
Subset Selection Using Nonlinear Optimization

A Thesis

Submitted to the Faculty

of

Drexel University

by

Trip Denton

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy in Computer Science

2007

c© Copyright 2007
Trip Denton. All Rights Reserved.

ii

Dedications

To world peace

iii

Acknowledgements

This research would not have been possible without the support and encouragement of

many individuals. Without the advice and encouragement of my dear friend and advisor,

Dr. Ali Shokoufandeh, I might never have pursued an advanced degree. I would also like

to thank Dr. Jeremy Johnson who was instrumental in my decision to study at Drexel.

The support of my family has been invaluable, their constant encouragement provided

inspiration and support at all times. I would like to thank my parents for their support and

encouragement. I am indebted to my wife, for her patience and thoughtful suggestions. I

would also like thank my son for his patience.

My research would not have been possible without the work of Jeff Abrahamson, Lars

Bretzner, M. Fatih Demirci, Sven Dickinson, Luc Florack, Connie Gomez, Ahmed E. Has-

san, Frans Kanters, Jay Kothari, Spiros Mancoridis, Matthew Maycock, Ko Nishino, John

Novatnack, Maher Salah, Ali Shokoufandeh, Wei Sun, Filippos I. Vokolos, and Xun Zhou.

I would also like to thank Peter Bogunovich, Bruce Char, Leeann Crowers, Pawel

Hitczenko, Gaylord Holder, Louis Kratz, Yelena Kushleyeva, Walt Mankowski, Andrea

Negro, Thu Nguyen, Adam J. O’Donnell, Jeffrey Popyack, Vassilis Prevelakis, Craig

Schroeder, and Servesh Tiwari.

Finally, I would like to thank the members of my thesis committee, Dr. Ali Shokoufan-

deh, Dr. Spiros Mancoridis, Dr. Ko Nishino, Dr. Dario Salvucci, and Dr. Jianbo Shi for

their help in making this work possible.

—

Funded in part by grants form National Science Foundation (NSF/EIA 02-05178) and

Office of Naval Research (ONR-N000140410363).

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author and do not necessarily reflect the views of the National Science

Foundation or the other supporting government and corporate organizations.

iv

Table of Contents

List of Tables . ix

List of Figures . x

Abstract . xiv

1. Introduction and Background . 1

1.1 Introduction. 1

1.2 Background . 3

1.3 Overview of the Thesis . 7

2. Problem Formulation . 9

2.1 Introduction. 9

2.2 Graph Representation . 9

2.3 Properties of Canonical Sets . 11

2.4 Property Inverses . 12

2.5 Constraints. 14

2.6 Combining Objectives . 15

2.7 Canonical Set Problem Formulation . 17

2.7.1 Minimum Dominating Maximum Cut (MDMC) Canonical Subset . . 17

2.7.2 Bounded Canonical Subset (BCS) . 19

2.7.3 Stable Bounded Canonical Subset (SBCS). 21

2.8 Conclusion. 24

3. Approximation and Proof of NP Hardness . 25

3.1 Introduction. 25

3.2 Proofs of Intractability . 25

3.2.1 MDMC is Intractable . 26

3.2.2 BCS is Intractable . 28

3.2.3 SBCS is Intractable . 30

v

3.3 Semidefinite Programming Approximation . 31

3.3.1 Vector Relaxation of Canonical Set Problems . 33

3.3.2 SDP Property Matrix Formulation. 35

3.3.3 SDP Constraint Matrix Formulation. 38

3.3.4 SDP Matrix Formulation . 39

3.3.5 Rounding. 41

3.3.6 Bounds . 43

3.4 Quadratic Programming (QP) Approximation . 50

3.4.1 QP Property Formulation . 50

3.4.2 MDMC QP Formulation . 54

3.4.3 BCS QP Formulation . 54

3.4.4 SBCS QP Formulation . 55

3.5 Conclusion. 56

4. Simple and General Experimental Results . 58

4.1 Introduction. 58

4.2 Sensitivity to Outliers . 58

4.3 Comparison with K-Means . 63

4.4 Regular Structures. 66

4.4.1 BCS . 66

4.4.2 MDMC . 69

4.5 Conclusion. 70

5. View Selection . 71

5.1 Introduction. 71

5.2 Distance Measure . 72

5.3 Selecting Canonical Views Using MDMC.. 74

5.3.1 MDMC Experiments . 75

vi

5.4 Selecting Views Using BCS . 81

5.4.1 BCS Experiments. 82

5.5 Conclusion. 84

6. Object Recognition . 86

6.1 Introduction. 86

6.2 Feature Detectors. 90

6.3 Object Localization . 92

6.4 Similarity . 94

6.5 Stability Measures. 94

6.5.1 PERTURB Measure . 95

6.6 Localization of One Object . 96

6.7 Localization of One Object Rotated in Depth . 96

6.8 Localization of Multiple Occluded Objects . 99

6.9 Pose Estimation . 100

6.10 Localization in Occluded Scenes . 101

6.11 Computational Cost of Subset Size with HUT-EMD. 105

6.12 SBCS Stability with Gaussian Noise . 108

6.13 Comparison with Other Subset Selection Techniques . 110

6.13.1 Dataset . 110

6.13.2 Localization Error . 110

6.13.3 Algorithms . 111

6.13.4 Methodology. 112

6.13.5 Algorithmic Performance . 113

6.13.6 Results . 113

6.14 Object Localization in Real Images . 115

6.15 Conclusion. 118

vii

7. Image Reconstruction . 121

7.1 Introduction. 121

7.2 Scale Space Interest Points . 122

7.2.1 Laplacian Blobs . 123

7.2.2 Hessian Blobs. 124

7.2.3 Corner Points . 125

7.2.4 Edge Points . 125

7.2.5 Ridge Points . 127

7.2.6 Top Points . 127

7.2.7 Top Points of the Laplacian . 128

7.2.8 Scale Space Saddle Points . 129

7.2.9 Hessian-Laplace Points . 130

7.2.10 Harris-Laplace Points . 130

7.3 Reconstruction and Selection Based on Differential TV-norm 131

7.3.1 Differential TV-norm . 133

7.3.2 Reconstruction Quality . 133

7.4 Using the SBCS for Reconstruction . 135

7.4.1 Incorporating Distance Lower Bound Constraints . 136

7.5 Experiments . 139

7.6 Conclusion. 144

8. Canonical Set Applications in Software Engineering . 148

8.1 Introduction. 148

8.2 Usage Scenario Problem . 148

8.2.1 Use of Canonical Set Method . 149

8.2.2 Scenariographer Results. 150

8.3 Software Evolution Problem. 151

viii

8.3.1 Use of Canonical Set Method . 152

8.3.2 Change Cluster Results . 153

8.4 Software Features Problem . 155

8.4.1 Use of Canonical Sets . 157

8.4.2 Firefox Suite Results . 158

8.5 Characterizing Software Evolution . 160

8.5.1 Use of Canonical Sets . 161

8.5.2 Gaim Results. 161

8.6 Conclusion. 164

9. Conclusions . 166

9.1 Summary . 166

9.2 Contributions . 169

9.2.1 Theoretical Contributions . 170

9.2.2 Experimental Contributions . 170

9.3 Future Work . 171

Bibliography . 173

APPENDIX . 183

A. Drexel Object Occlusion Repository (DOOR) . 183

A.1 Overview . 183

A.2 Drexel Object Occlusion Repository (DOOR). 184

A.3 Contents of the Accompanying Text Files . 185

A.4 Query Tool. 186

A.5 Obtaining the Repository . 187

B. Notes . 188

B.1 Similarity Measures . 188

Vita . 190

ix

List of Tables

2.1 Properties of canonical sets . 12

2.2 Property inverse formulations . 14

3.1 Properties of canonical sets expressed in matrix form . 36

3.2 Property inverses of canonical sets expressed in matrix form. 37

3.3 Properties of canonical sets (QP) . 51

3.4 Property inverse formulations (QP) . 52

3.5 Properties of canonical sets (QP) combined . 52

3.6 Property inverse formulations (QP) combined . 53

3.7 QP Properties with inverses expressed in matrix and vector form 53

6.1 DOOR dataset series 6 . 111

8.1 Class usage scenarios generated for the gnu.regexp.RE class. 151

8.2 CFS of Firefox/Thunderbird Suite . 159

8.3 CFS of Gaim Instant Messaging Client . 162

x

List of Figures

2.1 The canonical set represented as a graph. 10

2.2 Pareto Set. 16

3.1 Random vector r on the unit sphere. 42

4.1 BCS of five collinear points . 59

4.2 Complete graph of 5 collinear points. 60

4.3 Objective values for pairs with outlier . 61

4.4 BCS of six collinear points . 62

4.5 BCS of eight collinear points . 62

4.6 BCS induced clusters of collinear data points . 64

4.7 K-Means clusters of collinear data points . 64

4.8 K-Means clusters of collinear data points . 65

4.9 Sample trees and BCS . 66

4.10 Sample graphs and BCS . 67

4.11 Sample cluster graphs and BCS . 68

4.12 Sample graphs and MDMC .. 69

5.1 Motivation for view selection. 71

5.2 Medial axis tree . 73

5.3 Computing the distance between two given views . 74

5.4 Sample views of the 3D objects used in the MDMC experiments 76

5.5 Canonical subset of 37 views of Porsche created using MDMC algorithm 77

xi

5.6 Canonical subset of 89 views of camera created using MDMC algorithm 78

5.7 Canonical subset of 90 views of chair created using MDMC algorithm 79

5.8 Comparing MDMC and exhaustive search . 80

5.9 Canonical sets (blue rectangles are MDMC) for four sets of views 81

5.10 Matching results for top 6 as size of summary set is varied . 84

5.11 BCS (blue rectangles) for six sets of views . 85

6.1 Localization process . 89

6.2 Blobs and ridges detected in scale-space. 91

6.3 SIFT features (red) showing orientation direction and scale . 92

6.4 Correspondence between features . 93

6.5 SBCS localization results with one object . 97

6.6 SBCS localization results with one object rotated in depth . 98

6.7 SBCS localization results with multiple objects . 100

6.8 Example images from the DOOR dataset . 102

6.9 The minimum normalized overlap Γ . 103

6.10 Example results from the experiment of localizing partially occluded objects . . . 104

6.11 Histogram results of the localization of partially occluded objects in scenes 105

6.12 Graph of localization results . 106

6.13 Example of a failed query. 106

6.14 COIL-20 dataset and example features. 107

6.15 Matching time versus SBCS size . 108

xii

6.16 Matching performance of SBCS with HARRIS, BLOB-RIDGE, and SIFT fea-
ture detectors . 109

6.17 Comparative performance of QP versus SDP approximation . 114

6.18 Comparison of detection rates under varying amounts of occlusion 115

6.19 Results sorted by overall detection rate . 116

6.20 Results from experiment with objects occluded by 50-75% . 117

6.21 Object localization with real images . 119

7.1 Reconstruction using scale space points ordered by differential TV-norm 122

7.2 Laplacian blobs . 124

7.3 Hessian blobs . 125

7.4 Corner Points . 126

7.5 Edge Points . 126

7.6 Ridge Points . 127

7.7 Top Points . 128

7.8 Laplacian Top Points . 129

7.9 Scale Space Saddle Points . 130

7.10 Hessian-Laplace Points . 131

7.11 Harris-Laplace Points . 132

7.12 Reconstructions using various types of scale space interest points 132

7.13 Reconstruction with 200 strongest combined scale space interest points 134

7.14 Images used in experiments . 140

7.15 Ratio of SSIM measurements. 141

xiii

7.16 Ratio of MSDE measurements . 142

7.17 Example reconstructions . 143

7.18 Image reconstructions . 144

7.19 Ratio of SSIM measurements for SBCS3/min3 . 145

7.20 Error for top 200 . 145

7.21 Effect of canonical subset size on quality . 146

7.22 Reconstruction based on canonical sets of increasing size . 147

8.1 High-level architecture of Scenariographer . 150

8.2 Number of identified change clusters of PostgreSQL by period 154

8.3 Work-flow and tool chain . 157

8.4 Tool chain. 162

8.5 Implementation overlap of feature Send Message AIM . 163

A.1 Occlusion example door 4 41.png . 183

A.2 Object Layout Grid . 185

xiv

Abstract
Subset Selection Using Nonlinear Optimization

Trip Denton
Advisor: Ali Shokoufandeh, Ph.D.

A common problem in computer science is how to represent a large dataset in a smaller

more compact form. This thesis describes a generalized framework for selecting canonical

subsets of data points that are highly representative of the original larger dataset. The con-

tributions of the work are formulation of the subset selection problem as an optimization

problem, an analysis of the complexity of the problem, the development of approximation

algorithms to compute canonical subsets, and a demonstration of the utility of the algo-

rithms in several problem domains.

1

1. Introduction and Background

1.1 Introduction

Many problems in computer science share a common theme, a large dataset must some-

how be represented in a smaller more compact form. The motivations for this vary by ap-

plication and problem domain as do the methods for representation. Perhaps the simplest

way to represent a large dataset is to count the data points, and for some applications this

may be sufficient, i.e. 4027 neutrons were detected in a one second interval.

Sometimes the dataset needs to be compressed for transmission bandwidth or storage

reasons, and the compact form must retain enough information about the original dataset

so that it can be reconstituted. Such compression algorithms frequently have requirements

that they recreate the original dataset with little or no error.

In other cases, the need for seeking a more compact form is motivated by the efficiency

of algorithms that must process the data. For example, in the case of computer vision

applications, digital images may be represented by visual features detected in the images.

In this representation, each feature is a data point. The algorithms that are used to extract

meaning from these feature datasets are often highly dependent on the size of the input set.

In many cases the complexity of the algorithms induces severe restraints on the size of the

input set that can be efficiently processed.

To alleviate this problem, computer scientists are often forced to choose between sub-

sampling the underlying dataset or somehow tweaking the data acquisition process in order

limit the amount of data collected. Often there are domain specific methods of transforming

the data and representing it in some abstracted form that is reduced in size. In the case of

computer vision, this transformation is known as feature detection, which is an integral step

in many computer vision tasks. Features detected in an image of an object form an abstract

2

representation of the object which can be used by higher level vision processes such as

localization and recognition.

The problem of representing a large dataset with a smaller more compact form can be

accomplished though the following methods.

• New data points can be synthesized to represent clusters of the original data points.

• A subset of the original data points can be selected to represent the data set.

Liu and Motoda [71] refer to these methods as feature transformation and subset selection,

respectively. The focus of this thesis is on the development of a new method of subset

selection which is not domain specific. This method can be used to select a canonical

subset of data points that are highly representative of the original larger dataset.

The development of the canonical subset method was motivated by the fact that in

some cases feature transformation may not be practical, relevant, or even possible. For

example, again consider the task of object recognition. Objects may be represented by

hundreds of features and feature transformation will construct new features where none

existed, misrepresenting the object.

Further motivation comes from the apparent drawbacks of current methods of subset

selection. Methods based on finding elements close to centroids are often susceptible to

noise and outliers. If there are multiple elements equidistant from the centroid it is unclear

which is the best choice. These methods do not take the global topology of the original set

into account, they are based on greedy local choices. Alternative methods based on ran-

dom sampling may miss small structures completely. The goal is to expose the underlying

structure of the data and have the global topology drive the subset selection process.

The contributions of this thesis are as follows:

1. A new characterization of subset selection as an optimization problem.

3

2. The development of an algorithmic framework for selecting canonical subsets based

on similarity measures.

3. Examples of applications in problem domains where the canonical subset algorithms

have been shown to be useful.

1.2 Background

Data compression is similar to subset selection in that it seeks to represent an input

signal or set of data points as efficiently (in terms of space) as possible. In 1948 Claude

Shannon [101] described how to measure the information content in a series of n events

whose probabilities are (p1, p2, . . . , pn). He defined the entropy H as

H = −K
n∑

i=1

pi log pi,

where K is constant. By describing how information content could be measured, Shannon

provided a way to calculate the theoretical limit on how much a signal can be compressed.

A classic method of data compression is Huffman coding [10]. Huffman codes are a

method of data compression where an input stream of characters (patterns) is encoded us-

ing variable length codewords. These codewords are prefix codes, meaning that no two

codewords have a common prefix. The algorithm for constructing the codes looks at the

frequency of the characters and assigns codewords that are short to characters that have a

high frequency and codewords that are long to characters with low frequency. The code-

words that are used in this method are related to the input characters by frequency only

and as such are arbitrary representations of them. Data compression methods such as Huff-

man codes preserve storage space, reduce transmission time, and facilitate error correction.

With some exceptions [100, 106], high level algorithms are formulated to work with un-

compressed data. So in general, the data must be decompressed, making any computational

4

gains obtained from working with a smaller input set (the compressed data) somewhat ir-

relevant for higher level algorithms that might be of interest.

Rate distortion theory as described by Cover [11], represents an input sequence, X , as

a set of reproduction points, X̂ , defined by a mapping f : X → X̂ . The distortion, d,

between two sequences, X and X̂ is defined as

d(X, X̂) =
1

n

n∑
i=1

δ(xi, f(xi)),

where n = |X| and δ(xi, f(xi)) is some distortion function. Commonly used distortion

functions are the Hamming distortion, i.e. δ(x, y) = 0 if x = y and 1 otherwise, and the

squared error distortion, δ(x, y) = (x − y)2. The goal for a given k, k < |X|, is to find

a mapping, f : X → X̂ , if one exists, such that the distortion is minimized. This method

does not use a subset of X as X̂ , so it differs from the canonical set method.

Also related to distortion rate theory is the information bottleneck method of Tishby et

al. [110]. In their method an additional source of relevant information Y , is available which

is used with X and X̂ as described in rate distortion theory. This in conjunction with β,

a tuning parameter, allows the method to produce a desired trade-off between compressed

size and fully detailed quantization.

Gordon et al. [33] used the information bottleneck method for unsupervised clustering

of image databases. They applied the method to discrete image histograms and probabilistic

continuous feature sets of images based on Gaussian mixture models. In their work, they

compare their method with that of histogram intersection, indicating that methods based on

the information bottleneck give superior results. The information bottleneck method differs

from the canonical set method in that no assumption is made about the availability of an

additional source of relevant information.

The clustering problem is also related to the subset selection problem. In clustering,

some measure of similarity between data points in the input dataset is defined. The dataset

5

is then partitioned such that data points in any one partition are more similar to other data

points in the same partition than to data points in other partitions. The resulting partitions

can then be approximated by centroids or other synthetic data points. Typically clustering

methods require as an input the desired number of clusters, k.

The most widely used clustering algorithm, K-means [78], clusters n data points into

k clusters. The algorithm begins by creating k random cluster centroids, and data points

are assigned to the nearest centroid. Then the centroids of the clusters are recalculated.

The data points are reassigned to the nearest centroid; and this process is repeated until the

assignment of data points to clusters stabilize. There are many variations to the K-means

algorithm, yet all suffer from the same drawbacks. The centroids are synthetic data points

and a nearest neighbor search must be done to find a representative element that is closest

to the centroid. K-Means is also sensitive to outliers, more importantly, the clusters are

produced as the result of a greedy algorithm that bases its results on local decisions rather

than the global topology of the system. Incorporating global constraints such as maximiz-

ing the distance between centroids or minimizing the distance to the nearest centroid can

be difficult to encode.

A classic problem in computer vision related to clustering is image segmentation.

“Segmentation is the process of partitioning an image into disjoint and homogeneous re-

gions” [77]. Intuitively, segmentation decomposes an image into groups of similar pix-

els. Shi and Malik [102] formulated image segmentation as a graph partitioning problem

through the use of normalized cuts. The normalized cut (Ncut) is defined as

Ncut(A, B) =
cut(A, B)

asso(A, V)
+

cut(A, B)

asso(B, V
,

where asso(A, V) =
∑

u∈A,t∈V w(u, t) is the total connection from nodes A to all nodes

in the graph and cut(A, B) =
∑

u∈A,v∈B w(u, v), the sum of the weights of the cut edges.

They then used the spectral properties of distance matrices to perform the clustering. Specif-

6

ically, they looked at the second smallest eigenvector as an indicator for a binary split. The

process is run recursively, each time selecting a group of similar data points (pixels). This

is in contrast to the canonical set method which directly selects representative data points.

The representative data points in a canonical set are in fact highly dissimilar since they

must represent the entire dataset.

The problem of feature or attribute selection has also been studied in the context of the

dimensionality curse and dimensionality reduction [5, 4, 90]. This is mainly motivated by

that fact that in large semi-structured databases there are many attributes which are corre-

lated with the others, and the need for feature reduction and attribute selection is motivated

by the fact that many datasets can largely be well-approximated in fewer dimensions.

Liu et al. [71] provide a broad overview of the feature transformation and subset selec-

tion methods. Liu et al. [72] describe the filter versus wrapper model for feature selection

in the context of inductive learning. Koller and Sahami [57] describe a method for fea-

ture subset selection based on information theory. Langley [63] formulates the problem

as search problem and categorizes a number of methods according to search strategy. The

feature selection discussed in these papers refers to the selection of which attributes of

the data points have the most predictive power, i.e. which are most useful for classifying

new data points. These attributes are selected using a set of training data points where the

classification is known. This differs from the canonical set method where a representative

subset is selected without any prior knowledge of the dataset (e.g. a training set).

More related to the work presented here is that of Sun et al. [108]. They explored

the use of a genetic algorithm for the purpose of selecting a subset of features from a

training set and used this subset for the object recognition tasks of vehicle detection and

face recognition. The canonical set method work differs from their approach in that no

training set is required.

The canonical set method is also related to the recent work on the identification of

7

canonical views of 3D objects [76, 89]. The objective is to select a subset of object views

that best represents an object. These canonical views can then be used in technical drawings

and computer visualizations. Canonical views are similar to the prototype views described

by Cyr and Kimia [13], which were used for 3D object recognition.

The approach here is to model subset selection as an optimization problem. The canon-

ical set method was inspired by the success of Goemans and Williamson [30] on the MAX-

CUT problem in graphs, which used semidefinite programming (SDP) relaxations to obtain

an improved approximation algorithm. SDP relaxations for problems related to MAX-CUT

such as MAX-BISECTION and MAX-CUT with given sizes of cuts have also been stud-

ied by others [23, 28, 34, 116]. See Goemans [29] and Mahajan and Ramesh [79] for a

survey of recent results and applications of SDP. Recently, SDP techniques have found an

increasing number of applications in computer vision tasks such as graph matching [2, 99],

segmentation [52], and shape from shading [117].

1.3 Overview of the Thesis

The rest of this thesis is organized as follows, Chapter 2 presents the formulation of the

canonical set problem. It explains how the problem can be represented as an optimization

on appropriately defined graph and presents quadratic integer programming formulations

for three different types of canonical sets. To motivate the development of approximation

algorithms, Chapter 3 presents proofs of intractability and describes algorithms to compute

approximate solutions to the problems described in Chapter 2.

Chapter 4 presents experiments that examine the question of how sensitive canonical

sets are to outliers and shows canonical sets of some regular structures. Chapter 5 presents

results evaluating the utility of the canonical set method of subset selection on the computer

vision problem of 2D view selection. Chapter 6 presents an extensive set of experiments

where canonical subsets of image features are used to localize objects under occlusion.

8

Chapter 7 shows how the canonical set method can be used to select subsets of image

features for the purpose of image reconstruction. Although the canonical set algorithms

were originally designed for computer vision applications, they are general in nature. As

proof of their generality, Chapter 8 presents results that show the canonical set method is

also useful in the field of software engineering. Lastly, Chapter 9 presents conclusions as

well as a discussion of future work.

9

2. Problem Formulation

2.1 Introduction

This chapter presents the formulation of the canonical set problem. In Section 2.2, some

notation is introduced and it is shown how the canonical set problem can be represented

as an optimization on appropriately defined graph. Section 2.3 introduces the properties

of canonicals sets and Section 2.4 introduces their inverses. In Section 2.5, formulations

for canonical set constraints are presented. Section 2.6 introduces the concept of Pareto

optimality and explains how multiple objectives can be combined. Finally, Section 2.7

presents quadratic integer programming formulations for three different types of canonical

sets.

2.2 Graph Representation

Let P = {p1, ..., pn} be a set of n data points, and let P∗ denote the canonical subset of

P . Let S : P × P → R≥0 be a similarity function where Sij is the similarity between data

points pi and pj . Assume the similarity measure is symmetric, i.e. Sij = Sji. Without loss

of generality, assume that all similarities fall in the interval [0, 1], with 0 meaning there is

no similarity between the data points and 1 meaning the data points are indistinguishable.

Define a matrix W , where Wi6=j = Sij and Wii = 0.

Construct an undirected edge weighted graph G = G(P), where the data points are

represented by vertices, and the edges between the vertices have weights corresponding

to the measure of similarity between the vertices. If the similarity between a pair of data

points is zero, no edge exists between the respective vertices. Let A ∈ {0, 1}n×n encode

10

the adjacency matrix of graph G,

Aij =

 1 if Wij > 0

0 otherwise.

Using the graph representation, (see Figure 2.1) it is easy to see that with respect to a

given P∗, all of the edges of the graph fall into three categories. An intra edge connects

two vertices which are both in P∗, a cut edge has exactly one vertex in P∗, and an extra

edge has exactly zero vertices in P∗. This model can be extended to include vertex weights

Figure 2.1: Representing the canonical set as a graph; the edges can be categorized as intra,
cut, or extra.

by associating a scalar value with each data point, {t1, ..., tn}, ti ∈ R+ ∀ 1 ≤ i ≤ n, that

will notationally be called the stability of the data point.

To formulate the canonical set problem, a set indicator variable [29], yn+1 ∈ {−1, 1} is

introduced. Then for each data point, pi, create an indicator variable

yi =

 yn+1 if pi ∈ P∗

−yn+1 otherwise.

11

The set indicator variable, yn+1, acts as a reference for membership in the canonical set P∗.

In an optimal solution, feature pi is a member of the canonical set only if yi = yn+1. Note

that yn+1 can equal -1 or 1, and as a result

pi ∈ P∗ ⇔ 1 + yiyn+1

2
= 1 and pi /∈ P∗ ⇔ 1− yiyn+1

2
= 1.

2.3 Properties of Canonical Sets

Using the notation described in Section 2.2, the cardinality of the canonical set P∗ may

be written as

|P∗| =
1

2

n∑
i=1

(1 + yiyn+1). (2.1)

In a similar manner the stability of the canonical set P∗ may be written as

Stability(P∗) =
1

2

n∑
i=1

ti(1 + yiyn+1), (2.2)

the sum of the weights of the cut edges may be written as

Cut(P∗) =
1

4

∑
i,j

Wij(1− yiyj), (2.3)

the sum of the weights of the intra edges may be written as

Intra(P∗) =
1

4

∑
i,j

Wij(1 + yiyn+1)(1 + yjyn+1), (2.4)

and the sum of the weights of the extra edges may be written as

Extra(P∗) =
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1). (2.5)

12

The properties of canonical sets in Equations (2.1), (2.2), (2.3), (2.4), and (2.5) are sum-

marized in Table 2.1.

Property Formulation Description

Size(P∗)
1

2

n∑
i=1

(1 + yiyn+1) Cardinality (|P∗|) of canonical set

Stability(P∗)
1

2

n∑
i=1

ti(1 + yiyn+1) Stability of canonical set

Cut(P∗)
1

4

∑
i,j

Wij(1− yiyj) Sum of cut edge weights

Intra(P∗)
1

4

∑
i,j

Wij(1 + yiyn+1)(1 + yjyn+1) Sum of intra edge weights

Extra(P∗)
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1) Sum of extra edge weights

Table 2.1: Properties of canonical sets

2.4 Property Inverses

To facilitate formulation of optimization problems, it is useful to note that each of the

properties in Table 2.1 has an inverse. The inverse properties are designed such that if Q

is a property, then an objective function minimizing Q is the same as maximizing Q−1 and

vice versa. The formulations can be deduced by examining the inverse partitions of the

graph G. For instance, the cardinality of the set P \ P ∗ may be written as

|P \ P ∗| = Size−1(P∗)

= n− 1

2

n∑
i=1

(1 + yiyn+1)

=
1

2

n∑
i=1

(1− yiyn+1). (2.6)

13

Likewise

Stability−1(P∗) =
1

2

n∑
i=1

ti(1− yiyn+1), (2.7)

and

Cut−1(P∗) =
1

4

∑
i,j

Wij(1 + yiyj). (2.8)

Using the facts that W is symmetric and y2
n+1 = 1,

Intra−1(P∗) = Cut(P∗) + Extra(P∗)

=
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1) (2.9)

=
1

2

∑
i,j

Wij −
1

2

n∑
i=1

(
yiyn+1

n∑
j=1

Wij

)
,

and

Extra−1(P∗) = Cut(P∗) + Intra(P∗)

=
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1 + yiyn+1)(1 + yjyn+1) (2.10)

=
1

2

∑
i,j

Wij +
1

2

n∑
i=1

(
yiyn+1

n∑
j=1

Wij

)
.

