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                                                                   Abstract  
Prediction of Crystallographic Texture Evolution and Anisotropic Stress-strain Response 

during Large Plastic Deformation in α-Titanium Alloys  
Xianping Wu 

Prof. Surya R. Kalidindi 
Prof. Roger D. Doherty 

 
 
 
 
         A new Taylor-type polycrystalline model has been developed to simulate the 

evolution of crystallographic texture and the anisotropic stress-strain response during 

large plastic deformation in α-titanium alloys at room temperature. Crystallographic slip, 

deformation twinning, and slip inside twinned regions were all considered as contributing 

mechanisms for the plastic strain in the model. This was accomplished by treating the 

dominant twin systems in a given crystal as independent grains once the total twin 

volume fraction in that crystal reached a predetermined saturation value. The newly 

formed grains were allowed to independently undergo further slip and the concomitant 

lattice rotation, but further twinning was prohibited. New descriptions have been 

established for slip and twin hardening and the complex coupling between them. Good 

predictions were obtained for the overall anisotropic stress-strain response and texture 

evolution in several different monotonic deformation paths on annealed, initially textured 

samples of two different chemical compositions of α-titanium alloys.  

           The polycrystalline plasticity model presented here is built on the Taylor 

assumption of uniform deformation gradient in all of the constituent grains. The effects of 

this gross simplification have been evaluated by comparing the predicted stress and strain 

distributions between Taylor model and the more sophisticated finite element models that 

relax the assumption of the uniform strain. The anisotropy of the plastic behavior was 
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observed to strongly influence the deviation of the Taylor model predictions from the 

finite element model predictions when comparing the stress and strain distributions in 

deformed polycrystalline α-titanium with initially random texture.     

           The slip parameters established using the crystal plasticity model developed here 

were utilized in a novel spectral framework, called Microstructure Sensitive Design 

(MSD), for constructing elastic-plastic property closures in hexagonal polycrystals. The 

main focus was on the influence of the crystallographic texture (in the hcp polycrystals) 

on the components of the macroscale anisotropic elastic stiffness, macroscale anisotropic 

tensile yield, and the macroscale R-ratios (ratio of the transverse strains in tensile 

deformation mode) exhibited by the material.      
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CHAPTER 1: INTRODUCTION 

 

Titanium and its alloys constitute an important class of metals with numerous 

applications in the defense, aerospace, biomedical and construction industries due to their 

outstanding properties such as low density, high strength, and excellent corrosion 

resistance [1-3]. Understanding the mechanical behavior of these materials during 

thermo-mechanical processes is crucial to control the properties of the final products. 

Like most hexagonal close-packed metals, α-titanium is characterized by the high 

mechanical anisotropy at ambient temperature. Earlier studies on deformation behavior of 

α-titanium showed that plastic deformation is accommodated by a complex mixture of 

crystallographic slip and deformation twinning [4-8]. It is commonly agreed that 

prismatic slip along <a> is the most favorable slip family in pure titanium at ambient 

temperature because the hcp structure of pure titanium has less-than-ideal c/a ratio of 

1.587. Basal <a> and pyramidal <a> are the other two possible slip families. However, 

above deformation modes together only provide four independent slip systems whereas 

five independent slip systems are required for a polycrystalline material to accommodate 

an arbitrary plastic deformation [9]. Consequently, pyramidal <c+a> or deformation 

twinning are necessary to be activated during plastic deformation [9, 10].   

The fact that α-titanium undergoes both slip and twinning during plastic 

deformation makes it difficult to identify the role played by different deformation 

mechanisms on the overall mechanical behavior. Many studies have reported the 

occurrence of deformation twinning in pure titanium and conducted numerous 

investigations on the role played by twinning in both strain hardening response and 
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texture evolution [7, 11, 12]. In a recent work, for example, three distinct stages of the 

strain-hardening response of pure titanium during compression testing at ambient 

temperature were reported [13]. The first stage with a falling strain-hardening rate was 

associated with the absence of twinning, the second stage with an increasing strain-

hardening rate was attributed to the increase of twin volume fraction, and the third stage 

with a falling strain-hardening rate was coincident with the saturation of twin volume 

fraction. In a more recent paper [8], the physical insights behind the correlation of the 

strain-hardening rate and twin volume fraction were interpreted by the two competing 

effects of deformation twinning on the overall strain-hardening response: (1) strain 

hardening via the Hall-Petch mechanism (i.e., a reduction in the effective slip length) and 

the Basinski mechanism (i.e., a trapping of sessile dislocations inside twins), and (2) 

texture softening due to a reorientation of the twinned regions to softer orientations. 

These experimental observation and hypotheses could be considered as significant 

advances in understanding the role of deformation twinning in strain hardening behavior 

of hcp materials.   

Although the exact mechanisms by which twins influenced the overall strain 

hardening response in pure titanium are still not fully understood, earlier studies have 

provided convincing arguments for the need to include deformation twinning as an 

important contributor in accommodating a significant portion of the imposed plastic 

deformation at ambient temperature. Specifically, a large volume fraction (e.g. 40%) of 

the moderately deformed material in the compression tests of polycrystalline α-titanium 

at room temperature was occupied by deformation twins [8, 13]. These twins are thick 

enough to permit slip inside twinning. Therefore, crystallographic slip, deformation 
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twinning and slip inside twins should all be considered as possible plastic deformation 

mechanisms in pure titanium at ambient temperature.  

A number of modeling techniques have been used in literature to simulate the 

development of texture in deformation processes and the associated evolution of 

properties in metallic polycrystals. Among these modeling techniques, crystal plasticity 

model was considered to provide more accurate simulations of deformation processes by 

taking into account explicitly the details of physics and geometry of deformation at 

crystal level. One of the major successes of the crystal plasticity theory has been the 

ability to predict both the anisotropic stress-strain response of metals as well as the 

evolution of the averaged crystallographic texture in a variety of large deformation paths. 

The crystal plasticity models have been demonstrated to be fairly accurate for 

cubic polycrystalline metals, in which plastic deformation occurred predominantly by slip 

[14-18]. Over the last ten years, the application of crystal plasticity models to hexagonal 

close-packed metals has received substantial attention [19-21]. Recently, a rigorous 

framework was developed for materials that deform by both slip and twinning [22] and a 

quantitative description of slip-twin hardening was proposed [23]. However, numerical 

implementation of theses schemes is quite cumbersome when slip inside the twinned 

regions is to be allowed as a significant contribution to the plastic deformation in the 

crystal. In the current work, a novel modeling framework was proposed to overcome the 

above obstacle by using the grain-fragmentation scheme. In addition, the previous 

version of slip-twin hardening functions has been further expanded by allowing different 

hardening parameters for different slip and twin families. Furthermore, this new 
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framework has been successfully applied to two different compositions of α-titanium 

(two different purity levels).   

It is important to note that the Taylor assumption was used to achieve 

polycrystalline response from individual crystals in the proposed framework. 

Consequently, some of the discrepancy between the prediction and measurement can be 

attributed to this gross simplification. In order to evaluate the effects of the Taylor 

assumption, the predicted stress and strain distributions over a random-textured 

polycrystal were compared with the results from a finite element framework as a function 

of plastic anisotropy.  

Taylor-type crystal plasticity models are usually used to predict the texture 

evolution and the stress-strain response providing the initial texture and deformation 

paths are known. In the actual design tasks, however, designers are very often faced with 

inverse problems where designers need to know in advance all the possible mechanical 

properties of a given material system before they optimize their design. A novel 

mathematical framework called Microstructure Sensitive Design (MSD) [24-26] was 

recently formulated to address this need. MSD can be very useful in delineating property 

closures [27] that identify the complete set of theoretically feasible combinations of 

macroscale (homogenized) properties in a given material system. This framework has 

been successfully applied previously to cubic polycrystals assuming crystallographic 

texture is the dominant influence on the macroscale properties of interest [26, 28]. The 

same method becomes extremely difficult when applied to hcp polycrystals. In this thesis, 

a new computational scheme was reported for delineating elastic-plastic closures for hcp 

polycrystals using the spectral framework of MSD.    
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This thesis is organized as follows. Chapter 2 presents the new modeling 

framework and the associated strain hardening functions. Chapter 3 describes the 

procedure for calibrating the proposed crystal plasticity model. This new modeling 

framework with established parameters is evaluated by direct comparison with 

experimental measurements. The effects of the Taylor assumption are evaluated by 

comparing the predicted stress and strain distributions in polycrystals by both the Taylor-

type model and the finite element model. Chapter 4 explains the methodology to 

delineate the elastic-plastic property closures for hcp polycrystals using MSD framework. 

A variety of comprehensive property closures are depicted in this chapter. Conclusions 

and future work are presented in chapter 5.  
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CHAPTER2: MODELING TEXTURE EVOLUTION AND ANISOTROPIC 
STRESS-STRAIN RESPONSE USING A TAYLOR-TYPE MODEL  

 
 
2.1. Introduction 

 A rigorous formulation of the elastic-plastic constitutive relations for crystalline 

materials undergoing finite plastic strains by crystallographic slip alone is now well 

established in literature [14, 15, 17]. However, many materials exhibit deformation 

twinning as an additional mode of plastic deformation, especially at low homologous 

temperatures and/or high strain rates [10, 29, 30]. Several studies have reported extensive 

deformation twinning in room (and lower) temperature deformation of α-Ti [4, 6, 8]. 

Consequently, it is highly desirable to extend the current crystal plasticity models to 

include deformation twinning as an additional mode of plastic deformation. The main 

obstacle in accomplishing this goal is the lack of an efficient method to handle the 

extremely large number of new orientations created by deformation twinning. Three 

different approaches have been proposed in the literature to address this problem: 

(1.) Predominant Twin Reorientation (PTR) Method:  This method was originally 

proposed by Van Houtte [31] and improvements were made by Tome et al. [32]. 

Staroselsky and Anand [33, 34] have formulated a rigorous and efficient numerical 

approach for the use of rate-independent crystal plasticity theories and applied it with the 

PTR model to study stress-strain responses and texture evolution in low stacking fault 

energy cubic and hexagonal metals. Kaschner et al. [35] employed the PTR method in a 

visco-plastic self-consistent crystal plasticity modeling framework to study the role of 

twinning in the hardening response of zirconium during temperature reloads. In the PTR 

scheme, twinning is essentially treated as a pseudo-slip mechanism while the evolution of 
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the volume fractions of the twinned regions is carefully tracked in each grain. 

Consequently, the twinned regions are not reoriented at the end of each time step. Instead, 

a statistical criterion is devised and employed to ensure that an appropriate number of 

heavily twinned grains are completely reoriented into their predominant twin orientations; 

this number is selected based on the total volume fraction of twinned regions in the entire 

polycrystal. A major advantage of this method is that the number of total grain 

orientations remains constant during the entire simulation. The disadvantage of this 

method is that it can not be applied at the single crystal level and is not particularly 

amenable to the highly efficient, total Lagrangian, fully implicit time integration 

procedure developed recently for the crystal plasticity constitutive framework [15]. 

(2.) Volume Fraction Transfer (VFT) Scheme: This approach was proposed by Tome et 

al. [32] and employs weighted (and binned) grain orientations to address the problem of 

tracking the large number of new orientations created by deformation twinning. In this 

scheme, the relevant Euler space of distinct grain orientations (also called the 

fundamental zone of orientations [36]) is suitably binned and the texture in the sample is 

represented by the weights associated with the binned orientations. Therefore, only the 

weights of the grain orientations need to be suitably modified to reflect the orientation 

changes caused by twinning, and hence there is no need to create new orientations. 

However, the disadvantages of this method are that a very large number of bins are 

needed (especially for the lower symmetry hexagonal metals) and that this approach is 

also not particularly amenable for implementation of the efficient fully implicit time 

integration procedure developed recently for the crystal plasticity constitutive framework.    
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(3.) Total Lagrangian Approach: Building on a total Lagrangian crystal plasticity 

framework that was initially formulated for materials that exhibit only crystallographic 

slip, Kalidindi [22] proposed a new interpretation of the multiplicative decomposition of 

the total deformation gradient into its elastic and plastic components when deformation 

twinning is added as an additional mode of plastic deformation. The main advantages of 

this method are that it allows the application of the crystal plasticity theory with 

deformation twinning to a single crystal while taking full advantage of the efficient fully 

implicit time integration schemes that have been previously developed and validated. The 

disadvantage of this method continues to be the fact that the numerical implementation of 

the scheme is quite cumbersome when slip inside the twinned regions is to be allowed as 

a significant contribution to the plastic deformation in the crystal. The importance of 

including slip inside twins as an additional mode of plastic deformation was established 

in a recent experimental study [8, 13], where it was observed that the averaged Taylor 

factor for the twinned regions in a sample of high purity α-Ti deformed in simple 

compression was about 40% lower than that for the matrix regions, implying that the slip 

inside the twinned regions would be a significant component of the overall plastic 

deformation in this sample. In the prior modeling effort for low stacking fault energy fcc 

metals, the fact that the potential twin systems in the very thin twins are co-planar with 

the potential slip systems made it relatively easy to incorporate slip inside twinning as a 

contribution to the overall plastic deformation [37]. However, the potential twin systems 

in hcp metals are non-coplanar with all of the potential slip systems, and therefore 

tracking the slip activity inside the already formed twins becomes quite cumbersome in 

this approach. 
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It is therefore clear that there exist a number of outstanding problems in the 

incorporation of deformation twinning and, slip inside deformation twins in the current 

crystal plasticity modeling framework. Recent experimental studies have provided 

several new insights that, in turn, suggest new simplifying approximations to overcome 

some of the difficulties described above in the modeling efforts. Of particular importance 

to the work presented here is the observation reported by Salem et al. [8] that much of the 

deformation twinning in high purity α-Ti deformed in simple compression at room 

temperature occurred in a relatively narrow moderate strain range of 0.05 to 0.3 (with 

most of the profuse twinning actually occurring in an even narrower strain range of 0.15-

0.20).  At higher strain levels, the grain structure fragmented substantially and the rate of 

deformation twinning decreased dramatically. Although the precise reason for the 

saturation of twinning activity at high strains is not yet fully understood, it is generally 

attributed to the much higher stresses required to produce the shorter deformation twins 

in the smaller fragmented grains [13, 30].     

