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ABSTRACT  

 

Unbalanced Power Converter Modeling for AC/DC Power Distribution Systems 

 

Xiaoguang Yang 

Karen N. Miu, Ph.D.  

 

In power distribution systems, the installation of power electronics based 

equipment has grown rapidly for ac/dc system coupling, system protection, alternative 

energy source interface, etc. This thesis will focus on power electronic component and 

system modeling techniques and three-phase ac/dc power flow analysis for power 

distribution systems. First, mathematical models are developed for unbalanced power 

electronic converters, such as thyristor converters, diode rectifiers, and Pulse-Width-

Modulated (PWM) converters. The modeling approach captures the imbalance of 

distribution systems using three, delta-connected, single-phase converters. In order to 

perform system analysis, these models have been incorporated into two types of ac/dc 

power flow solvers: (i) a three-phase backward/forward sequential solver and (ii) a three-

phase unified solver using the modified nodal analysis method. Both solvers have been 

applied to unbalanced radial and weakly meshed distribution systems. Finally, an ac/dc 

system hardware test bed was created to validate the mathematical models and the 

performance of the power flow solvers. Extensive hardware tests, time domain 

simulations, and steady-state analysis have been performed. 



 



1 

 

CHAPTER 1.  INTRODUCTION 

 

Recent developments in power electronics offer the possibility of wide-scale 

integration of power electronics based devices into power systems [1]. Resulting benefits 

would include improved control of the delivered power, high energy efficiency and high 

power density. In order to implement these devices into distribution systems successfully, 

system wide analysis should be performed in order to understand their impacts on system 

planning and operation. As such, appropriate mathematical models and application tools, 

are desired to capture the characteristics of power electronic devices. This thesis will 

address power electronic device modeling techniques and three-phase ac/dc power flow 

analysis for power distribution systems.  

1.1 Motivations 

In power systems, ac/dc conversion using power converters has been developed and 

installed in transmission systems in past decades [2]. With a focus on power distribution 

systems, the implementation of power electronic devices has grown rapidly in recent 

years, such as in terrestrial distribution systems [3], shipboard power systems [4], and 

transportation systems [5]. For example, adjustable-speed drives are replacing constant 

speed electric motor-driven systems in industry to improve efficiency by controlling the 

motor speed. Power electronics have also been used as interface to transfer power from 

alternative energy sources, such as wind, photovoltaic, into the utility systems. In 

shipboard power systems, power converters introduce the potential to actively control the 

coupling of ac/dc systems. They can be operated faster than electromechanical devices to 

open/close circuits and prevent the spread of faults using zonal electrical distribution [4].  
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The installation of these power electronic devices may have either positive or 

negative impacts on the operation and control of distribution systems. To investigate the 

impacts of these new devices, it is essential to establish a foundation to investigate their 

properties and to incorporate them in planning and operation studies. Fundamental tools 

for power system analysis include component and system modeling and steady-state 

ac/dc power flow. The models and power flow have been used in many applications in 

planning and operation, such as protection system design, service restoration, power 

quality analysis, etc. The applications require appropriate models to reflect the actual 

behavior of system components as well as robust and efficient power flow solution 

algorithms.  

Historically in the power industry, the main power electronics applications have been 

in High Voltage Direct Current (HVDC) systems, solid state VAR compensators, unified 

power flow controllers, and others. As a result, a number of models were created to 

handle these devices and implemented in power flow solvers, see for example [6-12]. In 

HVDC systems, large inductors are installed in the dc systems to smooth dc currents. 

Thus, many converter models and subsequent power flow formulations assumed the 

systems to be three-phase with constant dc currents. In [6-9], the network and loads are 

assumed to be three-phase balanced. In these models, the converter ac currents were 

assumed to be filtered and had sinusoidal waveforms with low distortion. The current 

magnitudes were calculated by performing FFT analysis on the tri-state square ac 

currents before filters. The dc systems were modeled as constant power ac loads in the 

power flow solvers. 

Some three-phase, unbalanced systems, converter models have also been developed 



3 

 

for HVDC system analysis. In [10][11], a three-phase thyristor converter model was 

proposed. The imbalance of systems was captured by the conducting periods of thyristors 

on each phase. In [12], three-phase thyristor converters were modeled as equivalent 

sequence regulation transformers using modulation theory. In these three-phase models, it 

was still assumed that the dc currents were constant.  

In contrast, power distribution systems are inherently unbalanced systems consisting 

of single, two and three-phase components and subsystems. Also because of limited 

space [13], often there are not enough filtering devices to eliminate the harmonics 

generated by power electronic devices. In addition, installation of large dc capacitors 

amplifies dc current ripples in some distribution system devices, such as Adjustable 

Speed Drives (ASDs), As such, the Total Harmonic Distortion (THD) in the dc currents 

and ac currents could be much higher, e.g. THD is among 40-60% for ASDs [13], than 

those in HVDC systems. For these reasons, the previous modeling approaches and power 

flow solvers for HVDC system analysis are not directly applicable to power distribution 

systems. New modeling techniques are desired to capture the properties of the power 

electronic devices and to be implemented in distribution system analysis tools.  

Furthermore, these new mathematical models and analysis tools should be tested and 

validated in real-life environments. It is noted that real system data is not always 

accessible and it is also impractical to perform experiments on real systems for the sole 

purpose of validation. As such, it is desired to develop scaled-down, flexible, ac/dc 

system hardware test beds.  

1.2 Objectives 

The objectives of this work are to  
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(i) Investigate characteristics of power converters and develop mathematical 

models for distribution system analysis 

(ii) Develop new power flow solvers with appropriate mathematical models to 

support improved distribution system planning and operation 

(iii) Develop hardware and software tools to validate power converter models and 

the performance of power flow solvers 

The framework of this thesis is shown in Figure 1.1.  

Unbalanced AC/DC Distribution System  Modeling and
Power Flow Analysis

Unbalanced converter models
3-phase sequential power flow

solver & unified power flow solver
using MNA

A flexible ac/dc system test bed with
3 types of converters

Power electronic component
modeling AC/DC power flow calculation Hardware and software tools

 
Figure 1.1  The framework of this thesis 

The work in this thesis addresses the above objectives and makes the following 

contributions.  

1.3 Summary of Contributions  

This thesis provides the following contributions toward improving distribution system 

operation and control in the presence of power electronic devices: 

• Detailed unbalanced converter models using three, delta-connected, single-phase 

converters for: 

⎯ Three-phase full bridge thyristor converters and diode rectifiers 

⎯ Three-phase Pulse-Width-Modulated (PWM) converters  
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• Three-phase ac/dc power flow solvers for uni-directional and bi-directional power 

flow studies in radial or weakly meshed distribution systems 

⎯ A backward/forward sequential solver using a subsystem ranking method  

⎯ A unified solver using the modified nodal analysis method  

⎯ Detailed simulation results on radial and weakly meshed three-phase 

distribution systems 

• A flexible hardware test bed for studying ac/dc power flow and evaluating 

mathematical system models and analysis tools 

1.4 Organization of Thesis 

This thesis is organized as follows. In Chapter 2, a new converter modeling approach 

is proposed for unbalanced power converters. The approach utilizes three, single-phase 

converters to model three-phase converters under unbalanced operating conditions. The 

models are able to capture system imbalance using the single-phase converters. The 

contributions of the single-phase converters to ac/dc power flow are determined by 

participation coefficients. By introducing equivalence criteria, the converter models 

become equivalent to three-phase converters with respect to both RMS fundamental ac 

and average dc currents. They are valid for converters operating in either rectifier mode 

or inverter mode. The modeling approach is applied to three types of three-phase 

converters: (i)  thyristor converters; (ii) diode rectifiers; and (iii) PWM converters. The 

three converter models are validated in time domain simulation and steady- state analysis.  

Using the converter models from Chapter 2, a three-phase sequential solver and a 

three-phase unified solver are developed in Chapter 3 and Chapter 4, respectively, for 

distribution ac/dc power flow studies. In the sequential solver, ac and dc power flows in 
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subsystems are solved using an iterative backward/forward algorithm. A subsystem 

ranking method is proposed to determine the sequence for solving power flow. In the 

unified solver, steady-state Modified Nodal Analysis (MNA) method is implemented to 

solve ac and dc power flow in a unified manner. Using MNA, impacts among ac and dc 

systems can be analyzed directly. The ac/dc power flow iterations, which may cause 

divergence problems, in sequential solvers are avoided. In addition, existing ac and dc 

nodal analysis programs can be extended to develop the unified power flow program 

conveniently with moderate modifications.  

In order to validate the performance of the theoretical converter models and the 

power flow solvers, a three-phase ac/dc system hardware test bed has been developed and 

will be presented in Chapter 5. The test bed contains a flexible network and loads as well 

as three different three-phase converters: (i) a full-bridge thyristor converter; (ii) a full 

bridge diode rectifier; and (iii) a variable frequency converter consisting of a diode 

rectifier and a PWM inverter. Using the test bed, balanced or unbalanced ac/dc systems 

can be set up for power flow studies. Special attention is paid to the design of the variable 

frequency converter while the thyristor converter and diode rectifier are existing devices. 

Using the test bed, ac/dc power flow has been studied in a real-life environment. In 

addition, time domain simulations using MATLAB Simulink and power flow analysis 

using the solvers developed in Chapters 3 and 4 have been performed. The delta-

connected converter models and the performance of the ac/dc power flow solvers are 

validated by comparing the steady-state results with the hardware test results. In Chapter 

6, conclusions are drawn for this work with outlined contributions. Possible future work 

is also discussed. 
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CHAPTER 2. UNBALANCED CONVERTER MODELING: DIODE RECTIFIER, 

THYRISTOR CONVERTER AND PULSE-WIDTH-MODULATED (PWM) 

CONVERTER 

 

In this chapter, three-phase converter models are proposed for power distribution 

system analysis. The models allow for converter operation with continuous and 

discontinuous dc currents. The following three types of converters are investigated: 

• Line-frequency full bridge diode rectifiers 

• Line-frequency full bridge thyristor converters 

• Pulse-width-modulated (PWM) converters  

These converters are modeled using three, delta-connected, single-phase converters. The 

models are equivalent to three-phase converters with respect to RMS fundamental ac and 

average dc currents. They can be used in analysis tools such as ac/dc power flow.   

Unbalanced converter models are desired to capture characteristics of distribution 

systems. Power converter based devices, such as adjustable speed drives (ASDs), dc 

motor drives, flexible AC transmission system (FACTS) devices, have been used at 

various voltage levels in distribution systems. Distribution systems contain single-phase, 

two-phase, and three-phase components. As such, the ac voltages applied to and the ac 

currents flowing in the converters are generally unbalanced.  

However, use of these devices results in distorted currents in both the ac and dc 

systems. Usually, installations of power electronics devices in distribution systems are 
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limited by physical space [13]. Consequently, the dc inductors, if present, have small 

inductance and may not be able to significantly reduce the harmonics in the dc currents 

generated by the converters. Typical ac currents in High Voltage Direct Current (HVDC) 

links, DC drives, and ASDs [13] are shown Figure 2.1. It can be seen that the current in 

the HVDC link has less distortion while the currents in the DC drive and ASD are highly 

distorted.  

 

Figure 2.1 Typical current waveforms of HVDC links, 6-pules dc drives, and adjustable 
speed drives [13] 

Traditional converter models for HVDC system studies are not directly applicable to 

converters in distribution systems. In HVDC systems, thyristor converters have been used 

for ac/dc conversion with large dc link inductors. The majority of the ac components in 

the dc link currents are eliminated. Then, based on pure dc currents and tri-state 

square-wave ac currents, single-phase [6]-[9] and three-phase [10]-[12] converter models 

have been proposed for HVDC power flow studies. Single-phase HVDC converter 

models have also been used in power flow studies for certain balanced small ac/dc 

systems [13][15] and transit railway power systems [16]. In the above models, it was 

assumed that the dc currents were constant with no harmonics. The converter ac currents 
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at the fundamental frequency were obtained by performing Fast Fourier Analysis (FFT) 

on the square-wave shape ac currents. However, the assumption of a constant dc current 

generally does not hold for ac/dc systems with small dc inductance or large dc 

capacitance and appropriate models are desired.  

 More recently, new three-phase converter topologies have been proposed for 

unbalanced distribution systems [17-19]. Time domain simulations were performed with 

detailed power electronic device models to verify the feasibility and efficiency of the 

converters. However, time domain analysis requires detailed component models and 

becomes complicated and time consuming for large-scale power systems. In order to 

implement these converters in power flow studies, frequency domain models are desired.  

Unbalanced converter models using three, Y-connected, grounded, single-phase 

converters were proposed for distribution system power flow studies in [20]-[22]. The 

models used single-phase converters to capture the imbalance in the ac currents. It was 

assumed that the dc current was continuous and converter ac real power was balanced. In 

this thesis, the Y-connected models are expanded and improved by using three, 

delta-connected, single-phase converters. The new models relieve the above two 

assumptions in the Y-connected models.  

The three, delta-connected, single-phase converters in the new model capture the 

imbalance of ac real power and the ac currents. The contributions of the single-phase 

converters to the dc link current are represented using participation coefficients. The 

delta-connected models are equivalent to three-phase converters in terms of both the 
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RMS fundamental ac currents entering the three-phase converters and the average dc link 

current. The modeling approach is illustrated in Figure 2.2. The models are: 

• Applicable under significantly unbalanced operating conditions 

• Valid for converters with either continuous or discontinuous dc currents 

• Applicable to both rectifier and inverter operation modes  

• Appropriate for both unidirectional and bi-directional power flow studies 

They can be used for ac/dc power flow studies in both balanced and unbalanced 

distribution systems.  

 

Figure 2.2  The unbalanced, delta-connected converter modeling approach 

In the following subsections, equivalent delta-connected models are first proposed 

for three-phase diode/thyristor converters and PWM converters. Then, an example of the 

model implemented for converters operating under significantly unbalanced conditions is 

presented. MATLAB Simulink simulations are performed for a three-phase four-bus 

ac/dc system. The delta-connected models are tested and verified in both time domain 

and steady-state. The results are compared with those obtained from the Y-connected 

models [20]. Hardware tests of the models will be presented in Chapter 5.  
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2.1 Unbalanced Diode Rectifier and Thyristor Converter Models 

The diode rectifiers and thyristor converters under investigation are three-phase 

line-frequency full bridge converters [1]. It is noted that diode rectifiers have similar 

characteristics as thyristor converters with zero firing angles. As such, this subsection 

focuses on modeling thyristor converters. The diode rectifier model follows the same 

approach and will be discussed at the end of this subsection.  

2.1.1 Thyristor Converter Model 

The circuit diagram of a three-phase full bridge thyristor converter is shown in 

Figure 2.3. Please note that the following notation is used:   

ab
TV , bc

TV , ca
TV :  the RMS line-to-line voltages on the converter ac bus 

a
TI , b

TI , c
TI :   the RMS ac currents entering the three-phase converters 

 1T  to 6T :   the six thyristors forming the bridge  

dcL , dcC , dcR : the dc inductor, capacitor, and resistor respectively 

3
,T dcI φ :   the average dc current through the dc link  

 

 Figure 2.3 Three-phase line-frequency full bridge thyristor converter 



12  

   

The following assumptions are made for the three-phase thyristor converters:  

A1. Equi-distant control is used  

A2. All firing angles are known 

A3. Commutation angles are known 

A4. The percentage of the real power loss is known and constant 

The dc current of a three-phase converter is either continuous or discontinuous, 

depending on the network. For example, DC drives usually do not have dc link filters 

[13] and the dc motor inductance results in continuous dc currents. On the other hand, 

dc capacitors are generally installed for ac/dc/ac power conversion [1]. For example, 

most ASDs have large dc capacitors to sustain dc voltages. The capacitors amplify dc 

current ripples and cause discontinuous dc currents. In order to develop appropriate 

models for both conduction modes, the following assumptions are made for the dc 

systems: 

A5. The dc capacitor is ignored when the converter is operated in the continuous 

conduction mode 

A6. The dc capacitor voltage is constant when the converter is operated in the 

discontinuous conduction mode 

Based on these assumptions, an equivalent model is developed using three, 

delta-connected, single-phase thyristor converters as shown in Figure 2.4 with the 

following notation:  
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ab
TI , bc

TI , ca
TI :  the RMS ac currents entering the three single-phase converters 

,
ab
T dcI , ,

bc
T dcI , ,

ca
T dcI : the average dc currents in the three single-phase converters 

3_
,T dcI ∆ :    the average dc link current  

 
Figure 2.4 Three-phase delta-connected thyristor converter model 

In the model, the ac sides of the three single-phase converters are delta-connected. Each 

converter contributes ac currents to two phases. The dc sides of the converters are in 

parallel. The sum of the dc currents in the converters gives the dc link current. The model 

is equivalent to three-phase converters with respect to both the RMS fundamental ac 

currents entering the three-phase converters and the average dc link current. Details will 

now be presented. 

2.1.1.1 Delta-Connection Approach 

The delta-connection modeling approach can be illustrated using the following 

MATLAB Simulink example for a three-phase unbalanced thyristor converter in the 

continuous conduction mode. Using the SimPowerSystems toolbox, the converter is 

operated at firing angles of 10 degrees with a constant resistive dc load. Figure 2.5 shows 
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the converter instantaneous ac currents, a
Ti , b

Ti , c
Ti , and dc current, 3

,T dci φ . 

 

ib
T

ia
T

ic
T

iT,dc
3

T (Sec)

i (A)

 

Figure 2.5 The ac and dc currents in a three-phase thyristor converter 

From Figure 2.5, the currents in the equivalent, delta-connected thyristor converter model 

can be obtained through the following observations with T1 to T6 referred to thyristors in 

Figure 2.3: 

 ( )ab
Ti t  is instantaneous ac current flowing between phase a and phase b when 

the thyristor pair (T1, T6) or (T3, T4) conducts; 

 ( )bc
Ti t  is instantaneous ac current flowing between phase b and phase c when 

the thyristor pair (T2, T3) or (T5, T6) conducts; 

 ( )ca
Ti t  is instantaneous ac current flowing between phase c and phase a when 

the thyristor pair (T1, T2) or (T4, T5) conducts; 

 ( ).
ab
T dci t  is instantaneous dc current in the thyristor pairs (T1, T6) and (T3, T4); 

 ( ),
bc
T dci t  is instantaneous dc current in the thyristor pairs (T2, T3) and (T5, T6); 

 ( ),
ca
T dci t  is instantaneous dc current in the thyristor pairs (T1, T2) and (T4, T5). 

Please note that the same approach can be applied to the diode rectifier model and the 
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PWM converter model. 

The currents in the delta-connected model are generated in MATLAB Simulink and 

shown in Figure 2.6. It is noted that the dc current in each single-phase converter includes 

nearly linear segments, which correspond to the dc currents through the single-phase 

converter during commutation. Compared with a
Ti , b

Ti , c
Ti , and 3

,T dci φ , it can be seen that 

the following relationship holds:  

( ) ( ) ( )a ab ca
T T Ti t i t i t= − , ( ) ( ) ( )b bc ab

T T Ti t i t i t= − , ( ) ( ) ( )c ca bc
T T Ti t i t i t= −   (2.1) 

( ) ( ) ( ) ( ) ( )3 3_
, , , , ,

ab bc ca
T dc T dc T dc T dc T dci t i t i t i t i tφ ∆= = + +      (2.2) 

Let ab
Ti , bc

Ti , and ca
Ti  be the ac currents and ,

ab
T dci , ,

bc
T dci , ,

ca
T dci  be the dc currents in the 

three single-phase converters. The model becomes equivalent to the three-phase 

converter with respect to the ac currents and dc current as shown in (2.1) and (2.2). 

 

iT,dc
ab

ibc
T

iab
T

ica
T

iT,dc
bc

iT,dc
ca

T (Sec)

i (A)

 

Figure 2.6 The ac and dc currents in the delta-connected converter model 

From the above analysis, it can be seen that the single-phase converters have the 

following characteristics:  
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(i) Each converter rectifies/inverts one line-to-line voltage;  

(ii) At each frequency, each phase current equals the difference of the ac currents 

entering two single-phase converters, e.g., at the fundamental frequency: 

a ab ca
T T TI I I= − , b bc ab

T T TI I I= − , c ca bc
T T TI I I= −     (2.3) 

(iii) Their average dc currents add and the sum is the average dc link current: 

3_
, , , ,

ab bc ca
T dc T dc T dc T dcI I I I∆ = + +         (2.4) 

(iv) Their average dc power, ,
ab

T dcP , ,
bc

T dcP , ,
ca

T dcP , adds and the sum is the power 

through the dc link, 3_
,T dcP ∆ : 

3_
, , , ,

ab bc ca
T dc T dc T dc T dcP P P P∆ = + +        (2.5) 

In the model, the ac current in a single-phase converter always flows between the two 

phases to which it is connected. Hence, the three single-phase converters can be treated as 

delta-connected current components in the ac systems. On the dc side, the dc link current 

is equal to the sum of the three dc currents in the single-phase converters. Equivalent ac 

and dc components are created as shown in Figure 2.7. Based on the equivalent circuits, 

three-phase converters and the model will be equivalent using participation coefficients 

and equivalence coefficients. The details are now presented. 
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(a) The equivalent delta-connected 
component in ac systems 

(b) The equivalent parallel component 
in dc systems 

Figure 2.7 Equivalent ac and dc components of the delta-connected converter model 

2.1.2 Determining DC Current and Power in the Delta-Connected Model 

The average dc currents, ,
LL
T dcI , with { }, ,LL ab bc ca∈ , and the average dc power, 

,
LL

T dcP , in the single-phase converters are now calculated. Figure 2.8 shows the dc 

currents in a three-phase thyristor converter and the three single-phase converters. It is 

noted that ,
LL
T dci and 3

,T dci φ  are the same during the full conduction of the three-phase 

converter. The following notation is used.  

3
,T dci φ : the instantaneous dc current in the three-phase converter 

,
LL
T dci :  the instantaneous dc currents in the single-phase converters 

Subscript 1, 2: start and end respectively 

1
LLθ :  the starting angles of the linear increasing periods in the single-phase 

converters, determined by the firing angles 

1
LLu :  the conduction angles of the linear increasing periods in the single-phase 



18  

   

converters or the commutation angles of the three-phase converter 

idc
 (A

)

 

 

Legend:  

 

Figure 2.8 The dc currents in a three-phase thyristor converter, 3
,T dci φ , and the three 

single-phase converters, ,
LL
T dci  

 In order to simplify the model and preserve the real power, the following 

assumptions are made: 

A7.  ,
LL
T dci  changes linearly during commutation of the corresponding thyristors in 

three-phase converters. 

A8.  During conduction, each single-phase converter’s output voltage is equal to 

that of the three-phase converter. Otherwise, it is open circuit.  

A9.  The percentages of the real power losses in the single-phase converters are 

equal to that of the three-phase converter. 

Using the above assumptions, the dc current in each single-phase converter, ,
LL
T dci , 

consists of the following four periods: (ω - the fundamental frequency) 

 1 1 1
LL LL LLt uθ ω θ≤ ≤ +  - Linear increasing period. ,

LL
T dci  increases linearly from 

zero when the three-phase converter is in commutation;  
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 1 1 2
LL LL LLu tθ ω θ+ ≤ ≤  - Full conduction period. ,

LL
T dci  is equal to 3

,T dci φ  and the 

three-phase converter is in the full conduction.  

 2 2 2
LL LL LLt uθ ω θ≤ ≤ +  - Linear decreasing period. ,

LL
T dci  decreases linearly to 

zero when the three-phase converter is in the commutation. 2
LLθ  is the 

commutation starting angle. 2
LLu  is the commutation angle.  

 Otherwise, the dc current is equal to zero. 

The conduction starting angles, 1
LLθ , are dependent on the dc voltages, the firing angles, 

and the conduction modes. Detailed expressions will be presented in the following 

sections.  

It is noted in Figure 2.8 that during the commutation of the three-phase converter, 

the dc current in one single-phase converter increases from zero while the dc current in 

another single-phase converter decreases to zero. As such, the following relationship 

holds for 2
LLθ  and 2

LLu .  

 2 1
ab caθ θ= , 2 1

bc abθ θ= , 2 1
ca bcθ θ=  

2 1
ab cau u= , 2 1

bc abu u= , 2 1
ca bcu u=  

Given the conduction angles, the average dc current in each single-phase converter 

is equal to the average of the instantaneous dc current in a period of π : 

( ) ( ), ,0

1LL LL
T dc T dcI i t d t

π
ω ω

π
= ∫                 (2.6) 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 2

1 1 1 2
, , ,

1 LL LL LL LL LL

LL LL LL LL

u uLL LL LL
T dc T dc T dcu
i t d t i t d t i t d t

θ θ θ

θ θ θ
ω ω ω ω ω ω

π
+ +

+

⎡ ⎤= ⋅ + ⋅ + ⋅⎢ ⎥⎣ ⎦∫ ∫ ∫  

Based on A8, the dc voltage, ,
ab
T dcv , on the single-phase converter between phase a and 
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phase b can be determined using the dc voltage on the three-phase converter [1]:   

( )

( ) ( )
( )

( ) ( )
( )

1 1 1

1 1 2
,

2 2 2

,

1
2

1
2

ab bc ab ab ab
T T

ab ab ab ab
Tab

T dc
ab ca ab ab ab
T T

T dc

v t v t t u

v t u t
v t

v t v t t u

v t otherwise

ω ω θ ω θ

ω θ ω θ
ω

ω ω θ ω θ

ω

⎧ ⎡ ⎤− ≤ ≤ +⎣ ⎦⎪
⎪

+ ≤ ≤⎪= ⎨
⎪ ⎡ ⎤− ≤ ≤ +⎣ ⎦⎪
⎪
⎩

    (2.7) 

where:  

LL
Tv :  the instantaneous line-to-line converter voltages  

In a similar manner, ,
bc
T dcv  and ,

ca
T dcv  follow. The average dc power can be calculated 

by averaging the instantaneous power in a period of π : 

( ) ( ) ( )2 2

1
, , ,

1 LL LL

LL

uLL LL LL
T dc T dc T dcP v t i t d t

θ

θ
ω ω ω

π
+

= ⋅ ⋅∫     (2.8) 

 The instantaneous dc currents in the single-phase converters are determined 

differently for the continuous and discontinuous conduction modes. Thus, the average 

dc current and the average dc power are different in the two conduction modes. They 

will be discussed respectively next. 

2.1.2.1 Continuous Conduction  

In the continuous conduction mode, the dc capacitor can be assumed to be zero 

from A5. During the full conduction period, the dc output voltage, ( ),
LL
T dcv tω , is equal to 

the line-to-line voltage, ( )LL
Tv tω , as given in (2.7). The instantaneous dc currents, ,

LL
T dci , 

satisfy the Kirchoff's Current Law (KCL) in the dc system:  

( ) ( )( ) ( ),
, ,

LL
T dcLL LL

T dc dc dc T dc

d i t
v t L R i t

dt
ω

ω ω= + ⋅      (2.9) 
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It is assumed that dc

dc

L
R

 is small and then di
dt

 can be neglected. With the line-to-line 

voltages defined as: 

( ) ( )2 sin
T

LL LL LL
T T Vv t V tω ω δ= ⋅ +      (2.10) 

where:  

LL
TV , 

T

LL
Vδ :  the magnitudes and phase angles of the RMS fundamental line-to-line 

converter voltages respectively  

The dc currents can be simplified as: 

( ) ( ),
,

LL
T dcLL

T dc
dc

v t
i t

R
ω

ω ≈        (2.11) 

( )2
sin

T

LL
T LL

V
dc

V
t

R
ω δ= +       

During the linear conduction periods, ,
LL
T dci  changes linearly and is continuous at the 

boundary of linear conduction periods and the full conduction period. ,
LL
T dci  at 1 1

LL LLuθ +  

and 2
LLθ  can be determined using (2.11) and ,

LL
T dci  can be represented as: 

( )

( ) ( )

( )

( ) ( )

1
1 1 1 1 1

1

1 1 2
,

2 2 2 2 2
2

2
sin

2
sin

2 1sin 1

0

T

T

T

LLLL
T LL LL LL LL LL LL

V LL
dc

LL
T LL LL LL LL

LL V
T dc dc

LL
T LL LL LL LL LL LL

V LL
dc

tV
u t u

R u

V
t u ti t R

V
t t u

R u
otherwise

ω θ
θ δ θ ω θ

ω δ θ ω θω

θ δ ω θ θ ω θ

⎧ −
⎪ + + ⋅ ≤ ≤ +
⎪
⎪
⎪ + + ≤ ≤⎪= ⎨
⎪

⎛ ⎞⎪ + ⋅ − ⋅ − ≤ ≤ +⎜ ⎟⎪
⎝ ⎠⎪

⎪⎩

   (2.12) 

The average dc current, ,
LL
T dcI , can be obtained by substituting (2.12) into (2.6): 
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( ) ( ), 1 1 2
1 2

2 2
sin sin

2 2T T

LL LL
T TLL LL LL LL LL LL

T dc V VLL LL
dc dc

V V
I u

R u R u
θ δ θ δ

π π
= + + + +

⋅ ⋅
    (2.13) 

( ) ( )( )2 1 1

2
cos cos

T T

LL
T LL LL LL LL LL

V V
dc

V
u

R
θ δ θ δ

π
+ − + + + +  

The conduction angles, 1
LLθ , 2

LLθ , are determined as follows. With equi-distant 

control from A1, the firing angle, abα , is specified to control the thyristors between 

phase a and phase b. 1
abθ can be calculated using the line-to-line voltage ca

Tv  at 

1
ab

abθ α− , where ca
Tv  is equal to zero: 

( ) ( )1 12 sin 0
T

ca ab ca ab ca
T ab T ab Vv Vθ α θ α δ− = − + =    (2.14) 

1 2 T

ab bc ca
ab Vθ θ α δ= = −        (2.15) 

1
LLθ  and 2

LLθ  of other single-phase converters are determined: 

1 2 1
1
3

ca ab abθ θ θ π= = +           (2.16) 

1 2 1
1
3

bc ca caθ θ θ π= = +              (2.17) 

The average power, ,
LL

T dcP , in each single-phase thyristor converter can be obtained by 

substituting ,
LL
T dcv  and ,

LL
T dci  in different periods into (2.8).  Next, ,

LL
T dcI  and ,

LL
T dcP  are 

calculated for the discontinuous conduction mode. 

2.1.2.2 Discontinuous Conduction 

In the discontinuous conduction mode, it is assumed that the dc capacitor 

voltage, 
dcCV , is constant. The instantaneous dc link current is equal to zero in the 

three-phase converter when the thyristors are fired. Hence, there is no commutation 

and 1
LLu  and 2

LLu  are equal to zero. ,
LL
T dci  is equal to the dc current in dcL  during 
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the conduction period ( 1
LLθ , 2

LLθ ): 

( ) ( ) ( )
1

,
1 2 sin

LL T dc

tLL LL LL
T dc T V C

dc

i t V t V d t
L

ω

θ
ω ω δ ω

ω
⎡ ⎤= + −⎣ ⎦∫    (2.18)

( ) ( ) ( )1 1

2
cos cos dc

T T

LL
T CLL LL LL LL

V V
dc dc

V V
t t

L L
θ δ ω δ ω θ

ω ω
⎡ ⎤= + − + − −⎣ ⎦   

Otherwise, ,
LL
T dci  is equal to zero. Therefore, ,

LL
T dci  can be represented as: 

( ) ( ) ( ) 1 2
,

cos sin
0

LL LL
LL LL LL LL LL
T dc

A t B t C t D t
i t

otherwise
ω ω ω θ ω θω

⎧ ⋅ + ⋅ + ⋅ + ≤ ≤
= ⎨
⎩

  (2.19) 

where:  

( )2
cos

T

LL
T LL

LL V
dc

V
A

L
δ

ω
−

= , ( )2
sin

T

LL
T LL

LL V
dc

V
B

L
δ

ω
= ,  

dcC
LL

dc

V
C

Lω
= − ,  ( ) ( )1 1 1cos sinLL LL LL

LL LL LL LLD A B Cθ θ θ= − ⋅ − ⋅ − ⋅  

Then, the average dc current, ,
LL
T dcI , can be obtained: 

( ) ( )( ) ( ) ( )( ), 2 1 2 1
1 sin sin cos cosLL LL LL LL LL

T dc LL LLI A Bθ θ θ θ
π
⎡ ⎤= ⋅ − + ⋅ − +⎣ ⎦    (2.20) 

( ) ( )( ) ( )2 2

2 1 2 1
1

2
LL LL LL LLLL

LL
C Dθ θ θ θ

π
⎡ ⎤

+ ⋅ − + ⋅ −⎢ ⎥
⎣ ⎦

 

Two different cases are considered to determine the conduction angles, 1
LLθ  and 

2
LLθ . In the first case, the thyristors are fired when , dcT dc Cv V≥ . The thyristors start to 

conduct immediately. 1
LLθ  is determined in (2.15) to (2.17). At 2

LLθ , ,
LL
T dci  decreases to 

zero in (2.18). 2
LLθ  can be solved using the Newton method.  

