Automatic Derivation and Implementation of Fast Convolution Algorithms

A Thesis Submitted to the Faculty of Drexel University by Anthony F. Breitzman in partial fufillment of the requirements for the degree of

> Doctor of Philosophy January 2003

© Copyright 2003 Anthony F. Breitzman. All Rights Reserved.

Dedications

To Joanne, Anthony, and Taylor, for their patience and support.

Acknowledgements

First and foremost, I would like to thank my wife Joanne, who encouraged me throughout this process, and never complained about the endless nights and weekends spent on this project.

I would like to thank my advisor, J. Johnson who not only guided me through this process, but provided insights and encouragement at critical moments. I also want to recognize other members of my committee for their thoughtful input: I. Selesnick, B. Char, H. Gollwitzer, and P. Nagvajara.

During my studies I also worked full time. I want to thank CHI Research, Inc. for funding my studies, and my boss F. Narin for his flexibility throughout the process.

Finally, I wish to thank my parents, Charles and Mary Lou Breitzman for giving me opportunities that they never had.

Table of Contents

List of 7	Fables		vii
List Of	Figures		viii
Abstrac	t		ix
Chapter	1. Inti	roduction	1
1.1	Summ	ary	2
Chapter	2. Ma	thematical Preliminaries	5
2.1	Three	Perspectives on Convolution	5
2.2	Polyno	omial Algebra	6
	2.2.1	Chinese Remainder Theorem	7
	2.2.2	Tensor Product	9
2.3	Bilinea	ar Algorithms	10
	2.3.1	Operations on Bilinear Algorithms	11
2.4	Linear	Algorithms and Matrix Factorizations	13
Chapter	3. Sur	vey of Convolution Algorithms and Techniques	15
3.1	Linear	Convolution	15
	3.1.1	Standard Algorithm	15
	3.1.2	Toom-Cook Algorithm	15
	3.1.3	Combining Linear Convolutions	17
3.2	Linear	Convolution via Cyclic Convolution	18
3.3	Cyclic	Convolution	19
	3.3.1	Convolution Theorem	20
	3.3.2	Winograd Convolution Algorithm	22
	3.3.3	CRT-Based Cyclic Convolution Algorithms for Prime Powers	23
	3.3.4	The Agarwal-Cooley and Split-Nesting Algorithms	25
	3.3.5	The Improved Split-Nesting Algorithm	26
Chapter	4. Imp	blementation of Convolution Algorithms	29
4.1	Overvi	iew of SPL and the SPL Maple Package	29
	4.1.1	SPL Language	29

	4.1.2 SPL Maple Package	31
4.2	Implementation Details of Core SPL Package	32
	4.2.1 Core SPL Commands	32
	4.2.2 Core SPL Objects	33
	4.2.3 Creating Packages that use the SPL Core Package	42
4.3	Implementation of Convolution Package	42
	4.3.1 The Linear Convolution Hash Table	47
	4.3.2 A Comprehensive Example	51
Chapter	5. Operation Counts for DFT and FFT-Based Convolutions	54
5.1	Properties of the DFT, FFT, and Convolution Theorem	54
5.2	DFT and FFT Operation Counts	55
5.3	Flop Counts for Rader Algorithm	55
5.4	Conjugate Even Vectors and Operation Counts	56
5.5	Summary	58
Chapter	6. Operation Counts for CRT-Based Convolution Algorithms	63
6.1	Assumptions and Methodology	63
6.2	Operation Counts for Size p (p prime) Linear Convolutions Embedded in Circular Convolutions	64
6.3	Operation Counts for Size <i>mn</i> Linear Convolutions Embedded in Circular Convolutions	65
6.4	Operation Counts for Any Size Cyclic Convolution	68
6.5	Mixed Algorithms for Cyclic Convolutions	71
6.6	Summary	78
Chapter	7. Results of Timing Experiments	79
7.1	FFTW-Based Convolutions	79
7.2	Run-Time Comparisons	81
	7.2.1 Cyclic Convolution of Real Vectors	81
	7.2.2 Basic Optimizations for SPL Generated CRT Algorithms	88
	7.2.3 Is Improved Split-Nesting the Best Choice?	90
	7.2.4 Cyclic Convolution of Complex Vectors	92
7.3	Mixed CRT and FFT-Based Convolutions	92

	7.3.1	Gene	ralizi	ng N	Mix	ed	Al	goı	rith	m	Ti	mi	ng	Re	sul	ts		 •	•	 •	•		•	 96
Chapter	8. Con	nclusio	ns .			•									•						•			 98
Bibliogr	aphy .			•••								•			•	•					•		•	 100
Vita				•••											•	•								 102

List of Tables

3.1	Operation Counts for Linear Convolution	28
4.1	Core Maple Parameterized Matrices	34
4.2	Core Maple Operators	36
4.3	Linear Objects Contained in the Convolution Package	43
4.4	Bilinear SPL Objects Contained in the Convolution Package	48
4.5	Utility Routines Contained in the Convolution Package	49
5.1	Flop Counts for various FFT's and Cyclic Convolutions	59
5.2	Flop Counts for Linear Convolutions Derived from FCT and RFCT	60
5.3	Flop Counts for FCT and RFCT Sizes 2-1024	61
6.1	Operation Counts for P-Point Linear Convolutions	68
6.2	Different Methods for Computing 6-Point Linear Convolutions	69
6.3	Linear Convolutions that Minimize Operations for Real Inputs	73
6.4	Linear Convolutions that Minimize Operations for Complex Inputs	74
6.5	Comparison of Op Counts for Improved Split-Nesting versus FFT-Based Convolution	75
7.1	Run-Time for FFTW-Based Convolutions versus Mixed Convolutions of Size 3m $~$	95
7.2	Run-Time for FFTW-Based Convolutions versus Mixed Convolutions of Size 5m $~$	96
7.3	Run-Time for FFTW-Based Convolutions versus Mixed Convolutions of Size 15m	96

List of Figures

6.1	Percent of Sizes Where Improved Split-Nesting uses Fewer Operations than FFT-Based Convolution	78
7.1	Run-Time Comparison of FFTW vs. Numerical Recipes FFT	80
7.2	Example of an FFTW-Based Real Convolution Algorithm	81
7.3	General FFTW-Based Real Convolution Algorithm	82
7.4	Example of an FFTW-Based Complex Convolution Algorithm	83
7.5	General FFTW-Based Complex Convolution Algorithm	84
7.6	Comparison of Convolution Algorithms on Real Inputs	85
7.7	Improved Split-Nesting (ISN) versus RFFTW Convolution for 3 Compilers $\ldots \ldots$	86
7.8	Improved Split-Nesting (ISN) Operations Divided by Convolution Theorem Operations	86
7.9	Average Run Time Per Line of Code for Various Size Convolution Algorithms $\ldots \ldots$	87
7.10	Effect of Basic Optimizations on Run-Time for 3 CRT Convolutions	90
7.11	Run-Time for Various Size 33 CRT-Based Convolutions and RFFTW	91
7.12	Comparison of Convolution Algorithms on Complex Inputs	92
7.13	Improved Split-Nesting (ISN) versus FFTW Convolution for 3 Compilers	93
7.14	Listing for Size 3m Mixed Algorithm	94

Abstract

Automatic Derivation and Implementation of Fast Convolution Algorithms Anthony F. Breitzman Jeremy R. Johnson, Ph.D.

This thesis surveys algorithms for computing linear and cyclic convolution. Algorithms are presented in a uniform mathematical notation that allows automatic derivation, optimization, and implementation. Using the tensor product and Chinese Remainder Theorem (CRT), a space of algorithms is defined and the task of finding the best algorithm is turned into an optimization problem over this space of algorithms. This formulation led to the discovery of new algorithms with reduced operation count. Symbolic tools are presented for deriving and implementing algorithms, and performance analyses (using both operation count and run-time as metrics) are carried out. These analyses show the existence of a window where CRT-based algorithms outperform other methods of computing convolutions. Finally a new method that combines the Fast Fourier Transform with the CRT methods is derived. This latter method is shown to be faster for some very large size convolutions than either method used alone.

Chapter 1: Introduction

Convolution is arguably one of the most important computations in signal processing, with more than 25 books and 5000 research papers related to it. Convolution also has applications outside of signal processing including the efficient computation of prime length Fourier Transforms, polynomial multiplication, and large integer multiplication. Efficient implementations of convolution algorithms are therefore always in demand.

The careful study of convolution algorithms began with S. Winograd's investigation of the complexity of convolution and related problems. Winograd in [29, 30] proved a lower bound on the number of multiplications required for convolution, and used the Chinese Remainder Theorem (CRT) to construct optimal algorithms that achieve the minimum number of multiplications. Unfortunately, to reach the theoretical minimum in multiplications often requires an inordinate number of additions that may defeat the gain in multiplications. These results spurred further study in the design and implementation of "fast" convolution algorithms. The research on this problem over the last 25 years is summarized in the books by Nussbuamer [19], Burrus and Parks [6], Blahut [4], and Tolimieri et al. [27]. In this thesis, the algorithms of Winograd and others that build upon Winograd will be referred to as CRT-based convolution algorithms.

Much of past research has focused on techniques for reducing the number of additions by using near-optimal rather than optimal multiplication counts. Other authors, beginning with Agarwal and Cooley [1], have focused on using Winograd's techniques to implement small convolution algorithms for specific sizes. These small algorithms are then combined to compute larger convolutions using various "prime factor" algorithms. This approach has had the greatest success in the application to computing prime size discrete Fourier transforms (DFT) via Rader's theorem [21] and prime factor fast Fourier transforms (FFT) (see for example [5, 25]).

Despite all of the development however, many questions remain about these algorithms. The main unanswered question is to determine the practicality of CRT-based algorithms over the full range of input sizes. In particular, a direct comparison of CRT algorithms versus FFT-based algorithms using the convolution theorem is needed. (See [27] for discussion of the convolution theorem). More generally, an exploration is needed to determine the best way to combine the various algorithms and techniques to obtain fast implementations and to ultimately optimize performance. One reason this has not been done is the difficulty in implementing CRT algorithms for general sizes, and the need to produce production quality implementations in order to obtain meaningful comparisons. Another reason is that the various convolution algorithms and techniques lead to a combinatorial search problem for identifying optimal algorithms. The main goal of this thesis is to carry out a systematic investigation of convolution algorithms in order to obtain an optimal implementation and to determine the instances where CRT algorithms are better than FFT-based algorithms.

In order to carry out this research, an infrastructure was developed for automatically deriving and implementing convolution algorithms. Previous work has been done in this direction, but most of these efforts have produced un-optimized straight-line code [1, 8]. More recent work by Selesnick and Burrus [22], has automated the generation of convolution algorithms without using straight-line code. Their work highlighted the structure in prime-power algorithms and showed how to utilize this structure to generate structured code. However the code produced was for MATLAB and does not produce an optimized implementation. Moreover, they do not provide tools to experiment with algorithmic choices nor arbitrary sizes. These limitations do not allow previous work to be used to systematically answer the performance question addressed here.

This thesis discusses a research project that builds mainly on the work of Agarwal and Cooley [1] and Selesnick and Burrus [22], and aims to address the above issues and others. In short, the previous work is extended to examine convolution algorithms for any size N, building on the structure noted by Selesnick and Burrus [22], to automatically generate efficient structured computer code for CRT-based algorithms. Next, a performance study is undertaken to determine the viability of different approaches, and to ultimately compare CRT-based convolution algorithms with FFT-based techniques. This is the first such performance study based on run-time undertaken.

These efforts build on earlier techniques for automating the implementation of FFT algorithms developed by Johnson et al. [13, 2] and are part of the SPIRAL project [24] whose aim is to automate the design, optimization, and implementation of signal processing algorithms.

1.1 Summary

The research has six components, corresponding to the six remaining chapters of the thesis. Each of the chapters is summarized here.

• Chapter 2 discusses the mathematical preliminaries that will be needed in the remaining chapters. A discussion of bilinear algorithms, tensor products, and the Chinese Remainder Theorem is provided because in subsequent chapters it is shown that the various techniques developed over the years can all be shown to be generated via tensor products and the Chinese Remainder Theorem.

- Chapter 3 presents a uniform representation of various convolution algorithms discussed in the literature. This allows for easy comparison, analysis, and implementation of the algorithms, and also allows for the creation of an "algebra of algorithms," which can be manipulated, combined, generated in a structured and automated way. This is not merely a matter of notation or style, but is a crucial foundation for systematically studying convolutions in the subsequent chapters. Ultimately this led to the discovery/development of a new algorithm "the improved split-nesting algorithm" that uses fewer operations than previously published algorithms.
- Chapter 4 presents an infrastructure for experimenting, manipulating, and automatically generating convolution algorithms. This contribution is absolutely crucial to the success of this research for several reasons. First, these algorithms are error prone and difficult to program efficiently by hand except for very small cases. Second, a flexible framework and scripting language were necessary for determining how the various algorithms interact with one another, and for experimenting and assisting in the generation of the algorithms and operation counts used in the rest of the thesis. Last, the sheer magnitude of the testing procedure greatly exceeded any previous work, and would have been simply impossible to do by hand. For example, a size 77 cyclic convolution contains more than 50,000 lines of C code, while the entire tested set of sizes between 2 and 80 contains more than 319,000 lines of straight-line code and more than 196,000 lines of looped code. The timing process discussed in chapter 7 involved generating and compiling more than 10 million lines of C code. Doing such a project without an infrastructure would be simply impossible.
- Chapter 5 builds upon the work of [9, 21, 23] to create baseline operation counts for all size Fast Fourier Transforms, which are then used to create baseline operation counts for convolutions created with the convolution theorem. These are then used in Chapter 6 to determine whether the CRT-based convolutions can be competitive (in terms of operation count) with FFT-based convolutions.
- Chapter 6 undertakes an extensive analysis of operation counts for all linear and cyclic convolutions of size 1 to 1024, and identifies a window where these algorithms use fewer operations then FFT-based algorithms. Since there are multiple ways of computing linear convolutions of any given size, this involved an exhaustive search of more than 1.6 million algorithms. This is significant because for the 25 years that researchers have been studying these algorithms, no one has carefully analyzed under what conditions the algorithms would be competitive with

FFT-based algorithms. While operation count is not the best predictor of actual performance, it is a useful first step in analyzing performance. Moreover, operation count is unambiguous and allows definitive statements to be made. The key result is that the CRT-based algorithms use fewer operations than FFT-based algorithms for 90% of sizes between 2 and 200 for real input vectors, and in 48% of sizes between 2 and 100 for complex input vectors. This relatively small window can be exploited so that large (sizes up to 10,000 and beyond) convolution algorithms can be created that combine an FFT with a CRT-based convolution algorithm. These mixed algorithms in many cases use fewer operations than pure FFT-based or pure CRT-based convolutions.

• Chapter 7 presents a performance analysis comparing the CRT-based algorithms with the best currently available FFT implementation. A window was found where these algorithms are faster than FFT-based algorithms in run-time. The mixed algorithm is shown to exploit these modest windows to create large fast algorithms that have faster run-times than pure FFT-based and pure CRT-based convolutions.

The goal of this work was to determine whether CRT-based algorithms are practical, given current architectures where multiplications and additions have roughly the same cost. This thesis shows that not only are the algorithms viable as stand-alone algorithms, (based on both operation counts and run-times), but they also have a place in improving FFT-based convolution algorithms.

Chapter 2: Mathematical Preliminaries

This chapter reviews the mathematical tools that we use in deriving convolution algorithms.

2.1 Three Perspectives on Convolution

Convolution can be viewed from three different perspectives: as a sum, a polynomial product, and a matrix operation. This allows polynomial algebra to be used to derive algorithms and the corresponding matrix algebra for manipulating and implementing algorithms.

The linear convolution of the vectors $\mathbf{u} = (u_0, \ldots, u_{M-1})$ and $\mathbf{v} = (v_0, \ldots, v_{N-1})$ is a vector of size M + N - 1. If both vectors are of the same size, M = N, the linear convolution is said to be of size N.

Definition 1 (Linear Convolution)

Let $\mathbf{u} = (u_0, \ldots, u_{M-1})$ and $\mathbf{v} = (v_0, \ldots, v_{N-1})$. The *i*-th component of $\mathbf{u} * \mathbf{v}$ is equal to

$$(\mathbf{u} * \mathbf{v})_i = \sum_{k=0}^{N-1} u_{i-k} v_k, 0 \le i < 2N$$
(2.1)

If the vectors $\mathbf{u} = (u_0, \dots, u_{M-1})$ and $\mathbf{v} = (v_0, \dots, v_{N-1})$ are mapped to the polynomials

$$u(x) = \sum_{i=0}^{M-1} u_i x^i$$
 and $v(x) = \sum_{j=0}^{N-1} v_j x^j$,

then $\mathbf{u} * \mathbf{v}$ is mapped to the polynomial u(x)v(x).

The linear convolution sum is also equivalent to the following matrix vector multiplication.

$$\mathbf{u} * \mathbf{v} = \begin{bmatrix} u_0 & & & \\ u_1 & u_0 & & \\ \vdots & u_1 & \ddots & \\ u_{M-1} & \vdots & \ddots & u_0 \\ & & u_{M-1} & & u_1 \\ & & & \ddots & \vdots \\ & & & & & u_{M-1} \end{bmatrix} \mathbf{v}$$
(2.2)

Cyclic convolution of two vectors of size N is obtained from linear convolution by reducing the indices i - k and k in Equation 2.1 modulo N.

Definition 2 (Cyclic Convolution)

Let $\mathbf{u} = (u_0, \dots, u_{N-1})$ and $\mathbf{v} = (v_0, \dots, v_{N-1})$. The *i*-th component of the cyclic convolution of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} \otimes \mathbf{v}$, is equal to

$$(\mathbf{u} \circledast \mathbf{v})_i = \sum_{k=0}^{N-1} u_{(i-k) \mod N} v_k, 0 \le i < N$$

$$(2.3)$$

Circular convolution is obtained by multiplying the polynomials corresponding to \mathbf{u} and \mathbf{v} and taking the remainder modulo $x^N - 1$. It can also be recast in terms of matrix algebra, as the product of a *circulant matrix* $\operatorname{Circ}_N(\mathbf{u})$, times the vector v,

$$\mathbf{u} \circledast \mathbf{v} = \begin{bmatrix} u_0 & u_{N-1} & u_{N-2} & \dots & u_1 \\ u_1 & u_0 & u_{N-1} & \dots & u_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ u_{N-2} & \dots & u_1 & u_0 & u_{N-1} \\ u_{N-1} & u_{N-2} & \dots & u_1 & u_0 \end{bmatrix} \mathbf{v}.$$

This matrix is called a circulant matrix because the columns of the matrix are all obtained by cyclically rotating the first column.

A circulant matrix is generated by the shift matrix

$$S_N = \begin{bmatrix} 0 & \dots & 0 & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{bmatrix},$$
(2.4)

which is so named because when it is applied to a vector it cyclically shifts the elements. It is easy to verify that

$$\operatorname{Circ}_{N}(\mathbf{u}) = \sum_{i=0}^{N-1} u_{i} S_{N}^{i}.$$
(2.5)

2.2 Polynomial Algebra

Elementary properties of polynomial algebras, in particular the Chinese remainder theorem (CRT), can be used to derive convolution algorithms, and the regular representation can be used to convert from the polynomial view of convolution to the matrix view. Let f(x) be a polynomial with coefficients in a field \mathbb{F} , and let $\mathbb{F}[x]/f(x)$ denote the quotient algebra of polynomials modulo f(x). Typically \mathbb{F} will be the complex, \mathbb{C} , or real, \mathbb{R} , numbers depending on the convolution inputs;

however when deriving algorithms using the CRT, the rationals, \mathbb{Q} or an extension of the rationals will be used depending on the required factorization of f(x). Linear convolution corresponds to multiplication in the polynomial algebra $\mathbb{F}[x]$, and cyclic convolution corresponds to multiplication in $\mathbb{F}[x]/x^N - 1$.

The regular representation, ρ , of the algebra $\mathbb{F}[x]/f(x)$ is the mapping from $\mathbb{F}[x]/f(x)$ into the algebra of linear transformations of $\mathbb{F}[x]/f(x)$ defined by

$$\rho(A(x))B(x) = A(x)B(x) \pmod{f(x)},$$

where A(x) and B(x) are elements of $\mathbb{F}[x]/f(x)$. Once a basis for $\mathbb{F}[x]/f(x)$ is selected, the regular representation associates matrices with polynomials. Assume that $\deg(f(x)) = N$. The dimension of $\mathbb{F}[x]/f(x)$ is N, and $\{1, x, x^2, \ldots, x^{N-1}\}$ is a basis for $\mathbb{F}[x]/f(x)$. With respect to this basis, $\rho(x) = \mathbf{C}_f$, the companion matrix of f(x), and the regular representation of $\mathbb{F}[x]/f(x)$ is the matrix algebra generated by \mathbf{C}_f . In particular, when $f(x) = x^N - 1$, $\rho(x)$ is S_N and the regular representation of $\mathbb{C}[x]/(x^n - 1)$ is the algebra of circulant matrices.

2.2.1 Chinese Remainder Theorem

The polynomial version of the Chinese Remainder provides a decomposition of a polynomial algebra, $\mathbb{F}[x]/f(x)$ into a direct product of polynomial algebras.

Theorem 1 (Chinese Remainder Theorem)

Assume that $f(x) = f_1(x) \cdots f_t(x)$ in \mathbb{F} where $gcd(f_i(x), f_j(x)) = 1$ for $i \neq j$. Then

$$\mathbb{F}[x]/f(x) \cong \mathbb{F}[x]/f_1(x) \times \cdots \times \mathbb{F}[x]/f_t(x)$$

Where the isomorphism is given constructively by a system of orthogonal idempotents $e_1(x), \ldots, e_t(x)$ where $e_i(x)e_j(x) \equiv 0 \pmod{f(x)}$ when $i \neq j$, $e_i(x)e_i(x) \equiv 1 \pmod{f(x)}$, and $e_1(x) + \cdots + e_t(x) \equiv 1 \pmod{f(x)}$. If $A(x) = A_1(x)e_1(x) + \cdots + A_t(x)e_t(x)$, then $A(x) \equiv A_i(x) \pmod{f_i(x)}$.

A more general version of this theorem with a proof can be found in [16].

Theorem 2 (Matrix Version of the CRT) Let R be the linear transformation, from the CRT, that maps $\mathbb{F}[x]/f(x)$ onto $\mathbb{F}[x]/f_1(x) \times \cdots \times \mathbb{F}[x]/f_t(x)$: $R(A(x)) = (A(x) \mod f_1(x), \ldots, A(x) \mod f_t(x))$. Then

$$R\rho(A) = (\rho(A_1) \oplus \cdots \oplus \rho(A_t))R$$

Proof

$$R\rho(A)B = R(AB)$$

= (A_1B_1, \dots, A_tB_t)
= $(\rho(A_1) \oplus \dots \oplus \rho(A_t))(B_1, \dots, B_t)$
= $(\rho(A_1) \oplus \dots \oplus \rho(A_t))RB$

Since B is arbitrary the equation in the theorem is true.

Example 1 Let $f(x) = x^4 - 1$, and let $f_1(x) = x - 1$, $f_2(x) = x + 1$, and $f_3(x) = x^2 + 1$ be the irreducible rational factors of f(x). Let $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ be an element of $\mathbb{Q}[x]/f(x)$ (coefficients could come from any extension of \mathbb{Q}). Since $A(x) \mod f_1(x) = a_0 + a_1 + a_2 + a_3$, $A(x) \mod f_2(x) = a_0 - a_1 + a_2 - a_3$, and $A(x) \mod f_3(x) = (a_0 - a_2) + (a_1 - a_3)x$,

$$R = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix},$$

with $R(a_0, a_1, a_2, a_3)^T = (A \mod f_1, A \mod f_2, A \mod f_3)$. It is easy to verify that $e_1(x) = (1 + x + x^2 + x^3)/4$, $e_2(x) = (1 - x + x^2 - x^3)/4$, and $e_3(x) = (1 - x^2)/2$ are a system of orthogonal idempotents. Therefore,

$$R^{-1} = \begin{bmatrix} 1/4 & 1/4 & 1/2 & 0\\ 1/4 & -1/4 & 0 & 1/2\\ 1/4 & 1/4 & -1/2 & 0\\ 1/4 & -1/4 & 0 & -1/2 \end{bmatrix}$$

Consequently,

$$R\begin{bmatrix} a_0 & a_3 & a_2 & a_1\\ a_1 & a_0 & a_3 & a_2\\ a_2 & a_1 & a_0 & a_3\\ a_3 & a_2 & a_1 & a_0 \end{bmatrix} R^{-1}$$

$$= \begin{bmatrix} a_0 + a_1 + a_2 + a_3 & 0 & 0 & 0 \\ 0 & a_0 - a_1 + a_2 - a_3 & 0 & 0 \\ 0 & 0 & a_0 - a_2 & a_3 - a_1 \\ 0 & 0 & a_1 - a_3 & a_0 - a_2 \end{bmatrix}.$$

2.2.2 Tensor Product

The tensor product provides another important tool for deriving convolution algorithms. For this paper it is sufficient to consider the tensor product of finite dimensional algebras. Let U and V be vector spaces. A bilinear mapping β is a map from $U \times V \longrightarrow W$ such that

$$\beta(\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2, \mathbf{v}) = \alpha_1 \beta(\mathbf{u}_1, \mathbf{v}) + \alpha_2 \beta(\mathbf{u}_2, \mathbf{v})$$

$$\beta(\mathbf{u}, \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = \alpha_1 \beta(\mathbf{u}, \mathbf{v}_1) + \alpha_2 \beta(\mathbf{u}, \mathbf{v}_2)$$

It is easy to verify that convolution is a bilinear mapping. More generally, multiplication in any algebra is a bilinear mapping due to the distributive property.

A vector space T along with a bilinear map θ : $U \times V \longrightarrow U \otimes V$ is called a tensor product if it satisfies the properties:

- 1. $\theta(U \times V)$ spans T.
- 2. Given another vector space W and a bilinear mapping $\varphi : U \times V \longrightarrow W$ there exists a linear map $\lambda : T \longrightarrow W$ with $\varphi = \theta \circ \lambda$.

The tensor product, denoted by $U \otimes V$, exists and is unique (see [16]). If U and V are finite dimensional and $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_n\}$ are bases for U and V, then $\{u_1 \otimes v_1, \ldots, u_1 \otimes v_n, \ldots, u_m \otimes v_1, \ldots, u_m \otimes v_n\}$ is a basis for $U \otimes V$. It follows that the dimension of $U \otimes V$ is mn.

Let \mathcal{A} and \mathcal{B} be algebras and let $\mathcal{A} \otimes \mathcal{B}$ be the tensor product of \mathcal{A} and \mathcal{B} as vector spaces. Let $A_1, A_2 \in \mathcal{A}_1$ and $B_1, B_2 \in \mathcal{A}_2$, then $\mathcal{A} \otimes \mathcal{B}$ becomes an algebra with multiplication defined by $(A_1 \otimes B_1)(A_2 \otimes B_2) = A_1 B_2 \otimes B_1 B_2$. It is clear from this definition, that the regular representation $\rho(\mathcal{A} \otimes \mathcal{B})$ is equal to $\rho(\mathcal{A}) \otimes \rho(\mathcal{B})$.

When \mathcal{A}_1 and \mathcal{A}_2 are matrix algebras the tensor product coincides with the Kronecker product of matrices.

Definition 3 (Kronecker Product) Let A be an $m_1 \times n_1$ and B be an $m_2 \times n_2$ matrix. The Kronecker product of A and B, $A \otimes B$ is the $m_1m_2 \times n_1n_2$ block matrix whose (i, j) block, for $0 \le i < m_1$ and $0 \le j < n_1$ is equal to $a_{i,j}B$.

The following provides an example that will be used in the derivation of convolution algorithms.

Example 2

Consider the bilinear map $\mathbb{F}[x]/f(x) \times \mathbb{F}[y]/g(y) \longrightarrow \mathbb{F}[x,y]/(f(x),g(y))$ defined by $(A(x), B(y)) \longrightarrow A(x)B(y)$. This map is onto since the collection of binomials $x^i y^j$ span $\mathbb{F}[x,y]/(f(x),g(y))$. Property of the tensor product follows by setting $\lambda(x^i y^j) = \varphi(x^i,y^j)$ for any other bilinear map φ .

If deg(f) = m and deg(g) = n, then $\{1, x, \ldots, x^{m-1}\}$ is a basis for $\mathbb{F}[x]/f(x)$ and $\{1, y, \ldots, y^{n-1}\}$ is a basis for $\mathbb{F}[y]/g(y)$. With respect to these bases, $\rho(x) = \mathbf{C}_f$ and $\rho(y) = \mathbf{C}_g$. Using the basis $\{x^i y^j = x^i \otimes y^j | 0 \le i < m, 0 \le j < n\}$ $\rho(x \otimes y) = \rho(x) \otimes \rho(y) = \mathbf{C}_f \otimes \mathbf{C}_g$. In particular, $\mathbb{F}[x]/(x^m - 1) \otimes \mathbb{F}[y]/(y^n - 1)$ corresponds to two-dimensional convolution and the regular representation has a block circulant structure. For example, when m = n = 2, the regular representation is given by

$$a_0(I_2 \otimes I_2) + a_1(I_2 \otimes S_2) + a_2(S_2 \otimes I_2) + a_3(S_2 \otimes S_2) = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \\ a_1 & a_0 & a_3 & a_2 \\ a_2 & a_3 & a_0 & a_1 \\ a_3 & a_2 & a_1 & a_0 \end{bmatrix}$$

2.3 Bilinear Algorithms

A bilinear algorithm [30] is a canonical way to describe algorithms for computing bilinear mappings. The purpose of this section is to provide a formalism for the constructions in [30] that can be used in the computer manipulation of convolution algorithms. Similar notation has been used by other authors [14, 27].

Definition 4 (Bilinear Algorithm)

A bilinear algorithm is a bilinear mapping denoted by the triple (C, A, B) of matrices, where the column dimension of C is equal to the row dimensions of A and B. When applied to a pair of vectors **u** and **v** the bilinear algorithm (C, A, B) computes $C(A\mathbf{u} \bullet B\mathbf{v})$, where \bullet represents component-wise multiplication of vectors.

Example 3 Consider a two-point linear convolution

$$\left[\begin{array}{c} u_0 \\ u_1 \end{array}\right] * \left[\begin{array}{c} v_0 \\ v_1 \end{array}\right] = \left[\begin{array}{c} u_0 v_0 \\ u_0 v_1 + u_1 v_0 \\ u_1 v_1 \end{array}\right].$$

This can be computed with three instead of four multiplications using the following algorithm.

1. $t_0 \leftarrow u_0 v_0;$ 2. $t_1 \leftarrow u_1 v_1;$ 3. $t_2 \leftarrow (u_0 + u_1)(v_0 + v_1) - t_0 - t_1;$

The desired convolution is given by the vectors whose components are t_0 , t_1 , and t_2 . This algorithm is equivalent to the bilinear algorithm

$$tc_2 = \left(\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \right).$$
(2.6)

2.3.1 Operations on Bilinear Algorithms

Let $\mathcal{B}_1 = (C_1, A_1, B_1)$ and $\mathcal{B}_2 = (C_2, A_2, B_2)$ be two bilinear algorithms. The following operations are defined for bilinear algorithms.

- 1. [direct sum] $\mathcal{B}_1 \oplus \mathcal{B}_2 = (C_1 \oplus C_2, A_1 \oplus A_2, B_1 \oplus B_2).$
- 2. [tensor product] $\mathcal{B}_1 \otimes \mathcal{B}_2 = (C_1 \otimes C_2, A_1 \otimes A_2, B_1 \otimes B_2).$
- 3. [product] Assuming compatible row and column dimensions, $\mathcal{B}_1\mathcal{B}_2 = (C_2C_1, A_1A_2, B_1B_2)$.

As a special case of the product of two bilinear algorithms, let P and Q be matrices and assume compatible row and column dimensions.

$$P\mathcal{B}_1Q = (PC_1, A_1Q, B_1Q).$$

These operations provide algorithms to compute the corresponding bilinear maps.