Equations (2.6), (2.7), (2.8), (2.9), and (2.10) are summarized in Table 2.2.

14

Property Formulation Description

Size−1(P∗)
1

2

n∑
i=1

(1− yiyn+1) |P \ P ∗|

Stability−1(P∗)
1

2

n∑
i=1

ti(1− yiyn+1) Stability of P \ P ∗

Cut−1(P∗)
1

4

∑
i,j

Wij(1 + yiyj) Sum of uncut edge weights

Intra−1(P∗)
1

4

∑
i,j

Wij(1− yiyj) Sum of non-intra

+
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1) edge weights

Extra−1(P∗)
1

4

∑
i,j

Wij(1− yiyj) Sum of non-extra

+
1

4

∑
i,j

Wij(1 + yiyn+1)(1 + yjyn+1) edge weights

Table 2.2: Property inverse formulations

2.5 Constraints

One consequence of the notation described in Section 2.2, is that canonical sets have a

required constraint,

yi ∈ {−1, +1}, 1 ≤ i ≤ n + 1. (2.11)

Suppose a lower bound, kmin, on the size of the canonical set is desired. This may be

expressed as the constraint,

1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0. (2.12)

15

In a similar fashion, an upper bound, kmax, may be expressed as

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0. (2.13)

A set of vertices V ′ ⊆ V is a dominating set for G(V, E) if for every vertex u ∈ V \V ′,

there exists a vertex v ∈ V ′, with (u, v) ∈ E. A dominating set constraint may be written

as

(1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2. (2.14)

Constraints involving first order logic statements such as ∧,∨, and ¬, may be formulated

in in a similar way.

2.6 Combining Objectives

If canonical subsets are constructed with multiple objective functions, the objectives

may need to be combined in some manner. For an overview of the theory behind combining

objective functions, the reader is referred to Miettinen [81]. The general formulation of

such multi-objective optimization problems is as follows [22, 81]:

Maximize F(X) = {f1(X), f2(X), . . . , fm(X))}

Subject to X ∈ Γ,

where F(X) = {f1(X), . . . , fm(X)} is the set of objective functions and Γ is the feasible

set.

In cases such as these, a trade-off optimality condition known as Pareto optimality may

be used [22]. Specifically, a solution X ∗ is called Pareto optimal if there is no X ∈ Γ such

that F(X) ≥ F(X ∗); that is, X ∗ is lexicographically optimal compared to any sub-optimal

16

solution X . The set of all Pareto optimal solutions X ∗ ∈ Γ is denoted by ΓPar, the Pareto

set. The Pareto set can be thought of as the boundary of the image of the feasible set (see

Figure 2.2), and a Pareto optimal solution is a point on the boundary.

f

Feasible
Region

2

Edge is Pareto optimal set

f
1

Figure 2.2: Pareto Set.

If in a multi-objective optimization problem, the functions fi(X), 1 ≤ i ≤ m, are all

convex functions, then the optimal solution X ∗ of the following single-objective problem

belongs to the Pareto set of problem F(X) [81]:

Maximize
m∑

i=1

λifi(X)

Subject to X ∈ Γ,

λi ≥ 0 ∀ 1 ≤ i ≤ m,
m∑

i=1

λi = 1.

This weighting of objectives finds a Pareto optimal point for a given set of λ values.

Because of the implicit trade-off obtained through the weighting, comparison between so-

lutions obtained with a different set of λ values might not be possible. For example, if the

17

Cut(P∗) and Intra(P∗) are to be minimized, the λ values will prescribe a specific impor-

tance to the relationship between the sum of the cut edges and the sum of the intra edges.

Finally note that all of the functions listed in Tables 2.1 and 2.2 are convex since their

Hessians are non-negative semidefinite.

2.7 Canonical Set Problem Formulation

Using the machinery developed in Sections 2.2-2.4 formulations of canonical subsets

of P can be created. The formulations are presented as quadratic integer programming

problems.

2.7.1 Minimum Dominating Maximum Cut (MDMC) Canonical Subset

Suppose a highly representative subset of some dataset is desired, and there is a require-

ment for the subset to be as small as possible. In addition, some of the pairs of data points

are completely dissimilar. The goal is to identify a canonical subset, P∗ with the following

attributes:

1. Data points in P∗ are maximally similar to data points in P \ P ∗.

2. The size of the canonical set is as small as possible.

3. Every data point is either in P∗ or is similar to a data point in P∗.

A canonical subset with these attributes may be more formally described as the minimum

dominating set with maximum cut-weight. Intuitively, such a set is a simultaneous solution

to the minimum dominating set and the maximum cut problems in graph G. Using the

notation described in Section 2.3 and 2.5, this canonical subset problem can be formulated

18

as

Minimize Size(P∗),

Maximize Cut(P∗),

Subject to (1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2, ∀ 1 ≤ i ≤ n,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

Using the inverse properties given in Table 2.2, the problem formulation can be made con-

sistent so that the objectives are all stated in maximization form,

Maximize Size−1(P∗),

Maximize Cut(P∗),

Subject to (1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2, ∀ 1 ≤ i ≤ n,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

Substituting formulations from Tables 2.1 and 2.2 gives

Maximize
1

2

n∑
i=1

(1− yiyn+1),

Maximize
1

4

∑
i,j

Wij(1− yiyj),

Subject to (1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2, ∀ 1 ≤ i ≤ n,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

19

Combining the objective functions using the technique in Section 2.6 gives:

(MDMC):

Maximize λ1

(
1

2

n∑
i=1

(1− yiyn+1)

)
+ λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
,

Subject to (1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2, ∀ 1 ≤ i ≤ n,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1,

where λ1 and λ2 are non-negative and λ1 + λ2 = 1.

2.7.2 Bounded Canonical Subset (BCS)

Suppose a highly representative subset of some dataset is desired, and there is a require-

ment for the members of the subset to be as dissimilar as possible. In addition, there is a

need to be able to control the size of the subset. The goal is to identify a canonical subset,

P∗ with the following attributes:

1. Data points in P∗ are minimally similar.

2. Data points in P∗ are maximally similar to data points in P \ P ∗.

3. The size of the canonical set is as least kmin and at most kmax.

20

Using the notation described in Section 2.3 and 2.5, this canonical subset problem can be

formulated as

Minimize Intra(P∗),

Maximize Cut(P∗),

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

Using the inverse properties given in Table 2.2, the problem formulation can be made con-

sistent so that the objectives are all stated in maximization form,

Maximize Intra−1(P∗),

Maximize Cut(P∗),

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

21

Substituting formulations from Tables 2.1 and 2.2 gives

Maximize
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1),

Maximize
1

4

∑
i,j

Wij(1− yiyj),

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

Combining the objective functions using the technique in Section 2.6 gives:

(BCS):

Maximize λ1

(
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
,

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1,

where λ1 and λ2 are non-negative and λ1 + λ2 = 1.

2.7.3 Stable Bounded Canonical Subset (SBCS)

Suppose a highly representative subset of some dataset is desired, and there is a require-

ment for the members of the subset to be as dissimilar as possible and as stable as possible.

In addition, there is a need to be able to control the size of the subset. The goal is to identify

22

a canonical subset, P∗ with the following attributes:

1. Data points in P∗ are minimally similar.

2. Data points in P∗ are maximally similar to data points in P \ P ∗.

3. Data points in P∗ are maximally stable.

4. The size of the canonical set is as least kmin and at most kmax.

Using the notation described in Section 2.3 and 2.5, this canonical subset problem can be

formulated as

Minimize Intra(P∗),

Maximize Cut(P∗),

Maximize Stability(P∗),

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

23

Using the inverse properties given in Table 2.2, the problem formulation can be made con-

sistent so that the objectives are all stated in maximization form,

Maximize Intra−1(P∗),

Maximize Cut(P∗),

Maximize Stability(P∗),

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

Substituting formulations from Tables 2.1 and 2.2 gives

Maximize
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1),

Maximize
1

4

∑
i,j

Wij(1− yiyj),

Maximize
1

2

n∑
i=1

ti(1 + yiyn+1),

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

24

Combining the objective functions using the technique in Section 2.6 gives:

(SBCS):

Maximize λ1

(
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
+ λ3

(
1

2

n∑
i=1

ti(1 + yiyn+1)

)
,

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1,

where λ1, λ2, and λ3 are non-negative and
∑3

m=1 λm = 1.

2.8 Conclusion

This chapter introduced notation and methods necessary for the formulation of canon-

ical sets. By representing subset selection as an optimization on an appropriately defined

graph, it was shown that various properties of the graph could be defined. These properties

as well as relevant constraints were then formulated as quadratic integer equations. The

notion of Pareto optimization, a method for combining objective functions was then dis-

cussed. Finally, three flavors of canonical subsets based on different combinations of the

defined properties and constraints were presented.

25

3. Approximation and Proof of NP Hardness

3.1 Introduction

This chapter presents algorithms to compute approximate solutions to the problems de-

scribed in Chapter 2. First in Section 3.2, it is shown that the problems are intractable, and

thus formulation of approximation algorithms is useful. Next in Section 3.3, approxima-

tions are presented based on semidefinite relaxations of the quadratic integer formulations

shown in Section 2.7. Section 3.3.1 explains how the the quadratic integer formulations

are relaxed. Section 3.3.2 shows how the relaxed objectives can be represented in ma-

trix form. Section 3.3.3 shows how the relaxed constraints can be represented in matrix

form. Then Section 3.3.4 presents the semidefinite matrix formulations for the canonical

set problems described in in Chapter 2. Section 3.3.5 explains the rounding process that is

used to obtain approximate solutions. Section 3.3.6 presents proofs of performance bounds

which provide guarantees on the quality of the solutions obtained using the SDP approxi-

mations. Finally, Section 3.4 presents quadratic approximations, an alternative method of

approximation which remedies some of the drawbacks found in SDP approximations.

3.2 Proofs of Intractability

Problems are considered to be intractable if the computational effort of the best known

algorithms to solve them grows exponentially as the size of the input is increased. To prove

that an algorithm, L, is intractable it suffices to show that there is a polynomial reduction

from L′, a problem that is known to be intractable, to L. Such a reduction is known as a

Karp reduction.

26

3.2.1 MDMC is Intractable

The minimum dominating maximum cut (MDMC) canonical subset problem described

in Section 2.7.1 is reiterated for clarity:

(MDMC):

Maximize λ1

(
1

2

n∑
i=1

(1− yiyn+1)

)
(3.1)

+λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
, (3.2)

Subject to (1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2, ∀ 1 ≤ i ≤ n,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1,

where λ1 and λ2 are non-negative and λ1 + λ2 = 1.

An instance of MDMC can be described asL = {G(V, E), Λ}where G is an undirected

edge weighted graph, and Λ = {λ1, λ2}, is the set of weighting parameters for the objective

functions. An optimal solution, P∗, to this integer program is a vector y = [y1, ..., yn+1]
T ,

indicating which vertices belong to the MDMC subset.

Theorem 3.2.1. The minimum dominating maximum cut (MDMC) canonical subset prob-

lem is NP-hard.

Proof. With respect to the set Λ, there are three cases to consider.

Case 1. λ1 = 0, λ2 = 1.

In this case the value of objective (3.1) is zero, and the problem is identical to MAX-

CUT [30] with the additional constraint that the solution must be a dominating set. A proof

by contradiction shows that an optimal solution P∗ to the MDMC problem, L = {G, Λ},

where Λ = {λ1 = 0, λ2 = 1} is an optimal solution to MAX-CUT.

27

Assume that an optimal solution to MDMC is not an optimal solution to MAX-CUT.

Then at least one vertex, v, exists in P∗ or P \P∗ which can be removed, which will result

in a greater cut value, i.e. objective (3.2) would be larger. This implies that if v ∈ P∗, there

exists at least one intra edge, or if v ∈ P \ P∗ there exists at least one extra edge. But

in either case switching v to the other subset will not violate the dominating set constraint

because in the case of v ∈ P∗, the vertex on the other side of the intra edge is in the

canonical set, and in the case of v ∈ P \ P∗, vertex v will be put in the canonical set. This

contradicts the original assumption that the solution was an optimal solution to MDMC.

Case 2. λ1 = 1, λ2 = 0.

In this case the value of objective (3.2) is zero, and the problem is identical to an in-

stance of the minimum dominating set (rewritten as maximizing the inverse partition). It

can be shown that the minimum dominating set problem is NP-Hard through a reduction

from minimum set cover [3].

Case 3. λ1 > 0, λ2 > 0.

Observe that the contribution of a single vertex to the combined objective is λ1, while

the contribution of a single edge is λ2Wij , where Wij is the weight of the edge. By setting

the edge weights to sufficiently small values, the contribution of objective (3.2) will be

rendered inconsequential. As a result an instance of the minimum dominating set, given

by the graph G′, may be reduced to an instance of MDMC. Let ε < λ1

λ2|E| , where |E|

denotes the number of edges in graph G′. Construct a new graph G from G′ and set the

weight of each edge to ε. Clearly this can be done in polynomial time. Then a proof by

contradiction shows that a solution to the MDMC problem, L = {G = (V, E), Λ}, is a

minimum dominating set.

Assume that P∗ is an optimal solution to the MDMC problem, and L = {G(V, E), Λ}

is not a minimum dominating set. By definition it is a dominating set, so at least one vertex,

28

v, exists in P∗ which can be removed. In addition, there must be at least one intra edge. If

this were not the case, removal of vertex v would violate the dominating set constraint. The

removal of vertex v from P∗ will increase the value of objective (3.1) by λ1 and decrease

the value of objective (3.2) by at most ελ2(|E| − 2). This implies

ελ2(|E| − 2) =
λ2λ1(|E| − 2)

λ2|E|

=
λ1(|E| − 2)

|E|
< λ1.

That is, the removal of vertex v will always cause the combined objective to have a higher

value, irrespective of the edges that are adjacent to v. But if this is the case, P∗ is not

optimal, which is a contradiction.

3.2.2 BCS is Intractable

The bounded canonical set (BCS) problem described in Section 2.7.2 is reiterated for

clarity,

29

(BCS):

Maximize λ1

(
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1)

)
(3.3)

+ λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
, (3.4)

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1,

where λ1 and λ2 are non-negative and λ1 + λ2 = 1.

An instance of BCS can be described asL = {G = (V, E), Λ}where G is an undirected

edge weighted graph, and Λ = {λ1, λ2}, is the set of weighting parameters for the objective

functions.

Lemma 3.2.2. Let G = (V, E) be a graph with edge weights of 1, and let c be the size

of the minimum dominating set of G. If L = {G = (V, E), Λ}, λ1 > 0, λ2 > 0, kmin =

0, c ≤ kmax ≤ |V | is an instance of the BCS problem and all of the vertices of G have

degree greater than zero, then P∗ is a dominating set.

Proof. Assume not, then there exists a vertex v in P \ P∗ which has no neighbors in P∗.

But if that were true then P∗ would not be an optimal solution to BCS, since moving vertex

v into P∗ would increase the value of objective term (3.4). Objective term (3.3) will not

change since any edges that were extra edges will become cut edges.

Theorem 3.2.3. The bounded canonical canonical subset problem (BCS) is NP-hard if

λ1 > 0, λ2 > 0.

30

Proof. An instance of the minimum dominating set may be reduced to an instance of BCS

in the following manner. Given a graph G′ = (V ′, E ′), construct a new graph G from all of

the vertices in G′ with degree greater than zero along with all of the edges, E ′. Clearly this

can be accomplished in polynomial time.

With the fact that a solution to the BCS problem is a dominating set by Lemma 3.2.2, it

can be shown that the minimum dominating set problem on G could be solved by adjusting

the bound, kmax, and iterating through at most |V | instances of BCS. Once a solution is

found add the vertices V ′ \ V to P∗, thereby constructing the minimum dominating set of

graph G′.

3.2.3 SBCS is Intractable

Consider the stable bounded canonical set problem (see Section 2.7.3):

(SBCS):

Maximize λ1

(
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1)

)
(3.5)

+ λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
(3.6)

+ λ3

(
1

2

n∑
i=1

ti(1 + yiyn+1)

)
, (3.7)

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0,

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0,

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1.

The following proof shows that SBCS is intractable.

Theorem 3.2.4. The stable bounded canonical canonical subset problem (SBCS) is NP-

31

hard for all positive λ1, λ2, and λ3.

Proof. An instance of the minimum dominating set may be reduced to an instance of

SBCS in the following manner. Assign a weight of 1 to each edge of the graph, Wij =

1, (ui, vj) ∈ E. Then let ti = 1 ∀ ui ∈ V . Clearly this can be accomplished in polyno-

mial time. Next it is argued that a solution to the SBCS problem is a dominating set in the

following way; Assume not, then there exists a vertex v in P \ P∗ which has no neighbors

in P∗. But if that were true then P∗ would not be a SBCS since moving the vertex v into

P∗ would increase objective term (3.7) and possibly also objective term (3.6) if the vertex

had edges. Objective term (3.5) will not change since any edges that were extra edges will

become cut edges.

With the fact that a solution to the SBCS problem is a dominating set, it can be shown

that the minimum dominating set problem could be solved by adjusting the bounds, kmin,

kmax, and iterating through |V | instances of SBCS.

3.3 Semidefinite Programming Approximation

In order to find an approximate solution to the problems described in Section 2.7, they

can be relaxed and then formulated as semidefinite programs. Semidefinite programming

is a generalization of linear programming [27] in the sense that linear programs can be

formulated as semidefinite programs.

Consider the standard formulation of a linear program,

Maximize cT x

Subject to aT
i x = bi, i = 1, . . . ,m

x ∈ <n
+,

32

where c, ai, bi, x are vectors with x unknown and the objective is to maximize a linear

vector inner-product form cT x =
∑n

i cT
i xi over the polyhedral feasible region obtained by

the intersection of constraints aT
i x = bi, i = 1, . . . ,m and positive orthant x ∈ <n

+. The

standard form of a semidefinite program is

(SDP): Maximize C • X

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m,

X � 0,

where C,Di,X are n×n matrices with X unknown and where C •X denotes the Frobenius

inner product of matrices C and X , i.e., C • X = Trace(CTX), and X � 0 means the

matrix X is a positive semidefinite matrix.

In contrast to a linear programming problem, the objective function of a semidefinite

program has a matrix inner-product form of C • X . The set of feasible solutions for this op-

timization consists of the polyhedral resulting from the intersection of m linear constraints

Di • X ≥ 0 and the cone of positive semidefinite matrices {X � 0}. Simply put, the ob-

jective is encoded into the matrix C, and the m constraints are encoded into the matrices

D1, . . . ,Dm.

Like linear programs, semidefinite programs also have duals. In fact most of the strong

and weak duality results of linear programming have counterparts in semidefinite program-

ming [1]. The dual of the semidefinite program 3.8 can be stated as:

(SDP Dual): Maximize
m∑

i=1

yibi

Subject to
m∑

i=1

yiDi + S = C,

S � 0.

33

Semidefinite programs can be solved in polynomial time assuming a polynomial repre-

sentation of the input, and interior point methods have been shown to perform well in

practice [29, 111].

3.3.1 Vector Relaxation of Canonical Set Problems

To find an approximate solution to the problems described in Section 2.7, the integral

constraints are relaxed. Each indicator variable, yi, 1 ≤ i ≤ n+1, is replaced with a vector

xi ∈ Sn+1, where Sn+1 is the unit sphere in Rn+1. The relaxed form of the MDMC problem

described in Section 2.7.1 is written as

(MDMC): (3.8)

Maximize λ1

(
1

2

n∑
i=1

(1− xT
i xn+1)

)
+ λ2

(
1

4

∑
i,j

Wij(1− xT
i xj)

)
,

Subject to (1 + xT
i xn+1) +

n∑
j=1

Aij(1 + xT
j xn+1) ≥ 2, ∀ 1 ≤ i ≤ n, (3.9)

xT
i xi = 1, 1 ≤ i ≤ n + 1, xi ∈ Rn+1, (3.10)

34

where λ1 and λ2 are non-negative and λ1 + λ2 = 1. The relaxed form of the BCS problem

described in Section 2.7.2 is written as

(BCS): (3.11)

Maximize λ1

(
1

4

∑
i,j

Wij(1− xT
i xj) +

1

4

∑
i,j

Wij(1− xT
i xn+1)(1− xT

j xn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− xT
i xj)

)
,

Subject to
1

2

n∑
i=1

(1 + xT
i xn+1)− kmin ≥ 0, (3.12)

kmax −
1

2

n∑
i=1

(1 + xT
i xn+1) ≥ 0,

xT
i xi = 1, 1 ≤ i ≤ n + 1, xi ∈ Rn+1, (3.13)

where λ1 and λ2 are non-negative and λ1 +λ2 = 1. The relaxed form of the SBCS problem

described in Section 2.7.3 is written as

(SBCS): (3.14)

Maximize λ1

(
1

4

∑
i,j

Wij(1− xT
i xj) +

1

4

∑
i,j

Wij(1− xT
i xn+1)(1− xT

j xn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− xT
i xj)

)
+ λ3

(
1

2

n∑
i=1

ti(1 + xT
i xn+1)

)
,

Subject to
1

2

n∑
i=1

(1 + xT
i xn+1)− kmin ≥ 0, (3.15)

kmax −
1

2

n∑
i=1

(1 + xT
i xn+1) ≥ 0,

xT
i xi = 1, 1 ≤ i ≤ n + 1, xi ∈ Rn+1, (3.16)

where λ1, λ2, and λ3 are non-negative and
∑3

m=1 λm = 1.

35

3.3.2 SDP Property Matrix Formulation

To express objective functions in the form of C •X , define the matrix V to be the matrix

obtained by concatenating the column vectors xi, 1 ≤ i ≤ n + 1, and define X = VTV .

Clearly, X is a semidefinite matrix, since yTX y = yTVTVy = ||Vy||22, ∀y ∈ Rn+1. Next,

note some facts about the Frobenius inner product of matrices;

C1 • X + C2 • X = Trace(CT
1 X) + Trace(CT

2 X) (3.17)

= Trace((C1 + C2)
TX) (3.18)

= (C1 + C2) • X . (3.19)

In order to facilitate the formulation of the canonical set algorithms, the properties de-

scribed in Tables 2.1 and 2.2 are expressed in relaxed matrix form in Tables 3.1 and 3.2

respectively.

To see how this is done, consider the relaxation of the Size(P∗) property,

1

2

n∑
i=1

(1 + xT
i xn+1), (3.20)

which can be written as C • X where

C =

 0̃ 1
4
e

1
4
eT 1

2
n

 ,

e is the all-ones vector of order n, and 0̃ is an n× n matrix of zeros.

The remaining properties can be transformed in a similar way.

36

Property Formulation Description

Size(P∗)

 0̃ 1
4
e

1
4
eT 1

2
n

 Cardinality (|P∗|) of canonical set

Stability(P∗)

 0̃ 1
4
t

1
4
tT 1

2
tΣ

 Stability of canonical set

Cut(P∗)

 −1
4
W 0̂

0̂T 1
4
wΣ

 Sum of cut edge weights

Intra(P∗)

 1
4
W 1

4
d

1
4
dT 1

4
wΣ

 Sum of intra edge weights

Extra(P∗)

 1
4
W −1

4
d

−1
4
dT 1

4
wΣ

 Sum of extra edge weights

Table 3.1: Properties of canonical sets expressed in matrix form, where 0̃ is an n×n matrix

of zeros, e is the all-ones vector of order n, t is a column vector in Rn whose ith entry is ti,

tΣ =
∑n

i=1 ti, W is the n × n similarity matrix, wΣ =
∑

i,j Wij , 0̂ is an all zeros column

vector in Rn, and d is a column vector in Rn whose ith entry has value di =
∑n

j=1Wij .

37

Property Formulation Description

Size−1(P∗)

 0̃ −1
4
e

−1
4
eT 1

2
n

 |P \ P ∗|

Stability−1(P∗)

 0̃ −1
4
t

−1
4
tT 1

2
tΣ

 Stability of P \ P ∗

Cut−1(P∗)

 1
4
W 0̂

0̂T 1
4
wΣ

 Sum of uncut edge weights

Intra−1(P∗)

 0̃ −1
4
d

−1
4
dT 1

2
wΣ

 Sum of non-intra edge weights

Extra−1(P∗)

 0̃ 1
4
d

1
4
dT 1

2
wΣ

 Sum of non-extra edge weights

Table 3.2: Property inverses of canonical sets expressed in matrix form, where 0̃ is an

n× n matrix of zeros, e is the all-ones vector of order n, t is a column vector in Rn whose

ith entry is ti, tΣ =
∑n

i=1 ti, W is the n × n similarity matrix, wΣ =
∑

i,j Wij , 0̂ is an

all zeros column vector in Rn, and d is a column vector in Rn whose ith entry has value

di =
∑n

j=1Wij .

38

3.3.3 SDP Constraint Matrix Formulation

The constraints described in Section 2.5 can also be formulated as matrices. For exam-

ple, the dominating set constraint (3.9),

(1 + xT
i xn+1) +

n∑
j=1

Aij(1 + xT
j xn+1) ≥ 2, ∀ 1 ≤ i ≤ n,

may be written as

xT
i xn+1 +

n∑
j=1

Aij(x
T
j xn+1) ≥ 1− di,

where di is the degree of vertex i. This may be written as n constraint matrices, Di, for

i = 1, . . . , n, where each matrix has the form

Di =

0 0 . . . 0 0 . . . Ai,1

0 0 . . . 0 0 . . . Ai,2

...
...

...

0 0 . . . 0 0 . . . 1

0 0 . . . 0 0 . . . Ai,i+1

...
...

...

0 0 . . . 0 0 . . . Ai,n

Ai,1 Ai,2 . . . 1 Ai,i+1 . . . 2(di − 1)

. (3.21)

Constraints (3.10), (3.13), and (3.16),

xT
i xi = 1, 1 ≤ i ≤ n + 1, xi ∈ Rn+1,

39

may be encoded as n + 1 constraint matrices, D1, . . . ,Dn+1, that are all zeros with a single

1 that moves along the main diagonal, enforcing the xT
i xi = 1 constraints. For example,

D1 =

 1 0̂

0̂T 0̃

 ,Dn+1 =

 0̃ 0̂

0̂T 1

 , (3.22)

where 0̃ is an n × n matrix of zeros, and 0̂ is an all zeros column vector in Rn. Con-

straints (3.12) and (3.15),

1

2

n∑
i=1

(1 + xT
i xn+1)− kmin ≥ 0,

may be written as

D =

 0̃ 1
4
e

1
4
eT 1

2
n− kmin

 , (3.23)

where e is the all-ones vector of order n. In a similar way, constraints (3.12) and (3.15),

kmax −
1

2

n∑
i=1

(1 + xT
i xn+1) ≥ 0,

may be expressed as

D =

 0̃ 1
4
e

1
4
eT kmax − 1

2
n

 . (3.24)

3.3.4 SDP Matrix Formulation

Recall that the MDMC problem described in Section 2.7.1 is formulated as a maxi-

mization of Size−1(P∗) and Cut(P∗). Matrix formulations from Tables 3.1 and 3.2 may be

40

used to write the SDP form of the MDMC problem described in Section 3.8 as

(MDMC): (3.25)

Maximize C • X

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m,

X � 0,

where

C = λ1

 0̃ −1
4
e

−1
4
eT 1

2
n

+ λ2

 −1
4
W 0̂

0̂T 1
4
wΣ

 ,

D0, . . . ,Dn are as described in (3.21), Dn+1, . . . ,D2n+1 are as described in (3.22), and

m = 2n + 1. The coefficients, λ1 ≥ 0 and λ2 ≥ 0 are parameters such that λ1 + λ2 = 1.

Recall also that the BCS problem described in Section 2.7.2 is formulated as a maxi-

mization of Intra−1(P∗) and Cut(P∗). Using formulations from Tables 3.1 and 3.2, the SDP

form of the BCS problem described in Section 3.11 is written as

(BCS): (3.26)

Maximize C • X

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m,

X � 0,

where

C = λ1

 0̃ −1
4
d

−1
4
dT 1

2
wΣ

+ λ2

 −1
4
W 0̂

0̂T 1
4
wΣ

 ,

41

D1, . . . ,Dn+1 are as described in (3.22),Dn+2 is as described in (3.23),Dn+3 is as described

in (3.24), and m = n + 3. The coefficients, λ1 ≥ 0 and λ2 ≥ 0 are parameters such that

λ1 + λ2 = 1.

