Evaluation

Table 18 shows the ROUGE-2 and ROUGE-SU4 scoresviauating text
summarization performance using the CONANN (CohezerExtendedCoverage) and
MetaMap annotator output. For the ROUGE-2 metrietdMap slightly outperforms
CONANN using FreqDist (1% difference), while CONANMtperforms MetaMap using
SumBasic by 7%. The results are similar for the RBEEU4 scores. FregDist using

MetaMap has an approximately 2% advantage overi#segsing CONANN. SumBasic
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using MetaMap has an approximately 5% advantage®weBasic with CONANN.
CONANN performs very closely to MetaMap in the @xdic text summarization task. In
addition, CONANN has a time advantage of performangotation over twenty times

faster than a state-of-the-art system, facilitatisgise in online environments.

Table 18: Extrinsic text summarization task perfante of
CONANN using Coherence+ExtendedCoverage method

Summarization Method | ROUGE-2 Score] ROUGE-SU4 Score
FregDist using MetaMap 0.1207 0.2200
FreqgDist using CONANN 0.119p 0.2161
SumBasic using CONANN 0.1178 0.2098
SumBasic using MetaMap 0.1094 0.2003

5.4 Text Summarization Using Concept Chains (Bia@ha

Tables 19 and 20 show the ROUGE-2 and ROUGE-SUscrespectively, for
each of the summarizers used to evaluate BioChainguhe automated concept-based
summarizer. All of the BioChainSumm summarizer agons performed above the
baseline summarizers Lead and Random, as welkeagetheral-purpose summarizers
MEAD, AutoSummarize, SweSum, and OTS. The besbpaihg BioChainSumm
summarizer is MostFrequentStrongChainConcept, wiées the most frequent concept
within each strong chain to score sentences, asrshiothe &' row of Tables 19 and 20.
The lower performance of AllIStrongChainConceptsdates that using more concepts
did not retrieve additional sentences that woulgrione the summary as shown in the 6

7™ and §' rows of Tables 19 and 20. It is also possibledyave retrieved too many
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irrelevant sentences, leaving out critical sentendeding the sentence position
heuristic, where sentences at the beginning oftliece text are scored higher than
sentences at the end of the source text, degraatéatipance
(MostFrequentStrongChainConcept-Position) as stiowine 5" row of Tables 19 and
20. Whereas in the news genre sentences at theniegji(lead sentences) often provide
a good summary by themselves, it is not true fomadical texts. Looking at the
structure of texts in the evaluation corpus, tlagllsentences are extracted from the
Introduction section, which usually does not prevehough information for a summary.
Based on the poor performance of lead sentencesaneh to investigate the location of
where most of the model summary sentences areceedrrom, such as the Discussion
and Results section, was done. Semantic typeififeiso reduced performance
Semantic type filtering excludes concepts fromaiarUMLS semantic types. The
semantic types to exclude are defined by a domaeré The result of semantic type
filtering (MostFrequentStrongChainConcept-Positiiltered) is shown in the Frow

of Tables 19 and 20. While this may be helpfuldersonalized summaries, where the
user wants to focus on summarizing specific aspgasext, it proved harmful when
summarizing the entire text. Combining sentencétiposand semantic type filtering
resulted in the worst performance for all BioChainfsn summarizers
(MostFrequentStrongChainConcept-Position-Filteréd)is is to be expected, as neither
feature individually improved performance. The Bi@hSumm summarizers using all
concepts within each strong chain (AllStrongChain€&pts) did not perform as well as
using the most frequent concept in each stronghcmshown in the comparison of the

4" row with the §' row of Table 19 and the comparison of therdw with the & row of
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Table 20. Adding the sentence position heurisgo aéduced performance
(AllStrongChainConcepts-Position) as shown in theparison of the%(9") row with

the 8" (10" row of Table 19, respectively and the comparisbthe 4" (8") row with

the 5" (9™ row of Table 20, respectively. This is the sarfiect as in the
MostFrequentStrongChainConcept-Position summariatarestingly, adding the
semantic type filtering (AllIStrongChainConceptstéiikd) increased performance. This is
the opposite effect of the MostFrequentStrongChanuépt-Position-Filtered
summarizer. The reason semantic type filtering oupd performance is it restricts the
concepts used to a smaller subset than usingrategts. This may have resulted in more
salient sentences being extracted with restrictedler of concepts like the same way as
the MostFrequentStrongChainConcept case, whichthsasost frequent concept within
each strong chain to score sentences and givésghest performance among the
BioChainSumm variations. While combining sentenasiton with semantic type

filtering also improved performance (AllStrongCh@oncepts-Position-Filtered) over the
AllIStrongChainsConcepts alone, the result is leas tAlIStrongChainConcepts-Filtered,
again indicating adding sentence position hurtfop@ance in biomedical text
summarization.

The Baseline-Lead summarizer, which takes the 2086 of the sentences within
the text, is the worst-performing summarizer. Iwag¢ext summarization, this approach
is difficult to compete against (Brandow, Mitze R&au, 1995). Features effective in
summarizing news articles, such as sentence posére not as effective in biomedical
text summarization. This is further evidenced by fiict that the summarizers originally

designed for general-purpose summarization (OT®Sswm, AutoSummarize) used a
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sentence position as one of features and perfobaledv the Baseline-Random
summarizer. Baseline-Random randomly selects 20#teo$entences within the source
text. The fact that random sentence selection pedainexpectedly well may be due to
the length and structure of clinical trial textsigfhlend themselves to repetition.
Therefore, random sentence selection is more lilcegelect a relevant sentence in longer
texts such as biomedical texts. This is unlikertee's genre where information content is
much more compact, and so random sentence sel@ctikes it difficult to select a
relevant sentence.

The best performing summarizers are SumBasic (Usatiy biomedical concepts
and terms) and Lemur MMR. These summarizers peddrabove BioChainSumm. Both
of these summarizers, SumBasic and Lemur MMR, nsefarmation redundancy
approach when building summaries. Their goal iethuce the addition of information
already included in the summary. SumBasic reduzeptobability of re-selecting a term
or concept when it has already been selected. L&MR selects sentences which
contribute more information to the summary. Thehtpgrformance of (a) the Baseline-
Random summarizer, which can perform competitieglly with repetitive information,
and (b) the high performance of the SumBasic amdurtedMMR summarizers shows that
information redundancy is very much a concern onigdical texts. BioChainSumm
performs above general-purpose summarizers aneémasdntence selection, indicating
it is useful for identifying important themes witha source text. BioChainSumm may be
further improved by adding information redundanzytte sentence selection process,
similar to the SumBasic and Lemur MMR summarizaapproaches. The evaluation

shows BioChainSumm outperforms most general-purposenarizers, as well as two
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baseline summarizers. BioChainSumm did not outpertvo summarizers which

focused on reducing information redundancy. The BBUerformance of concept

chaining (i.e., BioChain) shows it is an effectteehnique for identifying themes within

a source text, but additional work on informatiedundancy is required to get optimal

performance from a summarizer using the concepheigpapproach. The following

section describes the performance of the Freqistr&arizer that takes into account

information redundancy.

