

The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may
contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations
(Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non
profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may
reproduce (print, download or make copies) the Material without prior permission. All copies must include any
copyright notice originally included with the Material. You must seek permission from the authors or copyright
owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The
responsibility for making an independent legal assessment and securing any necessary permission rests with persons
desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu

Drexel University Libraries
www.library.drexel.edu

University Archives and Special Collections:

http://www.library.drexel.edu/archives/

http://www.drexel.edu/

Department of Computer Science
Drexel University College of Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190333569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.drexel.edu
mailto:archives@drexel.edu
www.library.drexel.edu
http://www.library.drexel.edu/archives/
http://www.drexel.edu/
http://www.cs.drexel.edu/
http://www.drexel.edu/coe/

Towards Employing Use-cases and Dynamic Analysis to Comprehend Mozilla

Maher Salah and Spiros Mancoridis
Department of Computer Science

Drexel University
3141 Chestnut Street, Philadelphia,

PA 19104, USA
{msalah,spiros}@cs.drexel.edu

Giuliano Antoniol and Massimiliano Di Penta
Department of Engineering

University of Sannio,
Palazzo ex Poste,

Via Traiano 82100 Benevento, Italy
antoniol@ieee.org, dipenta@unisannio.it

Abstract

This paper presents an approach for comprehending
large software systems using views that are created by sub-
jecting the software systems to dynamic analysis under var-
ious use-case scenarios. Two sets of views are built from the
runtime data: (1) graphs that capture the parts of the soft-
ware’s architecture that pertain to the use-cases; and (2)
metrics that measure the intricacy of the software and the
similarity between the software’s use-cases. The Mozilla
web browser was chosen as the subject software system in
our case study due to its size, intricacy, and ability to expose
the challenges of analyzing large systems.

1 Introduction

The identification of software features and of their trace-
ability links to source code constitutes a relevant task for
the comprehension of large software systems [1, 2, 9, 10].
In this work we use dynamic analysis and documented use-
cases to extract execution traces of the software undergoing
analysis. These traces are then used to map the use-cases to
the source code that implements them. However, because
we are interested in studying very large and intricate soft-
ware, the mapping, albeit useful, should be analyzed further
to produce abstractions that are cognitively tractable to soft-
ware maintainers.

Our goal is to develop tools to assist software maintain-
ers on perfective and adaptive maintenance tasks, which ac-
count for over two thirds of software maintenance efforts
[4, 8]. To perform a maintenance activity, a developer’s
initial task is to study and analyze the source code and its
documentation. For example, the task may be to modify
the ‘print’ feature of the Mozilla web browser. The de-
veloper studies the source code to locate the portions that
are related to the ‘print’ feature. For many software sys-
tems such as Mozilla, this task is difficult and time con-

suming, since the implementation of a feature may involve
many classes and modules. In this context, modules refer
to compiled binary objects mainly dynamically linked li-
braries (i.e., binary DLLs). Moreover, many of the software
relationships cannot be identified easily from the source
code if the system implementation uses dynamically linked
libraries and/or component-based models (e.g., XPCOM,
Mozilla’s own COM-like component model).

In a typical system, more than half of the developer’s ef-
fort is spent on reading and analyzing the source code to
understand the system’s logic and behavior [3, 4]. A com-
plementary approach to code reading is to perform main-
tenance by instrumenting the source code, exercising the
pertinent features using a profiler, and then analyzing the
execution traces to determine the portions of the code that
were exercised by the features.

This dynamic approach is suitable in practice because
‘change requests’ are usually written in natural language
with explicit references to software features. A developer
can start from the ‘change request’, then execute the appli-
cation in a profiling mode, and finally exercise the desired
features to locate the portions of the source code, instead
of starting with the code and trying to map it to features
manually.

This paper describes an approach to aid in the compre-
hension of large and intricate software such as the Mozilla
web browser. Our approach is based on using profiling tools
to map software features to source code. Specifically, our
approach employs the concept of marked execution traces to
define program features. A feature is defined as a use-case
scenario such as open-url and send-page. Features
are specified by the maintainer in terms of marked-traces.
A marked-trace is established manually during the execu-
tion of the program by specifying the start and the end of
the trace using a trace-marker utility that is part of the pro-
filer.