 The main objective of the work presented in this chapter is to report on the latest 

effort to develop an improved Taylor-type crystal plasticity model for α-Ti hcp 

polycrystals. This new model employs a grain fragmentation concept. In this new model, 

following the earlier approaches [23, 31], deformation twinning is initially treated as a 

pseudo-slip mechanism. When a certain volume fraction of any grain has undergone 

deformation twinning that particular grain is fragmented into its dominant twin systems. 

During subsequent deformation, neither the parent grain nor any of its newly formed 

fragmented components (i.e. twins) are allowed to produce further twins. The main 

motivation for exploring this approach stems from the previously described observations 
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in α-Ti where it was noted that deformation twinning dominates the texture evolution in 

the polycrystal in a short intermediate strain regime. Therefore, the underlying 

approximations in the proposed approach should have very little effect on the texture 

evolution of the polycrystal at large strains. Furthermore, since the grain is allowed to 

fragment only once and only into its dominant twin components, the number of new 

grains produced is relatively small and can be efficiently handled with only a moderate 

increase in the computational effort. Finally, the proposed approach can be easily 

implemented in the previously established, numerically efficient, total Lagrangian 

framework with the associated fully implicit time integration procedure. In many ways, 

the proposed approach here combines the best aspects of the different modeling 

approaches described earlier [22, 31, 32]. In addition, the slip-twin hardening functions 

have been expanded from the previously used versions [23], and have been observed to 

provide better predictions of the anisotropic stress-strain responses. 

 

2.2. Modeling Framework  

A new Taylor-type crystal plasticity model is presented here for room temperature 

deformation of high purity α-Ti using a notation that is now standard in this field [38]. In 

this notation, F represents the deformation gradient tensor, L represents the velocity 

gradient tensor, and T represents the Cauchy stress tensor. An important feature of the 

model presented here is the introduction of a grain fragmentation event based on the 

accumulated deformation twinning activity in the crystal. The details of the grain 

fragmentation event and the behavior of the grain prior and subsequent to this 

fragmentation event are described next. 
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2.2.1 Grains Prior to Fragmentation 

The grains prior to fragmentation are modeled using essentially the approach 

described previously by Kalidindi [22], with some modifications in the strain hardening 

descriptions. The imposed total deformation gradient tensor on the crystal is 

multiplicatively decomposed into two components (see Figure 1): 

                                                  p*FFF = .                                                                (2.1)  

In this model,  denotes the plastic deformation gradient tensor that describes the 

overall (effective) shape change induced in the grain as a consequence of the 

crystallographic slip and deformation twinning in the grain, while  denotes the 

additional transformation (including elastic stretch and rotations) needed to account for 

the total imposed shape change induced by F. It is further assumed that the slip processes 

leave the lattice orientation unchanged, while deformation twinning rotates the lattice into 

a priori defined orientation (for the hexagonal crystals of interest in this study this 

relationship is conveniently described as a 180 degree rotation about the twin plane 

normal [10]).  Consequently, the orientations of the twinned and untwined regions of the 

grain in the hypothetical intermediate configuration shown in Figure 1 (after the 

application of ) are fully known a priori, given the initial orientation of the grain. The 

polar decomposition of provides the elastic stretch and the overall lattice rotation 

between the intermediate configuration and the deformed configuration. In Figure 1, only 

one twin system is shown for clarity. However, multiple twin systems are allowed in one 

grain. Furthermore, the twinned region belonging to one twin system is idealized as a 

continuous block, while in reality, deformation twins occur as multiple plates. This 

pF

*F

pF

*F
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simplification was motivated by the reported experimental observations in literature [13, 

39], which suggest that the deformation twins of a particular twin system occur as 

roughly parallel plates of similar lattice orientation. The fact that the twins of a single 

twin system occur as multiple plates does have a major influence on the hardening 

response of the crystal, and this aspect will be treated in section 2.3 using appropriate 

phenomenological slip and twin hardening laws.   

The constitutive equation for the elastic response of a single crystal is expressed 

as 

                           [ ]** ECT = ,                                                                                      (2.2)  

in which C represents the fourth-order anisotropic elasticity tensor, and are a pair 

of work conjugate stress and strain measures defined as 

*T *E

                       ,                                                                      (2.3) T−−= **1** }){(det FTFFT

                     1}- {
2
1 *** FFE T= .                                                                                  (2.4) 

The evolution of plastic deformation gradient can be expressed as  

                              ,                                                                                      (2.5) ppp FLF =&

in which is plastic velocity gradient tensor expressed as                      pL

              .                                                                      (2.6) β

β
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α
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The two terms on the right hand side of Eq. (2.6) represent the contributions to plastic 

deformation by slip and deformation twinning respectively. S  denotes the unit slip (twin) 

tensor, defined as the dyadic product of two orthogonal unit vectors denoting the slip 

(twin shear) direction and the slip (twin) plane normal, respectively. The subscript o on S  
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reminds us that these are defined using the initial crystal orientation and therefore the S  

tensors are known a priori. The superscripts α and β enumerate the available slip systems 

(total of ) and the available twin systems (total of ), respectively.  represents 

the slip shear rate on a slip system α.  Unlike slip, deformation twinning is characterized 

by a constant amount of shear and the volume fraction of the crystal experiencing 

deformation twinning evolves with the imposed deformation.  Treating deformation 

twinning as a pseudo-slip mechanism, the homogenized shear rate in the crystal is 

described by , where  represents the amount of constant shear associated with 

twin system β and denotes its volume fraction in the given crystal.  

sN twN αγ&

ββ γ twf& βγ tw

βf

    Power-law relations have been employed to quantify the plastic shearing rate on 

slip and twin systems using the visco-plastic approach of Asaro and Needleman [17]:    
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In this study, the rate sensitivity parameter, m, was assumed to be the same for 

both slip and twinning. A very low value of m = 0.02 was used to simulate almost rate-

independent behavior of metals at room temperature. The reference slip rate, oγ& , was 

arbitrarily set as 0.001 s-1 to reflect the interest in quasi-static loading conditions.  

( ) and  ( ) represent the resolved shear stresses and the shear resistance for a 

particular slip (twin) system. Note that, unlike slip, a positive resolved shear stress is 

ατ

βτ αs βs
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needed for twinning. The resolved shear stress for both slip and twin systems can be 

defined as  

                                       .                                                                    (2.9) αατ oST •≈ *

 

2.2.2 Criterion for Grain Fragmentation  

In the present model, when the twin volume fraction in a given grain ( ∑
β

βf ) 

reaches a predetermined saturation value ( ), that grain is fragmented into parts: a 

parent grain (corresponding to the untwinned or matrix region) and several offspring 

grains (corresponding to the dominant twin systems in that grain). In this study,  was 

set equal to 0.4 based on the experimental observations reported by Salem et al. [8, 13]. 

The volume fractions of the parent and the offspring grains are determined by the 

accumulated twinning activity in the grain up to the point of fragmentation. It is ensured 

that the sum of the volume fractions of the parent and the offspring grains is equal to one.  

Once the grain is fragmented, the volume fractions of the newly created grains are kept 

constant during the rest of the deformation. Consequently, the number of new 

orientations produced in this model simply equals to the number of offspring grains 

created in the fragmentation process. Only the twin systems with a volume fraction larger 

than 0.1 were represented as newly created grains in this study. The volume fractions 

associated with the non-dominant twin systems (defined here as ) have been 

transferred to the most dominant twin system.  

satf

satf

1.0<βf

 

2.2.3 Grains after Fragmentation 
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Note that the slip activities in the offspring grains are tantamount to slip in the 

twinned regions of the original grain. After grain fragmentation, the newly formed grains 

(parent and offspring grains) are essentially treated as independent grains. Moreover, 

further plastic deformation in these grains is assumed to be fully accommodated by 

crystallographic slip alone.  Note that, in the total Lagrangian framework employed in 

this work, the slip tensors ( in Eq. (2.6)) in the newly created grains are defined based 

on the orientations of the twinned regions in the intermediate relaxed configuration. As 

noted earlier, the twin orientations in the intermediate configuration are known a priori, 

and are conveniently described by a 180 degree rotation about the twin habit plane 

normal for the α-Ti single crystals. The treatment of the grains before and after 

fragmentation is summarized in Figure 2. The following salient features of the new model 

presented here are worth noting: 

α
oS

(1.)  Before fragmentation, deformation twinning is treated as a pseudo-slip mechanism. 

So there is only a single decomposition of the total deformation gradient tensor. 

Consequently, the matrix and the twinned regions have a pre-defined orientation 

relationship. In other words, the twin regions rotate with the matrix as if they were 

rigid inclusions attached to the matrix with a specific orientation relationship.  

(2.)  After fragmentation, the newly formed grains behave independent of the parent grain 

and each other. Following the Taylor approach [40], the matrix and the twins are 

assumed to experience the same total deformation gradient tensor. However, the 

plastic deformation gradient, the elastic stretch and the lattice rotation are expected to 

differ substantially among the parent and each of the offspring grains. Note also that 

the special orientation relationship between the parent and offspring grains is still 
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maintained in the intermediate relaxed configuration (even after grain fragmentation), 

but is expected not to be retained in the final configuration (because the parent and 

offspring grains are generally expected to experience different lattice rotations after 

the fragmentation event).  

      The response of a polycrystalline aggregate is obtained here using the extended 

Taylor assumption of uniform deformation gradient tensor in the entire polycrystal. 

Consequently, the overall Cauchy stress tensor in the polycrystal is assumed to be given 

by the volume averaged value of the Cauchy stress tensor in all of the constituent grains 

(including all of the parent and the offspring grains).    

 

2.3. Strain Hardening Functions  

Description of the evolution of the slip and twin resistances during plastic 

deformation has been a very difficult problem in the development of robust crystal 

plasticity models for hcp metals such as titanium. The slip-twin interactions are fairly 

complex [8, 41, 42], and there is thus far only a limited amount of quantitative 

experimental data available. In this study, a phenomenological description of the slip and 

twin hardening laws has been proposed.  

 

2.3.1 Strain Hardening Prior to Fragmentation    

Some of the most successful phenomenological descriptions to date have been the 

saturation-type hardening laws that can be generically expressed as  

                               ∑−=
sN

k

k

s
s s

shs γα

α
αα && )1( ,                                                          (2.10) 
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in which  and  represent the hardening rate and the saturation value associated with 

the slip system α, respectively. Implicit in Eq. (2.10) is the assumption of isotropic latent 

hardening which implies that activity on one slip system results in equal hardening of all 

potential slip systems. In a recent paper, Salem et al. [23] used extended versions of the 

saturation-type hardening functions to capture the complex interactions between slip and 

twinning. In that study, Eq. (2.10) has been used for slip hardening, while allowing the 

slip hardening rate and the saturation values to evolve with deformation twin activity as    

α
sh α

ss

                                ))(1( ∑+=
β

βα b
ss fChh ,                                                          (2.11) 

                               
5.0)(∑+=

β

βα fsss prsos .                                                        (2.12) 

The functional forms of Eqs. (2.11) and (2.12) were motivated by experimental 

observations in deformation studies on high-purity α-Ti. The parameters  and  

denote the hardening rate and the saturation value, respectively, in the absence of 

twinning. C,  and  are hardening parameters that aim to capture 

phenomenologically the complex interactions between slip and deformation twinning. 

denotes the total twin volume fraction in the grain. 

sh sos

prs b

∑
β

βf

In the present work, it is essential to allow the hardening parameters in Eqs. (2.11) 

and (2.12) to take on different values for the different slip families (Table 1) in order to 

obtain better predictions of the anisotropic stress-strain responses subjected to various 

deformation paths. A total of 18 slip systems belonging to three distinct slip families and 

12 twin systems belonging to two distinct twin families were considered. A schematic for 
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twin and slip systems in a single crystal of α-titanium is shown in Appendix C. Eqs. (2.10) 

- (2.12) were reformulated as  
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The experimental observations of Salem et al. [13, 43] indicate that twinning 

occurs profusely in a short intermediate strain range. Consequently, the twin resistances 

were treated as constants prior to grain fragmentation.  

 

2.3.2 Strain Hardening after Fragmentation  

After fragmentation, slip resistances of the various slip systems in the parent and 

offspring grains have been assigned the same values that were in the grain prior to 

fragmentation. However, the resistance for any twin system in the parent and the 

offspring grains is assumed to be very high to prevent further twinning. The evolution of 

slip resistances in subsequent deformation continues as described by Eqs. (2.13) – (2.15).  