Lemma 1 (Tensor product of bilinear mappings) Let $\mathcal{B}_1 = (C_1, A_1, B_1)$ and $\mathcal{B}_2 = (C_2, A_2, B_2)$ be two bilinear algorithms that compute $\beta_1 : U_1 \times V_1 \longrightarrow W_1$ and $\beta_2 : U_2 \times V_2 \longrightarrow W_2$ respectively. Then $\mathcal{B}_1 \otimes \mathcal{B}_2$ computes the bilinear mapping $\beta_1 \otimes \beta_2 : U_1 \otimes U_2 \times V_1 \otimes V_2 \longrightarrow W_1 \otimes W_2$ defined by $\beta_1 \otimes \beta_2(\mathbf{u}_1 \otimes \mathbf{v}_1, \mathbf{u}_2 \otimes \mathbf{v}_2) = \beta_1(\mathbf{u}_1, \mathbf{v}_1) \otimes \beta_2(\mathbf{u}_2, \mathbf{v}_2).$

Proof

$$\begin{aligned} \mathcal{B}_1 \otimes \mathcal{B}_2(\mathbf{u}_1 \otimes \mathbf{u}_2, \mathbf{v}_1 \otimes \mathbf{v}_2) &= (C_1 \otimes C_2)((A_1 \otimes A_2)(\mathbf{u}_1 \otimes \mathbf{u}_2) \bullet (B_1 \otimes B_2)(\mathbf{v}_1 \otimes \mathbf{v}_2)) \\ &= (C_1 \otimes C_2)(A_1\mathbf{u}_1 \otimes A_2\mathbf{u}_2) \bullet (B_1\mathbf{v}_1 \otimes B_2\mathbf{v}_2) \\ &= (C_1 \otimes C_2)((A_1\mathbf{u}_1 \bullet B_1\mathbf{v}_1) \otimes (A_2\mathbf{u}_2 \bullet B_2\mathbf{v}_2)) \\ &= (C_1(A_1\mathbf{u}_1 \bullet B_1\mathbf{v}_1) \otimes (C_2(A_2\mathbf{u}_2 \bullet B_2\mathbf{v}_2)) \\ &= (C_1, A_1, B_1)(\mathbf{u}_1, \mathbf{v}_1) \otimes (C_2, A_2, B_2)(\mathbf{u}_2, \mathbf{v}_2) \\ &= (\beta_1 \otimes \beta_2)(\mathbf{u}_1 \otimes \mathbf{u}_2, \mathbf{v}_1 \otimes \mathbf{v}_2). \end{aligned}$$

The matrix version of the CRT can be used to construct a bilinear algorithm to multiply elements of $\mathbb{F}[x]/f(x)$ from a direct sum of bilinear algorithms to multiply elements of $\mathbb{F}[x]/f_i(x)$.

Theorem 3 (Bilinear Algorithm Corresponding to the CRT)

Assume that $f(x) = f_1(x) \cdots f_t(x)$ in $\mathbb{F}[x]$, where $gcd(f_i(x), f_j(x)) = 1$ for $i \neq j$, and let (C_i, A_i, B_i) be a bilinear algorithm to multiply elements of $\mathbb{F}[x]/f_i(x)$. Then there exists an invertible matrix Rsuch that the bilinear algorithm

$$R^{-1}\left(\bigoplus_{i=1}^{t} (C_i, A_i, B_i)\right) R$$

computes multiplication in $\mathbb{F}[x]/f(x)$.

In filtering applications it is often the case that one of the inputs to be cyclically convolved is fixed. Fixing one input in a bilinear algorithm leads to a linear algorithm. When this is the case, one part of the bilinear algorithm can be precomputed and the precomputation does not count towards the cost of the algorithm. Let (C, A, B) be a bilinear algorithm for cyclic convolution and assume that the first input is fixed. Then the computation $(C, A, B)(\mathbf{u}, \mathbf{v})$ is equal to $(C \operatorname{diag}(A\mathbf{u})B)\mathbf{v}$, where $\operatorname{diag}(A\mathbf{u})$ is the diagonal matrix whose diagonal elements are equal to the vector $A\mathbf{u}$.

In most cases the C portion of the bilinear algorithm is much more costly than the A or B portions of the algorithm, so it would be desirable if this part could be precomputed. Given a bilinear algorithm for a cyclic convolution, the matrix exchange property allows the C and A matrices to be exchanged.

Theorem 4 (Matrix Exchange)

Let J_N be the anti-identity matrix of size n defined by J_N : $i \mapsto n-1-i$ for $i = 0, \ldots, N-1$, and let (C, A, B) be a bilinear algorithm for cyclic convolution of size N. Then $(J_N B^t, A, C^t J_N)$, where $()^t$ denotes matrix transposition, is a bilinear algorithm for cyclic convolution of size N.

Proof

Since $J_N S_N J_N = S_N^t$ and $J_N^{-1} = J_N$, $\operatorname{Circ}_N(\mathbf{u}) = J_N \operatorname{Circ}_N(\mathbf{u})^t J_N$. Therefore,

$$\mathbf{u} \circledast \mathbf{v} = \mathbf{Circ}_N(\mathbf{u})\mathbf{v}$$
$$= (J_N \mathbf{Circ}_N(\mathbf{u})^t J_N)\mathbf{v}$$
$$= (J_N (C \operatorname{diag}(A\mathbf{u})B)^t J_N)\mathbf{v}$$
$$= (J_N B^t \operatorname{diag}(A\mathbf{u})C^t J_N)\mathbf{v}$$
$$= (J_N B^t, A, C^t J_n)(\mathbf{u}, \mathbf{v}).$$

2.4 Linear Algorithms and Matrix Factorizations

Many fast algorithms for computing y = Ax for a fixed matrix A can be obtained by factoring A into a product of structured sparse matrices. Such algorithms can be represented by formulas containing parameterized matrices and a small collection of operators such as matrix composition, direct sum, and tensor product.

An important example is provided by the fast Fourier transform (FFT) [9] which is obtained from a factorization of the discrete Fourier transform (DFT) matrix. Let $DFT_n = [\omega_n^{kl}]_{0 \le k,l < n}$, $\omega_n = \exp(2\pi i/n)$, then

$$DFT_{rs} = (DFT_r \otimes I_s) T_s^{rs} (I_r \otimes DFT_s) L_r^{rs}, \qquad (2.7)$$

where I_n is the $n \times n$ identity matrix, L_r^{rs} is the $rs \times rs$ stride permutation matrix

$$\mathbf{L}_r^{rs}: \ j \mapsto j \cdot r \mod rs - 1, \ \text{for} \ j = 0, \dots, rs - 2; \quad rs - 1 \mapsto rs - 1, \tag{2.8}$$

and \mathbf{T}_r^{rs} is the diagonal matrix of twiddle factors,

$$\mathbf{T}_{r}^{rs} = \bigoplus_{j=0}^{s-1} \operatorname{diag}(\omega_{n}^{0}, \dots, \omega_{n}^{r-1})^{j}, \quad \omega_{n} = e^{2\pi i/n}, \quad i = \sqrt{-1}.$$
(2.9)

For example,

$$DFT_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= (DFT_{2} \otimes I_{2}) \cdot T_{2}^{4} \cdot (I_{2} \otimes DFT_{2}) \cdot L_{2}^{4}.$$

See [13], [27] and [17] for a more complete discussion.

The tensor product satisfies the following basic properties, where indicated inverses exist, and matrix dimensions are such that all products make sense.

1.
$$(\alpha A) \otimes B = A \otimes (\alpha B) = \alpha (A \otimes B).$$

2. $(A + B) \otimes C = (A \otimes C) + (B \otimes C).$
3. $A \otimes (B + C) = (A \otimes B) + (A \otimes C).$
4. $1 \otimes A = A \otimes 1 = A.$
5. $A \otimes (B \otimes C) = (A \otimes B) \otimes C.$
6. $(A \otimes B)^T = A^T \otimes B^T.$
7. $(A \otimes B)(C \otimes D) = AC \otimes BD.$
8. $A \otimes B = (I_{m_1} \otimes B)(A \otimes I_{n_2}) = (A \otimes I_{m_2})(I_{n_1} \otimes B).$
9. $(A_1 \otimes \cdots \otimes A_t)(B_1 \otimes \cdots \otimes B_t) = (A_1 B_1 \otimes \cdots \otimes A_t B_t).$
10. $(A_1 \otimes B_1) \cdots (A_t \otimes B_t) = (A_1 \cdots A_t \otimes B_1 \cdots B_t).$
11. $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}.$
12. $I_m \otimes I_n = I_{mn}.$

All of these identities follow from the definition or simple applications of preceding properties (see [12]).

The following additional properties will be required.

Theorem 5 (Commutation Theorem)

Let A be an $m_1 \times n_1$ matrix and let B be an $m_2 \times n_2$ matrix. Then

$$L_{m_{1}}^{m_{1}m_{2}}(A \otimes B)L_{n_{2}}^{n_{1}n_{2}} = (B \otimes A)$$

More generally, if A_i , i = 1, ..., t is an $n_i \times n_i$ matrix, and σ is a permutation of the indices $\{1, ..., t\}$, there is a permutation matrix P_{σ} such that

$$P_{\sigma}^{-1}(A_1 \otimes \cdots \otimes A_t)P_{\sigma} = A_{\sigma(1)} \otimes \cdots \otimes A_{\sigma(t)}.$$

The proof of the commutation theorem can be found in [13], and the following property easily follows from the commutation theorem.

Theorem 6 (Distributive Property of the Tensor Product) Let A be an $m \times n$ matrix and let B_i , i = 1, ..., t be an $m_i \times n_i$ matrix. Then

$$(B_1 \oplus \dots \oplus B_t) \otimes A = (B_1 \otimes A) \oplus \dots \oplus (B_t \otimes A)$$

$$A \otimes (B_1 \oplus \dots \oplus B_t) = L_m^{m(m_1 + \dots + m_t)} (L_{m_1}^{mm_1} \oplus \dots \oplus L_{m_t}^{mm_t})$$

$$(A \otimes B_1) \oplus \dots \oplus (A \otimes B_t)$$

$$(L_n^{nn_1} \oplus \dots \oplus L_n^{nn_t}) L_{(n_1 + \dots + n_t)}^{n(n_1 + \dots + n_t)}$$

In Chapter 3 a survey of convolution algorithms will be presented that are based on the CRT, tensor product, and other concepts presented in this chapter.

Chapter 3: Survey of Convolution Algorithms and Techniques

This chapter surveys algorithms for linear and cyclic convolution in a form that is convenient for automatic generation. All of the algorithms are presented using the uniform mathematical notation of bilinear algorithms and are derived systematically using polynomial algebra and properties of the tensor product. Algorithms implicitly refer to bilinear algorithms, and operations on bilinear algorithms use the definitions in Section 2.3.

3.1 Linear Convolution

3.1.1 Standard Algorithm

In a few rare cases, the standard method of multiplying polynomials learned in high school might be the best choice for a linear convolution algorithm. This can be turned into a bilinear algorithm of matrices in the obvious way.

Example 4 $A \ 3 \times 3$ linear convolution given by the Standard Algorithm is :

3.1.2 Toom-Cook Algorithm

The Toom-Cook algorithm [28, 7, 15] uses evaluation and interpolation to compute the product of two polynomials. To compute the product h(x) = f(x)g(x), where f and g are N - 1 degree polynomials, first evaluate each polynomial at 2N - 1 distinct values α_i . Next compute the 2N - 1multiplications $h(\alpha_i) = f(\alpha_i)g(\alpha_i)$. Finally, use the 2N - 1 points $(\alpha_i, h(\alpha_i))$ and the Lagrange interpolation formula to recover

$$h(x) = \sum_{j=0}^{2N-2} h(\alpha_i) \prod_{k \neq j} \frac{x - \alpha_k}{\alpha_j - \alpha_k}.$$

This algorithm can be expressed as a bilinear algorithm using the following notation.

Definition 5 (Bar Notation)

Let $A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ we will denote by $\overline{A(x)}$ the equivalent vector $\begin{bmatrix} a_0 & a_1 & \ldots & a_n \end{bmatrix}^T$

Definition 6 (Vandermonde Matrix)

$$\mathbf{V}[\alpha_0,\ldots,\alpha_n] = \begin{bmatrix} 1 & \alpha_0 & \alpha_0^2 & \ldots & \alpha_0^n \\ 1 & \alpha_1 & \alpha_1^2 & \ldots & \alpha_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \ldots & \alpha_n^n \end{bmatrix}$$

The matrix **V** applied to the vector of coefficients of f(x) is equal to the vector containing the evaluations $f(\alpha_0), f(\alpha_1), \ldots, f(\alpha_n)$, and applying \mathbf{V}^{-1} to the vector of evaluations returns the original coefficients. Therefore \mathbf{V}^{-1} corresponds to interpolation and can be computed using Lagrange's formula. The following theorem summarizes these observations.

Theorem 7 (Toom-Cook Algorithm) The bilinear algorithm $(\mathbf{V}^{-1}, \mathbf{V}', \mathbf{V}')$, where \mathbf{V}' is the $(2N-1) \times N$ matrix containing the first N columns of $V[\alpha_0, \ldots, \alpha_{2N-1}]$, computes the N-point linear convolution of two vectors.

This theorem is a special case of Theorem 3 and follows from the Chinese Remainder theorem applied to $f(x) = \prod_{i=0}^{2N-1} (x - \alpha_i)$. The matrix R in this case is the Vandermonde matrix $V[\alpha_0, \ldots, \alpha_{2N-1}]$.

The Toom-Cook algorithm reduces the number of "general" multiplications from N^2 (computed by definition) to 2N-1 at the cost of more additions. A general multiplication is one that cannot be precomputed at compile time, or reduced to a series of additions at run-time. For small input sizes when there are sufficiently many convenient evaluation points such as $0, 1, -1, \infty$, then the reduction in general multiplications corresponds to a reduction in actual multiplications. What is meant by evaluating at ∞ is if $f(x) = f_0 + f_1 x + \ldots + f_k x^k$, with f_k non-zero, then $f(\infty) = f_k$. (To see why this makes sense, consider the limit of $f(x)/f_k x^k$ as x tends to infinity.)

Example 3 corresponds to the Toom-Cook algorithm using evaluation points 0, 1, and ∞ ; the following 3 point example uses evaluation points 0, 1, -1, 2, and ∞ .

Example 5 $A \ 3 \times 3$ linear convolution given by the Toom-Cook algorithm is:

$$tc_{3} = \left(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1/2 & 1 & -1/3 & -1/6 & 2 \\ -1 & 1/2 & 1/2 & 0 & -1 \\ 1/2 & -1/2 & -1/6 & 1/6 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix} \right)$$
$$= (tc_{3}[C], tc_{3}[A], tc_{3}[B])$$

Note further that the algorithm can be improved to use fewer operations by using:

$$tc_{3}[A] = tc_{3}[B] = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.1.3 Combining Linear Convolutions

The tensor product can be used to combine small linear convolution algorithms into larger ones in an efficient manner. This is important, because the tensor product of smaller convolution algorithms will generally use fewer operations than a direct larger convolution algorithm. For example combining a Toom-Cook algorithm of size 2 with a Toom-Cook algorithm of size 3, creates a linear convolution of size 6 that uses many fewer (62 versus 114 for real inputs with one vector fixed) operations than a Toom-Cook convolution of size 6.

Theorem 8 (Tensor Product of Linear Convolutions) Let \mathcal{L}_m and \mathcal{L}_n be bilinear algorithms for linear convolution of size m and n respectively. Then $O_{m,n}(\mathcal{L}_m \otimes \mathcal{L}_n)$ is a bilinear algorithm for linear convolution of size mn, where $O_{m,n}$ is a sparse $(2m-1)(2n-1) \times (2mn-1)$ matrix. The nonzero entries are equal to one and occur in locations jm+i, j(2m-1)+i and jm+i, (j-1)(2m-1)+m+ifor $0 \le j < 2n-1$ and $0 \le i < m-1$.

The proof is most easily seen from the polynomial interpretation of convolution. Let a(x) and b(x) be polynomials of degree mn - 1, and let

$$A(x,y) = \sum_{i=0}^{n-1} A_i(x)y^i$$
 and $B(x,y) = \sum_{j=0}^{n-1} B_j(x)y^j$,

where $A_i(x)$ and $B_j(x)$ are polynomials of degree m-1. Next, substitute $y = x^m$, $a(x) = A(x, x^m)$ and $b(x) = B(x, x^m)$. Consequently, if C(x, y) = A(x, y)B(x, y), then $c(x) = C(x, x^m)$. By Lemma 1 and Example 2, $\mathcal{L}_m \otimes \mathcal{L}_n$ computes C(x, y). The matrix $O_{m,n}$ corresponds to the reduction obtained from substituting $y = x^m$ into C(x, y).

Example 6

	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
$O_{2,3} =$	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

The following generalization is obtained using induction and simple properties of the tensor product.

Theorem 9 Let $N = n_1, \ldots, n_t$ and let $\mathcal{L}_{n_i}, 0 \leq i < t$ be linear convolution algorithms of size n_i . Then $O_{n_1,\ldots,n_t}(\mathcal{L}_{n_1} \otimes \cdots \otimes \mathcal{L}_{n_t}) = \mathcal{L}_{n_1\cdots n_t}$, where O_{n_1,\ldots,n_t} is a sparse $(2n_1-1)\cdots(2n_t-1)\times(2N-1)$ matrix defined by $O_{n_1,\ldots,n_t} = O_{n_1,n_2\cdots n_t}(I_{2n_1-1} \otimes O_{n_2,\ldots,n_t})$.

3.2 Linear Convolution via Cyclic Convolution

Tolimieri in [27] points out that linear convolution can be obtained from generalized cyclic convolution corresponding to polynomial multiplication modulo a polynomial. For example, if $g(x) = g_0 + g_1 x + g_2 x^2$ and $h(x) = h_0 + h_1 x + h_2 x^2$, then g(x)h(x) can be computed by first convolving gand h via a 4-point cyclic convolution and then adding the vector $g_2h_2\overline{m(x)}$ where $m(x) = x^4 - 1$. The following theorem expresses Tolimieri's method in terms of bilinear algorithms.

Theorem 10 (Linear from Cyclic) Let g(x), h(x) be polynomials of degree n - 1 and $m(x) = x^{2n-2} + \sum_{i=0}^{2n-3} m_i x^i$, be a monic polynomial of degree 2n - 2. Assume that (C_m, A_m, B_m) is a bilinear algorithm that computes $\overline{g(x)h(x)} \mod m(x)$. Then the bilinear algorithm (C, A, B) computes f(x)g(x), where

$$C = \begin{bmatrix} 1 & m_0 \\ & \ddots & \vdots \\ & & 1 & m_{2n-3} \\ & & & 1 \end{bmatrix} \begin{bmatrix} C_m & \\ & & 1 \end{bmatrix},$$

$$A = \begin{bmatrix} A_m & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ & \ddots & \\ & & & 1 \\ & & & 1 \end{bmatrix},$$

$$B = \begin{bmatrix} B_m & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ & \ddots & \\ & & & 1 \\ & & & 1 \end{bmatrix}$$

Proof

Let $c(x) = \overline{g(x)h(x) \mod m(x)}$. Therefore, f(x)g(x) = c(x) + q(x)m(x), and since m(x) is monic and of degree 2n - 2, $g(x)h(x) = c(x) + g_nh_nm(x)$.

$$(C, A, B) (g, h) = \begin{bmatrix} 1 & m_0 \\ \ddots & \vdots \\ & 1 & m_{2n-3} \\ & & 1 \end{bmatrix} \begin{bmatrix} C_m (A_m g \bullet B_m h) \\ g_n h_n \end{bmatrix}$$
$$= \overline{g(x)h(x) \mod m(x)} + \overline{g_n h_n m(x)}$$
$$= \overline{g(x)h(x)}.$$

3.3 Cyclic Convolution

Convolution modulo f(x) refers to polynomial multiplication modulo a third polynomial. Algorithms for convolution modulo f(x) can be obtained from linear convolution algorithms by multiplying by a matrix, which corresponds to computing the remainder in division by f(x). Let M(f(x)) denote the reduction matrix defined by $M(f(x))\overline{A(x)} = \overline{A(x) \mod f(x)}$. The exact form of M(f(x)) depends on the degree of A(x). If (C, A, B) is a bilinear algorithm for linear convolution, then (M(f(x))C, A, B) is a bilinear algorithm for convolution modulo f(x).

Example 7 Composing

$$M(x^2 - 1) = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right],$$

with the Toom-Cook bilinear algorithm of equation 2.6, the bilinear algorithm

$$(M(x^{2}-1)C_{2}, A_{2}, B_{2}) = \left(\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \right)$$

for 2-point cyclic convolution is obtained.

3.3.1 Convolution Theorem

The well-known convolution theorem provides a bilinear algorithm for computing cyclic convolution.

Theorem 11 (Convolution Theorem)

The bilinear algorithm $(DFT_N^{-1}, DFT_N, DFT_N)$ computes N-point cyclic convolution.

Proof

Let ω_N be a primitive N-th root of unity, then $x^N - 1 = \prod_{i=0}^{N-1} (x - \omega_N^i)$. Since, $\mathbf{V}[1, \omega_N, \dots, \omega_N^{N-1}] = DFT_N$, the convolution theorem follows from Theorem 3.

When N = RS, $x^N - 1 = \prod_{i=0}^{S-1} (x^R - \omega_S^i)$. Applying the Chinese Remainder theorem to this factorization leads to the following theorem which allows the DFT to be combined with other convolution algorithms.

Theorem 12 Let N = RS and let C_i , i = 0, ..., S - 1, be bilinear algorithms to multiply two polynomials modulo $x^R - \omega_S^i$. Then

$$(\mathrm{DFT}_S^{-1} \otimes I_R) \left(\bigoplus_{i=0}^{S-1} \mathcal{C}_i \right) (\mathrm{DFT}_S \otimes I_R)$$

is a bilinear algorithm to compute N-point convolution.

Proof

Let f(x) be a polynomial of degree N-1 and write $f(x) = \sum_{j=0}^{S-1} f_j(x) x^{Rj}$, where $\deg(f_j(x)) < R$. Then $f(x) \mod x^R - \omega_S^i = \sum_{j=0}^{S-1} f_j(x) \omega_S^j$. Therefore, the matrix $R = [R_0 \ R_1 \ \dots R_{S-1}]^T$ with $R_i f = f(x) \mod x^R - \omega_j^i$ is equal to $\text{DFT}_S \otimes I_R$.

Note that multiplication modulo $x^R - \alpha$ can easily be transformed into cyclic convolution. Observe that if $\beta^R = \alpha$, and $h(x) = f(x)g(x) \mod x^R - \alpha$, then

$$h_{\beta}(x) = h(\beta x) = f(\beta x)g(\beta x) \pmod{(\beta x)^{R} - \alpha}$$
$$= f(\beta x)g(\beta x) \pmod{(\beta x)^{R} - \alpha}$$
$$= f(\beta x)g(\beta x) \pmod{\alpha (x^{R} - 1)}.$$

Therefore, $h(x) = h_{\beta}(x/\beta)$.

Applying this observation and the previous theorem leads to the following construction related to the FFT shown in (2.7).

Theorem 13 Let C_R be a bilinear algorithm to compute *R*-point cyclic convolution, and let $\mathcal{F}_S = ((\mathrm{DFT}_S \otimes I_R), T_R^N(\mathrm{DFT}_S \otimes I_R), T_R^N(\mathrm{DFT}_S \otimes I_R))$. Then $(I_S \otimes C_R)\mathcal{F}_S$ computes *N*-point cyclic convolution.

The following example uses Theorem 12 and the matrix exchange theorem to obtain a result that is similar to Theorem 13 but without the need for Twiddle factors.

Example 8 Let F_n represent a size n FFT, and let $\alpha = e^{2\pi i/n}$. Now let $\mathcal{L}_m = (C_m, A_m, B_m)$ represent a linear convolution of size m. From Theorem 12 a size mn cyclic convolution is computed by

$$(F_n^{-1} \otimes I_m) \left(\bigoplus_{i=0}^{n-1} M(x^m - \alpha^i) \mathcal{L}_m \right) (F_n \otimes I_m)$$
(3.1)

Now suppose (C, A, B) is the bilinear algorithm representing the size mn cyclic convolution of (3.1), then

$$C = (F_n^{-1} \otimes I_m) \left(\bigoplus_{i=0}^{n-1} M(x^m - \alpha^i) C_m \right)$$
$$A = \left(\bigoplus_{i=0}^{n-1} A_m \right) (F_n \otimes I_m)$$
$$= (I_n \otimes A_m) (F_n \otimes I_m)$$
$$B = \left(\bigoplus_{i=0}^{n-1} B_m \right) (F_n \otimes I_m)$$
$$= (I_n \otimes B_m) (F_n \otimes I_m)$$

Note that the direct sums for A and B can be changed to tensor products because A_m and B_m do not change with i, (this of course is not true for C).

After applying matrix exchange the following theorem has just been derived and proved.

Theorem 14 (Mixed Convolution Theorem)

Let $\alpha = e^{2\pi i/n}$, F_n be a size n FFT, and (C_m, A_m, B_m) be a size m linear convolution. Then

$$J \cdot (F_n \otimes I_m)(I_n \otimes A_m^T) \cdot D \cdot (I_n \otimes B_m)(F_n \otimes I_m)$$

is a size mn cyclic convolution, where

$$D = \left(\bigoplus_{i=0}^{n-1} M(x^m - \alpha^i)C_m\right)^T \cdot (F_n^{-1} \otimes I_m) \cdot J\mathbf{v},$$

J is the anti-identity matrix, and \mathbf{v} is a fixed input vector.

3.3.2 Winograd Convolution Algorithm

Winograd's algorithm [29] for computing cyclic convolution follows from the Chinese Remainder Theorem when applied to the irreducible rational factors of the polynomial $X^N - 1$. The irreducible rational factors of $x^N - 1$ are called cyclotomic polynomials.

Definition 7 (Cyclotomic Polynomials)

The cyclotomic polynomials can be defined recursively from the formula

$$x^N - 1 = \prod_{d|N} \Phi_d(x).$$

Alternatively

$$\Phi_N(x) = \prod_{\gcd(j,N)=1} (x - \omega_N^j),$$

where ω_N is a primitive N-th root of unity. It follows that $\deg(\Phi_N(x)) = \phi(N)$, where ϕ is the Euler ϕ function. It is well known [16] that $\Phi_N(x)$ has integer coefficients and is irreducible over the rationals.

Applying Theorem 3 to $x^N - 1 = \prod_{d|N} \Phi_d(x)$ leads to the following algorithm.

Theorem 15 (Winograd Convolution Algorithm)

Let \mathcal{C}_f denote a bilinear algorithm that multiplies elements of $\mathbb{C}[x]/f(x)$. Then

$$R^{-1}\left(\bigoplus_{d|n} \mathcal{C}_{\Phi_d(x)}\right) R\tag{3.2}$$

where $R = [R_{d_1} \ R_{d_2} \ \dots R_{d_k}]^T$ and $R_{d_i}\overline{f} = \overline{f(x) \mod \Phi_{d_i}(x)}$ is a bilinear algorithm for N-point cyclic convolution.

Using the 2-point cyclic convolution algorithm in Example 7 and the cyclotomic polynomials $\Phi_1(x) = (x - 1), \ \Phi_2(x) = (x + 1), \ \text{and} \ \Phi_4(x) = (x^2 + 1)$ the following 4-point cyclic convolution algorithm is obtained.

Example 9

$$\begin{pmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & 1 & & \\ & & 1 & 0 & -1 \\ & & -1 & 1 & -1 \end{bmatrix}, \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & 0 \\ & & 1 & 1 \\ & & 0 & 1 \end{bmatrix} R_4, \begin{bmatrix} 1 & & & \\ & 1 & & \\ & 1 & & \\ & & 1 & 0 \\ & & 1 & 1 \\ & & 0 & 1 \end{bmatrix} R_4$$

where R_4 is the R matrix in Example 1.

The results in the next section provide a more efficient method for computing R_4 .

3.3.3 CRT-Based Cyclic Convolution Algorithms for Prime Powers

Selesnick and Burrus [22] have shown that when $N = p^k$ is a prime power, the Winograd algorithm has additional structure. This structure follows from the properties

$$\Phi_p(x) = x^{p-1} + \dots + x + 1$$

$$\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}}).$$

The composition structure of $\Phi_{p^k}(x)$ provides an efficient way to compute R_{p^k} .

Theorem 16 Let $R_{p^k} = [R_0, R_p, \dots, R_{p^k}]^t$ be the $p^k \times p^k$ reduction matrix where $R_{p^i}\overline{f(x)} = \overline{f(x) \mod \Phi_{p^i}(x)}$ for f(x) of degree $p^k - 1$. Then

$$R_{p^k} = \left[\begin{array}{c} 1_p \otimes R_{p^{k-1}} \\ G_p \otimes I_{p^{k-1}} \end{array} \right],$$

where G_n is the $(n-1) \times n$ matrix:

$$G_n = \begin{bmatrix} 1 & & -1 \\ 1 & & -1 \\ & \ddots & -1 \\ & & 1 & -1 \end{bmatrix},$$

and 1_n is the $1 \times n$ matrix filled with 1's. Moreover, $R_{p^k} = (R_{p^{k-1}} \oplus I_{(p-1)p^{k-1}})(R_p \otimes I_{p^{k-1}})$.

Proof

First observe that if $f(x) = f_0 + f_1 x + \cdots + f_{m-1} x^{m-1} + x^m$ and $A(x) = \sum_{i=0}^m a_i x^i$, then $A(x) \mod f(x) = \sum_{i=0}^{m-1} (a_i - f_i) x^i$. Therefore reduction of A(x) modulo f(x) is given by

$$R = \begin{bmatrix} 1 & -f_0 \\ & \ddots & -f_1 \\ & 1 & -f_{m-1} \end{bmatrix}.$$

When $f(x) = 1 + x + \dots + x^{n-1}$ the matrix G_n is obtained. Next, observe that if $A(x) = \sum_{i=0}^{m} A_i(x)x^{ni}$, where $\deg(A_i) < n$, then $A(x) \mod f(x^n) = \sum_{i=0}^{m} (A_i(x) - f_iA_m(x))x^{ni}$. Therefore reduction of $A(x) \mod f(x^n)$ is given by $R \otimes I_n$, and reduction modulo $\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}})$ is given by $G_p \otimes I_{p^{k-1}}$. Finally, since $x^{p^{k-1}} \mod \Phi_{p^{k-1}} = 1$, reduction of $A(x) \mod \{\Phi_{p^i}(x), i = 0, \dots, k\}$ is given by $1_p \otimes R_{p^{k-1}}$. These observations prove the first part of the theorem. The factorization in the second part is obtained using the multiplicative property of the tensor product.

A simple block matrix multiplication provides the following computation of the inverse of R_{p^k} .

Theorem 17

$$R_{p^{k}}^{-1} = 1/p \left(\begin{array}{cc} 1_{p}^{t} \otimes R_{p^{k-1}}^{-1} & V_{p} \otimes I_{p^{k-1}} \end{array} \right),$$

where V_n is the $n \times (n-1)$ matrix

$$\begin{bmatrix} n-1 & -1 & -1 & \dots & -1 \\ -1 & n-1 & -1 & \dots & -1 \\ \vdots & \ddots & & \vdots \\ -1 & \dots & -1 & n-1 & -1 \\ -1 & \dots & -1 & -1 & n-1 \\ -1 & \dots & -1 & -1 & -1 \end{bmatrix}$$

Moreover, $R_{p^k}^{-1} = (R_p^{-1} \otimes I_{p^{k-1}})(R_{p^{k-1}}^{-1} \oplus I_{(p-1)p^{k-1}}).$

Example 10 A bilinear algorithm for a cyclic convolution of size 27 is (C, A, B), where $\mathcal{L}_n = (\mathcal{L}_n[C], \mathcal{L}_n[A], \mathcal{L}_n[B])$ is a bilinear algorithm for a linear convolution of size n of any method, and

$$C = R_{3^3}^{-1} \begin{bmatrix} 1 & M(x^2 + x + 1)\mathcal{L}_2[C] & M(x^6 + x^3 + 1)\mathcal{L}_6[C] & M(x^{18} + x^9 + 1)\mathcal{L}_{18}[C] \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & \mathcal{L}_2[A] & & \\ & \mathcal{L}_6[A] & \\ & & \mathcal{L}_{18}[A] \end{bmatrix} R_{3^3},$$

$$B = \begin{bmatrix} 1 & \mathcal{L}_2[B] & & \\ & & \mathcal{L}_6[B] & \\ & & & \mathcal{L}_{18}[B] \end{bmatrix} R_{3^3},$$
and
$$R_{3^3} = \begin{bmatrix} 1 & 1 & 1 & \\ 1 & 0 & -1 & \\ 0 & 1 & -1 & \\ & & & I_{24} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & \\ 1 & 0 & -1 & \\ 0 & 1 & -1 \end{bmatrix} \otimes I_3 \\ \begin{bmatrix} 1 & 1 & 1 & \\ 1 & 0 & -1 & \\ 0 & 1 & -1 & \\ 0 & 1 & -1 & \end{bmatrix} \otimes I_3$$

3.3.4 The Agarwal-Cooley and Split-Nesting Algorithms

The Agarwal-Cooley [1] algorithm uses the tensor product to create a larger cyclic convolution from smaller cyclic convolutions. The Split-Nesting algorithm, due to Nussbaumer [19], follows directly from Agarwal-Cooley using simple properties of the tensor product.