In the second case, the thyristors are fired when , dcT dc Cv V< . The thyristors do not 

conduct until ,T dcv  becomes equal to 
dcCV : 

( ) ( ), 1 12 sin
T dc

LL LL LL LL LL
T dc T V Cv V Vθ θ δ= ⋅ + =      (2.21) 
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1
LLθ  can be determined: 

,1
1 sin

2 T

T dcLL LL
VLL

T

V
V

θ δ−
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

  10 2LLθ π≤ ≤     (2.22) 

2
LLθ  is determined in the same manner as the first case.  

Since there is no commutation, ,
LL

T dcP , in the discontinuous conduction mode can be 

determined using ,
LL
T dcv  and ,

LL
T dci : 

( ) ( ) ( )2

1
, , ,

1 LL

LL

LL LL LL
T dc T dc T dcP v t i t d t

θ

θ
ω ω ω

π
= ⋅ ⋅∫      (2.23) 

( ) ( ) ( ) ( )2

1

1 2 sin cos sin
LL

LL T

LL LL
T V LL LL LL LLV t A t B t C t D d t

θ

θ
ω δ ω ω ω ω

π
⎡ ⎤= ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅⎣ ⎦∫

 From above, it can be seen that ,
LL
T dcI  and ,

LL
T dcP  are not balanced either in the 

continuous conduction mode or in the discontinuous conduction mode because of the 

unbalanced voltages. Hence, the contributions of the single-phase converters to the dc 

link current and the dc power are not equal. This difference is now captured by 

introducing three scalar dc current participation coefficients, ab
Iλ , bc

Iλ , ca
Iλ , and three 

scalar dc power participation coefficients, ab
Pλ , bc

Pλ , ca
Pλ , into the model.   

2.1.3 Participation Coefficients 

In distribution systems, ac voltages and ac currents are generally unbalanced in both 

magnitude and phase. Hence, each single-phase converter in the delta-connected model 

contributes differently to the current and the power through the dc link. It is important to 

determine the contribution of each single-phase converter to the total dc current and 

power. Three current participation coefficients, ,
ab

T Iλ , ,
bc
T Iλ , ,

ca
T Iλ ,  are introduced to 

capture the imbalance of the ac current magnitudes of three-phase converters. ,
ab

T Iλ  is 
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defined as the ratio of the average dc current, ,
ab
T dcI , in the single-phase converter 

between phase a and phase b to the sum of the average dc currents in the three 

single-phase converters: 

,
,

, , ,

ab
T dcab

T I ab bc ca
T dc T dc T dc

I
I I I

λ =
+ +

   (2.24) 

In a similar manner, ,
bc
T Iλ  and ,

ca
T Iλ  follow. 

 Three real power participation coefficients, ,
ab

T Pλ , ,
bc
T Pλ , ,

ca
T Pλ , are introduced to 

capture the imbalance of ac real power in three-phase converters in terms of average dc 

power in the single-phase converters. ,
ab

T Pλ  is defined as the ratio of the average dc 

power , ,
ab

T dcP , of the single-phase converter between phase a and phase b to the sum of 

the average dc power on the three single-phase converters: 

,
,

, , ,

ab
T dcab

T P ab bc ca
T dc T dc T dc

P
P P P

λ =
+ +

   (2.25) 

 

Similarly, ,
bc
T Pλ  and ,

ca
T Pλ  follow. Next, the delta-connected model will be made 

equivalent to a three-phase converter with respect to the RMS fundamental ac and the 

average dc currents.  

2.1.4 Equivalence Transformation 

From above, three-phase thyristor converters are modeled as three, delta-connected, 

singe-phase converters. The models are made equivalent with respect to the RMS 

fundamental ac and the average dc currents entering/leaving the three-phase converter. A 

dc equivalence coefficient, KT,dc, is introduced to equalize the dc link currents in Figure 
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2.3 and Figure 2.4. It is defined as the ratio of the average dc current of a three-phase 

thyristor converter, 3
,T dcI φ , to the average dc current, 3_

,T dcI ∆ , of the delta-connected model: 

3
,

, 3_
,

T dc
T dc

T dc

I
K

I

φ

∆=   (2.26) 

3
,T dcI φ  is equal to the average of the instantaneous dc current in a period of 2π :  

( ) ( )23 3
, ,0

1
2T dc T dcI i t d t

πφ φ ω
π

= ⋅∫             (2.27) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )2

, , , , , ,0

1
2

ab ca bc ab ca bc
T dc T dc T dc T dc T dc T dci t i t i t i t i t i t d t

π
ω

π
⎡ ⎤= + + + + + ⋅⎣ ⎦∫   

3_
,T dcI ∆=                   

Thus,  

, 1T dcK =        (2.28) 

Now, the ac sides of the two models will be equalized with respect to the RMS 

fundamental ac currents. From the ac equivalent representation of the converter model in 

Figure 2.9, it can be seen that the phase currents entering a three-phase converter can be 

obtained using the ac currents entering the delta-connected single-phase converters:  

a ab ca
T T TI I I= − , b bc ab

T T TI I I= − , c ca bc
T T TI I I= −     (2.29) 

 

Figure 2.9 The ac equivalent component of the delta-connected converter model 
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It is noted that instantaneous ac current, LL
Ti , is periodic and its absolute value gives the 

instantaneous dc current: 

( ) ( ),
LL LL
T T dci t i tω ω=        (2.30) 

By performing Fourier analysis on LL
Ti , the current magnitude, LL

TI , can be 

obtained:   

2 2

2
LL LLLL

T

a b
I

+
=         (2.31) 

where:  

LLa , LLb :  the Fourier coefficients of the fundamental component in LL
Ti  

The Fourier coefficients of the fundamental component can be calculated as follows. 

Details are provided in Appendix A: 

( ) ( ) ( ),0

2 cosLL
LL T dca i t t d t

π
ω ω ω

π
= ⋅ ⋅∫         (2.32) 

( ) ( ) ( ),0

2 sinLL
LL T dcb i t t d t

π
ω ω ω

π
= ⋅ ⋅∫         (2.33) 

AC equivalence coefficients, LL
TK , are introduced to relate the ac current 

magnitudes, LL
TI , to the average dc currents, ,

LL
T dcI , in the single-phase converters. It is 

defined as: 

,

LL
TLL

T LL
T dc

I
K

I
=         (2.34) 

From A9, the real power on the ac side of each single-phase converter is equal to the 

average dc power in the single-phase converter multiplied by a loss factor: 

,
LL LL loss

T T dc TP P C= ⋅          (2.35) 

where:  
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LL
TP :  the ac real power in the single-phase converters in the equivalent model 

loss
TC :  the loss factor of the single-phase converters. 1loss

TC >  for lossy rectifiers, 

1loss
TC <  for lossy inverters, 1loss

TC =  for lossless converters 

2.1.5  Diode Rectifier Model 

Three-phase diode rectifiers are also operated in either the continuous conduction 

mode or the discontinuous conduction mode. In both conduction modes, the 

delta-modeling approach for thyristor converters applies. In order to determine the 

parameters of the model, the conduction angles, 1
LLθ , 2

LLθ , are calculated differently for 

diode rectifiers. 

In the continuous conduction mode, the conduction of the diodes depends on the 

line-to-line voltages on the rectifier. For the single-phase rectifier between phase a and 

phase b, the following equations holds at 1
abθ  and 2

abθ : 

( ) ( )1 12 sin 0
D

ca ab ca ab ca
D D Vv Vθ θ δ= + =    (2.36) 

( ) ( )2 22 sin 0
D

bc ab bc ab bc
D D Vv Vθ θ δ= + =    (2.37) 

where:  

 ( )LL
Dv tω :  the instantaneous line-to-line voltages 

LL
DV ,

D

LL
Vδ :  the magnitudes and angles of the RMS fundamental line-to-line 

voltages 

Solving (2.36) and (2.37) gives 1
abθ  and 2

abθ : 

 1 D

ab ca
Vθ δ= − , 2 D

ab bc
Vθ δ= −          (2.38) 



29  

   

Similarly, the conduction angles of the other two single-phase diode rectifiers are 

obtained: 

1 D

bc ab
Vθ δ= − ,  2 D

bc ca
Vθ δ= −                       (2.39) 

1 D

ca bc
Vθ δ= − , 2 D

bc ab
Vθ δ= −                        (2.40) 

In the discontinuous conduction mode, the conduction angles are determined in the same 

manner as thyristor converters with zero firing angles. 

2.2  Unbalanced Pulse-Width-Modulated (PWM) Converter Model 

Three-phase PWM converters, shown in Figure 2.10, are modeled using three, 

delta-connected, single-phase PWM converters in Figure 2.11 with the following 

notation:  

LL
PWMV : the RMS line-to-line voltages on the single-phase PWM converters 

p
PWMI :  the RMS ac currents entering three-phase PWM converters, { }, ,p a b c∈  

LL
PWMI : the RMS ac currents entering the single-phase PWM converters 

,
LL
PWM dcI : the average dc currents of the single-phase PWM converters 

3
,PWM dcI φ : the average dc link current in three-phase PWM converters 

3_
,PWM dcI ∆ : the average dc link currents in the model 

,PWM dcV : the dc voltage of three-phase PWM converters 
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Figure 2.10 Three-phase PWM converter 

 

Figure 2.11 Three-phase delta-connected PWM converter model 

In Figure 2.11, the ac sides of the single-phase converters are delta-connected. The 

dc sides of the converters are in parallel. Each single-phase PWM rectifier (inverter) has 

a line-to-line voltage, LL
PWMV , as input (output). Their common dc output (input) is the 

voltage on the dc link, ,PWM dcV . The following assumptions are made for PWM 

converters: 

A10. Bipolar PWM switching scheme is used; 

A11. The amplitude modulation ratios, LLm , are less than or equal to 1. 
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where: control
a

tri

Vm
V

= ,  

controlV : the peak amplitude of the sinusoidal control signal.  

triV : the amplitude of the switching-frequency triangular signal  

From the assumptions, the line-to-line voltage magnitudes, LL
PWMV , at the fundamental 

frequency and the dc voltage, ,PWM dcV , satisfy the following equation:  

,
3
2 2

LL LL
PWM PWM dc

mV V⋅= ⋅    (2.41) 

The ac currents entering the single-phase PWM converter have the following relationship 

with the ac phase currents entering the three-phase PWM converters:  

a ab ca
PWM PWM PWMI I I= − , b bc ab

PWM PWM PWMI I I= − , c ca bc
PWM PWM PWMI I I= −    

0ab ca bc
PWM PWM PWMI I I+ + =      (2.42) 

The real power, LL
PWMP , in each single-phase PWM converter is: 

( )( )*LL LL LL
PWM PWM PWMP real V I= ⋅      (2.43) 

It is also assumed that A4 and A9 in the thyristor converter model hold for the PWM 

converter model. The following relationship exists between the ac real power and dc 

power on each single-phase PWM converter: 

 ,
LL LL loss

PWM PWM dc PWMP P C= ⋅        (2.44) 

where:  

loss
PWMC :  the loss factor, 1loss

PWMC >  for lossy rectifiers, 1loss
PWMC <  for lossy inverters, 

1loss
PWMC =  for lossless converters 
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Then, ,
LL
PWM dcI can be formulated as a function of the ac currents, LL

PWMI : 

,
,

, ,

LL LL
PWM dcLL PWM

PWM dc loss
PWM dc PWM PWM dc

P PI
V C V

= =
⋅

      (2.45) 

( )( )*

,

LL LL
PWM PWM

loss
PWM PWM dc

real V I

C V

⋅
=

⋅
             

The average dc current in the dc link is equal to the sum of the average dc current in 

each single-phase PWM converter: 

3 3_
, , , , ,

ab bc ca
PWM dc PWM dc PWM dc PWM dc PWM dcI I I I Iφ ∆= = + +     (2.46) 

The average power in the dc link, 3
,PWM dcP φ , is determined by the dc voltage and 

average dc current: 

3 3
, , ,PWM dc PWM dc PWM dcP V Iφ φ= ⋅         (2.47) 

, , ,
ab bc ca

PWM dc PWM dc PWM dcP P P= + + 3_
,PWM dcP ∆=        

Using the above formulation, the delta-connected model is equivalent to three-phase 

PWM converters with respect to both the RMS fundamental ac phase currents entering 

the three-phase converters and the average dc current. The real power is also preserved.  

2.3 Three-Phase Converter Model Under Two-Phase Operating Conditions 

Three-phase converters are generally operated under three-phase conditions. 

Protection systems will trip the converters at significantly unbalanced operating 

conditions such as heavily unbalanced ac loads, short circuits or open circuits. However, 

it might be possible to operate three-phase converters with only two phases under 

certain emergency circumstances where uninterrupted power supply is desired. The 
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proposed modeling approach can be applied to perform system analysis under this 

condition. An example is shown in Figure 2.12 with a three-phase thyristor converter 

under two-phase operating conditions. It is assumed that there is an open circuit on 

phase c but the thyristors are still operated under the equi-distant control. There is no 

current on phase c but there are currents on phases a and b in the converter. 

 
Figure 2.12 A three-phase thyristor converter under two-phase operating condition  

with phase c open 

 
Figure 2.13 The equivalent model of a three-phase converter under two-phase 

operating condition with phase c open 
 

The three-phase converter in Figure 2.12 is equivalent to the delta-connected model 

with open circuits on the two single-phase converters connected to phase c. The 
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equivalent circuit is shown in Figure 2.13. The average dc currents on the three 

single-phase converters will be: 

( ) ( ), ,0

1ab ab
T dc T dcI i t t

π
ω

π
= ⋅∫ ,  , 0bc

T dcI = ,  , 0ca
T dcI =    (2.48) 

As such, only the participation coefficients ,
ab

T Iλ  and ,
ab

T Pλ  are not equal to zero: 

, 1ab
T Iλ = ,  , 0bc

T Iλ = ,  , 0ca
T Iλ =       (2.49) 

, 1ab
T Pλ = ,  , 0bc

T Pλ = ,  , 0ca
T Pλ =       (2.50) 

In the model, the current magnitude, ab
TI , is calculated using ,

ab
T Iλ , ,T dcK , and ab

TK . 

bc
TI  and ca

TI  are equal to zero. Therefore, the currents in phase a and phase b, a
TI , b

TI , 

in the three-phase converter are determined by ab
TI  only: 

a ab ca ab
T T T TI I I I= − =        (2.51) 

b bc ab ab
T T T TI I I I= − = −        (2.52) 

The same approach can be used for three-phase diode converters and three-phase 

PWM converters under significant unbalanced conditions. Next, the delta-connected 

models are investigated in steady-state analysis and are compared with three-phase 

converters in time domain simulations.  

2.4   Evaluation of Unbalanced AC/DC Converter Models  

Delta-connected converter models are developed in this chapter for steady-state 

analysis such as power flow studies, in unbalanced distribution systems. They are 

equivalent to three-phase converters with respect to the RMS fundamental ac and the 

average dc currents. Since traditional HVDC converter models for steady-state analysis 
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are not directly applicable to distribution system converters, they cannot be used to 

evaluate the delta-connected models. As an alternative, three-phase converters are studied 

by performing time domain simulations. Time domain analysis can provide accurate 

voltage and current profile with detailed component models for unbalanced circuits. As 

such, time domain simulation results can be used to assess the delta-connected models. 

Three types of converters are investigated: 

 Three-phase thyristor converters 

 Three-phase diode rectifiers 

 Three-phase PWM converters  

Each of the above converters is embedded into an unbalanced ac/dc system as the 

benchmarks and is tested in Simulink.   

For comparison, the three-phase converters are modeled and studied using the 

corresponding delta-connected models in steady-state. By applying the same voltages on 

the converters as those in the benchmarks, the equivalence coefficients and participation 

coefficients are calculated for the delta-connected, single-phase converters. Then using 

the model, the ac currents and ac power in three-phase converters are compared with 

those obtained from the benchmarks.  
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2.4.1 Three-Phase Thyristor Converter Benchmark and Evaluation of the 

Delta-Connected Model 

In order to study three-phase thyristor converters, a 4-bus unbalanced ac/dc system 

was created with the circuit diagram shown in Figure 2.14. In the system, three-phase, 

balanced, 208 VLL power is fed to a 4-bus system with two identical, three-phase, 

unbalanced distribution lines and a three-phase full-bridge thyristor converter. Both ac 

lines are decoupled and their parameters are scaled down from actual distribution lines. 

There are two loads in the system: an unbalanced ac load on bus 2 and a dc load on bus 4. 

Both of the loads are constant impedance loads. The parameters of the system 

components are shown in Table 2.1. 

 
Figure 2.14  The circuit diagram of a 4-bus unbalanced ac/dc system with a 

three-phase thyristor converter 
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Table 2.1 Component parameters of the 4-bus ac/dc system with a three-phase thyristor 
converter 

Parameters Values 
Source line-to-line voltage 208 V @ 60 Hz 

Source impedance  0.3a b c
s s sX X X= = =  Ω  

Line 1 & 2 impedance  

1 2 0.1410 0.4400a aZ Z j= = +  Ω    

1 2 0.1370 0.4420b bZ Z j= = +  Ω    

1 2 0.1210 0.4460c cZ Z j= = +  Ω  

AC load impedance  

20 9a
LZ j= +  Ω   

10 4.5b
LZ j= +  Ω  

7 3.2c
LZ j= +  Ω  

DC load impedance 10dcR =  Ω  

Converter snubber resistance 100 Ω  
Converter snubber capacitance  0.1 uF 

Converter conducting impedance  0.001 Ω  
Converter forward voltage 0.7 V 

Firing angles 10 o  

 

2.4.1.1 Simulation Results of the Thyristor Converter Benchmark 

The circuit in Figure 2.14 was built in MATALAB Simulink using the 

SimPowerSystems Toolbox for time domain simulation. The Simulink circuit is shown in 

Figure 2.15. The thyristor model in the three-phase full-bridge thyristor converter is 

simulated as a resistor Ron, an inductor Lon, and a DC voltage source Vf, connected in 

series with a switch. The switch is controlled by a logical signal depending on the voltage 

Vak, the current Iak, and the gate signal g. 
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(a) The 4-bus unbalanced ac/dc system diagram 

 

(b) The detailed thyristor model in MATLAB Simulink 

Figure 2.15 The Simulink circuit of the 4-bus unbalanced ac/dc system with a 
three-phase thyristor converter 

A discrete solver was selected with a step size of 2 us. Each simulation has been run 

for 0.05 seconds, which corresponds to approximately three cycles at 60 Hz. After this 

time, the initial transients in the voltage and current waveforms diminish and the 

variation of ac and dc voltages, currents and power calculated in Simulink is less than 

0.01%. It is noted that the converter’s ac bus is Bus 3 and its dc bus is Bus 4. In order to 

evaluate the model, the following signals directly related to the three-phase thyristor 



39  

   

converter were measured and shown in Figure 2.15  and Figure 2.16.  

   The line-to-neutral voltages on Bus 3, ( )p
Tv t , { }, ,p a b c∈  

   The ac currents entering the thyristor converter, ( )p
Ti t  

   The dc voltage on Bus 4, ( ),T dcv t  

   The dc current, ( )3
,T dci tφ  

 

Figure 2.15  Line-to-neutral voltages (top) and ac currents (bottom) in the 
three-phase thyristor converter benchmark 

 

Figure 2.16  DC voltage (top) and dc current (bottom) in the three-phase 
thyristor converter benchmark 
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The ac voltages, currents, power at 60 Hz and dc voltage, current and power were 

calculated using measurement blocks from the SimPowerSystems Toolbox and are 

shown in Table 2.2. 

 
Table 2.2 Numerical results of the three-phase thyristor converter benchmark using 

Simulink  
AC Values at 60Hz on Bus 3 Parameters 

Phase A Phase B Phase C 

 p
TV  (V) 105.5890 ∠ -10.48 o  103.0332 ∠ -132.29 o  102.1528 ∠ 106.47 o  

p
TI  (A) 17.6314 ∠ -26.48 o  18.0152 ∠ -147.88 o  17.4477 ∠ 91.71 o  

p
TS  (VA) 1789.5708+j513.1080 1787.8748+j498.8428 1723.5181+j454.0926 

 DC Values on Bus 4 

,T dcV  (V)  228.7181 

3
,T dcI φ  (A) 22.8718 

3
,T dcP φ  (W) 5242.9501 

Since the voltages applied on the converter are unbalanced, both the ac currents and 

power entering the converter are also unbalanced. The total real power entering the 

converter is 5300.9637 watts. Compared with the dc power, the converter real power loss 

is 1.09%.  

2.4.1.2 Evaluating the Delta-Connected Thyristor Converter Model  

The three-phase thyristor converter was studied using the equivalent delta-connected 

model in steady-state. The goal is to determine whether the participation coefficients and 

equivalence coefficients can provide accurate estimation of ac currents and real power in 
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the three-phase converter. As such, it is assumed that the dc voltage in the model is equal 

to those obtained from Simulink.  

First, the participation coefficients and the equivalence coefficients in the model 

were calculated using (2.24), (2.25), and (2.34). The results are provided in Table 2.3.  

Table 2.3 Current participation coefficients, ,
LL

T Iλ , power participation coefficients, ,
LL

T Pλ , 

and equivalence coefficients, LL
TK ,in the 1-phase thyristor converters  

Parameters Line AB Line BC Line CA

,
LL

T Iλ  0.3447 0.3339 0.3214  

,
LL

T Pλ  0.3501 0.3356 0.3143 

LL
TK  1.3369 1.3407 1.3412 

Remarks: 

 ,
LL

T Iλ  are not equal because the unbalanced line-to-line voltages applied on the 

single-phase converters resulted in unequal average dc currents in the 

single-phase converters.. 

 ,
LL

T Pλ  are not equal and the ratios among them are not the same as those among 

,
LL

T Iλ . It is because both the dc currents and voltages are different among the 

single-phase converters.   

 LL
TK  are the ratios between the magnitudes of the RMS fundamental ac currents 

and the average dc currents in the model. They are not equal because the 
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different distortions in the currents gave different magnitudes obtained from an 

FFT in (2.31). 

By applying the dc voltage on the dc load, the dc current and dc power can be calculated. 

They are equal to those obtained from Simulink. Using the model’s coefficients, the dc 

currents and dc power in the single-phase converters were calculated. Thus, the ac 

currents and real power entering the single-phase converters were calculated, given the 

converter loss percentage equal to that in the benchmark. Then, the ac currents, p
TI , and 

power, p
TS , entering the three-phase converter were calculated. In addition, p

TI  and p
TS  

are also calculated using the Y-connected model in [21]. The results from both models are 

shown in Table 2.4.  p
TI  and p

TS  are compared to those from the benchmark using the 

following formula:  

100%
p p

T Tp model benchmark
T p

T benchmark

I I
I

I

−
∆ = ⋅  

100%
p p

T Tp model benchmark
T p

T benchmark

S S
S

S

−
∆ = ⋅  

The difference is in percentage with respect to the benchmark.  

Table 2.4 The ac currents, p
TI , and ac power, p

TS  in the three-phase thyristor converter 

using the ∆ -connected model and the Y -connected model  

Parameters ∆ - Connected Model 
p

TI∆  

(%) 
Y-Connected Model  

p
TI∆   

(%) 
a
TI  (A) 17.4907 ∠ -26.67 o  0.7981 16.9421 ∠ -26.48 o  3.9096 

b
TI  (A) 17.9806 ∠ -147.23 o  0.1922 16.6002 ∠ -147.88 o  7.8546 
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c
TI  (A) 17.5918 ∠ 91.66 o  0.8256 16.3784 ∠ 91.71 o  6.1288 

 ∆ - Connected Model 
p

TS∆  

(%) 
Y-Connected Model 

p
TS∆   

(%) 
a
TS (VA) 1767.6931+j517.0740 0.7979 1766.9879+j311.5221 3.6218   

b
TS (VA) 1788.47718+j466.8529 0.1922 1766.9879+j311.5221 3.3355 

c
TS (VA) 1744.7727+j458.76203 0.8255 1766.9879+j311.5221 0.6686 

Remarks: 

 The maximal error in the ac currents and ac power is 0.8256% in the 

delta-connected converter model. It is attributed to c
TI .  

 The maximal error in the ac currents and ac power is 7.8546% in the 

wye-connected converter model. The source of the error is the assumption that 

the ac power entering the converter is balanced.  

Here, the delta-connected modeling approach outperforms the Y-connected modeling 

approach and is preferable. Thus, a focus on the delta-connected modeling error is now 

investigated.  

Error Analysis:  

Two main sources of error come from assumptions A7 and A9 on the delta-connected 

converter model: 

A7. The dc currents are linear in the model during the commutation of the 

three-phase converter.  

A9. The power loss percentages of the single-phase converters are balanced.  
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Time domain simulations show that the converter dc currents during commutation were 

nonlinear. Hence, assumption A7 introduced errors in the dc currents in steady-state 

analysis. As a consequence, the magnitudes of the RMS fundamental ac currents in the 

single-phase converters, LL
TI , are affected. Assumption A9 affects the ac real power in 

the single-phase converters, LL
TP . Since p

TI  and p
TS  are calculated using LL

TI  and 

LL
TP  from the delta-connected model, A7 and A9 affect both p

TI  and p
TS . 

In order to study which assumption contributes relatively more errors, a balanced 

three-phase converter was tested and the impact of A9 was minimized. The results are 

provided in Appendix B. It is shown that the maximal error is 0.6042% in steady-state 

because of the linearized dc current during the converter commutation. If A7 contributes 

a similar percentage of errors in both balanced and unbalanced converters, then A7 

contributes relatively more errors to the converter model than A9.  

2.4.2 Three-Phase Diode Rectifier Benchmark and Evaluation of the 

Delta-Connected Model 

 The same 4-bus ac/dc circuit in Figure 2.14 is used to test three-phase diode 

rectifiers. The thyristor converter is replaced with a three-phase full bridge diode rectifier, 

which is now used as the benchmark.  

2.4.2.1 Simulation Results of the Diode Rectifier Benchmark  

The benchmark circuit was built in Simulink. The diode rectifier’s snubber 

parameters and forward voltage are equal to those in Table 2.1. The same discrete solver 
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and simulation time were used as the thyristor converter benchmark. Table 2.5 shows the 

ac and dc voltages, currents, and power from the benchmark.  

Table 2.5 Numerical results of the three-phase diode rectifier benchmark using Simulink 
AC Values at 60Hz on Bus 3 Parameters 

Phase A Phase B Phase C 

 p
DV  (V) 106.1004 ∠ -10.79 o  103.5642 ∠ -132.61 o  102.6879 ∠ 106.17 o  

p
DI  (A) 17.8382 ∠ -24.53 o  18.2050 ∠ -145.92 o  17.6458 ∠ 93.74 o  

p
DS  (VA) 1838.5146+j449.3539 1834.7559+j434.0173 1769.7272+j390.1061 

 DC Values on Bus 4 

,D dcV  (V)  231.8597 

3
,D dcI φ  (A) 23.1860 

3
,D dcP φ  (W) 5387.1708 

The total real power entering the diode rectifier is 5443 Watt and the loss is 1.03%.  

2.4.2.2 Evaluating the Delta-Connected Diode Rectifier Model 

The evaluation of the diode rectifier model follows the same procedure as that of the 

thyristor converter model. The three-phase diode rectifier was studied in steady-state 

using the delta-connected model. It is assumed that the ac voltages and dc voltage applied 

on the model are equal to those in time domain analysis. The converter loss percentage is 

equal to the benchmark.  

First, the coefficients, ,
LL
D Iλ , ,

LL
D Pλ , LL

DK , in the delta-connected models were 

calculated and provided in Table 2.6. Since the dc voltage in the model is equal to that 
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obtained from Simulink, the calculated dc current and dc power are equal to those 

obtained from Simulink. Using the model, the ac currents, p
DI  , and power, p

DS , 

entering the three-phase diode rectifier were calculated. The results are shown in Table 

2.7. For comparison, the steady-state analysis results on the Y-connected model are also 

provided in Table 2.7. p
DI  and p

DS  are compared with those obtained from the 

benchmark with the difference in percentage with respect to the benchmark. 

Table 2.6  Current participation coefficients, ,
LL
D Iλ , power participation coefficients, 

,
LL
D Pλ , and equivalence coefficients, LL

DK , in the 1-phase diode rectifiers 

Parameters Line AB Line BC Line CA

,
LL
D Iλ  0.3447  0.3359 0.3195 

,
LL
D Pλ  0.3484  0.3372 0.3144 

LL
DK  1.3330  1.3354 1.3394 

Table 2.7  The ac currents, p
DI , and ac power, p

DS  in the three-phase diode rectifier 

using the ∆ -connected model in steady-state analysis 
Paramet

ers 
∆ -Connected Model p

DI∆  (%) Y-Connected Model p
DI∆  (%) 

a
DI  (A) 17.7960 ∠ -24.71 o  0.2365 17.4887 ∠ - 30.17 o   1.9594 

b
DI  (A) 18.0898 ∠ -145.40 o  0.6329 17.1369 ∠ -148.08 o  5.8670 

c
DI  (A) 17.7570 ∠ 94.12 o  0.6303 16.8989 ∠ 93.47 o  4.2330 

 ∆ -Connected Model p
DS∆  (%) Y-Connected Model p

DS∆  (%) 

a
DS (VA) 1859.8136+j526.5384 0.2361 1814.3+j424.33 1.5197 
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b
DS (VA) 1835.6097+j549.9678 0.6332 1814.3+j424.33 1.1332 

c
DS (VA) 1747.5704+j465.924 0.6191 1814.3+j424.33 2.8049 

Remarks:  

 ,
LL
D Iλ , ,

LL
D Pλ , LL

DK  displayed similar characteristics as those in the thyristor 

converter model. 

 In Table 2.7, p
DI  and p

DS  obtained from the delta-connected model are close 

to those obtained in the benchmark. The maximal error is 0.6332%. The sources 

of the errors are the assumptions on the dc current and converter loss. 

 Again, the delta-connected modeling approach provided more accurate results 

than the Y-connected modeling approach.  

2.4.3 Three-Phase PWM Inverter Benchmark and Evaluation of the 

Delta-Connected Model 

A three-phase PWM inverter was used as the benchmark to evaluate the 

delta-connected PWM converter model. The inverter was embedded in a 4-bus 

unbalanced ac/dc system with the circuit diagram shown in Figure 2.17.  
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Figure 2.17  The circuit diagram of a 4-bus unbalanced ac/dc system with a 
three-phase PWM inverter 

In Figure 2.17, a 400 Vdc source feeds dc power to a three-phase PWM inverter 

through a dc line. The inverter’s output line-to-line voltages are regulated at balanced 208 

VLL and supply a three-phase, unbalanced, constant impedance load on Bus 4 through a 

three-phase unbalanced distribution line. The three phases of the line are decoupled and 

parameters are scaled down from actual distribution lines. The parameters of the system 

components are shown in Table 2.8.  

Table 2.8 Component parameters of the 4-bus ac/dc system with a three-phase PWM 
inverter 

Parameters Values 
Source voltage 400 Vdc 

Line impedance  

1 0.1410 0.4400aZ j= +  Ω   

1 0.1370 0.4420bZ j= +  Ω  

1 0.1210 0.4460cZ j= +  Ω 
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AC load impedance  

10 4.5a
LZ j= +  Ω   

9 4a
LZ j= + Ω  

7 3.2c
LZ j= +  Ω  

DC line 1dcR =  Ω  

Inverter snubber resistance 5000 Ω  
Inverter forward voltage 0 V 

Modulation ratio 0.883 

2.4.3.1 Simulation Results of the PWM Inverter Benchmark  

The benchmark was built in Simulink using the SimPowerSystems Toolbox with the 

circuit shown in Figure 2.19.a. The IGBT model in the three-phase, PWM converter is 

shown in Figure 2.19.b. The IGBT is simulated as a series combination of a resistor Ron, 

inductor Lon, and a DC voltage source Vf in series with a switch controlled by a logical 

signal (g > 0 or g = 0. 

Bus 2 Bus 3

AC Load

 AC Line

Bus 1 Bus 4

Discrete,
Ts = 2e-006 s.