 

2.4. Conclusions  
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          A new crystal plasticity model has been formulated to simulate the anisotropic 

stress-strain response and texture evolution for α-titanium during large plastic strains at 

room temperature. The major new features of the model include:  (a) incorporation of slip 

inside twins as a significant contributor to accommodating the overall imposed plastic 

deformation, and (b) extension of slip and twin hardening laws to treat separately the 

hardening behavior of the different slip families (prismatic <a>, basal <a>, and pyramidal 

<c+a>) using hardening parameters that are all coupled to the extent of deformation 

twinning in the sample. In particular, the novel grain-fragmentation scheme was inspired 

by the recent experimental observations and has been demonstrated to be capable of 

efficiently handling the large number of new orientations created by deformation 

twinning. It is important to recognize that deformation twinning is treated as a pseudo 

slip before fragmentation and the twins are treated as independent grains after 

fragmentation. The proposed model will be calibrated and evaluated in the next chapter 

by direct comparison with the experimental measurements.   
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CHAPTER3: CALIBRATION AND EVALUATION 

 

3.1. Experiments on α-Titanium 

            Most of the experimental measurements used in this work were provided by our 

collaborators: (1) Dr. Ayman A. Salem at Air Force Research Laboratory (AFRL), and (2) 

Dr. Carl Necker at Los Alamos National Laboratory (LANL). The basic procedures and 

techniques used for obtaining the required measurements are briefly introduced in this 

section.  

  

3.1.1. Material  

This investigation utilized two grades of pure α-titanium: (1) a high-purity grade 

(99.9998%) supplied by the Alta Group of Johnson Matthey Electronics, Inc. as a clock-

rolled disk (12-mm thick), and (2) a commercial-purity titanium (grade-2) that was 

received as a 33-mm thick hot rolled plate. A summary of the chemical composition of 

both materials is provided in table 2. Both materials were given recrystalization heat 

treatments to produce equiaxed grain structures. The annealed high purity α-titanium had 

an average grain size of 30 µm while the annealed commercial purity α-titanium had an 

average grain size of 35 µm. The annealed textures of both materials were measured by 

Orientation Imaging Microscopy (OIM) technique. The annealed high purity α-titanium 

showed a strong fiber texture (Figure 3(a)) and its (0001) pole figures indicate that the c-

axes of many grains in this sample lie about 20-35 degrees to the plate normal (labeled 

ND). The annealed commercial purity α-titanium had a typical rolling texture (Figure 

3(b)) with the (0001) pole figures titled about 35-40 degrees from normal direction to the 
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rolling direction (labeled RD). Additional information about these materials is given in 

references [8, 13, 43].      

 

3.1.2 Mechanical Testing and Metallography  

The stress-strain behavior in both materials was established via isothermal 

compression tests conducted on cylindrical samples at a constant strain rate of 0.01 s-1. 

The deformed samples were prepared for microscopy by a set of metallographic 

preparation steps including sectioning, grinding, mechanical polishing, electro-polishing 

and chemical etching. Additional information about mechanical testing and 

metallography is given in references [8, 13, 43].  

 

3.1.3 Measurements 

Three stress-strain measurements (two from simple compression tests and one 

from simple shear test) and the corresponding strain hardening plots for high-purity 

titanium samples were available from previous studies [23, 43]. Three stress-strain 

measurements (all from simple compression tests) for commercial-purity titanium 

samples were provided by Dr. Ayman A. Salem at AFRL. The measurements of the 

initial textures for both materials (Figure 3) and the measurement of deformed texture in 

simple shear test for high purity α-titanium were also available from the earlier work. 

These texture measurements were obtained by Orientation Imaging Microscopy (OIM) 

technique. In order to evaluate the proposed model, five new texture measurements were 

acquired for deformed samples in simple compression test: two for high-purity titanium 

and three for commercial-purity titanium. These new measurements were provided by Dr. 
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Carl Necker at LANL. They were obtained by X-ray diffraction (XRD) technique on a 

Scintag X1 5-axis pole figure goniometer using Cu-Kα radiation. The beam is a point 

source, circularly collimated to 0.8mm. The detector is a Peltier cooled solid-state 

detector with a slit of 2mm. The samples had a minimum of 1cm2 surface area. 

The )0110( , , )0001( )1110( , )2110( , )0211( , and )3110( pole figures were measured. 

The samples were oscillated 4 mm to collect data from as many grains as possible. Data 

was collected out to 80˚ sample tilt in 5˚ sample rotation and tilt increments with a two 

second counting time. The data was analyzed using the popLA software [44], to produce 

corrected and recalculated pole figures and orientation distributions. The raw data was 

corrected for background and defocusing using a correction file generated from a 

titanium sample with a random texture. The data was then run through a harmonics 

algorithm to extrapolate the outer fringes of the pole figure data and then the data was re-

normalized. This data was run through the WIMV algorithm to produce recalculated pole 

figures and orientation distribution functions.  

 

3.2. Calibration: Determination of Model Parameters 

There are a total of fourteen material parameters in the crystal plasticity model 

presented in chapter 2 (Table 1). The goal here is to establish the values of these 

parameters by curve-fitting the predicted stress-strain responses in selected deformation 

modes to the corresponding experimental measurements. This procedure was first 

established for high purity α-titanium. Once the approach was validated, it was easily 

extended to commercial purity α-titanium. Previous studies [23] have established a 

similar approach for accomplishing this task. This approach recognizes the influence the 
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different parameters have on the form of the predicted stress-strain curves and uses 

repeated trials until the predictions match the measurements. In this process, the present 

study revealed that some of the parameters for the different slip families in Eqs. (2.13) - 

(2.15) exhibited similar values.  Based on these observations, the following assumptions 

were made to reduce the number of hardening parameters from fourteen to eleven: 
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The values of all the eleven parameters were established by fitting the predicted 

stress-strain curves to the corresponding measurements in two different monotonic 

deformation modes (simple compression and simple shear). Briefly, the following steps 

were used to establish the hardening parameters: 

(1) The values of initial resistances ( ,  and ) on different slip families (basal 

<a>, prism <a>, and pyramidal <c+a>) were determined by fitting the predicted yield 

strengths in simple compression along ND and in simple shear to the corresponding 

measurements (Figure 4).  
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(2) The value of initial resistance ( ) for twinning was determined by matching the 

start of stage B in the predicted strain hardening plot in simple compression along ND 

(Point 2 in Figure 5) to the corresponding measurement. Recently, this point on the strain 

hardening plot curve has been correlated with the onset of deformation twinning [13].   

tws

(3) The values of slip hardening parameters ( , , and ) were 

determined by fitting the stage A of strain hardening plot (Figure 5) and the stress-strain 

curve in simple shear (Figure 4) in which the volume fraction of deformation twinning is 

baspri
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not significant and therefore slip is considered as the main mechanism to accommodate 

plastic  deformation.    

 (4) The values of coupled slip-twin hardening parameters (b and C) were determined by 

fitting the stage B of strain hardening plot (Figure 5) where the increase of strain 

hardening rate is correlated to the increasing twin volume fraction.     

(5) The value of saturation hardening parameter ( ) was determined by fitting the ND 

simple compression stress-strain curve (Figure 4) at large strains where it appears to 

approach saturation.    

prs

Using above strategy, all model parameters for high purity α-titanium were 

estimated and summarized in Table3. In analogous treatment, the model parameters for 

commercial purity α-titanium were established by fitting the predicted stress-strain 

curves to the measurements (Figures 6(a) and 6(b)). The values of the model parameters 

are shown in Table 4.  The key subroutines in the numerical code developed for this 

calibration procedure are attached in Appendix D.   

 

3.3. Evaluation: Comparison with Measurements 

 

3.3.1. Stress-strain Responses  

In this section, the proposed model and the associated hardening laws were 

evaluated quantitatively by directly comparing the predictions to the measurements that 

were not used in the calibration process. The predicted stress-strain response in simple 

compression along TD for high-purity titanium showed good agreement with the 

measurement (Figure 4). It is worth noting that the starting texture for the compression 
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test along TD is significantly different compared to the starting texture for compression 

test along ND (Figure 7).  Note also that the flow stress in compression along TD is 

substantially lower than the flow stress in compression along ND. The predicted stress-

strain response in simple shear (Figure 4) also showed good agreement with measurement 

up to shear strain ( ) 6.0≈γ , but an overestimation of about 20% on the flow stress was 

observed at larger strains ( 0.1≈γ in Figure 4). It is worth noting that at large shear 

strains the shear samples often develop macroscale shear bands and this could lower the 

measured flow stresses. 

The stress-strain curves in Figure 4 were plotted as equivalent stress – equivalent 

strain curves. While the concept of a Mises-equivalent stress has no relevance for 

anisotropic plasticity, it helps us understand the degree of anisotropy exhibited by the 

material. If the material exhibited isotropic plastic response, all of the curves shown in 

Figure 4 should be identical. The spread between the stress-strain responses in the 

different deformation modes (about a factor of 2 between simple compression and simple 

shear) provided us a measure of the degree of anisotropy exhibited by the high purity α-

Ti that is largely attributable to the underlying crystallographic texture in the sample. 

This degree of anisotropy appears to be well captured by the Taylor-type crystal plasticity 

model presented in the current work.  

The stress-strain curve in simple compression along RD for commercial-purity 

titanium was not used in the calibration procedure and therefore it can be utilized for 

evaluation. The predicted stress-strain response showed good agreement with 

measurement (Figure 6(c)).       
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3.3.2. Texture Evolution  

The texture measurements are not utilized for calibration and hence they can be 

used for evaluation. Texture predictions for simple compression along ND in high-purity 

titanium at two strains ( 22.0−=ε  and 00.1−=ε ) showed good agreement with the 

measurements (Figures 8 and 9). At 22.0−=ε , both the prediction and the measurement 

exhibited two major c-axis fiber texture components (easily seen in (0001) pole figure). 

The first fiber has its c-axis about 15-30° from ND, while the second fiber has its c-axis 

about 75-90° from ND. The first component was associated with the matrix, and the 

second component with the twins, in a prior study [8]. A similar texture was observed in 

(0001) pole figure at 00.1−=ε , where the intensity of the component associated with 

twinning increased substantially (Figure 9). 

Texture predictions for simple shear at 00.1−=γ  in high-purity titanium showed 

reasonable agreement with the corresponding measurement (Figure 10), especially in the 

)0110(  pole figure where six strong texture components are clearly seen. The predicted 

(0001) pole figure captured the strong texture component located about 20-40° from ND. 

However, the predicted (0001) pole figures missed the weaker texture components 

located around the rim (Figure 10).   

Texture predictions for simple compression tests along ND, RD and TD in 

commercial-purity titanium showed good agreement with corresponding measurements 

(Figure 11). At 00.1−=ε , both the predictions and the measurements exhibited two 

major c-axis fiber texture components: one is about 10-30° from ND and the other is 

about 80-90° from ND. It is important to note that these compression tests yielded very 

similar deformed textures (at 00.1−=ε ) although their starting textures are significantly 
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different (Figure 12). This observation could be attributed to the fact that different twin 

families (compressive or tensile twins) dominate the texture evolution in different 

compression tests. A further investigation on the roles of different twins in these tests, 

especially at relatively small strains ( 2.0−≤ε ), is required to justify the above 

hypothesis.  

 

3.4. Discussion: Effects of Taylor Assumption  

The crystal plasticity model presented here is built on the Taylor assumption of 

uniform deformation gradient in all of the constituent grains. It should be intuitively 

expected that this gross simplification should have a strong effect on the predictions. It is 

well known from prior studies in this field that the Taylor assumption leads to 

significantly stronger textures than the experimentally measured ones [45-47]. It should 

also be expected that the error in the Taylor assumption would be higher for the hcp 

metals studied here compared to the more plastically isotropic cubic metals studied in 

previous work [15, 30, 37].  It is a feeling that many of the discrepancies reported here 

between the measurements and the predictions are attributable to the Taylor assumption 

employed in this study.  

Although the stronger effects of Taylor assumption on hcp metals are usually 

alleged to be the consequence of higher plastic anisotropy in the grain, the quantitative 

evaluation of the influence of plastic anisotropy is not available yet in literature for hcp 

materials. This might be mainly caused by the fact that the experimental data for 

characterizing the plastic parameters at the crystal level is very limited and even 

conflicting for this class of materials. In the current study, the plastic parameters (critical 
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resolved shear stresses of slip and twin systems) established from the crystal plasticity 

model were selected as the variables for evaluating the effects of plastic anisotropy. 

Stress and strain distributions over a deformed polycrystalline material were selected to 

reflect the effects of Taylor assumption. The distributions obtained from finite element 

simulation are considered as “accurate” results because finite element models satisfy both 

compatibility and equilibrium throughout the polycrystal.   

This comparison was conducted at small strain (2% reduction) in plane strain 

compression (since the differences between Taylor predictions and FE predictions are 

most significant in this mode of deformation [46]). Deformation twinning was not 

considered in this analysis due to the following two reasons: (1) the volume fraction of 

twinning at this strain level is very small [8, 13] and hence it is ignorable, and (2) the 

finite element model including deformation twinning is not available at this point. 

Consequently, the plastic anisotropy of an hcp crystal is solely decided by the ratio of 

critical resolved shear stresses in the three slip families (basal <a>, prism <a> and 

pyramidal <c+a>). In this work, the evaluation was performed at three different levels of 

plastic anisotropy: (1) 1-1-1, (2) 5-1-4, and (3) 15-1-10. In order to understand the major 

differences between the FE simulations and the simulations with the Taylor assumption, 

the statistics of the variation in the components of the local deformation gradient tensor 

( ) and the local Cauchy stress tensor (33F 33σ ) have been investigated.  Recall that the 

Taylor assumption imposes the same deformation gradients throughout the polycrystal 

and hence violates the equilibrium between grains. Therefore, the selected local variables 

( and33F 33σ ) should be able to reflect the strong differences between FE and Taylor-type 

simulations.     
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The material used in this work is 4,096 high-purity titanium crystals with random 

texture. In the finite element mesh, a total of 8,000 (20x20x20) elements were used for 

this simulation and only the internal 4,096 (16x16x16) elements were selected for 

analysis. This treatment was used to reduce the chances that final results are somewhat 

influenced by the imposed boundary conditions. Furthermore, for each level of plasticity 

anisotropy, the finite element simulation was repeated several times (in this study the 

simulation was executed five times and assumed that it was enough) and the data for the 

analysis were the averaged values from these simulations. Before each simulation, the 

4,096 crystal orientations were re-shuffled and then randomly assigned to 4,096 elements. 