Note also that the SBCS problem described in Section 2.7.3 is formulated as a maxi-

mization of Intra−1(P∗), Cut(P∗), and Stability(P∗). Again using formulations from Ta-

bles 3.1 and 3.2, the SDP form of the SBCS problem described in Section 3.14 is written

as

(SBCS): (3.27)

Maximize C • X

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m,

X � 0,

where

C = λ1

 0̃ −1
4
d

−1
4
dT 1

2
wΣ

+ λ2

 −1
4
W 0̂

0̂T 1
4
wΣ

+ λ3

 0̃ 1
4
t

1
4
tT 1

2
tΣ

 ,

D1, . . . ,Dn+1 are as described in (3.22),Dn+2 is as described in (3.23),Dn+3 is as described

in (3.24), and m = n + 3. The coefficients, λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 satisfy λ1 + λ2 +

λ3 = 1.

3.3.5 Rounding

Once the solutions to the semidefinite programs described in Section 3.3.4 are com-

puted, a rounding step must be performed to obtain an integer solution. The rounding

method detailed by Vazirani [112] is used to identify the set of values for indicator vari-

ables y1, ..., yn, and the set indicator variable yn+1. This method is based on Cholesky

42

decomposition and a multivariate normal hyperplane method that can be effectively deran-

domized [79].

Let X ∗ = X ∗(Λ) denote the optimal solution of the canonical set obtained from

the semidefinite program. Since X ∗ is a symmetric positive semidefinite matrix, using

Cholesky decomposition it can be represented as X ∗ = VTV [32]. This provides us with

n + 1 vectors for the relaxed canonical set problems. Specifically, column xi, 1 ≤ i ≤ n,

of V forms the vector associated with vertex vi ∈ G in the optimal SDP relaxation of the

canonical set problem, and column xn+1 corresponds to the set indicator variable. Finally

Figure 3.1: Random vector r on the unit sphere.

pick a random vector, r ∈ Rn+1, uniformly distributed on the unit sphere. For each column

xi, i ≤ 1 ≤ n + 1 of V generate the indicator variable yi such that

yi =

 +1 if rT xi ≥ 0

−1 otherwise.

Denote the canonical set P∗ = {vi | yi = yn+1, 1 ≤ i ≤ n}.

This rounding step is performed multiple times, each time checking that the constraints

are not violated, and keeping track of the solution with the best objective value.

43

3.3.6 Bounds

During the rounding step described in Section 3.3.5, a random vector ρ is used to de-

termine set assignment. The value of a rounded solution can be stated in terms of the

probability of the separation of vectors xi, xj ∈ Rn+1 by the random vector ρ.

Lemma 3.3.1 (Vazirani (lemma 26.6) [112]).

Pr[xi and xj are separated] =
θi,j

π
,

where θi,j is the angle between xi and xj . This is the probability of data points pi and pj

being in different sets. Let θ′ = π − θ, noting that

Pr[xi and xj are not separated] =
θ′i,j
π

.

A lemma from Goemans and Williamson [31] is used.

Lemma 3.3.2 (Goemans and Williamson (lemma 2.5) [31]). Let

α = min
0<θ′≤π

2

π

θ′

(1− cos θ′)
,

then α ≥ .87856.

This can be seen by letting

f(θ′) =
2

π

θ′

(1− cos θ′)
(3.28)

and then computing its derivative,

f ′(θ′) =
2

π

(
1

1− cos θ′
− θ′ sin θ′

(1− cos θ′)2

)
.

44

Then for f ′(θ′) = 0, θ′ ≈ −2.33, which is then plugged into equation (3.28). Note

Lemma 3.3.3. For all θ′ such that 0 ≤ θ′ ≤ π

θ′

π
≥ α

(
1− cos θ′

2

)
.

This can be seen given the definition of α and noting

θ′

π
=

2

π
· θ′

1− cos θ′
· 1− cos θ′

2
.

MDMC Bounds

Next it is shown that the algorithm for approximating the MDMC is at least 0.878 of

optimal for a fixed set Λ = {λ1, λ2}. To do this, the expected value of the approximate

solution is computed and shown to be at least 0.878 of optimal.

The maximization MDMC objective,

λ1

(
1

2

n∑
i=1

(1− xT
i xn+1)

)
+ λ2

(
1

4

∑
i,j

Wij(1− xT
i xj)

)
,

can be restated in terms of θ, noting the vectors xi, xj , and xn+1 are unit vectors. Their

contribution to the objective is

λ1

(
1

2

n∑
i=1

(1− cos θi,n+1)

)
+ λ2

(
1

4

∑
i,j

Wij(1− cos θi,j)

)
.

The objective value of the optimal solution to MDMC may be defined as

OPTMDMC = λ1

(
1

2

n∑
i=1

(1− cos θi,n+1)

)
+ λ2

(
1

4

∑
i,j

Wij(1− cos θi,j)

)
. (3.29)

Next the expected value of the approximate solution is found and shown that it is at least

45

0.878 ·OPTMDMC using Lemmas 3.3.2 and 3.3.3.

Let ZMDMC denote the value of the objective (3.29) obtained using the rounding method

described in Section 3.3.5. Note that 0 ≤ 1 − cos θ ≤ 2, so the expected value is 2 · θ
π

us-

ing Lemma 3.3.1. Also note that θ
π
≥ α

(
1−cos θ

2

)
from Lemma 3.3.3 using a change of

variables. Then the expectation of ZMDMC is

E[ZMDMC] = λ1

(
1

2

n∑
i=1

(
2 · θi,n+1

π

))
+ λ2

(
1

4

∑
i,j

Wij

(
2 · θi,j

π

))

≥ α ·

[
λ1

(
1

2

n∑
i=1

(
2 · (1− cos θi,n+1)

2

))

+λ2

(
1

4

∑
i,j

Wij

(
2 · (1− cos θi,j)

2

))]

= α ·

[
λ1

(
1

2

n∑
i=1

(1− cos θi,n+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− cos θi,j)

)]
= α ·OPTMDMC .

Thus it has been shown that for any fixed Λ = {λ1, λ2}, the expected value of the ap-

proximate solution is at least 0.878 ·OPTMDMC , where OPTMDMC is the optimal solution

to the MDMC problem.

BCS Bounds

A similar argument holds for approximating the BCS which shows the expected value

of the approximate solution is at least 0.878 of optimal.

46

The maximization BCS objective,

Maximize λ1

(
1

4

∑
i,j

Wij(1− xT
i xj) +

1

4

∑
i,j

Wij(1− xT
i xn+1)(1− xT

j xn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− xT
i xj)

)
, (3.30)

can be restated in terms of θ. Their contribution to the objective is

λ1

(
1

4

∑
i,j

Wij(1− cos θi,j) +
1

4

∑
i,j

Wij(1− cos θi,n+1)(1− cos θj,n+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− cos θi,j)

)
. (3.31)

Next the expected value of the approximate solution is found and shown that it is at least

0.878 ·OPTBCS using Lemmas 3.3.2 and 3.3.3.

Let ZBCS denote the value of the objective (3.31) obtained using the rounding method

described in Section 3.3.5. Again note that 0 ≤ 1− cos θ ≤ 2, so the expected value is 2 · θ
π

47

using Lemma 3.3.1. Then the expectation of ZBCS is

E[ZBCS] = λ1

(
1

4

∑
i,j

Wij

(
2 · θi,j

π

)
+

1

4

∑
i,j

Wij

(
2 · θi,n+1

π

)(
2 · θj,n+1

π

))

+λ2

(
1

4

∑
i,j

Wij

(
2 · θi,j

π

))

≥ α ·

[
λ1

(
1

4

∑
i,j

Wij

(
2 · (1− cos θi,j)

2

)

+
1

4

∑
i,j

Wij

(
2 · (1− cos θi,n+1)

2

)(
2 · (1− cos θj,n+1)

2

))

+λ2

(
1

4

∑
i,j

Wij

(
2 · (1− cos θi,j)

2

))]

= α ·

[
λ1

(
1

4

∑
i,j

Wij (1− cos θi,j)

+
1

4

∑
i,j

Wij (1− cos θi,n+1) (1− cos θj,n+1)

)

+λ2

(
1

4

∑
i,j

Wij (1− cos θi,j)

)]
= α ·OPTBCS.

Thus it has been shown that for any particular any particular set Λ = {λ1, λ2}, the

expected value of the approximate solution is at least 0.878 · OPTBCS , where OPTBCS is

the optimal solution to the BCS problem. It is important to note that the rounding process

may violate the size constraints kmin and kmax. The guarantee only applies to the objective

value.

SBCS Bounds

Using a similar argument, it can be shown that the algorithm for approximating the

SBCS is at least 0.878 of optimal for any particular set Λ = {λ1, λ2, λ3}.

48

The maximization SBCS objective,

Maximize λ1

(
1

4

∑
i,j

Wij(1− xT
i xj) +

1

4

∑
i,j

Wij(1− xT
i xn+1)(1− xT

j xn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− xT
i xj)

)
+ λ3

(
1

2

n∑
i=1

ti(1 + xT
i xn+1)

)
, (3.32)

can then be restated in terms of θ. Their contribution to the objective is

λ1

(
1

4

∑
i,j

Wij(1− cos θi,j) +
1

4

∑
i,j

Wij(1− cos θi,n+1)(1− cos θj,n+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− cos θi,j)

)
+ λ3

(
1

2

n∑
i=1

ti(1 + cos θi,n+1)

)
(3.33)

Using the facts that θ′ = π − θ and 1 + cos θ = 1 − cos θ′, the objective value of optimal

solution to SBCS may be defined as

OPTSBCS = λ1

(
1

4

∑
i,j

Wij(1− cos θi,j)

+
1

4

∑
i,j

Wij(1− cos θi,n+1)(1− cos θj,n+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− cos θi,j)

)

+λ3

(
1

2

n∑
i=1

ti(1− cos θ′i,n+1)

)
(3.34)

Next the expected value of the approximate solution is found and shown that it is at least

0.878 ·OPTSBCS using Lemmas 3.3.2 and 3.3.3.

Let ZSBCS denote the value of the objective (3.34) obtained using the rounding method

described in Section 3.3.5. Note that 0 ≤ 1 − cos θ′ ≤ 2 and 0 ≤ 1 − cos θ ≤ 2, so the

expected values are 2 · θ′

π
and 2 · θ

π
respectively using Lemma 3.3.1. Then the expectation

49

of ZSBCS is

E[ZSBCS] = λ1

(
1

4

∑
i,j

Wij

(
2 · θi,j

π

)
+

1

4

∑
i,j

Wij

(
2 · θi,n+1

π

)(
2 · θj,n+1

π

))

+λ2

(
1

4

∑
i,j

Wij

(
2 · θi,j

π

))
+ λ3

(
1

2

n∑
i=1

ti

(
2 ·

θ′i,n+1

π

))
(3.35)

≥ α ·

[
λ1

(
1

4

∑
i,j

Wij

(
2 · (1− cos θi,j)

2

)

+
1

4

∑
i,j

Wij

(
2 · (1− cos θi,n+1)

2

)(
2 · (1− cos θj,n+1)

2

))

+λ2

(
1

4

∑
i,j

Wij

(
2 · (1− cos θi,j)

2

))

+λ3

(
1

2

n∑
i=1

ti

(
2 ·

(1− cos θ′i,n+1)

2

))]
(3.36)

= α ·

[
λ1

(
1

4

∑
i,j

Wij (1− cos θi,j)

+
1

4

∑
i,j

Wij (1− cos θi,n+1) (1− cos θj,n+1)

)

+λ2

(
1

4

∑
i,j

Wij (1− cos θi,j)

)

+λ3

(
1

2

n∑
i=1

ti
(
1− cos θ′i,n+1

))]
(3.37)

= α ·OPTSBCS. (3.38)

Thus it has been shown that for any particular any particular set Λ = {λ1, λ2, λ3}, the

expected value of the approximate solution is at least 0.878 · OPTSBCS , where OPTSBCS

is the optimal solution to the SBCS problem. Again, it is important to note the rounding

process may violate the size constraints kmin and kmax, and the guarantee only applies to

the objective value.

50

3.4 Quadratic Programming (QP) Approximation

One drawback to the SDP formulations for the canonical set described in Section 3.3 is

that as the size of the input set increases, the number of variables in the SDP formulation

increases quadratically. This is a direct result of the relaxation process where each indica-

tor variable is replaced with a vector. One way to avoid this problem is to use quadratic

programming approximations. Quadratic programs often perform well in practice, but their

theoretic bounds can be difficult to determine. Nevertheless, this drawback is acceptable in

situations where memory or runtime constraints exist.

In order find an approximate solution to the problems described in Section 2.7, the prob-

lems are formulated as quadratic programs. Consider a standard formulation of a quadratic

program,

QP:

Maximize
1

2
xT Hx + fT x (3.39)

Subject to Ax ≤ b, (3.40)

l ≤ x ≤ u, (3.41)

where the objective is quadratic and the constraints are linear. In this formulation, the

objectives are encoded into the matrix H which is positive definite and the vector f . The

constraints are encoded into the matrix A and the vectors b, l, u.

3.4.1 QP Property Formulation

To formulate the canonical set problems in quadratic form, the indicator variables are

redefined as

yi =

 1 if pi ∈ P∗

−1 otherwise,

51

and the set indicator is removed. In order to form an approximation, the integrality con-

straints on the indicator variables are removed and the value is allow to lie in the interval

[−1, 1]. The property formulations of Table 2.1 are reformulated as shown in Table 3.3. In

a similar manner Table 2.2 can be stated as Table 3.4.

Property Formulation Description

Size(P∗)
1

2

n∑
i=1

(1 + yi) Cardinality (|P∗|) of canonical set

Stability(P∗)
1

2

n∑
i=1

ti(1 + yi) Stability of canonical set

Cut(P∗)
1

4

∑
i,j

Wij(1− yiyj) Sum of cut edge weights

Intra(P∗)
1

4

∑
i,j

Wij(1 + yi)(1 + yj) Sum of intra edge weights

Extra(P∗)
1

4

∑
i,j

Wij(1− yi)(1− yj) Sum of extra edge weights

Table 3.3: Properties of canonical sets (QP)

Using the fact that W is symmetric where applicable, like terms can be combined and

the properties rewritten as shown in Tables 3.5 and 3.6. Using these tables, the property

and inverse property formulations for the quadratic approximation can be constructed by

dropping the constants and formulating the quadratic terms in matrix form, and the linear

terms in vector form as shown in Table 3.7.

52

Property Formulation Description

Size−1(P∗)
1

2

n∑
i=1

(1− yi) |P \ P ∗|

Stability−1(P∗)
1

2

n∑
i=1

ti(1− yi) Stability of P \ P ∗

Cut−1(P∗)
1

4

∑
i,j

Wij(1 + yiyj) Sum of uncut edge weights

Intra−1(P∗)
1

4

∑
i,j

Wij(1− yiyj) Sum of non-intra

+
1

4

∑
i,j

Wij(1− yi)(1− yj) edge weights

Extra−1(P∗)
1

4

∑
i,j

Wij(1− yiyj) Sum of non-extra

+
1

4

∑
i,j

Wij(1 + yi)(1 + yj) edge weights

Table 3.4: Property inverse formulations (QP)

Property Formulation

Size(P∗)
n

2
+

1

2

n∑
i=1

yi

Stability(P∗)
1

2

n∑
i=1

ti +
1

2

n∑
i=1

tiyi

Cut(P∗)
1

4

∑
i,j

Wij −
1

4

∑
i,j

Wijyiyj

Intra(P∗)
1

4

∑
i,j

Wij +
1

2

n∑
i=1

yi

n∑
j=1

Wij +
1

4

∑
i,j

Wijyiyj

Extra(P∗)
1

4

∑
i,j

Wij −
1

2

n∑
i=1

yi

n∑
j=1

Wij +
1

4

∑
i,j

Wijyiyj

Table 3.5: Properties of canonical sets (QP) combined

53

Property Formulation

Size−1(P∗)
n

2
− 1

2

n∑
i=1

yi

Stability−1(P∗)
1

2

n∑
i=1

ti −
1

2

n∑
i=1

tiyi

Cut−1(P∗)
1

4

∑
i,j

Wij +
1

4

∑
i,j

Wijyiyj

Intra−1(P∗)
1

2

∑
i,j

Wij −
1

2

n∑
i=1

yi

n∑
j=1

Wij

Extra−1(P∗)
1

2

∑
i,j

Wij +
1

2

n∑
i=1

yi

n∑
j=1

Wij

Table 3.6: Property inverse formulations (QP) combined

Property H f Description

Size(P∗)
[
0̃
]

1
2
e Cardinality (|P∗|) of canonical set

Stability(P∗)
[
0̃
]

1
2
t Stability of canonical set

Cut(P∗)
[
−1

2
W
]

0̂ Sum of cut edge weights

Intra(P∗)
[

1
2
W
]

1
2
d Sum of intra edge weights

Extra(P∗)
[

1
2
W
]

−1
2
d Sum of extra edge weights

Property H f Description

Size−1(P∗)
[
0̃
]

−1
2
e |P \ P ∗|

Stability−1(P∗)
[
0̃
]

−1
2
t Stability of P \ P ∗

Cut−1(P∗)
[

1
2
W
]

0̂ Sum of uncut edge weights

Intra−1(P∗)
[
0̃
]

−1
2
d Sum of non-intra edge weights

Extra−1(P∗)
[
0̃
]

1
2
d Sum of non-extra edge weights

Table 3.7: QP Properties with inverses of canonical sets expressed in matrix and vector
form, where 0̃ is an n× n matrix of zeros, e is the all-ones vector of order n, t is a column
vector in Rn whose ith entry is ti,W is the n×n similarity matrix, 0̂ is an all zeros column
vector in Rn, and d is a column vector in Rn whose ith entry has value di =

∑n
j=1Wij .

54

3.4.2 MDMC QP Formulation

Recall that the MDMC problem described in Section 2.7.1 is formulated as a maxi-

mization of Size−1(P∗) and Cut(P∗). Matrix and vector formulations from Table 3.7 may

be used to write the QP form of the MDMC problem described in Section 3.8 as

(MDMC QP):

Maximize
1

2
xT Hx + fT x

Subject to Ax ≤ b,

l ≤ x ≤ u,

where

H =
λ2

2
[W] ,

A = −(A+ I)

b = d− e

f = −λ1

2
e,

l = −e,

u = e,

W is the similarity matrix,A is the adjacency matrix, I is the identity matrix, d is a column

vector in Rn whose ith entry has value di =
∑n

j=1Wij , and e is the all-ones vector of order

n.

3.4.3 BCS QP Formulation

Recall also that the BCS problem described in Section 2.7.2 is formulated as a max-

imization of Intra−1(P∗) and Cut(P∗). Using the matrix and vector formulations from

55

Table 3.7 the QP form of the BCS problem described in Section 3.8 may be written as

(BCS QP):

Maximize
1

2
xT Hx + fT x

Subject to Ax ≤ b,

l ≤ x ≤ u,

where

H = −λ2

2
[W] ,

A =

 −eT

eT

 ,

b =

 n− 2kmin

2kmax − n

 ,

f = −λ1

2
d,

l = −e,

u = e,

and W is the similarity matrix, e is the all-ones vector of order n, d is a column vector in

Rn whose ith entry has value di =
∑n

j=1Wij , and t is a column vector in Rn whose ith

entry is ti.

3.4.4 SBCS QP Formulation

The SBCS problem described in Section 2.7.3 is formulated as a maximization of

Intra−1(P∗), Cut(P∗), and Stability(P∗). Again using the matrix and vector formulations

from Table 3.7 the QP form of the SBCS problem described in Section 3.8 may be written

56

as

(SBCS QP):

Maximize
1

2
xT Hx + fT x

Subject to Ax ≤ b,

l ≤ x ≤ u,

where

H = −λ2

2
[W] ,

A =

 −eT

eT

 ,

b =

 n− 2kmin

2kmax − n

 ,

f = −λ1

2
d +

λ3

2
t,

l = −e,

u = e,

and W is the similarity matrix, e is the all-ones vector of order n, d is a column vector in

Rn whose ith entry has value di =
∑n

j=1Wij , and t is a column vector in Rn whose ith

entry is ti.

3.5 Conclusion

This chapter has presented approximation algorithms for the canonical set problems

posed in Chapter 2. To motivate the need for approximations, it was shown in Section 3.2

57

that the canonical set problems are all NP-hard. Section 3.3 described semidefinite pro-

gramming approximations for the canonical set problems. To create these approximation

algorithms, it was first shown how the integer formulations from Chapter 2 can be relaxed.

Then SDP formulations were presented and a rounding process was described which is

used to obtain the approximate solutions. Proof of bounds were then given which estab-

lished that the canonical set algorithms can achieve approximations that are at least 0.878

of optimal. Finally, in Section 3.4, quadratic programming approximation algorithms for

the canonical sets described in Chapter 2 were given.

58

4. Simple and General Experimental Results

4.1 Introduction

This chapter presents experiments that first look at the question of how sensitive canoni-

cal sets are to outliers. Through a small set of experiments on synthetic datasets of collinear

points, this question is examined. The sensitivity of the K-Means clustering algorithm to

outliers was part of the motivation for the development of the canonical set method, so a

comparison with K-Means is next presented. Finally, examples of canonical sets of some

regular structures are presented to provide some intuition on the canonical set method.

4.2 Sensitivity to Outliers

To investigate the sensitivity of the canonical sets obtained using the formulations pre-

sented in Chapter 2, a small graph was first constructed which consisted of 5 vertices evenly

spaced on a line. A complete graph was made using the inverse Euclidean distance for sim-

ilarity. An exhaustive search version of the BCS algorithm was then run on the graph using

parameters λ1 = 0.5, λ2 = 0.5, kmin = 1, and kmax = 5. The results of this experiment

are shown in the top of Figure 4.1, with the canonical set being indicated with filled ver-

tices. Then the rightmost vertex was progressively moved to the right, and the experiment

was repeated as can be seen in the figure. Inspection of Figure 4.1 shows the canonical set

remains the same as the vertex is moved. Next the BCS SDP approximation algorithm pre-

sented in Section 3.3 was run on the same dataset. The results were the same, confirming

that the approximation is a good one, since in these cases the results are optimal.

To further investigate the case of 5 collinear points a complete graph was constructed

(see Figure 4.2) where the distance between points was formulated algebraically. For tech-

nical reasons the canonical set algorithms are implemented as minimizations. Recall that

59

e e e e eu u
e e e e eu u
e e e e eu u
e e e e eu u
e e e e eu u
e e e e eu u
e e e e eu u

Figure 4.1: BCS of five collinear points as the rightmost point is progressively moved
further to the right. The canonical set is marked as filled vertices.

the maximization objective of the BCS is

λ1

[
Intra−1(P∗)

]
+ λ2 [Cut(P∗)] .

The minimization form of the objective is

λ1 [Intra(P∗)] + λ2

[
Cut−1(P∗)

]
= λ1 [Intra(P∗)] + λ2 [Intra(P∗) + Extra(P∗)] .

The inverse Euclidean distance between the data points is used as the similarity measure.

Note that the canonical set of the graph given in Figure 4.2, consists of vertices 2 and 4.

60

5

4 3

2

1

4a+d
3a a

3a+d

2a

2a+d

a

2a

a+d a

Figure 4.2: Complete graph of 5 collinear points used in the outlier sensitivity experiment
with Euclidean distances. The canonical vertices are filled.

The objective value M({2, 4}) may be written as

M({2, 4}) = λ1 [Intra({2, 4})] + λ2 [Intra({2, 4}) + Extra({2, 4})]

= Intra({2, 4}) +
1

2
Extra({2, 4})

=
1

2a
+

1
4a+d

+ 1
2a

+ 1
2a+d

2
.

A similar representation can be made for other possible subsets. Figure 4.3 shows a

graph of the objective values of the canonical set (vertices 2 and 4) and all possible pairs

of vertices which include the outlier (vertex 5) as the value of d (distance of vertex 5 from

initial position) is increased. Inspection of the graph reveals why the canonical sets shown

in Figure 4.1 do not change as vertex 5 is moved to the right. The objective value of the

canonical set (vertices 2 and 4) is lower than any pair which contains the outlier (vertex 5).

61

Figure 4.3: Graph of the objective values for subsets as the value of d is increased. As d
is increased, vertex 5 moves further to the right. The graph shows that pairs which include
the outlier (vertex 5) have higher objective values than the vertex pair of {2, 4} which is the
canonical set.

Figures 4.4 and 4.5 show similar experiments with graphs with 6 and 8 points respec-

tively with λ1 = 0.5, λ2 = 0.5, kmin = 1, and kmax = |V |. Of particular note is the

canonical set at the top of Figure 4.5, which has a canonical set of size 3. If kmax = 2, then

the canonical set is the same as the others in Figure 4.5.

This set of experiments has shown that in the examples tested, the canonical set method

is resistant to outliers. Moving a boundary point further away from the rest of the dataset

does not affect the selected subset. In the case of 5 collinear points, a convincing case

was presented which showed that no matter how far the boundary point was moved, the

canonical set will not change (if the size is 2).

62

e e e e e eu u
e e e e e eu u
e e e e e eu u
e e e e e eu u
e e e e e eu u
e e e e e eu u
e e e e e eu u
e e e e e eu u

Figure 4.4: BCS of six collinear points.

e e e e e e e eu u u
e e e e e e e eu u
e e e e e e e eu u
e e e e e e e eu u
e e e e e e e eu u

Figure 4.5: BCS of eight collinear points.

63

4.3 Comparison with K-Means

In this experiment sets of 5 collinear data points are again used. As before in Sec-

tion 4.2, completely connected graphs are constructed with the edge weight being given by

the inverse Euclidean distance between the vertices. The graphs are identical except that

the rightmost vertex has been moved to the right in each successive graph.

Figure 4.6 shows the results of the BCS SDP approximation algorithm. The BCS SDP

algorithm was run with λ1 = 0.5, λ2 = 0.5, kmin = 1, and kmax = 5. The canonical

vertices are filled in black and the induced clustering is shown. Figure 4.7 shows the result

of the K-Means algorithm with k = 2. In this case, if a centroid was located at a vertex

of the graph it is filled in in black, otherwise the centroid location is indicated in red. The

clustering (dashed groups) changes as the outlier moves to the right. If the data point

nearest the cluster centroid is used, the results although different (see Figure 4.8) are also

sensitive to the position of the outlier.

Why K-Means is so sensitive outliers, can be seen by examining Figure 4.7. In the top

cluster on the right there are 2 data points. The centroid is calculated from these 2 points,

so moving the rightmost point further right by some distance d will move the centroid to

the right by d
2
.

64

Figure 4.6: Four sets of 5 horizontally spaced data points. The BCS vertices are solid black.
The induced clustering (dashed groups) is not affected by the outlier.

Figure 4.7: Four sets of 5 horizontally spaced data points. The K-Means centroids are solid
black if they are at a data point location and red otherwise. The clustering (dashed groups)
changes as the outlier moves to the right.

65

Figure 4.8: Four sets of 5 horizontally spaced data points. The K-Means centroids nearest
neighbors are solid black. The clustering (dashed groups) changes as the outlier moves to
the right.

66

4.4 Regular Structures

In this section, canonical subsets of some synthetic datasets are presented. Section 4.4.1

shows results from the BCS SDP approximation algorithm on trees, bipartite, spiral, grid,

lattice, and clusters. Section 4.4.2 shows results from the MDMC SDP algorithm on a

lattice and two trees.

4.4.1 BCS

The following subsets were created by the BCS SDP approximation algorithm with

λ1 = 0.5, λ2 = 0.5, kmin = 1, and kmax = |V | unless otherwise noted. The inverse

Euclidean distance between the data points was used as a similarity measure.

eeeee e e e eee

u
u

u u u
u

e e e e eee e e e eee e e e eee e e e e

u u u
u u u
u u u
u u u

Tree 1 Tree 2

Figure 4.9: Sample trees and BCS

67

e eee eeee

u
u
u

eeeeee e e eee ee ee e ee ee ee e

u
uuu u

uu

Bipartite graph kmax = 3 Spiral 1

eeeeeeeeeee eeeee eeee ee e ee eee e ee e e eee e eee ee e ee ee eee e ee eeee eeeeeee eee eeeee

uuuu u uu uu u u uuuu uuuu u u

e e e e e ee e ee e e ee e e ee e e e ee ee e e e e e e

u u u
u u

u
u u u u

Spiral 2 Spiral 3

e e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e e

u u uu uuu u u uuu uu u u

e e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e e

u u u uu u uu u u uu u uu u u uu u uu u u u

Fully connected grid Four way connected lattice

Figure 4.10: Sample graphs and BCS

68

ee eeee ee eee eee ee e eee ee e eee ee e e eee e e ee eeeee e e ee e ee eee eee ee e eee e ee e eeee
uu uuu u uuu uu u uu uu uu

ee eeeee ee ee e eee e eeeee ee eee ee e e eee e e eeee e ee e ee ee e eee ee eee e eeee e e eee
uuu uu uu uu u uuu uuuu u

Clusters 1 Clusters 2a

e ee ee e eeee eee eee ee e eeeee ee e ee ee e e eee e e e ee ee e ee ee eee e eee e ee e e ee ee e e
u u uuu uu uu uu uu uu uu u

ee e ee eee eee e ee eee ee eeee ee e eee e ee e e e eee e eee ee ee eee e e eee ee e e ee e eee ee
u uu uu uuu uuu uuu uuu u u

Clusters 2b Clusters 2c

eee ee eee eee e ee eee ee eeee ee e eeee ee e e e eee e eee ee ee eee e e eee ee e e ee e eee ee
u uuu u uu uuu uu uu uu u uu

e ee ee e eee e eee eee ee e eeeee ee e ee eee e eee e e eee eee ee ee eee eeee e ee e e ee ee e e
u uu uu u uuu uuu uuu u u u

Clusters 2d Clusters 2e

Figure 4.11: Cluster 1 with BCS marked by filled vertices. Clusters 2a-e show two clusters
merging and the BCS at each step.