Vdc=400V

A

B

C

a

b

c

V-I 

g

A

B

C

+

-

PWM 
IGBT Inverter

A

B

C

a

b

c

La2

Pulses

Discrete
PWM Generator

Open this block
to visualize

recorded signals

Data Acquisition  

(b) The 4-bus unbalanced AC/DC system diagram 
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(b) The detailed IGBT model in MATLAB Simulink 

Figure 2.18  The Simulink circuits of the 4-bus unbalanced ac/dc system with a 
three-phase IGBT PWM inverter 

Each simulation has been run for 0.05 seconds with a step size of 2 uS. The waveforms of 

the ac voltages and currents on the PWM inverter were captured and are shown in Figure 

2.19. The following parameters were calculated using the measurement blocks from the 

SimPowerSystems Toolbox and provided in Table 2.9. 

 The ac line-to-neutral voltages on the PWM inverter ac bus, p
PWMV   

 The ac phase currents leaving the PWM inverter, p
PWMI  

 The complex ac power leaving the PWM inverter, p
PWMS  

 The average dc voltage, current, and power of the PWM inverter, ,PWM dcV , 

3
,PWM dcI φ , 3

,PWM dcP φ , respectively 
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Figure 2.19  Line-to-neutral voltages (top) and ac currents (bottom) in the three-phase 

PWM inverter benchmark 

Table 2.9 Numerical results of the three-phase PWM inverter benchmark using Simulink  
AC Values at 60Hz on Bus 3 Parameters 

Phase A Phase B Phase C 

 p
PWMV  (V) 129.0121 ∠ -3.934 o  124.5795 ∠ -114.67 o  107.9349 ∠ 118.95 o  

p
PWMI  (A) 11.4374 ∠ -29.93 o  12.2624 ∠ -140.59 o  13.4968 ∠ 91.86 o  

p
PWMS  (VA) 1326.3773+j646.558 1373.8864+j667.9173 1296.8449+j663.6267 

 DC Values on Bus 2 

,PWM dcV  (V)  389.3541 

3
,PWM dcI φ  (A) 10.6459 

3
,PWM dcP φ  (W) 4145.0378 

Remarks: 

 The three-phase current leaving the PWM inverter is unbalanced due to the 

unbalanced line and load. As a consequence, the phase voltage is unbalanced. 

 The real power loss is 
{ }

3
,

, ,
1 100%p

PWM PWM dc
p a b c

P P φ

∈

⎛ ⎞
− ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ =3.57% 
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2.4.3.2 Evaluating the Delta-Connected PWM Converter Model 

In order to evaluate the delta-connected model, the three-phase PWM inverter was 

modeled using three, delta-connected, single-phase PWM converters for steady-state 

analysis. The PWM inverter output line-to-line ac voltages were calculated using the 

modulation ratio and the dc voltage in the benchmark. Then, the ac currents, LL
PWMI , and 

complex power, LL
PWMS , in the model were calculated by applying the calculated ac 

voltages to the ac system. It is assumed the loss percentage of the model is equal to that 

of the benchmark. Then, the average dc currents, ,
LL
PWM dcI  and power, ,

LL
PWM dcP  in the 

single-phase PWM inverters were also calculated using (2.44) and (2.45). 

Using the equivalent model, the ac and dc voltages, currents, and power in the 

three-phase PWM inverter are calculated using (2.42), (2.46) and (2.47). They are 

compared with those obtained in the benchmark using Simulink. The results are shown in 

Table 2.10 with the errors in percentage with respect to the benchmark. 

Table 2.10 Comparison of the benchmark and the three-phase PWM inverter using the 
delta-connected model in steady-state analysis 

AC Values at 60Hz on Bus 3 
Parameters 

Benchmark ∆-Connected Model  p
TI∆  (%) 

a
TI  (A) 11.4374 ∠ -29.93 o  11.4762 ∠ -29.80 o  0.3390 

b
TI  (A) 12.2624 ∠ -140.59 o  12.3043 ∠ -140.52 o  0.3421 

c
TI  (A) 13.4968 ∠ 91.85 o  13.5357 ∠ 91.95 o  0.2885 

 Benchmark ∆-Connected Model  p
TS∆  (%) 
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a
TS (VA) 1326.3773+j646.558 1332.2296+j645.9408 0.3384 

b
TS (VA) 1373.8864+j667.9173 1379.5136+j668.3047 0.3425 

c
TS (VA) 1296.8449+j663.6267 1301.6988+j668.3047 0.2883 

 DC Values on Bus 2 
 Benchmark ∆-Connected Model  Error (%) 

3
,PWM dcI φ (A) 10.6459 10.6895 0.4095 

3
,PWM dcP φ (W) 4145.0378 4151.9994 0.4092 

Remarks: 

 The maximal error of the ac parameters is 0.3425%. It is mainly attributed to the 

line-to-line ac voltages, which are assumed to be balanced in steady-state 

analysis. 

 The maximal error of the dc parameters is 0.4095%. It is larger than the error in 

the ac parameters. It is mainly attributed to the assumption of the balanced loss 

in the single-phase PWM converters. For balanced systems, this should not 

introduce errors.  

2.5 Comments  

In this chapter, unbalanced converter models were proposed for distribution system 

steady-state analysis, such as power flow studies. The modeling approach used three, 

single-phase, delta-connected converters to model three-phase converters. It can capture 

the imbalance of the network and is applicable to converters operating in both the 
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continuous and discontinuous conduction modes under significantly unbalanced 

operating conditions. 

The modeling approach has been applied to three types of converters: three-phase 

full-bridge diode rectifiers, full-bridge thyristor converters (rectifier and inverter), and 

PWM converters (rectifier and inverter) respectively. For the diode and thyristor 

converter models, equivalence coefficients are introduced to provide an equivalent 

transformation between the model and the three-phase converter with respect to both the 

RMS fundamental ac and the average dc currents in the three-phase converter.  

Time domain simulations have been performed to test three-phase converters in 

unbalanced ac/dc systems. The simulation results were used to verify the delta-connected 

models in steady-state. It is shown that the models provided accurate estimation of the 

unbalanced ac currents and power in three-phase converters.  

The models can be applied to study ac/dc power flow in distribution systems. With 

the appropriate converter models, ac/dc power flow solvers can be developed to study 

unbalanced distribution systems. In the following chapters, three-phase sequential and 

unified ac/dc power flow solvers are proposed respectively. 
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CHAPTER 3. THREE-PHASE SEQUENTIAL DISTRIBUTION  

AC/DC POWER FLOW 

 

In this chapter, a three-phase sequential power flow solver is proposed incorporating 

the converter models developed in Chapter 2. The power flow equations are solved 

successively between ac systems and dc systems. For illustration, an ac/dc system is 

shown in Figure 2.1 with two ac/dc converters. In this thesis, while solving ac power flow, 

the dc system is represented as equivalent delta-connected ac components on the 

converter ac buses. While solving dc power flow, the ac systems are represented as 

equivalent dc components on the converter dc buses.  

 

Figure 3.1 A sample ac/dc system 
 

Sequential power flow solvers were first developed in the 1970’s [8] for HVDC 

system analysis. In the past three decades, various sequential solvers have been proposed 

for balanced [9], [25]-[28] and unbalanced [10]-[12] HVDC systems. Since HVDC 

systems are typically balanced, power flow equations were established using single-phase 

component models. In unbalanced power flow solvers, three-phase converter models 

were proposed with constant dc currents. In the above solvers, the ac power flow was 

solved using either the Newton-Raphson method [9][10] or fast decoupled Newton 
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methods [27]. The dc power flow was solved using either the Gauss-Seidel method 

[26][27] or the Newton method [8][10][28].  

The sequential solvers for HVDC system analysis are not directly applicable to 

distribution power flow studies. Distribution systems are unbalanced with single-phase, 

two-phase, and three-phase network branches and loads. Additionally, distribution system 

converters often generate voltages and currents with high harmonics because of 

inadequate filtering devices. As such, a three-phase solver is developed in this chapter 

with unbalanced component models. The delta-connected converter models capture the 

impacts of the distorted voltages and currents in power flow. Some features of the 

sequential solver include:  

 Integration of unbalanced converter models into existing three-phase ac and dc 

power flow solvers, capturing system’s imbalance; 

 Consideration of different converter control schemes and operating conditions; 

 Applications for uni-directional and bi-directional power flow studies in 

distribution systems with radial or weakly meshed structures. 

This chapter is organized as follows. First, power flow component models are 

proposed. Then, the power flow problem formulation is developed using these models. A 

three-phase sequential solver using the implicit Z-bus Gauss method is proposed and 

tested in MATLAB simulations. The results are obtained and presented. 
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3.1  Three-Phase Power Flow Component Models 

In order to develop three-phase ac/dc power flow solvers, appropriate ac and dc 

component models are desired. In this thesis, three-phase models from [29] are used for 

ac transformers, distribution lines, switches, and loads. For dc components, distribution 

lines and switches are modeled using pure resistances. DC loads are treated as constant 

resistance (Z), constant current (I), and constant real power load (P), or linear 

combination ZIP loads. The dc inductance and capacitance in the dc filters are considered 

in the converter models.  

The ac and dc systems are interconnected with various types of converters. Since the 

ac and dc power flow are solved separately in the sequential solver, equivalent power 

flow components have been developed to decouple the ac and dc systems. Depending on 

the converter’s types, various equivalent components are built using the unbalanced 

delta-connected converter models. In the ac systems, the dc systems are modeled as 

delta-connected ac loads for rectifiers and sources for inverters on the converter ac buses. 

In the dc systems, the ac systems are modeled as dc sources for rectifiers and loads for 

inverters on the converter dc buses. The parameters of the equivalent ac and dc 

components depend on the converter models and the previous power flow solutions. For 

example, Figure 3.2 shows the decoupled ac and dc systems for one operation scheme of 

the sample system in Figure 3.1. Details are presented next for the equivalent ac and dc 

power flow components.  
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Figure 3.2 Decoupled ac and dc systems used in the sequential power flow solver 

3.1.1  Equivalencing the DC Systems to AC Power Flow Components 

On the converter ac buses, the dc systems can be modeled as different 

delta-connected components, depending on the converter type and operating mode. A 

summary of the equivalent power flow components are provided in Table 3.1 with the 

equivalent single-phase ac circuits and the following notation.  

superscriptLL   ab, bc, or ca 

subscriptD, T, PWM  diode rectifiers, thyristor converters, and PWM converters 

respectively 

subscriptConv   D, T, or PWM 

CCCL/ CCCS:   the current controlled current load/source 

,
LL

Conv Iβ      the coefficients between converter ac and dc currents  

LL
ConvI     the RMS fundamental ac currents in the delta-connected model 

3
,Conv dcI φ     the average dc link current  

LL
ConvV      the RMS fundamental line-to-line converter voltages 

Note: CCCL and CCCS have the same equivalent ac component but opposite signs for 
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the ac currents.  

Table 3.1 Equivalent power flow components for the DC systems 

Converter 

Types 

Converter Control  

Schemes  

on the AC Side 

Equivalent 3-Phase AC Components 

Diode 
Rectifier None 

ab
ConvI

bc
ConvI

ca
ConvI

 
CCCL - 3

, ,
LL LL
Conv Conv I Conv dcI I φβ= ⋅  

Rectifier – None The same as CCCL  Thyristor 
Converter Inverter – None CCCS  

AC current control  
with unity power factor 

The same as CCCL 

PWM 
Converter 

AC voltage control 

 
Voltage Source 

 
 

If a dc system is interconnected with an ac system using a thyristor converter or a 

diode rectifier, it can be made equivalent to a three-phase, delta-connected, current 

controlled current load (source) for a rectifier (inverter). The magnitudes of the ac 

currents and the ac real power in the equivalent component are determined by the 
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converter models from Chapter 2 and are dependent on the dc current and the dc power 

respectively. (3.1), (3.2) present the ac current and real power in terms of the average dc 

current and average dc power in the thyristor converter model: 

3
, ,

,

LL
LL LLT
T T I T dc

T dc

KI I
K

φλ
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

        (3.1) 

( ), ,
LL LL loss

T T P T T dcP C Pλ= ⋅ ⋅         (3.2) 

where:  

LL
TK , ,T dcK :  the ac and dc equivalence coefficients in the model respectively 

,
LL

T Iλ , ,
LL

T Pλ :  the current and power participation coefficients of each 

single-phase converter in the model respectively  

LL
TP , ,T dcP :  the ac real power in the single-phase converters and the average dc 

link power respectively 

When a dc system is interconnected with an ac system using a current controlled 

PWM converter, the dc system can also be modeled as a three-phase, delta-connected, 

current controlled current component. The parameters of the equivalent component are 

determined by the delta-connected PWM converter model. In the model, the three-phase 

real power entering the single-phase PWM converters is balanced and the reactive power 

is equal to zero. In addition, the ac real power is equal to the dc power in the converter 

multiplied by a loss factor, loss
PWMC : 

( ) ( )
,

, , ,* *
3

lossLL
PWM dc PWMLL LLPWM

PWM PWM dc PWM I PWM dcLL LL
PWM PWM

V CPI I I
V V

β
⋅

= = = ⋅
⋅

   (3.3) 

If the PWM converter is operated using the ac voltage control, the inverter’s output 
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ac voltage is typically regulated. As such, the dc system can be modeled as a three-phase, 

delta-connected, voltage source with specified voltage magnitudes and angles on the 

converter ac bus: 

LLLL
PWMPWMV V=         (3.4) 

Next, the ac systems are made equivalent to dc power flow components for dc power 

flow calculations.  

3.1.2  Equivalencing the AC Systems to DC Power Flow Components  

On the converter dc buses, the ac systems are modeled as different equivalent sources 

or loads, according to the converter’s control schemes. A summary of the equivalent 

power flow components are provided in Table 3.2 with the following notation:  

VCVS/VCVL the voltage controlled voltage source/load 

VCCS/VCCL the voltage controlled current source/load 

Table 3.2 Equivalent dc power flow components for the AC systems 

Converter 
Types 

Converter Control 
Schemes on the DC Side Equivalent DC Components 

Diode 
Rectifier None 

+

-

+

-

VD,dc

ID,dc
3_

 
VCVS 
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Thyristor 
Converter 

(i) Constant dc voltage 

(ii) Constant dc current 

(iii) Constant dc power 

(iv) Constant firing 
angles (i) Constant voltage source/load 

 (ii) Constant current source/load 

 (iii) VCCS/VCCL 

 (iv) VCVS/VCVL 

AC current control  Constant voltage source/load 

PWM 
Converter AC voltage control 

 
CCCS/CCCL 

 
For an uncontrollable diode rectifier, the average dc voltage, ,D dcV , is the sum of the 

integration of the dc voltages on the single-phase diode rectifier: 

( )
{ }

2

1
, ,

, ,

1 LL

LL

LL
D dc D dc

LL ab bc ca
V v t dt

θ

θπ ∈
= ⋅∑ ∫        (3.5) 

where:  

1
LLθ , 2

LLθ :  the conduction angles of the single-phase converters 

Substituting (2.7) into (3.5), ,D dcV  can be expressed in term of the line-to-line complex 

voltage, ab
DV , bc

DV . 

 ( ),
ab ab bc bc ca ab bc

D dc D D D D D D DV A V A V A V V= ⋅ + ⋅ + ⋅ − −     (3.6) 
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where: ( )2

1
,

LL
V LLD

LL

j

LL LL
D D dc

eA v t dt
δ

θ

θπ

−

= ⋅∫  

Thus, the ac system can be modeled as a voltage controlled voltage source on the diode 

rectifier dc bus.  

For a thyristor converter, four control schemes are typically used to obtain- (i) 

constant dc voltage; (ii) constant dc current; (iii) constant dc power; and (iv) minimal 

reactive power using constant firing angles. Thus, the following equivalent models can be 

used to represent the ac system in the dc system respectively: 

(i) A constant voltage component 

,, T dcT dcV V=         (3.7) 

(ii) A constant current component 

3
,, T dcT dcI Iφ =         (3.8) 

(iii) A voltage controlled current component 

,3
,

,

T dc
T dc

T dc

PI
V

φ =         (3.9) 

(iv) A voltage controlled voltage component similar to the diode rectifier 

( )
{ }

2

1
, ,

, ,

1 LL

LL

LL
T dc T dc

LL ab bc ca
V v t dt

θ

θπ ∈
= ⋅∑ ∫      (3.10) 

( )ab ab bc bc ca ab bc
T T T T T T TA V A V A V V= ⋅ + ⋅ + ⋅ − −                

where:  

,T dcV , ,T dcI , ,T dcP : the constant dc voltage, current, and power respectively 

( )2

1
,

LL
V LLT

LL

j

LL LL
T T dc

eA v t dt
δ

θ

θπ

−

= ⋅∫  
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The current controlled PWM converter’s dc voltage is maintained at a constant value by 

the dc capacitor. As such, the ac system can be represented as a constant voltage source 

(rectifier) or load (inverters) on the converter dc bus: 

,, PWM dcPWM dcV V=       (3.11) 

For a voltage controlled PWM converter, the dc voltage may vary with the ac loads. 

Using the real power relationship in the PWM converter model, the ac system can be 

modeled as a current controlled current source (rectifier) or load (inverter) on the 

converter dc bus. Please note in (3.12) that the conjugate of the ac power, ( )*LL
PWMS , 

entering the single-phase converters is deliberately selected to represent 3
,PWM dcI φ  in terms 

of LL
PWMI  instead of ( )*LL

PWMI : 

( )( ) ( )( )* *

,3
,

, , ,

LL LL LL
PWM PWM PWM

PWM dc LL LL
PWM dc loss loss

PWM dc PWM dc PWM PWM dc PWM

real S real V IP
I

V V C V C
φ

⋅
= = =

⋅ ⋅

∑ ∑
   (3.12) 

,
LL LL
PWM dc PWM

LL

Iβ= ⋅∑                

where:  

,
LL
PWM dcβ :  the coefficients between the dc current and the ac currents in the PWM 

converter model 

Now, the power flow formulation is presented for the sequential solver using the above 

component models.  

 

 

 



65 

   

3.2  AC/DC Power Flow Formulation 

In this subsection, steady-state nodal analysis equations are established on both ac 

buses and dc buses for the sequential power flow solver. On each phase of an ac bus, 

there are four parameters – the voltage magnitude and angle, and the injected real power 

and reactive power. With two parameters known, the other two can be determined. On 

each dc bus, there are two parameters – the voltage and the real power. With one 

parameter known, the other one can be determined.  

A list of parameters is provided in Table 3.3 with the following notation. AC 

quantities are vectors sized according to the number of existing phases at the bus. DC 

quantities are scalars.  

subscriptsub, ac, dc: the substation, ac buses, and dc buses respectively 

subscriptD,T,PWM: diode rectifiers, thyristor converters, and PWM converters 

|V|, Vδ :   voltage magnitudes and angles respectively 

P, Q :   real and reactive power injections respectively 

|I|:    current magnitudes  

Next, the ac/dc power flow formulation will be presented.  

Table 3.3 A list of known and unknown parameters in AC/DC power systems 

AC Buses Bus Types Known Parameters Unknown 
Parameters 

Generation - 
Substation Slack Bus |Vsub|, 

subVδ  Psub , Qsub 

Generation P|V| Pac , |Vac|  Qac, 
acVδ   

Load  PQ Pac, Qac |Vac|, 
acVδ  

Diode Rectifier P|I| PD , QD (|ID|) |VD|, 
DVδ   

Thyristor Converter P|I| PT, QT (|IT|) |VT|, 
TVδ  
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PQ PPWM , QPWM 

(ac current control) 
|VPWM|, 

PWMVδ  

(i) Slack   
|VPWM|, 

PWMVδ   
(ac voltage control) 

PPWM , QPWM  PWM Converter 

(ii) P|V|  PPWM , |VPWM| 
(ac voltage control) PWMVδ , QPWM  

DC Buses Bus Types Known Parameters Unknown 
Parameters 

Generation V Vdc Pdc 
Load P Pdc Vdc 

Diode Rectifier V VD,dc PD,dc 

V VT,dc 

(dc voltage control) PT,dc 

PT,dc(IT,dc) 
(dc current control ) VT,dc Thyristor Converter 

P PT,dc 

(dc power control) VT,dc 

V VPWM,dc 
(ac current control ) PPWM,dc 

PWM Converter 
P PPWM,dc 

(ac voltage control) VPWM,dc 

 

Note: For an ac voltage controlled PWM converter, the term “decoupled” means that the 

converter’s ac bus and the substation are not in the same ac subsystem. The term 

“coupled” means that the ac bus and the substation are in the same ac subsystem. 

(i) The converter’s ac bus is treated as a slack bus if the ac bus and the substation 

are decoupled. 

(ii) The converter’s ac bus is treated as a P|V| bus if the ac bus and substation are 

coupled. 

3.2.1  AC and DC System Nodal Analysis Equations 

In this thesis, both the ac and dc power flow are formulated using nodal analysis. 

Complex ac voltages and dc voltages are chosen as state variables and solved using bus 

current injections. The constant impedance loads are added in the admittance matrix. The 
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constant currents loads are added in the current injection vector. The constant power 

loads are represented as voltage dependent current loads and added in the current 

injection vector. The voltage dependent current loads are updated at each iteration. 

General matrix forms of the ac and dc nodal analysis equations are given in (3.13) and 

(3.14) respectively:   

( )
( )

( ) ( )

, ,

, , ,

, ,
,

0

0

sub sub ac sub sub L
T

sub ac ac ac Conv ac ac L

T
Conv Conv L Conv ac Conv

ac Conv Conv

Y Y V I V
Y Y Y V I V

V I V B I VY Y

⎡ ⎤
⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎡ ⎤⎣ ⎦⎣ ⎦

 (3.13) 

( )
( ) ( )

, ,

, , ,, dc

dc dc Conv dc dc L
T

Conv dc Conv L Conv dcdc Conv Conv

G G V I V
V I V I VG G

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ = ⎢ ⎥⎢ ⎥ +⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

       (3.14) 

where:  

acn ∈ : the number of ac buses, excluding the substation bus and converter 

ac buses 

dcn ∈ :   the number of dc buses, excluding the converter dc buses 

Convn ∈ :    the number of converters 

3
subV ∈ :  the complex voltage vector of the substation bus 

3 acn
acV ∈ : the complex voltage vector of ac buses, excluding the substation 

and converter ac buses 

3 Convn
ConvV ∈ :  the complex voltage vector of converter ac buses  

dcn
dcV ∈ :  the voltage vector of dc buses, excluding converter dc buses 

,
Convn

Conv dcV ∈ : the voltage vector of converter dc buses  

( ) 3
,sub LI V ∈ : the complex load current injection vector of the substation bus 
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( ) 3
,

acn
ac LI V ∈ : the complex load current injection vector of ac buses, excluding the 

substation and converter ac buses 

( ) 3 Convn
ConvI V ∈ :the complex current injection vector of converter ac buses from the  

    converter model 

   3 3
,Conv acB ×∈ : the transformation matrix converting delta-connected currents in 

the converter model into the currents in three-phase converters 

( ) 3
,

Convn
Conv LI V ∈ : the complex load current injection vector of converter ac buses 

( ),
dcn

dc LI V ∈ : the load current injection vector of dc buses, excluding the 

substation and converter dc buses 

( ),
Conv

dc

n
Conv LI V ∈ : the load current injection vector of converter dc buses 

( ),
Convn

Conv dcI V ∈ :  the current injection vector of converter dc currents  

3 3
subY ×∈ , 3 3

,
acn

sub acY ×∈ , 3 3ac acn n
acY ×∈ , 3 3Conv Convn n

ConvY ×∈ , 3 3
,

ac Convn n
ac ConvY ×∈ :  

the admittance matrices on the ac buses 

dc dcn n
dcG ×∈ , Conv Convn n

ConvG ×∈ , ,
dc Convn n

dc ConvG ×∈ :  

the conductance matrices on the dc buses 

Three-phase ac power flow and dc power flow are solved separately by decoupling 

the ac and dc systems at the converter buses. While solving for the ac state variables, the 

dc power flow is treated to be constant and the dc systems are modeled as 

delta-connected current injections on the converter ac buses in (3.13). The equivalent 

currents are calculated using the converter models from Chapter 2 and the dc power flow 

calculated in the present ac/dc iteration. Since the contributions of the dc systems are 
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already included in the current vector, the ac nodal admittance matrix can be established 

by neglecting the converters and the dc systems.  

While solving for the dc state variables, the ac power flow is treated to be constant. 

The ac systems are modeled as dc current injections on the converter dc buses in (3.14). 

The equivalent currents are calculated using the converter models and the ac power flow 

calculated in the present ac/dc iteration. Again, the conductance matrix can be established 

by neglecting the ac systems. Details are presented next to present on how to integrate 

different types of converters in the steady-state nodal analysis equations.   

3.2.2  Converter AC Bus Equations 

On the converter ac buses, the nodal analysis equations are modified to include the 

contributions of the dc systems to the ac power flow according to the converter type. The 

following two types of converters are considered:  

A. Thyristor converters and diode rectifiers 

B. PWM converters 

3.2.2.1  Thyristor Converters and Diode Rectifiers 

The treatment of thyristor converters in ac systems and the related ac equations are 

described here. The treatment of diode rectifiers follows in the same approach. In (3.13), 

a thyristor converter ac bus is treated as a P|I| bus. The dc system is modeled as a 

three-phase, delta-connected P|I| component. The real power, LL
TP , and the current 

magnitudes, LL
TI , are calculated in (3.1) and (3.2). They are updated when the dc power 

flow is updated.  

The phase current injections from three-phase thyristor converters, TI , in (3.13) can 
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be represented using the ac currents in the delta-connected model: 

,

1 0 1
1 1 0
0 1 1

a ab ab
T T T
b bc bc

T T T ac T T
c ca ca
T T T

I I I
I I B I I

I I I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − = ⋅ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

     (3.15) 

The current angles, 
T

LL
Iδ , are calculated in (3.16) using the converter ac voltages from 

previous ac power flow iteration. The angles are updated at each ac iteration: 

1cos
T T

LL
LL LL T
I V LL LL

T T

P
V I

δ δ −
⎛ ⎞
⎜ ⎟= −
⎜ ⎟⋅⎝ ⎠

      (3.16) 

3.2.2.2  PWM Converters 

The treatment of PWM converters in ac systems depends on their control schemes 

and the connection with the substation. The following cases are considered here: 

 AC current controlled converter 

 AC voltage controlled converter with the ac bus (i) decoupled; (ii) coupled with  

the substation 

As a consequence, the related ac equations are different. 

 AC Current Controlled Converter 

For a current controlled PWM converter, the converter’s ac bus is treated as a PQ bus 

in (3.13). The dc system is modeled as a three-phase, delta-connected, voltage dependent 

current component. The component currents are calculated in (3.3) using the converter ac 

voltages from the previous ac/dc power flow iteration and the real power from the dc 

power flow. They are transformed to phase currents and added in the current injection 

vector.  
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 AC Voltage Controlled Converter 

For a voltage controlled PWM converter, the converter’s ac bus is treated as a 

constant voltage bus in (3.13). The dc system is modeled as a three-phase, 

delta-connected component with constant voltages in the ac system. The magnitudes of 

the line-to-line voltages and the difference of the voltage angles are specified: 

LLLL
PWMPWMV V= , 

_

PWMPWM PWM

ab bcab bc
VV V

δ δ δ− = ∆ , 
_

PWMPWM PWM

bc cabc ca
VV V

δ δ δ− = ∆      (3.17) 

where:  

LL
PWMV :  the specified ac voltage magnitudes on the PWM converter 

PWM

LL
V

δ :   the phase angles of the converter line-to-line voltages 

_
PWM

ab bc
Vδ∆ , 

_
PWM

bc ca
Vδ∆ : the difference of the line-to-line voltage angles  

The actual voltage angles are determined by the connection of the converter with the 

substation. Two cases are considered as follows. 

• Converter AC Bus Decoupled from the Substation  

   The PWM converter’s ac bus is treated as a slack bus when the ac bus is decoupled 

from the substation. The voltage angle on phase a is chosen as the reference for all state 

variables on the inverter ac side and set to zero degree. 
PWM

ab
V

δ can be set to thirty degrees.  

• Converter AC Bus Coupled with the Substation.  

The PWM converter’s ac bus is treated as a P|V| bus when the ac bus is coupled with 

the substation. In order to determine the voltage angles, it is assumed that the total ac real 

power, 
3
PWMP
φ

, in the converter is given: 

3ab bc ca
PWMPWM PWM PWMP P P P
φ

+ + =       (3.18) 
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Using (3.18) as a constraint, the voltage angles are calculated iteratively. Initially, 

PWM

ab
V

δ is set to thirty degrees with respect to the substation. The converter voltage angles 

are adjusted at each power flow iteration using the bisection method until the difference 

between the calculated three-phase real power and 
3
PWMP
φ

 is within a tolerance range.  

3.2.3  Converter DC Bus Equations 

 On the converter dc buses, the contributions of the ac systems to the dc power flow 

are represented using current injections in the nodal analysis equations. Depending on the 

converter’s type and control scheme, the converter buses are treated differently in the dc 

nodal analysis equation (3.14). The following two types of converters are addressed:  

A. Thyristor converters and diode rectifiers 

B. PWM converters 

3.2.3.1  Thyristor Converters and Diode Rectifiers  

For a thyristor converter, the converter’s dc bus is treated as (i) a voltage bus for the 

converters with the constant dc voltage or the minimal firing angles; (ii) a power bus for 

the converters with the constant dc current or dc power. The ac systems are modeled as:  

 Constant voltage sources with specified voltages for the dc voltage control; 

 Voltage controlled voltage components for the constant firing angle control. The 

dc voltage is updated when the ac power flow is updated; 

 Constant current components for the dc current control; 

 Voltage dependent current components with constant power for the dc power 

control. Each power flow iteration, the currents are updated. 

For a diode rectifier, the dc bus is treated as a voltage bus. The dc voltage is calculated 

using the converter’s ac voltages and is updated when the ac power flow is updated. 
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3.2.3.2  PWM Converters 

The treatment of the dc bus of a PWM converter is dependent on the converter’s 

control scheme. For an ac current controlled PWM converter, the dc bus is treated as a 

voltage bus in (3.14). The converter’s dc voltage is sustained by the dc capacitor and is 

constant. The ac system is modeled as a constant dc voltage component. The current in 

the voltage component is determined by the dc power flow.   

For an ac voltage controlled PWM converter, the dc bus is treated as a PQ bus in 

(3.14). The ac system is modeled as a voltage dependent current component. The current 

is calculated using the ac real power obtained in present ac/dc power flow iteration as 

follows: 

{ , , }3
,

,

LL
PWM

L ab bc ca
PWM dc loss

PWM dc PWM

P
I

V C
φ ∈=

⋅

∑
       (3.19) 

The ac real power is updated when the ac power flow is updated. By appropriately 

modeling the ac and dc subsystems in the nodal analysis equations, the ac power flow and 

dc power flow can be solved sequentially.  
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3.3  Solution Algorithm  

In sequential power flow solvers, ac and dc voltages in subsystems are computed in a 

sequential manner. The convergence of the solvers is affected by the sequence of solving 

power flow. As such, a subsystem ranking method is developed to determine the 

sequence. The ac/dc power flow in both radial and weakly meshed systems can be solved 

using a backward/forward algorithm initiated by subsystem ranks.  

3.3.1  Ranking Method 

The ranking method assigns a rank, Ri, to each subsystem i in the network, 

{ }i 1...N∈ , where N is the number of subsystems. The sequence for solving power flow 

can be determined using subsystem ranks. Power flow studies require all network, loads, 

and other static parameters. Thus, the operating modes and control schemes are known 

for all of the converters and can be used to determine the ranks.  

The relationship between two adjacent subsystems is defined first according to the 

operating mode of the interconnecting converter. For two adjacent subsystems, isubsys  

and jsubsys , where i j≠ , { }, ...i j 1 N∈ , isubsys  is called a parent subsystem of 

jsubsys  and jsubsys  is called a child subsystem of isubsys  if  

(i) isubsys  is on the ac side of an interconnecting rectifier, or 

(ii) isubsys  is on the dc side of an interconnecting inverter.  

In both cases, power is fed from isubsys  to its child subsystem, jsubsys .  

The ranking method assigns a subsystem one rank higher than its parent subsystems. 

All of the subsystems can be ranked using the following steps.  
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Step 1. For an N-subsystem network, select a main source. If there are multiple sources, 

any one of the sources can be chosen as the main source.  