This strategy is used to ensure that the neighboring elements of any element in the FE 

mesh have initially random texture.  

The stress and strain distributions obtained for 4,096 random orientations from 

Taylor-type model and finite element simulation were extracted and plotted in figure 13. 

It is clearly observed that both strain and stress distributions between these two models 

become more and more divergent as the plastic anisotropy ratio is increased from 1-1-1 to 

5-1-4 to 15-1-10. Particularly, the peak values of percentage of grains obtained from 

Taylor-type model at ratio 15-1-10 are significantly higher than the values from finite 

element method. On the other hand, the distributions are much wider in finite element 

simulation. It is important to recognize that the plastic anisotropy ratio 5-1-4 is the actual 

ratio that was used for the critical resolved shear stresses in the proposed Taylor-type 

crystal plasticity model. At this level of plastic anisotropy ratio, the discrepancy of stress 

and strain distributions between Taylor model and finite element method is obvious, 
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which indicates that a better averaging method than Taylor assumption has potential to 

significantly improve the model predictions shown in section 3.3.  

The focus of the current study is to incorporate new deformation mechanism (slip 

inside twinning) and develop better slip-twin hardening functions at single crystal level, 

which is independent of the choice of averaging schemes. However, realizing the 

considerable improvement of the prediction one can achieve by using a better averaging 

method, the current effort is to implement the crystal plasticity model described here in a 

finite element framework which averts the need for the simplifying Taylor assumption. 

   

3.5. Conclusions   

 The proposed Taylor-type crystal plasticity model for predicting texture 

evolution and anisotropic stress-strain behavior in α-titanium has been calibrated and 

evaluated in this chapter. Reasonable agreement between model predictions and 

experimental measurements has been observed for both the anisotropic stress-strain 

responses and the evolved deformation textures in two different chemical compositions 

of α-titanium along different monotonic deformation paths: (a) high purity α-titanium: 

simple compression along ND, simple compression along TD and simple shear in the 

RD-TD plane; (b) commercial purity α-titanium: simple compression along ND, RD and 

TD, respectively.      

To the best of our knowledge, it is the first time in the literature that 

crystallographic slip, deformation twinning and slip inside twinning were all incorporated 

into a crystal plasticity model which was evaluated for both the anisotropic stress-strain 

response and texture evolution in multiple deformation paths on a given hcp metal. 
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Moreover, this new framework has been successfully applied to two different 

compositions of α-titanium (two different purity levels).  
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CHAPTER4: ELASTIC-PLASTIC PROPERTY CLOSURES FOR HEXAGONAL 
CLOSE-PACKED POLYCRYSTALLINE METALS USING FIRST-ORDER 

BOUNDING THEORIES 
 
 

4.1. Introduction 

Property closures delineate the complete set of theoretically feasible macroscale 

(homogenized) anisotropic property combinations in a given material system, and are 

very useful in optimizing the performance of engineering components. In recent papers, 

novel mathematical procedures have been presented to successfully delineate elastic-

plastic property closures based on elementary (first-order) bounding theories [48-50] as 

well as sophisticated higher-order homogenization theories [51-57]. This framework has 

been called Microstructure Sensitive Design (MSD) [24, 26], and is rigorously grounded 

in the efficient spectral representation of invertible linkages between the statistical 

description of the relevant details of the microstructure and its effective properties. 

A central feature of MSD is the construction of a compact and convex 

microstructure hull in Fourier space that encompasses the complete set of theoretically 

feasible statistical distributions that quantitatively describe the relevant details of the 

microstructure at different levels of desired statistics (typically classified as n-point 

statistics [55, 58-60]). When the microstructure variable of interest is the crystallographic 

texture (corresponds to 1-point statistics of lattice orientation; also referred to as the 

Orientation Distribution Function or ODF), the microstructure hull is simply referred to 

as the texture hull. Note that each element of the texture hull corresponds to a distinct 

texture or ODF.  Corresponding to each element of the texture hull, it is then possible to 

visualize a region of theoretically feasible property combinations based on the elementary 
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bounding theories. The union of all such feasible property combinations corresponding to 

all elements of the texture hull is simply the property closure [27].  

In practice, brute-force identification of the property closure by a rigorous 

consideration of each and every element of the texture hull is highly inefficient because 

of the large number of dimensions of the Fourier space involved. For example, in prior 

work on cubic-orthorhombic textures1, Kalidindi et al. found that it was necessary to 

explore twelve dimensions of the Fourier space to get sufficient accuracy in the 

prediction of the plastic yield properties [26].  Therefore, even with a modest 

discretization of the texture hull into 10 units in each dimension, the brute-force approach 

would require a consideration of 1012 distinct textures to identify the property closure. A 

number of computational methodologies were formulated in recent years [24, 25, 28] to 

overcome this difficulty. These methodologies have focused mainly on the boundary of 

the property closure, and sought to identify these boundary points as solutions to 

appropriately formulated optimization problems. In recent papers [28, 61], several 

closures for cubic-orthorhombic textures were successfully presented using optimization 

techniques such as sequential quadratic programming and Pareto-front methods [62].  In 

fact, it was also observed that for several property closures of interest in cubic-

orthorhombic textures, the boundary points of the property closure correspond to the 

same set of textures for all cubic metals with a given family of slip systems [63]. 

Extension of the methods described above to the lower symmetry, and more 

plastically anisotropic, hcp metals is significantly hampered by the fact that the relevant 

number of dimensions in the Fourier space is considerably higher. For example, in the 

                                                 
1 The first symmetry in this notation refers to symmetry at the crystal level (resulting from the atomic 
arrangements in the crystal lattice) while the second refers to symmetry at the sample scale (resulting from 
processing history); this notation is widely used by the texture community. 
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present study, it was found to be necessary to explore 57 dimensions of the Fourier space 

in order to obtain reasonably accurate results for hexagonal-orthorhombic textures of 

interest in high purity α-Ti. At this level of complexity, several of the optimization 

methods described in the earlier papers [26, 28] that worked well for cubic metals, did 

not perform as well for the hexagonal metals. 

A new computational approach has been successfully formulated to delineate 

several elastic-plastic property closures of interest for hexagonal polycrystals. This new 

approach is introduced in this thesis and demonstrated with examples. I start by first 

developing an MSD framework for hcp polycrystals and then describe the new 

computational procedures for delineation of elastic-plastic closures for this class of 

materials. To the best of my knowledge, this is the first report of the application of the 

MSD framework to hcp polycrystals, and the first depiction of elastic-plastic closures in 

this important class of material systems.   

 

4.2. Application of MSD framework to HCP Polycrystals 

 

4.2.1. Texture Hull  

As stated earlier, the main interest in this study is limited to 1-point statistics of 

lattice orientation in the hcp polycrystals with orthorhombic sample symmetry. The local 

state space describing the set of distinct orientations relevant to a selected class of 

textures is referred to as the fundamental zone (FZ) [36]. For hexagonal-orthorhombic 

textures, the fundamental zone is expressed in the Euler space (using Bunge-Euler 

angles 1ϕ ,  , Φ 2ϕ  [36]) as 
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The ODF, denoted as f(g),  reflects the normalized probability density associated with the 

occurrence of the crystallographic orientation g in the sample,  
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where V denotes the total sample volume and dVg is the sum of all sub-volume elements 

in the sample that are associated with a lattice orientation that lies within an incremental 

invariant measure, dg, of the orientation of interest, g. Hexagonal-orthorhombic ODFs 

can be expressed in a Fourier series using generalized spherical harmonic (GSH) 

functions [36] as 
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where  denote the symmetrized GSH functions and  represent uniquely the ODF.  

Note also that Eq. (4.3) allows the visualization of ODF as a single point in an infinite 

dimensional Fourier space (coordinates given by ). The set of all such points, 

corresponding to the complete set of all physically realizable

µνTl
&& µνFl

µνFl

2 ODFs, is called the texture 

hull in the MSD framework [25, 26]. Visualization of these infinite dimensional texture 

hulls poses serious challenges. The first five non-zero Fourier coefficients in Eq. (4.3) 

are , , ,  and . If one wants to plot the projections of the texture hulls 

in three-dimensional sub-spaces, a total of ten different plots are needed to show all 
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2 The term physically realizable texture is used here to refer to a texture that can be physically described or 
imagined. It is anticipated that a large number of these are not yet achievable in practice by currently 
known manufacturing options.   
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distinct projections for the first five dimensions of the texture hull. These plots are shown 

in Figure 14, and to the best of our knowledge this is the first time the hcp-orthorhombic 

texture hulls have been plotted and reported in literature. It should be recognized that any 

physically realizable texture has to have a representation inside all of the depicted hulls in 

Figure 14. Note also that the texture hulls are compact and convex in any of their 

subspaces [24].   

 

4.2.2. First-order Bounding Theories  

    In the MSD framework, the microstructure description is then linked to its 

effective elastic-plastic properties using generalized composite theories. The ODF 

described above constitutes a first-order description of the microstructure (also referred to 

as 1-point statistics). Using this microstructure description, only the bounds of the 

effective elastic and plastic properties can be evaluated. Higher order descriptions, called 

n-point spatial correlation function, are also possible to obtain better estimates of the 

macroscale effective properties [55, 58-60]. For hexagonal-orthorhombic textures, the 

elementary bounds on effective elastic stiffness parameters, , can be expressed as (no 

implicit summation on repeated indices in the following set of equations

*
ijklC

3) [28, 48-50] 
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3The Einstein convention of implicit summation on repeated indices is employed in this work, except when 
explicitly noted otherwise. 
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In Eqs. (4.4)-(4.6), the bars on top of a field quantity denote its volume averaged value, 

and C are S are the local fourth-rank elastic stiffness and elastic compliance tensors, 

respectively.  

The effective plastic yield properties are bounded rigorously on the upper side by 

the Taylor-type model [40], and approximately on the lower side by the Sachs model [64]. 

As an example, in evaluating  using the Taylor-type model, the following 

macroscopic isochoric velocity gradient is imposed on each crystal: 
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where q can take any value between 0 and 1. The local stresses, , computed by the 

Taylor model are purely deviatoric. The hydrostatic component is computed by 

establishing the value of q (denoted as q

( )qσ '
ij

*) for which the averaged lateral stresses over the 

polycrystal are equal to each other, i.e. ( ) ( )*'*' qσ qσ 2233 = . The yield strength of the 

polycrystal in the e1-direction is then computed as 

                     ( ) ( )*'*'
y qσqσσ 22111 −= .                                                                          (4.8) 

The R-ratio represents the ratio of the true width strain to the true thickness strain in a 

tensile test and is an example of an effective plastic property of the metal that is typically 

of interest in metal shaping operations. The R1 value (corresponding to tensile loading in 

the e1-axis) can then be defined as 
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4.2.3. Spectral Representation  

The first-order microstructure-property linkages described above can be 

transformed into Fourier space. The components of the elastic stiffness tensor for an hcp 

crystal can be expressed in a crystal reference frame using five fundamental elastic 

constants C11, C12, C13, C33 and C44 as 
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where δab represents the Kronecker function. The components of the same tensor in the 

sample reference frame are expressed using the coordinate transformation law for fourth-

rank tensors as  
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Substitution of Eq. (4.10) into Eq. (4.11) yields  
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The Aijkl(g), Bijkl(g) and Dijkl(g) functions can be represented in a Fourier series using 

GSH functions. As an example, in Eq. (4.15) can be expressed in Fourier space 

as 
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The Fourier coefficients in Eq. (4.16) are computed using the standard methods of 

Fourier analyses as  
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The integral in Eq. (4.17) can be evaluated numerically using Simpson method [65].  

As an example, the Fourier coefficients for two diagonal elastic stiffness 

components, C1111 and C1313, are presented in Table 5. Note that these terms are valid for 

all hcp crystals. Note also the ,  and coefficients are zero for  > 4.   µν
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The spectral representations in Eqs. (4.10) – (4.17) permit the easy computation of the 

bounds for any given hexagonal-orthorhombic texture. For example, the upper bound for 

the diagonal components of the macroscale elastic stiffness tensor can be expressed as 

(no implicit summation on repeated indices) 
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It is important to keep in mind that some of the bounds described earlier are functions of 

volume averaged quantities and not directly equal to a volume average quantity.   

The macroscale yield properties from the upper bound theory are computed by 

imposing velocity gradient tensor in Eq. (4.7). The local crystal stresses calculated by the 

Taylor-type model are expressed in a Fourier series. For example, the stresses in 

individual crystals corresponding to the velocity gradient tensor in Eq. (4.7) can be 

expressed as (no implicit summation on repeated indices) 
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The average stress in the polycrystal is given as (no implicit summation on repeated 

indices) 
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The values of the Fourier coefficients  were established again using standard 

methods of Fourier analyses (using an expression similar to Eq. (4.17)) and using the 

results from a Taylor-type crystal plasticity model calibrated to the experimental data on 

annealed high-purity α-Ti with an average grain size of 30 µm [66] (see Table 3). 

 were computed for discrete values of q, in increments of 0.1 in the range 0.0 to 

1.0, and linearly interpolated for values in between. All the Fourier coefficients needed 

for this computation were listed in Appendix E. The value of q (denoted as q*) for which 

the volume-averaged lateral stresses over the polycrystal are equal to each other is then 

solved from
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( ) ( )*'*' qσ qσ 2233 = . Once the value of q* is determined, Eq. (4.8) is used to 

derive the polycrystalline tensile yield stress for upper bound. In this work, the values of 
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)(1 qSii
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µν
l  were established and utilized to l  =12. At this level of truncation, the error 

between the spectral representation (due to truncation of the series) and the Taylor-type 

model predictions for a broad set of single crystals was found to be less than 3%. Note 

also that the total number of Fourier dimensions for l  =12 in hexagonal-orthorhombic 

textures is 57. In other words, 57 Fourier coefficients were established for each stress 

component for each value of q. In prior work, the comparable accuracy in cubic 

polycrystals was obtained by using only the first twelve terms of the Fourier series 

corresponding to l  =8. The increased need for higher dimensions in hcp crystals is 

attributed both to their lower crystal symmetry as well as the inherently stronger 

anisotropy in their plastic properties, when compared to the cubic polycrystals. 

