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Abstract
On Homogenization and De-homogenization of Composite Materials

Chang (Karen) Yan

Albert S.D. Wang, Ph.D.

Composite homogenization is a modelling concept that allows the description of het-

erogeneous materials by constitutively equivalent, homogeneous ones. The concept is

universally applied to fibrous composites, resulting in many modelling approaches. But,

by homogenization, the composite is voided of its physical microstructure; elements that

may affect failure mechanisms physically are also voided. This fact often leads to diffi-

culties in failure theories formulated at the homogenized material scale.

De-homogenization is a reverse scheme in that the microstructure is restored, albeit

locally, back in the homogenized composite. Clearly, this is done after composite homog-

enization and field analysis of composite structures under global loading; so the micro

fields in the desired locations with restored microstructure can be recovered. The recov-

ered micro fields may then provide the needed information for some failure theories to be

formulated at the composite micro scale instead.

This thesis presents a unified modelling approach for homogenization (forward) and

de-homogenization (backward), applicable to unidirectional composite systems. Empha-

sis is placed on the uniqueness between the forward and the backward modelling processes;

so the desired micro fields are truly recovered within the confines of mechanics.

Micro fields in several laminates made of the UD systems are recovered; key effects

that influence failure mechanisms therein are studied. An inter-scale failure theory that

describes matrix cracking in laminates is then formulated, being based on the recovered
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micro-fields.

Laminate matrix cracking in several well-documented experimental studies are simu-

lated using the inter-scale theory. The simulation captures the major cracking character-

istics that are otherwise excluded in failure theories derived at the homogenized composite

scale.

The general concept of homogenization/de-homogenization is applicable to all com-

posite systems, where responses from micro-macro-global interactions are to be physically

described. The approach taken in the formulation of the inter-scale theory serves as an

example of both conceptual and practical importance.





Chapter 1: Introduction

1.1 Background

Advanced fiber-reinforced composite materials have been widely used in various load-

bearing structures, from sporting goods to aerospace vehicles. The ever-increasing pop-

ularity of fiber-reinforced composites is due largely to their lightweight, high strength,

and superior structural durability. Besides, these and many other functional properties

can be tailored through a proper composition of two essential constituents: the fiber and

the matrix. However, the spatial layout of the fibers in matrix-consolidated composites

often forms a complex fibrous network, an integral part of the composite microstructure

at the fiber-matrix scale. Of course, this microstructure plays a dominant role in forming

all the composite properties, including failure mechanisms.

In principle, property characterization of fibrous composites should be based on their

precise microstructures. In practice, however, the true microstructures of the composites

are often simplified in the characterization models, both geometrically and materially.

The degree of simplification depends on the desired engineering accuracy. In this con-

nection, the theory of homogenization [13, 14, 21, 42] is almost universally applied to

characterizing fibrous composite properties.

Composite homogenization is a mechanics based modelling scheme that transforms

a body of a heterogeneous material into a constitutively equivalent body of a homoge-

neous continuum. In principle, the transformation model should be built on the basis of

1
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the composite microstructure, along with the relevant physical laws. A set of effective

properties is obtained for the equivalent homogeneous continuum.

To fibrous composites, homogenization is an essential first step towards the design

and analysis of larger scale and load-bearing structures. The analysis of a class of multi-

directional laminates made of unidirectional fiber-reinforced laminas is a classical exam-

ple. In this case, the unidirectional laminas are first homogenized, each with a set of

effective properties. The laminate is then treated as a layered plate structure, capable

of carrying globally applied thermo-mechanical loads. In this regard, several composite

lamination theories [2, 46] and the ply-elasticity theories [39, 49] have been used to obtain

the stress/strain fields in the homogenized laminas. Since the laminates are homogenized

without micro structures, these stress/strain fields are termed as the macro stress/strain

fields.

When a certain laminate is loaded, failures often occur inside one or more laminas

and/or in the interface between two adjacent laminas. Traditionally, the computed macro

stress/strain fields in the laminas are used in forming failure theories for the observed

failures. Among the well known theories, the maximum stress [27], maximum strain [27],

and stress-polynomial criteria [24, 47] are widely applied. These failure theories are based

on the point stress state in the homogenized laminas, along with the assumptions that

a point strength limit(s) exists in the same laminas; i.e. failure occurs when the lamina

point stress state exceeds the strength limit(s) at that point.

Other failure criteria have been based on the concept of crack propagation [29, 33, 48].

In this case, finite crack-like flaws are artificially introduced to the homogenized lamina,

which can propagate when the stress state near the flaw is critical. Here, the introduced
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flaws are considered an effective property of the homogenized lamina.

Experimental correlations, however, could not validate the unique existence of either

the strength limit(s) or the finite flaw(s) as effective lamina properties. In fact, docu-

mented experiments [28, 45] revealed that the strength limit(s) of the homogenized lamina

can vary with a number of extrinsic factors, such as the geometry of the tested speci-

men and the test methods. Similarly, experimentally correlated effective flaw(s) in the

homogenized lamina can also vary with the same extrinsic factors [6].

The general view has been that material failures in laminates actually initiate at the

fiber-matrix (micro) scale, though the phenomenon is observed at the lamina (macro)

scale. The transition from the micro scale failure to the macro scale failure can be either

insidious or sudden depending on the material conditions existing in the microstructure.

In short, both the material and geometrical effects at the micro scale play a role in

this transition. Yet, many micro scale effects are self-equilibrating; and homogenization

involves volume averaging which eliminates all self-equilibrating effects. This is perhaps

the fundamental reason why the macro field based failure theories are unable to model

sublaminate failures consistently.

In recent years, there have been concerted efforts in developing a viable technique to

recover the micro fields in laminas of loaded laminates [26, 40, 53]. It is believed that the

micro fields may provide the needed information as to how a certain failure occurs and to

what extent the microstructure influences these events. A physical failure theory could

then be developed, based on the micro fields in the loaded laminates.

Though the actual micro fields in a certain loaded laminate can be obtained by a
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brute-force micromechanics analysis of the entire laminate, it is impractical if not im-

possible to do so in general practice. The only alternative is to follow the traditional

approach to homogenize the laminas first and compute the macro fields of the homoge-

nized laminas in laminates under global loads. Then, the actual micro fields in the laminas

where failure(s) is the suspect are recovered through a reversed process termed as ”de-

homogenization”. This process refers to the restoration of the composite microstructure

back in the lamina where failure is suspected; the micro fields are recovered through a

rigorous micromechanics analysis. In this regard, it is important to ensure the uniqueness

and precision between the homogenization and de-homogenization processes. Only then,

a physical theory could be developed for a certain failure that occurs in laminates.

1.2 Objectives and Scope

The objective of this thesis is two-fold:

(1) To develop a mechanics modelling methodology that can be applied to (a) homog-

enization of unidirectional lamina, with fewer simplifications and with precise mechanical

analysis, and (b) de-homogenization of the homogenized lamina in laminates that are

under external loads. Emphasis is placed on the uniqueness between the forward and the

reversed processes, so the recovered micro fields are true, or at least nearly true.

(2) To develop a failure theory for sub-laminate matrix cracking. The theory is based

on the lamina micro fields, which is recovered from the lamina macro field through the

de-homogenization process. The new theory, termed inter-scale failure model, is applied

to a number of known matrix cracking problems for which the macro field based failure

theories have not been general and/or adequate enough.
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In order to be problem-specific and give numerical results, the scope of the thesis is

limited to

(1) Unidirectional fiber-reinforced systems and their laminates.

(2) The interested failures are in a class of matrix dominated tensile cracking in

laminates under certain loading.

(3) Both the fibers and the matrix are assumed to be homogeneous and linearly elastic.

(4) The composite microstructure contains no defects and/or flaws, though matrix

cracking is governed by a random material strength defined at the micro scale.

Numerical results in all illustrative examples are based on a E-glass/epoxy unidirec-

tional system.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows.

In Chapter 2, a critical review of the currently available composite homogenization

models for unidirectional fiber-reinforced systems is presented. In this regard, it should be

noted that all prior homogenization models are formulated with the purpose of obtaining

the effective properties of the composite; recovery of the composite micro fields is not

intended. Consequently, most of the current models are constructed based on a single-

fiber RVE(represented volume element), a modified single-fiber RVE, or an equivalent

single-fiber RVE.

The review focuses on the implications of the concept of statistical homogeneity,

the assumption of material symmetry, and the requirements imposed on the model con-

struction. An in-depth analysis of each model is then conducted, as to the sources of
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inconsistency, and hence the limit in application. In particular, the mechanics aspects in

the model formulation and execution are examined within the confines of solid mechanics.

Sources of inaccuracy in the computed results are identified.

The review and the in-depth model analysis provide the necessary guidelines for the

formulation of a new model that should be devoid of most of the difficulties inherent in

the current models. The new model should be capable of obtaining accurate effective

composite properties in the homogenization process as well as recovering the micro fields

in loaded laminates through the process of de-homogenization.

This new modelling approach is outlined in Chapter 3. Here, the model is based

on a multi-fiber RVE whose selection is in accord with the actual fiber packing in the

composite. In this way, the RVE truly reflects the microstructure of the composite at the

fiber-matrix scale, and satisfies the requirements of the underlying statistical homogeneity

and material symmetry assumptions. In addition, a center element containing one or

more fibers is identified inside the RVE. It is then demonstrated that the micro field in

the center element is insensitive to the details of the boundary conditions on the RVE, as

long as they are statically equivalent; exact or nearly exact micro fields can be obtained

inside the center element, provided the RVE is treated rigorously via a micromechanics

analysis.

The effective properties of the composites are obtained through the usual boundary-

value solution methods applied to homogenization. Numerical examples are presented

to demonstrate the utility of this modelling technique, along with contrasting results

rendered from other prevailing models.

Chapter 4 is devoted to the recovery of the micro fields in loaded laminates, using the
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same multi-fiber RVE model. Here, it is first demonstrated that exact or nearly exact

micro fields in loaded laminates can be recovered uniquely through a de-homogenization

process. The latter involves a combination of rigorous laminate analysis and microme-

chanics solutions to the selected RVE.

Micro fields in several laminates are recovered. Some important material and geo-

metric factors at the micro scale are studied, including the effects of local fiber-to-fiber

interaction, the thermal residual stresses, the presence of micro defects, interaction with

ply level constrains, and the response to global loading. The main emphasis is placed

on the micro effects that influence the formation and propagation of matrix cracking in

laminates under load.

An inter-scale failure theory is formulated in Chapter 5. The theory is based on the

recovered laminate micro fields that contain the aforementioned micro effects. Material

condition governing the onset of matrix cracking is based on the assumption that a tensile

strength of random magnitude is present between two adjacent fibers, and matrix tensile

cracking at the macro scale is a probabilistic event involving separation of collimated

fibers in a finite volume, e.g. the size of the selected RVE, where the micro field is

recovered and possible matrix cracking may occur.

The formulated inter-scale theory is applied to explain the observed matrix cracking

events in several past experiments that are not explained consistently by any failure

theory based on the laminate macro fields. The inter-scale theory consistently explains

these events with predictive capability; it requires only a single material condition to be

characterized at the fiber-matrix scale. A Weibull statistics based experiment for the

characterization of this material condition is suggested.
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The inter-scale theory serves as a connection between the micro scale material elements

and the macro scale elements. This is clearly seen in the events of matrix dominated

failures in laminates.

Conclusions from this study and recommendations for future research are discussed

in Chapter 6.



Chapter 2: The Homogenization Theory: A Brief Review

The homogenization theory is the foundation of the mechanics of composite materials.

This chapter presents a brief review of the theory, focusing on the basic assumptions and

the prevailing models that have been developed for advanced fiber-reinforced composite

systems.

Although the homogenization theory has also been applied to systems having time-

dependent and/or non-linear characteristics, the present review is confined to linearly

elastic systems.

2.1 Fundamental Elements in Homogenization

Consider the elemental unidirectionally fiber-reinforced (UD) composites. It consists of a

matrix material in which continuous and aligned fibers are embedded. Thus, at the fiber-

matrix scale, a distinct geometrical and material structure can be described. But in most

engineering applications, the composite is assumed to be one statistically homogeneous

material with a certain material symmetry. These are the fundamental assumptions in

the theory of composite homogenization.

2.1.1 Statistical Homogeneity

For heterogeneous media, such as composites, the physical properties vary from point to

point. In general, such media possess randomly distributed properties. For a complete

9
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description of the physical properties, each is a random spatial function, and all of their

joint probability distributions must be known. An “average” is defined in the ensemble

sense over a selected sample volume of the medium. A statistically homogeneous medium

is one whose property “averages” are independent of location of the sample volume. Thus,

the sample volume is necessarily representative of such medium in a statistically sense.

In composite literature, such a sample volume is known as representative volume

element (RVE) [14, 21].

The statistical homogeneity assumption transforms heterogeneous composites to ho-

mogeneous ones; the average properties are termed as “effective properties”. Henceforth,

the conventional theories for continua can be used in the analyses of composites.

2.1.2 Material Symmetry

Material symmetry is another assumption to be made in conjunction with the statistical

homogeneity assumption. For fibrous composites, symmetry is often inferred from the

material and geometrical features at the fiber-matrix scale. For the UD system, three

types of symmetry are usually considered depending on the fiber packing patterns or fiber

arrays. Namely, orthotropy is assumed for a rectangular fiber array. Square symmetry is

assumed for a square array. Transverse isotropy is assumed for a hexagonal array, or for

a completely random array. [14, 21, 55]

The symmetry assumption, in effect, minimizes the number of directionally dependent

properties for the homogenized composites. For linear elastic solids, complete anisotropy
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requires 21 independent constants; orthotropic symmetry requires 9 independent con-

stants; square symmetry requires 6 independent constants; and transverse isotropic sym-

metry requires 5 independent constants.

2.1.3 The Representative Volume Element (RVE)

The validity of the homogeneity and symmetry assumptions depends on the detailed

microstructure at the fiber-matrix scale and thus the selection of the RVE [52].

Figure 2.1(a) shows a magnified cross-section of a UD graphite-epoxy composite. Over

this cross-section, the average fiber volume content Vf is 0.71. At this scale, the fibers

are not uniformly distributed. The local value of Vf can vary with the size and location

of the sample volume over which Vf is computed. Figure 2.1(b) shows the dependence of

Vf on the sample volume size. The values of Vf scatter greatly when the volume-element

is small; the scatter decreases as the sample volume increases. In this case, Vf converges

to 0.71 when the sample volume approaches the size containing 25 or more fibers. In the

theory of homogenization, Vf is the key parameter on which other properties are based.

Thus, in principle, the minimum sample volume over which Vf is independent of the

sample location should be considered as the RVE.

The existence of material symmetry in the selected RVE depends on the fiber packing

details as well as the sample size. For the composite shown in Figure 2.1 (a), fiber packing

is random; here, a transverse isotropy may be assumed; i.e. a material isotropy in the

composite cross-section may exist, statistically speaking. To verify this assumption, let

a circular sample of radius of 3df (df being the fiber-diameter) be randomly taken from

the composite cross-section. This sample would then contain about 20 fibers. A local x-y
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coordinate is fixed at the center of the circle; the first and second area moments produced

by the fiber cross-sections are computed. For isotropic symmetry, all first moments must

vanish and the second moments (moments of inertia) Ixx = Iyy and Ixy = 0. Moreover,

these conditions must be met for any arbitrary rotation of the x− y frame in the cross-

sectional plane. Figure 2.1(c) shows the computed second moments Ixx, Iyy and Ixy

versus the x-y rotation angle from 0 to 2π. In this case, conditions for plane isotropy are

met for a sample containing 20 or more fibers.

Based on the above, a ”proper” RVE containing 25 fibers or more meets the statistical

homogeneity and transverse isotropy requirements. Any RVE with a size smaller than

this would not meet the requirements.

2.1.4 Effective Elastic Moduli

When a composite specimen is under external load, micro stresses and strains are induced

throughout the specimen. Ideally, the micro fields should be computed exactly, given the

specimen and its fiber/matrix microstructure. According to the statistical homogeneity

assumption, an appropriate RVE can be defined and isolated. On the RVE boundary,

there exist definitive surface displacements and surface tractions. Within the RVE, there

exist definitive stress field σij and strain field εij .

