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ABSTRACT 

Development of Programmable Front-End Electronics for use with  
ultrasound hydrophone 

Sumet Umchid 
Peter A. Lewin, Ph.D. 

Philip E. Bloomfield, Ph.D. 
 

 
 
 
Piezoelectric sensors are widely used in many bioengineering applications. However, the 

sensors exhibit high, on the order of MegaOhms, output impedance and, therefore, the 

signal generated at the output terminals of a sensor needs to be electronically conditioned 

prior to further use. Specifically, it is necessary to incorporate a high quality preamplifier 

between the sensor and analyzing equipment. Such preamplifiers are not commercially 

available. This work describes development of a programmable preamplifier tailored for 

use with miniature piezoelectric polymer hydrophones for characterization of acoustic 

output of ultrasound scanners. Such scanners are used in almost all medical fields and are 

becoming the preferred imaging modality in a variety of clinical situations. The 

preamplifier features 50Ω output impedance to eliminate transmission line phenomena, 

and high input resistance (1MΩ) which minimizes loading of the hydrophone. The 

frequency response of the preamplifier was optimized to comply with the Food and Drug 

Administration (FDA) requirements; the circuit operates between 100 kHz and 40 MHz. 

To optimize the performance in terms of input impedance, frequency response and 

dynamic range, the preamplifier was implemented in two stages using application 

specific operational amplifiers. Visual Basic program was employed to automatically 

execute On/Off function of the buffer circuit. The implemented circuit topology allows 

fully automatic determination of key acoustic output parameters of diagnostic ultrasound 



 x
scanners, which, in turn, determine the safety indicators such as Mechanical Index (MI) 

and Thermal Index (TI).  

 

To verify the performance of the programmable preamplifier, several ultrasound 

hydrophones were measured and calibrated with and without preamplifier. The 

measurement results are presented in terms of end-of-cable voltage sensitivity as a 

function of frequency. Also, the impedance of the preamplifier and programmable buffer 

circuit were determined as a function of frequency. In addition, the circuit’s scattering 

parameter S21 that is its transfer function versus frequency was measured. Future work 

will focus on extension of the preamplifier's bandwidth up to 100 MHz.   
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CHAPTER 1.0: INTRODUCTION 

 

In the past few decades, medical diagnostic ultrasound has become the primary non-

invasive imaging modality because it does not emit ionizing radiation such as X-ray and 

also provides real-time information of the anatomical structures. However, under certain 

conditions ultrasound exposure in general may introduce biological effects [1]. Therefore, 

the output acoustic pressure of the diagnostic ultrasound devices is regulated and cannot 

exceed prescribed limits. In the USA, these prescribed limits are established by the Food 

and Drug Administration, Center for Devices and Radiological Health, which requires the 

safety indicators such as Mechanical Index (MI) and Thermal Index (TI) to be displayed 

on the ultrasound imaging systems. Determination of these two indices requires precise 

measurement of the acoustic pressure-time waveforms produced by the imaging 

transducer.  

 

In order to obtain the faithfully reproduced acoustic pressure-time waveforms, it is 

desirable to incorporate a high quality voltage preamplifier between the piezoelectric 

sensor or hydrophone and the associated analyzing equipment. This is because the output 

voltage signal generated by the hydrophone is developed across an extremely high, on the 

order of hundred kOhms, electrical impedance. Therefore, a preamplifier is needed to 

convert the high output impedance of the hydrophone to a lower value that is much less 

susceptible to loading by the relatively low input impedance of the measuring instrument 

used to display or record the acoustic pressure-time waveforms.   
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The purpose of this work was to design, simulate, prototype and test a preamplifier and a 

programmable buffer circuit with ultrasound hydrophones in the frequency range of 100 

kHz to 40 MHz in order to match an output impedance of the hydrophone to an input 

impedance of the analyzing equipment, and optimize the sensitivity and frequency 

response of ultrasound hydrophone. The significance of this research and the scope of the 

work are presented in the subsequent sections. 

 

1.1 Motivation 

 

As already mentioned the output voltage signal generated by a piezoelectric active 

element in the hydrophone is developed across an extremely high impedance and is of 

very low power content, which causes the loading effects. Therefore, in order to eliminate 

loading effects and signal distortion, it is essential that the signal from a hydrophone is 

routed through a preamplifier before applying it to measuring and recording 

instrumentation [2, 3]. 

 

Consequently, when properly designed, the preamplifier is a useful device in an acoustic 

measurement chain. It can increase the overall hydrophone’s sensitivity, which is 

beneficial in cases where the measured pressure amplitude is relatively low or when a 

significant finite amplitude distortion in the pressure wave is present [2, 3]. Moreover, the 

preamplifier increases the frequency response at the low frequency of the system by 

decreasing the low cut-off frequency and also eliminates the reflection effect from the 
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transmission line phenomena. However, some trade-off to using a preamplifier is that it 

adds to the complexity and the cost of the hydrophone [4].  

 

Although the acoustic measurement system used is almost fully controlled automatically 

by a computer program, the measurements take a long time due to careful alignment and 

calibration procedures (for certain hydrophones it may take more than 8 hours).  

However, the acoustic source, such as a very wideband transducer, is a sensitive device 

that should not be overexcited for a prolonged period of time. Therefore, the 

programmable buffer circuit is needed to automatically control On/Off function of the 

signal exciting the acoustic source. With the application of the programmable buffer 

circuit, whenever the calibration process is done, the signals exciting the acoustic source 

are automatically cut off. 

 

For medical diagnostic ultrasound devices, their -3 dB frequency bandwidth normally 

begins in the low megahertz range and can extend beyond the 40 MHz range [5]. The 

optimization of harmonic imaging techniques will require field parameters to be 

measured above 15-20 MHz. However, many new clinical applications of ultrasound 

imaging at frequencies greater than 15-20 MHz have been under development for some 

years. The use of these frequencies enables the transcutaneous exploration of superficial 

tissues in fields such as dermatology, ophthalmology and microsurgery [6]. Presently the 

field of high ultrasonic frequency ranges from 15-20 to 150-200 MHz, providing a very 

high spatial and temporal resolution. However, the increased signal losses in tissue 
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(attenuation) associated with higher ultrasound frequencies naturally limits imaging depth 

[6]. 

 

High ultrasonic frequencies (10-30 MHz) were first used to measure skin thickness [7, 8]. 

Frequencies between 15 and 50 MHz were tested in B-mode imaging with encouraging 

results, but no efficient systems were used routinely, generally due to poor probe 

performance [9, 10]. Indeed the probes often had a too narrow fractional bandwidth and 

provided poor axial resolution. Before the new piezoelectric materials such as polymers 

(PVDF, poly(vinylidene fluoride)) and small grain size (3-6 µm), high density 

piezoceramics (PZT) were discovered, Foster's Canadian team built small focused 

ultrasonic transducers in the 40–100 MHz frequency range [11, 12]. With these high 

performance transducers and associated electronic devices they obtained remarkably 

good images of cutaneous tissues, the anterior chamber of the eye and mouse embryos 

[11, 13, 14]. The high frequencies were also suitable to detect and measure blood flow in 

microcirculation. Frequencies around 100 MHz were proposed first [15, 16]. Then 

Foster's team presented a duplex system with a duplex probe comprising a 60 MHz 

imaging transducer and a 40 MHz continuous wave Doppler transducer [17]. The same 

team recently built a high frequency pulsed wave Doppler system using a 50 MHz PVDF 

transducer [18], which can detect and measure blood velocities of less than 5 mm/s in 

arterioles and venules with diameters as small as 20 and 30 µm, respectively. 

 

However, the frequency range below 1 MHz is also important in the field of ultrasound 

metrology. Information about these lower frequencies is used to determine the 
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Mechanical Index (MI). The MI is widely accepted as one of the critical safety indicators 

for diagnostic ultrasound. It provides a numerical indication of the potential for 

mechanical damage to insonified tissue and is required to be displayed in real-time on the 

screen of modern ultrasound imaging devices [19]. It has been shown that minimization 

of the overall uncertainty in the MI determination to about 5% requires the hydrophone 

bandwidth on the order of one twentieth of the fundamental imaging frequency [20]. 

With the introduction of harmonic imaging, scanheads operate at center acoustic 

frequencies down to 2 MHz; therefore there is a need for ultrasonic hydrophone probes 

calibrated down to 100 kHz [21].  

 

Accordingly, this work was centered on design and development of a programmable 

preamplifier in the frequency range between 100 kHz and 40 MHz. The performance of 

the preamplifier has been tailored for use with miniature piezoelectric polymer 

hydrophones for characterization of acoustic output of ultrasound scanners. The 

preamplifier features high input impedance (1MΩ) which minimizes loading of the 

hydrophone, and 50Ω output impedance to eliminate transmission line phenomena. The 

scope of the work and the programmable preamplifier’s design criteria are discussed 

below. 
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1.2 Scope of the Work 

 

This work is divided into four major sections. Chapter 2.0 gives a brief background on 

the entire work, which is composed of two main parts: Electronic and Acoustic Part. For 

section 2.1, the key electronic parameters of the programmable preamplifier circuits are 

overviewed whereas section 2.2 summarizes the acoustic filed parameters needed for 

optimization of the electronics. Section 2.1.3 discusses electronic transfer function in 

terms of S21 scattering parameter. Additionally, the acoustics part in section 2.2 describes 

the state-of-the art in preamplifiers, different hydrophone probes and their properties, and 

hydrophone calibration using Time Delay Spectrometry (TDS). 