69

4.4.2 MDMC

The following subsets were created by the MDMC algorithm with λ1 = 0.5 and

λ2 = 0.5. The inverse Euclidean distance between the data points was used as a simi-

larity measure.

e e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e ee e e e e e e

u u uu u u uu u uu u u uu u uu u u uu u u

eeeee e e e eee

u
uu uu

Four way connected lattice Tree 1

e e e e eee e e e eee e e e eee e e e e

u uuu uuu uuu u

Tree 2

Figure 4.12: Sample graphs and MDMC

70

4.5 Conclusion

This chapter has presented preliminary experiments that evaluate the subsets selected by

the algorithms presented in Chapters 2 and 3. These limited experiments showed canonical

sets have low sensitivity to outliers. First a set of experiments on collinear data points

showed this to be true. Next a comparison with K-Means was made showing that it was

more sensitive to outliers than the canonical set method. Finally, the canonical sets of some

example graphs was given to provide intuition on what canonical sets look like.

71

5. View Selection

5.1 Introduction

One problem in computer vision is that of 2D view selection. The objective is to identify

highly informative 2D views of a 3D object. To motivate the problem, consider the 3D

object in Figure 5.1(a). Assume a dense set of 2D views P of this object over the viewing

sphere exists, such as in Figure 5.1(b), which shows 68 silhouettes obtained from this 3D

object. The goal is to identify a small set of views that closely resembles the full set of

views in P .

(a) (b)

Figure 5.1: Motivation: Given the 3D model in (a) and a set of views in (b), and similarity
function among the views, identify a small subset of views that best characterizes the object.

The idea is to select a canonical subset of views using algorithms described in Chap-

ter 3. The motivation for this approach came from the novel view expressed by Cyr and

Kimia [13] that “. . . the shape similarity metric between object outlines endows the view-

ing sphere with a metric which can be used to cluster views into aspects, and to represent

each aspect with a prototypical view.” These ideas were introduced in the context of aspect

72

graph representations [54] and their relevance in identifying regions of “equivalent views”

on the viewing sphere.

Intuitively, in the graph representation, each vertex represents an “aspect” of the 3D

object, i.e., a maximally connected region on the viewing sphere. The edges of this graph

will correspond to visual transitions between two neighboring general views. Bowyer and

Dyer [6] presented a recent survey on aspect graphs and their applications. To reduce the

complexity of generating the aspects, Eggert et al. [21] developed the notion of a scale-

space aspect graph, and Dickinson et al. [19] used a hierarchical aspect graph system based

on a finite set of primitives. Weinshall and Werman [114] studied the notions of view

stability and view likelihood to establish a theory which defines the aspect graph.

More recently, the identification of canonical views of 3D objects has been studied [76,

89]. These canonical views can then be used in technical drawings and computer visualiza-

tions. Canonical views are similar to the prototype views described by Cyr and Kimia [13],

which were used for 3D object recognition.

In order to select a subset of views, a similarity measure is required so that there is

a notion of distance between pairs of views. Section 5.2 describes the distance measure.

Section 5.3 describes the view selection technique and the experiments using the minimum

dominating max cut (MDMC) canonical subset algorithm (3.25), which was described in

Chapter 3. For details the reader is referred to [17]. Finally, in Section 5.4 experiments

using the bounded canonical set (BCS) algorithm for view-based 3D object recognition are

presented. These results were published in [18].

5.2 Distance Measure

The algorithm used for computing the many-to-many matching and the distance be-

tween 2D views represented as silhouettes is that of Demirci et al. [15]. For a given view,

an object’s silhouette is first represented by an undirected, rooted, weighted graph, in which

73

nodes represent shocks [104] (or, equivalently, skeleton branches) and edges connect adja-

cent shock branches.

An illustration of this representation is given in Figure 5.2. The left portion shows the

initial silhouette and its shock points (skeleton). The right portion depicts the constructed

shock tree. Darker, heavier nodes correspond to fragments whose average radii are larger.

Figure 5.2: Left: the silhouette and its medial axis. Right: the medial axis tree constructed
from the medial axis. Darker nodes reflect larger radii.

The matching algorithm is based on the metric-tree representation of labeled graphs

and their low-distortion embeddings into normed vector spaces via spherical coding. This

two-step transformation reduces the many-to-many matching problem to that of comput-

ing a distribution based distance measure between two such embeddings. To compute the

distance between two sets of weighted vectors, the Earth Mover’s Distance under transfor-

mation is used. For two given 2D views, the algorithm provides an overall measure of the

distance between the views.

An overview of the approach is presented in Figure 5.3. Object silhouettes are first

represented by shock graphs (Transition 1). The shock graphs are represented in terms

of shock trees using a minimum spanning tree of the weighted shock graphs and then

74

embedded into normed vector spaces via spherical coding (Transition 2). This embedding

technique ensures that distances between nodes map to Euclidean distances between their

corresponding vectors, with low distortion. The distance between distributions is calculated

using the Earth Mover’s Distance under transformation (Transition 3). The details of this

procedure are described in Demirci et al. [15].

Figure 5.3: Illustration of the process used to compute the distance between two given
views. Object silhouettes are first represented by shock graphs (Transition 1). The shock
graphs are represented in terms of shock trees using a minimum spanning tree of the
weighted shock graphs and then embedded into a normed vector spaces via spherical cod-
ing (Transition 2). The distance between distributions is calculated using the Earth Mover’s
Distance under transformation (Transition 3) [15].

5.3 Selecting Canonical Views Using MDMC

In the broader context of pattern simplification, computing “equivalent views” for pat-

tern class P is closely related to that of the clustering problem. Namely, if the size k of

the canonical set, the number of typical views, is more or less known, then one can use a

clustering algorithm to partition P into subsets P1, ...,Pk, and then choose an element ci

near the center of each cluster as the typical element of Pi for each 1 ≤ i ≤ k. This tech-

75

nique has, in fact, been used to define aspect graphs for polyhedra [103, 107], and solids of

revolution [20]. Clearly, if the number of subsets k in the partition of P is not known, then

defining a centroid ci based on a pair-wise similarity function will be extremely difficult.

This concern provided motivation for the development and use of the MDMC approxima-

tion algorithm (3.25),

(MDMC): (5.1)

Maximize λ1

(
1

2

n∑
i=1

(1− yiyn+1)

)
+ λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
, (5.2)

Subject to (1 + yiyn+1) +
n∑

j=1

Aij(1 + yjyn+1) ≥ 2, ∀ 1 ≤ i ≤ n, (5.3)

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1, (5.4)

where λ1 and λ2 are non-negative and λ1 + λ2 = 1.

In the context of 2D view selection, each 2D view will be represented by a vertex in a

graph. The edges of the graph have weights corresponding the similarity between the 2D

views. The MDMC algorithm, will select views with the following attributes:

1. Views in the canonical set are maximally similar to views not in the canonical set.

2. The size of the canonical set is as small as possible.

3. Every view is either in the canonical set or is similar to a view in the canonical set.

5.3.1 MDMC Experiments

This section presents an overview of experiments performed to evaluate the MDMC

algorithm for computing canonical sets of 2D views. Each pattern class in the experiments

corresponds to a set of 2D views acquired from a 3D object. Specifically, 9 objects are used,

each representing a single pattern class. Each object has as many as 180 2D views acquired

76

along a great circle of the viewing sphere, giving a total of 1620 views. A representative

view of each object is shown in Figure 5.4.

Figure 5.4: Sample views of the 3D objects used in the MDMC experiments

To compute the similarity values between 2D silhouettes corresponding to each 3D ob-

ject (pattern class), the distance between them is calculated using the techniques described

in Section 5.2. This procedure produces a distance matrix for each pattern class. To form

similarity matrices, and thus the graph G(P), the distance between all elements whose dis-

tance is greater than the mean distance is set to zero and a similarity value of e−d is used

for distances d less than the mean. Thus the similarities between views are thresholded to

produce a graph which is not complete. The threshold indirectly influences the size of the

resultant subset, i.e. a complete graph would result in a subset with one element.

Choosing the parameters λ1, λ2 is a critical step in generating the combined objective

function. Note that the two parameters may be expressed as λ1 = α and λ2 = 1−α. To find

a good α value, a set of experiments was performed in which the value of objective 5.2 was

measured as the value of α was varied in the interval [0, 1]. It was observed that a balanced

trade-off between the cardinality of the canonical set and the similarity objectives, i.e.,

α = 0.50, produced the most consistent results. This by no means is a general assertion,

and certainly needs a closer investigation with respect to the similarity function.

Results of this experiment can be seen in Figures 5.1(b), 5.5, 5.6, and 5.7. Examining

the results subjectively, the results shown in Figure 5.1(b) illustrates an excellent subset of

77

views. The 2 views of the clock which were selected out of the input set of 68 are quite

meaningful, including both frontal and profile views. The results shown in Figure 5.5 are

also good and show frontal and partial side views of the Porsche that are highly informative.

In Figure 5.6, the two views of the camera in the fourth row are very similar, one of them

is redundant. Also, note that the inclusion of a side view such as the one at the far bottom

right would have been more informative. In Figure 5.7 the results are better. Even though

two redundant views of the chair exist in the fifth row, both frontal and profile views are

included. The inclusion of redundant views in the canonical set of 2D views may be a result

of the rounding and approximation process.

Figure 5.5: Canonical subset (blue rectangles) of 37 views of Porsche created using MDMC
algorithm.

78

Figure 5.6: Canonical subset (blue rectangles) of 89 views of camera created using MDMC
algorithm.

79

Figure 5.7: Canonical subset (blue rectangles) of 90 views of chair created using MDMC
algorithm.

80

Next 9 smaller pattern classes were created from the original classes, with about 20

views per object. For each pattern class, an exhaustive search was conducted over the

space of all possible subsets for the canonical set with the optimal objective value. Then the

MDMC algorithm was used to compute an approximate solution. Figure 5.8 shows the per-

formance ratio between the objective values of the canonical set obtained from the MDMC

algorithm with that of the exhaustive search. In these cases, results of algorithm (3.25)

were within a factor of 0.939 of exhaustive search. This result confirms the theoretic bound

for the MDMC algorithm established in Section 3.3.6.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

987654321

Pe
rf

or
m

ac
e

R
at

io

Image Number

u u u u

u

u u u u

Figure 5.8: Comparing the similarity objective for canonical sets obtained from the MDMC
algorithm (3.25) and for exhaustive search.

Figure 5.9 illustrates the sample views of several pattern classes and the canonical sets

computed for each class (outlined in blue). The optimal sets found by exhaustive search

are indicated in red.

Subjectively examining the results in Figure 5.9, it can be seen that in the case of the

81

(a) CAMERA (b) CHAIR

(c) PORSCHE (d) PEGLA

Figure 5.9: Canonical sets (blue rectangles are MDMC) for four sets of views. The optimal
sets found by exhaustive search are indicated in red.

Camera (a), the optimal view in the last row is a rotation of the MDMC view in the second

row. In fact the MDMC views in the second and third rows seem to make more sense than

the 2 optimal views. In the case of the Chair (b) the 2 MDMC views seem better than the

optimal set. The remaining images (c) and (d) show a close correspondence between the

optimal and MDMC subsets.

Inclusion of views that were similar, as in the case of Figures 5.6 and 5.7, provided

motivation for the inclusion of an objective term that would minimize the similarity of the

views that were included in the canonical subset.

5.4 Selecting Views Using BCS

The experimental results described in Section 5.3.1 provided motivation to reformulate

the canonical set problem with the goal of generating subsets where the members of the

canonical subset are as dissimilar as possible. This property is useful when dealing with

82

patterns belonging to multiple objects and one desires canonical elements that best repre-

sent one object to be maximally dissimilar from representative elements of other objects. In

addition, upper (kmax) and lower (kmin) bounds on the cardinality of the canonical set were

incorporated. Such bounds are important for applications that required a representative set

of prescribed size. Finally, the restrictive assumptions about the similarity function will

be removed, i.e., all elements are explicitly comparable. This formulation is known as the

bounded canonical set (BCS)[18],

(BCS): (5.5)

Maximize λ1

(
1

4

∑
i,j

Wij(1− yiyj) +
1

4

∑
i,j

Wij(1− yiyn+1)(1− yjyn+1)

)

+λ2

(
1

4

∑
i,j

Wij(1− yiyj)

)
, (5.6)

Subject to
1

2

n∑
i=1

(1 + yiyn+1)− kmin ≥ 0, (5.7)

kmax −
1

2

n∑
i=1

(1 + yiyn+1) ≥ 0, (5.8)

yi ∈ {−1, +1}, ∀ 1 ≤ i ≤ n + 1, (5.9)

where λ1 and λ2 are non-negative and λ1 + λ2 = 1.

5.4.1 BCS Experiments

This section presents an overview of the experiments performed to evaluate the method

for computing the BCS and its applicability to view selection for view-based 3D object

recognition. Each pattern class in the experiment corresponds to a set of 2D views acquired

from a 3D synthetic object. The database consists of 9 objects with 19 views each, for a

total of 171 views. The 2D views are acquired by sampling the surface of a view sphere

centered on the object. A representative view of each object is shown in Figure 5.4. In

83

a view-based 3-D recognition framework, the goal is to select a small number of views

for each object in order to minimize search complexity at recognition time (assuming, for

example, that recognition is performed using a linear search of the resulting selection).

For each of the objects, similarity matrices are constructed using the reciprocal of the

distance computed using the technique described in Section 5.2. Then the BCS algorithm is

used to compute subsets of views of each object type. The canonical sets are then combined

to form a summary set, while the remaining views of each object are used as query views.

Using the matching algorithm described in Section 5.2, each query view is compared to

each element in the summary set. For each query view, the elements of the summary

set are ranked in decreasing order of similarity. Then the position of the query’s nearest

canonical view (in the query’s object’s BCS) was recorded.

If one of the top six (closest) views in the summary set belonged to the same object,

the match is considered a good match. Figure 5.10 shows how the matching rate changes

as the size of the summary set is varied by changing the kmin and kmax parameters for the

BCS algorithm.

The correct canonical view was found to be among the top 6 elements in the ranking

90.6% of the time when the size of the summary set was 48 views. The correct canonical

view for a nearby query will not be top-ranked if there is another element of the summary

set which is closer. This may happen when different objects share similar views which, in

turn, may yield a summary set with similar elements. There is also an important trade-off

between search complexity (size of the BCS bounds) and recognition accuracy (rank of

the correct response). If, for example, the bounds are set too low given the complexity of

the object, then there will be whole classes of object views that are not represented in the

object’s BCS. Thus, even though each query view on the object’s view sphere will have

a closest view in the BCS, that closest view may not be “nearby”, thereby increasing the

probability that an arbitrary member of another object’s BCS (in the summary set) will be

84

0

20

40

60

80

100

15 20 25 30 35 40 45 50 55 60 65

A
cc

ur
ac

y

Summary Set Size

Top Six

3 3

3

3
3

Figure 5.10: Matching results for top 6 as size of summary set is varied

closer to the query. The larger an object’s canonical set, the greater the model coverage,

the better the recognition accuracy, and the greater the search complexity.

Figure 5.11 shows some of the canonical sets computed by the BCS algorithm. In com-

parison to the canonical sets found using the MDMC algorithm shown in Figure 5.9, there

is less redundancy. For example in the case of Figure 5.9(d), none of the views depicting the

hole in the handle were selected, while in Figure 5.11(d) two of the selected views do. This

can also be seen by comparing Figures 5.7 and 5.11(a), and also Figures 5.6 and5.11(b).

5.5 Conclusion

This chapter has presented results from a set of experiments showing the algorithms

presented in Chapter 3 are useful for the task of 2D view selection and view-based 3D

object recognition. First, in Section 5.2, a distance measure was described that can be used

to compute the pair-wise similarity between 2D views. Section 5.3 then described the view

85

(a) CAMERA (b) CHAIR

(c) PORSCHE (d) PEGLA

(e) PHONE (f) TEAPOT

Figure 5.11: BCS (blue rectangles) for six sets of views.

selection technique and presented results from experiments using the minimum dominating

max cut (MDMC) canonical subset algorithm. Finally, Section 5.4 presented results from

experiments using the bounded canonical set (BCS) algorithm for view-based 3D object

recognition.

86

6. Object Recognition

6.1 Introduction

Feature extraction followed by correspondence matching is fundamental and integral to

many applications in computer vision including stereo, tracking, and object localization. In

the context of computer vision the term feature often has two different meanings. It could

mean a local object in an image such as an edge, or it could mean a point in a statistical

pattern space. The difference between these meanings has been increasingly blurred in

light of recent developments in feature detection [75, 50], and here the term feature is used

to describe both of these phenomena.

Given a set of features in a query image and a set of features in a target image, cor-

respondence matching may be defined as the process of determining which target features

represent which query features. The goal is to establish one-to-one relationships between

features in the query and target sets. Increasing the difficulty, is that the two images may

not be exact copies, as one may have undergone some transformation. Once the correspon-

dence is known, the transformation between the images may be calculated.

A method of solving similarity transformations using aligning correspondence points

was originally described by Huttenlocher and Ullman [40, 41]. They assumed that three

corresponding points were known between a query and a target, and presented an algorithm

to solve for the translation, scaling, and rotation. The algorithm has since been applied to a

number of applications including randomized point matching [43], object recognition [95],

and shape tracking [80].

Early methods of image matching using local features stemmed from Harris’s corner

and edge detector [36]. The corners and edges detected using Harris’s method depended

on the current scale of the image. Matching techniques using the features were unable to

87

differentiate two images of the same object residing at different scales. Further work has

been done on representing images in scale-space, where images are represented by a set of

features residing at a number of different scales. Lindeberg has worked on the problem of

extracting features in scale-space with automatic scale selection [69]. More recently, Lowe

introduced a method named scale invariant feature transform (SIFT), which extracts local

scale-space features which include a number of scale-space characteristics [75]. Vectors

containing the feature’s location in scale-space as well as scale-space characteristics are

used for image matching.

Recent trends in feature detection have been in the development of methods that can

extract large numbers of rich features from a given image. One consequence of these trends

has been the increased size of an object’s representation.

The size of an object representation, or memory footprint, is a combination of the num-

ber of features and the feature descriptor size. The memory footprint of an object’s repre-

sentation can be made smaller by reducing the size of the feature descriptor, by reducing

the number of features, or both. Recent work by Ke and Sukthankar [51] has shown that

feature descriptors can be reduced in size. The focus here, which is complementary to

theirs, is on reducing the number of features. The theory is that some of the detected fea-

tures are more representative than others, and a subset of detected features is sufficient for

vision tasks like object localization.

The fact that many feature detectors include additional information about the feature

besides the feature’s location provided motivation for the development of the SBCS al-

gorithm described in Section 2.7.3. The idea is that a notion of stability can be used to

influence the selection of canonical features. The stability of a feature is a quantitative

measure of its response to the feature detector.

88

Recall that the SBCS approximation algorithm (3.27) is

(SBCS):

Maximize C • X

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m,

X � 0,

where

C = λ1

 0̃ −1
4
d

−1
4
dT 1

2
wΣ

+ λ2

 −1
4
W 0̂

0̂T 1
4
wΣ

+ λ3

 0̃ −1
4
t

−1
4
tT 1

2
tΣ

 ,

and 0̃ is an n × n matrix of zeros, 0̂ is an all zeros column vector in Rn, d is a column

vector in Rn whose ith entry has value di =
∑n

j=1Wij , W is the n × n similarity matrix,

wΣ =
∑

i,j Wij , t is a column vector in Rn whose ith entry is ti, and tΣ =
∑n

i=1 ti.

Constraint matrices D1, . . . ,Dn+1 are as described in Eqn. (3.22), Dn+2 is as described

in Eqn. (3.23), Dn+3 is as described in Eqn. (3.24), and m = n + 3. The coefficients,

λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 are parameters such that λ1 + λ2 + λ3 = 1.

That is the SBCS algorithm seeks to identify a canonical subset, P∗ with the following

attributes:

1. Features in the canonical set are minimally similar.

2. Features in the canonical set are maximally similar to features not in the canonical

set.

3. Features in the canonical set are maximally stable.

4. The size of the canonical set is as least kmin and at most kmax.

89

The experiments presented in this chapter explore how a subset of image features cre-

ated using the SBCS algorithm may be used to perform object localization. Figure 6.1

shows an overview of the technique. Two images, one a transformed copy of the other, are

represented as a large number of features. Using the SBCS algorithm, a subset of features

is extracted, the transformation between the query and target image is determined, and then

the results are visualized. In the case shown in Figure 6.1, the transformation aligns the

images with negligible error.

Figure 6.1: A) Features are extracted from query (top) and target (bottom). B) The SBCS
algorithm is used to extract subsets of features. C) The transformation between query and
target is determined. D) Outline shows transformation determined from SBCS.

Section 6.2 presents an overview of the feature detectors used in the experiments. Sec-

tion 6.3 describes how the feature correspondences between query and target are computed.

Then Section 6.4 discusses the similarity measures used in the experiments. Section 6.5

presents the stability measures used in the experiments. Section 6.6 presents experiments

that show that a canonical subset of image features can be used to localize one object.

Section 6.7 presents experiments with one object rotated in depth. Section 6.8 presents

90

some results from experiments localizing multiple occluded objects. Then Section 6.9

presents results from experiments testing pose estimation with out-of-plane rotations. Next

Section 6.10 presents some results of experiments localizing occluded objects in synthetic

scenes along with a measure of the localization accuracy. Section 6.11 examines the relative

computational cost of object localization as the size of a subset of features increases. Then

Section 6.12 presents results of experiments that tests how the feature subsets created with

the SBCS algorithm reacts with noise. This is followed by Section 6.13 where the SBCS

subset selection method is compared with other commonly used techniques of computing

feature subsets on the task of localization of occluded objects in synthetic scenes. Finally,

in Section 6.14, some results are presented from experiments that test object localization

under occlusion with images that are real.

6.2 Feature Detectors

Feature detection is the process of isolating interesting portions of an image that con-

form to some statistical measure for the purposes of understanding or analyzing the image.

What is meant by interesting may be determined by the particular application. For instance

in satellite surveillance, interesting features may correspond to parts of buildings, roads, or

vehicles such as tanks. For facial recognition, perhaps one is more interested in the location

of the eyes. Image features may be considered as fundamental units of meaning that may

be combined together through other processes such as segmentation to produce a deeper

understanding of the image. The intent is to discover structure within an image. As such,

feature detection can be thought of as a pre-processing step that seeks to model the image at

a low level. In general, the features are then used in subsequent tasks such as segmentation

or recognition rather than the original pixel data.

The following three feature detectors will be used in the object recognition experiments

presented in this chapter.

91

1. HARRIS is the corner and edge detector described by Harris [36]. The detector

returns a single scalar at each pixel location that indicates the response of the detector

at that point.

2. BLOB-RIDGE is the scale-space feature detector introduced by Lindeberg and Bret-

zner [7, 69, 70] that detects blobs and ridges. The detector returns the position in

x, y coordinates of the features along with their scale, significance, orientation and

whether the feature is a blob or a ridge. The scale of the feature is indicative of the

support region around the feature location that influences the feature. The signifi-

cance of a feature is a measure of the response of the detector that is normalized to

compensate for differences in scale. Figure 6.2 shows an image marked with blobs

and ridges detected in scale-space. In order to simplify the presentation of the fea-

tures, while visualizing as many features as possible, henceforth only the centers of

the blobs and ridges will be shown.

Figure 6.2: Blobs and ridges detected in scale-space

3. SIFT is the scale invariant feature transform introduced by David Lowe [75]. The

92

detector returns the x, y coordinates of the feature along with the scale, orientation,

and a 128 byte descriptor vector. The descriptor vector is an oriented histogram

of thresholded gradients which describes the feature’s immediate neighborhood in

scale-space. Figure 6.3 shows an image marked with SIFT features showing orien-

tation direction and scale. In order to simplify the presentation of the features, while

visualizing as many features as possible, henceforth only the locations of the SIFT

features will be shown.

Figure 6.3: SIFT features (red) showing orientation direction and scale

6.3 Object Localization

Object localization is the process of determining the position, orientation, and scale of

a query object (model) in a target scene. The goal is to find a transformation, T , that can

be applied to the query such that it can be superimposed on the target scene in the correct

location, with the proper scale and orientation. To calculate T , corresponding features must

be found, i.e., features in the query must be matched to features in the target. Figure 6.4

shows an illustration with correspondences between features in a query and target image.

93

Figure 6.4: Correspondence between features

The experiments described in this chapter were conducted using two matching algo-

rithms. The first, which is denoted HUT-EMD, is based on Huttenlocher and Ullman’s

algorithm [40, 41]. HUT-EMD finds a transformation, T , for each possible set of three

query features and three target features in the reduced feature subsets. Each transformation

is ranked by applying it to the full feature set, and then measuring the distance between

the transformed query and object features using a many-to-many matching algorithm [14]

based on the Earth Mover’s Distance (EMD). The transformation, T , resulting in the mini-

mum distance is considered the best.

The second matching algorithm, which is denoted MATCH, was used exclusively for

matching SIFT features. MATCH is supplied as part of the SIFT package [74]. This

algorithm takes each query feature and finds the two nearest neighbors in the target feature

descriptor space. If the distance to the nearest neighbor is less than a threshold percentage

of the distance to the second nearest neighbor, the nearest neighbor is considered a match.

Using pairs of corresponding features from the query and target images supplied by the

MATCH algorithm, standard linear algebra techniques may be used to calculate T .

94

6.4 Similarity

Two similarity measures between features are used in the experiments presented in this

chapter. The first, which is denoted XY, is defined as the inverse of the Euclidean distance

between two feature locations in the image. This measure of similarity is designed to

distributed the selected features spatially across the image.

The second similarity measure, DSPACE, is defined as the inverse of the Euclidean

distance between features in the descriptor space, and will only be used with SIFT features.

This similarity measure is designed to distribute the selected features spatially across the

high dimensional feature descriptor space.

6.5 Stability Measures

The SBCS algorithm uses a stability assigned to each feature in conjunction with a

similarity measure. The stability measures used in the experiments described in this chapter

are all well-defined with the exception of PERTURB, which is described in Section 6.5.1.

1. RES is a stability measure that is used with the HARRIS detector, and is defined as

the scalar response of the detector.

2. SIG is the significance field of the BLOB-RIDGE features supplied by the detector.

3. SCALE is a stability measure that is used with the SIFT detector. A SIFT feature

includes the scale at which the feature is found in the input image. The scale of

a feature is indicative of the support region, higher scales indicate larger support

regions.

4. PERTURB is a stability measure that is computed, for a description see Section 6.5.1.

5. I-PERTURB is defined as 1/(1 + PERTURB).

95

6.5.1 PERTURB Measure

The PERTURB stability measure is computed by perturbing the query images, and

then matching the unperturbed image against the perturbed image. The motivation for

computing a stability value by perturbing the image comes from Lowe [75], where the

stability of the SIFT features was tested under various transformations. Specifically, each

of the query objects (see Figure 6.14) is subjected to the following perturbations:

• Contrast increased by a factor of 1.2.

• Intensity increased by a factor of 1.2.

• Rotation by 20 degrees.

• Scaled by a factor of 0.7.

• Scaled by a factor of 1.2 in the x direction.

• Scaled by a factor of 1.5 in the x direction.

• Addition of 10% Gaussian pixel noise.

• Combination of contrast increased by a factor of 1.2, intensity increased by a factor

of 1.2, rotated by 20 degrees, scaled in x direction by a factor of 1.2, scaled in the y

direction by a factor of 0.7, 10% pixel noise added.

SIFT features were then extracted from each of the 8 perturbed images. The MATCH

algorithm (see Section 6.3) was then used to match features extracted from the unperturbed

model images to features extracted from the corresponding perturbed model image. Then

the stability is calculated of each feature as τ = ed where d is the Euclidean distance

between where the feature was detected in the perturbed image versus where it should have

been. If a feature was not matched it has a stability value of zero. The final stability of the

feature was the average stability over all 8 of the perturbations for that object.