Through homogenization, the composite specimen is regarded as a body of an effective

homogeneous material, whose mechanical behavior is described by a definitive constitutive

law. This constitutive law can be determined based on the detailed fields in the selected

RVE through an “averaging” procedure:

Specifically, if the exact micro fields σij and εij in the RVE are known under the
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applied load, the averaged stresses and strains over the RVE are given by:

σ̄ij =
1
V

∫

V
σijdV (2.1)

ε̄ij =
1
V

∫

V
εijdV, (2.2)

where V is the volume of the RVE [1]. The averages are then treated as the effective stress

and strain fields in the homogenized RVE. The relations between σ̄ij and ε̄ij determine

the “effective” constitutive law. When linear elasticity is assumed, the generalized Hook’s

law applies:

σ̄ij = Cijklε̄kl, (2.3)

or

ε̄ij = Sijklσ̄kl, (2.4)

In the above, Cijkl and Sijkl are the effective stiffness and the effective compliance for the

homogenized composite respectively.

The number of independent constants in Cijkl is determined by the assumed symme-

try. For UD composites, orthotropic, square, and transversely isotropic symmetries may

be assumed. Figure 2.2 shows the principal material coordinate axes for a typical UD

composite, where x1 is in the fiber direction, and x2, x3 are in the transverse plane. The

generalized Hook’s law for orthotropy in the (x1, x2, x3) frame can be expressed in the



14

contracted notation, involving 9 independent constants:




σ1

σ2

σ3

σ4

σ5

σ6




=




C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C55 0

C66







ε1

ε2

ε3

ε4

ε5

ε6




, (2.5)

where ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε31, and ε6 = 2ε12.

In the special cases where the fibers are packed in a square array, a square symmetry

can be assumed. This results in C22 = C33, C12 = C13, C55 = C66. The number of

independent constants reduces to six.

In the case of transverse isotropy, C44 =
C22 − C23

2
, reducing the number of indepen-

dent constants to five.

In practice, the so-called engineering constants are used, which can be expressed in

terms of Cij :

E11 =
C

C22C33 − C2
23

E22 =
C

C33C11 − C2
13

E33 =
C

C11C22 − C2
12

ν12 =
C13C23 − C12C33

C2
23 − C22C33

ν13 =
C12C23 − C13C22

C2
23 − C22C33

(2.6)

ν23 =
C12C13 − C23C11

C2
13 − C33C11
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G23 = C44

G31 = C55

G12 = C66,

where

C = C11C22C33 − C11C
2
23 − C22C

2
13 − C33C

2
12 + 2C12C23C13. (2.7)

Alternatively, the generalized Hook’s law can be expressed in terms of the effective

compliances. For the orthotropic case,




ε1

ε2

ε3

ε4

ε5

ε6




=




S11 S12 S13 0 0 0

S22 S23 0 0 0

S33 0 0 0

S44 0 0

S55 0

S66







σ1

σ2

σ3

σ4

σ5

σ6




. (2.8)

The engineering constants can also be given in terms of Sij :

E11 =
1

S11

E22 =
1

S22

E33 =
1

S33

ν12 = −S12

S11

ν13 = −S13

S11
(2.9)
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ν23 = −S23

S22

G23 =
1

S44

G31 =
1

S55

G12 =
1

S66
.

2.1.5 Mechanics Procedures in Homogenization

Determination of the elastic constants Cij in (2.5), or the engineering constants in (2.6),

depends on the description of the selected RVE, the manner in which the boundary

conditions are imposed, and the rigor in solving the boundary value (B-V) problems for

the micro fields. This brings out two major difficulties in obtaining accurate Cij .

First of all, the microstructure of the UD composites at the fiber-matrix level may

contain random elements other than the matrix and fibers, e.g. coating, fiber-matrix

interface disbonds, matrix micro-voids, etc.. It is difficult to describe the geometry and

the material in such a microstructure in precision; in addition, microstructures are often

simplified in order to make the associated B-V problems mathematically tractable. For

instance, fibers are assumed to be perfectly round; have the same diameters; each fiber

is bonded perfectly to the matrix , etc.

Another difficulty is that, when the RVE is isolated from the composite, mixed stresses

and strains (or displacement) are distributed on its boundary. The exact distribution of

these boundary agencies are unknown until the exact micro fields are computed. Thus,

it is almost always necessary to impose statically equivalent boundary conditions on the

RVE.
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Figure 2.3 illustrates the commonly followed procedure for determining the effective

moduli for the UD composites. First, the UD composite cross-section is examined at

the fiber-matrix scale, so as to guide the selection of the RVE with a proper size and

with a relevantly assumed material symmetry. A set of independent boundary conditions

sufficient to determine the required number of constants in Cij are then imposed on

the RVE. The associated boundary-value problems are solved for the micro fields. The

averaging procedure is performed over the RVE to obtain σ̄ij and ε̄ij , as in Equations

(2.1) and (2.2). Finally, the effective constants in Cijkl or Sijkl are determined within the

premise of Equation (2.3) or (2.4).

In the literature, many models have been advanced for the evaluation of the effec-

tive moduli for UD composites. Depending on the details of the selected RVE and the

rigorousness in the B-V solution schemes, these models can be grouped in four different.

These will be discussed in the following section.

2.2 Review on Existing Homogenization Models

In this section, the chronological development on the selection of RVE for UD compos-

ites and the analysis methods for the resulting B-V problems are briefly reviewed and

discussed.

2.2.1 Rule-of-Mixture

The rule-of-mixture models are derived from the mechanics of material approach [27,

46]. Rule-of-mixture embodies several simplifying assumptions regarding the mechanical

behaviors of the composites. A typical RVE is shown in Figure 2.4. It consists only of
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the fiber and matrix. This representation is applicable to both the x1 − x2 and x1 − x3

planes, and it is valid for a transversely isotropic symmetry. The only geometric parameter

defining the microstrucutre in the RVE is the fiber volume fraction Vf . The details of the

fiber packing in the transverse x2 − x3 plane are irrelevant.

On the basis of this RVE, one can predict four elastic constants: E11, E22, ν12, and

G12. The associated boundary conditions on the RVE are: (a) an axial strain ε1 in the

fiber direction; (b) a transverse stress σ2 normal to the fiber direction; and (c) a pure

shear stress τ12. Condition (a) yields the longitudinal Young’s modulus E11 and the axial

Poisson’s ratio ν12:

E11 = EfVf + EmVm = EfVf + Em(1− Vf ) , (2.10)

ν12 = νfVf + νmVm = νfVf + νm(1− Vf ) . (2.11)

where Vf and Vm are the volume fractions of the fiber and matrix, respectively. Ef and

Em are the Young’s modulus for the fiber and matrix; and νf and νf are the Poisson’s

ratio of the fiber and matrix, respectively.

Condition (b) and (c) yield respectively the transverse Young’s modulus E22 and the

axial shear modulus G12:

1
E22

=
Vf

Ef
+

Vm

Em
, (2.12)

1
G12

=
Vf

Gf
+

Vm

Gm
, (2.13)

where Gf and Gm are the shear modulus of the fiber and matrix, respectively.

The Rule-of-mixture provides a quick estimation of the effective moduli in a simple
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way. The four constants can describe the composites under plane-stress conditions. Since

the fiber packing in the x2 − x3 plane is omitted in the RVE description, the effective

moduli in the x2−x3 plane cannot be determined. Moreover, in solving the B-V problems,

one-dimensional stress state is assumed. These simplifications lead to inaccurate micro

stress and strain fields in the RVE.

2.2.2 Variational Bounding Models

The variational approach is an attempt to determine the effective moduli for the composite

as a three dimensional (3-D) continuum. It involves the application of the minimum

energy principles to set the bounds for the effective moduli. Development of this approach

is as follows:

Suppose the exact boundary conditions on the selected RVE could be specified; the

induced micro fields can be computed exactly. The averaged stresses σ̄ij and strains ε̄ij

are expressed through (2.1) and (2.2); and the strain energy stored in the RVE is given

by

U =
∫

V

1
2
σijεijdV , (2.14)

where V is the volume of the RVE.

Now, for the composite (i.e. the RVE) as a continuum, the stresses and strains in the

RVE under the same boundary conditions are given by (2.1) and (2.2); the associated

strain energy stored therein is given by

Ū =
∫

V

1
2
σ̄ij ε̄ijdV . (2.15)
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Now, if the energies in (2.14) and (2.15) are equal, the effective constants in the homog-

enized RVE are uniquely determined.

Since the exact boundary conditions on the RVE are unknown before the true mi-

cro fields are obtained, a linear displacement condition may be prescribed on the RVE

boundary

u0
i = ε0ijxj , (2.16)

where ε0ij are the boundary strains. This results in a uniform strain field ε0ij in the homog-

enized RVE. Moreover, the associated stress field is computed through the generalized

Hook’s law: σ̄ij = Cijkl ε
0
kl. The field is also uniform throughout the RVE. The strain

energy stored therein is given by

Ū ε0 =
∫

V

1
2
Cijklε

0
klε

0
ijdV . (2.17)

Now, if the micro fields in the RVE under the same boundary condition in (2.16) is

solved, the stored energy U ε0 is computed using (2.14).

It follows from the principle of minimum potential energy that

Ū ε0 ≤ U ε0 . (2.18)

By the equality in (2.18), the upper bounds for the effective stiffness in Cijkl are deter-

mined.
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Alternatively, a uniform surface traction may be prescribed on the RVE:

T 0
i = σ0

ijnj . (2.19)

This produces a uniform stress field σ0
ij in the RVE as a continuum. The corresponding

strain field is computed via (2.8): ε̄ij = Sijkl σ
0
kl. The latter is also uniform throughout

the RVE. The stored strain energy is given by

Ūσ0
=

∫

V

1
2
Sijklσ

0
klσ

0
ijdV . (2.20)

The micro fields in the RVE under the same boundary condition of (2.19) can be

solved rigorously; the stored strain energy Uσ0
is computed again via (2.14).

It follows from the principle of minimum complementary energy that

Ūσ0 ≤ Uσ0
. (2.21)

The upper bounds for the effective compliance in Sijkl are determined by the equality of

(2.21). The inverse of S yields C; the upper bounds for Sijkl correspond to the lower

bounds for Cijkl.

Paul [37] was apparently the first to use the bounding procedure to determine the

moduli of alloyed metals. Hashin [13], and Hashin and Shtrikman [17] derived bounds

for a matrix material containing spherical inclusions. Hill [22] treated the UD composites

characterized only by Vf ; the bounds for E11, ν12, and K23 were obtained. Hashin and

Rosen [16] considered the UD composites as a composite cylinder assembly(CCA), and
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derived bounds for all 5 effective moduli under the assumption of transversely isotropic

symmetry.

In the CCA model, each fiber of radius rf is surrounded by a concentric matrix

shell of the outer radius rm, where rf and rm are connected through Vf =
r2
f

r2
m

. The

RVE contains a single fiber with a concentric matrix shell, as depicted in Figure 2.5.

Two types of fiber packing can be represented by the CCA model: the hexagonal array

with identical fibers and the random array with fibers of arbitrary diameters. Figure

2.6(a) shows the hexagonal array, where V1 denotes the volume of the composite cylinder

and V2 denotes the remaining volume. Figure 2.6 (b) shows the random array, where the

composite cylinders have irregular shapes. The length of the cylinders are large compared

to fiber diameter; fiber end effects are ignored in the Saint-Venant sense. The resulting

B-V problems are reduced to the plane strain or the generalized plane strain types.

For transverse isotropy, five unique sets of B.C.s (either stress or displacement) are

specified in order to determine the five independent constants. The constants selected

by Hashin and Rosen [16] are K23, G23, G12, E11, and C11. K23 is the plane strain bulk

modulus of the composite. The corresponding boundary conditions for determining each

of the five constants are listed in Table (2.2.2).

Under each B.C., the micro stress and strain fields in the RVE can be obtained

analytically owing to axial symmetry of the RVE. Furthermore, elastic constants are

decoupled in the strain energy expression.

In the case of the hexagonal array, the upper and lower bounds for the aforementioned

five moduli are obtained. The detail expressions are found in [16].

In the case of random array, the composite is represented by an assembly of composite
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Table 2.1: Five effective elastic moduli with corresponding B.C.s in the CCA model,
after [16].

Strain Displacement Stress Traction
B.C. B.C. B.C. B.C.

Plain-strain ε011 = 0 u0
1 = 0 σ0

11 6= 0 T 0
1 6= 0

bulk modulus ε022 = ε0 u0
2 = ε0 x2 σ0

22 = σ0 T 0
2 = σ0 x2

K23 ε033 = ε0 u0
3 = ε0 x3 σ0

33 = σ0 T 0
3 = σ0 x3

ε0ij = 0, σ0
ij = 0,

i 6= j i 6= j

Transverse ε0ii = 0, u0
1 = 0 σ0

ii = 0, T 0
1 = 0

shear modulus i = 1, 2, 3 u0
2 = γ0 x3/2 i = 1, 2, 3 T 0

2 = τ0 x3

G23 ε012 = 0 u0
3 = γ0 x2/2 σ0

12 = 0 T 0
3 = τ0 x2

ε031 = 0 σ0
31 = 0

ε023 = γ0/2 σ0
23 = τ0

ε032 = γ0/2

Longitudinal ε0ii = 0, u0
1 = γ0 x2/2 σ0

ii = 0, T 0
1 = τ0 x2

shear modulus i = 1, 2, 3 u0
2 = γ0 x1/2 i = 1, 2, 3 T 0

2 = τ0 x1
G12 ε012 = γ0/2 u0

3 = 0 σ0
12 = τ0 T 0

3 = 0
ε031 = γ0/2 σ0

31 = τ0

ε023 = 0 σ0
23 = 0

Longitudinal ε011 = ε0 u0
1 = ε0 x1 σ0

11 = σ0 T 0
1 = σ0 x1

Young’s ε022 = −µ ε0 u0
2 = −µ ε0 x2 σ0

22 = 0
modulus E11 ε033 = −µ ε0 u0

3 = −µ ε0 x3 σ0
33 = 0

ε0ij = 0, σ0
ij = 0,

i 6= j i 6= j

T 0
2 = 0, T 0

3 = 0, for both displacement and traction B.C.

Modulus ε011 = ε0 u0
1 = ε0 x1 σ0

11 = σ0 T 0
1 = σ0 x1

C11 ε022 = 0
ε033 = 0
ε0ij = 0,

i 6= j

u0
2 = 0, u0

3 = 0, for both displacement and traction B.C.
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cylinders, having varying fiber diameters but the same Vf . The outer irregular surfaces

of composite cylinders are approximated by circular cylinders. The remaining volume

is filled out progressively by composite cylinders of smaller and smaller cross sections.

Again, the RVE contains a single fiber with a concentric matrix shell, although the

diameter of the fiber is arbitrarily small or large. The same set of boundary conditions

are applied; the micro fields in each B-V problems are solved exactly. In this case, except

for G23, the bounds for K23, G12, E11, and C11 coincide. They are given in [15], as

K23 = Km +
Vf

1
Kf −Km

+
Vm

Km + Gm

(2.22)

E11 = Em Vm + Ef Vf +
4 (νf − νm)2Vm Vf

Vm

Kf
+

Vf

Km
+

1
Gm

(2.23)

G12 = Gm +
Vf

1
Gf −Gm

+
Vm

2Gm

(2.24)

C11 = E11 + 4 µ2 K23 . (2.25)

In Equation (2.25), µ is a part of the boundary condition. Physically, µ is the axial

Poisson’s ratio ν12, see Table 2.2.2. It is evaluated along with E11 under the conditions

T 0
2 = 0 and T 0

3 = 0. Its expression is

µ = ν12 = νm Vm + νf Vf +
(νf − νm)(1/Km − 1/Kf )Vm Vf

Vm

Kf
+

Vf

Km
+

1
Gm

. (2.26)
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The bounds for G23 are

Gup
23 = Gm

(
1 + α V 3

f

)
(ρ + β1 Vf )− 3Vf V 2

m β2
1(

1 + α V 3
f

)
(ρ− Vf )− 3Vf V 2

m β2
1

(2.27)

Glow
23 = Gm


1 +

Vf

1
γ − 1

+
Vm

1 + β1


 , (2.28)

where

α =
β1 − γ β2

1 + γ β2

ρ =
γ + β1

γ − 1

γ =
Gf

Gm
(2.29)

β1 =
1

3− 4νm

β2 =
1

3− 4νf
.

The related transverse moduli E22 and ν23 also have bounds as they are related to G23

[16]. In Equations (2.22-2.29), Vf and Vm are the volume fraction of fiber and matrix

respectively; Ef and Em, the Young’s moduli; νf and νm, the Poisson’s ratios; Gf and

Gm, the shear moduli; Kf and Km, the bulk moduli.