 

The methodology with a roadmap of the work is described in chapter 3.0. Section 3.1 

discusses design constrains and gives a general description of the preamplifier and the 

programmable buffer circuit. Sections 3.1.1 and 3.1.2 detail necessary conditions to 

obtain a high performance circuit topology of the programmable preamplifier such as 

slew rate effect, power supply limitation, bypass capacitance, and feedback resistance 

values. The Pspice simulation, carried out to verify the circuit topologies presented in 

sections 3.1.1 and 3.1.2, is examined in section 3.2. 

 

The fabrication of prototypes of preamplifier and programmable buffer required careful 

attention to their boards’ layout in order to achieve optimum performance at high 

frequencies and to minimize the influence of parasitic and stray capacitances. These 

details are included in section 3.3. Section 3.4 describes the experimental tests. The 
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electronic test described in section 3.4.1 used advance network analyzer techniques for 

determining the preamplifier’s and programmable buffer circuit’s key characteristics. The 

impedance measurements are described in section 3.4.1.1 whereas transfer function 

measurements, in terms of S21 Scattering parameter, are given in section 3.4.1.2. Section 

3.4.2 details the acoustic test measurement set-up.   

  

Results from the simulations, prototyping and experimental tests are summarized in 

chapter 4.0. Section 4.1 shows results of Pspice simulations of the designed circuit 

topologies and section 4.2 presents a picture of the preamplifier and programmable buffer 

circuit’s prototypes. The impedance and transfer function (S21) of the programmable 

preamplifier, and the end-of-cable voltage sensitivity versus frequency of a hydrophone 

probe tested with the programmable preamplifier assembly are given in section 4.3. 

These results were carried out in the frequency range of 100 kHz - 40 MHz at discrete 

intervals (200 kHz). 

 

Discussion and conclusions of the work are presented in chapter 5.0, and the suggestions 

for future work are given in chapter 6.0. 

 

Several appendices are included to further elucidate the approach of the work. Appendix 

A lists the symbols used throughout the works. Appendix B provides Visual Basic code 

developed to control programmable buffer circuit On/Off. Finally, Appendix C details the 

board layout guidelines. 

 



 8
CHAPTER 2.0: BACKGROUND 

 

This chapter provides the background information that summarizes the fundamentals of 

operational amplifiers and briefly outlines experimental methods used to evaluate their 

performance. Also, ultrasound hydrophone designs and their electrical equivalent circuits 

are presented. This information was used in designing the wideband preamplifier and 

programmable buffer circuit assembly described later.  

 

2.1 Electronic Part 

 

2.1.1 Basic Operational Amplifiers  

 

One of the most useful and widely used devices in electronic instrumentation is the 

Operational Amplifier (OP-AMP) shown diagrammatically in Figure 2.1. It has gradually 

evolved from the large vacuum tube devices, to those using discrete transistor, and now 

to the small integrated circuit devices [22]. OP-AMPs can amplify DC as well as AC 

signals. 

 

An ideal OP-AMP has infinite input impedance, infinite voltage gain, zero output 

impedance, and infinite bandwidth [23]. Also, it can be connected as a perfect differential 

amplifier. A differential amplifier has two inputs, and ideally responds only to the 

difference between signals applied to these two inputs.  
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V-

V+

V-

0

Vo
+

-

0

V+

 

Figure 2.1: The symbol for an OP-AMP with two inputs; the inverting input (-) and the 
non-inverting input (+). 

 
 
 
The output signal (voltage) in Figure 2.1, Vo, is given by:   

 

)( −+ −= VVAVo  (2.1)

 

where V+ and V- are the signals applied to the non-inverting and to the inverting input, 

respectively. Α represents the open loop gain of the OP-AMP. A is infinite for the ideal 

amplifier, whereas for the various types of real OP-AMPs, it is usually within the range 

of 104 to 106. 

 

OP-AMPs can be thought of as a gain block, a component whose function is to amplify. 

Biasing does not represent any serious challenge because all the necessary components 

are built into the chip. Amplifier design is also relatively simple; the OP-AMP gain is so 

high that practical performance depends only on external components [22].  
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Since the open loop gain of OP-AMPs is very high, OP-AMPs are almost exclusively 

used with some additional circuitry (mostly with resistors and capacitors), required to 

ensure a negative feedback loop. Through this loop a tiny fraction of the output signal 

is fed back to the inverting input. The negative feedback stabilizes the output within the 

operational range and provides a much smaller but precisely controlled gain, the so-

called closed loop gain. The typical applications of OP-AMPs are briefly described in 

the next section. 

  
 

2.1.2 Applications of Operational Amplifiers  

 

OP-AMPs can be used to perform many tasks. They can be used to amplify and invert a 

signal, amplify a signal, buffer a signal, add two different signals, subtract two different 

signals, integrate a given signal, or differentiate a given signal. The following section 

explains the application of OP-AMPs: 

 

2.1.2.1 Inverting Amplifier  

 

The basic circuit of the inverting amplifier is shown in Figure 2.2. 
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i2
Vin

Rf

0

i1

Ri

Vo
Vs

+

-

 

Figure 2.2: Inverting Amplifier. 
 
 
 

The transfer function is derived as follows: Considering the arbitrary current directions: 

 

isin RVVi /)(1 −=   (2.2)

 

and  

fos RVVi /)(2 −=  (2.3)

 

The non-inverting input is connected directly to the circuit common (i.e. V+ = 0 V), 

therefore Vs = V- = 0 V: 

 

i1 = Vin/Ri (2.4)

 

and  

fo RVi /2 −=  (2.5)
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Since there is no current flow to any input (ideal OP-AMP exhibits infinitely high input 

resistance); 21 ii =  

 

Therefore, the transfer function of the inverting amplifier is 

 

inifo VRRV )/(−=  (2.6)

 

Thus, the closed loop gain of the inverting amplifier is equal to the ratio of Rf (feedback 

resistor) over Ri (input resistor). This transfer function describes accurately the output 

signal as long as the closed loop gain is much smaller than the open loop gain A of the 

OP-AMP used (e.g. it must not exceed 1000), and the expected values of Vo are within 

the operational range of the OP-AMP [22]. 

 

2.1.2.2 Summing Amplifier  

 

The summing amplifier is a logical extension of the Inverting Amplifier circuit, with 

two or more inputs. Its circuit is shown in Figure 2.3. 
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R2

Rf

V2

VoRn

R1

Vn

V1

+

-

0  

Figure 2.3: Summing Amplifier. 
 
 
 

The transfer function of the summing amplifier (similarly derived) is: 

 

fnno RRVRVRVV )/...//( 2211 +++−=  (2.7)

 

Thus if all input resistors are equal, the output is a scaled sum of all inputs, whereas, if 

they are different, the output is a weighted linear sum of all inputs.  

 

The summing amplifier is used for combining several signals. The most common use of 

a summing amplifier with two inputs is the amplification of a signal combined with a 

subtraction of a constant amount from it (dc offset).   

 

2.1.2.3 Difference Amplifier 

 

Difference amplifier precisely amplifies the difference of two input signals. Its circuit 

implementation is shown in Figure 2.4. 
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0

Ri

Ri'

Rf

+

-

Rf'

V2
Vo

V1

 

Figure 2.4: Difference Amplifier. 
 
 
 
If Ri = Ri΄ and Rf = Rf΄, then the transfer function of the difference amplifier is: 

 

ifo RRVVV /)( 12 −=  (2.8)

 

The difference amplifier is useful for handling signals referring not to the circuit 

common, but to other signals, known as floating signal sources [22]. Its capability to 

reject a common signal makes it particularly valuable for amplifying small voltage 

differences contaminated with the same amount of noise (common signal). 

 

In order for the difference amplifier to be able to reject a large common signal and to 

generate at the same time an output precisely proportional to the two signals difference, 

the two ratios p = Rf/Ri and q = Rf΄/Ri΄ must be precisely equal, otherwise the signal 

output will be: 

 

12)]1/()1([ pVVqpqVo −++=  (2.9)
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2.1.2.4 Instrumentation Amplifier  

 

Instrumentation Amplifiers (IA) are used when it is necessary to measure low-level 

differential signals with a high degree of accuracy. The difference amplifier is not 

entirely satisfactory as an instrumentation amplifier because its major drawbacks are its 

low input impedance and its gain cannot be easily varied [23]. An instrumentation 

amplifier circuit is shown in Figure 2.5  

 
 
 

-
+ OP3

-
+ OP1

R1

Vin+

Vin-
R7

0

-
+

OP2

R6

R5

R2

R4

R3

Vs
Vo

 

Figure 2.5: Instrumentation Amplifier. 
 
 
 

The circuit consists of two stages: The first stage is a buffered amplifier, which is formed 

by OP-AMPs OP1 and OP2, and their associated resistors. The second stage is formed by 

a basic differential amplifier OP3 together with its four associated resistors.  
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The instrumentation amplifier offers two useful functions: it amplifies the difference 

between inputs and rejects the signal that’s common to the inputs. The latter is called 

Common Mode Rejection (CMR). The signal gain is provided by OP1 and OP2 while 

OP3 typically forms a differential gain of 1. The overall gain of the instrumentation 

amplifier can be calculated as: 

 

4

6

2

121
R
R

R
R

V
V

s

o








+=  

(2.10)

         
                                                                                                

where R1=R3 and R5/R4 = R6/R7. 

 

From equation 2.10, it can be seen that the gain can be adjusted by varying the single 

resistor R2.  

 

Since both the input-stage op amps are connected in the noninverting configuration, the 

input impedance seen by Vin- and Vin+ is (ideally) infinite, which is a major advantage 

of the instrumentation amplifier configuration [22]. 

 

2.1.3 Scattering Parameters (S-parameters) 

 

A scattering matrix (S-parameter matrix) is one way to describe the operation of a linear, 

time-invariant two-port circuit. A two-port network is defined as any linear device where 

a signal goes in one side and comes out the other [24]. 
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The measurement setup associated with S-parameters is shown in Figure 2.6. 
 
