
 

 

3D Face Structure Extraction from Images at Arbitrary Poses and under 

Arbitrary Illumination Conditions 

 

A Thesis 

Submitted to the Faculty 

Of 

Drexel University 

By 

Cuiping Zhang 

In partial fulfillment of the  

Requirements for the degree 

Of 

Doctor of Philosophy 

October 2006 

 



 

 

ii

 
 



 

 

iii

Acknowledgments 

I would like to thank my advisor, Dr. Fernand S. Cohen for his support through all 

these years. Without his common-sense, knowledge and guidance, I would never have 

finished. 

I am grateful to all of my dissertation members, including Dr. Oleh J. Tretiak, Dr. 

Jaudelice Cavalcante de Oliveira, Dr. Ali Shokoufandeh, and Dr. Ko Nishino. Thank 

them for serving on my committee and for their advice.  

My thanks go to my close friends, which are too many to mention. They took time to 

listen to me and give me advice and asked me over and over again “How is your 

research recently?” . 

I would give my deepest love to my mother and father, who always support me 

unconditionally all these years! 

  



 

 

iv

Table of Contents 

 

 

TABLE OF CONTENTS .................................................................................................................... IV 

TABLE OF FIGURES........................................................................................................................VII 

TABLE OF TABLES........................................................................................................................... IX 

ABSTRACT ...........................................................................................................................................X 

CHAPTER 1 : INTRODUCTION...................................................................................................1 

1.1 INFLUENTIAL FACTORS FOR FACE APPLICATIONS ............................................................................2 
1.2 PROBLEMS AND MOTIVATIONS ........................................................................................................3 
1.3 FACE IMAGES USED IN THIS WORK .................................................................................................5 
1.4 CONTRIBUTION OF THE THESIS........................................................................................................5 
1.5 OUTLINE OF THIS THESIS .................................................................................................................7 

CHAPTER 2 : COMPONENT-BASED ACTIVE APPEARANCE MODEL..............................8 

2.1 LITERATURE ....................................................................................................................................8 
2.2 PRELIMINARY BACKGROUND: THE ACTIVE APPEARANCE MODEL.................................................12 
2.3 COMPONENT-BASED AAM ............................................................................................................16 
2.4 LOCAL PROJECTION MODELS FOR FACE BOUNDARY DETECTION..................................................20 
2.5 COMPONENT-BASED SEARCH ........................................................................................................23 
2.6 EXPERIMENTS................................................................................................................................25 

2.6.1 Component-based Search......................................................................................................26 
2.6.2 Face Contour Detection with Local Projection Models........................................................28 

2.7 CONCLUSIONS ...............................................................................................................................31 

CHAPTER 3 : 2D FACE MODELING WITH A HYBRID CONSTRAINED 
OPTIMIZATION ALGORITHM .......................................................................................................32 

3.1 LITERATURE ..................................................................................................................................32 
3.2 NORMALIZED INVERSE COMPOSITIONAL AAM ALGORITHM.........................................................36 
3.3 UNBIASED ERROR EVALUATION FUNCTION ...................................................................................39 
3.4 DIRECT SHAPE ESTIMATE FROM MOTION ESTIMATION..................................................................41 
3.5 CONSTRAINED GRADIENT DESCENT OPTIMIZATION ......................................................................44 
3.6 EXPERIMENT RESULTS AND DISCUSSION .......................................................................................46 

3.6.1 Constrained Hybrid Model Fitting Optimization ..................................................................46 
3.6.2 Experiments on the JAFFE face database.............................................................................51 

3.7 CONCLUSION.................................................................................................................................54 

CHAPTER 4 : FROM 2D TO 3D: 3D FACE STRUCTURE EXTRACTION..........................55 

4.1 LITERATURE ..................................................................................................................................55 
4.1.1 Shape Reconstruction by Modeling.......................................................................................56 



 

 

v

4.1.1.1 Generic Face Modeling .................................................................................................................. 58 
4.1.1.2 Statistical Face Modeling ............................................................................................................... 63 

4.2 OUR APPROACHES.........................................................................................................................68 
4.2.1 3D Generic Model.................................................................................................................70 
4.2.2 Weak Perspective Projection .................................................................................................71 
4.2.3 2D Feature Extraction with the View-based AAMs ...............................................................74 
4.2.4 Cubic Morphing: Revisited ...................................................................................................77 

4.2.4.1 Basic Cubic Polynomial Function .................................................................................................. 77 
4.2.4.2 Cubic Morphing Reformulated as a Linear Operation ................................................................... 78 
4.2.4.3 Regulate Cubic Morphing Parameters............................................................................................ 79 

4.2.5 Distance Map: Revisited .......................................................................................................80 
4.3 MORPHING AND POSE PARAMETER ESTIMATION ...........................................................................83 

4.3.1 Partial Linear Optimization Algorithm.................................................................................83 
4.3.2 Optimization with Marquardt-Levenberg algorithm .............................................................85 
4.3.3 Incorporate Contour Constraints to the Optimization ..........................................................87 
4.3.4 Refine the Parameter Estimation with Distance Mapping ....................................................90 

4.4 EXPERIMENTS................................................................................................................................91 
4.4.1 View-based AAM ...................................................................................................................91 
4.4.2 3D Modeling Experiments.....................................................................................................93 

4.4.2.1 Partial Linear Optimization versus LM Optimization Algorithms ................................................. 93 
4.4.2.2 Incorporation of Face Contour Constraints .................................................................................... 95 

4.5 CONCLUSIONS ...............................................................................................................................97 

CHAPTER 5 : FROM 2D TO 3D: ILLUMINATION-FREE TEXTURE EXTRACTION 
WITH THE SPHERICAL HARMONIC ILLUMINATION MODEL............................................99 

5.1 LITERATURE ................................................................................................................................100 
5.1.1 When Illumination is not considered: Face Texture Mapping Techniques ..........................100 
5.1.2 Basic Illumination Models for Photorealistic Rendering in Computer Graphics ...............102 

5.1.2.1 Light Sources ............................................................................................................................... 103 
5.1.2.2 Basic Illumination Models ........................................................................................................... 103 

5.1.3 Illumination Modeling for Face Recognition ......................................................................105 
5.1.3.1 PCA-based Low-dimensional Linear Subspace Representation................................................... 107 
5.1.3.2 Illumination Modeling based on Theoretical Analysis of Lambertian Reflectance ...................... 107 

5.2 PRELIMINARY BACKGROUND: SPHERICAL HARMONICS AND THEIR APPLICATIONS IN 

ILLUMINATION MODELING ................................................................................................................ 110 
5.2.1 The Spherical Harmonic Analysis ....................................................................................... 111 
5.2.2 Illumination modeling by Spherical Harmonic Analysis: from the Lighting function to the 
Reflectance Function and Basis Images....................................................................................... 113 

5.3 EXTRACTION OF ILLUMINATION INVARIANT TEXTURE MAP FROM IMAGES ................................. 116 
5.3.1 View-dependent Illumination Editing and Normalization ................................................... 117 
5.3.2 Extraction of View-independent Illumination-free Texture Map.......................................... 119 

5.4 EXPERIMENTS..............................................................................................................................121 
5.4.1 View-based Illumination Analysis .......................................................................................122 

5.4.1.1 Illumination Editing ..................................................................................................................... 123 
5.4.1.2 Rotation in the same Illumination Environment........................................................................... 124 



 

 

vi

5.4.1.3 Illumination Regulation by “Copying” Illumination Effect ......................................................... 125 
5.4.1.4 Synthesis of Novel Faces ............................................................................................................. 126 

5.4.2 View-Independent Illumination Analysis .............................................................................127 
5.4.2.1 Extraction of Texture Map............................................................................................................ 127 
5.4.2.2 Synthesis of Novel Faces ............................................................................................................. 130 

5.5 Conclusion .............................................................................................................................131 

CHAPTER 6 : 3D FACE RECOGNITION FOR IMAGES AT ARBITRARY POSES AND 
UNDER ARBITRARY ILLUMINATION CONDITIONS .............................................................133 

6.1 LITERATURE ................................................................................................................................134 
6.2 FACE RECOGNITION BASED ON THE EXTRACTED 3D STRUCTURE AND THE ILLUMINATION-FREE 

TEXTURE MAP ..................................................................................................................................138 
6.2.1 Face Modeling Phase..........................................................................................................138 
6.2.2 Testing Phase.......................................................................................................................139 

6.3 EXPERIMENTS AND DISCUSSIONS ................................................................................................142 
6.3.1 A Typical Face Recognition Example..................................................................................144 
6.3.2 Complete Recognition Results for Different Pose Categories.............................................149 

6.4 CONCLUSIONS .............................................................................................................................159 

CHAPTER 7 : CONCLUSIONS AND FUTURE WORK.........................................................160 

7.1 INCORPORATING TEXTURE INFORMATION TO EXTRACT FACE FEATURES.....................................160 
7.2 INCORPORATING ILLUMINATION INFORMATION TO REFINE SURFACE DETAILS ............................162 
7.3 TRACKING FACES ........................................................................................................................163 
7.4 FACIAL EXPRESSION MODELING AND RECOGNITION...................................................................163 

LIST OF REFERENCES...................................................................................................................165 

APPENDIX A: AN EXISTING PROBLEM ABOUT THE TAGENT SPACE COORDINATE 
ALIGNMENT ALGORITHM...........................................................................................................172 

APPENDIX B: DIRECT EXHAUSTIVE SEARCH FOR INITIAL MODEL PARAMETERS .174 

APPENDIX C: 3D FACE MODEL NORMALIZATION ...............................................................176 

APPENDIX D: SYNTHESIZED FACE IMAGES BY VARYING THE FIRST SHAPE MODE178 

APPENDIX E: SYNTHESIZED FACE IMAGES BY VARYING THE FIRST TEXTURE MODE
..............................................................................................................................................................179 

VITA ....................................................................................................................................................180 



 

 

vii

Table of Figures 

 

 
Figure 2.1 (a) Definition of landmark points. (b) Face mesh. (c) Shapeless texture. (d) Base 

face mesh.........................................................................................................................13 
Figure 2.2 (a) Landmark points inside face are divided into 3 groups. (b) Left eyebrow and 

eye in one group. (c) Right eyebrow and eye. (d) The nose and mouth..........................18 
Figure 2.3 Updating rule for the ASM algorithm....................................................................20 
Figure 2.4 Building a local projection model..........................................................................21 
Figure 2.5 Triangulation of face landmark points: a) Original shape of the person in Fig. 2.1. 

b) Mean shape of training set. .........................................................................................22 
Figure 2.6 A parallelogram associated with a triangle on the face boundary. a) Original image 

frame. b) Mean shape frame. c) Standard pair. ...............................................................23 
Figure 2.7 Flowchart of steps in an iterative AAM search......................................................25 
Figure 2.8 Sample images in our face database. .....................................................................26 
Figure 2.9 AAM (top row) versa AAM_CA (bottom row). (a) Training set. (b) Test set. c) 

JAFFE .............................................................................................................................27 
Figure 2.10 AAM_CA (top row) versa AAM_CA_LPM (bottom row). (a) Training set. (b) 

Test set. (c) JAFFE..........................................................................................................28 
Figure 2.11 Curves of convergent rate versa error threshold. (a) Training set. (b) Test set. (c) 

JAFFE database...............................................................................................................31 
Figure 3.1 Example of a piece-wise affine transform from the image frame (left) to the base 

frame (right) ....................................................................................................................40 
Figure 3.2 From left to right: a) Synthesized image. b) Input image. c) Synthesized face 

overlapped on the original face with current landmark points. .......................................43 
Figure 3.3 Comparison of hybrid search and original inverse compositional AAM search. 

(a)-(c) Hybrid search process at iteration 1, 2 and 6. (d) Inverse Compositional AAM 
search. (e) Constrained hybrid search. (f) Evolution of error curve................................47 

Figure 3.4 Fitting errors on (a)Training set. (b)Test set. .........................................................49 
Figure 3.5 Cumulative functions.............................................................................................50 
Figure 3.6  Model fitting results: a) Inverse compositional algorithm. b) Constrained hybrid 

algorithm .........................................................................................................................52 
Figure 3.7 Model fitting errors on JAFFE...............................................................................53 
Figure 3.8 Cumulative density functions ................................................................................53 
Figure 4.1 Candide-3 face model: a) Frontal view. b) Profile view. .......................................59 
Figure 4.2 Face model created at Univ. of Washington. a) Frontal view. b) Profile view.......60 
Figure 4.3 Revised generic model: (a) Mesh model. (b) Solid model. (c) Selected features for 

structure estimation .........................................................................................................70 
Figure 4.4 Camera model........................................................................................................72 
Figure 4.5 The 3D face model and 4 view-based AAM models .............................................75 
Figure 4.6 Four face images of different viewpoints on the first row. Their corresponding 

distance maps are shown on the second row. ..................................................................82 
Figure 4.7 Face meshes used in the view-based AAM: pose category 2 and 3 from left to right.



 

 

viii

.........................................................................................................................................87 
Figure 4.8 Candidates for contour points on the generic model viewed from two different 

angles ..............................................................................................................................89 
Figure 4.9 Nine normal lines on the face contour ...................................................................89 
Figure 4.10 Average faces for pose catogery 1 to 4 (from left to right). .................................92 
Figure 4.11 Face alignment results of different poses.............................................................93 
Figure 4.12 Modeling results: (a)(d)(g): the partial linear method shown as frontal, 

half-profile and full profile; (b)(e)(h) the LM method shown from three angles; (c)(f)(i): 
the regularized LM method from three angles. ...............................................................94 

Figure 4.13 Modeling results with and without the contour constraint for pose category 2 ...96 
Figure 4.14 Modeling results with and without the contour constraint for pose category 3 ...97 
Figure 5.1 The generic face model (left) and the texture space (right) .................................120 
Figure 5.2 Four views of a texture face based on the reconstructed 3D face........................122 
Figure 5.3 Simulation of different illumination effects by editing coefficients directly .......123 
Figure 5.4 Simulation of different illumination effects another viewing angle ....................124 
Figure 5.5 Simulation of rotating the face in the same illumination environment ................125 
Figure 5.6 Illumination "copying" example: top row: two original images; bottom row: two 

regulated images that copied illumination effect from each other.................................126 
Figure 5.7 Synthesized images (bottom row) versus original images (top row)...................127 
Figure 5.8 Original face images on the texture space ...........................................................128 
Figure 5.9 Weight functions for the images in Fig.5.8..........................................................129 
Figure 5.10 An illumination-free texture map after 20 iterations..........................................130 
Figure 5.11 Synthesized images (bottom row) versus original images .................................131 
Figure 5.12 Synthesized images of arbitrary poses...............................................................131 
Figure 6.1 Face modeling flowchart .....................................................................................139 
Figure 6.2 One example view of the 38 people.....................................................................143 
Figure 6.3 A typical test image..............................................................................................145 
Figure 6.4 Comparison of the synthesized images and the test image: a) Synthesized 

illumination-free image. b) Illuminated image. c) Test image ......................................145 
Figure 6.5 More examples of texture matching ....................................................................147 
Figure 6.6 Three matching error curves ................................................................................148 
Figure 6.7 Example views of synthesized images and test images for pose 2 to pose 4 (from 

first row to last row)......................................................................................................149 
Figure 6.8 Face recognition based on distance map error .....................................................150 
Figure 6.9 A misclassified case: Left image is the test image. The best match is the person in 

the right image. .............................................................................................................151 
Figure 6.10 Face recognition based on texture error.............................................................152 
Figure 6.11 Face recognition based on illumination-normalized texture error .....................152 
Figure 6.12 Face recognition based on the combined error ..................................................154 
Figure 6.13 Recognition results for pose categories 2 to 4 (from the leftmost column to the 

last column)...................................................................................................................155 
Figure 6.14 Recognition results based on raw texture error for pose categories 1 to 4 ........158 



 

 

ix

Table of Tables 

 

 
Table 2.1 Average point to edge error (contour points excluded) ...........................................27 
Table 2.2 Average point to edge error(contour points only)....................................................29 
Table 3.1 Average point to edge error for different algorithms ...............................................51 
Table 3.2 Average point to edge error for different algorithms ...............................................53 
Table 4.1 Azimuthal range for 4 different view-based models................................................75 
Table 4.2 Our face database ....................................................................................................91 
Table 4.3 Average modeling errors for different methods.......................................................95 
Table 6.1 Misclassification rate for 38 people ......................................................................156 

 

 



 

 

x

Abstract 
3D Face Structure Extraction from Images at Arbitrary Poses and under Arbitrary 

Illumination Conditions 
Cuiping Zhang 

Fernand S. Cohen, Supervisor, Ph.D. 

 

 

With the advent of 9/11, face detection and recognition is becoming an important tool to be used 

for securing homeland safety against potential terrorist attacks by tracking and identifying 

suspects who might be trying to indulge in such activities. It is also a technology that has proven 

its usefulness for law enforcement agencies by helping identifying or narrowing down a possible 

suspect from surveillance tape on the crime scene, or quickly by finding a suspect based on 

description from witnesses.  

In this thesis we introduce several improvements to morphable model based algorithms and make 

use of the 3D face structures extracted from multiple images to conduct illumination analysis and 

face recognition experiments. We present an enhanced Active Appearance Model (AAM), which 

possesses several sub-models that are independently updated to introduce more model flexibility 

to achieve better feature localization. Most appearance based models suffer from the 

unpredictability of facial background, which might result in a bad boundary extraction. To 

overcome this problem we propose a local projection models that accurately locates face boundary 

landmarks. We also introduce a novel and unbiased cost function that casts the face alignment as 

an optimization problem, where shape constraints obtained from direct motion estimation are 

incorporated to achieve a much higher convergence rate and more accurate alignment. Viewing 

angles are roughly categorized to four different poses, and the customized view-based AAMs align 

face images in different specific pose categories. We also attempt at obtaining individual 3D face 
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structures by morphing a 3D generic face model to fit the individual faces. Face contour is 

dynamically generated so that the morphed face looks realistic. To overcome the correspondence 

problem between facial feature points on the generic and the individual face, we use an approach 

based on distance maps. With the extracted 3D face structure we study the illumination effects on 

the appearance based on the spherical harmonic illumination analysis. By normalizing the 

illumination conditions on different facial images, we extract a global illumination-invariant 

texture map, which jointly with the extracted 3D face structure in the form of cubic morphing 

parameters completely encode an individual face, and allow for the generation of images at 

arbitrary pose and under arbitrary illumination. 

Face recognition is conducted based on the face shape matching error, texture error and 

illumination-normalized texture error. Experiments show that a higher face recognition rate is 

achieved by compensating for illumination effects. Furthermore, it is observed that the fusion of 

shape and texture information result in a better performance than using either shape or texture 

information individually.
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CHAPTER 1 : INTRODUCTION 

Human face recognition is an inter-disciplinal subject that utilizes various technologies to 

analyze and identify human faces from images, video sequences, range data etc. Face 

recognition has an extensive range of potential applications. For law enforcement agencies it 

can be of great assistance to hunt down criminals. The verification of a real person and his ID 

photo in the driver’s license or passport would somehow prevent ID fraud. In the future, face 

recognition is expected to be the core technology in intelligent surveillance systems for banks 

and customs. With the blooming of online business, companies have to deal with more and 

more online frauds as personal information in a traditional sense are easy to be hacked. Real 

time face verification with input video sequences from a webcam seems to be a promising 

method for increased transaction safety.  

Besides face, other features that have been explored for recognition are fingerprint, iris, retinal, 

vein, voice etc. Together, these automated recognition methods belong to the big category of 

biometrics, which in general refers to identifying a person based on a physiological or 

behavioral characteristic. Compared to popular biometric features like fingerprint and iris, 

face images are easy to obtain without the cooperation or awareness from the targeted people.  

It is the most natural thing to identify a person by his face. It is a fundamental functional of a 

human being to memorize and identify thousands of different faces. However, this task is 

more difficult for computers of current generation. This is caused by their different underlying 

working mechanism. Computers are good at complicated computation, but have limited logic 

ability. Scientists are still trying hard to understand how a human being’s brain works. 
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Physiological and psychological studies of the human vision system lead to some conclusions 

that stimulate the development of face recognition systems. First of all, vision data needs to be 

encoded compactly and later reconstructed (as a brain does) and classified based on the a 

priori knowledge of all classes. A human brain dynamically interacts with the outside world to 

update its knowledge. Secondly, both the overall appearance and facial parts contribute to the 

recognition process. Eyes and mouths are believed to be more important than noses. However 

for a specific person, the most active feature varies. What a caricature does is to magnify the 

most distinct feature of a face, so that people can easily recognize the person.  

1.1 Influential Factors for Face Applications 

In general, a face recognition algorithm extracts certain information from face images or 

video sequences of unknown identity and look up a face database for its closest match. 

Usually this process is composed of the following steps: segment the face from the image(s), 

extract and analyze features, followed by the verification or identification. Different face 

applications might focus on different steps.  

For almost all face applications, following is a summary of some important factors: 

1) Face image quality. Unlike face images taken under controlled environments, video 

surveillance usually outputs face images of low resolution, therefore makes it hard to obtain 

face details. 

2) Unpredictable background. To separate a face from a complicated background is not an 

easy task. For video sequences, this could be relieved with motion estimation algorithms. 

3) Lighting condition. Face images of the same person might look very different under 
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different illumination environments, especially when shadow is present. 

4) Pose of the face. Even under a controlled condition, different people might still show 

slightly different poses, let alone images from video surveillance tapes.  

5) Facial expression. It is easier to analyze the facial expression given the human-computer 

interaction. However, facial expression presented in one or just several images is hard to 

separate, causing a lower recognition rate.  

6) Disguise and partial occlusions. With different hairstyle, mustache, sunglasses and other 

cosmetic effects, even human eyes might be deceived. These disguises are not reversible.  

7) Age. Human face transforms slowly with age due to the growth of facial bones and healthy 

state of facial skin. Aging effect is extremely difficult to predict as it is affected by both 

internal and external environment.  

In reality, no such an almighty face recognition system has been developed to cover all 

aspects mentioned above. Facial expression recognition and age, gender recognition has more 

or less developed into independent topics. This thesis mainly considers face alignment and 

recognition under different poses, backgrounds and lighting conditions.  

1.2 Problems and Motivations 

At the early stage of face recognition study, the mainstream effort was devoted to extract 

geometrical features for recognition. This approach is not effective, especially on a big face 

database. Ever since the 90s, the prevailing algorithms have been those that are based on the 

whole appearance. Typical algorithms include eigenface algorithms [1], elastic graph 

matching algorithms [2], Hidden Marcov Models [3] and Neural Network algorithms etc. In a 
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survey paper [4] in 1993, appearance-based methods are compared with geometrical 

feature-based methods and the author concluded that appearance-based methods have better 

performance. Model matching algorithm is one of the earliest appearance-based methods. 

With years, it has evolved from simple rigid model matching algorithms to more complicated 

flexible models. Algorithms of this kind share two common features: shape and texture of a 

face are separately encoded; face modeling task is accomplished by seeking for the optimal 

parameters that can synthesize a face which best imitates the unknown face. In this thesis, 

flexible appearance-based models mainly serve to align facial feature points of an unknown 

face.  

Face is a nearly convex three dimensional (3D) object. So naturally one would expect to see a 

lot of face applications from the 3D perspective. However before the late 90s, the 

overwhelming algorithms were carried on two dimensional (2D) face images without 

explicitly recovering the underlying 3D face geometry. One of the main causes is the inability 

to reconstruct a 3D face accurately. Early 3D research in computer vision includes 3D shape 

from X, where X refers to shading, stereo etc. At the same time, people in computer graphics 

community have the continuous fever of working toward synthesis of novel realistic view and 

advanced 3D animation. In fact, some big achievements have been made by the computer 

graphics community. Triangle mesh is widely adopted to represent face structure.   

The big breakthrough is the 3D morphable model [5] proposed by T. Vetter in 1999. 3D 

morphable model is trained based on real 3D dense face data. It is a generative model that can 

synthesize new face based on the statistical properties of the training face set. There are 

extensive studies on this model and it proves to be very successful for face recognition on 
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large databases with various poses and illuminations. However, the 3D morphable model 

needs a 3D face database which is generated with special instruments like a 3D laser scanner. 

The modeling process is still too slow for most real face applications.  

This thesis will address several aspects of a face recognition system: alignment of facial 

feature points based on improved appearance models; 3D face modeling using cubic 

morphing and 2D alignment results. The recovered 3D model makes it possible to conduct 

illumination modeling based on the spherical harmonics analysis [6], a recently proposed 

illumination model that can model illumination space with only 9 parameters. As applications, 

our model can generate novel faces under arbitrary views. The extracted shape and texture 

information could be used separately or together for recognition purpose.  

1.3 Face Images Used in This Work 

The face images we collected are from open online face databases. All images under study 

have been preprocessed and segmented to the standard size 256 by 256.  All faces have 

neural expressions and slight or no occlusions. Age is not considered though most of the faces 

are female and male adults of different ethnic backgrounds. Besides Caucasian, some Asian 

and Black faces are selected. There is no limitation with regard to the face backgrounds, 

illuminations and poses. In a word, it is a very diverse face database.  

1.4 Contribution of the Thesis 

This thesis makes the following contributions: 

1) For the task of aligning face feature points, the standard Active Appearance Model [7] is 

enhanced by introducing the idea of sub-models for better feature localization. Sub-models 
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allow for independent local shape updating and they are closely integrated into one global 

appearance model.  

2) Local projection models are adopted to accurately locate face boundary landmark points as 

unpredictable background poses problem for most appearance models.  

3) Face alignment task is reinterpreted from the perspective of optimization. This thesis 

presents a novel cost function that is an unbiased evaluation of face alignment quality. 