      A similar approach has also been employed to cast the Sachs’ model in the 

Fourier space. Further details of this can be found in a recent paper on the application of 

the MSD framework for obtaining closures in cubic-orthorhombic textures [28].    

 

4.3. Elastic-Plastic Property Closures  

 

4.3.1. Introduction  

The spectral representations described above facilitate delineation of the first-

order property closures. As an example, the mathematical formulations for identifying the 

( )*
1313

*
1111,CC  closure are presented below. Let *

1313
~C  denote a specific value of  that 

lies in between its theoretical maximum and minimum values. The complete set of 

Fourier coefficients, 

*
1313C

M~ , that can be associated with the selected value of *
1313

~C  can be 

expressed as 
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where Hull denotes the set of all Fourier coefficients that lie on or inside the texture hull 

(Figure 14). Note that the values of  influence the values of µνFl 13131313  and SC  (see Eq. 

(4.18)). 1
1313
−S  in Eq. (4.21) denotes the (1,3,1,3) component of the inverse of the averaged 

fourth-rank compliance tensor. The maximum and minimum values of are then 

established as   

*
1111C
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1111max1111 ∈= l                                     (4.22) 

( ) ( ){ }MFSMin C µν* ~~
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1
min1111 ∈= −

l                                     (4.23) 

( )( )*
1313max

*
1111

~,~ CC  and ( )( )*
1313min

*
1111

~,~ CC  constitute two of the points on the first-order closure. 

By letting *
1313

~C  vary systematically between its theoretical maximum and minimum 

values, the complete first-order property closure can be delineated. It should be clear 

from the above description that the mathematical procedures used in delineating the first-

order closures are quite complex and require substantial computational effort and 

resources; determination of each point on the closure typically takes a few hours on a 

regular desktop PC.  

  

4.3.2. Comprehensive Property Closures for Polycrystals   

As mentioned earlier, although the above procedure for delineating elastic-plastic 

property closures worked well for cubic-orthorhombic textures, it did not work as well 

for hexagonal-orthorhombic textures. This is attributed to the fact that the plastic 

properties in hcp polycrystals are optimized in 57 Fourier dimensions (compared to 12 
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dimensions in cubic polycrystals). In this work, a novel scheme has been established to 

delineate the property closures for hexagonal-orthorhombic textures.  

The procedure for delineating the property closures starts with a consideration of 

a set of points in the texture hull that correspond to “eigen textures”. Because of the 

orthorhombic sample symmetry used in this study, each eigen texture corresponds to the 

texture produced by a set of four equi-volume single crystals that are selected to satisfy 

the orthorhombic symmetry at the sample scale. The set of eigen textures is selected 

while ensuring that the fundamental zone described in Eq. (4.1) is adequately covered. 

The property combinations for these eigen textures are first evaluated using the spectral 

linkages described in the previous section.  Figure 15(a) shows an example of a closure 

for the feasible combinations of 1yσ  and  using the lower bound theory, based solely 

on the consideration of the eigen textures. A finite number of textures corresponding to 

the boundary of this closure (in this work twenty textures were used) were selected. The 

macroscale property combinations for the weighted combinations of these textures, 

taking one pair of textures at a time, were evaluated systematically (considering all 

possible combinations of pairs of the selected textures). As expected, these computations 

revealed that some of the property combinations outside the eigen-texture closure were 

indeed possible, i.e. the results expanded the closure. Once again a new set of textures 

corresponding to the new boundary of the expanded closure were selected (this time these 

were a mixture of eigen textures and non-eigen textures) and the property combinations 

corresponding to the weighted combinations of these (for all possible pairs of selected 

textures) were evaluated to see if they expanded the closure. This process was repeated 

until the closure did not expand in any discernable way.  Figure 15(b) shows such an 

1111C



                                                                                                                                                   44

expanded lower bound closure for 1yσ  and . Compared to the eigen-texture closure 

shown in Figure 15(a), the lower bound closure in Figure 15(b) is considerably larger and 

more convex. The method described above to produce a closure essentially follows the 

main ideas underlying genetic algorithms, where good solutions are pre-selected (this was 

done here by selecting the textures producing property combinations on the boundary of 

the closure) and “mutations” or “cross-overs” (weighted combinations of textures in this 

approach) are explored. 

1111C

In a very similar manner, the closure based on the upper bound theory is 

identified. For the present example, the upper bound closure is shown in Figure 15(c) 

along with the lower bound closure. Note that there is only a small overlap of these 

closures, indicating that the complete closure would indeed be significantly larger than 

either of the closures in Figure 15(c) based on bounding theories.  

In order to determine the complete closure, it is important to recognize that all 

property combinations between the bounds are feasible (based on the first-order theories). 

Once again, a set of textures corresponding to the property combinations on the 

boundaries of the upper and lower bound closures were selected (in this work twenty 

textures were selected from each bound). For weighted combinations of the selected 

textures (one pair at a time as was described earlier), the set of feasible combinations of 

the effective properties of interest, ( *P , ), were computed as   *Q

                          ( )LBUBLBUB QQQPPP )1(*,)1(* ββαα −+=−+= ,                    (4.24)                                

where , ,  and  denote the upper and lower bounds for the selected 

texture, and 

UBP UBQ LBP LBQ

α  and β  were individually varied from 0.0 to 1.0. As before, the closure 

was expanded by repeating this basic approach, until it stopped expanding. The 
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corresponding complete closure for the present example is shown in Figure 15(d).  Note 

that this closure includes all feasible property combinations as predicted by the 

elementary bounding theories (i.e. both upper and lower bound theories).   

 

4.3.3. Property Closures for Cold-Wrought Materials   

In identifying the closures shown in Figure 15, I used the values of the initial slip 

resistances that have been established in a recent study on annealed high purity α-Ti with 

an initial average grain size of 30 µm. Therefore the property combinations depicted in 

Figure 15(d) correspond to all possible hexagonal-orthorhombic textures in this material 

system (i.e. for annealed high purity α-Ti with a grain size of about 30 µm). However, it 

is well established that cold work dramatically alters the slip resistances in α-Ti [8, 13, 23, 

66]. In order to understand the influence of hardening on the closure shown in Figure 

15(d), the mathematical procedure described above was repeated for building closures 

using the saturated values of the slip resistance in high purity α-Ti (established in the 

prior work [66] and summarized in Table 3). Note that this corresponds to the material 

being in a heavily cold-worked condition. It is seen that the closure for the heavily cold-

worked high purity α-Ti is significantly larger than the closure for the annealed high 

purity α-Ti (Figure 16).  The corresponding property closures for commercial purity α-Ti 

are shown in Figure 17. Comparison of the closures in Figures 16 and 17 reveals that the 

purity level has a substantial influence on the both the shape and size of the identified 

closures. The main consequences of cold-work and the purity levels are manifested into 

the closures described here through the values of slip resistances. Since a much broader 

range of slip resistances (and their ratios) are possible in the hcp crystals, the shapes and 
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sizes of the closures can change much more dramatically compared to those reported 

earlier in cubic polycrystals [28].  

The methods described above can, in principle, be applied to all hcp polycrystals. 

However, the required data on the slip resistances is readily available only for a limited 

number of material systems.  Since the data for elastic stiffness is much more readily 

available, several examples of elastic property closures for selected hexagonal materials 

are demonstrated in Figure 18.  A further nice feature of the elastic property closures is 

that their Fourier representations are exact (see Eq. (4.16)), unlike those for plastic 

properties that have been truncated (in this work to l  =12). It is seen from Figure 18 that 

strongly elastically anisotropic materials such as Zn and Ca exhibit significantly larger 

closures compared to the others.  

 

4.3.4. R Closures  

A particular plastic property of tremendous interest to the metal sheet working 

community is the R ratio (defined in Eq. (4.9)). Here, as a final example, the (R1- 1yσ ) 

closure is delineated. It has been decided to explore this closure using only the upper 

bound theory (i.e. a Taylor-type model) that is used extensively by researchers in this 

field. Since the value of  can range from 0.0 to 1.0, the corresponding value of R*q 1 can 

range from zero to infinity. This broad range poses significant numerical challenges. 

Therefore, this closure was approached in two steps: (i) delineation of ( -*q 1yσ ) closure, 

and (ii) transformation of ( -*q 1yσ ) closure into the (R1- 1yσ ) closure. Figure 19 shows a 

( -*q 1yσ ) closure for annealed α-Ti obtained using the procedures described earlier. An 
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interesting feature of the ( -*q 1yσ ) closure is its symmetry about . Upon further 

reflection, it should be possible to convince that for every value of > 0.5, there should 

be another point at (1 - ) at the same value of 

5.0* =q

*q

*q 1yσ ; the later simply corresponds to a 

texture rotated by 90 degrees about the e1-axis. This has been verified for selected points 

on the closure (see textures corresponding to A, B, C and D in Fig. 19). 

Figure 20 shows the (R1- 1yσ ) closure obtained by transforming the ( -*q 1yσ ) 

closure shown in Fig. 19 using Eq. (4.9). As expected, the value of R1 can range from 

zero to infinity. In Fig. 20, the closure was truncated at R1=10. Points A, E, and D in Fig. 

6 transformed to Points A’, E’, and D’, respectively, in Fig. 20. In other words, the 

textures corresponding to the pairs of Points (A, A’), (D, D’), and (E, E’) are exactly the 

same. It should be of interest to metal sheet working community to note that there exist a 

fairly large number of textures that can yield low values of yield strength with high 

values of R ratios.  

 

4.4. Conclusions 

The following conclusions are drawn from this study: 

(i) It is possible to extend the MSD framework to hcp polycrystals. This means 

that textures in hexagonal polycrystals can also be represented in texture hulls, 

as was done earlier for cubic polycrystals. Examples of hexagonal-

orthorhombic texture hulls were depicted in this thesis. 

(ii) The lower symmetry, and the inherently higher anisotropy of plastic response, 

in hcp crystals results in the need for a much larger number of dimensions in 

the spectral framework of MSD. For example, the plastic properties associated 



                                                                                                                                                   48

with cubic-orthorhombic textures were well represented in twelve dimensions 

( l  = 8). In this work, it was found to be necessary to explore 57 dimensions (l  

=12) to obtain comparable accuracy in the plastic properties of hexagonal 

polycrystals.  

   (iii)      A new method was proposed to delineate property closures in hcp polycrystals. 

This method essentially builds closures in an iterative approach by considering 

weighted combinations of the textures that produce property combinations on 

the boundary of the closure. This method was successfully used here to produce 

several examples of elastic-plastic property closures in hexagonal-orthorhombic 

textures (using previously established slip-system level properties of high purity 

and commercially pure α-Ti).       
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CHAPTER5: CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions  

      1. This thesis provided a novel and efficient framework for modeling the anisotropic 

stress-strain response and texture evolution at large plastic deformation in α-

titanium alloys at ambient temperature. Crystallographic slip, deformation 

twinning and slip inside twinning have been all incorporated in the model as 

important mechanisms for accommodating plastic deformation. Grain-

fragmentation scheme was proposed to facilitate the formulation of strain 

hardening functions which reflect the complex slip-twin interactions and overcome 

the obstacles which are mainly caused by the large number of new orientations 

produced by twinning.   

       

       2. The complex slip-twin hardening functions have been further improved from their 

previous versions by allowing different hardening parameters for different slip 

and twin families. This improvement has been observed to provide better 

predictions in both texture evolution and stress-strain responses in a number of 

deformation paths, without requiring a significant increase of computation cost.  

  

       3. The accuracy of the proposed framework was evaluated quantitatively by direct   

comparisons with experimental measurements in high purity and commercial 

purity α-titanium. The modeling predictions showed close agreement with 

measurements for both materials in stress-strain behavior and texture evolution. 
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The effects of Taylor assumption on the modeling prediction were careful 

evaluated by comparing the stress and strain distributions with finite element 

framework as a function of plastic anisotropy (in this work plastic anisotropy is 

defined as the ratio of critical resolved shear stresses among different slip 

families).   

          

        4. A new computational scheme for delineating the comprehensive elastic-plastic 

property closures for hexagonal close-packed polycrystal using the spectral 

framework of MSD was provided in this thesis. For the first time in literature, 

MSD framework has been applied to hcp metals for constructing a variety of 

elastic-plastic property closures. Especially, an expanded elastic-plastic closure 

for mechanically processed α-titanium from annealed to heavily cold-wrought 

microstructures was depicted. Moreover, an extremely useful property closure 

(R- 1yσ ) for metals processing community was defined and then delineated.  

 

5.2. Future Work  

        1.  The materials investigated in this work are limited to single phase, pure titanium 

with average grain size about 30um and ambient temperature. In order to expand 

the proposed crystal plasticity model and MSD framework to a broader range of 

applications, further experimental studies are needed to characterize the 

microstructures of the materials of interest.    
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        2.  The effects of Taylor assumption on modeling prediction have been evaluated in 

this thesis. In order to avoid such a gross simplification, the proposed crystal 

plasticity model should be implemented into finite element framework.  