96

6.6 Localization of One Object

In this experiment, the goal was to show that a SBCS of image features could be used

to localize an object. Four objects were randomly chosen from the COIL-20 [86] database,

and a random transformation was applied which included rotation in the image plane, scal-

ing, and translation. Features were then extracted from the query (untransformed) images

and the target (transformed) images using the BLOB-RIDGE feature detector described in

Section 6.2. Then the SBCS algorithm was used to extract a subset of the image features.

The inverse of the Euclidean distance between the feature locations was used as a similarity

measure, and the significance field of the BLOB-RIDGE features was used as the stability.

Finally, the HUT-EMD algorithm described in Section 6.3 was used to find and compute

the transformation between the query and target images.

Figure 6.5 shows the results of this experiment. Column one of the figure shows the four

images from the COIL-20 database and the canonical feature sets computed using the SBCS

algorithm. The second column shows the same image rotated in the image plane and scaled,

and the respective canonical set. In order to apply the HUT-EMD algorithm, three feature

correspondences are needed, however it may be visually confirmed that the intersection of

the canonical sets of the two images contain many more correspondences. The third column

of the figure shows the outline of the first image transformed by the transformation found

using the HUT-EMD algorithm. In each of the test cases the transformation computed is

highly similar to the actual transformation.

6.7 Localization of One Object Rotated in Depth

In this experiment the same four objects from the COIL-20 database were used (see Sec-

tion 6.6), and the same four objects rotated in depth five, ten, and fifteen degrees. Features

were then extracted from the query (untransformed) images and the target (transformed)

images using the BLOB-RIDGE feature detector described in Section 6.2. Then the SBCS

97

Figure 6.5: Left: reference images with SBCS features, Middle: images rotated and scaled
with SBCS features, Right: outline of reference images transformed onto rotated images.
The three corresponding features used to determine the optimal transformation are marked
in blue with a circle, triangle and square.

algorithm was used to extract a subset of the image features. The inverse of the Euclidean

distance between the feature locations was used as a similarity measure, and the signifi-

cance field of the BLOB-RIDGE features was used as the stability. Finally, the HUT-EMD

algorithm described in Section 6.3 was used to find and compute the transformation be-

98

tween the query and target images.

Figure 6.6: Left: reference images with SBCS features, Middle: images rotated in depth
with SBCS features, Right: outline of reference images transformed onto rotated images.
The three corresponding features used to determine the optimal transformation are marked
in blue with a circle, triangle and square.

Figure 6.6 shows the results from this experiment for the fifteen degree rotations in

99

depth (the other results were similar). The results show the invariance of the canonical

subsets under small rotations in depth. The out-of-plane rotation experiments show that the

method does not rely on seeing exactly the same view as the query view and can establish

correspondence among stable features obtained by SBCS. Column one of Figure 6.6 shows

the four query images from the COIL-20 database and the canonical feature sets computed

using the SBCS algorithm. Column two shows the canonical features found in the same

four objects rotated in depth fifteen degrees. Again the intersection of these canonical sets

can be visually be confirmed to be greater than three features, the number required to com-

pute the transformation. Column three shows the outline of the original image transformed

by the transformation which results in the minimum distance between the original image

and its copy rotated in depth. In each test case the transformation is not perfectly correct,

as the technique computes a two-dimensional rotation matrix from the points in the feature

space, while the target image has been rotated in depth by a three-dimensional rotation.

Still, the computed transformation serves as a good approximation.

6.8 Localization of Multiple Occluded Objects

In this experiment the four objects used in the experiments described in Sections 6.6

and 6.7 were composited into a synthetic scene such that three of the objects were partially

occluded. BLOB-RIDGE features were then extracted from the composite scene, and the

SBCS algorithm was used to extract a subset of the image features. The inverse of the

Euclidean distance between the feature locations was used as a similarity measure, and the

significance field of the BLOB-RIDGE features was used as the stability.

The canonical sets of image features of the individual query objects, described in Sec-

tions 6.6 and 6.7, were then used as queries against the composite image. As before, the

HUT-EMD algorithm described in Section 6.3 was used to find and compute the trans-

formation between the query and target images. Figure 6.7 shows sample results of this

100

experiment. Column one shows the composite image with several hundred BLOB-RIDGE

features. Column two shows the fifty-five points of the SBCS computed from the features.

Column three shows the outlines of the best transformations found for the four objects.

Figure 6.7: Left: reference image with scale-space features, Middle: image with SBCS
features, Right: outline of query images on reference image.

6.9 Pose Estimation

This experiment tested pose estimation with out-of-plane rotations. The COIL-20 [86]

database was used, which consists of images of 20 objects taken from 72 different viewing

directions at 5 degree intervals about the vertical axis. The views of each object are num-

bered from 0 to 71. The odd views of each of the 20 objects were used as queries, and the

even views were used as targets.

BLOB-RIDGE features were then extracted from the images, and the SBCS algorithm

was used to extract a subset of the image features. The inverse of the Euclidean distance

between the feature locations was used as a similarity measure, and the significance field

of the BLOB-RIDGE features was used as the stability.

The queries were then matched against the even views of the same object and frontal

101

views of the other 19 objects using the HUT-EMD algorithm described in Section 6.3. A

query was considered to be successful if the image with the minimum distance to the query

is a neighboring view of the same object – the object rotated 5 degrees in either direction.

In total, we performed 720 queries of which 89.7% were successful. These results are

comparable to a recent study conducted by Demirci et al. [14].

On average, each view was represented by 119 features, which was reduced using the

SBCS algorithm to an average size of 12. By using the SBCS for pose estimation, the

number of correspondences to be evaluated is reduced by a factor of six orders of magnitude

e.g. from
(
119
3

)(
119
3

)
to
(
12
3

)(
12
3

)
. These results indicate that the use of the SBCS results

in a large reduction in the number of computations without significantly degrading the

functional performance of the application.

6.10 Localization in Occluded Scenes

The results of the experiments in Sections 6.6 and 6.8 show that high quality local-

ization can be obtained using a subset of image features. Nevertheless, evaluation of the

quality of localization is subjective. One can examine the transformed outlines in Fig-

ures 6.5 and 6.7 and ascertain that the alignment looks good, but how good is it?

To answer this question, a database of synthetically occluded objects, DOOR [16],

using the COIL-20 [86] image database was created. Each image contains multiple objects

with occlusion. A text file accompanies each image containing the names of the objects,

the amount of occlusion of each object, and their locations in the image. Having the ground

truth information used to construct the occluded scenes enables the automated evaluation

of localization results. Figure 6.8 shows five images with a varying number of objects and

degrees of occlusion from the database.

102

(a) (b) (c) (d) (e)

Figure 6.8: Example images from the DOOR dataset used in the experiments on object

localization with partial occlusion. The amount of occlusion from left to right: (a) 18.85%

(b) 56.04% (c) duck 33.73%, cup 3.51% (d) bowl 43.24%, cream cheese 23.90% (e) block

43.49%, cat 16.12%.

One way of measuring the accuracy of localization when the ground truth is known

is to transform the object using the computed transformation T and also with the ground

truth transformation TG. The accuracy of the localization, denoted by Γ, can be computed

from the area of the overlap between the target and the transformed query objects. The

accuracy, Γ, is defined as the minimum of the normalized overlapping area with respect

to both the target and the query object regions. Computing this bidirectional accuracy and

choosing the minimum prevents high scores being given to degenerate cases such as scaling

the query to subsume the target object. In a perfect localization Γ = 1.0. Figure 6.9 shows

a visualization of the overlap areas. The red and green area shows the object silhouette

transformed by the ground truth TG. The yellow and green area shows the object silhouette

transformed by the computed transformation T . The minimum normalized overlap Γ =

0.462.

In this experiment 660 images from DOOR were used, each with two or three objects

with varying occlusion up to 60%. For each of these images, localization was attempted on

each of the occluded objects in the scene. As in the experiments of Sections 6.6 and 6.8,

103

Figure 6.9: The red and green area shows the object silhouette transformed by the ground
truth. The yellow and green area shows the object silhouette transformed by the computed
transformation. The minimum normalized overlap Γ = 0.462.

features were extracted from the query images and the target occlusion scenes using the

BLOB-RIDGE feature detector described in Section 6.2. Then the SBCS algorithm was

used to extract a subset of the image features. The inverse of the Euclidean distance be-

tween the feature locations was used as a similarity measure, and the significance field of

the BLOB-RIDGE features was used as the stability. Finally, the HUT-EMD algorithm de-

scribed in Section 6.3 was used to find and compute the transformation between the query

and target images.

Figure 6.10 shows example cases that resulted in high localization accuracy. For each

of the examples the three corresponding points used to compute the transformation are

labeled in the query and the target images. Figure 6.11 (a) and (b) show histograms of Γ

for target images containing two objects and three objects, respectively. The histograms

indicate the majority of the queries had a Γ value over 0.80, with 79% of queries for scenes

containing two objects and 65% of queries for scenes containing three objects.

Figure 6.12 shows the localization accuracy under increasing amounts of occlusion for

all target images. The average values of Γ are plotted for six discrete ranges of occlusion

percentage. For scenes with two and three objects, Γ is always over 0.80 and 0.70, respec-

tively. The decrease in the localization accuracy for images with three objects may be at-

tributed to the increased complexity of the scenes (they contain more objects). Figure 6.13

104

Figure 6.10: Example results from the experiment of localizing partially occluded objects.
Left and middle columns show the query object images and the target images, respectively.
In these images the features in the SBCS are depicted with crosses. The three correspond-
ing features used to determine the transformation are labeled ‘A’, ‘B’, and ‘C’. The right
column shows the edges of the localized query objects overlaid on the scene. (All images
are histogram scaled and cropped for clarity.) Row 1: pig is 58.7% occluded, Γ=1.00, Row
2: cat is 58.7% occluded, Γ=0.97, Row 3: vaseline is 54.1% occluded, Γ=0.98, Row 4:
cream cheese is 39.79 % occluded, Γ=0.96.

shows an example of a failed query. As this example depicts, failures can be caused by lack

of discriminating texture in the unoccluded regions of the target objects.

105

Γ

R
el

at
iv

e
Fr

eq
ue

nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Γ

R
el

at
iv

e
Fr

eq
ue

nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) (b)

Figure 6.11: Results of the localization of partially occluded objects in scenes containing
(a) two objects and (b) three objects. The histogram plots the relative frequency ratio of
queries with varying localization accuracies, Γ. The histograms indicate the majority of the
queries had a Γ value over 0.80 with 79% of queries for scenes containing two objects and
65% of queries for scenes containing three objects.

These results demonstrate that the SBCS successfully chooses representative features,

even in the presence of significant occlusion. This is mainly because the SBCS is en-

couraged to maintain the spatial distribution of the original features. This increases the

probability of having features in the query SBCS located in the corresponding unoccluded

region of the target object.

6.11 Computational Cost of Subset Size with HUT-EMD

In this experiment, the goal was to determine the relative computational cost of object

localization as the size of a subset of features increases. First a small dataset was created

consisting of 20 query images from the frontal views of objects from the COIL-20 [86]

dataset (see Figure 6.14). Each image was then randomly scaled and rotated in the image

plane to form 20 target images.

Sets of 50 BLOB-RIDGE features were then extracted from the images, and the SBCS

106

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Occlusion Percentage

Γ

+
+

+ + +
+

o
+

Scenes with two objects
Scenes with three objects

Figure 6.12: Results on localization of partially occluded objects. The average localization
accuracy Γ is plotted for six discrete target occlusion percentages. The results show that for
scenes with two and three objects Γ is always over 0.80 and 0.70, respectively. Additionally,
in both cases Γ does not significantly decrease even at 60% occlusion.

Figure 6.13: An example of a failed query. Left: Query object image, Middle: Target
scene image, Right: Zoom in of the query object in the target scene. The SBCS features
are depicted with crosses in all images. (All images are histogram scaled and cropped
for clarity.) Since only two of the features in the query SBSC appear in the target SBCS,
the query object cannot be accurately located. As this example illustrates, failures can be
caused by lack of discriminating texture in the unoccluded regions of the target objects.

107

(a) (b)

Figure 6.14: a) Frontal views of COIL-20 objects used in experiment. b) The features
from object 13 are marked with black points, SBCS subset of size 10 used in experiment 1
marked with black squares.

algorithm was used to extract a subset of the image features with sizes ranging from 10 to

35 features. The inverse of the Euclidean distance between the feature locations was used

as a similarity measure, and the significance field of the BLOB-RIDGE features was used

as the stability.

Each of the original 20 objects were used as queries against the 20 transformed tar-

get objects. The HUT-EMD algorithm described in Section 6.3 was used to compute the

pairwise distances between a query and a target. A query was considered a correct match

if the target with the minimum distance was the query object under transformation. The

matching task was conducted for a range of subset sizes, as well as the complete feature

set. This was done to ensure that the feature subsets were representative, i.e., they would

have matching rates comparable to the matching rate for the full sets of query and target

features.

Figure 6.15 shows the relative computational cost of finding the localization transfor-

mation using the HUT-EMD algorithm for various subset sizes. As the size of the feature

subset decreases, the total computational time is greatly reduced with no appreciable loss

of accuracy. In fact, in all cases the matching rates for the subsets were at least 98% of the

matching rate for the full sets of query and target features. The subset selection method

therefore produces a representative feature set for this task, while providing a significant

decrease in the running time.

108

100

1000

10000

100000

1e+06

1e+07

1e+08

10 15 20 25 30 35

Ti
m

e
in

Se
co

nd
s

SBCS Set Size

Matching Time vs SBCS Set Size

3

3

3

3

3

3

Figure 6.15: Matching time versus SBCS size. BLOB-RIDGE features were matched
using HUT-EMD. See Section 6.2 for a description of BLOB-RIDGE and Section 6.3 for
a description of HUT-EMD. Note that 107 seconds is 115 days.

6.12 SBCS Stability with Gaussian Noise

This experiment tested how the feature subsets created with the SBCS algorithm react

with noise. The dataset of 20 query images from the previous experiment was used. The

target images from the previous experiment were used to create 6 sets of images, with an

increasing amount of Gaussian noise (σ = 1, 2, 4, 8, 16, 32) added to the pixel intensity

values in each set.

Then features were extracted from the query and target images using the HARRIS,

BLOB-RIDGE, and SIFT detectors. The SBCS algorithm was used to select subsets

from the query and target features, reducing the size of the feature sets by half. The

detector/similarity/stability combinations of HARRIS/XY/RES, BLOB-RIDGE/XY/SIG,

SIFT/XY/SCALE, and SIFT/XY/PERTURB were used to produce 4 series of subsets.

To match the HARRIS and BLOB-RIDGE features, the HUT-EMD algorithm was used,

counting as a match the target with the lowest distance. To match the SIFT features the

109

MATCH algorithm was used, a match was defined as the target with the greatest number

of matched features. HUT-EMD and MATCH are described in Section 6.3.

Figure 6.16 summarizes the results of the experiment. The figure shows the percent of

queries that were correctly matched matched to the target image (the same image scaled

and rotated with Gaussian noise added). The curves are relatively flat indicating that the

SBCS of feature subsets are robust in the presence of Gaussian noise. Additionally, one

can see that the combination of SIFT with MATCH significantly outperforms the other

algorithms.

100
90
80
70
60
50
40
30
20
10
0

32168421

M
at

ch
in

g
R

at
e

%

Sigma σ

Matching Rate in Presence of Gaussian Noise

BLOB-RIDGE

3
3 3 3

3
3

3
HARRIS

2
2 2 2

2
2

2
SIFT/PERTURB

4 4 4 4
4

4

4
SIFT/SCALE

u u u u u u

u
Figure 6.16: Matching performance with SBCS with HARRIS, BLOB-RIDGE, and SIFT
feature detectors. The matching rate is the percentage of queries that were correctly
matched to the target image (the same image scaled and rotated with Gaussian noise added).
HARRIS and BLOB-RIDGE use the HUT-EMD matching algorithm, SIFT variants use
MATCH algorithm supplied with SIFT. The SBCS is of size 50% of full set of features.
SIFT/PERTURB uses perturb stability, SIFT/SCALE uses scale stability. See Section 6.5
for a description of stability measures.

110

6.13 Comparison with Other Subset Selection Techniques

In this experiment, the SBCS subset selection method is compared with other com-

monly used techniques of computing feature subsets. The techniques are compared by

examining the performance in the context of object localization under significant occlu-

sion. The SBCS method is compared to the subset selection techniques of thresholding

the significance of the features and using K-means to create feature clusters. The results

indicate the SBCS outperforms each of these techniques, and accurately localizes objects

even in the presence of large amounts of occlusion.

6.13.1 Dataset

In order to test the performance of feature subset algorithms under occlusion, it was

first necessary to extend the Drexel Object Occlusion Repository, DOOR [16], which al-

lowed automation of the testing process. The new DOOR images (denoted series 6) are

constructed by randomly scaling and rotating five input objects from the COIL-20 database

[86] on a background image so that the degree of occlusion is exactly known. Ground-truth

information sufficient to allow reconstruction permits accurate measurement of occlusion

and localization accuracy by automated means. A breakdown of the occlusion rates and the

number of examples is given in Table 6.1.

6.13.2 Localization Error

Provided with the ground-truth transformation, G, an error measure for a computed

transformation, T , is defined. Let the error, e, be defined as

e =
1

ns

n∑
i=1

‖ Tpi −Gpi ‖2, (6.1)

111

Occlusion Percent Object Examples
o = 0 1063

0.001 ≤ o < 10 228
10 ≤ o < 20 123
20 ≤ o < 30 105
30 ≤ o < 40 89
40 ≤ o < 50 100
50 ≤ o < 60 85
60 ≤ o < 70 95
70 ≤ o < 80 89
80 ≤ o < 90 93
90 ≤ o < 100 330

Table 6.1: DOOR dataset series 6 breakdown of occlusion rates and number of object
examples (e.g 89 objects are occluded between 30% and 40%). DOOR series 6 consists of
480 scenes each with 5 objects superimposed.

where n is the number of features in full set , s is the ground-truth scale factor, and pi

is a feature in the full set of model features. The notation, ‖ · ‖2, denotes the Euclidean

distance. Intuitively, the features are transformed by both T and G and then the average

distance between where the transformation T places them versus where the ground-truth,

G, places them is measured. The distance is then divided by the ground-truth scale to

compensate for differences in scale (small distances in a small object are more significant

than the same distance is a highly scaled object).

6.13.3 Algorithms

For the SBCS tests, the DSPACE similarity measure and I-PERTURB stability were

used along with Λ = {λ1 = 0.4625, λ2 = 0.4625, λ3 = 0.075}, which was determined

empirically. For the threshold tests, a subset of SIFT features was selected based on their

scales. The features were sorted by their scales and then either the top third of the features

(threshold high) or the bottom third (threshold low) was selected.

112

For the K-Means tests an implementation by Mount [85] was used to cluster the fea-

tures. From each cluster the feature was selected that was closest to the cluster centroid

as the representative member, i.e., the subset consists of the nearest neighbors to each of

the cluster centroids. K-Means was tested in the descriptor space (K-Means DSPACE) and

K-Means in x, y (K-Means XY). As a control, and for comparison purposes the tests were

performed with the full set of SIFT features.

6.13.4 Methodology

SIFT features were extracted from the frontal view of each COIL-20 object, resulting

in 20 sets of features. The algorithms described in Section 6.13.3 were then used to extract

subsets of features that were a third of the original size.

Each of the DOOR series 6 occlusion scenes was processed and SIFT features were

extracted. Then the ground-truth information for each scene was examined. For each

object in the scene the MATCH algorithm supplied with SIFT was used to determine the

corresponding matches between each of the feature subsets and the scene features. For

example, if the scene contained object 7, we ran the MATCH program on the subsets of

object 7 SIFT keys and the scene SIFT keys.

For each of the matchings, the calculated transformation (if the object was detected) was

recorded as well as other statistics such as the error and the detection rate. The detection

rate for a particular subset algorithm is defined as the number of detections divided by the

number of detections with the full set of features. The rational behind using this measure

is that it provides a frame of reference when considering the error measure, i.e., using a

subset algorithm with low error rates may not be desirable if the detection rate is too low.

113

6.13.5 Algorithmic Performance

Section 3.3.6 discussed the theoretical bounds of the SBCS algorithm, but how does it

perform in practice? Of the 20 model objects, object 9 (Tylenol) had the most SIFT features

with 212. Ten consecutive runs of the algorithm with kmin = 12, kmax = 16 averaged 44

seconds each on an Intel Core Duo @ 1.66GHz with 1 gig of ram. The average time to

solve the SDP was 5.9 seconds with the balance of the time being spent on the rounding

and parsing the results. Eight of the subsets had identical SBCS members and two of the

subsets had slightly worse objective values (higher by 0.00015%). These two subsets had

the same members and shared 14 of the 16 members of the other 8 subsets. The SBCS

algorithm is typically run with 1500 roundings, and the experience is that the repeatability

of the generated subsets can be improved by increasing the number of roundings.

It is important to note that as the size of the original feature set increases, the number of

variables in the SDP increases quadratically. This does present an upper limit on the size

of the feature sets that can be practically partitioned.

Although, the theoretical bounds for the SDP formulation have been given in Sec-

tion 3.3.6, the bounds for the QP formulation must be tested empirically. A series of 20 tests

were run to compare the performance of the SDP formulation with the quadratic program-

ming (QP) approximation. For technical reasons both algorithms were run as minimiza-

tions. Figure 6.13.5 shows the results. The average ratio of objective values, QP/SDP

was 1.003, and the ratio of execution times was 0.17. These results indicate that the QP

approximation obtains objective value very close to those obtained with SDP, yet requires

about one fifth of the execution time.

6.13.6 Results

Using the full set of features, 1321 detections of objects were obtained with an average

error of 2.77 pixels. Figure 6.18 shows a graph of the detection rates from the algorithms

114

0.995

1

1.005

1.01

1.015

1.02

1.025

2 4 6 8 10 12 14 16 18 20

R
at

io
(Q

P/
SD

P)

Test

Quadratic Programming versus SDP

Objective

b b b b b b b b

b

b b b b b b b

b

b b b

b
Figure 6.17: Comparative performance QP versus SDP approximation. The average ratio
of objective values, QP/SDP was 1.003, and the ratio of execution times was 0.17. For
technical reasons both algorithms were run as minimizations, thus lower values indicate
better performance.

broken down by occlusion percentage. SBCS has comparable detection performance to the

best of the other algorithms across the entire range of occlusion rates.

Figure 6.19 shows results sorted by number of detections. The first row shows the

results for the full set of features. SBCS had a slightly higher detection rate in conjunction

with the lowest average error rate. When error rates are normalized to eliminate the effects

of increased detection rates, the SBCS algorithm has the lowest error rate.

Figure 6.20 shows examples of the localizations achieved with SBCS. The figure shows

query objects with the full set of features and the SBCS. Note that a single point in the

visualization can represent multiple SIFT features that are detected at the same location.

The figure also shows the matchings, error rates, and percentage of occlusion.

It is perhaps surprising that the I-PERTURB stability measure contributes to the best

results as intuitively one would think that stronger more stable features would be better.

However, a little reflection reveals why this is not so. Stronger, more stable features, often

115

have a larger support region, and a large support region is more likely to be obscured at

higher occlusion rates. This conjecture is supported by the dismal detection performance

shown by the Threshold High subset selection algorithm (see Figures 6.18 and 6.19).

The dataset allows the precise measurement of occlusion and the performance of feature

subsets on the task of object localization. The results indicate that the SBCS provides

improved performance over the other methods that were tested.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 10 20 30 40 50 60 70

D
et

ec
tio

n
R

at
e

Occlusion %

Detection Rate (Full Set=1)

K-Means DSPACE

3
3

3

3
3

3
3

3

3
K-Means XY

2
2

2
2 2

2

2

2

2
Threshold High

b b b
b b

b b b

b Threshold Low

e e e e e
e e

e

e
SBCS/I-PERTURB

u u u u u
u u u

u
Figure 6.18: Comparison of detection rates of subset algorithms under varying amounts of
occlusion. The detection rate is the number of detections divided by the number of detec-
tions obtained with the full set of features. SBCS/DSPACE/I-PERTURB has comparable
performance over the entire range of occlusion. Data points include detections in a 10%
range, i.e., points at 60% includes detections under occlusion from 60-70%.

6.14 Object Localization in Real Images

Object localization under occlusion with synthetic images such as those used in the

experiment described in Section 6.13 is considered to be an easier task than localization

116

Algorithm Detections Rate Avg. Error Normalized Error
Full 1321 2.7721 0.5701
SBCS 1104 83.5% 1.1312 0.5521
K-Means DSPACE 1084 82.0% 1.2844 0.6339
K-Means XY 1045 79.1% 2.0300 0.6252
Threshold Low 926 70.0% 2.8111 0.8912
Threshold High 889 67.2% 1.1655 1.1643

Figure 6.19: Results sorted by overall detection rate. The first row contains results from the
full set of features. Rate is the percentage of full set detections. Average error is the average
error in pixels adjusted to account for scaling. Normalized error is the average error over
the detections common to all algorithms, i.e., it shows the comparative error rates without
taking increased detection rate into account. SBCS/DSPACE/I-PERTURB has a slightly
higher detection rate than other subset selection algorithms, the lowest average error rates,
and the lowest normalized error rate.

under occlusion with images that are real. This difficulty stems from factors including

lighting, noise, reflections, and rotations in depth. However, because there is no source

of ground-truth, the accuracy of localization and indeed the amount of occlusion, must be

judged subjectively.

In order to test the suitability of the feature subsets selected by the SBCS algorithm, a

dataset of real images of objects under occlusion was constructed. That is, objects were

objects placed on a table and then photographed to form a set of query images. Then target

scenes were created by arranging the query objects along with other objects on a table in

various configurations and then subsequently photographing them.

The SIFT algorithm was used to extract sets of features from the query and target im-

ages. Using Λ = {λ1 = 0.4625, λ2 = 0.4625, λ3 = 0.075} with SBCS/DSPACE/I-

PERTURB, subsets of the query features were computed that were a third of the size of the

original query feature sets. The subsets of query features were used to localize the query

objects in the target scenes and then the results were compared with localization using the

full set of query features.

117

Features Scene Matching Localization

Figure 6.20: Results from experiment with objects occluded by 50-75%. Column 1 shows
the object with SIFT features as black points and the SBCS subset in black squares. Column
2 shows the scene. Column 3 shows the matching features. Column 4 shows a visualization
of the localization accuracy.

118

Figure 6.21 shows some results of this experiment. Column one shows the query image,

column two the scene, column three a closeup of the object of interest. Column four shows

the localization found using the full set of query features, and the last column on the right

shows the localization found using the subset of query features computed by our algorithm.

Examination of Figure 6.21 shows that the subset of features computed using our algo-

rithm can effectively be used in a realistic setting for object localization under occlusion.

In particular, the first three rows of the table show highly accurate localization under large

amounts of occlusion. The results obtained with a subset of image features are comparable

to those obtained with the full set of query features.

6.15 Conclusion

This chapter has presented an extensive set of experiments that explored the use of the

SBCS algorithm in object recognition and localization tasks. Section 6.1 provided some

background and an overview of the method where subsets of image features generated by

the SBCS algorithm are used in object recognition and localization tasks. Section 6.2 de-

tailed the feature detectors that were used in the experiments. Section 6.3 presented the

methods that were used to match features in the query and target images and calculate the

transformation between the matched features. Section 6.4 and 6.5 described the similarity

and stability measures used in the experiments. Then Section 6.6 presented results that

showed that it is possible to use a subset of image features to localize an object. Sec-

tion 6.7 built on these results and showed localization of one object rotated in depth. Next

Section 6.8 showed that multiple occluded objects could be localized using the method.

Section 6.9 then explored pose estimation. In Section 6.10, the question of localization ac-

curacy was addressed, a measure of accuracy was presented along with a synthetic database

of occluded scenes accompanied by ground truth information. Section 6.11 then explored

how the computational cost of image matching could be reduced through the use of subsets

119

Query Scene Detail Full Set SBCS

Figure 6.21: Results comparing object localization with real images. Query column shows
the query object. Scene, and Detail columns show the scene. The full set column shows
the localization obtained with the full set of SIFT features, the SBCS column shows the
localization obtained using a subset of the query features computed using our algorithm.

of image features. Next, in Section 6.12 the question of how the feature subsets created

with the SBCS algorithm react with noise was addressed. Section 6.13 then presented a set

of experiments that compared the SBCS with other subset selection techniques. Finally,

120

Section 6.14 presented some results from localization experiments with real images.