The Agarwal-Cooley algorithm follows from the fact that when gcd(m,n) = 1, the algebra $\mathbb{F}[x]/(x^{mn}-1)$ is isomorphic to $\mathbb{F}[y,z]/(y^m-1,z^n-1)$, which by Example 2 is isomorphic to $\mathbb{F}[y]/(y^m-1) \otimes \mathbb{F}[z]/(z^n-1)$. The isomorphism is obtained by mapping x to yz which maps x^i to $y^{(i \mod m)}z^{(i \mod n)}$. Using the reordering required by this mapping and Lemma 1 leads to the following theorem which shows how to build an mn-point cyclic convolution algorithm from the tensor product of m-point and n-point cyclic convolution algorithms.

Theorem 18 (Agarwal-Cooley Algorithm)

Assume gcd(m, n) = 1 and let $C_m = (C_m, A_m, B_m)$ and $C_n = (C_n, A_n, B_n)$ be bilinear algorithms for cyclic convolution of size m and n. Let $Q_{m,n}^{-1}$ be the permutation that maps i to $(i \mod m)n + (i \mod n)$. mod n). Then $Q_{m,n}^{-1}(C_m \otimes C_n)Q_{m,n}$ computes a cyclic convolution of size mn.

The permutation $Q_{m,n}$ is defined by the mapping $in + j \mapsto ie_m + je_n \mod mn$, $0 \le i < m$, $0 \le j < n$, where $e_m \equiv 1 \mod m$, $e_m \equiv 0 \mod n$, $e_n \equiv 0 \mod m$, $e_n \equiv 1 \mod n$, are the idempotents defining the Chinese remainder theorem mapping for the integers m and n.

Let $R_m^{-1}\left(\bigoplus_{i=0}^{k_1} \mathcal{C}_{m_i}\right) R_m$ and $R_n^{-1}\left(\bigoplus_{i=0}^{k_2} \mathcal{C}_{n_i}\right) R_n$ be bilinear algorithms to compute m, and n-point Winograd cyclic convolutions. Then combining Agarwal-Cooley with the Winograd algorithm yields the bilinear algorithm

$$Q_{m,n}^{-1}\left(R_m^{-1}\left(\bigoplus_{i=0}^{k_1} \mathcal{C}_{m_i}\right) R_m\right) \otimes \left(R_n^{-1}\left(\bigoplus_{j=0}^{k_2} \mathcal{C}_{n_j}\right) R_n\right) Q_{m,n}$$
(3.3)

for computing an *mn*-point cyclic convolution, (provided gcd(m, n) = 1). Using the multiplicative property of the tensor product, this is equal to

$$Q_{m,n}^{-1}(R_m^{-1} \otimes R_n^{-1}) \left(\left(\bigoplus_{i=0}^{k_1} \mathcal{C}_{m_i} \right) \otimes \left(\bigoplus_{j=0}^{k_2} \mathcal{C}_{n_j} \right) \right) (R_m \otimes R_n) Q_{m,n}.$$
(3.4)

Rearranging this equation into a double sum of tensor products leads to the "Split-Nesting Algorithm" which was first derived by Nussbaumer [19], who observed that it requires fewer additions then equation 3.3. The following theorem describes this transformation.
Theorem 19 (Split Nesting) Let $C = \bigoplus_{i=0}^{s-1} C_i$ and $D = \bigoplus_{j=0}^{t-1} D_j$. Then

$$\mathcal{C} \otimes \mathcal{D} = P^{-1} \left(\bigoplus_{i=0}^{s-1} \bigoplus_{j=0}^{t-1} \mathcal{C}_i \otimes \mathcal{D}_j \right) P,$$

where P is a permutation.

Proof

Using the first part of Theorem 6,

$$\mathcal{C}\otimes\mathcal{D}= igoplus_{i=0}^{s-1}\mathcal{C}_i\otimes igoplus_{j=0}^{t-1}\mathcal{D}_j = igoplus_{i=0}^{s-1}\left(\mathcal{C}_i\otimes igoplus_{j=0}^{t-1}\mathcal{D}_j
ight).$$

Using the second part of Theorem 6, the previous equation is equal to

$$\bigoplus_{i=0}^{s-1} P_i^{-1} \left(\bigoplus_{j=0}^{t-1} \mathcal{C}_i \otimes \mathcal{D}_j \right) P_i, \text{ which is equal to } P^{-1} \left(\bigoplus_{i=0}^{s-1} \bigoplus_{j=0}^{t-1} \mathcal{C}_i \otimes \mathcal{D}_j \right) P,$$
$$\bigoplus_{i=0}^{s-1} P_i.$$

where $P = \bigoplus_{i=0}^{s-1} P_i$.

Example 11 Let $C_4 = R_4^{-1}(1 \oplus 1 \oplus C_2)R_4$ and $C_{27} = R_{27}^{-1}(1 \oplus D_2 \oplus D_6 \oplus D_{18})R_{27}$, where $C_2 = M(x^2+1)\mathcal{L}_2$, $D_2 = M(x^2+x+1)\mathcal{L}_2$, $D_6 = M(x^6+x^3+1)\mathcal{L}_6$, $D_{18} = M(x^{18}+x^9+1)\mathcal{L}_{18}$, are the algorithms for cyclic convolution on 4 and 27 points given in Examples 9 and 10. By Agarwal-Cooley,

$$Q_{4,27}^{-1}(R_4^{-1}(1\oplus 1\oplus \mathcal{C}_2)R_4) \otimes (R_{27}^{-1}(1\oplus \mathcal{D}_2\oplus \mathcal{D}_6\oplus \mathcal{D}_{18})R_{27})Q_{4,27}$$

is an algorithm for cyclic convolution on 108 points. The split nesting theorem transforms this algorithm into

$$(Q_{4,27}^{-1}(R_4^{-1} \otimes R_{27}^{-1})P^{-1}$$

$$(1 \oplus \mathcal{D}_2 \oplus \mathcal{D}_6 \oplus \mathcal{D}_{18}) \oplus (1 \oplus \mathcal{D}_2 \oplus \mathcal{D}_6 \oplus \mathcal{D}_{18}) \oplus (\mathcal{C}_2 \oplus \mathcal{C}_2 \otimes \mathcal{D}_2 \oplus \mathcal{C}_2 \otimes \mathcal{D}_6 \oplus \mathcal{C}_2 \otimes \mathcal{D}_{18}))$$

$$P(R_4 \otimes R_{27})Q_{4,27}$$

where $P = I_{27} \oplus I_{27} \oplus P_3$ and $P_3 = (I_2 \oplus L_2^4 \oplus L_2^{12} \oplus L_2^{36})L_{27}^{54}$.

3.3.5 The Improved Split-Nesting Algorithm

The split-nesting algorithm combined with the prime power algorithm provides a method for computing any size cyclic convolution. Since the prime power algorithm consists of direct sums of linear convolutions combined with various reductions, and the split-nesting algorithm commutes the direct sums and tensor products, all cyclic convolutions computed via split-nesting become direct sums of reduced tensor products of linear convolutions. It may not be immediately clear as yet, but in fact, any of the linear convolutions and tensor products of linear convolutions can be replaced by other linear convolutions or tensor products of linear convolutions. This is the main idea behind the improved split-nesting algorithm. Simply stated, the improved split-nesting algorithm replaces any linear convolution or tensor product of linear convolutions, with optimal substitutes. Here optimal may mean fastest run-time, fewest operations, etc.

Example 12 To make this idea more clear, consider example 11 again. One of the components of this algorithm is $C_2 \otimes D_{18}$, where $C_2 = M(x^2 + 1)\mathcal{L}_2$ and $D_{18} = M(x^{18} + x^9 + 1)\mathcal{L}_{18}$, so that this component is really $(M(x^2+1)\otimes M(x^{18}+x^9+1))(\mathcal{L}_2\otimes \mathcal{L}_{18})$ or more generally a reduction composed with a tensor product of two linear convolutions (e.g. $\mathcal{M}(\mathcal{L}_2 \otimes \mathcal{L}_{18}))$.

It will be shown in chapter 6 that the optimal \mathcal{L}_2 is the Toom-Cook linear algorithm tc_2 that requires 6 operations, and that the optimal \mathcal{L}_{18} is $O_{3,2,3}sb_3 \otimes tc_2 \otimes tc_3$, that is obtained by combining the standard algorithm of size 3 with Toom-Cook's of size 2 and 3. It will be shown in chapter 6 that this algorithm requires 366 operations.

Next note that $\mathcal{L}_2 \otimes \mathcal{L}_{18}$ is related to L_{36} since the latter is just $O_{2,18}(\mathcal{L}_2 \otimes \mathcal{L}_{18})$. Because of matrix exchange, the O matrix has no cost, so that the number of operations required for $\mathcal{L}_2 \otimes \mathcal{L}_{18}$, is the same as that of \mathcal{L}_{36} .

Table 3.1 below, shows a table of size 36 convolutions built using the methodology discussed in chapter 6. If the optimal \mathcal{L}_2 and \mathcal{L}_{18} are chosen, the algorithm for $\mathcal{L}_2 \otimes \mathcal{L}_{18}$ would cost the same as Lin_{36i} , or 1272 operations. However the improved split-nesting algorithm would substitute Lin_{36d} , which could be made equivalent to $\mathcal{L}_2 \otimes \mathcal{L}_{18}$ via the commutation theorem. That is,

$$\mathcal{L}_{2} \otimes \mathcal{L}_{18} = tc_{2} \otimes O_{3,2,3}(sb_{3} \otimes tc_{2} \otimes tc_{3}) = (I_{3} \otimes O_{3,2,3})(tc_{2} \otimes sb_{3} \otimes tc_{2} \otimes tc_{3})$$
(3.5)

$$= (I_3 \otimes O_{3,2,3})(L_3^{15}(sb_3 \otimes tc_2)L_3^6 \otimes tc_2 \otimes tc_3)$$
(3.6)

Note that (3.5) is related to Lin_{36i} requiring 1272 operations, and that (3.6) is related to Lin_{36d} requiring only 1092 operations. Thus the cost of the size 108 cyclic convolution can be reduced by at least 180 operations via the improved split-nesting algorithm.

In Chapter 4 an infrastructure is discussed that automates the implementation of the algorithms discussed in this chapter.

	В	В	A^t	A^t	Diag	Total
Method	Adds	Muls	Adds	Muls	Muls	Ops
$Lin_{36a} = O_{3,3,2,2}(sb_3 \otimes sb_3 \otimes tc_2 \otimes tc_2)$	45	0	738	0	729	1512
$Lin_{36b} = O_{3,2,3,2}(sb_3 \otimes tc_2 \otimes sb_3 \otimes tc_2)$	99	0	792	0	729	1620
$Lin_{36c} = O_{3,2,2,3}(sb_3 \otimes tc_2 \otimes tc_2 \otimes sb_3)$	135	0	828	0	729	1692
$Lin_{36d} = O_{3,2,2,3}(sb_3 \otimes tc_2 \otimes tc_2 \otimes tc_3)$	159	0	528	0	405	1092
$Lin_{36e} = O_{3,2,3,2}(sb_3 \otimes tc_2 \otimes tc_3 \otimes tc_2)$	189	0	558	0	405	1152
$Lin_{36f} = O_{3,3,2,2}(sb_3 \otimes tc_3 \otimes tc_2 \otimes tc_2)$	234	0	603	0	405	1242
$Lin_{36g} = O_{2,3,3,2}(tc_2 \otimes sb_3 \otimes sb_3 \otimes tc_2)$	261	0	954	0	729	1944
$Lin_{36h} = O_{2,3,2,3}(tc_2 \otimes sb_3 \otimes tc_2 \otimes sb_3)$	297	0	990	0	729	2016
$Lin_{36i} = O_{2,3,2,3}(tc_2 \otimes sb_3 \otimes tc_2 \otimes tc_3)$	249	0	618	0	405	1272
$Lin_{36j} = O_{2,3,3,2}(tc_2 \otimes sb_3 \otimes tc_3 \otimes tc_2)$	279	0	648	0	405	1332
$Lin_{36k} = O_{2,2,3,3}(tc_2 \otimes tc_2 \otimes sb_3 \otimes sb_3)$	405	0	1098	0	729	2232
$Lin_{36l} = O_{2,2,3,3}(tc_2 \otimes tc_2 \otimes sb_3 \otimes tc_3)$	309	0	678	0	405	1392
$Lin_{36m} = O_{2,2,3,3}(tc_2 \otimes tc_2 \otimes tc_3 \otimes sb_3)$	477	0	846	0	405	1728
$Lin_{36n} = O_{2,2,3,3}(tc_2 \otimes tc_2 \otimes tc_3 \otimes tc_3)$	349	0	538	0	225	1112
$Lin_{36o} = O_{2,3,3,2}(tc_2 \otimes tc_3 \otimes sb_3 \otimes tc_2)$	531	0	900	0	405	1836
$Lin_{36p} = O_{2,3,2,3}(tc_2 \otimes tc_3 \otimes tc_2 \otimes sb_3)$	567	0	936	0	405	1908
$Lin_{36q} = O_{2,3,2,3}(tc_2 \otimes tc_3 \otimes tc_2 \otimes tc_3)$	399	0	588	0	225	1212
$Lin_{36r} = O_{2,3,3,2}(tc_2 \otimes tc_3 \otimes tc_3 \otimes tc_2)$	429	0	618	0	225	1272
$Lin_{36s} = O_{3,3,2,2}(tc_3 \otimes sb_3 \otimes tc_2 \otimes tc_2)$	612	0	981	0	405	1998
$Lin_{36t} = O_{3,2,3,2}(tc_3 \otimes tc_2 \otimes sb_3 \otimes tc_2)$	666	0	1035	0	405	2106
$Lin_{36u} = O_{3,2,2,3}(tc_3 \otimes tc_2 \otimes tc_2 \otimes sb_3)$	702	0	1071	0	405	2178
$Lin_{36v} = O_{3,2,2,3}(tc_3 \otimes tc_2 \otimes tc_2 \otimes tc_3)$	474	0	663	0	225	1362
$Lin_{36w} = O_{3,2,3,2}(tc_3 \otimes tc_2 \otimes tc_3 \otimes tc_2)$	504	0	693	0	225	1422
$Lin_{36x} = O_{3,3,2,2}(tc_3 \otimes tc_3 \otimes tc_2 \otimes tc_2)$	549	0	738	0	225	1512

Table 3.1: Operation Counts for Linear Convolution

Chapter 4: Implementation of Convolution Algorithms

In this chapter, a Maple package for implementing the algorithms discussed in previous chapters is described. The implementation is based on a programming language called SPL and a Maple infrastructure that aids in the creation and manipulation of SPL code. The latest version of the SPL Compiler can be obtained at http://www.ece.cmu.edu/~spiral/ and the latest version of the Maple package can be obtained at http://www.cs.drexel.edu/techreports/2000/abstract0002.html.

4.1 Overview of SPL and the SPL Maple Package

Having codified known convolution techniques into a common framework of bilinear algorithms built from parameterized matrices and algebraic operators, Maple's symbolic and algebraic computation facilities are used to derive and manipulate these algorithms. The infrastructure provided by the package allows for the generation, manipulation, testing, and combining of various convolution algorithms within an interactive environment. The algorithms generated by the package can be exported to a domain-specific language called SPL (Signal Processing Language) and then translated into efficient C or FORTRAN code by the SPL compiler. By combining the strengths of Maple and the SPL compiler the benefits of existing algebraic computation tools are realized without the need to embed high-performance compiler technology in a computer algebra system.

The resulting environment allows one to systematically apply the algebraic theory developed over the years to produce correct and efficient programs. Numerous algorithmic choices can be tried, allowing the user to rapidly test various optimizations to find the best combination of algorithms for a particular size convolution on a particular computer. Furthermore, automatic code generation and algebraic verification provides the ability to construct non-trivial examples with confidence that the resulting code is correct.

4.1.1 SPL Language

This section briefly outlines the SPL language. Further details are available in [31], where, in addition, an explanation of how SPL programs are translated to programs is provided.

SPL provides a convenient way of expressing matrix factorizations, and the SPL compiler translates matrix factorizations into efficient programs for applying the matrix expression to an input vector. SPL programs consist of the following: 1) SPL formulas, which are symbolic expressions used to represent matrix factorizations, 2) constant expressions for entries appearing in formulas; 3) "define statements" for assigning names to subexpressions; and 4) compiler directives, which are used to change the behavior of the SPL compiler in some way (e.g. to turn loop unrolling on or off). SPL formulas are built from general matrix constructions, parameterized symbols denoting families of special matrices, and matrix operations such as matrix composition, direct sum, and the tensor product. The elements of a matrix can be real or complex numbers. In SPL, these numbers can be specified as scalar constant expressions, which may contain function invocations and symbolic constants like pi. For example, 12, 1.23, 5*pi, sqrt(5), and (cos(2*pi/3.0),sin(2*pi/3)) are valid scalar SPL expressions. All constant scalar expressions are evaluated at compile-time. SPL uses a prefix notation similar to lisp to represent formulas. SPL code is compiled into C or FOR-TRAN by invoking the SPL compiler and entering the lisp like SPL formulas interactively, or by sending a text file of the SPL formulas to the SPL compiler.

General matrix constructions. Examples include the following.

- (matrix $(a_{11} \ldots a_{1n}) \ldots (a_{m1} \ldots a_{mn})$) the $m \times n$ matrix $[a_{ij}]_{0 \le i < m, 0 \le j < n}$.
- (sparse $(i_1 \ j_1 \ a_{i_1j_1})$... $(i_t \ j_t \ a_{i_tj_t})$) the $m \times n$ matrix where $m = \max(i_1, \ldots, i_t)$, $n = \max(j_1, \ldots, j_t)$ and the non-zero entries are $a_{i_kj_k}$ for $k = 1, \ldots, t$.
- (diagonal $(a_1 \ldots a_n)$) the $n \times n$ diagonal matrix diag (a_1, \ldots, a_n) .
- (permutation $(\sigma_1 \ldots \sigma_n)$) the $n \times n$ permutation matrix: $i \mapsto \sigma_i$, for $i = 1, \ldots, n$. Parameterized Symbols. Examples include the following.
- (I n) the $n \times n$ identity matrix I_n .
- (F n) the $n \times n$ DFT matrix F_n .
- (L mn n) the $mn \times mn$ stride permutation matrix L_n^{mn} .
- (T mn n) the mn × mn twiddle matrix T_n^{mn}.
 Matrix operations. Examples include the following.
- (compose $A_1 \ldots A_t$) the matrix product $A_1 \cdots A_t$.
- (direct-sum $A_1 \ldots A_t$) the direct sum $A_1 \oplus \cdots \oplus A_t$.
- (tensor $A_1 \ldots A_t$) the tensor product $A_1 \otimes \cdots \otimes A_t$.
- (conjugate A P) the matrix conjugation $A^P = P^{-1} \cdot A \cdot P$, where P is a permutation.

It is possible to define new general matrix constructions, parameterized symbols, and matrix operations using a template mechanism. To illustrate how this is done, an example showing how to add the stack operator to SPL is given. Let A and B be $m \times n$ and $p \times n$ matrices respectively, then (stackAB) is the $(m + p) \times n$ matrix

$$\left[\begin{array}{c}A\\B\end{array}\right]$$

Given a program to apply A to a vector and a program to apply B to a vector, a program to apply (stack A B) to a vector is obtained by applying A to the input and storing the result in the first m elements of the output and applying B to the input and storing the result in the remaining pelements of the output. The following SPL template enables the SPL compiler to construct code for (stack A B) using this approach. (This example is given to illustrate that a process exists for adding new functionality to SPL; the reader need not be concerned with the specific syntax.)

```
(template (stack any any)
[$p1.nx == $p2.nx]
(
    $y(0:1:$p1.ny_1) = call $p1( $x(0:1:$p1.nx_1) )
    $y($p1.ny:1:$p0.ny_1) = call $p2( $x(0:1:$p1.nx_1) )
))
```

The first part of the template is the pattern (stack any any) which matches (stack A B) where A and B match any SPL formulas. The code for A and B is accessed through the call statements, where A is referenced as \$p1 and B is referenced as \$p2. The field nx refers to the input dimension and ny refers to the output dimension (_1 subtracts one).

4.1.2 SPL Maple Package

Programming directly in SPL is a cumbersome process, creating a need to provide an interactive version of SPL in Maple (or some other interactive scripting environment). In this environment, it is much easier to add new features and to extend the language, and it is possible to write simple scripts, using Maple's algebraic computation engine to generate SPL code [18]. In particular, SPL was extended to include bilinear computations in addition to linear computations. Also all of the parameterized matrices and bilinear algorithms discussed in chapter 3 were added, and Maple's polynomial algebra capabilities were exploited to generate SPL objects obtained from the Chinese remainder theorem.

This implementation centers around the concept of an SPL object, which corresponds to a multilinear computation. SPL objects have a name, a type, (the default type is complex), and fields that indicate the number of inputs as well as the input and output dimensions. In addition, there may be a list of parameters which may be set to Maple expressions such as an integer, list, or polynomial or other SPL objects. Since parameters include both primitive data types and SPL objects, an SPL object can be used to represent general matrix constructions, parameterized matrices, or operators. There are methods to construct an SPL object, evaluate an SPL object to a matrix or a triple of matrices in the case of bilinear algorithms, apply an SPL object, count the number of arithmetic operations used by an SPL object, and export an SPL object. Once exported an SPL object can be compiled by the SPL compiler.

SPL objects can be bound or unbound. An unbound object is a named, parameterized, multilinear map which does not have a specified method of computation (i.e. it does not have an apply method). Alternatively, an SPL object may have an apply method, but be considered unbound because one or more of its parameters are unbound. Unbound objects can be bound by using a provided bind function. The bind function allows SPL objects to be defined in terms of other SPL objects. Parameterized matrices and operators may be defined using other parameterized matrices and operators. Since the SPL objects defining an SPL object may themselves be unbound, bind may need to be applied recursively. It is possible to specify the number of levels that bind is to be applied.

Using unbound symbols has several advantages: 1) the size of an SPL expression can be significantly shorter when symbols are not always expanded, 2) it is easier to see the structure in a complicated formula if sub-formulas are named, 3) parameterized matrices and operators not available to the SPL compiler can be used provided a bind function is available that defines them using formulas supported by the compiler, and 4) an SPL expression can be constructed whose components are unspecified and therefore, alternative computation methods can be used when applying an SPL object. The last point can be used to apply the optimization techniques presented in Section 3.3.5 (e.g. the improved split-nesting algorithm).

4.2 Implementation Details of Core SPL Package

SPL is a language for creating fast algorithms for linear computations based on combinations of the symbols and operators discussed in section 4.1.1. The Core SPL Maple package is designed to ease the use of SPL. Specifically, the interactive environment of the Core SPL package can be used to apply vectors to both linear and bilinear algorithms, to easily create new symbols or operators, to view linear algorithms and bilinear algorithms as matrices, to count the number of operations required to apply an arbitrary vector or vectors to linear and bilinear algorithms, and ultimately, to generate SPL code that can then be compiled by the SPL compiler.

4.2.1 Core SPL Commands

The basic input and output of the package is called an 'SPLObject.' An SPLObject is made up of sequences of SPL matrices and operators. There are five basic SPL commands that act on SPL objects:

- 1. SPLEval(T:SPL object) Evaluates an SPL object into a corresponding matrix.
- 2. SPLApply(T:SPL object) Applies a vector to the SPL object to obtain an output vector.
- 3. SPLCountOps(T:SPL object, [adds,muls,assigs]) Counts the number of operations required to apply a vector to an SPL object. If adds, muls, and assigs are included, the counts are returned in these variables, otherwise the counts are printed to the screen.

- 4. SPLBind(T:SPL object, [bindLevel:posint]) Binds a named SPL object to an actual SPL object. If bindLevel is ∞ or omitted, it completely binds the object, otherwise it binds the object bindLevel steps.
- 5. SPLPrint(T:SPL object, [bindLevel:posint], [fDesc:file descriptor]) Shows the SPL object as a sequence of SPL commands. The default behavior is to print the sequence to the screen, unless a file descriptor is provided as the third argument. A bind-level can be passed in as an optional second argument. If a bind level is provided, the command is equivalent to SPLPrint(SPLBind(T,bindLevel)).

An SPL object can also represent a bilinear algorithm, which is simply a triple of matrices. In the case of bilinear algorithms SPLEval evaluates the bilinear SPL object into a triple of matrices, SPLApply applies a pair of vectors to the bilinear SPL object to obtain an output vector, or applies a single vector to the bilinear object to obtain a linear algorithm.

4.2.2 Core SPL Objects

The five commands discussed above allow a user to act on SPL objects representing either linear or bilinear algorithms. All that is needed now is a mechanism to create SPL objects. In this section the kinds of SPL objects that can be created within the core package are discussed. In SPL, there are two fundamental types of SPL objects: parameterized matrices and operators. For example, (I n) is a parameterized matrix that takes a size n and returns an Identity matrix of the specified size, while (compose ...) is an operator that acts on two or more SPL objects. Within the Core package there are parameterized matrices and operators as well, but the package was designed so that either type of object can be represented with the same data structure. This allows for a very simple implementation of the five basic commands discussed above.

The list of all available parameterized matrices and operators provided within the Core Maple package can be found in tables 4.1 and 4.2 below.

SPLBilinear is an unusual operator that warrants more discussion. This operator operates on a set of 3 SPL objects to represent a bilinear algorithm. Note that all of the other operators can operate on bilinear algorithms as well as linear algorithms (matrices), and that if the inputs are linear algorithms than the output will be linear algorithms, and similarly for bilinear algorithms. Once again, a bilinear algorithm is simply a triple of linear algorithms, and the only way to convert a bilinear algorithm to a linear algorithm is to apply a single vector to either of the two inputs.

Bound Symbols	
SPLDiagonal(d1,,dn)	Diagonal matrix of entries d_1, \ldots, d_n
SPLFourier(n,omega)	$n \times n$ Fourier Matrix
	with optional argument omega
SPLIdentity(r,c)	$r \times c$ (c optional) identity matrix
SPLAntiIdentity(n)	$n \times n$ Anti-identity matrix
SPLMatrix([[a11,a12,],	
[a21,a22,],])	Entry specified matrix
SPLPermutation([p1,,pn])	Permutation matrix
SPLPermutationInv([p1,,pn])	Inverse or reverse permutation Matrix
<pre>SPLSparse([[i,j,aij],])</pre>	Sparse matrix with non-zero entries specified
SPLStride(mn,n)	Stride permutation
SPLTwiddle(n,[omega])	Twiddle matrix
SPLZeroMatrix(r,c)	$r \times c$ zero matrix
Unbound Symbols	
SPLOnes(m,n)	$m \times n$ matrix with all entries equal to 1.

Table 4.1: Core Maple Parameterized Matrices

Implementation of Bound Objects in the Core Package

The package was built so that new symbols and operators could be added with relative ease, and so that new symbols would not require changes to existing symbols and operators. In order to gain that flexibility, all new objects must provide a constructor that returns an SPL object, and each object must supply its own Apply, Eval, Print, and Count functions. In this way, nothing is assumed about SPL objects by the package, and thus there are no built-in limitations.

As mentioned above, in the SPL language, there are two types of objects: symbols and operators. However, removing this distinction simplifies the implementation and provides a more uniform view; in later sections it will be shown that the implementation of convolution algorithms is equivalent to writing down SPL objects as one might write down the formulas for each convolution algorithm found in Chapter 3. It is therefore useful to think generically of SPL objects rather than symbols and operators. in the Maple package all SPL objects, whether operators or symbols are treated the same and implemented in the same manner.

Every SPL object must have the following fields defined within its constructor:

- 1. apply This is a pointer to an apply function for the object. The apply function allows the user to apply a vector to an object.
- 2. bind This is a pointer to a bind function. For bound objects this is set to NULL, for unbound objects this points to a function that will rewrite the unbound object into a sequence of bound objects.
- 3. countOps This is a pointer to a function that counts the number of operations required to apply a vector to the object.

- 4. eval This is a pointer to an evaluation function, that will display the object as a matrix, or triple of matrices if the object is bilinear.
- 5. inv This is a pointer of a function that will create the object's inverse when it exists. (Note that inverse and transpose are not implemented in the SPL compiler.)
- 6. print This is a pointer to a function that prints the object into SPL code.
- 7. vecInputs This specifies whether the object accepts 1 vector (linear), 2 vectors, (bilinear) etc. Although only linear and bilinear objects are currently supported, there is no reason why the package couldn't be slightly modified to support trilinear and multilinear objects.
- 8. trans This is a pointer to a function that can create an object's transpose.
- 9. name A name for the object (e.g. compose, matrix, sparse, etc.). This is the name printed by the print function, and corresponds to a name recognized by the SPL compiler in the case of bound objects.
- 10. rowdim Row dimension of the object.
- 11. coldim Column dimension of the object.
- 12. parameters Parameters of the object. For example for Identity, the parameters are the row and column dimension, while for matrix the parameter is a list of rows.
- 13. numParameters The number of parameters. This is useful for cases such as compose, where there can be a variable number of input parameters.
- 14. bound Is the object bound? As discussed below, the existence of a bind function is not sufficient to determine whether an object is bound. (This parameter and the next parameter could be avoided by using an *isBound* function, but instead these items are stored to improve speed.)
- 15. parametersBound Are an objects' parameters bound? For example an object might be a composition of several unbound SPL objects.

In short, an SPL object is simply a Maple table (a Maple table is basically an associative array, see [18]) with these 15 fields defined as well as the corresponding eval, apply, and other functions provided. It is useful to conceptually think of an SPL object as a table with these 15 fields, however to save space the first eight fields in the list above (which are static) are stored in a separate associative array indexed by the object's name, so that only the next seven fields actually have to be stored in the object's table. This implementation can lead to substantial savings in the size of the table used to store an SPL object. For example, for large convolution algorithms it is not uncommon to have more than 100 identity matrices involved in the computation. By storing the eight static fields, more than 800 objects are removed from the SPL object table. (Actually the savings would be larger, because the same system is used for all symbols and operators).