Shape constraints from motion estimation and local projection models are added to the 

optimization function to achieve a much higher convergent rate.  

4) Face surface reconstruction problem is tackled by cubic morphing and view-based face 

alignment results. Partial linear optimization and L-M optimization are experimented and 

compared. Face contour is dynamically generated and added to the optimization process.  

5) The illumination condition of face images is not controlled. Spherical harmonics are 

adopted to approximate illumination space for each person. An illumination independent 

texture map is extracted. 

3D face modeling is the best approach to estimate face poses. With a reconstructed 3D face 

model, synthesis of new images is straightforward. Face illumination is also analyzed based 

on the 3D face structure. With extra symmetry constraint, illumination could give us shape 

information about the underlying face just as shape from shading algorithms do. This thesis 

mainly deals with extraction of 3D shape information and illumination-free texture 

information and manifests their applications for face synthesis and recognition.  
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1.5 Outline of this thesis 

In the rest of this thesis, the problem of face reconstruction and recognition will be addressed 

in detail. This thesis starts with the face alignment task on face images in Chapter 2 and 

Chapter 3. In Chapter 2, a Component-based Active Appearance Model is proposed to align a 

morphable face mesh to any face image. Sub-model analysis aims at better local details, while 

local projection models deals with accurate face boundary detection. Chapter 3 introduces a 

hybrid constrained optimization method that incorporates several shape constraints for fast 

and more accurate face alignment. Experiments show that direct shape estimate is very 

efficient and accelerates the canonical optimization procedure. Chapter 4 addresses the 3D 

surface reconstruction problem from face alignment results in 2D. For realistic view, face 

contour is also considered. Chapter 5 emphasizes the illumination model based on the 3D 

structure from Chapter 4 and the spherical harmonics theory for illumination subspace 

modeling. Chapter 6 shows how the extracted shape and texture information could be used for 

synthesis and face recognition purposes. Chapter 7 concludes this thesis and discusses about 

possible extensions for future work.  
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CHAPTER 2 : COMPONENT-BASED ACTIVE APPEARANCE MODEL 

In this chapter, a novel component-based AAM is presented to align facial feature points on an 

unknown face image. Without confusion, terms “face modeling (in 2D)” and “face alignment” 

might be abused to refer to the same task. The AAM statistically models shape and 

appearance based on principal component analysis. It is a powerful tool for modeling a class 

of objects such as faces. However, the AAM also suffers from two major drawbacks as a 

statistical model. First, it is common to see a far from optimal local alignment when 

attempting to model a face that is quite different from training faces. By adopting three 

sub-models inside the face area, then combining them with a global AAM, face alignment 

could achieve both local as well as global optimality. Secondly, it is well known that 

background information is invariably encoded into AAM’s updating rule, which leads to 

substantially degraded performance for faces with unseen background. In fact for most 

appearance model-based algorithms, face contour points are especially hard to locate due to 2 

facts: face cheek is almost textureless; face background is unpredictable and unreliable. Local 

projection models are utilized to accurately locate face contour points. They prove to be 

effective and computationally efficient by making use of intermediate piecewise affine 

transforms between face meshes.  

2.1 Literature 

Detecting a face and aligning facial features are usually the first step for any face recognition 

system. Therefore it is crucial for all face applications. The earliest approaches favored by 
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researchers are general low-level edge detection. Later several parametric models that are 

more specific to human face were developed. For example, circles are adopted to model and 

locate the eyeball locations from the edge map of a given face image and a parabolic curve is 

used to extract and describe the mouth [9]. The active contour [10], also known as the Snake 

algorithm was introduced by M. Kass etc. Starting with an initial position, the parameterized 

curve is updated iteratively and moved towards an optimal contour in the face image so that 

an objective energy function is minimized. Usually the energy function models the 

smoothness of the curve as its internal force and edge strength as its external force. Its 

applications include edge detection, motion tracking etc. Level set method [11] is a more 

advanced algorithm compared to Snake. It is a generic numerical method for evolving fronts 

in an implicit form. It handles topological changes of the evolving interface and defines the 

problem in one higher dimension. It lays the groundwork of its kind and researchers could add 

their own constraints for their specific applications in image segmentation, enhancement or 

registration.  

Though the smoothness of the curve is considered into the energy function, Snake has little 

control over the overall shape. For level set method, some latest papers incorporate shape 

prior into the level set function and it leads to improved performance. Unlike Snake or level 

set, statistical models directly learn the shape and/or texture distribution and only allow for 

admissible shapes/textures. The Active Shape Model (ASM) [12] is such a model. It is 

proposed by T. Cootes in 1994. Face shape is represented with a set of landmark points. With 

the help of a subspace analysis method like Principal Component Analysis (PCA), a compact 

representation of the shape can be obtained. The distribution of shape in the subspace is 
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learned from a training set. To extract the face shape from an unknown image, the ASM 

analyzes the local distribution for each landmark point and moves the point so that it is in 

accordance with a typical local distribution. By confining the overall face shape within the 

face space, the ASM generates flexible yet well-controlled face shapes.  

In 1998, Cootes came up with a similar model, the Active Appearance Model (AAM), which 

differs from the ASM with its updating mechanism. For each face, a shapeless texture is 

extracted from the image and projected into the texture subspace. Ultimately face model 

parameters are then generated from both the shape and texture subspace coefficients. Seeking 

optimal model parameters for a given face image is an iterative procedure. In each step a fixed 

gradient decent matrix is used to update the model parameters. As a successor of the ASM, the 

AAM is computationally efficient and has been intensively studied by many researchers. T. 

Cootes compared the ASM with the AAM in [13] and concluded that the ASM has better 

localization, while the AAM has better face texture interpretation. 

Several variations of the original AAM algorithm have been proposed. The Active Wavelet 

Networks (AWN) [14] replaces the AAM’s texture model with Gabor networks. Due to the 

localization property of the wavelet basis, the AWN is less sensitive to illumination and 

possible partial occlusion. The Texture Constrained – Active Shape Model (TC-ASM) [15] 

unites the ASM and the AAM under a Bayesian framework. The resulting shape is a hybrid 

weighted prediction from both the ASM and the AAM. The Direct Appearance Model (DAM) 

[16] predicts shape parameters directly from texture parameters, based on mutual dependency 

of shape, texture and model parameters. The Inverse Compositional AAM [17] is proposed as 

a simple, yet theoretically more correct model. Better performance is reported in terms of rate 
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of convergence and model fitting accuracy. The Inverse Compositional AAM will be 

explained in detail in next chapter. M. Stegmann [18] studied various AAM extensions in his 

thesis and compared different optimization schemes. 

Multi-view faces alignment algorithms have been developed for the AAM, the AWN and the 

DAM [19] [20] [21]. S. Romdhani etc used a nonlinear Kernel PCA [22] based on Support 

Vector Machines to handle the nonlinear model transformation in their multi-view face ASM 

algorithm. The AAM is also applied to direct 3D modeling. Li etc [23] presented a 3D face 

model and iteratively solved 3D model parameters by fitting projected 2D models to video 

sequence or images of different viewpoints. F. Dornaika etc [24] trained the Candide 3D face 

model using PCA to track faces in video sequences. In CVPR 2004, J. Xiao etc [25] showed 

their latest progress with the Inverse Compositional AAM. A 3D morphable model is added to 

constrain the 2D alignment. 3D and 2D model parameters are solved simultaneously as a 

result of the real-time aligning procedure. 

The original AAM has several inherent drawbacks as a global appearance based model. First, 

it has a simple linear update rule stemming from a first order Taylor series approximation of 

an otherwise complex relationship between the model parameters and the global texture 

difference. Clearly, any factor that contributes to the global texture will affect the AAM’s 

performance (examples are global illumination, partial occlusion, etc.). In a converged AAM 

modeling scenario, the local alignment results may need further refinement to meet the 

accuracy requirement of many applications. In some cases, the AAM results in a local 

minimum where some landmark points are far away from their real locations. It is desirable to 

pull the AAM out of the local minimum. Secondly, gradient descent information near the face 
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contour seeps the background pattern in the training set. Hence, the AAM can not perform 

well for test face images with unseen backgrounds. 

This chapter tries to cope with all these problems associated with the AAM with a 

component-based AAM, which groups landmark points inside the face into three natural 

components in addition to the globally defined AAM. The independence of the local 

component AAMs adds flexibility and leads to a more accurate local alignment result. For 

landmark points on the face contour, a strategy similar to the ASM is adopted. The ASM 

updates any landmark point by analyzing the profile along local normal direction that needs to 

be adjusted accordingly in the iterative procedure. Our new method makes full use of what’s 

already available during the AAM procedure. Instead of getting local distributions directly 

from the original image, the proposed algorithm works directly on the edge map in a standard 

shape frame. That leads to a huge reduction in computation. Another advantage is that our 

new projection models are automatically proportioned to the scale of the whole face. Together, 

the revised projection models with the component-based AAM results in an improved 

performance, especially on the test set. 

2.2 Preliminary Background: the Active Appearance Model 

For each face in the training set, 73 key landmark points are picked and the sequence of their 

coordinates forms a shape vector. Let X  be the mean shape of all the training face shapes. 

For each training image, the face patch inside the convex hull of the landmark points is 

warped to a base face mesh to form a texture vector. Usually the base face mesh is just the 

mean face mesh. Fig. 2.1(a) shows landmark points on a face image and the resulting 
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shapeless texture is in Fig. 2.1(c). 

 

  

Figure 2.1 (a) Definition of landmark points. (b) Face mesh. (c) Shapeless texture. (d) Base 
face mesh. 

 

All shape vectors are normalized to a common coordinate system before proceeding to the 

subspace analysis. In the original AAM, all shapes are aligned to the tangent space of the 

aligned set mean, as this normalization introduces less non-linearity compared to other 

methods [8]. This normalization needs to be implemented iteratively. Our experiment exposed 

a potential convergence problem of this normalization method.  As it hasn’t been addressed 

before, Appendix A gives a detailed explanation. To discriminate different coordinate systems, 

capital letters are used to notate shape and texture vectors in the image frame and low-case 

letters for the model frame. The coordinate normalization introduces a similarity transform 

between a face vector imX  in the image frame and the corresponding normalized one x  in 

the model frame. The similarity transform could be characterized by transpositions in x and y 

direction as xt , yt , a scaling factor s  and a rotation angleθ . These 4 parameters form a 

2D pose parameter set for a specific face image. Let the pose parameter set 

Ψ be },,,{ tytxs θ . The texture vector imG is also scaled and zero centered so that the 

transformed g is aligned with the tangent space of the set mean in the model frame. PCA is 
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adopted to model the shape variation and texture variation in the training set. In the low 

dimensional shape space and texture space, the shape x  and the texture g  are respectively 

ss b*Pxx +=          (2-1) 

and 

gg b*Pgg += .         (2-2) 

where sP  is a matrix whose columns are the principal orthogonal modes of variation of the 

shape space with sb being the vector of shape parameters. gP is a matrix describing the 

modes of variation of the texture space with gb being the projected texture parameters. As 

there might be correlations between shape and texture variations, the vector sb  and gb  are 

concatenated for further de-correlation using PCA.  

)(
g

ss

b
bW

b
⋅

=         (2-3) 

where sW  is a diagonal weight matrix, the vector b is projected into the subspace as 

cQb ⋅=          (2-4) 

The combined parameter vector c encodes both the shape and texture information. We 

rewrite Q  in the form of 2 sub-matrices sQ  and gQ  as 

)(
g

s

Q
Q

Q =          (2-5) 

So that Qs has the same number of rows as sb . The reconstruction of the shape vector x  

and the texture vector g  from the combined parameter vector c  is as follows: 

cQWPxx ⋅⋅⋅+= sss         (2-6) 

cQPgg ⋅⋅+= gg          (2-7) 

The complete appearance model parameter set p  includes 2D pose parameter set Ψ  and 
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the combined parameter vector c . p  = {Ψ , c }. The offsetting and scaling operations 

needed to transform the texture vector from the image frame to the model frame are easy to 

estimate, so they are not included.  

Searching for an unknown face in an image is equivalent to seeking for the model parameter 

set that best describes the face. This procedure is realized iteratively. Given the current 

estimate of the combined parameter vector c  and the 2D pose parametersΨ , the shape 

vector imX  in the image frame can be easily computed. We warp the face patch enclosed by 

imX  to the base mesh and align the resulted texture vector sG  to the model frame to 

generate the texture vector sg . The difference between sg  and the model texture mg  

directly reconstructed from the model parameters is: 

ms ggpr −=)(        (2-8) 

The mean squared error of )(pr  indicates the matching quality. It measures how good the 

current model parameters describe the unknown face. This thesis follows Cootes’ notation for 

the difference vector here. )(pr  is the texture residue. In some papers, it is also called the 

difference image though it is not an image in common sense. Notation gδ  is also used by a 

lot of researchers instead of )(pr . The main contribution of the AAM is that it assumes a 

linear relationship between the texture residue )(pr  and the update pδ for the model 

parameter vector: 

       )(prRp ⋅−=δ        (2-9) 

R is the gradient descent matrix as [8]: 

TT )())(( 1

p
r

p
r

p
rR

∂
∂

∂
∂

∂
∂

= −       (2-10) 
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where 
p
r
∂
∂

 is the derivative of )(pr  w.r.t. the model parameter vector p . It is assumed to 

be fixed and could be approximated numerically by systematically adding disturbance to 

model parameters from their optimal values and taking the average over the whole training 

set. 

)(pr  is still in high dimensional space. X. Hou etc [16] showed that using principal 

components of )(pr  instead of raw data leads to a more robust alignment result.  

)(1)( prApr ⋅=         (2-11) 

Then the new updating rule is: 

)(11)(1 prRprARr(p)Rδp ⋅=⋅⋅=⋅−=      (2-12) 

In [8], it is mentioned that background could cause some problem in the process of training 

for the gradient descent matrix.  A suggested solution is to use a random background so that 

R  is independent of the background patterns in the training set. However, experiment shows 

that the searching process has visibly worse performance locating the face contour as a result. 

In fact, background information can help lock to the right face contour when the unknown 

face is presented with a background mostly seen in the training set. An efficient solution to the 

face contour problem will be addressed later.  

2.3 Component-based AAM 

The AAM is a global appearance-based model and has the ability to model both shape and 

texture with only a few parameters. After a predicted update for the model parameters is 

calculated given the current texture residue, almost all existing AAM algorithms adopt the 

same strategy to guarantee the convergence of the AAM. That is, along the gradient descent 
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direction pδ , different step sizes are tested until a smaller matching error is achieved. While 

the computational cost is proportional with the number of tries, experiment also indicates that 

it is useless to try for more than 4 different step sizes. In that case, it could either fail to 

converge, or give a little improvement and fail within the next one or two iterations. Some 

other action should be taken when the AAM fails to work. The ASM is less affected by global 

illumination and occlusion compared to the AAM, but the ASM also has its own drawbacks 

despite its good localization. It could fall into local minimum easily. Building a local model 

for every landmark point and updating landmark points one by one is time consuming. Based 

on the fact that local shape depends only on local appearance pattern, a Component-based 

AAM is proposed in an effort to gain better feature localization while keeping the AAM’s 

merit of good appearance modeling. The basic idea is to group landmark points to components 

and train the local models independently. To avoid possible confusion, the original AAM is 

referred as the global AAM. During the modeling process, different components are updated 

separately as independent sub models. Meanwhile, they are united and confined with a global 

AAM. In this way, error propagation between local components is reduced and modeling 

ability is enhanced locally. Three components in the mean shape frame are shown as 

highlighted areas in Fig. 2.2(a). Landmark points are naturally grouped to balance the added 

computational cost and the algorithm efficiency. From columns 2.2(b) to 2.2(d), components 

of the person in Fig. 2.1(a) are shown. The top row shows original facial patches and the 

bottom row shows warped shapeless textures.   
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(a) (b) (c) (d)  

Figure 2.2 (a) Landmark points inside face are divided into 3 groups. (b) Left eyebrow and 
eye in one group. (c) Right eyebrow and eye. (d) The nose and mouth. 

 

Our component-based AAM is a combination of one global AAM and three sub-models. As 

part of the global face patch, all components are normalized to the same common coordinate 

system as that for the global face. This establishes clear correspondence between the global 

model and the sub-models. Not only all sub-models share the same 2D pose parameters 

(transpositions, scaling and rotation) as the whole face, but the component shapes, textures 

and texture residuals are just fixed entries in their counterparts of the global model. 

Normalizing the components differently would introduce extra variables and only complicates 

the problem. 

Three sub-models are trained separately for the local components. For the ith component, its 

combined parameter vector is obtained by projecting appearance pair { ix , ig } to a local 

eigen-subspace. The local model parameter sets are expressed as {p  = {Ψ , ic }, i = 1, 2, 3}. 

Each component has its own gradient descendent matrix iR  generated by adding 

disturbance to optimal component model parameters and averaging over the whole training set. 
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Since the components have the same 2D pose parameters as the global face patch, derivatives 

of ith texture residue )(pri  w.r.t. the pose parameters are simply the corresponding entries 

in 
p
r
∂
∂

.  The sub-models work on the components in the same way the global AAM does on 

the whole face, except that the optimization criterion for the sub-models is the same global 

matching error. 

During the process of modeling a novel face, the Component-based AAM switches between 

the global model and the sub-models alternatively. After every iteration of a global AAM, the 

global appearance parameter set p  = { Ψ , c } is sufficient to reconstruct a series of 

measurements: the global shape x , texture g , shape in the image frame imX , texture 

residual )(pr  and global matching error is 0e . The various steps to model local 

components are detailed as follows:  

For the ith component (i = 1 to 3), repeat the following steps: 

1) Global to local mapping: Generate the sub-model shape ix , texture ig  and texture 

residual )( ii pr  by looking up fixed entries in x , g , and )(pr . Project { ix , ig } onto 

local subspaces. )(' ii pr are the principal components of )( ii pr  that capture 98% of the 

variations of the combined feature space.  

2) Local AAM prediction: Apply the local AAM to obtain a new sub-model shape vector 'ix , 

texture vector 'ig  and local 2D pose iΨ .  

3) Local to global mapping: Use { 'ix , 'ig } to update corresponding entries of the global 

texture vector g and local landmark points in the image frame.  

4) Decision making: If the new global parameters result in a smaller matching error, accept 

the update for the current component.  
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In summary, three independent sub-models allow components to transform separately for an 

optimal global matching. In [26], sub-models are constructed to model vertebra. It bears 

similar idea as ours. However, they basically repeat the same sub-model for a sequence of 

triplet vertebrae and propagate their results, therefore different from our approach. 

2.4 Local Projection Models for Face Boundary Detection 

When a test face is presented in a background unseen in the training set, the AAM often fails, 

especially for face contour points. Since the landmark points on the face contour are usually 

the strongest local edge points, it stimulates us to develop a method similar to the ASM to 

complement our component based AAM. First, let’s quickly review how the ASM is able to 

adjust a landmark point to its desired location as illustrated in Fig. 2.3. Each landmark point is 

pulled toward the strongest edge point along the local normal direction. The right figure 

shows the edge strength pattern along the dashed line in the left figure. The landmark point A 

is moved to A’ based on the updating rule. 

 

 

Figure 2.3 Updating rule for the ASM algorithm 

 

Using the edge strength along the profile directly is very sensitive to image noise. Edge 

information would be more prominent and stable after taking the local average. This could be 

face 
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implemented by opening a narrow window and accumulating the edge map along the 

boundary direction to create a projection model for this landmark point. This is shown in Fig. 

2.4. 

 

 

Figure 2.4 Building a local projection model 

 

Building local projection models in the original face image, as the ASM does, would be a time 

consuming task considering all the contour points that need to be updated within a single 

iteration. The normal direction at a landmark point depends on this specific point and its 2 

neighbor points. Any update to one of the 3 points will lead to a different normal direction. 

Secondly, the scale of the local projection model should be made proportional to the size of 

the whole face. These two problems are easily solved in our approach by associating the local 

projection models with the triangulation result of landmark points. Fig. 2.5 (a) is the mesh of 

landmark points for the person in Fig. 2.1. Fig. 2.5(b) shows the mean shape. 
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Figure 2.5 Triangulation of face landmark points: a) Original shape of the person in Fig. 2.1. 
b) Mean shape of training set. 

 

Triangles sitting on the face boundary are filled with black color. Their bottom sides form the 

face contour. Assume each black triangle is associated with a parallelogram with the bottom 

side of the triangle being the parallelogram’s middle line. Our local projection models are 

built based on the analysis of the edge map inside these parallelograms. 

Instead of working on the edge map in the original face image, the analysis is conducted on 

the warped image edge map. Suppose a triangle in the original mesh is V1 = {v11, v12, v13}, 

where v11 = (x11, y11, 1)’ is one of the vertices under homogeneous coordinate system. The 

corresponding transformed triangle in the mean shape is V2 = {v21, v22, v23}. An isosceles 

triangle is introduced as a standard triangle V0 = {v01, v02, v03}. As long as the bottom side of 

the triangle is transformed to the horizontal or vertical position, the projection along the face 

contour direction in the face image is now simplified to summation along the x (or y axis) 

after 2 transforms. Fig. 2.6 illustrates how a triangle-parallelogram in the face image is 

warped to the mean shape frame and subsequently to the standard triangle-rectangle pair. 

 

V1

(a) (b)

V2
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Figure 2.6 A parallelogram associated with a triangle on the face boundary. a) Original 
image frame. b) Mean shape frame. c) Standard pair. 

 

                           21 VAV ⋅=         (2-13) 

                           02 VBV ⋅=         (2-14) 

                           01 VBAV ⋅⋅=         (2-15) 

The piece-wise affine transform parameters are available in the AAM step (to generate a 

shapeless texture vector from the current face patch). The transformations between V0 and all 

the triangles in the mean shape could also be computed in advance. Clearly, with the help of 

mean shape and a standard triangle, the local projection models can lock the face contour 

points to the locally strongest edge points. It is much faster and easier compared to the ASM. 

The regions of interest for our local projection models are defined according to current face 

landmark points. Therefore there is no scaling problem at all.  

2.5 Component-based Search 

The AAM search on an unknown face image is an iterative procedure to find the best model 

parameters. The update for the model parameters is driven by a linear prediction model. When 

the texture residue is beyond the linear approximation range, a first order gradient descent 

matrix has less or no prediction power, especially when the matrix is a fixed matrix 

throughout the whole search. A good initial model parameter set is necessary for the AAM to 

(a) (b)
x

y

(c)
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converge successfully. A common initialization starts with the average shape, texture and 2D 

pose parameters. As different initialization strategies could significantly affect the face 

alignment performance, it is worthwhile to pay a little attention to the initialization method. A 

direct exhaustive searching strategy is used. After sampling the face subspace, 900 prototype 

models are generated which vary in pose, shape and appearance. Given an unknown face 

image, one of the prototype models is quickly chosen. The direct search is very fast as most of 

the computation is irrelevant with any specific image, therefore needs to be done only once. 

The detailed initialization method is given in Appendix B. 

Like most other AAM algorithms, our component-based AAM works in a pyramidal way. To 

roughly locate the face and facial features, in the first stage it is enough to work on the face 

image at low resolution. This helps prevent the search from being trapped in a local minimum. 

The alignment result of lower resolution is then passed to the original image as initial 

parameters. In the iterative realization, the global AAM is run first and when it fails to 

converge, local AAMs is launched, followed by the local projection models to lock current 

model boundary points to the nearby strongest edge points. The search will stop in any of the 

3 cases: 1). No more improvement could be made from last iteration; 2). Maximum number of 

iterations has reached; 3). Matching error is below a pre-defined thresholdε . Fig. 2.7 is a 

flowchart illustrating all steps.  

The search in the original image is more complex and time consuming compared to the search 

involved in a smaller image. Practically human interference should be added when the search 

in the first stage fails. All experiments in the next section were however carried out without 

any human interference. 
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Figure 2.7 Flowchart of steps in an iterative AAM search 

 

2.6 Experiments 

Our face database includes 138 nearly frontal images from various face databases [27] [28] 

[29]. The set consists of neutral faces and all images were roughly resized and cropped to 256 

by 256. Various lighting conditions and image background patterns are challenging to the 

proposed algorithm. Nevertheless, a versatile face database is the best way to test the 

robustness. 80 images are sequentially picked to train face shape subspace and rest of the 

images constitute the test set. Some samples from our database are shown in Fig. 2.8. 

The proposed algorithm is also tested on the Japanese Female Facial Expression database 

(JAFFE) [30], which contains 213 images of 7 facial expressions of 10 female models. 

Though our algorithm is only designed to deal with neutral faces, its performance on the 
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JAFFE turns out to be quite good. The only pre-processing that is conducted is to scale the 

original 200 by 200 images to standard size 256 by 256. 

Though the texture error is used as the evaluation function, it does ont reflect model fitting 

quality strictly. For all images in our database and JAFFE database, all landmark points are 

manually labeled and a distance map is created for each image. The model fitting quality is 

then measured by the average point-to-edge distance. Within the same framework, three 

different algorithms are tested and compared: the AAM search; the AAM with Component 

analysis (AAM_CA); the AAM with component analysis and local projection models 

(AAM_CA_LPM).  

 

 

Figure 2.8 Sample images in our face database. 

 

2.6.1 Component-based Search 

Fig. 2.9 compares the AAM and the AAM_CA model fitting results. Apparently face 

components inside the face area have better feature localization with the enhanced 
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component-based search. 

As expected, the converged global AAM couldn’t achieve optimal local alignment results. 

Better localization of facial feature points could be seen on the bottom row. Note there is no 

boundary correction involved here. Table 2.1 shows the average point-to-edge errors for 

algorithms with and w/o component analysis. Only face component points are considered. 