Hashin and Rosen’s CCA model gives the upper and lower bounds for the five moduli

in the case of the hexagonal array. In the case of the random array, approximated by

CCAs with arbitrary small diameters to fill the voids, it leads to coincided bounds for 4

moduli and a set of bounds for G23. It should be noted that, when the bounds coincide,

it implies that the uniform displacement and traction boundary conditions prescribed on
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the RVE are equivalent, or, they mutually produce each other. Moreover, the respective

micro fields obtained are the same. However, because the RVE contains only a single fiber,

interactions with neighboring fibers are omitted. Hence, the computed micro fields are

not the true micro fields in the composite. Consequently, the effective moduli computed

are not accurate in the logical sense, even if the bounds coincide.

2.2.3 Self-Consistent Model

The “self consistent model” is aimed to determine unique solutions for the effective moduli

in a heterogeneous medium. Here, the selected RVE is embedded in the homogenized

medium whose properties are to be determined. The calculation procedures are similar

to that described previously. The only difference is that the applied load is now prescribed

in the far field of the homogenized medium.

The model was first applied to model polycrystals by Hershey [20], and Budiansky and

Wu [3]. For UD fiber-reinforced composites, Hill [23] used a single fiber embedded in an

unbounded effective medium; the effective moduli were computed by assuming transverse

isotropy. Hermans [19] considered a fiber surrounded by a matrix shell as the basic RVE,

which is in turn embedded in the effective composite, see Figure 2.7. Hermans was able

to obtain an approximate solution for G23, due to inaccuracy in the micro field solution.

Christensen and Lo [4] used the same model and solved the stresses and strains in the

RVE exactly; so a unique solution for G23 was obtained.

The 3-phase self-consistent model provides unique solutions for all of the five effective

elastic moduli. In addition, the fiber-to-fiber interactions are included in the average

sense by surrounding infinite homogenized medium. Still, the representation of the RVE
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is inexact; the computed effective moduli are somewhat approximate.

2.2.4 Periodic Model

The periodic model is developed for the so-called “model” composites, whose fiber packing

exhibits a certain periodicity in the x2−x3 plane. Examples includes rectangular, square,

and hexagonal arrays. For these arrays, the smallest repeating element is taken as the

RVE, which in most cases contains a single fiber. When the composite specimen is

subjected to a uniform far field loading, each and every RVE will undergo identical

deformation; a certain periodicity then exists in the displacement, stress and strain fields.

When the RVE is isolated from the specimen, periodic boundary conditions are prescribed

in terms of both displacements and tractions. Clearly, the description of, and the solution

to the B-V problem must be exact; the compatibility and continuity between the isolated

RVE and its neighboring ones are preserved.

Heaton [18] described the compatible displacements and traction boundary conditions

on the RVE for a square array. Aboudi [1] analyzed a similar RVE containing a fiber of

square cross-section. Sun and Vaidya [42] detailed the periodic displacement boundary

conditions for composites of square and hexagonal arrays under various far field loading

conditions. In most cases, the micro fields need to be solved numerically by either the

3-D finite element method [42] or the asymptotic solution method [25, 44]. However, the

effective constants are multiply coupled in each of the applied far-field loading conditions.

Yuan, et al. [55] treated the UD composite with a rectangular array where orthotropic

symmetry is assumed. Six sets of far-field loading conditions are prescribed and the

corresponding boundary conditions on the isolated RVE described accordingly. In each
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case, the resulting B-V problem could be formulated in the generalized plane strain field

(in the x2 − x3 plane).

Figure 2.8 shows the RVE cross-section in the x2−x3 plane for the rectangular array.

The size of the RVE is 2a × 2b. The following periodic boundary conditions are specified:

ui = ε0ij xj + u∗i , u∗i is periodic on ∂V, i, j = 1, 2, 3 (2.30)

ti = σ0
ij nj is anti− periodic on ∂V, i, j = 1, 2, 3 . (2.31)

In the above, ui is the displacement vector expressed in terms of the far-field uniform

strain ε0ij ; u∗i is the periodic part of ui. The latter is a self-equilibrated part of the micro

field solution; it does not contribute to the homogenized macro fields [38].

When the above B-V problem is solved by a numerical method, e.g. via a finite

element method, the conditions in (2.30) and (2.31) can be represented by

ui(P2)− ui(P1) = ε0ij [xj(P2)− xj(P1)] , (2.32)

and

(ti)P2 = −(ti)P1 . (2.33)

P1 and P2 are a pair of corresponding points on the RVE bounding surface, as shown in

Figure 2.8.

Table 2.2 lists the detailed far-field uniform strain, the corresponding displacement

and traction boundary conditions on the RVE for each of the six sets of loading. Note



29

that the first set determines the constants C11, C12, and C13; the second set determines

C22 and C23; the third to sixth sets determine C33, C44, C55, and C66, respectively.

A simple reduction can readily be made for composites of a square array, since the

size of the RVE is then 2a × 2a. Thus, Table2.2 can be used for the square array by

setting a = b. The third and fifth sets of loadings are redundant; so the effective constants

C33 = C22 and C55 = C66. The first set yields C13 = C12.

Recently, Li [32] applied the concept of translational symmetry to describe the periodic

boundary conditions for UD composites having a square or a hexagonal array. Figure

2.9 displays the RVE for the square array and the mutually orthogonal translational

symmetry axes in the x2 − x3 plane. The RVE for the hexagonal array is shown in

Figure 2.10, along with the three axes of translational symmetry. As mentioned before,

square symmetry is assumed for the square array; transverse isotropy is assumed for

the hexagonal array. Details in the required sets of far-field loading, the corresponding

periodic boundary conditions on the RVE, and the effective constants to be determined

in each loading set are presented in Appendix A.1. It should be noted that the resulting

B-V problems are three dimensional in nature. A 3-D numerical computational routines

is needed to solve the micro fields.

For“model” composites with periodic fiber packings, it is possible to describe compat-

ible displacement and traction boundary conditions on the isolated RVE, for each set of

admissible far-field loading condition. If the resulting B-V problem is solved exactly, the

computed micro fields in the RVE are the same as the true micro fields that actually exist

in the composite. Consequently, the computed effective constants for the homogenized

composite are exact. The only limitation is that the assumed periodicity in the fiber
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Table 2.2: Periodic boundary conditions and corresponding effective constants, after [55]

Elastic and Far-field Displacement Traction
mathematic uniform conditions conditions
constants strains on RVE on RVE

C11 ε11 = ε011 u2(a, x3) = u2(−a, x3) σ22(a, x3) = σ22(−a, x3)
C12 ε22 = 0 u3(a, x3) = u3(−a, x3) σ23(a, x3) = σ23(−a, x3)
C13 ε33 = 0 u2(x2, b) = u2(x2,−b) σ33(x2, b) = σ33(x2,−b)

(E11) ε0ij = 0 u3(x2, b) = u3(x2,−b) σ23(x2, b) = σ23(x2,−b)
(ν12) i 6= j u1(x1, x2, x3) = ε011x1

(ν13) i, j = 1, 2, 3

C22 ε11 = 0 u2(a, x3) = u2(−a, x3) + 2aε022 σ22(a, x3) = σ22(−a, x3)
C23 ε22 = ε022 u3(a, x3) = u3(−a, x3) σ23(a, x3) = σ23(−a, x3)

(E22) ε33 = 0 u2(x2, b) = u2(x2,−b) σ33(x2, b) = σ33(x2,−b)
(ν23) ε0ij = 0, u3(x2, b) = u3(x2,−b) σ23(x2, b) = σ23(x2,−b)

i 6= j, u1(x1, x2, x3) = 0
i, j = 1, 2, 3

C33 ε11 = 0 u2(a, x3) = u2(−a, x3) σ22(a, x3) = σ22(−a, x3)
(E33) ε22 = 0 u3(a, x3) = u3(−a, x3) σ23(a, x3) = σ23(−a, x3)

ε33 = ε033 u2(x2, b) = u2(x2,−b) σ33(x2, b) = σ33(x2,−b)
ε0ij = 0 u3(x2, b) = u3(x2,−b) + 2bε033 σ23(x2, b) = σ23(x2,−b)
i 6= j,

i, j = 1, 2, 3

C44 γ23 = γ0
23 u2(a, x3) = u2(−a, x3) σ22(a, x3) = σ22(−a, x3)

(G23) other εij = 0 u3(a, x3) = u3(−a, x3) + aγ0
23 σ23(a, x3) = σ23(−a, x3)

u2(x2, b) = u2(x2,−b) + bγ0
23 σ33(x2, b) = σ33(x2,−b)

u3(x2, b) = u3(x2,−b) σ23(x2, b) = σ23(x2,−b)
u1 = 0

C55 γ13 = γ0
13 u1(a, x3) = u1(−a, x3) σ23(a, x3) = σ23(−a, x3)

(G13) other εij = 0 u1(x2, b) = u1(x2,−b) + 2bγ0
13 σ23(x2, b) = σ23(x2,−b)

u2 = u3 = 0

C66 γ12 = γ0
12 u1(a, x3) = u1(−a, x3) + 2aγ0

12 σ23(a, x3) = σ23(−a, x3)
(G12) other εij = 0 u1(x2, b) = u1(x2,−b) σ23(x2, b) = σ23(x2,−b)

u2 = u3 = 0
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packing must exist.

2.2.5 Summary and Discussion

In this chapter, a review of the theory of composite homogenization, the basic assump-

tions and limitations, the chronological development of homogenization models and com-

putational methods has been presented. The theory of composite homogenization has

progressed from a rudimentary approximation to a more rigorous and scientific quest

over a period of 40 years.

For the most part, the homogenization models have employed an RVE that contains

only a single fiber, such as the CCA model and the 3-phase self-consistent model. The

single fiber varieties do not always meet the requirement of the underlying assumptions

of statistical homogeneity and material symmetry. Moreover, fiber-to-fiber interaction

effects are often omitted e.g. in the CCA model, or approximated e.g. in the 3-phase self-

consistent model. In these cases, the computed micro fields as well as effective moduli are

inexact. The periodic models enable exact descriptions of the boundary conditions on the

RVE and the fiber-to-fiber interactions. Though the micro fields and the effective moduli

can be determined exactly, the periodic models are limited to the so-called “model”

composites with periodic fiber arrays. In real composites, the fiber distribution almost

always exhibits a certain degree of randomness; periodicity in fiber packing does not exist.

Micro fields in loaded composite structures are increasingly desired because it is be-

lieved that failures in composites originate in the microstructure; hence, a detailed micro

field may provide the needed information for explaining composite failure. A rigorous
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composite homogenization model is essential for obtaining the exact micro fields in com-

posites.

In order to accomplish this objective, the homogenization model must be based on an

RVE that is truly representative of the actual composite, and consistent boundary condi-

tions must be prescribed when the RVE is isolated. Only then, exact micro field solutions

in the RVE can be obtained along with accurate effective moduli for the homogenized

composite.
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Figure 2.1: A graphite/epoxy UD composite (a) cross section; (b) dependence of Vf on
area-element over which Vf is computed;(c) Ixx, Iyy and Ixy versus the x-y rotation angle
from 0 to 2π, where Ixx, Iyy and Ixy are normalized by the polar moments of inertia of
the circular area, Ip = (π/2)(3df )4.
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Figure 2.2: A typical unidirectional composite referred to Cartesian coordinate system.
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Figure 2.3: Common procedure in composite homogenization process.
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Figure 2.6: Fiber packing: (a) hexagonal array of composite cylinders, (b) random array
of composite cylinders, after Hashin and Rosen [16].
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Figure 2.7: A 3-phase RVE model in Generalized Self Consistent Model(GSCM), after
Christen and Lo [4].
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(a) Composite with periodic array.
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Figure 2.8: UD composite with regular fiber packing: (a) periodic array (b) unit cell [55].



41

 

   

   

  

  

     

x2 

x3 

2b 

Figure 2.9: A square packing and the square unit cell -after [32].
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Figure 2.10: A hexagonal packing and the hexagonal unit cell -after [32].



Chapter 3: A Multi-Fiber RVE Model For Homogenization

A multi-fiber RVE model is described in this chapter. The model is developed to obtain

the exact micro fields in the RVE, and hence the exact effective moduli for the homog-

enized composites. Numerical examples are presented to illustrate the details in this

modelling approach.

3.1 The Multi-fiber RVE Model

For UD composites having random fiber packing, the RVE must contain sufficient number

of fibers in order to be consistent with the statistical homogeneity and material symmetry

assumptions. Furthermore, only a multi-fiber RVE can retain the exact effects of fiber-

to-fiber interaction. These points are discussed in Chapter 2 (see Section 2.1.1-2.1.3).

Once a proper RVE is selected, exact boundary conditions must be prescribed; so the

resulting B-V problems can be solved. However, this is not possible because the exact

boundary stresses and displacements are integral parts of the B-V problem solutions in

the first place. With the multi-fiber RVE, the bounding method of Hashin and Rosen

[16] can still be applied by specifying statically equivalent uniform boundary conditions;

approximate RVE micro fields are obtained. Owing to the Saint Venant’s principle, the

interior of the RVE is insensitive to the details of the boundary conditions, as long as

they are statically equivalent. Hence, the micro fields in the interior are exact, or nearly

exact.

42
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The details in the model development are given in the following:

According to mechanics principles, uniformly applied far field load would induce the

uniform stress and strain in the homogenized composite. In truth, the exact micro stresses

and strains on the RVE boundary are not uniform; let them be expressed in the form:

εij = ε0ij + δεij on ∂V, (3.1)

σij = σ0
ij + δσij on ∂V, , (3.2)

where V is the volume of the RVE; ∂V is the boundary of the RVE; ε0ij and σ0
ij are the

averaged strains and stresses, respectively; δεij and δσij are perturbations from composite

microstructure, including the effect of fiber-to-fiber interactions.

These perturbations are self-equilibrated and don’t contribute to the averaged stresses

and strains. Specifically,

∫

∂V
δεijds = 0 (3.3)

∫

∂V
δσijds = 0 . (3.4)

In general, δεij and δσij are oscillatory on the RVE boundary; the characteristic length

of the oscillation is on the order of the fiber diameter df .

Owing to the Saint Venant’s principle, the effect of δεij and δσij on the micro fields di-

minishes beyond a distance larger than the fiber diameter. This fact will be demonstrated

numerically in several examples later in this chapter.

Based on the above mentioned Saint Venant’s effect, a center element inside the RVE
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is identified. The boundary of the center element is at least one fiber diameter from the

RVE boundary. The stresses and strains on the boundary of the center element are then

exact or nearly exact. The micro fields inside the center element are even more so. Figure

3.1 shows a multi-fiber RVE with a center element for a UD system with a random fiber

packing.

By applying the averaging procedure over the center element, the computed effective

moduli will be unique and exact, regardless whether a set of statically equivalent uni-

form displacement or traction condition is imposed on the RVE boundary. In fact, the

computed upper and lower bounds over the center element simply collapse into one.

In a recent article, Wang and Sun [43] examined the decaying effect of oscillatory

boundary conditions (i.e. the Saint Venant’s effect) in UD composites with a square

array. Oscillating boundary stresses of varying frequencies were prescribed on an RVE

containing 25 fibers, as shown in Figure 3.2. The decay rate of the boundary effect was

examined as a function of the oscillation wavelength. It is found that, at a distance of one

wavelength inside the RVE boundary, the amplitudes of the oscillating stresses reduce to

less than 5% of that on the boundary. In UD composites, the oscillatory stresses due to

fiber-to-fiber interaction have a wavelength of one fiber diameter or so. Thus, the center

element may be selected according to the following guidelines:

1. For composites of a random fiber array, the RVE should be selected in accord with

the statistical homogeneity and material symmetry. The center element should be at

least one fiber diameter inside the RVE. Generally, the center element may contain one

or more than one fiber; the number of fibers depends on the actual fiber packing. See

Figure 3.1.
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Table 3.1: Constituent thermo-elastic properties of the E-glass/epoxy UD system.

Young’s modulus Poison’s ratio Thermal Expansion coefficient
E(msi) ν α(×10−6in/in−o F )

E-glass 10.6 0.22 2.8

Epoxy 0.5 0.35 32

2. For “model” composites having a square or rectangular array, a 9-fiber RVE may

suffice. In that case, the center element will contain only a single fiber. See Figure 3.3(a).

3. For hexagonal fiber array, an RVE involving 13 or more fibers is needed; the center

element contains one fiber or more. See Figure 3.9(a).

3.2 Numerical Examples

The use of the multi-fiber RVE model for homogenization can best be illustrated by

specific examples. The composite considered in the examples is a glass/epoxy UD system.