 
 
                                          in1                                                           in2 

                                          out1                                     out2 

 

 

Figure 2.6: A two-port S-parameter matrix records the reflection coefficients and 
transmission gain for signals coming and going on both sides of the device under test 
(DUT). 

 
 
 

From the test equipment, two cables having characteristic impedance Z0 lead to the left 

and right sides, respectively, of the device under test (DUT). 

 

Using the first (left-hand side) cable, a sinusoidal signal (in1) of unit amplitude is 

injected into the DUT. The test equipment records the amplitude and phase of the signal 

(out1) reflected back into the first cable from the DUT, and also the amplitude and 

phase of the signal (out2) conveyed through the DUT to the second cable on the other 

side.  

 

Using the second (right-hand side) cable, another sinusoidal signal (in2) of unit 

amplitude is injected into the DUT. The test equipment records the amplitude and phase 

of the signal (out2) reflected from the right hand side of the DUT, and the amplitude 

and phase of the signal (out1) conveyed through the DUT to the other (left) side. The 

complete S-parameter matrix is a combination of these four basic measurements. 

Z0 Z0 
DUT 
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The left column of the S-parameter matrix is defined when injecting a signal from the 

left: 

1

1
11 in

outS =  (L-side reflection) 
(2.11)

and 

1

2
21 in

out
S =  (L→R transmission) 

(2.12)

  

The right column of the matrix is defined when injecting a signal from the right: 

 

2

1
12 in

out
S =  (R→L transmission) 

(2.13)

and 

2

2
22 in

out
S =  (R-side reflection) 

(2.14)

 

The four elements of the s-parameter matrix then may be used to compute the signals out1 

and out2 deriving from the two-port device when stimulated by input signals in1 and in2: 

 

2121111 ** inSinSout +=  (2.15)

 
and 

 

2222212 ** inSinSout +=  (2.16)
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The four elements of an S-parameter matrix may be reported as complex numbers (with 

real and imaginary parts) or in logarithmic units (as magnitude in dB and phase in 

radians).  

 

The procedure above provides a model for the calculation of circuit performance only 

at one single frequency. Therefore, the entire measurement procedure is usually 

performed on a dense grid of frequencies spanning the range of interest [24]. 

 

2.2 Acoustic Part 

 

2.2.1 Preamplifiers 

 

As already noted the acoustic field including its spatial distribution is characterized using 

piezoelectric hydrophones. The hydrophone’s (circular) active element is usually on the 

order of 0.5 mm and therefore its capacitance is relatively low.  

 

Loading of a hydrophone’s output even by relatively high impedance loads, can greatly 

reduce its sensitivity (in µV/Pa or dB re 1µV/Pa) as well as severely limit its frequency 

response. To prevent or help minimize these effects it is essential that the signal from a 

hydrophone is fed through a preamplifier before applying it to measuring and recording 

instrumentation [2, 3].  
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Normally, a preamplifier serves two basic functions. First is to convert the high output 

impedance of the hydrophone to a lower value that is much less susceptible to loading by 

the relatively low input impedance of the measuring instrument used. Second is to 

amplify the relatively weak output signal from the hydrophone so as to obtain sufficient 

signal power to drive the measuring instrumentation. The first reason is perhaps the most 

important. Providing that the preamplifier has sufficiently high input impedance and does 

not load the output of the hydrophone, it will produce an output voltage proportional to 

the input voltage. Such operating preamplifier is referred to as voltage amplifier. 

Although design of charge amplifier is possible in this work, only voltage preamplifier 

design was considered. 

 

The voltage preamplifier is based on the use of a hydrophone as a voltage source. This 

requires that the preamplifier input impedance is very high in order to avoid loading 

which can influence the voltage sensitivity vs. frequency characteristics of the 

hydrophone. In practice, loading is unavoidable as even with voltage preamplifiers that 

have the highest possible input impedance the parallel capacitance of the hydrophone 

output connection cable (Cc) has to be considered [4]. The reasons for this can be 

explained with reference to the simplified voltage preamplifier equivalent circuit shown 

in Figure 2.7. 
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Cc
Vpre

Ca

VaoVa = Qa/Ca

A

Vo

Cpre

Rpre

 

 
Figure 2.7: Equivalent circuit of voltage preamplifier using a hydrophone as a voltage 
source. 
 
 
 
Also, from Figure 2.7, it can be seen that the charge Qa produced by a hydrophone when 

exposed to acoustic pressure appears as a voltage Va. This voltage is developed across the 

internal capacitance Ca of the hydrophone and the parallel capacitance Cc of the output 

connection cable. Together Ca and Cc act as a frequency independent voltage divider 

network which attenuates Va to produce the output voltage Vao. Thus a hydrophone’s 

voltage sensitivity Sv depends not only on its charge sensitivity Sq and capacitance Ca, but 

also on the parallel capacitance Cc of its output connection cable. This is shown by the 

relation: 

 

ca

q
v CC

S
S

+
=  

(2.17)

 

Unlike Sq and Ca which are hydrophone constants, Cc is dependent on cable length. 

Therefore, with long connection cables the voltage sensitivity of a hydrophone will be 

significantly reduced as the attenuation due to Ca and Cc will be high. Also, if the length 

of the cable is changed, the attenuation will be altered meaning that new voltage 
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sensitivity for the hydrophone has to be determined. The use of voltage preamplifier is 

therefore only recommended with fixed, relatively short lengths of cable connecting the 

hydrophone and preamplifier. However, an ultrasonic hydrophone probe with a built-in 

preamplifier is one way to optimize the sensitivity of the hydrophone and minimize the 

length of cable effects. A detailed description of integrated preamplifier for ultrasound 

hydrophone probe can be found in [4].  

 

The input impedance of voltage preamplifiers influences the voltage sensitivity 

characteristics of hydrophone primarily at low frequencies. At these frequencies the 

combined reactance of Ca and Cc with Cpre the AC input coupling capacitance of the 

preamplifier, starts to become appreciable compared with the input resistance Rpre of the 

preamplifier. Together these components form a frequency dependent voltage divider 

network which attenuates the hydrophone voltage Vao and the preamplifier input voltage 

Vpre, thus determining the low frequency roll-off of the hydrophone and preamplifier. The 

frequency at which Vpre = 0.707Vao is termed the -3dB lower limiting frequency which is 

given by:  

 

precapre

preca
L CCCR

CCC
f

)(2 +
++

=
π

 
(2.18)

 

With direct coupled voltage preamplifier a lower -3dB lower limiting frequency is 

obtained as an input coupling capacitor Cpre can be omitted and equation 2.18 can be 

expressed as: 
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)(2
1

capre
L CCR

f
+

=
π

 
(2.19)

 

2.2.2 Hydrophones  

 

Hydrophones are the universal instruments used to characterize the acoustic output of 

medical diagnostic ultrasound devices. Hydrophones generate an electrical output when 

subjected to acoustic pressure. Over a wide dynamic range and frequency range, their 

voltage output is directly proportional to the acceleration of the acoustic pressure. The 

performance of hydrophones is related to their physical characteristics; therefore many 

designs have emerged that vary in dimensions and in the piezoelectric material used as 

the sensitive element. The materials that have been used for ultrasonic hydrophones 

include solid piezoelectric ceramics (i.e. lead zirconate titanate, PZT), single crystals (i.e. 

quartz or tourmaline), and polymers (i.e. polyvinylidene fluoride, PVDF). Ceramic and 

crystal-based hydrophones have a tendency not to meet the important criteria necessary 

for high performance hydrophones such as wide bandwidth, high dynamic range, and 

smooth, wide-angle directivity. They also suffer from radial resonances and a non-

uniform frequency response. For these reasons, most commercial ultrasonic hydrophone 

probes are constructed with PVDF as the sensitive element [25]. Accordingly, all design 

considerations presented in this work assumed that the input voltage to the preamplifier is 

generated by PVDF made probes. 

 

There are two basic PVDF hydrophone designs [25-29]: the spot-poled membrane and 

the Lewin or needle-type hydrophone [25]. Both types exhibit active element on the order 



 24
of or less than 0.5 mm. The sensitive element thickness is typically in the range of 9 to 50 

µm and, to a large extent, controls the bandwidth of the probe. Details in the design and 

fabrication of these hydrophones are explored in the next two sections.   

 

2.2.2.1 Membrane hydrophone 

 

The spot-poled membrane hydrophones, which are typically more popular and somewhat 

more durable than the tapered needle style are a laminated structure comprising two 

layers of 15 µm PVDF; this PVDF is stretched over a supporting hoop as shown in Figure 

2.8. The size of the hoop is around 100 mm in diameter, to allow the acoustic beam from 

an acoustic source to pass through its aperture [28]. The small region in the center (0.5-1 

mm in diameter) [27], known as the active element, is poled and electroded.  

 

The membrane hydrophone has been found to be acoustically transparent from 1 to 15 

MHz. This hydrophone resonates in the fundamental thickness mode at 1/2 ultrasonic 

wavelength (λ/2). For the 30 µm total thickness of the PVDF membrane the resonance 

occurs at ~37 MHz. Radial resonance modes occur well below the frequency of interest 

and are highly damped as a result of a large diameter membrane with no backing [28]. 

Normally, the frequency response is flat below the resonance and decays beyond the 

resonance. However, the membrane features non-uniform angular response in the low 

megahertz range when sound is incident at the critical angle ( °≈ 50 ) [25, 27]. Standing 

waves can also be evident in acoustic measurements of transducers generating continuous 

wave signals [28]. 
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Figure 2.8: Schematic of a typical PVDF membrane hydrophone (Courtesy of Perceptron, 
Hatboro. PA 19040), now Sonore Medical Systems, Inc, Longmont, CO. 
 