 

         3.  In the current study of MSD, the primary focus is on the delineation of property 

closures for a given material at certain microstructures. The accuracy of the 

property closures is limited due to the use of first-order bounding theories. The 

higher-order homogenization theories are needed to overcome this problem.  
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APPENDIX A: FIGURES 

 

 

 

 

 

 

          
 
Figure 1. A schematic of the interpretation of the multiplicative decomposition of 
deformation gradient when twinning is included.   
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Figure 2. Summary of the multiplicative decomposition of the total deformation gradient 
implemented in the proposed model. pg denotes the parent grain and og denotes the 
offspring grain. Only one offspring is shown in the figure for clarity.  
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Figure 3. Initial textures of (a) high purity and (b) commercial purity α-titanium samples. 
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Figure 4. Comparison of predicted (P) and measured (M) equivalent stress-equivalent 
strain curves for different deformation modes on high purity α-Ti. 
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Figure 5. Strain hardening response of high purity α-Ti in simple compression along ND. 
The ordinate is the normalized slope of the stress-strain curve and the abscissa is the 
normalized plastic flow stress. G is theoretical shear modulus for titanium, and oσ  is the 
initial yield stress. 

 

 

 

 

 

 



                                                                                                                                                   62

 

 

 

 

 

 

 

 

                 

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2

True strain

Tr
ue

 s
tre

ss

Measurement
Prediction

(M
Pa

)

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2

True strain

Tr
ue

 s
tre

ss

Measurement
Prediction

(M
Pa

)

                                                 (a) 

 

 

                

0
200
400
600
800

1000
1200
1400

0 0.2 0.4 0.6 0.8 1 1.
True strain

Tr
ue

 s
tre

s

2

s
(M

Pa
)

Measurement
Prediction

0
200
400
600
800

1000
1200
1400

0 0.2 0.4 0.6 0.8 1 1.
True strain

Tr
ue

 s
tre

s

2

s
(M

Pa
)

Measurement
Prediction

 

 

 

 

 

 

 

                                                             (b) 

 

 
 



                                                                                                                                                   63

 
 
 
 
 
 
 
 
 
 
 
 
 

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2

True strain

Tr
ue

 s
tre

ss

Measurement
Prediction

(M
Pa

)

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1 1.2

True strain

Tr
ue

 s
tre

ss

Measurement
Prediction

(M
Pa

)            

 

 

 

 

 

 

                                               (c) 

Figure 6. Comparison of predicted and measured true stress-true strain curves for 
different deformation modes in commercial purity α-Ti: (a) simple compression along 
ND, (b) simple compression along TD, and (c) simple compression along RD. Curves in 
(a) and (b) were used for calibration, and curves in (c) were used for evaluation. 
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Figure 7. Comparison of initial textures for compression tests on high purity α-Ti along 
ND and TD.  
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Figure 8. Comparison of predicted and measured textures at 22.0−=ε  in simple 
compression of high purity α-Ti along ND.   
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Figure 9. Comparison of predicted and measured textures at 00.1−=ε  in simple 
compression of high purity α−Ti along ND. 

  

 

 

 

 



                                                                                                                                                   67

 

 

 

Measurement 

 

 

 

 

 

  

 
  
 
 

Prediction 
 
 
 
 
 
 
 
 
 
 

  

 
 
Figure 10. Comparison of predicted and measured textures at 00.1−=γ in simple shear 
of high purity α-Ti.  
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(c) Simple compression along RD 
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Figure 11. Comparison of predicted and measured textures at 0.1−=ε  in simple 
compression tests along (a) ND, (b) TD and (c) RD for commercial purity α-titanium.  
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(a)  

             

(b)  

             

(c)  

             

Figure 12. Comparison of initial textures along (a) ND, (b) TD and (c) RD in commercial 
purity α-titanium.    
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Figure 13. Comparison of predicted stress and strain distribution at small strains between 
Taylor model and Finite Element method as a function of plastic anisotropy (ratio of 
critical resolved shear stresses of selected slip families in α-titanium).  
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Figure 14. Thee-dimensional e Hull for hcp-orthorhombic 
materials for the first five dime   The presented sections are: a) 
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projections of the textur
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Figure 15. (

 

 

 

 

 

 

 

 

 

                             (c)                                                                        (d)       

1yσ - 1111C ) property closures for annealed high purity α-titanium: (a) lower 
bound property closure for eigen-textures, (b) the complete lower bound property closure, 

) the complete lower and upper bound property closures, and (d) the complete first-
order property closure.  
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Annealed Heavily cold-worked

1yσ (MPa)

Annealed Heavily cold-worked

1yσ (MPa)

 

 

 

1yσ - 1111CF  16. Complete ( ) closures for high purity α-titanium with an average 
itial grain size of 30 µm in two conditions: (i) annealed, and (ii) heavily cold-worked. 
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1yσ - 1111CF ure 17. Complete ( ) closures for commercial purity α-titanium with an 
verage initial grain size of 35 µm in two conditions: (i) annealed, and (ii) heavily cold-
orked. 
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) property closures for selected hexagonal polycrystals.  
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1313C - 1111CFigure 18. Complete (
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- 1yσF ure 20. The truncated (R1 ) closure for high purity α-titanium based on Taylor-
 

 

 

 

 

 

                               APPENDIX B: TABLES 

type crystal plasticity models.

 

 

 

  



                                                                                                                                                   80

 

 

 

ip and twin systems 

 Slip Systems Twin Systems 

 

Table1. Summary of all parameters for sl

Family Prismatic 
<a> 

Basal 
<a> 

Pyramidal 
<c+a> 

Compressive Tensile 

Plane and 
direction 

}0110{  
>< 0211  

}0001{  
>< 0211  

}1110{
>< 3211  

}2211{
>< 3211  

}2110{
>< 1110  

Number of 
systems 

3 3 12 6 6 

Initial 
resistance 

pris  bass  pyrs  coms  o o o tw
ten
tws  

Slip hardening 
p  arameters

pri
soh , pri

sos  
bash , bass  so so

pyr
soh , pyr

sos  

Other hardening C  

 pa  
in 

 parameters 
, b, sspr

 
No hardening
needed for tw

rameters
systems. 
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Table2. Chemical composition of α-titanium (in wppm) 

Alloy O Fe S C N Al Ti 
 

CP-Ti 810 970 9 196 80 1200 Balance 

HP-Ti 95 1.3 3 7 11 <1.0 Balance 

 
  
 
 
 
 
 
 

ary of estimated model p meters high-p tita

arameter 

Table3. Summ ara  for urity nium  

pri
os  bas

os  pyr
os  tws  baspri

soh −  pyr
soh  P

Value 30MPa 150MPa 120MPa 125MPa 15MPa 300MPa 

pri
sos  pyrbas

sos −  prs  C  b  Parameter  

Value 100MPa 300MPa 100MPa 25 2  
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Table4. Summary of estimated model parameters for commercial-purity titanium  

pri
os  bas

os  pyr
os  tws  baspri

soh −  pyr
soh  Parameter 

Value 60MPa 300MPa 240MPa 400MPa 800MPa 1500MPa 

pri
sos  pyrbas

sos −  prs  C  b  Parameter  

Value 250MPa 430MPa 200MPa 30 2  

 
 
 

                            
    able s of oe or fne ne

 ℓ µ  C1111 C1313

 

          T 5. Value  Fourier c fficients f elastic stif ss compo nts 

ν
0 1 1 .3 0.73333 0
2 1 1 0.09524 -0.07143 
2 1 2 -0.16496 -0.12372 
4 1 1 0.17144 -0.22858 
4 1 2 -0.25555 0.25555 

µν
lAijkl  

4 1 3 0.33806 0.00 
0 1 1 0.26666 -0.13333 
2 1 1 -0.09524 -0.09524 
2 1 2 0.16498 -0.16496 
4 1 1 -0 4 .1714 0.22857 
4 1 2 0.25555 -0.25555 

µν
lBijkl  

4 1 3 -0.33806 0.00 
0 1 1 0.2 0.06667 
2 1 1 -0.28571 0.04762 
2 1 2 0.49487 0.08248 
4 1 1 0.08571 -0.11429 
4 1 2 -0.12778 0.12778 

µν
lDijkl  

4 1 3 0.16903 0.00 
  

 

 

APPENDIX C: DOMINANT SLIP AND SYSTEM itanium  TWIN S IN α-T
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1. Slip systems  

 

                   (i) Basal <a>                       (ii) Prism <a>                    (iii) Pyramidal <c+a> 

                                         

                >< 1102}0001{                    >< 1102}0110{                     >< 3211}1110{  

 

 

mpressive twins                   (ii) Ten ins 

                          

                  

2. Twin systems 

                  sile tw             (i) Co

                                    

                  >< 0111}2110{                         >< 3211}2211{  

APPENDIX D: FORTRAN CO RAIN-FRAGMENTATION 
SCHEME 

DE FOR THE G

 



                                                                                                                                                   84

 

 

Because of the complexity of this stu ber of non-linear 

equations were required to transform the simp s into numerical 

models which are crystal plasticity models ount of non-linear 

 to achieve the numerical solutions using 

rograms. Our re  successfully de eloped a 

an environment mber of materia eters 

nder different mechanical processes for both cubic and hexagonal polycrystals. In the 

past an 

ode to compute anisotropic stress-strai and texture evolution at large strains 

 α-titanium by incorporating deformation twinning and slip inside twins as additional 

deform

at 

s 

dy, a fairly large num

lified physical problem

in this study. The large am

equations posed significant challenges for us

available commercial p search group has v

numerical code in Fortr to solve for a nu l param

u

 four years, I have been largely involved in extending the previous version of Fortr

n responses c

in

ation mechanisms. 

The subroutines attached in the following pages are parts of the Fortran code th

is currently used for crystal plasticity models: one is the main program and the other is 

the subroutine for updating variables for offspring and parent grains. Note that the line

starting with ‘C’ are comments.     
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C   TH
INTEGRATION SCHEME 

OF CRYSTAL- 

C 
 TO HOMOGENEOUS DEFORMATIONS. 

C 
   THE DEFINITIONS OF MOST VARIABLES ARE PROVIDED IN 

COMMONS.TEX.  
   THIS IS THE MAIN PROGRAM. THE LOCAL VARIABLES ARE DEFINED AS: 

C 
   TEXFLAG   : A TIME FLAG INDICATING WHEN TEXTURE IS TO BE 

OUTPUT. 
 

C   OUTFLAG   : A TIME FLAG INDICATING WHEN STRESSES ARE TO BE 
RITTEN 

C               TO FILES. 
     

 PROGRAM MAIN 

INCLUDE 'commons.tex' 

OPEN(UniT=12,FILE='SS-12.txt') 

OPEN(UNIT=51,FILE='RD-S11.txt') 

OPEN(UNIT=9,FILE='9-miscinfo.txt') 

OPEN(UNIT=36,FILE='STRAIN-FTW.txt') 

OPEN(UNIT=55,FILE='CHECK.txt')  

 CALL INPUT 

TEXFLAG = TEX 
OUTFLAG = TAUTO 

IS PROGRAM IMPLEMENTS A NEW FULLY IMPLICIT TIME 

C   FOR A SET OF CONSTITUTIVE LAWS THAT DESCRIBE THE EVOLUTION 

C   LOGRAPHIC TEXTURE WITH LARGE DEFORMATIONS. 

C   THIS PROGRAM IS LIMITED

C

C

C

C

W

C

C 
 
 
 
 OPEN(UNIT=13,FILE='ND-s33.txt') 
 
 OPEN(UNIT=92,FILE='TD-s22.txt') 
 
 OPEN(UNIT=35,FILE='texture-OIM.txt') 
 
 OPEN(UNIT=37,FILE='TWINSYSTEM.txt') 
 
 
 
 
  CALL INITIALIZE 
 
 
 
 NCHILD = ZERO  
 
c     assign iflag=zero to all grains at beginning 
 
 DO KLM=1,NCRYS 
   VFRAC(KLM)=1.0 
   IFLAG(KLM)=ZERO  
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 ENDDO  
 
C     START OF TIME LOOP 
 
100   IF(TIME.EQ.TTIME)GO TO 300 
 TAU = TIME + DTIME 
       

ME)THEN 
  TAU = TTIME 

ENDIF 

     GET THE DEFORMATI  TAU IN GLOBAL COORDINATES 

  

    note: 'ncrys' has been upda me increment  

d, twin volume fraction of offspring grain is setted 
     to be zero in the rest of deformation.   

lume fraction anymore, that's why we set 
      ntwin=zero 

TWIN 

     COMPUTE THE TRIAL STRESS TBTR 

 

 

10          TBTAU(J,K,ICRYS) = TBTMATT(J,K,ICRYS) 

      Update Delta gamma and CRSS on each slip or twin system  

rue were applied here to ensure that  

 IF(TAU.GT.TTI
 
   DTIME = TAU - TIME 
 
 WRITE(*,*)'TAU=',TAU 
 
C ON GRADIENT AT
 
 CALL DEFGRAD
 
C   START OF LOOP OVER CRYSTALS 
c ted at the end of last ti
 
 DO 200 ICRYS = 1,ncrys 
 
c     Once the grain is fragmente
c
c     So we don't need to calculate twin vo
c
 
      IF(IFLAG(ICRYS).NE.ZERO) THEN 
  NTWINTEMP=N
  NTWIN=ZERO 
      ENDIF 
 
C
 CALL TRSTRESS(ICRYS) 
C
C     SOLVE FOR TBTAU; USE TBTMAT AS INITIAL GUESS 
C
 DO 310 J=1,3 
 DO 310 K=1,3 
3
 
C
c      The new slip-twin hardening functions are formed in this subroutine 
c      Two-level loops of the iterative proced
c      a proper increment is achieved.    
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 CALL NEWT(ICRYS) 

CALL UPDATE(ICRYS)         

IN=NTWINTEMP  

00   CONTINUE 

     calculate averaged stress and twin volume fraction for aggregate  

nse and averaged twin volume fraction 
      Note that compressive and tensile twins are presented seperately here.  