Table 19: ROUGE-2 scores for BioChainSumm summagxaluation

Row # | Summarizer ROUGE-2

1 SumBasic-Term 0.11673

2 SumBasic-Concept 0.10940

3 Lemur-MMR 0.10708

4 BioChain-MostFrequentStrongChainConcept 0.10419
5 BioChain-MostFrequentStrongChainConcept-Position 0.10175

6 BioChain-AllStrongChainConcepts-Filtered 0.10043
7 BioChain-AllStrongChainConcepts-Position-Filtered 0.10043

8 BioChain-MostFrequentStrongChainConcept-Filtered 0.09868

9 BioChain-AllStrongChainConcepts 0.097/08
10 BioChain-AllStrongChainConcepts-Position 0.09708
11 BioChain-MostFrequentStrongChainConcept-Posiiered 0.0966(

12 MEAD 0.09254

13 Baseline-Random 0.08001

14 AutoSummarize 0.07977

15 SweSum 0.07513

16 OTS 0.07474

17 Baseline-Lead 0.07076
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Table 20: ROUGE-SU4 scores for BioChainSumm sunmaagvaluation

Row # | Summarizer ROUGE-SU4

1 SumBasic-Term 0.21112

2 SumBasic-Concept 0.20034

3 Lemur-MMR 0.19874

4 BioChain-MostFrequentStrongChainConcept 0.19173
5 BioChain-MostFrequentStrongChainConcept-Position 0.18832

6 BioChain-AllStrongChainConcepts-Filtered 0.18659
7 BioChain-AllStrongChainConcepts-Position-Filtered 0.18659

8 BioChain-AllStrongChainConcepts 0.18557
9 BioChain-AllStrongChainConcepts-Position 0.18557
10 BioChain-MostFrequentStrongChainConcept-Filtered 0.18179

11 BioChain-MostFrequentStrongChainConcept-Posiiered 0.179446

12 MEAD 0.17629

13 Baseline-Random 0.16396
14 AutoSummarize 0.15171

15 SweSum 0.15115

16 OTS 0.14919

17 Baseline-Lead 0.13953

5.5 Text Summarization Using Concept Frequencyribisiion (FregDist)

Table 21 shows the ROUGE-2 scores for each sumaraiihe best performing

summarizes are the context-based SumBasic andregDIst. The FreqgDist summarizer,

when using Dice’s coefficient for its similarity m&ure, outperforms all of the other

summarizers using both terms and concepts astemsi The performance of FregDist

using concepts and terms is close. The SumBasimsuizer performs better using terms

rather than concepts, where the use of terms scoregercentage point better than the

use of concepts. Our FregDist summarizer perforass Wwhen using Dice’s coefficient as

the similarity measure between the summary anddhbece text. Dice is a measure of the

common membership of unit items in the summarysmdce text. Other similarity
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measures, such as cosine, take into consideratioonty membership, but also the
weight (frequency) of each unit item. The frequedisgribution model approach requires
no additional weighting of unit items to obtain go@sults. However, the use of
frequency weights in comparing source text and ickrbe summaries also performs
above the baseline and general-purpose summaugieg Cosine and Unit Item
Frequency. The use of frequency weights does npedorm the use of simple unit item
membership. The worst performing summarizers areties based on the FreqDist
algorithm using the Vector Subtraction and the Eeeln distance similarity measures.
These two similarity measures do not work well rdtgss of the unit items (i.e., terms or
concepts). However, in both methods, the use ofeais outperforms the use of terms.
The poor performance of Vector Subtraction and ileaeh distance similarity measures
is likely due to their susceptibility to outlierluas in the vectors, and is in line with other
studies in distributional similarity (L. Lee, 1999)

The MEAD summarizer, which employs a combinatioffieaftures to identify
significant sentences, outperformed the Randoneseatand Lead sentence baseline
summarizers, and in fact fell just below the SumBasad FregDist summarizers in the
performance table. The general purpose summaragasSummarize and SweSum
performed comparably, performing below the Randentence baseline but above the
Lead sentence baseline. The simple use of frequaitibgut considering either
additional features (MEAD) or context sensitiviumBasic/FregDist) is not effective

with the summarization of biomedical text.
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Table 21: ROUGE-2 scores for FreqDist summarizatuation

FregDist-Term_Dice 0.22176
FregDist-Concept_Dice 0.21997
SumBasic-Term 0.2111p
FregDist-Term_UnitFrequency 0.20707
SumBasic-Concept 0.20034
FreqDist-Concept_Cosine 0.19932
FregDist-Concept_UnitFrequency 0.19932
MEAD 0.17629
FregDist-Term_Cosine 0.173%8
Baseline-Random 0.16396
AutoSummarize 0.151711
SweSum 0.15115
Baseline-Lead 0.13953
FreqDist-Concept_VectorSubtraction 0.11435
FregDist-Concept_Euclidean 0.092B6
FregDist-Term_Euclidean 0.07516
FregDist-Term_VectorSubtraction 0.05716

Table 22 shows the ROUGE-SU4 scores for each suixenaln general, the
ordering of the summarizer performance is aboustimee as in ROUGE-2. The best
performing summarizers are the same as in ROUGEH2FregDist and SumBasic. In
both cases, the use of terms outperforms the usenakepts, but only by a margin of
about 0.75 percentage points in both cases. OgDisesummarizer again performs best
when using Dice’s coefficient as the similarity reee between the summary and the
source text. The Cosine and Unit Frequency alsiopeed above the baseline and
general-purpose summarizers. The use of the V&etbiraction and Euclidean distance
similarity methods with FregDist was at the bottohthe performance list, as in

ROUGE-2. The MEAD and FregDist with Cosine similaperformed about the same
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using terms. The AutoSummarize and SweSum summaiatso performed closely, and
were not much better than the Lead sentence sumenafihe Lead sentence baseline
summarizer gave the worst performance when exdjuihe VVector Subtraction and
Euclidean versions of FregDist. The Random sentbaseline summarizer was in the

middle of the performance table.

Table 22: ROUGE-SU4 scores for FregDist summaexzeatuation

FregDist-Term_Dice 0.12653
FregDist-Concept_Dice 0.12070
SumBasic-Term 0.11673
FregDist-Term_UnitFrequency 0.11664
SumBasic-Concept 0.10940
FregDist-Concept_Cosine 0.107B1
FregDist-Concept_UnitFrequency 0.10781
FregDist-Term_Cosine 0.09310
MEAD 0.09254
Baseline-Random 0.080Q1
AutoSummarize 0.0797)7
SweSum 0.07513
Baseline-Lead 0.07076
FregDist-Concept_VectorSubtraction 0.05607
FregDist-Concept_Euclidean 0.043b6
FregDist-Term_Euclidean 0.03429
FregDist-Term_VectorSubtraction 0.02862

It is interesting to note the baseline summarizengirandom sentence selection
performed nearly in the middle of the performarangkigs for both ROUGE-2 and

ROUGE-SUA4. The high performance of random sentsalzetion is due to the high
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information redundancy within the lengthy text. @o-sensitive methods, such as
SumBasic and our FreqgDist methods, significantlperform the random baseline.
Context-sensitive methods consider the sentenoesdsl selected for a summary before
choosing the next sentence to add to a summaryeesensitive methods are used to
reduce information redundancy within a summary.l&diag the FregDist summarizers
using the Vector Subtraction and Euclidean distanethods, the use of the lead
sentences (i.e., Baseline-Lead in Tables 21 andf22piomedical text generates the
worst performance. This is important to note, beedn text summarization work using
the news genre, the lead sentence method oftemajesa very good summary
(Goldstein et al., 1999). This is because newsest@re usually written so that the most
important information appears at the beginningheftext, and the least important
information at the end. However, in biomedical $etkis assumption is invalid, as shown
in Tables 21 and 22.