 
 
In the past several years, the development has been made in extending the -3 dB 

bandwidth of ultrasonic hydrophone probes. Lum et al [30] created a membrane 

hydrophone from a 4 µm thick film of vinylidene fluoride trifluoroethylene copolymer, 

P(VDF-TrFE). Preliminary measurement results have shown that the VDF co-polymer 

hydrophone had an effective spot diameter of less than 100 µm and a -3 dB bandwidth 

that extended to 150 MHz. While further work must be done to fully characterize the 

frequency response above 20 MHz and to accurately measure the effective diameter of 

the sensitive area, this membrane hydrophone showed potential to faithfully determine 

the frequency and spatial parameters of ultrasonic diagnostic transducers in the 10-40 

MHz range [30]. 
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2.2.2.2 Needle-type (Lewin) hydrophone 

 

The Needle-type hydrophones have a coaxial construction of stainless steel and various 

insulating materials. The active end is tapered, with a flat tip ground to the nominal 

diameter in microns. Figure 2.9 shows a schematic of a needle-type hydrophone. This 

type of hydrophone consists typically of a 25 µm thick circular PVDF film, with either a 

0.6 or seldom 1 mm diameter. The backing material of the hydrophone has a higher 

acoustic impedance compared to that of water (1.5 MRayl), that makes it one-quarter 

wavelength thickness (λ/4) resonance frequency. A detailed description of the design and 

construction of the needle-type hydrophone can be found in [29].  

 
 
 

 
 
Figure 2.9: Schematic diagram of a needle hydrophone (Courtesy of Force Institutes, 
Copenhagen, Denmark). 
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2.2.3 Hydrophone Properties 

 

2.2.3.1 Linearity 

 

Linearity is an important parameter in the characterization of ultrasonic hydrophone. For 

the testing of medical diagnostic and therapeutic equipment, the hydrophone should 

exhibit linearity to at least the relevant acoustic pressure output from these devices. The 

ultrasonic diagnostic imaging equipment can generate instantaneous pressure amplitudes 

on the order of 10 MPa [25]. Therefore, the hydrophone sensitivity must be linear over 

that range. 

 

Meeks and Ting [31] provided evidence that PVDF polymer is linear to about 65 MPa. 

They acquired the linearity response as a function of dynamic pressure pulses with a rise 

time of 1-3 ms and peak amplitudes up to 75 MPa. The deviations of linearity at 65 MPa 

for the different types of PVDF polymers tested were less than 7% when compared to 

ideal linearity response [31]. 

 

2.2.3.2 Frequency response 

 

Theoretically, a hydrophone should convert the acoustic pressure waveform into a 

corresponding voltage waveform.  Frequency response of hydrophones is the hydrophone 

sensitivity as a function of frequency. The frequency response of the hydrophone and 

associated electronics should be flat over the whole range of frequencies, which are 
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contained in the waveform in order to reproduce the pressure-time waveform correctly. 

Smith [32] has shown that the thickness of the active hydrophone element and the cable 

length can also influence the frequency response. A relatively thick element gives rise to 

a lower resonance frequency, which reduces the -3 dB frequency bandwidth of the 

hydrophone. For example, compared to a 50 µm thick membrane, a 9 µm thick membrane 

hydrophone has a flat frequency response over a frequency range approximately 5 times 

greater. The results of Smith’s work suggest that the cable resonance has a greater impact 

on the frequency response than the thickness-mode resonance and suggests minimizing 

cable length to about 15 cm [32]. 

 

Incorporating a preamplifier into the hydrophone assembly has also been shown to 

overcome the loading effects introduced by the cable [4]. The preamplifier will also 

increase the hydrophone sensitivity, which is beneficial in cases where the measured 

pressure amplitude is very low or when a significant finite amplitude distortion in the 

pressure wave is present [2, 32]. Some trade-off to using a preamplifier is that it would 

add to the complexity and the cost of the hydrophone and it could limit the dynamic 

range [4]. Also, the bandwidth of the preamplifier must be considered in order to 

minimize the errors introduced by non-ideal frequency responses [33]. Moreover, 

accessory electronic components could have an impact on hydrophones performance. 

Good radio frequency (RF) shielding is required to reduce the noisy environment created 

by the medical ultrasonic equipment. 
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2.2.3.3 Hydrophone sensitivity 

 

One of the goals in the ultrasound metrology is to determine the voltage sensitivity by 

measuring the voltage at the hydrophone terminals. The end-of-cable loaded sensitivity of 

a hydrophone, ML(f), is calculated from equation 2.20, when used in a continuous single-

frequency sound field of frequency f: 

 

p
vfM L =)(  

(2.20)

 

where v  is the voltage generated by the acoustic pressure incident on the sensitive 

element of the hydrophone and p represents the free-field acoustic pressure at the 

hydrophone. ML(f) should be expressed as a function of f when it is important to 

emphasize that the hydrophone sensitivity may vary with frequency.  

 

The end-of-cable open-circuit sensitivity Mc(f), is a convenient way to specify sensitivity 

independent of the loading conditions; however, it is difficult to measure since it assumes 

that at the time of calibration, the measured hydrophone voltage was loaded with an 

infinite resistance (open-circuit) [4]. Once the end-of-cable loaded sensitivity has been 

measured, the open-circuit sensitivity can simply be calculated using the following 

relationship [25]: 
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where Re(Zel) and Im(Zel) are, respectively, the real and imaginary components of the 

complex impedance of the measuring device and Re(Z) and Im(Z) represent, 

respectively, the real and imaginary portions of the hydrophone’s complex impedance. 

Assuming the loading of the measurement system is a parallel circuit of resistance RL and 

capacitance CL, the complex impedance components can be calculated as, 
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where ω  is the angular frequency (2πf) and f is the frequency at the specified Mc(f)  

 

If the impedance of the hydrophone and the load of the system are assumed to be 

capacitive, the end-of-cable sensitivity can be reduced to 

 

sca

a
CL CCC

C
MM

++
=  

(2.24)
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where Ca, Cc, and Cs are the capacitance of the sensitive element, the coaxial cable, and 

the stray capacitance, respectively. Figure 2.10 shows a schematic representation of this 

loading situation described in equation 2.24. The major loading on C comes from the 

cable capacitance Cc (typically 90 pF/m), which is much larger than the sensor 

capacitance, often on the order of 1 pF-3pF. Reducing the length of the cable is one way 

to decrease the impact of the cable capacitance on the hydrophone sensitivity. Other 

techniques to reduce the capacitive loading of the cable are to use a low-pass filter circuit 

or to incorporate a well designed preamplifier [4, 34]. 

 

Instead of presenting calibration data in terms of volts per MPa, end-of-cable voltage 

sensitivity is often expressed in decibels, 

 

)/log(20)( refLL MMdBG =  (2.25)

 

where Mref = 1V/Pa or 1 V/µPa [35]. 

 
 
 

Mc

Cc

0

Ca
ML

0

0

Cs

0

 

Figure 2.10: Schematic of line capacitance effect on the end-of-cable sensitivity. 
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2.2.4 Hydrophone calibration methods using Time Delay Spectrometry (TDS) 

 

A brief review of the theory of Time Delay Spectrometry (TDS) is essential in order to 

understand its use with ultrasonic hydrophone calibration. A more detailed description of 

the TDS can be found in [36]. In an arbitrary electro-acoustic system, comprising a 

transmitter and receiver separated by a distance d, time delays (including the propagation 

time from the signal source to the receiver) can be converted into proportional shifts in 

instantaneous frequency. When the excitation signal from the transmitter is swept at a 

constant rate, the frequency shift is proportional to the time delay in the system. 

 

Since transmission measurements are performed in a confined space such as a finite-sized 

water tank, there are several signals present, comprised of the one direct signal and the 

many reflected signal. The direct signal has the shortest traveling distance, which 

translates into a short propagation time as compared to the reflected signals. The longer 

propagation time for the reflected signals translates into a lower frequency than the direct 

signal. With the aid of an appropriate frequency-filtering scheme, the receiver will 

capture only the direct signal because of the presence of a shift in the instantaneous 

frequency. Therefore, with properly chosen parameters, the TDS technique would 

eliminate the effects of multiple transmission lines, standing waves, and other 

interferences due to the reflected signals, which means that TDS can create free-field 

conditions in a highly reverberant environment [35, 36, 37]. 
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2.2.5 Substitution calibration method with Time Delay Spectrometry 

 

A detailed outline of the ultrasonic hydrophone substitution calibration technique with 

TDS has been presented elsewhere [25, 35, 37]. A broadband ultrasonic transmitter, a 

reference hydrophone, and a spectrum analyzer are essential equipment used to perform 

this substitution calibration technique [25]. The initial step is to place the reference 

hydrophone in the far field of an ultrasonic transmitter that is operated by the tracking 

generator of the spectrum analyzer. Once the received signal of the hydrophone has been 

maximized, the frequency response of the reference hydrophone is stored in the memory 

of the spectrum analyzer. The received signal of the hydrophone is the frequency 

response of the entire electronic set-up (i.e., hydrophone, transmitter, and associated 

electronics). 

 

The next step is to replace the reference hydrophone with the hydrophone to be calibrated 

and the same procedure is performed under the same conditions that applied for the 

reference hydrophone. A receive signal for the uncalibrated hydrophone is recorded once 

it has been maximized and is compared to the received signal of the reference 

hydrophone. The sensitivity of the hydrophone being calibrated M can now be 

determined by relating it to the sensitivity of the reference hydrophone Mref and to the 

measured voltages [35]: 

 

refref MUUM )/(=  (2.26) 
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where U and Uref are the terminal voltages of the uncalibrated hydrophone and the 

standard hydrophone, respectively.  