 

Table 2.1 Average point to edge error (contour points excluded) 

Algorithms Training set Test set JAFFE 
AAM 2.0661 3.5513 3.1696 

AAM_CA 1.8988 3.2429 2.9377 

 

 

Figure 2.9 AAM (top row) versa AAM_CA (bottom row). (a) Training set. (b) Test set. c) 
JAFFE 
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2.6.2 Face Contour Detection with Local Projection Models 

The AAM_CA and the AAM_CA_LPM fitting results are compared to show how the 

integration of local projection models can help solve the boundary problem. Fig. 2.10 shows 

some examples. 

 

 

Figure 2.10 AAM_CA (top row) versa AAM_CA_LPM (bottom row). (a) Training set. (b) 
Test set. (c) JAFFE 

 

Table 2.2 shows the average point-to-edge errors for algorithms with and without face contour 

correction. The eye-catching error of 7.4741 indicates an almost total failure of face contour 

detection. Clearly the AAM trained on one database has problem detecting the right face 

contour on a different database. This error is efficiently lowered to 4.1356 with the proposed 

algorithm. 
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Table 2.2 Average point to edge error(contour points only) 

Algorithms Training set Test set JAFFE 
AAM_CA 3.5298 4.7153 7.4741 

AAM_CA_LPM 3.2909 3.8430 4.1356 

 

It is interesting to see in Fig. 2.9(b), boundary points are correctly aligned due to component 

analysis. Also Fig. 2.10(b) has correct component points. Clearly the integration of local 

AAM analysis and local projection models makes our fitting algorithm more accurate and 

robust. 

At last, the AAM, the AAM_CA and the AAM_CA_LPM are compared w.r.t. their convergent 

rate curves as shown in Fig.2.11. A good approximation of an error PDF function can be 

obtained with the histogram of point errors for all images in a database. The cumulative 

function also represents the convergent rate. i.e., given a point to edge error ε in x-axis, y-axis 

gives the percentage of images with errors smaller or equal to ε. Clearly the AAM_CA_LPM 

has the best performance and the improvement is especially prominent for the JAFFE 

database. 
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Figure 2.11 Curves of convergent rate versa error threshold. (a) Training set. (b) Test set. (c) 
JAFFE database. 

 

2.7 Conclusions 

In this chapter, a component-based AAM algorithm is proposed to deal with the lack of 

feature localization problem in the original AAM. Model points are naturally grouped and 

sub-models are combined with the global AAM model. In this way, the simplicity and 

efficiency of the AAM model is preserved, as well as the ASM’s good localization ability. The 

background problem is solved by using local projection models which attract boundary model 

points toward the strongest edge points locally. All component sub-models and local 

projection models are tightly combined and smoothly interact with the global AAM model by 

sharing their intermediate results. As a result, our algorithm is efficient and shows steady 

performance for images from different sources.  
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CHAPTER 3 : 2D FACE MODELING WITH A HYBRID 

CONSTRAINED OPTIMIZATION ALGORITHM 

In Chapter 2, a component-based AAM is addressed for face modeling. The improved 

performance is due to the inherent localization of the proposed model. However, it only 

refines the alignment result when the face is already approximately located. When it fails to 

locate the face even roughly, it has a high probability to fail. For this reason, in this chapter, a 

new face alignment algorithm will be presented from a different perspective. A constrained 

hybrid optimization algorithm incorporates several shape constraints into a gradient-descent 

procedure using a novel unbiased cost function. Shape constraints are heuristically derived 

from face images where the face shape can be directly estimated based on "motion" analysis. 

To better locate face contour points regardless of the background, local projection models are 

used. Experiments show that our algorithm benefits significantly from these shape constraints 

and achieves a much higher convergent rate compared to the inverse compositional 

optimization algorithm. Our algorithm is tested on different face databases, and its robustness 

is fully demonstrated in the presence of varying illumination, background, and facial 

expressions. 

3.1 Literature 

A widely adopted strategy in face analysis and recognition is analysis by synthesis, i.e., 

describing and analyzing a human face through modeling. In recent years, many flexible 

model-based algorithms have been proposed based on the analysis by synthesis approach and 
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have been shown to be fruitful in a wide area of applications ranging from face coding, to face 

reconstruction, to facial expression recognition etc. Two such models that have received a 

great deal of attention are: the Multidimensional Morphable Model (MMM) [31] and the 

AAM. Both are generative parametric models that have been customized to model a class of 

objects. 

The AAM, the MMM and most of their variants, follow several basic rules. Raw face shape 

and texture are extracted from the face image and are stored (in a vector form) as two distinct 

measurements. Face parameters are formed by treating face shape (or texture) as a linear 

combination of a set of exemplar basis shapes (or textures). Fitting a face model to a face 

image is an optimization process that minimizes a cost function. Modeling quality is evaluated 

using the cost function, which usually measures the minimum mean square error (MSE) 

between a synthesized model face and input face. 

Face modeling amounts to finding the global minimum of the cost function, and is usually 

attained with standard gradient descent algorithms. It is well known that for the solution to be 

a desired global minimum, the cost function has to be convex, which is hard to meet in reality. 

Besides, heavy computation is inevitable as gradient and Hessian information of the cost 

function need to be updated iteratively. The MMM originally adopts a stochastic gradient 

descent algorithm, which is comparatively fast and can to some extent avoid the trapping in 

local minima. The AAM takes a totally different approach, which has been explained in the 

last chapter. It assumes a fixed linear relationship between the texture error and the necessary 

update in the parameter space. This relationship is learned from a training set. The AAM is 

very fast, but it also has obvious drawbacks. First, the assumption of a fixed linear 
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relationship is incorrect [17]. Secondly, the face image background is encoded, which may 

result in degraded performance when modeling a novel face with an unseen background. 

Matthews etc. [17] proposed an inverse compositional AAM that is as efficient as the AAM, 

yet is more theoretically founded. Its main advantage over standard gradient descent 

algorithms is its computational efficiency due to constant gradient and Hessian information. 

The inverse compositional AAM is reported to have similar convergence rate as the original 

AAM [32], and is therefore used as a test bed to compare with our algorithm. 

Global algorithms attempt to find the bottom of the deepest valley for the cost function over a 

region of parameter space. Simulated annealing algorithms and genetic algorithms are two 

typical global optimization methods. Global algorithms have broader view of the cost 

function’s terrain and seek for a possibly better solution. 

Treating the fitting problem as a general function minimization problem and seeking an 

analytical solution can hardly achieve both a decent convergent rate and algorithm efficiency. 

Fortunately there are alternative methods from a different perspective. The Active Shape 

Model (ASM) [12] is such a good example. It fully utilizes the heuristic information from face 

image and moves facial landmark points in a way so that extracted local terrain features 

conform to typical local distributions. The Active Morphable Model (AMM) [33] directly 

estimates face shape using a standard optical flow algorithm. Its model fitting algorithm is 

robust with a large region of convergence. However its iterative hierarchical optical flow 

estimation inside each iterative step makes it a less efficient model. 

In this chapter, a constrained hybrid optimization algorithm is proposed to efficiently fit a 

morphable model to frontal face images. This algorithm takes advantage of abundant heuristic 
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information in face image while preserving the gradient descent power of an analytical cost 

function. Based on our observation of one weakness of the widely adopted cost function, a 

novel unbiased error evaluation function is proposed. Two different algorithms are adopted to 

estimate face shape directly from face image. One is the block ’motion’ estimation algorithm 

that adjusts crucial landmark points for better local fitting. Another one is the local projection 

model that has been discussed in the previous chapter. The directly estimated shape is 

incorporated as shape constraint within the framework of the standard inverse compositional 

fitting algorithm. At the initial phase of our model fitting process, the directly estimated shape 

dominates so that the search has better chance to move toward a global solution. As the model 

fitting error becomes smaller, gradient descent direction of the cost function takes control. 

Experiment indicates that a much higher convergence rate is achieved. The hierarchical 

motion estimation algorithm helps lock to the neighborhood of true minimum. In this sense, it 

is a global optimization scheme. Yet, it is much more efficient than general global 

optimization algorithms like simulated annealing algorithms and genetic algorithms. Average 

shape from training set is good enough to serve as the initial model estimate. Another merit of 

our algorithm is that it is truly background independent compared to various AAM or MMM 

algorithms. 

The chapter is organized as follows: Section 3.2 briefly introduces the normalized inverse 

compositional optimization method; Section 3.3 starts with a novel definition of error 

evaluation function, followed by the block motion estimation in Section 3.4. Section 3.5 

shows how the estimated shape is incorporated to the inverse compositional optimization 

scheme; Section 3.6 gives our experimental results and analysis, followed by the conclusion 



 

 

36

part. 

3.2 Normalized Inverse Compositional AAM Algorithm 

The Normalized Inverse Compositional AAM (NIC_AAM) is a very important variant of the 

original AAM. Notations here will be slightly different from those in the previous chapter. 

The NIC_AAM is proposed by a group of people in CMU, who have a long research history 

in the area of image alignment. They used a set of notations that are more consistent with their 

own convention in their previous study in the inverse compositional image alignment 

algorithm. This chapter will follow their notations as it is easier to understand. 

Let Simg be the raw image shape which is a sequence of coordinates of the predefined 

landmark points. Without confusion, the same notation Simg is used to refer to the face 

shape, the triangular mesh of the landmark points and the set of all enclosed pixels. Let S0 

be the base shape (or mesh), which usually takes the form of the average shape in the training 

set. Let p be the shape parameters in the shape subspace, λ  be the texture parameters in the 

texture subspace and q be the similarity parameters needed for coordinate normalization 

purpose. {Sk} and {Tk} are respectively the set of basis for the shape subspace and the texture 

subspace. Unlike the AAM, the NIC_AAM doesn’t mix the shape and texture parameters to 

create combined parameters to de-correlate shape and texture. {q, p,λ } forms the complete 

face model parameter set. A model face can be rendered by warping a synthesized texture T 

from base mesh S0 to the reconstructed face mesh Simg. 

Aligning a face in a given image is equivalent to finding the optimal parameters so that the 

difference between the model face and the given face image is minimized. Any pixel u inside 
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the base face S0 is mapped to a new position W(u;p,q) in the image according to the shape p 

and the similarity parameters q. The cost function usually takes the form of the sum of the 

squares of the texture residue in accordance with: 
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In the original AAM, the difference image is directly used to update the current model 

parameters using a linear regression model. Such an updating rule is efficient and empirically 

driven, but it doesn’t fall into any traditional optimization category.  

Given the function G(p,q,λ ), a variety of  gradient descent optimization algorithms could be 

applied. Generally, given a current estimate of model parameters, the function 

G(p+∆p,q+∆q, λ +∆λ ) can be approximated to be a quadratic function of the incremental 

updates ∆p, ∆q and ∆λ , using a Taylor series expansion, and closed form solutions and 

updates of the current estimate in the parameter space are found. This operation is repeated till 

a minimum is reached. Unfortunately, gradient descent algorithms are slow due to heavy 

computation. The inverse compositional algorithm is a principled gradient descent algorithm 

that performs model fitting very efficiently. It is derived from the canonical Lucus-Kanade 

image alignment algorithm. Assume that there is no texture variation from the base texture 

image T0 to an input image I, and the cost function is: 
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Basically in the iteration, the base texture image T0 is warped according to the underlying 

parameters ∆p and ∆q so that the warped base image resembles the input image at the current 

warp w(u;p,q). Mathematically, it equals to minimize: 
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The real warp between the base texture image and the input image is then updated as a 

composition of the current warp and the inverse of the incremental warp parameters resulting 

from minimizing (3). The updating rule in (4) also explains how the inverse compositional 

AAM got its name.  

1),;(),;(),;( −∆∆← qpuWqpuWqpuW o      (3-4) 

The cost function E(p,q) doesn’t consider the texture variation between the base image and 

the input image. In the normalized inverse compositional algorithm, the texture parameters are 

iteratively updated given the pose parameters q and the shape parameters p. The closed form 

solution is: 

∑
∈

−⋅=
0

)](),;(([)( 0
S

ki
u

uTqpuWIuTλ      (3-5) 

The difference image is accordingly adjusted for the inverse compositional algorithm. 

The merit of the inverse compositional AAM is its efficiency. In the Gaussian-Newton 

gradient descent algorithm, approximating T0(W(u;∆p,∆q)) in (3-3) with its first order Taylor 

expansion requires the evaluation of 
p
W
∂
∂

 at the warp W(u;0,0) = u, the identity transform. 

This leads to constant gradient descent images and Hessian matrix. Therefore, the 

computation time is cut greatly. It’s not been demonstrated or proved in [17] that inverse 

compositional AAM might be superior to other gradient descent algorithms in terms of its 

convergent rate. It is just a special form of general gradient descent algorithm and fast enough 

for real-time applications. 

When a global minimum is desired, gradient descent methods are suitable only when the 

objective function is convex. However, the sum of squared texture error is far from convex 
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function. Most likely gradient descent methods will end up in an undesired local minimum. It 

is of great interest to design an efficient and global optimization method for fitting this kind of 

morphable models. 

3.3 Unbiased Error Evaluation Function 

Intuitively, our goal is to seek for the model parameters so that a synthesized model face best 

resembles the face in the unknown image. Naturally the fitting quality should be evaluated as 

summed squares of the texture error on the image frame. For most appearance-based models, 

however, the fitting error is computed on the base shape frame as sum of squared difference of 

synthesized texture and shapeless texture warped from input unknown image. Though 

measuring the fitting error on a standard base frame is straightforward and efficient, it can’t 

reflect the real model fitting quality. This is caused by the piecewise affine transform during 

the image warping. As a result, the underlying optimization process is affected. Therefore, we 

propose a revised error function so that the error computed on the standard base frame could 

impartially reflect the fitting quality on the image frame. 

On the test image frame, assume the nth triangle Ln has area τn(p; q). All pixels inside this 

triangle contribute to the sum of squared error as: 
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The total error on the image frame is then the sum over all nt triangles: 
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Accordingly, denote the corresponding nth triangle Ln’ on the standard base frame has area τn’. 
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It is easy to see that under affine transform mapping, the pixels inside this triangle have the 

same mean squared error as its counterpart triangle on the image frame. Apparently, the 

canonical error function on standard frame shown in (3-1) can be expressed as:  
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As an effort to minimize (3-8), general optimization algorithms might tend to maximize τn(p;q) 

for large εn(p;q), therefore are more likely to converge to a local minimum. Such an effect is 

not desirable since the fitting error on the image frame is still large, indicating a bad model 

fitting. Fig. 3.1 shows how the piece-wise affine transform might affect the overall fitting 

error. 

 

 

Figure 3.1 Example of a piece-wise affine transform from the image frame (left) to the base 
frame (right) 
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This problem is inherent in all model fitting algorithms based on the shapeless texture error 

measurement. On the other hand, computing a cost function on the standard frame is 

computationally efficient and better controlled. It is not difficult to rewrite G1(p,q,α) on the 

standard frame as: 
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Because the total area of the face mesh on the image frame depends on the parameters p and q, 

it is more reasonable to use mean squared error (MSE) to evaluate the model fitting quality. 

The MSE on the image frame can then be computed on the standard model frame as: 
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Gmse is our new cost function. It is nothing but a weighted error function. The weight function 

varies for different triangles. In [34], it is explained how to minimize a weighted error 

function under the framework of inverse compositional algorithm. In short, Gradient and 

Hessian matrix of the new cost function are now respectively weighted sum of gradient and 

Hessian matrices for all triangles, which can be pre-computed before the iterative 

optimization 

3.4 Direct Shape Estimate from Motion Estimation 

Motion estimation is one of the many applications of morphable models. Our focus here is 

however the opposite. We would like to examine how a general motion estimation algorithm 

could help the model fitting process of our parameterized face model. 

Motion estimation, literally, means estimating the motion of an object or camera from 
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consecutive video images. In a standard morphable model fitting process, a parameterized 

model is fitted to an unknown image in an analysis-by-synthesis fashion. A cost function is 

minimized so that the synthesized model image is aligned with the input image. In other 

words, the fitting process tries to estimate the arbitrary “motion” between the synthesized 

image and the unknown image. Since facial landmark points are carefully defined in salient 

facial areas with a rich texture. It is of particular interest to estimate the motions of blocks 

centered at all landmark points. 

Block motion model is one of the fundamental motion estimation methods. For a block 

centered at current landmark point u　 0 in the synthesized image Is, assume that its 

counterpart best-matching block in the unknown image I0 is displaced by a flow vector v. 

Vector v can then be obtained by minimizing the sum of squared error as follows: 
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where ∆I = Is(u)- I0(u) is the difference block image. ▽I0 is the gradient of the unknown 

image. The solution to (3-11) is: 

[ ] ∑∑ ∆∇=⋅∇∇ IIvII TT )()()( 000       (3-12) 

The incremental flow vector will be accepted if it leads to a smaller block fitting error. Figure 

3.2 shows a synthesized model image and how it looks like when overlapped to the unknown 

image. 
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Figure 3.2 From left to right: a) Synthesized image. b) Input image. c) Synthesized face 
overlapped on the original face with current landmark points. 

 

This simple block motion estimation algorithm is very efficient and fast. In (3-11), the block 

motion error is computed on the image frame and only the difference image and the gradient 

of the unknown image are required to estimate the flow vector. Applying the motion 

estimation with various block sizes hierarchically on a down-sampled image generates more 

robust estimation. In a standard gradient descent optimization procedure, the motion 

estimation procedure only adds little extra computation. 

Another merit of conducting motion estimation on the image frame is the background 

independence. Synthesized face is confined to the convex hull of landmark points as shown in 

Fig.3.2. This convex hull serves as a face mask. During the block motion estimation, blocks 

are examined against this face mask so that only inner facial pixels participate in the motion 

estimation procedure. In this way, background independence is achieved. On the other hand, 

by subjecting the whole unknown image to motion estimation, heuristic information is fully 

explored. 
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3.5 Constrained Gradient Descent Optimization 

Assume from the “motion estimation” in 3.4 and local projection models (refer to Chapter 2.4 

for details), the direct face shape estimate is S*. It is desirable to minimize the distance 

between parameterized face shape W(S0;p,q) and S*. Mathematically, we construct a new cost 

function F(p,q) as sum of squared distance:  

2*
0 ),;(),( SqpSWqp −=F        (3-13) 

In section 3.1, our cost function is defined as weighted mean squared texture error. Since 

F(p,q) is squared shape error, it provides complementary knowledge. To effectively benefit 

from both functions, we construct a hybrid function as combination of F(p,q) and Gmse(p,q;α): 

),(),,(),( qpλqpqp FKGZ mse ⋅+=      (3-14) 

The function Z(∆p, ∆q) is minimized to generate the incremental update ∆p, ∆q. 

Optimization based purely on texture error function Gmse(p,q;α) has a small region of 

convergence by nature. In the iterative realization, weight K starts with a large initial value, so 

that shape error function F(p,q) plays a major role at the initial stage. As search continues, K 

decreases till texture error function Gmse(p,q;α) totally dominates the optimization. The 

gradient-descent generative function Z(p,q) is discriminated from the fitting error evaluation 

function Gmse(p,q;α). New parameters are accepted when they imply a smaller fitting error. 

The inverse compositional optimization algorithm is chosen to minimize function Z(p,q) due 

to its efficiency and effectiveness. The general framework about how to minimize a 

constrained function like (3-14) is introduced in [34]. So the problem left here is how to 

minimize (3-14) when the shape transform is a piece-wise affine transform for morphable face 

models. 
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A unique feature of the inverse compositional algorithm is that model parameters are updated 

indirectly according to (3-4). The real incremental updates (∆p’,∆q’) to current model 

parameters (p,q) are (∆p’,∆q’) = J·(∆p, ∆q), where J is the Jacobian matrix as follows: 

)),(),((),(),( qpqpqpqp ∆∆⋅+⋅+∆∆=∆∆ JFKGZ mse    (3-15) 

Let Us be a matrix whose columns are orthogonal prototype shapes, Us = [S1, S2, …, Sm0]. Let 

Ug be a matrix of orthogonal global shape basis so that qUS ⋅= g  implies the equivalent 

global affine transform (refer to [17] for details). Assume that the jth triangle V0 in the base 

face mesh S0 is mapped to its counterpart triangle V1 in the image frame by a general affine 

transform as jj bVRV +⋅= 01 . Then it is easy to find the Jacobian matrix J to be 
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where Ap is a matrix of all zeros except two by two sub-matrices along the main diagonal 

direction: 
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where nv is the number of mesh vertices. iR is the affine transform matrix associated with 

the ith vertex of the face mesh (superscript is used to discriminate it from Rj, which denotes 
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the transformation matrix for jth triangle). iR is generated by averaging the affine transforms 

of all triangles associated with this specific vertex. Aq is defined in the same way, but it is 

much simpler as it corresponds to a single global affine transform, so RRR == j
i  for Aq. 

In a typical morphable model fitting procedure, all the piecewise affine transforms are already 

computed. Computing the Jacobian matrix J is easy and fast based on (3-17) and (3-18). 

Because Z(∆p, ∆q) is a sum of two summed squared measurements, it is easy to see that its 

Gaussian-Newton Hessian is the sum of Gaussian-Newton Hessian for the weighted texture 

error function and K times the Gaussian-Newton Hessian of the shape error function. The 

same conclusion is true for the steepest gradient descent images. With the computed Jacobian 

matrix, the optimization procedure is nothing special other than a normal inverse 

compositional algorithm. 

3.6 Experiment Results and Discussion 

The same face database is used to conduct our experiments for this chapter. 40 shape 

parameters are used to capture 98% of the shape variation, and texture subspace has a 

dimension of 66 to account for 98% of the texture variation. With four extra global pose 

parameters, we have a total of 44 model parameters. 

3.6.1 Constrained Hybrid Model Fitting Optimization 

In our constrained hybrid optimization scheme, shape is directly estimated from block motion 

estimation and local projection models. Integration of such heuristic information is the key for 

a high convergent rate with only around 10% extra computation. Our algorithm is compared 

to standard inverse compositional algorithm. Fig. 3.3(d) shows the fitting with standard 
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inverse compositional algorithm. Almost all other landmark points are displaced. It is 

commonly seen that model eye points converge to eyebrow area in the image. Fitting with our 

algorithm is shown in 3.3 (e). Figures 3.3 (a) to (c) show a typical scenario of our hybrid 

search. Fig. 3.3 (f) compares texture error evolution curve of our constrained hybrid model 

fitting algorithm with standard normalized inverse compositional AAM algorithm. 

 

 

Figure 3.3 Comparison of hybrid search and original inverse compositional AAM search. 
(a)-(c) Hybrid search process at iteration 1, 2 and 6. (d) Inverse Compositional AAM search. 

(e) Constrained hybrid search. (f) Evolution of error curve 

 

Though the weighted texture error is used as the evaluation function, it does not reflect the 

model fitting quality strictly, especially when the novel face texture pattern is beyond the 

representation power of the trained texture subspace. In that case, the texture reconstruction 
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error might remain large even when all landmark points are perfectly located. A reasonable 

evaluation is to measure how good the model points converge to their desired positions in the 

image. For all 138 images, we manually labeled the landmark points and created a distance 

map for each image. The model fitting quality is then measured by the average point to edge 

distance. Fig. 3.4 compares the performance of the inverse compositional algorithm and our 

proposed algorithm by plotting the average point to edge error for all images in the training 

set and the test set. The superiority of our constrained hybrid algorithm is clearly manifested. 

 

 

 

(a) 
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Figure 3.4 Fitting errors on (a)Training set. (b)Test set. 

 

All the tests are conducted with exactly the same initial model parameters and stop criterions. 

Inverse compositional search has a quite bad performance due to the fact that our face 

database consists of images originating from various sources. With our constrained hybrid 

optimization method, the average point to edge error reduces from 4.3900 to 2.0359 on the 

training set, and 5.3869 to 2.4713 on the test set. Both show considerable improvement. 

Based on the results in Fig.3.4, we could further generate error density functions. All 138 

images are used to estimate their probability density functions of the fitting error. Their 

cumulative functions are plotted in Fig. 3.5. Given a threshold from x-axis, we can read a 

number from y-axis, which is the percentage of images that have equal or less fitting errors 

than the threshold. If we assume the model fitting is successful when the point to edge error is 

 

(b) 
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below a threshold, then Fig. 3.5 is actually a plot of the convergence rate versus threshold. 

Apparently our hybrid optimization has a significantly higher convergence rate compared to 

standard inverse compositional algorithm.  

 

 

Figure 3.5 Cumulative functions 

 

There are 3 key components in our constrained hybrid optimization scheme: the unbiased 

evaluation function, the integration of direct shape estimation from block motion estimation, 

and the local projection models. To see how each of these components plays a role in the 

hybrid optimization, 4 different algorithms are compared: the original Normalized Inverse 

Compositional algorithm (NIC), the NIC with motion integration (NIC_MO), the NIC with 

both motion integration and local projection models (NIC_MO_LPM), our hybrid model with 

unbiased evaluation function (NIC_MO_LPM_cr). Table 3.1 summarized their performance 

with average point to edge errors.  
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Table 3.1 Average point to edge error for different algorithms 

Database NIC NIC_MO NIC_MO_LPM NIC_MO_LPM_cr
Training set 4.3900 2.3924 2.3440 2.0359 

Test set 5.3869 2.7506 3.0055 2.4713 

 

Table 3.1 shows that our constrained hybrid optimization scheme has the best performance. 

Unbiased error function proves to be a better evaluation function than traditional error 

function as it truly reflects the fitting quality on the image frame. An exception is 

NIC_MO_LPM error is larger than NIC_MO error on the test set. This is statistically normal 

fluctuation considering the fact that we only have 55 test images. In fact, if we look at this 

problem from a different perspective, 27 images of the 55 perform better with local projection 

models, comparing to 20 of the 55 perform better without projection models. It is still justified 

that local projection models improve the overall performance. 