Step 2. Perform a breadth-first search from the main source. Determine all of the 

subsystems and the relationship among them according to the operating modes 

of the interconnecting converters. Initialize all subsystem ranks to -N. 

Step 3. Determine the subsystem containing the main source, defined as subsys1. 

Assign R1=1.  

Step 4. Determine all of the adjacent subsystems of subsys1, defined as ( )1adj subsys . 

For each subsysi, 1i adj( subsys )∈ , 

Step 4.a. Assign Ri=1-1=0 if subsysi is a parent subsystem of subsys1. 

Step 4.b. Assign Ri=1+1=2 if subsysi is a child subsystem of subsys1. 

Step 4.c. Add these adjacent subsystems into an empty subsystem list, subsysList.  

Step 5. For each subsysi, i subsysList∈ , determine ( )iadj subsys . For each subsysj, 

( )ij adj subsys∈ ,  

Step 5.a. Assign j i jR max( R 1,R )= −  if subsysj is a parent subsystem of subsysi. 

Step 5.b. Assign j i jR max( R 1,R )= +  if subsysj is a child subsystem of subsysi. 

Step 5.c. Remove subsysi from subsysList and add subsysj in subsysList. 

Step 6. Go to Step 5 if subsysList is not empty. Otherwise, all of the subsystems are 

ranked. Sort the subsystems according to their ranks. 

The subsystem ranks are determined in Step 5.a and Step 5.b. For radial systems or 

meshed systems with loops only existing in individual subsystems, there is only one path 

from 1subsys  to any subsystem. For meshed systems with loops among subsystems, 
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there may be multiple paths from 1subsys  to a subsystem. The final rank is equal to the 

highest rank assigned to this subsystem during the ranking process. As such, each 

subsystem will only have one rank after Step 6. 

For example, Figure 3.3 shows an ac/dc system with five converters. There are two 

ac subsystems and three dc subsystems. The operating modes of the converters and the 

power flow directions are shown in the figure.  

 

Figure 3.3 The one-line diagram of a sample ac/dc system with 5 subsystems 
 

Each subsystem’s rank is shown in Table 3.4. Subsystem AC 1 contains the substation 

and has R1 =1. It is noted that there are two paths from the substation to subsystem AC 2 

with ranks 3 and 1. Thus, the final rank of AC2 is equal to max(3,1)=3. 

Table 3.4. The ranks of the subsystems in the sample system 

Rank 1 2 3 4 

Subsystem # AC 1 DC 1, DC3 AC 2 DC 2  

 

A backward/forward algorithm is developed to solve ac/dc power flow in a sequential 

manner based on the subsystem ranks. The algorithm is discussed next.  



77 

   

3.3.2  Backward/Forward Algorithm   

After the subsystems are ranked, a backward/forward iteration process is performed 

to solve ac/dc power flow. The solution algorithm is illustrated in Figure 3.4 and it 

includes: 

• A backward sweep calculating unknown complex ac voltages and dc voltages 

from the highest ranked subsystems, Rmax, to the lowest ranked subsystems, Rmin; 

• A forward sweep calculating unknown complex ac voltages and dc voltages from 

the subsystems with Rmin  to the subsystems with Rmax.  

It is noted that subsystems might have different ranks if different sources are selected as 

the main source in multi-source networks. But the order of solving power flow in the 

backward and forward sweeps will be the same. For subsystems with the same rank, the 

computation order within each backward or forward sweep does not matter.  

 

Figure 3.4 The backward/forward sequential ac/dc power flow 

 

For each subsystem, adjacent subsystems are modeled as equivalent power flow 

components based on the delta-connected converter models. The parameters of the 
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equivalent components are calculated using the power flow obtained from the latest 

backward sweep or forward sweep.  

The backward sweep is performed first and followed by a forward sweep. This is 

because the convergence of sequential solvers is sensitive to the initial states of each 

subsystem during the ac/dc iterations. Calculating power flow for subsystems with higher 

ranks first provides a good estimation of the equivalent power flow components. 

The above backward/forward iteration process is performed repeatedly until the 

difference of the following parameters is within a tolerance range between two 

consecutive backward/forward sweeps: 

• The unknown three-phase complex ac voltages and the dc voltages 

• The participation coefficients and equivalence coefficients of the converter 

models 

An implicit Z-bus Gauss method [23][24] is utilized to compute the ac and dc 

voltages in (3.13) and (3.14). In the ac nodal analysis equation (3.13), the voltages on the 

substation and on the ac voltage controlled PWM converters (e.g. inverter) are specified. 

In the dc nodal analysis equation (3.14), the specified dc voltages include the voltages on 

diode rectifiers, dc voltage controlled thyristor converters, and ac current controlled 

PWM converters (e.g. rectifier). The unknown voltages, 2V , are solved in an iterative 

manner using the specified voltages, 1V : 

( ) ( ) ( )( )1 11
2 22 2 2 21 1

k k kV Y I V Y V− −− ⎡ ⎤= ⋅ − ⋅⎣ ⎦        (3.20) 

where: k is the sweep number 

22Y , 21Y :  the self and mutual nodal admittance sub-matrices on the buses with 

unknown voltages 
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( )2 2I V :  the vector of three-phase ac and dc currents injected into buses, which 

are functions of unknown voltages 

The solution procedure of the sequential solver includes the following steps: 

Step 1. Search and partition the network.  

Step 1.a. Determine the operating modes of the converters. Divide the network into 

ac and dc subsystems at the converter buses. 

Step 1.b. Rank the subsystems.  

Step 2. Initialize all of the ac and dc voltages. Set the current rank R=Rmax and sweep 

number k=1. Continue with a backward sweep. 

Step 3. For all subsystems with rank R, compute the voltages in the subsystems.  

Step 3.a. Compute the ac voltages for each ac subsystem with rank R 

 Add the equivalent power flow components of the adjacent subsystems in the 

ac nodal analysis equation (3.13). 

 Update the unknown ac voltages using (3.20). Calculate ,
LL

Conv Iλ , ,
LL

Conv Pλ , and 

LL
ConvK , where { },Conv D T∈ , { }, ,LL ab bc ca∈  in the interconnecting 

converter models. 

 Determine the parameters of the equivalent power flow components of the 

present ac subsystem, based on the converter models. Go to Step 4.  

Step 3.b. Compute the dc voltages for each dc subsystem with rank R 

 Add the equivalent power flow components of the adjacent subsystems in the 

dc nodal analysis equation (3.14). 
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 Update the unknown dc voltages using (3.20). Calculate ,
LL

Conv Iλ , ,
LL

Conv Pλ , and 

LL
ConvK  in the interconnecting converter models. 

 Determine the parameters of the equivalent power flow components of the 

present dc subsystem, based on the converter models. Go to Step 4.   

Step 4. Select subsystems with a new rank 

Step 4.a. For a backward sweep, set the current rank to R=R-1. If minR R≥ , go to 

Step 3. Otherwise, the backward sweep is complete. Go to Step 5.  

Step 4.b. For a forward sweep, set the current rank to R=R+1. If maxR R≤ , go to Step 

3. Otherwise, the forward sweep is complete. Go to Step 5.  

Step 5. Check for convergence of the ac/dc power flow 

Step5.a. Calculate the following parameters between two consecutive sweeps, k and 

k-1, i.e., a backward sweep and a forward sweep. 

 The absolute value of the difference in the unknown complex voltages  

( ) ( )k k 1
2 2V V −−     

 The difference in current participation coefficients, ,
LL

Conv Iλ , power 

participation coefficients, ,
LL

Conv Pλ , and equivalence coefficients, LL
ConvK , of 

the diode/thyristor converter models 

( )( ) ( )( )
, ,

k k 1LL LL
Conv I Conv Iλ λ

−
− , ( )( ) ( )( )

, ,

k k 1LL LL
Conv P Conv Pλ λ

−
− , ( )( ) ( )( )k k 1LL LL

Conv ConvK K
−

−  

Note: ( )( )ki  represents parameters at kth sweep 

Step 5.b. Go to Step 7 if the maximal difference is within a tolerance range, e.g. 

810ε −≤ . Otherwise, go to Step 6. 
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Step 6. Set the sweep number to k=k+1. Start a new backward or forward ac/dc power 

flow sweep.  

  Step 6.a. Select all subsystems with: 

 R=Rmax for the backward sweep 

 R=Rmin for the forward sweep 

Step 6.b. Go to Step 3 to calculate the power flow for the subsystems with rank R. 

Step 7. Output the ac/dc power flow solutions.  

A flow chart of the sequential solver is shown in Figure 3.5. The following 

subsection focuses on the application of the solver to ac/dc power flow studies. 
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Start
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Update unknown voltages using
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i

Add the equivalent power flow components of
the adjacent subsystems in (3.13)
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Figure 3.5 Flow chart of the 3-phase sequential ac/dc power flow solver  
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3.4  MATLAB Numerical Results 

 The power flow algorithm was programmed in MATLAB. It was tested on a 1.5 

GHz, 1024 MB computer for bi-directional power flow studies in a three-phase 12-bus 

system shown in Figure 3.6. Bus 1 is the main source bus and the network contains: 

• A three-phase back-to-back thyristor converter placed between ac bus 4 and dc bus 

7, allowing currents to flow in both directions 

• A three-phase PWM converter placed between ac bus 9 and dc bus 8 

• Five ac constant impedance loads and one dc constant impedance load 

• A Distributed Generator (DG) placed on bus 11. 

 

Figure 3.6  A one-line diagram of the 12-bus AC/DC system 

Note:  

• the ac side of a thyristor converter is the subsystem containing the thyristor 

converter ac bus, e.g., bus 1 to bus 6 in subsystem AC 1 in Figure 3.6. 

• the ac side of a PWM converter is the subsystem containing the PWM converter ac 

bus, e.g., bus 9 to bus 12 in subsystem AC 2 in Figure 3.6. 

The substation was chosen as the main source. The system was divided into the 
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following three subsystems as shown in Figure 3.6: 

 AC 1: bus 1 to bus 6 

 DC 1: bus 7 and bus 8 

 AC 2: bus 9 to bus 12 

The system ranks are determined by the operation modes of the converters.  

Two cases were studied to demonstrate that the sequential solver can handle changes 

in the direction of power flow across the converters. In Case 1, the load on the ac side of 

the PWM converter was heavy. Power was fed from the substation to the ac side of the 

PWM converter. In Case 2, the load on the ac side of the PWM converter was light. The 

DG fed power to the ac side of the thyristor converter. Some parameters used in both 

cases are listed below: 

• The ac voltage on bus 1 was specified as balanced at 1 p.u.; 

• Equi-distant control was used for the thyristor converter; 

• The commutation angles of the thyristor converter were assumed to be 15 degrees; 

• The percentage of the converter real power loss was assumed to be 1%. 

• The capacity of the DG was 0.8 MW. 

Case 1: 

 The loads in the system were unbalanced and are shown in Table 3.5. The total load 

is 4.15 MW. The real power loads on the ac side of the PWM converter was 1.65 MW. 

The DG outputted power at its full capacitor (0.8 MW).  Since the load is larger than the 

DG’s output. Power was fed to the ac side of the PWM converter from the substation 

through the converters. The following settings were used: 
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• The thyristor converter operated in the rectifier mode. The firing angles were set to 

a minimum value (10 degrees) to minimize the consumed reactive power; 

• The PWM converter operated in the inverter mode using the ac voltage control. The 

ac voltage was balanced at 1 p.u.; 

• PWM converter ac bus was the slack bus on the ac side of the PWM converter with 

sufficient capacitance for reactive power determined by the network; 

• The ac currents and ac power in the converters were defined as the values injected 

from the converter models into the ac systems; 

• The DG was modeled as a source with constant power (0.8+j0.4 MVA). 

Table 3.5 Nominal loads for the 12-bus system in Case 1, [MW,MVAR] 
Bus Pa+jQa Pb+jQb Pc+jQc 
2 0.2+j0 0.4+j0 0.8+j0 
5 0.1+j0 0.1+j0 0.1+j0 
6 0.2+j0.067 0.2+j0.067 0.2+j0.067 
10 0.3+j0.133 0.3+j0.133 0.3+j0.133 

11 (DG) -0.267-j0.133 -0.267-j0.133 -0.267-j0.133 
12 0.3+j0.1 0.25+j0.15 0.2+j0.06 

7(dc) 0.2 

 The sequential ac/dc power flow solver was applied to the test network. The ranks of 

the subsystems are given in Table 3.6 based on the ranking method.  

Table 3.6 The subsystem ranks in Case 1 
Rank 1 2 3 

subsystem AC 1 DC 1 AC 2 

The tolerance range was set to 810ε −≤ . In order to observe the convergence behavior of 

the sequential solver, the total number of backward sweeps and forward sweeps, the 

number of implicit Z-bus iterations and the power flow run time were counted for the 

following two methods: 
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M1. the voltages in each subsystem are updated only once at each backward or 

forward sweep 

M2. the voltages in each subsystem are solved at each backward or forward sweep  

Table 3.7 Convergence comparison of the sequential method in Case 1 
 # of backward & forward 

sweeps 
# of implicit Z-bus 

iterations Run Time (Sec) 

M1 8 17 0.500 
M2 8 35 0.563 

Both methods converged to the same solution. Table 3.7 shows that method M1 

solved the power flow in 17 iterations, 18 fewer than method M2. This implies that M1 

requires fewer flops to solve the power flow. As such, M1 is faster than M2, as indicated 

by the run time. The simulation results are presented in the following tables and figures: 

 Table 3.8 presents the bus voltage magnitudes for each phase. Figure 3.7 shows 

the unbalanced ac voltage magnitudes 

 Table 3.9 presents the ac voltages, ac currents, ac power, participation 

coefficients, and equivalence coefficients of the thyristor converter model 

 Table 3.10 presents the ac voltages, ac currents, and ac power of the PWM 

converter model 

Table 3.8 Bus voltage magnitudes in Case 1, |V|: [pu] 
 |Va|  |Vb|  |Vc|  

Bus 1 1 1 1 
Bus 2 0.997772 0.995201 0.99475 
Bus 3 0.996896 0.994329 0.993879 
Bus 4 0.99583 0.993267 0.992818 
Bus 5 0.994713 0.992156 0.991704 
Bus 6 0.99391 0.991359 0.990903 

Bus 7 (dc) 2.198731 
Bus 8 (dc) 2.196538 

Bus 9 1 1 1 
Bus 10 0.99863 0.998718 0.999167 
Bus 11 0.998556 0.998733 0.999631 
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Bus 12 0.997287 0.997554 0.998902 
Note: The dc voltage base was equal to the ac voltage base 
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Figure 3.7  AC bus voltage magnitudes in Case 1 

From Figure 3.7, it can be seen that the voltages on the ac side of the thyristor 

converter are unbalanced, e.g, bus 6, because the loads are unbalanced. The voltages on 

bus 9 are regulated by the PWM converter and are balanced. Since the loads are 

unbalanced on the ac side of the PWM converter, other buses voltages are unbalanced.  

Table 3.9 Parameters of the thyristor converter in Case 1, V, I: [pu, deg], S: [pu] 
Parameters Line AB Line BC Line CA 

LL
TV  0.9947 ∠ 29.73 o  0.9939 ∠ -90.34 o  0.9934 ∠ 149.72 o  
LL
TI  10.99e-3 ∠ -167.50 o  10.97e-3 ∠ 72.68 o  10.96e-3 ∠ -47.23 o  
LL
TS  -10.44e-3-j3.24e-3 -10.43e-3-j3.19e-3 -10.42e-3-j3.14e-3 

,
LL

T Iλ  0.333724 0.333396 0.33288 

,
LL

T Pλ  0.333536 0.333373 0.333091 
LL
TK  1.348963 1.34896 1.348964 

 

Table 3.10 Parameters of the PWM converter in Case 1, V, I: [pu, deg], S: [pu] 
Parameters Line AB Line BC Line CA 

LL
PWMV  1 ∠ 30 o  1 ∠ -90 o  1 ∠ 150 o  
LL
PWMI  10.389e-3 ∠ -16.73 o  9.572e-3 ∠ -147.93 o  7.209e-3 ∠ 105.56 o  
LL
PWMS  9.949e-3+j2.99e-3 8.457e-3+j4.484e-3 6.982e-3+j1.798e-3 
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The participation coefficients, ,
LL

T Iλ , ,
LL

T Pλ , of the thyristor converter model were not 

equal because the ac loads were unbalanced. As a consequence, the ac currents, LL
TI , and 

ac power, LL
TS , were unbalanced. The model was able to reflect the imbalance of the 

system. The ac currents, LL
PWMI , and ac power, LL

PWMS , in the PWM converter model were 

also unbalanced because of the unbalanced loads on the ac side of the PWM converter.  

Case 2:  

In Case 2, the power flow direction in the converters was reversed from Case 1. The 

loads in the system are provided in Table 3.11. The DG was operated as the slack bus. It 

supplied all ac loads on the ac side of the PWM converter (0.5 MW). Since its output 

limit was set to 0.8 MW, it also supplied the dc load. The following settings were used: 

• Thyristor converter operated in the inverter mode with the constant dc power 

control. The dc power entering the thyristor converter was 0.1 MW. The firing 

angles were equal to 10 degrees; 

• PWM converter operated in the rectifier mode using the ac current control with 

VPWM,dc, at Bus 8 set to 2.2 p.u; 

• The DG was modeled as the slack bus for the ac side of the PWM converter. The ac 

voltage was balanced at 1 p.u.. 

Table 3.11 Nominal loads for the 12-bus system in Case 2, [MW,MVAR] 
Bus Pa+jQa Pb+jQb Pc+jQc 
2 0.2+j0 0.4+j0 0.8+j0 
5 0.2+j0 0.2+j0 0.2+j0 
6 0.267+j0.1 0.267+j0.1 0.267+j0.1 
10 0.067+j0.033 0.067+j0.033 0.067+j0.033 
12 0.1+j0.05 0.15+j0.07 0.1+j0.06 

7(dc) 0.05 
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Based on the ranking method, the ranks of the three subsystems are provided in 

Table 3.12. It is noted that the computation order was reversed from Case 1. This was 

because power was fed from the ac side of the PWM converter to the ac side of the 

thyristor converter in Case 2.  

Table 3.12 The subsystem ranks in Case 2 
Rank -1 0 1 

subsystem AC 2 DC 1 AC 1 

The convergence behavior of the sequential solver was investigated again using the 

two methods in Case 1. The sweep number and implicit Z-bus iteration number are given 

in Table 3.13 with the power flow run time. 

Table 3.13 Convergence comparison of the sequential solver in Case 2 
 # of backward & forward 

sweeps 
# of implicit Z-bus 

iterations Run Time (Sec) 

M1 5 11 0.297 
M2 3 15 0.313 

Both methods resulted in the same power flow solutions. The ac/dc power flow 

converged after 11 iterations using M1, 4 fewer than M2. The running time shows that 

M1 is faster than M2. The simulation results are presented in the following tables: 

• Table 3.14 presents the bus voltage magnitudes for each phase and Figure 3.8 

shows the unbalanced ac voltage magnitudes 

• Table 3.15 presents the ac voltages, ac currents, ac power, participation 

coefficients, and equivalence coefficients of the thyristor converter model 

• Table 3.16 presents the ac voltages, ac currents, and ac power of the PWM 

converter model 
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Table 3.14 Bus voltage magnitudes in Case 2, |V|: [pu] 
 |Va|  |Vb|  |Vc|  

Bus 1 1 1 1 
Bus 2 0.998649 0.996079 0.995619 
Bus 3 0.998074 0.995511 0.995043 
Bus 4 0.997372 0.994816 0.994342 
Bus 5 0.995642 0.993097 0.992617 
Bus 6 0.994542 0.992004 0.991519 

Bus 7 (dc) 2.199627   
Bus 8 (dc) 2.199996   

Bus 9 0.999395 0.999395 0.999395 
Bus 10 0.999548 0.999548 0.999548 
Bus 11 1 1 1 
Bus 12 0.99953 0.999287 0.999605 
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Figure 3.8  AC bus voltage magnitudes in Case 2 

 

Table 3.15 Parameters of the thyristor converter model in Case 2, V, I: [pu, deg], 
S:[pu] 

Parameters Line AB Line BC Line CA 
LL

TV  0.9962 ∠ 29.80 o  0.9954 ∠ -90.25 o  0.9943 ∠ 149.80 o  
LL
TI  1.063e-3 ∠ 50.56 o  1.062e-3 ∠ -69.7 o  1.061e-3 ∠ 170.19 o  
LL
TS  0.991e-3-j0.376e-3 0.990e-3-j0.371e-3 0.989e-3-j0.368e-3 

,
LL

T Iλ  0.333728 0.333394 0.332877 

,
LL

T Pλ  0.333538 0.333372 0.33309 
LL
TK  1.348963 1.34896 1.348964 
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Table 3.16 Parameters of the PWM converter model in Case 2, V, I: [pu, deg], S:[pu] 
Parameters Line AB Line BC Line CA 

LL
PWMV  0.9994 ∠ 29.98 o  0.9994 ∠ -90 o  0.9994 ∠ 149.99 o  
LL
PWMI  1.458e-3 ∠ -150.02 o  1.458e-3 ∠ 89.98 o  1.458e-3 ∠ -30.02 o  
LL
PWMS  -1.46e-3+j0 -1.46e-3+j0 -1.46e-3+j0 

 

From the above results, it is shown that the power flow in the thyristor converter and 

the PWM converter was reversed from that in Case 1. On the ac side of the thyristor 

converter, unbalanced voltages were applied on the thyristor converter. ,
LL

T Iλ  and ,
LL

T Pλ  

were not equal in the delta-connected model, causing unbalanced LL
TI  and LL

TS . It is 

noted that the thyristor converter consumed reactive power although it was operated as an 

inverter.  

On the ac side of the PWM converter, the ac power in the converter model was 

balanced and the reactive power was equal to zero as expected. Due to the balanced loads 

between the PWM converter and the DG, whose ac bus was chosen as the slack bus, the 

ac voltages and ac currents in the PWM converter model were also balanced.  



92 

   

3.5  Comments 

In this chapter, a three-phase sequential power flow solver was developed for ac/dc 

power flow studies. The three-phase delta-connected converter models proposed in 

Chapter 2 have been incorporated in the sequential solver to model three-phase 

converters under unbalanced operating conditions. In order to determine the sequence for 

solving power flow, a ranking method was proposed to rank the subsystems. The ac/dc 

power flow was solved using a backward/forward algorithm based on subsystem ranks.  

The solution algorithm was tested in a radial system for bi-directional power flow 

studies. The results showed that the sequential solver was robust and converged for the 

test system using the backward/forward algorithm and the ranking method. The 

convergence behavior of the solver was improved by updating subsystem voltages only 

once at each backward/forward iteration. The results also showed that the converter 

models captured the imbalance of the system and appropriately modeled three-phase 

converters at different operating modes and control schemes.  
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CHAPTER 4. THREE-PHASE UNIFIED DISTRIBUTION  

AC/DC POWER FLOW 

  

In this chapter, a three-phase unified solver is proposed for ac/dc power flow studies 

using the delta-connected converter models. Steady-state Modified Nodal Analysis 

(MNA) method is used to incorporate the nodal analysis equations describing dc 

networks, converter dc terminals, and converter controls with the nodal analysis 

equations of ac systems. AC state variables and dc state variables are coupled in the 

modified nodal analysis equations and solved in a unified manner. 

Unified solvers were introduced in the 1970’s for HVDC system analysis 

[7][9][32][33]. In order to improve convergence characteristics, existing ac power flow 

solvers were expanded to single-phase unified ac/dc solvers using the Newton-Raphson 

method [7][9], a fast decoupled method [32], and a second-order method [33]. Balanced 

converter models [6], assuming constant dc currents, have been used to couple ac and dc 

state variables in power flow equations. Similar single-phase, unified approaches using 

Newton-based methods have been proposed for power flow studies in small ac/dc power 

systems [14][15] and electrified transit railway power systems [16].  

The above unified solvers are not directly applicable to distribution power flow 

studies because distribution systems are unbalanced and have more distorted voltages and 

currents than HVDC systems. The power flow equations describing HVDC converters 

are not appropriate for distribution system converters. Thus, the unbalanced converter 

models proposed in Chapter 2 cannot be integrated into traditional unified solvers directly. 

As such, a MNA-based unified solver is proposed using three-phase component models 
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for distribution power flow studies. In MNA, ac and dc currents in the converter models 

are chosen as additional state variables. In addition to nodal analysis equations, a set of 

equations are established to describe the converter models. As such, the ac and dc 

variables are coupled and can be solved in a unified manner. Some features of the 

MNA-based unified solver are: 

 Direct analysis of the interaction between the ac systems and the dc systems;  

 Avoidance of potential divergence problems between ac and dc power flow 

iterations in sequential solvers; 

 Easy development with moderate modifications on existing power flow 

programs; 

 Applying for uni-directional and bi-directional power flow studies. 

This chapter is organized as follows. First, the MNA equations used in the unified 

solver are established with a focus on the converter buses. The delta-connected models 

are incorporated into the MNA equations for diode/thyristor converters and PWM 

converters. Then, a solution algorithm is presented, followed by results obtained from a  

MATLAB implementation. Some comments are made at the end of this chapter.  
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4.1  AC/DC Power Flow Formulation in MNA 

Modified nodal analysis is used to formulate the unified ac/dc power flow problem. 

MNA is a circuit analysis method based on nodal analysis using the admittance matrix. In 

nodal analysis, equivalent models are needed for both voltage sources and current 

dependent components. These models change the structure of the circuits and the 

admittance matrix becomes unsymmetrical. In addition, the currents of these components 

can only be obtained by post-processing.  

MNA was introduced in [34][35] to manage the above difficulties with nodal analysis. 

In MNA, the currents in the voltage sources and current dependent components are 

chosen as additional state variables with the voltages. It keeps the original symmetrical 

nodal admittance matrix and modified nodal analysis equations can be easily established. 

In Chapter 3, three-phase converters were made equivalent to voltage sources or 

current dependent components using the delta-connected models as shown in Table 3.1 

and Table 3.2. Thus, MNA can be used to analyze ac/dc systems. A set of steady-state 

MNA equations are established in (4.1) with a (7 7× ) block modified admittance matrix: 

,

, ,

, ,

,

, ,

,1 ,2 ,1 ,2

,3 ,4 ,3 ,4

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0
0 0 0

sub sub ac sub

sub ac ac ac Conv ac

ac Conv Conv Conv ac Conv

dc dc Conv

dc Conv Conv Conv dc

Conv Conv Conv Conv

Conv Conv Conv Conv

Y Y V
Y Y Y V

Y Y B V
G G

G G B
C C D D
C C D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

( )
( )
( )

( )
( )

,

,

,

,

,,

, ,

dc

sub L

ac L

Conv L

dc Ldc

Conv LConv dc

Conv Conv

Conv dc Conv dc

I V
I V

I V
I VV

I VV
I F

I F

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 (4.1) 

where in addition to the notation defined in (3.12) and (3.13): 

acn ∈ :  the number of ac buses, excluding the substation bus and converter ac  

buses 
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dcn ∈ :  the number of dc buses, excluding the converter dc buses 

Convn ∈ :  the number of converters 

3
subV ∈ : the complex voltage vector of the substation bus 

3 acn
acV ∈ : the complex voltage vector of ac buses, excluding the substation and 

converter ac buses 

3 Convn
ConvV ∈ :  the complex voltage vector of converter ac buses  

dcn
dcV ∈ :  the voltage vector of dc buses, excluding converter dc buses 

,
Convn

Conv dcV ∈ : the voltage vector of converter dc buses  

( ) 3 Convn
ConvI V ∈ :the complex current injection vector of converter ac buses from the 

converter model 

( ),
Convn

Conv dcI V ∈ : the current injection vector of converter dc buses 

,Conv acB , ,Conv dcB :  the sub-matrices representing the converter’s current contributions 

,Conv iC , ,Conv iD :  the sub-matrices related to the converter models, { }1, 2,3, 4i ∈  

ConvF , ,Conv dcF :  the vectors of constant elements related to the converter models  

In (4.1), the top three rows correspond to the ac MNA equations on all ac buses. The 

contributions of the dc systems to the ac power flow are represented using ConvI . The 4th 

and 5th rows correspond to the dc MNA equations on all dc buses. The contributions of 

the ac systems to the dc power flow are represented using ,Conv dcI . The 6th and 7th rows 

correspond to appropriate converter models for ac and dc voltages, currents, and power 

which are discussed in the following subsections for three-phase diode/thyristor 

converters and PWM converters respectively.  
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4.1.1   Modified Nodal Analysis Equations for Thyristor Converters and Diode 

Rectifiers  

In Chapter 2, three-phase thyristor converters and diode rectifiers were modeled 

using three, delta-connected, single-phase converters. Since thyristor converters and 

diode rectifiers have similar models, this subsection focuses on thyristor converters. 

Diode rectifiers are discussed briefly at the end.  

Based on the delta-connected model, a thyristor converter and the connected dc 

system can be represented using a delta-connected, current controlled current component 

on the converter ac bus. The ac system is modeled according to the converter control 

scheme on the converter dc bus. The equivalent ac and dc power flow components are 

shown in Figure 4.1.  

ab
TI

bc
TI

ca
TI

A

B

C

 

(a) Equivalent ac components 

 

 

(b) Equivalent dc components 

(i) Constant voltage control 

(ii) Constant current control 

(iii) Constant power control 

(iv) Constant firing angle control 

Figure 4.1 The equivalent ac (a) and dc (b) power flow components for ac/dc systems 
interconnected with three-phase thyristor converters 

 

MNA introduces the complex ac currents and the dc current in the converter model as 

state variables in the unified solver. As such, the state variables related to thyristor 

converters include:  
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• Three line-to-ground complex ac voltages on a grounded bus, 

Ta b c
T T T TV V V V⎡ ⎤= ⎣ ⎦  or two line-to-line complex ac voltages on an ungrounded 

bus, 
Tab bc

T T TV V V⎡ ⎤= ⎣ ⎦  

• Three complex ac currents in the delta-connected model, 
Tab bc ca

T T T TI I I I⎡ ⎤= ⎣ ⎦  

• A dc voltage on the converter dc bus, ,T dcV  

• A dc current injected into the converter dc bus from the converter model, 3
,T dcI φ  

The ac and dc MNA equations on thyristor converter buses are established in (4.2) and 

(4.3) respectively. These two sets of equations correspond to the MNA equations on the 

3rd and 5th rows of (4.1): 

, , , ,

ac

T ac T T T ac T T L

T

V
Y Y B V I

I

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤=⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

          (4.2) 

, , , , ,
3

,

dc

dc

T dc T T T dc T dc T L

T dc

V
G G B V I

I φ

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤ =⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

     (4.3) 

where:  

,

1 0 1
1 1 0
0 1 1

T acB
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 for a grounded ac bus  

,

1 0 1
1 1 0T acB
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 for an ungrounded ac bus 

, 1T dcB = −  
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It is noted that the ac and dc currents injected from three-phase thyristor converters into 

the system are represented by ,T ac TB I⋅  and 3
, ,T dc T dcB I φ⋅  in (4.2) and (4.3) respectively. 

The converter equations on the 6th and 7th rows of (4.1) are established using the 

delta-connected model. First, the ac power injected into the ac bus from the single-phase 

converters can be represented in (4.4). Please note in (4.4) that the conjugate of the ac 

power is deliberately selected to represent the power in terms of LL
TI  instead of ( )*LL

TI : 

( ) ( ) ( ) ( )
*

2* * 2LL LL LL LL LL LL LL LL
T T T T T T T TV I P j Q P j V I P⎛ ⎞⋅ = + ⋅ = − ⋅ ⋅ −⎜ ⎟

⎝ ⎠
     (4.4) 

where:  

LL
TP , LL

TQ : the real and reactive power injections from the converter model 

respectively,  

Note: LL
TQ  is negative because thyristor converters consume reactive power.  