The fiber and matrix are assumed linearly elastic; and the fiber/matrix interface are

perfectly bonded. Table 3.1 lists the thermo-elastic constants of the E-glass fiber and the

epoxy matrix.

Three types of fiber packing are considered, namely: (a) square array, (b) hexago-

nal array, and (c) random array. However, results for the square array are presented

in more details in order to facilitate a comparison with that obtained by the periodic

model. Among the effective moduli, the transverse shear modulus G23 is singled out for

comparison; the reason is that G23 is most sensitive to the assumed fiber packing.
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3.2.1 Square Array

For composites of a square array, a 9-fiber RVE is selected, see Figure 3.3 (a). In this

case, square symmetry is appropriate and 6 independent constants need to be determined.

4 sets of independent boundary conditions need to be applied on the RVE. The corre-

sponding linear displacement and uniform traction boundary conditions, and the effective

constants to be computed from each case are listed in Table 3.2. For composites having

a rectangular array, 6 sets of independent boundary conditions are specified in order to

compute the 9 independent moduli; the corresponding list is found in Appendix A.2.

Numerical computations are carried out by the commercial FEA software ANSYS;

quadratic triangular plane strain elements are used; the number of elements within a

single fiber element is about 6, 000. Several MATLAB programs are written for processing

the stress, strain, and displacement data from the FEA solutions.

For the square array, the periodic model of Yuan, et.al [55] applies; and it provides

unique and exact solutions. thus, a concurrent analysis of the examples is also conducted

to obtain comparable results. Figure 3.3 (b) shows the single-fiber periodic element in

relation to the 9-fiber RVE. The periodic boundary conditions are listed in Table 2.2, by

setting a = b.

Under the pure shear loading in the x2−x3 plane, either in term of uniform traction,

or linear displacement, (case #3 in Table 3.2), the micro fields in the 9-fiber RVE are

computed for a UD composite with Vf = 36%. The deformed configuration of the center

element is shown in Figure 3.4(a). The deformed configuration of the periodic element

is shown in Figure 3.4(b). The periodic component of the deformed configuration in
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Table 3.2: Uniform boundary conditions and corresponding effective elastic and mathe-
matic constants for a UD composite with a square array.

Elastic and Strain Displacement Stress Traction FE
Mathematic B.C. B.C. B.C. B.C. models
constants

C11 ε11 = ε011 u1 = ε011x1 σ11 = σ0
11 T1(x2, x3) = σ0

11 generalized
C12 ε22 = 0 u2 = 0 σ22 = 0 T2 = 0 plain
C13 ε33 = 0 u3 = 0 σ33 = 0 T3 = 0 strain

(E11) εij = 0 σij = 0
(ν12) i 6= j i 6= j
(ν13) i, j = 1, 2, 3 i, j = 1, 2, 3

C22 ε11 = 0 u1 = 0 σ11 = 0 T1 = 0 plain
C23 ε22 = ε022 u2 = ε022x2 σ22 = σ0

22 T2(x0
2, x3) = σ0

22 strain
(E22) ε33 = 0 u3 = 0 σ33 = 0 T2(−x0

2, x3) = −σ0
22

(ν23) εij = 0 σij = 0 T2(x2, x
0
3) = 0

i 6= j, i 6= j, T2(x2,−x0
3) = 0

i, j = 1, 2, 3 i, j = 1, 2, 3 T3 = 0

C44 γ23 = γ0
23 u2 = γ0

23x3
2 σ23 = σ0

23 T1 = 0 plain

(G23) other u3 = γ0
23x2
2 other T2(x0

2, x3) = 0 strain
εij = 0 u1 = 0 σij = 0 T2(−x0

2, x3) = 0
T2(x2, x

0
3) = σ0

23

T2(x2,−x0
3) = −σ0

23

T3(x0
2, x3) = σ0

23

T3(−x0
2, x3) = −σ0

23

T3(x2, x
0
3) = 0

T3(x2,−x0
3) = 0

C66 γ12 = γ0
12 u1 = γ0

12x1 σ12 = σ0
12 T1(x0

2, x3) = σ0
12 generalized

(G12) other u2 = 0 other T1(−x0
2, x3) = −σ0

12 plain
γij = 0 u3 = 0 σij = 0 T1(x2, x

0
3) = 0 strain

T1(x2,−x0
3) = 0

T2 = 0
T3 = 0
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each case is shown in Figure 3.5 (a) and (b) respectively. No difference can be discerned

between the two sets of results.

The micro stress fields in the center element and in the periodic element are also

compared. Figure 3.6 shows the radial normal stress distribution along the fiber/matrix

interface as a function of θ, 0o ≤ θ ≤ 360o. Here again, the results from the 9-fiber

RVE model and the periodic model agree well. The large oscillation in the radial stress

distribution reflects the fiber-to-fiber interaction.

From the above, it is seen that the micro fields in the center element of the 9-fiber RVE

are exact, or nearly exact, compared to the periodic model solution. Consequently, upon

averaging, the effective transverse shear modulus G23 should be exact as well. Figure 3.7

displays the results of G23 as a function of Vf . Here, if G23 is computed by averaging over

the entire 9-fiber RVE, a pair of bounds is obtained; when the average is taken over the

center-element only, the bounds collapse into one. Exact G23 solutions for Vf = 49% and

64% are also obtained using the periodic model; both fall on the curve of the collapsed

bounds. Table 3.3 lists the numerical values of G23 computed from the various models.

It should be pointed out that more than one type of periodic element can be defined

for the square array. A different periodic element is labelled #2 in Figure 3.8. It is

oriented 45o from the one used before (labelled #1) and it contains a whole fiber in the

center and 1/4 fiber at each of the 4 corners. The effective moduli in the x2 − x3 plane

computed from this periodic element are different from the element #1 used before; the

relations between the effective moduli in the #1 and #2 elements are readily found by a
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Table 3.3: Numerical results of G23 for Glass/Epoxy composite with a square array

Volume Gstrain
23 Gstress

23 Gstrain
23 Gstress

23 G23

Fraction (msi) (msi) (msi) (msi) (msi)
(%) 9-fiber RVE 9-fiber RVE center element center element Periodic

in in element
9-fiber RVE 9-fiber RVE model

25 0.2699 0.2584 0.261 0.261

36 0.3132 0.3013 0.3049 0.3041

42.25 0.3619 0.3326 0.3365 0.3351

49 0.4145 0.3756 0.3797 0.3773 0.378

56.25 0.4908 0.4389 0.4433 0.4396

64 0.6148 0.5411 0.5515 0.5455 0.548

72.25 0.87889 0.7494 0.7928 0.7857

coordinate transformation:

E
′
22 =

4E22G23

E22 + 2G23(1− ν23)
(3.5)

G
′
23 =

E22

2(1 + ν23)
(3.6)

ν
′
23 =

E22 − 2G23(1− ν23)
E22 + 2G23(1− ν23)

, (3.7)

where E22, G23, and ν23 are the transverse Young’s modulus, in-plane shear modulus,

and Poison’s ratio obtained from the periodic element #1; E
′
22, G

′
23, and ν

′
23 are the ones

from the periodic element #2.

3.2.2 Hexagonal Array

In the case of the hexagonal array, the selected RVE involves 13 fibers: 5 whole fibers, 4

half fibers, and 4 quarter fibers; the center element contains only a single fiber, see Figure
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3.9(a). Here, transverse isotropy is assumed; 5 independent constants are computed from

5 independent sets of boundary conditions. These are listed previously in Table 2.2.2.

For purpose of comparison, the 2-phase single fiber RVE of Hashin and Rosen [16] and

the 3-phase self-consistent RVE of Christensen and Lo [4] are also analyzed, see Figure

3.9 (b) and (c), respectively. The periodic model of Li [32] is not used, due to excessive

computation time required in the execution.

The 3-phase self-consistent method is executed, using an iterative procedure: namely,

the moduli of the equivalent composite are first assumed; the micro field in the RVE is

then computed; the effective moduli in the RVE are obtained by an averaging procedure.

If the computed RVE moduli and the assumed composite moduli are not the same, the

process is then repeated by replacing the assumed composite moduli with the computed

RVE moduli. Unique solutions for the composite moduli are obtained when the two sets

of moduli agree.

Figure 3.10 depicts 3 sets of G23 as a function of Vf . One set is the bounds from the

2-phase single fiber RVE model; another set is computed from the 3-phase self-consistent

model; and the 3rd set is the bounds computed from the center-element in the selected

RVE. It is seen that the 2-phase single fiber RVE model yields a pair of rather wide

bounds; the multi-fiber RVE model yields a pair of rather narrow bounds to the point of

collapsing into one. The 3-phase self-consistent model yields a curve slight higher than

the pair of narrow bounds. The difference shows the approximate nature of the 3-phase

self-consistent RVE representation and the nearly exact nature of the multi-fiber RVE

model. Detailed numerical results are listed in Table 3.4.
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Table 3.4: Numerical results of G23 for Glass/Epoxy composite with a hexagonal array

Volume Gstrain
23 Gstress

23 Gself−consistent
23 Gstrain

23 Gstress
23

Fraction (msi) (msi) (msi) (msi) (msi)
(%) Hashin Hashin Self-consistent center element center element

and Rosen and Rosen model in in
model model 8-fiber RVE 8-fiber RVE

25 0.299 0.256 0.282 0.276 0.279

36 0.388 0.297 0.352 0.338 0.343

42.25 0.454 0.329 0.405 0.3857 0.392

49 0.54 0.374 0.477 0.451 0.459

56.25 0.654 0.44 0.577 0.543 0.5527

64 0.812 0.539 0.7208 0.6799 0.695

72.25 1.043 0.713 0.937 0.896 0.915

Figure 3.11 shows the radial normal stresses σrr along the fiber and matrix inter-

face, computed from the 3-phase self-consistent model and the multi-fiber RVE model,

respectively. Both models retain the oscillatory characteristics in σrr, reflecting the fiber-

to-fiber interaction. But, differences between the two still exist. The multi-fiber RVE

model exhibits more micro details than the 3-phase self-consistent model.

3.2.3 Random Array

For composites with random fiber array, such as displayed in Figure 2.1 (a), a 25-fiber

RVE is chosen, which conforms to the statistical homogeneity and transverse isotropy

assumptions. The center element in the RVE is identified to be one fiber diameter from

the RVE boundary. In this case, it contains 9 fibers, as shown in Figure 3.13. For the

5 independent effective moduli, the required RVE boundary loadings are given in Table

2.2.2.
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Table 3.5: Numerical results of G23 for Glass/Epoxy composite with a random array

Volume Gstrain
23 Gstress

23 Gstrain
23 Gstress

23 Gstrain
23 Gstress

23

Fraction (msi) (msi) (msi) (msi) (msi) (msi)
(%) Hashin Hashin 25-fiber 25-fiber center center

and Rosen and Rosen RVE RVE element element
model model in in

25-fiber 25-fiber
RVE RVE

25 0.299 0.256 0.269 0.262 0.263 0.263

36 0.388 0.297 0.321 0.306 0.310 0.309

42.25 0.454 0.329 0.361 0.343 0.348 0.347

49 0.54 0.374 0.411 0.385 0.390 0.389

56.25 0.654 0.44 0.491 0.453 0.455 0.454

64 0.812 0.539 0.599 0.548 0.556 0.554

72.25 1.043 0.713 0.860 0.770 0.801 0.791

Figure 3.14 provides 2 sets of solutions for the transverse shear modulus G23, plotted

as a function of Vf . One set is the bounds obtained from the 2-phase single fiber RVE

model of Hashin and Rosen; the other is the bounds computed from averaging over the

9-fiber center element in the 25-fiber RVE. It is seen that the bounds from the multi-fiber

RVE model are so narrow as to be uniquely valued; the bounds from the 2-phase single

fiber RVE are rather wide. Table 3.5 gives detailed numerical results.

Figure 3.15 shows the radial normal stresses σrr along the fiber and matrix interface

for two fibers, arbitrarily chosen inside the center element, see Figure 3.13; fiber 1 is close

to its neighboring fibers; fiber 2 is more distant. It is seen that the micro stresses in

the 9-fiber center element also displays a degree of randomness; the closer the fibers, the

more pronounced the effect of fiber-to-fiber interactions.
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3.3 Discussions and Summary

In the literature, most UD composites are modelled by the 2-phase or 3-phase single fiber

RVE. Occasionally, the rectangular, square, and hexagonal arrays are also assumed, even

though the actual fiber packing is random. Thus, it is interesting to pose the question

as to what difference do these fiber packing assumptions make. Figure 3.16 displays the

computed G23 versus Vf for the square, hexagonal, and random arrays. These are all

computed using the properly selected multi-fiber RVE. In each case, a pair of collapsed

bounds is obtained. It is seen that, in the reference frame in which the moduli are

computed, the square array gives the lowest value for G23, while the hexagonal array

gives the highest value; the 25-fiber RVE for the random array yields a value in between.

The square array is much closer to the random array representation, at least in the case

for G23.

In this chapter, it is demonstrated that the multi-fiber RVE with a center element

possesses several advantages over the other prevailing homogenization models:

1. It is capable of modelling UD composites with regular arrays as well as random

array;

2. It conforms to the statistical homogeneity and material symmetry assumptions,

especially for composites with random fiber packing;

3. Uniform traction and linear displacement boundary conditions can still be imposed

on the RVE in the same manner as before;

4. The computed micro stress and strain fields in the center element in the respective

RVE are unique and exact, regardless the details of the imposed boundary conditions;
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5. Consequently, bounds for the effective moduli collapse into one; these effective

moduli are unique and exact.

The multi-fiber RVE model can also be used to recover the micro fields in composites

subjected to external loads. In that case, one or more multi-fiber RVEs may be placed in

regions of stress concentration; the boundary conditions on the RVE are rendered from

the macro analysis of the composite under load; and the micro fields in the RVE (i.e. the

center element) can the be obtained exactly or near exactly by solving the B-V problem

so defined for the RVE. Details in the recovery process will be discussed in Chapter 4.
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Figure 3.1: a Schematic of Multi-fiber RVE.
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Figure 3.2: Oscillating boundary stress: micro boundary and effective boundary - after
[43] .
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Figure 3.3: RVEs for square array (a)a 9-fiber RVE with center element (b) a periodic
element.
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(a)

 

(b)

Figure 3.4: Deformed shape: (a) center element in the 9-fiber RVE (b) periodic element,
glass/epoxy composite with square array under uniform shear
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(a)

 

(b)

Figure 3.5: Periodic component in the deformation of glass/epoxy composite with square
array under uniform shear (a) center element in the 9-fiber RVE (b) periodic element.



60

0 50 100 150 200 250 300 350 400

−4

−3

−2

−1

0

1

2

3

4

x 10
5

θ

σ r

 

From the center-
element in the 9-
fiber RVE 

From the 
periodic element 

(psi) 

Figure 3.6: σrr along the fiber/matrix interface from the center element in the 9-fiber
RVE and the periodic element
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Figure 3.7: G23 vs. Vf for glass/epoxy composites with square array
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Figure 3.8: Possible periodic elements for square array
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Figure 3.9: Three RVEs used for composite with hexagonal array: (a) a multi-fiber RVE
with a center-element, (b) 2-phase single fiber RVE, (c) 3-phase single fiber RVE.
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Figure 3.10: G23 vs. Vf for glass/epoxy composites with hexagonal array
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Figure 3.11: σrr along the fiber/matrix interface from the center element in the 8-fiber
RVE model and the 3-phase Self-Consistent Model
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Figure 3.12: σxy along the fiber/matrix interface from the center element in the 8-fiber
RVE model and the 3-phase Self-Consistent Model
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Figure 3.13: A 25-fiber RVE with a center-element containing 9 fibers for random array
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Figure 3.14: G23 vs. Vf for glass/epoxy composites with random array
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Figure 3.15: σrr along the fiber/matrix interface for different fibers in the center
element
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Figure 3.16: G23 vs. Vf , a comparison among results for composites with square array,
hexagonal array, and random array



Chapter 4: De-Homogenization: To Recover The Micro Fields

This chapter is devoted to the subject of De-Homogenization. De-homogenization is also a

mechanics formulation for the recovery of the micro fields, following the homogenization

of the basic composite systems and the analysis of loaded composite structures. The

scheme utilizes the multi-fiber RVE modelling concept, and it retrieves the micro fields in

suspected failure regions. Numerical examples using the same E-glass/Epoxy UD system

as before are presented; major micro field effects, not found in the macro fields of the

homogenized composites, are illustrated and examined as to their effects on failure.