Using context-sensitive frequency methods, theofisencepts does not
outperform the use of terms. However, terms and&otis perform closely. The use of
concepts rather than terms is valuable for builgiagsonalized summarizers, where it is
easier for the user to select important concepssitomarize than important terms. This
is because the concepts are defined for a doméaiereas terms are selected by author(s)
of a paper and used in the text of the paper. Tegpalize a summary without domain-
specific concepts, the user needs to know the itapbterms appearing in a text. In
general, it is not easy for users to know termgapers in advance before they read these

papers.
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5.6 Text Summarization Using BioChain and FreqD®¥tainFreq)

Tables 23 and 24 show the ROUGE-2 and ROUGE-SU#&sammparing the
performance of the ChainFreqSumm summarizer. TreenEheqSumm summarizer
combines the BioChain and FreqDist algorithms agngle algorithm in order to
leverage the BioChain strength identifying textnties and the information redundancy
control of FregDist. As can be seen from the BaseRandom summarizer, randomly
picking sentences performs well. This is an indacathat biomedical texts contain a
large amount of redundancy. As can also be seemtlie BioChainSumm evaluation,
redundancy can decrease summarizer performancéybiniel ChainFreqSumm
summarizer (BioChain method plus the FregDist métl®an attempt to find a subset of
the most important sentences using domain-spexiteria, and then remove redundancy
from the subset. As show in Table 24, the ChainFuagm summarizer performs best
when all concepts in the strong chains are useathw the opposite of what occurs
when the BioChain method is used alone. This istrikely because using all strong
concepts results in a larger pool of sentencethFregDist method to select from.
Using the ROUGE-SU4 metric, the hybrid ChainFreg8usammarizer is the best
performer, but is slightly outperformed by the AFD&gifSumm term method when the
ROUGE-2 metric is used. The result in combiningtthe approaches is that the use of
concept approaches for finding salient sentenciesgsoved over the individual methods
of FregDist and BioChain. We conclude that a sunmeawhich (a) first identifies a
subset of important sentences based on domainfispertteria, and (b) then prunes the
subset of sentences by removing redundancy leaats éffective domain-specific

summarizer.
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Table 23: ROUGE-2 scores for ChainFreqgSumm evalnati

Summarizer ROUGE-2 Score

FregDistSumm-Term-Dice 0.12653
ChainFregSumm-AllStrongChainConcepts-Dice 0.12216
FregDistSumm-Concept-Dice 0.12070
SumBasic-Term 0.11673
SumBasic-Concept 0.10940
Lemur-MMR 0.10708
ChainFregSumm-MostFrequentStrongChainConcept-Dice 0.10652
BioChainSumm-MostFrequentStrongChainConcept 0.10419
BioChainSumm-AllStrongChainConcepts 0.09708
Mead 0.09254
Baseline-Random 0.08001
MSWord 0.07977
SweSum 0.07513
OTS 0.07474
Baseline-Lead 0.07076

Table 24: ROUGE-SU4 scores for ChainFreqgSumm etialua

Summarizer ROUGE-SU4 Score
ChainFreqSumm-AllIStrongChainConcepts-Dice 0.22303
FregDistSumm-Term-Dice 0.22176
FregDistSumm-Concept-Dice 0.21997
SumBasic-Term 0.21112
ChainFregSumm-MostFrequentStrongChainConcept-Dice 0.20158
SumBasic-Concept 0.20034
Lemur-MMR 0.19874
BioChainSumm-MostFrequentStrongChainConcept 0.19173
BioChainSumm-AllStrongChainConcepts 0.18557
Mead 0.17629
Baseline-Random 0.16396
MSWord 0.15171
SweSum 0.15115
OTS 0.14919
Baseline-Lead 0.13953
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5.7 Significance Testing of ROUGE Summarizationr8so

Analysis of variance using ANOVA methods on thseés of data of was
performed. The idea is to see if the performandb®fdomain-specific summarizers
BioChain and FregDist statistically outperformeagel-purpose summarizers, and if
the performance of concepts versus terms is sagmfi The ROUGE scores indicate that
the BioChain and FregDist summarizers outperforarlgeall baseline summarizers. The
ANOVA analysis is performed twice for each summarionce for ROUGE-2 scores
and once for ROUGE-SU4 scores. The approach tadenifito (a) group together
ROUGE scores from multiple variations of the samm@marizer, and then (b) compare
the ROUGE score mean of this group with the ROUGEemean of several baseline
summarizers. The BioChain and FregDist summarieach have multiple variations
(for example, one using concepts and one usingsieffihese variations of the same
summarizer are grouped together to form a meansiihmmarizer variations are then
compared to the mean of several baseline summsurizkis method of analysis is
different than most existing ANOVA testing of ROUGEores, which seek to test the
significance of a single summarizer against mudtiphseline summarizers. ROUGE
scores are designed to be a ranking mechanismfeerdfail significance level tests
between scores (Evans, 2005). If a summarizerdagtsficance level testing, its use may
still be justified by above-average ROUGE scoras anincluding more features not
available in other summarizers.

The analysis is done using the ANOVA:Single Faatethod. Two sections of
output are generated. The Summary section showdeswiptive statistics for the two

groups (Count, Sum, Average, and Variance). The XN®ection shows the andF-
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critical values. Each ANOVA test uses an alpha value eqQual5. If theF value is
greater than thE-critical value then the null hypothesis that the two meaasqual can
be rejected. Also, the-valueis the probability of obtaining afvaluebigger than thé-
critical value by chance. If the-valueis less than the alpha value (chosen to be .05 for
this study), the result is statistically signifita@md the null hypothesis can be rejected.

Both theF andF-critical values as well as the-valueare reported.