In the model, both LL
TI  and LL

TP  can be represented as functions of the dc 

current, 3
,T dcI φ : 

3
, ,

,

LL
LL LLT
T T I T dc

T dc

KI I
K

φλ= ⋅        (4.5) 

3
, , , , ,

LL loss LL loss LL
T T T P T dc T T P T dc T dcP C P C V I φλ λ= − ⋅ ⋅ = − ⋅ ⋅ ⋅     (4.6) 

where:  

,
LL

T Iλ , ,
LL

T Pλ :  the dc current and dc power participation coefficients respectively 

LL
TK , ,T dcK : the ac and dc equivalence coefficients respectively 

loss
TC :   the loss factor of the model 
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Substituting (4.5) and (4.6) into (4.4), the following equation is obtained for each 

single-phase converter in the model: 

( )
2

* 2 3
, , , , , ,3

, ,

1 0
( )

LL
LL LL loss LL LL LL loss LLT

T T T T p T dc T T I T T P T dc T dc
T dc T dc

KV I C V j V C V I
sign I K

φ
φλ λ λ

⎡ ⎤⎛ ⎞⎢ ⎥⎡ ⎤⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ =⎜ ⎟ ⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

 (4.7) 

In addition, one of the following converter control equations is used in the MNA 

equations: 

 Constant dc voltage control 

,, T dcT dcV V=          (4.8) 

 Constant dc current control 

3
,, T dcT dcI Iφ =          (4.9) 

 Constant dc power control 

3
,, , T dcT dc T dcV I Pφ⋅ =        (4.10) 

• Constant firing angle control for minimal reactive power 

( )
{ }

2

1
, ,

, ,

1 LL

LL

LL
T dc T dc

LL ab bc ca
V v t dt

θ

θπ ∈
= ⋅∑ ∫       (4.11) 

 ( )ab ab bc bc ca ab bc
T T T T T T TA V A V A V V= ⋅ + ⋅ + ⋅ − −  

For diode rectifiers, the same approach follows. Since diode rectifiers are not 

controllable, the dc control equations in (4.8) to (4.11) are replaced by the converter dc 

voltage, ,D dcV . ,D dcV  can be expressed in terms of the line-to-line voltages ab
DV  and 

bc
DV  in (3.6), which is repeated here: 

 ( ),
ab ab bc bc ca ab bc

D dc D D D D D D DV A V A V A V V= ⋅ + ⋅ + ⋅ − −     (4.12) 

where:  



101 

   

( )2

1
,

LL
V LLD

LL

j

LL LL
D D dc

eA v t dt
δ

θ

θπ

−

= ⋅∫  

Next, the MNA equations are established for PWM converters. 

4.1.2  Modified Nodal Analysis Equations for PWM Converters 

A three-phase PWM converter can be made equivalent to three, delta-connected, 

single-phase converters. PWM converters are generally operated by two control schemes: 

• ac current control 

• ac voltage control  

For an ac current controlled converter (e.g. rectifier), the connected dc system can be 

modeled as a delta-connected, current controlled current component on the converter ac 

bus. The ac system is modeled as a dc component with constant voltage on the dc bus. 

The equivalent power flow components are shown in Figure 4.2.  

For an ac voltage controlled converter (e.g. inverter), the connected dc system is 

modeled as a delta-connected voltage component on the converter ac bus. The ac system 

is modeled as a current controlled current component on the dc bus. The equivalent 

power flow components are shown in Figure 4.3.  

ab
PWMI

bc
PWMI

ca
PWMI

 
(a) 

+
-

+

-

I PWM,dc
3

VPWM,dcVPWM,dc

 
 

(b) 

Figure 4.2 The equivalent ac (a) and dc (b) power flow components for ac/dc systems 
interconnected with ac current controlled PWM converters 
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Vab
PWM

A

B

C
Vbc

PWM

Vca
PWM

 
(a) 

 
 

(b) 

Figure 4.3 The equivalent ac (a) and dc (b) power flow components for ac/dc systems 
interconnected with ac voltage controlled PWM converters 

 

For PWM converters with either of the two control schemes, the state variables include: 

 Three line-to-ground complex ac voltages on a grounded bus, 

Ta b c
PWM PWM PWM PWMV V V V⎡ ⎤= ⎣ ⎦  or two line-to-line complex ac voltages on an 

ungrounded bus, 
Tab bc

PWM PWM PWMV V V⎡ ⎤= ⎣ ⎦  

 Three complex ac currents in the delta-connected model, 

Tab bc ca
PWM PWM PWM PWMI I I I⎡ ⎤= ⎣ ⎦  

 A dc voltage on the converter dc bus, ,PWM dcV  

 A dc current injected into the converter dc bus from the converter model, ,PWM dcI  

The ac and dc MNA equations on the PWM converter buses are established in (4.13) and 

(4.14) respectively: 

, , , ,

ac

PWM ac PWM PWM PWM ac PWM PWM L

PWM

V
Y Y B V I

I

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤=⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

     (4.13) 
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, , , , ,

,

dc

dc

PWM dc PWM PWM PWM dc PWM dc PWM L

PWM dc

V
G G B V I

I

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤ =⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

    (4.14) 

where:  

,

1 0 1
1 1 0
0 1 1

PWM acB
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 for a grounded ac bus  

,

1 0 1
1 1 0PWM acB
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 for an ungrounded ac bus 

, 1PWM dcB = −  

The ac and dc currents injected from three-phase PWM converters into the system are 

represented with ,PWM ac PWMB I⋅  and , ,PWM dc PWM dcB I⋅  in (4.13) and (4.14) respectively.  

The PWM converter equations on the 6th and 7th rows of (4.1) are established using 

the delta-connected model and converter’s control schemes as follows.  

4.1.2.1  AC Current Controlled PWM Converters  

For an ac current controlled PWM converter, the ac real power is balanced and the 

reactive power is equal to zero in the single-phase PWM converters. In order to represent 

the power in terms of LL
PWMI , the conjugate of the converter ac power is used and the 

following two equations hold:  

( ) ( )* *ab ab bc bc
PWM PWM PWM PWMV I V I⋅ = ⋅      (4.15) 

( ) ( )* *bc bc ab bc ca
PWM PWM PWM PWM PWMV I V V I⋅ = − − ⋅           (4.16) 

Also, the sum of the three-phase real power is equal to the dc power multiplied by a loss 

factor, loss
PWMC . Since the ac reactive power is zero, the following equation holds: 
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( ) ( ) ( )* * *

, ,
loss ab ab bc bc ab bc ca
PWM PWM dc PWM dc PWM PWM PWM PWM PWM PWM PWMC V I V I V I V V I− ⋅ ⋅ = ⋅ + ⋅ + − − ⋅   (4.17) 

On the converter dc bus, the dc voltage is constant:  

,, PWM dcPWM dcV V=        (4.18) 

4.1.2.2  AC Voltage Controlled PWM Converters 

 For an ac voltage controlled PWM converter, the line-to-line voltages, LL
PWMV , are 

regulated with specified magnitude and angle difference:  

ab
VPWM

ab jab
PWMPWMV V e δ= ⋅         (4.19) 

_ab bcab
VPWM VPWM

jbcbc
PWMPWMV V e

δ δ⎛ ⎞
−∆⎜ ⎟

⎝ ⎠= ⋅        (4.20) 

where: 

LL
PWMV , 

PWM

LL
V

δ :  the magnitudes and angles of the converter line-to-line voltages  

LL
PWMV :   the specified magnitudes of the converter line-to-line voltages  

_

PWM

ab bc

V
δ∆ :   the specified angle difference between ab

PWMV  and bc
PWMV   

If the converter ac bus and the substation are in different subsystems, the voltage angle on 

phase a, 
PWM

a
Vδ , is chosen as the reference for the ac subsystem connected to the PWM 

converter. 
PWMi

ab
V

δ  is constant and equal to thirty degrees for balanced voltages. If the 

converter ac bus and the substation are in the same subsystem, 
PWM

ab
V

δ  is referred to the 

substation and unknown. It is updated using the calculated voltages at each power flow 

iteration.  

The sum of the ac currents in the delta-connected model is equal to zero: 
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0ab bc ca
PWM PWM PWMI I I+ + =       (4.21) 

In addition, the real power on the ac and dc sides of the converter satisfies the following 

relationship: 

, ,
loss ab bc ca
PWM PWM dc PWM dc PWM PWM PWMC V I P P P− ⋅ ⋅ = + +       (4.22) 

( ) ( ) ( )* * *1
2

ab ab bc bc ab bc ca
PWM PWM PWM PWM PWM PWM PWMV I V I V V I⎡ ⎤= ⋅ ⋅ + ⋅ + − − ⋅⎢ ⎥⎣ ⎦

   

( ) ( ) ( ) ( ) ( ) ( )* * *1
2

ab ab bc bc ab bc ca
PWM PWM PWM PWM PWM PWM PWMV I V I V V I⎡ ⎤+ ⋅ + ⋅ + − − ⋅⎢ ⎥⎣ ⎦
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4.2  Solution Algorithm  

The implicit Z-bus Gauss method is used to solve (4.1). First, the modified nodal 

admittance matrix is built. The original admittance matrices of all ac and dc subsystems 

are constant and existing ac and dc nodal analysis programs can be used to develop them. 

In addition, ,Conv acB  and ,Conv dcB  are constant and only need to be built once. On the 

other hand, ,Conv iC  and ,Conv iD  are functions of the converter model coefficients and the 

state variables. They need to be updated at each iteration.   

It is noted that state variables include ac and dc currents in the converter models. 

Thus, new notation is introduced in (4.1). Some of the state variables are specified and 

defined as 1U  below: 

• the ac voltages on the substation or ac voltage controlled PWM converters;  

• the dc voltages on dc voltage controlled thyristor converters or on ac current 

controlled PWM converters; 

• The dc currents in dc current controlled thyristor converters. 

Other state variables, 2U , are solved using 1U . Assume that (4.1) is reorganized as: 

( )
( )

1 111 12 1

2 221 22 2

F UM M U
F UM M U
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

       (4.23) 

where:  

( )11 1 2,M U U , ( )12 1 2,M U U : the self and mutual modified admittance sub-matrices 

on the buses with the specified state variables 

( )22 1 2,M U U , ( )21 1 2,M U U : the self and mutual modified admittance sub-matrices 

on the buses with the unspecified state variables 
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( )1 1F U , ( )2 2F U : the modified current injection vector, which are functions of state 

variables, on the buses with the specified and unspecified state 

variables, respectively 

Thus, 2U  can be solved in an iterative manner: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1
1 1 1 1 1 1

2 22 2 2 2 21 2 1
k k k k k k kU M U F U M U U

−
− − − − − −⎡ ⎤ ⎡ ⎤= ⋅ − ⋅⎣ ⎦ ⎣ ⎦    (4.24) 

where: 

k:  iteration number  

21M , 22M , and 2F , are functions of 2U . They are updated at each iteration until the 

difference of 2U  between two consecutive iterations is within a tolerance range.  

 

The solution procedure of the unified power flow solver includes the following steps: 

Step 1. Search the network and determine all converters and subsystems 

Step 1.a. Choose all complex ac voltages and dc voltages as the state variables; 

Step 1.b. Determine the appropriate converter models. Choose the complex ac 

currents and dc currents in the converter models as the state variables; 

Step 1.c. Initialize the state variables and the coefficients of converter models. 

Step 2.  Build the constant sub-matrices in (4.1) 

Step 2.a. Build the original admittance matrices for the ac and dc subsystems, 

excluding the converters; 

Step 2.b. Build BConv,ac, BConv,dc; 

Step 2.c. Add constant elements into the modified current injection vector. 

Step 3.  Solve the ac/dc power flow using the implicit Z-bus Gauss method 
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Step 3.a. Calculate the non-constant elements in ,Conv iC , ,Conv iD ; 

Step 3.b. Calculate the voltage dependent elements in the modified current injection 

vector; 

Step 3.c. Update the unspecified state variables, 2U , using (4.24); 

Step 3.d. Solve the converter models and update the coefficients of the models using 

the updated state variables;  

Step 3.e. Compare 2U with those obtained from the previous iteration, 

( ) ( ) ( )1
2 2 2

k k kU U U −∆ = − , k= iteration number 

 If ( )( ) 8
2max 10kU ε −∆ ≤ = , power flow converges and go to Step 4. 

 Otherwise, go to Step 3.a for next iteration.  

Step 4. Output ac/dc power flow solutions.  

A flow chart of the three-phase unified power flow solver is shown in Figure 4.4. The 

following section focuses on the application of the solvers to general structure power 

flow studies. 
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Figure 4.4 The flow chart of the three-phase MNA based unified ac/dc power flow solver  
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4.3 MATLAB Numerical Results 

The power flow algorithm was tested on a meshed, three-phase, 25-bus system 

shown in Figure 4.5. This type of system structure mimics a shipboard power system. Bus 

1 is the power source bus and this network contains: 

• A three-phase back-to-back thyristor converter placed between ac bus 18 and dc 

bus 23, allowing the ac and dc currents to flow in both directions;  

• A three-phase PWM converter placed between ac bus 10 and dc bus 25;  

• Four constant impedance and two constant power ac loads and one constant 

impedance dc load. 

 

Figure 4.5 A one-line diagram of the 25-bus system 

Note:  

• “Common bus” is the first bus on the path from the thyristor back to the 

substation and the path from PWM converters back to the substation, e.g., bus 6 in 

Figure 4.5; 

• ac side of a thyristor converter is the subsystem from the common bus to the 

thyristor converter ac bus and downstream buses, e.g., bus 6 to bus 22 in Figure 

4.5; 
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• ac side of a PWM converter is the subsystem from the common bus to the PWM 

converter ac bus and downstream ac buses, e.g., bus 6 to bus 13 in Figure 4.5. 

Two cases were studied to show how ac/dc power flow was solved by the unified 

solver using the delta-connected converter models. In both cases, the amount and the 

direction of the power flow were controlled by the converters to balance current flow and 

to improve voltages. In Case 1, the load on the ac side of the PWM converter was heavy. 

Power was fed to the ac side of the PWM converter through the converters. The thyristor 

converter was operated in the rectifier mode and the PWM converter was operated in the 

inverter mode. 

In Case 2, the load on the ac side of the thyristor converter was heavy. Power was fed 

to the ac side of the thyristor converter through the converters. The thyristor converter 

was operated in the inverter mode and the PWM converter was operated in the rectifier 

mode. Some parameters used in both cases are listed below: 

• The ac voltage on bus 1 was balanced at 1 p.u.; 

• The commutation angles of the thyristor converter were set to 15 degrees; 

• 0.200 MVar capacitors were installed on each phase at the thyristor ac bus (bus 

18) to provide reactive power for the thyristor converter; 

• The percentage of the thyristor and PWM converter real power losses was 1%. 

In both cases, the parameters of the converters are defined according to their control 

modes. The thyristor converter was operated by one of the following two control 

schemes: 

• Constant firing angle control – the minimal firing angles were specified in 

degrees to minimize the consumed reactive power; 
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• Constant dc power control – the nominal dc power was specified and the firing 

angles were specified in degrees. 

The PWM converter was operated by the ac current control. The PWM converter dc 

voltage was specified in per unit. 

Case 1: the system is balanced with 5.1MW total load. In Table 4.1, the loads on the 

ac side of the PWM converter (2.2MW) were larger than those on the ac side of the 

thyristor converter (1.2MW).  

Table 4.1 Nominal loads for the 25-bus system in Case 1, [MW,MVAR] 
Bus Pa+jQa Pb+jQb Pc+jQc 
3 0.5+j0 0.5+j0 0.5+j0 
10 0.533+j0.267 0.533+j0.267 0.533+j0.267 
13 0.2+j0.067 0.2+j0.067 0.2+j0.067 
17 0.1+j0.033 0.1+j0.033 0.1+j0.033 
20 0.2+j0.067 0.2+j0.067 0.2+j0.067 
22 0.1+j0.033 0.1+j0.033 0.1+j0.033 

24(dc) 0.2 

Two scenarios were tested. In Case 1a, no power was transferred to the ac side of the 

PWM converter through the PWM converter (PPWM,ac=0). Here, only the thyristor 

converter supplied the dc system. In Case 1b, power was transferred to the ac side of the 

PWM converter through the PWM converter (PPWM,ac>0). In both scenarios, the bus 

voltages and converter model currents were solved and were the same using both the 

sequential and unified solvers.  

Case 1a: (PPWM,ac=0) 

Initially, PPWM,ac was zero. The thyristor converter was operated in the rectifier mode 

using the constant firing angle control to minimize the consumed reactive power. The 

firing angles were 10 degrees. The thyristor converter provided power for the dc network. 
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The power flow results are provided in the following figures and tables: 

• Figure 4.6 plots the ac line currents on phase a in the balanced system and Table 

4.2 presents the maximum line currents on the ac sides of the converters.  

• Figure 4.7 plots the ac voltage magnitudes on phase a in the balanced system and 

Table 4.3 presents the bus voltage magnitudes on the ac sides of the converters.  

• Table 4.4 presents the current participation coefficients, ,
LL

T Iλ , power 

participation coefficients, ,
LL

T Pλ , and equivalence coefficients, LL
TK , in the 

thyristor converter model.  

 
Figure 4.6 AC line current magnitudes on phase a in Case 1a 

Table 4.2  Maximum current magnitudes on the ac sides of the converters in Case 1a 
with , 0PWM acP =  MW, |I|: [pu] 

AC Area Line 
 with Imax 

|Ia|  |Ib|  |Ic|  

PWM Side bus6-bus7 0.023877 0.023877 0.023877 
Thyristor Side bus6-bus14 0.013766 0.013766 0.013766 
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Figure 4.7 AC bus voltage magnitudes on phase a in Case 1a 

Table 4.3  AC bus voltage magnitudes on the ac sides of the converters in Case 1a with 
, 0PWM acP =  MW, |V|: [pu] 

Bus |Va|  |Vb|  |Vc|  
1 1 1 1 
10 0.988416 0.988416 0.988416 
11 0.987895 0.987895 0.987895 
12 0.987375 0.987375 0.987375 
13 0.986855 0.986855 0.986855 
18 0.992627 0.992627 0.992627 
19 0.991843 0.991843 0.991843 
20 0.99106 0.99106 0.99106 
21 0.990799 0.990799 0.990799 
22 0.990538 0.990538 0.990538 

Table 4.4 Coefficients of the delta-connected thyristor converter model in Case 1a with 
, 0PWM acP =  MW 

Parameters Line ab Line bc Line ca 
,

LL
T Iλ  0.333333 0.333333 0.333333 

,
LL

T Pλ  0.333333 0.333333 0.333333 
LL
TK  1.348964 1.348964 1.348964 

 

Remarks: 

• In Figure 4.6, the line currents on the ac side of the PWM converter are larger 

than those on the ac side of the thyristor converter. It is because the ac side of the 

PWM converter is more heavily loaded;  
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• In Table 4.2, the feeder imbalance can also be observed. The maximal line 

currents on the ac side of the PWM converter (line 6-7) were 

0.023877 1 100% 73%
0.013766

⎛ ⎞− ⋅ ≈⎜ ⎟
⎝ ⎠

 higher than those on the ac side of the thyristor 

converter (line 6-14); 

• In Figure 4.7 and Table 4.3, the voltage magnitudes on the ac side of the PWM 

converter were relatively low, e.g., bus 10, caused by the high line currents; 

• In Table 4.4, ,
LL

T Iλ , ,
LL

T Pλ  and LL
TK are balanced in the thyristor converter model 

because the system is balanced; 

• The total real power loss was 36.5 KW. 

It is noted that the feeder currents were significantly unbalanced. This can be improved 

by transferring power from the thyristor converter to the ac side of the PWM converter. 

As a consequence, the low bus voltages can also be improved and the loss could be 

reduced. It is illustrated in Case 1b.  

Case 1b: ( , 0PWM acP > ) 

In this scenario, real power was transferred through the PWM converter to the ac side 

of the PWM converter ( , 0PWM acP > ) with the following settings:  

• The thyristor converter operated as a dc power controlled rectifier;  

• The PWM converter operated as an ac current controlled inverter with unity 

power factor; 

• The dc voltage on the PWM converter dc bus (bus 25) was set to 2.2 p.u. with the 

dc voltage base equal to the ac voltage base. 
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The thyristor converter dc power, ,T dcP , and PWM converter ac power, ,PWM acP , were 

estimated with:  

 , , ,
, 0.6

2
PWM load T load dc load

T dc

P P P
P

− +
= =  MW      (4.25) 

, , ,
, 0.4

2
PWM load T load dc load

PWM ac

P P P
P

− −
= =  MW   (4.26) 

where:  

,T loadP :   total loads on the ac side of the thyristor converter  

,PWM loadP : total loads on the ac side of the PWM converter  

,dc loadP :   total dc loads 

Power flow was solved and results are displayed in Figure 4.8, Figure 4.9, and Table 4.5 

to Table 4.8. 

 

 
Figure 4.8 AC line current magnitudes on phase a in Case 1b 

 
Table 4.5 Maximum current magnitudes on the ac sides of the converters in Case 1b 

with , 0.4PWM acP =  MW, |I|: [pu] 

AC Area Line 
 with Imax |Ia|  |Ib|  |Ic|  

PWM Side bus6-bus7 0.0202 0.0202 0.0202 
Thyristor Side bus6-bus14 0.0180 0.0180 0.0180 
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Figure 4.9 AC bus voltage magnitudes on phase a in Case 1b 

 

 Table 4.6 Bus voltage magnitudes on the ac sides of the converters in Case 1b with 
, 0.4PWM acP =  MW, |V|: [pu] 

Bus |Va|  |Vb|  |Vc|  
1 1 1 1 
10 0.9895 0.9895 0.9895 
11 0.98898 0.98898 0.98898 
12 0.988459 0.988459 0.988459 
13 0.987938 0.987938 0.987938 
18 0.990957 0.990957 0.990957 
19 0.990175 0.990175 0.990175 
20 0.989393 0.989393 0.989393 
21 0.989132 0.989132 0.989132 
22 0.988872 0.988872 0.988872 

Table 4.7  Coefficients of the delta-connected thyristor converter model in Case 1a with 
, 0.4PWM acP =  MW 

Parameters Line ab Line bc Line ca 
,

LL
T Iλ  0.333333 0.333333 0.333333 

,
LL

T Pλ  0.333333 0.333333 0.333333 
LL
TK  1.348964 1.348964 1.348964 

Table 4.8 AC power injected into the ac system from the three-phase converters in Case 
1b with , 0.4PWM acP =  MW, S: [MW, MVAR] 

Converter Bus Pa+jQa Pb+jQb Pc+jQc Total 
10 0.1364+j0 0.1364+j0 0.1364+j0 0.4092 
18 -0.2020-j0.0345 -0.2020-j0.0345 -0.2020-j0.0345 -0.606-0.1035 
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Compared to Case 1a, it was found in Case 1b that: 

• the high currents were reduced on the ac side of the PWM converter with better 

feeder balance, e.g., currents in line 6-7 is 0.0202 1 100% 12%
0.0180

⎛ ⎞− ⋅ ≈⎜ ⎟
⎝ ⎠

 higher 

than the currents in line 6-14 in Table 4.5; 

• the bus voltages were improved on the ac side of the PWM inverter as shown in 

Figure 4.9 and Table 4.6;  

• in Table 4.7, the thyristor converter model’s coefficients are the same as those in 

Case 1a because the system is still balanced; 

• in Table 4.8, the thyristor converter consumed 0.606 MW from the ac system, 

including 1% converter loss. 0.4092 MW was transferred to the ac side of the 

PWM converter as desired; 

• the real power loss was reduced to 33.9 KW. 

From the above two scenarios, it can be seen that the unified solver can handle changes of 

power flow direction across converters in balanced ac/dc systems. In Case 2, the test 

25-bus system became unbalanced and ac/dc power flow was studied.  

 

Case 2: the system is unbalanced and the total loads are 4.85 MW as shown in Table 

4.9. The loads on the ac side of the thyristor converter (2.1 MW) are larger than those on 

the ac side of the PWM converter (0.95 MW). 

Table 4.9 Nominal loads for the 25-bus system in Case 2, [MW, MVAR] 
Bus Pa+jQa Pb+jQb Pc+jQc 
3 0.5+j0 0.5+j0 0.6+j0 
10 0.25+j0.1 0.2+j0.05 0.2+j0.15 
13 0.1+j0.033 0.1+j0.033 0.1+j0.033 
17 0.1+j0.033 0.1+j0.033 0.1+j0.033 
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20 0.35+j0.2 0.35+j0.3 0.4+j0.2 
22 0.25+j0.1 0.25+j0.1 0.2+j0.08 

24(dc) 0.2 
 

Two scenarios were tested. In Case 2a, ,PWM acP  was equal to zero and the thyristor 

converter supplied the dc system. In Case 2b, power was transferred to the ac side of the 

thyristor converter through the PWM converter ( ,PWM acP <0) to improve the current flow 

and bus voltages on the ac side of the thyristor converter.  

Case 2a: ( ,PWM acP =0) 

In this scenario, no power was transferred through the PWM converter. The thyristor 

converter was operated in the rectifier mode using the constant firing angle control. The 

firing angles were set to 10 degrees. Power flow was solved and the ac line current 

magnitudes and ac bus voltage magnitudes were plotted in Figure 4.10 and Figure 4.11. 

Please see Table 4.10 and Table 4.11 for the maximal line currents and bus voltages on 

the ac sides of the converters. Table 4.12 presents the coefficients of the thyristor 

converter models.  

 
Figure 4.10 AC line current magnitudes in Case 2a 
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Table 4.10 Maximum current magnitudes on AC sides of the converters in Case 2a 
with , 0PWM acP =  MW, |I|: [pu] 

AC Area Line 
 with Imax |Ia|  |Ib|  |Ic|  

PWM Side bus6-bus7 0.01115 0.00929 0.010467 
Thyristor Side bus6-bus14 0.02291 0.02362 0.022806 

 

 
Figure 4.11 AC bus voltage magnitudes in Case 2a 

 Table 4.11 AC bus voltage magnitudes in Case 2a with , 0PWM acP =  MW, |V|: [pu], 
Bus |Va| |Vb|  |Vc|  
1 1 1 1 
10 0.992873 0.994481 0.99263 
11 0.992611 0.994219 0.992369 
12 0.99235 0.993957 0.992108 
13 0.992088 0.993695 0.991847 
18 0.988615 0.986672 0.988292 
19 0.986978 0.984656 0.986631 
20 0.985341 0.98264 0.984971 
21 0.984603 0.981982 0.984474 
22 0.983865 0.981325 0.983977 

  Table 4.12 Coefficients of the delta-connected thyristor converter model in Case 2a 
with , 0PWM acP =  MW 

Parameters Line ab Line bc Line ca 
,

LL
T Iλ  0.332997 0.33342 0.333582 

,
LL

T Pλ  0.333157 0.333375 0.333468 
LL
TK  1.348966 1.348968 1.348964 
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Remarks: 

• In Figure 4.10 and Table 4.10, the line currents on the ac side of the thyristor 

converter were significantly higher than those on the ac side of the PWM 

converter, e.g., the current on phase a in line 6-14 was 

0.02291 1 100% 105%
0.01115

⎛ ⎞− ⋅ ≈⎜ ⎟
⎝ ⎠

 higher than that in line 6-7; 

• In Figure 4.11 and Table 4.11, the voltages on the ac side of the thyristor 

converter (bus 18 to bus 22) were relatively low;  

• In Table 4.12, the three coefficients, ,
LL

T Iλ , ,
LL

T Pλ , LL
TK , in the delta-connected 

thyristor converter model were unbalanced because of the unbalanced converter 

ac voltages caused by the unbalanced ac loads; 

• The total power loss was 38.11 MW. 

In order to balance the feeder current flow, real power was transferred from the PWM 

converter to the ac side of the thyristor converter in Case 2b. As a consequence, the 

voltages can be improved and real power loss could be reduced.  

Case 2b: ( ,PWM acP <0) 

In this scenario, the PWM converter was operated as a rectifier. It supplied the dc 

system and transferred power to the ac side of the thyristor converter. The following 

settings were used: 

• The thyristor converter operated as a dc power controlled inverter; 

• The PWM converter operated as an ac current controlled rectifier with unity 

power factor; 

• The PWM converter dc voltage was constant and set to 2.2 p.u. 
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,T dcP  and ,PWM acP   were estimated using following equations: 

, , ,
, 0.475

2
T load PWM load dc load

T dc

P P P
P

⎛ ⎞− −
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 MW   (4.27) 

, , ,
, 0.675

2
T load PWM load dc load

PWM ac

P P P
P

⎛ ⎞− +
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 MW   (4.28) 

Power flow was solved and the results are provided in the following figures and tables: 

• Figure 4.12 plots the ac line current magnitudes and Table 4.13 presents the 

maximal currents on the ac sides of the converters; 

• Figure 4.13 plots the ac bus voltage magnitudes and Table 4.14 presents the bus 

voltage magnitudes on the ac sides of the converters;  

• Table 4.15 provides the thyristor converter model’s coefficients; 

• Table 4.16 provides the ac power injected from the converters into the ac system. 

 
Figure 4.12 AC line current magnitudes in Case 2b 

 
Table 4.13 Maximum current magnitudes on the ac sides of the converters in Case 2b 

with , 0.675PWM acP = −  MW, |I|: [pu] 

AC Area Line 
 with Imax 

|Ia| |Ib| |Ic| 

PWM Side bus6-bus7 0.0175   0.0158   0.0165 
Thyristor Side bus6-bus14 0.0169   0.0181   0.0168 

     



123 

   

 
Figure 4.13 AC bus voltage magnitudes in Case 2b 

 Table 4.14 Bus voltage magnitudes on the ac sides of the converters in Case 2b with 
, 0.675PWM acP = −  MW, |V|: [pu] 

Bus |Va|  |Vb|  |Vc| 
1 1 1 1 
10 0.990981 0.992583 0.990738 
11 0.99072 0.992321 0.990477 
12 0.990458 0.992059 0.990217 
13 0.990197 0.991798 0.989956 
18 0.990453 0.988501 0.990127 
19 0.988813 0.986481 0.988464 
20 0.987174 0.984462 0.986801 
21 0.986434 0.983803 0.986302 
22 0.985695 0.983144 0.985804 

  Table 4.15 Coefficients of the delta-connected thyristor converter model in Case 2b 
with , 0.675PWM acP = −  MW 

Parameters Line ab Line bc Line ca 
,

LL
T Iλ  0.332999 0.333418 0.333583 

,
LL

T Pλ  0.333158 0.333374 0.333469 
LL
TK  1.348966 1.348968 1.348964 

Table 4.16 AC power injected into the ac system from the three-phase converters in Case 
2b with , 0.675PWM acP = −  MW, S: [MW, MVAR] 

Converter Bus Pa+jQa Pb+jQb Pc+jQc Total 
10 -2.1946 +j0   -2.1981 +j0  -2.1940 +j0 -6.5867 
18 1.5711-j0.5586i  1.5638-j0.5560  1.5676-j0.5645 4.7025-j1.6791 
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Compared to Case 2a, it is found in Case 2b that: 

• the feeder currents were more balanced than Case 2a as shown in Figure 4.12. In 

Table 4.13, the currents in line 6-14 became close to those in line 6-7; 

• the ac voltages on the ac side of the thyristor converter were improved as shown 

in Figure 4.13 and Table 4.14;  

• Table 4.15 shows that the coefficients of the thyristor converter model were 

unbalanced and were slightly different from those in Case 2a. It is because the 

system imbalance was changed by transferring power through the converters; 

• the loss was reduced to 33.3 KW.  

From the above two scenarios, it is shown that the unified solver can solve ac/dc power 

flow for unbalanced systems with the converters operating at various modes.  

4.4  Comments  

In this chapter, a three-phase unified power flow solver was developed. The modified 

nodal analysis method (MNA) was implemented in the solver. It introduced the converter 

ac and dc currents as additional state variables in the nodal analysis equations. As a 

consequence, the ac and dc power flow equations are coupled at converters. AC and dc 

state variables can be solved in a unified manner. In MNA, unbalanced converter models 

proposed in Chapter 2 have been used. The models capture the imbalance of ac/dc 

systems using three, delta-connected, single-phase converters and can be included in 

modified nodal analysis equations conveniently.  

 The unified solver can be developed using existing nodal analysis based solvers with 

moderate modifications. MATLAB numerical studies show that it converged to the same 

solution as the sequential solver.  
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CHAPTER 5. HARDWARE TEST BED FOR AC/DC POWER FLOW STUDIES 

 

In this chapter, a hardware test bed is presented for three-phase AC/DC power system 

analysis. It consists of a flexible three-phase AC/DC network with three types of AC/DC 

converters. The test bed can be used to explore characteristics of various types of 

converters and to study AC/DC power flow in balanced and unbalanced systems. 

Mathematical converter models and AC/DC power flow analysis tools can also be 

validated using the test bed. 

AC/DC power system hardware platforms are desired for research and education 

purposes. In [36], a laboratory has been built for power quality analysis. Additional 

power quality test systems have been proposed in [37][38][39]. However, AC/DC power 

system studies were not the focus of the above laboratories. In [40][41], power 

distribution system laboratories have been developed for AC distribution system analysis, 

such as power flow studies. Also in [41], AC/DC power system studies can be performed. 