4.1 Recent Works Related to De-Homogenization

The recovery of composite micro fields from the homogenized macro fields can be achieved

in several ways. All require the restoration of the fiber-level microstructure, at the least,

in regions of suspected failure. The recovered micro fields may provide the needed details

for a rational description of material failure initiations first in the microstructure and

then growth into higher scales.

One obvious, but impractical, way is not to homogenize the fibrous system in the

first place; so a load-bearing composite structure is treated with all of its microstructure

details at the fiber-matrix scale. In practice, this approach has been abandoned at the

outset and homogenization of the fibrous system remains the only viable choice.

In 2000, Fish and Shek [10] attempted to link the micro field mechanics formulation

71
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at the fiber-matrix level to the macro field formulation at the ply level through an inter-

scale operator. The micro field is formulated based on a spatially periodic microstructure

such as the UD system with a rectangular or square array. A periodic single-fiber unit

cell can then be described and analyzed rigorously. The macro field is formulated for

specimens containing unlimited numbers of the periodic unit cells; the inter-scale operator

connects the two sets of field equations, solvable simultaneously. Theoretically, the micro

and macro fields could be obtained in one complex solution scheme; but the approach

is applicable only to macro fields of infinite extension; neither geometrical nor material

discontinuities at the macro scale are allowed, since the unit cells near such discontinuities

would lose periodicity. Yet, material failures usually occur near such discontinuities, e.g.

crack-tip, free boundary, lamination interface and regions of stress concentration.

In a subsequent paper, Hutapea, Yuan, and Pagano [26] amended the Fish-Shek

formulation by modifying the unit cell that loses periodicity (e.g. near the free surface in

the macro field); a couple stress is added in the unit cell field formulation in accordance

with the well known micro-polar theory, see e.g. Eringen [9]. In this way, macro fields of

finite size and/or containing high stress gradients could be treated.

Recently, an approach similar to that of Fish and Shek was formulated by Raghavan,

Moorthy, Ghosh, and Pagano [40]. Instead of a periodic unit cell, a so-called ”Voronoi

cell” is introduced based on the composite microstructure. The Voronoi cell is similar to

the multi-fiber RVE discussed in Chapter 3; it contains multiple fibers packed regularly

or randomly. The macro field may contain any number of the Voronoi cells connected

through shared finite element nodes. The macro field has definitive boundaries that

can be loaded or constrained, and the connected cells deform together in accordance with
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their connective conditions; the latter serves as the linkage between the micro fields in the

Voronois and the macro fields in the loaded specimen containing the Voronois. Again, the

formulated field equations must be solved simultaneously for the micro fields (Voronois)

as well as the macro field (specimen). The approach, however, is theoretically sound but

difficult to implement computationally.

4.2 De-homogenization Using the Multi-fiber RVE model

As discussed in detail in Chapter 3, the multi-fiber RVE model can be routinely used in

the homogenization of UD system and yields unique and exact effective moduli without

bounding them. Moreover, the RVE conforms to the underlying statistical homogeneity

and symmetry assumptions; it can hence encompass regularly or randomly packed fiber

arrays. Now, the same model is applied to recover the micro fields in regions of high

stress gradient, after the corresponding macro field solutions are obtained. Uniqueness

and accuracy of the recovered micro fields are numerically demonstrated.

The general procedures in the recovery process are as follows:

Consider the schematic shown in Figure 4.1. On the left is the UD composite with

a definitive fiber array; homogenization of the composite is carried out by means of a

proper multi-fiber RVE, as shown in the middle, which provides the effective moduli for

the homogenized composite, as shown on the right. Upon field analysis of the composite

under load, a region of interest is identified, as shown by the dash-lined area on the right.

This region is then isolated as a free-body, with boundary stresses and displacements

drawn from the macro field solutions.

To recover the micro-field of the selected region, the detailed microstructure at the
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fiber-matrix level is restored back into the selected region. Then, two boundary-value

problems are solved for the region: one with the macro field stresses imposed on the

boundary and the other with the macro displacements on the boundary. These boundary

agencies are statically equivalent at the macro scale, and they render different micro

fields. However, the respective micro-fields in regions a distance away from the boundary

(i.e. inside the center element), are identical or nearly identical. Justification of this

proposition has been discussed fully in detail in Chapter 3.

The above procedures are generally applied in selected regions where concentration

of stress is present; a cautionary note is in order:

Recall that, in the homogenization process, the RVE is subjected to uniform boundary

conditions; it is not suitable for RVE subjected to high stress gradient on the boundary.

Rapid changes of the stress states could compromise the procedure of volume averaging

from which the effective moduli are derived. However, high stress gradient usually decays

rapidly from the stress riser, such as at the crack-tip. The multi-fiber RVE modelling

concept can still be applied when the following guidelines are observed:

1. The boundary of the selected region of interest must be sufficiently away from the

high stress gradient zone, and the macro stresses on the region’s boundary can vary only

mildly.

2. The center element in which the micro fields remain exact must be placed well

within the region’s boundary.

These guidelines are independently suggested recently by Wang, Sun, Sun, and Pagano

[53], who studied the macro stress gradient effects on the micro fields. Figures 4.2 (a)-(c)

show a multi-fiber RVE containing 64 fibers; it is subjected to uniformly, linearly, and
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Table 4.1: Effective thermo-elastic properties of E-glass/Epoxy composite with
Vf = 50%.

E11 E22 G12 G23 ν12 ν23 α11 α22 = α33

(msi) (msi) (msi) (msi) (×10−6in/in ·o F ) (×10−6in/in ·o F )

5.539 1.594 0.487 0.378 0.278 0.378 4.314 19.802

quadratically distributed stresses, but with same average value, on the boundary. Wang,

et.al. showed that a properly selected center element should be one fiber diameter away

from the boundary for the uniform, and the linear cases; a distance of 2 fiber diameters

is needed in the quadratic case.

4.3 Examples of Recovered Micro Fields

A number of interaction effects in the micro field, which is recovered from its correspond-

ing macro-field, are highlighted here with numerical examples. The ABAQUS finite

element package is utilized in all computations. The same E-glass/epoxy UD system hav-

ing a square array and 50% fiber-volume content is used as the base-line material. UD

systems are cured at temperatures different from the design operating temperatture; the

thermal stresses induced therein also need to be considered. Hence, the thermo-elastic

properties of the E-glass fiber and the epoxy matrix are given in Table 3.1. The effective

thermo-elastic constants for the UD system are obtained by means of the multi-fiber RVE

model, as explained in Chapter 3. The values of the six independent effective constants

along with the thermal expansion coefficients in the principle material coordinates are

listed in Table 4.1. It is noted that these values are the same as those obtained by the

periodic (square) array model [55].



76

4.3.1 Intra-Microstructure Effects

In the fiber-matrix level, fibers are inclusions in the expanse of matrix material; mismatch

in the thermo-mechanical properties can produce significant fiber/matrix and fiber-to-

fiber interactions. These are briefly discussed as follows.

Thermal Residual Fields

Consider the free-standing UD specimen. The thermal residual stress field at the fiber-

matrix scale due to cooling from the curing temperature can be significant and complex,

while the thermal residual stresses at the macro scale are null. For the E-glass/epoxy UD

system, the radial normal stress σT
rr acting on the fiber-matrix interface varies in a sinuous

pattern around the fiber, as shown in Figure 4.3. In this case, σT
rr is compressive with the

maximum magnitude at 14.5psi per ∆T = −1oF . Figure 4.4 displays the normal stress

σT
x along the side of a unit square containing a single fiber. Here, σT

x varies in a sinuous

pattern between the maximum compressive magnitude of 13.5psi per ∆T = −1oF and

the maximum tensile magnitude of 8.2psi per ∆T = −1oF . Say, ∆T due to cooling from

curing to the ambient is −250oF ; then, the thermal residual stresses in the free-standing

UD system can be fairly significant before any other external loading is applied.

Fiber-to-fiber Interactions

Consider the UD composite specimen subjected to a far-field tensile stress σ0 trans-

verse to the fibers. The macro-field is uniformly stressed with σx = σ0. But, the micro-

scale is disturbed by fiber-to-fiber interactions. Figure 4.5 shows the distribution of the

micro field σx along a unit square containing a single fiber. In this case, the maximum

tensile stress in the matrix between two adjacent fibers is 1.714σ0; the local concentration
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Table 4.2: Elastic properties of E-glass, SiC fiber, boron fiber and Epoxy, after [2],[35].

Constituents E-glass SiC Boron Epoxy

Young’s modulus E(msi) 10.6 47.1 60 0.5

Poison’s ratio ν 0.22 0.15 0.2 0.35

Ef/Em 21.2 94.2 120 N/A

factor due to fiber-to-fiber interaction, k = 1.714. Let this value of k (= 1.714) be the

base-line value to which other stress concentration factors are compared in later examples.

Local stress concentration effect due to fiber-to-fiber interaction is widely known [8].

Their intrinsic and extrinsic effects can be assessed only when the micro-field is recov-

ered. As examples, consider the SiC/epoxy and boron/epoxy systems along with the

E-glass/epoxy system. Here, the fiber-matrix property mismatch, expressed in terms

of Ef/Em, in each system is listed in Table 4.2. Note that the Ef/Em value for the

E-glass/epoxy system is 21.2, that for the SiC/epoxy system is 94.2, and that for the

boron/epoxy system is 120. The k factor are computed for the systems with Vf = 50%

and 64% respectively, and the computed values in each case are listed in Table 4.3. It is

seen that the value of k increases with the ratio of Ef/Em as well as with Vf .

The above demonstrates that the recovered micro fields contain features of stress

concentration not found in the macro fields. These features may provide additional clues

as to how matrix-dominated failure is initiated at the micro-scale.

4.3.2 Effects from Macro-Scale Constraints

In multi-layer laminates, there exist interactions amongst the laminating plies. These in

turn compound the interaction effects at fiber-matrix scale.
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Table 4.3: The influence of Vf and mismatch between fiber and matrix on the local stress
concentrator factor k.

E-glass/Epoxy SiC/Epoxy Boron/Epoxy

Vf = 50% k = 1.714 k = 2.000 k = 2.735

Vf = 64% k = 1.794 k = 2.147 N/A

As an example, consider the [0/90/0] laminate loaded by the axial tensile strain ε0 ,

as shown schematically in Figure 4.6.

Here, the macro fields in the layers of the laminate can be rigorously computed, e.g. by

the elasticity method [49]; the micro fields in each of the layers can be recovered, using the

multi-fiber RVE model. From the recovered micro fields, the effect of the 0o-layer upon

the micro field in the 90o-layer can be examined. The following two laminate combinations

are studied as examples: (1) the 0o and 90o layers are both the E-glass/epoxy UD system,

with E0o/E90o = 3.4; (2) the 0o-layer is the SiC/epoxy system and the 90o-layer is the

E-glass/epoxy system, with E0o/E90o = 14.7. In addition, the 90o-layer thickness t90o

varies from 8a0, 12a0, 20a0, and ≥ 50a0, a0 being the size of the unit square containing

a single fiber. The thickness of the 0o layer, t0o = t90o (see the inset in Figure 4.6).

The micro field stress concentration factor k in the 90o-layers are listed in Table 4.4.

It is seen that the 0o-layer has some constraining effects on the 90o-layer micro fields.

Specifically, if the 90o-layer thickness is kept constant, a stiffer 0o-layer will reduced the

k factor, displaying a degree of the constraining effect. On the other hand, if the 0o-

layer is kept unchanged, a thicker 90o-layer will increase the k factor. The constraining

effect fades with the increased distance from the 0o-layer. Note that when the 90o-layer

thickness is 50a0 or more, k approaches the base-line value of 1.714.
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Table 4.4: Effect of macro scale parameters on the computed local stress concentrator
factor k .

n E0o/E90o = 3.4 E0o/E90o = 14.7
(the 0o-layer: E-glass/epoxy) (the 0o-layer:SiC/epoxy)
(the 90o-layer: E-glass/epoxy) (the 90o-layer: E-glass/epoxy)

n = 4 k = 1.671 N/A

n = 8 k = 1.681 k = 1.680

n = 12 k = 1.688 k = 1.685

n = 20 k = 1.697 k = 1.690

n ≥ 50 k = 1.714 k = 1.714

Though the numerical values of the computed stress concentration factor k do not

vary significantly, the question of whether such a minor effect could be ignored is not

clear at this point. The examples in the next section may provide additional insight into

this question.

4.3.3 Effects of Crack-like Defects

Consider the same [0/90/0] laminate loaded by the far-field axial tension ε0 as before.

Now, let there be a crack-like defect of size acrack, which is situated in the center of the

90o-layer thickness and normal to the applied tension, as shown in Figure 4.7.

The micro field in the 90o-layer is now influenced simultaneously by the 0o-layer

constraint, the 90o-layer thickness, and the crack-like defect. In this case, the tensile

stress along the crack-line from the crack-tip to the 90/0 layer-interface, shown in the

inset of Figure 4.7, will be examined.

Numerical analysis of this problem is first conducted at the macro-scale; the crack-like

defect is introduced in the homogenized 90o-layer at the designated location; the laminate
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macro fields under the applied load are computed by a 3-D, elasticity-based finite-element

routine. The region of interest is identified as that near the crack-tip and a suitable multi-

fiber RVE is selected. The center-element in the RVE contains the crack-tip, the fiber

pairs along the crack line extend to the 90/0 interface and beyond, see Figure 4.8.

To illustrate the 0o-layer constraining effect on the crack-like defect, 4 laminate com-

binations with varying the 90o-layer thickness t90o and the stiffness ratio, E0o/E90o , are

studied: (a) the 90o-layer thickness, t90o = 12a0 and E0o/E90o = 3.4 (i.e. both the 0o-

layer and the 90o-layer are E-galss/Epoxy system) ; (b) t90o = 12a0 and E0o/E90o = 14.7

(i.e. the 0o-layer is SiC/Epoxy system and the 90o-layer is E-galss/Epoxy system); (c)

t90o = 20a0 and EL/ET = 3.4; and (d) t90o = 20a0 and E0o/E90o = 14.7. In all cases,

the thickness of the 0o-layer is fixed at t0o = 20a0; and the size of crack-like defect is also

fixed at acrack = 6a0.

Figure 4.9 (a) displays the distribution of the tensile stress along the crack-line for

case (a), where t90o = 12a0 and E0o/E90o = 3.4. The macro stress is plotted in dotted

line, while the corresponding micro stress is plotted in solid line. It is seen that the macro

stress is singular near the crack-tip as expected; it decays rapidly away from the crack-tip

to approach the far-field stress value of σ0 = ε0ET . The micro field stress is oscillating

about the macro stress curve along the crack line; the zone of the singular stress is much

smaller, however. In this example, there are only three fiber pairs from the crack-tip to

the 90/0 interface; the stress concentration factor k for the first pair is as high as 3.47;

for the second pair, it reduces to 2.06; for the third one, it is only 1.87. The last value is

still higher than the base-line value of 1.714.

Figure 4.9 (b) displays the distribution of the tensile stress along the crack-line for case
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(b), where t90o = 12a0 and E0o/E90o = 14.7. In this case, the outside 0o-layer is stiffer

than in case (a); the stress concentration at the crack-tip is suppressed; the corresponding

k values are 3.38, 2.00, and 1.80, respectively, as compared to 3.47, 2.06, and 1.87 in the

previous example.

When the 90o-layer thickness is increased, say t90o = 20a0, the k factors in the fiber

pairs along the crack line are also increased. This is shown in Figures 4.9 (c) and (d)

for the laminate in case (c) and case (d), respectively. In both cases, the distance from

the crack-tip to the 0o-layer is increased to 7a0; so the 0o-layer constraining effect on the

crack-tip is reduced, resulting in the increase of the stress concentration factor k along

the crack line. These constraining effects may be important in initiating the propagation

of the crack-like defect.

4.3.4 Thermal Residual Stresses in Cross-ply Laminates

Composites are fabricated at an elevated temperature. Thermal residual stresses are

induced when cooled to the ambient temperature. In some cases, thermal residual stresses

alone can cause damage in the form of micro cracking.

In multi-layer laminates, the thermal residual micro field includes contributions from

elements at the fiber-matrix level as well as at the laminate level. At the fiber-matrix

level, the field is generated by the fiber-matrix property mismatch, as discussed in the

examples in Section 4.3.1. In general, the micro field is self-equilibrated (see e.g. Figure

4.4); so at the macro scale, the field becomes null after the composite is homogenized. At

the laminate level, the thermal residual stresses occur as a result of ply-to-ply property

mismatch. Such fields exists in each of the plies, at the homogenized macro scale. These
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two sources of thermal effects mutually interact as well.