To make the discussion clearer, consider the implementation of SPLIdentity. The complete code for SPLIdentity is shown below. The entries to the global table symTabl are assigned when the package is loaded. Whenever an identity object is needed, the user calls the constructor SPLIdentity

Bound Operators	
SPLAdd(m1,,mn)	Add SPL objects
SPLCompose(m1,,mn)	Compose SPL objects
SPLConjugate(m,Pinv,P)	Equivalent to SPLCompose(Pinv,m,P)
SPLDirectSum(m1,,mn)	Direct sum of SPL objects
SPLInverse(m)	Inverse of SPL object
SPLTensor(m1,,mn)	Tensor product of SPL objects
SPLTranspose(m)	Transpose of SPL object
Unbound Operators	
SPLBilinear(c,a,b)	Create a bilinear object from 3 SPL objects
SPLAugmentMatrix(m1,,mn)	Augment matrices
SPLStackMatrix(m1,,mn)	Stack matrices
SPLConvertPerm(P)	Converts an SPL expression P, that represents a sequence of
	operations on permutations, into a single permutation. (e.g.
	SPLTensor(p1, p2) can be converted to a single permutation)
SPLTensorI(m1,,mn)	$(m_1\otimes I)(I\otimes m_2\otimes I)\dots(I\otimes m_n)$
SPLCommuteTensorI(m1,m2)	Commutation theorem for linear
	and bilinear algorithms

 Table 4.2: Core Maple Operators

with the desired dimensions as parameters. Since the constructor does little more than check for errors and fill in the seven variable fields discussed above, the constructor for identity is very similar to the constructors for most other SPL objects. All of the functionality of the SPL objects are defined in the functions pointed to within the symbol table as is shown here.

```
# Identity Matrix
# Inputs:
#
  n : positive integer.
# Notation: (I m n) or (I n)
# Properties: permutation, symmetric.
# Definition (I n) i -> i.
symTabl["I"][apply] := applyIdentity;
symTabl["I"][bind] := NULL;
symTabl["I"][countOps] := countOpsIdentity;
symTabl["I"][eval] := evalIdentity;
symTabl["I"][inv] := invIdentity;
symTabl["I"][print] := defaultSymPrint;
symTabl["I"][vecInputs] := 1;
symTabl["I"][trans] := transIdentity;
```

```
# Constructor for symbol. Creates an SPL object.
# Inputs: Symbol parameters m=rowdim, args[2]=n=coldim (optional).
SPLIdentity := proc(m::posint) local t,n;
  if nargs > 1 then
    n := args[2];
    if (not type(n,posint)) then
     ERROR("arguments to SPLIdentity should be positive integers");
    fi;
  else
    n := args[1];
  fi;
  t := table(); t[name] := "I";
  t[rowdim] := eval(m); t[coldim] := eval(n);
  t[parameters] := [eval(m),eval(n)]; t[numParameters] := 2;
  t[bound]:= true; t[parametersBound] := true;
  RETURN(eval(t));
end;
#transpose of an identity
transIdentity := proc(U) local t;
 t := SPLIdentity(U[parameters][2],U[parameters][1]);
 RETURN(eval(t));
end;
#operation count for identity; note no adds or multiplications for
#identity, only assignments
countOpsIdentity:= proc(t,adds::evaln,muls::evaln,assigs::evaln);
  assigs := eval(assigs) + t[parameters][1];
end;
#inverse of identity = identity
invIdentity := proc(U);
  if (U[parameters][1]<>U[parameters][2]) then
    ERROR("Inverse doesn't exist - invIdentity")
  else
   RETURN(eval(U));
 fi;
end;
# Evaluate as a matrix
evalIdentity := proc(U) local m,n,i;
  m := U[parameters][1]; n := U[parameters][2];
 RETURN(linalg[matrix](m,n,(i,j) -> if (i=j) then 1 else 0 fi));
end;
# Apply Identity to an input vector.
applyIdentity := proc(veclist,T) local x,y,i;
 x := veclist[1];
  if (linalg[vectdim](x) <> T[coldim]) then
    ERROR("Incompatible dimensions");
  fi;
 y := linalg[vector](T[rowdim],0);
 for i from 1 to min(T[rowdim],T[coldim]) do
    y[i] := x[i];
```

```
od;
RETURN(eval(y));
end;
```


Some SPL objects take other SPL objects as parameters (e.g. SPLCompose, SPLDirectSum, SPLTensor and others). Since these parameters may not be bound, the parametersBound field is not automatically set to true as in the identity example above, but instead is set with the function areParametersBound which checks each parameter to see if it is bound. If a typically bound object (such as SPLCompose) contains unbound parameters, it is considered unbound and its bound field is set to false. If on the other hand the parameters are bound, the bound field is set to true for a bound operator. It is therefore not possible to tell whether an object is bound by checking for a bind function. See section 4.1.2 for a discussion of the advantages of unbound objects. An example of a typical bind function is provided by the example for SPLCompose shown here.

```
#bindCompose - do a one step bind of a compose object.
# input: SPLCompose object U = SPLCompose(p1,p2,...,pk)
# output: t = SPLCompose(Bind1(p1),Bind1(p2),...,Bind1(pk)).
bindCompose := proc(U) local t;
if (U[bound] = false) then
t := SPLCompose(op(map(SPLBind1,eval(U)[parameters])));
RETURN(eval(t));
else
RETURN(eval(t));
fi;
end;
SPLBind1 := proc(U) local t;
t := SPLBind(U,1);
RETURN(eval(t));
end;
```

Note that since SPLCompose is a bound object in general, if its bound field is false that must mean that one or more of the parameters are unbound. The bind function therefore binds each of the parameters one level.

SPL objects that allow SPL objects as parameters must also handle the apply, eval, print, and countOps functions differently than in the identity example above. These functions must be called recursively on the parameters, rather than directly on the object itself. While the eval function for a parameterized matrix such as SPLIdentity simply created an identity matrix, the eval function for an operator must create matrices for each of its parameters and then operate on them. For example, the eval function for SPLCompose evaluates all of its parameters and then multiplies them

together as in the code example below. The code for apply, print, and countOps operates on the parameters in a similar manner. The code for SPLDirectSum, SPLTensor, and other bound objects that can have unbound parameters is analogous.

```
# Evaluate composition of SPL objects as a matrix
# Inputs: SPLObject U with U[parameters]=A1,A2,...,An
# output: matrix representing A1A2...An
evalCompose := proc(U)
local i;
if U[numParameters] = 1 then
    RETURN(eval(SPLEval(U[parameters][1])));
else
    RETURN(linalg[multiply](seq(SPLEval(U[parameters][i]),i=1..U[numParameters])));
fi;
end:
```

How the Five SPL Commands are Implemented

Since the user provides eval, apply, bind, print, and countOps functions for each object created, implementing the five basic commands consists of little more than calling the provided functions on the SPL object of interest. For example evaluation of an SPL object U can be accomplished with RETURN(symTabl[U[name]][eval](U)); Here, U's name is used to look up its eval function within the symbol table and then that function is called with U as a parameter. This works because functions are first class objects in Maple.

In actuality, the code for SPLEval is slightly more complicated because unbound objects cannot be immediately evaluated. The complete code for SPLEval is shown here.

SPLBind is only slightly more complicated. This is because it must handle multiple bind levels

```
and check for errors.
```

```
#SPLBind - Bind an unbound object or algorithm to an actual SPL object
SPLBind := proc(T)
local i,X,bindLevel;
if (T[bound] = true) then
    RETURN(eval(T));
fi;
```

```
if (T[bound] = false) then
   if (nargs > 1) then
     bindLevel := args[2];
   else
     bindLevel := infinity;
   fi;
   X := eval(SPLSymTabl[T[name]][bind])(T); #bind T one level
   if (bindLevel > 1) then
     RETURN(SPLBind(eval(X),bindLevel-1));
   else
     RETURN(eval(X));
   fi;
 else
   ERROR("you are trying to bind a non-spl object");
 fi;
end;
```

Two Special Case Objects: SPLTranspose and SPLInverse

Since transpose and inverse can not be implemented via any supported SPL symbol or operator, (without adding new templates to the SPL compiler), they must be defined when defining a symbol or operator. Thus when s is a symbol, SPLTranspose(s) returns, whatever was defined for the transpose of the symbol when it was defined. The same is true for SPLInverse. When s is an operator or sequence of operators, SPLTranspose(s) is implemented as a rewrite rule that uses the definition of the transpose of the operator to rewrite the expression in terms of transposes of symbols, and then applies the transpose to the symbols as before. For example, let a, b be two arbitrary symbols, with aT, bT their respective transposes defined at the time of a and b. Then:

```
SPLTranspose(SPLCompose(a,b))
=SPLCompose(SPLTranspose(b),SPLTranspose(a))
=SPLCompose(bT,aT).
```

Thus the **trans** function for compose simply reverses the parameters and calls each parameter's transpose function. Other operators work in a similar way, depending upon the particular rewrite rule. **SPLInverse** is implemented in a similar manner.

Implementation of unbound objects

Unbound objects offer a powerful way to both extend the language (without adding templates to the SPL compiler) and to simplify and add clarity to algorithms. An unbound object is used whenever a symbol or operator that is not contained in the SPL compiler is needed. To illustrate how bind can be used to define an operator using existing operators and parameterized matrices, consider the stack operator discussed in the beginning of the chapter. In this case the operator is extended to take an arbitrary number of operands. Let A_i , i = 1, ..., t be an $m_i \times n$ matrix, and observe that

$$(\texttt{stack } A_1 \dots A_t) = \left[egin{array}{c} A_1 \\ \vdots \\ A_t \end{array}
ight] = \left[egin{array}{c} A_1 & & \\ & \ddots & \\ & & A_t \end{array}
ight] (e_t^T \otimes I_n),$$

where e_t is the $1 \times t$ matrix containing all ones.

In the case of an unbound operator or symbol, only 8 of the 15 fields required for bound symbols and operators need be defined. The required fields for an unbound symbol or operator are bind, name, parameters, numParameters, parametersBound, bound, rowdim, and coldim.

The constructor SPLStackMatrix is typical of a constructor for an unbound operator; it creates a Maple table to store the object, fills in the dynamic fields, and does some error checking. The bind function bindStack uses the function stackk to construct the SPL formula described above. It uses the parameterized matrix (SPLOnes m n), which corresponds to the $m \times n$ matrix whose elements are all equal to 1. This symbol can be defined using SPLMatrix([seq([seq(1,j=1..n)],i=1..m)]). The complete code for the stack operator is shown below.

```
# stack matrix - similar to Maple's stackMatrix operator.
# Inputs:
           A1, A2, ..., At = args[1], args[2],...,args[nargs]
           (stackMatrix A1 ... At)
# Notation:
symTabl["stack"][bind] := bindStack;
symTabl["stack"][print] := defaultOpPrint;
SPLStackMatrix := proc() global symTabl;
local T,i,l;
  1 := [seq(args[i],i=1..nargs)]; T := table();
  T[name] := "stack"; T[numParameters] := nops(1);
  T[parameters] := [seq(eval(1[i]),i=1..nops(1))];
  T[parametersBound] := areParametersBound(T);
  T[bound] := false;
  if (T[parametersBound]) then
    for i from 1 to nargs do
     if (symTabl[args[i][name]][vecInputs]<>1) then
      ERROR("SPLStackMatrix only works on linear objects");
     fi;
    od;
  fi;
  RETURN(eval(T));
end;
```

```
bindStack := proc(X) local T;
T := Table();
if (X[parametersBound] = true) then
T := stackk(seq(X[parameters][i],i=1..X[numParameters]));
else
T := SPLStackMatrix(op(map(SPLBind1,eval(X)[parameters])));
fi;
RETURN(eval(T));
end;
stackk := proc() local t,n,T;
n := args[1][coldim]; t := nargs;
T := SPLCompose(SPLDirectSum(seq(args[i],i=1..t)),
SPLTensor(SPLOnes(t,1),SPLIdentity(n)));
RETURN(eval(T));
end;
```

An unbound object can be created for any symbol or operator that can be defined in terms of existing SPL objects in an analogous manner. Virtually all of the objects in the convolution package are implemented as unbound objects.

4.2.3 Creating Packages that use the SPL Core Package

As previously mentioned, the SPL Core package provides a superset of SPL functionality. The net result is that any application that uses matrix operations extensively can be approached by building a library that takes advantage of the Core package. For example in section 4.3 a convolution package is described that builds upon the Core package, and illustrates the Core package's utility and flexibility. Numerous convolution algorithms are implemented based entirely on matrix operations available via the Core package.

In short, the Core package was developed to be an interactive, flexible front-end for the SPL language and compiler. Its use in this case is to provide a foundation for a convolution library, but it was built with enough generality that it can be used as the foundation for a wavelet package, a Fourier Transform package, or any other application whose algorithms arise from structured matrix operations.

4.3 Implementation of Convolution Package

The convolution package contains implementations of all of the convolution algorithms discussed in Chapter 3. The core package contains all of the building blocks needed to create parameterized matrices that are used by convolution algorithms, so that creating convolution algorithms becomes equivalent to writing down formulas for all of the convolution algorithms presented in Chapter 3. A list of parameterized matrices or symbols that are used to create convolution algorithms can be found in Table 4.3.

AgCooleyP(m1,,mn)	Permutation matrix used by the Agarwal-Cooley method					
AgCooleyPinv(m1,,mn)	Permutation matrix used by the Agarwal-Cooley method					
circulant(v1,,vn)	$n \times n$ Circulant matrix acting on vector v .					
CRT(vlen,1,indet)	This is the Chinese Remainder Theorem; equivalent to					
	SPLStack(M(vLen,1[i],indet)).					
Gn(p)	G matrix used in Prime Power algorithm					
M(vLen,g,indet)	M is such that $M\overline{A} = \overline{A \mod g}$ where $length(\overline{A}) = vLen$.					
overlap(m1,,mn)	Overlap matrix used in combining linear convolutions					
R(poly, indet)	Reduction matrix used by reduceBilin					
Rader(p,conv)	Returns a prime size Fourier Transform via a p-1 point					
	cyclic convolution					
RaderQ(p,r)	Rader permutation					
RaderQt(p,r)	Transpose of Rader permutation					
Rpk(p,k)	Reduction matrix used in Prime Power algorithm					
RpkInv(p,k)	Inverse of Rpk					
Sn(n)	$n \times n$ shift matrix					
V(m,n,[points])	$m \times n$ Toom-Cook evaluation matrix					
<pre>Vinv(m,n,[points])</pre>	Inverse of V					

Table 4.3: Linear Objects Contained in the Convolution Package

Implementing these symbols is considerably easier than implementing objects within the core package. These matrices have all been defined by formulas derived in chapter 3 so that creating them within this package is equivalent to writing down formulas. For example, in chapter 3 the symbol R_{p^k} used in the prime power convolution algorithm was defined recursively as

$$R_{p^k} = (R_{p^{k-1}} \oplus I_{(p-1)p^{k-1}})(R_p \otimes I_{p^{k-1}}),$$
(4.1)

where,

$$R_p = \left[\begin{array}{c} 1_p \\ G_p \end{array} \right],$$

 G_n is the $(n-1) \times n$ matrix

$$G_n = \begin{bmatrix} 1 & & -1 \\ & 1 & & -1 \\ & & \ddots & & -1 \\ & & & 1 & -1 \end{bmatrix},$$

and 1_n is the $1 \times n$ matrix filled with 1's.

The code for $R_{p^{K}}$ shown here follows directly from these formulas.

```
# Gn:This matrix is used to Generate Rpk
# inputs: n::posint
# output: n-1 x n matrix consisting of n-1 x n-1 identity matrix
#
        augmented with a column of -1's
symTabl["Gn"][print] := defaultSymPrint;
symTabl["Gn"][bind] := bindGn;
Gn := proc(n)
 local T;
 T := table();
 T[name] := "Gn"; T[rowdim] := n-1; T[coldim] := n;
 T[parameters] := n;
 T[bound] := false;
 RETURN(eval(T));
end;
bindGn := proc(s) local t,i,n,m;
  n := s[parameters];
  m := SPLAugmentMatrix(SPLIdentity(n-1),
                     SPLMatrix([seq([-1],i=1..n-1)]));
  RETURN(eval(m));
end;
***********************
# Rpk:This matrix is used to Generate Rpk used by the prime power
#
    algorithm.
# Inputs: p,k:posints
# output: p^k by p^k R matrix - see JSC paper for details.
symTabl["Rpk"][print] := defaultSymPrint;
symTabl["Rpk"][bind] := bindRpk;
Rpk := proc(p,k)
 local T:
 T := table();
 T[name] := "Rpk"; T[rowdim] := p^k; T[coldim] := p^k;
 T[parameters] := [p,k]; T[bound] := false;
 RETURN(eval(T));
end;
bindRpk := proc(s) local t,p,k;
  p := s[parameters][1]; k := s[parameters][2];
  if (k=1) then
    t := SPLStackMatrix(oneN(p),Gn(p));
  else
    t := SPLCompose(SPLDirectSum(Rpk(p,k-1),SPLIdentity(p^k - p^(k-1))),
                 SPLTensor(Rpk(p,1),SPLIdentity(p^(k-1)));
  fi;
  RETURN(eval(t));
end;
```

 R_{p^k} also provides a good example of using bind levels to see the structure of the code, and to determine that an algorithm is working as it should.

Example 13 Consider R_2^3 in the convolution package.

Note that if R2_3 is bound one level, we see that it follows the definition of equation 4.1.

```
> SPLPrint(R2_3,1);
(compose
    (direct_sum (Rpk 2 2 )(I 4 4 ))
    (tensor (Rpk 2 1 )(I 4 4 )))
```

The second Rpk in the SPL code above can be defined directly in terms of Gn, as shown when

binding at level two.

```
> SPLPrint(R2_3,2);
(compose
    (direct_sum
        (compose
            (direct_sum (Rpk
                              2 1)(I
                                         2 2 ))
                          2 1)(I
            (tensor (Rpk
                                     2 2 )))
        (I
            4 4))
    (tensor
                             2))
        (stack (1n
                    2 )(Gn
            4
        (I
               4 )))
```

Note that even after binding three levels, there are still a number of SPL objects that cannot be used by the SPL compiler (without additional templates) such as Rpk, stack, 1n, Gn. To fully bind the code, use ∞ as the bind level in the print command as follows.

```
> SPLPrint(R2_3,Infinity);
(compose
    (direct_sum
        (compose
            (direct_sum
                 (direct_sum
                     (matrix ( 1 1) )
                     (compose
                          (tensor(matrix ( 1 1) )(I 1 1 1))
```

```
(direct_sum (I
                                      1 1 )(matrix ( (-1)) ))))
               (tensor (matrix ( 1)( 1) )(I
                                             2 2 )))
           (I
                2 2 ))
       (tensor
           (compose
               (direct_sum
                   (matrix (11))
                   (compose
                       (tensor(matrix ( 1 1) )(I
                                                  1 1))
                       (direct_sum(I
                                       1 1)(matrix ((-1)))))
               (tensor (matrix ( 1)( 1) )(I
                                             2
                                               2 )))
                2 2 )))
           (I
           4))
   (I
        4
(tensor
   (compose
       (direct_sum
           (matrix (11))
           (compose
               (tensor(matrix ( 1 1) )(I
                                           1 1))
               (direct_sum(I
                               1 1)(matrix ((-1)))))
       (tensor (matrix ( 1)( 1) )(I
                                     2 2 )))
   (I
        4 4)))
```

The previous example illustrates the power of unbound objects and bind levels. Since SPL code is in a way a mathematical assembly language, if SPL objects were always fully bound, even a small convolution algorithm would consist of hundreds of lines of incomprehensible code. Unbound objects and binding levels, allow the code to be easily understood and allows for easy debugging of new objects.

Many of the linear objects shown in Table 4.3 are used to create the bilinear objects shown in Table 4.4.

Again, because of the way the infrastructure was designed, creating these algorithms consists mainly of writing down the formulas derived throughout Chapter 3. For example, recall that the prime power algorithm described by Selesnick and Burrus [22] was presented in section 3.3.2 as

$$\mathcal{C}_{x^{p^k}-1} = R_{p^k}^{-1} \left(\bigoplus_{i=0}^k \mathcal{C}_{\Phi_{p^i}(x)} \right) R_{p^k}$$

where C_f denote a bilinear algorithm that multiplies elements of $\mathbb{C}[x]/f(x)$ and $\Phi_d(x)$ are cyclotomic factors of $x^{p^k} - 1$.

The Maple code for generating the prime power algorithm follows directly from this formula as shown here:

```
symTabl["primePowerAlg"][print] := defaultSymPrint;
symTabl["primePowerAlg"][bind] := bindPrimePowerAlg;
#PrimePowerAlg - computes a p^k-point cyclic convolution via the
                 Selesnick-Burrus prime power algorithm.
          p,k - integers
#inputs:
#output: bilinear algorithm for p^k-point cyclic convolution.
primePowerAlg := proc(p::posint,k::posint) local t;
  t := table();
  t[name] := "primePowerAlg";
  t[parameters] := [p,k];
  t[bound] := false;
  t[rowdim] := p^k;
   t[coldim] := p^k;
  RETURN(eval(t));
 end;
primePowerDirectSum := proc(p::posint,k::posint) local t,cyc,l,i,n;
    1 := [linearConv([1])];
    for i from 1 to k do
      cyc := numtheory[cyclotomic](p^i,'x');
      n := degree(cyc);
      1 := [op(1),SPLCompose(M(2*n-1,cyc,'x'),linearConv([n]))];
    od:
    t := SPLDirectSum(op(1));
    RETURN(eval(t));
 end;
bindPrimePowerAlg := proc(s) local T,n;
  RETURN(eval(SPLCompose(RpkInv(op(s[parameters])),
               primePowerDirectSum(op(s[parameters])),
               Rpk(op(s[parameters])))));
 end;
```

Notice that the prime power algorithm is just the composition of a direct-sum of linear convolutions modulo cyclotomic polynomials conjugated with the symbol R_{p^k} presented above.

Before leaving this section, it should be mentioned that in addition to the bilinear and linear objects built into the convolution package, there are also a number of utility routines used for testing convolution algorithms, for counting operations, and for manipulating the hash table of linear convolutions that will be discussed in section 4.3.1. Table 4.5 shows the utilities available within the convolution package.

4.3.1 The Linear Convolution Hash Table

Most cyclic convolutions are built from smaller linear convolutions; thus in order to reduce operations or to create the fastest cyclic convolutions, a way of storing the linear convolutions that use the fewest operations, or are the fastest in terms of run-time is needed. In this section a hash

AgCooley(c1,,cn)	Combines cyclic convolutions via the Agarwal-Cooley
	method.
combineLin(l1,,ln)	Combines linear convolutions via tensor product
convThm(n)	Returns cyclic convolution of size n via the convolution theorem.
linearConv(n)	Creates a placeholder for a size n linear convolution. When
	binding, this placeholder will first look for an entry in the
	hash-table; if none exists it will build a linear convolution
	of the requested size.
primePowerAlg(p,k)	Returns a p^k -point cyclic convolution via the prime
	power algorithm.
redimBilinLin(n,	Modifies a bilinear algorithm to accept a smaller input size.
colDim,newColDim)	
reduceBilin(bilin,	Reduces a bilinear algorithm modulo a polynomial.
poly, indet)	
splitNest(n)	Returns a size n cyclic convolution via the split-nesting method.
	Note that the improved split-nesting algorithm uses the same
	procedure, but with a modified hash table.
standardBilinCyc(n)	Returns an n-point cyclic convolution via the standard method.
standardBilinLin(n)	Returns an n-point linear convolution via the standard method.
TolimLin(n,M,indet)	Returns an n-point linear convolution via the Tolimieri method.
ToomCookLin(n)	Returns an n-point linear convolution via the Toom-Cook
	method.
ToomCookCyc(n)	Returns an n-point cyclic convolution via the Toom-Cook
	method.
WinogCRT(n,pList,	Returns an n-point cyclic convolution via Winograd's Chinese
bList, indet)	Remainder Theorem method
WinogHash(n)	Returns an n-point cyclic convolution via Winograd's method
	using linear algorithms from the hash table.
WinogStandard(n)	Returns an n-point cyclic convolution via Winograd's method
	using Standard linear algorithms.
WinogToomCook(n)	Returns an n-point cyclic convolution via Winograd's method
	using Toom-Cook linear algorithms.

Table 4.4: Bilinear SPL Objects Contained in the Convolution Package

table for storing and manipulating linear convolutions of various sizes is discussed. Since many large convolution algorithms use multiple combinations of the same smaller linear convolution algorithms, storing base algorithms in a hash table leads to an efficient implementation. In Maple, the hash table is just a simple global variable that is initialized upon loading of the convolution package. The following 3 Maple commands are executed to initialize the hash table when the package is loaded.

```
>linHash[1] := ToomCookLin(1):
>linHash[2] := ToomCookLin(2):
>linHash[3] := ToomCookLin(3):
```

The hash table is also used to store tensor products of linear convolutions since those are used in the split-nesting and improved split-nesting algorithms. The public routine putLinConv is used to store convolution algorithms within the hash table without directly manipulating the global

cycConv(v1,v2)	Computes a cyclic convolution of two vectors.
	(Used for testing against other cyclic convolution algorithms)
fixedVecCount(b)	Operation counts for a bilinear algorithm assuming 1 vector
	fixed
linConv(v1,v2)	Computes a linear convolution of two vectors.
	(Used for testing against other linear convolution algorithms)
putLinConv(Stores a convolution algorithm of sizeList size into the hash
sizeList,bilin)	table.
printLinHash()	Prints out the contents of the hash-table.
resetLinHash()	Empties out the hash table of stored linear convolution
	algorithms.
splitNestNeeds(Shows a list of sizes for linear convolutions that will be
bilin)	used for the split nesting method

Table 4.5: Utility Routines Contained in the Convolution Package

variable linHash. For example to store a 4-point linear convolution consisting of a two Toom-Cook linear convolutions of size two, the Maple command putLinConv([4],combineLin(ToomCookLin(2), ToomCookLin(2))) is used. To store the tensor product of 2 Toom-Cook linear convolutions of size 2, the command putLinConv([2,2],SPLTensorI(ToomCookLin(2),ToomCookLin(2))) is used. Note that linHash[2,2] is not the same as linHash[4] because the latter is actually equivalent to SPLCompose(overlap(2,2),linHash[2,2]).

The counterpart to putLinConv is getLinConv, which returns a linear convolution of a certain size without accessing the hash table directly. Actually getLinConv does more than access the hash table. If a size is requested that is not in the hash table, getLinConv will create a placeholder for an algorithm of the requested size. If at bind time, there is no entry in the hash table for that size, the bind function will create an algorithm.

Provided there is a hash table entry for a size 2 linear convolution, it is always possible to create any larger size needed by combining convolutions and then reducing dimensions. This can easily be proved by induction: assume it is true for all linear convolutions up to size N, to show that it is true for a size N + 1 convolution. If N + 1 is prime than N + 2 = 2k where k < N, so that there exist convolutions of size 2 and k that can be created via size 2 convolutions. By combining a size 2 and k convolution, a size N + 2 convolution that can be used as an N + 1 convolution by removing the rightmost column of the A and B matrices of the bilinear algorithm is created. If N + 1 is not prime, then N + 1 = mn, with m < N and n < N, so that an N + 1 point linear convolution is created by combining m and n point linear convolutions (both of which can be created via size 2 linear convolutions by the induction hypothesis).

The full implementation of getLinConv and putLinConv that uses these ideas is shown here:

```
# Linear Convolution Hash Table subroutines and setup.
symTabl["linearConv"][print] := defaultSymPrint;
symTabl["linearConv"][bind] := bindGetLinConv;
getLinConv := proc(sizeList)
  local T,n,i,l,rdim;
  T := table();
  T[name] := "linearConv";
  1 := [];
                                   #create parameter list
  for i from 1 to nops(sizeList) do #of linear convolution
    if (sizeList[i] > 1) then
                                   #sizes
      1 := [op(1),sizeList[i]];
    fi;
  od;
  if (nops(1) = 0) then 1 := [1]; fi;
  T[parameters] := eval(1); T[bound] := false;
  n := sizeList[1]; rdim := 2*n-1;
  for i from 2 to nops(sizeList) do #row dimension is product of row
    n := n*sizeList[i];
                                   #dimensions of each linear conv. row
    rdim := rdim*(2*sizeList[i]-1); #dimension of a linear convolution is 2N-1
  od;
  T[coldim] := n; T[rowdim] := rdim;
  RETURN(eval(T));
end;
bindGetLinConv := proc(T)
 global linHash;
 local n,A,B,C,row,t,i,j,k,sizeList,x;
  sizeList := T[parameters];
  if (linHash[op(sizeList)][bound] = true
     or linHash[op(sizeList)][bound] = false ) then #conv. exists in hash table
    t := linHash[op(sizeList)];
                                                 #go get it.
    RETURN(eval(t));
 fi:
  if (nops(sizeList) > 1) then
                                 #conv doesn't exist; create it now.
     linHash[op(sizeList)]:=SPLTensorI(seq(getLinConv([sizeList[i]])
                                           ,i=1..nops(sizeList)));
    else
      n := sizeList[1];
      if (isprime(n)) then #if prime size, create by reducing a larger conv.
       t := redimBilinLin(getLinConv([n+1]),n+1,n):
       linHash[n] := eval(t);
       RETURN(eval(t));
      else
       readlib(ifactors):
       x := ifactors(n)[2]; x := x[nops(x)][1];
       t := combineLin(getLinConv([x]),getLinConv([n/x]));
       linHash[n] := eval(t);
       RETURN(eval(t));
      fi;
    fi;
```

```
end;
putLinConv := proc(sizeList,lin) global linHash;
    linHash[op(sizeList)] := eval(lin);
end;
```

To look at the contents of the hash table at any point, printLinHash() is called. To reset the hash table to empty out all of the entries, resetLinHash() is called. Note that the latter call empties the hash table but then fills the size 2 entry with a Toom-Cook algorithm to ensure that a size 2 entry always exists. If something other than a Toom-Cook algorithm is desired, the default size 2 entry can be overridden by using putLinConv.

4.3.2 A Comprehensive Example

In this section it will be shown that filling the linear convolution hash table in a specific way leads to a convolution that minimizes operations. This is an illustration of the improved split-nesting algorithm described in chapter 3. In Example 11 of chapter 3 the split-nesting algorithm for size $108 = 4 \times 27$ was derived as follows:

Let

$$C_4 = R_4^{-1} (1 \oplus 1 \oplus C_2) R_4$$

and
 $C_{27} = R_{27}^{-1} (1 \oplus D_2 \oplus D_6 \oplus D_{18}) R_{27},$

where $C_2 = M(x^2+1)\mathcal{L}_2$, $\mathcal{D}_2 = M(x^2+x+1)\mathcal{L}_2$, $\mathcal{D}_6 = M(x^6+x^3+1)\mathcal{L}_6$, $\mathcal{D}_{18} = M(x^{18}+x^9+1)\mathcal{L}_{18}$, are the algorithms for cyclic convolution on 4 and 27 points given in Examples 9 and 10. By Agarwal-Cooley,

$$Q_{4,27}^{-1}(R_4^{-1}(1\oplus 1\oplus \mathcal{C}_2)R_4) \otimes (R_{27}^{-1}(1\oplus \mathcal{D}_2\oplus \mathcal{D}_6\oplus \mathcal{D}_{18})R_{27})Q_{4,27}$$

is an algorithm for cyclic convolution on 108 points. The split nesting theorem transforms this algorithm into

$$(Q_{4,27}^{-1}(R_4^{-1} \otimes R_{27}^{-1})P^{-1}$$

$$(1 \oplus \mathcal{D}_2 \oplus \mathcal{D}_6 \oplus \mathcal{D}_{18}) \oplus (1 \oplus \mathcal{D}_2 \oplus \mathcal{D}_6 \oplus \mathcal{D}_{18}) \oplus (\mathcal{C}_2 \oplus \mathcal{C}_2 \otimes \mathcal{D}_2 \oplus \mathcal{C}_2 \otimes \mathcal{D}_6 \oplus \mathcal{C}_2 \otimes \mathcal{D}_{18}))$$

$$P(R_4 \otimes R_{27})Q_{4,27}$$

$$(4.2)$$

where $P = I_{27} \oplus I_{27} \oplus P_3$ and $P_3 = (I_2 \oplus L_2^4 \oplus L_2^{12} \oplus L_2^{36})L_{27}^{54}$.

In the convolution package the call to splitNest gives an algorithm equivalent to equation 4.2. The Maple session for creating a size 108 convolution follows:

```
> n := 4*27;
                                  n := 108
> s := splitNest(n):
> SPLPrint(s);
(compose
    (AgCooleyP
                  4 27 )
    (tensorI (RpkInv
                         2 2 )(RpkInv
                                           3 3))
    (compose
         (convert2perm (direct_sum (L 27 1)(L 27 1)(L 54 2)))
         (direct_sum
             (linearConv
                             1)
             (compose (M
                             3 x<sup>2</sup>+x+1 x )(linearConv 2 ))
                             11 x<sup>6</sup>+x<sup>3</sup>+1 x)(linearConv 6))
             (compose (M
             (compose (M
                             35 x<sup>18+x<sup>9+1</sup> x)(linearConv 18))</sup>
                             1 x+1 x )(linearConv 1 ))
             (compose (M
             (compose
                  (tensor (M 3 x<sup>2</sup>+x+1 x)(M 1 x+1 x))
                  (linearConv
                                 2))
             (compose
                  (tensor (M 11 x<sup>6</sup>+x<sup>3</sup>+1 x)(M 1 x+1 x))
                  (linearConv 6 ))
             (compose
                  (tensor (M 35 x<sup>18+x<sup>9</sup>+1 x)(M 1 x+1 x))</sup>
                  (linearConv 18 ))
             (compose (M 3 x<sup>2</sup>+1 x)(linearConv 2))
             (compose
                  (tensor (M 3 x<sup>2</sup>+x+1 x )(M 3 x<sup>2</sup>+1 x ))
                  (linearConv
                                 2
                                    2))
             (compose
                  (tensor (M 11 x<sup>6</sup>+x<sup>3</sup>+1 x)(M 3 x<sup>2</sup>+1 x))
                  (linearConv 6 2))
             (compose
                  (tensor (M
                                35 x<sup>18+x<sup>9+1</sup> x)(M 3 x<sup>2+1</sup> x))</sup>
                                 18 2 )))
                  (linearConv
         (convert2perm (direct_sum (L 27 27)(L 27 27)(L 54 27))))
    (tensorI (Rpk
                      2 2)(Rpk
                                     3 3))
    (inverse (AgCooleyP
                           4 27 ))).
```

If the convolution will be used in a filtering application with the matrix exchange property applied, the following operation count is obtained using the default hash table (if the hash table is not modified by the user, it gets filled with linear convolutions that are built upon Toom-Cook algorithms of size two and three):

> fixedVecCount(s);
B Adds: 1407, B Muls: 0, B Assigs: 3866
At Adds: 1769, At Muls: 0, At Assigs: 4611
Hadamards: 470, Total Ops: 3646.