 

Employing TDS allows a relatively quick hydrophone calibration since the frequency is 

swept over the frequency range of interest. This permits the hydrophone sensitivity to be 

determined as a virtually continuous function of frequency and displays any rapid 

variations in the frequency response that may be missed when measured at discrete 

frequency points [37]. A high signal-to-noise ratio is also achieved with the TDS 

procedure [28, 35, 36, 37].  
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CHAPTER 3.0: METHODOLOGY 

 

This chapter discusses the design criteria of the wideband hydrophone preamplifier and 

programmable buffer assembly in the frequency range between 100 kHz and 40 MHz. 

Figure 3.1 provides a roadmap or an overview of the procedure in this work. The details 

of each part are explained in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A roadmap or an overview of the procedure in this work. 
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3.1 Designs 

 

The design constraints and general description of the preamplifier and the programmable 

buffer circuit are explained in sections 3.1.1 and 3.1.2. 

 

3.1.1 Preamplifier 

 

The preamplifier was designed with high input resistance (1MΩ), which minimizes 

loading of the hydrophone, and 50Ω output impedance to eliminate transmission line 

phenomena. The preamplifier requires a dual 5± V power supply. The frequency 

response of the preamplifier was designed to comply with the Food and Drug 

Administration (FDA) requirements; the circuit operates between 100 kHz and 40 MHz. 

To optimize the performance in terms of input impedance, frequency response and 

dynamic range, the preamplifier was implemented in two stages using application 

specific operational amplifiers.  

 

Instrumentation Amplifier topology was used to design the preamplifier because it 

ensured a high degree of accuracy when measuring low-level differential signals and had 

another major advantage that it offered high input impedance. The details of circuit 

topology of the preamplifier are shown in Figure 3.2. 
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From Figure 3.2, the preamplifier circuit consists of two stages: The first stage is a 

buffered amplifier, which is formed by OP-AMPs U1 and U2, and their associated 

resistors (R1, R2 and R3). The second stage is formed by a basic differential amplifier U3 

together with its four associated resistor (R4, R5, R6 and R7).  

 

The input stage is realized with OPA355 (Burr-Brown Products from Texas Instruments). 

The OPA355 is a CMOS, high-speed, voltage feedback operational amplifier. It features 

a 200 MHz gain bandwidth, which is sufficient for the requirement (100 kHz-40 MHz) of 

this work. Since its slew rate is 360V/µs, the maximum input signal should not exceed 

1.4V at 40 MHz. This maximum input signal value can be calculated from: 

 

VfSRSlewRate SRπ2)( ≥  (3.1)

 

where fSR is the frequency at which an output sinusoid with amplitude equal to the rated 

output voltage of the OP-AMP begins to show distortion due to slew-rate limiting and the 

rated voltage is V. 

 

Normally, the pressure amplitudes employed in diagnostic ultrasound imaging are 

approximately 10 MPa. Assume that the hydrophone’s sensitivity is on the order of -260 

dB re 1V/µPa. Therefore, the output voltage of the hydrophone is around 1V and then the 

slew rate limitation of OPA355 does not limit the input voltage signal. 
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Since the input-stage OP-AMP (OPA355) is specified over a power-supply range from 

25.1± V to 75.2± V and to prevent OP-AMPs being used in saturation stage, the power 

supply of OPA355 in the preamplifier is 5.2± V. However, the preamplifier uses a dual 

5± V power supply. Therefore, the +5V needs to be fed through the positive voltage 

regulator PQ25EF01SZ, which generates +2.5V positive power supply to OPA355 and 

the -2.5V negative power supply of OPA355 comes from the output of the negative 

voltage regulator LT337AT.  It was determined that 5.2± V was sufficient to enable 

pressures up to 50 MPa to be measured. Such pressure is at least 4 times higher than 

those pressure amplitudes employed in therapeutic practice. To determine this it was 

assumed that the hydrophone’s sensitivity is on the order of 100mV/MPa.    

 

A 10µF ceramic bypass capacitor (C1, C2, C3 and C4) paralleled to a 10µF tantalum 

capacitor (C5, C6, C7 and C8) and a 100nF ceramic capacitor (C9, C10, C11 and C12) on the 

power supply pin are essential to achieving very low harmonic and intermodulation 

distortion. They are also needed for stable operation. 

 

The output stage is realized with OPA643 (Burr-Brown Products from Texas 

Instruments). The OPA643 provides a high level of speed and dynamic range (800MHz 

gain bandwidth), and achieves exceptionally low harmonic distortion over a wide 

frequency range. It also features high slew rate (1000V/µs), which ensures an adequate 

behavior with around 4Vpp input voltage (or 40 MPa) up to 40MHz (calculated from 

equation 3.1). It needs a power supply of 5± V, which is fed directly from the power 

supply of the preamplifier. 
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Although, the preamplifier design chosen here exhibits unity gain, the OPA643 is 

designed for a high gain operation. Decreasing the gain for the OPA643 from the nominal 

design point of 14 dB will decrease the phase margin. This will peak up the frequency 

response and extend the bandwidth. A peaked frequency response will show overshoot 

and ringing in the pulse response as well as a higher integrated output noise. Operating at 

a low noise gain also runs the risk of sustained oscillation (loop instability). To prevent 

those problems, therefore, the R12 resistor across the two inputs of OPA643 is necessary 

to be included in the preamplifier circuit. The R12 resistor increases the noise gain and 

decreases the loop gain without changing the signal gain. This approach retains the full 

slew rate and noise benefits to the output. The value of R12 suggested in the 

manufacturing data sheet is obtained from: 

 

3)///(1 1246 +≥+ RRR  (3.2)

 

The 0.1µF ceramic decoupling capacitors (C17, C18) and 2.2µF electrolyte capacitors (C13, 

C14) in parallel on the power supply pins (pins 4 and 7) are included in order to minimize 

the harmonic distortion. However, to deliver the lowest possible distortion of the output 

stage preamplifier, additional 0.1µF power supply decoupling capacitors on pin 5 and 8 

of OPA643 is required as shown in Figure 3.2. Although pins 5 and 8 are internally 

connected to pins 4 and 7 respectively, the additional capacitors help to decouple the 

package lead inductances and decrease the second-harmonic distortion for a 5MHz 

fundamental by approximately 4 dB.  
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Since the output stage of the preamplifier is a voltage feedback OP-AMP, a wide range of 

resistor values may be used for the feedback and gain setting resistors (R4, R5, R6 and R7 

in Figure 3.2). The primary limits to these values are set by dynamic range (noise and 

distortion) and parasitic capacitive consideration. From the OPA643 data sheet, the 

feedback resistor (R6 and R7) value should be between 200Ω and 1kΩ. Below 200Ω, the 

feedback network will present additional output loading which can degrade the harmonic 

distortion performance of the OPA643. Above 1kΩ, the typical parasitic capacitance 

(approximately 0.2pF) across the feedback resistors may cause unintentional band-

limiting in the amplifier response. Therefore, the value of feedback resistors (R6 and R7) 

tested from the simulation in section 4.1, which is 402Ω, is set for the output stage of the 

preamplifier.  

 

As already mentioned in section 2.1.2.4, the overall gain of the instrumentation amplifier 

can be calculated by the equation: 
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where R1=R3 and R5/R4 = R6/R7. 

 

As already noted, the preamplifier described here was designed for an over all gain of one 

or equal to 0 dB (connected to 50Ω load). Therefore, from equation 3.3, the value of the 

feedback resistors (R6 and R7) above and the results from the simulation test with a few 

choices of different R’s as shown in section 4.1, the optimum value of R1, R2, R3, R4, R5, 
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R6 and R7 is 402, 806, 402, 402, 402, 402 and 402 Ohms, respectively. When the value of 

R6 and R4 is known, the value of R12 can be obtained from the equation 3.2: the value of 

R12 was calculated to be 130Ω. 

 

Since the input-stage OP-AMP (U2) is connected in the noninverting configuration and its 

input impedance is extremely high (1013Ω//1.5pF), when connecting to 1 MegaOhms 

shunt resistor (R8), the overall input impedance of the preamplifier is (ideally) 1 MΩ, 

while the 50Ω series resistor (R13) at the output terminal provides a matching resistor for 

the measurement equipment load. 

 

3.1.2 Programmable buffer circuit 

 

The programmable buffer circuit designed to work with the hydrophone preamplifier 

operates also over the frequency range between 100 kHz and 40 MHz. It features 50Ω 

input impedance, which matches the source impedance of the test generator, and 50Ω 

output impedance to provide a matching resistor for the analyzing or measuring 

equipment load. The programmable buffer circuit requires dual 10± V power supply. 

Visual Basic programming was employed to automatically execute On/Off function. 

When the programmable buffer circuit and the preamplifier are combined together and 

controlled via LabVIEW programs, the implemented circuit topology allows fully 

automatic determination of key acoustic output parameters of diagnostic ultrasound 

scanners, which determine the safety indicators such as Mechanical Index (MI) and 

Thermal Index (TI). 
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The programmable buffer circuit consists of two stages: The first stage is a controller 

stage which is formed by a Bitabug2 controller (NCD208), an inverting amplifier U1 

(LM741), a PNP transistor (Q2N3906), an NPN transistor (Q2N3904) and their 

associated resistors (R1, R2, R3, R4 and R5) . The second stage is formed by a buffer 

amplifier U2 (OPA643) together with its four associated resistor (R6, R7, R8 and R9). The 

circuit topology of the programmable buffer circuit is shown in Figure 3.3. 