As an example, consider the E-glass/epoxy [0/90/0] laminate subjected to a temper-

ature drop ∆T = −1oF . Here, the thermal residual micro field in the 90o-layer will be

recovered and examined.

To recover this micro field, the first step is to compute the macro fields in the homoge-

nized plies via the 3D finite element solution routine. A multi-fiber RVE is then selected,

as shown in Figure 4.10, where the center element contains the region from the 90o-layer

mid-plane to the 90/0 interface and beyond. The boundary conditions on the RVE are

drawn from the macro scale solution; a temperature drop ∆T = −1oF is imposed.

Two laminates with the 90o-layer thicknesses t90o = 10a0 and t90o = 40a0 are consid-

ered; the 0o-layer thickness in both is kept at t0o = 20a0.

Figure 4.11 (a) depicts the thermal stress σT
x across the 90o-layer thickness for the

case of t90o = 10a0. The thermal stress computed from the macro analysis is plotted

in dotted line, while the recovered micro thermal stress is plotted in solid line. The

macro field σT
x is tensile and nearly uniform throughout the 90o-ply; its value is 22psi per

∆T = −1oF . The micro σT
x is oscillating around the macro σT

x ; the maximum magnitude

of the micro σT
x is about 25psi per ∆T = −1oF . It is noted that the oscillation consists

of the contributions from the effects of the fiber-to-fiber interactions and the fiber-matrix

property mismatch. These two effects are off-phased, as it can also be seen in Figures 4.4

and 4.5.

Figure 4.11 (b) shows the thermal stress σT
x along the 90o-layer thickness for the case

of t90o = 40a0. Again, the macro stress is plotted in dotted line, and the micro stress in

solid line. The macro stress displays the similar pattern; but the macro stress is about
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15psi per ∆T = −1oF , while the micro stress exhibits a more complex oscillating pattern.

The oscillating pattern is caused by the combination of the two contributing sources

as mentioned above; they are off-phased and cause a complex distributional pattern.

4.4 Summary and Discussions

In summary, the multi-fiber RVE model is a versatile vehicle for de-homogenization, as

it is for homogenization. The model provides consistent and reliable results both in the

forward and in the reverse processes. When used in the reverse process, microstructural

effects can be recovered uniquely and accurately. These effects include the fiber-to-fiber

interaction, thermal residual field, interactions with global loading and laminate scale

constraints.

The question remains, however, as how to use the micro field solutions to investigate

the modes, mechanisms and material conditions governing composite failures. In the next

chapter, an attempt is made to model matrix tensile failures in laminates, based on the

recovered micro field solutions.
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Effective BC. 

 Multi-fiber RVE with 

a center-element 

Figure 4.1: A schematic of De-homogenization: Composite body with microstructure
(left); The corresponding homogenized body (right); The modified multi-fiber RVE with
a center-element (middle)
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Figure 4.2: Boundary stress with gradient: (a) uniform stress, (b) linear stress, (c)
quadratic stress - after [53]
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Figure 4.3: Variation of micro radial stress σr around a fiber due to ∆T = −1oF
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Figure 4.6: Cross-ply laminate under far-field axial strain (left); Micro-field tensile stress
between two adjacent square unit cell (inset on right)
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Figure 4.7: Cross-ply laminate under far-field axial strain (left); Micro-field tensile stress
between two adjacent square unit cell (inset on right)
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Figure 4.8: A multi-fiber RVE with a center element used in the de-homogenization
process for cross-ply laminate with a crack
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Figure 4.9: Tensile-stress distribution along the crack-line: (a) t = 12a0, EL/ET = 3.4
(i.e. the 0o-layer is the E-glass/epoxy system); (b) t = 12a0, EL/ET = 14.7 (i.e. the
0o-layer is the SiC/epoxy system); (c) t = 20a0, EL/ET = 3.4 (i.e. the 0o-layer is the
E-glass/epoxy system); (d) t = 20a0, EL/ET = 14.7 (i.e. the 0o-layer is the SiC/epoxy
system).
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Figure 4.11: Thermal stress distribution cross the 90o thickness with fixed t0o = 20a0:
(a) for t90o = 10a0; (b)for t90o = 40a0.



Chapter 5: An Inter-Scale Theory For Matrix-Cracking

This chapter describes an inter-scale theory for the onset of matrix-dominated tensile

failures in unidirectional and multi-directional laminates that are loaded globally. The

theory is formulated at the fiber and matrix scale where the micro field is recovered from

the laminate macro-field; but the theory predicts the critically applied global load at the

onset of matrix cracking, which is observable at the laminate macro scale.

The description of the inter-scale theory follows a brief review of some key studies on

matrix cracking in laminates. In these studies, failure analyses and/or models are macro

field based. Most of them are heuristic and/or ad-hoc in nature, thus possess inherent

limitations. The inter-scale theory, on the other hand, provides considerable rationality

as well as generality, and circumvents most of the predicaments inherent in the macro

scale models.

5.1 Matrix Cracking in Laminates under Global Loading

Matrix-dominated tensile failures occur prior to fiber-dominated failures. This is because

the matrix and/or the fiber-matrix interface are inherently weaker in tension than the

fiber. Thus, when tension normal to the fibers exceeds a certain critical level, matrix-

dominated failures occur. Consider the UD laminates loaded in transverse tension. Onset

of fiber-separation can result in sudden rupture of the specimen. On the other hand, in

multi-directional laminates loaded externally, fiber-separation occur only in the layers

94
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where tension transverse to the fibers is critical. The result is matrix-cracking seen at the

laminate macro-scale. Figure 5.1 shows photographs of transverse cracks in a [±25/90]s

graphite/epoxy laminate specimen under axial tension. The x-radiograph on the left is

viewed in the x-y plane; multiple transverse cracks are seen to span across the width

of the specimen. The microphotograph on the right is viewed in the x-z plane, where

transverse cracks are seen to form within the 90o layer thickness and to terminate at the

90o(±25o)interfaces.

In general, matrix cracking in laminates appears to be non-fatal at first; but accumu-

lation of such cracks could lead to total laminate failure.

Historically, UD laminates loaded under transverse tension are used in experiments to

obtain the so-called transverse tensile strength, the latter being the critical macro-scale

stress at the specimen rupture. This experiment-derived entity has been regarded, to

this date, as one of several basic material strength properties assumed to exist in the UD

system. But it has long been documented that the transverse tensile strength obtained

experimentally can vary with the size, volume, geometry, loading and other extrinsic

factors of the tested specimen. It is not a unique entity that can be deduced in terms of

the macro stresses.

As early as in 1973, Kaminski [28] tested a boron/epoxy UD system for the transverse

tensile strength. Specimens of three different geometric configurations were used, and each

was loaded differently. Namely, a 90o-coupon loaded under axial tension, a sandwiched

beam with 90o-face sheets loaded in 4-point bending, and a [90]-laminate beam loaded in

3-point bending. Figure 5.2 shows the schematics of the three specimen configurations

and the respective loading conditions. All specimens yield sudden tensile matrix failure
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observable at the macro-scale; but the critical tensile stresses at the onset of failure

differ greatly. Figure 5.3 displays the results obtained by testing more than 50 replicates

in each case, where the Weibull survivability versus the transverse tensile strength is

plotted. Note the relatively large scattering of the strength values in each test case, and

the distinct shift of the survivability curves from the different test methods. Namely, the

90o coupon test yields the lowest tensile strength, while the [90] beam in 3-point bending

provides the highest; the sandwiched beam in 4-point bending gives strength values in

between. These results indicate that the homogenized UD system does not have a unique

transverse tensile strength, as a material property.

Numerous studies on matrix cracking in multi-directional laminates have also shown

that the critical tensile stress initiating matrix cracks in homogenized plies varies with

similar non-material factors at the macro-scale [6, 12, 51]. Many criteria have been

developed based on macro-field laminate analysis; but none could adequately model the

observed failure events [46, 51].

In recent years, there have been increasing efforts in looking into the laminate micro-

fields where matrix tensile cracks initiate. The homogenization and de-homogenization

schemes presented in Chapter 3 and 4 make it possible to develop a general theory for

matrix tensile cracking; the theory is based on the recovered fields at the micro-scale, but

predicts failure events at the macro-scale, hence the inter-scale theory.

5.2 The General Theory

Suppose that, upon a rigorous macro-field analysis of a laminate under globally applied

load, one of the principal stresses at a certain locality in the laminates is in tension
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and transverse to the fibers; macro-scale matrix tensile cracking could suddenly occur

at that locality. Let a finite volume be identified at the location where matrix tensile

cracking is suspected; the size of the identified volume is larger than the multi-fiber RVE

used in homogenization, see Figure 5.4. Through the de-homogenization scheme outlined

previously, the microstructure at the fiber-matrix scale is first restored back into the

selected volume; and the micro-field is recovered therein.

Inside the recovered micro-field, a pair of parallel fibers is identified randomly, termed

as a unit-pair; see the inset of Figure 5.4. Since the pair of fibers are bonded by the

matrix and/or the fiber-matrix interface, a material strength X exists between the 2

fibers, which governs the tensile separation of the pair. Here, X is a random variable,

with possible values 0 < x < ∞, described by the probability density function f(x).

Now, let the tensile stress between the parallel fibers in the ith pair be σi = ki σ0 +σT .

Here, ki σ0 is the micro field stress component induced by the globally applied load σ0,

ki being the local stress concentration factor; σT is the residual stress due to composite

curing. If the net value of σi remains tensile, fiber separation is defined as the event that

the local tensile strength x becomes less than σi. Then, the probability of fiber separation

in the ith unit-pair is given by

Fi(σi) = P{x ≤ σi} =
∫ σi=ki σ0+σT

0
f(x)dx (5.1)

Suppose that there are N connected unit-pairs across the identified volume, and that

fiber separation of a single unit-pair can initiate unstable fiber separations of its immediate

neighboring pairs. Then, according to the weakest-link theory, which considers statistical
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independence for the event of separation in each pair, the probability that the system of

N pairs would separate unstably is given by:

Fsys(σ0) = 1−
N∏

i=1

[1− Fi(σi)] (5.2)

where
∏

indicates multiplication.

Equation (5.2) is expressed in terms of the global stress parameter σ0 and the basic

unit-pair strength probability functions, Fi(σi). Clearly, if a value for Fsys(σ0) is specified,

the critical σ0 is found from (5.2).

Note that the above theory is hinged on two key postulations: that a random tensile

strength X exists between any fiber-pair in the micro field, and that the connectivity

of the unit-pairs in the recovered field is represented by a chain of weakest-links. The

first postulation is plausible, as matrix tensile cracking stems from fiber separation; X

represents the critical tensile stress that causes such a failure mode at the fiber-matrix

scale. The second postulation is, perhaps, applicable only to brittle matrix materials.

Both postulations need to be experimentally validated.

In what follows, an experiment is suggested for determining f(x) of the unit-pair; and

the experiment may also be used for a validation of the weakest-link postulation.

5.3 Experiment for Determining f(x)

For simplicity but without loss of generality, consider the UD composite system with

a square fiber array. Let a sample of 90o tensile coupons be fabricated using this UD

system, the coupons being made in a dog-bone shape as shown in Figure 5.5. When



99

the coupons are tested to failure under the far-field tensile stress σ0, each would fail as

σ0 −→ X. For a sample of large number of coupons, a sample of {X}, {X̂}, is thus

obtained from the test. Let Fsys(X) be the cumulative probability function by fitting

the sample {X̂}. Without loss of generality, let Fsys(X) be a three-parameter Weibull

function [54]:

Fsys(X) = 1− exp
[
−

(
X −XL

β0

)α0
]
, (5.3)

where XL is the lower limit of X; α0 and β0 are the shape and scale parameters, respec-

tively. All three are found by fitting the test sample {X̂}.

Now, let the micro field in the region of the narrowest section of the test coupon be

recovered, see Figure 5.5. In particular, since the coupon is loaded uniformly across the

width of the coupon at the narrowest section, the tensile stress between the fibers in each

and every unit-pair is the same. The latter is expressed in terms of the applied macro

stress σ0: σ = k σ0 + σT , and the probability that the pair fails at σ = k σ0 + σT is

given by Equation (5.1). Moreover, if there are N unit-pairs across the narrowest section

of the coupon, and coupon separation follows the weak-link postulation, the probability

Fsys(σ0) that the coupon (a system of N pairs) fails by σ0 is given by Equation (5.2).

Suppose that f(x) of the unit-pair is also a three-parameter Weibull function, with

three parameters xL, α and β:

f(x) =
α

β
(
x− xL

β
)α exp

[
−

(
x− xL

β

)α]
, (5.4)
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Then, substution of Equation (5.4) into Equation (5.2) yields a Weibull function:

Fsys(σ0) = 1− exp
[
−N

(
kσ0 + σT − xL

β

)α]
. (5.5)

By comparing Fsys(σ0) in Equation (5.5) with the experimentally fitted function Fsys(X)

in Equation (5.3) as σ0 −→ X, the parameters xL, α and β in Equation (5.4) can be

related explicitly in terms of XL, α0 and β0:

xL = σT + k XL

α = α0 (5.6)

β = k β0 N1/α0 .

It should be noted that the postulated probability density function f(x) for the unit-

pair is obtained based on the postulation of the weakest-link theory; the uniqueness of

f(x) so obtained remains an open question. If samples of the test coupons are made with

varying width at the narrowest section, a correlation between the test results and the

proposed inter-scale theory should provide a possible validation for both postulations.

5.4 Analysis of The Kaminski Problems

The inter-scale theory presented above may explain the distinctive differences in the

transverse tensile strengths found in the Kaminski experiment [28].

For the 90o tension coupon in Figure 5.2(a), the macro stress σ0 is uniform; but the

micro field stress in the unit-pair is σ = k σ0 + σT . According to the inter-scale theory,
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the failure probability of the coupon under σ0 is given by:

Fsys(σ0) = 1− [1−
∫ k σ0+σT

0
f(x)dx]N . (5.7)

where f(x) is the probability density function for fiber separation of the unit-pair; N is

the number of unit-pairs across the thickness of the coupon. From Equation (5.7), the

critical σ0 at coupon failure can be determined if a value of Fsys(σ0) is specified.

For the sandwiched beam in 4-point bending, as shown in Figure 5.2(b), the macro

field at the bottom face sheet is in tension. The tensile stress is slightly non-uniform

through the thickness of the face sheet, the largest being at the outer surface of the

bottom sheet. Let the latter be denoted by σ0. The critical σ0 at tensile failure of the 90o

face sheet is taken as the transverse tensile strength for the UD composite. The recovered

micro field in the face sheet provides the tensile stress in the ith pair: σi = ki σ0 + σT .

Here, the numbering of i (i = 1 · · · N) begins at the outer surface of the bottom face

sheet, where the macro stress is σ0. Even without a numerical computation, it is seen

that σi (or ki) decreases from the outer surface toward the interior of the face sheet.

The reduction of σi is due to the slight non-uniformity of the macro stress through the

thickness of the sheet and the constraining effect from the stiffer aluminum core of the

sandwiched beam. Then, application of Equations (5.1) and (5.2) yields the critical σ0

for a given value of Fsys. In this case, the critical σ0 is always greater than that found

for the 90o coupon by the same value of Fsys. This is obviously due to the reducing σi

through the thickness of the face sheet.

For the [90] beam tested in 3-point bending, Figure 5.2(c), the macro stress is linearly
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distributed through the depth of the beam. Here, the tension field is in the bottom half

of the beam, the maximum being at the outer surface. When the maximum stress σ0 at

the outer surface becomes critical, the beam fails. Kaminski treated this critical σ0 as

the transverse tensile strength of the UD composite.

If the corresponding micro fields in the bottom half of the beam is recovered, the

tensile stress between the fibers in the ith unit pair is σi = ki σ0 + σT . Here, again the

numbering of i begins at the bottom face of the beam where the macro stress is σ0. Note

σi decreases rapidly from the outer surface to the mid-plane. In this case, Equation (5.2)

should yield a much lower failure probability for a given value of σ0. Or, for the same

Fsys value, the critical σ0 is much higher than the sandwiched beam.

Due to the lack of specific information concerning the constituents properties, fiber

volume content, and the precise geometries in the test specimens, it is not possible to

numerically analyze the experimental results presented by Kaminski. The above analysis

provides at least a qualitative understanding as to why the UD system does not possess

a uniquely determined transverse strength at the macro scale.

5.5 Analysis of the Compact Tension Problem

The compact tension test is commonly used to determine the material toughness of struc-

tural solids against fracture, e.g. crack propagation. For the UD composite system under

transverse tension, matrix cracking caused by transverse tension is of great concern. The

90o compact tension test is a way for determining the fracture toughness related to matrix

cracking.