3.6.2 Experiments on the JAFFE face database 

Though our constrained hybrid model is trained on the 80 neutral faces in our training set, the 

model fitting algorithm performs very well on the face images with rich facial expressions in 

the JAFFE database. The only pre-processing we conducted is to scale original 200 by 200 

images to standard size 256 by 256. 
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Figure 3.6  Model fitting results: a) Inverse compositional algorithm. b) Constrained hybrid 
algorithm 

 

Fig. 3.6 shows an example of converged face model overlapped to images. Fig. 3.7 plots 

average point to edge error for all images in JAFFE. Fig. 3.8 is the plot of cumulative 

functions. Table 3.2 shows average point to edge error for different algorithms. From our face 

database to JAFFE, the performance only degenerates very slightly with an average point to 

edge error of 2.9. It proves to be efficient and robust even in the presence of rich facial 

expressions, unseen in our training set. 

 

NIC algorithm Constrained hybrid algorithm
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Figure 3.7 Model fitting errors on JAFFE 

 

Figure 3.8 Cumulative density functions 

Table 3.2 Average point to edge error for different algorithms 

Database NIC NIC_MO NIC_MO_LPM NIC_MO_LPM_cr
JAFFE 6.3646 4.1144 3.3958 2.9133 
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3.7 Conclusion 

In this chapter, we presented a constrained hybrid optimization algorithm to solve the general 

morphable model fitting problem. Designing a robust and efficient modeling algorithm is very 

important as feature detection is an inevitable step for a lot of face applications. Our 

constrained hybrid algorithm features a novel error evaluation function which is an unbiased 

error estimate of model fitting quality on the image frame. Shape estimate from block motion 

estimation and local projection models is incorporated into the gradient-descent optimization 

procedure. They play a role in the parameter updating by acting as a shape constraint in the 

optimization process. As a result, our model fitting algorithm performs much better than 

general optimization algorithms that purely rely on analytic solutions. One apparent 

conclusion is that heuristic information in an image itself is abundant and could see better of 

image local terrains. Blindly minimizing a texture error is inefficient and error-prone. 

Experiments on our face database and JAFFE database shows that our constrained hybrid 

model fitting algorithm could achieve a high convergent rate even when presented with 

images of a large variety of illuminations, image backgrounds and facial expressions. Large 

image scaling, rotation and partial occlusion are not tested.  
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CHAPTER 4 : FROM 2D TO 3D: 3D FACE STRUCTURE 

EXTRACTION 

We live in a three dimensional world. For any normal human being, perceiving and 

understanding the 3D world is just a piece of cake and it is as natural as other spontaneous 

human activities like eating and sleeping. Such a simple activity, however, seems formidable 

for even the most advanced computer in the world. In fact, the ability to infer 3D from 2D 

projections is the result of a complex mechanism inside human brain that hasn’t been resolved 

so far. Nevertheless, many 3D algorithms have been proposed and some commercial software 

has been developed in the past decades. For most 3D face applications, the reconstruction of 

3D face surface is essential. Current 3D applications include 3D face motion estimation, 3D 

pose estimation, 3D face animation and 3D recognition etc. In this chapter, we will present 

our 3D face structure extraction algorithm given aligned faces in 2D images. Different aspects 

of the 3D reconstruction problem, like different poses, possible occlusions, uncertain feature 

correspondence etc, are discussed. In particular, face contours are dynamically generated to 

match extracted face contours in 2D face images. As a result the reconstructed 3D faces are 

more realistic compared to the results in [27]. 

4.1 Literature 

Obtaining accurate 3D face surface information is crucial for 3D face applications. There are 

some special devices that can generate 3D range data directly from human faces. Typical 

devices include stereoscopic cameras and laser-based cylindrical scanners, such as those 
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produced by Cyberware [35]. The resulted range data yields accurate face depth information. 

It can be very useful for realistic face animation and face modeling. However, even though 

these devices are now not as expensive as they used to be, most of their applications are still 

in the computer graphics field for the purpose of vivid face animation. It is possible that one 

day 3D photographing will be common enough for daily lives. Until then, photos and videos 

are the main media to preserve face information and they will continue to be the sources for 

the mainstream research on 3D face modeling. 

4.1.1 Shape Reconstruction by Modeling 

We briefly introduced several Shape-from-X methods in the previous section. Generally, 

shape-from-X refers to techniques to reconstruct a scene without any assumption about the 

target. Object structure can be inferred from shading, texture and other natural properties. If 

we have some prior knowledge about the structure or the texture pattern of the object, surface 

reconstruction can be realized by constructing a 3D model that best fits the description of the 

object. In our scenario, face surface reconstruction then amounts to the adaptation of a 3D 

face model to a face image viewed from a possibly arbitrary viewpoint. There are some 

commercial software packages available that enable a user to construct personalized 3D face 

models. Modeling a face with 2D or 3D generic face models from images or video sequences 

has been carried on for several decades, almost as long as the history of automatic face 

recognition. Face modeling has a lot of applications in the entertainment industry. Driven by 

the big market, face modeling techniques have been commercialized and widely applied in the 

developing of interactive video games and animated movies in Hollywood, while face 



 

 

57

modeling for recognition purpose is relatively immature and still at the developing stage. 

Covering a detailed history of face modeling is beyond our topic here. In the following, we 

will mainly focus on the aspect of 3D face modeling and skip those 2D related face modeling 

issues. Face surface could be represented with any typical surface descriptors like Coons 

surface patch, B-spline surface, triangle mesh etc. The most popular and practical form is 

triangle mesh. Face modeling usually includes three steps. First, feature points are extracted 

from the face images, and point correspondences are built up (by either dense or sparse 

feature matching techniques). Second, the head pose, the camera parameters and the 3D 

feature points are computed based on the extracted feature correspondence in the images. At 

last, a 3D face model is fitted to the 3D feature point set. Sometimes 3D feature points are not 

explicitly reconstructed. Instead, a 3D face model is morphed so that its projections best 

match the extracted 2D feature point set directly. Face modeling algorithms could be 

classified according to the model descriptors, morphing techniques, matching features (dense 

or sparse, point or texture etc) etc. From the statistical point of view, most 3D face modeling 

algorithms fall into two categories: unsupervised generic modeling algorithms and statistical 

modeling algorithms. In another word, generic modeling algorithms adopt some empirical 

expert-defined models and edit model points directly or follow some morphing functions to 

generate desired individual models. Throughout the modeling process, no training or 

supervision is involved. On the other hand, statistical modeling algorithms first learn the 

distribution of all kinds of variations from some real face samples in the training phase. Then 

typical face parameters are chosen to initialize the face model. The model morphing process is 

governed by the learned distribution of model parameters, assuming the training faces are 
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general enough to represent the human population, or at least the population of the specific 

interest. Compared to the unsupervised face modeling algorithms, statistical modeling 

algorithms have constrained parameter spaces, therefore morphed face models are still 

reasonable faces. However, statistical modeling algorithms need a training face database and 

some labor work might also be necessary. Moreover, it is questionable whether the training 

faces could be universal enough.  

There also exist some algorithms fusing both modeling techniques [49]. They adopt empirical 

generic models and use training databases to compute typical distributions for model 

parameters.  

4.1.1.1 Generic Face Modeling 

There are several famous face models that are widely used by researchers in the computer 

vision and computer graphics fields. CANDICE [52] is a 3D wire frame model developed at 

Linkoping University in the eighties. Fig. 4.1 shows frontal and profile view of this model.  

 

 

 

(a)       (b) 
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Figure 4.1 Candide-3 face model: a) Frontal view. b) Profile view. 

 

CANDICE only consists of approximately 113 vertices and 183 triangles. Such a small 

number of vertices allow for fast face reconstruction with moderate computation. Vertices are 

controlled by global and local action units (AU). Both inter-personal variations (due to 

different people) and intra-personal variations (facial animation) are considered in the design 

of AUs. A 3D shape is represented as: 

ασ ASxx ++=        (4-1) 

where x  is the mean shape, Matrix S is the predefined shape units, whose columns are a set 

of shape basis. Similarly, A consists of the animation units. Shape units enable operations such 

as the widening (or narrowing) of eyes. Animation units allow the deformation of the face 

mesh to some predefined facial animations. A 3D face is completely determined by shape 

coefficient vector σ  and animation coefficient vectorα . CANDIDE is a popular 3D face 

model as it can model both intra-personal and inter-personal variations. It has been widely 

applied to reconstruct face structures and analyze facial expressions from images or video 

sequences [53] [54].  

In the computer graphics area, there are quite some different 3D face models. Besides 

CANDIDE, there is EPFL [55] developed at University of Geneva. EPFL uses a hierarchical 

configuration to generate different facial expressions arising from speeches and emotions.  
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Figure 4.2 Face model created at Univ. of Washington. a) Frontal view. b) Profile view 

 

Fig. 4.2 shows the 3D face mesh model created at University of Washington [56]. Unlike 

CANDIDE whose model parameters are explicitly associated with physical face 

characteristics and facial expressions, this model tries to catch as much face details as possible 

by using 689 vertices and 1355 triangular facets. In fact, we work with a face model revised 

based on this 3D face model. It balances the requirements for accurate surface description and 

acceptable computational complexity.  

Each 3D face model is made up of surface patches. Each surface patch is a triangle with three 

control points (vertices) to control the position and orientation of that specific patch. 

Neighboring triangles share control points (or triangle edges) to form a closed surface. 

Usually such a face surface is described by two files. The first file contains a list of the 3D 

coordinates of all triangle vertices. The vertices file is typically arranged as follows: 

V1  X1 Y1 Z1 

V2  X2 Y2 Z2 

              

       (a)                                             (b) 
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V3   X3 Y3 Z3 

… 

The second file indicates the indices of three vertices for each triangle. The order of vertices 

of a triangle is given in either clockwise or anticlockwise manner so that any surface normal is 

pointed outwards. The triangles file appears as follows:  

Triangle1  V3 V1 V4 

Triangle2  V2 V1 V5 

Triangle3  V1 V2 V6 

… 

Given a 3D object, there are many ways to approximate its surface with triangular patches and 

generate the above two description files. One would desire a triangulation scheme that can 

preserve as much shape information as possible of the original object. Therefore, sampling 

should be dense around surface locations of high curvature, while a minimal number of points 

are enough for a nearly flat surface. Building optimal 3D face mesh out of an object with 

fixed number of vertices is another interesting research topic in the computer graphics field. It 

is beyond our scope. Here we just assume the generic 3D face model we will use is already 

optimal for face surface description and our focus is mainly the model morphing and fitting 

task.  

Besides face shape, texture is another important face feature. The irradiance at an image point 

measured by a camera is affected by many aspects, including surface properties such as 

surface roughness, absorption, reflectance, and also the surrounding illumination environment. 

Usually a Lambertian reflectance model is assumed to model the illuminating process. Under 
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this assumption, a surface irradiance is the product of the surface albedo and the cosine of the 

angle between the lighting incident direction and the surface normal at that specific location. 

Recovering surface texture is a complicated procedure. Usually it is tackled with 

texture-mapping techniques for the purpose of realistic synthetic faces from novel viewpoints.  

Generic face models have been widely applied for face analysis and recognition. In the 

following, several related papers are briefly reviewed based on different image source 

formats. 

1. Modeling from video sequences 

One of its most popular applications is to estimate face structure from motion and use the 

modeling result for semantic coding. For example, in [54], CANDIDE face model is adapted 

to a person’s face in a video sequences. The adaptation algorithm starts with global fitting to 

adjust the model size and orientation, followed by locally adapting the model details to match 

those detected facial feature points in each video frame.  

P. Koch [57] estimated face structure from motion by employing analysis-by-synthesis 

approach. Basically, a face mesh is imposed on a video sequence and refined by minimizing 

the intensity differences between the real face images and the synthesized ones.  

2. Modeling from still images of different viewpoints.  

Pighin et al [58] uses customized face models to synthesize different facial expressions. 

Feature points are labeled manually in 5 or more images of the same person. 3D coordinates 

of these points and pose parameters are estimated using a partially linear least square method. 

A generic model is adapted to the reconstructed 3D points so that these 3D points are exactly 

matched, while other points in the generic model are morphed using the RBF interpolation 
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function. Face texture is handled using either view-independent texture mapping or 

view-dependent texture mapping techniques. Once a 3D structure and a global texture are 

known, images with novel expressions are synthesized or ‘copied’ by interpolating local 

geometries and textures of known 3D models.  

In [59], a generic face model is morphed with a complex deformation function. The 3D model 

is a composite of 3 models: edge model, color model and a wire frame model. Edge detection 

and color segmentation algorithms are adopted to generate edge and color fields respectively. 

The model matching process is essentially the minimization of an objective energy function. 

The energy function includes 3 components: edge and color energy functions that measure the 

quality of matching for edge and color features, as well as a 3rd component measuring the 

deformation cost in order to prevent the 3D model from deforming too much. The wire frame 

model is used to deal with occlusion and generate face contours.  

In [27], a 3D face modeling algorithm is proposed to extract 3D face structure from images. A 

generic face is morphed to generate a specific face structure according to an explicit cubic 

polynomial in 3D. Choosing of the cubic morphing function is dictated by its morphing ability, 

as well as the consideration of the algorithm complexity. The feature correspondence problem 

is bypassed with the help of the distance map technique, which bears similar ideas as the edge 

field and the color field in [59].  

4.1.1.2 Statistical Face Modeling 

Unlike generic face modeling techniques, statistical face modeling techniques take advantage 

of statistical information of typical human faces. Most statistical face modeling algorithms 

follow the analysis-by-synthesis protocol. In another word, statistical face models have to be 
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generative models. Under this protocol, image interpretation could be formulated as face 

matching problem. A 3D face model is adjusted and morphed so that it could generate an 

imaginary face image which is most similar to the unknown face image. Apparently, face 

models of this kind should be general enough to generate any arbitrary plausible human face. 

On the other hand, any synthesized instance has to be a legal face. Generative face models 

should rarely instantiate unlikely faces. 

For statistical face models, a crucial assumption is that any face can be generated by a linear 

combination of a set of prototype faces. This linear combination is not a simple addition of 

face images at the pixel level. Addition of raw images usually won’t create a valid face image, 

but a face-like image with double face contours and blurred facial components. In order to 

justify the linearity of the face space, training faces have to be in full correspondence with 

each other. A complete face model should have the ability to model various faces in terms of 

face shape and face texture. Only independent linear operations of face shape and face texture 

could possibly satisfy the linearity requirement for the face vector space. For statistical face 

modeling, the construction of a morphable model requires the establishment of 

correspondences across all training face images, followed by analyzing and learning the 

variations of face shape and texture. The training face database is assumed to be general 

enough to reflect variations among human faces in reality. After a generative model is 

constructed, the alignment and analysis of an unknown face image is carried out by seeking 

the optimal model parameters so that the synthesized face best resembles the unknown face. 

Some 2D statistical face models were proposed around a decade ago. The most popular of 

them are the AAM [8], the ASM [12] and the MMM [31] etc. Brief introduction of them could 
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be found in Chapter 2 and Chapter 3. Though the exact definition of face shape might be 

different and various minimization algorithms are used to match unknown faces, these 2D 

statistical modeling algorithms have some characteristics in common: shapeless textures are 

extracted by warping face patches to a common shape frame. Face shape and texture form 

different vector spaces respectively; the matching process is formulated as an optimization 

problem, and implemented as an iterative procedure using either traditional gradient 

descendent optimization algorithms or linear regression algorithms. 2D statistical models have 

been successfully applied to interpret medical images as well as face images. There exist a 

variety of extended algorithms based on the AAM, the ASM etc. As a result, face modeling 

performance is improved from different aspects. For instance, in [14], wavelet analysis is 

adopted to replace the PCA analysis for robust face matching. Inverse compositional 

alignment algorithm is incorporated in [17] for real-time applications etc.  

Though intrinsically, differences among face images are caused by different face identities. 

The appearance of a face in an image is also affected by the changes in pose, illumination, 

facial expression etc. In nature, 2D models are awkward to distinguish different poses and 

illumination conditions. In [22], a nonlinear PCA is used to tackle this problem. However that 

algorithm is complicated and inefficient. Since any 3D face geometry can be easily associated 

with its projected 2D images given a projection model (perspective projection model for 

example), modeling a face in 3D is the natural solution to the different pose problem. 

According to physical imaging models, any image intensity value can be interpreted as a 

function of the corresponding surface albedo, the surface normal and the surrounding 

illumination environment. Apparently, a 3D morphable model has the advantage of applying 
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physical laws to model both different poses and illumination conditions.  

Some 3D face models are natural extensions of 2D statistical face models. An algorithm is 

presented in [60] to model faces from images or video sequences with large pose variation. A 

3D face shape model is constructed by training a set of 3D faces (represented by 3D feature 

points) that are reconstructed from manually picked 2D feature points in face images. A 2D 

shape-and-pose-free texture model is constructed afterwards. During the matching process, a 

loss function is minimized using a direct exhaustive searching strategy. J. Xiao etc [25] 

proposed a combined 2D+3D AAM. A set of trained 3D shape modes are adopted to constrain 

the behavior of the 2D AAM search. As a result, the underlying 3D structure and projection 

parameters are simultaneously recovered once the 2D search converges.  

Perhaps the most popular 3D morphable model nowadays is the 3D Morphable Model 

(3DMM) developed by V. Blanz and T. Vetter [5]. Unlike all previous 3D models, this one 

needs 3D laser data for the training purpose. Each 3D face is sampled densely so that after 

triangulation, enough details of the face structure are preserved. The same triangulation 

topology is used for all training faces. After all training faces (about 200 3D scans) are in full 

correspondence, each 3D face is described with a 3D shape vector formed by concatenating 

the 3D coordinates of all vertices, and a texture vector by concatenating the RGB values of 

the vertices as follows: 

Si = {x1, y1, z1, x2, y2, z2, …, zn, yn, zn} 

Ti = {R1, G1, B1, R2, G2, B2, …, Rn, Gn, Bn} 

Notice how similar they are to the 2D shape vector and texture vector defined in the 2D AAM. 

Training the 3DMM is straightforward. A model face can be represented in the subspaces as: 
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iisαSS ∑+=model        (4-2) 

iitβTT ∑+=model        (4-3) 

where { is } and { it } are respectively the eigenvectors for the shape subspace and the texture 

subspace. With enough training faces, the distributions of { iα } and { iβ } can be 

approximated using multivariate normal distributions. These distributions are used to regulate 

synthesized 3D faces to avoid non-face synthesis instances. 

Matching the 3DMM to an image also follows the analysis-by-synthesis strategy. The goal is 

to minimize a cost function measuring the difference between the synthesized image and the 

unknown face image. Recovering any 3D face structure from a single image is an ill-posed 

problem. Therefore the a priori distributions of the morphing parameters are incorporated to 

the cost function as constraints. The 3DMM utilizes the stochastic gradient descent algorithm 

to find the optimal model parameters. 

The 3DMM is very powerful as the training 3D faces have dense shape and texture data. It 

could synthesize realistic face images of large pose variation and under different illumination 

conditions. For traditional sparse 3D models, surface interpolation is an indispensable 

operation in order to describe a continuous surface. However, it is no longer necessary as the 

3DMM deals with dense face data. Though the 3DMM has the ability to model any face of 

arbitrary poses and illumination conditions, it is not an almighty algorithm. First, the 3D 

training faces are generated from laser scans and they lie in a high dimensional space. 

Building the training set and constructing the model is not a trivial job. Second, the 

optimization procedure is very slow and takes about 50 minutes [5]. So it is desirable to have 

a less complicated model that could work much faster while maintaining the same or similar 
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performance. In [61], the inverse compositional image alignment algorithm (refer to Section 

3.2 for details) is extended from 2D to 3DMM. The computation time is greatly reduced.  

The face recognition algorithm based on the 3DMM has proven to be very successful in the 

face recognition vendor test (FRVT) in 2002, which was an assessment conducted by the U.S. 

government. Its performance in the presence of large pose and illumination variation is superb 

and impressive.  

Some hybrid models take advantage of both generic models and statistical models. For 

example, the CANDICE generic model is used in [60] to track faces from videos. The model 

parameters are updated using a regression model learned from a set of training faces. The 

algorithm preserves the simplicity of a generic face model. At the same time, it uses statistical 

updating rule learned from training faces. 

4.2 Our Approaches 

Up till now, one of the most successful ways to recover a 3D face structure is to analyze the 

face with a 3D face model. Different face modeling algorithms adopt either sparse or dense 

mesh models according to their specific scenarios. Matching an unknown face is realized 

through minimizing the point difference or texture difference. Generally speaking, dense face 

models are more complicated, yet are capable of modeling face details. Optimization schemes 

driven by texture difference are usually time consuming.  

In our work, a sparse face model with over 70 feature points is adopted and the face matching 

task is based solely on the feature points. So the main challenge to us is to extract facial 

feature points automatically and establish the correspondence across different views. In [27], 
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an edge map is extracted by locally tracing edges given some starting points. The Canny edge 

detector is used to generate the edge map in [59]. Though the feature extraction step is very 

crucial for the whole modeling, edge-detection based algorithms often fail to locate features 

accurately and robustly. This is natural since human face images in nature are intensity 

patterns than other simple line drawings. In order to have robust and accurate alignment 

results in 2D images, we exploit a view-based AAM to automatically align 2D faces of 

different viewpoints.  

Another challenge is that both the 3D face structure and the pose parameters are unknown. 

Algorithms such as [54] try to decouple the pose estimation from the 3D structure estimation, 

and the pose parameters are estimated first by adapting the model size and orientation globally. 

It assumes that the morphed face structure is within a reasonable error displacement after the 

pose is fixed. In our approach, the pose parameters and the face structure are solved 

simultaneously in an iterative minimization procedure. 

In a previous work [27], a generic face model is morphed with a cubic polynomial function 

and the distance map technique is adopted to bypass the feature correspondence problem. We 

rephrase the polynomial function as a non-orthogonal linear transform. Now the iterative 

procedure to seek optimal parameters is more straightforward. Two different optimization 

schemes are utilized and compared. Furthermore, face contours are dynamically generated 

and incorporated to the cost function. Without this constraint, the morphed face model would 

look very unrealistic. 
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4.2.1 3D Generic Model 

The generic model we use is revised from the model at University of Washington as shown in 

Fig. 4.2 previously. Though the original model has 1335 triangles, only a small portion of 

them are related with the face structure. We remove those related with the neck and hair part 

since they are usually considered not to encode any face identity information. The original 

model is tailored to a new compact generic model as shown in Fig. 4.3. 

 

 

Figure 4.3 Revised generic model: (a) Mesh model. (b) Solid model. (c) Selected features for 
structure estimation 

 

The number of feature points in one image used to morph the generic face varies from 

application to application. Originally we intended to take all of the Face Definition Parameters 

(FDP) points defined in the MPEG-4 protocol as the features to be extracted from face images. 

However, some of them are difficult to identify and hard to locate in face images. Points that 

are used to mark the teeth and the tongue are often invisible. Fig. 4.3(c) shows the 73 feature 

points we have chosen. Most of them are located on the distinctive edges of facial parts such 

as the eyes, the mouth and the face outline etc. The more points on one facial part, the more 
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important role that part plays in the face structure estimation. These points are carefully 

selected to balance the requirement for a compact yet complete underlying face description. 

4.2.2 Weak Perspective Projection 

A camera model is needed to project the 3D face model to the 2D image plane. General 

camera parameters include the focal length f and the relative position of the camera to the 

object in the world coordinate system. Let the camera coordinate system be spanned by the 

unit vector triple (X’, Y’, Z’), and the face coordinate system be spanned by (X, Y, Z). The 

offset from the origin of the world coordinate system to that of the camera coordinate system 

is represented by the translation vector T. We use capital letters (like P or P’) to denote points 

in the 3D coordinate system, whereas their projections in the image plane are denoted by 

lower case letters. The camera model is shown in Fig. 4.4.  
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Figure 4.4 Camera model 

 

The 3D point P in the world coordinate system is transformed to the camera coordinate 

system as P’: 
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Rearrange the camera coordinate basis vectors in a matrix as ]';';'[ TTT ZYXR = . R could 
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respectively around three basis vectors with angles ( zyx θθθ ,, ). In detail, 
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Let TRT ⋅−=p , equation (4-4) could be rewritten as: 

pTPRP +⋅='         (4-7) 

The orientation parameters ),,( zyx θθθ=θ  and the translation parameters pT constitute the 

pose parameters. With the focal length f of the camera in equation (4-5), a complete 

perspective projection has 7 free parameters. 

The weak perspective projection model is an adequate approximation of the perspective 

projection model as long as the distance between the object and the camera is much bigger 

compared to the size of the object. Under this assumption, it is reasonable to treat 

')( ZTP ⋅−
f

 as one scaling factor ws which is constant for all points on the 3D object.. Let 

]';'[ TT
w YXR =  be the 2 by 3 partial rotation matrix. Since the 3rd coordinate basis 'Z  is 

the cross product of the first two, ''' YXZ ×= , the full rotation matrix R could be fully 

reconstructed from wR . Equation (4-5) is reformulated as: 

ptPR =+⋅ wwws *        (4-8) 

where )(
y

x
w t

t
=t  is the translation vector in the image plane, ws  is the world-to-image 

scaling factor. Together with the three rotation angles zyx θθθ ,,  implied by wR , there are 6 
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parameters in total for the weak perspective projection model. 

4.2.3 2D Feature Extraction with the View-based AAMs 

In order to reconstruct the underlying 3D face structure, the same set of feature points 

projected onto different image planes have to be located and aligned. This is not an easy task. 