5.7.1 BioChainSumm

The BioChainSumm summarizer ROUGE scores are cadpaith the scores of
a group of external summarizers using ANOVA Sirfggetor. The ROUGE-2 and
ROUGE-SU4 scores are divided into two groups: eéelesummarizers and
BioChainSumm summarizers. There are ten extermah®rizers and four
BioChainSumm summarizers. Two ANOVA Single Facest$ are performed: one for
ROUGE-2 scores, as shown in Figure 43 and one @J®E-SU4 scores, as shown in
Figure 44. The idea is to see if there is a stediby significant difference between the
BioChainSumm score mean and the external summastoee mean for both ROUGE-2
and ROUGE-SU4 scores. That is, how much of theabdity of the scores is due to
random errors, and how much is due to summarizéonpeance. The null hypothesis in
both cases is that the two means (BioChainSumnezatainal summarizers) are the
same. In the ROUGE-2 case, the result is F(10,@9#%,p < .05. The~-valueis 0.97,
which is less than the-critical value of 4.75, which means the null hypothesisioabe
rejected. Also, th@-valueof 0.35 is greater than the alpha value of 0.0fsdwt show a

statistically significant result. In the ROUGE-Sddse, the result is F(10, 4) = 0.565
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.05. TheF-valueis 0.56, which is less than tkecritical value of 4.75, which means the
null hypothesis cannot be rejected. Also, Pealueof 0.47 is greater than the alpha
value of 0.05 does not show a statistically sigatfit result. The conclusion that can be
reached from running both sets of ROUGE scoresutirdANOVA is that the
BioChainSumm summarizers are not statisticallyifigantly different when compared
to the scores of the external summarizers, andhisvariation is not due to chance, but
due to the performance of the summarizers. Indhse, best-performing variation of
BioChainSumm, MostFrequentStrongChainConcept, ofapas all other external
summarizers except for the SumBasic summarizeatrans. Even though it is not
statistically significantly different, BioChainSumstill performs well according to
ROUGE ranking, and is more useful than term-basethsarization because it allows for

easier summary customization through the use ofaslspecific concepts.
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External Summarizers

ROUGE-2 Scores

BioChain Summarizers

SumBasic-Term 012711 0.10637 MostFrequentStrongChainConcept
SumBasic-ConceptDUIST 01827 0.10419 MostFrequentStrongChainConcept-Position
SumBasic-ConcepthMT X, 010920 010167 AllStrongChainConcepts
Lemur-hhiR 009653 0.09653 AllStrongChainConcepts-Position
head 0.09160
Baseline-Random 007913
W SWWord 007349
SweSum 0.07430
oTS 007364
Baseline-Lead 007112
Anova: Single Factor
SUMMARY

Groups Count Sum Averane Variance
External Summarizers 10 091939 0.091939 0.000408
BioChain Summarizers 4 040876 010219 1.79E-05
ANOVA,

Souwrce of Variation 55 df M5 F P-valie Ferit
Between Groups 000030024 1 0000300237 0966533 03448953 4747221
Wyithin Groups 00037276 12 0.0003 10633
Total 000402754 13

Figure 43: BioChainSumm significance level tesfimgROUGE-2 scores
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External Summarizers

ROUGE-SU4 Scores

BioChain Summarizers

SumBasic-Term 022169 0.19010 MostFrequentStrongChainConcept
SumBasic-ConceptDUIST 020394 0.18662 MostFrequentStrongChainConcept-Position
SumBasic-Concepthdh T 0.19868 0.18329 AllStrongChainConcepts
Lemur-MMR 019737 0.18329 AllStrongChainConcepts-Position
Mead 017368
Baseline-Random 016100
hd Sy 0143886
SweSum 0143848
oTs 014646
Baseline-Lead 0.13706
Anova: Single Factor
SUMMARY

Grouns Count SHim Average \Variance
External Summarizers 10 1.74222 0174222 0.000914
BicChain Summoarizers 4 07433 0185825 1.06E-05
ARNOWL,

Souwrcs of Variabion 55 drf MS F P-valie F ot
Betwesn Groups 0.000384656 1 0000384656 055902 0489054 4 747221
Wyithin Groups 0008257074 12 0.000688089
Total 0005864173 13

Figure 44: BioChainSumm significance level testfiomgROUGE-SU4 scores
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5.7.2 FreqDistSumm

Two ANOVA Single Factor tests are performed fordbest analysis: one for
ROUGE-2 scores, as shown in Figure 45 and one ®@J®E-SU4 scores, as shown in
Figure 46. There are ten external summarizerslane@ fFreqDist summarizer variations.
The null hypothesis in both ROUGE cases is thatwltemeans (FreqDist and external
summarizers) are the same. In the ROUGE-2 caseeshét is F(10, 3) = 7.1(,< .05.
TheF-valueis 7.10, which is greater than tRecritical value of 4.84, which means the
null hypothesis can be rejected. Also, Brgalueof 0.35 is less than the alpha value of
0.05 which shows a statistically significant resliitthe ROUGE-SU4 case, the result is
F(10, 3) = 6.71p < .05. TheF-valueis 6.71, which is greater than tRecritical value of
4.84, which means the null hypothesis can be regedlso, theP?-valueof 0.03 is less
than the alpha value of 0.05 which shows a ste&ihyi significant result. The conclusion
that can be reached from running both sets of ROWY¢iEes through ANOVA is that the
FregDist summarizers are statistically significamtifferent when compared to the scores

of the external summarizers.
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External Summarizers

ROUGE-2Z Scores

FregDist Summarizers

SumBasic-Term 012711 013323 Term
SumBasic-ConceptDUIST oMe2r 012080 ConceptMMT X
sSumBasic-Conce pthhTX 0.10920 011943 ConceptDUIST
Lemur-hMRE 0.09653
Wead 0.09160
Baseline-Random 0.07913
W SWWord 0.07349
Swesum 0.07430
oTS 0.07364
Baseline-Lead 007112
Anova: Single Factor
SUMMARY
Grows Count Sum Average Varance
External Summarizers 10 091939 0091839 0.000408
FregDist Summarizers 3 037346 0124486667 5.78E-05
ANOWA,
Source of Variation 55 df MS F P-value Forif

Between Groups
Within Groups

Total

0.002444855
0.003789427

0.006234082

1
11

12

0.002444655 7096378 0.022033 4844338

0.000344493

Figure 45:

FregDist significance level testing ROUGE-2 scores
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External Summarizers ROUGE-SU4 Scores FregDist Summarizers
SumBasic-Term 022169 023005 Term
SumBasic-ConceptDUIST 020894 021864 ConcepthMTX
SumBasic-Concepthhd T 0198658 021487 ConceptDUIST
Lemur-MMR 0189737

Mead 017368

Baseline-Random 016100

MSWyord 014886

SweSum 014845

oTs 014646

Baseline-Lead 013706

Anova: Single Factor

SUMMARY

Groups Count Sum Averagse Varanos
External Summarizers 10 174222 0174222 0.000914
FreqDist Summarizers 3 066356 0221186667 B625E-05
AR O,

Sowrce of Vanation 55 oif ME r P-valueg Font
Between Groups 0.00508003 1 0005080031 6705222 0025163 4844338
Wyithin Groups 000835026 1 0.000759114
Total 001344029 12

Figure 46: FregDist significance level testing ROUGE-SU4 scores

5.7.3 Concepts versus Terms

The use of concepts in summarizers to find impoa@as of text as opposed to
the use of terms is studied by first creating twaugs of summarizers: term and concept.
Two ANOVA Single Factor tests are performed: omreROUGE-2 scores, as shown in
Figure 47 and one for ROUGE-SU4 scores, as showigure 48. There are nine term-
based summarizers and ten concept-based summaarzions. The null hypothesis in
both ROUGE cases is that the two means (term- andept-based summarizers) are the
same. In the ROUGE-2 case, the result is F(9, p3,p < .05. TheF-valueis 5.63,
which is greater than tHecritical value of 4.45, which means the null hypothesishzan

rejected. Also, th€-valueof 0.30 is less than the alpha value of 0.05 shsististically
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significant result. In the ROUGE-SU4 case, the ltasu-(9, 10) = 5.01p < .05. TheF-
valueis 5.01, which is greater than tRecritical value of 4.45, which means the null
hypothesis can be rejected. Also, Br@alueof 0.04 is less than the alpha value of 0.05
which shows a statistically significant result. Td@clusion that can be reached from
running both sets of ROUGE scores through ANOV#at the concept-based
summarizers are statistically significantly diffetevhen compared to the scores of the

term-based summarizers.