 

As noted above, the first stage is realized with Bitabug2 or NCD208 controller (National 

Control Devices Products). Bitabug2 is an 8-pin preprogrammed microcontroller. It is 

programmed as a 3-bit serial-to-parallel converter, and will only respond to incoming 

ASCII character codes in the range of 0 to 7. Visual Basic programming was employed to 

automatically execute On/Off function by sending ASCII character code 0 for Off and 

code 3 for On. These data are transferred via the RS232 serial port to Bitabug2. The 

description of Visual Basic programming source code is explained in Appendix B.  

 

Bitabug2 requires a regulated +5V power supply but the power supplies of programmable 

buffer circuit are 10± V. Therefore, a +5V voltage regulator (NJM7805FA) and a -5V 

voltage regulator (NJM7905FA) must be included in the circuit. 

 

Bitabug2 has three TTL/CMOS (0/+5 volt) outputs, which are driven under computer 

control. However, only two outputs from Bitabug2 are used in the programmable buffer 

circuit and these outputs are controlled by Visual Basic programming. If the 

programmable buffer circuit is On, both outputs from Bitabug2 are “High” (+5V) but if it 
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is Off, both outputs are “Low” (0V). One of the outputs from Bitabug2 is connected 

directly to a NPN transistor (Q2N3904) and the other is connected through the inverting 

amplifier (LM741), to invert the output of Bitabug2 from +5V to -5V, into a PNP 

transistor (Q2N3906). The two transistors Q2N3904 and Q2N3906 operate as a switch 

between power supply of the OPA643 and its power supply pin in order to control 

On/Off of the programmable buffer circuit. 

 

To prevent the output of inverting amplifier (LM741) to become saturated and obtain the 

output 5− V, the power supply fed in LM741 is 9± V, which comes from the voltage 

regulator NJM7809FA and NJM7909FA. The output voltage -5V from LM741 is needed 

in order to have enough current to bias transistor Q2N3906. 

 

The second stage of the programmable buffer circuit is implemented with OPA643 (Burr-

Brown Products from Texas Instruments), which is exactly the same OP-AMP as the 

output stage of the preamplifier. As already mentioned in the section 3.1.1, the OPA643 

features high bandwidth (800MHz) and high slew rate (1000V/µs). It is connected in the 

noninverting configuration with 0 dB gain (connected to 50Ω load) and requires 5± V 

power supply. However, again as the power supply of the programmable buffer circuit is 

10± V, positive (NJM7805FA) and negative (NJM7905FA) voltage regulators are 

required to obtain the desired voltage. 
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The 50Ω shunt resistor (R8) at the input terminal matches the source impedance of the 

test generator, while the 50Ω series resistor (R9) at the output terminal provides a 

matching resistor for the measuring and analyzing equipment load. 

 

The 0.1µF ceramic decoupling capacitors (C2, C3, C5 and C6) and 2.2µF electrolyte 

capacitors (C1, C7) in parallel on the power supply pin are connected in order to deliver 

the lowest harmonic distortion. A 10µF tantalum capacitor (C4) filters the DC signal from 

the OPA643. 

 

3.2 Simulations 

 

After the circuit topologies in Figure 3.2 and 3.3 were designed, the simulation was 

carried out to verify that those circuits would work satisfactorily before prototyping. 

Also, several choices of the different sets of feedback resistors in the preamplifier circuit 

topology in Figure 3.2 were simulated in order to show the optimum values of the design.   

Therefore, Pspice simulation program was used for numerical analysis of the circuits in 

Figure 3.2 and 3.3. The simulation results including transfer function characteristics in 

both magnitude (in dB) and phase (in degree) of the preamplifier and programmable 

buffer circuit are discussed in section 4.1. 
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3.3 Prototypes 

 

After the circuit topologies in Figure 3.2 and 3.3 were verified using Pspice circuit 

simulation, the prototyping process started. To achieve optimum performance with high 

frequency operation, the prototypes of preamplifier and programmable buffer circuit 

required careful attention to board layout and external component types in order to 

minimize parasitic effects. The optimization of the layout was achieved by minimizing 

the distance between pins and the capacitors, careful selection and placement of external 

components, and no socketing in these high speed OP-AMPs. These procedures are 

explained in more detail in the Appendix C. 

 

3.4 Experimental Test 

 

This section described acoustic and electronic tests carried out to determine the 

performance of the preamplifier and programmable buffer assembly. The electronic test 

(section 3.4.1) determined the impedance and transfer function (S21). The acoustic test in 

section 3.4.2 was performed during actual calibration of hydrophones with Time Delay 

Spectrometry (TDS). 
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3.4.1 Electronic test 

 

The electronic test employed advanced measurement techniques for determining the 

preamplifier’s and programmable buffer circuit’s key characteristics as described in the 

following: 

 

3.4.1.1 Impedance Measurement 

 

The electrical impedance (Z) and admittance (Y) of the preamplifier and programmable 

buffer circuit were measured in the frequency range of 100 kHz to 40 MHz at discrete 

intervals using the Agilent 4395A Impedance Analyzer and the Agilent 43961A RF 

Impedance test kit. These measurements provided both the magnitude and phase of the 

programmable preamplifier. Figure 3.4 shows a schematic of the impedance 

measurement set-up for the preamplifier and programmable buffer circuit.  

 

The impedance of the membrane and needle type hydrophone was also measured in order 

to compare the impedance between the preamplifier and the hydrophone. This was done 

to verify that the input impedance of the preamplifier was high enough in order to 

minimize loading of the hydrophone. The admittance measurement was used to 

determine the thickness resonance of the piezoelectric materials of the hydrophones. 

However, the measurement set-up of the preamplifier, programmable buffer circuit and 

hydrophones was almost the same except the hydrophone was immersed in water. Figure 

3.5 shows a measurement set-up for determining hydrophone impedance.  
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Figure 3.4: A schematic of the impedance measurement set-up for the preamplifier and 
programmable buffer circuit. 
 
 
 
 
 

 

 

 

 

 

                               

 

 

 

 

Figure 3.5: Measurement set-up for determining hydrophone impedance.                                      
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 3.4.1.2 Transfer Function (S21) Measurement      

 

The Scattering parameter S21 (transfer function) was measured to identify the electrical 

characteristics of the preamplifier and the programmable buffer circuit. The Agilent 

4395A Network Analyzer was used to measure S21 parameter in the frequency range of 

100 kHz to 40 MHz at 200 kHz intervals. This provided transfer function characteristics 

of the testing device in terns of magnitude (in dB) and phase (in degrees). Figure 3.6 

shows a schematic of the S21 measurement set-up for the preamplifier and programmable 

buffer circuit. 

 
 
 
 
                                                                                                                                     

 

 

 

 

 

 

 
Figure 3.6: A schematic of the S21 measurement set-up for the preamplifier and 
programmable buffer circuit. 
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3.4.2 Acoustic test 

 

Figure 3.7 shows the acoustic measurement test setup employed in this study. A swept 

frequency signal, which originates from the tracking generator of the spectrum analyzer 

HP 3583A, is controlled On/Off by the custom-built programmable buffer circuit. The 

output signal of the programmable buffer circuit is amplified by the ENI power amplifier 

and this amplifier signal is subsequently used to drive the ultrasonic transmitter. The IBM 

PC computer collects the measurement data and analyzes the results for the hydrophone 

calibration with a customized LabVIEW program. Deionized water was used and the 

water temperature during calibration was constant to within 0.5°C.  

 

The execution of the substitution calibration method with TDS was conducted using the 

measurement setup as shown in Figure 3.7. With the ultrasonic source transducer and the 

reference hydrophone placed immersed in the water tank, the reference hydrophone was 

positioned in the far field region of the acoustic source using the X-Y-Z micro-

manipulator. The signal, which represents the frequency response of the transmitter and 

calibrated reference hydrophone, was captured by the spectrum analyzer and then stored 

in the computer using LabVIEW program. 

 

After the frequency response of the working reference hydrophone was established and 

stored, the hydrophone being calibrated replaced the reference hydrophone in the water 

tank. The test configuration and procedure for this step was the same as in the previous 

step. The combined frequency response of the hydrophone needing calibration and 
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ultrasonic transducer was stored in another file in the computer once its signal had been 

maximized by optimizing their orientation. The difference of the two frequency responses 

was taken and this difference represented the free field hydrophone frequency response of 

the hydrophone undergoing calibration [37]. By comparing the difference to the absolute 

sensitivity of the reference hydrophone, the voltage sensitivity of the hydrophone being 

calibrated was obtained.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3.7: The setting for an acoustics test measurement. 
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CHAPTER 4.0: RESULTS 

 

This chapter presents the results from the simulations, prototyping and tests outlined in 

the previous chapter.  