In this thesis, delta-connected power converter models were proposed for distribution 

system power flow studies. They were incorporated in a three-phase sequential and a 

unified power flow solvers and were validated using steady-state simulations. Hardware 

tests are desired to validate accuracies of the models and the solvers. 

The test bed presented in this chapter provides a flexible hardware platform for 

unbalanced AC/DC system analysis. Three types of three-phase converters are available: 

(i) a full bridge thyristor converter, (ii) a full bridge diode rectifier, and (iii) a variable 
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frequency AC/DC/AC converter. The variable frequency converter consists of a diode 

rectifier, a LC low-pass filter and a PWM inverter. The test bed also contains a 

three-phase multi-tap line and adjustable AC and DC loads. As such, balanced or 

unbalanced AC/DC systems can be set up for power flow studies.  

This chapter is organized as follows. First, the design of the test bed is illustrated 

with a focus on the variable frequency converter. Second, hardware tests on AC/DC 

power flow are presented for unbalanced systems with the three types of converters 

respectively. In order to verify the hardware test results, the test systems are developed in 

MATLAB Simulink using SimPowerSystems Toolbox. Time domain simulations are 

performed and the resulting AC and DC voltages, currents, and power are compared with 

those obtained from the hardware tests. In addition, the sequential and unified power flow 

solvers in Chapter 3 and Chapter 4 are applied to the test systems for steady-state analysis 

using the delta-connected converter models. The steady-state power flow results, e.g., bus 

voltages and line currents, are compared with those obtained from the hardware tests to 

validate the converter models and the power flow solvers. 
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5.1  Three-Phase AC/DC System Hardware Test Bed 

A three-phase AC/DC system hardware test bed was developed for balanced and 

unbalanced AC/DC power flow studies. It consists of the following components: 

 A 208 VLL power supply and a three-phase, Wye-ground/Wye autotransformer  

 A three-phase line with a 7-tap reactor on each phase (0.5 / 1.0 / 2.0 / 3.0 / 6.0 / 

12.0 / 24.0 Ohms) 

 A three-phase diode rectifier, a thyristor converter, and a variable frequency 

converter 

 A multi-tap DC inductor, Ldc, a multi-tap DC capacitor, Cdc, and adjustable 

resistive DC loads, Rdc 

 Three-phase adjustable resistive, Rp, inductive, Lp, and capacitive, Cp, AC loads, 

{ }, ,p a b c∈  

Two generic system setups on the test bed are shown in Figure 5.1 and Figure 5.2. 

Photographs of the actual hardware are provided in Appendix E and Appendix F. 

 

Figure 5.1 An AC/DC system setup with a three-phase diode rectifier/thyristor converter 
on the test bed 
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Figure 5.2 An AC/DC system setup with a three-phase variable frequency converter on 
the test bed 

In the test bed, three-phase, 208 VLL, 60 Hz, AC power is fed to the AC/DC system 

through a three-phase autotransformer for safety reasons. The output of the transformer is 

connected to three reactors, which model a three-phase line. Thus, the line can be 

manually configured to be balanced or unbalanced. The AC power is fed into a 

three-phase converter through the line. Three types of three-phase converters are 

available:  

 a full-bridge thyristor converter module (208 V, 100 A) developed in Center for 

Electric Power Engineering (CEPE) at Drexel University [40]; 

 an off-the-shelf full-bridge diode rectifier (600 V, 100A, Fuji 6RI100E [43]); 

 a specially designed variable frequency converter (208 V, 100 A) consisting of a 

diode rectifier and a PWM Insulated-Gate-Bipolar-Transistor (IGBT) inverter. 

Carbon filament light bulbs are used as resistive loads. Multi-tap inductors and capacitors 

are also available for AC loads or DC filtering devices. Next, the design of the variable 

frequency converter is presented. 
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5.2  Three-Phase Variable Frequency Converter 

 A three-phase variable frequency converter was designed for AC/DC power flow 

studies. A block diagram of the converter is shown in Figure 5.3. Details of the hardware 

setup are provided in Appendix F. 

Input Output
3-phase
PWM

Inverter

Gate Drive
Circuit

dSPACE DSP
Card DS1104

PWM control signals

dSPACE Analog
Output Port

MATLAB
Simulink

A

B

C

A

B

C

Low Pass
Filter

Ldc

Cdc

3-phase
Diode

Rectifier

 

Figure 5.3 The block diagram of the three-phase AC/DC/AC variable frequency 

converter 

The three-phase converter consists of the following three stages: 

 AC/DC power rectification using a diode rectifier  

 DC harmonics filtering using a LC low pass filter 

 DC/AC variable frequency inversion using a PWM inverter  

At the rectifier stage, a Fuji Electric 6RI100E series rectifier is used. This is a single unit, 

three-phase full bridge rectifier. It is capable of 100 A continuous output at up to 600 V.  

The DC filter stage consists of a LC low pass filter, which contains a hand wrapped 

inductor and a capacitor bank with multiple commercially available capacitors in parallel. 

The inductor was hand wrapped because of high current requirement (up to 100 A). It 
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was tested at various current levels and the average inductance is 6.41 mH with a 

standard deviation of 0.28 mH. DC capacitors were then selected with total capacitance 

of 18600 uF. They hold a nearly constant DC voltage at the PWM inverter DC bus with 

maximal peak-to-peak ripples of 0.2 V at 280 V (0.07%).  

At the inverter stage, a three-phase PWM inverter was designed and constructed 

using three dual IGBTs (PowerEX CM100DU-12F) [44]. They are rated at 100 A 

continuous output at up to 600 V. In order to operate the IGBTs, a control system was 

developed using a real-time PWM controller kit (dSPACE DS1104) [45]. This kit 

integrates a variety of control hardware and software into a package providing a wide 

range of applications. It has a built-in PWM DSP controller generating PWM control 

signals and acquiring feedback signals. The PWM switching program was developed in 

MATLAB Simulink. A screen capture of the Simulink control circuit is shown in Figure 

5.4.a. The fundamental frequency, the switching frequency, and the modulation ratios of 

the PWM control signals can be conveniently set in the PWM inverter control module in 

Figure 5.4.b. 

The control signals are downloaded from MATLAB Simulink to the dSPACE card 

and then fed into an IGBT drive circuit (PowerEX BG2B) [46]. The drive circuit 

amplifies the control signals to an appropriate voltage level (-8 V / +15 V) to operate the 

IGBTs. It also isolates the control circuit from the IGBTs for short circuit protection.  

Using this variable frequency converter as well as the thyristor converter and the 

diode rectifier, unbalanced AC/DC systems can be set up on the test bed for power flow 
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studies. The unbalanced delta-connected converter models proposed in Chapter 2 can be 

validated. Next, both hardware experiments and corresponding software simulations are 

presented for AC/DC power flow studies.  

 

(a) 

 

(b) 

Figure 5.4 The PWM inverter control circuit (a) and PWM control module (b) in 
MATLAB Simulink for the dSPACE DS1104 DSP card 
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5.3  AC/DC Power Flow Studies using a Thyristor Converter and a Diode Rectifier 

Three-phase AC/DC power flow was first studied using the test bed setup shown in 

Figure 5.1. Since thyristor converters and diode rectifiers have similar properties, the 

following two cases are presented in this subsection:  

Case 1: A 3-bus 3-phase AC/DC system with the thyristor converter 

Case 2: A 3-bus 3-phase AC/DC system with the diode rectifier 

For evaluation purposes, unbalanced networks are created using the following settings for 

the three reactors in both cases:  

Phase A: 0.5 Ohms,   Phase B: 1 Ohm,  Phase C: 2 Ohms 

Please note that the reactors do not represent lines in real systems. They can be 

considered as the internal impedance of the Thevenin equivalent circuit for unbalanced 

AC systems. The reactors’ impedance is calculated using the hardware test results.  

The test procedure was illustrated in Appendix E. During the tests, AC and DC 

voltages and currents were measured and recorded at each bus using the following 

equipment with accuracies in percentage from corresponding specification sheets:  

 Four 500 V : 1 V differential voltage probes (Tektronix P5200, 3%± ) [47]  

 Two 150 A current probes (Tektronix TCP303) and two 5 A : 1 V current 

amplifiers (Tektronix TCPA300, 1%± ) [48]; 

 One 100 MHz 4-channel digital oscilloscope (Tektronix TDS3014, 2%± ) [49];  
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Using the voltage probes, the three-phase voltages at individual buses were measured 

simultaneously. But voltages at different buses were measured at different times. Using 

the two current probes, only currents on phase a and phase b were measurement 

simultaneously. Although, all signals cannot be measured simultaneously, the 

transformer’s output voltages were kept constant when the measurements were taken at 

different times.  

The recorded data was saved in EXCEL spreadsheets. MATLAB programs were 

developed to analyze the data numerically. An FFT function from MATLAB was used to 

calculate magnitudes and phase angles of the measured voltages and currents at various 

frequencies. It is assumed that the measured steady-state bus voltages and line currents 

are constant. As such, the line impedance and load impedance can be calculated using the 

bus voltages and line currents measured at different times. It is noted that the line 

impedance can also be determined by measuring the voltage across the line and the line 

current simultaneously. Tests have shown that the difference of the calculated impedance 

using the above two methods is less than 0.01 Ohms. In order to keep all measurements 

in short time, the first method was used during the tests. 

Time domain simulations have been performed to verify the hardware test results. 

Steady-state power flow analysis has also been performed and compared with the 

hardware results to validate the converter models and the power flow solvers.  
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5.3.1  3-Bus Unbalanced AC/DC System with a Thyristor Converter 

In Case 1, the three-phase thyristor converter was used in the test bed to study power 

flow in an unbalanced AC/DC system as shown in Figure 5.5.  

 

Figure 5.5 The 3-bus unbalanced AC/DC system with a three-phase thyristor 
converter  

It is noted that the parameters of the autotransformer, such as impedance and 

input/output ratios, have not been rigorously tested. For power flow study purposes, the 

AC power supply and the autotransformer are integrated into an equivalent ideal source 

with constant voltages. The voltages are equal to the measured voltages at the 

autotransformer output in the hardware tests. The thyristor converter is operated in the 

rectifier mode by a control card (PTR6000-208) [50] using equi-distant control. The 

firing angles can be altered manually and are 120 degrees apart among the three phases. 

There is a resistive DC load at the output of the thyristor converter.  
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5.3.1.1 Hardware Test Results  

The hardware tests were performed at 208 VLL. The three-phase AC and DC voltages 

and currents were measured at bus 1, bus 2, and bus 3. The voltage and current 

waveforms were plotted in MATLAB using the measured data and are shown in Figure 

5.6 to Figure 5.8, where { }, ,p a b c∈ . 

 
Figure 5.6 Waveforms of the 3-phase line-to-neutral voltages at bus 1 in the 3-bus 

AC/DC system with a thyristor converter 

 

Figure 5.7 Waveforms of p
TV  (top) and p

TI  (bottom) at bus 2 in the 3-bus AC/DC 

system with a thyristor converter 
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Figure 5.8 Waveforms of ,T dcV  (top) and 3
,T dcI φ  (bottom) at bus 3 in the 3-bus AC/DC 

system with a thyristor converter 

Remarks: 

• In Figure 5.6, the voltages at bus 1 are close to pure sinusoidal waves because the 

source holds the voltages;  

• In Figure 5.7, p
TV  are distorted because of the commutation of the thyristor 

converter and transients generated by firing thyristors. p
TI  is much distorted and 

unbalanced caused by the thyristor converter; 

• In Figure 5.8, ,T dcV  and 3
,T dcI φ  have the same shapes because there is only a 

resistive DC load in the DC network.  

A MATLAB program was developed to analyze the AC and DC signals. It is noted 

that the converter AC bus is bus 2 and its DC bus is bus 3. Thus, power flow related to 

the converter can be calculated. In addition, the converter firing angles, p
Tα , and 

commutation angles, p
Tu  were determined using the converter AC voltage waveforms. 

The power flow results are provided in the following tables: 
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• Table 5.1 presents the magnitudes and phase angles of the AC (60Hz) and DC 

voltages at bus 1 to bus 3; 

• Table 5.2 presents the magnitudes and phase angles of the AC (60Hz) and DC 

currents in line 1-2 and the DC load. The source currents and the converter AC 

currents are equal to the currents in line 1-2;  

• Table 5.3 presents the AC and DC voltages, currents, and power related to the 

thyristor converter as well as p
Tα  and  p

Tu .  

Please note that the voltage on phase a at bus 1 was chosen as the reference.  

Table 5.1 Voltage profile in the 3-bus AC/DC system with a thyristor converter from 
hardware tests, V: [V, deg] 

Bus # Va  Vb  Vc  
1 119.0974 ∠ 0 o  119.0300 ∠ -120.04 o  120.4284 ∠ 120.04 o  
2 114.9246 ∠ -2.09 o  111.7571 ∠ -123.80 o  106.7714 ∠ 112.0311 o  

3(DC) 209.0531 

Table 5.2 Current profile in the 3-bus AC/DC system with a thyristor converter from 
hardware tests, I: [A, deg] 

Line/Load  aI   bI   cI   

1-2 9.5345 ∠ -33.70 o  9.8691 ∠ -156.18 o  9.3056 ∠ 83.12 o  
 DC load 12.5498 

Table 5.3 AC and DC voltages, currents, and power in the 3-phase thyristor converter 
from hardware tests, V: [V, deg], I: [A, deg], S: [W,Var], α ,u : [deg] 

AC Values on Bus 2 Parameters 
Phase A Phase B Phase C 

p
TV   114.9246 ∠ -2.09 o  111.7571 ∠ -123.80 o  106.7714 ∠ 112.0311 o

p
TI   9.5345 ∠ -33.70 o  9.8691 ∠ -156.18 o  9.3056 ∠ 83.12 o  

p
TS   933.2+j574.2 931.5+j590.6 869.7+j480.3 
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p
Tα  32.4 152.43 270.83 

p
Tu  9.80 5.20 9.5 

 DC Values on Bus 3 

,T dcV   209.0531 

3
,T dcI φ   12.5498 

3
,T dcP φ  2623.6               

Remarks: 

• The voltages at bus 1 are approximately balanced. The thyristor converter AC 

voltages, p
TV , are unbalanced because of the unbalanced line. The unbalanced 

p
TV  resulted in the unbalanced AC currents, p

TI , and power, p
TS ; 

• p
TV  and p

TI  have different imbalance characteristics. a
TV  is larger than b

TV  

and c
TV . But b

TI  is larger than a
TI  and c

TI . This is because p
TI depend on 

the line-to-line voltages and the control of the thyristor converter; 

• The difference among the firing angles is close but not equal to 120 degrees. It is 

attributed to the distortions in the AC voltages and the accuracy of the converter 

control card; 

• The commutation angles are not equal because of the unbalanced line and 

unbalanced converter AC voltages; 

• Real power loss of the three-phase thyristor converter is 
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In order to verify the hardware test results using time domain analysis, the following 

parameters were also calculated: 

• Table 5.4 presents voltages up to the 7th harmonic at bus 1. Voltages over 7th 

harmonics were significantly smaller and were ignored.  

• Table 5.5 presents line impedance at 60 Hz, Zline, and DC load resistance, Rdc.  

Table 5.4 Voltages at bus 1 in the 3-bus AC/DC system with a thyristor converter from 
hardware tests, V: [V, deg], Freq: [Hz] 

Frequency Va  Vb  Vc  
0 8.5702       12.6884 7.6622 

60 119.0974 ∠ 0 o  119.0300 ∠ -120.04 o  120.4284 ∠ 120.04 o  

180 0.9139 ∠ 80.64o 1.1852 ∠ 23.72 o  0.5417 ∠ 107.63 o  

300 0.8768 ∠ 209.82 o  0.8536 ∠ -15.99 o  0.6489 ∠ 91.23 o  

420 0.9621 ∠ 107.17 o  0.8280 ∠ -32.55 o  0.6605 ∠ 216.91 o  

Table 5.5 Line and load impedance in the 3-bus AC/DC system with a thyristor converter 
from hardware tests, Z, R: [ Ω ] 

Parameters Phase A Phase B Phase C 
Zline 0.1301+j0.6082 0.1415+j1.0969 0.2801+j2.2566 
Rdc  16.6579 

Remarks: 

• In Table 5.4, the 3rd harmonic is relatively large compared to 5th and 7th 

harmonics. This is because that unbalanced converters may generate all odd 

harmonics in AC systems instead of ( ) 16 1k f± , k is an integer number, 
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harmonics from balanced converters, where f1 is the fundamental frequency; 

• In Table 5.5, the line impedances are consistent with the tap-settings.  

Next, time domain analysis on the 3-bus unbalanced AC/DC system is presented. 

5.3.1.2  Time Domain Simulation Results  

The 3-bus unbalanced AC/DC system tested on the test bed was studied in time 

domain using MATLAB Simulink. The circuit was built using the SimPowerSystems 

Toolbox and shown in Figure 5.9.  

 

Figure 5.9 The Simulink circuit of the 3-bus AC/DC system with a thyristor converter 

The parameters of the circuit components are chosen as follows: 

• the voltages of the equivalent source included up to 7th harmonic from Table 5.4; 

• the impedances of the AC line and DC load were equal to those in Table 5.5; 

• the thyristor converter was operated using equi-distant control. The firing angle 

was equal to 32.4 degrees on phase a; 

• the converter forward voltage was set to 1 V and the internal impedance was set 

to 0.28 Ohms so that the converter loss percentage matched the hardware test 
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results.  

A discrete solver was used to solve the circuit in time domain with a step size of 2 us. 

Each simulation has been run for 0.1 seconds, at which the initial transients diminished. 

The AC and DC voltages and currents at bus 1, bus 2, and bus 3 were measured and 

calculated using measurement blocks from the SimPowerSystems Toolbox. Since the 

voltages at bus 1 were specified, only the parameters at bus 2 and bus 3, which are the 

converter AC and DC buses respectively, are provided in Table 5.6.  

 
Table 5.6 AC and DC voltages, currents, and power in the thyristor converter from time 

domain analysis, V: [V, deg], I: [A, deg], S: [W,Var] 
AC Values on Bus 2 Parameters 

Phase A Phase B Phase C 
p

TV  115.0268 ∠ -2.09 o  111.8071 ∠ -124.03 o  106.2686 ∠ 111.81 o  

p
TI  9.4816 ∠ -32.61 o  10.1960 ∠ -154.33 o  9.6031 ∠ 82.80 o  

p
TS   939.48+j553.94 984.32+j575.06 892.53+j494.81 

 DC Values on Bus 3 

,T dcV  209.0296 

3
,T dcI φ  12.5483 

3
,T dcP φ  2622.98             

The difference of the voltages, currents, and power obtained from time domain 

analysis and the hardware tests was calculated using (5.1) and shown in Table 5.7: 

1 2

2

100%
X X

X
X
−

∆ = ⋅       (5.1) 
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where:  

X:  V, I, S 

X1:  values obtained from time domain analysis 

X2:  values obtained from hardware tests 

Table 5.7 Difference of AC and DC voltages, currents, and power on the thyristor 
converter between time domain analysis and hardware tests, ∆V, ∆I, ∆S: [%] 

Parameters Phase A Phase B Phase C
p

TV∆   0.09   0.04 0.47 

p
TI∆   0.55   3.31 3.19 

p
TS∆   0.47   3.36 2.71 

,T dcV∆  0.01 

3
,T dcI φ∆  0.01 

3
,T dcP φ∆  0.02 

    
Error Analysis: 

The maximal difference is 3.36%. It is mainly attributed to the following sources of 

errors in the hardware parameters: 

 Non-simultaneous measurements and fluctuations of system parameters, such as 

the source voltages; 

 The accuracies of the measurement devices. 

Other factors affecting the results include the unknown thyristor internal impedance and 

non-perfect equi-distant control of the thyristor converter.  
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 Overall, it can be seen that the power flow results from time domain analysis and 

hardware tests are consistent. Next, the delta-connected model and steady-state power 

flow solvers will be validated using the 3-bus AC/DC system in steady-state analysis.  

5.3.1.3 Steady-State Power Flow Analysis Results 

For steady-state analysis, the sequential and unified power flow solvers from Chapter 

3 and Chapter 4 were applied to the 3-bus unbalanced AC/DC system. The system 

parameters were equal to those obtained from the hardware tests. The source voltages at 

bus 1 only included the voltages at 60 Hz. The thyristor converter was operated using 

equi-distant control and the firing angle was equal to 32.4 degrees on phase a. The real 

power loss of the converter was set to 4.06% from the hardware tests. 

The three-phase thyristor converter was modeled using three, delta-connected, 

single-phase thyristor converters. The participation coefficients, ,
LL

T Iλ , ,
LL

T Pλ , and 

equivalence coefficients, LL
TK , were used to make the model equivalent to the 

three-phase converter. These coefficients were calculated and provided in Table 5.8.  

Table 5.8 Coefficients of the thyristor converter model from steady-state analysis 
Parameters  Line AB Line BC Line CA 

,
LL

T Iλ  0.3521    0.3301 0.3179 

,
LL

T Pλ  0.3654  0.3264 0.3082 

LL
TK  1.3402     1.3482 1.3504 
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Remarks 

• ,
LL

T Iλ , ,
LL

T Pλ  are unbalanced in the single-phase converters because of unbalanced 

converter AC voltages caused by the unbalanced network; 

• LL
TK  are unbalanced because the linear conduction angles, which are equal to the 

commutation angles, of the single-phase converters are unbalanced. 

Using the converter model, AC/DC power flow was solved using the sequential and 

unified solvers. Both solvers obtained the same bus voltages. The results are provided in 

the following tables: 

• Table 5.9 presents the AC and DC voltages, currents, and power related to the 

thyristor converter; 

• Table 5.10 presents the difference of the voltages, currents, and power between 

steady-state analysis and hardware tests. The difference was obtained using (5.1). 

Table 5.9 AC and DC voltages, currents, and power in the 3-phase thyristor converter 
from steady-state analysis, V: [V, deg], I: [A, deg], S: [W,Var] 

AC Values on Bus 2 Parameters 
Phase A Phase B Phase C 

p
TV  114.8163 ∠ -2.09 o    111.2067 ∠ -124.27 o  106.2631 ∠ 111.97 o  

p
TI   9.7591 ∠ -33.45 o   10.2412 ∠ -157.12 o   9.3136 ∠ 80.72 o  

p
TS   953.17 + j589.07   941.27 + j641.15   850.21 + j506.59 

 DC Values on Bus 3 

,T dcV  209.4374          

3
,T dcI φ  12.5728 



145 

   

3
,T dcP φ  2633.2 

Table 5.10 Difference of AC and DC voltages, currents, and power in the 3-phase 
thyristor converter between steady-state analysis and hardware tests, ∆V, ∆I, ∆S: [%] 

Parameters Phase A Phase B Phase C 
p

TV∆   0.09 0.49 0.48 

p
TI∆  2.36 3.77 0.09 

p
TS∆  2.26 3.25 0.38 

,T dcV∆  0.18 

3
,T dcI φ∆   0.18 

3
,T dcP φ∆  0.37 

 

Remarks: 

• The difference in the voltages is relatively small and the difference in the current 

and power is relatively large; 

• The maximal difference is 3.77% in p
TI∆ . It is slightly larger than the difference 

(3.36%) between time domain simulations and hardware tests.  

Error Analysis: 

In addition to the sources of errors in the hardware parameters, the discrepancy is 

also attributed to the following assumptions in the delta-connected converter model:  

 the DC currents in the single-phase converters are linear during commutation of 

the 3-phase converter; 

 loss percentages of the single-phase converter in the model are equal.  
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These assumptions introduced additional errors into the AC currents and power in the 

three-phase converter compared to the hardware test results.  

In both time domain analysis and steady-state power flow analysis, the power flow 

results are close to those obtained from the hardware tests. In the following subsection, 

hardware tests of AC/DC power flow are performed using the test bed for a 3-bus AC/DC 

system with a three-phase diode rectifier. Time domain analysis and steady-state analysis 

are also performed to verify the hardware test results and to validate the delta-connected 

diode rectifier model and the power flow solvers.  

5.3.2  3-Bus Unbalanced AC/DC System with a Diode Rectifier 

In Case 2, the diode rectifier was used in the test bed to study power flow in a 3-bus 

unbalanced AC/DC system. The system setup is shown in Figure 5.10. The source and the 

autotransformer were integrated into an equivalent ideal source with specified voltages. 

There was a resistive DC load at the output of the diode rectifier. 

 
  Figure 5.10 The 3-bus AC/DC system with a three-phase diode rectifier  
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5.3.2.1  Hardware Test Results 

Hardware tests were performed at 208 VLL. AC and DC voltages and currents were 

measured at bus 1, bus 2, and bus 3. The waveforms were plotted using the measured data 

in MATLAB and are shown in Figure 5.11 to Figure 5.13.  
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Figure 5.11 Waveforms of the 3-phase line-to-neutral voltages at bus 1 in the 3-bus 

AC/DC system with a diode rectifier 
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Figure 5.12 Waveforms of p
DV  (top) and p

DI  (bottom) at bus 2 in the 3-bus AC/DC 

system with a diode rectifier 
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Figure 5.13 Waveforms of ,D dcV  (top) and 3

,D dcI φ  (bottom) at bus 3 in the 3-bus 

AC/DC system with a diode rectifier 

Remarks: 

• The voltage and current waveforms are similar to those in the AC/DC system 

with a thyristor converter.  

Using the MATLAB program developed with the test bed, the following power flow 

results are obtained:  

• Table 5.11 presents the magnitudes and phase angles of the AC (60Hz) and DC 

voltages at bus 1 to bus 3; 

• Table 5.12 presents the magnitudes and phase angles of the AC (60Hz) and DC 

currents in the line 1-2 and the DC load; 

• Table 5.13 presents the AC and DC voltages, currents, and power related to the 

diode rectifier and the commutation angles. 
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Table 5.11 Voltage profile in the 3-bus AC/DC system with a diode rectifier from 

hardware tests, V: [V, deg] 
Bus # Va  Vb  Vc  

1 118.1319 ∠ 0 o  118.5764 ∠ -120.20 o  118.9372 ∠ 120.59 o  
2 115.8062 ∠ -2.68 o  114.8582 ∠ -125.34 o  111.8674 ∠ 111.10 o  

3 (DC) 247.0683 

Table 5.12 Current profile in the 3-bus AC/DC system with a diode rectifier from 
hardware tests, I: [A, deg] 

Line/Load aI   bI   cI   

1-2 8.6458 ∠ -14.46 o  9.3034 ∠ -136.06 o  8.8301 ∠ 101.08 o  
3-ground   (DC) 11.4815 

Table 5.13 AC and DC voltages, currents, and power in the diode rectifier from hardware 
tests, V: [V, deg], I: [A, deg], S: [W,Var], u : [deg] 

AC Values on Bus 2 Parameters 
Phase A Phase B Phase C 

p
DV   115.8062 ∠ -2.68 o  114.8582 ∠ -125.34 o  111.8674 ∠ 111.10 o  

p
DI   8.6458 ∠ -14.46 o  9.3034 ∠ -136.06 o  8.8301 ∠ 101.08 o  

p
DS   980.0740 + j204.7795 1049.9226+ j198.7901 972.7273+j171.9228 

p
Du  25 21 23 

 DC Values on Bus 3 

,D dcV   247.0683 

3
,D dcI φ   11.4815 

3
,D dcP φ   2836.7233 

 

Remarks: 

• In Table 5.13, the AC voltages and currents of the diode rectifier have similar 

properties as those of the unbalanced thyristor converter in Case 1; 
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• Real power loss of the three-phase diode rectifier is 5.33%. 

For simulation purposes, voltages up to the 7th harmonic were calculated at bus 1 and 

shown in Table 5.14. Line impedance at 60 Hz and DC load resistance were calculated 

and provided in Table 5.15.  

Table 5.14 Voltages at bus 1 in the 3-bus AC/DC system with a diode rectifier from 
hardware tests, V: [V, deg], Freq: [Hz] 

Frequency  Va  Vb  Vc  
0 8.0027 8.5188 8.8522 
60 118.1319 ∠ 0 o  118.5764 ∠ -120.20 o  118.9372 ∠ 120.59 o  
180 1.2792 ∠ 75.1711o 1.5587 ∠ 37.1505 o  0.7345 ∠ 101.397 o  
300 0.5180 ∠ 220.1061 o 1.0426 ∠ -28.0433 o  0.6748 ∠ 140.4118 o  
420 1.1604 ∠ 73.8763 o  0.9682 ∠ -65.1693 o  0.9799 ∠ 184.8491 o  

 
Table 5.15 Line and load impedance in the 3-bus AC/DC system with a diode rectifier 

from hardware tests, Z, R: [ Ω ] 
Parameters Phase A Phase B Phase C 

Zline  0.1188 + j0.6742 0.1295 + j1.1881 0.2203 + j2.2945 
Rdc  21.5188 

Next, time domain analysis on the 3-bus AC/DC system is presented.  

5.3.2.2  Time Domain Simulation Results  

The 3-bus AC/DC system with a diode rectifier was developed in MATLAB 

Simulink using the SimPowerSystems Toolbox. The circuit is shown in Figure 5.14 with 

the following parameters: 

• The voltages of the equivalent source were equal to those in Table 5.14; 

• The impedance of the AC line and DC load are equal to those in Table 5.15; 

• For the diode rectifier, the forward voltage was 1 V and the internal impedance 

was 0.51 Ohms according to the parameters of the three-phase diode rectifier. 
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Figure 5.14 The Simulink circuit of the 3-bus AC/DC system with a diode rectifier 

A discrete solver was used to solve the circuit in time domain with a step size of 2 us. 

Each simulation has been run for 0.1 seconds. The power flow results are provided in the 

following tables: 

• Table 5.16 presents the AC and DC voltages, currents, and power related to the 

diode rectifier; 

• Table 5.17 presents the difference of the voltages, currents, and power related to 

the diode rectifier between time domain analysis and hardware tests. The 

difference was calculated using (5.1).  

 
Table 5.16 AC and DC voltages, currents, and power in the 3-bus AC/DC system from 

time domain analysis, V: [V, deg], I: [A, deg], S: [W,Var] 
AC Values on Bus 2 Parameters 

Phase A Phase B Phase C 
p

DV   115.8022 ∠ -2.6718 o  114.9011 ∠ -125.3326 o  111.9617 ∠ 111.1250 o

p
DI   8.6631 ∠ -14.4661 o  9.2849 ∠ -135.8620 o  8.8001 ∠ 101.3035 o  

p
DS   982.026+j205.0539 1048.8809+j194.9553 970.8339+j168.0673 

 DC Values on Bus 3 
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,D dcV   247.1478 

3
,D dcI φ   11.4852 

3
,D dcP φ  2836.7233 

Table 5.17 Difference of AC and DC voltages, currents, and power in the diode rectifier 
between time domain analysis and hardware tests, ∆V, ∆I, ∆S: [%] 

Parameters Phase A Phase B Phase C
p

DV∆   0.003 0.037 0.084 

p
DI∆  0.200 0.198 0.339 

p
DS∆  0.1961 0.1622 0.2567 

,D dcV∆  0.032 

3
,D dcI φ∆   0.032 

3
,D dcP φ∆  0.064 

Remarks: 

 The maximal difference is 0.339%. It is mainly attributed to the 

non-simultaneous measurements and the accuracies of the measurement devices.  

Time domain simulations for unbalanced diode rectifier are more consistent with the 

hardware test results than the unbalanced thyristor converter. It might because the 

non-simultaneous measurements were more consistent during the diode rectifier tests. In 

addition, it is noted that the diode rectifier conducted naturally while the non-ideal 

equi-distant control on the thyristor converter introduced errors between the hardware 

tests and time-domain simulations.  
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5.3.2.2 Steady-State Power Flow Analysis Results 

The power flow solvers were validated using the 3-bus unbalanced AC/DC system 

with a diode rectifier. The same system parameters were used in the power flow solvers 

as those in the hardware tests. The power flow results were compared with those obtained 

from the hardware tests and presented in the following tables: 

• Table 5.18 presents the participation coefficients, ,
LL
D Iλ , ,

LL
D Pλ , and equivalence 

coefficients, LL
DK  in the diode converter model; 

• Table 5.19 presents the diode rectifier AC and DC voltages, currents, and power; 

• Table 5.20 presents the difference of the voltages, currents, and power between 

steady-state analysis and hardware tests. The difference is calculated using (5.1). 