Termn Summanzers ROUGE-2 Scores Concept Summanzers

FreqDist-Term-Dice 013323 012287 BiochainPlusFregDist-AllStrongChainConcepts-Dice
SumBasic-Term 012711 012080 FregDist-ConcepthMMT X-Dice

Lemur-mMMRE: 008653 011827 SumBasic-ConceptDUIST

hWead 008180 011843 FreqDist-ConceptDUIST-Dice

Baseline-Random 007913 010920 SumBasic-ConcepthhT X

MWSWord 007849 010707 BiochainPlusFregDist-MostFrequentStrongChainConcept-Dice
SweSum 007430 010637 Biochain-MostFrequentStrongChainConcept

0TS 007384 010419 Biochain-MostFrequentStrongChainConcept-Position
Baseline-Lead 007112 010187 Biochain-AlStrongChainConcepts

009653 Biochain-AllstrongChainConcepts-Position

Anova: Single Factor

SUMMARY

Grouns Count Sam Averags \Variance
Tenn Summanzers 9 082515 0091683333 0000548
Concept Summarizers 10 1.1062 011062  8.2E-05
AR O,

Souree of Variation 55 aif M5 F F-valiea £ ot
Between Groups 0001699 1 0001698619 5634944 0029654 4 451323
Wyithin Groups 0005125 17 0.000301444
Total 0008823 18

Figure 47: Term versus Concept summarizer sigmtiedevel testing for
ROUGE-2 scores
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Termm Summarnzers ROUGE-5U4 Scores Concept Summanzers
FreqDist-Term-Dice 023005 022164 BiochainFlusFreqDist-AllStrongChainConcepts-Dice

SumBasic-Term 022189 021864 FreqDist-ConceptiMMT X-Dice

Lemur-kMR 019737 0.21487 FreqDist-ConceptDUIST-Dice

head 017368 0.20894 SumBasic-ConceptDUIST

Baseline-Random 016100 019977 BiochainPlusFreqDist-MostF requentStrong ChainConcept-Dice
w1 SWYord 014886 0.19868 SumBasic-ConceptMhT X

SiweSum 014848 019010 Biochain-MostFrequentStrongChainConcept

TS 014846 018662 Biochain-MostFrequentStrongChainConcept-Position
Baseline-Lead 013706 018329 Biochain-AllStrongChainConcepts

0.18329 Biochain-AllStrongChainConcepts-Fosition

Anova: Single Factor

SUMMARY
Groups Counf S Average \Variance
Term Summarnizers 9 156465 017385 0001192
Concept Summarizers 100 200584 0.200584 0.000217
ANOVA
Source of Varation 55 of MS F P-value Font
Between Groups 0.003385 1 0003385453 5009833 0.038876 4451323
Within Groups 0.011488 17 0000675762
Total 0.014873 18

Figure 48: Term versus Concept summarizer sigmtiedevel testing for
ROUGE-2 scores

5.8 Update Task in DUC 2007

In the DUC 2007 update task, systems are askeatlupe short summaries of
newswire articles, assuming a user has read d petwious, related article texts. The
idea is to present new information that the userriw already read from the set of
preceding article texts. The 2007 DUC was out ilence to participate in a DUC
event. The FregDist Summarizer, which had gooditesuthe biomedical domain, was
adapted to the DUC Update Task and was named FstdiiRlate. The FregDistUpdate
summarizer creates a summary of a source text wiastapproximately the same

frequency distribution of terms as the source t8gtzeral modifications to the base
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frequency distribution summarizer were implemeritgdhe DUC Update Task to
account for a statement expressing an informatemdnas well as summary length
limitations.

NIST provided four different evaluations of eachtlod 22 systems submitted:
ROUGE, Basic Elements (BE), Pyramid, and Responss® The ROUGE, Basic
Element, and Pyramid evaluations use increasimgyer units of text to measure overlap
between a system-generated summary and a set @ siodmaries. ROUGE (C. Lin,
2005) measures the n-gram overlap between a systermary and the model
summaries. Basic Elements moves beyond simplem-gratching to find minimal
semantic units, which are defined to be heads misyic units, such as noun phrases,
and also relationship triples (E. Hovy, Lin, &ah 2005), (E. Hovy, Lin, Zhou, &
Fukumoto, 2006). Pyramid uses a set of manuallpt@ted semantic units derived from
the system summary and the model summaries (A. Nen& Passonneau, 2004). The
Responsiveness score is a human assessment da afscélow) to 5 (high) of how
much information the summary provides in orderddrass the information need defined
in the topic statement.

Model summaries were written using ten differentlan summarizers. There
were four update summaries written for each documlester. Two baseline
summarizers were also provided by NIST. The Baselisummarizer returns the first
100 words from the most recent document in a dlu$tee Baseline 2 summarizer is an
HMM-based summarizer which performed well in DUQ20

The official NIST results placed the FregDistUpdsgstem 21 out of 22 systems

based on the ROUGE-2 and ROUGE-SU4 scores. Fradjiste did better in the BE
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evaluation, where FregDistUpdate placed 14 ouobhead of Baseline 1 Summarizer
but below Baseline 2 Summarizer. The Pyramid evainassigned FreqDistUpdate an
average score of 2.23 out of a possible five, withres ranging from 1 to 4 for each of
the document set summaries. The Baseline 1 Sumenamiaduced an average Pyramid
score of 1.69, while the BaseLine 2 Summarizerdradverage Pyramid score of 2.70. In
the Responsiveness evaluation FreqDistUpdate piEeedit of 22. It is interesting that
the ROUGE scores placed FregDistUpdate much |dwaar both BE and
Responsiveness. It appears the ROUGE scores réf@dereqDistUpdate did not select
the same terms as the model summaries, while thevBEation, which focus more on
semantic than syntactic units, and the Responssgeenvaluation, which is performed by
humans, reflected that FregDistUpdate did seldotnmation which was considered
important to the human assessors. The use of eliff@valuation systems in DUC is
useful for providing insight into different aspeoffsa summarization system.