The idea of the improved split-nesting algorithm is that all instances of linear convolutions and tensor products of linear convolutions are replaced with linear convolutions that minimize the number of operations. To see which hash table entries are used by the algorithm, the command splitNestNeeds is called as shown here.

```
> splitNestNeeds(s);
(linearConv 1)
(linearConv 2)
(linearConv 6)
(linearConv 18)
(linearConv 2 2)
(linearConv 6 2)
(linearConv 18 2).
```

Table 6.3 in Chapter 6 shows that the hash entries shown here will minimize the number of operations.

All of the entries are straightforward except for the size [18,2]. In this case an algorithm is required that is equivalent to a tensor product of a size 18 linear convolution and size 2 linear convolution. However Table 6.3 shows that a minimal algorithm cannot be obtained directly. Instead, the best size 36 convolution, which is equivalent to [12,3] must be made equivalent to [18,2]. To do this, note that the A component of size [12,3] is $sb3[A] \otimes tc2[A] \otimes tc2[A] \otimes tc3[A]$. By using SPLCommuteTensor the A component $sb3[A] \otimes tc2[A] \otimes (L_5^{15}(tc2[A] \otimes tc3[A])L_2^6)$ is created, which has operation counts the same as [12,3] but is equivalent to $sb3[A] \otimes tc2[A] \otimes tc3[A] \otimes tc2[A]$ and thus usable within [18,2]. Note the same permutation is done on the B component of the bilinear algorithm. Next the left composition of SPLTensor(overlap(3,2,3),SPLIdentity(3)) occurs because the overlap matrix from the size 18 convolution is factored out.

Finally, the minimum number of operations as discussed in Example 11 is obtained.

```
> fixedVecCount(s);
B Adds: 672, B Muls: 0, B Assigs: 3209
At Adds: 1394, At Muls: 0, At Assigs: 4497
Hadamards: 830, Total Ops: 2896.
```

Chapter 5: Operation Counts for DFT and FFT-Based Convolutions

In previous chapters, Chinese Remainder Theorem (CRT) based convolution theorems were discussed extensively. In this chapter, the cost of computing FFT-based convolutions is examined, so that the two approaches can be compared in Chapter 6

Specifically, this chapter explores the use of the convolution theorem for creating circular and linear convolutions. The use of the DFT, FFT, and Rader based DFTs within the convolution theorem are carefully examined in order to calculate operation counts required for various size linear and cyclic convolution algorithms.

5.1 Properties of the DFT, FFT, and Convolution Theorem

Recall from section 2.4 the Discrete Fourier Transform of size n = rs, $F_n = \text{DFT}_n = [\omega_n^{kl}]_{0 \le k, l < n}$, where $\omega_n = e^{2\pi i/n}$, can be obtained by the factorization

$$F_{rs} = (F_r \otimes \mathbf{I}_s) \mathbf{T}_s^{rs} (\mathbf{I}_r \otimes F_s) \mathbf{L}_r^{rs},$$
(5.1)

where \otimes is the Kronecker product, I_n is the $n \times n$ identity matrix, L_r^{rs} is the $rs \times rs$ stride permutation matrix

$$\mathbf{L}_r^{rs}: j \mapsto j \cdot r \mod rs - 1$$
, for $j = 0, \dots, rs - 2; rs - 1 \mapsto rs - 1$,

and \mathbf{T}_r^{rs} is the diagonal matrix of twiddle factors,

$$\mathbf{T}_r^{rs} = \bigoplus_{j=0}^{s-1} \operatorname{diag}(\omega_n^0, \dots, \omega_n^{r-1})^j, \quad \omega_n = e^{2\pi i/n}, \quad i = \sqrt{-1}.$$

This factorization also known as the Fast Fourier Transform (FFT) is due to [9]. The Good-Thomas Prime Factor Algorithm [11, 26] allows the removal of the Twiddle matrix in 5.1 when r and s are relatively prime. That is,

$$F_{rs} = Q_1(F_r \otimes \mathbf{I}_s)(\mathbf{I}_r \otimes F_s)Q_2, \tag{5.2}$$

where gcd(r, s) = 1 and Q_1 and Q_2 are permutation matrices.

The Fourier Transform is of interest, because the convolution theorem can be used to obtain an N-point cyclic convolution via three Fourier Transforms of size N. The convolution theorem is shown here without proof; see section 3.3.1 for a discussion and proof of the convolution theorem.

Theorem 20 (Convolution Theorem)

The bilinear algorithm $(DFT_N^{-1}, DFT_N, DFT_N)$ computes N-point cyclic convolution.

5.2 DFT and FFT Operation Counts

In order to discuss operation counts, the term "flop" is defined as a single floating point operation (addition, subtraction, multiplication, or division) between two real numbers. Since complex numbers are generally represented in a computer as pairs of real numbers, a multiplication of 2 complex numbers requires 6 flops (4 multiplications and 2 additions or 3 multiplications and 5 additions) and the addition of 2 complex numbers requires 2 flops.

From the definition of DFT_n above, it is easy to see that the DFT_n for a complex vector will require $n^2 - n$ complex additions and $(n - 1)^2$ complex multiplications in general. But it is clear from (5.1) and (5.2) that the number of operations using the FFT will be:

Lemma 2 $Flops(F_{rs}) = s \times flops(F_r) + m + r \times flops(F_s)$, with m = 0 when gcd(r, s) = 1 and $m = flops(T_r^{rs})$ otherwise.

Note from the definition of the Twiddle matrix that there are no additions required to compute $flops(T_r^{rs})$ and that multiplications occur only when ω_n^{jk} is not equal to 1, -1, i, or -i. That is:

Lemma 3 For a complex input vector, $flops(T_r^{rs}) = 6((r-1)(s-1) - K)$, and for a real input vector, $flops(T_r^{rs}) = 2((r-1)(s-1) - K)$, where $K = |\{(i,j): \frac{2ij}{rs} \in \{\frac{1}{2}, 1, \frac{3}{2}, 2\}, 0 < i \le r, 0 < j \le s\}|$.

Example 14 Assuming complex input vectors,

$$\begin{aligned} flops(F_2) &= 4 \\ flops(F_4) &= 2flops(F_2) + flops(T_2^4) + 2flops(F_2) \\ &= 8 + 0 + 8 \\ &= 16 \\ flops(F_8) &= 2flops(F_4) + flops(T_2^8) + 4flops(F_2) \\ &= 32 + 12 + 16 \\ &= 60 \\ flops(F_{16}) &= 4flops(F_4) + flops(T_4^{16}) + 4flops(F_4) \\ &= 64 + 48 + 64 \\ &= 176. \end{aligned}$$

5.3 Flop Counts for Rader Algorithm

The FFT factorization gives an algorithm for F_{rs} , but for F_p with p prime the factorization is of no use. An alternative method for computing F_p for p prime is via Rader's algorithm [21]. The basic idea is that given a primitive root r of p, there exist permutation matrices generated by r and r^{-1} denoted Q(r) and $Q(r^{-1})$ respectively, such that

$$Q(r)^{T} F_{p} Q(r^{-1}) = \begin{bmatrix} 1 & 1_{p-1} \\ 1_{p-1}^{T} & C_{p-1} \end{bmatrix}$$
(5.3)

where C_{p-1} is a circulant matrix containing the vector $\mathbf{w} = [\omega, \omega_p^r, \omega_p^{r^2}, \dots, \omega_p^{r^{p-2}}]$ and $\mathbf{1}_{p-1}$ is a $1 \times p - 1$ matrix consisting of a single row of ones.

If $D = F_{p-1}\mathbf{w}$, and $C_{p-1} = F_{p-1}^{-1}DF_{p-1}$, then (5.3) factors into

$$Q(r)^{T} F_{p} Q(r^{-1}) = \begin{bmatrix} 1 & & \\ & F_{p-1}^{-1} \end{bmatrix} \begin{bmatrix} 1 & 1 & \\ & p-1 & D \end{bmatrix} \begin{bmatrix} 1 & & \\ & F_{p-1} \end{bmatrix},$$
(5.4)

and

$$Flops(F_p) = 2 \times flops(F_{p-1}) + 6(p-1).$$
 (5.5)

Example 15 $Flops(F_{17}) = 2flops(F_{16}) + 6 \times 16 = 448$. Note that DFT₁₇ by definition would cost 2080 flops.

5.4 Conjugate Even Vectors and Operation Counts

In this section it is shown that F_n operating on a real input vector requires about half of the computations required to apply F_n to a complex input vector. In order to show this, some terms need to be defined and some facts proven about the DFT.

Definition 8 (Reflection Matrix)

The reflection matrix E_n is the $n \times n$ matrix defined by

$$E_n = \left[\begin{array}{c} 1 \\ & \\ & J_{n-1} \end{array} \right]$$

where, J_k is the anti-identity matrix defined by

$$J_k: i \mapsto k - 1 - i, \text{ for } j = 0, \dots, k - 1.$$

Definition 9 (Conjugate Even Vector)

A vector x is called conjugate even if $\overline{x} = E_n x$.

The next lemma and theorem are modified from [17].

Lemma 4 $\overline{F_n} = E_n F_n$

Proof

$$\overline{F_n} = \overline{[\omega_n^{kl}]} = [\omega_n^{-kl}] = [\omega_n^{(n-k)l}] = E_n F_n$$

The following theorem follows directly.

Theorem 21 (Conjugate Even DFT)

Let x be a real vector, then $DFT_n(x)$ is conjugate even.

Proof

Since x is real, $\overline{x} = x$, so

$$\overline{y} = \overline{F_n(x)} = \overline{F_n}(\overline{x}) = \overline{F_n}(x) = E_n F_n(x) = E_n y$$

The implication of Theorem 21 is that when applying a real vector to DFT_n , the contents of the entire output vector are known, after applying only the first n/2 + 1 rows of DFT_n . Thus it is not hard to see that because of the redundancy of the conjugate even vectors, that $flops(real DFT_n) \approx flops(DFT_n)/2$.

The symmetry and redundancy of the conjugate even vectors can in fact be exploited by the FFT as well at the cost of a few extra additions. This was first done by [3] for powers of 2. The method was refined in [23] also for powers of 2, but can be extended in general for other cases. However for Rader based Fourier Transforms, it is non-trivial to fully exploit the redundancy for the real case, but Van Loan in [17] discusses an algorithm whereby two real FFT's are computed at once, by storing both into a single complex vector and then using the conjugate even symmetry to separate them. In this case $flops(realFFT_n) = flops(FFT_n)/2 + n$. For comparing operation counts of real vectors using the convolution theorem versus the CRT methods discussed in Chapter 6 it is reasonable to use this estimate, since in filtering applications the convolution filter is applied to multiple input vectors that can be paired up into complex vectors to take advantage of the symmetry.

Table 5.1 shows the flop counts for various size FFT's and cyclic convolutions. The following notation is used in Table 5.1 and hereafter.

Notation 1

- 1. RF_n denotes a DFT of size n acting on real inputs.
- 2. CT_n denotes a cyclic convolution of size n computed via the convolution theorem.
- 3. RCT_n denotes a cyclic convolution of size n computed via the convolution theorem and acting on real inputs.
- 4. FCT_n denotes a cyclic convolution of size n computed via the convolution theorem where one vector is fixed.
- 5. $RFCT_n$ denotes a cyclic convolution of size n computed via the convolution theorem where one vector is fixed, and both vectors are real. (Using the estimate discussed in the preceding paragraph.)

Note that $flops(FCT_n) = 2 \times flops(F_n) + 6 \times n$, but because of the aforementioned symmetries, the Hadamard products cost half as much in the real case. That is, $flops(RFCT_n) = 2 \times flops(RF_n) + 3n - 3 + (-1)^{n+1}$.

Note that for the small sizes shown in Table 5.1, the asymptotic estimate of 5nLg(n) is not a very good predictor of the number of operations, particularly for non-power of 2 sizes. Also, notice that the best FFT-based cyclic convolution of a given size is not always based on an FFT of that size. For example, for size 23 the convolution theorem would require 3170 flops to convolve 2 complex (1 fixed) vectors. However, a size 23 cyclic convolution can be obtained from a size 24 linear convolution that is obtained from a size 48 cyclic convolution from the convolution theorem. With this method, the size 23 cyclic convolution requires 1984 flops, which is just over half as many as required by using F_{23} .

Table 5.2 shows ranges of linear convolutions that minimize flop counts. So for example, if a linear convolution of size between 769 and 800 is needed, it is best created via the convolution theorem using an FFT of size 1600.

Given the flop counts for linear convolutions provided in Table 5.2, it is now possible to revise and extend Table 5.1 to show the minimum flop counts for all FFT-based cyclic convolutions of size 2 through 1024. These are shown in Table 5.3. This table is produced by generating all DFT factorizations of each size and choosing the one that minimizes operation counts. Note that to save space, sizes where a linear convolution should be used are omitted; these can be found in Table 5.2. For example, there is a slight advantage to creating cyclic convolutions of size 28 and 30 directly, but for a size 29 cyclic convolution, reducing a size 32 linear convolution, derived from a size 64 cyclic convolution minimizes the operation count.

5.5 Summary

This chapter took an extensive look at FFT-based algorithms for linear and cyclic convolutions. The tables discussed in this chapter provide baselines from which the CRT-based algorithms discussed in previous chapters can be compared.

Size	Flops(Fn)	5nLg(n)	Flops(RFn)	$Flops(FCT_n)$	$Flops(RFCT_n)$		
2	4	10	4	20	10		
3	20	24	13	58	33		
4	16	40	12	56	32		
5	56	58	33	142	79		
6	52	78	32	140	78		
7	140	98	77	322	173		
8	60	120	38	168	96		
9	144	143	81	342	187		
10	132	166	76	324	178		
11	324	190	173	714	377		
12	128	215	76	328	184		
13	328	241	177	734	391		
14	308	267	168	700	374		
15	268	293	149	626	341		
16	176	320	104	448	252		
17	448	347	241	998	531		
18	324	375	180	756	410		
19	756	404	397	1626	849		
20	304	432	172	728	400		
21	560	461	301	1246	663		
22	692	491	368	1516	798		
23	1516	520	781	3170	1629		
24	340	550	194	824	456		
25	656	580	353	1462	779		
26	708	611	380	1572	834		
27	708	642	381	1578	841		
28	672	673	364	1512	808		
29	1512	704	785	3198	1655		
30	596	736	328	1372	742		
31	1372	768	717	2930	1525		
32	488	800	276	1168	644		
33	1192	832	629	2582	1355		
34	964	865	516	2132	1130		
35	1092	898	581	2394	1265		
36	720	931	396	1656	896		
37	1656	964	865	3534	1839		
38	1588	997	832	3404	1774		
39	1244	1031	661	2722	1437		
40	748	1064	414	1736	944		
41	1736	1098	909	3718	1939		
42	1204	1132	644	2660	1410		
43	2660	1167	1373	5578	2873		
44	1472	1201	780	3208	1688		
45	1224	1236	657	2718	1447		
46	3124	1270	1608	6524	3350		
47	6524	1305	3309	13330	6757		
48	848	1340	472	1984	1084		
49	2176	1376	1137	4646	2419		
50	1412	1411	756	3124	1658		
51	1684	1446	893	3674	1937		
52	1520	1482	812	3352	1776		
54	1524	1554	816	3372	1790		
55	2236	1590	1173	4802	2509		
56	1540	1626	826	3416	1816		
57	2648	1662	1381	5638	2931		
60	1312	1772	716	2984	1608		
63	2268	1883	1197	4914	2581		
64	1224	1920	676	2832	1540		
· · ·			210				

Table 5.1: Flop Counts for various FFT's and Cyclic Convolutions

Linear				
Convolution	FCT		RFCT	
Size	Method	Flops(FCT)	Method	Flops(RFCT)
2	F_4	56	F_4	32
3	F ₆	140	F_6	78
4	F ₈	168	F ₈	96
5	F ₁₀	324	F ₁₀	178
6	F ₁₂	328	F ₁₂	184
7-8	F ₁₆	448	F ₁₆	252
9-10	F ₂₀	728	F ₂₀	400
11-12	F ₂₄	824	F ₂₄	456
13-16	F ₃₂	1168	F ₃₂	644
17-18	F ₃₆	1656	F ₃₆	896
19-20	F_{40}	1736	F_{40}	944
21-24	F ₄₈	1984	F ₄₈	1084
25-32	F ₆₄	2832	F ₆₄	1540
33-36	F ₇₂	3816	F ₇₂	2048
37-40	F ₈₀	4032	F ₈₀	2172
41-48	F ₉₆	4784	F ₉₆	2580
49-50	F ₁₀₀	6648	F ₁₀₀	3520
51-64	F ₁₂₈	6752	F ₁₂₈	3628
65-72	F ₁₄₄	8640	F ₁₄₄	4604
73-80	F ₁₆₀	9424	F ₁₆₀	5028
81-96	F ₁₉₂	11056	F ₁₉₂	5908
97-100	F ₂₀₀	14696	F ₂₀₀	7744
101-120	F ₂₄₀	15296	F ₂₄₀	8124
121-128	F ₂₅₆	15488	F ₂₅₆	8252
129-144	F ₂₈₈	19728	F ₂₈₈	10436
145-160	F ₃₂₀	21328	F ₃₂₀	11300
161-192	F ₃₈₄	25376	F ₃₈₄	13452
193-200	F ₄₀₀	32192	F_{400}	16892
201-216	F ₄₈₀	34672	F ₄₃₂	18236
217-240	F ₄₈₀	34672	F ₄₈₀	18292
241-256	F ₅₁₂	35520	F ₅₁₂	18780
257-288	F ₅₇₆	43920	F ₅₇₆	23108
289-320	F ₆₄₀	48096	F ₆₄₀	25324
321-384	F ₇₆₈	56704	F ₇₆₈	29884
385-400	F ₈₀₀	71184	F ₈₀₀	37188
401-408	F ₈₁₆	76736	F ₈₁₆	39996
409-432	F ₉₆₀	76784	F ₈₆₄	40148
433-480	F ₉₆₀	76784	F ₉₆₀	40308
481-512	F ₁₀₂₄	79312	F ₁₀₂₄	41700
513-576	F ₁₁₅₂	97632	F ₁₁₅₂	51116
577-640	F ₁₂₈₀	106112	F ₁₂₈₀	55612
641-768	F ₁₅₃₆	127040	F ₁₅₃₆	66588
769-800	F ₁₆₀₀	154768	F ₁₆₀₀	80580
801-816	F ₁₇₂₈	167088	F ₁₆₃₂	86932
817-864	F ₁₇₂₈	167088	F ₁₇₂₈	86996
865-960	F ₁₉₂₀	169888	F ₁₉₂₀	88780
961-1024	F ₂₀₄₈	175936	F ₂₀₄₈	92060

Table 5.2: Flop Counts for Linear Convolutions Derived from FCT and RFCT

	[n)	CTn)		[n)	CTn)		[n)	CTn)		[n)	CTn)		(n)	CTn)		[n)	CTn)
	Ę	RF(FG	RFC		FC	RF(FG	RF(FC	RF(FG	RF(
e	ps()	ps(]	e)sd	ps()	e)sd)sd	e)sd)sd	e)sd)sd	e)sd)sd
Siz	Нo	Flo	Siz	Flo	Нo	Siz	Flo	Flo	Siz	Flo	Flo	Siz	Flo	Flo	Siz	Flo	Flo
2	20	10	61	6334	3287	130	10772	5642	209	30198	15515	288	19728	10436	378	38724	20114
3	58	33	62	6108	3174	132	11384	5952	210	18004	9418	289	35270	18211	380	44072	22792
4	56	32	63	4914	2581	133	16702	8615	212	29784	15312	290	39636	20394	384	25376	13452
5	142	79	64	2832	1540	135	10914	5725	213	34526	17687	291	34330	17745	385	49014	25275
6	140	172	65	5126	2691	136	10024	5280	215	32706	16/81	292	34616	17888	386	48084	24810
/	322	1/3	68	5428	2842	140	16408	2624 8522	210	15864	8360	294	32972	1/0/0	38/	62586	32065
9	342	187	70	5068	2400	143	8640	4604	217	30884	15874	290	34854	18019	390	37516	19534
10	324	178	72	3816	2048	145	19238	9907	219	27130	14001	300	23944	12568	392	43048	22304
11	714	377	73	8070	4179	146	16724	8650	220	20968	10920	302	48508	24854	393	72230	36899
12	328	184	74	7364	3826	147	15898	8241	221	24126	12503	303	45746	23477	395	68778	35177
13	734	391	75	5386	2841	148	15320	7952	222	25052	12966	304	32704	16956	396	41544	21560
14	700	374	76	7112	3704	150	11372	5982	224	17136	9012	305	38502	19859	399	55426	28509
15	626	341	77	8078	4191	152	15288	7944	225	20358	10627	306	28980	15098	400	32192	16892
16	448	252	78	5756	3030	153	13878	7243	226	32724	16810	308	34776	18000	401	66790	34195
17	998	531	80	4032	2172	154	16772	8690	228	24376	12640	310	37484	19358	402	74516	38058
18	1626	410	81	6438	3379	155	18122	9369	231	27314	14117	312	26456	13848	403	58426	30017
19	728	849 400	84	5656	2002	150	0424	5028	232	29064	14992	218	31020	24454	404	38840	30224
20	1246	663	04 85	6894	2992	162	9424	7082	234	21050	1269/	320	21328	11300	405	62636	32126
22	1516	798	87	10754	5549	164	16184	8416	230	15296	8124	323	44666	22977	407	62850	32237
24	824	456	88	7032	3688	165	16606	8631	241	32038	16499	324	28344	14816	408	35512	18568
25	1462	779	90	5796	3074	168	12488	6576	242	33332	17146	325	35406	18351	409	73478	37555
26	1572	834	91	8778	4569	169	19798	10235	243	24474	12721	326	57356	29326	410	48004	24818
27	1578	841	93	10030	5199	170	14468	7570	244	27288	14128	327	49378	25341	411	68090	34865
28	1512	808	95	10258	5317	171	20106	10393	245	28718	14847	328	34664	17984	412	67816	34728
30	1372	742	96	4784	2580	172	23688	12184	246	26572	13774	330	34532	17922	414	71964	36806
31	2930	1525	97	10150	5267	174	22204	11446	247	33602	17293	333	42462	21895	416	36176	18916
32	1168	1255	98	9684	5034	175	1/234	8965	248	27160	14072	336	21328	14332	418	62068	31866
30	2382	1130	100	9394	3520	1/0	12290	6512	250	23524	12238	338	20078	29011	420	37088	19080
35	2394	1265	100	13902	7151	181	25710	13215	252	24082	12549	339	52250	26801	421	76236	38958
36	1656	896	101	7756	4078	182	18284	9502	256	15488	8252	340	30296	15824	424	62536	32112
37	3534	1839	104	7432	3920	183	21442	11085	257	32518	16771	341	52318	26839	425	47254	24475
38	3404	1774	105	8582	4499	185	21814	11275	258	37940	19482	342	41580	21470	426	70756	36226
39	2722	1437	106	14468	7442	186	20804	10770	259	35098	18065	343	49698	25533	427	61418	31561
40	1736	944	108	7176	3800	187	21994	11369	260	22584	11808	344	49784	25576	429	55214	28463
41	3718	1939	109	15006	7719	189	18606	9679	261	37134	19087	348	45800	23592	430	67132	34422
42	2660	1410	110	10044	5238	190	21276	11014	264	24616	12832	350	35868	18630	432	34752	18236
44	3208	1688	111	12082	6261	192	11056	5908	265	41046	21051	351	38226	19813	433	72102	36915
43	108/	1084	112	11732	4028	193	23270	12019	200	22008	11000	352	30008	20711	434	63514	30922
40	1904	2/19	114	13720	7088	194	17978	9377	270	21952	11516	360	27144	1/288	435	63512	32624
50	3124	1658	117	10350	5407	196	20152	10464	273	29974	15531	362	52868	27154	438	56012	28878
51	3674	1937	119	11746	6109	198	19980	10382	274	42836	21962	363	53386	27417	440	45016	23384
52	3352	1776	120	6808	3640	200	14696	7744	275	32282	16689	364	38024	19736	441	55926	28843
53	7022	3615	122	13156	6818	202	28612	14706	276	43928	22512	365	48526	24991	442	50020	25890
54	3372	1790	123	12794	6641	203	30506	15657	279	35298	18205	366	44348	22902	444	51880	26824
55	4802	2509	124	12712	6600	204	16328	8568	280	23352	12232	369	45270	23371	448	37744	19764
56	3416	1816	125	11262	5879	205	23182	11999	284	44520	22824	370	45108	23290	449	78182	39987
57	5638	2931	126	10332	5414	206	33084	16950	285	34574	17855	372	43096	22288	450	42516	22154
58	6628	3426	128	6752	3628	207	35154	17989	286	34140	17638	374	45484	23486	451	67466	34633
60	2984	1608	129	18454	9483	208	16320	8572	287	37506	19325	375	38786	20141	452	67256	34528

Table 5.3: Flop Counts for FCT and RFCT Sizes 2-1024
Table 5.3 (continued))

	s(FCTn)	s(RFCTn)		s(FCTn)	s(RFCTn)		s(FCTn)	s(RFCTn)		s(FCTn)	s(RFCTn)		s(FCTn)	s(RFCTn)		s(FCTn)	s(RFCTn)
Size	Flop	Flop	Size	Flop	Flop	Size	Flop	Flop	Size	Flop	Flop	Size	Flop	Flop	Size	Flop	Flop
453	76990	39399	543	84370	43269	632	105368	53944	724	108632	55760	814	128956	66102	909	154206	78919
455	54082	27949	544	48528	25348	636	97832	50184	725	117998	60447	815	158386	80821	910	111804	57718
456	51944	26880	545	87238	44707	637	92542	47543	726	109676	56286	816	76736	39996	912	110272	56956
459	51018	26425	546	62132	32154	640	48096	25324	728	81144	42024	818	150228	76746	915	127706	65681
460	77384	39608	548	87864	45024	641	100038	51299	729	88950	45931	819	105210	54241	918	105708	54686
462	56476	29158	549	74574	38383	644	119672	61120	730	99972	51442	820	99288	51280	920	161208	82440
464	61376	31612	550	66764	34478	645	106718	54647	732	91624	47272	822	139468	71374	924	116648	60168
465	60566	31211	552	91720	46960	646	91916	47246	735	95954	49445	824	141400	72344	925	136894	70295
468	45144	23504	555	72842	37529	648	61224	31904	736	123888	63412	825	107846	55571	928	130640	67172
475	65578	33737	558	72828	37526	650	73412	38002	738	93492	48218	828	147240	75272	930	124852	64282
4/6	50/92	26344	560	50624	26428	651	96250	49425	740	931/6	48064	832	/8800	41060	931	162362	83041
4//	78462	40183	561	/3462	5/851	654	101272	59960	741	01400	30823	833	122880	65107	935	130914	50299
480	54072 70214	18292	565	99028	47221	655	101372	51990	744	91400	4/184	830	127480	62175	930	90840	30288
401	66004	33067	567	92200	35005	656	73020	38268	740	93900	40472	840	81256	42304	942	11/108	58087
402	68600	35264	568	07740	47640	657	03654	18130	750	12/212	63610	840	150172	42304 81266	945	164056	83020
485	61614	31775	570	71428	36850	660	71704	37168	756	80472	41744	843	156410	79889	940	152798	78295
486	50892	26414	572	70568	36424	663	81218	41933	760	93464	48248	844	155848	79608	950	134956	69374
488	57992	29968	574	77308	39798	665	98406	50531	765	86526	44791	845	117918	60647	952	108248	56024
490	59396	30674	576	43920	23108	666	87588	45122	768	56704	29884	847	147154	75269	954	160740	82274
492	55112	28536	577	91302	46803	670	130268	66470	769	118022	60547	848	131008	67196	960	76784	40308
493	80350	41159	578	72852	37578	671	109202	55941	770	101108	52090	850	97908	50650	962	144276	74058
494	69180	35574	579	77530	39921	672	60368	31524	771	107834	55457	852	144920	74160	964	135864	69856
495	59058	30517	580	81592	41952	673	124774	63731	772	99256	51168	854	126252	64830	965	137966	70911
496	57792	29884	582	70988	36654	674	116052	59370	774	128268	65678	855	119682	61549	968	143976	73920
500	49048	25520	584	73320	37824	675	74874	38785	775	113922	58509	858	113860	58642	969	146918	75395
504	46872	24440	585	64854	33595	676	84600	43648	776	92840	47968	860	137704	70568	970	127108	65490
505	80822	41419	588	68296	35320	678	107212	54958	777	115654	59379	861	123998	63719	972	105672	54776
507	66154	34089	589	102542	52447	679	98210	50461	779	132634	67873	864	76848	40148	975	119218	61557
510	50204	26118	592	69568	35964	680	65352	34032	780	78152	40632	866	147668	75562	976	122816	63356
511	76930	39485	594	72084	37226	682	107364	55042	782	152124	77622	867	117370	60417	980	122712	63312
512	35520	18780	595	72058	37217	684	85896	44312	783	127410	65269	868	123704	63584	981	166446	85183
513	70806	36427	600	52088	27240	685	119694	61215	784	91584	47356	870	130508	66990	984	117112	60520
514	67092	34570	601	107782	55091	686	102140	52438	785	143654	73395	872	133128	68304	986	164644	84290
515	92186	47121	602	104580	53490	688	104384	53564	786	147604	75370	873	119286	61387	988	142312	73128
516	77944	40000	604	99432	50920	689	126054	64403	790	140/16	71934	8/5	113834	58665	990	122076	63014
518	12268	3/166	605	94462	48439	690	122516	62634	791	143010	/3085	8/6	115528	39512	992	124016	63988
520	400Uð 76256	20210	600	70574	40100	606	948/8	40023	702	00032	420762	000	90192	47032	1000	14/810	5/5/1
524	03512	39210	600	00638	51035	607	90472	49024 51363	795	122330	68457	002 994	103576	53552	1000	105090	70763
524	58702	30300	610	79/1/	10038	700	7/536	38664	793	11/04/	58614	888	100076	56760	1001	100800	52412
525	77586	39845	612	60408	31424	700	79260	41030	800	71184	37188	890	169476	86514	1008	165684	84858
528	52928	27516	615	77746	40101	702	123090	62949	801	157014	80107	891	123306	63433	1010	136364	70206
530	84212	43162	616	73864	38160	704	72624	37716	802	136788	69994	896	83104	43340	1015	175266	89661
532	71064	36592	618	107492	54978	707	125594	64209	803	136074	69641	898	159956	81770	1017	175734	89899
533	75230	38679	620	77448	39960	710	124364	63598	804	152248	77728	900	88632	46112	1020	104488	54280
534	96844	49486	624	57280	29884	712	127464	65152	805	161182	82199	901	166862	85231	1022	157948	81014
536	98104	50120	625	76262	39379	714	82852	42850	806	120076	61646	902	138540	71070	1023	170594	87341
539	82858	42505	627	98954	50729	715	98506	50681	808	123336	63280	903	165298	84453	1024	79312	41700
540	47976	25064	628	105880	54192	720	59328	31100	810	85764	44498	904	140840	72224			
541	99198	50679	629	93230	47871	722	129908	66394	812	128520	65880	905	148822	76219			
542	97052	49606	630	65772	34142	723	105754	54321	813	153166	78207	906	157604	80610			

Chapter 6: Operation Counts for CRT-Based Convolution Algorithms

In chapter 3 a number of bilinear algorithms based on the constructions of Winograd [29, 30] and others [19, 27, 1, 22] for computing cyclic and linear convolutions were described. In this chapter, formulas for counting the operations required for the convolution algorithms discussed in Chapter 3 will be derived. Operation counts for these algorithms will be compared to the FFT-based convolution algorithms discussed in Chapter 5. Depending on which components are used and the order in which the constructions are applied, algorithms with different computational cost are obtained. Further reduction in cost may be obtained by rearranging the factors in the algorithm using properties of the tensor product and other algebraic manipulations.