Figure 5.6 (a) shows a 90o compact tension specimen with a side-crack, acrack. When
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the specimen is loaded under a uniform far-field tensile strain, say ε0, the crack would

propagate unstably in mode-I at a critical value of ε0 (= εcr). According to the theory of

linear elastic fracture mechanics (LEFM) [41], the critical value εcr is given as follows:

εcr =
KIc

ET H
√

acrack
(5.8)

where KIc is the critical stress intensity factor (i.e. fracture toughness), and H is a finite

correction factor. In correlative compact tension tests, εcr is measured and acrack is given;

KIc is then deduced from Equation 5.8.

In linear fracture mechanics, the mode-I strain energy release rate, GIc, is often used

to represent the material’s fracture toughness, instead of KIc. Their interrelation is

obtained through an integration of the stress field near the crack-tip [41]:

GIc = π K2
Ic

√
S22S33

2

[√
S33

S22
+

2S23 + S44

2S22

] 1
2

, (5.9)

where Sij are compliances of the composite.

In general, for arbitrary large acrack, the deduced KIc or GIc is more or less a constant;

both are treated as a material property of the homogenized material. However, if acrack

is small, the deduced KIc or GIc would vary with the size of acrack. This is a well-

known dilemma in the theory of linear elastic fracture mechanics. Figure 5.6 (b) shows

schematically a comparison between the theoretical and experimental εcr versus acrack

relationships. It is seen that, for short cracks, the linear fracture mechanics prediction

departs from the experimental results.
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With the inter-scale theory outlined previously, the short crack problem in the com-

pact tension test can now be explained with good consistency. The details are presented

in the following sub-sections.

5.5.1 Characterization of f(x) of the E-glass/epoxy System

For purpose of a numerical simulation, let the UD composite be the same E-glass/epoxy

system as used before, with a square array and Vf = 50%. The properties of the fiber and

matrix materials are listed in Table 3.1; and the effective properties of the UD system

are obtained by the multi-fiber RVE model, given in Table 4.1.

To characterize the strength function f(x) of the unit-pair in the micro field, let the

UD composite specimen be under the transverse tension σ0 and a uniform temperature

drop ∆T . At the macro scale, the specimen is stressed uniformly by σ0, transverse to

the fibers. The thermal residual field is null. At the micro field, however, the maximum

tensile stress transverse to the fibers in each unit-pair is σ = kσ0 + σT , where k =

1.714, σT = −13.5psi per ∆T = −1oF . Let the system be cured at the temperature

of 350oF ; but the residual stress field is evaluated at the uniform temperature drop of

∆T = −200oF , allowing post-cure stress relaxation. Then, the thermal residual stress

normal to the fibers in the unit pair is, σT = −2.62ksi.

Ideally, the characterization of f(x) for the unit pair is done by conducting a trans-

verse tensile strength experiment, such as suggested in Section 5.3. The experiment would

then provide the necessary specimen strength data X, from which the cumulative dis-

tribution function Fsys(x) is obtained. In the present case, however, pertinent test data

is unavailable. But a search in the open literature for comparable test data finds that
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most transverse strength tests on glass-epoxy systems do fall in a rather narrow value

range. For purpose of numerical illustration, therefore, a hypothetical yet realistic func-

tion Fsys(X) is assumed, based on the results from the literature search. Namely, Fsys(x)

is expressed by a Weibull function with the parameters

XL = 2ksi

α0 = 10

β0 = 7ksi .

The mean value of X is at 8.7ksi. This is in the range found in most experiments with

E-glass/epoxy systems.

For definiteness, let there be 250 connected unit-pairs across the width of the test

specimen. This corresponds to about 10 15 plies of such UD system.

The probability density function f(x) for the unit-pair is found in Equation 5.4, which

is a Weibull function as well. The parameters in f(x) are found from Equation (5.6):

xL = 0.8ksi

α = 10 (5.10)

β = 20.7ksi .

5.5.2 Simulation of the Compact Tension Test

Consider the compact tension specimen loaded under the far-field transverse tensile strain

ε0, see Figure 5.7; the side crack acrack would propagate self-similarly in mode-I when ε0
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reaches a critical value εcr. Here, the micro field containing the crack line is of interest and

must be recovered in terms of globally applied ε0 and ∆T . For this purpose, a 80-fiber

RVE is used, see the inset in Figure 5.7. Note that the center element inside the RVE

contains the crack-line from the crack tip to a length of 6 unit-pairs.

Specimens having the width of 250a0 and the initial side-crack size of: acrack = 0,

a0, 2a0, 3a0, 7a0, 10a0, 15a0, and 20a0, are simulated. Recall that a0 is the size of unit

square that contains a single fiber. For the E-glass/epoxy system, a0 = 0.000505 in.

Figures 5.8, 5.9, and 5.10 display the normalized (by σ0) macro and micro tensile

stresses along the crack line, due to the applied stress σ0 (= ε0 ET ) . Here, the respective

stresses for acrack = 0, a0, and 2a0 are shown in Figures 5.8 (a-c); acrack = 3a0, 7a0,

and 10a0 are in Figures 5.9(a-c); and acrack = 15a0 and 20a0 are in Figures 5.10(a-b),

respectively.

For acrack = 0, see Figure 5.8 (a), the macro stress is constant as it should, equaling

to σ0, while the micro stress is oscillating about the macro stress. The micro stress σy in

the unit-pair is magnified by a concentration factor, k = 1.714.

Figure 5.8 (b) shows the respective stresses along the crack line for acrack = a0.

The macro field displays a stress concentration near the crack tip; and the micro stress

oscillates about the macro stress. Note that the concentration factor k in the unit-pair

next to the crack-tip increases to k = 2.469, due to the presence of the crack, while the k

factors for the rest of unit-pairs along the crack line decay and approach to the far-field

value.

The macro and micro stresses along the crack line for acrack from 2a0 to 20a0 display

the similar patterns as those in acrack = a0. However, as the size of the side crack
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increases, the k factors in the unit-pairs along the crack line becomes larger, especially

the one in the unit-pair next to the crack tip. For instance, when acrack = 2a0, k1 = 3.109;

and k1 increases to 3.263, 5.235, 6.179, 7.486, and 8.555 for acrack = 3a0, 7a0, 10a0, 15a0,

and 20a0, respectively.

The residual stress σT
y along the crack-line is null at the macro scale; but it is non-

zero at the micro scale. Figure 5.11 shows the micro field σT
y per ∆ T = −1oF along

the crack line for acrack = a0. It is seen that the distribution pattern near the crack tip

is somewhat disturbed by the presence of the side crack. The maximum crack-tip σT
y is

in tension; in the unit-pair, σT
y remains compressive between fibers. The magnitude of

the compressive σT
y is slightly larger than that when acrack = 0. Furthermore, the size of

acrack has little influence on σT
y .

With the micro field solutions computed, the failure probability Fsys for the compact

tension specimen under the applied strain ε0 and ∆T = −200oF is then expressed by

Equation (5.2). Thus, if a value for Fsys is given, the critical strain εcr at the specimen

failure is then computed from Equation (5.2).

Alternatively, Equation (5.2) can be used to compute the survivability (1 − Fsys)

versus σcr (= εcrET ) curve. Figure 5.12 (a) displays the survivability (1 − Fsys) versus

σcr (= εcrET ) curves for acrack = 0, a0, 2a0, 3a0, 7a0, 10a0, 15a0, and 20a0. Here, σcr is

normalized by (β0 + XL). The reason is that, for acrack = 0, Fsys is a Weibull function;

at the characteristic value of σcr = β0 + XL, Fsys is 63.2% corresponding to σcr.

When acrack > 0, Fsys is not a Weibull function. The actual dependence of σcr on

acrack can be seen when Fsys is assigned a definitive value. Figure 5.12(b) shows the

computed σcr versus acrack curve for Fsys = 63.2%. The σcr vs. acrack curve is valid,
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regardless the size of acrack: large, small or null. Moreover, the trend of the curve agrees

with that found experimentally. The only material strength property input to the inter-

scale theory is the f(x) function, postulated as the basic strength of the unit pair.

It is interesting to note that the σcr versus acrack curve provided by the inter-scale

theory coincides with the linear elastic fracture mechanics (LEFM) theory for acrack =

15a0 or larger. The reason is that the k factor in the unit-pair next to the crack tip is

large if acrack is large. It can become the most dominant term in the failure probability

Equation (5.2). This dominance is acute to the LEFM theory where the crack-tip stress

intensity factor determines the onset of unstable crack propagation. If the curve beyond

acrack = 15a0 is fitted by the LEFM equation (5.8), a value for KIc = 0.6ksi.in1/2 (or

GIc = 119J/m2) is obtained. This value of KIc (or GIc) is in the range found from the

compact tension tests for most epoxy-based UD systems.

Figure 5.13 (a) shows the comparison of the σcr versus acrack curves computed by the

inter-scale theory (solid curve) and the LEFM theory (dashed curve). For short cracks,

the dashed curve departs dramatically from the solid curve, while the solid curve captures

the experimental trend (Figure 5.6). In addition, the inter-scale theory can also provide

the well-known R-curve for small side cracks. In this case, εcr from the inter-scale theory

is used in Equation (5.8), which renders a value for KIc, for a given acrack. Figure 5.13

(b) shows the KIc growth curve as a function of acrack. It is seen that KIc grows to the

asymptotic value of KIc = 0.6ksi.in1/2, as acrack becomes larger than 15a0.
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5.6 Transverse Cracking in Cross-ply Laminates

5.6.1 A Brief Background Review

In multi-directional laminates, the so-called “transverse cracking” occurs in plies where

tension normal to the fibers becomes critical [7, 11, 12, 50]. Figure 5.14 shows a [0/90]s

laminate loaded in axial tension, where transverse cracks occur in the 90o layer.

In 1977, Garrett and Bailey [11] conducted experiments using laminates in the form

of [0/90/0] made of a glass/polyester system. Tensile specimens were fabricated with the

thickness of the outside 0o layers kept constant at 1.0mm, and the thickness of the middle

90o layer varied from 0.75 to 3.2mm. Under the applied laminate tensile strain ε0, one

or more transverse cracks in the 90o layer were recorded. It was then reported that the

critical applied strain at the onset of the 90o layer cracking varied with the thickness of

the 90o layer. Specifically, the critical strain decreases as the 90o layer thickness increases,

see Table 5.1. The subsequent experiments have been conducted using graphite/epoxy

laminates [12, 51]. Similar 90o-layer effects were observed, see Table 5.2.

There have been many analyses and modelling studies on the transverse cracking prob-

lem [34, 36, 48, 50, 51]. In all cases, the laminate field are analyzed at the homogenized

ply (macro) scale; and the fields are computed by a 2D or a 3D analysis laminated plate

model. Transverse cracks are deemed to occur in plies where the tensile stress normal to

the fibers exceeds the transverse strength of the ply. But such a failure criterion could

not explain the thickness-dependance nature of the transverse cracking. The predicament

here is similar to that encountered in the Kaminski’s experiment.

A heuristic approach, based on the concept of effective flaws, was developed by Wang,
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Table 5.1: Experimental results for the onset strain of transverse cracking in cross-ply
laminate made of glass/polyester, after [11].

90o-ply thickness Critical strain
(mm) at onset of cracking

0.75 0.48%

1.5 0.50%

2.0 0.44%

2.6 0.38%

2.7 0.40%

3.2 0.37%

Table 5.2: Experimental results for the onset strain of transverse cracking in cross-ply
composite laminates. (a) Carbon/Epoxy laminates -after [12], (b) Graphite/Epoxy lam-
inates -after [51].

[04/90n/04](a) [02/90n/02](b)

transverse cracking strain (onset) transverse cracking strain (onset)

n = 1 0.65% N/A

n = 2 0.4% 0.55− 0.57%

n = 4 0.35% 0.29− 0.36%

n = 8 0.3% 0.24− 0.28%
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et.al. [50], who stipulated that the 90o layer possesses materially a distribution of effective

flaws, some being oriented in the ply thickness direction. When the 90o layer is stressed

under transverse tension, the flaws act like small cracks; and the most dominant ones

would propagate into transverse cracks. Such cracking events are then modelled by the

fracture mechanics theory. In order to quantitatively determine the critical laminate load

at the onset of the cracking events, the sizes and locations of the effective flaws must be

provided ,along with the fracture toughness (KIc or GIc) of the homogenized 90o layer.

However, the effective flaw concept remains heuristic at best. The sizes and loca-

tions of the effective flaws must scale with the 90o layer thickness. The assumed flaw

distributions can only be experimentally corrected; their uniqueness can not be proven.

5.6.2 Application of the Inter-scale Theory

In this section, the thickness-dependence character of transverse cracking event in lam-

inates will be analyzed using the inter-scale theory. To be specific, consider a [0/90]s

laminate made of the same E-glass/Epoxy system, with a square array and Vf = 50% as

before. Let the thickness of the 0o layer (t0o) be fixed at 20a0, and the thickness of the 90o

layer (t90o) be varying from 4a0, 10a0, 20a0, 40a0, and 80a0 respectively. The laminate

is subjected to an axial tensile strain ε0 as well as a thermal residual temperature drop

∆T = −200oF .

The laminate macro fields are computed by using the classical lamination theory. The

macro stress in the 90o layer is denoted as σ0 = ε0 ET + σ0
T . Here, ε0 ET is independent

of the 90o layer thickness, while σ0
T decreases with the thickness of the 90o layer; both

are uniform in the 90o layer.
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The micro fields in the 90o-layer is recovered using the multi-fiber RVE. The detailed

recovery process has been described earlier in Section 4.3.2.

The stress between the fibers in each unit pair is denoted as: σ = k ε0ET + σT
x ∆ T .

The first term is due to the mechanical load ε0, and the second term is due to the thermal

residual temperature of ∆T = −200oF .

Figure 5.15 shows the micro stress (normalized by ε0ET ) from the mechanical load

along the 90o layer thickness direction, for t90o = 4a0 and 20a0, respectively. Here, the

micro stress is oscillating about 1 due to the fiber-to-fiber interaction. When t90o = 4a0,

the stress concentration factor k is 1.671; when t90o = 20a0, k = 1.697. (Note that

k = 1.714, when t90o →∞.) It is seen that k increases slightly with thickness of the 90o

layer, indicating a small degree of the 0o-layer constraining effect.

The thermal residual stress σT
x includes contributions from thermal mismatch between

the 0o and the 90o layers at the macro scale as well as that between the fiber and matrix

at the micro scale. The former induces a tensile micro field in the 90o layer; its average

value decreases with the thickness of the 90o layer. The latter induces a self-equilibrated

micro field. The distribution of σT
x along the 90o thickness direction for t90o = 10a0 and

40a0 are shown previously in Figure 4.11. Note that the distribution pattern and the

value of σT
x vary with the thickness of the 90o layer.

Within the context of the inter-scale theory, for the UD system considered, the proba-

bility density function f(x) is a 3-parameter Weibull function, with the parameters given

in Equation (5.10). If the stress between the fibers in a unit pair is tensile, the probability

that fiber separation occurs is given by Equation (5.1).
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According to the weakest-link assumption, fiber separation in one unit pair can prop-

agate unstably and result in a large crack in the thickness of the 90o layer; this defines

the onset of the transverse cracking. The probability Fsys for the onset of transverse

cracking in the 90o layer is then given by Equation (5.2). Alternatively, if a value of Fsys

is given, the critical strain εcr for the onset of transverse cracking can also be computed

from Equation (5.2). Figure 5.16 shows the survivability Rsys (= 1 − Fsys) curves as

a function of εcr for t90o = 4a0, 10a0, 20a0, 40a0, and 80a0, respectively. Note that the

curves shift to the left as t90o increases.

Figure 5.17 shows the computed εcr curves as a function of the 90o layer thickness for

Fsys = 63.2%, 90%, and 99%, respectively. It is seen that, when t90o is small, the onset

strain εcr decreases sharply with the 90o layer thickness; when t90o is large, εcr approaches

a constant value. This trend is consistent with that observed in numerous experiments,

see e.g. Table 5.1. It is interesting to note that the computed εcr for t90o = 20a0 is in the

range of 4500 ∼ 5500µε. Here, 20a0 corresponds to 0.011in or 0.26mm; this is roughly

2-ply thickness for commercial epoxy-based UD tapes. Most experimental values for εcr

in such cases range from 5500 to 5700µε, see e.g. [51].