There are several areas where the FregDistUpdstensycan be improved:

1. Alist of important words derived from the topia&ment is a heuristic which
needs to be empirically evaluated whether or sanitlusion is helpful. Also,
the penalization of sentences which do not inclrgeimportant words may

be too restrictive.

2. An evaluation of whether it is better to includéopsummaries or the entire
prior source text when selecting content for Docon@dusters A and B needs

to be completed.

3. The documents in each cluster were treated asange source text, but it

may be more valuable to generate update summdrezsch document in the
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cluster, and then generate a final cluster sumimany the cluster's update

summary.

4. A bug in FregDistUpdate which for Document Clustewhich considered
only Document Cluster A’s information content, whereally should have
considered information content from Document Clissfeand B, needs to be
fixed. The result of this error is that the summiaryDocument Cluster C
considered only the summary it had seen from thensary of Document

Cluster A.

The 2007 DUC was our first chance to participata DUC event. We adapted the
existing FregDist text summarizer, which had goeslits in the biomedical domain, to
the DUC Update Task. The FregDistUpdate summacizsates a summary of a source
text which has approximately the same frequendyibligion of terms as the source text.
Several modifications were made to the base FregDramarizer, shown in Figure 23,
for the DUC Update Task to account for a stateregptessing an information need, as
well as summary length limitations. While FreqDiptlate did not do as well as hoped,
some ideas to improve FregDistUpdate performandetime DUC evaluations has been

gathered.



187

6. CONCLUSION AND FUTURE WORK

In this chapter we conclude this dissertation waykighlighting our research
contributions and by discussing future directioN& provide some suggestions about
how our current work can improve other researclh siscpersonalization and multi-

document summarization.

6.1 Summary of Contributions

The research presented in this dissertation igetivinto two main areas:
semantic annotation and text summarization. Biopiediis used as the domain. In
semantic annotation, the significance of the redesrapplying statistical language
modeling from speech recognition field to biometgmmantic annotation in the natural
language processing field, and in doing so knowdealgs integrated from one
disciplinary area to another. The practical restithe semantic annotation research is
that the annotation time can be significantly daseel (by 3x-16x) with precision
competitive with a state-of-the-art annotator. Arprovement in the speed performance
allows an online system to support texts unknowthéosystem ahead-of-time in order to
support applications such as data mining, semard&xing, semi-automatic annotation,
and text summarization. The significance of the sexnmarization research is the use of
domain-specific concepts in place of terms for ledioal text summarization.
The use of biomedical concepts overcomes biomeldingage variation. Applications
of text summarization using domain-specific summstion include personalized

summaries, multiple document summarization, andtiu@answering systems.
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The primary contributions of this research arecliews:

1. Design, implementation and evaluation of an ontogy-based biomedical
annotator. A phrase-unit concept annotator, called CONANIN} e more readily
usable in online environments than existing systess designed, implemented, and
evaluated. CONANN is novel in several respects:

* The use of incremental filters to iteratively rereawnlikely candidate phrases.

* The use of Inverse of Phrase Frequency to weightisvoased on their semantic
importance.

* The use of language modeling for text-to-concepbpiray.

The incremental filter approach removes unlikelgdidate phrases in the earliest
stage possible. The coverage filter uses semagtivalused words in a given ontology,
calledinverse Phrase Frequendp measure word membership. The coherence filter
uses skip-bigrams, which allow gaps between ward®mmon, to measure word order.
To find the best-matching concept among candidatages which have passed the
coverage and coherence filters, the phrase couatiddanguage modeling final concept
mappers are introduced, designed, and implemenhtedphrase counting final mapper
counts the number of candidate phrases which beatoagoncept. The concept with the
highest phrase count is then selected as the lashnThe language model approach
builds a language model for each UMLS concept usaah concept’s instances.
Candidate phrases are then evaluated as to tlodialpitity of having been generated by

the language of the concept. The language modebagip is unique in that considers all
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of a concept’s instances together, whereas exisfipgoaches in the literature consider
each concept instance separately.

CONANN is evaluated using two different evaluatapproaches. An intrinsic
evaluation compares CONANN'’s concept output tocihrecept output generated by a
state-of-the-art concept annotator, MetaMap Tran3tee extrinsic evaluation measures
the use of the generated concept annotationsartastimmarization task. The output of
MetaMap and CONANN were used to generate biometksalsummaries, and the
summaries were then evaluated using the ROUGE tool.

When compared to MetaMap, CONNAN was evaluatecetd to 4 times faster
in initialization time, and from 3 to 14 times fasin average time to annotate a phrase.
The highest precision as compared to MetaMap raingas90% to 95%. In the text
summarization task, CONANN outperforms MetaMap frbo% to 6.7%.

The coverage filter was found to work very wellredowhile the opposite is true
of the coherence filter, leading to the conclugiwat the ordering of words within UMLS
concept instances is less important than the spewiirds included. It was also
discovered that when applying both filters, theeoia of the filters is significant. The
coverage filter tends to remove concept phrasesenthe coherence filter is effective.
Therefore, the coherence filter needs to be appkeddre the coverage filter. Although
the coherence filter is not effective alone, applyit along with the coverage filter
improves the overall annotation precision scorghéncoverage filter, the use of the
involvement score outperformed the use of the naieee using both binary and inverse
phrase frequency values as weights. The use ofdaeyhrase frequency over the use of

binary weights could not be conclusively showneash weight outperformed the other
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in different scoring approaches. The final mappeagls to a trade-off of precision versus
speed. The phrase counting method is faster tlealatiyuage model mapping, but
results in lower precision than the language maagdping method. In addition, both
phrase counting and language model mapping appder tore effective at generating
matching concepts in the top five candidate corscdpiture work will focus on finding
the best exact match out of the top five or topdemcepts using approaches such as
word sense disambiguation.

2. Design, implementation and evaluation of singldecument text
summarizers for biomedical text which uses domainancepts.Three biomedical text
summarizers using two novel methods for identifysagjent sentences, BioChain and
FregDist, as well as a third summarizer which caomabithe two methods, were designed,
implemented and evaluated. The BioChain approaeb bi®medical concepts identified
within a source text and chains the concepts tegdtased on each concepts semantic
type. The FregDist approach finds the frequenciyiigion of terms or concepts in the
source text and then iteratively selects sentefmoasthe original source text to form a
summary which has a frequency distribution of teansoncepts as similar as possible to
the source text's frequency distribution of termgancepts. An advantage of FregDist
over BioChain is that FregDist restricts redundaoficipnformation to the same level as it
is found in the source text. The two approache®\atso merged into a third
summarizer, ChainFreq, to take advantage of BiaCéatrength in identifying
important areas of a text, and FregDist’s stremgttontrolling information redundancy.

The hybrid ChainFreqSumm summarizer, based on &icaton of the

BioChain and FreqgDist algorithms, was the bestguaring of all summarizers evaluated
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using ROUGE-SU4 scores. The hybrid summarizer stdhat the use of concepts can
outperform the use of terms for identifying salisahtences.