 

4.1 Simulation Results 

 

Three different sets of feedback resistors in the preamplifier circuit topology in Figure 3.2 

were simulated in order to show the optimum values. The first set of the feedback 

resistors (Rf 402 Ohms in the Figure 4.1) is composed of R1, R2, R3, R4, R5, R6 and R7 

having values 402, 806, 402, 402, 402, 402 and 402 Ohms, respectively. The second set 

(Rf 1 kOhms in the Figure 4.1) consists of R1, R2, R3, R4, R5, R6 and R7 with values 1k, 

2k, 1k, 1k, 1k, 1k and 1k Ohms, respectively. Finally, the third set (Rf 200 Ohms in the 

Figure 4.1) is composed of R1, R2, R3, R4, R5, R6 and R7 having values 200, 400, 200, 

200, 200, 200 and 200 Ohms, respectively. The value of R1, R2, R3, R4, R5, R6 and R7 in 

each set came from equation 3.3 detailed in section 3.1.1. The transfer function results of 

these three sets are shown in terms of magnitude and phase in Figure 4.1 and 4.2, 

respectively. That the magnitude of the transfer function of the Pspice simulation should 

be closet to 0 dB gain was the criterion to determine the optimum set of resistors. 
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Figure 4.1: The transfer function of the preamplifier in term of magnitude (dB) from 
Pspice simulation when varying the different sets of resistors. 
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Figure 4.2: The transfer function of the preamplifier in term of phase (degree) from 
Pspice simulation when varying the different sets of resistors. 
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After the optimum resistor values are obtained from results in Figure 4.1 and 4.2, the 

transfer function of the optimized resistors was plotted again with a better scale to present 

its result clearly as shown in Figure 4.3 and 4.4. Also, the results from Pspice Simulations 

of the circuit topologies in 3.3 are shown in Figure 4.5 and 4.6. These simulations yielded 

the transfer function characteristics of the preamplifier and programmable buffer circuit 

in terms of magnitude (dB) and phase (degree). 
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Figure 4.3: The transfer function of the optimum feedback resistors of the preamplifier in 
terms of magnitude (dB) from Pspice simulation. 
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Figure 4.4: The transfer function of the optimum feedback resistors of the preamplifier in 
terms of phase (degree) from Pspice simulation. 
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Figure 4.5: The transfer function of the programmable buffer circuit in terms of 
magnitude (dB) from Pspice simulation. 
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Figure 4.6: The transfer function of the programmable buffer circuit in terms of phase 
(degree) from Pspice simulation. 

 
 
 
 

4.2 Prototyping Results 

 

After the circuit topologies shown in Figures 3.2 and 3.3 were verified by the Pspice 

simulation, the prototypes of the preamplifier and programmable buffer circuit were built; 

these prototypes are shown in Figure 4.7. 
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Figure 4.7: The prototypes of preamplifier and programmable buffer circuit. 

 
 
 
4.3 Experimental Results 

 

4.3.1 Impedance Measurement 

 

The input impedance, Z, of the prototyping preamplifier, needle type hydrophone and 

membrane type hydrophone were measured in the frequency range of 100 kHz to 40 

MHz at 200 kHz intervals as shown in Figure 4.8 (magnitude) and 4.9 (phase). These 

results are shown for comparison in order to verify that the input impedance of the 

preamplifier was sufficiently high so the loading of the hydrophone could be minimized.  
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Figure 4.8: Comparison of the (magnitude) impedance of the preamplifier to the needle-
type and membrane type hydrophones. 
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Figure 4.9: Comparison of (phase) impedance of the preamplifier to the needle-type and 
membrane type hydrophones. 
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Figure 4.10: The admittance (magnitude) measurement of preamplifier, needle-type and 
membrane-type hydrophone.  
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Figure 4.11: The admittance (phase) measurement of preamplifier, needle-type and 
membrane-type hydrophone.  
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Figure 4.10 and 4.11 show the results of the admittance measurement, which were used 

to determine the thickness resonance of the piezoelectric materials of the hydrophones. 

 

4.3.2 Transfer Function (S21) Measurement  

     

The Scattering parameter S21 measurement was used to measure the transfer function 

characteristics of the preamplifier and programmable buffer circuit in the frequency range 

from 100 kHz to 40 MHz at 200 kHz intervals. The results of this measurement are 

shown in Figure 4.12-4.15.  
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Figure 4.12: The transfer function (S21) of the preamplifier in terms of magnitude (in dB). 
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Figure 4.13: The transfer function (S21) of the preamplifier in terms of phase (in degrees). 
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Figure 4.14: The transfer function (S21) of the programmable buffer circuit in terms of 
magnitude (in dB). 
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Figure 4.15: The transfer function (S21) of the programmable buffer circuit in terms of 
phase (in degrees). 
 
 
 
4.3.3 Acoustic Test   

 

This section presents the results of the acoustic test performed during actual calibration of 

hydrophones using Time Delay Spectrometry (TDS) method, detailed in [37]. For this 

work, one needle-type hydrophone (NTR889) and one membrane-type hydrophone (804-

022) were calibrated in the frequency range 0.1 to 40 MHz. The results of these 

measurements were analyzed to determine the performance of the programmable 

preamplifier assembly. The calibration results were obtained using a 0.5 mm diameter 

active area bilaminar membrane hydrophone (IP26). This hydrophone was previously 

calibrated and was considered the working reference hydrophone in this work. Figure 

4.16 contains the frequency response of the NTR 889 needle-type hydrophone with and 

without the programmable preamplifier, shown for comparison. Also, the result of the 
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calibration with and without the programmable preamplifier for the 804-022 membrane-

type hydrophone is shown in Figure 4.17. 
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Figure 4.16: NTR 889 Needle-Type Hydrophone Calibration with/without the prototype 
programmable preamplifier. 
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Figure 4.17: 804-022 Membrane-Type Hydrophone Calibration with/without the 
prototype programmable preamplifier. 
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CHAPTER 5.0: DISCUSSION AND CONCLUSIONS 

 

The programmable preamplifier was simulated by the Pspice program and then tested 

using both electronic and acoustic methods in the frequency range between 100 kHz and 

40 MHz. The results presented in the previous section show that the agreement between 

the simulations and experiments was very good. 

 

Three different sets of feedback resistors (R1, R2, R3, R4, R5, R6 and R7) in the 

preamplifier circuit topology in Figure 3.2 were simulated in order to show the optimum 

values as presented in Figure 4.1 and 4.2. The result of the magnitude transfer function as 

shown in Figure 4.1 of Rf 1 kOhms set was around 1 dB gain, whereas that of Rf 402 

Ohms was approximately 0.03 dB gain and that of 200 Ohms was 0.08 dB. Therefore, the 

transfer function of Rf 402 Ohms set was found to be closet to the 0 dB gain and 

considered as the optimum set of resistors. 

 

Figure 4.3 shows the transfer function (magnitude) simulation of the preamplifier from 

Pspice program in the frequency range between 100 kHz and 40 MHz. The result 

exhibited a uniform response (less than 0.035 dB) over the entire range of frequencies. 

Figure 4.4 presents the simulation of its phase. The phase of the preamplifier is found to 

be approximately 180 degrees at the low frequency and decreases as the frequency 

increases. The transfer function simulation of the programmable buffer circuit is 

presented in Figure 4.5. Also, the result was found to be consistent (to within ±0.3 dB) in 

the frequency range between 100 kHz and 40 MHz. Its phase, shown in Figure 4.6, was 
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found to be around 0 degrees at the low frequency and decreased when the frequency was 

increased. These simulation tests verified the agreement between the simulations and the 

design’s objectives that the preamplifier and programmable buffer circuit have an over all 

gain of one or equal to 0 dB over the entire frequency range between 100 kHz and 40 

MHz. 

 

The magnitude and phase of impedance, Z, of the prototyping preamplifier, needle-type 

hydrophone and membrane-type hydrophone were measured using a network analyzer in 

the frequency range of 100 kHz to 40 MHz at 200 kHz intervals as shown in Figure 4.8 

and 4.9. In Figure 4.8, the magnitude Z of all testing devices decreases when the 

frequency increases. However, the magnitude Z of the constructed preamplifier is even 

higher (more than 10 times) than the magnitude Z of the needle-type and membrane-type 

hydrophone. On the other hand, the phase Z values of the needle-type, membrane-type 

hydrophone and prototyping preamplifier increase with increasing frequency as shown in 

Figure 4.9. However, the phase Z values of the prototyping preamplifier are still lower 

than the phase Z values of the needle-type and especially the membrane-type 

hydrophone. These results verified that the tested preamplifier prototype has sufficiently 

high input impedance and does not load the output of the hydrophone, which can 

influence the voltage sensitivity vs. frequency characteristics of the hydrophone. From 

Figure 4.9, the membrane-type hydrophone data seem to indicate that the measurements 

at high frequencies are being dominated by an inductive contribution because its phase 

changes sign at the high frequencies. Therefore, the admittance measurement was carried 
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out to determine this result as shown in Figure 4.10 and 4.11. The results in Figure 4.10 

and 4.11 implied the equivalent circuit as shown in Figure 5.1.  
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Figure 5.1: Equivalent circuit of preamplifier with the membrane-type hydrophone. 
 
 
 
 
From Figure 5.1, it can be seen that the charge Qa produced by a hydrophone when 

exposed to acoustic pressure appears as a voltage Va. This voltage is developed across the 

motional impedance Za, clamped dielectric capacitance C0, and dielectric losses R0 of the 

hydrophone. However, the voltage Vao appears when the hydrophone is loaded by the 

impedance, Zao, which includes the hydrophone impedances and the parallel capacitance 

(Cc) of the output connection cable. Therefore; 

 

aaoao QZjV ω=  (5.1)

 

where; 

aa ZQjω  
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From the equation 5.3, the term 
00

1
RCjω

 is the electrical loss tangent and 
aaRCjω

1  is the 

mechanical loss tangent of the PVDF, which are relatively small at low frequencies; 

however, at high frequencies their contributions are non-negligible. Also, the dramatic 

change of the membrane-type hydrophone’s phase at the high frequencies in Figure 4.11 

exhibited that the resonance frequency of the membrane-type hydrophone is ~37 MHz. 

This corresponds to the thickness resonance of the (double 15 µm layer) 30 mµ  

piezoelectric film when the thickness resonance is related to the 1/2 wavelength thickness 

of the piezoelectric polymer with sound velocity of 2.2 km/s. 