121

7. Image Reconstruction

7.1 Introduction

Scale space interest points are features that encode the deep structure of the input im-

ages. Scale space interest points were first proposed by Iijima [42] and later described by

Witkin [115], and many different types have been proposed since then [56, 66, 68, 82, 83,

94]. The increasing use of interest points in applications such as recognition, classification,

and image editing has instigated research on interest points and their descriptive power.

One way of evaluating the information content of interest points is through image recon-

struction. Here, the motivation is that a sufficiently rich set of points should encode enough

information about the structure of the original image to permit its accurate reconstruction.

To improve the accuracy of the reconstructions different types of interest points may be

used, as they encode different aspects of the input image. Indeed, Lillholm and Nielsen [65,

87] showed that combining different types of interest points can improve the quality of the

reconstruction. Typically different types of interest points are combined and then ordered

by their strength or the differential TV-norm as described by Platel et al. [93], with a subset

of the strongest points selected for reconstruction. Figure 7.1 shows an example recon-

struction using this method and illustrates some of its drawbacks. Large regions of the

reconstruction lack detail because none of the strongest points were located in those re-

gions.

This chapter presents a method of selecting a subset from a combined set of scale space

interest points for image reconstruction. This method is a generalization of preliminary

studies of the canonical set framework [49] for image reconstruction. Section 7.2 presents

an overview of the types of scale space interest points used in the experiments. Section 7.3

shows examples of reconstructions of a test image using different types of scale space

122

Original diff TV-norm

Figure 7.1: The image on the right is a reconstruction using the top 200 scale space interest
points ordered by differential TV-norm [93].

points. Then Section 7.3.2 describes two measures of reconstruction quality that are used

evaluate the reconstructions created during the experiments.

In the generalized framework which is presented in Section 7.4, spatial constraints are

incorporated into the feature selection process. A proof of how the optimal spatial con-

straints can be computed in polynomial time is presented in Section 7.4.1. In Section 7.5,

results from a comprehensive set of experiments on a suite of test images are shown.

7.2 Scale Space Interest Points

Scale space theory is the theory of apertures, through which humans and machines

observe the world. For computer vision systems, the notion of aperture can be introduced

as blurring the high resolution image with a kernel of a certain width [42, 55, 115]. The

linear scale space representation u : Rd × R+ → R of a continuous image f : Rd → R is

123

defined as the solution of the heat equation:

∂
∂s

u = ∆u

lim
s↓0

u(·, s) = f(·)
(7.1)

where s denotes the scale. The unique solution to this equation leads to convolution with a

Gaussian kernel. Spatial derivatives of the image can be calculated by convolution with a

derivative of a Gaussian:

∂ν1,...,νnu(x, y, s) = (∂ν1,...,νnGs ∗ f)(x, y) (7.2)

where f is the original image, Gs a Gaussian of scale s, and ν1, . . . , νn the spatial indices

(for a 2D image this can be any combination of x and y). For the remainder of this chapter,

the following the short notation us,ν1...νn is used for ∂ν1,...,νnu(x, y, s).

A scale space of a 2D image is in fact a 3D volume with the scale s as the third dimen-

sion. In the scale space representation of an image, several special types of interest points

can be identified. These points contain important structural information of the image and

can be used for image matching [83, 94] and reconstruction [47, 65]. In the remainder of

this section, 10 types of commonly used scale space interest points are presented.

7.2.1 Laplacian Blobs

Scale space blobs [66] are defined as the positive local maxima (or negative local min-

ima) in space and scale of the normalized Laplacian of the image:

lmax
x,y,s

{|sγ(us,xx + us,yy)|} (7.3)

with lmax the local maximum and using γ-normalization with γ = 1. The γ-normalization

with scale invariance is discussed in detail by Florack and Kuijper [25]. Blobs can be

124

ordered in strength by the magnitude of the response of their respective filters [87, 65].

Figure 7.2 shows a synthetic image and the detected Laplacian blobs depicted as points.

The circles surrounding the points indicate the scale of the interest points.

Synthetic Image Laplacian Blobs

Figure 7.2: Laplacian blobs

7.2.2 Hessian Blobs

Alternatively scale space blobs can be defined as the local maxima of the squared nor-

malized determinant of the Hessian.

lmax
x,y,s

{s4γ(us,xxus,yy − u2
s,xy)

2} (7.4)

Again using γ-normalization with γ = 1. Figure 7.3 shows a synthetic image and the

detected Hessian blobs depicted as points. The circles surrounding the points indicate the

scale of the interest points.

125

Synthetic Image Hessian Blobs

Figure 7.3: Hessian blobs

7.2.3 Corner Points

Corner points in the image are defined as points with high curvature and high intensity

gradient:

lmax
x,y,s

{|s2γ(2us,xus,xyus,y − us,xxu
2
s,y − u2

s,xus,yy)|} (7.5)

using γ-normalization with γ = 7/8, following Lindeberg et al. [67]. Note that for ordering

the corner points in strength, the magnitude of the corresponding filter response has to be

normalized with γ = 1 to make magnitude values at different scales comparable. Figure 7.4

shows a synthetic image and the detected corner points. The circles surrounding the points

indicate the support regions.

7.2.4 Edge Points

Edge points are defined by the following two constraints [65, 87]:

 sγuww = 0

lmax
s
{sγ/2uw}

(7.6)

126

Synthetic Image Corner Points

Figure 7.4: Corner Points

using γ-normalization with γ = 1/2 [67]. Here uw is the first order derivative in the

gradient direction and uww the second order derivative in the gradient direction. For edge

strength, the gradient magnitude is used re-normalized with γ = 1. Figure 7.5 shows an

example image and the detected edge points. The circles surrounding the points indicate

the support regions.

Image Edge Points

Figure 7.5: Edge Points

127

7.2.5 Ridge Points

Ridge points are defined as the local extrema of the square of the γ-normalized principal

curvature difference [35, 67]:

lmax
x,y,s

{s2γ((us,xx − us,yy)
2 + 4u2

s,xy)} (7.7)

Note that for ordering the ridge points in strength, again the magnitude of the corresponding

filter response has to be normalized with γ = 1 to make magnitude values at different scales

comparable. Figure 7.6 shows an example image and the detected ridge points. The circles

surrounding the points indicate the support regions.

Image 200 Strongest Ridge Points

Figure 7.6: Ridge Points

7.2.6 Top Points

Top points are defined by:

 ∇us = (us,x, us,y)
T = 0

detH(us) = us,xxus,yy − u2
s,xy = 0

(7.8)

128

where H(us) is the 2nd order Hessian matrix defined by:

H(us) =

 us,xx us,xy

us,xy us,yy

 (7.9)

Platel and Kanters showed that top points can be rank-ordered by a stability norm called

differential (quadratic) TV-norm [94, 47]. Figure 7.7 shows a synthetic image and the

detected top points. The circles surrounding the points represent the scale.

Synthetic Image Top Points

Figure 7.7: Top Points

7.2.7 Top Points of the Laplacian

It has been shown that top points of the Laplacian of an image (versus top points of

the gray level image itself) can be used for image matching [94] and reconstruction [46].

These points are defined by:

us,xxx + us,yyx = 0

us,xxy + us,yyy = 0

(us,xxxx + us,yyxx)(us,xxyy + us,yyyy)− (us,xxxy + uyyxy)
2 = 0

(7.10)

129

Laplacian top points can be seen as points in scale space where one Laplacian extremum

blob and one Laplacian saddle merge into one blob. Instead of describing the behavior of

local extrema in scale space, Laplacian top points describe the behavior of blobs through

scale. Figure 7.8 shows a synthetic image and the detected Laplacian top points. The circles

surrounding the points represent the scale.

Synthetic Image Laplacian Top Points

Figure 7.8: Laplacian Top Points

7.2.8 Scale Space Saddle Points

Koenderink [56] and Kuijper et al. [60, 61, 62] introduced scale space saddle points,

which are defined by:
us,x = 0

us,y = 0

us,xx + us,yy = 0

(7.11)

Figure 7.9 shows a synthetic image and the detected Scale space saddle points. The circles

surrounding the points represent the scale.

130

Synthetic Image Scale Space Saddle Points

Figure 7.9: Scale Space Saddle Points

7.2.9 Hessian-Laplace Points

Mikolajczyk and Schmid [84, 83] introduced a hybrid method where the local spatial

maxima of the square of the determinant of the Hessian matrix (introduced by Lowe [73] to

eliminate edge response) are combined with the local scale maxima of the Laplacian. For

strength the Laplacian is used.

lmax

x,y
{s4γ(us,xxus,yy − u2

s,xy)
2}

lmax
s
{s2γ(us,xx + us,yy)}

(7.12)

Figure 7.10 shows a synthetic image and the detected Hessian-Laplace points. The circles

surrounding the points represent the scale.

7.2.10 Harris-Laplace Points

Mikolajczyk and Schmid [82] also introduced a scale adapted version of the Harris

corner detector [37]. Consider the scale-adapted second moment matrix:

µ(sD, sI) = sDGsI
∗

 usD,xx usD,xy

usD,xy usD,yy

 (7.13)

131

Synthetic Image Hessian-Laplace Points

Figure 7.10: Hessian-Laplace Points

with sD the differentiation scale, sI the integration scale, and GsI
a Gaussian at scale sI .

The matrix describes the gradient variation in a local neighborhood of a point. The Harris

measure [37] combines the trace and determinant of this matrix as a measure for cornerness.

Scale selection is based on the local maxima over scale of the Laplacian. The scale adapted

Harris-Laplace points are defined as:

lmax

x,y
{det(µ(sD, sI))− αtrace2(µ(sD, sI))}

lmax
s
{s2γ(us,xx + us,yy)}

(7.14)

Figure 7.11 shows an example image and the detected Harris-Laplace points. The circles

surrounding the points represent the scale.

7.3 Reconstruction and Selection Based on Differential TV-norm

Using scale space interest points and local derivatives up to 4th order in these points,

an approximation can be made of the original image from which the points were extracted.

The reconstruction algorithm used for this purpose is based on the Sobolev reconstruction

algorithm proposed by Janssen et al. [44]. The reconstruction algorithm finds an image that

is as smooth as possible, with exactly the same derivatives at the scale space interest points

132

Image Harris-Laplace Points

Figure 7.11: Harris-Laplace Points

using an orthogonal projection in a Sobolev space. Figure 7.12 shows the reconstruction

results for a test image (Figure 7.1) for different types of scale space interest points.

Figure 7.12: Reconstructions of a test image (Figure 7.1) using the 200 strongest top points
of the Laplacian, Hessian blobs, corner points, Laplacian blobs, top points, ridge points,
Hessian Laplace points, Harris Laplace points, edge points and scale space saddles, left to
right and top to bottom respectively.

As can be seen from the reconstruction results in Figure 7.12, different types of interest

points capture different aspects of image structure. Therefore, combining different types

133

of interest points should naturally improve the reconstruction quality. The question is how

to combine the different types of points. One possible option is to combine all types of

points in a large set and re-order all points using their differential TV-norm [47, 94, 93] or

a similarly defined strength measure.

7.3.1 Differential TV-norm

The differential TV-norm measures the local structure in a small neighborhood around

the interest point. The amount of structure contained in a spatial area around a critical

point can be quantified by the total (quadratic) variation (TV) norm over that area [9]. By

using a spatial Taylor series around a considered critical point the TV-norm simplifies to

Eqn. (7.15) which is referred to as the differential TV-norm [94],

diff tv = 4s2(u2
s,xx + u2

s,yy + 2u2
s,xy). (7.15)

The result of the 200 strongest combined interest points ordered by differential TV-norm

of a test image and the corresponding reconstruction is shown in Figure 7.13.

Note that the quality of the combined scale space interest point reconstruction is lower

than some of the separate interest point reconstructions shown in Figure 7.12. The reason

for this is that in the combined point set many points that are close to each other will share

a similar differential TV-norm (or other strength measure). Using strength measures as

the sole criteria for ordering interest points may result in selecting points close to each

other and consequently poor reconstruction results since these points will contain much

redundant information.

7.3.2 Reconstruction Quality

In order to compare the results of the experiments, objective measures are necessary

to evaluate the quality of the reconstruction. Ideally this measure should reflect the human

134

Figure 7.13: Left: 200 strongest combined scale space interest points of a test image
ordered by differential TV-norm. Right: Reconstruction of a test image using the 200
strongest combined scale space interest points ordered by differential TV-norm.

observer’s notion of quality. The Structural Similarity Measure (SSIM) of Wang et al. [113]

is one metric that can be used to determine the quality of reconstructions. The SSIM

incorporates a human visual system model of degradation of structural information.

Another possible metric is the Multi Scale Differential Error (MSDE) which considers

the differential structure of the difference between two images at several scales simultane-

ously, and like the human visual system is sensitive to the differential structure of an image

at multiple scales. A detailed motivation and evaluation of this error measure is presented

by Kanters et al. [48]. For R different scales, let Γ = {σ1, . . . , σR}, then the gradient

magnitude error map Ψf,g between image f and reconstructed image g is defined as:

Ψf,g[i, j] =

√
1

R

∑
σ∈Γ

(|σ∇fσ [i, j] | − |σ∇gσ [i, j] |)2 (7.16)

with |∇f,σ[i, j]| at point [i, j] the gradient magnitude of image f at scale σ. The Multi Scale

135

Differential Error is defined as:

MSDE(f, g) =
1

MN

M∑
i=1

N∑
j=1

Ψf,g[i, j]. (7.17)

7.4 Using the SBCS for Reconstruction

The motivation for using canonical sets to select subsets of scale space points stems

from observation of the locations of points selected through ordering of the differential

TV-norm. Visual inspection of the reconstruction on the right of Figure 7.13 reveals large

areas that lack detail. Looking at the locations of the scale space points in the left image of

Figure 7.13 reveals the cause; numerous points are clumped together. In order to take into

account the spatial distance between points as well as the strength of the points, we select

canonical subsets of the combined point sets. Recall from Section 2.7.3 that the SBCS is a

subset of points with special properties namely:

1. Data points in the canonical set are minimally similar,

2. Data points in the canonical set are maximally similar to data points not in the canon-

ical set,

3. Data points in the canonical set are maximally stable,

4. The size of the canonical set is as least kmin and at most kmax.

In the context of image reconstruction, the data points are the scale space interest points

and the stability is the differential TV-norm. The inverse Euclidean distance between in-

terest point locations is used as a similarity measure. Recall also that the SBCS can be

136

approximated by the semidefinite program,

(SBCS):

Maximize C • X

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m,

X � 0,

where

C = λ1

 0̃ −1
4
d

−1
4
dT 1

2
wΣ

+ λ2

 −1
4
W 0̂

0̂T 1
4
wΣ

+ λ3

 0̃ 1
4
t

1
4
tT 1

2
tΣ

 , (7.18)

and 0̃ is an n × n matrix of zeros, 0̂ is an all zeros column vector in Rn, d is a column

vector in Rn whose ith entry has value di =
∑n

j=1Wij , W is the n × n similarity matrix,

wΣ =
∑

i,j Wij , t is a column vector in Rn whose ith entry is ti, and tΣ =
∑n

i=1 ti.

Constraint matrices D1, . . . ,Dn+1 are as described in Eqn. (3.22), Dn+2 is as described

in Eqn. (3.23), Dn+3 is as described in Eqn. (3.24), and m = n + 3. The coefficients,

λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 are parameters such that λ1 + λ2 + λ3 = 1.

7.4.1 Incorporating Distance Lower Bound Constraints

In this section it is shown that the canonical set framework is flexible enough for in-

corporating distance lower bound constraints among the members of the canonical set.

Specifically, in addition to the four properties, it is desired that for a given radius parameter

r, if pi ∈ P∗ then pj /∈ P∗ if the distance between pi and pj is less than or equal to r. The

approach is similar to the adaptive non-maximal suppression of Brown et al. [8]. This set

of constraints will prevent the selection of canonical features that are spatially too close to

each other. The structure of forbidden pairs with respect to P will be encoded in the form

137

of a {0, 1} binary matrix F = F(r) where entry Fij ∈ {0, 1}. Let Fij = 1 if the distance

between features pi and pj is less than or equal to r and zero otherwise. Intuitively, the

matrix F encodes the forbidden pairs, that is, if two features are closer than r to each other

then at least one of them should be outside the canonical set. This constraint can be stated

as:

1

4

∑
i,j

Fij(1 + yiyn+1)(1 + yjyn+1) = 0. (7.19)

Using the fact that F is symmetric and y2
i = 1, for each 1 ≤ i ≤ n + 1, the constraint

(7.19) can be restated as:

1

4

∑
i,j

Fij +
1

4

∑
i,j

Fijyiyj +
1

2

n∑
i=1

yiyn+1

n∑
j=1

Fij = 0. (7.20)

Letting fΣ =
∑

i,j Fij , and defining f as a column vector in Rn whose ith entry is equal to

fi =
∑n

j=1Fij , this latter constraint may be expressed as

F̂ • X = 0, where F̂ =

 1
4
F 1

4
f

1
4
fT 1

4
fΣ

 . (7.21)

The new SDP formulation for the SBCS with forbidden relations can be stated as

SBCS2:

Minimize C • X (7.22)

Subject to Di • X ≥ 0, ∀ i = 1 . . . , m, (7.23)

X � 0, (7.24)

138

where C is as described in (7.18), m = n + 4, and the first n + 3 constraint matrices are

as described before in Eqn. (3.22), and constraint matrix Dn+4 is (7.21). The approximate

solution for this modified formulation can be estimated in a similar manner to the original

SBCS problem.

Computing the Optimal Radius

It is desirable to have the value of r to be as large as possible, thereby spreading the

SBCS2 members as far apart as possible. Without loss of generality, assume that the dis-

tances between all pi and pj are normalized to fall between zero and one. To find the

optimal value of r, note that when r = 0 the formulation reduces to the standard SBCS

formulation, i.e. the matrix F is all zeros. On the other hand if r = 1, the matrix F is

all ones and the problem is infeasible for most purposes since only one point can be in the

canonical set. Next it is shown how the optimal r can be found in polynomial time.

Lemma 7.4.1. Let r be some value such that the SBCS2 algorithm is feasible. Then any

value r − δ where 0 < δ < r is feasible.

Proof. Any pair that is forbidden by r is also forbidden by r − δ. This is clearly the case

since, if the distance between two set members, pi and pj is less than r−δ it is also less than

r. Thus an instance using a minimum radius of r − δ is less constrained than an instance

using r.

Lemma 7.4.2. There are at most n2/2 values for r that give distinct matrices F , where

n = |P|.

Proof. Since matrix F is symmetric and Fij = 1 if the distance between features pi and pj

is less than or equal to r and zero otherwise, the number of distinct F matrices is bounded

by the number of distinct distances, which can be no more that n2/2.

139

Lemma 7.4.3. The number of ones in the matrix F increases monotonically as the value

of r increases.

Proof. Let dij be the distance between pi and pj . Clearly, if dij ≤ r then dij ≤ r+δ, where

δ > 0.

Theorem 7.4.4. The optimal value for r can be found by running the SBCS2 algorithm at

most O(log n) times.

Proof. Let r∗ be the optimal value for r. By lemma 7.4.2 there are at most n2/2 possible

values for r that must be searched, by lemma 7.4.1 and lemma 7.4.3 we know for any

particular r whether r∗ < r or r∗ > r. We can thus perform a binary search to find r∗,

running the SBCS algorithm at most O(log n) times.

The algorithm for computing the approximate SBCS with forbidden pairs, which is

denoted SBCS3 thus consists of running the SBCS2 algorithm at most O(log n) times,

performing a binary search to find the optimal radius r. Since SDP algorithms such as

SBCS2 run in polynomial time, it follows that SBCS3 also runs in polynomial time.

7.5 Experiments

For these experiments, the 12 test images shown in Figure 7.14 were used. For each

image, the 10 types of scale space interest points described in Section 7.2 were extracted

and combined into one set ordered by differential TV-norm. The total number of interest

points extracted ranged from 7160 for the tulip image (image number 12 in Figure 7.14) to

over 10438 for the clock image (image number 9 in Figure 7.14).

From each of the combined point sets, the top 200 points ordered by differential TV-

norm, denoted DTVNORM, were extracted. Then reconstructions were created, and the

MSDE and SSIM were measured. Next the size of the combined feature sets was reduced

140

1 2 3 4 5 6

7 8 9 10 11 12

Figure 7.14: Images used in experiments, all images are 128 by 128 pixels.

by discarding points within a radius of 3 pixels of one with a higher differential TV-norm.

The size of the resulting filtered combined sets was in the order of 1000 interest points.

Recall that the SBCS algorithm requires weighting parameters to control the relative

importance of the multiple objectives. The Pareto weightings Λ = {λ1, λ2, λ3} were

parametrized as

λ1 =
α

2
(7.25)

λ2 =
α

2
(7.26)

λ3 = 1− α. (7.27)

The SBCS3 algorithm was run on each of the reduced combined interest point sets, varying

the convexity parameter, α, between 0 and 1 in 0.1 increments and subsets of 200 points

were selected. Reconstructions were created from each of the subsets and the MSDE

and SSIM were measured. The graph in Figure 7.15 shows the ratio of SSIM measure-

ments for SBCS3/DTVNORM, values above 1 indicate the SBCS3 algorithm produces

better reconstructions. Figure 7.16 shows a similar graph for the MSDE rates, in this case

141

DTVNORM/SBCS3. Again, values above 1 indicate the SBCS3 algorithm gives better

reconstructions.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

121110987654321

SS
IM

In
de

x
R

at
io

Image Number

u
u

u
u

u u u u
u

u

u

u

Figure 7.15: Ratio of SSIM measurements for SBCS3/DTVNORM (values above 1 indi-
cate the SBCS3 algorithm produces better reconstructions).

Examination of the graphs in Figures 7.15 and 7.16 show that subsets selected based on

the canonical set algorithm significantly outperform subsets selected by DTVNORM in all

but two of the tested images for each metric. Figure 7.17 shows a detail for image 3, where

by both measures DTVNORM outperformed the SBCS3 algorithm. The top row shows an

area of the clouds where the canonical subset provided greater detail than the differential

TV-norm subset. The bottom row shows the boat area, for which the canonical set gives a

poorer reconstruction.

Figure 7.18 shows the reconstruction results for the images in Figure 7.14. The left col-

umn in each cell shows the original image, the second column shows the reconstructions

from the top 200 points selected by differential TV-norm, the right column shows recon-

142

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

121110987654321

M
SD

E
R

at
io

Image Number

u u
u

u

u

u
u u

u
u

u
u

Figure 7.16: Ratio of MSDE measurements for DTVNORM/SBCS3 (values above 1 indi-
cate the SBCS3 algorithm produces better reconstructions).

structions from 200 points selected using the canonical set algorithm. The reconstructions

from the canonical sets of image points have lower error for all but two of the images.

Further examination of the reconstructions shows reconstructions using the canonical sets

avoid the large empty regions (areas with no selected features) present in the reconstruc-

tions using the ordered differential TV-norm.

Next the error rates for reconstructions using the top 200 points from the filtered com-

bined interest point sets were inspected. Recall that the reduced sets are generated by

discarding points within a radius of 3 pixels of one with a higher differential TV-norm.

Figures 7.19 and 7.20 show the ratios for the SSIM and MSDE respectively. The SSIM

ratios show the SBCS3 algorithm is better in 9 of the 12 reconstructions, while the MSDE

ratios show the SBCS3 algorithm is better in 8 out of the 12 reconstructions and only

slightly worse in 3 instances in terms of error rates. One reason for this behavior (being

only slightly worse) is that for α = 0, the canonical set algorithm is only considering the

stability (differential TV-norm) of the points in the objective and the spreading of the points

143

Original TV-norm Canonical Set

Figure 7.17: The left column shows the original image, the middle column shows the
reconstruction using the differential TV-norm, and the right column shows a reconstruction
using the canonical set. Even though the canonical set gives a better reconstruction of the
clouds, the boat has reconstruction artifacts, resulting in a higher MSDE.

is enforced through the constraint (7.21).

Finally, the effect of the number of selected features on the quality of reconstruction was

examined. Preliminary investigations indicated a progressive improvement on the quality

of reconstruction as a function of subset size. Figure 7.21 shows the results of this investi-

gation for image 9 from the test set, the MSDE measure gave similar results. Figure 7.22

shows reconstructions for various subset sizes.

144

Original DTVNORM Canonical set Original DTVNORM Canonical set

Figure 7.18: Image reconstructions, the left columns show the original images, the middle
columns show reconstructions with the top 200 scale space points ordered by differential
TV-norm, the right columns show reconstructions with the canonical set of scale space
points computed by the SBCS3 algorithm.

7.6 Conclusion

This chapter has explored the use of the canonical set method for selecting a subset

from a combined set of scale space interest points for image reconstruction. Section 7.2

145

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

121110987654321

SS
IM

R
at

io

Image

u u u
u u u u u u

u
u

u

Figure 7.19: Ratio of SSIM measurements for SBCS3/min3 (values above 1 indicate the
SBCS3 algorithm produces better reconstructions).

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

121110987654321

M
SD

E
R

at
io

Image

u u
u u

u

u
u u

u

u

u

u

Figure 7.20: Error for top 200 min3 filtered versus best canonical set (lower is better). Ratio
of MSDE measurements for min3/SBCS3 (values above 1 indicate the SBCS3 algorithm
produces better reconstructions).

146

0.1

0.2

0.3

0.4

0.5

0.6

0.7

60050040030020010050

SS
IM

Subset Size

Image 9u
u

u
u u u u u u u u u u

u

Figure 7.21: The effect of canonical subset size on the quality of reconstruction as measured
by SSIM for image 9 from Figure 7.14. The reconstruction quality increases as the size of
the subset increases.

introduced ten types of scale space interest points used in the experiments. Section 7.3 dis-

cussed reconstruction and selection based on the differential TV-norm. Then Section 7.3.2

described the two measures of reconstruction quality used in the experiments. Section 7.4

presented the algorithm for selecting subsets for combined interest points sets. Finally,

Section 7.5 described experiments and presented results that evaluated the efficacy of the

approach. The experiments showed the quality of the reconstructions based on the subsets

of image features selected by the canonical set algorithm produced lower error as measured

by the Multi Scale Differential Error (MSDE) in 10 of 12 reconstructions. In 8 of the 12

case studies the error was significantly lower, and in the other cases, they were comparable.

In all cases the subsets selected using the SBCS3 algorithm avoided the large empty areas

in images (areas with no selected features) that were present using the subsets selected by

the ordered differential TV-norm.

147

50 100 150 200

250 300 350 400

450 500 550 600

Figure 7.22: Reconstruction based on canonical sets of increasing size. The size of canon-
ical sets for each reconstruction is indicated in the cells. The line artifacts are due to
numerical errors in the reconstruction algorithm.

148

8. Canonical Set Applications in Software Engineering

8.1 Introduction

Although the canonical set algorithms were originally designed for computer vision

applications, they have also been shown to be useful in other domains as well. In partic-

ular, the canonical set algorithms have played a key role in software engineering methods

devoted to the understanding of software systems as shown by Kothari et al. [58, 59] and

Salah et al. [98]. The ability of canonical sets to effectively summarize and represent a

larger set facilitates the understanding of large complex software systems.

8.2 Usage Scenario Problem

Many software systems undergo continuous modification in response to changes in re-

quirements, repairs of faults, and performance enhancements. To be effective, software

engineers must understand how the software works before they attempt to modify it. Un-

fortunately, the size and complexity of the software often complicates the job of the soft-

ware engineer, who may have to expend a significant amount of effort to comprehend the

intricacies of the source code.

Documentation for object-oriented programs often includes descriptions of the parame-

ters and return types of each method in a class, but little or no information on valid method

invocation sequences. Knowing the sequence with which methods of a class can be in-

voked is useful for software engineers who are actively involved in the maintenance of

large software systems.

The problem of knowing the valid method invocation sequences would be alleviated

if every software interface had a specification, or at the very least a set of examples, that

codified how its component could be used. Many programs have documentation (e.g., Java

149

programs have javadoc specifications) that describes the parameters and return types of

each method in a class or the entry points of an API for a subsystem. Unfortunately, this

type of documentation does not describe valid method invocation sequences.

In the event that class usage scenarios are unavailable, they can be generated by hand.

This, however, requires intimate knowledge of the software system. Thus, it would be ben-

eficial to be able to generate class usage scenarios automatically. This section describes

Scenariographer [98], a tool for generating class usage scenarios, from method invoca-

tions, which are collected during the execution of the software. This algorithmic approach

employs the canonical set method to categorize method sequences into groups of similar

sequences, where each group represents a usage scenario for a given class.

8.2.1 Use of Canonical Set Method

Figure 8.1 illustrates the high-level architecture of Scenariographer, which consists of

three major subsystems: data gathering, repository, and analysis. The data gathering sub-

system collects runtime information, the repository subsystem stores runtime information

collected by the data gathering subsystem, and the analysis subsystem identifies the various

class usage scenarios.