The set of algorithms that can be obtained from these constructions defines a space of convolution algorithms, and for a given size finding the algorithm in the space with minimal cost becomes a well defined optimization problem. In this chapter, operation count is used as the cost function since it provides exact results and is easy to compare with previous work. However, using the automated algorithm generation and implementation outlined in Section 4.1, a similar optimization problem can be carried out using runtime for the cost function. This will be discussed in chapter 7.

6.1 Assumptions and Methodology

The assumptions used for this chapter are as follows. It is assumed that the ultimate goal is to calculate circular convolutions on pairs of real and complex vectors (one fixed) via matrix exchange. Linear convolutions were discussed in chapter 3, but the reason for introducing linear convolutions was their utility within circular convolutions. The aim is in minimizing the total number of additions and multiplications and not to minimize multiplications at the expense of additions since for many modern architectures the costs are the same. Finally, all multiplications are counted, and not just the ones that occur in the diagonal matrix in the matrix exchange procedure. The multiplication count is kept as two separate tallies, those due to the diagonal matrix plus all others, since the former can not be avoided, while the latter can sometimes be removed via shifts or other means, particularly on integer inputs.

The following notation is used throughout the chapter.

Notation 2

- 1. flops(X) denotes the number of floating point operations required to evaluate an expression.
- multiplications(X) denotes the number of multiplications required to evaluate an expression. Note that each real multiplication requires 1 flop and each complex multiplication requires 6 flops (4 multiplications and 2 additions, or 3 multiplications and 3 additions).
- 3. adds(X) denotes the number of adds required to evaluate an expression. Note that each real add requires 1 flop and each complex add requires 2 flops.
- 4. rowdim(M) denotes the number of rows in the matrix M.
- 5. coldim(M) denotes the number of columns in a matrix M.

The following theorem summarizing the cost of applying the direct sum and tensor product of two matrices given the costs of the individual matrices, will also be needed throughout the chapter.

Theorem 22 (Cost of the Direct Sum and Tensor Product) Let A be a matrix requiring adds(A) additions and multiplications(A) multiplications to apply a vector. Let B be a matrix requiring adds(B) additions and multiplications(B) multiplications to apply a vector. Then

- 1. $A \oplus B$ can be applied to a vector using $adds(A \oplus B) = adds(A) + adds(B)$ additions and $multiplications(A \oplus B) = multiplications(A) + multiplications(B)$ multiplications.
- 2. $A \otimes B$ can be applied to a vector using $coldim(A) \times adds(B) + rowdim(B) \times adds(A)$ additions and $coldim(A) \times multiplications(B) + rowdim(B) \times multiplications(A)$ multiplications.

Proof

The result for the direct sum is obvious and the result for the tensor product follows from the factorization $A \otimes B = (A \otimes I_{rowdim(B)})(I_{coldim(A)} \otimes B)$, and the commutation theorem, which implies that up to a permutation $(A \otimes I_{rowdim(B)})$ is equal to $(I_{rowdim(B)} \otimes A)$. If A and B are rectangular matrices, the number of operations for $A \otimes B$ is not the same as for $B \otimes A$ using this factorization.

6.2 Operation Counts for Size *p* (*p* prime) Linear Convolutions Embedded in Circular Convolutions

Definition 10 A bilinear algorithm for a k-size linear convolution is defined as $(C, A, B)_{\langle k \rangle}$ or $(C_{\langle k \rangle}, A_{\langle k \rangle}, B_{\langle k \rangle}).$

Let $(C, A, B)_{}$ be a bilinear algorithm for a linear convolution. If this algorithm will be embedded into an algorithm for computing circular convolutions, then because of the matrix exchange property, the number of operations required to convolve 2 vectors via $(C, A, B)_{}$ will be the number of additions and multiplications required for applying vectors to $B_{}$ and $A_{}^T$, plus the $rowdim(B_{})$ multiplications for the diagonal matrix created by matrix exchange. This can be defined more precisely for the real and complex case as follows:

Theorem 23 Let $(C, A, B)_{}$ be a bilinear algorithm for a linear convolution to be embedded in a cyclic convolution where matrix exchange is to be applied. If the vectors to be convolved are real, then

$$flops(C, A, B)_{}) = flops(B_{}) + flops(A_{}^{T}) + rowdim(B_{})$$
 (6.1)

If the vectors to be convolved are complex, then

$$flops(C, A, B)_{\langle p \rangle}) = flops(B_{\langle p \rangle}) + flops(A_{\langle p \rangle}^T) + 6 \times rowdim(B_{\langle p \rangle})$$
(6.2)

Example 16 In Example 5 of chapter 3 a 3×3 linear convolution given by the Toom-Cook algorithm was shown to be:

$$tc_{3} = \left(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1/2 & 1 & -1/3 & -1/6 & 2 \\ -1 & 1/2 & 1/2 & 0 & -1 \\ 1/2 & -1/2 & -1/6 & 1/6 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix} \right)$$
$$= (tc_{3}[C], tc_{3}[A], tc_{3}[B])$$

The operation count for this algorithm can be reduced using the following factorization.

$\left[\begin{array}{c}1\\1\\1\\1\\0\end{array}\right]$	$\begin{array}{c} 0\\ 1\\ -1\\ 2\\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 4 \\ 1 \\ \end{array}$	=	:	$\left[\begin{array}{c}1\\0\\1\\0\\0\end{array}\right]$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	$ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	0 1 0 1 1 0	0 0 1 0 0 0	0 0 0 0 0 1	$\left \begin{array}{c}1\\0\\0\\0\end{array}\right $	$\begin{array}{c} 0\\ 1\\ -1\\ 0\end{array}$	0 1 1 1	
---	---	---	---	---	---	--	--	--	--	---	--	----------------------------	----------------------------	----------------------------	--	--	------------------	--

The number of operations required by this algorithm to convolve complex vectors is

$$flops(tc_3) = flops(tc_3[A^t]) + flops(tc_3[B]) + 6 \times rowdim(tc_3[B])$$
$$= 2 \times 9 + 2 \times 7 + 6 \times 5$$
$$= 62.$$

6.3 Operation Counts for Size *mn* Linear Convolutions Embedded in Circular Convolutions

Let \mathcal{L}_m and \mathcal{L}_n be bilinear algorithms for computing linear convolutions of size m and nrespectively. It was shown in section 3.1.3 that a linear convolution algorithm of size mn is $O_{m,n}(\mathcal{L}_m \otimes \mathcal{L}_n) = (O_{m,n}C_m \otimes C_n, A_m \otimes A_n, B_m \otimes B_n)$. Since $O_{m,n}$ is part of the C component, when embedding the linear algorithm into a cyclic convolution and using matrix exchange, the number of operations is $flops(A_m^T \otimes A_n^T) + flops(B_m \otimes B_n) + d$, where $d = 6 \times rowdim(B_m) \times rowdim(B_n)$ in the case of complex inputs or $d = rowdim(B_m) \times rowdim(B_n)$ in the case of real inputs. The d operations come from the multiplications required when applying a vector to the precomputed diagonal matrix obtained from matrix exchange. Thus, using Theorem 22,

$$\begin{aligned} flops(\mathcal{L}_{mn}) &= flops(\mathcal{L}_m \otimes \mathcal{L}_n) \\ &= flops(A_m^T \otimes A_n^T) + flops(B_m \otimes B_n) + d \\ &= coldim(A_m) \times adds(A_n^T) + rowdim(A_n) \times adds(A_m^T) \\ &+ coldim(A_m) \times multiplications(A_n^T) + rowdim(A_n) \times multiplications(A_m^T) \\ &+ coldim(B_m) \times adds(B_n) + rowdim(B_n) \times adds(B_m) \\ &+ coldim(B_m) \times multiplications(B_n) + rowdim(B_n) \times multiplications(B_m) + d \\ &= m \times adds(A_n^T) + rowdim(B_n) \times adds(A_m^T) \\ &+ m \times multiplications(A_n^T) + rowdim(B_n) \times multiplications(A_m^T) \\ &+ m \times adds(B_n) + rowdim(B_n) \times adds(B_m) \\ &+ m \times multiplications(B_n) + rowdim(B_n) \times multiplications(B_m) + d \\ &= m(flops(A_n^T) + flops(B_n)) + rowdim(B_n)(flops(A_m^T) + flops(B_m)) + d. \end{aligned}$$

This result is summarized in the following theorem.

Theorem 24 (Operation Counts for Combining Linear Convolutions)

Let $\mathcal{L}_m = (C_m, A_m, B_m)$ and $\mathcal{L}_n = (C_n, A_n, B_n)$ be linear convolutions of size m and n respectively. These can be combined via a tensor product to form a linear convolution of size mn. Assuming this linear convolution will be embedded into a cyclic convolution where matrix exchange will be used then, if the vectors are real, the number of operations is

$$flops(\mathcal{L}_{mn}) = m(flops(A_n^T) + flops(B_n)) + rowdim(B_n)(flops(A_m^T) + flops(B_m)) + rowdim(B_m) \times rowdim(B_n).$$

If the vectors to be convolved are complex, the number of operations is

$$flops(\mathcal{L}_{mn}) = 2m(flops(A_n^T) + flops(B_n)) + 2 \times rowdim(B_n)(flops(A_m^T) + flops(B_m)) + 6 \times rowdim(B_m) \times rowdim(B_n).$$

Unfortunately, there is no closed form formula for counting the number of operations required for computing linear convolutions of arbitrary size, since there are multiple ways to compute any linear convolution, and even more ways to combine arbitrary convolutions to make larger ones. For example, the 5-point linear convolution can be created by definition, via a 6-point linear convolution, via an 8-point linear convolution, or via an 8-point circular convolution (each of which can in turn be computed multiple ways).

67

Although there is no single formula for calculating the operation counts, Theorems 23 and 24 do provide a means of finding optimal algorithms via an exhaustive search. The idea is to compute linear convolutions via each of the methods presented in chapter 3 for prime sizes 2 through 29 and then to search for the best way of combining these algorithms using the tensor product to obtain the best algorithm for all sizes through 1024. Table 6.1 shows the operation counts for various prime sizes 2 through 29.

The shorthand used in Table 6.1 is as follows: tp is a size p convolution computed via the Toom-Cook algorithm, sp is a size p convolution computed via the standard algorithm, kLp is a size pconvolution compute reduced from a linear convolution of size k, and kcp is a size p convolution computed via a cyclic convolution of size k. Note that if there are multiple ways of computing any algorithm, each is differentiated via an a,b,c etc.

The table shows the algorithms that remain after algorithms that are guaranteed not to be optimal have been pruned. As an example it is possible to create a 3-point linear convolution via a 4-point linear convolution. However, since this algorithm would use as many diagonal multiplications as 4c3, plus as many or more operations in both the A^T , and B components, it is clear that it would require more operations as a standalone 3-point linear convolution algorithm, but more importantly, would have no chance of being part of a larger optimum algorithm.

Combining Table 6.1 and Theorem 24 gives a method to calculate the operations required for any combination of the algorithms shown in Table 6.1. There is still a significant search problem however, since there are many ways of combining linear convolutions and since $\mathcal{L}_x \otimes \mathcal{L}_y$ will often require a different number of operations than $\mathcal{L}_y \otimes \mathcal{L}_x$. As an example, consider Table 6.2 showing 16 different ways to compute a convolution of size 6. Similarly there are 384 ways to compute a 36-point linear convolution, 512 ways to compute a 54-point linear convolution and so on. Note that the best algorithm for convolving real vectors is not the best for convolving complex vectors.

Just as all combinations of algorithms that yield size 6 convolutions were shown in Table 6.2, a similar table could be created for any size from 2 to 1024. From that table, the algorithm that minimized the number of operations could be chosen. There are more than 1.6 million different algorithm combinations for computing all possible linear convolutions through 1024. The combinations that minimize operation counts for real vectors are shown in Table 6.3. The combinations that minimize operations for complex vectors are shown in Table 6.4.

	· · · · ·		1				Total	Total
						Rowdim(B)	Flops	Flops
						Diagonal	Real	Complex
Р	Method	Adds(B)	Multiplies(B)	$Adds(A^{T})$	Multiplies(A ^T)	Multiplies	Inputs	Inputs
2	s2	0	0	2	0	4	6	28
2	t2	1	0	2	0	3	6	24
3	4c3	4	0	7	0	6	17	58
3	413	4	0	9	0	9	22	80
3	s3	0	0	6	0	9	15	66
3	t3	7	0	9	0	5	21	62
5	8c5	14	0	22	0	13	49	150
5	s5	0	0	20	0	25	45	190
5	t5	19	12	23	12	9	75	186
7	12c7a	44	0	58	0	21	123	330
7	12c7b	25	0	43	0	25	93	286
7	12c7c	34	7	49	7	22	119	326
7	12c7d	38	7	52	7	21	125	334
7	8L7	19	0	38	0	27	84	276
7	s7	0	0	42	0	49	91	378
7	t7	41	30	47	30	13	161	374
11	12La11	60	0	102	0	54	216	648
11	12Lb11	63	0	96	0	45	204	588
11	20c11a	86	0	117	0	42	245	658
11	20c11b	76	0	108	0	43	227	626
11	20c11c	59	0	94	0	46	199	582
11	s11	0	0	110	0	121	231	946
11	t11	109	90	119	90	21	429	942
13	14L13a	109	0	188	0	63	360	972
13	14L13b	49	0	140	0	147	336	1260
13	14L13c	75	0	143	0	75	293	886
13	14L13d	133	0	155	0	65	353	966
13	16L13	65	0	130	0	81	276	876
13	24c13	128	0	172	0	57	357	942
13	s13	0	0	156	0	169	325	1326
13	t13	155	132	167	132	25	611	1322
17	t17	271	240	287	240	33	1071	2274
23	t23	505	462	527	462	45	2001	4182
29	t29	811	756	839	756	57	3219	6666

Table 6.1: Operation Counts for P-Point Linear Convolutions (Assumed to be Embedded in Cyclic Convolutions using Matrix Exchange and 1 fixed Vector)

6.4 Operation Counts for Any Size Cyclic Convolution

In this section, a formula for counting operations for any size cyclic convolution will be presented. Recall from section 3.3.4 that any size cyclic convolution could be constructed by combining prime power cyclic convolutions via the split-nesting algorithm. Let

$$\mathcal{C}_p^k = R_{p^k}^{-1} \left(\bigoplus_{i=0}^k M(\Phi_{p^i}(x)\mathcal{L}_{\phi(p^i)}) \right) R_{p^k}$$

be a prime power cyclic convolution, and let $N = p_1^{k_1} p_2^{k_2} \dots p_l^{k_l}$, then

$$\mathcal{C}_N = Q^{-1} \left(\bigotimes_{i=1}^l R_{p_i^{k_i}}^{-1} \right) \left(\bigotimes_{i=1}^l \mathcal{C}_{p_i^{k_i}}^{-k_i} \right) \left(\bigotimes_{i=1}^l R_{p_i^{k_i}}^{-k_i} \right) Q$$
(6.3)

r		r	,			m 1	m 1
	'				'	Total	Total
				l I	Rowdim(B)	Flops	Flops
	!				Diagonal	Real	Complex
Method	Adds(B)	Multiplies(B)	$Adds(A^{T})$	$Multiplies(A^T)$	Multiplies	Inputs	Inputs
s3⊗t2	3	0	24	0	27	54	216
t2⊗4c3	14	0	26	0	18	58	188
s2⊗4c3	8	0	26	0	24	58	212
4c3⊗t2	15	0	27	0	18	60	192
t2⊗t3	19	0	28	0	15	62	184
s3⊗s2	0	0	30	0	36	66	276
s2⊗s3	0	0	30	0	36	66	276
s2⊗t3	0	0	30	0	36	66	276
t2⊗s3	9	0	30	0	27	66	240
t3⊗t2	24	0	33	0	15	72	204
4c3⊗s2	16	0	34	0	24	74	244
4L3⊗t2	15	0	33	0	27	75	258
t2⊗4L3	17	0	36	0	27	80	268
s2⊗4L3	8	0	36	0	36	80	304
t3⊗s2	28	0	42	0	20	90	260
4L3⊗s2	16	0	42	0	36	94	332

Table 6.2: Different Methods for Computing 6-Point Linear Convolutions

is an N-point cyclic convolution via the Agarwal-Cooley algorithm. (Note that Q and Q^{-1} are permutation matrices defined in section 3.3.4.) Now by the split-nesting algorithm,

$$\bigotimes_{i=1}^{l} \mathcal{C}_{p_{i}^{k_{i}}} = P_{1}\left(\bigoplus_{i_{1}=0}^{k_{1}} \bigoplus_{i_{2}=0}^{k_{2}} \dots \bigoplus_{i_{l}=0}^{k_{l}} \Phi_{p^{i_{1}}}(x) \mathcal{L}_{\phi(p^{i_{1}})} \otimes \Phi_{p^{i_{2}}}(x) \mathcal{L}_{\phi(p^{i_{2}})} \otimes \dots \otimes \Phi_{p^{i_{l}}}(x) \mathcal{L}_{\phi(p^{i_{l}})}\right) P_{2},$$

where P_1 and P_2 are permutation matrices as defined in section 3.3.4. Since permutation matrices cost 0 operations, and since the reduction matrices are precomputed via matrix exchange, it follows that

$$flops\left(\bigotimes_{i=1}^{l} \mathcal{C}_{p_{i}^{k_{i}}}\right) = flops\left(\bigoplus_{i_{1}=0}^{k_{1}} \bigoplus_{i_{2}=0}^{k_{2}} \dots \bigoplus_{i_{l}=0}^{k_{l}} \mathcal{L}_{\phi(p^{i_{1}})} \otimes \mathcal{L}_{\phi(p^{i_{2}})} \otimes \dots \otimes \mathcal{L}_{\phi(p^{i_{l}})}\right)$$
$$= flops\left(\bigoplus_{i_{1}=0}^{k_{1}} \bigoplus_{i_{2}=0}^{k_{2}} \dots \bigoplus_{i_{l}=0}^{k_{l}} \mathcal{L}_{\phi(p^{i_{1}})\phi(p^{i_{2}})\dots\phi(p^{i_{l}})}\right)$$
$$= \sum_{i_{1}=0}^{k_{1}} \sum_{i_{2}=0}^{k_{2}} \dots \sum_{i_{l}=0}^{k_{l}} flops(\mathcal{L}_{\phi(p^{i_{1}})\phi(p^{i_{2}})\dots\phi(p^{i_{l}})}).$$
(6.4)

 R_{p^k} and $R_{p^k}^T$ require $2(p^k - 1)$ additions each; this is easily seen by an induction on the factorization of R_{p^k} provided in Theorem 16. It follows that

$$flops\left(\bigotimes_{i=1}^{l} R_{p_{i}^{k_{i}}}\right) = flops\left(\left(\bigotimes_{i=1}^{l} R_{p_{i}^{k_{i}}}\right)^{T}\right)$$
$$= \sum_{i=1}^{l} \frac{p_{1}^{k_{1}} p_{2}^{k_{2}} \dots p_{l}^{k_{l}}}{p_{i}^{k_{i}}} 2(p_{i}^{k_{i}} - 1) additions.$$
(6.5)

Note that the operations required for $\bigotimes_{i=1}^{l} R_{p_i^{k_i}}^{-1}$ can be derived in a similar manner; however, because of matrix exchange, they are not included in the cost of the convolution.

The following theorem follows directly from (6.3), (6.4), and (6.5).

Theorem 25 (Operation Counts for Size N Cyclic Convolution)

Let $N = p_1^{k_1} p_2^{k_2} \dots p_l^{k_l}$, and let C_N be a size N cyclic convolution. If the vectors to be convolved are real, then

$$flops(\mathcal{C}_N) = \sum_{i_1=0}^{k_1} \sum_{i_2=0}^{k_2} \dots \sum_{i_l=0}^{k_l} flops(\mathcal{L}_{\phi(p^{i_1})\phi(p^{i_2})\dots\phi(p^{i_l})}) + 4\sum_{i=1}^l \frac{p_1^{k_1} p_2^{k_2} \dots p_l^{k_l}}{p_i^{k_i}} (p_i^{k_i} - 1).$$

If the vectors to be convolved are complex, then

$$flops(\mathcal{C}_N) = \sum_{i_1=0}^{k_1} \sum_{i_2=0}^{k_2} \dots \sum_{i_l=0}^{k_l} flops(\mathcal{L}_{\phi(p^{i_1})\phi(p^{i_2})\dots\phi(p^{i_l})}) + 8\sum_{i=1}^l \frac{p_1^{k_1} p_2^{k_2} \dots p_l^{k_l}}{p_i^{k_i}} (p_i^{k_i} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_i}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_i}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_2^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} - 1) + 8\sum_{i_l=0}^l \frac{p_1^{k_l} p_1^{k_l} \dots p_l^{k_l}}{p_i^{k_l}} (p_i^{k_l} \dots p_l^{k_l}) (p_i^{k_l} \dots p_l^{k_l} p_l^{k_l} \dots p_l^{k_l}) (p_i^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{k_l}) (p_i^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{k_l}) (p_i^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{k_l} \dots p_l^{$$

Proof

From (6.3),

$$flops(\mathcal{C}_N) = flops\left(\bigotimes_{i=1}^{l} \mathcal{C}_{p_i^{k_i}}\right) + flops\left(\bigotimes_{i=1}^{l} R_{p_i^{k_i}}\right) + flops\left(\left(\bigotimes_{i=1}^{l} R_{p_i^{k_i}}\right)^T\right).$$

The formulas now follow from (6.4), and (6.5).

Example 17 To compute the cost of a size 108 cyclic convolution on real vectors using matrix exchange and one fixed vector, observe that $108 = 2^2 \times 3^3$. From Theorem 25 and Table 6.3, it follows that

$$flops(\mathcal{C}_{108}) = flops(\mathcal{L}_{\phi(1)}) + flops(\mathcal{L}_{\phi(3)}) + flops(\mathcal{L}_{\phi(9)}) + flops(\mathcal{L}_{\phi(27)}) + flops(\mathcal{L}_{\phi(2)}) + flops(\mathcal{L}_{\phi(6)}) + flops(\mathcal{L}_{\phi(18)}) + flops(\mathcal{L}_{\phi(54)}) + flops(\mathcal{L}_{\phi(4)}) + flops(\mathcal{L}_{\phi(12)}) + flops(\mathcal{L}_{\phi(36)}) + flops(\mathcal{L}_{\phi(108)}) + 4(27 \times 3 + 4 \times 26) = flops(\mathcal{L}_1) + flops(\mathcal{L}_2) + flops(\mathcal{L}_6) + flops(\mathcal{L}_{18}) + flops(\mathcal{L}_1) + flops(\mathcal{L}_2) + flops(\mathcal{L}_6) + flops(\mathcal{L}_{18}) + flops(\mathcal{L}_2) + flops(\mathcal{L}_4) + flops(\mathcal{L}_{12}) + flops(\mathcal{L}_{36}) + 740 = 1 + 6 + 54 + 366 + 1 + 6 + 54 + 366 + 6 + 24 + 180 + 1092 + 740 = 2896.$$

The use of the improved split-nesting algorithm in this case saves 120 operations over the method published in [22].

Operation counts of cyclic convolutions for most sizes through 1000 are shown in Table 6.5. This table compares the improved split-nesting costs with the FFT-based cyclic convolution costs presented in chapter 5. In order to conserve space, the improved split-nesting counts show the difference between the convolution theorem counts rather than actual counts. For example, for real inputs, the split-nesting algorithm of size two uses four fewer flops than the ten required for the FFT-based convolution theorem algorithm of size two. The cases where the improved split-nesting algorithm uses fewer operations are noted in gray.

Also to conserve space all sizes that contain a prime factor equal or greater than 29 are removed. As a rule, these sizes tend to be poor choices for either algorithm, (reduced larger composite sizes can be used), although the improved split-nesting algorithm uses fewer operations in general for these sizes. Specifically, for convolutions on real inputs the improved split-nesting algorithm uses fewer operations for about 90% of the sizes between 2 and 200 and more than half the sizes between 2 and 500. Beyond that, the FFT-based algorithms outperform the CRT-based algorithms in general. For complex inputs, the window is much smaller. The CRT-based algorithms outperform the FFT-based methods for only 48% of the sizes between 2 and 100, and even less for larger sizes.

Figure 6.1 illustrates how the improved split-nesting algorithm performs in various size ranges for both real and complex inputs.

6.5 Mixed Algorithms for Cyclic Convolutions

Table 6.5 shows that the improved split-nesting algorithm uses fewer operations than the FFT-based algorithm in many cases, but the counts can often be further improved by computing the convolution partially via the improved split-nesting algorithm and partially via the FFT. This is generally the case for size N = mn, where the improved split-nesting algorithm is optimal for size m and the convolution theorem using the FFT is optimal for size n. This occurs for many cases when $N = m \cdot 2^k$.

By the mixed convolution theorem (Theorem 14), a size mn cyclic convolution can be created via a size m cyclic convolution constructed from the convolution theorem and a size n cyclic convolution constructed from the CRT methods. The following theorem quantifies the savings from mixing algorithms compared to using the convolution theorem.

Theorem 26 (Mixed Complex Cyclic Convolution Count Savings)

Let $ct_m = (F_m^{-1}, F_m, F_m)$ and $sn_m = (C_m, A_m, B_m)$ be cyclic convolutions of size m based on the convolution theorem and the CRT respectively. Suppose one vector is fixed and matrix exchange is used, and sn_m uses k fewer operations than ct_m (that is $flops(ct_m) = flops(sn_m) + k$). Then a size

Proof

Let \mathcal{U}_1 be the CRT-based convolution algorithm of size m after matrix exchange is applied, and let \mathcal{U}_2 be an FFT-based convolution algorithm of size m after matrix exchange is applied, so that

$$\begin{aligned} \mathcal{U}_1 &= J_m A_1^T D_1 B_1 \\ \mathcal{U}_2 &= J_m F_m D_2 F_m, \end{aligned}$$

with, $D_1 = C_1^T J_m \mathbf{v_1}$ and $D_2 = F_m^{-1} J_m \mathbf{v_2}$.

By the statement of the theorem $flops(\mathcal{U}_2) = flops(\mathcal{U}_1) + k$. Now let \mathcal{W}_1 be a mixed algorithm of size mn and let \mathcal{W}_2 be an FFT-based convolution theorem algorithm of size mn. That is

$$\mathcal{W}_1 = J_{mn}(F_n \otimes I_m)(I_n \otimes A_1^T)D'_1(I_n \otimes B_1)(F_n \otimes I_m)$$

$$\mathcal{W}_2 = J_{mn}F_{mn}D'_2F_{mn}$$

$$= J_{mn}(F_n \otimes I_m)T_m^{mn}(I_n \otimes F_m)D'_2(I_n \otimes F_m)T_m^{mn}(F_n \otimes I_m).$$

Now, observe that $flops(D'_1) = n \cdot flops(D_1)$ and $flops(D'_2) = n \cdot flops(D_2)$ and also $flops(J_{mn}) = n \cdot flops(J_m) = 0$. Also note that, $flops((I_n \otimes A^T)D'_1(I_n \otimes B_1)) = n \cdot flops(\mathcal{U}_1)$. Similarly, $flops((I_n \otimes F_m)D'_2(I_n \otimes F_m)) = n \cdot flops(\mathcal{U}_2)$. Thus

$$\begin{aligned} flops(\mathcal{W}_1) &= 2m \cdot flops(F_n) + n \cdot flops(\mathcal{U}_1) \\ flops(\mathcal{W}_2) &= 2m \cdot flops(F_n) + 2 \cdot flops(T_m^{mn}) + n \cdot flops(\mathcal{U}_2) \\ &= 2m \cdot flops(F_n) + 2 \cdot flops(T_m^{mn}) + n \cdot (flops(\mathcal{U}_1) + k). \end{aligned}$$

It follows that $flops(\mathcal{W}_2) = flops(\mathcal{W}_1) + 2 \cdot flops(T_m^{mn}) + nk$. (Note that the $2 \cdot flops(T_n^{mn})$ can be avoided by choosing a factorization so that gcd(m, n) = 1 as discussed in chapter 5.) Thus the initial advantage increases with the size of n.

Note that when the inputs are real, a similar Theorem exists, but the advantage is less significant since at least part of sm_n will act on complex vectors.

Example 18 From Tables 5.1 and 6.5 and Theorem 26, the cost of the size $112 = 7 \times 16$ convolution on complex inputs is $16 \times 238 + 2 \times 7 \times 176 = 6272$ operations. The 6272 operations for the mixed convolution are considerably fewer than the 7616 operations required by a pure FFT solution or the 9448 operations required by the improved split-nesting algorithm. Moreover, the operation count advantage will increase for size $224 = 7 \times 32$, size $448 = 7 \times 64$ and so on.