 

The Scattering parameter S21 measurement was used to measure the transfer function (in 

dB) characteristics of the prototyping preamplifier and programmable buffer circuit in the 

frequency range of 100 kHz to 40 MHz at 200kHz intervals. The magnitude of the 

transfer function (S21) response for the prototyping preamplifier, shown in Figure 4.12, 

exhibited a uniform response ( 3.0± dB) over the entire frequency range and its phase, 

shown in Figure 4.13, was found to be approximately 180 degree shift at the low 
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frequency and decreased when the frequency increased. Also, Figure 4.14 shows the 

magnitude of transfer function (S21) response for the prototyping programmable buffer 

circuit that featured a very flat frequency response, to within 25.0± dB, in the frequency 

range 100 kHz – 40 MHz. The phase of prototyping programmable buffer circuit was 

around 0 degree shift at the low frequency and decreased with increasing frequency as 

shown in Figure 4.15. These results verified the unity gain objective of both the 

prototyping preamplifier and programmable buffer circuit. 

 

The frequency response of the needle-type hydrophone with the preamplifier, shown in 

Figure 4.16, shows the sensitivity response somewhat higher (nearly 1 dB) in the 

frequency range from 2 MHz to 26 MHz than the frequency response without the 

preamplifier. In comparison to the membrane-type hydrophone, which has a uniform 

frequency response ( 4± dB), the needle-type exhibits response that is not really uniform 

( 7± dB). Also, the frequency response of the membrane-type hydrophone with the 

preamplifier had somewhat higher sensitivity, which is around 0.5 dB in the frequency 

range between 2 MHz to 16 MHz, compared to that without preamplifier as shown in 

Figure 4.17. This could be caused by loading effect of the hydrophone’s output without 

preamplifier that reduces the sensitivity. Also there is a significant finite amplitude 

distortion in the pressure wave especially at the low frequency, as mentioned in [2, 3]. 

 

In conclusion, the preamplifier and the programmable buffer circuit are useful devices in 

acoustic measurement chain. The prototyping preamplifier can perform an excellent 

impedance matching between the output impedance of the hydrophone and the input 
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impedance of the measuring instrument used to display or record the acoustic pressure-

time waveforms. It also increases the overall hydrophone’s sensitivity, which is 

beneficial in cases where the measured pressure amplitude is relatively low or when a 

significant finite amplitude distortion in the pressure wave is present [2, 3]. Moreover, the 

preamplifier prototype tested can eliminate the reflection effect from the transmission 

line phenomena. 

 

Visual Basic program was successfully employed to automatically execute On/Off 

function of the programmable buffer circuit. With the application of the programmable 

buffer circuit, whenever the calibration process is done, the signals exciting the acoustic 

source is automatically cut off. Therefore, the acoustic source, such as a very wideband 

transducer, is not overexposed for a prolonged period of time. 

 

When the programmable buffer circuit and the preamplifier are combined together and 

controlled via LabVIEW programs, the implemented circuit topology allows fully 

automatic determination of key acoustic output parameters of diagnostic ultrasound 

scanners, which determine the safety indicators such as Mechanical Index (MI) and 

Thermal Index (TI). 
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CHAPTER 6.0: FUTURE WORK 

 

Although the programmable preamplifier has been included in the acoustics 

measurements, improvements to the overall system could be made to enhance the 

measurement system’s performance. As already mentioned, the current programmable 

preamplifier could be used to operate in the frequency range between 100 kHz and 40 

MHz. However, many new clinical applications of ultrasound imaging will operate at 

frequencies greater than 40 MHz. Therefore, the frequency range of the preamplifier and 

programmable buffer assembly should be extended to 100 MHz. 

 

In terms of dynamic range, the existing programmable preamplifier was designed and 

could have been used to operate with a gain of one or 0 dB; however, in some 

applications the output signal from the hydrophone was relatively weak. Therefore, it is 

desirable to include 20 dB or 10x gain in the next improved prototype of the 

programmable preamplifier system. The programmable buffer circuit with adjustable 

gains, placed at position in Figure 6.1, would also offer a possibility to optimize dynamic 

range. 
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Figure 6.1: The measurement arrangement for an acoustics test with an adjustable 
programmable buffer circuit. 
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APPENDIX A: LIST OF SYMBOLS 
 

 
 
 
λ  Wavelength 

C  Capacitance 

CMR  Common Mode Rejection 

Ca  Internal capacitance of the hydrophone 

Cc   Parallel capacitance of hydrophone’s output connection cable 

Cp  Parallel capacitance 

Cpre  Input capacitance of the preamplifier 

DUT  Device under Test 

fSR  Frequency at which an output sinusoid with amplitude equal to the rated 

output voltage of the OP-AMP begins to show distortion due to slew-rate 

limiting 

IA  Instrumentation Amplifiers 

Im(Z)   Imaginary portions of the hydrophone’s complex impedance 

Im(Zel)  Imaginary components of the complex impedance of the measuring device 

La  Internal inductance of the hydrophone 

M  Sensitivity of the hydrophone being calibrated 

MI  Mechanical Index 

Mref  Sensitivity of the reference hydrophone 

Mc(f)  End-of-cable open-circuit sensitivity 
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ML(f)  End-of-cable loaded sensitivity of a hydrophone 

NA  Network Analyzer 

OP-AMPs Operational Amplifiers 

p  Free-field acoustic pressure at the hydrophone 

Qa  Charge produced by a hydrophone when received acoustic pressure 

R  Resistance 

Ra  Internal resistance of the hydrophone 

Rf  Feedback resistor 

Ri  Input resistor 

Rp  Parallel resistance 

Rpre  Input resistance of the preamplifier 

Re(Z)   Real portions of the hydrophone’s complex impedance 

Re(Zel)  Real components of the complex impedance of the measuring device 

SA  Spectrum Analyzer 

S21  Scattering parameters (transfer function) 

Sq  Hydrophone’s charge sensitivity 

Sv  Hydrophone’s voltage sensitivity 

TDS  Time Delay Spectrometry 

TI  Thermal Index 

U   Terminal voltages of the uncalibrated hydrophone 

Uref  Terminal voltages of the standard hydrophone 

V   Rated voltage 
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v  Voltage generated by the acoustic pressure incident on the sensitive 

element of the hydrophone 

Va Voltage produced by a hydrophone when exposed to acoustic pressure 

Vao Voltage appears at the impedance which includes the hydrophone 

impedances and the parallel capacitance (Cc) of the output connection 

cable 

Vi  Input Voltage 

Vo  Output Voltage 

Za  Internal impedance of the hydrophone 

Zao     Impedance includes the hydrophone impedances and the parallel 

capacitance (Cc) of the output connection cable 

Zpre  Input impedance of the preamplifier 
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APPENDIX B: VISUAL BASIC PROGRAM  
 
 
 

 
Visual Basic programming is employed to automatically execute On/Off function of the 

programmable buffer circuit. The program sends an ASCII character code 0 for Off stage 

and code 3 for On stage. These data are transferred via the RS232 serial port to Bitabug2 

controller. The Visual Basic source code is shown in the Table B1. This program 

responds to data at 9600 baud rates on COM2 Port. Default parameters are used for the 

serial port setup. This includes 8 data bits, 1 stop bit, and no parity.  
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Table B1: The Visual Basic source code 
 

 
Private Sub Command1_Click(Index As Integer) 
    If Command1(Index).Caption = "OFF" Then 
         Command1(Index).Caption = "ON" 
    Else 
         Command1(Index).Caption = "OFF" 
    End If 
     
    dat = 0 
    If Command1(0).Caption = "ON" Then dat = dat + 3  
         
    MSComm1.Output = Chr$(dat) 
 
End Sub 
 
 
Private Sub Form_Load( ) 
   MSComm1.Settings = "9600, n, 8, 1"  'Set Baud Rate 
   MSComm1.CommPort = 2             'Set the Comm Port 
   MSComm1.PortOpen = True           'Open the Comm Port 
   Form1.Visible = True              'Show the Interface 
 
End Sub 
 
 
 
 
Programming Result 
 

Figure B1 presents the result after running the Visual Basic source code in the Table B1. 

In order to switch from On to Off or from Off to On function, just click on the buffer 

output button.  
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Figure B1: The result screen of the Visual Basic after running the source code in the 
Table B1. 
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APPENDIX C: BOARD LAYOUT GUIDELINES 
 
 
 
 

C.1 Minimize the distance  

 

The distance from the power supply pins to 0.1µF decoupling capacitor for the OPA643 

and to 10µF bypass capacitor for the OPA355 should be less than 0.25 inches to avoid 

narrow power and ground traces, which minimize inductance between pins and the 

capacitors. 

 

C.2 Careful selection and placement of external components  

 

Careful selection and placement of external components will preserve the high frequency 

performance of the preamplifier and programmable buffer circuit. Metal film and carbon 

composition resistors are used in the prototypes. These types of resistors can provide 

good high frequency performance. Never use wirewound type resistors in a high 

frequency application. However, keep their leads and PC board trace length as short as 

possible since the output pin and inverting input pin are the most sensitive to parasitic 

capacitance; always position the feedback and series output resistor as close as possible 

to the output pin. Other network components, such as non-inverting input termination 

resistors, should also be placed close to the OP-AMP package. In the prototypes, double 

side component mounting is used and the feedback resistor are placed directly under the 
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OP-AMP package on the other side of the board between the output and inverting input 

pins in order to minimize parasitic capacitance. 

 

C.3 No socketing in a high speed OP-AMPs 

 

Several experiments indicated that socketing of both OPA643 and OPA355 OP-AMPs is 

not recommended. The additional lead length and pin-to-pin capacitance introduced by 

the socket can create an extremely troublesome parasitic network, which can make it 

almost impossible to achieve a smooth, stable frequency response. Best results were 

obtained by soldering the OPA643 and OPA355 onto the board directly.  

 