Table 5.18 Coefficients of the diode rectifier model from steady-state analysis 

Table 5.19 AC and DC voltage, currents and power in the 3-phase diode rectifier from 
steady-state analysis 

AC Values on Bus 2 Parameters 
Phase A Phase B Phase C 

p
DV  (V) 115.8186 ∠ -2.69 o  114.7955 ∠ -125.30 o  112.1357 ∠ 111.24 o  

p
DI  (A) 8.7215 ∠ -14.14 o  9.2542 ∠ -136.50 o  8.6783 ∠ 101.59 o  

p
DS  (VA) 990+j200.5 1042.1+j206.3 959.4+j163.2 

 DC Values on Bus 3 

Parameters  Line AB Line BC Line CA 

,
LL
D Iλ  0.3482     0.3612     0.2906 

,
LL
D Pλ  0.3442     0.3583     0.2975 

LL
DK  1.3420     1.3315     1.3517 
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,D dcV  (V) 246.8656 

3
,D dcI φ  (A) 11.4721 

3
,D dcP φ  (W) 2832.1 

Table 5.20 Difference of AC and DC voltages, currents, and power in the 3-phase diode 
rectifier between steady-state analysis and hardware tests, ∆V, ∆I, ∆S: [%] 

Parameters Phase A Phase B Phase C 
p

DV∆   0.01    0.05     0.24 

p
DI∆  0.88    0.53  1.72 

p
DS∆  0.89    0.58   1.48 

,D dcV∆  0.08 

3
,D dcI φ∆   0.08 

3
,D dcP φ∆  0.16 

Remarks: 

• The power flow obtained from steady-state analysis is close to the hardware 

results with the maximal error of 1.72% ;  

• The errors in steady-state analysis are larger than those (0.339%) obtained in 

time domain analysis. This is mainly attributed to the assumptions in the 

converter model in addition to the non-simultaneous measurements. 

From above, it is shown that the power flow solvers provide steady-state power flow 

solutions that are consistent with the hardware test results. The delta-connected model in 

the solvers appropriately modeled the three-phase diode rectifier.  
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5.4  AC/DC Power Flow Studies using a Variable Frequency Converter  

AC/DC power flow was also tested in a 5-bus AC/DC-DC/AC unbalanced system 

using the test bed setup in Figure 5.2. The variable frequency converter was used. The 

system circuit diagram is shown in Figure 5.15 with the power supply and the 

autotransformer integrated into an equivalent source.  

 
Figure 5.15 The 5-bus AC/DC system using the variable frequency converter 

In Figure 5.15, the output of the equivalent source is 120 VLL. The settings of the 

three-phase line are: 

Phase A: 0.5 Ohms,   Phase B: 1.0 Ohm,   Phase C: 2.0 Ohms 

They were chosen for evaluation purpose only and do not represent actual line parameters. 

The variable frequency converter supplies a three-phase, wye-connected, ungrounded 

resistive load. The impedances of the AC line and AC load were calculated using the 

hardware test results. The test procedure was described in Appendix F. The following 

parameters were chosen for the PWM inverter: 

• the fundamental frequency, 1f , was set to 60 Hz; 

• the switching frequency, sf ,  was set to 1500 Hz, which is 25 times of 1f . The 
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PWM inverter output AC voltages contain harmonics at 12sf f±  and 12 sf f± ; 

• the modulation ratios were equal to 0.8.  

During the tests, AC and DC voltages and currents were measured and recorded at each 

bus using four differential voltage probes (Tektronix P5200, 3%± ), two current probes 

(Tektronix TCP303) and one digital oscilloscope (Tektronix TDS3014, 2%± ).  

5.4.1  Hardware Test Results 

The AC and DC voltages and currents were measured at bus 1 to bus 5 during the 

tests. Since the PWM inverter is not grounded, line-to-line voltages were measured at the 

PWM inverter AC bus (bus5). The waveforms of the AC and DC voltage and currents are 

shown in Figure 5.16 to Figure 5.20.  

 
Figure 5.16 Waveforms of the 3-phase line-to-neutral voltages at bus 1 in the 5-bus 

AC/DC system with a variable frequency converter 
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Figure 5.17 Waveforms of p
DV  (top) and p

DI  currents (bottom) at bus 2 in the 5-bus 

AC/DC system with a variable frequency converter 
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Figure 5.18 Waveforms of ,D dcV , ,PWM dcV  (top) and 3
,D dcI φ  (bottom) at bus 3 and bus 4 

in the 5-bus AC/DC system with a variable frequency converter 
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Figure 5.19 Waveforms of LL
PWMV  (left) and p

PWMI  (right) at bus 5 in the 5-bus AC/DC 

system with a variable frequency converter 

 

Figure 5.20 FFT of ab
PWMV  (left) and a

PWMI  (right) at bus 5 in the 5-bus AC/DC system 

with a variable frequency converter 
 

Remarks: 

• The diode rectifier DC voltage, ,D dcV , contains large ripples as expected. The 

PWM inverter DC voltage, ,PWM dcV , is nearly constant because of the large 

capacitors. The spikes in ,PWM dcV  are caused by the switching of IGBTs; 

• The DC current is continuous because of the large DC inductor; 

• LL
PWMV  and LL

PWMI contains harmonics at high frequencies as expected. The FFT 

analysis in Figure 5.20 shows that the harmonic frequencies are at 1500 2 60± ⋅  

Hz and 3000 60±  Hz. It is consistent with the system design. 

The steady-state voltage and current profiles are provided in Table 5.21 and Table 5.22. 

All of the voltages and currents are referred to the voltage on phase a at bus 1. 
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 Table 5.21 Voltage profile in the 5-bus AC/DC system with a variable frequency 
converter from hardware tests, V: [V, deg] 

Bus # Va  Vb  Vc  
1 70.21 ∠ 0 o  70.15 ∠ -119.95 o  69.10 ∠ 120.30 o  
2 69.46 ∠ -0.93 o  68.71 ∠ -121.49 o  67.94 ∠ 117.20 o  

3 (DC) 156.77         
4(DC) 148.90         
Bus # Vab  Vbc  Vca  

5 70.03 ∠ 30.13 o  68.95 ∠ -90.20 o  70.08 ∠ 150.62 o  
5-N   49.9980 ∠ 3.80 o  33.0579 ∠ -110.52 o   39.2000 ∠ 107.08 o  

Table 5.22 Current profile in the 6-bus AC/DC system with a variable frequency 
converter from hardware tests, I: [A, deg] 

Line/Load aI  bI  cI  

1-2 1.9405 ∠ -8.50 o  2.0610 ∠ -132.36 o  1.8850 ∠ 106.35 o  
3-4  

(DC) 2.5307          

5-N 1.1619 ∠ 3.80 o   1.8538 ∠ -110.52 o  1.7422 ∠ 107.08 o  
 

Remarks: 

• The source voltages at bus 1 are nearly balanced; 

• The PWM inverter line-to-line AC voltages at bus 5 are unbalanced. It is 

attributed to the unbalanced voltage drops on the IGBTs caused by the 

unbalanced load currents; 

• The diode rectifier AC currents are unbalanced because of the unbalanced AC 

voltages applied on the diode rectifier; 

• The PWM inverter AC currents are unbalanced because of the unbalanced load; 

• The real power loss in the diode rectifier is:  
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• The efficiency of the PWM inverter, ,PWM effP , is calculated using the AC real 

power consumed by the resistive AC load and the PWM inverter DC power: 
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The efficiency of the PWM inverter is under 50% because the AC real power is 

calculated using the fundamental voltages and currents only. It is noted that no AC filter 

was installed on the PWM inverter. Thus, the AC currents contained large harmonics 

when PWM inverter AC voltages were applied on the resistive AC load. As a 

consequence, much power is wasted in harmonics.  

For time domain analysis purposes, the harmonic voltages at bus 1 were calculated 

and provided in Table 5.23. The AC line impedance (60 Hz), DC line resistance, and AC 

load impedance (60 Hz) were calculated and shown in Table 5.24.  

    Table 5.23 Voltages at bus 1 in the 5-bus AC/DC system with a variable frequency 
converter from hardware tests, V: [V, deg], Freq: [Hz] 

Frequency  Va  Vb  Vc  
0 0.5194 0.6220 3.2268 
60 70.2101 ∠ 0 o  70.1483 ∠ 240.04 o  69.0958 ∠ 120.30 o  
180 0.8360 ∠ 78.20 o  1.0545 ∠ 29.99 o  0.4062 ∠ 86.48 o  
300 0.0782 ∠ -33.54 o  0.2231 ∠ 72.28 o  0.3119 ∠ 203.75 o  
420 1.0621 ∠ 83.26 o  0.9565 ∠ -43.71 o  0.9002 ∠ 199.47 o  
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Table 5.24 Line and load impedance in the 5-bus AC/DC system with a variable 
frequency converter, Z, R: [ Ω ] 

Parameters Phase A Phase B Phase C 
Zline 0.3338 + j0.6566  0.5101 + j1.0441  0.1912 + j2.1836 
Rdc 3.2103 
Zload 43.0312 17.8325 22.5003 

5.4.2  Time Domain Simulation Results 

 The 5-bus AC/DC system with a variable frequency converter was tested in time 

domain using Simulink. The circuit is built using SimPowerSystems Toolbox and shown 

in Figure 5.21. The parameters of system components were set using the hardware test 

results.  
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Figure 5.21 The Simulink circuit of the 5-bus AC/DC system with a variable frequency 
converter 

A discrete solver was chosen for simulation with a step size of 2 us. The simulation 

time was set to 1 second in order to minimize the initial transients. The voltages and 

currents at each bus were measured using the measurement blocks from the 

SimPowerSystems Toolbox. The simulation results are presented in the following tables: 

• Table 5.25 and Table 5.26 present the voltage and current magnitudes and phase 

angles respectively; 
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• Table 5.27 and Table 5.28 present the difference of the voltages and currents 

between time domain analysis and hardware tests. The difference was calculated 

using (5.1).  

Table 5.25 Voltage profile in the 5-bus AC/DC system with a variable frequency 
converter from time domain analysis, V: [V, deg] 

Bus # Va Vb Vc 
1 70.21 ∠ 0 o  70.15 ∠ -119.95 o  69.10 ∠ 120.30 o  
2 69.3873 ∠ -0.97 o  68.7012 ∠ -121.54 o  67.8827 ∠ 116.94 o  

3 (DC) 155.5982       
4(DC) 147.4954         
Bus # Vab Vbc Vca 

5 69.8029 ∠ 29.38 o  68.8113 ∠ -89.93 o  70.0366 ∠ 150.42 o  

Table 5.26 Current profile in the 6-bus AC/DC system with a variable frequency 
converter from time domain analysis, I: [A, deg] 

Line/Load aI  bI  cI  

1-2 1.9510 ∠ -8.46 o  2.0687 ∠ -131.73 o  1.9127 ∠ 106.79 o  
3-4  

(DC) 2.5313          

5-N 1.1511 ∠ 3.59 o   1.8595 ∠ -110.09 o  1.7502 ∠ 106.94 o  

 Table 5.27 Voltage difference in the 5-bus AC/DC system between time domain 
simulation and hardware tests, ∆|V |: [%] 

Bus # ∆|Va| ∆|Vb| ∆|Vc| 
2 0.10     0.01    0.08 

3 (DC) 0.75 
4(DC) 0.94 
Bus # ∆|Vab|(%) ∆|Vbc|(%) ∆|Vca|(%) 

5 0.32     0.20     0.06 

Table 5.28 Current difference in the 5-bus AC/DC system between time domain 
simulation and hardware tests, ∆|I |: [%] 

Line/Load ∆| aI | ∆| bI | ∆| cI | 

1-2 0.54   0.38    1.47 
3-4  0.02 
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(DC) 
5-N 0.93    0.31 0.46 

Remarks: 

• The maximal difference is 1.47%. It is mainly attributed to the non-simultaneous 

measurements.  

Next, AC/DC power flow in the 5-bus system is calculated using the power flow solvers 

in steady-state and compared with the hardware test results. 

5.4.3  Steady-State Power Flow Analysis Results 

 The sequential and unified power flow solvers were applied to the 5-bus AC/DC 

system with the variable frequency converter. The parameters of the system components 

were equal to those obtained from the hardware tests. The source voltages at bus 1 only 

included the fundamental voltages and were set to those in Table 5.23. The real power 

loss percentage of the diode rectifier was equal to 0.4323% from the hardware tests. The 

PWM inverter was operated by the AC voltage control. The PWM converter AC voltage, 

LL
PWMV , was balanced and the magnitude was equal to 70 V. The efficiency of the PWM 

inverter was equal to 49.80% from the hardware tests. The simulation results are 

presented in the following tables: 

• Table 5.29 presents the participation coefficients, ,
LL
D Iλ , ,

LL
D Pλ , and equivalence 

coefficients, LL
DK  in the diode rectifier model;  

• Table 5.30 and Table 5.31 present the voltage and current magnitudes and phase 

angles respectively; 
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• Table 5.32 and Table 5.33 present the difference of the voltages and currents 

between steady-state analysis and the hardware tests respectively. The difference 

was calculated using (5.1). 

Table 5.29 Coefficients of the diode rectifier model in the 5-bus AC/DC system with a 
variable frequency converter from steady-state analysis 

 Table 5.30 Voltage profile in the 5-bus AC/DC system with a variable frequency 
converter from steady-state analysis, V: [V, deg] 

Bus # Va  Vb  Vc  
1 70.21 ∠ 0 o  70.15 ∠ -119.95 o  69.10 ∠ 120.30 o  
2 69.3262 ∠ -0.96 o  68.5869 ∠ -121.48 o  67.7422 ∠ 116.98 o  

3 (DC) 156.0532        
4(DC) 147.8326        
Bus # Vab  Vbc  Vca  

5 70.00 ∠ 30 o  70.00 ∠ -90 o  70.00 ∠ 150 o  

Table 5.31 Current profile in the 5-bus AC/DC system with a variable frequency 
converter from steady-state analysis, I: [A, deg] 

Line/Load aI  bI  cI  

1-2 1.9889 ∠ -10.64 o  2.0889 ∠ -134.85 o  1.9078 ∠ 104.71 o  
3-4  

(DC) 2.5607        

5-N 1.1562 ∠ 3.47 o   1.8678 ∠ -110.29 o  1.7565 ∠ 106.76 o  

Table 5.32 Voltage difference in the 5-bus AC/DC system between steady-state analysis 
and hardware tests, ∆|V |: [%] 

Bus # ∆|Va| ∆|Vb| ∆|Vc| 
2 0.19     0.18   0.29 

3 (DC) 0.46         

Parameters  Line AB Line BC Line CA 

,
LL
D Iλ  0.3570     0.3492     0.2937 

,
LL
D Pλ  0.3574    0.3491     0.2935 

LL
DK  1.3504     1.3410     1.3546 
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4(DC) 0.72          
Bus # ∆|Vab|(%) ∆|Vbc|(%) ∆|Vca|(%) 

5 0.04   1.52    0.11 

Table 5.33 Current difference in the 5-bus AC/DC system between steady-state analysis 
and hardware tests, ∆|I |: [%] 

Line/Load ∆| aI | ∆| bI | ∆| cI | 

1-2 2.49    1.35    1.21 
3-4  

(DC) 1.19         

5-N 0.49    0.76    0.82 

Remarks: 

• The maximal difference calculated using (5.1) in the voltages is 1.52% and the 

maximal difference in the currents is 2.49%. They are larger than that (1.47%) in 

time domain analysis. 

• The errors are attributed to the assumptions in the diode rectifier model and the 

PWM inverter model in addition to the non-simultaneous measurements. 
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5.5  Comments 

 In this chapter, a flexible three-phase AC/DC system test bed was presented. It has 

been used to perform hardware tests for unbalanced AC/DC power flow studies with the 

presence of a thyristor converter, a diode rectifier, and a variable frequency converter. 

The test results were used to investigate the properties of power converters under 

unbalanced operating conditions. Time domain simulations have been performed to 

verify the hardware test results. It was found that the AC/DC power flow was consistent 

between time domain analysis and hardware tests when the accuracies of the 

measurement devices were considered.  

The sequential and unified power flow solvers proposed in Chapter 3 and Chapter 4 

were applied to the AC/DC systems set up on the test bed. The accuracy of the solvers 

was validated by comparing steady-state power flow results with those obtained from the 

hardware tests. It was found that the difference was within 4%, which is mainly attributed 

to the delta-connected converter models and the accuracies of the measured data. It can 

be improved by using more accurate and automated measurement systems.  
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CHAPTER 6. CONCLUSIONS 

 

This thesis has focused on system modeling and steady-state analysis for unbalanced 

AC/DC distribution systems using hardware validated power electronic device models. 

The contributions are summarized and conclusions are drawn in this chapter. In addition, 

future work is discussed.  

6.1 Contributions 

This thesis presented new ac/dc power flow analysis tools with new converter 

component models. First, unbalanced models were created for power electronic devices 

in distribution systems. The following contributions have been made: 

• Detailed models, consisting of three, delta-connected, single-phase converters,  

for three-phase thyristor converters,  diode rectifiers, and  PWM converters; 

• Introduction of the participation coefficients to capture unbalanced contributions 

of the single-phase converters; 

• The equivalence transformation between the models and three-phase converters 

using the equivalence coefficients; 

The models are applicable to systems under significantly unbalanced conditions. The 

delta-connected models use the single-phase converters to capture the imbalance of 

distribution systems. They are valid for both unbalanced rectifiers and inverters with 

either continuous or discontinuous dc currents. Comparisons between time domain 

analysis and steady-state analysis demonstrated the effectiveness of the models and their 

consistency with three-phase converter benchmarks in Simulink.  

Second, the converter models have been implemented into distribution system ac/dc 
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power flow studies. The following contributions have been made: 

• Development of equivalent ac and dc power flow components using the delta-

connected converter models; 

• A three-phase sequential power flow solver using a backward/forward algorithm 

and a subsystem ranking method; 

• A three-phase unified power flow solver using Modified Nodal Analysis (MNA) 

method; 

In the sequential solver, the ranking method effectively determined the sequence for 

solving power flow in the backward/forward algorithm. In the MNA based unified solver, 

converter currents were solved with ac and dc voltages in a unified manner. The solver 

can be developed conveniently using existing nodal analysis programs because original 

nodal admittance matrix structure is maintained in MNA.  

Detailed numerical simulation studies have been performed in radial and meshed 

networks for bi-directional ac/dc power flow studies. Simulation results show that both 

the sequential and unified solvers were robust and converged to the same results for the 

same radial or weakly meshed system. The equivalent power flow components of the 

converters and connected ac or dc subsystems appropriately modeled ac and dc 

subsystems.  

Third, a hardware platform with software analysis tools has been developed to 

validate the converter models and the ac/dc power flow solvers. The following 

contributions have been made: 

• A three-phase ac/dc system test bed containing a three-phase thyristor converter, 

a diode rectifier, and a variable frequency converter; 
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• The design of the variable frequency converter and its control circuit; 

• Data analysis functions and time domain simulation circuits; 

Detailed hardware tests, time domain simulations, and steady-state analysis have been 

performed for ac/dc power flow studies. The test bed has a flexible structure and can be 

configured as balanced or unbalanced ac/dc systems with various types of converters. 

The hardware test results can be used to investigate properties of unbalanced ac/dc 

systems and to validate power converter models and steady-state power flow solvers. The 

comparison among the hardware tests, time domain simulations, and steady-state power 

flow calculation has shown that the power flow solvers, which used the delta-connected 

converter models, provided consistently accurate results which are equal or less than 

3.77% from the hardware results and time domain analysis results.  

6.2  Future Work 

With increasing power electronic devices, distribution systems are facing new 

challenges, such as changes in power quality, the need for new protection coordination 

schemes, etc. These changes should be studied in both software simulated environments 

and hardware environments. As such, the ideas and contents in Chapter 2 to Chapter 5 

can be extended for research in the following areas.  

6.2.1 System Modeling and Analysis 

The steady-state converter models can be applied to harmonics analysis. Power 

quality problems are major concerns with power electronic devices entering distribution 

systems. This is because power electronic devices with insufficient filtering generate 

harmonics in a wide frequency range under unbalanced operating conditions. The delta-
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connected modeling approach can be used to capture the properties of unbalanced 

voltages and currents at different frequencies. The models can be implemented in 

harmonic power flow solvers to investigate power quality. 

6.2.2 Application to Planning and Operation 

The power converter models and power flow solvers can also be used for new 

protection scheme design. Power electronic devices have been used as protection devices 

to prevent the spread of faults in certain circumstances. With appropriate control schemes, 

they can open and close circuits in micro-seconds instead of milliseconds by traditional 

circuit breakers. As such, new appropriate protection schemes are desired. To develop the 

new protection schemes, the impacts of these power electronic devices on systems can be 

studied using the delta-connected models and power flow solvers.  

6.2.3 Hardware and Software Test-Beds for Multi-Frequency Systems 

In order to validate potential distribution system applications, the ac/dc system test 

bed presented in Chapter 5 can be used to develop new hardware and software tools. In 

[37], a reconfigurable distribution system laboratory with an ac, three-phase, 36-bus 

network has been developed. The test-bed can be integrated into this laboratory to create 

large systems simulating shipboard power systems, distribution systems with alternative 

energy sources, etc. In addition to hardware, software packages can be developed and 

incorporated with the hardware for system analysis such as harmonic power flow studies, 

power quality analysis, etc.  
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Appendix A. Fourier Coefficients of the AC Currents in the Delta-Connected  

Thyristor Converter Model 

 

To determine the magnitudes of the ac currents in the delta-connected model, FFT 

analysis is performed on the time varying ac current. The formulation used to calculate 

the Fourier coefficients at the fundamental frequency includes: 

( ) ( ) ( ),0

2 cosLL
LL T dca i t t d t

π
ω ω ω

π
= ⋅ ⋅∫      (A.1) 

( ) ( ) ( ),0

2 sinLL
LL T dcb i t t d t

π
ω ω ω

π
= ⋅ ⋅∫     (A.2) 

The dc currents, ( ),
LL
T dci tω , in the single-phase converters are used because they have the 

following relation with the ac currents.  

( ) ( ),
LL LL
T dc Ti t i tω ω=        (A.3) 

The dc currents are different for converters in continuous and discontinuous conditions. 

They are illustrated as follows.  

 

A.1 Continuous Conduction  

For continuous conduction, ( ),
LL
T dci tω  is given in (A.4). Substituting the current into 

(A.1) and (A.2) gives LLa , LLb .   
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A.2 Discontinuous Conduction 

For discontinuous conduction, ( ),
LL
T dci tω  is given in (A.7) and  . Substituting it into 

(A.1)in (2.28) (A.2) gives LLa , LLb .  

( ) ( ) ( ) 1 2
,

cos sin
0

LL LL
LL LL LL LL LL
T dc

A t B t C t D t
i t

otherwise
ω ω ω θ ω θω

⎧ ⋅ + ⋅ + ⋅ + ≤ ≤
= ⎨
⎩

 (A.7) 

where:  

( )2
cos

T

LL
T LL

LL V
dc

V
A

L
δ

ω
−

= , ( )2
sin

T

LL
T LL

LL V
dc

V
B

L
δ

ω
= ,  

dcC
LL

dc

V
C

Lω
= − ,  ( ) ( )1 1 1cos sinLL LL LL

LL LL LL LLD A B Cθ θ θ= − ⋅ − ⋅ − ⋅  

 



178 

( ) ( ) ( ),0

2 cosLL
LL T dca i t t d t

π
ω ω ω

π
= ⋅ ⋅∫            

( ) ( ) ( ) ( )2

1

2 cos sin cos
LL

LL
A t B t C t D t d t

θ

θ
ω ω ω ω ω

π
⎡ ⎤= ⋅ + ⋅ + ⋅ + ⋅ ⋅⎣ ⎦∫     

( ) ( ) ( ) ( )1 2 1 1 2 2 2 1
2 LL LL LL LLA f f B f fθ θ θ θ
π
⎡ ⎡ ⎤ ⎡ ⎤= ⋅ − + ⋅ −⎣ ⎦ ⎣ ⎦⎣       

( ) ( ) ( )3 2 3 1 2 1
LL LL LL LLC f f Dθ θ θ θ ⎤⎡ ⎤+ ⋅ − + ⋅ −⎣ ⎦ ⎦         

Where:  

( ) ( )1
1 sin 2

2 4
xf x x= + , ( ) ( )2

1 cos 2
4

f x x= − , ( ) ( ) ( )3 cos sinf x x x x= + ⋅  

 

( ) ( ) ( ),0

2 sinLL
LL T dcb i t t d t

π
ω ω ω

π
= ⋅ ⋅∫            

( ) ( ) ( ) ( )2

1

2 cos sin sin
LL

LL
A t B t C t D t d t

θ

θ
ω ω ω ω ω

π
⎡ ⎤= ⋅ + ⋅ + ⋅ + ⋅ ⋅⎣ ⎦∫     

( ) ( ) ( ) ( )1 2 1 1 2 2 2 1
2 LL LL LL LLA g g B g gθ θ θ θ
π
⎡ ⎡ ⎤ ⎡ ⎤= ⋅ − + ⋅ −⎣ ⎦ ⎣ ⎦⎣       

( ) ( ) ( )3 2 3 1 2 1
LL LL LL LLC g g Dθ θ θ θ ⎤⎡ ⎤+ ⋅ − + ⋅ −⎣ ⎦ ⎦         

where:  

( ) ( )1 1g x f x= , ( ) ( )2
1 sin 2

2 4
xg x x= − , ( ) ( ) ( )3 sin cosg x x x x= − ⋅  
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Appendix B.  Three-Phase Thyristor Converter Benchmark and Evaluation of the 

Delta-Connected Model in Balanced AC/DC Systems 

         

To study three-phase thyristor converters, a 4-bus balanced ac/dc system was 

created with the same circuit diagram shown in Figure 2.14. The parameters of the 

system components are shown in Table B.1.  

Table B.1 Component parameters of the 4-bus balanced ac/dc system with a three-phase 
thyristor converter 

Parameters Values 
Source line-to-line voltage 208 V @ 60 Hz 

Source impedance  0.3p
sX =  Ω  { }, ,p a b c∈  

Line 1 & 2 impedance  1 2 0.1410 0.4400p pZ Z j= = +   

AC load impedance  20 9p
LZ j= +  Ω   

DC load impedance 10dcR =  Ω  
Converter snubber resistance 100 Ω  

Converter snubber capacitance  0.1 uF 
Converter conducting impedance 0.001 Ω  

Converter forward voltage 0.7 V 
Firing angles 10 o  

 

B.1 Simulation Results of the 3-Phase Thyristor Converter Benchmark 

The circuit in Figure 2.14 was built in MATALAB Simulink using the 

SimPowerSystems Toolbox for time domain simulation. The Simulink circuit is shown in 

Figure B.1.  
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Figure B.1 The Simulink circuit of the 4-bus balanced ac/dc system with a three-phase 

thyristor converter 

A discrete solver was selected with a step size of 2 us. Each simulation has been run 

for 0.05 seconds. To evaluate the model, the following signals directly related to the 

three-phase thyristor converter were measured and shown in Figure B.2 and Figure B.3.  

 The line-to-neutral voltages on Bus 3, ( )p
Tv t , { }, ,p a b c∈  

 The ac currents entering the thyristor converter, ( )p
Ti t  

 The dc voltage on Bus 4, ( ),T dcv t  

 The dc current, ( )3
,T dci tφ  

 

Figure B.2 Line-to-neutral voltages (top) and ac currents (bottom) in the 
three-phase balanced thyristor converter benchmark 
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Figure B.3. Dc voltage (top) and dc current (bottom) in the three-phase balanced 
thyristor converter benchmark 

 
The ac voltages, currents, power at 60 Hz and dc voltage, current and power were 

calculated using measurement blocks from the SimPowerSystems Toolbox and are shown 

in Table B.2. 

Table B.2 Numerical results of the three-phase balanced thyristor converter benchmark 
using Simulink  

AC Values at 60Hz on Bus 3 Parameters 
Phase A Phase B Phase C 

 p
TV  (V) 105.4292 ∠ -10.71 o  105.4280 ∠ -130.72 o  105.4275 ∠ 109.29 o  
p

TI  (A) 17.9998 ∠ -26.30 o  17.9994 ∠ -146.30 o  17.9998 ∠ 93.70 o  
p

TS  (VA) 1827.9253+j509.8274 1827.8970+j509.7593 1827.5181+j509.8309 
 DC Values on Bus 4 

,T dcV  (V)  232.7067 
3

,T dcI φ  (A) 23.2707 
3
,T dcP φ  (W) 5415.2037 

Since the system is balanced, both the ac currents and power entering the converter 

are also unbalanced. The total real power entering the converter is 5483.3 watts. 

Compared with the dc power, the converter real power loss is 1.04%.  

B.2 Evaluating the Delta-Connected Thyristor Converter Model  

The three-phase thyristor converter was studied using the equivalent delta-connected 

model in steady-state. First, the participation coefficients and the equivalence coefficients 
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in the model were calculated using (2.24), (2.25), and (2.34). It is assumed that the ac and 

dc voltages applied on the model are equal to those in the benchmark. The results are 

provided in Table B.3. ,
LL

T Iλ , ,
LL

T Pλ , and LL
TK  are all equal on the three single-phase 

converters because the system is balanced.  

Table B.3 Current participation coefficients, ,
LL

T Iλ , power participation coefficients, ,
LL

T Pλ , 

and equivalence coefficients, LL
TK ,in the 1-phase thyristor converters  

Parameters Line AB Line BC Line CA

,
LL

T Iλ  0.3334 0.3333 0.3333 

,
LL

T Pλ  0.3334 0.3333 0.3333 
LL
TK  1.3408 1.3408 1.3408 

Using the model, the ac currents, p
TI , and power, p

TS , entering the three-phase converter 

were calculated and compared with those obtained in the benchmark. The results are 

shown in Table B.4 with the difference in percentage with respect to the benchmark. The 

maximal error in the ac currents and ac power is 0.6062%. It is attributed to 3
,T dcI φ .  