The AAM is known to be a 2D statistical appearance-based model that has robust alignment 

results. However, it tends to break down when the unknown face is subjected to a large angle 

rotation. One solution is to use a complete 3D face model to track and align all feature points. 

This is more like an egg-and-chicken problem since reconstructing the 3D face structure is our 

goal instead. Another approach is to use 2D models based on nonlinear analysis [22]. The 

easiest way, however, is to build a set of models for different viewpoints [19][20][21]. 

Chapter 2 and 3 focus on the in-depth study of several improved AAM algorithms. Naturally, 

it is desirable and straightforward to extend them to view-based AAM algorithms.  

Let the orientation of a face object in the space be represented by the pitch/yaw/roll. Naturally 

the pitch (rotation around the side-to-side axis to raise or lower the head) and the roll (rotation 

around the front-to-back axis) have a small range of variation compared to the yaw (rotation 

around the vertical axis). For the faces in our face database, 4 pose categories are defined 

according to their yaw (i.e. azimuthal angles). Table 4.1 shows the range of angles for each 

pose category we define. 4 models are developed for the 4 pose categories respectively. Due 

to the symmetric nature of human faces, these 4 models are enough to cover the azimuthal 

rotation of 180 degrees. 
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Table 4.1 Azimuthal range for 4 different view-based models 

Pose category Category 1  Category 2  Category 3  Category 4  
Azimuth angle 

[- 020 , 020 ] [ 010 , 050 ] [ 040 , 080 ] [ 070 , 0100 ] 

 

At the training stage, a set of 2D feature points are manually picked to form a Point Distribute 

Model (PDM) for each training image. The selected feature points for different post categories 

are not necessarily related between different models. However our goal is to build the 3D face 

model from 2D projected points on different image planes. Therefore, we deliberately choose 

the 2D feature points for each pose category so that they approximately correspond to the 

predefined feature points on the generic 3D model. 

 

 

Figure 4.5 The 3D face model and 4 view-based AAM models 
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Pose 3 Pose 4 
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Fig. 4.5 shows a 3D face model and its face images viewed from 4 different angles. These 4 

poses approximately fall into the 4 pose categories defined in Table 4.1. The feature points 

defined for the 2D view-based AAMs are assumed to be projected from the same set of 

feature points as marked on the 3D face model. When projected from the 3D space to a 2D 

plane, some feature points will be inevitably occluded. Apparently only for the pose category 

1, all feature points might be possibly visible. For pose category 4, nearly half of the selected 

feature points are occluded. The set of occluded feature points vary for different face 

structures and viewpoints. To simplify our model and make it compatible with canonical 

AAM models, we assume that for the same pose category, the same set of feature points will 

always be occluded. At a first sight, this assumption violates the projection model for sure. In 

reality, this assumption not only accelerates the modeling process, but can still meet the 

accuracy requirement for face alignment and modeling task.  

For the view-based AAM defined for images of pose category 2 (or 3), the face contour is 

represented with the piece-wise lines determined by four extra feature points, which do not 

explicitly correspond to any predefined 3D feature points as shown in Fig. 4.5. These points 

are as important in order to completely describe the 3D face shape. It is necessary to generate 

the face contour that is in accordance with the 3D face model. For this purpose, we define a 

dense set of 3D candidate points by interpolating some vertices on the 3D generic model. 

When the generic 3D model is morphed and projected, the projected face contour formed by 

the convex hull of the projected candidate points are pulled towards the piece-wise face 

contour in the image. In this way, the 3D face model generates face contours that are as close 

as possible to those detected from face images. Details about this part will be elaborated later 
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in this chapter.  

4.2.4 Cubic Morphing: Revisited 

4.2.4.1 Basic Cubic Polynomial Function 

2D morphing technology has been widely used to morph photographic images of one person 

to another one, or one creature to another kind. The most famous example should be Michael 

Jackson’s music video “Black or White” produced in 1980s, in which different actors are 

seemingly transformed to one another as they dance. 2D image morphing assumes a set of 

corresponding point pairs on two images and one image is deformed so that the selected 

points will be transformed to the points in the other image. Point correspondences between 

different images need to be established. Some intermediate shapes are necessary with the help 

of interpolation so that the viewers could see a smooth transformation. 3D morphing 

techniques adopt a similar idea for different objects in the 3D space. Among a variety of 

morphing functions, a cubic explicit polynomial function is elected as our morphing function 

for mainly two reasons. First, the shape difference among different human faces can be 

adequately captured using a cubic function. Secondly, resorting to higher order functions 

results in drastic increase in the number of morphing variables. Also more feature points have 

to be detected and aligned. 

Let the ith feature point on the generic model be m
iP . It is morphed to point iP on a specific 

face model according to 

)( m
ii PGMP ⋅=         (4-9) 

Where M  is the morphing matrix, )( m
iPG  is a monomial vector that is made up of the 
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polynomials of the coordinates of t
iii

m
i zyx ],,[=P . For cubic morphing, 

iiiiiiiiiiiiiiiiiiiiiii
m

i yxzyxzyxyzzyxzxyzxyxzyx                           [)( 222222222333=PG

]1            iiiiiii zyxzyzx . Now the projection equation (4-8) can be rewritten as: 

iw
m

iwws ptPGMR =+⋅⋅⋅ )(       (4-10) 

For the 3 by 20 morphing matrix M , it has 60 parameters. Since human face is symmetric in 

nature, the number of unknown parameters could be reduced with this constraint. The generic 

face model is symmetric to the y axis of the object coordinate system as shown in Fig. 4.3. 

For two points ( zyx   ,  , ) and ( zyx  , ,− ) on it, the symmetric constraint assumes they 

should remain symmetric after being morphed to an individual 3D face. After imposing this 

symmetry constraint, the number of nonzero elements in the matrix M  is reduced to 33. 

Considering that the weak perspective projection model has 6 degrees of freedom, with K 

available face images of a person, the total number of unknown parameters is (33 + 6K).  

4.2.4.2 Cubic Morphing Reformulated as a Linear Operation 

Equation (4-9) shows how an individual point is morphed. Any morphed point is generated 

from the cubic polynomial of its corresponding model point on the generic face model. On the 

other hand, for a fixed set of model points, their morphed points are just linear combinations 

of the morphing parameters. Denote the number of all selected feature points on the generic 

model with 0n . Let mΦ be the set of all 0n  participating feature points, the set of all 

morphed points are: 

 )( mΦGMΦ ⋅= .        (4-11) 

Bear in mind that )( mΦG  is just a fixed 20 by 0n matrix. To emphasize the linear 

relationship between the morphed points and the unknown morphing parameters, 
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let T],...,,[ 3321 ααα=α be the 33 parameters, equation (4-11) is reformulated as: 

αMΦ ⋅= e ,         (4-12) 

where eM is a (3n0) by 33 constant matrix formed by rearranging elements in )( mΦG . For 

the complete feature point set mΦ , the matrix form of the projection equation (4-10) is then: 

ΩTαMR =+⋅⋅⋅ eeews         (4-13) 

where eR is a (2n0) by (3n0) enhanced rotation matrix created by repeating the partial rotation 

matrix wR along its main diagonal. Similarly, the enhanced translation vector eT contains n0 

pairs of xt and yt . T
nn vuvuvu ]     [

001100 ⋅⋅⋅=Ω represents the set of all projected feature 

points. Clearly, the projected points are linear functions of the morphing parametersα , the 2D 

translation parameters xt , yt and the scaling factor ws . 

4.2.4.3 Regulate Cubic Morphing Parameters 

For a statistical face model like the AAM or the 3DMM, its face shape subspace models the 

statistical shape variations of human faces assuming that the shapes of human faces conform 

to the multivariate Gaussian distribution. Pose parameters and shape parameters are decoupled 

and well defined to account for pose and shape variations respectively. Instantiating a novel 

face by editing the shape parameters does not affect the pose of the face. However, the pose 

parameters and shape parameters are coupled for the cubic morphing operation without proper 

constraints. Previously we mentioned that the symmetric property of human face is 

incorporated and there are now 33 degrees of freedom for the cubic morphing operation. 

However, the morphing operation not only varies the face shape, but also causes it to be 

scaled and rotated. Equation (4-13) clearly shows that the pose parameters and morphing 

parameters are mutually dependent. Therefore, it is necessary to regulate the morphing 
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operation to avoid a biased estimation of the pose parameters.  

We solve this problem by aligning the morphed face to the generic face with a 3D similarity 

transform Q . As the morphed model is self-symmetric, its center of gravity always lies in the 

y-z plane (with the x component being zero, see Fig. 4.4). Then the number of unknown 

alignment parameters in Q is reduced from 7 to 4, including the scaling factor as , the 

rotation angle aθ  and the translation pair ( yo , zo ) in the y-z plane. Optimal parameters are 

obtained by minimizing the sum of squared distance: 

∑ −
i

m
i

m
i

oos zyaa

2

,,,
))((minarg PPGQ

θ
       (4-14) 

The minimization procedure is given in Appendix C.  

The regulation of the morphing operation is conducted after the morphing and pose 

parameters have been solved using the algorithms introduced in the following sections. Both 

the morphing parameters and the pose parameters are adjusted accordingly based on the 

computed regulation parameters. Without the regulation, the shape parameters and the pose 

parameters would be confused and no longer meaningful.  

4.2.5 Distance Map: Revisited 

Distance transform was proposed by Rosenfeld and Pfalz in 1968. Over several decades, it has 

evolved and developed into various algorithms that can handle alignment tasks of 

multidimensional data sets based on two-dimensional and three-dimensional Euclidean 

distance functions. Take two-dimensional alignment as an example. Assume that a set of 

feature points have been extracted from an image. For any point in the image, a distance 

vector map finds its nearest feature point and measures their distance. Distance transform is 
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very helpful when the correspondence between two data sets is unknown or partially 

corrupted. Sometimes two data sets might be in good correspondence at first, yet after some 

transform, the original correspondence is no longer valid. Distance transform provides 

possible solution to this kind of problems.  

In [27], distance transform plays an important role for the 3D modeling task. In order to 

recover the 3D point coordinates from the extracted feature points in the images, point 

correspondence has to be established across the images. With a distance map serving as a 

lookup table, explicit point-to-point correspondence is avoided. Instead the distance map 

automatically maps the projected model points to their nearest feature points extracted from 

the images. The modeling parameters are updated iteratively to minimize the average distance 

map. In order for the evaluation of the distance function measured from the distances map to 

be reliable and practical, the projected model points have to be within a small range of the real 

feature points. Distance maps in [27] are generated based on an edge detection algorithm. 

Several crucial feature points from the eye corners, the nose tip and the mouth are manually 

picked to initialize the model parameters. In fact, without this step, the modeling process in 

[27] would be much slower if it ever could converge at all.  

The view-based AAMs are adopted to align 2D face images of different viewpoints. The 2D 

model points are assumed to be the projection of the selected 3D feature points. Since the 2D 

model points are aligned to the face images, there is no manual feature marking involved. 

With the pre-defined point correspondence, it is straightforward to reconstruct the 3D model 

points and further compute the optimal model.  

However, the pre-defined correspondence between the 3D model points in the 3D generic 
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model and the 2D view-based AAM model points is only an approximation of the real 

3D-to-2D projection. Such a strict point-to-point correspondence is not only over-constrained, 

but also incorrect. To relax the correspondence problem, distance maps are generated from the 

2D aligning results. The modeling process is then refined and evaluated based on the new 

distance function. Fig. 4.6 shows some examples of distance maps generated from the 

view-based AAM alignment results for a person in our database.  

 

 

Figure 4.6 Four face images of different viewpoints on the first row. Their corresponding 
distance maps are shown on the second row. 

 

In Fig. 4.6, the 2D aligned model points are shown as white dots. The triangle meshes show 

the connectivity of all triangles in the 2D view-based AAMs. Note that for different pose 

categories, the triangulation schemes are totally different as they are automatically generated 

by the Delaunay triangulation algorithm based on the pose-specific mean face shapes. In order 

to generate the distance maps on the second row, model points are first connected to form 

piece-piece edge maps.  
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During the modeling process, the model parameters are first estimated with the assumption of 

explicit correspondence between the 3D model points and the 2D models points. Clearly, it is 

crucial to successfully extract the 2D feature points with the view-based AAM algorithm. For 

a person with k0 face images, failure to accurately align any one of those images would lead to 

a biased estimate of the 3D face structure. Distance transform is adopted only to refine and 

improve the 3D modeling result, while in [27], the whole 3D modeling algorithm will not 

function at all without the extracted distance maps.  

4.3 Morphing and Pose Parameter Estimation 

4.3.1 Partial Linear Optimization Algorithm 

We have made one thing clear that the definition of the 2D model points is in accordance with 

the selected 3D feature points in the generic model. Equation (4-10) and (4-13) show 

explicitly how they are related. The view-based AAM algorithms make it possible to extract 

facial feature points robustly even when the face is partially occluded. Assume for the person 

to be modeled, k0 face images of different viewpoints are available. Let kip ,  be the extracted 

ith feature point in the kth face image. The goal is to find the morphing and pose parameters so 

that the projected feature points are optimally mapped to the extracted feature points in the 

face images. Based on the projection equation (4-10), the following cost function is derived: 
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where ),...,2,1},,,,,,{*,( 0,,,,, kktts kykxkzkykxk === θθθΠαΠ represents the set of all 

unknown parameters, including 33 morphing parameters in vector α  and 6*k0 pose 

parameters for k0 face images. ),( , Πpd ki is the Euclidean distance vector describing the 
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difference between the ith projected model point and the corresponding feature point in the kth 

image. The cost function is simply the sum of squared distances.   

The modeling process aims to minimize the cost function in (4-15) with respect toΠ . 

According to (4-10) and (4-13), the projected model points are linear functions of the scaling 

factor, the translations and the morphing parameters. Apparently, the cost function in (4-15) 

can be minimized by setting the partial derivatives with respect to parameters in Π to zeroes. 

Let )(,
m

ikki pGRq ⋅=  denote the ith morphed and rotated model point. Given the current 

estimation of the model parameters inΠ , the partial linear solution to ks is: 
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Similarly, the translation vector kt should be updated as: 

∑
=

⋅−=
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qpt       (4-17) 

The solution to kR is a little bit trickier since its two rows must be orthogonal unit vectors for 

kR to be a valid rotation matrix. Instead of updating kR directly, or the three underlying 

rotation angles kzkykx ,,, ,, θθθ , we replace kR in (4-15) with kRR ⋅∆ , where R∆ is a 2 by 2 

matrix. For kRR ⋅∆ to be a valid rotation matrix, it is not difficult to find out that R∆ has to 

be a rotation matrix in 2D, which indicates that we only need to estimate the rotation angle to 

minimize the average distance between two set of 2D points. The problem is simplified to the 

solution of [ ] [ ]TT
1100 VUVUR =⋅∆ , where 0U , 0V , 1U , 1V are respectively the x 

components and y components of the source and destination set of points (in the form of 

column vectors). The rotation angle θ in R∆ has the optimal solution as: 
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)arctan(
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θ       (4-18) 

Though in the above equations, all model points are considered, in reality, some of them are 

not visible due to occlusion. It is our assumption that the same pre-defined points will be 

occluded for a specific pose category. Therefore those points are excluded from the estimation 

the model points.  

After the pose parameters are updated in turns according to equation (4-16) to (4-18), the 

morphing parameters are updated based on the linear equation (4-13). First, the cost function 

in (4-15) is rewritten as an explicit function of morphing parametersα .  
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The morphing parameters α that minimize equation (4-19) is: 

bAAAα ⋅⋅⋅= − TT 1)(         (4-20) 

where  
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Basically, the partial linear optimization procedure finds the pose and morphing parameters by 

iteratively updating them using (4-16), (4-17), (4-18) and (4-20). The order of updating is 

carefully arranged so that the estimation is stable and fast.   

4.3.2 Optimization with Marquardt-Levenberg algorithm 

In the previous section, the cost function in (4-19) (or equivalently (4-15)) is minimized using 

the partial linear optimization algorithm. The algorithm is stable. However, since the 

parameters are updated one by one, it is of low efficiency compared to gradient descent based 
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algorithms. Gradient descent based algorithms make use of the explicit partial derivatives of 

the cost function. For a multivariable cost function like (4-19), the parameter updating rule is 

dictated by the slope of the cost function at current estimate in the parameter space. For 

example, the simplest steepest descent algorithm updates along the negative direction of its 

slope. The partial derivatives of the cost function (4-15) with regard to the model parameters 

can be expressed using the gradients of the Euclidean distance vectors. The cost function 

(4-15) is repeated here for better understanding.  
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Assume the initial estimate of model parameters are 0Π . At the jth iteration, the cost function 

is approximated by its first order Taylor series overΠ  around the point 0Π  as follows: 
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1)()(      (4-22) 

where D is the exact gradient of )(Πe  and H is the approximation to the Hessian matrix. 
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In the Marquardt-Levenberg (LM) optimization algorithm [62], the incremental update ∆ for 

the model parameters is obtained by solving 

0)( =+∆⋅⋅+ DIH λ         (4-25) 

whereλ is a small positive scalar. When λ  is zero, the direction of ∆ is identical to that of 

the Gaussian-Newton method. When λ tends to infinity, ∆  will be a very small vector 

pointing the steepest descent direction. Therefore, the LM method uses a search direction that 

balances the Gauss-Newton direction and the steepest descent direction. Usually in the 
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iterative procedure, λ starts with a pre-defined small number and it decreases as the 

modeling error becomes smaller.  

For both the partial linear optimization method and the LM optimization method, it is 

assumed that the projected model points will always be visible regardless of the real viewing 

angle. Since for a fixed pose category, the same occlusion is assumed. Those occluded feature 

points are excluded from the equations in (4-15) to (4-25). 

4.3.3 Incorporate Contour Constraints to the Optimization 

The goal of this chapter is to reconstruct 3D face structures from face images. The 

reconstruction is approached by a 3D face modeling algorithm that relies on the extracted 

feature points from images.  

However, as mentioned in the view-based AAM section, the 2D feature points describing the 

face contour do not explicitly correspond to a set of 3D feature points in the generic 3D face 

model. Fig. 4.7 shows the mean face meshes in pose category 2 and 3 for the view-based 

AAM algorithm, where the extra 4 points are circled out with dashed ellipses.  

 

 

Figure 4.7 Face meshes used in the view-based AAM: pose category 2 and 3 from left to right. 
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Naturally, it is desirable that the reconstructed 3D face generates the same face contour as the 

extracted face one from the face image. For a generic face mesh, it is not difficult to determine 

the projected face contour given the morphing and pose parameters. Usually, the contour is 

generated as the convex hull of all projected points. However, it is not trivial to measure the 

distance of two arbitrary curves and adjust the model parameters to minimize the distance 

accordingly. Since the extracted face contour is spanned by 4 points, it is enough to analyze 

the piece-wise curve defined by 6 points (including two extra neighbors). Here, we aim to add 

extra constraints from the face contours in yellow color in Fig. 4.7 to the modeling process.  

To incorporate the contour constraint to the modeling process with a minimum extra 

computation, we simplify the curve-to-curve matching problem to an average point-to-curve 

distance problem. The identities of those 3D model points that might contribute to a projected 

face contour are unknown. On the generic face model, we manually pick 48 points as a pool 

of candidates and denote the set withΨ . They are believed to be all possible points that might 

constitute the face contour after the projection. Fig. 9 shows those candidate points on the 

generic face model as red stars.  
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Figure 4.8 Candidates for contour points on the generic model viewed from two different 
angles 

 

Figure 4.9 Nine normal lines on the face contour 

 

Fig. 4.9 shows an extracted face contour from a face image in pose category 2 (or 3). 9 lines 

normal to the face contour are plotted. They pass through 4 vertices plus 5 in-between points. 

Therefore the face contour area is divided into 10 neighborhoods. Neglect the one on the top, 

the model points in Ψ will fall into one of the 9 neighborhoods. }9,...2,1,{ == iiΨΨ . For 

the projected points inside the iΨ  neighborhood, the one that is furthest to the right of the 

contour line is detected. Let this point be ir and its projection to the contour line be 0
ir . In 

order to minimize the distance between the projected face contour and the extracted face 

contour, it is equivalent to minimize the sum of squared distances for all night pairs of points. 

          

 

ir0
ir

 

Cuiping Zhang
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The cost function is: 

∑
=

−=
9

1

20
1 )(

i
iie rrΠ         (4-26) 

Since the outline of the 9 rightmost points reflects the projected face contour, minimization of 

(4-26) is equivalent to the matching of the projected face contour and the extracted one from 

the face image. 

The overall cost function is then revised as the addition of )(1 Πe and the one defined in 

(4-15). 
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The same algorithm described in section 4.3.1 and 4.3.2 is used to minimize this new cost 

function as it is still a sum of squared distance. However, the identities of the 9 rightmost 

projected points have to be dynamically updated in the iterative optimization procedure.   

4.3.4 Refine the Parameter Estimation with Distance Mapping 

In section 4.2.5, we have reviewed the basic idea of using distance maps to improve the 

modeling accuracy. For an object that is as complicated as a human face, a distance map can 

not correctly reflect the distance of the source and destination point sets when the model 

parameters are far from optimal. Therefore, it is of low efficiency to make use of a distance 

map for the entire optimization procedure.  

Fortunately, with the methods in section 4.31 and 4.32, we are able to have a good estimation 

of the model parameters. Distance transform is used to further refine the modeling result and 

relax the strict correspondence between the 3D and 2D points.  
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It is very easy to incorporate the distance map to either the partial linear optimization 

algorithm, or the LM algorithm. The only difference is the corresponding 2D points are not 

fixed in the iterative procedure. Instead, they are looked up from distance maps dynamically.  

4.4 Experiments 

4.4.1 View-based AAM 

We use a face database of 278 face images for our experiments. It is based on a small database 

of 32 people previously collected in Drexel [27] and expanded with some available face 

images from public databases on the Internet. Table 4.2 shows some information of the 

database. 

 

Table 4.2 Our face database 

Pose Category 1  

[-
020 ,

020 ] 

Category 2  

[
010 ,

050 ] 

Category 3  

[
040 ,

080 ] 

Category 4  

[
070 ,

0100 ] 

Number of 
img 

83 85 47 63 

 

Sine this database is quite small, we would like to use all face images for the training of face 

subspaces for the 4 view-based AAM methods designing for the 4 pose categories. Practically, 

a leave-one-out strategy is adopted. That is, for N images, N-1 images are used for training the 

AAM, while the left-out is subject to testing. The 2D AAM-based alignment algorithm has 

been discussed a lot in previous chapters. Fig. 4.10 shows the average faces for the 4 

view-based AAMs respectively.  
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Figure 4.10 Average faces for pose catogery 1 to 4 (from left to right). 

 

Note the face meshes are generated using the Delaunay triangulation algorithm. The 

triangulations are different for different pose categories as shown in Fig. 4.10. In Appendix D, 

the shape variations caused by editing the principal shape mode are demonstrated. Also 

Appendix E shows a table of face images that are generated by varying only the principal 

texture mode of the face texture subspace.  

The alignment of a 2D face image using the view-based AAM is similar to the canonical 

AAM algorithm. First, the pose of the face is roughly determined in order to choose the right 

AAM. The average model parameters serve as the initial parameters as being plotted in the 

first row in Fig. 4.11. The second row in Fig. 4.11 shows the converged faces for the test 

images that are from 4 different pose categories.  
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Figure 4.11 Face alignment results of different poses 

 

4.4.2 3D Modeling Experiments 

4.4.2.1 Partial Linear Optimization versus LM Optimization Algorithms 

For both the partial linear optimization algorithm and the LM optimization algorithm, the 

same initial settings and stopping criterion are used. Fig. 4.12 compares the reconstructed 3D 

faces for the person in Fig. 4.6 resulting from the partial linear optimization algorithm (on the 

first column), the LM algorithm (on the second column) and the regularized LM algorithm 

(on the 3rd column). The top row shows the frontal views. On the second row, the 3D faces are 

rotated by -20 degree around the vertical axis. The profile views are shown on the last row.                  

.        
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Figure 4.12 Modeling results: (a)(d)(g): the partial linear method shown as frontal, 
half-profile and full profile; (b)(e)(h) the LM method shown from three angles; (c)(f)(i): the 

regularized LM method from three angles. 

 

As expected, all recovered 3D faces have steep and unconstrained cheeks, which is reasonable 

since the morphing of the generic model is only dictated by the feature points in blue. For the 

LM algorithm, the morphing operation also causes the 3D face shifted, scaled and rotated. 

Without any regulation, the morphing parameters are coupled with the pose parameters. On 

the other hand, the partial linear method seems less affected. After regularization of the 
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morphing parameters, the reconstructed 3D face is normalized with the generic 3D face.  

Table 4.3 compares the average modeling errors of these two algorithms by evaluating the 

cost function (4-15) for the first 5 steps in the iterative optimization procedure.  

 

Table 4.3 Average modeling errors for different methods 

Step 1 2 3 4 5 

Partial 

Linear 

80.8078 19.6619 13.7256 12.7508 12.5186 

LM Method 1059.6 21.7412 4.3867 4.1611 4.1278 

 

Clearly, both algorithms converge quickly and reach their stable modeling errors within 4 

steps. After the first iteration, the partial linear optimization algorithm has a better 

performance (compared to the number 1059.6 for the LM algorithm). However, the overall 

estimation using the LM algorithm is more accurate. In fact, even after 30 iterations, the 

partial linear algorithm still has an average modeling error around 12.1. Apparently the LM 

algorithm is a better choice in terms of the modeling accuracy. In our MATLAB 

implementation, an iteration of the LM algorithm takes about 5 ms, which is twice the time 

needed for one step in the partial linear algorithm. For further analysis of the incorporation of 

the contour constraints and the distance maps, only the LM algorithm is considered.  