Size	Method	Flops	Size	Method	Flops
2	t2	6	169-180	s3⊗t2⊗t2⊗t3⊗t5	12204
3	s3	15	181-189	s3⊗t3⊗t3⊗t7	13863
4	t2⊗t2	24	190-200	t2⊗t2⊗t2⊗t5⊗t5	14196
5	s5	45	201-210	s3⊗t2⊗t5⊗t7	15906
6	s3⊗t2	54	211-224	t2⊗t2⊗t2⊗t2⊗t2⊗t7	16124
7-8	t2⊗t2⊗t2	84	225-240	$t2 \otimes t2 \otimes t2 \otimes t2 \otimes t3 \otimes t5$	17892
9	s3⊗t3	123	241-252	s3⊗t2⊗t2⊗t3⊗t7	19524
10	t2⊗8c5	150	253-264	t2⊗t2⊗t2⊗t3⊗t11	21300
11-12	s3⊗t2⊗t2	180	265-280	t2⊗t2⊗t2⊗t5⊗t7	22612
13-14	8L7⊗t2	273	281-300	s3⊗t2⊗t2⊗t5⊗t5	25668
15-16	t2⊗t2⊗t2⊗t2	276	301-312	t2⊗t2⊗t2⊗t3⊗t13	27764
17-18	s3⊗t2⊗t3	366	313-336	t2⊗t2⊗t2⊗t2⊗t3⊗t7	28372
19-20	t2⊗t2⊗8c5	456	337-352	t2⊗t2⊗t2⊗t2⊗t2⊗t11	31452
21	8L7⊗t3	532	353-360	t2⊗t2⊗t2⊗t3⊗t3⊗t5	32868
22-24	t2⊗t2⊗t2⊗t3	548	361-378	s3⊗t2⊗t3⊗t3⊗t7	35526
25	s5⊗t5	735	379-400	t2⊗t2⊗t2⊗t2⊗t5⊗t5	37140
26-27	s3⊗t3⊗t3	759	401-420	s3⊗t2⊗t2⊗t5⊗t7	40236
28	8L7⊗t2⊗t2	861	421-440	t2⊗t2⊗t2⊗t5⊗t11	43284
29-32	t2⊗t2⊗t2⊗t2⊗t2	876	441-448	t2⊗t2⊗t2⊗t2⊗t2⊗t2⊗t7	44884
33-36	s3⊗t2⊗t2⊗t3	1092	449-450	s3⊗t2⊗t3⊗t5⊗t5	46278
37-40	t2⊗t2⊗t2⊗t5	1284	451-468	s3⊗t2⊗t2⊗t3⊗t13	48396
41-42	8L7⊗t2⊗t3	1589	469-480	t2⊗t2⊗t2⊗t2⊗t3⊗t5	50364
43-48	t2⊗t2⊗t2⊗t2⊗t3	1636	481-504	t2⊗t2⊗t2⊗t3⊗t3⊗t7	51268
49-50	t2⊗8c5⊗t5	2010	505-528	t2⊗t2⊗t2⊗t2⊗t3⊗t11	53940
51-54	s3⊗t2⊗t3⊗t3	2118	529-560	t2⊗t2⊗t2⊗t2⊗t5⊗t7	57860
55-56	t2⊗t2⊗t2⊗t7	2276	561-588	s3⊗t2⊗t2⊗t7⊗t7	65940
57-60	s3⊗t2⊗t2⊗t5	2412	589-594	s3⊗t2⊗t3⊗t3⊗t11	66510
61-64	t2⊗t2⊗t2⊗t2⊗t2⊗t2	2724	595-600	t2⊗t2⊗t2⊗t3⊗t5⊗t5	66564
65-72	t2⊗t2⊗t2⊗t3⊗t3	3124	601-624	t2⊗t2⊗t2⊗t2⊗t3⊗t13	69028
73-80	t2⊗t2⊗t2⊗t2⊗t5	3540	625-630	s3⊗t2⊗t3⊗t5⊗t7	71586
81-84	s3⊗t2⊗t2⊗t7	4116	631-660	s3⊗t2⊗t2⊗t5⊗t11	75132
85-90	s3⊗t2⊗t3⊗t5	4482	661-672	t2⊗t2⊗t2⊗t2⊗t3⊗t7	77804
91-96	t2⊗t2⊗t2⊗t2⊗t3	4892	673-704	t2⊗t2⊗t2⊗t2⊗t2⊗t2⊗t11	83316
97-100	t2⊗t2⊗8c5⊗t5	5424	705-728	t2⊗t2⊗t2⊗t7⊗t13	89716
101-112	t2⊗t2⊗t2⊗t2⊗t7	5956	729-784	t2⊗t2⊗t2⊗t2⊗t7⊗t7	94004
113-120	t2⊗t2⊗t2⊗t3⊗t5	6516	785-792	t2⊗t2⊗t2⊗t3⊗t3⊗t11	94980
121-126	s3⊗t2⊗t3⊗t7	7422	793-800	t2⊗t2⊗t2⊗t2⊗t5⊗t5	100524
127-128	t2⊗t2⊗t2⊗t2⊗t2⊗t2	8364	801-840	t2⊗t2⊗t2⊗t3⊗t5⊗t7	102468
129-135	s3⊗t3⊗t3⊗t5	8613	841-880	t2⊗t2⊗t2⊗t2⊗t5⊗t11	106980
136-140	t2⊗t2⊗8c5⊗t7	8888	881-882	s3⊗t2⊗t3⊗t7⊗t7	115134
141-144	t2⊗t2⊗t2⊗t2⊗t3⊗t3	8948	883-936	t2⊗t2⊗t2⊗t3⊗t3⊗t13	120292
145-150	s3⊗t2⊗t5⊗t5	9918	937-990	s3⊗t2⊗t3⊗t5⊗t11	130842
151-160	t2⊗t2⊗t2⊗t2⊗t5	9996	991-1040	t2⊗t2⊗t2⊗t2⊗t5⊗t13	135380
161-168	t2⊗t2⊗t2⊗t3⊗t7	10676			

Table 6.3: Linear Convolutions that Minimize Operations for Real Inputs (Assumed to be Embedded in Circular Convolutions with Matrix Exchange Applied to one Fixed Input)

Size	Method	Flops	Size	Method	Flops
2	t2	24	209-210	t2⊗t3⊗t5⊗t7	40704
3	4c3	58	211-220	t2⊗t2⊗t5⊗t11	43284
4	t2⊗t2	84	221-224	$t2 \otimes t2 \otimes t2 \otimes t2 \otimes t2 \otimes t7$	44884
5	8c5	150	225	4c3⊗t3⊗t5⊗t5	47898
6	t2⊗t3	184	226-234	t2⊗t3⊗t3⊗t13	48896
7-8	t2⊗t2⊗t2	276	235-240	t2⊗t2⊗t2⊗t2⊗t3⊗t5	50364
9	4c3⊗t3	386	241-252	t2⊗t2⊗t3⊗t3⊗t7	51268
10	t2⊗8c5	456	253-264	t2⊗t2⊗t2⊗t3⊗t11	53940
11-12	t2⊗t2⊗t3	548	265-280	t2⊗t2⊗t2⊗t5⊗t7	57860
13-14	8L7⊗t2	870	281-300	t2⊗t2⊗t3⊗t5⊗t5	66564
15-16	t2⊗t2⊗t2⊗t2	876	301-312	t2⊗t2⊗t2⊗t3⊗t13	69028
17-18	t2⊗t3⊗t3	1112	313-315	4c3⊗t3⊗t5⊗t7	73926
19-20	t2⊗t2⊗t5	1284	316-330	t2⊗t3⊗t5⊗t11	75888
21	8L7⊗t3	1604	331-336	t2⊗t2⊗t2⊗t2⊗t3⊗t7	77804
22-24	t2⊗t2⊗t2⊗t3	1636	337-352	t2⊗t2⊗t2⊗t2⊗t2⊗t11	83316
25	8c5⊗t5	2010	353-364	t2⊗t2⊗t7⊗t13	89716
26-27	4c3⊗t3⊗t3	2218	365-392	t2⊗t2⊗t2⊗t7⊗t7	94004
28	t2⊗t2⊗t7	2276	393-396	t2⊗t2⊗t3⊗t3⊗t11	94980
29-30	t2⊗t3⊗t5	2448	397-400	t2⊗t2⊗t2⊗t2⊗t5⊗t5	100524
31-32	t2⊗t2⊗t2⊗t2⊗t2	2724	401-420	t2⊗t2⊗t3⊗t5⊗t7	102468
33-36	t2⊗t2⊗t3⊗t3	3124	421-440	t2⊗t2⊗t2⊗t5⊗t11	106980
37-40	t2⊗t2⊗t2⊗t5	3540	441	4c3⊗t3⊗t7⊗t7	118514
41-42	t2⊗t3⊗t7	4168	442-468	t2⊗t2⊗t3⊗t3⊗t13	120292
43-45	4c3⊗t3⊗t5	4662	469-476	t2⊗t2⊗t7⊗t17	133236
46-48	t2⊗t2⊗t2⊗t2⊗t3	4892	477-495	4c3⊗t3⊗t5⊗t11	134622
49-50	t2⊗8c5⊗t5	5424	496-520	t2⊗t2⊗t2⊗t5⊗t13	135380
51-56	t2⊗t2⊗t2⊗t7	5956	521-528	t2⊗t2⊗t2⊗t2⊗t3⊗t11	141900
57-60	t2⊗t2⊗t3⊗t5	6516	529-546	t2⊗t3⊗t7⊗t13	153424
61-63	4c3⊗t3⊗t7	7682	547-560	t2⊗t2⊗t2⊗t2⊗t5⊗t7	153628
64	t2⊗t2⊗t2⊗t2⊗t2⊗t2	8364	561-588	t2⊗t2⊗t3⊗t7⊗t7	163652
65-66	t2⊗t3⊗t11	8760	589-616	t2⊗t2⊗t2⊗t7⊗t11	170772
67-70	t2⊗8c5⊗t7	8888	617-624	t2⊗t2⊗t2⊗t2⊗t3⊗t13	178556
71-72	t2⊗t2⊗t2⊗t3⊗t3	8948	625-660	t2⊗t2⊗t3⊗t5⊗t11	185796
73-80	t2⊗t2⊗t2⊗t2⊗t5	9996	661-680	t2⊗t2⊗t2⊗t5⊗t17	199860
81-84	t2⊗t2⊗t3⊗t7	10676	681-693	4c3⊗t3⊗t7⊗t11	212730
85-88	t2⊗t2⊗t2⊗t11	12324	694-700	t2⊗t2⊗t5⊗t5⊗t7	214148
89-90	t2⊗t3⊗t3⊗t5	12384	701-728	t2⊗t2⊗t2⊗t7⊗t13	214532
91-100	t2⊗t2⊗t5⊗t5	14196	729-780	t2⊗t2⊗t3⊗t5⊗t13	233220
101-112	t2⊗t2⊗t2⊗t2⊗t7	16124	781-784	t2⊗t2⊗t2⊗t2⊗t7⊗t7	242764
113-120	t2⊗t2⊗t2⊗t3⊗t5	17892	785-792	t2⊗t2⊗t2⊗t3⊗t3⊗t11	246660
121-126	t2⊗t3⊗t3⊗t7	19784	793-816	t2⊗t2⊗t2⊗t2⊗t3⊗t17	261084
127-132	t2⊗t2⊗t3⊗t11	21300	817-819	4c3⊗t3⊗t7⊗t13	265886
133-140	t2⊗t2⊗t5⊗t7	22612	820-840	t2⊗t2⊗t2⊗t3⊗t5⊗t7	268116
141-150	t2⊗t3⊗t5⊗t5	25992	841-880	t2⊗t2⊗t2⊗t2⊗t5⊗t11	275196
151-156	t2⊗t2⊗t3⊗t13	27764	881-924	t2⊗t2⊗t3⊗t7⊗t11	292740
157-168	t2⊗t2⊗t2⊗t3⊗t7	28372	925-936	t2⊗t2⊗t2⊗t3⊗t3⊗t13	308084
169-176	t2⊗t2⊗t2⊗t2⊗t11	31452	937-952	t2⊗t2⊗t2⊗t7⊗t17	312804
177-180	t2⊗t2⊗t3⊗t3⊗t5	32868	953-968	t2⊗t2⊗t2⊗t11⊗t11	330612
181-189	4c3⊗t3⊗t3⊗t7	36826	969-990	t2⊗t3⊗t3⊗t5⊗t11	333504
190-200	t2⊗t2⊗t2⊗t5⊗t5	37140	991-1020	t2⊗t2⊗t3⊗t5⊗t17	339588
201-208	t2⊗t2⊗t2⊗t2⊗t13	40652	1021-1040	t2⊗t2⊗t2⊗t2⊗t5⊗t13	343660

Table 6.4: Linear Convolutions that Minimize Operations for Complex Inputs (Assumed to be Embedded in Circular Convolutions with Matrix Exchange Applied to one Fixed Input)

	Flops Complex		Flops	Flops Real		Flops C	omplex	Flop	s Real		Flops Complex		Flops Real	
	Inpu	its	Inp	outs		Inp	uts	Inj	outs		Inpu	its	Inp	outs
		st		st			st		st			st		st
	R	-Ne	ц	-Ne		ц	-Ne	n	-Ne		я	-Ne	и	-Ne
	Thr	plit	Thr	plit		Thr	plit	Thr	plit		Thr	plit	Thı	plit
	, . ,	. S]	, .VI	. S		, . ,	. S]	, .vr	. S]	•	, . ,	. S]	, . ,	. S]
size	Cor	Imp	Cor	Imp	size	Cor	Imp	Cor	Imp	size	Cor	Imp	Cor	Imp
2	20	0	10	-4	55	4802	36	2509	-674	133	16702	2644	8615	-1278
3	58	-12	33	-18	56	3416	32	1816	-560	135	10914	3260	5725	-566
4	56	4	32	-12	57	5638	-636	2931	-1098	136	10024	4912	5280	-108
5	142	-20	79	-38	60	2984	120	1608	-456	138	19728	-4728	10436	-4882
6	140	-24	78	-36	63	4914	36	2581	-754	140	10696	1560	5624	-1116
7	322	-84	173	-94	64	2832	1668	1540	-20	143	16498	4500	8533	-638
8	168	8	96	-36	65	5126	1300	2691	-402	144	8640	2588	4604	-568
9	342	-64	187	-94	66	5428	-792	2842	-1068	147	15898	1644	8241	-1327
10	324	-40	178	-76	68	4536	896	2400	-504	150	11372	1608	5982	-996
11	714	-172	3/7	-186	69	8640	-1416	4604	-1965	152	15288	1344	7944	-1856
12	328	-24	184	-72	70	2016	-40	2670	-812	153	138/8	6372	7243	-18
13	734	-84	391	-102	75	5296	280	2048	-552	154	10//2	1944	6276	-2060
14	626	-108	2/4	-100	75	7112	804 606	2841	-498	150	0424	1848	5028	-1252
15	020	-00	252	-136	70	8078	-090	3704 /101	-1330	161	25376	0320 86	13452	3068
10	908	12	531	-70	78	5756	-24	3030	-1030	162	13524	2968	7082	-3008
18	756	-128	410	-190	80	4032	1520	2172	-216	165	16606	2196	8631	-1028
19	1626	-364	849	-410	81	6438	1484	3379	-514	168	12488	1440	6576	-1432
20	728	0	400	-136	84	5656	-312	2992	-988	169	19798	9864	10235	614
21	1246	-228	663	-294	85	6894	3620	3615	2	170	14468	7240	7570	4
22	1516	-344	798	-372	88	7032	80	3688	-988	171	20106	2980	10393	-1662
23	1984	-166	1084	-447	90	5796	200	3074	-852	175	17234	6396	8965	-94
24	824	0	456	-156	91	8778	2204	4569	-562	176	15296	3432	7996	-1000
25	1462	104	779	-202	92	11056	-1830	5908	-2540	180	12312	2320	6512	-1116
26	1572	-168	834	-324	95	10258	1220	5317	-1138	182	18284	4408	9502	-1124
27	1578	-44	841	-310	96	4784	1752	2580	-288	184	25376	-2302	13452	-4858
28	1512	-200	808	-332	98	9684	192	5034	-1166	187	21994	10484	11369	438
30	1372	-120	742	-276	99	9594	300	4993	-1202	189	18606	5452	9679	-594
32	1168	352	644	-128	100	6648	1308	3520	-500	190	21276	2440	11014	-2276
33	2582	-396	1355	-534	102	7756	1224	4078	-900	192	11056	7848	5908	624
34	2132	24	1130	-380	104	7432	1808	3920	-596	195	17978	7412	9377	-142
35	2394	-20	1265	-406	105	8582	1020	4499	-990	196	20152	2524	10464	-1518
30	1656	-100	896	-328	108	/1/6	/36	5229	-904	198	19980	5794	10382	-2404
38 20	5404 2722	-728	1//4	-820	110	7616	1822	3238	-1348	200	14090	5076	8569	-100
39 40	1736	-12	1437 Q/A	-4.54	112	11732	-1272	4028 6000	-030	204	34672	-3804	17080	-090
40	2660	-456	1410	-230	114	15296	370	8124	-2190	207	16320	-3004	8572	528
44	3208	-392	1688	-632	117	10350	2692	5407	-646	200	30198	7348	15515	-1242
45	2718	100	1447	-426	119	11746	5228	6109	-30	210	18004	2040	9418	-1980
46	4784	-964	2580	-1214	120	6808	1440	3640	-636	216	15864	4688	8360	-836
48	1984	312	1084	-264	121	15488	2058	8252	-1665	220	20968	3112	10920	-1752
49	4646	96	2419	-583	125	11262	5300	5879	522	221	24126	17740	12503	3798
50	3124	208	1658	-404	126	10332	72	5414	-1508	224	17136	9048	9012	380
51	3674	612	1937	-450	128	6752	6624	3628	872	225	20358	7896	10627	10
52	3352	112	1776	-512	130	10772	2600	5642	-804	228	24376	648	12640	-3308
54	3372	-88	1790	-620	132	11384	-456	5952	-1728	230	34672	-2420	18292	-6106

Table 6.5: Comparison of Op Counts for Improved Split-Nesting versus FFT-Based Convolution

Inputs Inputs Inputs Inputs Inputs Inputs Split-Nest Split-Nest Split-Nest Split-Nest Split-Nes Split-Nes Thm onv. Thm Conv. Thm onv. Thm onv. Thm Conv. Thm Conv. mp. mp. np. mp. mp. np. ize ize -2094 -7555 -4570 -1292 -188 -3092 -60 -422 -3488 -256 -211 -2316 -532 -3266 -1984 -7562 -69 -1188 -24 -1836 -2316 -2556 -384 -1132 -284 -1943 -1000-558 -2900 -8930 -9362 -786 -496 -1458 -1276 -6802 -14120 -8572 -11206 -2654 -2484 -2916 -146 -1804 -1047 -792 -652 -36 -252 -2242 -452 -58 -292 -4492 -8472 -5862 -216 -2984 -3036 -3046 -10956

Table 6.5 (continued)

Flops Real

Flops Complex

Flops Complex

ize

-604

-3324

-4188

-2480

Flops Real

Flops Real

Flops Complex

	Flops Co	omplex	Flops	s Real		Flops C	Complex	Flop	s Real
	Inpu	its	Inp	outs		Inp	outs	Inj	outs
	, n	-Nest	n	-Nest		, n	-Nest	n	-Nest
	. Thr	Split	. Thr	Split		. Thr	Split	. Thr	Split
e	Nuc	ıp. dı	Nuc	ıp. dı	se	NUC	.dı	NUC	.dı
siz	Ŭ	Im	Ŭ	In	siz	ŭ	In	Ŭ	In
630	65772	26752	34142	-116	810	85764	52080	44498	7812
637	92542	66388	47543	13521	816	76736	64752	39996	15480
640	48096	61088	25324	16928	819	105210	69400	54241	15098
644	119672	-1038	61120	-12962	825	107846	67044	55571	11418
646	91916	57544	47246	11548	828	147240	-2842	75272	-17332
648	61224	37128	31904	5176	832	78800	90856	41060	25328
650	73412	53336	38002	8572	833	122886	109204	63107	27909
660	71704	20584	3/168	-2160	836	12/480	52984	65408	3172
663	81218	69164	41933	18002	840	81256	39896	42304	3688
665	98406	50524	50531	9754	845	117918	106060	60647	26282
672	60368	38912	31524	5836	847	147154	74456	75269	14700
675	74874	60212	38785	11738	850	97908	91424	50650	21220
676	84600	52156	43648	9740	855	119682	62840	61549	10954
680	65352	55128	34032	12788	858	113860	51144	58642	3148
684	85896	25416	44312	-1736	864	76848	70276	40148	15120
686	102140	47920	52438	6294	867	117370	109080	60417	26982
690	122516	-5452	62634	-16596	874	169888	42388	88780	-4266
693	94878	46292	48823	4738	875	113834	105164	58665	27394
700	74536	41656	38664	4804	880	96192	63948	49852	10920
702	79260	45624	41030	6476	882	115380	41696	59450	2138
704	72624	62028	37716	12832	884	103576	90440	53552	23568
714	82852	45480	42850	6580	891	123306	92044	63433	18954
715	98506	78590	50681	17002	896	83104	95296	43340	25980
720	59328	40984	31100	6596	897	169888	52736	88780	-1485
722	127040	50476	66394	1568	900	88632	50532	46112	6112
726	109676	25216	56286	-4632	910	111804	76344	57718	15964
728	81144	55068	42024	9984	912	110272	58064	56956	6684
729	88950	87150	45931	21470	918	105708	83320	54686	18420
735	95954	47100	49445	5033	920	161208	19274	82440	-12482
736	123888	23746	63412	-6482	924	116648	36072	60168	-1948
741	110686	61068	56823	12298	931	162362	106804	83041	26105
748	93960	60940	48472	9864	935	130914	116404	67325	32174
750	80572	45480	41782	7644	936	96840	66796	50288	11792
756	80472	35880	41744	2724	945	114198	77360	58987	16822
759	127040	46668	66588	3305	950	134956	85640	69374	13452
760	93464	48668	48248	5976	952	108248	87160	56024	20296
765	86526	73244	44791	18246	960	76784	79872	40308	20448
768	56704	74784	29884	21240	966	175936	11696	92060	-15868
770	101108	43352	52090	2084	968	143976	58848	73920	6700
780	78152	43888	40632	5568	969	146918	110972	75395	28734
782	152124	34544	77622	-5568	972	105672	75004	54776	14084
784	91584	53468	47356	7586	975	119218	112142	61557	25754
792	88632	34512	45896	568	980	122712	60240	63312	6782
798	114044	33736	58614	-1572	988	142312	80064	73128	15500
800	71184	75204	37188	17488	990	122076	51192	63014	2156
805	161182	34720	82199	-5573	1000	105096	93440	54544	21284

Table 6.5 (continued)

Figure 6.1: Percent of Sizes Where Improved Split-Nesting uses Fewer Operations than FFT-Based Convolution

6.6 Summary

In this chapter formulas for counting operations for linear and cyclic convolutions were derived. Tables of operation counts are shown along with comparisons to FFT-based convolution algorithms. In general the improved split-nesting algorithm requires fewer operations than FFT-based methods for many small size convolutions, but for large convolutions the FFT-based methods use fewer operations in general.

It was also shown that mixing FFT and split-nesting algorithms can lead to a better algorithm than using either method alone. In particular when the size contains one factor for which CRTbased methods perform well and one or more factors for which FFT-based methods are best, a mixed algorithm will often use fewer operations than either method individually.

Chapter 7: Results of Timing Experiments

In chapter 6 CRT-based convolution algorithms were compared to FFT-based convolution algorithms using operation count as the performance metric. In this chapter, run times for the two approaches are compared. A significant window is found where CRT-based convolutions are faster than FFT-based convolutions. Also, optimizations are discussed that may extend the window. Finally an approach of mixing CRT and FFT-based algorithms is explored, and is found to provide better performance for large convolutions.

7.1 FFTW-Based Convolutions

In order to compare the performance of the CRT-based convolution algorithms discussed in this thesis to the FFT-based approach it is essential that a high performance implementation of the FFT is used. FFTW [10] is one of the best publicly available FFT implementations on current processors. In fact, it is competitive with many vendor supplied libraries. Figure 7.1 shows that the FFTW implementation is two to five times faster than the Numerical Recipes implementation, [20], which is in turn faster than FFT algorithms found in a typical algorithms text book. (Note the Numerical Recipes FFT pads to the next power of 2 for non power of 2 sizes. Also, this figure ignores all size N = pm FFTs for primes p > 13. In its default form FFTW does not handle these sizes well. It can however be recompiled to handle any size prime at the expense of library size.)

The fact that FFTW can compute non-power of two sizes is a considerable advantage in computing cyclic convolutions. Many FFT implementations only deal with powers of two. This is a significant shortcoming when computing cyclic convolutions, because zero padding to the next power of two is not sufficient. (For example, to compute a cyclic convolution of size 19, when a size 19 FFT is not available, requires a linear convolution that can be reduced to size 19. A linear convolution of size 19 would require an FFT of size 38 or larger. Therefore, to solve the problem for size 19 using a power of two FFT would require padding up to size 64.) Since FFTW provides an efficient implementation of the FFT for all sizes, it outperforms FFT-based implementations that only support power of two FFTs by up to an order of magnitude.

FFTW is a framework for recursively computing FFTs. It obtains its efficiency by supporting different breakdown strategies and a highly optimized collection of base cases implemented with straight-line code called codelets. Dynamic programming is used to search for the most efficient

Figure 7.1: Run-Time Comparison of FFTW vs. Numerical Recipes FFT

recursive breakdown strategy using a given compiler on a given computer. The computation strategy, once determined, is stored in a data structure called a plan.

The ongoing assumption is that the convolutions will be used in filtering applications where a fixed vector is convolved with a number of arbitrary vectors; therefore the cost of building the plan for FFTW will not be counted in the performance figures, nor will the cost of computing the fixed vector be counted. In this way, every advantage is given to FFTW in the performance testing.

FFTW contains routines for computing Fourier Transforms of real vectors (RFFTW) and complex vectors (FFTW). RFFTW as expected from the discussion in chapter 5 is roughly twice as fast as FFTW for the same size inputs.

Two different methods of using FFTW, RFFTW and the convolution theorem 3.3.1 are used: In the first method, a different subroutine is used for each size convolution, with the pointwise (Hadamard) Multiplications of the fixed vector and the first FFT output hard-coded in the straightline code of each subroutine. Figure 7.2 contains an example subroutine of size 18. Note the straight-line code includes a forward FFT, a backward FFT, and a reduced number of Hadamard Multiplications involving real numbers, because of the symmetry of the conjugate even output of an FFT of a real vector. The second method uses a general algorithm that will work for any size. In order for this to work, a computation of the FFT of the fixed vector needs to be precomputed and stored in the array fftwRe[]. See Figure 7.3 to see the code for this algorithm. Note that in the

```
void convThmFix18R(fftw_real in[], fftw_real out[],
                   fftw_plan forward,fftw_plan back){
  rfftw_one(forward, in, out);
   in[0]=out[0]*(422.44444444);
   in[1]=out[1]*(-27.109369855) - out[17]*(-43.939433892);
   in[17]=out[17]*(-27.109369855) + out[1]*(-43.939433892);
   in[2]=out[2]*(94.293999778) - out[16]*(-27.774335435);
   in[16]=out[16]*(94.293999778) + out[2]*(-27.774335435);
   in[3]=out[3]*(8.333333333) - out[15]*(-27.616587876);
   in[15]=out[15]*(8.333333333) + out[3]*(-27.616587876);
   in[4]=out[4]*(-90.397175874) - out[14]*(-124.737687099);
   in[14]=out[14]*(-90.397175874) + out[4]*(-124.737687099);
   in[5]=out[5]*(-2.359072778) - out[13]*(7.808726566);
   in[13]=out[13]*(-2.359072778) + out[5]*(7.808726566);
   in[6]=out[6]*(-44.22222222) - out[12]*(-20.880834736);
   in[12]=out[12]*(-44.22222222) + out[6]*(-20.880834736);
   in[7]=out[7]*(-59.698224034) - out[11]*(-77.000949572);
   in[11]=out[11]*(-59.698224034) + out[7]*(-77.000949572);
```

in[8]=out[8]*(24.603176096) - out[10]*(30.053707557);

```
in[10]=out[10]*(24.603176096) + out[8]*(30.053707557);
in[9]=out[9]*(40.6666666667);
rfftw_one(back,in,out);
```

Figure 7.2: Example of an FFTW-Based Real Convolution Algorithm

timing figures, the method that requires the minimum amount of time will be used.

The complex counterparts to Figures 7.2 and 7.3 can be found in Figures 7.4 and 7.5.

7.2 Run-Time Comparisons

}

This section discusses run-time comparisons of circular convolutions using the various methods discussed in the thesis. All timings were done on an 800 mhz Pentium III with 256 megabytes of ram, 256 kilobytes of cache, 32 kilobytes of internal cache, and running Windows 2000. Three different compilers are used: Microsoft Visual C++ version 5.0, Microsoft Visual C++ version 6.0, and Intel C++ version 6.0. The timings are computed by computing each convolution one million times and taking an average iteration time in microseconds.

7.2.1 Cyclic Convolution of Real Vectors

Figure 7.6 shows the run-time in microseconds for various size convolutions up to 80 using the improved split-nesting algorithm, the two RFFTW-based algorithms discussed above and a naive algorithm that computes the convolution by definition. Primes and multiples of primes larger than

```
void convThmFixR(int n,fftw_real in[], fftw_real out[],
                 fftw_plan forward,fftw_plan back){
   extern fftw_real fftwRe[ ];
   int i,j,k;
    rfftw_one(forward, in, out);
    in[0] = fftwRe[0] * out[0];
    k = (n >> 1);
                 /* divide n by 2 */
    for (i=1;i<k;i++){</pre>
      j=n-i;
      in[i]=fftwRe[i]*out[i] - out[j]*fftwRe[j];
      in[n-i]=fftwRe[i]*out[j] + out[i]*fftwRe[j];
    }
    if ((k<<1)==n) /* is n even? */
      in[k]=fftwRe[k]*out[k];
    else{
      in[k]=fftwRe[k]*out[k] - out[n-k]*fftwRe[n-k];
      in[k+1]=fftwRe[k]*out[k+1]+out[k]*fftwRe[k+1];
    }
    rfftw_one(back,in,out);
}
```

Figure 7.3: General FFTW-Based Real Convolution Algorithm

13 are omitted, because RFFTW in its standard implementation does not handle these sizes well. It is clear that doing the convolution by definition is not competitive with either the FFT-based or CRT-based algorithms. By the time the size reaches 80, doing a cyclic convolution by definition takes 25 times as long as the other methods.

For sizes between 49 and 80, sometimes there is an advantage to using the CRT routines and sometimes the RFFTW routines. This is true for all of the compilers except Visual C++ version 5.0, which shows an advantage over RFFTW for all sizes except 49. What is interesting is that this compiler is not faster for the CRT routines than the other compilers, but rather it is considerably slower for the RFFTW algorithms. As an example for size 49, the Visual C++ version 5.0 compiler takes 840 microseconds for the CRT algorithm and 792 microseconds for the RFFTW algorithm. The Visual C++ version 6.0 compiler takes 580 and 580 microseconds respectively, and the Intel compiler takes 740 and 580 microseconds respectively.

The relative performance of the CRT and FFT based algorithms can not be determined solely from the timings presented as performance depends on both the algorithm and the implementation in addition to the compiler and platform. By using a highly respected, heavily used FFT package, there is some confidence that the FFT-based algorithms are being evaluated fairly. The code for fftw_one(forward, in, out);

```
in[0].re=out[0].re*(500.611111111) - out[0].im*(561.388888889);
in[0].im=out[0].re*(561.388888889) + out[0].im*(500.611111111);
in[1].re=out[1].re*(12.133584683) - out[1].im*(21.099917859);
in[1].im=out[1].re*(21.099917859) + out[1].im*(12.133584683);
in[2].re=out[2].re*(94.407642270) - out[2].im*(98.666882853);
in[2].im=out[2].re*(98.666882853) + out[2].im*(94.407642270);
in[3].re=out[3].re*(15.616912620) - out[3].im*(67.430407227);
in[3].im=out[3].re*(67.430407227) + out[3].im*(15.616912620);
in[4].re=out[4].re*(166.180429911) - out[4].im*(94.068867535);
in[4].im=out[4].re*(94.068867535) + out[4].im*(166.180429911);
in[5].re=out[5].re*(27.332203970) - out[5].im*(35.943153890);
in[5].im=out[5].re*(35.943153890) + out[5].im*(27.332203970);
in[6].re=out[6].re*(-101.522748384) - out[6].im*(-43.024837279);
in[6].im=out[6].re*( -43.024837279) + out[6].im*(-101.522748384);
in[7].re=out[7].re*(-5.978670532) - out[7].im*(-52.084927646);
in[7].im=out[7].re*( -52.084927646) + out[7].im*(-5.978670532);
in[8].re=out[8].re*(33.594257383) - out[8].im*(50.905817130);
in[8].im=out[8].re*(50.905817130) + out[8].im*(33.594257383);
in[9].re=out[9].re*(-51.722222222) - out[9].im*(104.055555556);
in[9].im=out[9].re*(104.055555556) + out[9].im*(-51.722222222);
in[10].re=out[10].re*(136.897432014) - out[10].im*(-48.880243019);
in[10].im=out[10].re*(-48.880243019) + out[10].im*(136.897432014);
in[11].re=out[11].re*(30.489963483) - out[11].im*(-14.168473458);
in[11].im=out[11].re*(-14.168473458) + out[11].im*(30.489963483);
in[12].re=out[12].re*(-42.921696061) - out[12].im*(104.969281723);
in[12].im=out[12].re*(104.969281723) + out[12].im*(-42.921696061);
in[13].re=out[13].re*(20.118703643) - out[13].im*(39.708730346);
in[13].im=out[13].re*(39.708730346) + out[13].im*(20.118703643);
in[14].re=out[14].re*(-149.300477352) - out[14].im*(-87.910528324);
in[14].im=out[14].re*(-87.910528324) + out[14].im*(-149.300477352);
in[15].re=out[15].re*(-8.728023731) - out[15].im*(24.514037217);
in[15].im=out[15].re*(24.514037217) + out[15].im*(-8.728023731);
in[16].re=out[16].re*(-80.445950891) - out[16].im*(-40.684129508);
in[16].im=out[16].re*(-40.684129508) + out[16].im*(-80.445950891);
in[17].re=out[17].re*(17.237548087) - out[17].im*(6.001599010);
in[17].im=out[17].re*(6.001599010) + out[17].im*(17.237548087);
```

fftw_one(back,in,out);

}

Figure 7.4: Example of an FFTW-Based Complex Convolution Algorithm

Figure 7.5: General FFTW-Based Complex Convolution Algorithm

the CRT-based algorithms depends on the efficiency of the code produced by the SPL compiler. Several deficiencies have been found in the SPL compiler that affects the performance of the CRTbased algorithms. In section 7.2.2 several optimizations are presented that dramatically improve the performance of the code produced by the SPL compiler for these algorithms. These optimizations extend the window where CRT-based algorithms outperform FFT-based algorithms.