Table B.4 The ac currents, p
TI , and ac power, p

TS  in the three-phase thyristor converter 
using the ∆ -connected model  

Parameters ∆ - Connected Model  
p

TI∆  

(%) 
a
TI  (A) 18.0143 ∠ -26.47 o  0.5246 
b
TI  (A) 18.0137 ∠ -146.47 o  0.5255 
c
TI  (A) 18.0133 ∠ 93.53 o  0.5291 

 ∆ - Connected Model 
p

TS∆  

(%) 
a
TS (VA) 1827.8 + j515.9   0.5239   
b
TS (VA) 1827.8 + j5156 0.5258   
c
TS (VA) 1827.7 + j5158 0.5095 

3
,T dcI φ  23.1301 0.6042 
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Appendix C.  Case Files for the 12-Bus AC/DC System 
  
Case 1 
 
ARTIFICIAL TEST CASE 
12 BUS SYSTEM, 1 THYRISTOR RECTIFIER BETWEEN BUS 3-4 1 PWM INVERTER BETWEEN 
BUS 6-7, 2 DC LINE, 1 DC LOAD 
  
ARTIFICIAL DISTRIBUTION SYSTEM 
ARTIFICIAL LOAD LEVELS 
  
END/ TITLE 
TEST, 200 
100000 
END/ PARAMS 
    BUS1   12.47    0.00    0.00   0   1      .00     .00  BUS 1 
    BUS2   12.47    0.10    0.00   0   1      .00     .00  BUS 2 
    BUS3   12.47    0.20    0.00   0   1      .00     .00  BUS 3 
    BUS4   12.47    0.30    0.00   0   1      .00     .00  BUS 4 
    BUS5   12.47    0.40    0.00   0   1      .00     .00  BUS 5 
    BUS6   12.47    0.50    0.00   0   1      .00     .00  BUS 6 
    BUS7   12.47    0.60    0.00   0   1      .00     .00  BUS 7 
    BUS8   12.47    0.70    0.00   0   1      .00     .00  BUS 8 
    BUS9   12.47    0.80    0.00   0   1      .00     .00  BUS 9 
    BUS10  12.47    0.90    0.00   0   1      .00     .00  BUS 10 
    BUS11  12.47    0.50    0.10   0   1      .00     .00  BUS 11 
    BUS12  12.47    0.50    0.10   0   1      .00     .00  BUS 11 
END/ NODES 
BUS1   12.47   0.00 0.05 0.00 0.05 
END/ SOURCE 
BUS1  BUS2  L 1 ABC L15207   1.00 
BUS2  BUS3  L 1 ABC L14652   1.00 
BUS3  BUS4  L 1 ABC L15644   1.00 
BUS4  BUS5  L 1 ABC L17676   1.00 
BUS5  BUS6  L 1 ABC L17676   1.00 
BUS4  BUS7  C 1 ABC 
BUS7  BUS8  L 1 D   L15055   1.00 
BUS8  BUS9  C 1 ABC  
BUS9  BUS10 L 1 ABC L17676   1.00 
BUS10 BUS11 L 1 ABC L17676   1.00 
BUS11 BUS12 L 1 ABC L17676   1.00 
END/ BRANCH 
END/ TRANSF 
BUS2    1   2     200.0   0.0    400.0   0.0   800.0  0.0 
BUS5    1   22    300 0 
BUS6    1   22    600 200 
BUS7    1   22    200 0 
BUS10   1  22   900.0   400.0 
BUS11   1   21   -800 -400 
BUS12   1   2    300  100   250 150 200 60   
END/ LOADS 
END/ CONSUM 
END/ PV 
BUS4 BUS7 1 0  0 600  16.8345 10 10 10 
BUS9 BUS8 2 1  1 600  12.47 30 12.47 -90 12.47 150 600 1.0 1.0 1.0 
END/ PWRCVT 
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Case 2 
 
ARTIFICIAL TEST CASE 
12 BUS SYSTEM, 1 THYRISTOR INVERTER BETWEEN BUS 3-4 1 PWM RECTIFIER BETWEEN 
BUS 6-7, 2 DC LINE, 1 DC LOAD 
 
ARTIFICIAL DISTRIBUTION SYSTEM 
ARTIFICIAL LOAD LEVELS 
  
END/ TITLE 
TEST, 200 
100000 
END/ PARAMS 
    BUS1   12.47    0.00    0.00   0   1      .00     .00  BUS 1 
    BUS2   12.47    0.10    0.00   0   1      .00     .00  BUS 2 
    BUS3   12.47    0.20    0.00   0   1      .00     .00  BUS 3 
    BUS4   12.47    0.30    0.00   0   1      .00     .00  BUS 4 
    BUS5   12.47    0.40    0.00   0   1      .00     .00  BUS 5 
    BUS6   12.47    0.50    0.00   0   1      .00     .00  BUS 6 
    BUS7   12.47    0.60    0.00   0   1      .00     .00  BUS 7 
    BUS8   12.47    0.70    0.00   0   1      .00     .00  BUS 8 
    BUS9   12.47    0.80    0.00   0   1      .00     .00  BUS 9 
    BUS10  12.47    0.90    0.00   0   1      .00     .00  BUS 10 
    BUS11  12.47    0.50    0.10   0   1      .00     .00  BUS 11 
    BUS12  12.47    0.50    0.10   0   1      .00     .00  BUS 11 
END/ NODES 
BUS1   12.47   0.00 0.05 0.00 0.05 
END/ SOURCE 
BUS1  BUS2  L 1 ABC L15207   1.00 
BUS2  BUS3  L 1 ABC L14652   1.00 
BUS3  BUS4  L 1 ABC L15644   1.00 
BUS4  BUS5  L 1 ABC L17676   1.00 
BUS5  BUS6  L 1 ABC L17676   1.00 
BUS4  BUS7  C 1 ABC 
BUS7  BUS8  L 1 D   L15055   1.00 
BUS8  BUS9  C 1 ABC  
BUS9  BUS10 L 1 ABC L17676   1.00 
BUS10 BUS11 L 1 ABC L17676   1.00 
BUS11 BUS12 L 1 ABC L17676   1.00 
END/ BRANCH 
END/ TRANSF 
BUS2    1   2     200.0   0.0    400.0   0.0   800.0  0.0 
BUS5    1   22    600 0 
BUS6    1   22    800 300 
BUS7    1   22    50 0 
BUS10   1   22   200.0   100.0 
BUS12   1   2    100  50   150 70 100 60   
END/ LOADS 
END/ CONSUM 
BUS11 4 800 12.47 
END/ PV 
BUS4 BUS7 1 1  6 600  -100 10 10 10 
BUS9 BUS8 2 0  3 600  27.434 1 1 1 
END/ PWRCVT 
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Appendix D.  Case Files for the 25-Bus AC/DC System 
 
Case 1A. Summer Load  Ppwm=0 MW 
 
ARTIFICIAL TEST CASE  
25 BUS SYSTEM, 1 RECTIFIER BETWEEN BUS 18-23 1 PWM BETWEEN BUS 10-25, 2 DC LINE, 1 
DC LOAD   
  
ARTIFICIAL DISTRIBUTION SYSTEM 
ARTIFICIAL LOAD LEVELS 
  
END/ TITLE 
TEST, 200 
100000 
END/ PARAMS 
    BUS1   34.50    0.00    0.00   0   1      .00     .00  BUS 1 
    BUS2   34.50    0.10    0.00   0   1      .00     .00  BUS 2 
    BUS3   34.50    0.20    0.00   0   1      .00     .00  BUS 3 
    BUS4   34.50    0.30    0.00   0   1      .00     .00  BUS 4 
    BUS5   34.50    0.40    0.00   0   1      .00     .00  BUS 5 
    BUS6   34.50    0.50    0.00   0   1      .00     .00  BUS 6 
    BUS7   34.50    0.60    0.00   0   1      .00     .00  BUS 7 
    BUS8   34.50    0.70    0.00   0   1      .00     .00  BUS 8 
    BUS9   34.50    0.80    0.00   0   1      .00     .00  BUS 9 
    BUS10  34.50    0.90    0.00   0   1      .00     .00  BUS 10 
    BUS11  34.50    0.50    0.10   0   1      .00     .00  BUS 11 
    BUS12  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS13  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS14  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS15  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS16  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS17  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS18  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
    BUS19  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS20  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS21  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS22  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS23  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS24  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS25  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
END/ NODES 
BUS1   34.50   0.00 0.05 0.00 0.05 
END/ SOURCE 
BUS1  BUS2  L 1 ABC L17676   1.00 
BUS2  BUS3  L 1 ABC L17676   1.00 
BUS3  BUS4  L 1 ABC L17676   1.00 
BUS4  BUS5  L 1 ABC L17676   1.00 
BUS5  BUS6  L 1 ABC L17676   1.00 
BUS6  BUS7  L 1 ABC L17676   5.00 
BUS7  BUS8  L 1 ABC L17676   5.00 
BUS8  BUS9  L 1 ABC L17676   5.00 
BUS9  BUS10 L 1 ABC L17676   5.00 
BUS10 BUS11 L 1 ABC L17676   5.00 
BUS11 BUS12 L 1 ABC L17676   5.00 
BUS12 BUS13 L 1 ABC L17676   5.00 
BUS6  BUS14 L 1 ABC L17676   5.00 
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BUS14 BUS15 L 1 ABC L17676   5.00 
BUS15 BUS16 L 1 ABC L17676   5.00 
BUS16 BUS17 L 1 ABC L17676   5.00 
BUS17 BUS18 L 1 ABC L17676   5.00 
BUS18 BUS19 L 1 ABC L17676   5.00 
BUS19 BUS20 L 1 ABC L17676   5.00 
BUS20 BUS21 L 1 ABC L17676   5.00 
BUS21 BUS22 L 1 ABC L17676   5.00 
BUS23 BUS24 L 1 D   L17676   1.00 
BUS24 BUS25 L 1 D   L17676   1.00 
BUS18 BUS23 C 1 ABC  
BUS10 BUS25 C 0 ABC 
END/ BRANCH 
END/ TRANSF 
BUS3   1   2    500.0   0.0    500.0   0.0   500.0  0.0 
BUS10  1   22   1600    800 
BUS13  1   22   600     200 
BUS17  1   22   300     100 
BUS20  1   22   600    200 
BUS22  1   22   300    100  
BUS24  1   12     200   0 
BUS18  1   22    0     -600 
END/ LOADS 
END/ CONSUM 
END/ PV 
BUS18 BUS23 1 0  0 600  45.8674 10 10 10 
BUS10 BUS25 2 1  1 600  34.224 30 34.224 -90 34.224 150 0 1.0 1.0 1.0 
END/ PWRCVT 
 
Case 1B. Summer Load   Ppwm=0.4 MW 
 
ARTIFICIAL TEST CASE 
25 BUS SYSTEM, 1 RECTIFIER BETWEEN BUS 18-23 1 PWM BETWEEN BUS 10-25, 2 DC LINE, 1 
DC LOAD   
  
ARTIFICIAL DISTRIBUTION SYSTEM 
ARTIFICIAL LOAD LEVELS 
  
END/ TITLE 
TEST, 200 
100000 
END/ PARAMS 
    BUS1   34.50    0.00    0.00   0   1      .00     .00  BUS 1 
    BUS2   34.50    0.10    0.00   0   1      .00     .00  BUS 2 
    BUS3   34.50    0.20    0.00   0   1      .00     .00  BUS 3 
    BUS4   34.50    0.30    0.00   0   1      .00     .00  BUS 4 
    BUS5   34.50    0.40    0.00   0   1      .00     .00  BUS 5 
    BUS6   34.50    0.50    0.00   0   1      .00     .00  BUS 6 
    BUS7   34.50    0.60    0.00   0   1      .00     .00  BUS 7 
    BUS8   34.50    0.70    0.00   0   1      .00     .00  BUS 8 
    BUS9   34.50    0.80    0.00   0   1      .00     .00  BUS 9 
    BUS10  34.50    0.90    0.00   0   1      .00     .00  BUS 10 
    BUS11  34.50    0.50    0.10   0   1      .00     .00  BUS 11 
    BUS12  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS13  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS14  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
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    BUS15  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS16  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS17  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS18  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
    BUS19  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS20  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS21  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS22  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS23  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS24  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS25  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
END/ NODES 
BUS1   34.50   0.00 0.05 0.00 0.05 
END/ SOURCE 
BUS1  BUS2  L 1 ABC L17676   1.00 
BUS2  BUS3  L 1 ABC L17676   1.00 
BUS3  BUS4  L 1 ABC L17676   1.00 
BUS4  BUS5  L 1 ABC L17676   1.00 
BUS5  BUS6  L 1 ABC L17676   1.00 
BUS6  BUS7  L 1 ABC L17676   5.00 
BUS7  BUS8  L 1 ABC L17676   5.00 
BUS8  BUS9  L 1 ABC L17676   5.00 
BUS9  BUS10 L 1 ABC L17676   5.00 
BUS10 BUS11 L 1 ABC L17676   5.00 
BUS11 BUS12 L 1 ABC L17676   5.00 
BUS12 BUS13 L 1 ABC L17676   5.00 
BUS6  BUS14 L 1 ABC L17676   5.00 
BUS14 BUS15 L 1 ABC L17676   5.00 
BUS15 BUS16 L 1 ABC L17676   5.00 
BUS16 BUS17 L 1 ABC L17676   5.00 
BUS17 BUS18 L 1 ABC L17676   5.00 
BUS18 BUS19 L 1 ABC L17676   5.00 
BUS19 BUS20 L 1 ABC L17676   5.00 
BUS20 BUS21 L 1 ABC L17676   5.00 
BUS21 BUS22 L 1 ABC L17676   5.00 
BUS23 BUS24 L 1 D   L17676   1.00 
BUS24 BUS25 L 1 D   L17676   1.00 
BUS18 BUS23 C 1 ABC  
BUS10 BUS25 C 1 ABC 
END/ BRANCH 
END/ TRANSF 
BUS3   1   2    500.0   0.0    500.0   0.0   500.0  0.0 
BUS10  1   22   1600    800 
BUS13  1   22   600     200 
BUS17  1   22   300     100 
BUS20  1   22   600    200 
BUS22  1   22   300    100  
BUS24  1   12     200   0 
BUS18  1   22    0     -600 
END/ LOADS 
END/ CONSUM 
END/ PV 
BUS18 BUS23 1 0  6 600  600 10 10 10 
BUS10 BUS25 2 1  3 600  45 0 1.0 1.0 1.0 
END/ PWRCVT 
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Case 2A.   Winter Load   Ppwm=0 MW 
 
ARTIFICIAL TEST CASE 
25 BUS SYSTEM, 1 RECTIFIER BETWEEN BUS 18-23 1 PWM BETWEEN BUS 10-25, 2 DC LINE, 1 
DC LOAD   
  
ARTIFICIAL DISTRIBUTION SYSTEM 
ARTIFICIAL LOAD LEVELS 
  
END/ TITLE 
TEST, 200 
100000 
END/ PARAMS 
    BUS1   34.50    0.00    0.00   0   1      .00     .00  BUS 1 
    BUS2   34.50    0.10    0.00   0   1      .00     .00  BUS 2 
    BUS3   34.50    0.20    0.00   0   1      .00     .00  BUS 3 
    BUS4   34.50    0.30    0.00   0   1      .00     .00  BUS 4 
    BUS5   34.50    0.40    0.00   0   1      .00     .00  BUS 5 
    BUS6   34.50    0.50    0.00   0   1      .00     .00  BUS 6 
    BUS7   34.50    0.60    0.00   0   1      .00     .00  BUS 7 
    BUS8   34.50    0.70    0.00   0   1      .00     .00  BUS 8 
    BUS9   34.50    0.80    0.00   0   1      .00     .00  BUS 9 
    BUS10  34.50    0.90    0.00   0   1      .00     .00  BUS 10 
    BUS11  34.50    0.50    0.10   0   1      .00     .00  BUS 11 
    BUS12  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS13  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS14  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS15  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS16  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS17  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS18  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
    BUS19  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS20  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS21  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS22  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS23  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS24  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS25  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
END/ NODES 
BUS1   34.50   0.00 0.05 0.00 0.05 
END/ SOURCE 
BUS1  BUS2  L 1 ABC L17676   1.00 
BUS2  BUS3  L 1 ABC L17676   1.00 
BUS3  BUS4  L 1 ABC L17676   1.00 
BUS4  BUS5  L 1 ABC L17676   1.00 
BUS5  BUS6  L 1 ABC L17676   1.00 
BUS6  BUS7  L 1 ABC L17676   5.00 
BUS7  BUS8  L 1 ABC L17676   5.00 
BUS8  BUS9  L 1 ABC L17676   5.00 
BUS9  BUS10 L 1 ABC L17676   5.00 
BUS10 BUS11 L 1 ABC L17676   5.00 
BUS11 BUS12 L 1 ABC L17676   5.00 
BUS12 BUS13 L 1 ABC L17676   5.00 
BUS6  BUS14 L 1 ABC L17676   5.00 
BUS14 BUS15 L 1 ABC L17676   5.00 
BUS15 BUS16 L 1 ABC L17676   5.00 
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BUS16 BUS17 L 1 ABC L17676   5.00 
BUS17 BUS18 L 1 ABC L17676   5.00 
BUS18 BUS19 L 1 ABC L17676   5.00 
BUS19 BUS20 L 1 ABC L17676   5.00 
BUS20 BUS21 L 1 ABC L17676   5.00 
BUS21 BUS22 L 1 ABC L17676   5.00 
BUS23 BUS24 L 1 D   L17676   1.00 
BUS24 BUS25 L 1 D   L17676   1.00 
BUS18 BUS23 C 1 ABC  
BUS10 BUS25 C 0 ABC 
END/ BRANCH 
END/ TRANSF 
BUS3   1   2    500.0   0.0    500.0   0.0   600.0  0.0 
BUS10  1   2    250   100       200     50  200     150 
BUS13  1   22   300   100 
BUS17  1   22   300     100 
BUS20  1   2    350     200     350     300     400     200 
BUS22  1   2    250     100      250    100     200     80 
BUS24  1   12   200   0 
BUS18  1   22    0     -600 
END/ LOADS 
END/ CONSUM 
END/ PV 
BUS18 BUS23 1 0  0 600  45.8674 10 10 10 
BUS10 BUS25 2 1  1 600  34.224 30 34.224 -90 34.224 150 0 1.0 1.0 1.0 
END/ PWRCVT 
 
 
Case 2B.    Winter Load Ppwm=-0.675 MW 
 
ARTIFICIAL TEST CASE 
25 BUS SYSTEM, 1 RECTIFIER BETWEEN BUS 18-23 1 PWM BETWEEN BUS 10-25, 2 DC LINE, 1 
DC LOAD   
  
ARTIFICIAL DISTRIBUTION SYSTEM 
ARTIFICIAL LOAD LEVELS 
  
END/ TITLE 
TEST, 200 
100000 
END/ PARAMS 
    BUS1   34.50    0.00    0.00   0   1      .00     .00  BUS 1 
    BUS2   34.50    0.10    0.00   0   1      .00     .00  BUS 2 
    BUS3   34.50    0.20    0.00   0   1      .00     .00  BUS 3 
    BUS4   34.50    0.30    0.00   0   1      .00     .00  BUS 4 
    BUS5   34.50    0.40    0.00   0   1      .00     .00  BUS 5 
    BUS6   34.50    0.50    0.00   0   1      .00     .00  BUS 6 
    BUS7   34.50    0.60    0.00   0   1      .00     .00  BUS 7 
    BUS8   34.50    0.70    0.00   0   1      .00     .00  BUS 8 
    BUS9   34.50    0.80    0.00   0   1      .00     .00  BUS 9 
    BUS10  34.50    0.90    0.00   0   1      .00     .00  BUS 10 
    BUS11  34.50    0.50    0.10   0   1      .00     .00  BUS 11 
    BUS12  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS13  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS14  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS15  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
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    BUS16  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS17  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS18  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
    BUS19  34.50    0.50    0.20   0   1      .00     .00  BUS 12 
    BUS20  34.50    0.50    0.30   0   1      .00     .00  BUS 13 
    BUS21  34.50    0.50    0.40   0   1      .00     .00  BUS 14 
    BUS22  34.50    0.50    1.50   0   1      .00     .00  BUS 15 
    BUS23  34.50    0.50    1.50   0   1      .00     .00  BUS 16 
    BUS24  34.50    0.50    1.50   0   1      .00     .00  BUS 17 
    BUS25  34.50    0.50    1.50   0   1      .00     .00  BUS 18 
END/ NODES 
BUS1   34.50   0.00 0.05 0.00 0.05 
END/ SOURCE 
BUS1  BUS2  L 1 ABC L17676   1.00 
BUS2  BUS3  L 1 ABC L17676   1.00 
BUS3  BUS4  L 1 ABC L17676   1.00 
BUS4  BUS5  L 1 ABC L17676   1.00 
BUS5  BUS6  L 1 ABC L17676   1.00 
BUS6  BUS7  L 1 ABC L17676   5.00 
BUS7  BUS8  L 1 ABC L17676   5.00 
BUS8  BUS9  L 1 ABC L17676   5.00 
BUS9  BUS10 L 1 ABC L17676   5.00 
BUS10 BUS11 L 1 ABC L17676   5.00 
BUS11 BUS12 L 1 ABC L17676   5.00 
BUS12 BUS13 L 1 ABC L17676   5.00 
BUS6  BUS14 L 1 ABC L17676   5.00 
BUS14 BUS15 L 1 ABC L17676   5.00 
BUS15 BUS16 L 1 ABC L17676   5.00 
BUS16 BUS17 L 1 ABC L17676   5.00 
BUS17 BUS18 L 1 ABC L17676   5.00 
BUS18 BUS19 L 1 ABC L17676   5.00 
BUS19 BUS20 L 1 ABC L17676   5.00 
BUS20 BUS21 L 1 ABC L17676   5.00 
BUS21 BUS22 L 1 ABC L17676   5.00 
BUS23 BUS24 L 1 D   L17676   1.00 
BUS24 BUS25 L 1 D   L17676   1.00 
BUS18 BUS23 C 1 ABC  
BUS10 BUS25 C 1 ABC 
END/ BRANCH 
END/ TRANSF 
BUS3   1   2    500.0   0.0    500.0   0.0   600.0  0.0 
BUS10  1   2    250   100       200     50  200     150 
BUS13  1   22   300   100 
BUS17  1   22   300     100 
BUS20  1   2    350     200     350     300     400     200 
BUS22  1   2    250     100      250    100     200     80 
BUS24  1   12   200   0 
BUS18  1   22    0     -600 
END/ LOADS 
END/ CONSUM 
END/ PV 
BUS18 BUS23 1 1  6 600  475 10 10 10 
BUS10 BUS25 2 0  3 600  43.8209 0 1.0 1.0 1.0 
END/ PWRCVT 
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Appendix E. Test Manual for a 3-Phase AC/DC System with a Diode Rectifier  

or a Thyristor Converter 

 

E.1 Objective 

      Perform experiments to study ac/dc power flow in a three-phase unbalanced ac/dc 

system with a three-phase diode rectifier or a three-phase thyristor converter  

 

E.2 Hardware Devices 

• AC power supply – CEPE station 1-4 

• 1 3-phase knife switch  

• 1 3-phase autotransformer 

• 3 multi-tap reactors (#19, #20, and #21 in CEPE) 

• 1 3-phase diode rectifier (Fuji Electric 6RI100E) 

• 1 3-phase thyristor converter (CEPE design) 

• 1 dc load (light banks on output A-I) 

 

E.3 Test Equipment 

• 1 oscilloscope - Tektronix TDS 4013 

• 4 high voltage differential probes - Tektronix P5200 

• 2 current probes and amplifiers - Tektronix TCP 303, TCPA-300 

• 1 digital meter - Fluke 37 

E.4 Introduction  

In this experiment, ac/dc power flow was studied in a three-phase unbalanced 
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ac/dc system with a three-phase full bridge diode rectifier or a three-phase full bridge 

thyristor converter. The diode rectifier is a Fuji Electric’s 6RI100E series rectifier. This is 

a single unit, three-phase full bridge rectifier. It is capable of 100 A continuous outputs at 

up to 600 V. The thyristor converter is developed in Center for Electric Power 

Engineering (CEPE) at Drexel University as shown in Figure E.1. 

 

Figure E.1 The full-bridge three-phase thyristor converter in CEPE 

The thyristor converter consists of six GE thyristors. There is a control card 

(PTR6000-208) operating thyristors using the equi-distant control. The firing angles can 

be altered manually. 

 

E.5 Experimental Setup 

The test circuit for the 3-bus ac/dc system is shown in Figure E.2. The actual 

hardware setup is shown in Figure E.3 for the ac/dc system with the thyristor converter. A 

three-phase source provides 208V ac power on a power station. The power is fed into a 

three-phase, wye-ground/wye autotransformer. The neutral of the transformer is 

connected to the ground on the power station. The outputs of the transformer feed into a 
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three-phase ac line. The ac line consists of three 7-tap reactors  (0.5 / 1.0 / 2.0 / 3.0 / 6.0 

/ 12.0 /24.0 Ohms) in a transmission line box. The following settings are used: 

Phase A: 0.5 Ohms,   Phase B: 1 Ohm,  Phase C: 2 Ohms 

The ac line is connected to the input port of the three-phase ac/dc converter, which is at 

bus 2 shown in Figure E.2. The output of the converter, which is at bus 3, supplies a 

resistive dc load. The load is mimicked using carbon filament light bulbs (120 Vac). 

Three panels of light bulbs are connected in series. Each group can have 1 to 60 light 

bulbs connected in parallel.  

 
Figure E.2 The circuit diagram of the three-phase ac/dc system with a three-phase diode 

rectifier or a three-phase thyristor converter 

 
Figure E.3 The hardware setup of the three-phase ac/dc system with a three-phase 

thyristor converter 
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E.6 Test Procedure 

This test will study power flow in the three-phase unbalanced ac/dc system. The test 

includes the following steps: 

Step 1. Close the knife switch and turn on the ac power on the power station; 

Step 2. Increase the output voltages of the autotransformer to 208 V line-to-line (rms). 

Check the voltages using the digital meter; 

Step 3. Switch on 60 light bulbs on each panel; 

Step 4. For the thyristor converter, adjust the firing angles manually to desired values; 

Step 5. Capture the following voltages and currents using the voltage probes and current 

probes. Record the data in EXCEL spreadsheets using the oscilloscope. The 

voltage probes are set to 500V:1V. The current probes are set to 5A:1V.  

• 3-phase line-to-ground voltages at Bus 1 and Bus 2 

• DC voltage at Bus 3  

• 3-phase currents entering bus 2  

• DC current in the dc load at Bus 3 

Step 6. Decrease the output voltages of the autotransformer to zero; 

Step 7. Turn off the power and open the knife switch. 



195 

Appendix F.  Test Manual for a 3-Phase AC/DC System  

with a Variable Frequency Converter 

 

F.1 Objective 

      Perform experiments for ac/dc power flow studies in a three-phase unbalanced 

ac/dc system with a variable frequency converter 

 

F.2 Hardware Devices 

• AC power supply – CEPE station 3 

• 1 3-phase knife switch 

• 1 3-phase autotransformer 

• 3 multi-tap reactors (#19, #20, and #21 in CEPE) 

• 1 3-phase variable frequency converter  

• 1 PC (C3A) with dSPACE DS1104 DSP card and MATLAB 6.1 with simulink 

• 1 3-phase ac load (light banks on outlets C and  D) 

 

F.3 Test Equipment 

• 1 oscilloscope-Tektronix TDS 4013 

• 4 high voltage differential probes - Tektronix P5200 

• 2 sets of current probes and amplifiers – Tektronix TCP 303, TCPA-300 

• 1 digital meter - Fluke 37 
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F.4 Introduction  

In this experiment, ac/dc power flow was studied in a three-phase unbalanced 

ac/dc system with a three-phase variable frequency converter. The converter consists of 

three parts as shown in Figure F.1. The actual converter is shown in Figure F.2. 

 

Figure F.4 The block diagram of the 3-phase ac/dc/ac variable frequency converter 

 

Figure F.5 The hardware of the 3-phase ac/dc/ac variable frequency converter 
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The first part is a 100A three-phase diode rectifier from Fuji Company (Fuji 

6RI100E-060). The rectifier can convert the ac signals into dc signals. A low pass filter is 

installed on the dc link to filter out the high frequency signals generated by the rectifier. 

The third part of the converter is a three-phase, full bridge, Pulse-Width-Modulated 

(PWM) inverter. The inverter has three sets of two-Isolated Gate Bipolar Transistors 

(IGBTs) from International Rectifier Company (GA100TS60U). By switching the IGBTs, 

the inverter may convert the dc signals to ac signals at various frequencies.   

The control of the IGBTs is achieved by using a controller board from dSPACE 

(DS1104). MATLAB Simulink is utilized to generate the PWM signals. The PWM 

control signals are downloaded to the board, then fed into a gate drive circuit, which is 

also built in the converter box, through an interface box. The gate drive circuit will 

amplify the control signals to an appropriate voltage level (-8 V / +15 V) to switch the 

IGBTs. DC supplies are installed to provide power for the gate drive circuits. 

 

F.5 Experimental Setup 

The test circuit for the ac/dc system is shown in Figure F.3. The actual hardware 

setup is shown in Figure F.4. In the system, a three-phase source provides 208V ac power 

on a power station. The power is fed into a three-phase, wye-ground/wye autotransformer 

after a three-phase knife switch. The neutral of the transformer is connected to the ground 

on the power station. The outputs of the transformer feed into a three-phase ac line. The 

ac line consists of three 7-tap reactors  (0.5 / 1.0 / 2.0 / 3.0 / 6.0 / 12.0 /24.0 Ohms) in a 

transmission line box. The following settings are used: 

Phase A: 0.5 Ohms,   Phase B: 1 Ohm,  Phase C: 2 Ohms 
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The ac line is connected to the input port of the converter, which is at bus 2 shown in the 

figure. The output of the converter, which is at bus 5, is connected to a three-phase, 

wye-connected, ungrounded resistive load. The constant resistive loads are carbon 

filament light bulbs. 

 

Figure F.6 The circuit diagram of the three-phase ac/dc system with a three-phase 
variable frequency converter 

 
Figure F.7 The hardware setup of the three-phase ac/dc system with a three-phase 

variable frequency converter 
 

In order to control the PWM inverter using the dSPACE board, an interface 

chassis is connected to the dSPACE card in the PC. The control cable is plugged in the 

PWM slave I/O port on the interface. The other end of the control cable is connected to 

the controller input port on the converter.  
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F.6 Test Procedure 

The test procedure includes the following 3 parts: 

• Software setup 

• Gate drive circuit test 

• AC/DC power flow test 

 

F.6.1 Software Setup 

In order to operate the IGBT in the PWM inverter, control signals are generated by a 

DSP card from dSPACE 1104. The DSP card is controlled by software programs 

developed in MATLAB Simulink. The setup procedure for the software program includes 

the following steps: 

Step 1. Before running the experiment, the Simulink (MABLAB R12.1/6.1) and 

dSPACEDeskControl must be installed on the computer with dSPACE 1104 DSP 

card.  

Step 2. Open dSPACEDeskControl software. Then open MATLAB from 

dSPACEDeskControl. The default Simulink library in MATLAB is for DS1003 

DSP card. We need to type “rti1104” under MATLAB after MATLAB is opened 

from dSPACEDeskControl. Then the software will switch from DS1003 to 

DS1104. All blocks of DS1104 will appear.  

Step 3. Open PWMConverter.mdl in Simulink. It is noted that the settings: 

“Simulation->Simulation Parameters->system target file & template make file” 

MUST be changed to DS1104.tlc and DS1104.tmf as shown below in Figure F.5.  
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Figure F.5. Simulink Setting for the dSPACE 1104 DSP Card 

The simulation circuit in PWMConverter.mdl is shown in Figure F.6.  

 
(a) 
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(b) 

Figure F.6 The PWM inverter control circuit (a) and PWM control module (b) in 
MATLAB Simulink for the dSPACE DS1104 DSP card 

 

Step 4. The fundamental frequency of the control signals is set to 60Hz. The switching 

frequency of the PWM controller is set to 1500Hz. The modulation is set to 0.8. 

The deadband between two control signals on each phase is set between 10uS to 

20 uS.  

Step 5. Download the code to the dSPACE card to generate PWM control signals by 

using “Ctrl+B”.  

 

F.6.2 Gate Drive Circuit Test 

This test is to determine whether the gate drive circuits can generate appropriate control 

signals to switch the IGBTs on the inverter. The ac power is turned off in the experiment. 

The test procedure includes the following steps: 

Step 1. Run the Simulink, and open PWMConverter.mdl.  The fundamental frequency 

of the control signals is set to 60Hz. The switching frequency of the PWM 

controller is set to 1500Hz. The modulation is set to 0.8. The deadband between 

two control signals on each phase is set to 20 uS.  
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Step 2. Turn on the dc supply in the converter box for the gate drive circuit.  

Step 3. Download the code to the dSPACE board to generate PWM control signals by 

using Ctrl+B.  

Step 4. Compare the inputs and outputs of the six gate drive circuits using the voltage 

probes and the oscilloscope. Make sure the output of each channel of gate drive 

circuits is out of phase of its input and the output voltage is between -8V and 15V.  

Step 5.  Compare the waveforms of the two signals for the dual IGBT module on each 

phase and check if they are out of phase. Perform Fast Fourier Transform (FFT) 

on the oscilloscope to check the frequency of the control signals. Also check if the 

dead-band on each phase is consistent with the specified values. 

Step 6. Capture the line-to-line signals at the output of the inverter at open circuit. Check 

if the signals are 120 degree apart. 

 

F.6.3 AC/DC System Test 

This test will study power flow in the three-phase unbalanced ac/dc system. The test 

includes the following steps: 

Step 1. Run the Simulink, open PWMConverter.mdl.  The fundamental frequency of the 

control signals is set to 60Hz. The switching frequency of the PWM controller is 

set to 1500Hz. The deadband between two control signals on each phase is set to 

20uS; 

Step 2. Turn on the dc supply for the gate drive circuit; 

Step 3. Download the code to the dSPACE board to generate PWM control signals by 

using Ctrl+B; 
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Step 4. Close the knife switch. Turn on the ac power on the power station; 

Step 5. Increase the output voltages of the autotransformer slowly. First, check the dc 

voltage and the PWM inverter output voltages with diode rectifier input 

line-to-line voltage at 10 to 30 V.  

Step 6. Then, increase the rectifier input line-to-line voltage to 120V (rms). Check the 

line voltages using the digital meter; 

Step 7. Capture the following voltages and currents using the voltage probes and current 

probes. Record the data in EXCEL spreadsheets using the oscilloscope. The 

voltage probes are set to 500V:1V. The current probes are set to 5A:1V.  

• 3-phase line-to-ground voltages at Bus 1 and Bus 2 

• DC voltages at Bus 3 and Bus 4 

• 3-phase line-to-line voltages at Bus 5 

• 3-phase voltages across the ac load 

• 3-phase currents entering bus 2  

• DC current on the dc link from Bus 3 to Bus 4 

• 3-phase currents in the ac load on Bus 5 

Step 8. Decrease the output voltages of the autotransformer to zero. 

Step 9. Turn off the power and open the knife switch.  
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