It was found that the use of domain-specific sunimeas outperformed the use of
nearly all general-purpose summarizers. The usemdepts was found to be competitive
with and in some cases better than the use of tnmdentifying text themes for single
document summarization. The concept chaining agprigagood at identifying
important areas of biomedical text, but does notrob redundancy in the generated
summaries. The frequency distribution method retstiedundancy to the same level as it
appears in the source text. New methods for nowdatgction are likely to further

improve redundancy detection.

3. Study of characteristics of biomedical texts, seifically concept
distribution and summary size.The distribution of domain-specific concepts witlai
biomedical text corpus was studied, as was thd gleamary size of a biomedical text
and the sections where human summarizers selestehees.

The main observations of the concept distributiowlyg are (a) the semantic types
and concept frequency distribution between a sodeand abstract are largely the
same; and (b) not all concepts can be treated lggaat it may make sense to weight
some concepts as more important than others.

The size of an ideal summary was evaluated using &&d concept versions of
the FreqDist and SumBasic summarizers. The sumarargenerated summaries at
compression ratios of 1%, 5%, 10%, 15%, and 20%e mModel summaries for each text

in the corpus were also set to the same compressiios. The general trend across all
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summarizers is a continual improvement in ROUGHEesxcas the size of the summary
increases. The ideal summary size for biomedicaliseapproximately 10% to 15% of
the original source text, which is different thaangral news summarization, where the

ideal size is approximately 20% of the original m@utext.

6.1.1 Answers to Research Questions

It was shown that the use of language modelingpdamdse-counting techniques
for performing biomedical concept mapping outperfsra state-of-the-art biomedical
concept annotator based on word metrics by 2 bmdstin initialization time, and by 3 to
14 times in average time to annotate a phrase.

It was also shown that the use of information estal techniques such as inverse
phrase frequency to measure words in common betevsenrce phrase and a UMLS
candidate phrase, and language modeling of comtgtances, can achieve 90% to 95%
precision and better text summarization performanrepared to a state-of-the-art
biomedical concept annotator.

The use of concepts was shown to perform compelytiwith the use of terms for
identifying salient source-text sentences. Theais®ncept chains in text summarization
outperformed baseline summarizers and most geparpbse summarizers. The general-
purpose summarizers that the concept-based sunmersasizored below incorporated
information redundancy removal techniques. Theafiseequency distribution in text
summarization was shown to outperform general-pe@ummarizers as well as the

baseline summarizers. Terms slightly outperfornmeduse of concepts. However, by
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combining the BioChain and FreqDist methods, tleeafoncepts was shown to

outperform the use of terms in single-document leidical text summarization.

6.2 Recommendations for Future Research
Our research can be extended in many directianger8l ideas for performing

future research are:

Personalized SummariesThe use of concepts can be more useful than tlerms
generating personalized summaries. An envisionstésyallows a user to select
domain-specific concepts important to the user,thed have the summarizer generate a
summary where those concepts are more highly wegitan the other concepts
appearing in the source text. In our research, seark was performed towards this
goal. One of the text summarizers for BioChainSuansed semantic type filtering. A list
of important UMLS semantic types for oncology reshavas provided by a domain
expert. In BioChain, only those semantic typegtidty the domain expert were allowed
to be strong chains. It was found that this apgroaduced text summarization
performance and the resulting summary was moreogpiate to a highly-experienced
domain expert. This was likely due to the fact tiha model summaries were summaries
of the entire text, and that the generated summareze no longer generic, but
personalized due to the filtering out of some seimaypes. A key problem will be
finding a method to evaluate personalized summatfiagent text summarization
evaluation methods require the use of multiple rhedmmaries to perform an

automated evaluation.
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Multiple-document Summarization: The text summarization work done in this
dissertation research focuses on single-documenhstenmarization. The use of
concepts may be more beneficial for multiple-doconseimmarization, where the
language is expected to vary more across multgpdes than within a single text. The
domain-specific concepts in UMLS are comprised aftiple concept instances. The
concept instances are able to capture the variatianguage. For example, a reference
in one paper ttung cancerand a reference in a second papgruimonary carcinoma
are likely discussing the same concept. A term-thagpproach will not capture the
semantic similarity of the two phrases, but a cpixased approach will. A key problem
is finding a corpus of biomedical texts and coroggpng model summaries which are

designed for evaluating multiple document biomddiest summarization.

FregDist in DUC Update Task The use of the frequency distribution algorithm
presented in this research is promising for the B&IZ Update Task. In the DUC
Update Task, systems are asked to produce shomaries of newswire articles,
assuming a user has read a set of previous, reddiel texts. The idea is to present new
information that the user has not already read fifloerset of preceding article texts. A
key part of the FregDist algorithm is to incorperaentences into a summary which have
new information. Through participation in the DUGOZ competition, several areas were
identified where the submitted FregDistUpdate systan be improved:

1. A list of important words derived from the togiatement is a heuristic which

needs to be empirically evaluated as to whetheobits inclusion is helpful.
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2. An evaluation needs to be done to determineaBistUpdate identifies new
information better by including prior summariespoior source text.

3. The DUC Update Task requires generating a supfoaga cluster of related
documents. FregDistUpdate may perform better byiggimg a summary based on the
content of each of the related documents. In thendited system, the documents in each
cluster were treated as one large source text. Menyveg may be more valuable to first
generate summaries of each document in the clastdrthen construct an update

summary for the entire cluster from the individdatument summaries.
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APPENDIX A — Example Summarization Output

Paper Title:

Concurrent Cisplatin-Based Radiotherapy and Cheenafty for Locally Advanced

Cervical Cancer (Rose et al., 1999)

Paper Abstract (Rose et al., 1999):

1) Purpose: Cisplatin, mitolactol (dibromodulcitol)
have been the most active single agents in squamous
cervix identified so far by the Gynecologic Oncolog

2) Combinations of cisplatin plus ifosfamide and ci
mitolactol are prospectively compared with cisplati

3) Patients and Methods: Patients were randomized t
50 mg/m2 or the same dose of cisplatin plus mitolac
2 orally on days 2 to 6, or cisplatin plus ifosfami

5 g/m 2 given as a 24-hour infusion plus mesna 6 g/
12 hours after the ifosfamide infusion, every 3 wee
courses.

4) Of 454 patients entered, 438 were eligible and a
and survival.

5) Results: CIFX had a higher response rate (31.1%
and longer progression-free survival (PFS) time (P
with cisplatin alone.

6) The median times to progression or death were 4.
respectively.

7) C + M showed no significant improvement in these
with cisplatin alone.

8) Survival was associated with initial performance
more favorable; P < .001) and with age (younger was
.025).

9) There was no significant difference in overall s
cisplatin and either of the combinations.

10) Leukopenia, renal toxicity, peripheral neurotox
toxicity were more frequent with CIFX (P < .05).

11) Conclusion: CIFX improved the response rate and
advanced cervix cancer compared with cisplatin alon
of greater toxicity and with no improvement in surv

, and ifosfomide
carcinoma of the
y Group (GOG).

splatin plus
n alone.