After the software’s features are specified, our tools ana-
lyze the traces to produce a set of views, at various levels of

Numbers Sizes (MLOC)
Header files 7,592 1.43
C files 1,980 1.09
C++ files 4,028 1.88
IDL files 1,998 0.18
C++, C & header files 13,600 4.41

Table 1. Mozilla files

detail, to assist the software maintainer in the comprehen-
sion of large software systems. Describing the tool is out
of scope of this paper, for further details see [5, 6]. In this
context we will show how the tool can be used to measure
the intricacy of the software and the similarity between use
cases.

2 The Mozilla case study

Mozilla is an open-source web browser ported to almost
every operating system and hardware platform, also includ-
ing tools such as an e-mail client, newsgroup reader, IRC
(Internet Relay Chat), and an HTML editor. Mozilla’s size
ranges in the millions of lines of code (MLOC). It is de-
veloped mostly in C++. C code accounts for only a small
fraction of the program. The Mozilla version we analyzed
(Version 1.0.1) includes more than 13,000 source files for a
total of up to 4.4 MLOC located in about 1,200 subdirec-
tories. Mozilla also has over 3,000 support files with 1.1
MLOC of XML, HTML, perl and Javascript. Mozilla con-
sists of over a 100 binary modules (DLLs) in addition to
several executable objects such as mozilla.exe, which
is the main executable, and installation programs.

The Mozilla use-cases mainly focus on the web browser
and partially on the e-mail features. Table 1 outlines
Mozilla’s size. Clearly, the thousands of classes and re-
lationships make program understanding and maintenance
difficult.

As stated earlier, dynamic analysis with partial feature
coverage1 uncovered 119,571 unique invocation relation-
ships between class methods, while the source code anal-
ysis performed, using SourceNavigator [7] on the entire
source code distribution of Mozilla, found only 77,224 re-
lationships between class methods. The source code dis-
tribution includes the source code of every Mozilla mod-
ule and tool. The additional 42,347 relationships dis-
covered via dynamic analysis were interactions between
classes in various binary modules. A specific exam-
ple is the nsObserverService class, which imple-
ments the nsIObserverService interface. The dy-
namic analysis uncovered 22 distinct relationships between
nsObserverService and other classes in 11 binary
modules. These relationships would not have been discov-

1Dynamic analysis is not able to fully exercise all features.

Methods Classes Modules XPCOM
Executed 30789
Loaded 47892 4614 61 694
Total 77842 7875 102 1089

(a) Code coverage

Use-case Modules Classes Methods Events
save-page 42 2,950 8,684 17,139,817
print-page 39 2,848 8,739 15,074,421
open-url 43 3,004 9,432 33,192,788
bookmark-add 28 1,637 4,122 4,676,802
startup 46 3,342 9,456 49,739,968
open-link 42 2,667 8,311 14,349,139
bookmark-open 42 2,798 8,511 14,259,039
shutdown 58 2,479 5,011 11,473,102
send-page 54 3,792 12,301 71,743,527
unmarked traces 48 2,803 8,351 25,791,982

(b) Run-time statistics

Table 2. Use-case coverage statistics

ered using static analysis.

2.1 The Mozilla use-cases

We identified an initial set of Mozilla use-cases that are
characteristic of any web browser’s functionality. Table 2
reports summary statistics as recovered by the dynamic
analysis. In the tables, modules correspond to dynami-
cally linked libraries and the main executable file of Mozilla
mozilla.exe. Table 2(a) summarizes the overall run-
time coverage of the use-cases. Executed counts the num-
ber of methods exercised, and Loaded counts the number of
methods, classes, and modules loaded at runtime. A method
is considered loaded when its container class is loaded, and
a class is considered loaded when its container module is
loaded. Total counts the total methods, classes, and mod-
ules in the binary code distribution of Mozilla. This total
was extracted from the compiled binaries rather than the
source code. Table 2(b) outlines the nine use-cases of the
case study and their coverage statistics: number of modules,
number of classes, number of methods, and the number of
method-entry events created during the execution each use-
case.