WRITE(36,245)-
  

      To justify if the deforme  at this point  

 

 TEXFLAG = 

ENDIF 

ld 
      be outputed at this point  

IF(TAU.LT.TAUTO.OR.TAU.GE.OUTFLAG) CALL 

LAG+OUT 

TIME = TAU 

 
c     Update all the required variables for next time step 
c     Cauchy stress is computed in this subroutine  
 
 
 
c     Use 'iflat' to decide whether a grain is an offspring one or parent one.  
 
 IF(IFLAG(ICRYS).NE.ZERO) NTW
 
2
 
 
c
 
      call updatepoly 
 
c      Output averaged stress-strain respo
c
  
 
EDOT*TAU,AVGFTW,AVGFTWTEN,AVGFTWCOM
245   FORMAT(4F12.3) 
 
c d texture should be outputed
 
 IF(TAU.GE.TEXFLAG)THEN 
 
  CALL TEXTURE 
 
TEXFLAG+TEX 
 
 
C      TO justify if stress-strain response (not the deviatoric stress) shou
c
 
 
OUTPUT 
 IF(TAU.GE.OUTFLAG) OUTFLAG = OUTF
 
C       Update time   
 
 
 
c      Adjust time step  
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 IF(TAU.GT.TAUTO)THEN 
c     DTIME=DTMAX 
  DTIME = 
DTIME*0.05/DGMAXG 
 
 IF(DTIME.GT.DTMAX)DTIME = DTMAX 

ENDIF 

OR NEW GRAINS including offspring and parent grains. 
ote that  

 IF(FTWCRYST(ICRYS).GE.FTWSAT) THEN 
   CALL NEWGRAINS(ICRYS) 

       NCRYS=NCRYS+NTWINDOM(ICRYS) 

00   CONTINUE 

GO TO 100 

0 

      Check if the number of t arent 

    write(*,*)'ncrys',ncrys 

END 

((((((((((((((((((((((((((((((()))

bles of newly produced grains for 

    SUBROUTINE NEWGRAINS(IPARENT)    
ommons.tex' 

D   SMATGTEMP(3,3,MAXSLIP,MAXCRYS) 
DIMENSION  TOTFTWDOM(MAXCRYS)    
    

 
 
C     UPDATE VARIABLES F
N
c     the number of total grains is updated there.  
 
      DO 400 ICRYS=1,NCRYS 
 
 
  
  ENDIF 
4
 
 
  
30 continue      
 
c      The end of the loop 
 
c otal grains equalts to the sum of offspring and p
c      grains.  
  
 write(*,*)'nchild',nchild 
 
 STOP 
 
 
C ))))))))))))))))))))) 
 
c     This subroutine is used to update all the varia
c     the computation of next time step.   
 
  
 INCLUDE 'c
  
 IMENSION
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C     UPDATE NUMBER OF TOTAL OFFSPRING GRAINS, AND NEW OFFSRPING 
AT WERE JUST 

 THE CURRENT TIME STEP    

    NCHILD=NCHILD+NTWINDOM(IPARENT) 
ENT) 

     UPDATE VARIABLES FOR OFFSPRING GRAINS 

     TOTFTWDOM(IPARENT)=ZERO  

S+NNEWCHILD 

IFLAG(ICHILD) = TWO  

rits all the hardening 
    parameters from its pare

        DO J=1,NSLIP 

SAT(IPARENT) 

    SSATPYR(ICHILD) = SSATPYR(IPARENT) 
ENT) 

    HSSPYR(ICHILD) = HSSPYR(IPARENT) 

     Further twinning is not allowed in the offspring grain. 

        DO K=1,NTWIN 

    FTWSYS(K,ICHILD) = ZERO  

     Set twin volume fraction of offspring grain to zero.       

    FTWTENT(ICHILD) = ZERO 
T(ICHILD) = ZERO 

      UPDATE FPTINV AND

GRAINS TH
C     PRODUCED DURING
       
  
 NNEWCHILD=NTWINDOM(IPAR
 
C
 
  
 
      DO 100 ICHILD=NCRYS+1,NCRY
 
  
 
c     At the moment when offspring grain is generated, it inhe
c nt grain.  
 
  
  CRSST(J,ICHILD) = 
CRSST(J,IPARENT) 
     ENDDO  
 
     SSAT(ICHILD) = S
     SSATBAS(ICHILD) = SSATBAS(IPARENT) 
 
     HSS(ICHILD) = HSS(IPAR
 
 
c
 
  
     CRSSTWT(K,ICHILD) = TWINFINITY 
 
     ENDDO 
 
C
 
     FTWCRYST(ICHILD) = ZERO 
 
     FTWCOM
  
c  TBTMAT 
 
     DO 10 K=1,3 
     DO 10 L=1,3 
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 FPTINVT(K,L,ICHILD)=FPTINVT(K,L,IPARENT) 
0        CONTINUE 

    DO 11 K=1,3 
    DO 11 L=1,3 

1        CONTINUE 
       
      FIND WHAT TWIN SYSTEM IS THE NEW GRAIN GENERATED FROM  

        ITWIN=NEWGRAIN(IPARENT,ICHILD-NCRYS)  

     FIND THE MAX VOLU  GRAIN   

    ITWINMAX=NEWGRAINMAX(IPARENT) 
ILD)=ITWIN  

 UPDATE VOLUME FRAC D GRAINS  
 ASSIGN VOLUME FRAC  NEW CHILD GRAIN (DOMINANT 

        VFRAC(ICHILD)=FTWSYS(ITWIN,IPARENT) 

 TOTAL VOLUME FRACT W CHILD GRAINS (DOMINANT 

    

        
MATRIX-

WIN ORIENTATION AT 
     INTERMEDIATE CONF

         DO 13 I=1,3 

,IPARENT) 
3      CONTINUE 

      DO 12 I=1,NSLIP 

  DO 12 L=1,3 
 SMATGTEMP(K,L,I,ICHILD)=0.0 

       DO 12 M=1,3  

1
 
 
 
  TBTMATT(K,L,ICHILD)=zero 
1     
  
C
 
  
 
C ME TWIN SYSTEM IN PARENT
 
 
     IPTR(ICH
 
C TION FOR CHIL
C TION TO EACH
TWIN SYSTEMS IN PARENT GRAIN)  
 
  
 
C ION OF THE NE
TWIN SYSTEMS IN PARENT GRAIN) 
 
 
TOTFTWDOM(IPARENT)=TOTFTWDOM(IPARENT)+VFRAC(ICHILD) 
 
         IF(ITWIN.EQ.ITWINMAX) ICHILDMAX=ICHILD  
 
c     UPDATE ORIENTATIONS FOR CHILD GRAINS BASED ON THE 
T
C IGURATION.  
 
  
      DO 13 J=1,3 
         
QMAT(I,J,ICHILD)=QMATTW(I,J,ITWIN
1
 
 
    DO 12 K=1,3 
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SMATGTEMP(K,L,I,ICHILD)=SMATGTEMP(K,L,I,ICHILD)+ 
 1                    QMAT(K,M,ICHILD)*SMAT(M,L,I) 

   DO 15 K=1,3 
  DO 15 L=1,3 

 SMATG(K,L,I,ICHILD)=0.0 
      DO 15 M=1,3  

CHILD)=SMATG(K,L,I,ICHILD)+ 
             

      CONTINUE 

          DO I=1,NSLIP 
MAT(1,I,ICHILD) = SMAT )  
MAT(2,I,ICHILD) = SMAT D) 

) = SMATG (1,2,I,ICHILD) + SMATG 

,I,ICHILD) + SMATG 
,1,I,ICHILD) 

 PMAT(4,I,ICHILD) = SMATG (3,2,I,ICHILD) + SMATG 
,3,I,ICHILD) 

00   continue 

      ASSIGN THE VOLUM HOSE NON-DOMINANT TWINS to 

      child grain IN ORDER T  SUM OF ALL VOLUME FRACTIONS 

     VFRAC(ICHILDMAX)=FTWCRYST(IPARENT)-TOTFTWDOM(IPARENT)+ 
1                                                  VFRAC(ICHILDMAX) 

     UPDATE VARIABLES 

VFRAC(IPARENT)=ONE-FTWCRYST(IPARENT) 

DO K=1,NTWIN 

   FTWSYS(K,IPARENT) = ZERO 

12        CONTINUE 
 
       DO 15 I=1,NSLIP 
 
  
 
 
  SMATG(K,L,I,I
 1       
SMATGTEMP(K,M,I,ICHILD)*QMAT(L,M,ICHILD) 
15  
 
  
  P G (1,1,I,ICHILD
  P G (2,2,I,ICHIL
  PMAT(3,I,ICHILD) = SMATG (3,3,I,ICHILD) 
  PMAT(6,I,ICHILD
(2,1,I,ICHILD) 
  PMAT(5,I,ICHILD) = SMATG (1,3
(3
 
(2
       ENDDO   
 
1
 
C E FRACTION OF T
the biggest  
C O KEEP THE
EQUAL TO ONE.  
       
  
 
 
C FOR PARENT GRAIN  
 
 IFLAG(IPARENT) = ONE 
 
 
 
    CRSSTWT(K,IPARENT) = TWINFINITY 
 
 ENDDO  
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  FTWCRYST(IPARENT) = 

ERO 

    FTWCOMT(IPARENT) = ZERO 

return     

Z
     FTWTENT(IPARENT) = ZERO 
 
 
 
 
      end   
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APPENDIX E: FOURIER COEFFICIENTS NEEDED FOR COMPUTING 
TENSILE YIELD STRENGTH IN ANNEALED α-TITANIUM POLYCRYSTALS 

 
 

1. The following Fourier coefficients ( ) are used to derive the effective tensile 
ield strength at upper bounds. For clarity, the coefficients listed below are only for 
iscrete q in the increment of 0.2 in the range from 0 to 1.     

                                                                  

 
)(1 qSii

y
µν
l

y
d
 
 

11'σ      
q 0 0.2 0.4 0.6 0.8 1 

o11 141.618 157.61 165.41 165.402 157.618 141.623
211 -12.5359 -23.5985 -26.9394 -28.1348 -35.6095 -52.7122
212 68.0966 54.7292 48.0258 47.3532 47.7906 44.8791
411 -11.0759 -14.265 -20.4915 -20.2524 -18.8544 -30.9472
412 26.5782 35.6857 32.2489 32.0263 39.8086 44.388

612 8.51278 1.47909 1.98426 4.35439 7.75493 8.29341
613 -1.74256 -3.21924 -3.2693 -3.71497 -4.14044 -8.20128
614 18.7699 9.88179 5.90714 3.48031 3.83654 6.20294

-0.58891
0.786215

-0.09572 2.30016
811 -0.43531 2.97438 3.67654 3.69121 2.3283 -6.4009
812 -9.34945 -7.00952 -5.43699 -5.29212 -5.01546 -6.14395
813 2.81155 7.03034 5.88927 5.63811 4.21766 6.17041

.468 -6.58075 -7.73821 -8.83035
815 3.16685 7.11543 8 1 8 7 9 8.2321

-4 -

-

-

413 -56.3424 -45.257 -41.3496 -41.6612 -39.8386 -32.7948
611 1.15793 -2.4654 -1.59114 -2.74949 -4.93833 -15.9762

621 1.74939 -0.16082 0.188158 2.86686 0.803877
622 4.39395 -0.56384 -0.06659 -1.49423 -5.13978
623 -2.09704 -1.13344 -0.66484 -0.37197 0.011228 -2.44185
624 -3.4649 -2.96902 -0.05789 1.1295

814 -12.5718 -6.72024 -6 89
.5395 .6553 9.737

821 8.54859 -1.6592 .01599 -4.27905 -3.84977 0.47225
822 -4.96327 2.92811

-
5.77197

-
5.99169

-
5.27914 

-
4.53263

-823 1.18355 3.47736
4

6.00535 6.01492 4.46879 2.56658
824 3.50346 

-
.18884 6.54687

-
6.65687

-
4.54206 5.1785

8825 4.71122 -8.01112
-1

9.51371 9.18456 -4.6557 .89656
1011 0.060321 

0
.28684 -2.06911 -2.75804 -5.26947 -3.20607

1012 .504351 2.34716 3.10118
-

3.9639
-

6.05293 -1.89692
1013 1.67843 -3.12047 3.32965

3
4.06249 -5.3305 0.38502

1014 9.1046 
-

5.82289
-

.76848 4.13285
-

6.2445 
-

8.07414
-1015 4.87076 5.76453 4.56937 4.36771 6.29378 5.71565

1016 1.68266 10.3933 6.62522 5.33498 4.62007 1.08178
1021 12.5419 10.9717 5.72729 3.20485 1.36948 -0.44984
1022 -12.0216 

8.4609
-13.5619 -7.95956 -4.63789

5
-2.11316 -1.51539

1023 7 9.503
-

7.62596
-

.01491 2.85673 
-4

1.01096
51024 -6.641 6.55219 7.21021 -5.87138 .02663 .26247

1025 
1026 

5.33518 
-2.03266 

5.12971
-4.09268

6.94304
-8.07493

7.64189
-13.0335

5.05939 
-20.6185 

3.9624
-20.0772
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1211 5.48733 4.914 5.23429 3.71876 -1.96914 -

0. -0
- -

- 1
- -

0 -0

0 0 0 0. -

- - 0 -
0 0 0 0 0

1. 0 0
-3
- -1

0 1.
 