4.4.2.2 Incorporation of Face Contour Constraints 

The 3D face looks very different without the constraint of face contours, though only 9 extra 

contour points are considered. Fig. 4.13 compares the modeling results with or without the 
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face contour constraint. The morphed face model together with the selected feature points are 

plotted on the first column. Their 3D projections, as well as the generated face contour, are 

overlapped on the face image on the second column. If we compare the results on the first row 

(without contour constraint) with the results on the second row (with the face contour 

constraint), the difference is drastic. Clearly the contour constraint is very crucial in order to 

interpret and model the face accurately. 

 

 

 

Figure 4.13 Modeling results with and without the contour constraint for pose category 2 
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Fig. 4.14 shows similar results except the pose of the face is classified to the pose category 3. 

Both Fig. 4.13 and Fig. 4.14 explicitly demonstrate the importance of the face contour in the 

reconstruction process of a realistic 3D face.  

 

 

Figure 4.14 Modeling results with and without the contour constraint for pose category 3 

 

4.5 Conclusions 

In this chapter, we present an algorithm to reconstruct the 3D face structure from 2D face 

images. The reconstruction is conducted by morphing a 3D generic face model with a cubic 
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polynomial, which in essence is a linear function of the model parameters. The view-based 

AAMs are employed to extract 2D feature points. Face contours are extracted from images 

and combined into the modeling procedure as constraints. As a result, the reconstructed 3D 

face looks more realistic and natural. While the extraction of the 2D feature points with the 

view-based AAM is robust and fast, the 3D modeling task is straightforward and takes less 

than a second to finish in a Pentium IV computer.  

Reconstructed 3D face structures can be applied for a variety of tasks like face recognition, 

pose determination and synthesis of novel views. There is only one thing left. For a specific 

face, a texture descriptor is needed to characterize its unique intensity pattern. Usually, this is 

approached by using texture mapping techniques. However, a more powerful approach is to 

explicitly model the formation of image irradiances and the environmental illumination 

condition. This is the topic of our next chapter.    



 

 

99

CHAPTER 5 : FROM 2D TO 3D: ILLUMINATION-FREE TEXTURE 

EXTRACTION WITH THE SPHERICAL HARMONIC 

ILLUMINATION MODEL 

Any human face, as a 3D object, has a unique surface geometry that is determined by the 

underlying bone structure and the associated facial muscles. Just like the surface shape, the 

surface appearance also serves to distinguish different individuals. A face is perceived by 

human eyes or cameras as an image of unique intensity pattern due to different surface albedo 

at each surface point. Surface albedo is an inherent property of the specific material. However, 

the appearance of a face not only depends on the face surface albedo, face shape and the 

viewing angle, but also varies significantly under different illumination conditions. In fact, the 

intra-personal appearance difference caused by solely varying the illumination condition 

could be much larger than the inter-personal difference. This remains one of the main 

challenges for automatic face recognition algorithms. It is of great interest to model the 

inverse imaging process and extract illumination invariant texture (or surface albedo) 

information. In this chapter, a latest analytical illumination model is adopted which is 

developed based upon the Spherical Harmonic representations of the illumination function 

and the Lambertian reflectance function. The illumination in a face image is analyzed after the 

3D face shape is extracted using the algorithm introduced in last chapter. A unique 

illumination-free texture map is generated afterwards. This global texture map, together with 

the extracted face structure, completely describes the face. Several simple applications are 
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demonstrated.  

5.1 Literature 

The analysis and synthesis of the images of an illuminated 3D object is an important topic in 

computer graphics community and computer vision community. For computer graphics 

people, it is of great interest to mimic the image forming process, that is, to generate images 

given known surface shape, albedo and illumination conditions. The rendered images from 3D 

parametric objects are desired to be as realistic as possible. Computer graphics techniques are 

nowadays widely applied to make animated films in Hollywood. Researchers in the computer 

vision community, on the other hand, are more interested in the inverse procedure, which is to 

recover 3D objects and their surrounding environmental illumination conditions in the 

physical world by analyzing face images or videos. The two communities respectively 

emphasize different aspects of the same phenomenon. Research progresses in the two areas 

are closely related and mutually boosted. 

 5.1.1 When Illumination is not considered: Face Texture Mapping Techniques 

Assume for an ideal scenario, the irradiance at an image point is proportional to the surface 

albedo of the corresponding 3D surface point. The appearance of the face is said to be 

illumination free. Novel images of that face can be synthesized using existing example face 

images. This is a typical texture mapping (or texture rendering) problem. By definition, 

texture mapping is a technique to map 2D images onto 3D surfaces so that the transformed 

color data conforms to the surface plot. Specifically, a texture color is computed for each 

point on a face model from a collection of photographs, with the knowledge of the face 
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structure and the pose parameters of all photographs. The main task of texture mapping is to 

establish correspondence across photographs of different viewing angles and blend different 

values to yield best estimation for a novel image.  

There are two different texture mapping approaches. The first one is view-independent texture 

mapping, which results in a texture map that can be used to render the target face from any 

viewpoint. View-independent texture mapping generates one and only one texture map for 

each individual. A texture map is usually defined on a 2D texture space, and the most popular 

projection model to map the 3D coordinates of an object to the 2D texture space is the 

cylindrical projection model [63]. In the 2D texture space, any texture unit is computed as a 

weighted sum of the texture values at the corresponding image points across all photographs. 

When synthesizing a novel view of the face object, image intensities (or textures) are easy to 

generate given the explicit mapping between the image coordinate system, the 3D world 

coordinate system and the texture space. 

Another approach is view-dependent texture mapping. Depending on different viewpoints, 

different blending weights are applied to the available photographs. It starts with choosing a 

subset (or all) of the available photographs, followed by determining a blending weight for 

each of these photographs. Pulli et al [64] selected three photographs based on a Delaunay 

triangulation of a sphere surrounding the object. When azimuthal angle is the dominating 

factor among different viewpoints, it is enough to choose two photographs whose viewing 

angles are the closest to the desired new image.  

Since view-dependent texture mapping synthesizes a new image directly from existing images 

of closest viewpoints, usually the resulting images look more realistic compared to those 
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using view-independent texture mapping techniques. For view-independent texture mapping, 

a 2D cylindrical texture map might not be able to cover the whole surface of the object in the 

3D space due to possible self-occlusion in the mapping. However, view-independent texture 

mapping has its own advantages. As a global texture map is a weighted sum of images of 

different viewpoints, view-independent mapping is less sensitive to any variations in exposure 

or lighting conditions in the original photographs. It also requires less memory since only one 

global texture map is generated and saved.  

5.1.2 Basic Illumination Models for Photorealistic Rendering in Computer Graphics 

This world is full of all kinds of colorful objects of different materials. Modeling the colors 

and lighting effects is a complex process. Internally, due to the interaction of electromagnetic 

energy with the object surface, the amount of reflection and absorption of the incident light 

varies. When the reflected light reaches human eyes, it triggers perception processes that yield 

the image of the scene as we perceive. Besides different color effects, objects show some 

other illumination effects. They might look opaque or transparent to some extent. Their 

surfaces might be shiny or dull etc. An illumination model [65], in computer graphics, is a 

term for the process to model and calculate the intensity radiating from a particular surface 

point to the image plane, given the surrounding lighting environment (a number of light 

sources of varying shapes, colors and positions), the geometry in the scene (relative positions 

of light sources, surfaces and the camera), as well as the surface properties of the presented 

objects. 
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5.1.2.1 Light Sources 

Light sources, refer to those light-emitting sources like light bulbs or the sun, or the natural 

sky light etc. Some objects, like a mirror or a shinny wall, might serve as indirect sources for 

lighting nearby objects. They are not considered as light sources. Instead they are only 

light-reflecting sources. The simplest light source is a point source which evenly emits energy 

in all directions from one location. As radiant energy from a point light source travels through 

space, its amplitude is attenuated by the reciprocal of the squared distance it has traveled. 

Therefore when a point light source is close enough to an object, both its direction and 

amplitude have to be considered for a specific surface point. Another common light source is 

a distributed light source, or a directional source. A directional source usually is featured with 

constant amplitude and one lighting direction. A point source can be approximated as a 

distributed light source when it is far away enough from the object surface. A typical example 

is the sun. There are some special light sources like the X-ray, structured light, laser light etc. 

Images formed in those ways have special applications and are beyond the topic here. 

5.1.2.2 Basic Illumination Models 

Illumination models are often derived from physical laws. Most models are empirical models 

that are based on simplified photometric calculations. Here several basic illumination models 

are reviewed. For most objects in the world, overall surface intensities are the results of joint 

contribution from different types of reflections. 

The first contribution is from ambient light, or background light. It is a uniform illumination 

without spatial or directional characteristics. It casts same amount of light on all objects. This 
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happens when no object in the scene is exposed directly to a light source. Ambient light is 

usually related with the general level of brightness of an image. 

The second contribution comes from the diffuse reflection. For rough or grainy surfaces, they 

tend to scatter the reflected light in all directions so that the surface appears equally bright 

from all viewing angles. An ideal surface of this type is referred as Lambertian reflector since 

the reflection function is governed by Lambert’s cosine law, which states that the reflected 

energy is proportional to the incident light intensity, surface albedo, as well as the cosine of 

the angle between the negative incident direction and the surface normal. The cosine function 

implies that for the same amount of incident energy, only the perpendicular equivalent area 

should be considered. The color of the surface is actually the color of the diffuse reflection of 

the incident light.  

Besides ambient light and diffuse reflection, sometimes we see highlights or bright spots on a 

surface that vary under different viewing directions. That is caused by another type of 

reflection called specular reflection. It often happens on shinny surfaces. The incident energy 

is reflected in a concentrated region around the specular-reflection angle. When the viewing 

direction coincides with that reflection angle, the specular phenomenon is most prominent. 

Given one single point light source, the intensity on a surface point is a combination of 

different reflections according to the Phong illumination model: 

sn
lsldaa IkIkIkI )()( hnln ⋅+⋅+=       (5-1) 

where the first item is the ambient component with ak  being the ambient reflection 

coefficient and aI  being the intensity of the ambient light. The second and third items are 

respectively the diffuse and specular components. The diffuse intensity is proportional to the 
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inner product of the surface normal n  and the incident lighting direction l . h  is the 

halfway vector between l  and the viewing vector v . When it coincides with the surface 

normal, the specular intensity is maximized. sn is the specular-reflection parameter that varies 

between 0 and 1. dk  and sk  are diffuse and specular reflection coefficients respectively. 

When rendering an image of wire-modeled 3D objects in a scene, consideration for the above 

illumination models is a must, yet it is far from complete. First of all, contributions from 

individual light sources have to be summed. Secondly, if transparent objects are present, 

transparency effects have to be modeled by considering the light refraction. When an object 

surface is not directly lit by a light source, there will be shadows in the scene. There are 

mainly two different types of shadows. Attached shadow is produced when a surface normal is 

facing away from the lighting direction. In equation (5-1), the dot product for the second item 

would be negative. Practically it is just set to zero for negative values. On the other hand, even 

when the dot product is positive, that surface point might be occluded by another object. A 

shadow generated in this way is called cast shadow. A commonly adopted method to 

determine the shadow areas is the hidden surface algorithm. Finally, a ray of light might be 

transmitted and reflected several times before it reaches the image plane. A realistic image 

rendering algorithm should consider global reflection and transmission effects. One of the 

successful methods is ray tracing, where a ray is sent out from each pixel position and allowed 

to bounce around the scene to obtain global lighting effects.  

5.1.3 Illumination Modeling for Face Recognition 

Modeling illumination effects in computer graphics and computer vision are two different 
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concepts with different goals. Basic illumination models are reviewed in the previous section. 

Those models are fundamental for one to understand the basic illumination process. Modeling 

illumination in face recognition deals with illuminated human faces in images or video 

sequences. Usually the ultimate goal for illumination analysis is to extract illumination free 

features for recognition purpose, or synthesize novel face images under arbitrary illumination 

conditions. Illumination models, from this point on, refer to methods to describe and 

characterize a low-dimensional illumination subspace for each face, given a number of its 

example images. In another word, what’s the set of all images of a face object under all 

possible illumination conditions?  

Though generally, both diffuse and specular reflections co-exist. Simple models are adequate 

for face analysis and recognition. For most existing studies of illumination analysis, it is 

assumed a convex Lambertian object is illuminated by distant light sources. By distant light 

sources, it is justified to assume that a light shines on each point in the scene from the same 

angle and with the same intensity. Secondly, the object is Lambertian so that the specular 

effect is not considered. In equation (5-1), the second item is the Lambertian reflection 

contribution. For a single light source pointing at direction lu  with light intensity )( ll u , 

according to Lambert’s law, image irradiance at the ith surface point is: 

)0,max()( ilili l vuuI ⋅= ρ ,     (5-2) 

where vectors iv  is the surface normal vector and iρ  is the surface albedo that describes 

the fraction of the light reflected at this point. Clearly, for Lambertian objects, all we need to 

know are surface normal and surface albedo at each surface point. Finally, the object is 

assumed to be convex so there is no cast shadows. Attached shadows are considered in 



 

 

107

equation (5-2). All above assumptions lead to much simpler and efficient algorithms. 

5.1.3.1 PCA-based Low-dimensional Linear Subspace Representation 

If raw image data of a face image is scanned line by line to form a vector, it can be considered 

as one point in a high-dimensional image space. Given enough sample points (example 

images), their distribution and other properties can be studied. Based on their observation and 

experiments, researchers believe that the set of all images of a specific face under all possible 

illumination conditions lie in a low-dimensional linear subspace. Hallinan [65] studied the set 

of images of a face viewed from a fixed viewing angle while illuminated by a floodlight 

placed in various positions. With Principle Component Analysis (PCA), he found that five or 

six principal components are enough to characterize the illumination subspace. In [66], 

Epstein et al. conducted experiments on various Lambertian objects and concluded that 

images of a Lambertian object can be approximately with a linear illumination space of 

dimension that is between three and seven. 

Since PCA is a statistical tool, it usually requires a training database that is general enough to 

include most of the variations for the population in the real world. Without enough samples, 

the resulted models are somehow biased and not representative. Another drawback for PCA 

based illumination models is related with different viewpoints. There is no effective way to 

handle the pose problem. The pose space is usually sampled and a linear subspace is 

generated for each pose category as being done in [67].  

5.1.3.2 Illumination Modeling based on Theoretical Analysis of Lambertian Reflectance 

The PCA-based analysis shows empirically that the illumination space has very low 
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dimensions. This conclusion could also find its theoretical foundation from the analysis of the 

reflectance function, assuming we are dealing with Lambertian objects. Without any 

consideration for cast and attached shadows, let iii ρvv =~  be the albedo-weighted normal 

vector at the ith surface point. Its image irradiance is then the inner product of the weighted 

normal and the lighting vector, uvI ⋅= ii
~ . Rearrange it in matrix form as uvI T

ii
~= . Let 

V  be a matrix whose rows are the weighted normal vectors for all surface points. 

]~; ... ;~;~[
021

T
n

TT vvvV = . The image is represented as VuI = . When multiple light sources 

are present, just sum them up and the resulted image is ∑=
m

muVI . Clearly, the image has 3 

degrees of freedom since V  is a matrix of n0 by 3. It indicates that without any 

consideration for shadows, all images of a Lambertian object lie in a three-dimensional space. 

When the ambient component in equation (5-1) is also considered, all set of images (no 

shadows) lie in a four-dimensional subspace.  

In reality, a face might be presented in an image with heavy shadows. Linear subspace 

methods based on the above analysis (or PCA analysis) have poor performance as they can 

not extrapolate novel images at unseen poses and under new illumination conditions. 

Illumination cone is an extrapolative illumination model proposed by Belhumeur and 

Kriegman [50]. First of all, they pointed out that the set of images of an object under arbitrary 

illumination form a convex cone in image space. It is convex since any positive linear 

combination of two images is still a valid image. It is also a cone as a scaled image is still 

within the same illumination space. Secondly, for a specific face, the convex cone can be 

learned from as less as three images. To construct the convex cone, Singular Value 

Decomposition (SVD) analysis is applied to the training images to yield the best orthogonal 
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basis. As a result, surface albedo at each surface point is computed and the 3D surface of the 

given face is reconstructed up to a GBR transformation. With the geometry of the surface, 

extreme image rays (vertices in the illumination cone) can easily be calculated. Any image in 

the cone is a convex combination of those image rays (or extreme rays). The dimension of the 

illumination cone is O(n2), where n is the number of distinct surface normals of the object. 

Clearly, all images of an illuminated face do not lie in a low-dimensional space as widely 

believed before. However, it was also observed that the illumination cone is “thin”. Face 

recognition experiments were carried out by measuring the distance of a given image to the 

constructed illumination cone of each face in the library to find the best match. It is a convex 

optimization problem with well developed solutions [50]. 

Compared to PCA-based methods, the illumination cone is extrapolative, and theoretically 

derived. However, the construction of the illumination cone requires calculation of all extreme 

rays in order to cover all possible settings of different illumination conditions. What’s more, 

the only efficient way to handle the pose problem is to sample the pose space to create 

different illumination cones. Apparently, this illumination model is quite time consuming. The 

fact that the illumination cone is “thin” implies that even the illumination subspace is of high 

dimensions, it might still be well approximated by a low-dimensional space.  

It is not until recently that the secret of illumination was further revealed with the help of 

spherical harmonic representations. Basri and Jacobs [68], and in parallel Ramamoorthi and 

Hanrahan [69], represented the lighting function and the reflectance function in the form of 

spherical harmonics and concluded that all images of a convex Lambertian object at a fixed 

pose could be approximated to high accuracy using nine or less basis images. With explicit 
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expressions for all basis images, it is straightforward to construct basis images from known 

3-D surface geometry and surface albedo. This method is a breakthrough for the study of 

illumination effects since it is for the first time ever that the illumination subspace is 

analytically formulated, independent of any sample images. As it is the most promising and 

advanced illumination model, it is adopted in our work in order to analyze and extract 

illumination invariant texture information from images. In the next section, this model is 

explained in details. 

5.2 Preliminary Background: Spherical Harmonics and Their Applications in 

Illumination Modeling 

For the purpose of illumination analysis, a convex Lambertian object is assumed to be 

illuminated by distant light sources. Equation (5-2) shows the intensity at ith surface point for 

a single light source. If we neglect the surface albedo for the time being, then it simply maps 

surface normal to image irradiance. A reflectance map is a lookup table mapping surface 

normals directly to image radiances and is the foundation for most Shape from Shading (SFS) 

algorithms. 

In reality, an object might be illuminated by numerous different types of light sources like 

point source, distributed light source etc. As long as they are distant sources, it is legitimate to 

assume they shine on the object evenly. Therefore, the intensity of the light is independent of 

the position in the scene. Equation (5-2) could be generalized to an arbitrary lighting 

environment by integrating the light over all directions as: 

∫∫ ⋅=⋅=
22

)()()0,max()()(
S

lrll
S

lrllr dkldlr uvuuuvuuv    (5-3) 

The maximum operation is denoted as a kernel function )( rlk vu ⋅ . Later equation (5-3) is 
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reinterpreted as convolution on the sphere. The key to that reinterpretation is the spherical 

harmonic representation. 

5.2.1 The Spherical Harmonic Analysis 

The spherical harmonic analysis is the analogue of the Fourier series analysis for signals in 

time domain. The Fourier series analysis states that any periodic signal can be decomposed as 

a weighted sum of a set of orthonormal basis functions. The set of orthonormal functions are 

also defined in time domain in the form of complex sinusoid functions that are of harmonic 

frequencies. Spherical harmonics, literally, should be a set of harmonic functions that are 

defined on the surface of the sphere. The spherical harmonics analysis is a transform that can 

work on any spherical function in a similar way as the Fourier series analysis on any periodic 

time-domain function. Any spherical function (function that is defined on the surface of the 

unit sphere) can be written as a sum of weighted orthonormal basis. In other words, any 

spherical function can be transformed into another domain, which is spanned by a set of 

orthonormal functions. These functions are denoted as nmY , for n being positive integers and 

nmn ≤≤− . nmY  is the n’th order harmonic defined on the unit sphere. It could be 

parameterized as a function in the spherical coordinate system as ),( φθnmY , where θ is  

the azimuthal angle in the xy-plane from the x-axis with πθ 20 <≤ , and φ  is the polar 

angle from the z-axis with πφ ≤≤0 . Sometimes it is more convenient to express 

),( φθnmY  as a function of the surface normal ),,( zyx=v . ),,( zyxYnm then becomes a 

polynomial of degree n . The first nine polynomials are 

))cos(),sin()sin(),cos()(sin(),,( θφθφθ== zyxu      
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The superscripts e and o denote the even and odd components of the harmonics. Since in 

practice, we only deal with real functions. The even and odd versions are more convenient to 

use.  

For any piecewise continuous function )(uf  defined on the surface of the sphere, the 

transform pair for the spherical harmonic analysis is 

∑ ∑
∞

= −=

=
0

)()(
n

n

nm
nmnmYff uu            

uuu dYff nm
s

nm )()( *

2
∫=        (5-5) 

Anybody with a little bit knowledge of the Fourier series analysis can see the high 

resemblance between these two transforms. Their differences are also apparent. Not only the 

targeted functions in spherical harmonic analysis are defined on the surface of the unit sphere, 

but for the n’th order, there exist 2n+1 harmonic functions nmY , for nmn ≤≤− .  

For the Fourier analysis, the convolution theorem states that convolution of two functions in 

time domain is equivalent to the multiplication of their transformed functions in the frequency 

domain. There is a similar theory called the Funk-Hecke theorem [68] for the spherical 

harmonic analysis. Basically, the Funk-Hecke theorem says that convolution of two spherical 
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functions equals multiplication of the coefficients of the spherical harmonic expansions of the 

two functions.  

5.2.2 Illumination modeling by Spherical Harmonic Analysis: from the Lighting 

function to the Reflectance Function and Basis Images 

Illumination on a Lambertian surface is characterized by the reflectance function in equation 

(5-3). ∫ ⋅=
2

)()()(
S

lrllr dklr uvuuv . The kernel )( rlk vu ⋅  is the maximum of the inner 

product rl vu ⋅  and zero. For different rv , it is a rotated version of the same function. The 

reflectance function is a convolution of the lighting function )( ll u  and the unrotated kernel 

function )( lk u  (fix rv  on the northern pole) on the surface of the unit sphere. The lighting 

function )( ll u , in the form of weighted sum of spherical harmonics, is: 

∑ ∑
∞

= −=

=
0n

n

nm
nmnmYll         (5-6) 

The kernel function )( lk u has only the zonal harmonics since it is circularly symmetrical 

about the northern pole.  

∑
∞

=

=
0

0
n

nnYkk          (5-7) 

The reflectance function r is the spherical convolution of function l  and k . Then r , in 

terms of the expansion coefficients of l  and k , is: 

∑∑
∞

= −= +
=

0
)

12
4(

n

n

nm
nmnmn Ylk

n
r π

      (5-8) 

Equation (5-8) associates the reflectance function with the lighting coefficients. However this 

expansion has infinite number of basis functions. How many basis functions are needed in 

order to have a satisfactory approximation of the reflectance function? The answer to this 
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relies on the analysis of the kernel function.  

The unrotated kernel function is just a half cosine function. )0),max(cos()( θ=lk u . As an 

explicit function, it is not difficult to compute all coefficients of its spherical harmonic 

expansion. It is shown that this kernel could be approximated with only a few basis functions. 

Its first three coefficients basically dominate the kernel, with 99.22% of the energy being 

preserved. In other words, the kernel acts as a low-pass filter. When convolving with the 

lighting function, the high frequency components of the lighting function will be suppressed. 

As a result, the reflectance function could also be approximated with only a few low-order 

spherical harmonics, no matter how complicated the lighting function might be. The accuracy 

of the approximation depends on the energy distribution of the specific lighting function. A 

lower bound on the accuracy of the approximation for any lighting function is given in [68], 

assuming all the higher order components are saturated. So consider both the kernel and the 

lighting function, even in the worst case when using a second order approximation, “the 

accuracy of the approximation for any lighting function exceeds 97.96% [68]”.  

∑ ∑∑ ∑
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    (5-9) 

Image intensity function (5-2) differs from the reflectance function in (5-3) with the surface 

albedo. )( iii r nI ρ= , let )()( inmiinm rb np ρ= . Denote nmb  as the n’th harmonic image, 

any image is just a linear combination of harmonic images.  

∑∑
= −=

≈
2

0

)(
n

n

nm
inmnmi bl pI        (5-10) 

Arrange all nine harmonic images column-wisely to form a big matrix. 

]...,,,,[ 22111000 bbbb=B . Let L  be a vector of all lighting coefficients. Equation (5-10) 
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could be reinterpreted as simple matrix multiplication as 

BLI ≈          (5-11) 

From the lighting function and the reflectance function to the harmonic basis images, the 

accuracy of the low-order approximation and the orthogonalality of these basis functions have 

to be reconsidered. First of all, generally these basis images are not orthogonal, even though 

the original spherical harmonics are orthogonal functions on the unit sphere. This is easy to 

see since the basis images are generated by scaling surface reflectance values with surface 

albedos. Not only the distribution of the surface normals for a human face is by no means 

similar to that of the unit sphere, but all surface normals are somehow emphasized or 

deemphasized due to different surface albedo on the surface. Therefore practically, it is 

possible to render an image with a lighting configuration so that the low-order approximation 

is very poor. However on average, the low-order representation provides a good 

approximation for the illumination subspace of human faces. First nine spherical harmonics 

are said to have an average accuracy of approximation about 99.22%.  