The method sequence extractor (MS Extractor) component of the analysis subsystem

extracts the method invocation sequences from the class instances and eliminates all self-

calls (i.e., invocations an object made to itself) from the method sequences. These se-

quences are then encoded as strings with a single character representing each distinct

method call.

The MS Classifier (Method Sequence Classifier) component implements the BCS algo-

rithm for approximating canonical sets. This algorithm is described in detail in Chapter 3.

The input to the BCS algorithm consists of a similarity matrix. The matrix is constructed

by computing the distance between every pair of method invocation sequences (strings)

150

Canonical Set Algorithm

Figure 8.1: High-level architecture of Scenariographer with component implementing
canonical set algorithm marked in red.

using the edit-distance [64]. Intuitively, the edit-distance between two method invocation

sequences pi and pj measures the minimum cost of changes needed to transform pi to pj .

The MS Classifier uses the resulting canonical set members to create the canonical

groups of method invocation sequences that correspond to class usage scenarios. The

canonical groups are constructed by grouping each non-canonical element with the nearest

canonical set member.

8.2.2 Scenariographer Results

The Scenariographer tool was used to generate usage scenarios for the widely-used

class gnu.regexp.RE, which is used in the open source Java text editor Jext [45]. This class

is part of the GNU regular expression package and provides an interface for compiling and

matching regular expressions.

The Scenariographer tool produced three class usage scenarios, which can be approxi-

mated by the usage scenarios described in Table 8.1. Engineers who are not familiar with

the gnu.regexp.RE class can consult these usage scenarios to gain insight into typical uses

151

Scenario 1
init Constructor called once.
(match)+ This method is called one or more times.

Scenario 2
init Constructor called once.
(match | isMatch | chain)? Optionally, one of these methods is called.
(isMatch)* This method is called zero or more times.

Scenario 3
init Constructor called once.
chain This method is called once.
(match)* This method is called zero or more times.

Table 8.1: Class usage scenarios generated for the gnu.regexp.RE class

for the class. Engineers can be confident that new code that corresponds to established

usage scenarios will be unlikely to have unintended side effects.

8.3 Software Evolution Problem

Managers responsible for large software systems are always in search of techniques to

measure and quantify the development trends in a project. These techniques help to en-

sure the long-term health of the software system and reduce the cost of maintenance. This

section presents a technique that gives managers an overview of the code development pro-

cess enabling them to characterize the major work activities during a time period. Finding

trends in these work activities enables managers to better understand the software system’s

life-cycle and help them plan their development activities accordingly. The goal is to de-

scribe source code changes automatically. While it is possible to retrieve atomic changes

in the code from source control repositories, this information is overwhelming and requires

in depth knowledge of the system to comprehend.

The approach presented in this section examines the temporal evolution of code stored

152

in source control repositories. It employs the notion of “canonical sets” to identify a subset

of Canonical Changes that best represent the modification activities within a time period.

These canonical changes act as centroids for the modifications applied to a system in a

given time period, inducing a clustering. Using this clustering, the distribution of effort

across the various change categories can be discovered. By studying the distribution of ef-

fort, managers can detect if the development team is spread thin focusing on too many areas

or they are focused on a small number of tasks. The method produces these unbiased and

statistical measurements automatically and permits the identification of canonical changes

in partitions (periods) in the lifetime of long lived software projects.

8.3.1 Use of Canonical Set Method

Source control systems are used extensively by large software projects to control and

manage their source code [96, 109]; examples are RCS [109], CVS [12, 26] and Per-

force [92]. These systems help coordinate the development process between various mem-

bers of the team and provide the ability to restore the source code to its state at any given

time in the past.

The repository of a source control system usually tracks the creation, and initial content

of each file. In addition, it maintains a record of every change to a file. For every change, a

modification record stores the date of the change, the name of the developer who performed

it, the specific lines that were changed (added or deleted), and a detailed explanation mes-

sage entered by the developer giving the reason for the change. Using the information

stored in the source control system, change sets (files that were changed together by the

same developer within a short time frame) can be recovered. For selected time periods,

change lists, which are the lists of all the changes applied to a system, can be recovered in

the order that they were applied.

The first question is: What are the types of changes that were made during each pe-

153

riod of the software’s development? As compared to the work presented by Hassan and

Holt [38], the approach presented here is based on the idea that the length of different peri-

ods need not be constant. The lifetime of a software system can be divided into successive

periods of time as week, month, year, or any arbitrary time frame. The results presented in

this section use periods of 3 months, where periods are defined as development up to the

time in consideration.

Following partitioning of the development life cycle of the system into periods, the

similarity between each pair of commits is computed using the Jaccard similarity measure.

The Jaccard coefficient, J(X, Y), is a measurement of asymmetric information on binary

variables,

J(X, Y) =
|X ∩ Y |
|X ∪ Y |

where X and Y represent individual commits. That is, they are sets of files representing a

single commit. The similarity for each pair of commits is computed in order to obtain the

similarity matrix for the SBCS approximation. In the context of change lists, this subset is

referred to as the set of canonical changes, where the canonical changes represent the main

types or clusters of changes.

The advantage of finding the canonical changes as opposed to a histogram of files rep-

resented in each change is that the canonical changes actually represent all the changes of

the period that have been applied to the system. A histogram, on the other hand, simply

measures the frequency of files in each change. Additionally, it is important to note that the

number of changes applied to a system does not skew the results of the canonical changes,

a very important feature of the approach.

8.3.2 Change Cluster Results

To demonstrate the feasibility of the method, the software life-cycle of the open source

object-relational database, PostgreSQL was analyzed. The analysis of PostgreSQL begins

154

with its first formal release, version 6.0.

Figure 8.2 shows the number of change clusters identified for each development period

in the lifetime of PostgreSQL. The figure lists the major release number for each corre-

sponding period. The number of change clusters reveals the varying amount of change

activities during each time period. The canonical changes that form the basis of the change

clusters are due to the inherent relationship between changes during the development pro-

cess during each time period.

Figure 8.2: Number of identified change clusters of PostgreSQL by period

To uncover overall global trends in the results, linear and polynomial (of degree 6) trend

lines were fitted to the data. The linear trend line (dotted line) shows a slight downward

trend. This indicates that PostgreSQL’s development activity has remained active over time

at a reasonably constant rate. Examining Figure 8.2, one can observe that the polynomial

trend line (solid line) shows a similar trend except toward the 7.2 release where there is a

decline in the number of canonical clusters. This decline is likely due to missing change

155

data for the 22nd period.

In addition to the global trends, Figure 8.2 shows a significant rise in the number of

change clusters in several periods following a release when compared to the prior period.

Moreover, note the decline in the number of change clusters in a period preceding a release,

when compared to the prior period’s. Between releases 7.0 and 7.1 or 7.1 and 7.2, there is

an increase in the number of change clusters as development commences and a decline as

development for the release winds down. This is probably because the development of the

system began with a focus on several new areas, and as the release approaches, the focus

shifts to fewer and fewer areas. Intuitively, this is expected since as goals for the release

are accomplished, they are no longer worked on. As a release approaches, new work is not

added, this is commonly known as a “feature freeze”.

The approach of using canonical sets not only allows managers to determine what

change activities are being focused on during a given period, but also provides more in-

formation. Specifically, it provides managers with information about the number of areas

where changes have been applied. This allows them to see when the development team has

focused on several activities or just a few. It also shows managers what those activities are

by providing representative examples of them.

This method also allows identification of when code maintenance or refactoring work

is being performed as compared to new development on the software system. Comparing

the canonical changes of two consecutive periods provides information that reveals how the

focus of development changes from one period to the next. Further details on this method

are described by Kothari et al. [59].

8.4 Software Features Problem

One way of understanding a software system is to identify and comprehend its features

and the code that implements those features. For complex applications the number of

156

features may be significant, and indeed overwhelming. The implication is, that in order to

understand a software system, all of its features must be understood. However, it is likely

that there are similarities between features. Therefore, understanding one feature assists in

understanding similar features.

Using a measure of similarity between pairs of software features, the set of canonical

features of a software system can be obtained. The canonical features set (CFS) consists

of a small number of features, relative to the total number of features, that are most repre-

sentative of the software system. Intuitively, the CFS is a set of distinguished features that

characterizes a software system succinctly.

Engineers can obtain an overview of a system’s capabilities by studying the features

in its CFS. This follows from the fact that all other features of the system are similar to

features in the CFS. Because members of the CFS are as dissimilar as possible, engineers

can obtain a broad overview of the system by inspecting a small number of its features.

Engineers can also obtain an overview of a system’s implementation by studying how

members of its CFS have been implemented. Two features that have similar functionality

should share code and thus only one of the two features should appear in the CFS. Tran-

sitively, if many features are similar to each other, as expected in a large system where

features share code, only one of those features should appear in the CFS.

The features in the CFS act as central points for all of the features, and induces a clus-

tering that partitions the features of a software system. Each of the clusters is anchored by

a canonical feature and contains feature elements that are similar to the canonical feature.

Partitioning the set of features in this manner can reduce the cost of understanding large

and complex software systems. When an engineer knows that a specific feature must un-

dergo maintenance, understanding which features are most closely related is helpful since

related features most often share significant portions of their code. This method leverages

the engineer’s time investment by presenting a minimal number of specific features that

157

reveal the most about the system.

8.4.1 Use of Canonical Sets

Canonical Set Algorithm

Figure 8.3: Work-flow and tool chain; a) Call graph tool, b) Similarity measurement tool,
c) Canonical feature set tool, d) Feature partitioning tool. The canonical set algorithm is
implemented in component (c).

Figure 8.3 depicts the work-flow and tool chain that describes the process of computing

Canonical Feature Sets (CFSs) and Feature Partitions (FPs) of software systems. First the

features of a software system are identified using documentation, use cases, test cases, or

other means such as the help system of the software. Next, a set of test cases is designed to

exercise the features of the program. The features are executed under the supervision of a

dynamic analysis tool that captures the objects, functions, and variables that were involved.

If a test suite is present for the software, the test cases corresponding to individual features

may be utilized, rather than manually exercising the features.

The test cases are used with the call graph tool (Figure 8.3a) to produce a set of call

graphs, one for each executed feature of the software being studied. Using the similarity

measurement tool (Figure 8.3b), the pairwise similarity between the call graphs is com-

158

puted. Since call graphs are a direct representation of feature implementation, the similarity

between two call graphs is equivalent to the similarity of the features being represented by

those call graphs. In order to determine the similarity between two features, the association

graph based on the call graphs of those features is computed. The similarity can then be

defined as the cardinality of the maximal clique in the computed association graph [91].

The CFS tool (Figure 8.3c), uses the matrix of pairwise similarities between features

to determine the canonical feature set using the SBCS algorithm described in Chapter 3.

Lastly, the feature partitioning tool (Figure 8.3d), is used to cluster the remaining, non-

canonical features, using the canonical features as partition representatives. To partition the

features the technique places every non-canonical feature in a set with its nearest neighbor

in the CFS. Clusters thus represent sets of similar features based on implementation.

8.4.2 Firefox Suite Results

This technique was applied to the Mozilla-based web-browser, Firefox, and its compan-

ion mail and news client, Thunderbird. The browser provides features such as an integrated

pop-up blocker, tabbed browsing, built-in search, live bookmarks, themes, and the ability

to apply extensions to the browser for added custom functionality [24]. Since Firefox and

Thunderbird share a code-base, they were treated as a single integrated system.

The versions of Firefox and Thunderbird that were considered in this analysis were

1.0.6 and 1.0.7 respectively, the two latest releases at the time. To gauge the size of the

system, and implicitly the complexity of its source code, note that the Firefox suite is im-

plemented using over 3 million lines of code and 10,000 source files, not including the

shared libraries. The task of understanding a system of this size by examining its code is

daunting. After computing the pairwise similarity between all of the use-cases, the Canon-

ical Features Set was computed. The CFS for the Firefox suite can be seen in Table 8.2.

Interestingly, the CFS does not explicitly state that browsing is a canonical feature of the

159

Feature Name
1 File-Open Location
2 Bookmark-Add
3 Get Mail
4 Send Link
5 Edit-Find in This Page

Table 8.2: CFS of Firefox/Thunderbird Suite

suite. However, inspection of the similarities of features show that Open Location in

Tab, Open Location in Window, and Go to Location are all very similar to

File-Open Location. Any of these features could represent the group of features

containing those, and similar features since they all represent the browsing functionality.

Justification as to why certain features appear in the CFS can be found in the release

notes of the Firefox and Thunderbird applications, as well as their implementations. The

first surprising result is that Send Link is in the CFS and Send Message is not. This

is because Send Link subsumes the functionality of Send Message as well as places

the link to be sent in the message being written. Send Link opens an email composition

containing the link as the body of the message. In actuality, the Send Link feature

invokes a mailer command that does not necessarily need to be handled by Thunderbird,

but by the default mail client. Similarly, Left Click on email address executes

the same functionality of creating an email message within the Firefox suite.

This work contributes to the state-of-the-practice in software engineering by providing

software engineers with tools that can assist them in either a broad or targeted study of a

software system. By examining each canonical feature and the classification of features,

software engineers can get a broad overview of the distinguishing features of the software.

This is especially helpful in the absence of high-quality software documentation. Simi-

larly, by examining a cluster of the partitioned feature set and by examining the similarity

160

between the features in the same cluster, the software engineer can perform a systematic

and targeted study of a distinct set of software capabilities.

8.5 Characterizing Software Evolution

As shown in the previous sections in this chapter, a current focus of software engineer-

ing research in on the development of techniques to measure and quantify the development

trends in a software project. Section 8.4 described a technique that automatically identifies

the canonical features of a software application. The canonical features are relatively few in

number when compared to the total number of features of an application. By understanding

the implementation of these canonical features of an application an engineer can obtain an

informative abstraction of the implementation of the entire application. This result makes

progress toward reducing the cost of understanding and maintaining similar features.

The hypothesis examined in this section is that through continual refactoring, the im-

plementations of the features in the clusters will continually become more similar to each

other. That is, the implementations of features in a feature cluster will converge and their

similarity will increase over time. Conversely, if opportunities for refactoring were over-

looked, it is suspected that the implementations of semantically similar features may not

converge over time. Through the measurement of this feature convergence, the develop-

ment process may be characterized.

Feature implementation overlap is the degree of similarity between two features. As

in Section 8.4.1, the similarity is the cardinality of the maximal clique in the computed

association graph [91]. This measure takes into account the number of shared method calls

as well as the inherent structure of the calls made (i.e., call graph). Features that have

similar call graphs, have a higher implementation overlap.

Intuitively, one can think of overlap as a more strict similarity measure as compared to

method reuse which only consists of the nodes of the call graph. Features exhibiting sig-

161

nificant overlap have a high degree of method reuse; since, not only are the same methods

being used between features, but also in the same pattern. Alternatively, it is possible to

observe a low degree of overlap and a high degree of method reuse. This indicates that

although the same methods are being used between two features, they are not being used

in the same way.

The convergence of a feature with regards to the inherent structure of the system is

defined as:

Convergence(fk) =
ε(fk, C(fk))

avg(ε(fk, {C∗} − Cfk
))

(8.1)

where fk is a specific feature, {C∗} indicates the set of all canonical features, Cfk
is

the canonical feature with the greatest implementation overlap with fk (i.e., its canonical

feature), and ε(fk,Cfk
) is the degree of overlap of fk with its canonical feature. The term

avg(ε(fk,{C∗} − Cfk
)) is the average overlap of feature fk with all the canonical features

except its own canonical feature. In other words, it measures the ratio of the degree of

overlap between a single feature and its canonical feature; and the average of the overlap

of that same feature with all of the other canonical features.

8.5.1 Use of Canonical Sets

The tool chain shown in Figure 8.4 depicts the process of evaluating the convergence

of an application, as well as the intermediate results of the various tools used. The CFS

tool (8.4b.4) uses the SBCS algorithm described in Chapter 3 to compute the approximate

canonical set. The Feature Clustering Tool (8.4b.5) then assigns each of the non-canonical

features to a cluster represented by the nearest canonical feature.

8.5.2 Gaim Results

This technique was applied the open-source instant messaging client, Gaim. The ver-

sions of the system were obtained from the subversion repository listed on the application’s

162

Canonical Set Algorithm

Figure 8.4: Tool chain; a) Multiple versions of a software system with corresponding fea-
ture lists; b) Canonical clustering tool which finds the canonical features, and clusters the
features around the canonical feature set; c) Multiversion overlap tool calculates the overlap
in features over time, d) Convergence report which provides an evaluation of the conver-
gence of the implementation of the features of a cluster.

web page. For each version, all the features of the application were listed, and call graphs

of their execution were obtained. Using these call graphs, the implementation overlap of all

pairs of features for each version of the application was computed. Then for each version

the canonical subset of features was computed. Each version had approximately 80 fea-

tures that were reduced to a subset of six canonical features. Table 8.3 lists the canonical

features of Gaim version 1.1.

Feature Name
1 Send Message MSN*
2 Send File MSN*
3 View Log
4 New Away Message AIM*
5 Add Buddy AIM*
6 Set User Info

Table 8.3: CFS of Gaim Instant Messaging Client. The CFS was obtained using all the fea-
tures of Gaim together. An * indicated that this feature is repeated for different protocols.

163

Although the features of Gaim exhibit a high level of method reuse, they do not exhibit

a consistently high level of implementation overlap. The cases where implementation over-

lap is high can be attributed to the use of the graphical user interface (GUI) in the software

system, and the repetitions of features for different protocols. For example, the same fea-

ture Send Message is repeated for all the messaging protocols that Gaim supports, such

as Oscar, Yahoo!, and MSN. There is a separate version of the Send Message feature

for each protocol. The implementations for each of these versions however, do share the

same GUI code, and therefore have high similarity and implementation overlap since the

GUI code constitutes a large portion of the code and is identical.

Figure 8.5: Implementation overlap of feature Send Message AIM with the canonical
features of Gaim for four different versions of the system.

Quantitatively analyzing the convergence and implementation overlap of the Send

Message AIM feature using Equation 8.1 reveals a steady increase in the convergence,

as can be seen in Figure 8.5. The measure is 3.32, 3.85, 5.69, and 6.13 for versions 0

through 4, respectively. Observe the convergence of the feature is constantly and steadily

164

increasing. Similarly, the measure of convergence exhibits the same trend for the majority

of features of Gaim. Averaging the convergence measures for all features of the system for

each version reveals a steady monotonic increase in this value, indicating that the system

is becoming more stable. The features of Gaim have steadily been refactored. The features

of the system are split into two parts each; the common part of the feature, and the protocol

specific part. The usage of the methods are nearly identical for all the clusters of features,

except for the protocol specific portions of the code. The developers of the messaging

client practiced information hiding effectively. If the specifications of any of these mes-

saging protocols were to change, the other protocols would not be affected. Furthermore,

if they decide that they want to modify the messaging feature of the application, they only

need to do so in one central place.

Studying Gaim, the effectiveness of the approach has been demonstrated, and the results

can be justified based on the development of Gaim. This method contributes to the state-

of-the-art in software understanding research by providing a measure of the convergence

of software features over time, and demonstrating its effectiveness in characterizing the

development of software systems.

8.6 Conclusion

This chapter has presented applications of the canonical set method in the field of soft-

ware engineering. Section 8.2 showed how the canonical set method can be used to select

representative class usage scenarios. Engineers can use these scenarios to gain insight into

typical uses for the class. Section 8.3 showed how the canonical set method can be used

to extract canonical changes from source code repositories. These canonical changes best

represent the modification activities within a time period, thus aiding in the understanding

of software development projects. Then Section 8.4 showed how the canonical features of

a software system can be found. Understanding the canonical features of a software system

165

can give engineers an overview of a system’s capabilities without the need to examine all

of the code. Finally, in Section 8.5, how features in the canonical feature clusters con-

verge over time was studied. Examining how the features converge provides insight into

the health of the software development process.

166

9. Conclusions

9.1 Summary

This thesis has explored the problem of representing a large dataset with a smaller

more compact form through the use of nonlinear optimization methods. The problem of

representing a large dataset with a smaller more compact form can be accomplished either

by synthesis of new data points to represent clusters of the data points or by selecting a

subset of the data points to represent the original data set. The approach presented here

selects a highly representative subset of data points called a canonical subset.

Canonical subsets are constructed by formulating the subset selection problem in graph

theoretic terms and then defining subsets with well-defined properties based on graph met-

rics. Formulations were given for three flavors of canonical sets in terms of mixed quadratic

integer programs.

The first variation, the MDMC canonical subset, is the minimum dominating set with

maximum cut-weight. Intuitively, such a set is a simultaneous solution to the minimum

dominating set and the maximum cut problems in a graph. This canonical subset has the

following attributes:

1. Data points in the canonical set are maximally similar to data points not in the canon-

ical set.

2. The size of the canonical set is as small as possible.

3. Every data point is either in the canonical set or is similar to a data point in the

canonical set.

The motivation for the second variation came from the observation that being able to

specify the size of the canonical set would be useful. In addition, it might be desirable to

167

have the canonical set members be as dissimilar as possible. The second variation then, the

bounded canonical set (BCS), selects a subset with the following attributes:

1. Data points in the canonical set are minimally similar.

2. Data points in the canonical set are maximally similar to data points not in the canon-

ical set.

3. The size of the canonical set is as least kmin and at most kmax.

The third variation, the stable bounded canonical set (SBCS), is a generalization of the

BCS with the additional attribute that data points in the canonical set are maximally stable.

The stability is a scalar value associated with each data point that is application specific.

The motivation for developing this variation stemmed from the observation that in some

cases additional information is available about the data points, e.g. the strength of an image

feature.

These three canonical set problems are shown to be NP-hard, thus motivating the need

for approximation algorithms. To obtain approximate solutions to the NP-Hard canonical

set problems, a framework was developed which may be used to describe the canonical

sets in terms of semidefinite programming optimizations. The SDP optimizations can then

be relaxed and approximate solutions obtained. Performance proofs on the SDP approxi-

mations were then presented. An alternative method of approximation, quadratic program-

ming, was then employed to formulate the canonical set problems as QP approximations.

The framework that was developed for the SDP and QP approximation methods was

presented in such a way as to allow researchers to design their own canonical sets. That

is, tables of potential objective functions were presented that would allow an algorithm

designer to mix and match desired properties and construct approximation algorithms in a

simple manner.

168

One question of interest, and, indeed, a motivation for design of the canonical set algo-

rithms, is the following: Can subset selection be done with less sensitivity to outliers than

traditional methods such as K-means? To explore this question, a small set of experiments

were presented which showed that at least in some collinear point sets, canonical subset are

more resistant to outliers than subsets selected using K-means.

The canonical set algorithms were originally designed for computer vision applications

such as 2D view selection. The objective in this case is to identify highly informative

2D views of a 3D object. These canonical views can then be used in technical drawings,

computer visualizations, and for 3D object recognition. Through two sets of experiments

canonical subsets of 2D views were shown to well represent the 3D objects from which the

views were taken.

Another application in the computer vision domain for the canonical set method is in

selection of subsets of image features for the purpose of object localization. Image fea-

tures are interesting portions of an image that conform to some statistical measure for the

purposes of understanding or analyzing the image. Object localization is the process of de-

termining the position, orientation, and scale of a query object (model) in a target scene. An

extensive set of experiments was presented showing subsets of image features obtained us-

ing the canonical set method may be used to localize occluded objects in synthetic scenes.

To objectively measure the performance of the algorithm, which was also compared with

other existing subset selection techniques, a database of synthetic scenes of occluded ob-

jects with ground truth was constructed. Additionally, results on real scenes of occluded

objects were presented.

Scale space interest points are image features that encode the deep structure of the input

images. The increasing use of interest points in applications such as recognition, classifi-

cation, and image editing has instigated research on interest points and their descriptive

power. One way of evaluating the information content of interest points is through image

169

reconstruction. To improve the accuracy of the reconstructions different types of interest

points may be used, as they encode different aspects of the input image. However many of

the combined interest points encode redundant information, thus motivating the selection

of a subset of the combined interest points.

The extensibility of the canonical set framework was demonstrated through incorpo-

ration of spatial constraints into the scale space interest point subset selection process.

A proof of how the optimal spatial constraints can be computed in polynomial time was

presented and results from a comprehensive set of experiments on a suite of test images

were presented. These experiments showed that a modified SBCS algorithm incorporating

spatial constraints could effectively select subsets of different types of scale space interest

points that resulted in reconstructions of higher accuracy.

Although the canonical set algorithms were originally designed for computer vision

applications, they are general in nature. As proof of their generality, results of Kothari et

al. [58, 59] and Salah et al. [98] were presented that show that the canonical set method is

also useful in the field of software engineering. In particular, the canonical set method was

shown to be useful for class usage scenario generation, studying the temporal evolution of

code stored in source control repositories, and characterizing the evolution of a software

system using the canonical features of the software.

9.2 Contributions

The contributions of this thesis are both theoretical and experimental. The experimen-

tal results validate the theoretical contributions by demonstrating the applicability of the

canonical set method to different problem domains.

170

9.2.1 Theoretical Contributions

The theoretical contributions of this thesis are twofold. First, a new characterization of

the subset selection problem as an optimization problem was presented. This is important,

because subset selection is an important problem in many application domains. By char-

acterizing subset selection as an optimization problem, comprehensive formulations of the

problem become possible. These problem formulations were then subsequently proven to

be NP-hard.

The second theoretical contribution of this thesis is the development of approximation

methods that can compute canonical subsets. The algorithmic complexity of this frame-

work was investigated and bounds on the quality of the solutions were provided. This is

important because a practical way to compute approximate solutions to the NP-hard for-

mulations allows the use of the algorithms in practical situations.

9.2.2 Experimental Contributions

The utility of the canonical set approximations were demonstrated in a series of ex-

periments where the algorithms were used to select small sets of 2D views of 3D objects.

Two sets of experiments showed that the canonical subsets of 2D views well represented

the 3D object from which they were taken. These results are significant because 2D view

selection is an important problem in computer vision, as discussed by Bowyer and Dyer [6]

and others [76, 89].

Next, a comprehensive set of experiments showed that canonical subsets of image fea-

tures could be used for the task of object localization under occlusion. The results showed

that canonical subsets of image features outperformed subsets selected by conventional

techniques, such as K-Means clustering, in the number of detections while at the same

time maintaining higher accuracy of the localization. These experimental results are sig-

nificant for applications where reducing the size of an object’s representations is desirable,

171

as shown by the work of Heisele et al. [39], Sivic et al. [105], and Sun et al. [108].

A further contribution was made in the field of computer vision on the problem of

image reconstruction. A new method of selecting a subset from a combined set of scale

space interest points for image reconstruction was presented along with a proof of how

the optimal spatial constraints can be computed in polynomial time. These results are

significant, and extend the work of Kanters et al. [49] and others [93].

Finally, the results of Kothari et al. [58, 59] and Salah et al. [98] showed that the canon-

ical set method is useful in software engineering research. These results also indicate the

canonical set method is a general method that can be used in problem domains outside of

computer vision.

9.3 Future Work

The canonical set properties listed in Table 2.1 suggest that other combinations of prop-

erties might produce subsets of interest. For instance, maximizing the sum of the intra

edges (the similarity of the data points in the canonical set) while minimizing the sum of

the cut edges (the similarity of canonical to non-canonical data points) might be an effec-

tive way of extracting tight clusters from a dataset. Extending the lists of properties and

constraints also seems a fruitful direction for study.

Finding the best weighting values for the multi-objective formulations requires experi-

mentation. Perhaps some way could be found to predict what the best weights might be, or

at least some heuristics to guide the researcher.

A thorough exploration of the effects of different types of similarity measures would

also be interesting. Such a study could examine different types of distance measures on an

extensive set of synthetic graphs. This could lead to a deeper understanding of canonical

sets. For example, how does the canonical set change when different Lp norms or non-

metric distance measures are used.

172

The existence of bounds on the semidefinite approximations and absence of bounds

on the quadratic approximations suggests that it would be useful to have additional data

and comparisons between the approximation methods. Perhaps some criteria could be

developed that could predict which type of algorithm would be most suitable for a given

application.

173

Bibliography

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

[2] Xiao Bai, Hang Yu, and Edwin R. Hancock. Graph matching using spectral em-
bedding and semidefinite programming. In Proceedings, British Machine Vision
Conference (BMVC ’04), September 2004.

[3] R. Bar-Yehuda and S. Moran. On approximation problems related to the independent
set and vertex cover problems. Discrete Applied Mathematics, 9:1–10, 1984.

[4] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegel. The pyramid-tree:
Breaking the curse of dimensionality. In Laura M. Haas and Ashutosh Tiwary,
editors, SIGMOD 1998, Proceedings ACM SIGMOD International Conference on
Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 142–153.
ACM Press, 1998.

[5] A. L. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97:245–271, 1997.

[6] K. Bowyer and C. Dyer. Aspect graphs: an introduction and survey of recent results.
IJIST, 2:315–328, 1990.