5.6.3 Effective Flaws at the Macro Scale

As mentioned previously, the problem of transverse cracking in cross-ply laminates has

been treated by introducing the effective flaws at the macro scale and using the fracture

mechanics approach, see [31, 50]. Figure 5.18(a) shows the schematics of the laminate

that contains the most dominant flaw with a size of ae. But in order to correlate with

the experiments, the size of ae must scale with the 90o layer thickness.
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The inter-scale theory can now be used to augment the fracture mechanics analysis at

the macro scale. Specifically, from the results of the inter-scale analysis, the appropriate

effective flaw size ae can be deduced, along with the value of KIc. Note the both have to

be experimentally deduced, if the analysis is at the macro scale.

The KIc was found earlier in the simulated compact tension test described in section

5.5.2. For the E-glass/epoxy UD system used, a value of KIc = 0.6ksi· in1/2 was obtained.

As for the effective flaw size ae, it can be deduced from the inter-scale theory in the

following way: By means of the macro scale fracture analysis, using KIc = 0.6ksi · in1/2,

a plot of εcr versus ae is computed. Figure 5.18(b) shows the computed εcr versus ae

curves (solid curves), for t90o = 20a0, 40a0 and 80a0, respectively. Note that these curves

are unbounded as ae becomes smaller. This is expected because the fracture mechanics

theory is not for small ae. But, the inter-scale analysis yields readily εcr = 4260µε for

t90o = 20a0; 4100µε for t90o = 40a0; and 4003µε for 80a0, as they are read from Figure

5.17. With the inter-scale solutions and the corresponding fracture mechanics solutions,

ae can be readily deduced from the curves: ae = 3.9a0, 6.4a0 and 7.4a0. Note that the

value of ae so deduced does scale with the thickness of the 90o layer. Furthermore, these

value appear to be in the range of ae used by Lei [31] and Wang, et.al [50].

5.7 Summary

In summary, the inter-scale theory is formulated at the fiber-matrix scale to simulate

matrix cracks observed at the macro scale. The physical basis of the theory is that fiber

separation in a unit-pair is governed by a random tensile strength X with a real value x

in the range 0 < x < ∞. The probability density function of X, f(x), serves as the only
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basic material input, which must be carefully characterized by a suitable experiment.

The theory is applied to several known matrix cracking problems with consistent results.
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Figure 5.1: Photograph Showing Transverse cracks in the 90o-layers of a (±25/902)s

specimen, after [30].
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Figure 5.2: Schematics of specimens in Kaminski’s experiment: (a)a 90o coupon under
tension (b) a sandwiched beam under 4-point bending (c) a [90] laminate beam under
3-point bending, after [28].
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tension(left); the inset (right): the ith pair, and micro stress by σ0 and ∆T .
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Figure 5.5: A dog-bone shaped specimen made of a model composite with a square array.
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Figure 5.6: Compact tension test: (a) a specimen with a side-crack, acrack, (b) a schematic
show of the correlation between fracture mechanics model and experimental result.
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Figure 5.7: Recovery of the micro field along the crack line in the compact tension
specimen.
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Figure 5.8: The distribution of the micro tensile stress along the crack line: (a) acrack = 0,
(b) acrack = a0, (c) acrack = 2a0.
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Figure 5.9: The distribution of the micro tensile stress along the crack line: (a) acrack =
3a0, (b) acrack = 7a0,(c) acrack = 10a0.
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Figure 5.10: The distribution of the micro tensile stress along the crack line: (a) acrack =
15a0, (b) acrack = 20a0 .
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Figure 5.11: The distribution of the micro thermal stress along the crack line for acrack =
a0 and∆T = −1oF .
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Figure 5.12: Prediction of critical load for compact tension specimen via the inter-scale
theory: (a) reliability of compact tension specimens with acrack from 0 to 120a0, (b)
predicted critical load v.s. the size of crack.
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Figure 5.13: Comparison between the inter-scale failure theory and fracture mechanics
approach: (a) critical strain εcr v.s. the size of crack, (b) KIc v.s. the size of crack.



128

�

H��

H��
�

� � �OD\HU�

�� � �OD\HU�

� � �OD\HU�
7UDQVYHUVH�FUDFNV�

Figure 5.14: A schematic of transverse cracks in a cross-ply laminate under axial
tension.
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Figure 5.15: The micro stress distribution along the thickness direction of the 90o layer,
due to the axial strain ε0: (a) t90o = 4a0, (b) t90o = 20a0 .
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Figure 5.16: The survivability Rsys(= 1− Fsys) of the 90o layer v.s. the applied load ε0,
for t90o = 4a0, 10a0, 20a0, 40a0, and 80a0. .
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Figure 5.17: The critical laminate strain εcr v.s. the thickness of the 90o layer, for
Fsys = 63.2%, 90%, and 99% respectively.
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Figure 5.18: (a) A schematic of the effective flaw introduced into the cross-ply laminate,
(b)Application of the inter-scale theory: determine the size of the effective flaw .



Chapter 6: Concluding Remarks

6.1 Summary

In this thesis, a concerted effort is made to obtain the stress/strain fields at the fiber-

matrix level in multi-directional laminates when they are under global loads. This effort

is directed by the perception that such micro field information is essential for failure

theories that describe rationally damages in laminates under loads.

Toward this end, a multi-fiber RVE modelling approach is developed for homogeniz-

ing unidirectional fiber-reinforced composite system, and the same modelling concept is

applied in de-homogenizing the same composite when it is a part in laminates under load.

The multi-fiber RVE, when chosen properly, can be physically conforming to the

statistical homogeneity axiom and material symmetry supposition. Since both serve as

basis in the theory of composite homogenization, the effective properties of the UD system

so homogenized are exact or nearly exact, in so far as the fiber packing details in the UD

system are accurately described.

Similarly, the multi-fiber RVE model is capable of recovering the micro fields at the

fiber-matrix level in laminates under external loading, in so far as the macro fields in

the homogenized plies are computed accurately. In a sense, the multi-fiber RVE model

provides a useful vehicle for studying the various micro scale effects that initiate failures

at the fiber-matrix level.

Based on the details in the recovered micro fields in laminates that suffer matrix
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cracking, an inter-scale failure theory is then presented to describe the matrix cracking

phenomena. The theory requires only a single material condition for matrix cracking,

namely, the tensile strength X between two adjacent fibers, X being a random variable.

Matrix cracking at the laminate ply level is modelled as a probabilistic event involving

certain chain-interactions amongst unit-pairs.

Several numerical examples are presented, using the inter-scale theory to predict the

initiation of matrix cracking. All predicted results are consistent with experiments.

It is noted that matrix cracking in the example problems have all been previously

treated, with some ad hoc failure theories based on the macro fields in the homogenized

laminate plies. In all cases, the critical material conditions for matrix cracking are defined

at the laminate ply level and characterized by experiments accordingly. As discussed

in Chapter 5, characterization at the ply level often fails to provide unique strength

properties. The inter-scale theory, however, can simulate most of the experiments; the

corresponding macro level material conditions can be deduced using the results from the

inter-scale theory.

In this sense, the multi-fiber RVE and the inter-scale theory provide a unique linkage

between the micro scale responses and those at the macro scale.

6.2 Directions for Future Work

The emphasis of the present work is placed on the analytical efforts towards a rational

description of a particular sub-laminate failure mode, namely, matrix cracking. Further

investigation, involving carefully devised experiments, is needed to validate the assumed

existence of the random variable X - the tensile strength between two adjacent fibers
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in the micro field; the assumed chain-interaction among the fiber pairs in forming the

weakest-link model also needs to be checked with validating experiments.

Beyond these validating efforts, the mechanistic/probabilistic combination of the

inter-scale theory may also be applied to other matrix-dominated failure modes in com-

posite laminates, such as ply delamination. Micro fields near the laminate free edges have

recently been investigated using the multi-fiber RVE model [5]; the inter-scale theory re-

mains to be a viable approach to proceed.

In characterizing composites other than the UD systems, the concept of the multi-fiber

RVE could be extended to multi-cell RVE. Examples may be found in tissue engineering:

tissue scaffolds are man-made porous structures that guide cell growth into a certain pre-

scribed shape. In order to provide the correct environment for cell growth, the scaffold

must possess interconnected channels as well as sufficient strength to maintain structural

integrity. Traditionally, composites with repeated unit cells are homogenized by means

of a single-cell RVE. As has been demonstrated in this thesis, the single-cell RVE repre-

sentation invariably leads to inaccuracy in the effective composite properties. In the case

of the scaffolds used for tissue growth, a multi-cell RVE model may be developed to char-

acterize the overall properties of the scaffolds; this would also provide a natural model to

study the micro-macro interactions, which influence the mechanisms in cell growth.
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Appendix A: Supplemental Boundary Conditions

A.1 Periodic Boundary Conditions

For UD composites having square and hexagonal arrays, the concept of translational sym-

metry is applied to describe the periodic boundary conditions by Li [32]. The compatible

displacement and traction boundary conditions on the periodic element are described

in terms of uniform far-field loading. The detailed expressions for the composites with

square and hexagonal arrays are given as the follows respectively.

Square Array

Figure 2.9 displays the RVE for the square array and the two mutually orthogonal

translational symmetry axes in the x2 − x3 plane for the square array. The boundary

conditions are described on the two pairs of sides of the periodic element; and they

consist of the displacement boundary conditions and the compatible traction conditions.

The displacement boundary conditions are given by

(u1|x2=b − u1|x2=−b)|x3 = 2b γ0
12

(u2|x2=b − u2|x2=−b)|x3 = 2b ε022 (A.1)

(u3|x2=b − u3|x2=−b)|x3 = 0

(u1|x3=b − u1|x3=−b)|x2 = 2bγ0
13
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(u2|x3=b − u2|x3=−b)|x2 = 2bγ0
23 (A.2)

(u3|x3=b − u3|x3=−b)|x2 = 2bε033.

The compatible traction conditions are

(σ22|x2=b − σ22|x2=−b)|x3 = 0

(τ12|x2=b − τ12|x2=−b)|x3 = 0 (A.3)

(τ23|x2=b − τ23|x2=−b)|x3 = 0

(σ33|x23=b − σ33|x3=−b)|x2 = 0

(τ13|x3=b − τ13|x3=−b)|x2 = 0 (A.4)

(τ23|x3=b − τ23|x3=−b)|x2 = 0.

Hexagonal Array

The RVE for the hexagonal array is shown in Figure 2.10, along with the three axes of

translational symmetry; each axis is 60o from the other two. Three sets of displacement

boundary conditions on the three pairs of sides of the periodic element are presented as

(u1|x2=b − u1|x2=−b)|x3 = 2bγ0
12

(u2|x2=b − u2|x2=−b)|x3 = 2bε022 (A.5)

(u3|x2=b − u3|x2=−b)|x3 = 0
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(u1|x2+
√

3x3=2b − u1|x2+
√

3x3=−2b)|√3x2−x3
= bγ0

12 +
√

3bγ0
13

(u2|x2+
√

3x3=2b − u2|x2+
√

3x3=−2b)|√3x2−x3
= bε022 +

√
3bγ0

23 (A.6)

(u3|x2+
√

3x3=2b − u3|x2+
√

3x3=−2b)|√3x2−x3
=

√
3ε033

(u1|−x2+
√

3x3=2b − u1|−x2+
√

3x3=−2b)|√3x2+x3
= bγ0

12 −
√

3bγ0
13

(u2|−x2+
√

3x3=2b − u2|−x2+
√

3x3=−2b)|√3x2+x3
= bε022 −

√
3bγ0

23 (A.7)

(u3|−x2+
√

3x3=2b − u3|−x2+
√

3x3=−2b)|√3x2+x3
= −

√
3ε033.

Three sets of compatible traction boundary conditions are given by

(σ22|x2=b − σ22|x2=−b)|x3 = 0

(τ23|x2=b − τ23|x2=−b)|x3 = 0 (A.8)

(τ12|x2=b − τ12|x2=−b)|x3 = 0

[(√
3σ22 + τ23

)
|x2+

√
3x3=2b −

(√
3σ22 + τ23

)
|x2+

√
3x3=−2b

]
|√3x2−x3

= 0

[(√
3τ23 + σ33

)
|x2+

√
3x3=2b −

(√
3τ23 + σ33

)
|x2+

√
3x3=−2b

]
|√3x2−x3

= 0 (A.9)

[(√
3τ12 + τ13

)
|x2+

√
3x3=2b −

(√
3τ12 + τ13

)
|x2+

√
3x3=−2b

]
|√3x2−x3

= 0

[(√
3σ22 − τ23

)
|−x2+

√
3x3=2b −

(√
3σ22 − τ23

)
|−x2+

√
3x3=−2b

]
|√3x2+x3

= 0

[(√
3τ23 − σ33

)
|−x2+

√
3x3=2b −

(√
3τ23 − σ33

)
|−x2+

√
3x3=−2b

]
|√3x2+x3

= 0(A.10)
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[(√
3τ12 − τ13

)
|−2+

√
3x3=2b −

(√
3τ12 − τ13

)
|−x2+

√
3x3=−2b

]
|√3x2+x3

= 0.

For purpose of determining the effective moduli, a corresponding individual strain

component need be singled out in each case; and the effective modulus can be computed

by solving the resulting B-V problem. Note that, in the case of square array, Equation

(A.1-A.2) will be the same as ones listed in Table 2.2 by setting a = b.

A.2 Uniform Boundary Conditions for orthotropic materials

While applying the bounding technique, a sets of uniform displacement and traction

boundary conditions on the boundary of the RVE are needed to determine the effective

elastic properties. This appendix describes the boundary conditions for an orthotropic

material. Here, consider the UD composite having rectangular array. Orthotropy is

assumed; 9 independent elastic constants are needed. A set of 6 independent loading

cases for all 9 constants are listed in Table A.1.
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Table A.1: Uniform boundary conditions and corresponding effective elastic and mathe-
matic constants for a UD composite with rectangular array.

Elastic and Strain Displacement Stress Traction FE
Mathematic B.C. B.C. B.C. B.C. models
constants

C11 ε11 = ε011 u1 = ε011x1 σ11 = σ0
11 T1(x2, x3) = σ0

11 generalized
C12 ε22 = 0 u2 = 0 σ22 = 0 T2 = 0 plain
C13 ε33 = 0 u3 = 0 σ33 = 0 T3 = 0 strain

(E11) εij = 0 σij = 0
(ν12) i 6= j i 6= j
(ν13)

C22 ε11 = 0 u1 = 0 σ11 = 0 T1 = T3 = 0 plain
C23 ε22 = ε022 u2 = ε022x2 σ22 = σ0

22 T2(x0
2, x3) = σ0

22 strain
(E22) ε33 = 0 u3 = 0 σ33 = 0 T2(−x0

2, x3) = −σ0
22

(ν23) εij = 0 σij = 0 T2(x2, x
0
3) = 0

i 6= j i 6= j T2(x2,−x0
3) = 0

C33 ε11 = 0 u1 = 0 σ11 = 0 T1 = T2 = 0 plain
(E33) ε22 = 0 u2 = 0 σ22 = 0 T3(x0

2, x3) = 0 strain
ε33 = ε033 u3 = ε033x3 σ33 = σ0

33 T3(−x0
2, x3) = 0

εij = 0 σij = 0 T3(x2, x
0
3) = σ0

33

i 6= j i 6= j T3(x2,−x0
3) = −σ0

33

C44 γ23 = γ0
23 u2 = γ0

23x3
2 σ23 = σ0

23 T1 = 0 plain

(G23) other u3 = γ0
23x2
2 other T2(x0

2, x3) = 0 strain
εij = 0 u1 = 0 σij = 0 T2(−x0

2, x3) = 0
T2(x2, x

0
3) = σ0

23

T2(x2,−x0
3) = −σ0

23

T3(x0
2, x3) = σ0

23

T3(−x0
2, x3) = −σ0

23

T3(x2, x
0
3) = 0

T3(x2,−x0
3) = 0

C55 γ13 = γ0
13 u1 = γ0

13x3 σ13 = σ0
13 T1(x0

2, x3) = 0 generalized
(G13) other u2 = 0 other T1(−x0

2, x3) = 0 plain
γij = 0 u3 = 0 σij = 0 T1(x2, x

0
3) = σ0

13 strain
T1(x2,−x0

3) = −σ0
13

T2 = T3 = 0

C66 γ12 = γ0
12 u1 = γ0

12x1 σ12 = σ0
12 T1(x0

2, x3) = σ0
12 generalized

(G12) other u2 = 0 other T1(−x0
2, x3) = −σ0

12 plain
γij = 0 u3 = 0 σij = 0 T1(x2, x

0
3) = 0 strain

T1(x2,−x0
3) = 0

T2 = T3 = 0
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