                      

1.25753
1212 -9.64708 -8.41682 -7.38715 -5.33288 0.399456 -0.30469
1213 11.6007 8.36748 7.46114 5.6951 190712 .33176
1214 10.6605 10.0016 -7.58347 -6.2845 -1.98829 4.20308
1215 0.608617 7.72575 7.67968 7.25344 5.5774 -3.3012
1216 2.63038 -5.30165 -8.02665 -8.80865 -10.4996 -8.90875
1217 1.48726 -0.59078 9.72076 12.9577 14.1624 6.4197
1221 -4.41632 -0.34846 0.055154 -0.38504 1.74644 0.28314
1222 8.38787 0.614272 -0.11675 0.501491 1.93259 1.67633
1223 -4.96757 -0.33427 .254614 .37603 -1.60782 -0.3143
1224 1.70219 -0.90716 -0.29356 0.122183 1.61751 3.01589
1225 -1.7844 .230354 .277734 .094194 008939 0.63352
1226 2.1628 0.778281 -0.03168 -0.35626 -0.64594 1.23783
1227 2.03869 -3.27459 0.72883 .280652 -0.60903 10.7415
1231 .010664 .866874 .753981 .640946 .529174 -0.70775
1232 -1.91953 -1.09248 -1.08079 -0.96309 -0.7184 -1.67235
1233 2.43229 12753 1.15419 1.13314 .927184 .930904
1234 .62485 -1.13622 -1.30972 -1.35766 -1.0639 1.45169
1235 1.16598 1.27391 1.54361 1.56399 1.2693 .71292
1236 0.799579 -1.38801 -1.74615 -1.66358 -1.35753 -2.79057
1237 .824416 46544 1.84648 1.96635 1.99907 2.93041

      

                                               22'σ  
q 0 0.2 0.4 0.6 0.8 1 

o11 0

-

-0

-
- -

- -0

0 -
813 68 -11.6613 02 1.99236 -0.9253 -5.71891
814 8.81357 6.59998 5.39781 0.46198 -8.65499 -8.84164

13.28 -14.044 -9.59446 -8.82883
821 -8.37077 13.4919 0.06664 -3 0.479273

1 0
-

-2 -

-5. -5 0. -

.616081 -38.8288 -70.9622 -91.1092 -115.775 -139.665
211 84.2041 103.278 109.89 102.746 78.9479 52.3189
212 -49.0443 -12.1807 18.3806 30.9476 39.9754 44.6078
411 50.2626 -28.5189 6.87808 27.2654 39.753 30.2781
412 -44.2827 -51.4806 -30.1548 -14.2498 18.5011 43.7543
413 58.4176 25.34 10.084 15.223 22.8651 31.7448
611 17.0284 17.8506 5.56216 7.88433 18.5423 15.164
612 .00407 7.05459 -1.17948 -6.70774 0.228963 7.89303
613 6.39012 2.21372 0.060591 8.47899 14.0335 8.1238
614 -12.3412 4.68093 4.70386 -0.60887 1.9854 5.4369
621 -1.49933 2.03295 1.27309 -3.20366 0.01818 -0.65906
622 9.01344 2.32386 1.39232 4.0816 2.2051 -5.15674
623 -0.51606 -0.29428 1.79247 -2.25396 2.17869 2.21467
624 7.22786 2.19316 5.26005 1.57742 .52434 2.34412
811 12.8019 7.40962 4.67017 2.65904 6.64245 6.02989
812 5.24529 .298221 -4.31416 -3.43047 -4.84725 6.20144

-9.069 -0.313

815 -9.71534 -14.926 - 69
12.602 .91351 

822 -4.77336 -18.195 -16.0368 -1.07314 3.41993 4.55854
823 4.71561 12.6759 1.3162 2.42973 .813505 2.51371
824 -5.3532 -4.62513 5.71985 -0.61692 1.89532 4.97431
825 7.33387 12.7355 7.84037 -14.0885 0.7337 8.75778

1011 6.31705 4.43408 3.17988 -0.36361 -2.15155 3.02026
1012 -0.661 57756 .10203 191312 4.83794 1.88021
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1013 - -0

0 4
- 0

-6 -1
-
-

- -

-
- -

-1
-

- -
0 -
- -
-
1 0

-
0

-
17

0 0 0
-

0
0
-2

-
- - -

  

                      

6.95587 6.33725 5.21789 -0.0496 -2.60565 .27711
1014 -8.26274 -4.2362 -5.02864 -0.22715 -1.02453 7.85795
1015 9.86601 4.92834 4.84088 -0.92849 .918022 .95316
1016 0.512457 -15.1546 7.06705 2.02007 3.829 .44452
1021 -28.9676 -15.353 2.32697 4.53596 2.12999 0.358838
1022 24.3671 17.3517 -2.69626 .11834 .93021 -1.48075
1023 -11.8634 -8.67098 0.92107 5.13228 1.88837 0.97008
1024 9.60582 6.22856 2.38995 -2.5264 -2.39698 5.16134
1025 7.05983 -6.00241 -7.566 -2.7437 -2.37521 3.87803
1026 3.61624 7.72235 16.7154 15.2378 -5.40053 -19.6105
1211 4.61334 6.34337 6.04551 5.60147 1.14618 1.13658
1212 4.76111 -6.54383 7.83757 -7.80995 -0.2952 -0.36977
1213 -6.68606 2.6187 5.68592 7.10034 1.85035 0.288375
1214 15.2687 9.41995 .58106 -5.48078 -4.74935 4.00261
1215 -4.25518 14.3058 -3.7513 2.19603 10.5208 2.93726
1216 3.85596 13.0264 10.4443 5.18286 -5.27273 9.13543
1217 .839192 -1.17117 -20.681 -22.2335 -19.6252 16.0617
1221 4.12933 -9.80518 2.99901 2.13617 -0.68875 0.24446
1222 2.46978 12.1415 3.95526 -2.80573 0.281275 1.61147
1223 .05766 -7.43177 -2.87757 2.38272 .562456 0.303644
1224 0.948695 4.13221 1.35968 1.79277 -1.5854 2.92886
1225 1.61369 -1.8398 -0.8364 0.622077 1.03122 .604202
1226 3.53001 1.42032 1.3519 -0.49474 -0.32275 1.25878
1227 3.39027 3.28842 -3.67935 5.31946 .7543 10.4373
1231 2.42054 .953337 .875905 .770147 1.25018 0.706935
1232 0.27089 -1.96001 -1.09314 -1.30776 -1.3619 -1.63978
1233 -1.00352 1.42237 .520402 1.7797 1.37255 -0.90046
1234 6.02652 1.08723 .828409 -2.258 -2.30291 1.38326
1235 -1.09386 -4.30125 .71059 2.16376 3.94582 1.51862
1236 2.06488 4.30945 4.36469 -0.51242 -1.10384 -2.67378
1237 1.88175 -4.33653 4.53593 -3.17321 -4.07059 2.94317

     

                                              33'σ  
q 0 0.2 0.4 0.6 0.8 1 

o11 -139.669 -115.772 -91.112 -70.9589 -38.8347 0.607859
211 -64.789 -74.0765 -

-
-

-
- - -

-1 -
- -
-

-
-3
2 0

0 -
-

78.2107 -70.8227 -41.0806 0.390001
212 -23.0191 -48.3888 -73.5207 -85.9588 -95.5389 97.4268
411 59.3352 42.1819 13.494 -6.78732 -20.7464 0.42594
412 17.7705 16.3435 -1.9349 -17.9277 -58.4359 -88.8913
413 -2.58634 20.0131 31.5153 26.2706 16.1835 0.53061
611 15.9739 14.2111 3.24053 -4.37631 -13.0459 -0.18289
612 -8.66423 -9.52162 .86777 1.33534 -8.9522 17.3903
613 3.66479 1.67784 4.27464 -3.68888 -9.45376 0.15703
614 6.59282 -15.7751 -12.1547 -4.41512 -7.50487 -13.4952
621 -0.12164 -1.72823 -0.79477 2.85815 3.00237 -0.0613
622 4.30639 -1.91778 0.775714 .79816 -0.59748 10.5434
623 2.42375 1.55956 -1.32349 .41063 -2.16986 .023366
624 -3.60747 0.947781 5.63697 -2.45463 .383278 4.89569
811 -12.7672 -10.5041 8.40938 -6.40769 -9.00073 -0.24813
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812 3.60656 6.59404 9.82406 8.81891 9.66659 11.4813
813 5.55058 4.5089 16 79 39 -0.1127

1.18196 6.21188 16.4691 17.7331
4.60062 5.2636 -0.19561 0.494496

821 -0.24824 -1 -8 4.13333 7 -0.0 58

-

-
- -

0

0
-

-
- -1 -

0
- - -1

0

1
2 2

0
- 0 -

0 - -
- 0

0 -
- -1

3
- -

0 -

 

  

 

 

-5.645 -7.741 -3.402
814 3.27079 0.22296
815 6.87374 7.88409

1.5443 .49525 7.619 76
822 9.39683 14.9268 10.1541 -4.82605 -8.58793 -9.2114
823 5.56433 -9.00619 -5.23777 3.54392 3.68151 -0.0097
824 1.64257 0.276249 -0.85681 -6.053 -6.51641 -10.5347
825 2.56149 -4.87387 1.5492 23.4384 25.884 0.184366

1011 5.43603 -2.52476 0.71933 3.13104 7.01127 -0.19406
1012 -0.74326 2.40822 1.46101 -4.18346 -10.4905 3.53758
1013 6.04669 -2.43243 -1.38372 4.19778 7.50283 -0.0876
1014 -0.22301 -1.75875 0.83364 -4.1119 -4.7557 -15.2569
1015 -5.32748 .568324 0.02044 5.71342 5.52514 0.277059
1016 -2.04251 5.50423 0.334853 -8.21949 -9.7026 -2.90087
1021 16.0997 4.5925 -7.69437 -7.55252 -3.55931 .057884
1022 12.0868 -4.08073 10.1438 10.4689 4.09768 3.1396
1023 3.19844 -0.53008 -8.0384 -9.82609 -4.7102 0.030654
1024 -3.01817 0.024206 4.31908 7.99556 6.25294 10.2796
1025 1.89824 1.1107 1.10311 -4.35958 -2.38113 0.029632
1026 -1.5099 -3.59984 9.14485 -3.0485 25.5259 40.1226
1211 10.2115 0.8961 -10.5501 -8.71331 2.87729 0.09505
1212 14.0718 14.2196 14.1846 12.2691 -0.0653 .619253
1213 4.23943 -10.2025 12.0799 1.8696 -1.95251 -0.0074
1214 -5.49457 -0.36805 8.05006 10.7568 6.3883 -8.01376
1215 3.82029 7.34983 -2.75406 -8.31647 -15.4878 .221401
1216 1.25142 -8.42717 -3.68227 2.29865 14.7019 17.0827
1217 0.50715 1.73663 12.5459 1.1124 6.72152 0.26593
1221 8.32919 9.86705 .79614 -1.70171 .42895 0.011399
1222 -5.62622 -12.2962 -3.64321 2.24188 -2.23768 -3.32236
1223 3.49491 7.3681 2.47036 -1.95397 1.08351 .014675
1224 2.28844 -3.03985 -0.95879 1.6303 .014711 5.98949
1225 -0.026 1.48603 .518806 0.70635 1.02687 -0.01566
1226 1.39104 -2.16977 1.34256 .917108 1.14254 -2.1162
1227 -1.34048 .002765 4.50691 -5.90367 17.8345 -0.26469
1231 2.38661 .80496 -1.65063 -1.46052 -1.84669 -0.07531
1232 2.14134 3.03406 2.20405 2.34071 2.1303 .39173
1233 1.43274 -2.58615 -1.7031 -2.96744 2.28324 0.056859
1234 -2.20035 0.189972 .505877 3.65155 3.35895 2.96908
1235 2.08323 2.8497 1.14842 -3.75027 -5.34297 0.086694
1236 1.14663 -2.90617 -2.59224 2.20038 2.644 5.67488
1237 1.01209 2.80238 2.58356 1.1535 2.04607 0.027754
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2. The following Fourier coefficients ( re de c ield 
streng ower b 7 on ri  
study
 
 
                       

11 8
1 2.4
12 4
11 .48
12 5.31

413 24.789
611 -14.9654
612 22.0174
613 17.4939
614 11.7685
621 -12.981
622 5.12352
623 3.46237

 

814 19.4422
815 5.70392
821 -10.4857

9.5861

-

)µνSii  a1 ly  used to rive effe tive tensile y
th at l ounds.  Note that 5  dimensi s of Fou er series are utilized in this

.  

                            
o 0.898
2 1 -1 448
2  6 .2941
4  4 152
4  1 36

624 16.1631
811 9.41137
812 -4.34313
813 10.8378

822 
823 

8
.41547-3

1.80119824 
825 16.1563
1011 -1.44262
1012 5.09746
1013 5.7108
1014 7.53646
1015 11.9527
1016 5.6075
1021 -6.64412
1022 15.0947
1023 -4.48909
1024 -1.35946
1025 2.78022
1026 7.63202
1211 -0.50288
1212 5.97375
1213 -1.72796
1214 9.9934
1215 4.02703
1216 7.09073
1217 4.3189
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1221 -3.23716
1222 -3.88635
1223 -11.5769
1224 -5

9

  
   

 

       

  

 

 

 

 

    

 

 

 

 

.10215
1225 -3.35437
1226 -0.30869
1227 .25492
1231 4.20484
1232 -1.02318
1233 -1.33595
1234 -9.12944
1235 -6.62172
1236 -3.41543
1237 -1.36798
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