[7] L. Bretzner and T. Lindeberg. Qualitative multi-scale feature hierarchies for ob-
ject tracking. In Journal of Visual Communication and Image Representation, vol-
ume 11, pages 115–129, 2000.

[8] Matthew Brown, Richard Szeliski, and Simon Winder. Multi-image matching using
multi-scale oriented patches. In Proceedings, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR05), volume 1, pages 510–517, 2005.

[9] T. Brox and J. Weickert. A tv flow based local scale measure for texture discrimina-
tion. In T. Pajdla and J. Matas, editors, Proc. 8th European Conference on Computer
Vision, Prague, Czech Republic., volume 2 of Computer Vision - ECCV, pages 578–
590. Springer LNCS 3022, May 2004.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and Clifford Stein. Introduction to
Algorithms. The MIT Press, Cambridge, Massachusetts, second edition, 2003.

[11] T. Cover and J. Thomas. Elements of Information Theory: Rate Distortion Theory.
John Wiley & Sons, 1991.

[12] CVS - Concurrent Versions System. Available online at http://www.cvshome.
org.

174

[13] C. M. Cyr and B. Kimia. 3d object recognition using shape similarity-based aspect
graph. In 8th Inter. Conf. Comp. Vision, pages 254–261, 2001.

[14] M. F. Demirci, A. Shokoufandeh, S. Dickinson, Y. Keselman, and L. Bretzner.
Many-to-many graph feature matching using spherical coding of directed graphs.
In ECCV, May 2004.

[15] M. Fatih Demirci, Ali Shokoufandeh, Yakov Keselman, Lars Bretzner, and Sven
Dickinson. Object recognition as many-to-many feature matching. IJCV, 69(2):203–
222, 2006.

[16] T. Denton, J. Novatnack, and A. Shokoufandeh. Drexel object occlusion repository
(DOOR). Technical Report DU-CS-05-08, Drexel University, Computer Science
Department, 2005.

[17] Trip Denton, Jeff Abrahamson, and Ali Shokoufandeh. Approximation of canonical
sets and their application to 2d view simplification. In CVPR, volume 2, pages 550–
557, June 2004.

[18] Trip Denton, M. Fatih Demirci, Jeff Abrahamson, Ali Shokoufandeh, and Sven
Dickinson. Selecting canonical views for view-based 3-d object recognition. In
ICPR, pages 273–276, August 2004.

[19] S. Dickinson, A. Pentland, and A. Rosenfeld. A representation for qualitative 3-D
object recognition integrating object-centered and viewer-centered models. Techni-
cal Report CAR-TR-453, Center for Automation Research, University of Maryland,
1989, (also appears with the same title in: K.N. Leibovic (ed.), Vision: A Conver-
gence of Disciplines, Springer Verlag, NY, 1990, pp 398–421.).

[20] D. Eggert and K. Bowyer. Computing the orthographic projection aspect graph of
solids of revolution. Pattern Recognition Letters, 11:751–763, 1990.

[21] D. Eggert, K. Bowyer, C. Dyer, H. Christensen, and D. Goldgof. The scale space
aspect graph. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1114–1130, November 1993.

[22] Matthias Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Eco-
nomics and Mathematical Systems. Springer-Verlag, New York, 2000.

[23] Uriel Feige, Marek Karpinski, and Michael Langberg. A note on approximating
Max-Bisection on regular graphs. Information Processing Letters, 79(4):181–188,
2001.

[24] Firefox - Rediscover the Web, Firefox Homepage. http://www.mozilla.com/firefox.
May, 2006.

[25] L. Florack and A. Kuijper. The topological structure of scale-space images. Journal
of Mathematical Imaging and Vision, 12(1):65–79, February 2000.

175

[26] K. Fogel. Open Source Development with CVS. Coriolos Open Press, Scottsdale,
AZ, 1999.

[27] Robert M. Freund. Introduction to semidefinite programming, 2004.
Lecture 23 http://ocw.mit.edu/OcwWeb/Sloan-School-of-Management/15-
084JSpring2004/CourseHome/index.htm.

[28] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT
and MAX BISECTION. In Integer Programming and Combinatorial Optimization,
volume 920, pages 1–13. Springer, 1995.

[29] M. X. Goemans. Semidefinite programming in combinatorial optimization. Mathe-
matical Programming, 79:143–161, 1997.

[30] Michel X. Goemans and David P. Williamson. .878-approximation algorithms for
max cut and max 2sat. In Twenty-sixth Annual ACM Symposium on Theory of Com-
puting, pages 422–431, New York, 1994.

[31] Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J.
Assoc. Comput. Mach., 42:1115–1145, 1995.

[32] G. Golub and C.V. Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, 1996.

[33] S. Gordon, H. Greenspan, and J. Goldberger. Applying the information bottleneck
principle to unsupervised clustering of discrete and continuous image representa-
tions. In Proceedings, International Conference on Computer Vision, Nice, France,
October 2003.

[34] Eran Halperin and Uri Zwick. A unified framework for obtaining improved ap-
proximation algorithms for maximum graph bisection problems. Lecture Notes in
Computer Science, 2081:210+, 2001.

[35] R.M. Haralick. Ridges and valleys on digital images. Computer Vision, Graphics
and Image Processing, 22:28–38, 1983.

[36] C. Harris and M. Stephens. A combined corner and edge detector. In 4th ALVEY
vision conference, pages 147 – 151, 1988.

[37] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Alvey
Vision Conf., Univ. Manchester, pages 147–151, 1988.

[38] Ahmed E. Hassan and Richard C. Holt. The Chaos of Software Development. In
Proceedings of the 6th IEEE International Workshop on Principles of Software Evo-
lution, Helsinki, Finland, September 2003.

176

[39] B. Heisele, T. Serre, S.Mukherjee, and T.Poggio. Feature reduction and hierarchy of
classifiers for fast object detection in video images. In Computer Vision and Pattern
Recognition (CVPR), 2001, volume 2, pages 18–24. IEEE Computer Society Press,
2001.

[40] D. Huttenlocher and S. Ullman. Object recognition using alignment. In Proceedings,
First International Conference on Computer Vision, pages 102–111, London, UK,
1987.

[41] Daniel P. Huttenlocher and Shimon Ullman. Recognizing solid objects by alignment
with an image. International Journal of Computer Vision, 5:2:195–212, 1990.

[42] T. Iijima. Basic theory on normalization of a pattern (in case of typical one-
dimensional pattern). Bulletin of Electrical Laboratory, 26:368–388, 1962. (in
Japanese).

[43] S. Irani and P. Raghavan. Combinatorial and experimental results for randomized
point matching algorithms. In SCG ’96: Proceedings of the twelfth annual sympo-
sium on Computational geometry, pages 68–77, New York, NY, USA, 1996. ACM
Press.

[44] B. Janssen, F. M. W. Kanters, R. Duits, L. M. J. Florack, and B. M. ter Haar Romeny.
A linear image reconstruction framework based on Sobolev type inner products.
International Journal of Computer Vision, 70(3):231–240, December 2006.

[45] Jext: Source code editor. http://www.jext.org/.

[46] F. Kanters, L. Florack, R. Duits, and B. Platel. Scalespaceviz: Visualizing α-scale
spaces. Demonstration software presentend at the Eighth European Conference on
Computer Vision, Prague, Czech Republic, May 2004.

[47] F. M. W. Kanters, M. Lillholm, R. Duits, B. Janssen, B. Platel, L. M. J. Florack, and
B. M. ter Haar Romeny. On image reconstruction from multiscale top points. In
Kimmel et al. [53], pages 431–442.

[48] F.M.W Kanters, L.M.J. Florack, B. Platel, and B.M. ter Haar Romeny. Multi-scale
differential error: A novel image quality assessment tool. In Proc. of the 8th Int. conf.
on Signal and Image Processing 2006,Honolulu, Hawaii., pages 188–194, August
2006.

[49] Frans Kanters, Trip Denton, Ali Shokoufandeh, and Luc Florack. Combining differ-
ent types of scale space interest points using canonical sets. In First International
Conference on Scale Space Methods and Variational Methods in Computer Vision.,
2007.

[50] Frans Kanters, Bram Platel, Luc Florack, and Bart M. ter Haar Romeny. Content
based image retrieval using multiscale top points a feasibility study. In Scale Space

177

Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science,
pages 33–43. Springer-Verlag, August 2003.

[51] Yan Ke and Rahul Sukthankar. PCA-SIFT: A more distinctive representation for
local image descriptors. In Computer Vision and Pattern Recognition (CVPR), 2004,
volume 2, pages 506–513. IEEE Computer Society Press, 2004.

[52] Jens Keuchel, Matthias Heiler, and Christoph Schnorr. Hierarchical image segmen-
tation based on semidefinite programming. In Pattern Recognition (Lecture Notes in
Computer Science, Vol 3175), pages 120–128. Springer-Verlag, August 2004.

[53] R. Kimmel, N. Sochen, and J. Weickert, editors. Scale Space and PDE Methods in
Computer Vision: Proceedings of the Fifth International Conference, Scale-Space
2005, Hofgeismar, Germany, volume 3459 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, April 2005.

[54] J. Koenderink and A. van Doorn. The internal representation of solid shape with
respect to vision. Biological Cybernetics, 32:211–216, 1979.

[55] J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370,
1984.

[56] J. J. Koenderink. A hitherto unnoticed singularity of scale-space. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 11(11):1222–1224, November 1989.

[57] Daphne Koller and Mehran Sahami. Toward optimal feature selection. In Interna-
tional Conference on Machine Learning, pages 284–292, 1996.

[58] Jay Kothari, Trip Denton, Spiros Mancoridis, and Ali Shokoufandeh. On computing
the canonical features of software systems. In Proceedings of the 13th Working Con-
ference on Reverse Engineering (WCRE 2006, Benevento, October 23-27),. IEEE
Computer Society, 2006.

[59] Jay Kothari, Trip Denton, Ali Shokoufandeh, Spiros Mancoridis, and Ahmed E. Has-
san. Studying the evolution of sofware systems using change clusters. In Proceed-
ings of the 14th International Conference on Program Comprehension (ICPC 2006,
Athens, June 14-16),. IEEE Computer Society, 2006.

[60] A. Kuijper and L. M. J. Florack. Hierarchical pre-segmentation without prior knowl-
edge. In Proceedings of the 8th International Conference on Computer Vision (Van-
couver, Canada, July 9–12, 2001), pages 487–493. IEEE Computer Society Press,
2001.

[61] A. Kuijper and L.M.J. Florack. Understanding and modeling the evolution of critical
points under gaussian blurring. In Proceedings of the 7th European Conference on
Computer Vision (ECCV), volume LNCS 2350, pages 143–157, 2002.

178

[62] A. Kuijper and L.M.J. Florack. The hierarchical structure of images. IEEE-
Transactions-on-Image-Processing, 12(9):1067–1079, Sept. 2003.

[63] P. Langley. Selection of relevant features in machine learning. In AAAI Fall Sympo-
sium on Relevance, pages 140–144, 1994.

[64] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[65] M. Lillholm, M. Nielsen, and L. D. Griffin. Feature-based image analysis. Interna-
tional Journal of Computer Vision, 52(2/3):73–95, 2003.

[66] T. Lindeberg. Scale-space behaviour of local extrema and blobs. Journal of Mathe-
matical Imaging and Vision, 1(1):65–99, March 1992.

[67] T. Lindeberg. Edge detection and ridge detection with automatic scale selection.
International Journal of Computer Vision, 30(2):117–156, November 1998.

[68] T. Lindeberg. Feature detection with automatic scale selection. International Journal
of Computer Vision, 30(2):79–116, November 1998.

[69] Tony Lindeberg. Detecting Salient Blob–Like Image Structures and Their Scales
With a Scale–Space Primal Sketch—A Method for Focus–of–Attention. IJCV,
11(3):283–318, December 1993.

[70] Tony Lindeberg and Lars Bretzner. Real-time scale selection in hybrid multi-scale
representations. In Lecture Notes in Computer Science, volume 2695 of Lecture
Notes in Computer Science, pages 148–163. Springer-Verlag, January 2003.

[71] H. Liu and H. Motoda. Feature transformation and subset selection. IEEE Intelligent
Systems, 13(2):26–28, 1998.

[72] H. Liu, H. Motoda, and L. Yu. Feature selection with selective sampling. In Pro-
ceedings of the Nineteenth International Conference on Machine Learning, pages
395–402, 2002.

[73] D. G Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

[74] David Lowe. Demo Software: SIFT Keypoint Detector, 2005.

[75] David G. Lowe. Object recognition from local scale-invariant features. In Proc. of
the International Conference on Computer Vision ICCV, Corfu, pages 1150–1157,
1999.

[76] Aidong Lu, Ross Maciejewski, and David S. Ebert. Volume composition using eye
tracking data. In IEEE-VGTC Symposium on Visualization, (Eurovis2006), 2006.

179

[77] L. Lucchese and S.K. Mitra. Color image segmentation: A state-of-the-art survey.
In Proc. of the Indian National Science Academy (INSA-A), 2001. New Delhi, India,
Vol. 67, A, No. 2, March 2001, pp. 207-221.

[78] David J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[79] Sanjeev Mahajan and H. Ramesh. Derandomizing approximation algorithms based
on semidefinite programming. SIAM Journal on Computing, 28(5):1641–1663,
1999.

[80] P. Meer, R. Lenz, and S. Ramakrishna. Efficient invariant representations. Int. J.
Comput. Vision, 26(2):137–152, 1998.

[81] Kaisa M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Dordrecht, Netherlands, 1999.

[82] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.
International Journal of Computer Vision, 60(1):63–86, October 2004.

[83] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, Oc-
tober 2005.

[84] Krystian Mikolajczyk, Bastian Leibe, and Bernt Schiele. Local features for object
class recognition. In ICCV ’05: Proceedings of the Tenth IEEE International Con-
ference on Computer Vision (ICCV’05) Volume 2, pages 1792–1799, Washington,
DC, USA, 2005. IEEE Computer Society.

[85] David Mount. A testbed for k-means clustering algorithms based on local search,
2005.

[86] S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library: Coil.
Technical Report CUCS-005-96, Department of Computer Science, Columbia Uni-
versity, Feb 1996.

[87] M. Nielsen and M. Lillholm. What do features tell about images? In M. Ker-
ckhove, editor, Scale-Space and Morphology in Computer Vision: Proceedings of
the Third International Conference, Scale-Space 2001, Vancouver, Canada, volume
2106 of Lecture Notes in Computer Science, pages 39–50. Springer-Verlag, Berlin,
July 2001.

[88] John Novatnack, Trip Denton, Ali Shokoufandeh, and Lars Bretzner. Stable bounded
canonical sets and image matching. In Energy Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR), pages 316–331, November 2005.

[89] M. J. Owen. Simple canonical views. In Proceedings, British Machine Vision Con-
ference (BMVC ’05), September 2005.

180

[90] B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the dimensionality curse using
multiple fractal dimensions. In ICDE ’00: Proceedings of the 16th International
Conference on Data Engineering, page 589, Washington, DC, USA, 2000. IEEE
Computer Society.

[91] Marcello Pelillo, Kaleem Siddiqi, and Steven W. Zucker. Matching hierarchical
structures using association graphs. Lecture Notes in Computer Science, 1407, 1998.

[92] Perforce - The Fastest Software Configuration Management System. Available on-
line at http://www.perforce.com.

[93] B. Platel, M. Fatih Demirci, A. Shokoufandeh, L. M. J. Florack, F. M. W. Kanters,
B. M. ter Haar Romeny, and S. J. Dickinson. Discrete representation of top points
via scale space tessellation. In Kimmel et al. [53], pages 73–84.

[94] B. Platel, L. M. J. Florack, F. M. W. Kanters, and E. G. Balmachnova. Using mul-
tiscale top points in image matching. In Proceedings of the 11th International Con-
ference on Image Processing (Singapore, October 24–27, 2004), pages 389–392.
IEEE, 2004.

[95] A. L. Ratan, W. E. L. Grimson, and III W. M. Wells. Object detection and local-
ization by dynamic template warping. International Journal on Computer Vision,
36(2):131–147, 2000.

[96] Marc J. Rochkind. The source code control system. IEEE Transactions on Software
Engineering, 1(4):364–370, 1975.

[97] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a
metric for image retrieval. International Journal of Computer Vision, 40(2):99–121,
2000.

[98] Maher Salah, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and Filippos I.
Vokolos. Scenariographer: A tool for reverse engineering class usage scenarios from
method invocation sequences. In Proceedings of the 21st International Conference
on Software Maintenance (ICSM 2005, Budapest,September 25-30), pages 155–
164, 2005.

[99] C. Schellewald and C. Schnörr. Subgraph matching with semidefinite programming.
In Vito Di Gesù Alberto Del Lungo and Attila Kuba, editors, Electronic Notes in
Discrete Mathematics, volume 12. Elsevier Science Publishers, 2003.

[100] W. Seales, M. Cutts, C. Yuan, and W. Hu. Object recognition in compressed imagery.
Image and Vision Computing, 1998.

[101] Claude E Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423,623–656, July,October 1948.

181

[102] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[103] I. Shimshoni and J. Ponce. Finite resolution aspect graphs of polyhedral objects. In
Proceedings, IEEE Workshop on Qualitative Vision, pages 140–150, New York, NY,
June 1993.

[104] K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and shape
matching. International Journal of Computer Vision, 30:1–24, 1999.

[105] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to
object matching in videos. In Proceedings Ninth IEEE International Conference on
Computer Vision, volume 2, pages 1470–1477, October 2003.

[106] B. Smith and L. Rowe. A new family of algorithms for manipulating compressed
images. In IEEE Computer Graphics and Applications, pages 34–42, Sep 1993.

[107] J. Stewman and K. Bowyer. Creating the perspective projection aspect graph of poly-
hedral objects. In Proceedings, IEEE Second International Conference on Computer
Vision, pages 494–500, Tampa, FL, 1988.

[108] Zehang Sun, George Bebis, and Ronald Miller. Object detection using feature subset
selection. In Pattern Recognition, volume 37, pages 2165–2176. Elsevier, November
2004.

[109] Walter F. Tichy. RCS - a system for version control. Software - Practice and Expe-
rience, 15(7):637–654, 1985.

[110] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Pro-
ceedings of the 37-th Annual Allerton Conference on Communication, Control and
Computing, pages 368–377, 1999.

[111] K.C. Toh, M.J. Todd, and R.H. Tutuncu. SDPT3–a Matlab software package for
semidefinite programming, december 2002.

[112] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, Germany,
second edition, 2003. ISBN 3-540-65367-8.

[113] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality
assessment: From error visibility to structural similarity. IEEE Transactions on
Image Processing, 13:600–612, April 2004.

[114] D. Weinshall and M. Werman. On view likelihood and stability. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(2):97–108, February 1997.

[115] A. P. Witkin. Scale-space filtering. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pages 1019–1022, Karlsruhe, Germany, 1983.

182

[116] Dachuan Xu and Guanghui Liu. Approximation algorithm for max dicut with given
sizes of parts. Acta Mathematicae Applicatae Sinica, 19(2):289–296, 2003.

[117] Qihui Zhu and Jianbo Shi. Shape from shading: Recognizing the mountains through
a global view. In CVPR 2006, volume 2, pages 1839–1846, June 2006.

183

Appendix A. Drexel Object Occlusion Repository (DOOR)

A.1 Overview

The Drexel Object Occlusion Repository is a reference set of images for computer

vision and object recognition researchers. The images are constructed by overlapping input

objects from the COIL-20 database [86] and occluding them by various amounts. The

amount of occlusion for each image is measured at the pixel level. An accompanying text

file for each occlusion image describes the input files, occlusion rates etc.

Figure A.1: Occlusion example door 4 41.png

The Drexel Object Occlusion Repository is a syntactic set of images constructed from

the COIL-20 database from Columbia University [86]. In a previous work [88] our tests

with the COIL-20 database indicated a need for a set of reference scenes where we could

test the ability of our algorithm to locate objects in scenes where the objects are partially

occluded. In particular we required a precise measurement of the occlusion rates in addi-

tion to non-trivial occlusions. To accomplish these goals we have constructed the Drexel

184

Object Occlusion Repository. The repository contains objects deterministically placed in

groupings with varying amounts of occlusion. The repository provides a reference set that

researchers in computer vision and object recognition may use for qualitative analysis of

algorithmic performance.

The repository is organized into series of images. Series 1 contains images with two

objects, series 2 with three objects, series 3 with four objects, series 4 with five objects,

and series 6 with five objects scaled and rotated randomly on a background scene. Each

series contains 480 images and accompanying text files. The text files include various

information about the image including, the name of the objects and percentage of occluded

pixels in each of the objects.

A.2 Drexel Object Occlusion Repository (DOOR)

The occluded images consist of a composed set of objects from the COIL-20 database.

The objects have not been scaled or rotated, although we plan to expand to the repository

in the future to include objects which have been transformed in the image plane. When

composing two objects we first create a mask for each image. The background for the

image is created by filling edge pixels with red. Then the non-red pixels in the mask are

set to green, which designates them as object pixels. The red/green masks for the input

image and the occlusion image are then convoluted with a Gaussian. The masks are used

to combine the original images. If the pixel is an edge pixel the intensity, I , is given by

I = R ∗R′ + G ∗G′,

where R,G are the red and green channels of the input image mask and R′, G′ are the red

and green channels of the mask of the image being constructed (occlusion image). This

is similar to using an alpha channel for the mixing. For more information on the use of

185

alpha channels consult an appropriate image processing text. After placing an object on

the image the amount of occlusion for each object in the image is updated. A pixel is

considered occluded if it has been covered by another object, or if it on the border between

two objects.

Figure A.2: Object Layout Grid

In general the objects contained in each image are arranged in a grid shown in Fig-

ure A.2. For each image an object is placed in the center at position one. Objects are then

added at the other positions at varying distances from the center object. As the objects

move farther away from the center the amount of occlusion of the center object decreases.

A.3 Contents of the Accompanying Text Files

Each image is accompanied by a text file that provides information about the various

objects in the image. The following text file describes image forty-one in series four (shown

in Figure A.1).

The file lists the image files of the objects at the various grid positions. Next the file

contains the parameters of the Gaussian convolution kernel used to combine the two images

at the borders. Many images in the COIL-20 database are cropped such that the object lies

186

Input File1: coil-20-proc/obj1˙˙0.png
Input File3: coil-20-proc/obj12˙˙0.png
Input File4: coil-20-proc/obj13˙˙0.png
Input File5: coil-20-proc/obj14˙˙0.png
Input File2: coil-20-proc/obj15˙˙0.png
Output File: door˙4/0-99/door˙4˙41.png
Gaussian˙radius=3
Gaussian˙sigma=2
Border=10
Width=592
Height=592
Object=1 file=coil-20-proc/obj1˙˙0.png x=222 y=222 occlusion=16.20 oldpixels=6668

newpixels=5588
Object=2 file=coil-20-proc/obj15˙˙0.png x=222 y=122 occlusion=0.00 oldpixels=11697

newpixels=11697
Object=3 file=coil-20-proc/obj12˙˙0.png x=322 y=222 occlusion=0.00 oldpixels=9975

newpixels=9975
Object=4 file=coil-20-proc/obj13˙˙0.png x=222 y=322 occlusion=0.00 oldpixels=7751

newpixels=7751
Object=5 file=coil-20-proc/obj14˙˙0.png x=122 y=222 occlusion=0.00 oldpixels=11826

newpixels=11826

on the edge of the image. Prior to composing the objects in the image we first add a border

to each image. The size of this border is reported in the text file. Lastly the file contains

the position of the (0, 0) pixel of each object in the image, as well as the percent of pixels

that have been occluded. In this particular example object one has had 16.2% of its pixels

occluded.

A.4 Query Tool

A query tool is provided to assist the researcher in finding occlusion images.

./query-door.pl [OPTIONS]

DESCRIPTION: This program queries a DOOR data file for objects that have

187

certain amounts of occlusion. It prints the names of the files that meet the criteria.

OPTIONS

-help show this help

-data=PATH path to DOOR data file (door˙all.txt)

-min=NUMBER minimum occlusion (0.0)

-max=NUMBER maximum occlusion (10.0)

-obj=PATTERN pattern for object selection (obj*)

Example:

./query-door.pl -min=9.9 -max=10.2 -obj=obj13.*

Finds examples of object 13 that are occluded by 9.9-10.2% using the data

from the file door˙all.txt.

./query-door.pl -min=19.9 -max=20.2

Finds examples of objects that are occluded by 19.9-20.2% using the data

from the file door˙all.txt.

A.5 Obtaining the Repository

The repository is on-line at http://aal.cs.drexel.edu/home/door/index.html. A gzipped

tar file is available on the website as well.

188

Appendix B. Notes

B.1 Similarity Measures

In the experiments presented in Chapters 4 through 8, the canonical set method was

shown to be useful in a number of scenarios. Since the method depends on having a similar-

ity measure between data points, a natural question is: What is a good similarity measure?

Unfortunately, at this point no easy answer to this question is known. To a large extent the

proper measure is highly problem dependent. As such, the selection of a similarity measure

requires intimate knowledge of the dataset under analysis.

Some general guidelines, however, might be useful. The measure should be informa-

tive, that is it should be able to discriminate between as many data points as possible. The

reasoning behind this is somewhat obvious. If, the distance between two data points is zero

(similarity is unity) then there is no way to tell the difference between them, and the algo-

rithms will not distinguish between them. An example of more informative measures can

be seen in Figure 6.19. DSPACE is a more informed measure than XY, as it is the Euclidean

distance in descriptor space, rather than the Euclidean distance on the image plane.

Another issue to consider is when selecting a similarity measure is careful thought about

what the canonical set method does. It selects representative data points. The notions of

what is representative and what is similar are closely tied.

If each data point represents a distribution, the Earth Mover’s distance [97] might be a

good place to start. If each data point is a graph, then something like the the cardinality of

the maximal clique in the computed association graph [91] might work. If each data point

is a string, then the edit-distance [64] seems a logical choice.

Conversion between distance measures and similarity measures is relatively straight-

forward. Common ways are s = 1
d
, s = 1

1+d
, and s = e−d, where s is the similarity and d

189

is the distance.

190

Vita

Trip Denton was born in Detroit, Michigan in 1956. In 1979 he received his four-year
certificate from the Pennsylvania Academy of the Fine Arts in Philadelphia, Pennsylvania.
He received his B.S. in General Studies from Drexel University in Philadelphia in 2003, and
his M.S. in Computer Science from Drexel University in 2006. Mr. Denton is the recipient
of the Graduate Research Award, Drexel University 2007, and the Hill Fellowship, Drexel
University 2006. His research interests include algorithm design, computer vision, subset
selection and clustering, and nonlinear optimization.

Selected Publications

Trip Denton, Jeff Abrahamson, and Ali Shokoufandeh. Approximation of canonical sets and their application to 2D view simplification.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR04), volume 2, pages
550-557, June 2004.

Trip Denton, M. Fatih Demirci, Jeff Abrahamson, Ali Shokoufandeh, and Sven Dickinson. Selecting canonical views for view-based 3D
object recognition. In Proceedings of the 17th IAPR International Conference on Pattern Recognition (ICPR04), pages 273-276, August
2004.

Trip Denton, John Novatnack, and Ali Shokoufandeh. Drexel Object Occlusion Repository (DOOR). Technical Report DU-CS-05-08,
Drexel University, Computer Science Department, 2005.

Frans Kanters, Trip Denton, Ali Shokoufandeh, and Luc Florack. Combining different types of scale space interest points using canon-
ical sets. In Proceedings of the First International Conference on Scale Space Methods and Variational Methods in Computer Vision,
Ischia, Italy, June 2007.

Jay Kothari, Trip Denton, Spiros Mancoridis, and Ali Shokoufandeh. On computing the canonical features of software systems. In
Proceedings of the 13th Working Conference on Reverse Engineering (WCRE), October 2006.

Jay Kothari, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and Ahmed E. Hassan. Studying the evolution of software systems
using change clusters. In Proceedings of the International Conference on Program Comprehension (ICPC 2006), June 2006.

Jay Kothari, Trip Denton, Ali Shokoufandeh, and Spiros Mancoridis. Reducing program comprehension effort in evolving software by
recognizing feature implementation convergence. In Proceedings of the 15th IEEE Conference on Program Comprehension (ICPC),
Banff, Canada, June 2007.

John Novatnack, Trip Denton, Ali Shokoufandeh, and Lars Bretzner. Stable bounded canonical sets and image matching. In Proceedings
of the Fifth International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), pages
316-331, November 2005.

Maher Salah, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and Filippos I. Vokolos. Scenariographer: A tool for reverse engineer-
ing class usage scenarios from method invocation sequences. In IEEE Proceedings of the 2005 International Conference on Software
Maintenance (ICSM’05), Budapest, Hungary, September 2005.