0 receive cisplatin

tol (C + M) 180 mg/m
de (CIFX)

m 2 during and for
ks for up to six

nalyzed for response

v 17.8%, P = .004)
=.003) compared

6 and 3.2 months,

parameters compared

score (PS; 0 was
unfavorable, P =

urvival between

icity, and CNS

PFS duration in
e, but at the cost
ival.



Domain Expert’s Summary (Jaques, 2002):
1) There was a significantly greater frequency of r
patients treated with CIFX compared to cisplatin al

2) Progression free survival was also significantly
group when compared to cisplatin alone .

3) There was no significant difference in survival
and either of the other combination regimens .

4) Toxicity was significantly worse for the two com
compared to cisplatin alone .

FregDistSumm Summary using 5% of original source tet:

1) Cisplatin is said to be the most active anticanc
cancer, although 100 mg/m did not significantly im
response (CR) rate compared prospectively with 50 m
respectively) and there was no appreciable differen
duration, progression-free interval (PFI), or sur

2) Thus, there is no convincing reason to use a ci
than 50 mg/m .

3) However, shortly after activation, the study w
the serum creatinine concentration was to be within
normal limits and the serum albumin level was to be

4) Ineligible patients included those with cervical

than squamous cell carcinoma or with nonmeasurable
WBC count less than 4,000/uL and/or platelet count
100,000/uL, abnormal liver function (bilirubin, A
phosphatase level > two times normal not related to
bilateral hydronephrosis, GOG PS 3 or 4, past or
malignancy other than skin (excluding melanoma), p
cytotoxic drugs except when used as a radiation sen
radiationtherapy within 3 weeks of entry, lesions
ultrasound, or pregnancy or lactation .

5) Patients were prospectively stratified according
received prior radiation-sensitizer treatment (hydr

or fluorouracil) and by PS, and were then centrall
equal probability to receive (1) cisplatin 50 mg/m
hydration every 3 weeks for a maximum of six course
50 mg/m on day 1 plus mitolactol (180 mg/m orally f
through 6 every 3 weeks, or (3) cisplatin 50mg/m p
g/m over 24 hours plus mesna 6 g/m given concurrent
and for 12 hours after, every 3 weeks, again for
courses .
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esponse among
one (31.1% vs 17.8%)

longer for the CIFX

between cisplatin

bination arms when

er drug in cervical
prove the complete
g/m (12.7 v 10%,
ce in response
vival.

splatindose higher

as amended so that
the institution's
>=3 g/dL .

neoplasms other
cervical cancer,
less than

ST, or alkaline

the cancer),
concomitant

rior therapy with
sitizer,

measurable only by

to whether they had
oxyurea, cisplatin,
y randomized with
with appropriate

s, or (2) cisplatin

or 5 days) on days 2
lus ifosfamide 5.0

ly with ifosfamide

a maximum of six



6) Between June 1990 and January 1994, 454 women e
whom 16 were ineligible (wrong stage, n =2, wron
wrong primary tumor, n =2, prior chemotherapy,
primary tumor, n = 1), which left 438 eligible pa

who received no drug, all were included in the int
analysis) .

7) The results of this trial in cervix cancer refle
findings in combination chemotherapy of advanced so
a higher response rate (but not a high CR rate) wit
compared with single-agent therapy at the cost of m
survival benefit .

ntered the study of
g cell type, n=9,
n =2, second
tients (including 10
ent to-treat

ct a common set of
lid tumors, namely,
h a combination
ore toxicity and no
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APPENDIX B — Example Annotation Output

Sample source phrases from the evaluation corpiishair UMLS concept mappings

generated by CONANN.

Source Phrase

UMLS Concept

UMLS Concept Name

Identifier
pelvic lymphadenectomy C0193883 Pelvic lymphadesmagt(procedure)
advances C0205179 Advanced phase
only eligible patients C0030705 Patients
staging C0027646 Diagnostic Neoplasm Staging
body C0242821 Human Body
First C0205435 First (qualifier value)
poor prognosis C0278252 Prognosis bad (finding)
radiosensitivity C0034537 Radiation Tolerance
indeed poor prognostic C0220901 prognostic
features
pulmonary disease C0024115 Lung diseases
complete blood counts C0009555 Blood Count, Coraplet
10th percentile C1264641 Percentile (property) lfieavalue)
pulmonary toxicity C0600688 Toxic effect
underlies C0444455 Underlay (qualifier value)
namely cmf C0950521 CMF
ib C0022104 Irritable Bowel Syndrome
pelvic examination C0200045 Manual pelvic examonati
(procedure)|
ct scan C0441633 Scanning
stepwise logistic regression C0206031 Logistic Bsgjon




212

VITA

Education 2007 Drexel University
Ph.D., Information Science and Technology

¢ Thesis: Semantic Annotation and Summarization ohi&dical Text
e Advisor: Dr. Hyoil Han, Drexel University

2001 Widener University
M.E., Computer and Software Engineering

1990 Rutgers University
B.A., Computer Science

Publications

Refereed Conference Papers

* Lawrence Reeve and Hyoil Han (200CONANN: An Online Biomedical Concept Annotafroceedings of
the 2007 Data Integration in the Life Sciences emrice (DILS'07), Philadelphia, PA USA.

* Lawrence Reeve, Hyoil Han, Saya V. Nagori, Jonatbaviang, Tamara A. Schwimmer, and Ari D. Brooks
(2006).Concept Frequency Distribution in Biomedical Textnarization Proceedings of the 15th
Conference on Information and Knowledge Managen{&bgb6 acceptance)

* Lawrence Reeve, Hyoil Han, and Ari D. Brooks (20@pChain: Using Lexical Chaining Methods for
Biomedical Text SummarizatioRroceedings of the 21st Annual ACM Symposium @plied Computing,
Bioinformatics track. (32% acceptance)

* Lawrence Reeve and Hyoil Han (200Survey of Semantic Annotation PlatforrRsoceedings of the 20th
Annual ACM Symposium on Applied Computing, Web Tealogies and Applications track. (37%
acceptance)

* Lawrence Reeve (2004)dapting the TileBar Interface for Visualizing Resme Usage Proceedings of the
30th International Conference for the Resource Manent and Performance Evaluation of Enterprise
Computing Systems.

Refereed Journal Papers

* Lawrence Reeve, Hyoil Han and Ari D. Brooks (200BJomedical Text Summarization Using Concept
Chains International Journal of Data Mining and Bioinfuatics.

* Lawrence Reeve, Hyoil Han and Ari D. Brooks (200The Use of Domain-Specific Concepts in Biomedical
Text Summarizatiordournal of Information Processing and Managentgmtcial Issue on Summarization.

Refereed Book Chapters

* Lawrence Reeve and Hyoil Han (2008)Comparison of Semantic Annotation Systems farfdased Web
DocumentsWeb Semantics and Ontology, David Taniar and dnity Rahayu (Eds.), Idea Group Publishing.

* Lawrence Reeve, Hyoil Han, and Chaomei Chen (206f)rmation Visualization and the Semantic Web
Visualizing the Semantic Web, Vladimir Geroimenkala&Chaomei Chen (Eds.), Springer.