Next, we described the similarity between the use-cases.
The use-case similarity matrix is computed from the caller-
callee relationships of the methods invoked while execut-
ing each use-case. The similarity measure helps the engi-
neer identify similar use-cases and, thus, guide him/her to
learn about the implementation of a feature, or a use-case,
by studying similar features. The similarity measure also
helps the engineer to assess the impact of a change of one
feature to the other features in the software system. In our
case study, the similarities between some use-cases are ob-

pr
in

t-p
ag

e

op
en

-u
rl

bo
ok

m
ar

k-
ad

d

op
en

-li
nk

st
ar

tu
p

bo
ok

m
ar

k-
op

en

sh
ut

do
w

n

se
nd

-p
ag

e

save-page 69 57 48 57 57 61 44 61
print-page 100 56 48 59 51 65 44 52
open-url 100 42 77 50 76 43 56
bookmark-add 100 43 40 48 42 36
open-link 100 45 84 46 49
startup 100 50 39 57
bookmark-open 100 47 53
shutdown 100 44
send-page 100

(a) Similarity of use-cases with all the modules and classes

pr
in

t-p
ag

e

op
en

-u
rl

bo
ok

m
ar

k-
ad

d

op
en

-li
nk

st
ar

tu
p

bo
ok

m
ar

k-
op

en

sh
ut

do
w

n

se
nd

-p
ag

e

save-page 67 45 12 53 50 57 17 22
print-page 100 35 15 45 48 49 16 16
open-url 100 10 63 37 77 17 29
bookmark-add 100 10 10 11 9 3
open-link 100 36 81 16 20
startup 100 39 13 20
bookmark-open 100 20 21
shutdown 100 17
send-page 100

(b) Similarity of use-cases without the common modules

Table 3. Use case similarity matrices

vious (e.g., the strong similarity between the open-url and
bookmark-open use-cases). The use-case similarity matrix,
shown in Table 3, is computed using the Jaccard index sim-
ilarity function, which is defined as:

Similarity(U1, U2) =
|U1 ∩ U2|

|U1 ∪ U2|

where Uk is the set of caller-callee relationships of the
method invoked while executing use-case k, |U1∩U2| is the
cardinality of the intersection of U1 and U2, and |U1 ∪ U2|
is the cardinality of the union of U1 and U2.

During the analysis, common classes and modules can
be included or filtered out. A common class or module is an
entity that is used in the implementation of a high percent-
age of use-cases. Filtering out such entities not only reduces
the clutter of the views, but also emphasizes the uniqueness
of each use-case. Filtering out common modules also pro-
vides a better measure of similarity, for example, the simi-
larity between semantically similar use-cases such as open-
link and bookmark-open, does not change significantly if
common classes and modules are filtered out. However,
the similarity between bookmark-add or send-page and all

bookmark-add

bookmark-open

open-link

open-url

print-page

save-page

send-page

shutdown

startup

Figure 1. Use-cases view of Mozilla

other use-cases significantly decreases when the common
classes and modules are filtered out.

2.2 Structural views

As stated in the introduction, the proposed approach and
tool allow to extract some structural views from the runtime
data. These views capture portions of Mozilla’s architecture
that pertain to each use-case. In this paper we will focus on
the interaction view.

Figure 1 shows the use-case graph, the graph is almost
a complete graph. This graph is a starting point to ex-
plore further details about each use-case. Each node in the
graph encodes the module-interaction view of the modules
that implement a use-case, while the edges encode the par-
ticipating modules between two use-cases. The tool also
allows to access module-interaction view for a given use-
case can be viewed simply by selecting the node represent-
ing the use-case. The module-interaction view for a given
use-case can be viewed simply by selecting the node repre-
senting the use-case. For example, an engineer can explore
the send-page use-case by double-clicking on the send-page
node, which will construct the module-interaction view of
the send-page use-case as shown in Figure 2. In this view,
nodes represent clusters of modules and edges represent the
interaction between the modules in the clusters. The label of
each cluster indicates the dominant module within the clus-
ter. The module-interaction views can be annotated with
simple metrics for each module that are helpful to assess the
intricacy and the degree of interaction between other mod-
ules. An example of such metrics is the number of nodes
and edges in the call graph of the module to highlight the

size of the call graph as shown in Figure 2. In the annota-
tion G : N/E, N is number of classes in the module, and
E is the number of relationships in the call graph of the
module.