In order to motivate the optimizations discussed in section 7.2.2, it is worth taking a moment to try to understand why the CRT algorithms are slower for certain points. In particular, Figure 7.7 shows especially poor performance for the improved split-nesting algorithm relative to RFFTWbased convolutions for size 49, 65, and 77. Recall from chapter 6 however that the improved splitnesting algorithm used fewer operations than the FFT-based convolution theorem for these points. Figure 7.8 shows this same result in another way. Here, the number of operations for computing a given size convolution via the improved split-nesting algorithm are normalized against the number of operations required for computing the same size convolution via the FFT and convolution theorem. In this way, it is seen that the improved split-nesting algorithm for sizes 49, 65 and 77 only require about 60-80% as many operations as the FFT-based algorithms of the same sizes. It is somewhat surprising therefore that the improved split-nesting algorithm performs badly relative to RFFTW for these sizes.

Notice however, that the run-time performance for sizes near 77 are considerably better relative to RFFTW than for 77 itself (see Figure 7.7). A look back to Table 6.5 from chapter 6 shows that the operation counts show this as well (size 76 improved split-nesting requires 2348 operations, size 77 requires 3161 operations, and size 78 requires 2122 operations. Since the lines of straight-line code used in these algorithms is proportional to the number of operations required, perhaps code

Figure 7.6: Comparison of Convolution Algorithms on Real Inputs

length has something to do with the poor performance for sizes 49, 65, and 77.

To test this latter hypothesis another plot was made, plotting time per line of C code versus number of lines of C code for each size convolution. This plot is shown in Figure 7.9. In this case the x-axis represents the lines of code for a convolution; thus the convolutions are out of order in cases where a larger convolution algorithm uses fewer lines of code (has fewer operations). For example, convolutions of size 78, and 80 are to the left of size 77. This figure shows that the hypothesis is correct, that is, performance degrades with the length of the code. In particular, notice that for subroutines that are between 100 and 1200 lines, the run-time averages 0.0025 microseconds per line of code, but as soon as the subroutine reaches 1400 lines, the average run-time cost nearly doubles.

Put another way, it is not just that certain size CRT algorithms are slower than their FFT counterparts. It is that some CRT algorithms exceed the threshold of 1400 lines and the run-time cost is prohibitive. In particular, while Figure 7.7 shows that some CRT algorithms exceeding size 48 are faster than RFFTW and some are slower, it turns out that CRT algorithms that are shorter than 1400 lines are always faster than their RFFTW counterparts and all (except one) CRT algorithms that are longer than 1400 lines are slower than their RFFTW counterparts. Specifically, CRT algorithms with fewer than 1400 lines are on average 52% faster than RFFTW-based convolutions of the same size, while those over 1400 lines are 28% slower than the RFFTW-based convolutions on average.

Figure 7.7: Improved Split-Nesting (ISN) versus RFFTW Convolution for 3 Compilers

Figure 7.8: Improved Split-Nesting (ISN) Operations Divided by Convolution Theorem Operations

Figure 7.9: Average Run Time Per Line of Code for Various Size Convolution Algorithms

Exploration of Performance Decline for Long Code Sequences

It was shown in Figure 7.9 that as subroutines start to exceed 1400 lines, the run-time performance begins to suffer. The question then becomes is this a hardware issue or a software or compiler issue? A number of experiments were run to try to determine the cause of the performance degradation. The first test was to split the large convolution subroutines into a series of smaller subroutines. Thus if it was the case that the compiler stopped optimizing as subroutines became too large, this should solve the problem. It turns out that breaking the convolution into smaller subroutines exacerbates the problem, indicating that it was probably not a compiler problem. The fact that three different compilers (Intel C++ version 6.0, MS Visual C++ 6.0 and Visual C++ 5.0) all exhibit the same behavior is further evidence that the problem is not due to the compilers.

A more likely culprit is that the size of the code is causing cache misses for the very long code sequences. To test this, a short convolution with very good performance was timed for 100,000 iterations and the performance recorded. Next, this same convolution was timed, but in between each iteration a large time consuming subroutine was called that would fill up the cache. The new time for the 100,000 iterations of the small convolution algorithm could be obtained by subtracting the time taken for the 100,000 iterations of the large time consuming subroutine. The code for this

```
experiment is shown here.
```

```
start = clock();
srand(RANDSEED); /* seed random number generator */
for (i = 0; i<ITER; i++){</pre>
                               /* do 100,000 iterations */
  for (j=0; j < n; j++){</pre>
     in[j] = ((double) (rand() % 10000));
  }
  splitNesting20(out,in);
                              /* convolution of fixed vector with vector
                                  in[]; answer is stored in out[] */
 largeTimeConsumingRoutine(in);
}
finish = clock(); elapsed_time1 = ((double)(finish-start));
srand(RANDSEED);
start = clock();
for (i = 0; i<ITER; i++){</pre>
  for (j=0; j < n; j++){</pre>
    in[j] = ((double) (rand() % 10000));
  }
  largeTimeConsumingRoutine(in);
}
finish = clock();
elapsed_time2 = ((double)(finish - start));
elapsed_time1 = elapsed_time1-elapsed_time2;
```

This test, which was repeated for several examples, showed the 40% to 50% performance decline that was expected. This suggests that using loops for larger algorithms to keep code size under 1400 lines will yield a 40% to 50% performance gain for the machine used in this experiment (800 mhz Pentium III). This also suggests that newer computers with larger caches will likely outperform FFT-based convolutions for a larger window than was shown in Figure 7.7. Finally, it shows that building custom hardware whose performance per line of code does not degrade, it would be possible to realize the advantage for CRT-based algorithms over FFT-based algorithms for the entire window. Note that a custom hardware solution is not far-fetched given that signal processing boards that incorporate convolutions currently exist.

Since a 40% to 50% performance gain can be realized just by keeping the code length under 1400 lines, optimizations that involve trading straight-line code to looped code will be explored in section 7.2.2 below.

7.2.2 Basic Optimizations for SPL Generated CRT Algorithms

The SPL compiler developed as part of the SPIRAL project [24] was primarily designed to generate straight line code for FFT algorithms. Its use in generating CRT algorithms has therefore uncovered a number of weaknesses that can be easily fixed in its next generation. First, since the CRT algorithms get complicated as they get longer, the straight line code becomes excessive, which can slow down the algorithm by 40% to 50% or more due to cache misses. For example, the single worst performing convolution in Figure 7.7 is for size 77; it contains 3158 lines of C code, and takes 85% longer than an RFFTW-based convolution. Thus for large sizes, changing to looped code is critical.

However, as previously mentioned, the SPL compiler is not necessarily tuned for creating loop code. First, the SPL compiler puts in a number of unnecessary loops that do nothing but copy one array to another, when the first array is never subsequently used and need not be protected. This is equivalent to an identity matrix composition; these are automatically removed by the SPL compiler in the straight-line code, but not the looped code. Second, the SPL compiler does not loop diagonal matrices. Since the CRT algorithms contain a very large diagonal matrix, many lines of code can be saved by storing this diagonal in an array and computing the Hadamard Multiplications with a loop. Finally, non-stride permutation matrices are never implemented via loops by the SPL compiler. By passing in an array of pointers, permutations can be implemented in a loop, considerably reducing code size and run-time.

These optimizations can be easily implemented in a next generation compiler but for now they have to be done by hand; this is both tedious and very time consuming, so it is only done for three particularly bad performing sizes in order to illustrate the potential gain in performance. Figure 7.10 shows the effect of these basic optimizations for convolutions of size 49, 65, and 77 on the Intel Compiler (results are similar for the other compilers). Moving from straight-line code to loops adds an initial disadvantage, but after changing the diagonal to looped code, removing identities and changing the permutations to looped code (note that size 49 contains no permutations), the disadvantage is removed, and ultimately the run time is 10% to 30% faster than RFFTW-based convolutions of the same size.

It is quite likely that the algorithms can be further improved. Looping can be more finely controlled but was not. The looped code in these examples used loops for any matrix blocks of size 60 or more, but other block sizes may lead to better times, or selectively turning looping on and off could lead to further improved times. Further, it is not clear whether the best CRT algorithms are being used. To find the limit of these algorithms a search project on the order of the SPIRAL project (see [24]) is needed to ultimately find the limit of the window. Still, it is clear that the window where these algorithms are competitive with RFFTW extends beyond 80 and probably well beyond 100. However, as will be shown in section 7.3, the existence of a window regardless of the size, can be used to improve the performance of larger convolutions.

Figure 7.10: Effect of Basic Optimizations on Run-Time for 3 CRT Convolutions

7.2.3 Is Improved Split-Nesting the Best Choice?

The timings discussed thus far compare convolution algorithms created via the convolution theorem using RFFTW and CRT-based algorithms using the improved split-nesting algorithm. However, as was discussed in chapters 3 and 6, there are hundreds of different ways of constructing CRT-based algorithms of various sizes and some of these may lead to faster implementations than the improved split-nesting algorithm. However, without a significant search project, and a next generation SPL compiler, this cannot be fully explored.

Figure 7.11 does gives a justification for using the improved split-nesting algorithm as a general purpose algorithm. For size 33 (and others) it performs better than implementations of other split-nesting algorithms, Agarwal-Cooley algorithms (While there are dozens of ways of constructing Agarwal-Cooley and split-nesting algorithms of size 33, two obvious choices for each method were picked for comparison purposes.) as well as the basic CRT algorithm and Winograd algorithm. However, these times are based on straight-line code directly from the SPL compiler. It is possible that with looping and the optimizations discussed in section 7.2.2 that the improved split-nesting algorithm might perform worse in some cases than the other choices under optimal conditions. Furthermore, the implementation of the improved split-nesting algorithm used here is based on a

Figure 7.11: Run-Time for Various Size 33 CRT-Based Convolutions and RFFTW

version that minimizes operation counts; there are several additional ways to construct the algorithm that may improve run-time.

Although the ultimate goal of this work is not to find the best CRT convolution algorithm, but rather to show that there is a significant window where these algorithms are viable, it is important to show that the algorithms used for timing purposes are reasonable choices. While determining the best CRT-based implementation is beyond the scope of this thesis, Figure 7.11 shows that the improved split-nesting algorithm, that minimizes operation counts, is a reasonable implementation choice. The best implementation depends on the compilers and platforms used and requires a significant engineering approach along the lines of the SPIRAL project [24] to carry out.

Figure 7.11 shows that there is a difference in performance depending on how the algorithms are combined. There is a 10% difference in performance between the two versions of Agarwal-Cooley and the variants of the split-nesting algorithm. The only difference in these variants is the order of various tensor products. Since the tensor products involve rectangular matrices, the wrong order can lead to a blow-up in row dimension, and a significant performance penalty.

One final item to note is that the Winograd algorithm is more than 2.5 times slower than the improved split-nesting algorithm for this size. Winograd's algorithm trades multiplications for a large increase in additions, and in modern architectures this is a bad trade. The CRT algorithm, which uses Winograd's idea, but substitutes more sensible linear convolutions as the building blocks is much more competitive.

Figure 7.12: Comparison of Convolution Algorithms on Complex Inputs

7.2.4 Cyclic Convolution of Complex Vectors

Figures 7.12 and 7.13 show run-times for CRT-based, FFT-based, and by definition convolutions for complex input vectors, analogous to Figure 7.6 and 7.13 for real inputs. Here, the improved splitnesting algorithm is faster than FFTW up through size 30 (compared with 48 for real vectors). This is again the point where the number of lines of code approach 1400 lines. However, the optimizations discussed in section 7.2.2 lead to savings of 30% to 80% in run-time for complex CRT convolutions so that the CRT-based algorithms can meet or beat FFTW-based algorithms for most sizes up to 80.

In section 7.3 below, it will be shown that even if the window could not be extended beyond 30, mixing CRT and FFT-based algorithms will lead to efficient implementations of very large convolutions.

7.3 Mixed CRT and FFT-Based Convolutions

In chapter 3 Theorem 14 gave a construction for a convolution algorithm that mixes the convolution theorem with other types of convolutions. The key formula is given by

$$J \cdot (F_n \otimes I_m)(I_n \otimes A_m^T) \cdot D \cdot (I_n \otimes B_m)(F_n \otimes I_m), \tag{7.1}$$

Figure 7.13: Improved Split-Nesting (ISN) versus FFTW Convolution for 3 Compilers

where D is a well defined diagonal matrix and J is the anti-identity matrix. The implication is that since there is a window where the CRT algorithms are faster than the FFT-based algorithms, large convolutions of size mn where m is chosen to be within the window and n is chosen outside of the window, should be faster than convolutions that use pure FFT methods or pure CRT methods. This was confirmed for operation count in chapter 5 and will be confirmed for run-time below.

Figure 7.14 contains C code for computing a size 3m cyclic convolution that mixes a size three CRT algorithm with a size m FFT using (7.1). The code was created by generating C code for the size three CRT algorithm (essentially $A^T \cdot D \cdot B$), and then adding a size m loop and two Fourier transforms. The looped code for composing the diagonal matrix was also added, because the SPL compiler currently uses straight line code for diagonal composition. The final modification involves doubling up some lines so that the listing fits on a single page.

The C code in Figure 7.14 will generate a size 3m cyclic convolution and return the answer in reverse order, (note the order can easily be fixed by adding a three line loop at the end). A precomputed vector is passed into the subroutine in the array diagVec[], as well as a size m plan for FFTW.

FFTW uses a plan in order to create machine adaptable optimization (see [10]). The specific call to fftw in the listing contains several parameters besides the input and output arrays. The additional parameters tell FFTW to generate three FFTs and that the input and output arrays

```
/*
        -----+
                   Generated by SPL Compiler 3.29
1 |
                                                           -----+
1 +--
! Command-line options: -O -B 2
*/
void mix3xFm(double y[],double x[],int m,double diagVec[],
            fftw_plan forward){
 int i0,i1;
 double f0,f1,f2,f3,f4,...,f23;
 static double t1[10],t2[3*4096*2],t3[10],t4[3*4096*2];
 fftw(forward,3,((fftw_complex*)x),3,1,((fftw_complex*)t4),3,1);
 for (i0=0; i0<m; i0++) {</pre>
   f0=t4[6*i0+2] + t4[6*i0+4]; f1=t4[6*i0+3] + t4[6*i0+5];
   f2=t4[6*i0+4] - t4[6*i0+2]; f3=t4[6*i0+5] - t4[6*i0+3];
   t3[2]=t4[6*i0] + f0; t3[3]=t4[6*i0+1] + f1;
   t3[0]=t4[6*i0]; t3[1]=t4[6*i0+1];
   t3[4]=t4[6*i0] + f2; t3[5]=t4[6*i0+1] + f3;
   f4=t3[2] + f2; f5=t3[3] + f3;
   f6=f4 + f0; f7=f5 + f1;
   t3[6]=f6 + f0; t3[7]=f7 + f1;
   t3[8]=t4[6*i0+4]; t3[9]=t4[6*i0+5];
   for (i1=0;i1<5;i1++){</pre>
     f8=diagVec[i0*10+2*i1] * t3[2*i1];
     f9=diagVec[i0*10+2*i1+1] * t3[2*i1+1];
     f10=diagVec[i0*10+2*i1] * t3[2*i1+1];
     f11=diagVec[i0*10+2*i1+1] * t3[2*i1];
     t1[2*i1]=f8 - f9; t1[2*i1+1]=f10 + f11;
   }
   f12=t1[0] + t1[4]; f13=t1[1] + t1[5];
   f14=t1[2] + t1[6]; f15=t1[3] + t1[7];
   f16=t1[4] + t1[6]; f17=t1[5] + t1[7];
   t2[6*i0]=f12 + f14; t2[6*i0+1]=f13 + f15;
   f18=f14 + t1[6]; f19=f15 + t1[7];
   f20=f18 + t1[6]; f21=f19 + t1[7];
   t2[6*i0+2]=f20 - f16; t2[6*i0+3]=f21 - f17;
   f22=f20 + f16; f23=f21 + f17;
   t2[6*i0+4]=f22 + t1[8]; t2[6*i0+5]=f23 + t1[9];
 }
 fftw(forward,3,((fftw_complex*)t2),3,1,((fftw_complex*)y),3,1);
}
```

Figure 7.14: Listing for Size 3m Mixed Algorithm

should be read and written at stride three. By allowing the user to specify strides, FFTW makes it easy to generate a call that is equivalent to $(F_m \otimes I_3)$.

Table 7.1 shows the timing results of mix3xFm from the listing in Figure 7.14 versus convolutions computed with FFTW alone. The mixed algorithm is 12% faster for size 192, and 9% faster for size 384, but roughly even for sizes 384, and 768, and actually slower for sizes 3072 and 6074. It is not clear why the advantage vanishes, however, it is likely that FFTW found a more efficient way of computing F_{3072} that does not directly compute F_{512} . An FFT of size 3072 can be computed in different ways, by using different parameters in the factorization in (2.7). For example, $(F_6 \otimes I_{512}) T_{512}^{3072} (I_6 \otimes F_{512}) L_6^{3072}$, $(F_2 \otimes I_{1536}) T_{1536}^{3072} (I_2 \otimes F_{1536}) L_2^{3072}$, or in hundreds of other ways. The code for mix3xFm severely limits the number of ways of factoring 3072. However, it should be noted that mix3xFm is not the only way to mix a size 3 CRT with a size 1072 Fourier transform. By better integrating the CRT code with FFTW's planning mechanism, or by searching for an optimal solution among various factorizations, there is no reason why the mixed algorithm should not be faster for any size. This is formalized in section 7.3.1.

Table 7.2 shows the timing results of a similar mixed algorithm that combines a size 5 CRT-based algorithm with any size Fourier transform. In this table there is a 4% to 9% advantage for each of the samples tested.

Table 7.3 shows timing results for a mixed algorithm that combines a size 15 CRT algorithm (created via the Agarwal-Cooley algorithm on the size 3 and 5 CRT algorithms) with any size Fourier transform. For sizes 480 and 1920 there is no advantage, but for sizes 7680 and 15360 a speed advantage of about 25% can be realized.

N	FFTW	Mix	Advantage
192=3x64	27	24	12%
384=3x128	66	60	9%
768=3x256	141	139	1%
1536=3x512	353	340	3%
3072=3x1024	994	1235	-24%
6144=3x2048	3419	4431	-30%

Table 7.1: Run-Time for FFTW-Based Convolutions versus Mixed Convolutions of Size 3m

N	FFTW	Mix	Advantage
320=5x64	51	47	9%
640=5x128	119	114	4%
1280=5x256	267	248	7%
2560=5x512	634	599	6%
5120=5x1024	2660	2483	7%
10240=5x2048	7610	7241	5%

Table 7.2: Run-Time for FFTW-Based Convolutions versus Mixed Convolutions of Size 5m

Table 7.3: Run-Time for FFTW-Based Convolutions versus Mixed Convolutions of Size 15m

N	FFTW	Mix	Advantage
480=15x32	89	94	-5%
960=15x64	196	171	13%
1920=15x128	430	437	-2%
3840=15x256	1482	1288	13%
7680=15x512	5054	3861	24%
15360=15x1024	13195	9738	26%

7.3.1 Generalizing Mixed Algorithm Timing Results

It is clear that by combining CRT-based algorithms within a specified window with FFT algorithms outside of the window an advantage could sometimes be realized versus computing the convolution via an FFT alone. In this section, it is shown that this is the rule and not the exception, and that the cases where the method does not work are really problems of optimization, that can be overcome by better integrating the algorithms with FFTW's planning mechanism. The following notation will be used to formalize the result.

Notation 3 Let t(a) represent the time in microseconds it takes to execute the algorithm a.

Let \mathcal{U}_1 be a CRT-based convolution algorithm of size N and let \mathcal{U}_2 be an FFT-based convolution algorithm of size N, so that

$$\begin{aligned} \mathcal{U}_1 &= J_N A_1^T D_1 B_1 \\ \mathcal{U}_2 &= J_N F_N D_2 F_N, \end{aligned}$$

with,

$$D_1 = \mathcal{C}_1^T J_N \mathbf{v_1}$$
$$D_2 = F_N^{-1} J_N \mathbf{v_2}.$$

Further suppose that $t(J_N) = k$, and that N is within the window so that $t(\mathcal{U}_1) = n + k$ microseconds total and $t(\mathcal{U}_2) = n + k + c$, with c > 0. Now let \mathcal{W}_1 be a mixed algorithm of size MNand let \mathcal{W}_2 be an FFT-based algorithm of size MN.

$$\mathcal{W}_{1} = J_{MN}(F_{M} \otimes I_{N})(I_{M} \otimes A_{1}^{T})D_{1}'(I_{M} \otimes B_{1}) \cdot (F_{M} \otimes I_{N})$$
$$\mathcal{W}_{2} = J_{MN}F_{MN}D_{2}'F_{MN}$$
$$= (F_{M} \otimes I_{N})T_{N}^{MN}(I_{M} \otimes F_{N})D_{2}' \cdot (I_{M} \otimes F_{N})T_{N}^{MN}(F_{M} \otimes I_{N})$$

Now, observe that $t(D'_1) = M \cdot t(D_1)$ and $t(D'_2) = M \cdot t(D_2)$ since the time taken to apply a square diagonal to a vector is proportional to the number of rows of the diagonal. Also, $t(J_{MN}) = M \cdot t(J_N) = Mk$. This assumes that repeated calls in a larger algorithm behave the same as repeated calls in isolation, which is a reasonable assumption, but may not be true for machines and cache sizes. Thus

$$t(\mathcal{W}_{1}) = Mk + N \cdot t(F_{M}) + M(t(\mathcal{U}_{1}) - t(J_{N})) + N \cdot t(F_{M})$$

$$= Mk + 2N \cdot t(F_{M}) + Mn,$$

$$t(\mathcal{W}_{2}) = Mk + N \cdot t(F_{M}) + t(T_{N}^{MN}) + M(t(\mathcal{U}_{2}) - t(J_{N})) + t(T_{N}^{MN}) + N \cdot t(F_{M})$$

$$= Mk + 2N \cdot t(F_{M}) + 2t(T_{N}^{MN}) + M(n + c).$$

It follows that $t(\mathcal{W}_2) = t(\mathcal{W}_1) + 2t(T_N^{MN}) + Mc$ where the $2t(T_N^{MN})$ can be 0 if gcd(M, N) = 1. So that the initial advantage increases with the size of M.

A similar argument substituting operation count for timing, was shown in chapter 6.

The implication is that the reason the advantage was not always realized in Tables 7.1, 7.2, and 7.3, is the static mixed algorithm interfered with FFTW's ability to choose the best factoring for its FFTs, or less likely, there was a cache issue. Thus by better integrating the mixed algorithm with FFTW's planning mechanism faster convolution algorithms should be attainable.
Chapter 8: Conclusions

The use of CRT-based convolution algorithms was suggested 25 years ago by S. Winograd in an investigation of the complexity of convolution and related problems [29, 30]. In spite of numerous developments since that time by Agarwal and Cooley, [1], Selesnick and Burrus [22], and others [19, 27], there has not been a definitive study that investigates the practical feasibility of CRT-based convolution algorithms and compares them to FFT-based approaches. The net result is that despite all of the development, the majority of convolution algorithms are computed via the FFT and convolution theorem except in the case of very small convolutions.

The original justification for the Winograd algorithms is the reduction in multiplications; however, in many modern architectures, the cost of additions and multiplications are roughly the same. Consequently it is more important to focus on the total number of operations. Moreover, memory accesses and cache considerations can be even more important than the number of arithmetic operations. Ultimately the goal is to provide an infrastructure to investigate the relative costs of different algorithms using various cost functions.

The goal of this thesis was to determine whether CRT-based algorithms are of practical value on current architectures, and to provide an infrastructure and approach for answering this question as architectures evolve. The results show that not only are the algorithms viable for small sized convolutions, but in fact they can be combined with FFT algorithms to create very large convolution algorithms that are faster than pure FFT-based methods as well as pure CRT-based methods.

Highlights of the research contributions are outlined below.

- Existing algorithms from the literature were put into a common framework of bilinear algorithms, and it was shown that the various techniques developed over the years can all be shown to be generated via tensor products, direct sums, and the Chinese Remainder Theorem. This common framework allows for easy comparison, analysis, and implementation of the algorithms, and also allows for the creation of an "algebra of algorithms," which can be manipulated, combined, generated in a structured and automated way. This was not merely a matter of notation or style, but was a crucial foundation for systematically studying convolution algorithms in the project.
- An extensive search was performed to find the algorithm with fewest operations. This search led to the discovery of a new algorithm "improved split-nesting" that uses fewer operations

than previously published algorithms.

- A method of combining CRT-based and FFT-based algorithms was introduced and shown to outperform (in both operation count and run-time) pure CRT-based and FFT-based convolutions for certain large size convolutions.
- An infrastructure for experimenting, manipulating, and automatically generating convolution algorithms was also developed, which was crucial for generating a test of this magnitude. In particular, the testing procedure greatly exceeded any previous work, and would have been simply impossible to do by hand. For example, a size 77 complex cyclic convolution contains more than 25,000 lines of C code, while the entire tested set of sizes between 2 and 80 contains more than 319,000 lines of straight-line code and more than 196,000 lines of looped code. The timing process discussed in chapter 7 involved generating and compiling more than 10 million lines of C code. Doing such a project without an infrastructure, would be simply impossible.

The thesis research has thus achieved its stated goal of determining whether these algorithms are viable. In fact, the algorithms are not only viable, but they could be a significant tool for anyone that needs efficient implementations of convolution algorithms. The project also opened several avenues for future research.

Future research can proceed in several directions. First, several improvements for the SPL compiler were outlined in chapter 7. Some of these are already being implemented, and may lead to an expansion of the window where CRT-based convolutions are faster than FFT-based convolutions. Second, search methods should be used to find the best implementation (not just minimal operation count) so that nearly optimal implementations can be obtained for a given computer. The search methods should include various combinations of the CRT-algorithms with FFT algorithms. This work is being undertaken as part of the SPIRAL project [24]. Third, it would be interesting to use other cost functions, such as memory accesses and cache misses, when comparing the algorithms in this thesis. Finally, it would be worthwhile to try to extend the techniques in this thesis to other problems in signal and image processing and other application areas where there is a rich space of algorithms with mathematical structures.

Bibliography

- R. C. Agarwal and J. W. Cooley. New algorithms for digital convolution. *IEEE Trans. Acoust.* Speech and Signal Proc., 25:392–410, 1977.
- [2] L. Auslander, J.R. Johnson, and R.W. Johnson. Automatic implementation of fft algorithms. Technical Report DU-MCS-96-01, Drexel University, July 1996.
- [3] G. D. Bergland. A fast fourier transform for real-valued series. Communications of the ACM, 11:703-710, 1968.
- [4] R. E. Blahut. Algebraic Methods for Signal Processing and Communications Coding. Springer-Verlag, New York, 1992.
- [5] C. S. Burrus and P. W. Eschenbacher. An in-place, in-order prime factor FFT algorithm. *IEEE Trans. Acoust., Speech, Signal Processing*, ASSP-29(4):806–817, August 1981.
- [6] C.S. Burrus and T.W. Parks. DFT/FFT and Convolution Algorithms: Theory and Implementation. John Wiley and Sons, New York, NY, USA, 1985.
- [7] S. A. Cook. Thesis: On the minimum computation time of functions. Harvard Thesis, 1966.
- [8] J. W. Cooley. Automated generation of optimized convolution algorithms. In D. V. Chudnovsky and R. D. Jenks, editors, *Computer Algebra*, Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York and Basel, 1989.
- [9] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier series. *Math. Comp.*, 19:297–301, 1965.
- [10] M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 3:1381–1384, 1998.
- I. J. Good. The interaction algorithm and practical fourier analysis. J. Royal Statist. Soc., B20:361–375, 1958.
- [12] R. A. Horn and C. R. Johnson. *Topics in Matrix Analysis*. Cambridge University Press, Cambridge, 1991.
- [13] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri. A methodology for designing, modifying and implementing fourier transform algorithms on various architectures. *Circuits Systems Signal Process*, 9(4):449–500, 1990.
- [14] R. W. Johnson, C.-H. Huang, and J. R. Johnson. Multilinear algebra and parallel programming. Journal of Supercomputing, 5:189–218, 1991.
- [15] D. E. Knuth. Seminumerical Algorithms The Art of Computer Programming Volume 2. Addison-Wesley, Reading, Massachusetts, 2nd. edition, 1981.
- [16] S. Lang. Algebra. Addison-Wesley, Redwood City, CA, 1984.
- [17] C. Van Loan. Computational Frameworks for the Fast Fourier Transform. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
- [18] M. B. Monagan, editor. Maple V Programming Guide (Version A): Release 5. Springer-Verlag, New York, 1998.

- [19] H. J. Nussbaumer. Fast Fourier Transform and Convolutional Algorithms. Springer-Verlag, New York, 2nd. edition, 1982.
- [20] W. H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C -The Art of Scientific Computing, 2nd ed. Cambridge University Press, 1992.
- [21] C. M. Rader. Discrete fourier transform when the number of data samples is prime. Proc. IEEE, 56(6):1107–1108, 1968.
- [22] I. Selesnick and C. Burrus. Automatic generation of prime length FFT programs. IEEE Transactions on Signal Processing, 44:14–24, 1996.
- [23] H. V. Sorensen, D. L. Jones, M. T. Heidman, and C. S. Burrus. Real-valued fast fourier transform algorithms. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 35:849– 863, 1987.
- [24] SPIRAL. Spiral-signal processing algorithms implementation research for adaptable libraries, 2000. http://www.ece.cmu.edu/~spiral.
- [25] C. Temperton. Implementation of a self-sorting in-place prime factor FFT algorithm. J. Comput. Phys., 58:283–299, 1985.
- [26] L. H. Thomas. Using a computer to solve problems in physics. In Applications of Digital Computers. Ginn and Co., 1963.
- [27] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transform and Convolution. Springer-Verlag, New York, NY, 1997.
- [28] A. L. Toom. Soviet Mathematics, 3:714–716, 1963.
- [29] S. Winograd. Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theor., 10:169–180, 1977.
- [30] S. Winograd. Arithmetic Complexity of Computations. CBMS-NSF Regional Conf. Ser. Appl. Math. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1980.
- [31] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and Compiler for DSP Algorithms. In Proc. PLDI, pages 298–308, 2001.

Vita

Anthony Breitzman Sr. was born in New Jersey in November of 1966. Since 1993, he has worked for CHI Research, Inc., a consulting firm that analyzes patents and other publicly available data to track the technological developments of government, university, and commercial laboratories, in order to identify opportunities and competitive advantages for its clients. In 1996 Anthony became the youngest vice president in the firm's 30 year history.

Anthony is considered an expert in constructing quantitative evaluations of companies' technological strengths and weaknesses, and has been invited to the national meetings of the World Future Society, the American Chemical Society, and the Society of Competitive Intelligence Professionals, amongst others, to speak on topics such as using patent analysis to assess competitor companies, using patent indicators to identify merger and acquisition targets, and using patent metrics to identify attractive investment opportunities.

He is the primary inventor/author of a US patent for choosing stock portfolios based on technology strengths. In addition he has 11 published articles (the four most recent are listed below) and a book chapter.

Prior to joining CHI Research, Anthony was a graduate student at Temple University where he studied mathematics and taught calculus, algebra, and finite math. He has a B.S. degree in mathematics from Stockton State College (1989), an M.A. degree in Mathematics from Temple (1992), and an M.S. degree in Computer Science from Drexel University (1998). He is a member of Upsilon Pi Epsilon, the honor society of computer science and maintains a 4.0 grade point average at Drexel.

Most Recent Publications:

- 1. "Automatic Derivation and Implementation of Fast Convolution Algorithms", J.R. Johnson and A. Breitzman, *Forthcoming in Journal of Symbolic Computation*.
- "Using Patent Citation Analysis to Target/Value M&A Candidates," A. Breitzman and P. Thomas, *Research Technology Management*, 45, 5, 28-36, September-October, 2002.
- "The Many Applications of Patent Analysis," A. Breitzman and M.E. Mogee, Journal of Information Science, 28, 3, 2002, pp. 187-205.
- "Technological Powerhouse or Diluted Competence Techniques for Assessing Mergers via Patent Analysis," A. Breitzman, P. Thomas and M. Cheney, *R&D Management* 4-19, January, 2001.