Equation (5-11) should be the simplest way to understand illumination phenomenon with the 

help of the spherical harmonic representations. If the 3D shape and surface albedo property of 

a face is already known, its illumination space (the set of images under all possible lighting 

configurations when viewed from a fixed angle) is spanned by some basis images that can be 

analytically computed. What’s more, the illumination space could be approximated well by a 

low-order subspace of nine dimensions.  

This analytically derived illumination subspace can be applied to synthesize novel face 

images under arbitrary illumination conditions by simply editing the nine lighting coefficients 
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as explicitly shown in equation (5-11). On the other hand, given an image of the person under 

novel illumination, the lighting coefficients could be estimated by solving a simple least 

squared problem: 

BLIL
L

−= minargˆ         (5-12) 

Often the surface albedo information is unknown. Since human face has approximately the 

same skin color, it is reasonable to assume constant albedo when estimating lighting 

coefficients with (5-12).  

If for a big database, each person is associated with a 9D illumination subspace. Given a face 

image of unknown identity, its distance to the illumination space of a known person measures 

the similarity of these two faces. Specifically, it is the distance between the input image and 

the nearest image that the illumination space can possibly generate under arbitrary lighting 

condition. Arbitrary linear combination of the harmonic basis images might generate 

physically impossible images since arbitrary lighting coefficients might correspond to a 

lighting function with negative values. Since a negative light is impossible, it is necessary to 

enforce nonnegative light. The nonnegativity is usually obtained by approximating the 

low-order illumination subspace with linear combination of a fixed set of directional light 

sources [50] [70].  

5.3 Extraction of Illumination Invariant Texture Map from Images 

The analytic description of the low-order illumination subspace makes it possible to analyze 

illumination effects without gathering statistical information from a large number of images. 

This is probably the most distinctive advantage of adopting the spherical harmonics based 
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illumination model. All it requires are the 3D surface shape description and the surface albedo 

property. Since the analytical illumination space represents the set of all possible images of a 

face under arbitrary illumination condition, the distance between an input image and the 

illumination space serves to measure the similarity of the unknown face and the given face. It 

is of our great interest to recover surface albedo information, or loosely speaking, 

illumination-free appearance for the purpose of synthesis and recognition. In our work, for 

any specific face, an illumination invariant texture map is generated given the 3D face 

structure and one or more face images. 

In previous chapter, 3D face surface is modeled by warping a generic face model to fit feature 

points and face contours extracted from input images. The morphing function is a cubic 

polynomial and the optimal morphing parameters are called shape parameters. The morphed 

3D face represents the fundamental face structure of that person. Surface details could be 

estimated by interpolating nearest face mesh vertices. Estimating illumination coefficients and 

illumination free texture map could be carried out in two different frameworks.  

5.3.1 View-dependent Illumination Editing and Normalization 

Illumination editing could also be referred as face relighting. Started with face image(s) and 

the underlying 3D face structure of a person, we lack accurate surface albedo information in 

order to build a low order illumination space. If the pose is fixed, the albedo problem can be 

circumvented with a simple yet practical solution [71]. A face image could be relit without 

explicitly solving the surface albedo. Assume for the original face image, the image intensity 

at point ),( yx=u  is decided by )()()( nuuI r⋅= ρ , where )(uρ  is the surface albedo 
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of this point. )(nr  is the reflectance function. Under a different illumination environment, 

the intensity function would be )(')()(' nuuI r⋅= ρ . Apparently, the new image is related to 

the original image as 
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     (5-13) 

Since the lighting coefficients { nml } could be estimated using equation (5-12). The harmonic 

reflectance )(nnmr  is only a function of the surface normal (see equation (5-8) for details). 

Equation (5-13) clearly shows that a novel image could be generated by directly editing the 

values of the lighting coefficients { 'nml }. 

Editing the lighting coefficients is the easiest way to see how illumination change affects the 

appearance of a person. However, controlling the lighting environment by editing the lighting 

coefficients does not make any sense practically. Typically, a face is illuminated by arranging 

several point lights in the scene. For example, a single directional light is a delta function on 

the unit sphere. The spherical harmonic coefficients could be derived from the fundamental 

transform pair in equation (5-5). Then we can say the new face image is illuminated under that 

single directional light.  

If the camera-face geometry is fixed and rotated in the same lighting environment, the 

resulting image can also be predicted easily. Assume for the same image point, surface normal 

changes from an  to bn . The new image is then 
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To summarize, the new image can be generated by multiplying the original image with the 

ratio of the reflectance function of the surface normal after and before the rotation.  

For comparison of different face images of a fixed pose, the illumination problem could be 

handled by either extracting illumination free features or normalizing all illumination 

conditions to one standard. This could be realized by modifying every face image so that it 

matches the lighting condition of a canonical face image. In other words, the coefficients 

{ 'nml } are set to be a standard lighting condition.  

Normalized face images could also serve as the source of texture map for the purpose of 

image synthesis. Just like a typical view-dependent texture mapping operation, the result is 

comparatively noise sensitive.  

5.3.2 Extraction of View-independent Illumination-free Texture Map 

Given several images of a person viewed from different angles and maybe under various 

different lighting conditions, an illumination-free texture map is extracted by fusing different 

face images. A view-independent illumination-free texture map is very useful for the purpose 

of face recognition and face synthesis. 

In order to fuse intensity information from different images and represent 3D surface albedos, 

a texture map is necessary. It is usually defined on a 2D texture space. The cylindrical 

projection model is chosen to map 3D coordinates of a face model to the 2D texture space. 

The cylindrical coordinates (r,θ , h) are defined in terms of the Cartesian coordinates (x,y,z) 

as 
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Global texture map are defined on the 2D texture space of variables (θ , h). Figure 5.1 

demonstrates the mapping between the generic face model and the texture reference 

coordinate system.  

 

 

Figure 5.1 The generic face model (left) and the texture space (right) 

 

The generic face model is first rotated a little bit so that no overlap occurs after the mapping. 

Note that the 2D mesh structure in the texture space is projected from the generic face model, 

therefore it is shapeless in a sense it doesn’t reflect the 3D face structure of any specific 

person. Given a texture map, 3D shape parameters and pose parameters, a 2D face image 

could be rendered. It is desirable that the rendered image is as close as possible to the 

illumination space where the available face image of that person lies. In order to incorporate 

texture information from face images of different viewing angles, the cost function on the 

texture reference coordinate system 0S is:  
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is the reflectance function. The summation is over all available face images of the person. For 

each pose, a weight function is enforced so that the conversion from the image frame to the 

texture space is compensated. What’s more, the invisible pixels are excluded by setting their 

weights to be zero. The surface albedos and illumination coefficients for each pose are solved 

iteratively. First, fix the illumination coefficients for ith image, { i
nml } are estimated. Then 

)(uρ can be updated as: 
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After the minimization procedure converges, not only the illumination coefficients for each 

face image are estimated, but a global illumination-free texture map is extracted. Synthesis of 

novel images with the extracted 3D face structure and the global texture map is 

straightforward.  

5.4 Experiments 

Images in our database are obtained from different sources. Most of them were taken without 

strict control of the lighting environment. Attached shadows and cast shadows are present in 

quite some images. This makes it necessary to analyze illumination phenomenon and extract 

illumination-free texture map.  
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5.4.1 View-based Illumination Analysis 

In this section, illumination analysis is conducted on the image frame and face images of a 

person are handled independently according to different viewing angles. In order to apply 

equation (5-12) to estimate the illumination coefficients, the harmonic basis images { nmb } 

have to be constructed first, which requires the knowledge of both the 3D surface structure 

and the surface albedo information. Since we only have the approximate 3D surface shape 

reconstructed from morphing a generic model, usually it is assumed that the surface albedo is 

constant when estimating the illumination coefficients in equation (5-12). In Fig. 5.2, the 

bottom row shows a textureless face of the reconstructed 3D face with the same poses as in 

the original input images (shown in the top row). A single point light source along the optical 

axis is assumed.  

 

 

Figure 5.2 Four views of a texture face based on the reconstructed 3D face 
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5.4.1.1 Illumination Editing 

Once the illumination coefficients are estimated, it is very easy to manipulate the coefficients 

to show different illumination effects based on equation (5-13). Fig. 5.3 shows the original 

images on the top left corner. In the second column, lights mainly come from left and right. 

The third column shows the simulation results of illuminating from top and bottom. The last 

column shows two more results with more complicated illumination conditions. Artificial 

effects can be seen due to the approximation of the face surface by triangular patches. 

 

 

Figure 5.3 Simulation of different illumination effects by editing coefficients directly 

 

The same experiment is repeated for this person for a different viewpoint. The simulation 

results are shown in Fig. 5.4. 
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Figure 5.4 Simulation of different illumination effects another viewing angle 

 

5.4.1.2 Rotation in the same Illumination Environment 

Another way of simulating the illumination effect is to let the face rotate in the same lighting 

environment. Fig. 5.5 shows the experiment results by assuming the face is rotated around 

y-axis from 
2
π

−  to 
2
π

 with a step size 
10
π

. The simulation shows very realistic and 

convincing illumination results. The partial distortion and triangular shadows are due to the 

lack of surface details and they could be avoided by improving the underlying 3D surface 

description. 
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Figure 5.5 Simulation of rotating the face in the same illumination environment 

 

5.4.1.3 Illumination Regulation by “Copying” Illumination Effect 

When recognizing or verifying different faces of the same viewpoint, the variance caused by 

different illumination environment can be minimized by either extracting illumination-free 

surface albedo map or regulating all face images as if they are illuminated in the same 

environment. The regulation could be done by modifying the illumination coefficients of each 

face image to match the illumination coefficients of an example image. In another word, the 

illumination environment of the example image is copied and duplicated. Figure 5.6 shows in 

the first row two images in our database. The left image is regulated according to the 

illumination in the right image. The regulated image is shown as the left one in the second row. 

Apparently, after the regulation, the heavy shadow along the right nose bridge and cheek in 

the original image has disappeared. Normally this is the desired illumination effect. If, on the 

contrary, the right face image is regulated according to the illumination condition of the left 
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image, the result is displayed as the right face image in the second row. 

 

 

Figure 5.6 Illumination "copying" example: top row: two original images; bottom row: two 
regulated images that copied illumination effect from each other. 

 

5.4.1.4 Synthesis of Novel Faces 

For view-based synthesis of novel face images, the procedure is very similar to the traditional 

view-based texture mapping. That is, in order to synthesize a novel image, we select one or 

two images with the nearest pose from all available images of that person and it serves as the 

texture map. The difference here is the illumination regulation. Illumination of the available 

image is first regulated before mapping to the novel image and the resulted illumination is 

also under control. To better manifest and compare the synthesis result, the experiment is 

simplified as follows: we try to synthesize the images that are already in the database from 

different images of the same identity with different viewpoints. Since those images are 

already in the database as ground truth, it is very straightforward to evaluate the synthesis 

results visually or by measuring their differences. Fig. 5.7 shows four original images in the 
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first row. On the second row, the novel image that falls in the pose category 2 is synthesized 

based on the frontal image. The synthesized image of pose category 3 is synthesized based on 

the original image categorized as pose 2. Similarly, the last image is synthesized based on the 

original image of pose 3. Novel images with larger azimuth angles are synthesized from 

existing images with smaller azimuth angles. In the way, the occlusion problem is very much 

relieved.  

 

 

Figure 5.7 Synthesized images (bottom row) versus original images (top row) 

   

5.4.2 View-Independent Illumination Analysis 

5.4.2.1 Extraction of Texture Map 

View-dependent illumination analysis analyzes different illumination effects for a fixed 

viewpoint. Different viewpoints are handled separately. View-independent illumination 

analysis, as its name indicates, coordinates face images of different viewpoints and 

simultaneously analyzes the presented illumination. Since they are images of the same object, 
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they share the same underlying 3D surface structure and surface reflection properties. With 

the spherical harmonic analysis, a global illumination-free texture map can be generated, 

which in return, refines the illumination analysis result for each viewpoint. The iterative 

optimization procedure is carried out on the 2D texture space. Figure 5.8 shows four original 

face images mapped on the texture space. Areas in black indicate occlusions on the face for a 

specific viewpoint. The warping operations from original face images to the universal texture 

space are uniquely determined by the extracted 3D surface structure and pose parameters. 

Inaccurate estimation of these parameters leads to bad correspondence between different 

viewpoints. Inaccurate face structure estimation is usually due to the inaccurate 2D feature 

extraction. It also happens when a generic model is morphed to fit all available 2D extracted 

features in different images. To minimize the error propagation caused by the 3D modeling 

approximation, these face images on the texture space are warped directly according to the 

texture space triangulation and the triangulation outputs from the view-based AAMs.  

 

Figure 5.8 Original face images on the texture space 

 

For the same face point in different images, different weights are assigned. It is necessary for 

the estimation of a global illumination-free texture map. On the one hand, for a surface point 

whose surface normal is pointing away from the camera-object axis, it has lower resolution 
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than when it is along the optical axis. The deformations from the original image planes to the 

texture space are taken into consideration to reflect the reliability of each image pixel. Fig. 5.9 

shows weight functions for the above four images on the texture space.  

 

 

Figure 5.9 Weight functions for the images in Fig.5.8 

 

While it is not easy to utilize the symmetric properties of both the human face structure and 

the surface reflection properties for view-dependent algorithms, it is very straightforward to 

add both as constraints for the view-independent analysis since it is carried out on the 

symmetrical texture space. Based on the surface normal field for the morphed 3D face surface, 

a symmetric normal field is generated. During the iterative optimization, the extracted surface 

albedo map, as calculated in equation 5.17, is also made symmetric before the next iteration. 

Fig. 5.10 is the resulting illumination-free texture map after 20 iterations.  
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Figure 5.10 An illumination-free texture map after 20 iterations 

 

5.4.2.2 Synthesis of Novel Faces 

For view-dependent face synthesis, a good result could be achieved only when a close pose is 

found in the available face images of the person. View-independent face synthesis has the 

merit of synthesizing a fair face image regardless of the desired pose parameters. Besides, 

only one global texture map is required to generate the surface texture information. In order to 

make a comparison to view-dependent face synthesis, the global texture map is utilized to 

generate novel images at exactly the same poses as available images in our database. Figure 

5.11 shows the synthesized results on the bottom row.  
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Figure 5.11 Synthesized images (bottom row) versus original images 

 

Compared to Fig. 5.7, these synthesized images are a little blurry. This is the effect of global 

fusion. More synthesized images are shown in Fig. 5.12.  

 

 

Figure 5.12 Synthesized images of arbitrary poses 

 

5.5 Conclusion 

In this chapter, the latest analytic illumination model is integrated in our work. Under the 

spherical harmonic representation, the interaction between the light and object surface, which 

is a convolution operation on the unit sphere, becomes simply the multiplication of their 

spherical harmonic coefficients. The illumination space of any convex object can be 
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analytically expressed given known surface structure and surface reflection properties. We 

have shown how easy it is to manipulate the illumination effect. Our view-dependent 

illumination analysis focuses on the analysis from a fixed viewpoint, while view-independent 

illumination analysis tries to fuse information from different viewpoints to make more robust 

estimation of the illumination coefficients and a global texture map. Novel images of arbitrary 

pose and arbitrary illumination are synthesized and compared to existing images in the 

database. The illumination analysis, together with the 3D morphable model, provides a 

powerful generative tool for image synthesis. By applying illumination-regulated or 

illumination-free face images for face recognition or verification, better performance is 

expected.  

The morphed 3D face structure is used as input only. It is possible to imply the surface 

structure from the illumination model (that is how SFS algorithms work). However, it is a big 

challenge. There are several reasons we didn’t go further in that direction. First, the 

illumination model captures the majority of the illumination variations, which is basically the 

low frequency part. So by its nature, it is not a good technique to recover high frequency 

surface details. The estimation from the cubic morphing and view-based AAM is good enough 

to represent the main shape of the face surface. At last, those shape-from-shading algorithms 

usually recover a noisy surface normal field first, followed by reconstructing an integrable 

surface. This procedure is often accompanied by a smoothing operation that in fact loses 

surface details, which is absolutely not desired. Nevertheless, it is still a very intriguing topic 

to imply or refine the estimated face structure from illumination models.  
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CHAPTER 6 : 3D FACE RECOGNITION FOR IMAGES AT 

ARBITRARY POSES AND UNDER ARBITRARY ILLUMINATION 

CONDITIONS 

Face recognition and identification is the ultimate goal of most face applications. When an 

unknown face is presented in an image, usually it is first detected with face detection (face 

alignment) techniques, followed by analysis of its viewing angle, illumination condition and 

possible facial expressions. It is desirable to extract identity-encoded features that are 

invariant of these factors for the purpose of recognition. In previous chapters, we have shown 

how to extract key feature points of an input image by fitting a morphable view-based AAM. 

With several images available for a person, it is straightforward to construct its 3D face 

structure. This reconstructed 3D face, on the other hand, helps to analyze illumination 

conditions in the scene and as a result, an illumination-free texture map could be generated. 

The extracted 3D face structure, together with the illumination-free texture map, completely 

encodes the identity of this specific person. In previous chapter, it has been manifested that a 

novel face image at a specific pose and under a desired illumination condition could be 

synthesized by regulating, rotating or copying an existing illumination setting in another face 

image. The results look convincing and realistic. Yet we need to study how good it is at 

identifying and recognizing images unseen in the training library. In this chapter, recognition 

experiments are carried out based on purely shape information, texture information, 

illumination-free texture information and a combination of them. Experiment results are 
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analyzed and compared afterwards.  

6.1 Literature 

In biometrics area, a variety of characteristics like fingerprint, eye iris, retinal, voice and face 

could be used to uniquely identify different persons. Though face recognition has received as 

much attention as other methods, in reality it doesn’t have much commercial applications as 

others. This is because face appearance could be affected by a lot of factors like facial 

expression, different pose, illumination condition, as well as disguises and natural aging. For 

practical use, a lot of constraints have to be applied. Face recognition has been used in 

personal identification [72] and access controls [73]. Face recognition techniques could be 

divided into two main categories: feature-based and appearance-based. The latter has 

prevailed ever since the 90s. Typical appearance-based algorithms include eigenface 

algorithms [1], elastic graph matching algorithms [2], Hidden Marcov Models [3] and Neural 

Network algorithms etc. In a survey paper [4] in 1993, appearance-based methods are 

compared with geometrical feature-based methods and the author concluded that 

appearance-based methods have better performance. Model matching algorithm is one of the 

earliest appearance-based methods. With years, it has evolved from simple rigid model 

matching algorithms to more complicated flexible models. Another good survey paper can be 

found in [74].  

The three main challenges for face recognition task are facial expressions, poses and 

illumination conditions. Facial expression problem is more of an independent topic since 

recognition of different expressions is itself an interesting task. In terms of recognition of 
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facial expressions, it is more important to recognize the same expression irrespective of 

different identities. In the framework of face recognition, facial expressions are as undesirable 

as different poses and illumination conditions. Facial expressions are normally classified by 

tracking the motion of facial features, or by modeling how the underlying muscles stretch or 

contract from the anatomic point of view. We will focus on the pose and illumination 

problems since both are addressed in our work.  

Before introducing our illumination model in last chapter, a thorough and detailed review of 

illumination as to its formation, elimination and modeling has given. Following is a brief 

introduction where pose problem is being emphasized.  

When an unknown face image is presented, different approaches could be adopted. They 

could be roughly classified into four categories: 1) View-based approaches. 2) Class-based 

approaches. 3) Single image approaches. 4) 3D approaches. 

1) View-based Approaches 

A simple idea to deal with the pose problem is to include as many photos of different 

viewpoints as possible for one person. During the recognition, the pose of the input image is 

roughly estimated. Then it is compared to the gallery images that have similar poses. Beymer 

[75] proposed such an algorithm that measures template-based correlation between images. 

Pose estimation is based on a 2D affine transformation of three key feature points. The test 

image is aligned to each gallery image of similar pose and their correlation score is used for 

recognition. The pose space has to be sampled densely for this algorithm to work well. 

Therefore a lot of images of different viewpoints are needed for each person.  

To overcome this drawback, an alternative approach [76] is to use synthesized images from 
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one single example view and include them as gallery images for this specific person. In order 

to synthesize images of arbitrary viewpoints from a single face image, prior knowledge of 

some prototype faces under different rotations is exploited and utilized given plenty of their 

example images of different viewpoints. Though this algorithm is not competitive compared 

to a real multi-view algorithm, pose problem is fairly handled and relieved. Using linear 

combination of example images to interpolate or extrapolate a novel image has been well 

studied and extended [77].  

2) Class-based Approaches 

In a class-based approach, images of the same identity are treated as sample points of a class 

in the high dimensional space. Face recognition problem is therefore reinterpreted as a 

clustering and classification problem where a lot of traditional pattern recognition methods 

could be utilized. Prior class information of human faces indicates how pose changing 

information might be encoded. Face recognition algorithms like eigenfaces, fisherfaces [78] 

etc belongs to this category. The drawback of most class-based approaches is that many 

example images are needed in order to extract the face class information and all poses have to 

be included.  

3) Single Image Approaches 

Face pose is not directly modeled or estimated for single image approaches. Nor any virtual 

view is synthesized. Usually pose-invariant features are extracted and used for the purpose of 

recognition. After perspective projection, there are some inter-feature point distances that are 

invariant for a 3D object. A rotation invariant is computed in [79] based on the extracted 

fiducial points like eye corners, nose tip and mouth corners. The rotation invariant is used to 
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recognize face images of different viewpoints in the database. The recognition accuracy is 

66% for 84 test images. Wavelet based features are extracted in the elastic graph matching 

algorithms [2]. Wavelet features are shown to be robust to small rotation of faces, however the 

performance deteriorates when large rotation angle is present. 

4) 3D Face Recognition 

Treating face image as a projection of a 3D object and reconstructing the underlying 3D 

structure from one or more images is the ultimate solution to pose problem. In another word, 

if the algorithm is complete enough to separate and model different poses, illumination 

conditions, facial expressions or other factors, it is theoretically more powerful than other face 

recognition algorithms that only try to eliminate or suppress these factors. We have said 

enough in Chapter 4 about 3D face surface reconstruction. 3D face models, especially those 

that are based on the statistical properties and real face laser data, are up till now the most 

successful models in terms of reconstruction and recognition. The drawback is its 

computational efficiency due to enormous laser face data needed for training purpose. It also 

makes the optimization procedure slow and error prone.  

This thesis covers the aspects of face feature extraction via alignment, 3D face structure 

modeling and illumination modeling. Altogether we would like to develop a face recognition 

system that can handle unknown face images at arbitrary poses and under arbitrary 

illumination conditions.  
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6.2 Face Recognition based on the Extracted 3D Structure and the 

Illumination-free Texture Map 

6.2.1 Face Modeling Phase 

Previous chapters have detailed every step towards building a 3D face model and extracting 

an illumination-free texture map for an individual with several images available. Assume a 

single face is presented in one face image. This assumption simplifies the otherwise 

complicated face detection procedure. Predefined face features are extracted by the improved 

view-based AAM algorithm, which first selects a suitable AAM based on the approximate 

pose category this face image belongs to. The hybrid constrained optimization algorithm is 

adopted and the algorithm is first applied on the down-sampled face image to avoid being 

trapped in local minima. The component-based AAM is then applied for better feature 

localization. After all the available face images are successfully aligned, the extracted 2D 

mesh structures are fed to the 3D modeling module, which morphs the generic face model to 

fit the distance maps generated based on the 2D meshes. After the morphing parameters are 

estimated, the extracted 3D face structure makes it possible to analyze the illumination 

conditions for the available images. For view-based applications, their illumination conditions 

could be normalized to standard illumination settings. Fusion of the extracted albedo maps 

from different viewpoints leads to a global illumination-free texture map. The cubic morphing 

parameters, pose parameters, together with the texture map, constitute a generative 3D face 

model that encodes both surface shape and surface albedo information of this individual. Fig. 

6.1 illustrates the complete face modeling process.  
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Figure 6.1 Face modeling flowchart 

 

6.2.2 Testing Phase 

For each person in the database, its 3D face structure is reconstructed and an illumination-free 

texture map is extracted. In previous chapter, it has been shown that any view of this person at 

arbitrary pose and under illumination condition could be synthesized. If there exist such a 

synthesized image which most resembles the test face image with unknown identity, it is 

reasonable to think this test image has the same origin as the synthesized one from the 

database (it is assumed that this test person does exist in the database). To be more precise, the 

difference of the synthesized image and the test image will be examined in terms of their 

shape, texture and regulated texture respectively. The comparison is conducted at the 2D 
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image level. Since the time-consuming face rendering step has to be repeated for each person 

in the database, the recognition process is very slow. 

The face recognition task could also be conducted at the 3D level if the 3D face structure and 

texture information could be extracted from merely one test image. In fact, the 3DMM [5] 

algorithm adopts this approach. Apparently, face recognition at this level could be 

implemented much faster. However, the scenario is quite different here. First, we don’t have a 

3D face laser database that well defines and constrains the behavior of the 3D face model. 

Without strong constraints, one single image is just not enough to yield a good estimation of 

the underlying 3D face structure and a complete texture map (even when the symmetry 

property of human face is exploited). Therefore, our recognition task is conducted at the 2D 

image level despite the heavy computation involved.  

For the kth individual in the database with its reconstructed 3D face structure and associated 

illumination-free texture map, in order to synthesize a novel view of this face that best 

resembles the test image, it is assumed that the test image is originated from this individual. 

Pose parameters for the test image could be estimated based on this assumption. The same 

optimization procedure as in Chapter 4 is used, except that the morphing parameters are fixed 

as known parameters. The cost function is similar to equation (4-15). After the optimal pose 

parameters *kΠ are estimated, the average Euclidean distance of the projected feature points 

from the 3D face structure to the extracted 2D feature points in the test image serves as a good 

measurement of the matching error. If this test image is originated from this individual, the 

matching error should be mainly caused by estimation error instead of different identities. 