cl: urildr.dll
<<module>>

jsd3250.dll [G:19/42]
xpc3250.dll [G:48/279]

caps.dll [G:74/531]
js3250.dll [G:1/9]

urildr.dll [G:108/1402]
docshell.dll [G:215/1626]
chrome.dll [G:164/977]

wallet.dll [G:38/63]
msgMapi.dll [G:30/68]

embedcomponents.dll [G:320/1210]

cl: gkcontent.dll
<<module>>

gkgfx.dll [G:73/321]
nslocale.dll [G:66/398]
jsdom.dll [G:494/1459]

oji.dll [G:12/41]
txmgr.dll [G:11/117]

editor.dll [G:357/4439]
composer.dll [G:222/561]
gklayout.dll [G:748/8065]

lwbrk.dll [G:8/59]
chardet.dll [G:37/121]

webbrwsr.dll [G:14/124]
gkcontent.dll [G:1066/9675]

cl: msgcompo.dll
<<module>>

msgcompo.dll [G:401/1110]
mime.dll [G:13/24]

msgdb.dll [G:83/242]
xppref32.dll [G:77/328]

addrbook.dll [G:145/419]
mork.dll [G:96/1128]

msglocal.dll [G:125/423]
msgbase.dll [G:216/800]
msgbsutl.dll [G:242/810]

cl: necko.dll
<<module>>

jar50.dll [G:35/236]
zlib.dll [G:1/6]

strres.dll [G:53/293]
uconv.dll [G:87/670]
ucharuti.dll [G:32/66]

gkparser.dll [G:165/1770]
necko.dll [G:413/6506]

cl: appshell.dll
<<module>>

appshell.dll [G:194/885]
rdf.dll [G:163/1141]

gkgfxwin.dll [G:100/428]
gkwidget.dll [G:99/459]

cl: xpcom.dll
<<module>>

profile.dll [G:76/328]
jsloader.dll [G:60/257]
nkcache.dll [G:76/552]
cookie.dll [G:85/547]

xpcom.dll [G:353/4269]
gkview.dll [G:39/327]
imglib2.dll [G:92/749]
imgicon.dll [G:56/117]
imggif.dll [G:16/162]

Figure 2. Module-interaction view (clustered)
for the send-page use-case

3 Conclusions

In this paper we describe some preliminary results re-
lated to the comprehension of a large software system,

Mozilla. The comprehension task was driven by use cases
and dynamic analysis.

This allowed to and several views created using dynamic
analysis that was driven by use-cases. Some views are based
on a hierarchy of graphs that support the exploration of the
system’s software architecture. Other views are based on
metrics and focuses on revealing the intricacy of the system.

Through the case study, we demonstrate the ability of our
tools to collect dynamic data, analyze the data, and present
it as a set of views. We believe that the software views and
the automated tools described in this paper are helpful for
maintenance tasks that require a detailed understanding of
specific parts of a large software system.

References

[1] T. Eisenbarth, R. Koschke, and D. Simon. Aiding program
comprehension by static and dynamic feature analysis. In In-
ternational Conference on Software Maintenance, Florence,
Italy, November 2001. IEEE.

[2] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Transactions on Software Engineering,
29(3):210–224, March 2003.

[3] M. R. Olsem. Reengineering technology report. Techni-
cal Report Volume 1, Software Technology Support Center
(STSC), October 1995.

[4] T. M. Pigoski. Practical Software Maintenance: Best Prac-
tices Managing Your Software Investment. John Wiley &
Sons, 1997.

[5] M. Salah and S. Mancoridis. Toward an environment for
comprehending distributed systems. In Proceedings of Tenth
Working Conference on Reverse Engineering (WCRE), Vic-
toria, Canada, November 2003. IEEE.

[6] T. Souder, S. Mancoridis, and M. Salah. Form: A frame-
work for creating views of program executions. In Interna-
tional Conference on Software Maintenance, Florence, Italy,
November 2001.

[7] Source-Navigator IDE. http://sourcenav.sourceforge.net.
[8] B. Swanson and C. M. Beath. Departmentalization in soft-

ware development and maintenance. Communication of the
ACM, 33(6), June 1990.

[9] N. Wilde and M. Scully. Software reconnaissance: Mapping
program features to code. journal of Software Maintenance:
Research and Practice, 7(1), January 1995.

[10] E. Wong, S. Gokhale, J. Horgan, and K. Trivedi. Locating
program features using execution slices. In Proceedings of
Application Specific Software Engineering and Technology
(ASSET 99), Dallas, TX, March 1999.