Therefore, the matching error would be very small. The overall decision is made based on the 
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smallest matching error for all individuals in the database as: 
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where kα stands for the morphing parameters of the kth person. The projected 3D feature 

point set { ki ,p } is determined by the morphing parameters kα and the pose parameters 

*kΠ . *),,( , kkki Παpd  is the distance function of the ith projected feature point and its 

corresponding 2D extracted feature point. The correspondence problem is relaxed by using the 

distance map technique. Since the recognition computes only the average Euclidean distance 

between two set of feature points, recognition based on this measurement is purely 

shape-based.  

As the face intensity pattern (or texture, as the two terms are abused in our work) is also 

unique for each person, texture-based recognition could be implemented by measuring the 

texture difference of the synthesized image and the test image. Assume the synthesized image 

and the test image has been aligned to have the same pose. Note that the shape of the 

synthesized image and the test image are normally different unless they originate from the 

same person. If the rigid pixel-wise image difference is measured, it is analogous to the 

traditional rigid template matching problem. The problem is, even though the computation is 

carried out over the region of interest for one of the two images, some unwanted background 

or other irrelevant information might still be included for the other image due to the shape 

difference. To overcome this and exclude the shape influence in the texture-based recognition, 

the test image is further warped to the synthesized image shape according to the fiducial 

points on both images. The recognition is based on the decision rule as follows: 
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where M(.) is the 2D morphing operation to transform the test image to the synthesized 

image.  

For the texture-based recognition, image intensity difference is measured. Up till now, the 

illumination in the test image is not modeled. This would cause a problem when illumination 

in the test image is a dominant factor. It is necessary to apply suitable illumination effect on 

the synthesized image so that it mimics the illuminating environment for the test face image.  
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The only difference of equation (6-2) and (6-3) is that the nine optimal illumination 

coefficients { nmL } are estimated first and the illuminated synthesized image is compared to 

the morphed test image. This normalized texture-based recognition is expected to have a 

better performance compared to the texture-based recognition where illumination is not 

considered.  

6.3 Experiments and Discussions 

Our face database is shortly introduced in previous chapters. It is a mixture of face images 

from public online databases and the previous face database in our lab. Though in Chapter 3, 

as many as 218 frontal images are used in the face alignment experiment. Unfortunately not 

all of them can be used for the recognition experiment due to the fact that different people in 

the whole face database might have various numbers of images, ranging from one to four. It 

doesn’t mean that recognition experiment can’t be carried out on a face database with 
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different number of images per person. However, the 3D modeling quality varies due to 

different number of available training face images for different individuals. Recognition 

experiment based on that might be biased. Therefore, only those individuals with four poses 

are chosen for the recognition experiment. As a result, 38 people with four images per person 

are used. Fig 6.2 shows one view for the selected individuals in our database.  

 

 

 

 

Figure 6.2 One example view of the 38 people 
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For face recognition, images of one viewpoint are selected as test images while three other 

images of different viewpoints are used to train 3D face models and generate illumination-free 

texture maps. The recognition experiments are repeated for all four pose categories.  

6.3.1 A Typical Face Recognition Example 

Assume current test pose is the front view and the rest views are used to train the 3D face 

models. At the training phase, the 3D face structure and an illumination-free texture map is 

extracted for each person in the database based on the analysis of the other three viewpoints. 

At the test phase, given a frontal test image, key feature points are first aligned with the 

view-based AAM algorithm. Assume it is the kth person in the database. The optimal pose 

parameters for this test image are estimated. The average point to edge distance measures the 

estimated shape error. A novel image with the same pose parameters is synthesized based on 

the 3D face structure and the texture map of the kth person. The test image is then aligned to 

this synthesized image to measure the texture difference. Furthermore, the synthesized image 

is illuminated with similar lighting environment as the test image in order to minimize the 

difference caused by different illumination conditions.  

Let’s take the frontal view of the same person we have used a lot as an example. Fig. 6.3 

shows the test image. 
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Figure 6.3 A typical test image 

The 3D face structure and the illumination-free texture map of this person is extracted based 

on the other three views. Assume currently the test image is tested against the individual of 

the same identity in the database. Based on the estimated optimal pose parameters, a 

synthesized image is generated as shown in Fig. 6.4(a). Based on the illumination analysis of 

the test image, an illuminated image is synthesized as shown in Fig. 6.4(b). The test image is 

warped to the same shape as the synthesized one. The warped test image is shown in Fig. 

6.4(c).  

 

 

Figure 6.4 Comparison of the synthesized images and the test image: a) Synthesized 
illumination-free image. b) Illuminated image. c) Test image 

 

 

 

               (a)     (b)     (c) 
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The mean squared error of Fig. 6.4 (a) and (c) is the texture-based matching score without 

illumination analysis, while the difference of Fig. 6.4 (b) and (c) is the texture-based matching 

score after copying the illumination environment of the test image to the synthesized image. 

The synthesized image is a little blurred as it is synthesized based on other three views.  

Fig. 6.5 shows similar results as in Fig. 6.4 when the test image is assumed to be of other 

identities. Note that the test image is warped differently in order to match the shape of the 

person being verified.  

Fig. 6.6 is a plot of matching errors for this test image. All three curves indicate that the best 

match is the no. 1 person in the database with minimal matching errors. The recognition is 

successful as this test image is the frontal view of the no.1 person indeed. 
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Figure 6.5 More examples of texture matching 
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Figure 6.6 Three matching error curves 

 

When facial images in other pose categories are set to be test set, the same recognition 

procedure is followed. Fig. 6.7 shows one example view per pose of the synthesized images 

and the test images when the same person is tested. 

 

Synthesized Face Illuminated Synthesized Face Warped test image 
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Figure 6.7 Example views of synthesized images and test images for pose 2 to pose 4 (from 
first row to last row) 

 

In Fig. 6.7, the main artificial effect for the synthesized images is caused by the fusion of 

different views to the global illumination free texture map. The test images on the last column 

look unlike the original person due to the severe image warping operation. 

6.3.2 Complete Recognition Results for Different Pose Categories 

Given a test image, its 2D feature point set is extracted with the view-based AAM algorithm 

based on the approximate pose category it falls into. It is then verified against all people in our 

database in terms of the shape matching error, the texture matching error and the normalized 

texture matching error. The whole recognition procedure has been demonstrated in the 

previous section. The same recognition experiment is repeated on test images from all 38 

people in our recognition database in sequence. In this section, experimental results based on 

different matching errors are compared when a specific pose is used as test pose. Later 

statistical performances across different poses are summarized.  
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Figure 6.8 shows the complete recognition results when pose category one (frontal view) is 

being tested. The x-axis indicates IDs of the individual being tested, and the y-axis shows the 

distance map residual errors by assuming the test image is originated from the total 38 3D 

face models respectively. The identity of the test image will be recognized to be the one in the 

database that yields the minimum error, marked with ‘o’ in the figure, while ‘*’ marks the 

residual error associated with the true 3D face model of that person. When the positions of the 

‘o’ and the ‘*’ differs, the test image will be misclassified.  

 

 

Figure 6.8 Face recognition based on distance map error 

 

6 of the 38 people are misclassified with a recognition rate of 84%. Among the 6 misclassified 

cases, the true identities of 4 of them are the secondary choices. Figure 6.9 shows a 

misclassified case.  
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Figure 6.9 A misclassified case: Left image is the test image. The best match is the person in 
the right image. 

At first it looks a little unacceptable that a male is misrecognized as a female. However they 

do share certain similarity in terms of the 2D shape defined as a set of feature points. When 

the front pose is being tested, 3D model is reconstructed from other viewpoints. From certain 

viewpoint, one face is possible to look like another face from a different viewpoint. This may 

cause misclassification. The introduction of distance map as a lookup table helps relax the 

correspondence problem, however it might also cause over-smoothing that results in 

diminished shape difference of two totally different people. Though in Fig. 6.9, their noses 

look very different, the difference is not so apparent in their distance maps due to the limited 

number of feature points depicting nose shape. In summary, recognition based merely on 

shape information has a sound yet limited performance.  

Fig. 6.10 shows a similar plot as Fig. 6.8 for the recognition results based on texture 

information only. Fig. 6.11 shows complete recognition results based on the 

illumination-normalized texture information.   
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Figure 6.10 Face recognition based on texture error 
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Figure 6.11 Face recognition based on illumination-normalized texture error 
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The misclassification rate for the texture-based recognition and the normalized texture-based 

recognition is respectively 7 out of 38 and 5 out of 38. Among the 7 people that are 

misclassified based on their texture information, one of them are also misclassified by the 

shape-based algorithm, while three of them are also misclassified by the normalized 

texture-based algorithm. Apparently the texture-based algorithm and the normalized 

texture-based algorithm are more correlated. Though some misclassified faces are 

successfully recognized after applying the illumination normalization, some others fail. It is 

hard to have any further conclusion except that the recognition based on the shape, texture and 

normalized texture have quite similar performance.  

As the shape-based algorithm and texture-based algorithm are mutually complementary, we 

attempt to fuse them together for classification. The rationale behind the fusion is to improve 

the recognition rate. Here the normalized texture-based algorithm is adopted. Different 

weights are assigned to two errors (shape and normalized texture) and their weighted sum is 

used as the measurement for classification. After experimented with different weights, the best 

recognition rate is 100%. This recognition rate is obtainable when the shape and texture error 

is weighted among a wide range from 0.05:0.95 to 0.45:0.55. Figure 6.12 plots the combined 

errors with the shape and normalized texture weighted with 0.20:0.80. From the figure, it is 

also clear that matching error for the true identity is well separated from the rest.  
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Figure 6.12 Face recognition based on the combined error 

 

The same recognition experiment is repeated for other pose categories and their results are 

shown in Fig. 6.13. The first row shows the shape-based recognition results for pose 2, 3 and 

4 respectively. The second row shows the texture-based recognition results and the normalized 

texture-based recognition results are displayed on the last row. The overall misclassification 

rates are summarized in Table 6.1.  
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Figure 6.13 Recognition results for pose categories 2 to 4 (from the leftmost column to the last column)
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Table 6.1 Misclassification rate for 38 people 

Pose\Method Shape Raw 

Texture 

Texture Normalized 

Texture 

Combined 

1 6 17 7 5 0 

2 1 12 5 0 0 

3 0 12 16 7 0 

4 6 27 28 16 0 

 

Table 6.1 clearly reveals better performance for the shape-based recognition than the 

texture-based recognition. As the face turns away from the camera (from frontal view to 

partial profile to complete profile), the texture-based recognition deteriorated quickly. For 

complete profile view, the number of misclassified people is as high as 28 for the 

texture-based algorithm and 16 for the normalized texture-based algorithm. It is obvious that 

after normalizing the illumination condition, the performance is significantly improved. 

Fusion of the shape error and texture error could improve the overall performance due to their 

complementary property.  

Table 6.1 also lists the recognition rate for the raw texture-based algorithm. Different from the 

texture-based algorithm (and the normalized texture-based algorithm), the test face image is 

not morphed to the shape frame of the synthesized image for the raw texture-based algorithm. 

Instead, the test face image is clipped based on the convex hull of the synthesized face model. 

Figure 6.14 shows recognition results for four pose categories respectively.  
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Figure 6.14 Recognition results based on raw texture error for pose categories 1 to 4 
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6.4 Conclusions 

In this chapter, our 3D face model is explored for the purpose of face recognition. A small 

face database is carefully constructed to include four views that fall into the pose categories 

we defined. The recognition experiment is conducted for each pose category. When one pose 

is set to be the test pose, the 3D face model is constructed from the other three available poses 

during the training period. Given a test image, its feature point set is extracted and refined 

with the view-based AAM algorithm. When the face is assumed to be originated from a 3D 

face model, the distance map error, the texture error and the normalized texture error serves as 

the measurements as to how the test image fits to the 3D face model. Recognition experiments 

are conducted based on the shape, texture and normalized texture respectively. From our 

experiment, shape-based method has a better and stable performance throughout all poses. 

This is not contradictory to the claim [4] that appearance-based algorithms on average have 

better performance than geometry-based algorithms. Note that conclusion was made in 1993 

and face shape descriptions have evolved from simple geometrical features like point and 

corner in 2D space to more complicated flexible shape model with the capability to model 

face from the perspective of 3D dimension. As expected, the illumination-normalized 

algorithm is better than the pure texture-based algorithm.  

It is almost certain that the recognition performance could be greatly improved if more face 

images are available for each individual in the database. On the one hand, the reconstructed 

3D model will be more reliable. On the other hand, when the pose space is densely sampled, it 

would be more likely to have a training view that has similar pose as the test image, which 

will make the recognition much easier.  
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CHAPTER 7 : CONCLUSIONS AND FUTURE WORK 

This thesis addresses several important aspects of a face recognition system: face alignment 

and face feature extraction, 3D face surface reconstruction and facial illumination analysis. 

The task of feature extraction is coupled with the face modeling task under the framework of 

the view-based AAM algorithm. Apparently the model-based analysis is more robust and 

accurate to extract feature points compared to traditional edge detection based methods. 

Sub-model analysis is adopted for better feature localization. A hybrid optimization scheme is 

presented to incorporate several shape constraints analytically to improve the face alignment 

accuracy. With explicit definition of feature points in the 3D face model, it is straightforward 

to reconstruct the positions of the 3D feature points from the corresponding extracted 2D 

feature points. The correspondence problem is relaxed with the distance mapping technique. 

Instead of recovering 3D feature point one by one, the 3D modeling is conducted by 

transforming a generic model with a cubic morphing function to match the projected feature 

points. The reconstructed 3D model is utilized to analyze the illumination condition from the 

images. The purpose is to synthesize novel images from arbitrary viewing angle and arbitrary 

illumination condition, as well as extract illumination-invariant texture map for face 

recognition task.  

There are several possible directions to extend our work in the future.  

7.1 Incorporating Texture Information to Extract Face Features 

In our work, once the 2D feature points are extracted through 2D face modeling in the 
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view-based AAM algorithm, they are assumed to be accurate and fixed thereafter, which is not 

true in reality. The face alignment is only conducted within a specific face image. The 

correlation between different images of the same person is not investigated. The view-based 

models for different pose categories are mutually independent. In the introduction section of 

Chapter 3, some 3D AAM algorithms are briefly mentioned. A 3D AAM algorithm is a natural 

extension of 2D AAM algorithms. A 3D model is trained directly from available training 

images or video sequences. The update of the 3D model is driven by the modeling error with 

either a canonical optimization algorithm or a regression model. Inspired by existing 3D AAM 

algorithms, we tried a similar scheme to directly update our 3D face model. A 3D deformable 

face model is used to limit the searching space for 2D AAMs of different viewpoints. It is 

expected to have a better alignment performance than several independent view-based AAM 

models. However, not only it is very slow, but the convergence of the algorithm is very poor. 

One of the reasons might be that the constraint imposed by the 3D face model to several 2D 

models is relatively weak. As the 3D model still needs to be reconstructed from 2D models, 

extra reconstruction error is introduced, which results in deteriorated 2D modeling 

performance in return.  

Nevertheless, it is still possible to make use of the correlation between different images of the 

same person to improve the accuracy of both 2D alignment and 3D structure estimation. One 

possible approach relies on the global texture map as introduced in Chapter 6. Let the global 

texture map be dynamically updated as the 2D modeling is carried out. The global texture 

map fuses information from different viewpoints. When it is incorporated in the 2D face 

aligning process, a better alignment performance is expected. One problem with this approach 

Cuiping Zhang
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is that an overwhelming amount of computation is involved.  

7.2 Incorporating Illumination Information to Refine Surface Details 

In the previous section, several possible approaches are discussed in order to improve the 2D 

feature extraction accuracy with the help of extra constraints from face images of different 

viewpoints. Feature points are defined along the boundary of facial parts where pixel intensity 

varies dramatically. In the conclusion part of Chapter 5, it is briefly mentioned that we 

initially aimed to refine our 3D face structure with some inference from facial illumination 

conditions. A main initiative is the complementary nature of our model-based face alignment 

algorithm and the traditional shape from shading algorithms. Typical SFS algorithms work 

under the assumption that the object surface is uniform with one single albedo parameter, so 

that the variation of image intensity is purely caused by the illumination setting. Chapter 5 

also reviews some literatures about fusing SFS algorithm with stereo vision algorithm. It is 

more challenging to combine our face structure estimation algorithm with shape from shading 

algorithm since it is more difficult to establish correspondence between images from different 

viewpoints than stereo images. We didn’t go in that direction at last. Besides the reasons we 

mentioned in the conclusion part of Chapter 5, we lack a face database where images are 

taken under well-controlled illumination environment. Besides, current 3D model is sparse on 

those textureless facial areas and it has little capability to describe those areas in detail. The 

modeling ability of the cubic morphing function we adopted is quite limited for a very 

complicated surface. Currently, the symmetry property of face structure and texture is only 

applied to average the normal field and texture map of the left and right half face. It remains 

Cuiping Zhang
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an open challenge to infer surface details from illumination or other useful information in the 

follow-up research. In the future, the CMU-PIE [80] face database should be used as our 

training and test purpose. The CMU-PIE database systematically samples a large number of 

pose and illumination conditions along with a variety of facial expressions. Besides, as a lot of 

algorithms report their performance on the CMU-PIE database, different algorithms could be 

compared and evaluated. 

7.3 Tracking Faces 

Our research work deals with still face images of different viewing angles. It is possible to 

extend our work to video sequences that contains one or several faces. Given an initial rough 

estimation of the face pose and structure in the video sequences, the 3D face morphing 

parameters and face pose parameters could be refined as more frames are considered. The 

tracking scheme is similar to the 3D AAM algorithm in [5], except that the cubic morphing 

method replaces the training of a linear shape subspace to model the variation of different 3D 

faces.  

7.4 Facial Expression Modeling and Recognition 

Facial expressions reflect one’s internal emotion states and they are direct results of stretching 

and contracting of different facial muscles. Most facial recognition systems try to recognize 

the following six prototypic emotional expressions: disgust, fear, joy, surprise, sadness and 

anger.  Usually facial expression analysis follows the step of facial data extraction and 

representation. In our scenario, face images are ready for expression analysis after the face is 

aligned and all feature points are assumed to be located. Early attempts in facial expression 
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recognition try to identify spots on an image sequence and analyze how their relative positions 

vary temporally. In recent years, the research trend is to employ more facial features to 

recognize more expressions and facial action units rather than emotion-specific expressions 

are recognized. There are several good review papers about facial expression recognition 

[81][82][83].  

In Chapter 4, Candide-3 model is briefly introduced as one of the popular face models. 

Candide-3 has the ability to model internal-person variance as it has a set of animation units. 

Our model is not suitable for modeling different facial expressions. However, it is possible to 

model facial expressions by locally grouping facial feature points to several action units. 

Cubic morphing should be more than enough to model facial parts separately. It would be 

interesting to extend our model to model and recognize different facial expressions. 

Cuiping Zhang
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APPENDIX A: AN EXISTING PROBLEM ABOUT THE TAGENT SPACE 
COORDINATE ALIGNMENT ALGORITHM 

 

Before the shape vectors (or texture vectors) from the training set are subject to PCA for subspace 

construction, they need to be aligned to a common coordinate frame. T. Cootes demonstrates that 

the tangent space alignment method introduces less nonlinearity compared to other methods like 

the Procrustes analysis or norm one regulation. Each vector is transformed to the tangent space to 

the aligned mean so as to minimize the sum of distances between aligned samples and the mean. 

For shape vector, the transform is the similarity transform including scaling, rotating and 

tranpositioning. For texture vector, it is scaling and offsetting. The following figure gives a 

simplified illustration of tangent space alignment method. When the dimension of sample is 2, the 

tangent hyper plane becomes a tangent line as shown in the right figure.  

 
 
 
 
 
 
 
 
 
 
  (a)      (b) 

 

A-1 (a) Original samples (b) Aligned samples 

The tangent space passes through g . Any vector g in the tangent space is normal to the set 

mean g . They are related as: 

        0)( =−⋅ ggg  

Since g is the aligned set mean, the aligning procedure needs to be done iteratively. Given 
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current g , g is aligned by g/<g, g >. New g is calculated as all samples are updated. Repeat the 

procedure till it converges. In our experiment, we noticed that there is a risk of not converging. 

This could be easily explained as a few of the samples are too distinguished and far away from the 

majority. When <g, g > is close to zero, the aligned g will be extremely large and lead to an 

unstable estimate of g . As a result, the procedure may not be able to converge. To guarantee its 

convergence, we better check to avoid the division-by-zero case and remove those singular 

samples from training set since they are not typical representatives. 
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APPENDIX B: DIRECT EXHAUSTIVE SEARCH FOR INITIAL MODEL 
PARAMETERS  

 

The first order approximation of gradient descent matrix makes the face alignment task very 

sensitive to initial parameters. We develop a model based direct search strategy in order to find a 

suitable initial parameter set. The model parameter space is roughly sampled according to the 

parameter distributions learned from training set. Assume ith parameter has mean iµ , standard 

deviation iσ , 3 samples are taken at iµ , iµ + iσ  and iµ - iσ if this parameter plays an important 

role in the appearance interpretation. The parameters we select are respectively scale, transposition 

in x and y(4 samples are taken), together with the 2 parameters in the combined vector 

corresponding to the largest 2 eigenvalues. 5 samples are taken at iµ , iµ + iσ , iµ - iσ , 

iµ + iσ2  and iµ - iσ2  for the 2 parameters from the combined vector. The 2 combined 

parameters encode 40% of the model appearance variance in the training set and allow intrinsic 

shape and texture variation in our search for initial parameter set. There are totally 

3(scale)*3(transposition in x)*4(transposition in y)*5*5 = 900 combinations of model parameters. 

Matching all these candidate initializations with the test image sounds awkward, however we will 

show that the matching procedure could be speeded by doing some computation in advance. The 

following figure summarizes the steps of computing RMS error given model parameter vector p 

and test image I. 
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B-1 Flow chart of matching model parameters with test image 

 

Clearly, all steps inside the dotted box could be computed in advance. For selected initial 

parameter set p, model texture vector gm could be easily reconstructed. The shape vector in image 

frame Xim is decided by shape vector x in model frame and 2D pose parameter setΨ . Warped 

face patch in the mean shape frame has interpolated coordinate pairs (XX,YY) in the test image 

and results in sample texture vector gs. We save (XX,YY) and gm into a table. When searching for 

optimal initial parameter set, each entry in the table yield a RMS error showing how it matches to 

the given test image. The search is very fast as only little computation is involved. This procedure 

could be enhanced by further sampling (random or even sampling) around each of the 342 choices. 

The performance of AAM is greatly improved with this initialization procedure. 

 

p gm 

x 

Ψ  
Xim (XX,YY) I gs 

r(p) error 
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APPENDIX C: 3D FACE MODEL NORMALIZATION 

 

After a face model is transformed with cubic morphing, not only the face shape will vary, but the 

model might also be somehow scaled, rotated and shifted. It is necessary to regulate the morphing 

operation to avoid a biased estimation of the true pose parameters. This is done by aligning the 

morphed face to the generic face with a 3D similarity transform Q . The morphed model is kept 

symmetric, so its center of gravity is already in the y-z plane (with the x component being zero). 

Then the number of unknown alignment variables is reduced from 7 to 6, including the scale 

factor as , the rotation angle aθ  and the transitions ( xo , yo , zo ). Optimal parameters are desired 

so that the sum of squared distance is minimized. That is equation (4-14) as: 

∑ −
i

m
i

m
i

oos zyaa

2

,,,
))((minarg PPGQ

θ
        

Let T
iii

m
i zyx ),,( 000=P , and T

iii
m
i zyx ),,()( =PG , then the optimization becomes: 

∑ ∑

∑









−








+








⋅







 −
⋅+−+⋅=
















−
















+
















⋅
















−⋅

i i i

i

z

y

i

i

aa

aa
aixia

oos

i
i

i

i

z

y

x

i

i

i

aa

aaa
oos

z
y

o
o

z
y

sxoxs

z
y
x

o
o
o

z
y
x

s

zyaa

zyaa

)
)cos()sin(
)sin()cos(

(minarg

)cos()sin(0
)sin()cos(0

001
minarg

2

0

02
0

,,,

2

0

0

0

,,,

θθ
θθ

θθ
θθ

θ

θ

(c.1) 

The first item and the second item could be optimized separately. For the second item, it is 

basically the alignment of two shapes in 2D space. The solution to 2D alignment is given as the 

solution [84] to: 
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and variables a and b are related with the unknown scale factor as , the rotation angle aθ  as 

)sin(),cos( aaaa sbsa θθ ⋅=⋅= .  

Variable xo could be easily computed from the first item in equation (c.2).  

Once the 3D similarity transformation matrix Q  is found, the old morphing parameters are 

updated by subjecting the morphed model to the 3D transformation to yield new morphing 

parameters. The pose parameters also need to be updated with the inverse transformation of Q  

to cancel out the operation.  
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APPENDIX D: SYNTHESIZED FACE IMAGES BY VARYING THE FIRST 
SHAPE MODE 

 

value -3*standard deviation 0 3*standard deviation 
Pose 
1 

  
Pose 
2 

 
  

Pose 
3 

   
Pose 
4 

  

Figure D-1 Face image by varying the principal shape mode 
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APPENDIX E: SYNTHESIZED FACE IMAGES BY VARYING THE FIRST 
TEXTURE MODE 

 
Value -3*standard deviation 0 3*standard deviation 
Pose 
1 

   

Pose 
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Pose 
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Pose 
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Figure E-1 Face image by varying the principal texture mode 
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